]>
Commit | Line | Data |
---|---|---|
b49e97c9 | 1 | /* MIPS-specific support for ELF |
4b95cf5c | 2 | Copyright (C) 1993-2014 Free Software Foundation, Inc. |
b49e97c9 TS |
3 | |
4 | Most of the information added by Ian Lance Taylor, Cygnus Support, | |
5 | <[email protected]>. | |
6 | N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC. | |
7 | <[email protected]> | |
8 | Traditional MIPS targets support added by Koundinya.K, Dansk Data | |
9 | Elektronik & Operations Research Group. <[email protected]> | |
10 | ||
ae9a127f | 11 | This file is part of BFD, the Binary File Descriptor library. |
b49e97c9 | 12 | |
ae9a127f NC |
13 | This program is free software; you can redistribute it and/or modify |
14 | it under the terms of the GNU General Public License as published by | |
cd123cb7 | 15 | the Free Software Foundation; either version 3 of the License, or |
ae9a127f | 16 | (at your option) any later version. |
b49e97c9 | 17 | |
ae9a127f NC |
18 | This program is distributed in the hope that it will be useful, |
19 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
20 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
21 | GNU General Public License for more details. | |
b49e97c9 | 22 | |
ae9a127f NC |
23 | You should have received a copy of the GNU General Public License |
24 | along with this program; if not, write to the Free Software | |
cd123cb7 NC |
25 | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
26 | MA 02110-1301, USA. */ | |
27 | ||
b49e97c9 TS |
28 | |
29 | /* This file handles functionality common to the different MIPS ABI's. */ | |
30 | ||
b49e97c9 | 31 | #include "sysdep.h" |
3db64b00 | 32 | #include "bfd.h" |
b49e97c9 | 33 | #include "libbfd.h" |
64543e1a | 34 | #include "libiberty.h" |
b49e97c9 TS |
35 | #include "elf-bfd.h" |
36 | #include "elfxx-mips.h" | |
37 | #include "elf/mips.h" | |
0a44bf69 | 38 | #include "elf-vxworks.h" |
b49e97c9 TS |
39 | |
40 | /* Get the ECOFF swapping routines. */ | |
41 | #include "coff/sym.h" | |
42 | #include "coff/symconst.h" | |
43 | #include "coff/ecoff.h" | |
44 | #include "coff/mips.h" | |
45 | ||
b15e6682 AO |
46 | #include "hashtab.h" |
47 | ||
9ab066b4 RS |
48 | /* Types of TLS GOT entry. */ |
49 | enum mips_got_tls_type { | |
50 | GOT_TLS_NONE, | |
51 | GOT_TLS_GD, | |
52 | GOT_TLS_LDM, | |
53 | GOT_TLS_IE | |
54 | }; | |
55 | ||
ead49a57 | 56 | /* This structure is used to hold information about one GOT entry. |
3dff0dd1 RS |
57 | There are four types of entry: |
58 | ||
59 | (1) an absolute address | |
60 | requires: abfd == NULL | |
61 | fields: d.address | |
62 | ||
63 | (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd | |
64 | requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM | |
65 | fields: abfd, symndx, d.addend, tls_type | |
66 | ||
67 | (3) a SYMBOL address, where SYMBOL is not local to an input bfd | |
68 | requires: abfd != NULL, symndx == -1 | |
69 | fields: d.h, tls_type | |
70 | ||
71 | (4) a TLS LDM slot | |
72 | requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM | |
73 | fields: none; there's only one of these per GOT. */ | |
b15e6682 AO |
74 | struct mips_got_entry |
75 | { | |
3dff0dd1 | 76 | /* One input bfd that needs the GOT entry. */ |
b15e6682 | 77 | bfd *abfd; |
f4416af6 AO |
78 | /* The index of the symbol, as stored in the relocation r_info, if |
79 | we have a local symbol; -1 otherwise. */ | |
80 | long symndx; | |
81 | union | |
82 | { | |
83 | /* If abfd == NULL, an address that must be stored in the got. */ | |
84 | bfd_vma address; | |
85 | /* If abfd != NULL && symndx != -1, the addend of the relocation | |
86 | that should be added to the symbol value. */ | |
87 | bfd_vma addend; | |
88 | /* If abfd != NULL && symndx == -1, the hash table entry | |
3dff0dd1 | 89 | corresponding to a symbol in the GOT. The symbol's entry |
020d7251 RS |
90 | is in the local area if h->global_got_area is GGA_NONE, |
91 | otherwise it is in the global area. */ | |
f4416af6 AO |
92 | struct mips_elf_link_hash_entry *h; |
93 | } d; | |
0f20cc35 | 94 | |
9ab066b4 RS |
95 | /* The TLS type of this GOT entry. An LDM GOT entry will be a local |
96 | symbol entry with r_symndx == 0. */ | |
0f20cc35 DJ |
97 | unsigned char tls_type; |
98 | ||
9ab066b4 RS |
99 | /* True if we have filled in the GOT contents for a TLS entry, |
100 | and created the associated relocations. */ | |
101 | unsigned char tls_initialized; | |
102 | ||
b15e6682 | 103 | /* The offset from the beginning of the .got section to the entry |
f4416af6 AO |
104 | corresponding to this symbol+addend. If it's a global symbol |
105 | whose offset is yet to be decided, it's going to be -1. */ | |
106 | long gotidx; | |
b15e6682 AO |
107 | }; |
108 | ||
13db6b44 RS |
109 | /* This structure represents a GOT page reference from an input bfd. |
110 | Each instance represents a symbol + ADDEND, where the representation | |
111 | of the symbol depends on whether it is local to the input bfd. | |
112 | If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD. | |
113 | Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry. | |
114 | ||
115 | Page references with SYMNDX >= 0 always become page references | |
116 | in the output. Page references with SYMNDX < 0 only become page | |
117 | references if the symbol binds locally; in other cases, the page | |
118 | reference decays to a global GOT reference. */ | |
119 | struct mips_got_page_ref | |
120 | { | |
121 | long symndx; | |
122 | union | |
123 | { | |
124 | struct mips_elf_link_hash_entry *h; | |
125 | bfd *abfd; | |
126 | } u; | |
127 | bfd_vma addend; | |
128 | }; | |
129 | ||
c224138d RS |
130 | /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND]. |
131 | The structures form a non-overlapping list that is sorted by increasing | |
132 | MIN_ADDEND. */ | |
133 | struct mips_got_page_range | |
134 | { | |
135 | struct mips_got_page_range *next; | |
136 | bfd_signed_vma min_addend; | |
137 | bfd_signed_vma max_addend; | |
138 | }; | |
139 | ||
140 | /* This structure describes the range of addends that are applied to page | |
13db6b44 | 141 | relocations against a given section. */ |
c224138d RS |
142 | struct mips_got_page_entry |
143 | { | |
13db6b44 RS |
144 | /* The section that these entries are based on. */ |
145 | asection *sec; | |
c224138d RS |
146 | /* The ranges for this page entry. */ |
147 | struct mips_got_page_range *ranges; | |
148 | /* The maximum number of page entries needed for RANGES. */ | |
149 | bfd_vma num_pages; | |
150 | }; | |
151 | ||
f0abc2a1 | 152 | /* This structure is used to hold .got information when linking. */ |
b49e97c9 TS |
153 | |
154 | struct mips_got_info | |
155 | { | |
b49e97c9 TS |
156 | /* The number of global .got entries. */ |
157 | unsigned int global_gotno; | |
23cc69b6 RS |
158 | /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */ |
159 | unsigned int reloc_only_gotno; | |
0f20cc35 DJ |
160 | /* The number of .got slots used for TLS. */ |
161 | unsigned int tls_gotno; | |
162 | /* The first unused TLS .got entry. Used only during | |
163 | mips_elf_initialize_tls_index. */ | |
164 | unsigned int tls_assigned_gotno; | |
c224138d | 165 | /* The number of local .got entries, eventually including page entries. */ |
b49e97c9 | 166 | unsigned int local_gotno; |
c224138d RS |
167 | /* The maximum number of page entries needed. */ |
168 | unsigned int page_gotno; | |
ab361d49 RS |
169 | /* The number of relocations needed for the GOT entries. */ |
170 | unsigned int relocs; | |
cb22ccf4 KCY |
171 | /* The first unused local .got entry. */ |
172 | unsigned int assigned_low_gotno; | |
173 | /* The last unused local .got entry. */ | |
174 | unsigned int assigned_high_gotno; | |
b15e6682 AO |
175 | /* A hash table holding members of the got. */ |
176 | struct htab *got_entries; | |
13db6b44 RS |
177 | /* A hash table holding mips_got_page_ref structures. */ |
178 | struct htab *got_page_refs; | |
c224138d RS |
179 | /* A hash table of mips_got_page_entry structures. */ |
180 | struct htab *got_page_entries; | |
f4416af6 AO |
181 | /* In multi-got links, a pointer to the next got (err, rather, most |
182 | of the time, it points to the previous got). */ | |
183 | struct mips_got_info *next; | |
184 | }; | |
185 | ||
d7206569 | 186 | /* Structure passed when merging bfds' gots. */ |
f4416af6 AO |
187 | |
188 | struct mips_elf_got_per_bfd_arg | |
189 | { | |
f4416af6 AO |
190 | /* The output bfd. */ |
191 | bfd *obfd; | |
192 | /* The link information. */ | |
193 | struct bfd_link_info *info; | |
194 | /* A pointer to the primary got, i.e., the one that's going to get | |
195 | the implicit relocations from DT_MIPS_LOCAL_GOTNO and | |
196 | DT_MIPS_GOTSYM. */ | |
197 | struct mips_got_info *primary; | |
198 | /* A non-primary got we're trying to merge with other input bfd's | |
199 | gots. */ | |
200 | struct mips_got_info *current; | |
201 | /* The maximum number of got entries that can be addressed with a | |
202 | 16-bit offset. */ | |
203 | unsigned int max_count; | |
c224138d RS |
204 | /* The maximum number of page entries needed by each got. */ |
205 | unsigned int max_pages; | |
0f20cc35 DJ |
206 | /* The total number of global entries which will live in the |
207 | primary got and be automatically relocated. This includes | |
208 | those not referenced by the primary GOT but included in | |
209 | the "master" GOT. */ | |
210 | unsigned int global_count; | |
f4416af6 AO |
211 | }; |
212 | ||
ab361d49 RS |
213 | /* A structure used to pass information to htab_traverse callbacks |
214 | when laying out the GOT. */ | |
f4416af6 | 215 | |
ab361d49 | 216 | struct mips_elf_traverse_got_arg |
f4416af6 | 217 | { |
ab361d49 | 218 | struct bfd_link_info *info; |
f4416af6 AO |
219 | struct mips_got_info *g; |
220 | int value; | |
0f20cc35 DJ |
221 | }; |
222 | ||
f0abc2a1 AM |
223 | struct _mips_elf_section_data |
224 | { | |
225 | struct bfd_elf_section_data elf; | |
226 | union | |
227 | { | |
f0abc2a1 AM |
228 | bfd_byte *tdata; |
229 | } u; | |
230 | }; | |
231 | ||
232 | #define mips_elf_section_data(sec) \ | |
68bfbfcc | 233 | ((struct _mips_elf_section_data *) elf_section_data (sec)) |
f0abc2a1 | 234 | |
d5eaccd7 RS |
235 | #define is_mips_elf(bfd) \ |
236 | (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ | |
237 | && elf_tdata (bfd) != NULL \ | |
4dfe6ac6 | 238 | && elf_object_id (bfd) == MIPS_ELF_DATA) |
d5eaccd7 | 239 | |
634835ae RS |
240 | /* The ABI says that every symbol used by dynamic relocations must have |
241 | a global GOT entry. Among other things, this provides the dynamic | |
242 | linker with a free, directly-indexed cache. The GOT can therefore | |
243 | contain symbols that are not referenced by GOT relocations themselves | |
244 | (in other words, it may have symbols that are not referenced by things | |
245 | like R_MIPS_GOT16 and R_MIPS_GOT_PAGE). | |
246 | ||
247 | GOT relocations are less likely to overflow if we put the associated | |
248 | GOT entries towards the beginning. We therefore divide the global | |
249 | GOT entries into two areas: "normal" and "reloc-only". Entries in | |
250 | the first area can be used for both dynamic relocations and GP-relative | |
251 | accesses, while those in the "reloc-only" area are for dynamic | |
252 | relocations only. | |
253 | ||
254 | These GGA_* ("Global GOT Area") values are organised so that lower | |
255 | values are more general than higher values. Also, non-GGA_NONE | |
256 | values are ordered by the position of the area in the GOT. */ | |
257 | #define GGA_NORMAL 0 | |
258 | #define GGA_RELOC_ONLY 1 | |
259 | #define GGA_NONE 2 | |
260 | ||
861fb55a DJ |
261 | /* Information about a non-PIC interface to a PIC function. There are |
262 | two ways of creating these interfaces. The first is to add: | |
263 | ||
264 | lui $25,%hi(func) | |
265 | addiu $25,$25,%lo(func) | |
266 | ||
267 | immediately before a PIC function "func". The second is to add: | |
268 | ||
269 | lui $25,%hi(func) | |
270 | j func | |
271 | addiu $25,$25,%lo(func) | |
272 | ||
273 | to a separate trampoline section. | |
274 | ||
275 | Stubs of the first kind go in a new section immediately before the | |
276 | target function. Stubs of the second kind go in a single section | |
277 | pointed to by the hash table's "strampoline" field. */ | |
278 | struct mips_elf_la25_stub { | |
279 | /* The generated section that contains this stub. */ | |
280 | asection *stub_section; | |
281 | ||
282 | /* The offset of the stub from the start of STUB_SECTION. */ | |
283 | bfd_vma offset; | |
284 | ||
285 | /* One symbol for the original function. Its location is available | |
286 | in H->root.root.u.def. */ | |
287 | struct mips_elf_link_hash_entry *h; | |
288 | }; | |
289 | ||
290 | /* Macros for populating a mips_elf_la25_stub. */ | |
291 | ||
292 | #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */ | |
293 | #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */ | |
294 | #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */ | |
d21911ea MR |
295 | #define LA25_LUI_MICROMIPS(VAL) \ |
296 | (0x41b90000 | (VAL)) /* lui t9,VAL */ | |
297 | #define LA25_J_MICROMIPS(VAL) \ | |
298 | (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */ | |
299 | #define LA25_ADDIU_MICROMIPS(VAL) \ | |
300 | (0x33390000 | (VAL)) /* addiu t9,t9,VAL */ | |
861fb55a | 301 | |
b49e97c9 TS |
302 | /* This structure is passed to mips_elf_sort_hash_table_f when sorting |
303 | the dynamic symbols. */ | |
304 | ||
305 | struct mips_elf_hash_sort_data | |
306 | { | |
307 | /* The symbol in the global GOT with the lowest dynamic symbol table | |
308 | index. */ | |
309 | struct elf_link_hash_entry *low; | |
0f20cc35 DJ |
310 | /* The least dynamic symbol table index corresponding to a non-TLS |
311 | symbol with a GOT entry. */ | |
b49e97c9 | 312 | long min_got_dynindx; |
f4416af6 AO |
313 | /* The greatest dynamic symbol table index corresponding to a symbol |
314 | with a GOT entry that is not referenced (e.g., a dynamic symbol | |
9e4aeb93 | 315 | with dynamic relocations pointing to it from non-primary GOTs). */ |
f4416af6 | 316 | long max_unref_got_dynindx; |
b49e97c9 TS |
317 | /* The greatest dynamic symbol table index not corresponding to a |
318 | symbol without a GOT entry. */ | |
319 | long max_non_got_dynindx; | |
320 | }; | |
321 | ||
1bbce132 MR |
322 | /* We make up to two PLT entries if needed, one for standard MIPS code |
323 | and one for compressed code, either a MIPS16 or microMIPS one. We | |
324 | keep a separate record of traditional lazy-binding stubs, for easier | |
325 | processing. */ | |
326 | ||
327 | struct plt_entry | |
328 | { | |
329 | /* Traditional SVR4 stub offset, or -1 if none. */ | |
330 | bfd_vma stub_offset; | |
331 | ||
332 | /* Standard PLT entry offset, or -1 if none. */ | |
333 | bfd_vma mips_offset; | |
334 | ||
335 | /* Compressed PLT entry offset, or -1 if none. */ | |
336 | bfd_vma comp_offset; | |
337 | ||
338 | /* The corresponding .got.plt index, or -1 if none. */ | |
339 | bfd_vma gotplt_index; | |
340 | ||
341 | /* Whether we need a standard PLT entry. */ | |
342 | unsigned int need_mips : 1; | |
343 | ||
344 | /* Whether we need a compressed PLT entry. */ | |
345 | unsigned int need_comp : 1; | |
346 | }; | |
347 | ||
b49e97c9 TS |
348 | /* The MIPS ELF linker needs additional information for each symbol in |
349 | the global hash table. */ | |
350 | ||
351 | struct mips_elf_link_hash_entry | |
352 | { | |
353 | struct elf_link_hash_entry root; | |
354 | ||
355 | /* External symbol information. */ | |
356 | EXTR esym; | |
357 | ||
861fb55a DJ |
358 | /* The la25 stub we have created for ths symbol, if any. */ |
359 | struct mips_elf_la25_stub *la25_stub; | |
360 | ||
b49e97c9 TS |
361 | /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against |
362 | this symbol. */ | |
363 | unsigned int possibly_dynamic_relocs; | |
364 | ||
b49e97c9 TS |
365 | /* If there is a stub that 32 bit functions should use to call this |
366 | 16 bit function, this points to the section containing the stub. */ | |
367 | asection *fn_stub; | |
368 | ||
b49e97c9 TS |
369 | /* If there is a stub that 16 bit functions should use to call this |
370 | 32 bit function, this points to the section containing the stub. */ | |
371 | asection *call_stub; | |
372 | ||
373 | /* This is like the call_stub field, but it is used if the function | |
374 | being called returns a floating point value. */ | |
375 | asection *call_fp_stub; | |
7c5fcef7 | 376 | |
634835ae RS |
377 | /* The highest GGA_* value that satisfies all references to this symbol. */ |
378 | unsigned int global_got_area : 2; | |
379 | ||
6ccf4795 RS |
380 | /* True if all GOT relocations against this symbol are for calls. This is |
381 | a looser condition than no_fn_stub below, because there may be other | |
382 | non-call non-GOT relocations against the symbol. */ | |
383 | unsigned int got_only_for_calls : 1; | |
384 | ||
71782a75 RS |
385 | /* True if one of the relocations described by possibly_dynamic_relocs |
386 | is against a readonly section. */ | |
387 | unsigned int readonly_reloc : 1; | |
388 | ||
861fb55a DJ |
389 | /* True if there is a relocation against this symbol that must be |
390 | resolved by the static linker (in other words, if the relocation | |
391 | cannot possibly be made dynamic). */ | |
392 | unsigned int has_static_relocs : 1; | |
393 | ||
71782a75 RS |
394 | /* True if we must not create a .MIPS.stubs entry for this symbol. |
395 | This is set, for example, if there are relocations related to | |
396 | taking the function's address, i.e. any but R_MIPS_CALL*16 ones. | |
397 | See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */ | |
398 | unsigned int no_fn_stub : 1; | |
399 | ||
400 | /* Whether we need the fn_stub; this is true if this symbol appears | |
401 | in any relocs other than a 16 bit call. */ | |
402 | unsigned int need_fn_stub : 1; | |
403 | ||
861fb55a DJ |
404 | /* True if this symbol is referenced by branch relocations from |
405 | any non-PIC input file. This is used to determine whether an | |
406 | la25 stub is required. */ | |
407 | unsigned int has_nonpic_branches : 1; | |
33bb52fb RS |
408 | |
409 | /* Does this symbol need a traditional MIPS lazy-binding stub | |
410 | (as opposed to a PLT entry)? */ | |
411 | unsigned int needs_lazy_stub : 1; | |
1bbce132 MR |
412 | |
413 | /* Does this symbol resolve to a PLT entry? */ | |
414 | unsigned int use_plt_entry : 1; | |
b49e97c9 TS |
415 | }; |
416 | ||
417 | /* MIPS ELF linker hash table. */ | |
418 | ||
419 | struct mips_elf_link_hash_table | |
420 | { | |
421 | struct elf_link_hash_table root; | |
861fb55a | 422 | |
b49e97c9 TS |
423 | /* The number of .rtproc entries. */ |
424 | bfd_size_type procedure_count; | |
861fb55a | 425 | |
b49e97c9 TS |
426 | /* The size of the .compact_rel section (if SGI_COMPAT). */ |
427 | bfd_size_type compact_rel_size; | |
861fb55a | 428 | |
e6aea42d MR |
429 | /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry |
430 | is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */ | |
b34976b6 | 431 | bfd_boolean use_rld_obj_head; |
861fb55a | 432 | |
b4082c70 DD |
433 | /* The __rld_map or __rld_obj_head symbol. */ |
434 | struct elf_link_hash_entry *rld_symbol; | |
861fb55a | 435 | |
b49e97c9 | 436 | /* This is set if we see any mips16 stub sections. */ |
b34976b6 | 437 | bfd_boolean mips16_stubs_seen; |
861fb55a DJ |
438 | |
439 | /* True if we can generate copy relocs and PLTs. */ | |
440 | bfd_boolean use_plts_and_copy_relocs; | |
441 | ||
833794fc MR |
442 | /* True if we can only use 32-bit microMIPS instructions. */ |
443 | bfd_boolean insn32; | |
444 | ||
0a44bf69 RS |
445 | /* True if we're generating code for VxWorks. */ |
446 | bfd_boolean is_vxworks; | |
861fb55a | 447 | |
0e53d9da AN |
448 | /* True if we already reported the small-data section overflow. */ |
449 | bfd_boolean small_data_overflow_reported; | |
861fb55a | 450 | |
0a44bf69 RS |
451 | /* Shortcuts to some dynamic sections, or NULL if they are not |
452 | being used. */ | |
453 | asection *srelbss; | |
454 | asection *sdynbss; | |
455 | asection *srelplt; | |
456 | asection *srelplt2; | |
457 | asection *sgotplt; | |
458 | asection *splt; | |
4e41d0d7 | 459 | asection *sstubs; |
a8028dd0 | 460 | asection *sgot; |
861fb55a | 461 | |
a8028dd0 RS |
462 | /* The master GOT information. */ |
463 | struct mips_got_info *got_info; | |
861fb55a | 464 | |
d222d210 RS |
465 | /* The global symbol in the GOT with the lowest index in the dynamic |
466 | symbol table. */ | |
467 | struct elf_link_hash_entry *global_gotsym; | |
468 | ||
861fb55a | 469 | /* The size of the PLT header in bytes. */ |
0a44bf69 | 470 | bfd_vma plt_header_size; |
861fb55a | 471 | |
1bbce132 MR |
472 | /* The size of a standard PLT entry in bytes. */ |
473 | bfd_vma plt_mips_entry_size; | |
474 | ||
475 | /* The size of a compressed PLT entry in bytes. */ | |
476 | bfd_vma plt_comp_entry_size; | |
477 | ||
478 | /* The offset of the next standard PLT entry to create. */ | |
479 | bfd_vma plt_mips_offset; | |
480 | ||
481 | /* The offset of the next compressed PLT entry to create. */ | |
482 | bfd_vma plt_comp_offset; | |
483 | ||
484 | /* The index of the next .got.plt entry to create. */ | |
485 | bfd_vma plt_got_index; | |
861fb55a | 486 | |
33bb52fb RS |
487 | /* The number of functions that need a lazy-binding stub. */ |
488 | bfd_vma lazy_stub_count; | |
861fb55a | 489 | |
5108fc1b RS |
490 | /* The size of a function stub entry in bytes. */ |
491 | bfd_vma function_stub_size; | |
861fb55a DJ |
492 | |
493 | /* The number of reserved entries at the beginning of the GOT. */ | |
494 | unsigned int reserved_gotno; | |
495 | ||
496 | /* The section used for mips_elf_la25_stub trampolines. | |
497 | See the comment above that structure for details. */ | |
498 | asection *strampoline; | |
499 | ||
500 | /* A table of mips_elf_la25_stubs, indexed by (input_section, offset) | |
501 | pairs. */ | |
502 | htab_t la25_stubs; | |
503 | ||
504 | /* A function FN (NAME, IS, OS) that creates a new input section | |
505 | called NAME and links it to output section OS. If IS is nonnull, | |
506 | the new section should go immediately before it, otherwise it | |
507 | should go at the (current) beginning of OS. | |
508 | ||
509 | The function returns the new section on success, otherwise it | |
510 | returns null. */ | |
511 | asection *(*add_stub_section) (const char *, asection *, asection *); | |
13db6b44 RS |
512 | |
513 | /* Small local sym cache. */ | |
514 | struct sym_cache sym_cache; | |
1bbce132 MR |
515 | |
516 | /* Is the PLT header compressed? */ | |
517 | unsigned int plt_header_is_comp : 1; | |
861fb55a DJ |
518 | }; |
519 | ||
4dfe6ac6 NC |
520 | /* Get the MIPS ELF linker hash table from a link_info structure. */ |
521 | ||
522 | #define mips_elf_hash_table(p) \ | |
523 | (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \ | |
524 | == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL) | |
525 | ||
861fb55a | 526 | /* A structure used to communicate with htab_traverse callbacks. */ |
4dfe6ac6 NC |
527 | struct mips_htab_traverse_info |
528 | { | |
861fb55a DJ |
529 | /* The usual link-wide information. */ |
530 | struct bfd_link_info *info; | |
531 | bfd *output_bfd; | |
532 | ||
533 | /* Starts off FALSE and is set to TRUE if the link should be aborted. */ | |
534 | bfd_boolean error; | |
b49e97c9 TS |
535 | }; |
536 | ||
6ae68ba3 MR |
537 | /* MIPS ELF private object data. */ |
538 | ||
539 | struct mips_elf_obj_tdata | |
540 | { | |
541 | /* Generic ELF private object data. */ | |
542 | struct elf_obj_tdata root; | |
543 | ||
544 | /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */ | |
545 | bfd *abi_fp_bfd; | |
ee227692 | 546 | |
b60bf9be CF |
547 | /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */ |
548 | bfd *abi_msa_bfd; | |
549 | ||
351cdf24 MF |
550 | /* The abiflags for this object. */ |
551 | Elf_Internal_ABIFlags_v0 abiflags; | |
552 | bfd_boolean abiflags_valid; | |
553 | ||
ee227692 RS |
554 | /* The GOT requirements of input bfds. */ |
555 | struct mips_got_info *got; | |
698600e4 AM |
556 | |
557 | /* Used by _bfd_mips_elf_find_nearest_line. The structure could be | |
558 | included directly in this one, but there's no point to wasting | |
559 | the memory just for the infrequently called find_nearest_line. */ | |
560 | struct mips_elf_find_line *find_line_info; | |
561 | ||
562 | /* An array of stub sections indexed by symbol number. */ | |
563 | asection **local_stubs; | |
564 | asection **local_call_stubs; | |
565 | ||
566 | /* The Irix 5 support uses two virtual sections, which represent | |
567 | text/data symbols defined in dynamic objects. */ | |
568 | asymbol *elf_data_symbol; | |
569 | asymbol *elf_text_symbol; | |
570 | asection *elf_data_section; | |
571 | asection *elf_text_section; | |
6ae68ba3 MR |
572 | }; |
573 | ||
574 | /* Get MIPS ELF private object data from BFD's tdata. */ | |
575 | ||
576 | #define mips_elf_tdata(bfd) \ | |
577 | ((struct mips_elf_obj_tdata *) (bfd)->tdata.any) | |
578 | ||
0f20cc35 DJ |
579 | #define TLS_RELOC_P(r_type) \ |
580 | (r_type == R_MIPS_TLS_DTPMOD32 \ | |
581 | || r_type == R_MIPS_TLS_DTPMOD64 \ | |
582 | || r_type == R_MIPS_TLS_DTPREL32 \ | |
583 | || r_type == R_MIPS_TLS_DTPREL64 \ | |
584 | || r_type == R_MIPS_TLS_GD \ | |
585 | || r_type == R_MIPS_TLS_LDM \ | |
586 | || r_type == R_MIPS_TLS_DTPREL_HI16 \ | |
587 | || r_type == R_MIPS_TLS_DTPREL_LO16 \ | |
588 | || r_type == R_MIPS_TLS_GOTTPREL \ | |
589 | || r_type == R_MIPS_TLS_TPREL32 \ | |
590 | || r_type == R_MIPS_TLS_TPREL64 \ | |
591 | || r_type == R_MIPS_TLS_TPREL_HI16 \ | |
df58fc94 | 592 | || r_type == R_MIPS_TLS_TPREL_LO16 \ |
d0f13682 CLT |
593 | || r_type == R_MIPS16_TLS_GD \ |
594 | || r_type == R_MIPS16_TLS_LDM \ | |
595 | || r_type == R_MIPS16_TLS_DTPREL_HI16 \ | |
596 | || r_type == R_MIPS16_TLS_DTPREL_LO16 \ | |
597 | || r_type == R_MIPS16_TLS_GOTTPREL \ | |
598 | || r_type == R_MIPS16_TLS_TPREL_HI16 \ | |
599 | || r_type == R_MIPS16_TLS_TPREL_LO16 \ | |
df58fc94 RS |
600 | || r_type == R_MICROMIPS_TLS_GD \ |
601 | || r_type == R_MICROMIPS_TLS_LDM \ | |
602 | || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \ | |
603 | || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \ | |
604 | || r_type == R_MICROMIPS_TLS_GOTTPREL \ | |
605 | || r_type == R_MICROMIPS_TLS_TPREL_HI16 \ | |
606 | || r_type == R_MICROMIPS_TLS_TPREL_LO16) | |
0f20cc35 | 607 | |
b49e97c9 TS |
608 | /* Structure used to pass information to mips_elf_output_extsym. */ |
609 | ||
610 | struct extsym_info | |
611 | { | |
9e4aeb93 RS |
612 | bfd *abfd; |
613 | struct bfd_link_info *info; | |
b49e97c9 TS |
614 | struct ecoff_debug_info *debug; |
615 | const struct ecoff_debug_swap *swap; | |
b34976b6 | 616 | bfd_boolean failed; |
b49e97c9 TS |
617 | }; |
618 | ||
8dc1a139 | 619 | /* The names of the runtime procedure table symbols used on IRIX5. */ |
b49e97c9 TS |
620 | |
621 | static const char * const mips_elf_dynsym_rtproc_names[] = | |
622 | { | |
623 | "_procedure_table", | |
624 | "_procedure_string_table", | |
625 | "_procedure_table_size", | |
626 | NULL | |
627 | }; | |
628 | ||
629 | /* These structures are used to generate the .compact_rel section on | |
8dc1a139 | 630 | IRIX5. */ |
b49e97c9 TS |
631 | |
632 | typedef struct | |
633 | { | |
634 | unsigned long id1; /* Always one? */ | |
635 | unsigned long num; /* Number of compact relocation entries. */ | |
636 | unsigned long id2; /* Always two? */ | |
637 | unsigned long offset; /* The file offset of the first relocation. */ | |
638 | unsigned long reserved0; /* Zero? */ | |
639 | unsigned long reserved1; /* Zero? */ | |
640 | } Elf32_compact_rel; | |
641 | ||
642 | typedef struct | |
643 | { | |
644 | bfd_byte id1[4]; | |
645 | bfd_byte num[4]; | |
646 | bfd_byte id2[4]; | |
647 | bfd_byte offset[4]; | |
648 | bfd_byte reserved0[4]; | |
649 | bfd_byte reserved1[4]; | |
650 | } Elf32_External_compact_rel; | |
651 | ||
652 | typedef struct | |
653 | { | |
654 | unsigned int ctype : 1; /* 1: long 0: short format. See below. */ | |
655 | unsigned int rtype : 4; /* Relocation types. See below. */ | |
656 | unsigned int dist2to : 8; | |
657 | unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ | |
658 | unsigned long konst; /* KONST field. See below. */ | |
659 | unsigned long vaddr; /* VADDR to be relocated. */ | |
660 | } Elf32_crinfo; | |
661 | ||
662 | typedef struct | |
663 | { | |
664 | unsigned int ctype : 1; /* 1: long 0: short format. See below. */ | |
665 | unsigned int rtype : 4; /* Relocation types. See below. */ | |
666 | unsigned int dist2to : 8; | |
667 | unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ | |
668 | unsigned long konst; /* KONST field. See below. */ | |
669 | } Elf32_crinfo2; | |
670 | ||
671 | typedef struct | |
672 | { | |
673 | bfd_byte info[4]; | |
674 | bfd_byte konst[4]; | |
675 | bfd_byte vaddr[4]; | |
676 | } Elf32_External_crinfo; | |
677 | ||
678 | typedef struct | |
679 | { | |
680 | bfd_byte info[4]; | |
681 | bfd_byte konst[4]; | |
682 | } Elf32_External_crinfo2; | |
683 | ||
684 | /* These are the constants used to swap the bitfields in a crinfo. */ | |
685 | ||
686 | #define CRINFO_CTYPE (0x1) | |
687 | #define CRINFO_CTYPE_SH (31) | |
688 | #define CRINFO_RTYPE (0xf) | |
689 | #define CRINFO_RTYPE_SH (27) | |
690 | #define CRINFO_DIST2TO (0xff) | |
691 | #define CRINFO_DIST2TO_SH (19) | |
692 | #define CRINFO_RELVADDR (0x7ffff) | |
693 | #define CRINFO_RELVADDR_SH (0) | |
694 | ||
695 | /* A compact relocation info has long (3 words) or short (2 words) | |
696 | formats. A short format doesn't have VADDR field and relvaddr | |
697 | fields contains ((VADDR - vaddr of the previous entry) >> 2). */ | |
698 | #define CRF_MIPS_LONG 1 | |
699 | #define CRF_MIPS_SHORT 0 | |
700 | ||
701 | /* There are 4 types of compact relocation at least. The value KONST | |
702 | has different meaning for each type: | |
703 | ||
704 | (type) (konst) | |
705 | CT_MIPS_REL32 Address in data | |
706 | CT_MIPS_WORD Address in word (XXX) | |
707 | CT_MIPS_GPHI_LO GP - vaddr | |
708 | CT_MIPS_JMPAD Address to jump | |
709 | */ | |
710 | ||
711 | #define CRT_MIPS_REL32 0xa | |
712 | #define CRT_MIPS_WORD 0xb | |
713 | #define CRT_MIPS_GPHI_LO 0xc | |
714 | #define CRT_MIPS_JMPAD 0xd | |
715 | ||
716 | #define mips_elf_set_cr_format(x,format) ((x).ctype = (format)) | |
717 | #define mips_elf_set_cr_type(x,type) ((x).rtype = (type)) | |
718 | #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v)) | |
719 | #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2) | |
720 | \f | |
721 | /* The structure of the runtime procedure descriptor created by the | |
722 | loader for use by the static exception system. */ | |
723 | ||
724 | typedef struct runtime_pdr { | |
ae9a127f NC |
725 | bfd_vma adr; /* Memory address of start of procedure. */ |
726 | long regmask; /* Save register mask. */ | |
727 | long regoffset; /* Save register offset. */ | |
728 | long fregmask; /* Save floating point register mask. */ | |
729 | long fregoffset; /* Save floating point register offset. */ | |
730 | long frameoffset; /* Frame size. */ | |
731 | short framereg; /* Frame pointer register. */ | |
732 | short pcreg; /* Offset or reg of return pc. */ | |
733 | long irpss; /* Index into the runtime string table. */ | |
b49e97c9 | 734 | long reserved; |
ae9a127f | 735 | struct exception_info *exception_info;/* Pointer to exception array. */ |
b49e97c9 TS |
736 | } RPDR, *pRPDR; |
737 | #define cbRPDR sizeof (RPDR) | |
738 | #define rpdNil ((pRPDR) 0) | |
739 | \f | |
b15e6682 | 740 | static struct mips_got_entry *mips_elf_create_local_got_entry |
a8028dd0 RS |
741 | (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long, |
742 | struct mips_elf_link_hash_entry *, int); | |
b34976b6 | 743 | static bfd_boolean mips_elf_sort_hash_table_f |
9719ad41 | 744 | (struct mips_elf_link_hash_entry *, void *); |
9719ad41 RS |
745 | static bfd_vma mips_elf_high |
746 | (bfd_vma); | |
b34976b6 | 747 | static bfd_boolean mips_elf_create_dynamic_relocation |
9719ad41 RS |
748 | (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *, |
749 | struct mips_elf_link_hash_entry *, asection *, bfd_vma, | |
750 | bfd_vma *, asection *); | |
f4416af6 | 751 | static bfd_vma mips_elf_adjust_gp |
9719ad41 | 752 | (bfd *, struct mips_got_info *, bfd *); |
f4416af6 | 753 | |
b49e97c9 TS |
754 | /* This will be used when we sort the dynamic relocation records. */ |
755 | static bfd *reldyn_sorting_bfd; | |
756 | ||
6d30f5b2 NC |
757 | /* True if ABFD is for CPUs with load interlocking that include |
758 | non-MIPS1 CPUs and R3900. */ | |
759 | #define LOAD_INTERLOCKS_P(abfd) \ | |
760 | ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \ | |
761 | || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900)) | |
762 | ||
cd8d5a82 CF |
763 | /* True if ABFD is for CPUs that are faster if JAL is converted to BAL. |
764 | This should be safe for all architectures. We enable this predicate | |
765 | for RM9000 for now. */ | |
766 | #define JAL_TO_BAL_P(abfd) \ | |
767 | ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000) | |
768 | ||
769 | /* True if ABFD is for CPUs that are faster if JALR is converted to BAL. | |
770 | This should be safe for all architectures. We enable this predicate for | |
771 | all CPUs. */ | |
772 | #define JALR_TO_BAL_P(abfd) 1 | |
773 | ||
38a7df63 CF |
774 | /* True if ABFD is for CPUs that are faster if JR is converted to B. |
775 | This should be safe for all architectures. We enable this predicate for | |
776 | all CPUs. */ | |
777 | #define JR_TO_B_P(abfd) 1 | |
778 | ||
861fb55a DJ |
779 | /* True if ABFD is a PIC object. */ |
780 | #define PIC_OBJECT_P(abfd) \ | |
781 | ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0) | |
782 | ||
351cdf24 MF |
783 | /* Nonzero if ABFD is using the O32 ABI. */ |
784 | #define ABI_O32_P(abfd) \ | |
785 | ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32) | |
786 | ||
b49e97c9 | 787 | /* Nonzero if ABFD is using the N32 ABI. */ |
b49e97c9 TS |
788 | #define ABI_N32_P(abfd) \ |
789 | ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0) | |
790 | ||
4a14403c | 791 | /* Nonzero if ABFD is using the N64 ABI. */ |
b49e97c9 | 792 | #define ABI_64_P(abfd) \ |
141ff970 | 793 | (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64) |
b49e97c9 | 794 | |
4a14403c TS |
795 | /* Nonzero if ABFD is using NewABI conventions. */ |
796 | #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd)) | |
797 | ||
e8faf7d1 MR |
798 | /* Nonzero if ABFD has microMIPS code. */ |
799 | #define MICROMIPS_P(abfd) \ | |
800 | ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0) | |
801 | ||
7361da2c AB |
802 | /* Nonzero if ABFD is MIPS R6. */ |
803 | #define MIPSR6_P(abfd) \ | |
804 | ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \ | |
805 | || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6) | |
806 | ||
4a14403c | 807 | /* The IRIX compatibility level we are striving for. */ |
b49e97c9 TS |
808 | #define IRIX_COMPAT(abfd) \ |
809 | (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd)) | |
810 | ||
b49e97c9 TS |
811 | /* Whether we are trying to be compatible with IRIX at all. */ |
812 | #define SGI_COMPAT(abfd) \ | |
813 | (IRIX_COMPAT (abfd) != ict_none) | |
814 | ||
815 | /* The name of the options section. */ | |
816 | #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \ | |
d80dcc6a | 817 | (NEWABI_P (abfd) ? ".MIPS.options" : ".options") |
b49e97c9 | 818 | |
cc2e31b9 RS |
819 | /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section. |
820 | Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */ | |
821 | #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \ | |
822 | (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0) | |
823 | ||
351cdf24 MF |
824 | /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */ |
825 | #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \ | |
826 | (strcmp (NAME, ".MIPS.abiflags") == 0) | |
827 | ||
943284cc DJ |
828 | /* Whether the section is readonly. */ |
829 | #define MIPS_ELF_READONLY_SECTION(sec) \ | |
830 | ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \ | |
831 | == (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) | |
832 | ||
b49e97c9 | 833 | /* The name of the stub section. */ |
ca07892d | 834 | #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs" |
b49e97c9 TS |
835 | |
836 | /* The size of an external REL relocation. */ | |
837 | #define MIPS_ELF_REL_SIZE(abfd) \ | |
838 | (get_elf_backend_data (abfd)->s->sizeof_rel) | |
839 | ||
0a44bf69 RS |
840 | /* The size of an external RELA relocation. */ |
841 | #define MIPS_ELF_RELA_SIZE(abfd) \ | |
842 | (get_elf_backend_data (abfd)->s->sizeof_rela) | |
843 | ||
b49e97c9 TS |
844 | /* The size of an external dynamic table entry. */ |
845 | #define MIPS_ELF_DYN_SIZE(abfd) \ | |
846 | (get_elf_backend_data (abfd)->s->sizeof_dyn) | |
847 | ||
848 | /* The size of a GOT entry. */ | |
849 | #define MIPS_ELF_GOT_SIZE(abfd) \ | |
850 | (get_elf_backend_data (abfd)->s->arch_size / 8) | |
851 | ||
b4082c70 DD |
852 | /* The size of the .rld_map section. */ |
853 | #define MIPS_ELF_RLD_MAP_SIZE(abfd) \ | |
854 | (get_elf_backend_data (abfd)->s->arch_size / 8) | |
855 | ||
b49e97c9 TS |
856 | /* The size of a symbol-table entry. */ |
857 | #define MIPS_ELF_SYM_SIZE(abfd) \ | |
858 | (get_elf_backend_data (abfd)->s->sizeof_sym) | |
859 | ||
860 | /* The default alignment for sections, as a power of two. */ | |
861 | #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \ | |
45d6a902 | 862 | (get_elf_backend_data (abfd)->s->log_file_align) |
b49e97c9 TS |
863 | |
864 | /* Get word-sized data. */ | |
865 | #define MIPS_ELF_GET_WORD(abfd, ptr) \ | |
866 | (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr)) | |
867 | ||
868 | /* Put out word-sized data. */ | |
869 | #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \ | |
870 | (ABI_64_P (abfd) \ | |
871 | ? bfd_put_64 (abfd, val, ptr) \ | |
872 | : bfd_put_32 (abfd, val, ptr)) | |
873 | ||
861fb55a DJ |
874 | /* The opcode for word-sized loads (LW or LD). */ |
875 | #define MIPS_ELF_LOAD_WORD(abfd) \ | |
876 | (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000) | |
877 | ||
b49e97c9 | 878 | /* Add a dynamic symbol table-entry. */ |
9719ad41 | 879 | #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \ |
5a580b3a | 880 | _bfd_elf_add_dynamic_entry (info, tag, val) |
b49e97c9 TS |
881 | |
882 | #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \ | |
883 | (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela)) | |
884 | ||
0a44bf69 RS |
885 | /* The name of the dynamic relocation section. */ |
886 | #define MIPS_ELF_REL_DYN_NAME(INFO) \ | |
887 | (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn") | |
888 | ||
b49e97c9 TS |
889 | /* In case we're on a 32-bit machine, construct a 64-bit "-1" value |
890 | from smaller values. Start with zero, widen, *then* decrement. */ | |
891 | #define MINUS_ONE (((bfd_vma)0) - 1) | |
c5ae1840 | 892 | #define MINUS_TWO (((bfd_vma)0) - 2) |
b49e97c9 | 893 | |
51e38d68 RS |
894 | /* The value to write into got[1] for SVR4 targets, to identify it is |
895 | a GNU object. The dynamic linker can then use got[1] to store the | |
896 | module pointer. */ | |
897 | #define MIPS_ELF_GNU_GOT1_MASK(abfd) \ | |
898 | ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31)) | |
899 | ||
f4416af6 | 900 | /* The offset of $gp from the beginning of the .got section. */ |
0a44bf69 RS |
901 | #define ELF_MIPS_GP_OFFSET(INFO) \ |
902 | (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0) | |
f4416af6 AO |
903 | |
904 | /* The maximum size of the GOT for it to be addressable using 16-bit | |
905 | offsets from $gp. */ | |
0a44bf69 | 906 | #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff) |
f4416af6 | 907 | |
6a691779 | 908 | /* Instructions which appear in a stub. */ |
3d6746ca DD |
909 | #define STUB_LW(abfd) \ |
910 | ((ABI_64_P (abfd) \ | |
911 | ? 0xdf998010 /* ld t9,0x8010(gp) */ \ | |
912 | : 0x8f998010)) /* lw t9,0x8010(gp) */ | |
913 | #define STUB_MOVE(abfd) \ | |
914 | ((ABI_64_P (abfd) \ | |
915 | ? 0x03e0782d /* daddu t7,ra */ \ | |
916 | : 0x03e07821)) /* addu t7,ra */ | |
917 | #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */ | |
918 | #define STUB_JALR 0x0320f809 /* jalr t9,ra */ | |
5108fc1b RS |
919 | #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */ |
920 | #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */ | |
3d6746ca DD |
921 | #define STUB_LI16S(abfd, VAL) \ |
922 | ((ABI_64_P (abfd) \ | |
923 | ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \ | |
924 | : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */ | |
925 | ||
1bbce132 MR |
926 | /* Likewise for the microMIPS ASE. */ |
927 | #define STUB_LW_MICROMIPS(abfd) \ | |
928 | (ABI_64_P (abfd) \ | |
929 | ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \ | |
930 | : 0xff3c8010) /* lw t9,0x8010(gp) */ | |
931 | #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */ | |
833794fc MR |
932 | #define STUB_MOVE32_MICROMIPS(abfd) \ |
933 | (ABI_64_P (abfd) \ | |
934 | ? 0x581f7950 /* daddu t7,ra,zero */ \ | |
935 | : 0x001f7950) /* addu t7,ra,zero */ | |
1bbce132 MR |
936 | #define STUB_LUI_MICROMIPS(VAL) \ |
937 | (0x41b80000 + (VAL)) /* lui t8,VAL */ | |
938 | #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */ | |
833794fc | 939 | #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */ |
1bbce132 MR |
940 | #define STUB_ORI_MICROMIPS(VAL) \ |
941 | (0x53180000 + (VAL)) /* ori t8,t8,VAL */ | |
942 | #define STUB_LI16U_MICROMIPS(VAL) \ | |
943 | (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */ | |
944 | #define STUB_LI16S_MICROMIPS(abfd, VAL) \ | |
945 | (ABI_64_P (abfd) \ | |
946 | ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \ | |
947 | : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */ | |
948 | ||
5108fc1b RS |
949 | #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16 |
950 | #define MIPS_FUNCTION_STUB_BIG_SIZE 20 | |
1bbce132 MR |
951 | #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12 |
952 | #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16 | |
833794fc MR |
953 | #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16 |
954 | #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20 | |
b49e97c9 TS |
955 | |
956 | /* The name of the dynamic interpreter. This is put in the .interp | |
957 | section. */ | |
958 | ||
959 | #define ELF_DYNAMIC_INTERPRETER(abfd) \ | |
960 | (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \ | |
961 | : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \ | |
962 | : "/usr/lib/libc.so.1") | |
963 | ||
964 | #ifdef BFD64 | |
ee6423ed AO |
965 | #define MNAME(bfd,pre,pos) \ |
966 | (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos)) | |
b49e97c9 TS |
967 | #define ELF_R_SYM(bfd, i) \ |
968 | (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i)) | |
969 | #define ELF_R_TYPE(bfd, i) \ | |
970 | (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i)) | |
971 | #define ELF_R_INFO(bfd, s, t) \ | |
972 | (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t)) | |
973 | #else | |
ee6423ed | 974 | #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos) |
b49e97c9 TS |
975 | #define ELF_R_SYM(bfd, i) \ |
976 | (ELF32_R_SYM (i)) | |
977 | #define ELF_R_TYPE(bfd, i) \ | |
978 | (ELF32_R_TYPE (i)) | |
979 | #define ELF_R_INFO(bfd, s, t) \ | |
980 | (ELF32_R_INFO (s, t)) | |
981 | #endif | |
982 | \f | |
983 | /* The mips16 compiler uses a couple of special sections to handle | |
984 | floating point arguments. | |
985 | ||
986 | Section names that look like .mips16.fn.FNNAME contain stubs that | |
987 | copy floating point arguments from the fp regs to the gp regs and | |
988 | then jump to FNNAME. If any 32 bit function calls FNNAME, the | |
989 | call should be redirected to the stub instead. If no 32 bit | |
990 | function calls FNNAME, the stub should be discarded. We need to | |
991 | consider any reference to the function, not just a call, because | |
992 | if the address of the function is taken we will need the stub, | |
993 | since the address might be passed to a 32 bit function. | |
994 | ||
995 | Section names that look like .mips16.call.FNNAME contain stubs | |
996 | that copy floating point arguments from the gp regs to the fp | |
997 | regs and then jump to FNNAME. If FNNAME is a 32 bit function, | |
998 | then any 16 bit function that calls FNNAME should be redirected | |
999 | to the stub instead. If FNNAME is not a 32 bit function, the | |
1000 | stub should be discarded. | |
1001 | ||
1002 | .mips16.call.fp.FNNAME sections are similar, but contain stubs | |
1003 | which call FNNAME and then copy the return value from the fp regs | |
1004 | to the gp regs. These stubs store the return value in $18 while | |
1005 | calling FNNAME; any function which might call one of these stubs | |
1006 | must arrange to save $18 around the call. (This case is not | |
1007 | needed for 32 bit functions that call 16 bit functions, because | |
1008 | 16 bit functions always return floating point values in both | |
1009 | $f0/$f1 and $2/$3.) | |
1010 | ||
1011 | Note that in all cases FNNAME might be defined statically. | |
1012 | Therefore, FNNAME is not used literally. Instead, the relocation | |
1013 | information will indicate which symbol the section is for. | |
1014 | ||
1015 | We record any stubs that we find in the symbol table. */ | |
1016 | ||
1017 | #define FN_STUB ".mips16.fn." | |
1018 | #define CALL_STUB ".mips16.call." | |
1019 | #define CALL_FP_STUB ".mips16.call.fp." | |
b9d58d71 TS |
1020 | |
1021 | #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB) | |
1022 | #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB) | |
1023 | #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB) | |
b49e97c9 | 1024 | \f |
861fb55a | 1025 | /* The format of the first PLT entry in an O32 executable. */ |
6d30f5b2 NC |
1026 | static const bfd_vma mips_o32_exec_plt0_entry[] = |
1027 | { | |
861fb55a DJ |
1028 | 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */ |
1029 | 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */ | |
1030 | 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */ | |
1031 | 0x031cc023, /* subu $24, $24, $28 */ | |
81f5d455 | 1032 | 0x03e07821, /* move $15, $31 # 32-bit move (addu) */ |
861fb55a DJ |
1033 | 0x0018c082, /* srl $24, $24, 2 */ |
1034 | 0x0320f809, /* jalr $25 */ | |
1035 | 0x2718fffe /* subu $24, $24, 2 */ | |
1036 | }; | |
1037 | ||
1038 | /* The format of the first PLT entry in an N32 executable. Different | |
1039 | because gp ($28) is not available; we use t2 ($14) instead. */ | |
6d30f5b2 NC |
1040 | static const bfd_vma mips_n32_exec_plt0_entry[] = |
1041 | { | |
861fb55a DJ |
1042 | 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */ |
1043 | 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */ | |
1044 | 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */ | |
1045 | 0x030ec023, /* subu $24, $24, $14 */ | |
81f5d455 | 1046 | 0x03e07821, /* move $15, $31 # 32-bit move (addu) */ |
861fb55a DJ |
1047 | 0x0018c082, /* srl $24, $24, 2 */ |
1048 | 0x0320f809, /* jalr $25 */ | |
1049 | 0x2718fffe /* subu $24, $24, 2 */ | |
1050 | }; | |
1051 | ||
1052 | /* The format of the first PLT entry in an N64 executable. Different | |
1053 | from N32 because of the increased size of GOT entries. */ | |
6d30f5b2 NC |
1054 | static const bfd_vma mips_n64_exec_plt0_entry[] = |
1055 | { | |
861fb55a DJ |
1056 | 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */ |
1057 | 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */ | |
1058 | 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */ | |
1059 | 0x030ec023, /* subu $24, $24, $14 */ | |
81f5d455 | 1060 | 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */ |
861fb55a DJ |
1061 | 0x0018c0c2, /* srl $24, $24, 3 */ |
1062 | 0x0320f809, /* jalr $25 */ | |
1063 | 0x2718fffe /* subu $24, $24, 2 */ | |
1064 | }; | |
1065 | ||
1bbce132 MR |
1066 | /* The format of the microMIPS first PLT entry in an O32 executable. |
1067 | We rely on v0 ($2) rather than t8 ($24) to contain the address | |
1068 | of the GOTPLT entry handled, so this stub may only be used when | |
1069 | all the subsequent PLT entries are microMIPS code too. | |
1070 | ||
1071 | The trailing NOP is for alignment and correct disassembly only. */ | |
1072 | static const bfd_vma micromips_o32_exec_plt0_entry[] = | |
1073 | { | |
1074 | 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */ | |
1075 | 0xff23, 0x0000, /* lw $25, 0($3) */ | |
1076 | 0x0535, /* subu $2, $2, $3 */ | |
1077 | 0x2525, /* srl $2, $2, 2 */ | |
1078 | 0x3302, 0xfffe, /* subu $24, $2, 2 */ | |
1079 | 0x0dff, /* move $15, $31 */ | |
1080 | 0x45f9, /* jalrs $25 */ | |
1081 | 0x0f83, /* move $28, $3 */ | |
1082 | 0x0c00 /* nop */ | |
1083 | }; | |
1084 | ||
833794fc MR |
1085 | /* The format of the microMIPS first PLT entry in an O32 executable |
1086 | in the insn32 mode. */ | |
1087 | static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] = | |
1088 | { | |
1089 | 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */ | |
1090 | 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */ | |
1091 | 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */ | |
1092 | 0x0398, 0xc1d0, /* subu $24, $24, $28 */ | |
1093 | 0x001f, 0x7950, /* move $15, $31 */ | |
1094 | 0x0318, 0x1040, /* srl $24, $24, 2 */ | |
1095 | 0x03f9, 0x0f3c, /* jalr $25 */ | |
1096 | 0x3318, 0xfffe /* subu $24, $24, 2 */ | |
1097 | }; | |
1098 | ||
1bbce132 | 1099 | /* The format of subsequent standard PLT entries. */ |
6d30f5b2 NC |
1100 | static const bfd_vma mips_exec_plt_entry[] = |
1101 | { | |
861fb55a DJ |
1102 | 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */ |
1103 | 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */ | |
1104 | 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */ | |
1105 | 0x03200008 /* jr $25 */ | |
1106 | }; | |
1107 | ||
7361da2c AB |
1108 | /* In the following PLT entry the JR and ADDIU instructions will |
1109 | be swapped in _bfd_mips_elf_finish_dynamic_symbol because | |
1110 | LOAD_INTERLOCKS_P will be true for MIPS R6. */ | |
1111 | static const bfd_vma mipsr6_exec_plt_entry[] = | |
1112 | { | |
1113 | 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */ | |
1114 | 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */ | |
1115 | 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */ | |
1116 | 0x03200009 /* jr $25 */ | |
1117 | }; | |
1118 | ||
1bbce132 MR |
1119 | /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2) |
1120 | and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not | |
1121 | directly addressable. */ | |
1122 | static const bfd_vma mips16_o32_exec_plt_entry[] = | |
1123 | { | |
1124 | 0xb203, /* lw $2, 12($pc) */ | |
1125 | 0x9a60, /* lw $3, 0($2) */ | |
1126 | 0x651a, /* move $24, $2 */ | |
1127 | 0xeb00, /* jr $3 */ | |
1128 | 0x653b, /* move $25, $3 */ | |
1129 | 0x6500, /* nop */ | |
1130 | 0x0000, 0x0000 /* .word (.got.plt entry) */ | |
1131 | }; | |
1132 | ||
1133 | /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2) | |
1134 | as a temporary because t8 ($24) is not addressable with ADDIUPC. */ | |
1135 | static const bfd_vma micromips_o32_exec_plt_entry[] = | |
1136 | { | |
1137 | 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */ | |
1138 | 0xff22, 0x0000, /* lw $25, 0($2) */ | |
1139 | 0x4599, /* jr $25 */ | |
1140 | 0x0f02 /* move $24, $2 */ | |
1141 | }; | |
1142 | ||
833794fc MR |
1143 | /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */ |
1144 | static const bfd_vma micromips_insn32_o32_exec_plt_entry[] = | |
1145 | { | |
1146 | 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */ | |
1147 | 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */ | |
1148 | 0x0019, 0x0f3c, /* jr $25 */ | |
1149 | 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */ | |
1150 | }; | |
1151 | ||
0a44bf69 | 1152 | /* The format of the first PLT entry in a VxWorks executable. */ |
6d30f5b2 NC |
1153 | static const bfd_vma mips_vxworks_exec_plt0_entry[] = |
1154 | { | |
0a44bf69 RS |
1155 | 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */ |
1156 | 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */ | |
1157 | 0x8f390008, /* lw t9, 8(t9) */ | |
1158 | 0x00000000, /* nop */ | |
1159 | 0x03200008, /* jr t9 */ | |
1160 | 0x00000000 /* nop */ | |
1161 | }; | |
1162 | ||
1163 | /* The format of subsequent PLT entries. */ | |
6d30f5b2 NC |
1164 | static const bfd_vma mips_vxworks_exec_plt_entry[] = |
1165 | { | |
0a44bf69 RS |
1166 | 0x10000000, /* b .PLT_resolver */ |
1167 | 0x24180000, /* li t8, <pltindex> */ | |
1168 | 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */ | |
1169 | 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */ | |
1170 | 0x8f390000, /* lw t9, 0(t9) */ | |
1171 | 0x00000000, /* nop */ | |
1172 | 0x03200008, /* jr t9 */ | |
1173 | 0x00000000 /* nop */ | |
1174 | }; | |
1175 | ||
1176 | /* The format of the first PLT entry in a VxWorks shared object. */ | |
6d30f5b2 NC |
1177 | static const bfd_vma mips_vxworks_shared_plt0_entry[] = |
1178 | { | |
0a44bf69 RS |
1179 | 0x8f990008, /* lw t9, 8(gp) */ |
1180 | 0x00000000, /* nop */ | |
1181 | 0x03200008, /* jr t9 */ | |
1182 | 0x00000000, /* nop */ | |
1183 | 0x00000000, /* nop */ | |
1184 | 0x00000000 /* nop */ | |
1185 | }; | |
1186 | ||
1187 | /* The format of subsequent PLT entries. */ | |
6d30f5b2 NC |
1188 | static const bfd_vma mips_vxworks_shared_plt_entry[] = |
1189 | { | |
0a44bf69 RS |
1190 | 0x10000000, /* b .PLT_resolver */ |
1191 | 0x24180000 /* li t8, <pltindex> */ | |
1192 | }; | |
1193 | \f | |
d21911ea MR |
1194 | /* microMIPS 32-bit opcode helper installer. */ |
1195 | ||
1196 | static void | |
1197 | bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr) | |
1198 | { | |
1199 | bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr); | |
1200 | bfd_put_16 (abfd, opcode & 0xffff, ptr + 2); | |
1201 | } | |
1202 | ||
1203 | /* microMIPS 32-bit opcode helper retriever. */ | |
1204 | ||
1205 | static bfd_vma | |
1206 | bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr) | |
1207 | { | |
1208 | return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2); | |
1209 | } | |
1210 | \f | |
b49e97c9 TS |
1211 | /* Look up an entry in a MIPS ELF linker hash table. */ |
1212 | ||
1213 | #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \ | |
1214 | ((struct mips_elf_link_hash_entry *) \ | |
1215 | elf_link_hash_lookup (&(table)->root, (string), (create), \ | |
1216 | (copy), (follow))) | |
1217 | ||
1218 | /* Traverse a MIPS ELF linker hash table. */ | |
1219 | ||
1220 | #define mips_elf_link_hash_traverse(table, func, info) \ | |
1221 | (elf_link_hash_traverse \ | |
1222 | (&(table)->root, \ | |
9719ad41 | 1223 | (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \ |
b49e97c9 TS |
1224 | (info))) |
1225 | ||
0f20cc35 DJ |
1226 | /* Find the base offsets for thread-local storage in this object, |
1227 | for GD/LD and IE/LE respectively. */ | |
1228 | ||
1229 | #define TP_OFFSET 0x7000 | |
1230 | #define DTP_OFFSET 0x8000 | |
1231 | ||
1232 | static bfd_vma | |
1233 | dtprel_base (struct bfd_link_info *info) | |
1234 | { | |
1235 | /* If tls_sec is NULL, we should have signalled an error already. */ | |
1236 | if (elf_hash_table (info)->tls_sec == NULL) | |
1237 | return 0; | |
1238 | return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET; | |
1239 | } | |
1240 | ||
1241 | static bfd_vma | |
1242 | tprel_base (struct bfd_link_info *info) | |
1243 | { | |
1244 | /* If tls_sec is NULL, we should have signalled an error already. */ | |
1245 | if (elf_hash_table (info)->tls_sec == NULL) | |
1246 | return 0; | |
1247 | return elf_hash_table (info)->tls_sec->vma + TP_OFFSET; | |
1248 | } | |
1249 | ||
b49e97c9 TS |
1250 | /* Create an entry in a MIPS ELF linker hash table. */ |
1251 | ||
1252 | static struct bfd_hash_entry * | |
9719ad41 RS |
1253 | mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry, |
1254 | struct bfd_hash_table *table, const char *string) | |
b49e97c9 TS |
1255 | { |
1256 | struct mips_elf_link_hash_entry *ret = | |
1257 | (struct mips_elf_link_hash_entry *) entry; | |
1258 | ||
1259 | /* Allocate the structure if it has not already been allocated by a | |
1260 | subclass. */ | |
9719ad41 RS |
1261 | if (ret == NULL) |
1262 | ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry)); | |
1263 | if (ret == NULL) | |
b49e97c9 TS |
1264 | return (struct bfd_hash_entry *) ret; |
1265 | ||
1266 | /* Call the allocation method of the superclass. */ | |
1267 | ret = ((struct mips_elf_link_hash_entry *) | |
1268 | _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, | |
1269 | table, string)); | |
9719ad41 | 1270 | if (ret != NULL) |
b49e97c9 TS |
1271 | { |
1272 | /* Set local fields. */ | |
1273 | memset (&ret->esym, 0, sizeof (EXTR)); | |
1274 | /* We use -2 as a marker to indicate that the information has | |
1275 | not been set. -1 means there is no associated ifd. */ | |
1276 | ret->esym.ifd = -2; | |
861fb55a | 1277 | ret->la25_stub = 0; |
b49e97c9 | 1278 | ret->possibly_dynamic_relocs = 0; |
b49e97c9 | 1279 | ret->fn_stub = NULL; |
b49e97c9 TS |
1280 | ret->call_stub = NULL; |
1281 | ret->call_fp_stub = NULL; | |
634835ae | 1282 | ret->global_got_area = GGA_NONE; |
6ccf4795 | 1283 | ret->got_only_for_calls = TRUE; |
71782a75 | 1284 | ret->readonly_reloc = FALSE; |
861fb55a | 1285 | ret->has_static_relocs = FALSE; |
71782a75 RS |
1286 | ret->no_fn_stub = FALSE; |
1287 | ret->need_fn_stub = FALSE; | |
861fb55a | 1288 | ret->has_nonpic_branches = FALSE; |
33bb52fb | 1289 | ret->needs_lazy_stub = FALSE; |
1bbce132 | 1290 | ret->use_plt_entry = FALSE; |
b49e97c9 TS |
1291 | } |
1292 | ||
1293 | return (struct bfd_hash_entry *) ret; | |
1294 | } | |
f0abc2a1 | 1295 | |
6ae68ba3 MR |
1296 | /* Allocate MIPS ELF private object data. */ |
1297 | ||
1298 | bfd_boolean | |
1299 | _bfd_mips_elf_mkobject (bfd *abfd) | |
1300 | { | |
1301 | return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata), | |
1302 | MIPS_ELF_DATA); | |
1303 | } | |
1304 | ||
f0abc2a1 | 1305 | bfd_boolean |
9719ad41 | 1306 | _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec) |
f0abc2a1 | 1307 | { |
f592407e AM |
1308 | if (!sec->used_by_bfd) |
1309 | { | |
1310 | struct _mips_elf_section_data *sdata; | |
1311 | bfd_size_type amt = sizeof (*sdata); | |
f0abc2a1 | 1312 | |
f592407e AM |
1313 | sdata = bfd_zalloc (abfd, amt); |
1314 | if (sdata == NULL) | |
1315 | return FALSE; | |
1316 | sec->used_by_bfd = sdata; | |
1317 | } | |
f0abc2a1 AM |
1318 | |
1319 | return _bfd_elf_new_section_hook (abfd, sec); | |
1320 | } | |
b49e97c9 TS |
1321 | \f |
1322 | /* Read ECOFF debugging information from a .mdebug section into a | |
1323 | ecoff_debug_info structure. */ | |
1324 | ||
b34976b6 | 1325 | bfd_boolean |
9719ad41 RS |
1326 | _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section, |
1327 | struct ecoff_debug_info *debug) | |
b49e97c9 TS |
1328 | { |
1329 | HDRR *symhdr; | |
1330 | const struct ecoff_debug_swap *swap; | |
9719ad41 | 1331 | char *ext_hdr; |
b49e97c9 TS |
1332 | |
1333 | swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; | |
1334 | memset (debug, 0, sizeof (*debug)); | |
1335 | ||
9719ad41 | 1336 | ext_hdr = bfd_malloc (swap->external_hdr_size); |
b49e97c9 TS |
1337 | if (ext_hdr == NULL && swap->external_hdr_size != 0) |
1338 | goto error_return; | |
1339 | ||
9719ad41 | 1340 | if (! bfd_get_section_contents (abfd, section, ext_hdr, 0, |
82e51918 | 1341 | swap->external_hdr_size)) |
b49e97c9 TS |
1342 | goto error_return; |
1343 | ||
1344 | symhdr = &debug->symbolic_header; | |
1345 | (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr); | |
1346 | ||
1347 | /* The symbolic header contains absolute file offsets and sizes to | |
1348 | read. */ | |
1349 | #define READ(ptr, offset, count, size, type) \ | |
1350 | if (symhdr->count == 0) \ | |
1351 | debug->ptr = NULL; \ | |
1352 | else \ | |
1353 | { \ | |
1354 | bfd_size_type amt = (bfd_size_type) size * symhdr->count; \ | |
9719ad41 | 1355 | debug->ptr = bfd_malloc (amt); \ |
b49e97c9 TS |
1356 | if (debug->ptr == NULL) \ |
1357 | goto error_return; \ | |
9719ad41 | 1358 | if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \ |
b49e97c9 TS |
1359 | || bfd_bread (debug->ptr, amt, abfd) != amt) \ |
1360 | goto error_return; \ | |
1361 | } | |
1362 | ||
1363 | READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *); | |
9719ad41 RS |
1364 | READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *); |
1365 | READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *); | |
1366 | READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *); | |
1367 | READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *); | |
b49e97c9 TS |
1368 | READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext), |
1369 | union aux_ext *); | |
1370 | READ (ss, cbSsOffset, issMax, sizeof (char), char *); | |
1371 | READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *); | |
9719ad41 RS |
1372 | READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *); |
1373 | READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *); | |
1374 | READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *); | |
b49e97c9 TS |
1375 | #undef READ |
1376 | ||
1377 | debug->fdr = NULL; | |
b49e97c9 | 1378 | |
b34976b6 | 1379 | return TRUE; |
b49e97c9 TS |
1380 | |
1381 | error_return: | |
1382 | if (ext_hdr != NULL) | |
1383 | free (ext_hdr); | |
1384 | if (debug->line != NULL) | |
1385 | free (debug->line); | |
1386 | if (debug->external_dnr != NULL) | |
1387 | free (debug->external_dnr); | |
1388 | if (debug->external_pdr != NULL) | |
1389 | free (debug->external_pdr); | |
1390 | if (debug->external_sym != NULL) | |
1391 | free (debug->external_sym); | |
1392 | if (debug->external_opt != NULL) | |
1393 | free (debug->external_opt); | |
1394 | if (debug->external_aux != NULL) | |
1395 | free (debug->external_aux); | |
1396 | if (debug->ss != NULL) | |
1397 | free (debug->ss); | |
1398 | if (debug->ssext != NULL) | |
1399 | free (debug->ssext); | |
1400 | if (debug->external_fdr != NULL) | |
1401 | free (debug->external_fdr); | |
1402 | if (debug->external_rfd != NULL) | |
1403 | free (debug->external_rfd); | |
1404 | if (debug->external_ext != NULL) | |
1405 | free (debug->external_ext); | |
b34976b6 | 1406 | return FALSE; |
b49e97c9 TS |
1407 | } |
1408 | \f | |
1409 | /* Swap RPDR (runtime procedure table entry) for output. */ | |
1410 | ||
1411 | static void | |
9719ad41 | 1412 | ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex) |
b49e97c9 TS |
1413 | { |
1414 | H_PUT_S32 (abfd, in->adr, ex->p_adr); | |
1415 | H_PUT_32 (abfd, in->regmask, ex->p_regmask); | |
1416 | H_PUT_32 (abfd, in->regoffset, ex->p_regoffset); | |
1417 | H_PUT_32 (abfd, in->fregmask, ex->p_fregmask); | |
1418 | H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset); | |
1419 | H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset); | |
1420 | ||
1421 | H_PUT_16 (abfd, in->framereg, ex->p_framereg); | |
1422 | H_PUT_16 (abfd, in->pcreg, ex->p_pcreg); | |
1423 | ||
1424 | H_PUT_32 (abfd, in->irpss, ex->p_irpss); | |
b49e97c9 TS |
1425 | } |
1426 | ||
1427 | /* Create a runtime procedure table from the .mdebug section. */ | |
1428 | ||
b34976b6 | 1429 | static bfd_boolean |
9719ad41 RS |
1430 | mips_elf_create_procedure_table (void *handle, bfd *abfd, |
1431 | struct bfd_link_info *info, asection *s, | |
1432 | struct ecoff_debug_info *debug) | |
b49e97c9 TS |
1433 | { |
1434 | const struct ecoff_debug_swap *swap; | |
1435 | HDRR *hdr = &debug->symbolic_header; | |
1436 | RPDR *rpdr, *rp; | |
1437 | struct rpdr_ext *erp; | |
9719ad41 | 1438 | void *rtproc; |
b49e97c9 TS |
1439 | struct pdr_ext *epdr; |
1440 | struct sym_ext *esym; | |
1441 | char *ss, **sv; | |
1442 | char *str; | |
1443 | bfd_size_type size; | |
1444 | bfd_size_type count; | |
1445 | unsigned long sindex; | |
1446 | unsigned long i; | |
1447 | PDR pdr; | |
1448 | SYMR sym; | |
1449 | const char *no_name_func = _("static procedure (no name)"); | |
1450 | ||
1451 | epdr = NULL; | |
1452 | rpdr = NULL; | |
1453 | esym = NULL; | |
1454 | ss = NULL; | |
1455 | sv = NULL; | |
1456 | ||
1457 | swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; | |
1458 | ||
1459 | sindex = strlen (no_name_func) + 1; | |
1460 | count = hdr->ipdMax; | |
1461 | if (count > 0) | |
1462 | { | |
1463 | size = swap->external_pdr_size; | |
1464 | ||
9719ad41 | 1465 | epdr = bfd_malloc (size * count); |
b49e97c9 TS |
1466 | if (epdr == NULL) |
1467 | goto error_return; | |
1468 | ||
9719ad41 | 1469 | if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr)) |
b49e97c9 TS |
1470 | goto error_return; |
1471 | ||
1472 | size = sizeof (RPDR); | |
9719ad41 | 1473 | rp = rpdr = bfd_malloc (size * count); |
b49e97c9 TS |
1474 | if (rpdr == NULL) |
1475 | goto error_return; | |
1476 | ||
1477 | size = sizeof (char *); | |
9719ad41 | 1478 | sv = bfd_malloc (size * count); |
b49e97c9 TS |
1479 | if (sv == NULL) |
1480 | goto error_return; | |
1481 | ||
1482 | count = hdr->isymMax; | |
1483 | size = swap->external_sym_size; | |
9719ad41 | 1484 | esym = bfd_malloc (size * count); |
b49e97c9 TS |
1485 | if (esym == NULL) |
1486 | goto error_return; | |
1487 | ||
9719ad41 | 1488 | if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym)) |
b49e97c9 TS |
1489 | goto error_return; |
1490 | ||
1491 | count = hdr->issMax; | |
9719ad41 | 1492 | ss = bfd_malloc (count); |
b49e97c9 TS |
1493 | if (ss == NULL) |
1494 | goto error_return; | |
f075ee0c | 1495 | if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss)) |
b49e97c9 TS |
1496 | goto error_return; |
1497 | ||
1498 | count = hdr->ipdMax; | |
1499 | for (i = 0; i < (unsigned long) count; i++, rp++) | |
1500 | { | |
9719ad41 RS |
1501 | (*swap->swap_pdr_in) (abfd, epdr + i, &pdr); |
1502 | (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym); | |
b49e97c9 TS |
1503 | rp->adr = sym.value; |
1504 | rp->regmask = pdr.regmask; | |
1505 | rp->regoffset = pdr.regoffset; | |
1506 | rp->fregmask = pdr.fregmask; | |
1507 | rp->fregoffset = pdr.fregoffset; | |
1508 | rp->frameoffset = pdr.frameoffset; | |
1509 | rp->framereg = pdr.framereg; | |
1510 | rp->pcreg = pdr.pcreg; | |
1511 | rp->irpss = sindex; | |
1512 | sv[i] = ss + sym.iss; | |
1513 | sindex += strlen (sv[i]) + 1; | |
1514 | } | |
1515 | } | |
1516 | ||
1517 | size = sizeof (struct rpdr_ext) * (count + 2) + sindex; | |
1518 | size = BFD_ALIGN (size, 16); | |
9719ad41 | 1519 | rtproc = bfd_alloc (abfd, size); |
b49e97c9 TS |
1520 | if (rtproc == NULL) |
1521 | { | |
1522 | mips_elf_hash_table (info)->procedure_count = 0; | |
1523 | goto error_return; | |
1524 | } | |
1525 | ||
1526 | mips_elf_hash_table (info)->procedure_count = count + 2; | |
1527 | ||
9719ad41 | 1528 | erp = rtproc; |
b49e97c9 TS |
1529 | memset (erp, 0, sizeof (struct rpdr_ext)); |
1530 | erp++; | |
1531 | str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2); | |
1532 | strcpy (str, no_name_func); | |
1533 | str += strlen (no_name_func) + 1; | |
1534 | for (i = 0; i < count; i++) | |
1535 | { | |
1536 | ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i); | |
1537 | strcpy (str, sv[i]); | |
1538 | str += strlen (sv[i]) + 1; | |
1539 | } | |
1540 | H_PUT_S32 (abfd, -1, (erp + count)->p_adr); | |
1541 | ||
1542 | /* Set the size and contents of .rtproc section. */ | |
eea6121a | 1543 | s->size = size; |
9719ad41 | 1544 | s->contents = rtproc; |
b49e97c9 TS |
1545 | |
1546 | /* Skip this section later on (I don't think this currently | |
1547 | matters, but someday it might). */ | |
8423293d | 1548 | s->map_head.link_order = NULL; |
b49e97c9 TS |
1549 | |
1550 | if (epdr != NULL) | |
1551 | free (epdr); | |
1552 | if (rpdr != NULL) | |
1553 | free (rpdr); | |
1554 | if (esym != NULL) | |
1555 | free (esym); | |
1556 | if (ss != NULL) | |
1557 | free (ss); | |
1558 | if (sv != NULL) | |
1559 | free (sv); | |
1560 | ||
b34976b6 | 1561 | return TRUE; |
b49e97c9 TS |
1562 | |
1563 | error_return: | |
1564 | if (epdr != NULL) | |
1565 | free (epdr); | |
1566 | if (rpdr != NULL) | |
1567 | free (rpdr); | |
1568 | if (esym != NULL) | |
1569 | free (esym); | |
1570 | if (ss != NULL) | |
1571 | free (ss); | |
1572 | if (sv != NULL) | |
1573 | free (sv); | |
b34976b6 | 1574 | return FALSE; |
b49e97c9 | 1575 | } |
738e5348 | 1576 | \f |
861fb55a DJ |
1577 | /* We're going to create a stub for H. Create a symbol for the stub's |
1578 | value and size, to help make the disassembly easier to read. */ | |
1579 | ||
1580 | static bfd_boolean | |
1581 | mips_elf_create_stub_symbol (struct bfd_link_info *info, | |
1582 | struct mips_elf_link_hash_entry *h, | |
1583 | const char *prefix, asection *s, bfd_vma value, | |
1584 | bfd_vma size) | |
1585 | { | |
1586 | struct bfd_link_hash_entry *bh; | |
1587 | struct elf_link_hash_entry *elfh; | |
1588 | const char *name; | |
1589 | ||
df58fc94 RS |
1590 | if (ELF_ST_IS_MICROMIPS (h->root.other)) |
1591 | value |= 1; | |
1592 | ||
861fb55a DJ |
1593 | /* Create a new symbol. */ |
1594 | name = ACONCAT ((prefix, h->root.root.root.string, NULL)); | |
1595 | bh = NULL; | |
1596 | if (!_bfd_generic_link_add_one_symbol (info, s->owner, name, | |
1597 | BSF_LOCAL, s, value, NULL, | |
1598 | TRUE, FALSE, &bh)) | |
1599 | return FALSE; | |
1600 | ||
1601 | /* Make it a local function. */ | |
1602 | elfh = (struct elf_link_hash_entry *) bh; | |
1603 | elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); | |
1604 | elfh->size = size; | |
1605 | elfh->forced_local = 1; | |
1606 | return TRUE; | |
1607 | } | |
1608 | ||
738e5348 RS |
1609 | /* We're about to redefine H. Create a symbol to represent H's |
1610 | current value and size, to help make the disassembly easier | |
1611 | to read. */ | |
1612 | ||
1613 | static bfd_boolean | |
1614 | mips_elf_create_shadow_symbol (struct bfd_link_info *info, | |
1615 | struct mips_elf_link_hash_entry *h, | |
1616 | const char *prefix) | |
1617 | { | |
1618 | struct bfd_link_hash_entry *bh; | |
1619 | struct elf_link_hash_entry *elfh; | |
1620 | const char *name; | |
1621 | asection *s; | |
1622 | bfd_vma value; | |
1623 | ||
1624 | /* Read the symbol's value. */ | |
1625 | BFD_ASSERT (h->root.root.type == bfd_link_hash_defined | |
1626 | || h->root.root.type == bfd_link_hash_defweak); | |
1627 | s = h->root.root.u.def.section; | |
1628 | value = h->root.root.u.def.value; | |
1629 | ||
1630 | /* Create a new symbol. */ | |
1631 | name = ACONCAT ((prefix, h->root.root.root.string, NULL)); | |
1632 | bh = NULL; | |
1633 | if (!_bfd_generic_link_add_one_symbol (info, s->owner, name, | |
1634 | BSF_LOCAL, s, value, NULL, | |
1635 | TRUE, FALSE, &bh)) | |
1636 | return FALSE; | |
1637 | ||
1638 | /* Make it local and copy the other attributes from H. */ | |
1639 | elfh = (struct elf_link_hash_entry *) bh; | |
1640 | elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type)); | |
1641 | elfh->other = h->root.other; | |
1642 | elfh->size = h->root.size; | |
1643 | elfh->forced_local = 1; | |
1644 | return TRUE; | |
1645 | } | |
1646 | ||
1647 | /* Return TRUE if relocations in SECTION can refer directly to a MIPS16 | |
1648 | function rather than to a hard-float stub. */ | |
1649 | ||
1650 | static bfd_boolean | |
1651 | section_allows_mips16_refs_p (asection *section) | |
1652 | { | |
1653 | const char *name; | |
1654 | ||
1655 | name = bfd_get_section_name (section->owner, section); | |
1656 | return (FN_STUB_P (name) | |
1657 | || CALL_STUB_P (name) | |
1658 | || CALL_FP_STUB_P (name) | |
1659 | || strcmp (name, ".pdr") == 0); | |
1660 | } | |
1661 | ||
1662 | /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16 | |
1663 | stub section of some kind. Return the R_SYMNDX of the target | |
1664 | function, or 0 if we can't decide which function that is. */ | |
1665 | ||
1666 | static unsigned long | |
cb4437b8 MR |
1667 | mips16_stub_symndx (const struct elf_backend_data *bed, |
1668 | asection *sec ATTRIBUTE_UNUSED, | |
502e814e | 1669 | const Elf_Internal_Rela *relocs, |
738e5348 RS |
1670 | const Elf_Internal_Rela *relend) |
1671 | { | |
cb4437b8 | 1672 | int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel; |
738e5348 RS |
1673 | const Elf_Internal_Rela *rel; |
1674 | ||
cb4437b8 MR |
1675 | /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent |
1676 | one in a compound relocation. */ | |
1677 | for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel) | |
738e5348 RS |
1678 | if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE) |
1679 | return ELF_R_SYM (sec->owner, rel->r_info); | |
1680 | ||
1681 | /* Otherwise trust the first relocation, whatever its kind. This is | |
1682 | the traditional behavior. */ | |
1683 | if (relocs < relend) | |
1684 | return ELF_R_SYM (sec->owner, relocs->r_info); | |
1685 | ||
1686 | return 0; | |
1687 | } | |
b49e97c9 TS |
1688 | |
1689 | /* Check the mips16 stubs for a particular symbol, and see if we can | |
1690 | discard them. */ | |
1691 | ||
861fb55a DJ |
1692 | static void |
1693 | mips_elf_check_mips16_stubs (struct bfd_link_info *info, | |
1694 | struct mips_elf_link_hash_entry *h) | |
b49e97c9 | 1695 | { |
738e5348 RS |
1696 | /* Dynamic symbols must use the standard call interface, in case other |
1697 | objects try to call them. */ | |
1698 | if (h->fn_stub != NULL | |
1699 | && h->root.dynindx != -1) | |
1700 | { | |
1701 | mips_elf_create_shadow_symbol (info, h, ".mips16."); | |
1702 | h->need_fn_stub = TRUE; | |
1703 | } | |
1704 | ||
b49e97c9 TS |
1705 | if (h->fn_stub != NULL |
1706 | && ! h->need_fn_stub) | |
1707 | { | |
1708 | /* We don't need the fn_stub; the only references to this symbol | |
1709 | are 16 bit calls. Clobber the size to 0 to prevent it from | |
1710 | being included in the link. */ | |
eea6121a | 1711 | h->fn_stub->size = 0; |
b49e97c9 TS |
1712 | h->fn_stub->flags &= ~SEC_RELOC; |
1713 | h->fn_stub->reloc_count = 0; | |
1714 | h->fn_stub->flags |= SEC_EXCLUDE; | |
1715 | } | |
1716 | ||
1717 | if (h->call_stub != NULL | |
30c09090 | 1718 | && ELF_ST_IS_MIPS16 (h->root.other)) |
b49e97c9 TS |
1719 | { |
1720 | /* We don't need the call_stub; this is a 16 bit function, so | |
1721 | calls from other 16 bit functions are OK. Clobber the size | |
1722 | to 0 to prevent it from being included in the link. */ | |
eea6121a | 1723 | h->call_stub->size = 0; |
b49e97c9 TS |
1724 | h->call_stub->flags &= ~SEC_RELOC; |
1725 | h->call_stub->reloc_count = 0; | |
1726 | h->call_stub->flags |= SEC_EXCLUDE; | |
1727 | } | |
1728 | ||
1729 | if (h->call_fp_stub != NULL | |
30c09090 | 1730 | && ELF_ST_IS_MIPS16 (h->root.other)) |
b49e97c9 TS |
1731 | { |
1732 | /* We don't need the call_stub; this is a 16 bit function, so | |
1733 | calls from other 16 bit functions are OK. Clobber the size | |
1734 | to 0 to prevent it from being included in the link. */ | |
eea6121a | 1735 | h->call_fp_stub->size = 0; |
b49e97c9 TS |
1736 | h->call_fp_stub->flags &= ~SEC_RELOC; |
1737 | h->call_fp_stub->reloc_count = 0; | |
1738 | h->call_fp_stub->flags |= SEC_EXCLUDE; | |
1739 | } | |
861fb55a DJ |
1740 | } |
1741 | ||
1742 | /* Hashtable callbacks for mips_elf_la25_stubs. */ | |
1743 | ||
1744 | static hashval_t | |
1745 | mips_elf_la25_stub_hash (const void *entry_) | |
1746 | { | |
1747 | const struct mips_elf_la25_stub *entry; | |
1748 | ||
1749 | entry = (struct mips_elf_la25_stub *) entry_; | |
1750 | return entry->h->root.root.u.def.section->id | |
1751 | + entry->h->root.root.u.def.value; | |
1752 | } | |
1753 | ||
1754 | static int | |
1755 | mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_) | |
1756 | { | |
1757 | const struct mips_elf_la25_stub *entry1, *entry2; | |
1758 | ||
1759 | entry1 = (struct mips_elf_la25_stub *) entry1_; | |
1760 | entry2 = (struct mips_elf_la25_stub *) entry2_; | |
1761 | return ((entry1->h->root.root.u.def.section | |
1762 | == entry2->h->root.root.u.def.section) | |
1763 | && (entry1->h->root.root.u.def.value | |
1764 | == entry2->h->root.root.u.def.value)); | |
1765 | } | |
1766 | ||
1767 | /* Called by the linker to set up the la25 stub-creation code. FN is | |
1768 | the linker's implementation of add_stub_function. Return true on | |
1769 | success. */ | |
1770 | ||
1771 | bfd_boolean | |
1772 | _bfd_mips_elf_init_stubs (struct bfd_link_info *info, | |
1773 | asection *(*fn) (const char *, asection *, | |
1774 | asection *)) | |
1775 | { | |
1776 | struct mips_elf_link_hash_table *htab; | |
1777 | ||
1778 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 NC |
1779 | if (htab == NULL) |
1780 | return FALSE; | |
1781 | ||
861fb55a DJ |
1782 | htab->add_stub_section = fn; |
1783 | htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash, | |
1784 | mips_elf_la25_stub_eq, NULL); | |
1785 | if (htab->la25_stubs == NULL) | |
1786 | return FALSE; | |
1787 | ||
1788 | return TRUE; | |
1789 | } | |
1790 | ||
1791 | /* Return true if H is a locally-defined PIC function, in the sense | |
8f0c309a CLT |
1792 | that it or its fn_stub might need $25 to be valid on entry. |
1793 | Note that MIPS16 functions set up $gp using PC-relative instructions, | |
1794 | so they themselves never need $25 to be valid. Only non-MIPS16 | |
1795 | entry points are of interest here. */ | |
861fb55a DJ |
1796 | |
1797 | static bfd_boolean | |
1798 | mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h) | |
1799 | { | |
1800 | return ((h->root.root.type == bfd_link_hash_defined | |
1801 | || h->root.root.type == bfd_link_hash_defweak) | |
1802 | && h->root.def_regular | |
1803 | && !bfd_is_abs_section (h->root.root.u.def.section) | |
8f0c309a CLT |
1804 | && (!ELF_ST_IS_MIPS16 (h->root.other) |
1805 | || (h->fn_stub && h->need_fn_stub)) | |
861fb55a DJ |
1806 | && (PIC_OBJECT_P (h->root.root.u.def.section->owner) |
1807 | || ELF_ST_IS_MIPS_PIC (h->root.other))); | |
1808 | } | |
1809 | ||
8f0c309a CLT |
1810 | /* Set *SEC to the input section that contains the target of STUB. |
1811 | Return the offset of the target from the start of that section. */ | |
1812 | ||
1813 | static bfd_vma | |
1814 | mips_elf_get_la25_target (struct mips_elf_la25_stub *stub, | |
1815 | asection **sec) | |
1816 | { | |
1817 | if (ELF_ST_IS_MIPS16 (stub->h->root.other)) | |
1818 | { | |
1819 | BFD_ASSERT (stub->h->need_fn_stub); | |
1820 | *sec = stub->h->fn_stub; | |
1821 | return 0; | |
1822 | } | |
1823 | else | |
1824 | { | |
1825 | *sec = stub->h->root.root.u.def.section; | |
1826 | return stub->h->root.root.u.def.value; | |
1827 | } | |
1828 | } | |
1829 | ||
861fb55a DJ |
1830 | /* STUB describes an la25 stub that we have decided to implement |
1831 | by inserting an LUI/ADDIU pair before the target function. | |
1832 | Create the section and redirect the function symbol to it. */ | |
1833 | ||
1834 | static bfd_boolean | |
1835 | mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub, | |
1836 | struct bfd_link_info *info) | |
1837 | { | |
1838 | struct mips_elf_link_hash_table *htab; | |
1839 | char *name; | |
1840 | asection *s, *input_section; | |
1841 | unsigned int align; | |
1842 | ||
1843 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 NC |
1844 | if (htab == NULL) |
1845 | return FALSE; | |
861fb55a DJ |
1846 | |
1847 | /* Create a unique name for the new section. */ | |
1848 | name = bfd_malloc (11 + sizeof (".text.stub.")); | |
1849 | if (name == NULL) | |
1850 | return FALSE; | |
1851 | sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs)); | |
1852 | ||
1853 | /* Create the section. */ | |
8f0c309a | 1854 | mips_elf_get_la25_target (stub, &input_section); |
861fb55a DJ |
1855 | s = htab->add_stub_section (name, input_section, |
1856 | input_section->output_section); | |
1857 | if (s == NULL) | |
1858 | return FALSE; | |
1859 | ||
1860 | /* Make sure that any padding goes before the stub. */ | |
1861 | align = input_section->alignment_power; | |
1862 | if (!bfd_set_section_alignment (s->owner, s, align)) | |
1863 | return FALSE; | |
1864 | if (align > 3) | |
1865 | s->size = (1 << align) - 8; | |
1866 | ||
1867 | /* Create a symbol for the stub. */ | |
1868 | mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8); | |
1869 | stub->stub_section = s; | |
1870 | stub->offset = s->size; | |
1871 | ||
1872 | /* Allocate room for it. */ | |
1873 | s->size += 8; | |
1874 | return TRUE; | |
1875 | } | |
1876 | ||
1877 | /* STUB describes an la25 stub that we have decided to implement | |
1878 | with a separate trampoline. Allocate room for it and redirect | |
1879 | the function symbol to it. */ | |
1880 | ||
1881 | static bfd_boolean | |
1882 | mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub, | |
1883 | struct bfd_link_info *info) | |
1884 | { | |
1885 | struct mips_elf_link_hash_table *htab; | |
1886 | asection *s; | |
1887 | ||
1888 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 NC |
1889 | if (htab == NULL) |
1890 | return FALSE; | |
861fb55a DJ |
1891 | |
1892 | /* Create a trampoline section, if we haven't already. */ | |
1893 | s = htab->strampoline; | |
1894 | if (s == NULL) | |
1895 | { | |
1896 | asection *input_section = stub->h->root.root.u.def.section; | |
1897 | s = htab->add_stub_section (".text", NULL, | |
1898 | input_section->output_section); | |
1899 | if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4)) | |
1900 | return FALSE; | |
1901 | htab->strampoline = s; | |
1902 | } | |
1903 | ||
1904 | /* Create a symbol for the stub. */ | |
1905 | mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16); | |
1906 | stub->stub_section = s; | |
1907 | stub->offset = s->size; | |
1908 | ||
1909 | /* Allocate room for it. */ | |
1910 | s->size += 16; | |
1911 | return TRUE; | |
1912 | } | |
1913 | ||
1914 | /* H describes a symbol that needs an la25 stub. Make sure that an | |
1915 | appropriate stub exists and point H at it. */ | |
1916 | ||
1917 | static bfd_boolean | |
1918 | mips_elf_add_la25_stub (struct bfd_link_info *info, | |
1919 | struct mips_elf_link_hash_entry *h) | |
1920 | { | |
1921 | struct mips_elf_link_hash_table *htab; | |
1922 | struct mips_elf_la25_stub search, *stub; | |
1923 | bfd_boolean use_trampoline_p; | |
1924 | asection *s; | |
1925 | bfd_vma value; | |
1926 | void **slot; | |
1927 | ||
861fb55a DJ |
1928 | /* Describe the stub we want. */ |
1929 | search.stub_section = NULL; | |
1930 | search.offset = 0; | |
1931 | search.h = h; | |
1932 | ||
1933 | /* See if we've already created an equivalent stub. */ | |
1934 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 NC |
1935 | if (htab == NULL) |
1936 | return FALSE; | |
1937 | ||
861fb55a DJ |
1938 | slot = htab_find_slot (htab->la25_stubs, &search, INSERT); |
1939 | if (slot == NULL) | |
1940 | return FALSE; | |
1941 | ||
1942 | stub = (struct mips_elf_la25_stub *) *slot; | |
1943 | if (stub != NULL) | |
1944 | { | |
1945 | /* We can reuse the existing stub. */ | |
1946 | h->la25_stub = stub; | |
1947 | return TRUE; | |
1948 | } | |
1949 | ||
1950 | /* Create a permanent copy of ENTRY and add it to the hash table. */ | |
1951 | stub = bfd_malloc (sizeof (search)); | |
1952 | if (stub == NULL) | |
1953 | return FALSE; | |
1954 | *stub = search; | |
1955 | *slot = stub; | |
1956 | ||
8f0c309a CLT |
1957 | /* Prefer to use LUI/ADDIU stubs if the function is at the beginning |
1958 | of the section and if we would need no more than 2 nops. */ | |
1959 | value = mips_elf_get_la25_target (stub, &s); | |
1960 | use_trampoline_p = (value != 0 || s->alignment_power > 4); | |
1961 | ||
861fb55a DJ |
1962 | h->la25_stub = stub; |
1963 | return (use_trampoline_p | |
1964 | ? mips_elf_add_la25_trampoline (stub, info) | |
1965 | : mips_elf_add_la25_intro (stub, info)); | |
1966 | } | |
1967 | ||
1968 | /* A mips_elf_link_hash_traverse callback that is called before sizing | |
1969 | sections. DATA points to a mips_htab_traverse_info structure. */ | |
1970 | ||
1971 | static bfd_boolean | |
1972 | mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data) | |
1973 | { | |
1974 | struct mips_htab_traverse_info *hti; | |
1975 | ||
1976 | hti = (struct mips_htab_traverse_info *) data; | |
861fb55a DJ |
1977 | if (!hti->info->relocatable) |
1978 | mips_elf_check_mips16_stubs (hti->info, h); | |
b49e97c9 | 1979 | |
861fb55a DJ |
1980 | if (mips_elf_local_pic_function_p (h)) |
1981 | { | |
ba85c43e NC |
1982 | /* PR 12845: If H is in a section that has been garbage |
1983 | collected it will have its output section set to *ABS*. */ | |
1984 | if (bfd_is_abs_section (h->root.root.u.def.section->output_section)) | |
1985 | return TRUE; | |
1986 | ||
861fb55a DJ |
1987 | /* H is a function that might need $25 to be valid on entry. |
1988 | If we're creating a non-PIC relocatable object, mark H as | |
1989 | being PIC. If we're creating a non-relocatable object with | |
1990 | non-PIC branches and jumps to H, make sure that H has an la25 | |
1991 | stub. */ | |
1992 | if (hti->info->relocatable) | |
1993 | { | |
1994 | if (!PIC_OBJECT_P (hti->output_bfd)) | |
1995 | h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other); | |
1996 | } | |
1997 | else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h)) | |
1998 | { | |
1999 | hti->error = TRUE; | |
2000 | return FALSE; | |
2001 | } | |
2002 | } | |
b34976b6 | 2003 | return TRUE; |
b49e97c9 TS |
2004 | } |
2005 | \f | |
d6f16593 MR |
2006 | /* R_MIPS16_26 is used for the mips16 jal and jalx instructions. |
2007 | Most mips16 instructions are 16 bits, but these instructions | |
2008 | are 32 bits. | |
2009 | ||
2010 | The format of these instructions is: | |
2011 | ||
2012 | +--------------+--------------------------------+ | |
2013 | | JALX | X| Imm 20:16 | Imm 25:21 | | |
2014 | +--------------+--------------------------------+ | |
2015 | | Immediate 15:0 | | |
2016 | +-----------------------------------------------+ | |
2017 | ||
2018 | JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx. | |
2019 | Note that the immediate value in the first word is swapped. | |
2020 | ||
2021 | When producing a relocatable object file, R_MIPS16_26 is | |
2022 | handled mostly like R_MIPS_26. In particular, the addend is | |
2023 | stored as a straight 26-bit value in a 32-bit instruction. | |
2024 | (gas makes life simpler for itself by never adjusting a | |
2025 | R_MIPS16_26 reloc to be against a section, so the addend is | |
2026 | always zero). However, the 32 bit instruction is stored as 2 | |
2027 | 16-bit values, rather than a single 32-bit value. In a | |
2028 | big-endian file, the result is the same; in a little-endian | |
2029 | file, the two 16-bit halves of the 32 bit value are swapped. | |
2030 | This is so that a disassembler can recognize the jal | |
2031 | instruction. | |
2032 | ||
2033 | When doing a final link, R_MIPS16_26 is treated as a 32 bit | |
2034 | instruction stored as two 16-bit values. The addend A is the | |
2035 | contents of the targ26 field. The calculation is the same as | |
2036 | R_MIPS_26. When storing the calculated value, reorder the | |
2037 | immediate value as shown above, and don't forget to store the | |
2038 | value as two 16-bit values. | |
2039 | ||
2040 | To put it in MIPS ABI terms, the relocation field is T-targ26-16, | |
2041 | defined as | |
2042 | ||
2043 | big-endian: | |
2044 | +--------+----------------------+ | |
2045 | | | | | |
2046 | | | targ26-16 | | |
2047 | |31 26|25 0| | |
2048 | +--------+----------------------+ | |
2049 | ||
2050 | little-endian: | |
2051 | +----------+------+-------------+ | |
2052 | | | | | | |
2053 | | sub1 | | sub2 | | |
2054 | |0 9|10 15|16 31| | |
2055 | +----------+--------------------+ | |
2056 | where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is | |
2057 | ((sub1 << 16) | sub2)). | |
2058 | ||
2059 | When producing a relocatable object file, the calculation is | |
2060 | (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) | |
2061 | When producing a fully linked file, the calculation is | |
2062 | let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) | |
2063 | ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) | |
2064 | ||
738e5348 RS |
2065 | The table below lists the other MIPS16 instruction relocations. |
2066 | Each one is calculated in the same way as the non-MIPS16 relocation | |
2067 | given on the right, but using the extended MIPS16 layout of 16-bit | |
2068 | immediate fields: | |
2069 | ||
2070 | R_MIPS16_GPREL R_MIPS_GPREL16 | |
2071 | R_MIPS16_GOT16 R_MIPS_GOT16 | |
2072 | R_MIPS16_CALL16 R_MIPS_CALL16 | |
2073 | R_MIPS16_HI16 R_MIPS_HI16 | |
2074 | R_MIPS16_LO16 R_MIPS_LO16 | |
2075 | ||
2076 | A typical instruction will have a format like this: | |
d6f16593 MR |
2077 | |
2078 | +--------------+--------------------------------+ | |
2079 | | EXTEND | Imm 10:5 | Imm 15:11 | | |
2080 | +--------------+--------------------------------+ | |
2081 | | Major | rx | ry | Imm 4:0 | | |
2082 | +--------------+--------------------------------+ | |
2083 | ||
2084 | EXTEND is the five bit value 11110. Major is the instruction | |
2085 | opcode. | |
2086 | ||
738e5348 RS |
2087 | All we need to do here is shuffle the bits appropriately. |
2088 | As above, the two 16-bit halves must be swapped on a | |
2089 | little-endian system. */ | |
2090 | ||
2091 | static inline bfd_boolean | |
2092 | mips16_reloc_p (int r_type) | |
2093 | { | |
2094 | switch (r_type) | |
2095 | { | |
2096 | case R_MIPS16_26: | |
2097 | case R_MIPS16_GPREL: | |
2098 | case R_MIPS16_GOT16: | |
2099 | case R_MIPS16_CALL16: | |
2100 | case R_MIPS16_HI16: | |
2101 | case R_MIPS16_LO16: | |
d0f13682 CLT |
2102 | case R_MIPS16_TLS_GD: |
2103 | case R_MIPS16_TLS_LDM: | |
2104 | case R_MIPS16_TLS_DTPREL_HI16: | |
2105 | case R_MIPS16_TLS_DTPREL_LO16: | |
2106 | case R_MIPS16_TLS_GOTTPREL: | |
2107 | case R_MIPS16_TLS_TPREL_HI16: | |
2108 | case R_MIPS16_TLS_TPREL_LO16: | |
738e5348 RS |
2109 | return TRUE; |
2110 | ||
2111 | default: | |
2112 | return FALSE; | |
2113 | } | |
2114 | } | |
2115 | ||
df58fc94 RS |
2116 | /* Check if a microMIPS reloc. */ |
2117 | ||
2118 | static inline bfd_boolean | |
2119 | micromips_reloc_p (unsigned int r_type) | |
2120 | { | |
2121 | return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max; | |
2122 | } | |
2123 | ||
2124 | /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped | |
2125 | on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1 | |
2126 | and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */ | |
2127 | ||
2128 | static inline bfd_boolean | |
2129 | micromips_reloc_shuffle_p (unsigned int r_type) | |
2130 | { | |
2131 | return (micromips_reloc_p (r_type) | |
2132 | && r_type != R_MICROMIPS_PC7_S1 | |
2133 | && r_type != R_MICROMIPS_PC10_S1); | |
2134 | } | |
2135 | ||
738e5348 RS |
2136 | static inline bfd_boolean |
2137 | got16_reloc_p (int r_type) | |
2138 | { | |
df58fc94 RS |
2139 | return (r_type == R_MIPS_GOT16 |
2140 | || r_type == R_MIPS16_GOT16 | |
2141 | || r_type == R_MICROMIPS_GOT16); | |
738e5348 RS |
2142 | } |
2143 | ||
2144 | static inline bfd_boolean | |
2145 | call16_reloc_p (int r_type) | |
2146 | { | |
df58fc94 RS |
2147 | return (r_type == R_MIPS_CALL16 |
2148 | || r_type == R_MIPS16_CALL16 | |
2149 | || r_type == R_MICROMIPS_CALL16); | |
2150 | } | |
2151 | ||
2152 | static inline bfd_boolean | |
2153 | got_disp_reloc_p (unsigned int r_type) | |
2154 | { | |
2155 | return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP; | |
2156 | } | |
2157 | ||
2158 | static inline bfd_boolean | |
2159 | got_page_reloc_p (unsigned int r_type) | |
2160 | { | |
2161 | return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE; | |
2162 | } | |
2163 | ||
2164 | static inline bfd_boolean | |
2165 | got_ofst_reloc_p (unsigned int r_type) | |
2166 | { | |
2167 | return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST; | |
2168 | } | |
2169 | ||
2170 | static inline bfd_boolean | |
2171 | got_hi16_reloc_p (unsigned int r_type) | |
2172 | { | |
2173 | return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16; | |
2174 | } | |
2175 | ||
2176 | static inline bfd_boolean | |
2177 | got_lo16_reloc_p (unsigned int r_type) | |
2178 | { | |
2179 | return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16; | |
2180 | } | |
2181 | ||
2182 | static inline bfd_boolean | |
2183 | call_hi16_reloc_p (unsigned int r_type) | |
2184 | { | |
2185 | return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16; | |
2186 | } | |
2187 | ||
2188 | static inline bfd_boolean | |
2189 | call_lo16_reloc_p (unsigned int r_type) | |
2190 | { | |
2191 | return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16; | |
738e5348 RS |
2192 | } |
2193 | ||
2194 | static inline bfd_boolean | |
2195 | hi16_reloc_p (int r_type) | |
2196 | { | |
df58fc94 RS |
2197 | return (r_type == R_MIPS_HI16 |
2198 | || r_type == R_MIPS16_HI16 | |
7361da2c AB |
2199 | || r_type == R_MICROMIPS_HI16 |
2200 | || r_type == R_MIPS_PCHI16); | |
738e5348 | 2201 | } |
d6f16593 | 2202 | |
738e5348 RS |
2203 | static inline bfd_boolean |
2204 | lo16_reloc_p (int r_type) | |
2205 | { | |
df58fc94 RS |
2206 | return (r_type == R_MIPS_LO16 |
2207 | || r_type == R_MIPS16_LO16 | |
7361da2c AB |
2208 | || r_type == R_MICROMIPS_LO16 |
2209 | || r_type == R_MIPS_PCLO16); | |
738e5348 RS |
2210 | } |
2211 | ||
2212 | static inline bfd_boolean | |
2213 | mips16_call_reloc_p (int r_type) | |
2214 | { | |
2215 | return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16; | |
2216 | } | |
d6f16593 | 2217 | |
38a7df63 CF |
2218 | static inline bfd_boolean |
2219 | jal_reloc_p (int r_type) | |
2220 | { | |
df58fc94 RS |
2221 | return (r_type == R_MIPS_26 |
2222 | || r_type == R_MIPS16_26 | |
2223 | || r_type == R_MICROMIPS_26_S1); | |
2224 | } | |
2225 | ||
7361da2c AB |
2226 | static inline bfd_boolean |
2227 | aligned_pcrel_reloc_p (int r_type) | |
2228 | { | |
2229 | return (r_type == R_MIPS_PC18_S3 | |
2230 | || r_type == R_MIPS_PC19_S2); | |
2231 | } | |
2232 | ||
df58fc94 RS |
2233 | static inline bfd_boolean |
2234 | micromips_branch_reloc_p (int r_type) | |
2235 | { | |
2236 | return (r_type == R_MICROMIPS_26_S1 | |
2237 | || r_type == R_MICROMIPS_PC16_S1 | |
2238 | || r_type == R_MICROMIPS_PC10_S1 | |
2239 | || r_type == R_MICROMIPS_PC7_S1); | |
2240 | } | |
2241 | ||
2242 | static inline bfd_boolean | |
2243 | tls_gd_reloc_p (unsigned int r_type) | |
2244 | { | |
d0f13682 CLT |
2245 | return (r_type == R_MIPS_TLS_GD |
2246 | || r_type == R_MIPS16_TLS_GD | |
2247 | || r_type == R_MICROMIPS_TLS_GD); | |
df58fc94 RS |
2248 | } |
2249 | ||
2250 | static inline bfd_boolean | |
2251 | tls_ldm_reloc_p (unsigned int r_type) | |
2252 | { | |
d0f13682 CLT |
2253 | return (r_type == R_MIPS_TLS_LDM |
2254 | || r_type == R_MIPS16_TLS_LDM | |
2255 | || r_type == R_MICROMIPS_TLS_LDM); | |
df58fc94 RS |
2256 | } |
2257 | ||
2258 | static inline bfd_boolean | |
2259 | tls_gottprel_reloc_p (unsigned int r_type) | |
2260 | { | |
d0f13682 CLT |
2261 | return (r_type == R_MIPS_TLS_GOTTPREL |
2262 | || r_type == R_MIPS16_TLS_GOTTPREL | |
2263 | || r_type == R_MICROMIPS_TLS_GOTTPREL); | |
38a7df63 CF |
2264 | } |
2265 | ||
d6f16593 | 2266 | void |
df58fc94 RS |
2267 | _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type, |
2268 | bfd_boolean jal_shuffle, bfd_byte *data) | |
d6f16593 | 2269 | { |
df58fc94 | 2270 | bfd_vma first, second, val; |
d6f16593 | 2271 | |
df58fc94 | 2272 | if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type)) |
d6f16593 MR |
2273 | return; |
2274 | ||
df58fc94 RS |
2275 | /* Pick up the first and second halfwords of the instruction. */ |
2276 | first = bfd_get_16 (abfd, data); | |
2277 | second = bfd_get_16 (abfd, data + 2); | |
2278 | if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle)) | |
2279 | val = first << 16 | second; | |
2280 | else if (r_type != R_MIPS16_26) | |
2281 | val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11) | |
2282 | | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f)); | |
d6f16593 | 2283 | else |
df58fc94 RS |
2284 | val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11) |
2285 | | ((first & 0x1f) << 21) | second); | |
d6f16593 MR |
2286 | bfd_put_32 (abfd, val, data); |
2287 | } | |
2288 | ||
2289 | void | |
df58fc94 RS |
2290 | _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type, |
2291 | bfd_boolean jal_shuffle, bfd_byte *data) | |
d6f16593 | 2292 | { |
df58fc94 | 2293 | bfd_vma first, second, val; |
d6f16593 | 2294 | |
df58fc94 | 2295 | if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type)) |
d6f16593 MR |
2296 | return; |
2297 | ||
2298 | val = bfd_get_32 (abfd, data); | |
df58fc94 | 2299 | if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle)) |
d6f16593 | 2300 | { |
df58fc94 RS |
2301 | second = val & 0xffff; |
2302 | first = val >> 16; | |
2303 | } | |
2304 | else if (r_type != R_MIPS16_26) | |
2305 | { | |
2306 | second = ((val >> 11) & 0xffe0) | (val & 0x1f); | |
2307 | first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0); | |
d6f16593 MR |
2308 | } |
2309 | else | |
2310 | { | |
df58fc94 RS |
2311 | second = val & 0xffff; |
2312 | first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0) | |
2313 | | ((val >> 21) & 0x1f); | |
d6f16593 | 2314 | } |
df58fc94 RS |
2315 | bfd_put_16 (abfd, second, data + 2); |
2316 | bfd_put_16 (abfd, first, data); | |
d6f16593 MR |
2317 | } |
2318 | ||
b49e97c9 | 2319 | bfd_reloc_status_type |
9719ad41 RS |
2320 | _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol, |
2321 | arelent *reloc_entry, asection *input_section, | |
2322 | bfd_boolean relocatable, void *data, bfd_vma gp) | |
b49e97c9 TS |
2323 | { |
2324 | bfd_vma relocation; | |
a7ebbfdf | 2325 | bfd_signed_vma val; |
30ac9238 | 2326 | bfd_reloc_status_type status; |
b49e97c9 TS |
2327 | |
2328 | if (bfd_is_com_section (symbol->section)) | |
2329 | relocation = 0; | |
2330 | else | |
2331 | relocation = symbol->value; | |
2332 | ||
2333 | relocation += symbol->section->output_section->vma; | |
2334 | relocation += symbol->section->output_offset; | |
2335 | ||
07515404 | 2336 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
b49e97c9 TS |
2337 | return bfd_reloc_outofrange; |
2338 | ||
b49e97c9 | 2339 | /* Set val to the offset into the section or symbol. */ |
a7ebbfdf TS |
2340 | val = reloc_entry->addend; |
2341 | ||
30ac9238 | 2342 | _bfd_mips_elf_sign_extend (val, 16); |
a7ebbfdf | 2343 | |
b49e97c9 | 2344 | /* Adjust val for the final section location and GP value. If we |
1049f94e | 2345 | are producing relocatable output, we don't want to do this for |
b49e97c9 | 2346 | an external symbol. */ |
1049f94e | 2347 | if (! relocatable |
b49e97c9 TS |
2348 | || (symbol->flags & BSF_SECTION_SYM) != 0) |
2349 | val += relocation - gp; | |
2350 | ||
a7ebbfdf TS |
2351 | if (reloc_entry->howto->partial_inplace) |
2352 | { | |
30ac9238 RS |
2353 | status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, |
2354 | (bfd_byte *) data | |
2355 | + reloc_entry->address); | |
2356 | if (status != bfd_reloc_ok) | |
2357 | return status; | |
a7ebbfdf TS |
2358 | } |
2359 | else | |
2360 | reloc_entry->addend = val; | |
b49e97c9 | 2361 | |
1049f94e | 2362 | if (relocatable) |
b49e97c9 | 2363 | reloc_entry->address += input_section->output_offset; |
30ac9238 RS |
2364 | |
2365 | return bfd_reloc_ok; | |
2366 | } | |
2367 | ||
2368 | /* Used to store a REL high-part relocation such as R_MIPS_HI16 or | |
2369 | R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section | |
2370 | that contains the relocation field and DATA points to the start of | |
2371 | INPUT_SECTION. */ | |
2372 | ||
2373 | struct mips_hi16 | |
2374 | { | |
2375 | struct mips_hi16 *next; | |
2376 | bfd_byte *data; | |
2377 | asection *input_section; | |
2378 | arelent rel; | |
2379 | }; | |
2380 | ||
2381 | /* FIXME: This should not be a static variable. */ | |
2382 | ||
2383 | static struct mips_hi16 *mips_hi16_list; | |
2384 | ||
2385 | /* A howto special_function for REL *HI16 relocations. We can only | |
2386 | calculate the correct value once we've seen the partnering | |
2387 | *LO16 relocation, so just save the information for later. | |
2388 | ||
2389 | The ABI requires that the *LO16 immediately follow the *HI16. | |
2390 | However, as a GNU extension, we permit an arbitrary number of | |
2391 | *HI16s to be associated with a single *LO16. This significantly | |
2392 | simplies the relocation handling in gcc. */ | |
2393 | ||
2394 | bfd_reloc_status_type | |
2395 | _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, | |
2396 | asymbol *symbol ATTRIBUTE_UNUSED, void *data, | |
2397 | asection *input_section, bfd *output_bfd, | |
2398 | char **error_message ATTRIBUTE_UNUSED) | |
2399 | { | |
2400 | struct mips_hi16 *n; | |
2401 | ||
07515404 | 2402 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
30ac9238 RS |
2403 | return bfd_reloc_outofrange; |
2404 | ||
2405 | n = bfd_malloc (sizeof *n); | |
2406 | if (n == NULL) | |
2407 | return bfd_reloc_outofrange; | |
2408 | ||
2409 | n->next = mips_hi16_list; | |
2410 | n->data = data; | |
2411 | n->input_section = input_section; | |
2412 | n->rel = *reloc_entry; | |
2413 | mips_hi16_list = n; | |
2414 | ||
2415 | if (output_bfd != NULL) | |
2416 | reloc_entry->address += input_section->output_offset; | |
2417 | ||
2418 | return bfd_reloc_ok; | |
2419 | } | |
2420 | ||
738e5348 | 2421 | /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just |
30ac9238 RS |
2422 | like any other 16-bit relocation when applied to global symbols, but is |
2423 | treated in the same as R_MIPS_HI16 when applied to local symbols. */ | |
2424 | ||
2425 | bfd_reloc_status_type | |
2426 | _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, | |
2427 | void *data, asection *input_section, | |
2428 | bfd *output_bfd, char **error_message) | |
2429 | { | |
2430 | if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0 | |
2431 | || bfd_is_und_section (bfd_get_section (symbol)) | |
2432 | || bfd_is_com_section (bfd_get_section (symbol))) | |
2433 | /* The relocation is against a global symbol. */ | |
2434 | return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, | |
2435 | input_section, output_bfd, | |
2436 | error_message); | |
2437 | ||
2438 | return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data, | |
2439 | input_section, output_bfd, error_message); | |
2440 | } | |
2441 | ||
2442 | /* A howto special_function for REL *LO16 relocations. The *LO16 itself | |
2443 | is a straightforward 16 bit inplace relocation, but we must deal with | |
2444 | any partnering high-part relocations as well. */ | |
2445 | ||
2446 | bfd_reloc_status_type | |
2447 | _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, | |
2448 | void *data, asection *input_section, | |
2449 | bfd *output_bfd, char **error_message) | |
2450 | { | |
2451 | bfd_vma vallo; | |
d6f16593 | 2452 | bfd_byte *location = (bfd_byte *) data + reloc_entry->address; |
30ac9238 | 2453 | |
07515404 | 2454 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
30ac9238 RS |
2455 | return bfd_reloc_outofrange; |
2456 | ||
df58fc94 | 2457 | _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE, |
d6f16593 | 2458 | location); |
df58fc94 RS |
2459 | vallo = bfd_get_32 (abfd, location); |
2460 | _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE, | |
2461 | location); | |
d6f16593 | 2462 | |
30ac9238 RS |
2463 | while (mips_hi16_list != NULL) |
2464 | { | |
2465 | bfd_reloc_status_type ret; | |
2466 | struct mips_hi16 *hi; | |
2467 | ||
2468 | hi = mips_hi16_list; | |
2469 | ||
738e5348 RS |
2470 | /* R_MIPS*_GOT16 relocations are something of a special case. We |
2471 | want to install the addend in the same way as for a R_MIPS*_HI16 | |
30ac9238 RS |
2472 | relocation (with a rightshift of 16). However, since GOT16 |
2473 | relocations can also be used with global symbols, their howto | |
2474 | has a rightshift of 0. */ | |
2475 | if (hi->rel.howto->type == R_MIPS_GOT16) | |
2476 | hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE); | |
738e5348 RS |
2477 | else if (hi->rel.howto->type == R_MIPS16_GOT16) |
2478 | hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE); | |
df58fc94 RS |
2479 | else if (hi->rel.howto->type == R_MICROMIPS_GOT16) |
2480 | hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE); | |
30ac9238 RS |
2481 | |
2482 | /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any | |
2483 | carry or borrow will induce a change of +1 or -1 in the high part. */ | |
2484 | hi->rel.addend += (vallo + 0x8000) & 0xffff; | |
2485 | ||
30ac9238 RS |
2486 | ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data, |
2487 | hi->input_section, output_bfd, | |
2488 | error_message); | |
2489 | if (ret != bfd_reloc_ok) | |
2490 | return ret; | |
2491 | ||
2492 | mips_hi16_list = hi->next; | |
2493 | free (hi); | |
2494 | } | |
2495 | ||
2496 | return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, | |
2497 | input_section, output_bfd, | |
2498 | error_message); | |
2499 | } | |
2500 | ||
2501 | /* A generic howto special_function. This calculates and installs the | |
2502 | relocation itself, thus avoiding the oft-discussed problems in | |
2503 | bfd_perform_relocation and bfd_install_relocation. */ | |
2504 | ||
2505 | bfd_reloc_status_type | |
2506 | _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, | |
2507 | asymbol *symbol, void *data ATTRIBUTE_UNUSED, | |
2508 | asection *input_section, bfd *output_bfd, | |
2509 | char **error_message ATTRIBUTE_UNUSED) | |
2510 | { | |
2511 | bfd_signed_vma val; | |
2512 | bfd_reloc_status_type status; | |
2513 | bfd_boolean relocatable; | |
2514 | ||
2515 | relocatable = (output_bfd != NULL); | |
2516 | ||
07515404 | 2517 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
30ac9238 RS |
2518 | return bfd_reloc_outofrange; |
2519 | ||
2520 | /* Build up the field adjustment in VAL. */ | |
2521 | val = 0; | |
2522 | if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0) | |
2523 | { | |
2524 | /* Either we're calculating the final field value or we have a | |
2525 | relocation against a section symbol. Add in the section's | |
2526 | offset or address. */ | |
2527 | val += symbol->section->output_section->vma; | |
2528 | val += symbol->section->output_offset; | |
2529 | } | |
2530 | ||
2531 | if (!relocatable) | |
2532 | { | |
2533 | /* We're calculating the final field value. Add in the symbol's value | |
2534 | and, if pc-relative, subtract the address of the field itself. */ | |
2535 | val += symbol->value; | |
2536 | if (reloc_entry->howto->pc_relative) | |
2537 | { | |
2538 | val -= input_section->output_section->vma; | |
2539 | val -= input_section->output_offset; | |
2540 | val -= reloc_entry->address; | |
2541 | } | |
2542 | } | |
2543 | ||
2544 | /* VAL is now the final adjustment. If we're keeping this relocation | |
2545 | in the output file, and if the relocation uses a separate addend, | |
2546 | we just need to add VAL to that addend. Otherwise we need to add | |
2547 | VAL to the relocation field itself. */ | |
2548 | if (relocatable && !reloc_entry->howto->partial_inplace) | |
2549 | reloc_entry->addend += val; | |
2550 | else | |
2551 | { | |
d6f16593 MR |
2552 | bfd_byte *location = (bfd_byte *) data + reloc_entry->address; |
2553 | ||
30ac9238 RS |
2554 | /* Add in the separate addend, if any. */ |
2555 | val += reloc_entry->addend; | |
2556 | ||
2557 | /* Add VAL to the relocation field. */ | |
df58fc94 RS |
2558 | _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE, |
2559 | location); | |
30ac9238 | 2560 | status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, |
d6f16593 | 2561 | location); |
df58fc94 RS |
2562 | _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE, |
2563 | location); | |
d6f16593 | 2564 | |
30ac9238 RS |
2565 | if (status != bfd_reloc_ok) |
2566 | return status; | |
2567 | } | |
2568 | ||
2569 | if (relocatable) | |
2570 | reloc_entry->address += input_section->output_offset; | |
b49e97c9 TS |
2571 | |
2572 | return bfd_reloc_ok; | |
2573 | } | |
2574 | \f | |
2575 | /* Swap an entry in a .gptab section. Note that these routines rely | |
2576 | on the equivalence of the two elements of the union. */ | |
2577 | ||
2578 | static void | |
9719ad41 RS |
2579 | bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex, |
2580 | Elf32_gptab *in) | |
b49e97c9 TS |
2581 | { |
2582 | in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value); | |
2583 | in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes); | |
2584 | } | |
2585 | ||
2586 | static void | |
9719ad41 RS |
2587 | bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in, |
2588 | Elf32_External_gptab *ex) | |
b49e97c9 TS |
2589 | { |
2590 | H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value); | |
2591 | H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes); | |
2592 | } | |
2593 | ||
2594 | static void | |
9719ad41 RS |
2595 | bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in, |
2596 | Elf32_External_compact_rel *ex) | |
b49e97c9 TS |
2597 | { |
2598 | H_PUT_32 (abfd, in->id1, ex->id1); | |
2599 | H_PUT_32 (abfd, in->num, ex->num); | |
2600 | H_PUT_32 (abfd, in->id2, ex->id2); | |
2601 | H_PUT_32 (abfd, in->offset, ex->offset); | |
2602 | H_PUT_32 (abfd, in->reserved0, ex->reserved0); | |
2603 | H_PUT_32 (abfd, in->reserved1, ex->reserved1); | |
2604 | } | |
2605 | ||
2606 | static void | |
9719ad41 RS |
2607 | bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in, |
2608 | Elf32_External_crinfo *ex) | |
b49e97c9 TS |
2609 | { |
2610 | unsigned long l; | |
2611 | ||
2612 | l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH) | |
2613 | | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH) | |
2614 | | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH) | |
2615 | | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH)); | |
2616 | H_PUT_32 (abfd, l, ex->info); | |
2617 | H_PUT_32 (abfd, in->konst, ex->konst); | |
2618 | H_PUT_32 (abfd, in->vaddr, ex->vaddr); | |
2619 | } | |
b49e97c9 TS |
2620 | \f |
2621 | /* A .reginfo section holds a single Elf32_RegInfo structure. These | |
2622 | routines swap this structure in and out. They are used outside of | |
2623 | BFD, so they are globally visible. */ | |
2624 | ||
2625 | void | |
9719ad41 RS |
2626 | bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex, |
2627 | Elf32_RegInfo *in) | |
b49e97c9 TS |
2628 | { |
2629 | in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); | |
2630 | in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); | |
2631 | in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); | |
2632 | in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); | |
2633 | in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); | |
2634 | in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value); | |
2635 | } | |
2636 | ||
2637 | void | |
9719ad41 RS |
2638 | bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in, |
2639 | Elf32_External_RegInfo *ex) | |
b49e97c9 TS |
2640 | { |
2641 | H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); | |
2642 | H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); | |
2643 | H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); | |
2644 | H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); | |
2645 | H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); | |
2646 | H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value); | |
2647 | } | |
2648 | ||
2649 | /* In the 64 bit ABI, the .MIPS.options section holds register | |
2650 | information in an Elf64_Reginfo structure. These routines swap | |
2651 | them in and out. They are globally visible because they are used | |
2652 | outside of BFD. These routines are here so that gas can call them | |
2653 | without worrying about whether the 64 bit ABI has been included. */ | |
2654 | ||
2655 | void | |
9719ad41 RS |
2656 | bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex, |
2657 | Elf64_Internal_RegInfo *in) | |
b49e97c9 TS |
2658 | { |
2659 | in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); | |
2660 | in->ri_pad = H_GET_32 (abfd, ex->ri_pad); | |
2661 | in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); | |
2662 | in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); | |
2663 | in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); | |
2664 | in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); | |
2665 | in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value); | |
2666 | } | |
2667 | ||
2668 | void | |
9719ad41 RS |
2669 | bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in, |
2670 | Elf64_External_RegInfo *ex) | |
b49e97c9 TS |
2671 | { |
2672 | H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); | |
2673 | H_PUT_32 (abfd, in->ri_pad, ex->ri_pad); | |
2674 | H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); | |
2675 | H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); | |
2676 | H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); | |
2677 | H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); | |
2678 | H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value); | |
2679 | } | |
2680 | ||
2681 | /* Swap in an options header. */ | |
2682 | ||
2683 | void | |
9719ad41 RS |
2684 | bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex, |
2685 | Elf_Internal_Options *in) | |
b49e97c9 TS |
2686 | { |
2687 | in->kind = H_GET_8 (abfd, ex->kind); | |
2688 | in->size = H_GET_8 (abfd, ex->size); | |
2689 | in->section = H_GET_16 (abfd, ex->section); | |
2690 | in->info = H_GET_32 (abfd, ex->info); | |
2691 | } | |
2692 | ||
2693 | /* Swap out an options header. */ | |
2694 | ||
2695 | void | |
9719ad41 RS |
2696 | bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in, |
2697 | Elf_External_Options *ex) | |
b49e97c9 TS |
2698 | { |
2699 | H_PUT_8 (abfd, in->kind, ex->kind); | |
2700 | H_PUT_8 (abfd, in->size, ex->size); | |
2701 | H_PUT_16 (abfd, in->section, ex->section); | |
2702 | H_PUT_32 (abfd, in->info, ex->info); | |
2703 | } | |
351cdf24 MF |
2704 | |
2705 | /* Swap in an abiflags structure. */ | |
2706 | ||
2707 | void | |
2708 | bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd, | |
2709 | const Elf_External_ABIFlags_v0 *ex, | |
2710 | Elf_Internal_ABIFlags_v0 *in) | |
2711 | { | |
2712 | in->version = H_GET_16 (abfd, ex->version); | |
2713 | in->isa_level = H_GET_8 (abfd, ex->isa_level); | |
2714 | in->isa_rev = H_GET_8 (abfd, ex->isa_rev); | |
2715 | in->gpr_size = H_GET_8 (abfd, ex->gpr_size); | |
2716 | in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size); | |
2717 | in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size); | |
2718 | in->fp_abi = H_GET_8 (abfd, ex->fp_abi); | |
2719 | in->isa_ext = H_GET_32 (abfd, ex->isa_ext); | |
2720 | in->ases = H_GET_32 (abfd, ex->ases); | |
2721 | in->flags1 = H_GET_32 (abfd, ex->flags1); | |
2722 | in->flags2 = H_GET_32 (abfd, ex->flags2); | |
2723 | } | |
2724 | ||
2725 | /* Swap out an abiflags structure. */ | |
2726 | ||
2727 | void | |
2728 | bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd, | |
2729 | const Elf_Internal_ABIFlags_v0 *in, | |
2730 | Elf_External_ABIFlags_v0 *ex) | |
2731 | { | |
2732 | H_PUT_16 (abfd, in->version, ex->version); | |
2733 | H_PUT_8 (abfd, in->isa_level, ex->isa_level); | |
2734 | H_PUT_8 (abfd, in->isa_rev, ex->isa_rev); | |
2735 | H_PUT_8 (abfd, in->gpr_size, ex->gpr_size); | |
2736 | H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size); | |
2737 | H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size); | |
2738 | H_PUT_8 (abfd, in->fp_abi, ex->fp_abi); | |
2739 | H_PUT_32 (abfd, in->isa_ext, ex->isa_ext); | |
2740 | H_PUT_32 (abfd, in->ases, ex->ases); | |
2741 | H_PUT_32 (abfd, in->flags1, ex->flags1); | |
2742 | H_PUT_32 (abfd, in->flags2, ex->flags2); | |
2743 | } | |
b49e97c9 TS |
2744 | \f |
2745 | /* This function is called via qsort() to sort the dynamic relocation | |
2746 | entries by increasing r_symndx value. */ | |
2747 | ||
2748 | static int | |
9719ad41 | 2749 | sort_dynamic_relocs (const void *arg1, const void *arg2) |
b49e97c9 | 2750 | { |
947216bf AM |
2751 | Elf_Internal_Rela int_reloc1; |
2752 | Elf_Internal_Rela int_reloc2; | |
6870500c | 2753 | int diff; |
b49e97c9 | 2754 | |
947216bf AM |
2755 | bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1); |
2756 | bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2); | |
b49e97c9 | 2757 | |
6870500c RS |
2758 | diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info); |
2759 | if (diff != 0) | |
2760 | return diff; | |
2761 | ||
2762 | if (int_reloc1.r_offset < int_reloc2.r_offset) | |
2763 | return -1; | |
2764 | if (int_reloc1.r_offset > int_reloc2.r_offset) | |
2765 | return 1; | |
2766 | return 0; | |
b49e97c9 TS |
2767 | } |
2768 | ||
f4416af6 AO |
2769 | /* Like sort_dynamic_relocs, but used for elf64 relocations. */ |
2770 | ||
2771 | static int | |
7e3102a7 AM |
2772 | sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED, |
2773 | const void *arg2 ATTRIBUTE_UNUSED) | |
f4416af6 | 2774 | { |
7e3102a7 | 2775 | #ifdef BFD64 |
f4416af6 AO |
2776 | Elf_Internal_Rela int_reloc1[3]; |
2777 | Elf_Internal_Rela int_reloc2[3]; | |
2778 | ||
2779 | (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) | |
2780 | (reldyn_sorting_bfd, arg1, int_reloc1); | |
2781 | (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) | |
2782 | (reldyn_sorting_bfd, arg2, int_reloc2); | |
2783 | ||
6870500c RS |
2784 | if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info)) |
2785 | return -1; | |
2786 | if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info)) | |
2787 | return 1; | |
2788 | ||
2789 | if (int_reloc1[0].r_offset < int_reloc2[0].r_offset) | |
2790 | return -1; | |
2791 | if (int_reloc1[0].r_offset > int_reloc2[0].r_offset) | |
2792 | return 1; | |
2793 | return 0; | |
7e3102a7 AM |
2794 | #else |
2795 | abort (); | |
2796 | #endif | |
f4416af6 AO |
2797 | } |
2798 | ||
2799 | ||
b49e97c9 TS |
2800 | /* This routine is used to write out ECOFF debugging external symbol |
2801 | information. It is called via mips_elf_link_hash_traverse. The | |
2802 | ECOFF external symbol information must match the ELF external | |
2803 | symbol information. Unfortunately, at this point we don't know | |
2804 | whether a symbol is required by reloc information, so the two | |
2805 | tables may wind up being different. We must sort out the external | |
2806 | symbol information before we can set the final size of the .mdebug | |
2807 | section, and we must set the size of the .mdebug section before we | |
2808 | can relocate any sections, and we can't know which symbols are | |
2809 | required by relocation until we relocate the sections. | |
2810 | Fortunately, it is relatively unlikely that any symbol will be | |
2811 | stripped but required by a reloc. In particular, it can not happen | |
2812 | when generating a final executable. */ | |
2813 | ||
b34976b6 | 2814 | static bfd_boolean |
9719ad41 | 2815 | mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data) |
b49e97c9 | 2816 | { |
9719ad41 | 2817 | struct extsym_info *einfo = data; |
b34976b6 | 2818 | bfd_boolean strip; |
b49e97c9 TS |
2819 | asection *sec, *output_section; |
2820 | ||
b49e97c9 | 2821 | if (h->root.indx == -2) |
b34976b6 | 2822 | strip = FALSE; |
f5385ebf | 2823 | else if ((h->root.def_dynamic |
77cfaee6 AM |
2824 | || h->root.ref_dynamic |
2825 | || h->root.type == bfd_link_hash_new) | |
f5385ebf AM |
2826 | && !h->root.def_regular |
2827 | && !h->root.ref_regular) | |
b34976b6 | 2828 | strip = TRUE; |
b49e97c9 TS |
2829 | else if (einfo->info->strip == strip_all |
2830 | || (einfo->info->strip == strip_some | |
2831 | && bfd_hash_lookup (einfo->info->keep_hash, | |
2832 | h->root.root.root.string, | |
b34976b6 AM |
2833 | FALSE, FALSE) == NULL)) |
2834 | strip = TRUE; | |
b49e97c9 | 2835 | else |
b34976b6 | 2836 | strip = FALSE; |
b49e97c9 TS |
2837 | |
2838 | if (strip) | |
b34976b6 | 2839 | return TRUE; |
b49e97c9 TS |
2840 | |
2841 | if (h->esym.ifd == -2) | |
2842 | { | |
2843 | h->esym.jmptbl = 0; | |
2844 | h->esym.cobol_main = 0; | |
2845 | h->esym.weakext = 0; | |
2846 | h->esym.reserved = 0; | |
2847 | h->esym.ifd = ifdNil; | |
2848 | h->esym.asym.value = 0; | |
2849 | h->esym.asym.st = stGlobal; | |
2850 | ||
2851 | if (h->root.root.type == bfd_link_hash_undefined | |
2852 | || h->root.root.type == bfd_link_hash_undefweak) | |
2853 | { | |
2854 | const char *name; | |
2855 | ||
2856 | /* Use undefined class. Also, set class and type for some | |
2857 | special symbols. */ | |
2858 | name = h->root.root.root.string; | |
2859 | if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 | |
2860 | || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) | |
2861 | { | |
2862 | h->esym.asym.sc = scData; | |
2863 | h->esym.asym.st = stLabel; | |
2864 | h->esym.asym.value = 0; | |
2865 | } | |
2866 | else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) | |
2867 | { | |
2868 | h->esym.asym.sc = scAbs; | |
2869 | h->esym.asym.st = stLabel; | |
2870 | h->esym.asym.value = | |
2871 | mips_elf_hash_table (einfo->info)->procedure_count; | |
2872 | } | |
4a14403c | 2873 | else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd)) |
b49e97c9 TS |
2874 | { |
2875 | h->esym.asym.sc = scAbs; | |
2876 | h->esym.asym.st = stLabel; | |
2877 | h->esym.asym.value = elf_gp (einfo->abfd); | |
2878 | } | |
2879 | else | |
2880 | h->esym.asym.sc = scUndefined; | |
2881 | } | |
2882 | else if (h->root.root.type != bfd_link_hash_defined | |
2883 | && h->root.root.type != bfd_link_hash_defweak) | |
2884 | h->esym.asym.sc = scAbs; | |
2885 | else | |
2886 | { | |
2887 | const char *name; | |
2888 | ||
2889 | sec = h->root.root.u.def.section; | |
2890 | output_section = sec->output_section; | |
2891 | ||
2892 | /* When making a shared library and symbol h is the one from | |
2893 | the another shared library, OUTPUT_SECTION may be null. */ | |
2894 | if (output_section == NULL) | |
2895 | h->esym.asym.sc = scUndefined; | |
2896 | else | |
2897 | { | |
2898 | name = bfd_section_name (output_section->owner, output_section); | |
2899 | ||
2900 | if (strcmp (name, ".text") == 0) | |
2901 | h->esym.asym.sc = scText; | |
2902 | else if (strcmp (name, ".data") == 0) | |
2903 | h->esym.asym.sc = scData; | |
2904 | else if (strcmp (name, ".sdata") == 0) | |
2905 | h->esym.asym.sc = scSData; | |
2906 | else if (strcmp (name, ".rodata") == 0 | |
2907 | || strcmp (name, ".rdata") == 0) | |
2908 | h->esym.asym.sc = scRData; | |
2909 | else if (strcmp (name, ".bss") == 0) | |
2910 | h->esym.asym.sc = scBss; | |
2911 | else if (strcmp (name, ".sbss") == 0) | |
2912 | h->esym.asym.sc = scSBss; | |
2913 | else if (strcmp (name, ".init") == 0) | |
2914 | h->esym.asym.sc = scInit; | |
2915 | else if (strcmp (name, ".fini") == 0) | |
2916 | h->esym.asym.sc = scFini; | |
2917 | else | |
2918 | h->esym.asym.sc = scAbs; | |
2919 | } | |
2920 | } | |
2921 | ||
2922 | h->esym.asym.reserved = 0; | |
2923 | h->esym.asym.index = indexNil; | |
2924 | } | |
2925 | ||
2926 | if (h->root.root.type == bfd_link_hash_common) | |
2927 | h->esym.asym.value = h->root.root.u.c.size; | |
2928 | else if (h->root.root.type == bfd_link_hash_defined | |
2929 | || h->root.root.type == bfd_link_hash_defweak) | |
2930 | { | |
2931 | if (h->esym.asym.sc == scCommon) | |
2932 | h->esym.asym.sc = scBss; | |
2933 | else if (h->esym.asym.sc == scSCommon) | |
2934 | h->esym.asym.sc = scSBss; | |
2935 | ||
2936 | sec = h->root.root.u.def.section; | |
2937 | output_section = sec->output_section; | |
2938 | if (output_section != NULL) | |
2939 | h->esym.asym.value = (h->root.root.u.def.value | |
2940 | + sec->output_offset | |
2941 | + output_section->vma); | |
2942 | else | |
2943 | h->esym.asym.value = 0; | |
2944 | } | |
33bb52fb | 2945 | else |
b49e97c9 TS |
2946 | { |
2947 | struct mips_elf_link_hash_entry *hd = h; | |
b49e97c9 TS |
2948 | |
2949 | while (hd->root.root.type == bfd_link_hash_indirect) | |
33bb52fb | 2950 | hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link; |
b49e97c9 | 2951 | |
33bb52fb | 2952 | if (hd->needs_lazy_stub) |
b49e97c9 | 2953 | { |
1bbce132 MR |
2954 | BFD_ASSERT (hd->root.plt.plist != NULL); |
2955 | BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE); | |
b49e97c9 TS |
2956 | /* Set type and value for a symbol with a function stub. */ |
2957 | h->esym.asym.st = stProc; | |
2958 | sec = hd->root.root.u.def.section; | |
2959 | if (sec == NULL) | |
2960 | h->esym.asym.value = 0; | |
2961 | else | |
2962 | { | |
2963 | output_section = sec->output_section; | |
2964 | if (output_section != NULL) | |
1bbce132 | 2965 | h->esym.asym.value = (hd->root.plt.plist->stub_offset |
b49e97c9 TS |
2966 | + sec->output_offset |
2967 | + output_section->vma); | |
2968 | else | |
2969 | h->esym.asym.value = 0; | |
2970 | } | |
b49e97c9 TS |
2971 | } |
2972 | } | |
2973 | ||
2974 | if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap, | |
2975 | h->root.root.root.string, | |
2976 | &h->esym)) | |
2977 | { | |
b34976b6 AM |
2978 | einfo->failed = TRUE; |
2979 | return FALSE; | |
b49e97c9 TS |
2980 | } |
2981 | ||
b34976b6 | 2982 | return TRUE; |
b49e97c9 TS |
2983 | } |
2984 | ||
2985 | /* A comparison routine used to sort .gptab entries. */ | |
2986 | ||
2987 | static int | |
9719ad41 | 2988 | gptab_compare (const void *p1, const void *p2) |
b49e97c9 | 2989 | { |
9719ad41 RS |
2990 | const Elf32_gptab *a1 = p1; |
2991 | const Elf32_gptab *a2 = p2; | |
b49e97c9 TS |
2992 | |
2993 | return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value; | |
2994 | } | |
2995 | \f | |
b15e6682 | 2996 | /* Functions to manage the got entry hash table. */ |
f4416af6 AO |
2997 | |
2998 | /* Use all 64 bits of a bfd_vma for the computation of a 32-bit | |
2999 | hash number. */ | |
3000 | ||
3001 | static INLINE hashval_t | |
9719ad41 | 3002 | mips_elf_hash_bfd_vma (bfd_vma addr) |
f4416af6 AO |
3003 | { |
3004 | #ifdef BFD64 | |
3005 | return addr + (addr >> 32); | |
3006 | #else | |
3007 | return addr; | |
3008 | #endif | |
3009 | } | |
3010 | ||
f4416af6 | 3011 | static hashval_t |
d9bf376d | 3012 | mips_elf_got_entry_hash (const void *entry_) |
f4416af6 AO |
3013 | { |
3014 | const struct mips_got_entry *entry = (struct mips_got_entry *)entry_; | |
3015 | ||
e641e783 | 3016 | return (entry->symndx |
9ab066b4 RS |
3017 | + ((entry->tls_type == GOT_TLS_LDM) << 18) |
3018 | + (entry->tls_type == GOT_TLS_LDM ? 0 | |
e641e783 RS |
3019 | : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address) |
3020 | : entry->symndx >= 0 ? (entry->abfd->id | |
3021 | + mips_elf_hash_bfd_vma (entry->d.addend)) | |
3022 | : entry->d.h->root.root.root.hash)); | |
f4416af6 AO |
3023 | } |
3024 | ||
3025 | static int | |
3dff0dd1 | 3026 | mips_elf_got_entry_eq (const void *entry1, const void *entry2) |
f4416af6 AO |
3027 | { |
3028 | const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1; | |
3029 | const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2; | |
3030 | ||
e641e783 | 3031 | return (e1->symndx == e2->symndx |
9ab066b4 RS |
3032 | && e1->tls_type == e2->tls_type |
3033 | && (e1->tls_type == GOT_TLS_LDM ? TRUE | |
e641e783 RS |
3034 | : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address |
3035 | : e1->symndx >= 0 ? (e1->abfd == e2->abfd | |
3036 | && e1->d.addend == e2->d.addend) | |
3037 | : e2->abfd && e1->d.h == e2->d.h)); | |
b15e6682 | 3038 | } |
c224138d | 3039 | |
13db6b44 RS |
3040 | static hashval_t |
3041 | mips_got_page_ref_hash (const void *ref_) | |
3042 | { | |
3043 | const struct mips_got_page_ref *ref; | |
3044 | ||
3045 | ref = (const struct mips_got_page_ref *) ref_; | |
3046 | return ((ref->symndx >= 0 | |
3047 | ? (hashval_t) (ref->u.abfd->id + ref->symndx) | |
3048 | : ref->u.h->root.root.root.hash) | |
3049 | + mips_elf_hash_bfd_vma (ref->addend)); | |
3050 | } | |
3051 | ||
3052 | static int | |
3053 | mips_got_page_ref_eq (const void *ref1_, const void *ref2_) | |
3054 | { | |
3055 | const struct mips_got_page_ref *ref1, *ref2; | |
3056 | ||
3057 | ref1 = (const struct mips_got_page_ref *) ref1_; | |
3058 | ref2 = (const struct mips_got_page_ref *) ref2_; | |
3059 | return (ref1->symndx == ref2->symndx | |
3060 | && (ref1->symndx < 0 | |
3061 | ? ref1->u.h == ref2->u.h | |
3062 | : ref1->u.abfd == ref2->u.abfd) | |
3063 | && ref1->addend == ref2->addend); | |
3064 | } | |
3065 | ||
c224138d RS |
3066 | static hashval_t |
3067 | mips_got_page_entry_hash (const void *entry_) | |
3068 | { | |
3069 | const struct mips_got_page_entry *entry; | |
3070 | ||
3071 | entry = (const struct mips_got_page_entry *) entry_; | |
13db6b44 | 3072 | return entry->sec->id; |
c224138d RS |
3073 | } |
3074 | ||
3075 | static int | |
3076 | mips_got_page_entry_eq (const void *entry1_, const void *entry2_) | |
3077 | { | |
3078 | const struct mips_got_page_entry *entry1, *entry2; | |
3079 | ||
3080 | entry1 = (const struct mips_got_page_entry *) entry1_; | |
3081 | entry2 = (const struct mips_got_page_entry *) entry2_; | |
13db6b44 | 3082 | return entry1->sec == entry2->sec; |
c224138d | 3083 | } |
b15e6682 | 3084 | \f |
3dff0dd1 | 3085 | /* Create and return a new mips_got_info structure. */ |
5334aa52 RS |
3086 | |
3087 | static struct mips_got_info * | |
3dff0dd1 | 3088 | mips_elf_create_got_info (bfd *abfd) |
5334aa52 RS |
3089 | { |
3090 | struct mips_got_info *g; | |
3091 | ||
3092 | g = bfd_zalloc (abfd, sizeof (struct mips_got_info)); | |
3093 | if (g == NULL) | |
3094 | return NULL; | |
3095 | ||
3dff0dd1 RS |
3096 | g->got_entries = htab_try_create (1, mips_elf_got_entry_hash, |
3097 | mips_elf_got_entry_eq, NULL); | |
5334aa52 RS |
3098 | if (g->got_entries == NULL) |
3099 | return NULL; | |
3100 | ||
13db6b44 RS |
3101 | g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash, |
3102 | mips_got_page_ref_eq, NULL); | |
3103 | if (g->got_page_refs == NULL) | |
5334aa52 RS |
3104 | return NULL; |
3105 | ||
3106 | return g; | |
3107 | } | |
3108 | ||
ee227692 RS |
3109 | /* Return the GOT info for input bfd ABFD, trying to create a new one if |
3110 | CREATE_P and if ABFD doesn't already have a GOT. */ | |
3111 | ||
3112 | static struct mips_got_info * | |
3113 | mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p) | |
3114 | { | |
3115 | struct mips_elf_obj_tdata *tdata; | |
3116 | ||
3117 | if (!is_mips_elf (abfd)) | |
3118 | return NULL; | |
3119 | ||
3120 | tdata = mips_elf_tdata (abfd); | |
3121 | if (!tdata->got && create_p) | |
3dff0dd1 | 3122 | tdata->got = mips_elf_create_got_info (abfd); |
ee227692 RS |
3123 | return tdata->got; |
3124 | } | |
3125 | ||
d7206569 RS |
3126 | /* Record that ABFD should use output GOT G. */ |
3127 | ||
3128 | static void | |
3129 | mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g) | |
3130 | { | |
3131 | struct mips_elf_obj_tdata *tdata; | |
3132 | ||
3133 | BFD_ASSERT (is_mips_elf (abfd)); | |
3134 | tdata = mips_elf_tdata (abfd); | |
3135 | if (tdata->got) | |
3136 | { | |
3137 | /* The GOT structure itself and the hash table entries are | |
3138 | allocated to a bfd, but the hash tables aren't. */ | |
3139 | htab_delete (tdata->got->got_entries); | |
13db6b44 RS |
3140 | htab_delete (tdata->got->got_page_refs); |
3141 | if (tdata->got->got_page_entries) | |
3142 | htab_delete (tdata->got->got_page_entries); | |
d7206569 RS |
3143 | } |
3144 | tdata->got = g; | |
3145 | } | |
3146 | ||
0a44bf69 RS |
3147 | /* Return the dynamic relocation section. If it doesn't exist, try to |
3148 | create a new it if CREATE_P, otherwise return NULL. Also return NULL | |
3149 | if creation fails. */ | |
f4416af6 AO |
3150 | |
3151 | static asection * | |
0a44bf69 | 3152 | mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p) |
f4416af6 | 3153 | { |
0a44bf69 | 3154 | const char *dname; |
f4416af6 | 3155 | asection *sreloc; |
0a44bf69 | 3156 | bfd *dynobj; |
f4416af6 | 3157 | |
0a44bf69 RS |
3158 | dname = MIPS_ELF_REL_DYN_NAME (info); |
3159 | dynobj = elf_hash_table (info)->dynobj; | |
3d4d4302 | 3160 | sreloc = bfd_get_linker_section (dynobj, dname); |
f4416af6 AO |
3161 | if (sreloc == NULL && create_p) |
3162 | { | |
3d4d4302 AM |
3163 | sreloc = bfd_make_section_anyway_with_flags (dynobj, dname, |
3164 | (SEC_ALLOC | |
3165 | | SEC_LOAD | |
3166 | | SEC_HAS_CONTENTS | |
3167 | | SEC_IN_MEMORY | |
3168 | | SEC_LINKER_CREATED | |
3169 | | SEC_READONLY)); | |
f4416af6 | 3170 | if (sreloc == NULL |
f4416af6 | 3171 | || ! bfd_set_section_alignment (dynobj, sreloc, |
d80dcc6a | 3172 | MIPS_ELF_LOG_FILE_ALIGN (dynobj))) |
f4416af6 AO |
3173 | return NULL; |
3174 | } | |
3175 | return sreloc; | |
3176 | } | |
3177 | ||
e641e783 RS |
3178 | /* Return the GOT_TLS_* type required by relocation type R_TYPE. */ |
3179 | ||
3180 | static int | |
3181 | mips_elf_reloc_tls_type (unsigned int r_type) | |
3182 | { | |
3183 | if (tls_gd_reloc_p (r_type)) | |
3184 | return GOT_TLS_GD; | |
3185 | ||
3186 | if (tls_ldm_reloc_p (r_type)) | |
3187 | return GOT_TLS_LDM; | |
3188 | ||
3189 | if (tls_gottprel_reloc_p (r_type)) | |
3190 | return GOT_TLS_IE; | |
3191 | ||
9ab066b4 | 3192 | return GOT_TLS_NONE; |
e641e783 RS |
3193 | } |
3194 | ||
3195 | /* Return the number of GOT slots needed for GOT TLS type TYPE. */ | |
3196 | ||
3197 | static int | |
3198 | mips_tls_got_entries (unsigned int type) | |
3199 | { | |
3200 | switch (type) | |
3201 | { | |
3202 | case GOT_TLS_GD: | |
3203 | case GOT_TLS_LDM: | |
3204 | return 2; | |
3205 | ||
3206 | case GOT_TLS_IE: | |
3207 | return 1; | |
3208 | ||
9ab066b4 | 3209 | case GOT_TLS_NONE: |
e641e783 RS |
3210 | return 0; |
3211 | } | |
3212 | abort (); | |
3213 | } | |
3214 | ||
0f20cc35 DJ |
3215 | /* Count the number of relocations needed for a TLS GOT entry, with |
3216 | access types from TLS_TYPE, and symbol H (or a local symbol if H | |
3217 | is NULL). */ | |
3218 | ||
3219 | static int | |
3220 | mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type, | |
3221 | struct elf_link_hash_entry *h) | |
3222 | { | |
3223 | int indx = 0; | |
0f20cc35 DJ |
3224 | bfd_boolean need_relocs = FALSE; |
3225 | bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created; | |
3226 | ||
3227 | if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h) | |
3228 | && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h))) | |
3229 | indx = h->dynindx; | |
3230 | ||
3231 | if ((info->shared || indx != 0) | |
3232 | && (h == NULL | |
3233 | || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT | |
3234 | || h->root.type != bfd_link_hash_undefweak)) | |
3235 | need_relocs = TRUE; | |
3236 | ||
3237 | if (!need_relocs) | |
e641e783 | 3238 | return 0; |
0f20cc35 | 3239 | |
9ab066b4 | 3240 | switch (tls_type) |
0f20cc35 | 3241 | { |
e641e783 RS |
3242 | case GOT_TLS_GD: |
3243 | return indx != 0 ? 2 : 1; | |
0f20cc35 | 3244 | |
e641e783 RS |
3245 | case GOT_TLS_IE: |
3246 | return 1; | |
0f20cc35 | 3247 | |
e641e783 RS |
3248 | case GOT_TLS_LDM: |
3249 | return info->shared ? 1 : 0; | |
0f20cc35 | 3250 | |
e641e783 RS |
3251 | default: |
3252 | return 0; | |
3253 | } | |
0f20cc35 DJ |
3254 | } |
3255 | ||
ab361d49 RS |
3256 | /* Add the number of GOT entries and TLS relocations required by ENTRY |
3257 | to G. */ | |
0f20cc35 | 3258 | |
ab361d49 RS |
3259 | static void |
3260 | mips_elf_count_got_entry (struct bfd_link_info *info, | |
3261 | struct mips_got_info *g, | |
3262 | struct mips_got_entry *entry) | |
0f20cc35 | 3263 | { |
9ab066b4 | 3264 | if (entry->tls_type) |
ab361d49 | 3265 | { |
9ab066b4 RS |
3266 | g->tls_gotno += mips_tls_got_entries (entry->tls_type); |
3267 | g->relocs += mips_tls_got_relocs (info, entry->tls_type, | |
ab361d49 RS |
3268 | entry->symndx < 0 |
3269 | ? &entry->d.h->root : NULL); | |
3270 | } | |
3271 | else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE) | |
3272 | g->local_gotno += 1; | |
3273 | else | |
3274 | g->global_gotno += 1; | |
0f20cc35 DJ |
3275 | } |
3276 | ||
0f20cc35 DJ |
3277 | /* Output a simple dynamic relocation into SRELOC. */ |
3278 | ||
3279 | static void | |
3280 | mips_elf_output_dynamic_relocation (bfd *output_bfd, | |
3281 | asection *sreloc, | |
861fb55a | 3282 | unsigned long reloc_index, |
0f20cc35 DJ |
3283 | unsigned long indx, |
3284 | int r_type, | |
3285 | bfd_vma offset) | |
3286 | { | |
3287 | Elf_Internal_Rela rel[3]; | |
3288 | ||
3289 | memset (rel, 0, sizeof (rel)); | |
3290 | ||
3291 | rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type); | |
3292 | rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; | |
3293 | ||
3294 | if (ABI_64_P (output_bfd)) | |
3295 | { | |
3296 | (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) | |
3297 | (output_bfd, &rel[0], | |
3298 | (sreloc->contents | |
861fb55a | 3299 | + reloc_index * sizeof (Elf64_Mips_External_Rel))); |
0f20cc35 DJ |
3300 | } |
3301 | else | |
3302 | bfd_elf32_swap_reloc_out | |
3303 | (output_bfd, &rel[0], | |
3304 | (sreloc->contents | |
861fb55a | 3305 | + reloc_index * sizeof (Elf32_External_Rel))); |
0f20cc35 DJ |
3306 | } |
3307 | ||
3308 | /* Initialize a set of TLS GOT entries for one symbol. */ | |
3309 | ||
3310 | static void | |
9ab066b4 RS |
3311 | mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info, |
3312 | struct mips_got_entry *entry, | |
0f20cc35 DJ |
3313 | struct mips_elf_link_hash_entry *h, |
3314 | bfd_vma value) | |
3315 | { | |
23cc69b6 | 3316 | struct mips_elf_link_hash_table *htab; |
0f20cc35 DJ |
3317 | int indx; |
3318 | asection *sreloc, *sgot; | |
9ab066b4 | 3319 | bfd_vma got_offset, got_offset2; |
0f20cc35 DJ |
3320 | bfd_boolean need_relocs = FALSE; |
3321 | ||
23cc69b6 | 3322 | htab = mips_elf_hash_table (info); |
4dfe6ac6 NC |
3323 | if (htab == NULL) |
3324 | return; | |
3325 | ||
23cc69b6 | 3326 | sgot = htab->sgot; |
0f20cc35 DJ |
3327 | |
3328 | indx = 0; | |
3329 | if (h != NULL) | |
3330 | { | |
3331 | bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created; | |
3332 | ||
3333 | if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root) | |
3334 | && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root))) | |
3335 | indx = h->root.dynindx; | |
3336 | } | |
3337 | ||
9ab066b4 | 3338 | if (entry->tls_initialized) |
0f20cc35 DJ |
3339 | return; |
3340 | ||
3341 | if ((info->shared || indx != 0) | |
3342 | && (h == NULL | |
3343 | || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT | |
3344 | || h->root.type != bfd_link_hash_undefweak)) | |
3345 | need_relocs = TRUE; | |
3346 | ||
3347 | /* MINUS_ONE means the symbol is not defined in this object. It may not | |
3348 | be defined at all; assume that the value doesn't matter in that | |
3349 | case. Otherwise complain if we would use the value. */ | |
3350 | BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs) | |
3351 | || h->root.root.type == bfd_link_hash_undefweak); | |
3352 | ||
3353 | /* Emit necessary relocations. */ | |
0a44bf69 | 3354 | sreloc = mips_elf_rel_dyn_section (info, FALSE); |
9ab066b4 | 3355 | got_offset = entry->gotidx; |
0f20cc35 | 3356 | |
9ab066b4 | 3357 | switch (entry->tls_type) |
0f20cc35 | 3358 | { |
e641e783 RS |
3359 | case GOT_TLS_GD: |
3360 | /* General Dynamic. */ | |
3361 | got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd); | |
0f20cc35 DJ |
3362 | |
3363 | if (need_relocs) | |
3364 | { | |
3365 | mips_elf_output_dynamic_relocation | |
861fb55a | 3366 | (abfd, sreloc, sreloc->reloc_count++, indx, |
0f20cc35 | 3367 | ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32, |
e641e783 | 3368 | sgot->output_offset + sgot->output_section->vma + got_offset); |
0f20cc35 DJ |
3369 | |
3370 | if (indx) | |
3371 | mips_elf_output_dynamic_relocation | |
861fb55a | 3372 | (abfd, sreloc, sreloc->reloc_count++, indx, |
0f20cc35 | 3373 | ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32, |
e641e783 | 3374 | sgot->output_offset + sgot->output_section->vma + got_offset2); |
0f20cc35 DJ |
3375 | else |
3376 | MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info), | |
e641e783 | 3377 | sgot->contents + got_offset2); |
0f20cc35 DJ |
3378 | } |
3379 | else | |
3380 | { | |
3381 | MIPS_ELF_PUT_WORD (abfd, 1, | |
e641e783 | 3382 | sgot->contents + got_offset); |
0f20cc35 | 3383 | MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info), |
e641e783 | 3384 | sgot->contents + got_offset2); |
0f20cc35 | 3385 | } |
e641e783 | 3386 | break; |
0f20cc35 | 3387 | |
e641e783 RS |
3388 | case GOT_TLS_IE: |
3389 | /* Initial Exec model. */ | |
0f20cc35 DJ |
3390 | if (need_relocs) |
3391 | { | |
3392 | if (indx == 0) | |
3393 | MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma, | |
e641e783 | 3394 | sgot->contents + got_offset); |
0f20cc35 DJ |
3395 | else |
3396 | MIPS_ELF_PUT_WORD (abfd, 0, | |
e641e783 | 3397 | sgot->contents + got_offset); |
0f20cc35 DJ |
3398 | |
3399 | mips_elf_output_dynamic_relocation | |
861fb55a | 3400 | (abfd, sreloc, sreloc->reloc_count++, indx, |
0f20cc35 | 3401 | ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32, |
e641e783 | 3402 | sgot->output_offset + sgot->output_section->vma + got_offset); |
0f20cc35 DJ |
3403 | } |
3404 | else | |
3405 | MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info), | |
e641e783 RS |
3406 | sgot->contents + got_offset); |
3407 | break; | |
0f20cc35 | 3408 | |
e641e783 | 3409 | case GOT_TLS_LDM: |
0f20cc35 DJ |
3410 | /* The initial offset is zero, and the LD offsets will include the |
3411 | bias by DTP_OFFSET. */ | |
3412 | MIPS_ELF_PUT_WORD (abfd, 0, | |
3413 | sgot->contents + got_offset | |
3414 | + MIPS_ELF_GOT_SIZE (abfd)); | |
3415 | ||
3416 | if (!info->shared) | |
3417 | MIPS_ELF_PUT_WORD (abfd, 1, | |
3418 | sgot->contents + got_offset); | |
3419 | else | |
3420 | mips_elf_output_dynamic_relocation | |
861fb55a | 3421 | (abfd, sreloc, sreloc->reloc_count++, indx, |
0f20cc35 DJ |
3422 | ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32, |
3423 | sgot->output_offset + sgot->output_section->vma + got_offset); | |
e641e783 RS |
3424 | break; |
3425 | ||
3426 | default: | |
3427 | abort (); | |
0f20cc35 DJ |
3428 | } |
3429 | ||
9ab066b4 | 3430 | entry->tls_initialized = TRUE; |
e641e783 | 3431 | } |
0f20cc35 | 3432 | |
0a44bf69 RS |
3433 | /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry |
3434 | for global symbol H. .got.plt comes before the GOT, so the offset | |
3435 | will be negative. */ | |
3436 | ||
3437 | static bfd_vma | |
3438 | mips_elf_gotplt_index (struct bfd_link_info *info, | |
3439 | struct elf_link_hash_entry *h) | |
3440 | { | |
1bbce132 | 3441 | bfd_vma got_address, got_value; |
0a44bf69 RS |
3442 | struct mips_elf_link_hash_table *htab; |
3443 | ||
3444 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 NC |
3445 | BFD_ASSERT (htab != NULL); |
3446 | ||
1bbce132 MR |
3447 | BFD_ASSERT (h->plt.plist != NULL); |
3448 | BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE); | |
0a44bf69 RS |
3449 | |
3450 | /* Calculate the address of the associated .got.plt entry. */ | |
3451 | got_address = (htab->sgotplt->output_section->vma | |
3452 | + htab->sgotplt->output_offset | |
1bbce132 MR |
3453 | + (h->plt.plist->gotplt_index |
3454 | * MIPS_ELF_GOT_SIZE (info->output_bfd))); | |
0a44bf69 RS |
3455 | |
3456 | /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */ | |
3457 | got_value = (htab->root.hgot->root.u.def.section->output_section->vma | |
3458 | + htab->root.hgot->root.u.def.section->output_offset | |
3459 | + htab->root.hgot->root.u.def.value); | |
3460 | ||
3461 | return got_address - got_value; | |
3462 | } | |
3463 | ||
5c18022e | 3464 | /* Return the GOT offset for address VALUE. If there is not yet a GOT |
0a44bf69 RS |
3465 | entry for this value, create one. If R_SYMNDX refers to a TLS symbol, |
3466 | create a TLS GOT entry instead. Return -1 if no satisfactory GOT | |
3467 | offset can be found. */ | |
b49e97c9 TS |
3468 | |
3469 | static bfd_vma | |
9719ad41 | 3470 | mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, |
5c18022e | 3471 | bfd_vma value, unsigned long r_symndx, |
0f20cc35 | 3472 | struct mips_elf_link_hash_entry *h, int r_type) |
b49e97c9 | 3473 | { |
a8028dd0 | 3474 | struct mips_elf_link_hash_table *htab; |
b15e6682 | 3475 | struct mips_got_entry *entry; |
b49e97c9 | 3476 | |
a8028dd0 | 3477 | htab = mips_elf_hash_table (info); |
4dfe6ac6 NC |
3478 | BFD_ASSERT (htab != NULL); |
3479 | ||
a8028dd0 RS |
3480 | entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, |
3481 | r_symndx, h, r_type); | |
0f20cc35 | 3482 | if (!entry) |
b15e6682 | 3483 | return MINUS_ONE; |
0f20cc35 | 3484 | |
e641e783 | 3485 | if (entry->tls_type) |
9ab066b4 RS |
3486 | mips_elf_initialize_tls_slots (abfd, info, entry, h, value); |
3487 | return entry->gotidx; | |
b49e97c9 TS |
3488 | } |
3489 | ||
13fbec83 | 3490 | /* Return the GOT index of global symbol H in the primary GOT. */ |
b49e97c9 TS |
3491 | |
3492 | static bfd_vma | |
13fbec83 RS |
3493 | mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info, |
3494 | struct elf_link_hash_entry *h) | |
3495 | { | |
3496 | struct mips_elf_link_hash_table *htab; | |
3497 | long global_got_dynindx; | |
3498 | struct mips_got_info *g; | |
3499 | bfd_vma got_index; | |
3500 | ||
3501 | htab = mips_elf_hash_table (info); | |
3502 | BFD_ASSERT (htab != NULL); | |
3503 | ||
3504 | global_got_dynindx = 0; | |
3505 | if (htab->global_gotsym != NULL) | |
3506 | global_got_dynindx = htab->global_gotsym->dynindx; | |
3507 | ||
3508 | /* Once we determine the global GOT entry with the lowest dynamic | |
3509 | symbol table index, we must put all dynamic symbols with greater | |
3510 | indices into the primary GOT. That makes it easy to calculate the | |
3511 | GOT offset. */ | |
3512 | BFD_ASSERT (h->dynindx >= global_got_dynindx); | |
3513 | g = mips_elf_bfd_got (obfd, FALSE); | |
3514 | got_index = ((h->dynindx - global_got_dynindx + g->local_gotno) | |
3515 | * MIPS_ELF_GOT_SIZE (obfd)); | |
3516 | BFD_ASSERT (got_index < htab->sgot->size); | |
3517 | ||
3518 | return got_index; | |
3519 | } | |
3520 | ||
3521 | /* Return the GOT index for the global symbol indicated by H, which is | |
3522 | referenced by a relocation of type R_TYPE in IBFD. */ | |
3523 | ||
3524 | static bfd_vma | |
3525 | mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd, | |
3526 | struct elf_link_hash_entry *h, int r_type) | |
b49e97c9 | 3527 | { |
a8028dd0 | 3528 | struct mips_elf_link_hash_table *htab; |
6c42ddb9 RS |
3529 | struct mips_got_info *g; |
3530 | struct mips_got_entry lookup, *entry; | |
3531 | bfd_vma gotidx; | |
b49e97c9 | 3532 | |
a8028dd0 | 3533 | htab = mips_elf_hash_table (info); |
4dfe6ac6 NC |
3534 | BFD_ASSERT (htab != NULL); |
3535 | ||
6c42ddb9 RS |
3536 | g = mips_elf_bfd_got (ibfd, FALSE); |
3537 | BFD_ASSERT (g); | |
f4416af6 | 3538 | |
6c42ddb9 RS |
3539 | lookup.tls_type = mips_elf_reloc_tls_type (r_type); |
3540 | if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE)) | |
3541 | return mips_elf_primary_global_got_index (obfd, info, h); | |
f4416af6 | 3542 | |
6c42ddb9 RS |
3543 | lookup.abfd = ibfd; |
3544 | lookup.symndx = -1; | |
3545 | lookup.d.h = (struct mips_elf_link_hash_entry *) h; | |
3546 | entry = htab_find (g->got_entries, &lookup); | |
3547 | BFD_ASSERT (entry); | |
0f20cc35 | 3548 | |
6c42ddb9 RS |
3549 | gotidx = entry->gotidx; |
3550 | BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size); | |
f4416af6 | 3551 | |
6c42ddb9 | 3552 | if (lookup.tls_type) |
0f20cc35 | 3553 | { |
0f20cc35 DJ |
3554 | bfd_vma value = MINUS_ONE; |
3555 | ||
3556 | if ((h->root.type == bfd_link_hash_defined | |
3557 | || h->root.type == bfd_link_hash_defweak) | |
3558 | && h->root.u.def.section->output_section) | |
3559 | value = (h->root.u.def.value | |
3560 | + h->root.u.def.section->output_offset | |
3561 | + h->root.u.def.section->output_section->vma); | |
3562 | ||
9ab066b4 | 3563 | mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value); |
0f20cc35 | 3564 | } |
6c42ddb9 | 3565 | return gotidx; |
b49e97c9 TS |
3566 | } |
3567 | ||
5c18022e RS |
3568 | /* Find a GOT page entry that points to within 32KB of VALUE. These |
3569 | entries are supposed to be placed at small offsets in the GOT, i.e., | |
3570 | within 32KB of GP. Return the index of the GOT entry, or -1 if no | |
3571 | entry could be created. If OFFSETP is nonnull, use it to return the | |
0a44bf69 | 3572 | offset of the GOT entry from VALUE. */ |
b49e97c9 TS |
3573 | |
3574 | static bfd_vma | |
9719ad41 | 3575 | mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, |
5c18022e | 3576 | bfd_vma value, bfd_vma *offsetp) |
b49e97c9 | 3577 | { |
91d6fa6a | 3578 | bfd_vma page, got_index; |
b15e6682 | 3579 | struct mips_got_entry *entry; |
b49e97c9 | 3580 | |
0a44bf69 | 3581 | page = (value + 0x8000) & ~(bfd_vma) 0xffff; |
a8028dd0 RS |
3582 | entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0, |
3583 | NULL, R_MIPS_GOT_PAGE); | |
b49e97c9 | 3584 | |
b15e6682 AO |
3585 | if (!entry) |
3586 | return MINUS_ONE; | |
143d77c5 | 3587 | |
91d6fa6a | 3588 | got_index = entry->gotidx; |
b49e97c9 TS |
3589 | |
3590 | if (offsetp) | |
f4416af6 | 3591 | *offsetp = value - entry->d.address; |
b49e97c9 | 3592 | |
91d6fa6a | 3593 | return got_index; |
b49e97c9 TS |
3594 | } |
3595 | ||
738e5348 | 3596 | /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE. |
020d7251 RS |
3597 | EXTERNAL is true if the relocation was originally against a global |
3598 | symbol that binds locally. */ | |
b49e97c9 TS |
3599 | |
3600 | static bfd_vma | |
9719ad41 | 3601 | mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, |
5c18022e | 3602 | bfd_vma value, bfd_boolean external) |
b49e97c9 | 3603 | { |
b15e6682 | 3604 | struct mips_got_entry *entry; |
b49e97c9 | 3605 | |
0a44bf69 RS |
3606 | /* GOT16 relocations against local symbols are followed by a LO16 |
3607 | relocation; those against global symbols are not. Thus if the | |
3608 | symbol was originally local, the GOT16 relocation should load the | |
3609 | equivalent of %hi(VALUE), otherwise it should load VALUE itself. */ | |
b49e97c9 | 3610 | if (! external) |
0a44bf69 | 3611 | value = mips_elf_high (value) << 16; |
b49e97c9 | 3612 | |
738e5348 RS |
3613 | /* It doesn't matter whether the original relocation was R_MIPS_GOT16, |
3614 | R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the | |
3615 | same in all cases. */ | |
a8028dd0 RS |
3616 | entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0, |
3617 | NULL, R_MIPS_GOT16); | |
b15e6682 AO |
3618 | if (entry) |
3619 | return entry->gotidx; | |
3620 | else | |
3621 | return MINUS_ONE; | |
b49e97c9 TS |
3622 | } |
3623 | ||
3624 | /* Returns the offset for the entry at the INDEXth position | |
3625 | in the GOT. */ | |
3626 | ||
3627 | static bfd_vma | |
a8028dd0 | 3628 | mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd, |
91d6fa6a | 3629 | bfd *input_bfd, bfd_vma got_index) |
b49e97c9 | 3630 | { |
a8028dd0 | 3631 | struct mips_elf_link_hash_table *htab; |
b49e97c9 TS |
3632 | asection *sgot; |
3633 | bfd_vma gp; | |
3634 | ||
a8028dd0 | 3635 | htab = mips_elf_hash_table (info); |
4dfe6ac6 NC |
3636 | BFD_ASSERT (htab != NULL); |
3637 | ||
a8028dd0 | 3638 | sgot = htab->sgot; |
f4416af6 | 3639 | gp = _bfd_get_gp_value (output_bfd) |
a8028dd0 | 3640 | + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd); |
143d77c5 | 3641 | |
91d6fa6a | 3642 | return sgot->output_section->vma + sgot->output_offset + got_index - gp; |
b49e97c9 TS |
3643 | } |
3644 | ||
0a44bf69 RS |
3645 | /* Create and return a local GOT entry for VALUE, which was calculated |
3646 | from a symbol belonging to INPUT_SECTON. Return NULL if it could not | |
3647 | be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry | |
3648 | instead. */ | |
b49e97c9 | 3649 | |
b15e6682 | 3650 | static struct mips_got_entry * |
0a44bf69 | 3651 | mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info, |
a8028dd0 | 3652 | bfd *ibfd, bfd_vma value, |
5c18022e | 3653 | unsigned long r_symndx, |
0f20cc35 DJ |
3654 | struct mips_elf_link_hash_entry *h, |
3655 | int r_type) | |
b49e97c9 | 3656 | { |
ebc53538 RS |
3657 | struct mips_got_entry lookup, *entry; |
3658 | void **loc; | |
f4416af6 | 3659 | struct mips_got_info *g; |
0a44bf69 | 3660 | struct mips_elf_link_hash_table *htab; |
6c42ddb9 | 3661 | bfd_vma gotidx; |
0a44bf69 RS |
3662 | |
3663 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 | 3664 | BFD_ASSERT (htab != NULL); |
b15e6682 | 3665 | |
d7206569 | 3666 | g = mips_elf_bfd_got (ibfd, FALSE); |
f4416af6 AO |
3667 | if (g == NULL) |
3668 | { | |
d7206569 | 3669 | g = mips_elf_bfd_got (abfd, FALSE); |
f4416af6 AO |
3670 | BFD_ASSERT (g != NULL); |
3671 | } | |
b15e6682 | 3672 | |
020d7251 RS |
3673 | /* This function shouldn't be called for symbols that live in the global |
3674 | area of the GOT. */ | |
3675 | BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE); | |
0f20cc35 | 3676 | |
ebc53538 RS |
3677 | lookup.tls_type = mips_elf_reloc_tls_type (r_type); |
3678 | if (lookup.tls_type) | |
3679 | { | |
3680 | lookup.abfd = ibfd; | |
df58fc94 | 3681 | if (tls_ldm_reloc_p (r_type)) |
0f20cc35 | 3682 | { |
ebc53538 RS |
3683 | lookup.symndx = 0; |
3684 | lookup.d.addend = 0; | |
0f20cc35 DJ |
3685 | } |
3686 | else if (h == NULL) | |
3687 | { | |
ebc53538 RS |
3688 | lookup.symndx = r_symndx; |
3689 | lookup.d.addend = 0; | |
0f20cc35 DJ |
3690 | } |
3691 | else | |
ebc53538 RS |
3692 | { |
3693 | lookup.symndx = -1; | |
3694 | lookup.d.h = h; | |
3695 | } | |
0f20cc35 | 3696 | |
ebc53538 RS |
3697 | entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup); |
3698 | BFD_ASSERT (entry); | |
0f20cc35 | 3699 | |
6c42ddb9 RS |
3700 | gotidx = entry->gotidx; |
3701 | BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size); | |
3702 | ||
ebc53538 | 3703 | return entry; |
0f20cc35 DJ |
3704 | } |
3705 | ||
ebc53538 RS |
3706 | lookup.abfd = NULL; |
3707 | lookup.symndx = -1; | |
3708 | lookup.d.address = value; | |
3709 | loc = htab_find_slot (g->got_entries, &lookup, INSERT); | |
3710 | if (!loc) | |
b15e6682 | 3711 | return NULL; |
143d77c5 | 3712 | |
ebc53538 RS |
3713 | entry = (struct mips_got_entry *) *loc; |
3714 | if (entry) | |
3715 | return entry; | |
b15e6682 | 3716 | |
cb22ccf4 | 3717 | if (g->assigned_low_gotno > g->assigned_high_gotno) |
b49e97c9 TS |
3718 | { |
3719 | /* We didn't allocate enough space in the GOT. */ | |
3720 | (*_bfd_error_handler) | |
3721 | (_("not enough GOT space for local GOT entries")); | |
3722 | bfd_set_error (bfd_error_bad_value); | |
b15e6682 | 3723 | return NULL; |
b49e97c9 TS |
3724 | } |
3725 | ||
ebc53538 RS |
3726 | entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry)); |
3727 | if (!entry) | |
3728 | return NULL; | |
3729 | ||
cb22ccf4 KCY |
3730 | if (got16_reloc_p (r_type) |
3731 | || call16_reloc_p (r_type) | |
3732 | || got_page_reloc_p (r_type) | |
3733 | || got_disp_reloc_p (r_type)) | |
3734 | lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++; | |
3735 | else | |
3736 | lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--; | |
3737 | ||
ebc53538 RS |
3738 | *entry = lookup; |
3739 | *loc = entry; | |
3740 | ||
3741 | MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx); | |
b15e6682 | 3742 | |
5c18022e | 3743 | /* These GOT entries need a dynamic relocation on VxWorks. */ |
0a44bf69 RS |
3744 | if (htab->is_vxworks) |
3745 | { | |
3746 | Elf_Internal_Rela outrel; | |
5c18022e | 3747 | asection *s; |
91d6fa6a | 3748 | bfd_byte *rloc; |
0a44bf69 | 3749 | bfd_vma got_address; |
0a44bf69 RS |
3750 | |
3751 | s = mips_elf_rel_dyn_section (info, FALSE); | |
a8028dd0 RS |
3752 | got_address = (htab->sgot->output_section->vma |
3753 | + htab->sgot->output_offset | |
ebc53538 | 3754 | + entry->gotidx); |
0a44bf69 | 3755 | |
91d6fa6a | 3756 | rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela)); |
0a44bf69 | 3757 | outrel.r_offset = got_address; |
5c18022e RS |
3758 | outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32); |
3759 | outrel.r_addend = value; | |
91d6fa6a | 3760 | bfd_elf32_swap_reloca_out (abfd, &outrel, rloc); |
0a44bf69 RS |
3761 | } |
3762 | ||
ebc53538 | 3763 | return entry; |
b49e97c9 TS |
3764 | } |
3765 | ||
d4596a51 RS |
3766 | /* Return the number of dynamic section symbols required by OUTPUT_BFD. |
3767 | The number might be exact or a worst-case estimate, depending on how | |
3768 | much information is available to elf_backend_omit_section_dynsym at | |
3769 | the current linking stage. */ | |
3770 | ||
3771 | static bfd_size_type | |
3772 | count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info) | |
3773 | { | |
3774 | bfd_size_type count; | |
3775 | ||
3776 | count = 0; | |
3777 | if (info->shared || elf_hash_table (info)->is_relocatable_executable) | |
3778 | { | |
3779 | asection *p; | |
3780 | const struct elf_backend_data *bed; | |
3781 | ||
3782 | bed = get_elf_backend_data (output_bfd); | |
3783 | for (p = output_bfd->sections; p ; p = p->next) | |
3784 | if ((p->flags & SEC_EXCLUDE) == 0 | |
3785 | && (p->flags & SEC_ALLOC) != 0 | |
3786 | && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p)) | |
3787 | ++count; | |
3788 | } | |
3789 | return count; | |
3790 | } | |
3791 | ||
b49e97c9 | 3792 | /* Sort the dynamic symbol table so that symbols that need GOT entries |
d4596a51 | 3793 | appear towards the end. */ |
b49e97c9 | 3794 | |
b34976b6 | 3795 | static bfd_boolean |
d4596a51 | 3796 | mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info) |
b49e97c9 | 3797 | { |
a8028dd0 | 3798 | struct mips_elf_link_hash_table *htab; |
b49e97c9 TS |
3799 | struct mips_elf_hash_sort_data hsd; |
3800 | struct mips_got_info *g; | |
b49e97c9 | 3801 | |
d4596a51 RS |
3802 | if (elf_hash_table (info)->dynsymcount == 0) |
3803 | return TRUE; | |
3804 | ||
a8028dd0 | 3805 | htab = mips_elf_hash_table (info); |
4dfe6ac6 NC |
3806 | BFD_ASSERT (htab != NULL); |
3807 | ||
a8028dd0 | 3808 | g = htab->got_info; |
d4596a51 RS |
3809 | if (g == NULL) |
3810 | return TRUE; | |
f4416af6 | 3811 | |
b49e97c9 | 3812 | hsd.low = NULL; |
23cc69b6 RS |
3813 | hsd.max_unref_got_dynindx |
3814 | = hsd.min_got_dynindx | |
3815 | = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno); | |
d4596a51 | 3816 | hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1; |
b49e97c9 TS |
3817 | mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *) |
3818 | elf_hash_table (info)), | |
3819 | mips_elf_sort_hash_table_f, | |
3820 | &hsd); | |
3821 | ||
3822 | /* There should have been enough room in the symbol table to | |
44c410de | 3823 | accommodate both the GOT and non-GOT symbols. */ |
b49e97c9 | 3824 | BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx); |
d4596a51 RS |
3825 | BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx |
3826 | == elf_hash_table (info)->dynsymcount); | |
3827 | BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx | |
3828 | == g->global_gotno); | |
b49e97c9 TS |
3829 | |
3830 | /* Now we know which dynamic symbol has the lowest dynamic symbol | |
3831 | table index in the GOT. */ | |
d222d210 | 3832 | htab->global_gotsym = hsd.low; |
b49e97c9 | 3833 | |
b34976b6 | 3834 | return TRUE; |
b49e97c9 TS |
3835 | } |
3836 | ||
3837 | /* If H needs a GOT entry, assign it the highest available dynamic | |
3838 | index. Otherwise, assign it the lowest available dynamic | |
3839 | index. */ | |
3840 | ||
b34976b6 | 3841 | static bfd_boolean |
9719ad41 | 3842 | mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data) |
b49e97c9 | 3843 | { |
9719ad41 | 3844 | struct mips_elf_hash_sort_data *hsd = data; |
b49e97c9 | 3845 | |
b49e97c9 TS |
3846 | /* Symbols without dynamic symbol table entries aren't interesting |
3847 | at all. */ | |
3848 | if (h->root.dynindx == -1) | |
b34976b6 | 3849 | return TRUE; |
b49e97c9 | 3850 | |
634835ae | 3851 | switch (h->global_got_area) |
f4416af6 | 3852 | { |
634835ae RS |
3853 | case GGA_NONE: |
3854 | h->root.dynindx = hsd->max_non_got_dynindx++; | |
3855 | break; | |
0f20cc35 | 3856 | |
634835ae | 3857 | case GGA_NORMAL: |
b49e97c9 TS |
3858 | h->root.dynindx = --hsd->min_got_dynindx; |
3859 | hsd->low = (struct elf_link_hash_entry *) h; | |
634835ae RS |
3860 | break; |
3861 | ||
3862 | case GGA_RELOC_ONLY: | |
634835ae RS |
3863 | if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx) |
3864 | hsd->low = (struct elf_link_hash_entry *) h; | |
3865 | h->root.dynindx = hsd->max_unref_got_dynindx++; | |
3866 | break; | |
b49e97c9 TS |
3867 | } |
3868 | ||
b34976b6 | 3869 | return TRUE; |
b49e97c9 TS |
3870 | } |
3871 | ||
ee227692 RS |
3872 | /* Record that input bfd ABFD requires a GOT entry like *LOOKUP |
3873 | (which is owned by the caller and shouldn't be added to the | |
3874 | hash table directly). */ | |
3875 | ||
3876 | static bfd_boolean | |
3877 | mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd, | |
3878 | struct mips_got_entry *lookup) | |
3879 | { | |
3880 | struct mips_elf_link_hash_table *htab; | |
3881 | struct mips_got_entry *entry; | |
3882 | struct mips_got_info *g; | |
3883 | void **loc, **bfd_loc; | |
3884 | ||
3885 | /* Make sure there's a slot for this entry in the master GOT. */ | |
3886 | htab = mips_elf_hash_table (info); | |
3887 | g = htab->got_info; | |
3888 | loc = htab_find_slot (g->got_entries, lookup, INSERT); | |
3889 | if (!loc) | |
3890 | return FALSE; | |
3891 | ||
3892 | /* Populate the entry if it isn't already. */ | |
3893 | entry = (struct mips_got_entry *) *loc; | |
3894 | if (!entry) | |
3895 | { | |
3896 | entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry)); | |
3897 | if (!entry) | |
3898 | return FALSE; | |
3899 | ||
9ab066b4 | 3900 | lookup->tls_initialized = FALSE; |
ee227692 RS |
3901 | lookup->gotidx = -1; |
3902 | *entry = *lookup; | |
3903 | *loc = entry; | |
3904 | } | |
3905 | ||
3906 | /* Reuse the same GOT entry for the BFD's GOT. */ | |
3907 | g = mips_elf_bfd_got (abfd, TRUE); | |
3908 | if (!g) | |
3909 | return FALSE; | |
3910 | ||
3911 | bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT); | |
3912 | if (!bfd_loc) | |
3913 | return FALSE; | |
3914 | ||
3915 | if (!*bfd_loc) | |
3916 | *bfd_loc = entry; | |
3917 | return TRUE; | |
3918 | } | |
3919 | ||
e641e783 RS |
3920 | /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT |
3921 | entry for it. FOR_CALL is true if the caller is only interested in | |
6ccf4795 | 3922 | using the GOT entry for calls. */ |
b49e97c9 | 3923 | |
b34976b6 | 3924 | static bfd_boolean |
9719ad41 RS |
3925 | mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h, |
3926 | bfd *abfd, struct bfd_link_info *info, | |
e641e783 | 3927 | bfd_boolean for_call, int r_type) |
b49e97c9 | 3928 | { |
a8028dd0 | 3929 | struct mips_elf_link_hash_table *htab; |
634835ae | 3930 | struct mips_elf_link_hash_entry *hmips; |
ee227692 RS |
3931 | struct mips_got_entry entry; |
3932 | unsigned char tls_type; | |
a8028dd0 RS |
3933 | |
3934 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 NC |
3935 | BFD_ASSERT (htab != NULL); |
3936 | ||
634835ae | 3937 | hmips = (struct mips_elf_link_hash_entry *) h; |
6ccf4795 RS |
3938 | if (!for_call) |
3939 | hmips->got_only_for_calls = FALSE; | |
f4416af6 | 3940 | |
b49e97c9 TS |
3941 | /* A global symbol in the GOT must also be in the dynamic symbol |
3942 | table. */ | |
7c5fcef7 L |
3943 | if (h->dynindx == -1) |
3944 | { | |
3945 | switch (ELF_ST_VISIBILITY (h->other)) | |
3946 | { | |
3947 | case STV_INTERNAL: | |
3948 | case STV_HIDDEN: | |
33bb52fb | 3949 | _bfd_elf_link_hash_hide_symbol (info, h, TRUE); |
7c5fcef7 L |
3950 | break; |
3951 | } | |
c152c796 | 3952 | if (!bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 3953 | return FALSE; |
7c5fcef7 | 3954 | } |
b49e97c9 | 3955 | |
ee227692 | 3956 | tls_type = mips_elf_reloc_tls_type (r_type); |
9ab066b4 | 3957 | if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL) |
ee227692 | 3958 | hmips->global_got_area = GGA_NORMAL; |
86324f90 | 3959 | |
f4416af6 AO |
3960 | entry.abfd = abfd; |
3961 | entry.symndx = -1; | |
3962 | entry.d.h = (struct mips_elf_link_hash_entry *) h; | |
ee227692 RS |
3963 | entry.tls_type = tls_type; |
3964 | return mips_elf_record_got_entry (info, abfd, &entry); | |
b49e97c9 | 3965 | } |
f4416af6 | 3966 | |
e641e783 RS |
3967 | /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND, |
3968 | where SYMNDX is a local symbol. Reserve a GOT entry for it. */ | |
f4416af6 AO |
3969 | |
3970 | static bfd_boolean | |
9719ad41 | 3971 | mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend, |
e641e783 | 3972 | struct bfd_link_info *info, int r_type) |
f4416af6 | 3973 | { |
a8028dd0 RS |
3974 | struct mips_elf_link_hash_table *htab; |
3975 | struct mips_got_info *g; | |
ee227692 | 3976 | struct mips_got_entry entry; |
f4416af6 | 3977 | |
a8028dd0 | 3978 | htab = mips_elf_hash_table (info); |
4dfe6ac6 NC |
3979 | BFD_ASSERT (htab != NULL); |
3980 | ||
a8028dd0 RS |
3981 | g = htab->got_info; |
3982 | BFD_ASSERT (g != NULL); | |
3983 | ||
f4416af6 AO |
3984 | entry.abfd = abfd; |
3985 | entry.symndx = symndx; | |
3986 | entry.d.addend = addend; | |
e641e783 | 3987 | entry.tls_type = mips_elf_reloc_tls_type (r_type); |
ee227692 | 3988 | return mips_elf_record_got_entry (info, abfd, &entry); |
f4416af6 | 3989 | } |
c224138d | 3990 | |
13db6b44 RS |
3991 | /* Record that ABFD has a page relocation against SYMNDX + ADDEND. |
3992 | H is the symbol's hash table entry, or null if SYMNDX is local | |
3993 | to ABFD. */ | |
c224138d RS |
3994 | |
3995 | static bfd_boolean | |
13db6b44 RS |
3996 | mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd, |
3997 | long symndx, struct elf_link_hash_entry *h, | |
3998 | bfd_signed_vma addend) | |
c224138d | 3999 | { |
a8028dd0 | 4000 | struct mips_elf_link_hash_table *htab; |
ee227692 | 4001 | struct mips_got_info *g1, *g2; |
13db6b44 | 4002 | struct mips_got_page_ref lookup, *entry; |
ee227692 | 4003 | void **loc, **bfd_loc; |
c224138d | 4004 | |
a8028dd0 | 4005 | htab = mips_elf_hash_table (info); |
4dfe6ac6 NC |
4006 | BFD_ASSERT (htab != NULL); |
4007 | ||
ee227692 RS |
4008 | g1 = htab->got_info; |
4009 | BFD_ASSERT (g1 != NULL); | |
a8028dd0 | 4010 | |
13db6b44 RS |
4011 | if (h) |
4012 | { | |
4013 | lookup.symndx = -1; | |
4014 | lookup.u.h = (struct mips_elf_link_hash_entry *) h; | |
4015 | } | |
4016 | else | |
4017 | { | |
4018 | lookup.symndx = symndx; | |
4019 | lookup.u.abfd = abfd; | |
4020 | } | |
4021 | lookup.addend = addend; | |
4022 | loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT); | |
c224138d RS |
4023 | if (loc == NULL) |
4024 | return FALSE; | |
4025 | ||
13db6b44 | 4026 | entry = (struct mips_got_page_ref *) *loc; |
c224138d RS |
4027 | if (!entry) |
4028 | { | |
4029 | entry = bfd_alloc (abfd, sizeof (*entry)); | |
4030 | if (!entry) | |
4031 | return FALSE; | |
4032 | ||
13db6b44 | 4033 | *entry = lookup; |
c224138d RS |
4034 | *loc = entry; |
4035 | } | |
4036 | ||
ee227692 RS |
4037 | /* Add the same entry to the BFD's GOT. */ |
4038 | g2 = mips_elf_bfd_got (abfd, TRUE); | |
4039 | if (!g2) | |
4040 | return FALSE; | |
4041 | ||
13db6b44 | 4042 | bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT); |
ee227692 RS |
4043 | if (!bfd_loc) |
4044 | return FALSE; | |
4045 | ||
4046 | if (!*bfd_loc) | |
4047 | *bfd_loc = entry; | |
4048 | ||
c224138d RS |
4049 | return TRUE; |
4050 | } | |
33bb52fb RS |
4051 | |
4052 | /* Add room for N relocations to the .rel(a).dyn section in ABFD. */ | |
4053 | ||
4054 | static void | |
4055 | mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info, | |
4056 | unsigned int n) | |
4057 | { | |
4058 | asection *s; | |
4059 | struct mips_elf_link_hash_table *htab; | |
4060 | ||
4061 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 NC |
4062 | BFD_ASSERT (htab != NULL); |
4063 | ||
33bb52fb RS |
4064 | s = mips_elf_rel_dyn_section (info, FALSE); |
4065 | BFD_ASSERT (s != NULL); | |
4066 | ||
4067 | if (htab->is_vxworks) | |
4068 | s->size += n * MIPS_ELF_RELA_SIZE (abfd); | |
4069 | else | |
4070 | { | |
4071 | if (s->size == 0) | |
4072 | { | |
4073 | /* Make room for a null element. */ | |
4074 | s->size += MIPS_ELF_REL_SIZE (abfd); | |
4075 | ++s->reloc_count; | |
4076 | } | |
4077 | s->size += n * MIPS_ELF_REL_SIZE (abfd); | |
4078 | } | |
4079 | } | |
4080 | \f | |
476366af RS |
4081 | /* A htab_traverse callback for GOT entries, with DATA pointing to a |
4082 | mips_elf_traverse_got_arg structure. Count the number of GOT | |
4083 | entries and TLS relocs. Set DATA->value to true if we need | |
4084 | to resolve indirect or warning symbols and then recreate the GOT. */ | |
33bb52fb RS |
4085 | |
4086 | static int | |
4087 | mips_elf_check_recreate_got (void **entryp, void *data) | |
4088 | { | |
4089 | struct mips_got_entry *entry; | |
476366af | 4090 | struct mips_elf_traverse_got_arg *arg; |
33bb52fb RS |
4091 | |
4092 | entry = (struct mips_got_entry *) *entryp; | |
476366af | 4093 | arg = (struct mips_elf_traverse_got_arg *) data; |
33bb52fb RS |
4094 | if (entry->abfd != NULL && entry->symndx == -1) |
4095 | { | |
4096 | struct mips_elf_link_hash_entry *h; | |
4097 | ||
4098 | h = entry->d.h; | |
4099 | if (h->root.root.type == bfd_link_hash_indirect | |
4100 | || h->root.root.type == bfd_link_hash_warning) | |
4101 | { | |
476366af | 4102 | arg->value = TRUE; |
33bb52fb RS |
4103 | return 0; |
4104 | } | |
4105 | } | |
476366af | 4106 | mips_elf_count_got_entry (arg->info, arg->g, entry); |
33bb52fb RS |
4107 | return 1; |
4108 | } | |
4109 | ||
476366af RS |
4110 | /* A htab_traverse callback for GOT entries, with DATA pointing to a |
4111 | mips_elf_traverse_got_arg structure. Add all entries to DATA->g, | |
4112 | converting entries for indirect and warning symbols into entries | |
4113 | for the target symbol. Set DATA->g to null on error. */ | |
33bb52fb RS |
4114 | |
4115 | static int | |
4116 | mips_elf_recreate_got (void **entryp, void *data) | |
4117 | { | |
72e7511a | 4118 | struct mips_got_entry new_entry, *entry; |
476366af | 4119 | struct mips_elf_traverse_got_arg *arg; |
33bb52fb RS |
4120 | void **slot; |
4121 | ||
33bb52fb | 4122 | entry = (struct mips_got_entry *) *entryp; |
476366af | 4123 | arg = (struct mips_elf_traverse_got_arg *) data; |
72e7511a RS |
4124 | if (entry->abfd != NULL |
4125 | && entry->symndx == -1 | |
4126 | && (entry->d.h->root.root.type == bfd_link_hash_indirect | |
4127 | || entry->d.h->root.root.type == bfd_link_hash_warning)) | |
33bb52fb RS |
4128 | { |
4129 | struct mips_elf_link_hash_entry *h; | |
4130 | ||
72e7511a RS |
4131 | new_entry = *entry; |
4132 | entry = &new_entry; | |
33bb52fb | 4133 | h = entry->d.h; |
72e7511a | 4134 | do |
634835ae RS |
4135 | { |
4136 | BFD_ASSERT (h->global_got_area == GGA_NONE); | |
4137 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
4138 | } | |
72e7511a RS |
4139 | while (h->root.root.type == bfd_link_hash_indirect |
4140 | || h->root.root.type == bfd_link_hash_warning); | |
33bb52fb RS |
4141 | entry->d.h = h; |
4142 | } | |
476366af | 4143 | slot = htab_find_slot (arg->g->got_entries, entry, INSERT); |
33bb52fb RS |
4144 | if (slot == NULL) |
4145 | { | |
476366af | 4146 | arg->g = NULL; |
33bb52fb RS |
4147 | return 0; |
4148 | } | |
4149 | if (*slot == NULL) | |
72e7511a RS |
4150 | { |
4151 | if (entry == &new_entry) | |
4152 | { | |
4153 | entry = bfd_alloc (entry->abfd, sizeof (*entry)); | |
4154 | if (!entry) | |
4155 | { | |
476366af | 4156 | arg->g = NULL; |
72e7511a RS |
4157 | return 0; |
4158 | } | |
4159 | *entry = new_entry; | |
4160 | } | |
4161 | *slot = entry; | |
476366af | 4162 | mips_elf_count_got_entry (arg->info, arg->g, entry); |
72e7511a | 4163 | } |
33bb52fb RS |
4164 | return 1; |
4165 | } | |
4166 | ||
13db6b44 RS |
4167 | /* Return the maximum number of GOT page entries required for RANGE. */ |
4168 | ||
4169 | static bfd_vma | |
4170 | mips_elf_pages_for_range (const struct mips_got_page_range *range) | |
4171 | { | |
4172 | return (range->max_addend - range->min_addend + 0x1ffff) >> 16; | |
4173 | } | |
4174 | ||
4175 | /* Record that G requires a page entry that can reach SEC + ADDEND. */ | |
4176 | ||
4177 | static bfd_boolean | |
b75d42bc | 4178 | mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg, |
13db6b44 RS |
4179 | asection *sec, bfd_signed_vma addend) |
4180 | { | |
b75d42bc | 4181 | struct mips_got_info *g = arg->g; |
13db6b44 RS |
4182 | struct mips_got_page_entry lookup, *entry; |
4183 | struct mips_got_page_range **range_ptr, *range; | |
4184 | bfd_vma old_pages, new_pages; | |
4185 | void **loc; | |
4186 | ||
4187 | /* Find the mips_got_page_entry hash table entry for this section. */ | |
4188 | lookup.sec = sec; | |
4189 | loc = htab_find_slot (g->got_page_entries, &lookup, INSERT); | |
4190 | if (loc == NULL) | |
4191 | return FALSE; | |
4192 | ||
4193 | /* Create a mips_got_page_entry if this is the first time we've | |
4194 | seen the section. */ | |
4195 | entry = (struct mips_got_page_entry *) *loc; | |
4196 | if (!entry) | |
4197 | { | |
b75d42bc | 4198 | entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry)); |
13db6b44 RS |
4199 | if (!entry) |
4200 | return FALSE; | |
4201 | ||
4202 | entry->sec = sec; | |
4203 | *loc = entry; | |
4204 | } | |
4205 | ||
4206 | /* Skip over ranges whose maximum extent cannot share a page entry | |
4207 | with ADDEND. */ | |
4208 | range_ptr = &entry->ranges; | |
4209 | while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff) | |
4210 | range_ptr = &(*range_ptr)->next; | |
4211 | ||
4212 | /* If we scanned to the end of the list, or found a range whose | |
4213 | minimum extent cannot share a page entry with ADDEND, create | |
4214 | a new singleton range. */ | |
4215 | range = *range_ptr; | |
4216 | if (!range || addend < range->min_addend - 0xffff) | |
4217 | { | |
b75d42bc | 4218 | range = bfd_zalloc (arg->info->output_bfd, sizeof (*range)); |
13db6b44 RS |
4219 | if (!range) |
4220 | return FALSE; | |
4221 | ||
4222 | range->next = *range_ptr; | |
4223 | range->min_addend = addend; | |
4224 | range->max_addend = addend; | |
4225 | ||
4226 | *range_ptr = range; | |
4227 | entry->num_pages++; | |
4228 | g->page_gotno++; | |
4229 | return TRUE; | |
4230 | } | |
4231 | ||
4232 | /* Remember how many pages the old range contributed. */ | |
4233 | old_pages = mips_elf_pages_for_range (range); | |
4234 | ||
4235 | /* Update the ranges. */ | |
4236 | if (addend < range->min_addend) | |
4237 | range->min_addend = addend; | |
4238 | else if (addend > range->max_addend) | |
4239 | { | |
4240 | if (range->next && addend >= range->next->min_addend - 0xffff) | |
4241 | { | |
4242 | old_pages += mips_elf_pages_for_range (range->next); | |
4243 | range->max_addend = range->next->max_addend; | |
4244 | range->next = range->next->next; | |
4245 | } | |
4246 | else | |
4247 | range->max_addend = addend; | |
4248 | } | |
4249 | ||
4250 | /* Record any change in the total estimate. */ | |
4251 | new_pages = mips_elf_pages_for_range (range); | |
4252 | if (old_pages != new_pages) | |
4253 | { | |
4254 | entry->num_pages += new_pages - old_pages; | |
4255 | g->page_gotno += new_pages - old_pages; | |
4256 | } | |
4257 | ||
4258 | return TRUE; | |
4259 | } | |
4260 | ||
4261 | /* A htab_traverse callback for which *REFP points to a mips_got_page_ref | |
4262 | and for which DATA points to a mips_elf_traverse_got_arg. Work out | |
4263 | whether the page reference described by *REFP needs a GOT page entry, | |
4264 | and record that entry in DATA->g if so. Set DATA->g to null on failure. */ | |
4265 | ||
4266 | static bfd_boolean | |
4267 | mips_elf_resolve_got_page_ref (void **refp, void *data) | |
4268 | { | |
4269 | struct mips_got_page_ref *ref; | |
4270 | struct mips_elf_traverse_got_arg *arg; | |
4271 | struct mips_elf_link_hash_table *htab; | |
4272 | asection *sec; | |
4273 | bfd_vma addend; | |
4274 | ||
4275 | ref = (struct mips_got_page_ref *) *refp; | |
4276 | arg = (struct mips_elf_traverse_got_arg *) data; | |
4277 | htab = mips_elf_hash_table (arg->info); | |
4278 | ||
4279 | if (ref->symndx < 0) | |
4280 | { | |
4281 | struct mips_elf_link_hash_entry *h; | |
4282 | ||
4283 | /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */ | |
4284 | h = ref->u.h; | |
4285 | if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root)) | |
4286 | return 1; | |
4287 | ||
4288 | /* Ignore undefined symbols; we'll issue an error later if | |
4289 | appropriate. */ | |
4290 | if (!((h->root.root.type == bfd_link_hash_defined | |
4291 | || h->root.root.type == bfd_link_hash_defweak) | |
4292 | && h->root.root.u.def.section)) | |
4293 | return 1; | |
4294 | ||
4295 | sec = h->root.root.u.def.section; | |
4296 | addend = h->root.root.u.def.value + ref->addend; | |
4297 | } | |
4298 | else | |
4299 | { | |
4300 | Elf_Internal_Sym *isym; | |
4301 | ||
4302 | /* Read in the symbol. */ | |
4303 | isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd, | |
4304 | ref->symndx); | |
4305 | if (isym == NULL) | |
4306 | { | |
4307 | arg->g = NULL; | |
4308 | return 0; | |
4309 | } | |
4310 | ||
4311 | /* Get the associated input section. */ | |
4312 | sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx); | |
4313 | if (sec == NULL) | |
4314 | { | |
4315 | arg->g = NULL; | |
4316 | return 0; | |
4317 | } | |
4318 | ||
4319 | /* If this is a mergable section, work out the section and offset | |
4320 | of the merged data. For section symbols, the addend specifies | |
4321 | of the offset _of_ the first byte in the data, otherwise it | |
4322 | specifies the offset _from_ the first byte. */ | |
4323 | if (sec->flags & SEC_MERGE) | |
4324 | { | |
4325 | void *secinfo; | |
4326 | ||
4327 | secinfo = elf_section_data (sec)->sec_info; | |
4328 | if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) | |
4329 | addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo, | |
4330 | isym->st_value + ref->addend); | |
4331 | else | |
4332 | addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo, | |
4333 | isym->st_value) + ref->addend; | |
4334 | } | |
4335 | else | |
4336 | addend = isym->st_value + ref->addend; | |
4337 | } | |
b75d42bc | 4338 | if (!mips_elf_record_got_page_entry (arg, sec, addend)) |
13db6b44 RS |
4339 | { |
4340 | arg->g = NULL; | |
4341 | return 0; | |
4342 | } | |
4343 | return 1; | |
4344 | } | |
4345 | ||
33bb52fb | 4346 | /* If any entries in G->got_entries are for indirect or warning symbols, |
13db6b44 RS |
4347 | replace them with entries for the target symbol. Convert g->got_page_refs |
4348 | into got_page_entry structures and estimate the number of page entries | |
4349 | that they require. */ | |
33bb52fb RS |
4350 | |
4351 | static bfd_boolean | |
476366af RS |
4352 | mips_elf_resolve_final_got_entries (struct bfd_link_info *info, |
4353 | struct mips_got_info *g) | |
33bb52fb | 4354 | { |
476366af RS |
4355 | struct mips_elf_traverse_got_arg tga; |
4356 | struct mips_got_info oldg; | |
4357 | ||
4358 | oldg = *g; | |
33bb52fb | 4359 | |
476366af RS |
4360 | tga.info = info; |
4361 | tga.g = g; | |
4362 | tga.value = FALSE; | |
4363 | htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga); | |
4364 | if (tga.value) | |
33bb52fb | 4365 | { |
476366af RS |
4366 | *g = oldg; |
4367 | g->got_entries = htab_create (htab_size (oldg.got_entries), | |
4368 | mips_elf_got_entry_hash, | |
4369 | mips_elf_got_entry_eq, NULL); | |
4370 | if (!g->got_entries) | |
33bb52fb RS |
4371 | return FALSE; |
4372 | ||
476366af RS |
4373 | htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga); |
4374 | if (!tga.g) | |
4375 | return FALSE; | |
4376 | ||
4377 | htab_delete (oldg.got_entries); | |
33bb52fb | 4378 | } |
13db6b44 RS |
4379 | |
4380 | g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash, | |
4381 | mips_got_page_entry_eq, NULL); | |
4382 | if (g->got_page_entries == NULL) | |
4383 | return FALSE; | |
4384 | ||
4385 | tga.info = info; | |
4386 | tga.g = g; | |
4387 | htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga); | |
4388 | ||
33bb52fb RS |
4389 | return TRUE; |
4390 | } | |
4391 | ||
c5d6fa44 RS |
4392 | /* Return true if a GOT entry for H should live in the local rather than |
4393 | global GOT area. */ | |
4394 | ||
4395 | static bfd_boolean | |
4396 | mips_use_local_got_p (struct bfd_link_info *info, | |
4397 | struct mips_elf_link_hash_entry *h) | |
4398 | { | |
4399 | /* Symbols that aren't in the dynamic symbol table must live in the | |
4400 | local GOT. This includes symbols that are completely undefined | |
4401 | and which therefore don't bind locally. We'll report undefined | |
4402 | symbols later if appropriate. */ | |
4403 | if (h->root.dynindx == -1) | |
4404 | return TRUE; | |
4405 | ||
4406 | /* Symbols that bind locally can (and in the case of forced-local | |
4407 | symbols, must) live in the local GOT. */ | |
4408 | if (h->got_only_for_calls | |
4409 | ? SYMBOL_CALLS_LOCAL (info, &h->root) | |
4410 | : SYMBOL_REFERENCES_LOCAL (info, &h->root)) | |
4411 | return TRUE; | |
4412 | ||
4413 | /* If this is an executable that must provide a definition of the symbol, | |
4414 | either though PLTs or copy relocations, then that address should go in | |
4415 | the local rather than global GOT. */ | |
4416 | if (info->executable && h->has_static_relocs) | |
4417 | return TRUE; | |
4418 | ||
4419 | return FALSE; | |
4420 | } | |
4421 | ||
6c42ddb9 RS |
4422 | /* A mips_elf_link_hash_traverse callback for which DATA points to the |
4423 | link_info structure. Decide whether the hash entry needs an entry in | |
4424 | the global part of the primary GOT, setting global_got_area accordingly. | |
4425 | Count the number of global symbols that are in the primary GOT only | |
4426 | because they have relocations against them (reloc_only_gotno). */ | |
33bb52fb RS |
4427 | |
4428 | static int | |
d4596a51 | 4429 | mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data) |
33bb52fb | 4430 | { |
020d7251 | 4431 | struct bfd_link_info *info; |
6ccf4795 | 4432 | struct mips_elf_link_hash_table *htab; |
33bb52fb RS |
4433 | struct mips_got_info *g; |
4434 | ||
020d7251 | 4435 | info = (struct bfd_link_info *) data; |
6ccf4795 RS |
4436 | htab = mips_elf_hash_table (info); |
4437 | g = htab->got_info; | |
d4596a51 | 4438 | if (h->global_got_area != GGA_NONE) |
33bb52fb | 4439 | { |
020d7251 | 4440 | /* Make a final decision about whether the symbol belongs in the |
c5d6fa44 RS |
4441 | local or global GOT. */ |
4442 | if (mips_use_local_got_p (info, h)) | |
6c42ddb9 RS |
4443 | /* The symbol belongs in the local GOT. We no longer need this |
4444 | entry if it was only used for relocations; those relocations | |
4445 | will be against the null or section symbol instead of H. */ | |
4446 | h->global_got_area = GGA_NONE; | |
6ccf4795 RS |
4447 | else if (htab->is_vxworks |
4448 | && h->got_only_for_calls | |
1bbce132 | 4449 | && h->root.plt.plist->mips_offset != MINUS_ONE) |
6ccf4795 RS |
4450 | /* On VxWorks, calls can refer directly to the .got.plt entry; |
4451 | they don't need entries in the regular GOT. .got.plt entries | |
4452 | will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */ | |
4453 | h->global_got_area = GGA_NONE; | |
6c42ddb9 | 4454 | else if (h->global_got_area == GGA_RELOC_ONLY) |
23cc69b6 | 4455 | { |
6c42ddb9 | 4456 | g->reloc_only_gotno++; |
23cc69b6 | 4457 | g->global_gotno++; |
23cc69b6 | 4458 | } |
33bb52fb RS |
4459 | } |
4460 | return 1; | |
4461 | } | |
f4416af6 | 4462 | \f |
d7206569 RS |
4463 | /* A htab_traverse callback for GOT entries. Add each one to the GOT |
4464 | given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */ | |
f4416af6 AO |
4465 | |
4466 | static int | |
d7206569 | 4467 | mips_elf_add_got_entry (void **entryp, void *data) |
f4416af6 | 4468 | { |
d7206569 RS |
4469 | struct mips_got_entry *entry; |
4470 | struct mips_elf_traverse_got_arg *arg; | |
4471 | void **slot; | |
f4416af6 | 4472 | |
d7206569 RS |
4473 | entry = (struct mips_got_entry *) *entryp; |
4474 | arg = (struct mips_elf_traverse_got_arg *) data; | |
4475 | slot = htab_find_slot (arg->g->got_entries, entry, INSERT); | |
4476 | if (!slot) | |
f4416af6 | 4477 | { |
d7206569 RS |
4478 | arg->g = NULL; |
4479 | return 0; | |
f4416af6 | 4480 | } |
d7206569 | 4481 | if (!*slot) |
c224138d | 4482 | { |
d7206569 RS |
4483 | *slot = entry; |
4484 | mips_elf_count_got_entry (arg->info, arg->g, entry); | |
c224138d | 4485 | } |
f4416af6 AO |
4486 | return 1; |
4487 | } | |
4488 | ||
d7206569 RS |
4489 | /* A htab_traverse callback for GOT page entries. Add each one to the GOT |
4490 | given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */ | |
c224138d RS |
4491 | |
4492 | static int | |
d7206569 | 4493 | mips_elf_add_got_page_entry (void **entryp, void *data) |
c224138d | 4494 | { |
d7206569 RS |
4495 | struct mips_got_page_entry *entry; |
4496 | struct mips_elf_traverse_got_arg *arg; | |
4497 | void **slot; | |
c224138d | 4498 | |
d7206569 RS |
4499 | entry = (struct mips_got_page_entry *) *entryp; |
4500 | arg = (struct mips_elf_traverse_got_arg *) data; | |
4501 | slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT); | |
4502 | if (!slot) | |
c224138d | 4503 | { |
d7206569 | 4504 | arg->g = NULL; |
c224138d RS |
4505 | return 0; |
4506 | } | |
d7206569 RS |
4507 | if (!*slot) |
4508 | { | |
4509 | *slot = entry; | |
4510 | arg->g->page_gotno += entry->num_pages; | |
4511 | } | |
c224138d RS |
4512 | return 1; |
4513 | } | |
4514 | ||
d7206569 RS |
4515 | /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if |
4516 | this would lead to overflow, 1 if they were merged successfully, | |
4517 | and 0 if a merge failed due to lack of memory. (These values are chosen | |
4518 | so that nonnegative return values can be returned by a htab_traverse | |
4519 | callback.) */ | |
c224138d RS |
4520 | |
4521 | static int | |
d7206569 | 4522 | mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from, |
c224138d RS |
4523 | struct mips_got_info *to, |
4524 | struct mips_elf_got_per_bfd_arg *arg) | |
4525 | { | |
d7206569 | 4526 | struct mips_elf_traverse_got_arg tga; |
c224138d RS |
4527 | unsigned int estimate; |
4528 | ||
4529 | /* Work out how many page entries we would need for the combined GOT. */ | |
4530 | estimate = arg->max_pages; | |
4531 | if (estimate >= from->page_gotno + to->page_gotno) | |
4532 | estimate = from->page_gotno + to->page_gotno; | |
4533 | ||
e2ece73c | 4534 | /* And conservatively estimate how many local and TLS entries |
c224138d | 4535 | would be needed. */ |
e2ece73c RS |
4536 | estimate += from->local_gotno + to->local_gotno; |
4537 | estimate += from->tls_gotno + to->tls_gotno; | |
4538 | ||
17214937 RS |
4539 | /* If we're merging with the primary got, any TLS relocations will |
4540 | come after the full set of global entries. Otherwise estimate those | |
e2ece73c | 4541 | conservatively as well. */ |
17214937 | 4542 | if (to == arg->primary && from->tls_gotno + to->tls_gotno) |
e2ece73c RS |
4543 | estimate += arg->global_count; |
4544 | else | |
4545 | estimate += from->global_gotno + to->global_gotno; | |
c224138d RS |
4546 | |
4547 | /* Bail out if the combined GOT might be too big. */ | |
4548 | if (estimate > arg->max_count) | |
4549 | return -1; | |
4550 | ||
c224138d | 4551 | /* Transfer the bfd's got information from FROM to TO. */ |
d7206569 RS |
4552 | tga.info = arg->info; |
4553 | tga.g = to; | |
4554 | htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga); | |
4555 | if (!tga.g) | |
c224138d RS |
4556 | return 0; |
4557 | ||
d7206569 RS |
4558 | htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga); |
4559 | if (!tga.g) | |
c224138d RS |
4560 | return 0; |
4561 | ||
d7206569 | 4562 | mips_elf_replace_bfd_got (abfd, to); |
c224138d RS |
4563 | return 1; |
4564 | } | |
4565 | ||
d7206569 | 4566 | /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much |
f4416af6 AO |
4567 | as possible of the primary got, since it doesn't require explicit |
4568 | dynamic relocations, but don't use bfds that would reference global | |
4569 | symbols out of the addressable range. Failing the primary got, | |
4570 | attempt to merge with the current got, or finish the current got | |
4571 | and then make make the new got current. */ | |
4572 | ||
d7206569 RS |
4573 | static bfd_boolean |
4574 | mips_elf_merge_got (bfd *abfd, struct mips_got_info *g, | |
4575 | struct mips_elf_got_per_bfd_arg *arg) | |
f4416af6 | 4576 | { |
c224138d RS |
4577 | unsigned int estimate; |
4578 | int result; | |
4579 | ||
476366af | 4580 | if (!mips_elf_resolve_final_got_entries (arg->info, g)) |
d7206569 RS |
4581 | return FALSE; |
4582 | ||
c224138d RS |
4583 | /* Work out the number of page, local and TLS entries. */ |
4584 | estimate = arg->max_pages; | |
4585 | if (estimate > g->page_gotno) | |
4586 | estimate = g->page_gotno; | |
4587 | estimate += g->local_gotno + g->tls_gotno; | |
0f20cc35 DJ |
4588 | |
4589 | /* We place TLS GOT entries after both locals and globals. The globals | |
4590 | for the primary GOT may overflow the normal GOT size limit, so be | |
4591 | sure not to merge a GOT which requires TLS with the primary GOT in that | |
4592 | case. This doesn't affect non-primary GOTs. */ | |
c224138d | 4593 | estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno); |
143d77c5 | 4594 | |
c224138d | 4595 | if (estimate <= arg->max_count) |
f4416af6 | 4596 | { |
c224138d RS |
4597 | /* If we don't have a primary GOT, use it as |
4598 | a starting point for the primary GOT. */ | |
4599 | if (!arg->primary) | |
4600 | { | |
d7206569 RS |
4601 | arg->primary = g; |
4602 | return TRUE; | |
c224138d | 4603 | } |
f4416af6 | 4604 | |
c224138d | 4605 | /* Try merging with the primary GOT. */ |
d7206569 | 4606 | result = mips_elf_merge_got_with (abfd, g, arg->primary, arg); |
c224138d RS |
4607 | if (result >= 0) |
4608 | return result; | |
f4416af6 | 4609 | } |
c224138d | 4610 | |
f4416af6 | 4611 | /* If we can merge with the last-created got, do it. */ |
c224138d | 4612 | if (arg->current) |
f4416af6 | 4613 | { |
d7206569 | 4614 | result = mips_elf_merge_got_with (abfd, g, arg->current, arg); |
c224138d RS |
4615 | if (result >= 0) |
4616 | return result; | |
f4416af6 | 4617 | } |
c224138d | 4618 | |
f4416af6 AO |
4619 | /* Well, we couldn't merge, so create a new GOT. Don't check if it |
4620 | fits; if it turns out that it doesn't, we'll get relocation | |
4621 | overflows anyway. */ | |
c224138d RS |
4622 | g->next = arg->current; |
4623 | arg->current = g; | |
0f20cc35 | 4624 | |
d7206569 | 4625 | return TRUE; |
0f20cc35 DJ |
4626 | } |
4627 | ||
72e7511a RS |
4628 | /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx |
4629 | to GOTIDX, duplicating the entry if it has already been assigned | |
4630 | an index in a different GOT. */ | |
4631 | ||
4632 | static bfd_boolean | |
4633 | mips_elf_set_gotidx (void **entryp, long gotidx) | |
4634 | { | |
4635 | struct mips_got_entry *entry; | |
4636 | ||
4637 | entry = (struct mips_got_entry *) *entryp; | |
4638 | if (entry->gotidx > 0) | |
4639 | { | |
4640 | struct mips_got_entry *new_entry; | |
4641 | ||
4642 | new_entry = bfd_alloc (entry->abfd, sizeof (*entry)); | |
4643 | if (!new_entry) | |
4644 | return FALSE; | |
4645 | ||
4646 | *new_entry = *entry; | |
4647 | *entryp = new_entry; | |
4648 | entry = new_entry; | |
4649 | } | |
4650 | entry->gotidx = gotidx; | |
4651 | return TRUE; | |
4652 | } | |
4653 | ||
4654 | /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a | |
4655 | mips_elf_traverse_got_arg in which DATA->value is the size of one | |
4656 | GOT entry. Set DATA->g to null on failure. */ | |
0f20cc35 DJ |
4657 | |
4658 | static int | |
72e7511a | 4659 | mips_elf_initialize_tls_index (void **entryp, void *data) |
0f20cc35 | 4660 | { |
72e7511a RS |
4661 | struct mips_got_entry *entry; |
4662 | struct mips_elf_traverse_got_arg *arg; | |
0f20cc35 DJ |
4663 | |
4664 | /* We're only interested in TLS symbols. */ | |
72e7511a | 4665 | entry = (struct mips_got_entry *) *entryp; |
9ab066b4 | 4666 | if (entry->tls_type == GOT_TLS_NONE) |
0f20cc35 DJ |
4667 | return 1; |
4668 | ||
72e7511a | 4669 | arg = (struct mips_elf_traverse_got_arg *) data; |
6c42ddb9 | 4670 | if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno)) |
ead49a57 | 4671 | { |
6c42ddb9 RS |
4672 | arg->g = NULL; |
4673 | return 0; | |
f4416af6 AO |
4674 | } |
4675 | ||
ead49a57 | 4676 | /* Account for the entries we've just allocated. */ |
9ab066b4 | 4677 | arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type); |
f4416af6 AO |
4678 | return 1; |
4679 | } | |
4680 | ||
ab361d49 RS |
4681 | /* A htab_traverse callback for GOT entries, where DATA points to a |
4682 | mips_elf_traverse_got_arg. Set the global_got_area of each global | |
4683 | symbol to DATA->value. */ | |
f4416af6 | 4684 | |
f4416af6 | 4685 | static int |
ab361d49 | 4686 | mips_elf_set_global_got_area (void **entryp, void *data) |
f4416af6 | 4687 | { |
ab361d49 RS |
4688 | struct mips_got_entry *entry; |
4689 | struct mips_elf_traverse_got_arg *arg; | |
f4416af6 | 4690 | |
ab361d49 RS |
4691 | entry = (struct mips_got_entry *) *entryp; |
4692 | arg = (struct mips_elf_traverse_got_arg *) data; | |
4693 | if (entry->abfd != NULL | |
4694 | && entry->symndx == -1 | |
4695 | && entry->d.h->global_got_area != GGA_NONE) | |
4696 | entry->d.h->global_got_area = arg->value; | |
4697 | return 1; | |
4698 | } | |
4699 | ||
4700 | /* A htab_traverse callback for secondary GOT entries, where DATA points | |
4701 | to a mips_elf_traverse_got_arg. Assign GOT indices to global entries | |
4702 | and record the number of relocations they require. DATA->value is | |
72e7511a | 4703 | the size of one GOT entry. Set DATA->g to null on failure. */ |
ab361d49 RS |
4704 | |
4705 | static int | |
4706 | mips_elf_set_global_gotidx (void **entryp, void *data) | |
4707 | { | |
4708 | struct mips_got_entry *entry; | |
4709 | struct mips_elf_traverse_got_arg *arg; | |
0f20cc35 | 4710 | |
ab361d49 RS |
4711 | entry = (struct mips_got_entry *) *entryp; |
4712 | arg = (struct mips_elf_traverse_got_arg *) data; | |
634835ae RS |
4713 | if (entry->abfd != NULL |
4714 | && entry->symndx == -1 | |
4715 | && entry->d.h->global_got_area != GGA_NONE) | |
f4416af6 | 4716 | { |
cb22ccf4 | 4717 | if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno)) |
72e7511a RS |
4718 | { |
4719 | arg->g = NULL; | |
4720 | return 0; | |
4721 | } | |
cb22ccf4 | 4722 | arg->g->assigned_low_gotno += 1; |
72e7511a | 4723 | |
ab361d49 RS |
4724 | if (arg->info->shared |
4725 | || (elf_hash_table (arg->info)->dynamic_sections_created | |
4726 | && entry->d.h->root.def_dynamic | |
4727 | && !entry->d.h->root.def_regular)) | |
4728 | arg->g->relocs += 1; | |
f4416af6 AO |
4729 | } |
4730 | ||
4731 | return 1; | |
4732 | } | |
4733 | ||
33bb52fb RS |
4734 | /* A htab_traverse callback for GOT entries for which DATA is the |
4735 | bfd_link_info. Forbid any global symbols from having traditional | |
4736 | lazy-binding stubs. */ | |
4737 | ||
0626d451 | 4738 | static int |
33bb52fb | 4739 | mips_elf_forbid_lazy_stubs (void **entryp, void *data) |
0626d451 | 4740 | { |
33bb52fb RS |
4741 | struct bfd_link_info *info; |
4742 | struct mips_elf_link_hash_table *htab; | |
4743 | struct mips_got_entry *entry; | |
0626d451 | 4744 | |
33bb52fb RS |
4745 | entry = (struct mips_got_entry *) *entryp; |
4746 | info = (struct bfd_link_info *) data; | |
4747 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 NC |
4748 | BFD_ASSERT (htab != NULL); |
4749 | ||
0626d451 RS |
4750 | if (entry->abfd != NULL |
4751 | && entry->symndx == -1 | |
33bb52fb | 4752 | && entry->d.h->needs_lazy_stub) |
f4416af6 | 4753 | { |
33bb52fb RS |
4754 | entry->d.h->needs_lazy_stub = FALSE; |
4755 | htab->lazy_stub_count--; | |
f4416af6 | 4756 | } |
143d77c5 | 4757 | |
f4416af6 AO |
4758 | return 1; |
4759 | } | |
4760 | ||
f4416af6 AO |
4761 | /* Return the offset of an input bfd IBFD's GOT from the beginning of |
4762 | the primary GOT. */ | |
4763 | static bfd_vma | |
9719ad41 | 4764 | mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd) |
f4416af6 | 4765 | { |
d7206569 | 4766 | if (!g->next) |
f4416af6 AO |
4767 | return 0; |
4768 | ||
d7206569 | 4769 | g = mips_elf_bfd_got (ibfd, FALSE); |
f4416af6 AO |
4770 | if (! g) |
4771 | return 0; | |
4772 | ||
4773 | BFD_ASSERT (g->next); | |
4774 | ||
4775 | g = g->next; | |
143d77c5 | 4776 | |
0f20cc35 DJ |
4777 | return (g->local_gotno + g->global_gotno + g->tls_gotno) |
4778 | * MIPS_ELF_GOT_SIZE (abfd); | |
f4416af6 AO |
4779 | } |
4780 | ||
4781 | /* Turn a single GOT that is too big for 16-bit addressing into | |
4782 | a sequence of GOTs, each one 16-bit addressable. */ | |
4783 | ||
4784 | static bfd_boolean | |
9719ad41 | 4785 | mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info, |
a8028dd0 | 4786 | asection *got, bfd_size_type pages) |
f4416af6 | 4787 | { |
a8028dd0 | 4788 | struct mips_elf_link_hash_table *htab; |
f4416af6 | 4789 | struct mips_elf_got_per_bfd_arg got_per_bfd_arg; |
ab361d49 | 4790 | struct mips_elf_traverse_got_arg tga; |
a8028dd0 | 4791 | struct mips_got_info *g, *gg; |
33bb52fb | 4792 | unsigned int assign, needed_relocs; |
d7206569 | 4793 | bfd *dynobj, *ibfd; |
f4416af6 | 4794 | |
33bb52fb | 4795 | dynobj = elf_hash_table (info)->dynobj; |
a8028dd0 | 4796 | htab = mips_elf_hash_table (info); |
4dfe6ac6 NC |
4797 | BFD_ASSERT (htab != NULL); |
4798 | ||
a8028dd0 | 4799 | g = htab->got_info; |
f4416af6 | 4800 | |
f4416af6 AO |
4801 | got_per_bfd_arg.obfd = abfd; |
4802 | got_per_bfd_arg.info = info; | |
f4416af6 AO |
4803 | got_per_bfd_arg.current = NULL; |
4804 | got_per_bfd_arg.primary = NULL; | |
0a44bf69 | 4805 | got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info) |
f4416af6 | 4806 | / MIPS_ELF_GOT_SIZE (abfd)) |
861fb55a | 4807 | - htab->reserved_gotno); |
c224138d | 4808 | got_per_bfd_arg.max_pages = pages; |
0f20cc35 | 4809 | /* The number of globals that will be included in the primary GOT. |
ab361d49 | 4810 | See the calls to mips_elf_set_global_got_area below for more |
0f20cc35 DJ |
4811 | information. */ |
4812 | got_per_bfd_arg.global_count = g->global_gotno; | |
f4416af6 AO |
4813 | |
4814 | /* Try to merge the GOTs of input bfds together, as long as they | |
4815 | don't seem to exceed the maximum GOT size, choosing one of them | |
4816 | to be the primary GOT. */ | |
c72f2fb2 | 4817 | for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next) |
d7206569 RS |
4818 | { |
4819 | gg = mips_elf_bfd_got (ibfd, FALSE); | |
4820 | if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg)) | |
4821 | return FALSE; | |
4822 | } | |
f4416af6 | 4823 | |
0f20cc35 | 4824 | /* If we do not find any suitable primary GOT, create an empty one. */ |
f4416af6 | 4825 | if (got_per_bfd_arg.primary == NULL) |
3dff0dd1 | 4826 | g->next = mips_elf_create_got_info (abfd); |
f4416af6 AO |
4827 | else |
4828 | g->next = got_per_bfd_arg.primary; | |
4829 | g->next->next = got_per_bfd_arg.current; | |
4830 | ||
4831 | /* GG is now the master GOT, and G is the primary GOT. */ | |
4832 | gg = g; | |
4833 | g = g->next; | |
4834 | ||
4835 | /* Map the output bfd to the primary got. That's what we're going | |
4836 | to use for bfds that use GOT16 or GOT_PAGE relocations that we | |
4837 | didn't mark in check_relocs, and we want a quick way to find it. | |
4838 | We can't just use gg->next because we're going to reverse the | |
4839 | list. */ | |
d7206569 | 4840 | mips_elf_replace_bfd_got (abfd, g); |
f4416af6 | 4841 | |
634835ae RS |
4842 | /* Every symbol that is referenced in a dynamic relocation must be |
4843 | present in the primary GOT, so arrange for them to appear after | |
4844 | those that are actually referenced. */ | |
23cc69b6 | 4845 | gg->reloc_only_gotno = gg->global_gotno - g->global_gotno; |
634835ae | 4846 | g->global_gotno = gg->global_gotno; |
f4416af6 | 4847 | |
ab361d49 RS |
4848 | tga.info = info; |
4849 | tga.value = GGA_RELOC_ONLY; | |
4850 | htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga); | |
4851 | tga.value = GGA_NORMAL; | |
4852 | htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga); | |
f4416af6 AO |
4853 | |
4854 | /* Now go through the GOTs assigning them offset ranges. | |
cb22ccf4 | 4855 | [assigned_low_gotno, local_gotno[ will be set to the range of local |
f4416af6 AO |
4856 | entries in each GOT. We can then compute the end of a GOT by |
4857 | adding local_gotno to global_gotno. We reverse the list and make | |
4858 | it circular since then we'll be able to quickly compute the | |
4859 | beginning of a GOT, by computing the end of its predecessor. To | |
4860 | avoid special cases for the primary GOT, while still preserving | |
4861 | assertions that are valid for both single- and multi-got links, | |
4862 | we arrange for the main got struct to have the right number of | |
4863 | global entries, but set its local_gotno such that the initial | |
4864 | offset of the primary GOT is zero. Remember that the primary GOT | |
4865 | will become the last item in the circular linked list, so it | |
4866 | points back to the master GOT. */ | |
4867 | gg->local_gotno = -g->global_gotno; | |
4868 | gg->global_gotno = g->global_gotno; | |
0f20cc35 | 4869 | gg->tls_gotno = 0; |
f4416af6 AO |
4870 | assign = 0; |
4871 | gg->next = gg; | |
4872 | ||
4873 | do | |
4874 | { | |
4875 | struct mips_got_info *gn; | |
4876 | ||
861fb55a | 4877 | assign += htab->reserved_gotno; |
cb22ccf4 | 4878 | g->assigned_low_gotno = assign; |
c224138d RS |
4879 | g->local_gotno += assign; |
4880 | g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno); | |
cb22ccf4 | 4881 | g->assigned_high_gotno = g->local_gotno - 1; |
0f20cc35 DJ |
4882 | assign = g->local_gotno + g->global_gotno + g->tls_gotno; |
4883 | ||
ead49a57 RS |
4884 | /* Take g out of the direct list, and push it onto the reversed |
4885 | list that gg points to. g->next is guaranteed to be nonnull after | |
4886 | this operation, as required by mips_elf_initialize_tls_index. */ | |
4887 | gn = g->next; | |
4888 | g->next = gg->next; | |
4889 | gg->next = g; | |
4890 | ||
0f20cc35 DJ |
4891 | /* Set up any TLS entries. We always place the TLS entries after |
4892 | all non-TLS entries. */ | |
4893 | g->tls_assigned_gotno = g->local_gotno + g->global_gotno; | |
72e7511a RS |
4894 | tga.g = g; |
4895 | tga.value = MIPS_ELF_GOT_SIZE (abfd); | |
4896 | htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga); | |
4897 | if (!tga.g) | |
4898 | return FALSE; | |
1fd20d70 | 4899 | BFD_ASSERT (g->tls_assigned_gotno == assign); |
f4416af6 | 4900 | |
ead49a57 | 4901 | /* Move onto the next GOT. It will be a secondary GOT if nonull. */ |
f4416af6 | 4902 | g = gn; |
0626d451 | 4903 | |
33bb52fb RS |
4904 | /* Forbid global symbols in every non-primary GOT from having |
4905 | lazy-binding stubs. */ | |
0626d451 | 4906 | if (g) |
33bb52fb | 4907 | htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info); |
f4416af6 AO |
4908 | } |
4909 | while (g); | |
4910 | ||
59b08994 | 4911 | got->size = assign * MIPS_ELF_GOT_SIZE (abfd); |
33bb52fb RS |
4912 | |
4913 | needed_relocs = 0; | |
33bb52fb RS |
4914 | for (g = gg->next; g && g->next != gg; g = g->next) |
4915 | { | |
4916 | unsigned int save_assign; | |
4917 | ||
ab361d49 RS |
4918 | /* Assign offsets to global GOT entries and count how many |
4919 | relocations they need. */ | |
cb22ccf4 KCY |
4920 | save_assign = g->assigned_low_gotno; |
4921 | g->assigned_low_gotno = g->local_gotno; | |
ab361d49 RS |
4922 | tga.info = info; |
4923 | tga.value = MIPS_ELF_GOT_SIZE (abfd); | |
4924 | tga.g = g; | |
4925 | htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga); | |
72e7511a RS |
4926 | if (!tga.g) |
4927 | return FALSE; | |
cb22ccf4 KCY |
4928 | BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno); |
4929 | g->assigned_low_gotno = save_assign; | |
72e7511a | 4930 | |
33bb52fb RS |
4931 | if (info->shared) |
4932 | { | |
cb22ccf4 KCY |
4933 | g->relocs += g->local_gotno - g->assigned_low_gotno; |
4934 | BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno | |
33bb52fb RS |
4935 | + g->next->global_gotno |
4936 | + g->next->tls_gotno | |
861fb55a | 4937 | + htab->reserved_gotno); |
33bb52fb | 4938 | } |
ab361d49 | 4939 | needed_relocs += g->relocs; |
33bb52fb | 4940 | } |
ab361d49 | 4941 | needed_relocs += g->relocs; |
33bb52fb RS |
4942 | |
4943 | if (needed_relocs) | |
4944 | mips_elf_allocate_dynamic_relocations (dynobj, info, | |
4945 | needed_relocs); | |
143d77c5 | 4946 | |
f4416af6 AO |
4947 | return TRUE; |
4948 | } | |
143d77c5 | 4949 | |
b49e97c9 TS |
4950 | \f |
4951 | /* Returns the first relocation of type r_type found, beginning with | |
4952 | RELOCATION. RELEND is one-past-the-end of the relocation table. */ | |
4953 | ||
4954 | static const Elf_Internal_Rela * | |
9719ad41 RS |
4955 | mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type, |
4956 | const Elf_Internal_Rela *relocation, | |
4957 | const Elf_Internal_Rela *relend) | |
b49e97c9 | 4958 | { |
c000e262 TS |
4959 | unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info); |
4960 | ||
b49e97c9 TS |
4961 | while (relocation < relend) |
4962 | { | |
c000e262 TS |
4963 | if (ELF_R_TYPE (abfd, relocation->r_info) == r_type |
4964 | && ELF_R_SYM (abfd, relocation->r_info) == r_symndx) | |
b49e97c9 TS |
4965 | return relocation; |
4966 | ||
4967 | ++relocation; | |
4968 | } | |
4969 | ||
4970 | /* We didn't find it. */ | |
b49e97c9 TS |
4971 | return NULL; |
4972 | } | |
4973 | ||
020d7251 | 4974 | /* Return whether an input relocation is against a local symbol. */ |
b49e97c9 | 4975 | |
b34976b6 | 4976 | static bfd_boolean |
9719ad41 RS |
4977 | mips_elf_local_relocation_p (bfd *input_bfd, |
4978 | const Elf_Internal_Rela *relocation, | |
020d7251 | 4979 | asection **local_sections) |
b49e97c9 TS |
4980 | { |
4981 | unsigned long r_symndx; | |
4982 | Elf_Internal_Shdr *symtab_hdr; | |
b49e97c9 TS |
4983 | size_t extsymoff; |
4984 | ||
4985 | r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); | |
4986 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
4987 | extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info; | |
4988 | ||
4989 | if (r_symndx < extsymoff) | |
b34976b6 | 4990 | return TRUE; |
b49e97c9 | 4991 | if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL) |
b34976b6 | 4992 | return TRUE; |
b49e97c9 | 4993 | |
b34976b6 | 4994 | return FALSE; |
b49e97c9 TS |
4995 | } |
4996 | \f | |
4997 | /* Sign-extend VALUE, which has the indicated number of BITS. */ | |
4998 | ||
a7ebbfdf | 4999 | bfd_vma |
9719ad41 | 5000 | _bfd_mips_elf_sign_extend (bfd_vma value, int bits) |
b49e97c9 TS |
5001 | { |
5002 | if (value & ((bfd_vma) 1 << (bits - 1))) | |
5003 | /* VALUE is negative. */ | |
5004 | value |= ((bfd_vma) - 1) << bits; | |
5005 | ||
5006 | return value; | |
5007 | } | |
5008 | ||
5009 | /* Return non-zero if the indicated VALUE has overflowed the maximum | |
4cc11e76 | 5010 | range expressible by a signed number with the indicated number of |
b49e97c9 TS |
5011 | BITS. */ |
5012 | ||
b34976b6 | 5013 | static bfd_boolean |
9719ad41 | 5014 | mips_elf_overflow_p (bfd_vma value, int bits) |
b49e97c9 TS |
5015 | { |
5016 | bfd_signed_vma svalue = (bfd_signed_vma) value; | |
5017 | ||
5018 | if (svalue > (1 << (bits - 1)) - 1) | |
5019 | /* The value is too big. */ | |
b34976b6 | 5020 | return TRUE; |
b49e97c9 TS |
5021 | else if (svalue < -(1 << (bits - 1))) |
5022 | /* The value is too small. */ | |
b34976b6 | 5023 | return TRUE; |
b49e97c9 TS |
5024 | |
5025 | /* All is well. */ | |
b34976b6 | 5026 | return FALSE; |
b49e97c9 TS |
5027 | } |
5028 | ||
5029 | /* Calculate the %high function. */ | |
5030 | ||
5031 | static bfd_vma | |
9719ad41 | 5032 | mips_elf_high (bfd_vma value) |
b49e97c9 TS |
5033 | { |
5034 | return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff; | |
5035 | } | |
5036 | ||
5037 | /* Calculate the %higher function. */ | |
5038 | ||
5039 | static bfd_vma | |
9719ad41 | 5040 | mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED) |
b49e97c9 TS |
5041 | { |
5042 | #ifdef BFD64 | |
5043 | return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff; | |
5044 | #else | |
5045 | abort (); | |
c5ae1840 | 5046 | return MINUS_ONE; |
b49e97c9 TS |
5047 | #endif |
5048 | } | |
5049 | ||
5050 | /* Calculate the %highest function. */ | |
5051 | ||
5052 | static bfd_vma | |
9719ad41 | 5053 | mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED) |
b49e97c9 TS |
5054 | { |
5055 | #ifdef BFD64 | |
b15e6682 | 5056 | return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff; |
b49e97c9 TS |
5057 | #else |
5058 | abort (); | |
c5ae1840 | 5059 | return MINUS_ONE; |
b49e97c9 TS |
5060 | #endif |
5061 | } | |
5062 | \f | |
5063 | /* Create the .compact_rel section. */ | |
5064 | ||
b34976b6 | 5065 | static bfd_boolean |
9719ad41 RS |
5066 | mips_elf_create_compact_rel_section |
5067 | (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
5068 | { |
5069 | flagword flags; | |
5070 | register asection *s; | |
5071 | ||
3d4d4302 | 5072 | if (bfd_get_linker_section (abfd, ".compact_rel") == NULL) |
b49e97c9 TS |
5073 | { |
5074 | flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | |
5075 | | SEC_READONLY); | |
5076 | ||
3d4d4302 | 5077 | s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags); |
b49e97c9 | 5078 | if (s == NULL |
b49e97c9 TS |
5079 | || ! bfd_set_section_alignment (abfd, s, |
5080 | MIPS_ELF_LOG_FILE_ALIGN (abfd))) | |
b34976b6 | 5081 | return FALSE; |
b49e97c9 | 5082 | |
eea6121a | 5083 | s->size = sizeof (Elf32_External_compact_rel); |
b49e97c9 TS |
5084 | } |
5085 | ||
b34976b6 | 5086 | return TRUE; |
b49e97c9 TS |
5087 | } |
5088 | ||
5089 | /* Create the .got section to hold the global offset table. */ | |
5090 | ||
b34976b6 | 5091 | static bfd_boolean |
23cc69b6 | 5092 | mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info) |
b49e97c9 TS |
5093 | { |
5094 | flagword flags; | |
5095 | register asection *s; | |
5096 | struct elf_link_hash_entry *h; | |
14a793b2 | 5097 | struct bfd_link_hash_entry *bh; |
0a44bf69 RS |
5098 | struct mips_elf_link_hash_table *htab; |
5099 | ||
5100 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 | 5101 | BFD_ASSERT (htab != NULL); |
b49e97c9 TS |
5102 | |
5103 | /* This function may be called more than once. */ | |
23cc69b6 RS |
5104 | if (htab->sgot) |
5105 | return TRUE; | |
b49e97c9 TS |
5106 | |
5107 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
5108 | | SEC_LINKER_CREATED); | |
5109 | ||
72b4917c TS |
5110 | /* We have to use an alignment of 2**4 here because this is hardcoded |
5111 | in the function stub generation and in the linker script. */ | |
87e0a731 | 5112 | s = bfd_make_section_anyway_with_flags (abfd, ".got", flags); |
b49e97c9 | 5113 | if (s == NULL |
72b4917c | 5114 | || ! bfd_set_section_alignment (abfd, s, 4)) |
b34976b6 | 5115 | return FALSE; |
a8028dd0 | 5116 | htab->sgot = s; |
b49e97c9 TS |
5117 | |
5118 | /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the | |
5119 | linker script because we don't want to define the symbol if we | |
5120 | are not creating a global offset table. */ | |
14a793b2 | 5121 | bh = NULL; |
b49e97c9 TS |
5122 | if (! (_bfd_generic_link_add_one_symbol |
5123 | (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s, | |
9719ad41 | 5124 | 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) |
b34976b6 | 5125 | return FALSE; |
14a793b2 AM |
5126 | |
5127 | h = (struct elf_link_hash_entry *) bh; | |
f5385ebf AM |
5128 | h->non_elf = 0; |
5129 | h->def_regular = 1; | |
b49e97c9 | 5130 | h->type = STT_OBJECT; |
2f9efdfc | 5131 | h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN; |
d329bcd1 | 5132 | elf_hash_table (info)->hgot = h; |
b49e97c9 TS |
5133 | |
5134 | if (info->shared | |
c152c796 | 5135 | && ! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 5136 | return FALSE; |
b49e97c9 | 5137 | |
3dff0dd1 | 5138 | htab->got_info = mips_elf_create_got_info (abfd); |
f0abc2a1 | 5139 | mips_elf_section_data (s)->elf.this_hdr.sh_flags |
b49e97c9 TS |
5140 | |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; |
5141 | ||
861fb55a | 5142 | /* We also need a .got.plt section when generating PLTs. */ |
87e0a731 AM |
5143 | s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", |
5144 | SEC_ALLOC | SEC_LOAD | |
5145 | | SEC_HAS_CONTENTS | |
5146 | | SEC_IN_MEMORY | |
5147 | | SEC_LINKER_CREATED); | |
861fb55a DJ |
5148 | if (s == NULL) |
5149 | return FALSE; | |
5150 | htab->sgotplt = s; | |
0a44bf69 | 5151 | |
b34976b6 | 5152 | return TRUE; |
b49e97c9 | 5153 | } |
b49e97c9 | 5154 | \f |
0a44bf69 RS |
5155 | /* Return true if H refers to the special VxWorks __GOTT_BASE__ or |
5156 | __GOTT_INDEX__ symbols. These symbols are only special for | |
5157 | shared objects; they are not used in executables. */ | |
5158 | ||
5159 | static bfd_boolean | |
5160 | is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h) | |
5161 | { | |
5162 | return (mips_elf_hash_table (info)->is_vxworks | |
5163 | && info->shared | |
5164 | && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0 | |
5165 | || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0)); | |
5166 | } | |
861fb55a DJ |
5167 | |
5168 | /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might | |
5169 | require an la25 stub. See also mips_elf_local_pic_function_p, | |
5170 | which determines whether the destination function ever requires a | |
5171 | stub. */ | |
5172 | ||
5173 | static bfd_boolean | |
8f0c309a CLT |
5174 | mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type, |
5175 | bfd_boolean target_is_16_bit_code_p) | |
861fb55a DJ |
5176 | { |
5177 | /* We specifically ignore branches and jumps from EF_PIC objects, | |
5178 | where the onus is on the compiler or programmer to perform any | |
5179 | necessary initialization of $25. Sometimes such initialization | |
5180 | is unnecessary; for example, -mno-shared functions do not use | |
5181 | the incoming value of $25, and may therefore be called directly. */ | |
5182 | if (PIC_OBJECT_P (input_bfd)) | |
5183 | return FALSE; | |
5184 | ||
5185 | switch (r_type) | |
5186 | { | |
5187 | case R_MIPS_26: | |
5188 | case R_MIPS_PC16: | |
7361da2c AB |
5189 | case R_MIPS_PC21_S2: |
5190 | case R_MIPS_PC26_S2: | |
df58fc94 RS |
5191 | case R_MICROMIPS_26_S1: |
5192 | case R_MICROMIPS_PC7_S1: | |
5193 | case R_MICROMIPS_PC10_S1: | |
5194 | case R_MICROMIPS_PC16_S1: | |
5195 | case R_MICROMIPS_PC23_S2: | |
861fb55a DJ |
5196 | return TRUE; |
5197 | ||
8f0c309a CLT |
5198 | case R_MIPS16_26: |
5199 | return !target_is_16_bit_code_p; | |
5200 | ||
861fb55a DJ |
5201 | default: |
5202 | return FALSE; | |
5203 | } | |
5204 | } | |
0a44bf69 | 5205 | \f |
b49e97c9 TS |
5206 | /* Calculate the value produced by the RELOCATION (which comes from |
5207 | the INPUT_BFD). The ADDEND is the addend to use for this | |
5208 | RELOCATION; RELOCATION->R_ADDEND is ignored. | |
5209 | ||
5210 | The result of the relocation calculation is stored in VALUEP. | |
38a7df63 | 5211 | On exit, set *CROSS_MODE_JUMP_P to true if the relocation field |
df58fc94 | 5212 | is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa. |
b49e97c9 TS |
5213 | |
5214 | This function returns bfd_reloc_continue if the caller need take no | |
5215 | further action regarding this relocation, bfd_reloc_notsupported if | |
5216 | something goes dramatically wrong, bfd_reloc_overflow if an | |
5217 | overflow occurs, and bfd_reloc_ok to indicate success. */ | |
5218 | ||
5219 | static bfd_reloc_status_type | |
9719ad41 RS |
5220 | mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd, |
5221 | asection *input_section, | |
5222 | struct bfd_link_info *info, | |
5223 | const Elf_Internal_Rela *relocation, | |
5224 | bfd_vma addend, reloc_howto_type *howto, | |
5225 | Elf_Internal_Sym *local_syms, | |
5226 | asection **local_sections, bfd_vma *valuep, | |
38a7df63 CF |
5227 | const char **namep, |
5228 | bfd_boolean *cross_mode_jump_p, | |
9719ad41 | 5229 | bfd_boolean save_addend) |
b49e97c9 TS |
5230 | { |
5231 | /* The eventual value we will return. */ | |
5232 | bfd_vma value; | |
5233 | /* The address of the symbol against which the relocation is | |
5234 | occurring. */ | |
5235 | bfd_vma symbol = 0; | |
5236 | /* The final GP value to be used for the relocatable, executable, or | |
5237 | shared object file being produced. */ | |
0a61c8c2 | 5238 | bfd_vma gp; |
b49e97c9 TS |
5239 | /* The place (section offset or address) of the storage unit being |
5240 | relocated. */ | |
5241 | bfd_vma p; | |
5242 | /* The value of GP used to create the relocatable object. */ | |
0a61c8c2 | 5243 | bfd_vma gp0; |
b49e97c9 TS |
5244 | /* The offset into the global offset table at which the address of |
5245 | the relocation entry symbol, adjusted by the addend, resides | |
5246 | during execution. */ | |
5247 | bfd_vma g = MINUS_ONE; | |
5248 | /* The section in which the symbol referenced by the relocation is | |
5249 | located. */ | |
5250 | asection *sec = NULL; | |
5251 | struct mips_elf_link_hash_entry *h = NULL; | |
b34976b6 | 5252 | /* TRUE if the symbol referred to by this relocation is a local |
b49e97c9 | 5253 | symbol. */ |
b34976b6 AM |
5254 | bfd_boolean local_p, was_local_p; |
5255 | /* TRUE if the symbol referred to by this relocation is "_gp_disp". */ | |
5256 | bfd_boolean gp_disp_p = FALSE; | |
bbe506e8 TS |
5257 | /* TRUE if the symbol referred to by this relocation is |
5258 | "__gnu_local_gp". */ | |
5259 | bfd_boolean gnu_local_gp_p = FALSE; | |
b49e97c9 TS |
5260 | Elf_Internal_Shdr *symtab_hdr; |
5261 | size_t extsymoff; | |
5262 | unsigned long r_symndx; | |
5263 | int r_type; | |
b34976b6 | 5264 | /* TRUE if overflow occurred during the calculation of the |
b49e97c9 | 5265 | relocation value. */ |
b34976b6 AM |
5266 | bfd_boolean overflowed_p; |
5267 | /* TRUE if this relocation refers to a MIPS16 function. */ | |
5268 | bfd_boolean target_is_16_bit_code_p = FALSE; | |
df58fc94 | 5269 | bfd_boolean target_is_micromips_code_p = FALSE; |
0a44bf69 RS |
5270 | struct mips_elf_link_hash_table *htab; |
5271 | bfd *dynobj; | |
5272 | ||
5273 | dynobj = elf_hash_table (info)->dynobj; | |
5274 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 | 5275 | BFD_ASSERT (htab != NULL); |
b49e97c9 TS |
5276 | |
5277 | /* Parse the relocation. */ | |
5278 | r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); | |
5279 | r_type = ELF_R_TYPE (input_bfd, relocation->r_info); | |
5280 | p = (input_section->output_section->vma | |
5281 | + input_section->output_offset | |
5282 | + relocation->r_offset); | |
5283 | ||
5284 | /* Assume that there will be no overflow. */ | |
b34976b6 | 5285 | overflowed_p = FALSE; |
b49e97c9 TS |
5286 | |
5287 | /* Figure out whether or not the symbol is local, and get the offset | |
5288 | used in the array of hash table entries. */ | |
5289 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
5290 | local_p = mips_elf_local_relocation_p (input_bfd, relocation, | |
020d7251 | 5291 | local_sections); |
bce03d3d | 5292 | was_local_p = local_p; |
b49e97c9 TS |
5293 | if (! elf_bad_symtab (input_bfd)) |
5294 | extsymoff = symtab_hdr->sh_info; | |
5295 | else | |
5296 | { | |
5297 | /* The symbol table does not follow the rule that local symbols | |
5298 | must come before globals. */ | |
5299 | extsymoff = 0; | |
5300 | } | |
5301 | ||
5302 | /* Figure out the value of the symbol. */ | |
5303 | if (local_p) | |
5304 | { | |
5305 | Elf_Internal_Sym *sym; | |
5306 | ||
5307 | sym = local_syms + r_symndx; | |
5308 | sec = local_sections[r_symndx]; | |
5309 | ||
5310 | symbol = sec->output_section->vma + sec->output_offset; | |
d4df96e6 L |
5311 | if (ELF_ST_TYPE (sym->st_info) != STT_SECTION |
5312 | || (sec->flags & SEC_MERGE)) | |
b49e97c9 | 5313 | symbol += sym->st_value; |
d4df96e6 L |
5314 | if ((sec->flags & SEC_MERGE) |
5315 | && ELF_ST_TYPE (sym->st_info) == STT_SECTION) | |
5316 | { | |
5317 | addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend); | |
5318 | addend -= symbol; | |
5319 | addend += sec->output_section->vma + sec->output_offset; | |
5320 | } | |
b49e97c9 | 5321 | |
df58fc94 RS |
5322 | /* MIPS16/microMIPS text labels should be treated as odd. */ |
5323 | if (ELF_ST_IS_COMPRESSED (sym->st_other)) | |
b49e97c9 TS |
5324 | ++symbol; |
5325 | ||
5326 | /* Record the name of this symbol, for our caller. */ | |
5327 | *namep = bfd_elf_string_from_elf_section (input_bfd, | |
5328 | symtab_hdr->sh_link, | |
5329 | sym->st_name); | |
5330 | if (*namep == '\0') | |
5331 | *namep = bfd_section_name (input_bfd, sec); | |
5332 | ||
30c09090 | 5333 | target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other); |
df58fc94 | 5334 | target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other); |
b49e97c9 TS |
5335 | } |
5336 | else | |
5337 | { | |
560e09e9 NC |
5338 | /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */ |
5339 | ||
b49e97c9 TS |
5340 | /* For global symbols we look up the symbol in the hash-table. */ |
5341 | h = ((struct mips_elf_link_hash_entry *) | |
5342 | elf_sym_hashes (input_bfd) [r_symndx - extsymoff]); | |
5343 | /* Find the real hash-table entry for this symbol. */ | |
5344 | while (h->root.root.type == bfd_link_hash_indirect | |
5345 | || h->root.root.type == bfd_link_hash_warning) | |
5346 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
5347 | ||
5348 | /* Record the name of this symbol, for our caller. */ | |
5349 | *namep = h->root.root.root.string; | |
5350 | ||
5351 | /* See if this is the special _gp_disp symbol. Note that such a | |
5352 | symbol must always be a global symbol. */ | |
560e09e9 | 5353 | if (strcmp (*namep, "_gp_disp") == 0 |
b49e97c9 TS |
5354 | && ! NEWABI_P (input_bfd)) |
5355 | { | |
5356 | /* Relocations against _gp_disp are permitted only with | |
5357 | R_MIPS_HI16 and R_MIPS_LO16 relocations. */ | |
738e5348 | 5358 | if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type)) |
b49e97c9 TS |
5359 | return bfd_reloc_notsupported; |
5360 | ||
b34976b6 | 5361 | gp_disp_p = TRUE; |
b49e97c9 | 5362 | } |
bbe506e8 TS |
5363 | /* See if this is the special _gp symbol. Note that such a |
5364 | symbol must always be a global symbol. */ | |
5365 | else if (strcmp (*namep, "__gnu_local_gp") == 0) | |
5366 | gnu_local_gp_p = TRUE; | |
5367 | ||
5368 | ||
b49e97c9 TS |
5369 | /* If this symbol is defined, calculate its address. Note that |
5370 | _gp_disp is a magic symbol, always implicitly defined by the | |
5371 | linker, so it's inappropriate to check to see whether or not | |
5372 | its defined. */ | |
5373 | else if ((h->root.root.type == bfd_link_hash_defined | |
5374 | || h->root.root.type == bfd_link_hash_defweak) | |
5375 | && h->root.root.u.def.section) | |
5376 | { | |
5377 | sec = h->root.root.u.def.section; | |
5378 | if (sec->output_section) | |
5379 | symbol = (h->root.root.u.def.value | |
5380 | + sec->output_section->vma | |
5381 | + sec->output_offset); | |
5382 | else | |
5383 | symbol = h->root.root.u.def.value; | |
5384 | } | |
5385 | else if (h->root.root.type == bfd_link_hash_undefweak) | |
5386 | /* We allow relocations against undefined weak symbols, giving | |
5387 | it the value zero, so that you can undefined weak functions | |
5388 | and check to see if they exist by looking at their | |
5389 | addresses. */ | |
5390 | symbol = 0; | |
59c2e50f | 5391 | else if (info->unresolved_syms_in_objects == RM_IGNORE |
b49e97c9 TS |
5392 | && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT) |
5393 | symbol = 0; | |
a4d0f181 TS |
5394 | else if (strcmp (*namep, SGI_COMPAT (input_bfd) |
5395 | ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0) | |
b49e97c9 TS |
5396 | { |
5397 | /* If this is a dynamic link, we should have created a | |
5398 | _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol | |
5399 | in in _bfd_mips_elf_create_dynamic_sections. | |
5400 | Otherwise, we should define the symbol with a value of 0. | |
5401 | FIXME: It should probably get into the symbol table | |
5402 | somehow as well. */ | |
5403 | BFD_ASSERT (! info->shared); | |
5404 | BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL); | |
5405 | symbol = 0; | |
5406 | } | |
5e2b0d47 NC |
5407 | else if (ELF_MIPS_IS_OPTIONAL (h->root.other)) |
5408 | { | |
5409 | /* This is an optional symbol - an Irix specific extension to the | |
5410 | ELF spec. Ignore it for now. | |
5411 | XXX - FIXME - there is more to the spec for OPTIONAL symbols | |
5412 | than simply ignoring them, but we do not handle this for now. | |
5413 | For information see the "64-bit ELF Object File Specification" | |
5414 | which is available from here: | |
5415 | http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */ | |
5416 | symbol = 0; | |
5417 | } | |
e7e2196d MR |
5418 | else if ((*info->callbacks->undefined_symbol) |
5419 | (info, h->root.root.root.string, input_bfd, | |
5420 | input_section, relocation->r_offset, | |
5421 | (info->unresolved_syms_in_objects == RM_GENERATE_ERROR) | |
5422 | || ELF_ST_VISIBILITY (h->root.other))) | |
5423 | { | |
5424 | return bfd_reloc_undefined; | |
5425 | } | |
b49e97c9 TS |
5426 | else |
5427 | { | |
e7e2196d | 5428 | return bfd_reloc_notsupported; |
b49e97c9 TS |
5429 | } |
5430 | ||
30c09090 | 5431 | target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other); |
1bbce132 | 5432 | target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other); |
b49e97c9 TS |
5433 | } |
5434 | ||
738e5348 RS |
5435 | /* If this is a reference to a 16-bit function with a stub, we need |
5436 | to redirect the relocation to the stub unless: | |
5437 | ||
5438 | (a) the relocation is for a MIPS16 JAL; | |
5439 | ||
5440 | (b) the relocation is for a MIPS16 PIC call, and there are no | |
5441 | non-MIPS16 uses of the GOT slot; or | |
5442 | ||
5443 | (c) the section allows direct references to MIPS16 functions. */ | |
5444 | if (r_type != R_MIPS16_26 | |
5445 | && !info->relocatable | |
5446 | && ((h != NULL | |
5447 | && h->fn_stub != NULL | |
5448 | && (r_type != R_MIPS16_CALL16 || h->need_fn_stub)) | |
b9d58d71 | 5449 | || (local_p |
698600e4 AM |
5450 | && mips_elf_tdata (input_bfd)->local_stubs != NULL |
5451 | && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL)) | |
738e5348 | 5452 | && !section_allows_mips16_refs_p (input_section)) |
b49e97c9 TS |
5453 | { |
5454 | /* This is a 32- or 64-bit call to a 16-bit function. We should | |
5455 | have already noticed that we were going to need the | |
5456 | stub. */ | |
5457 | if (local_p) | |
8f0c309a | 5458 | { |
698600e4 | 5459 | sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx]; |
8f0c309a CLT |
5460 | value = 0; |
5461 | } | |
b49e97c9 TS |
5462 | else |
5463 | { | |
5464 | BFD_ASSERT (h->need_fn_stub); | |
8f0c309a CLT |
5465 | if (h->la25_stub) |
5466 | { | |
5467 | /* If a LA25 header for the stub itself exists, point to the | |
5468 | prepended LUI/ADDIU sequence. */ | |
5469 | sec = h->la25_stub->stub_section; | |
5470 | value = h->la25_stub->offset; | |
5471 | } | |
5472 | else | |
5473 | { | |
5474 | sec = h->fn_stub; | |
5475 | value = 0; | |
5476 | } | |
b49e97c9 TS |
5477 | } |
5478 | ||
8f0c309a | 5479 | symbol = sec->output_section->vma + sec->output_offset + value; |
f38c2df5 TS |
5480 | /* The target is 16-bit, but the stub isn't. */ |
5481 | target_is_16_bit_code_p = FALSE; | |
b49e97c9 | 5482 | } |
1bbce132 MR |
5483 | /* If this is a MIPS16 call with a stub, that is made through the PLT or |
5484 | to a standard MIPS function, we need to redirect the call to the stub. | |
5485 | Note that we specifically exclude R_MIPS16_CALL16 from this behavior; | |
5486 | indirect calls should use an indirect stub instead. */ | |
1049f94e | 5487 | else if (r_type == R_MIPS16_26 && !info->relocatable |
b314ec0e | 5488 | && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL)) |
b9d58d71 | 5489 | || (local_p |
698600e4 AM |
5490 | && mips_elf_tdata (input_bfd)->local_call_stubs != NULL |
5491 | && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL)) | |
1bbce132 | 5492 | && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p)) |
b49e97c9 | 5493 | { |
b9d58d71 | 5494 | if (local_p) |
698600e4 | 5495 | sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx]; |
b9d58d71 | 5496 | else |
b49e97c9 | 5497 | { |
b9d58d71 TS |
5498 | /* If both call_stub and call_fp_stub are defined, we can figure |
5499 | out which one to use by checking which one appears in the input | |
5500 | file. */ | |
5501 | if (h->call_stub != NULL && h->call_fp_stub != NULL) | |
b49e97c9 | 5502 | { |
b9d58d71 | 5503 | asection *o; |
68ffbac6 | 5504 | |
b9d58d71 TS |
5505 | sec = NULL; |
5506 | for (o = input_bfd->sections; o != NULL; o = o->next) | |
b49e97c9 | 5507 | { |
b9d58d71 TS |
5508 | if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o))) |
5509 | { | |
5510 | sec = h->call_fp_stub; | |
5511 | break; | |
5512 | } | |
b49e97c9 | 5513 | } |
b9d58d71 TS |
5514 | if (sec == NULL) |
5515 | sec = h->call_stub; | |
b49e97c9 | 5516 | } |
b9d58d71 | 5517 | else if (h->call_stub != NULL) |
b49e97c9 | 5518 | sec = h->call_stub; |
b9d58d71 TS |
5519 | else |
5520 | sec = h->call_fp_stub; | |
5521 | } | |
b49e97c9 | 5522 | |
eea6121a | 5523 | BFD_ASSERT (sec->size > 0); |
b49e97c9 TS |
5524 | symbol = sec->output_section->vma + sec->output_offset; |
5525 | } | |
861fb55a DJ |
5526 | /* If this is a direct call to a PIC function, redirect to the |
5527 | non-PIC stub. */ | |
5528 | else if (h != NULL && h->la25_stub | |
8f0c309a CLT |
5529 | && mips_elf_relocation_needs_la25_stub (input_bfd, r_type, |
5530 | target_is_16_bit_code_p)) | |
861fb55a DJ |
5531 | symbol = (h->la25_stub->stub_section->output_section->vma |
5532 | + h->la25_stub->stub_section->output_offset | |
5533 | + h->la25_stub->offset); | |
1bbce132 MR |
5534 | /* For direct MIPS16 and microMIPS calls make sure the compressed PLT |
5535 | entry is used if a standard PLT entry has also been made. In this | |
5536 | case the symbol will have been set by mips_elf_set_plt_sym_value | |
5537 | to point to the standard PLT entry, so redirect to the compressed | |
5538 | one. */ | |
5539 | else if ((r_type == R_MIPS16_26 || r_type == R_MICROMIPS_26_S1) | |
5540 | && !info->relocatable | |
5541 | && h != NULL | |
5542 | && h->use_plt_entry | |
5543 | && h->root.plt.plist->comp_offset != MINUS_ONE | |
5544 | && h->root.plt.plist->mips_offset != MINUS_ONE) | |
5545 | { | |
5546 | bfd_boolean micromips_p = MICROMIPS_P (abfd); | |
5547 | ||
5548 | sec = htab->splt; | |
5549 | symbol = (sec->output_section->vma | |
5550 | + sec->output_offset | |
5551 | + htab->plt_header_size | |
5552 | + htab->plt_mips_offset | |
5553 | + h->root.plt.plist->comp_offset | |
5554 | + 1); | |
5555 | ||
5556 | target_is_16_bit_code_p = !micromips_p; | |
5557 | target_is_micromips_code_p = micromips_p; | |
5558 | } | |
b49e97c9 | 5559 | |
df58fc94 RS |
5560 | /* Make sure MIPS16 and microMIPS are not used together. */ |
5561 | if ((r_type == R_MIPS16_26 && target_is_micromips_code_p) | |
5562 | || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p)) | |
5563 | { | |
5564 | (*_bfd_error_handler) | |
5565 | (_("MIPS16 and microMIPS functions cannot call each other")); | |
5566 | return bfd_reloc_notsupported; | |
5567 | } | |
5568 | ||
b49e97c9 | 5569 | /* Calls from 16-bit code to 32-bit code and vice versa require the |
df58fc94 RS |
5570 | mode change. However, we can ignore calls to undefined weak symbols, |
5571 | which should never be executed at runtime. This exception is important | |
5572 | because the assembly writer may have "known" that any definition of the | |
5573 | symbol would be 16-bit code, and that direct jumps were therefore | |
5574 | acceptable. */ | |
5575 | *cross_mode_jump_p = (!info->relocatable | |
5576 | && !(h && h->root.root.type == bfd_link_hash_undefweak) | |
5577 | && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p) | |
5578 | || (r_type == R_MICROMIPS_26_S1 | |
5579 | && !target_is_micromips_code_p) | |
5580 | || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR) | |
5581 | && (target_is_16_bit_code_p | |
5582 | || target_is_micromips_code_p)))); | |
b49e97c9 | 5583 | |
c5d6fa44 | 5584 | local_p = (h == NULL || mips_use_local_got_p (info, h)); |
b49e97c9 | 5585 | |
0a61c8c2 RS |
5586 | gp0 = _bfd_get_gp_value (input_bfd); |
5587 | gp = _bfd_get_gp_value (abfd); | |
23cc69b6 | 5588 | if (htab->got_info) |
a8028dd0 | 5589 | gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd); |
0a61c8c2 RS |
5590 | |
5591 | if (gnu_local_gp_p) | |
5592 | symbol = gp; | |
5593 | ||
df58fc94 RS |
5594 | /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent |
5595 | to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the | |
5596 | corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */ | |
5597 | if (got_page_reloc_p (r_type) && !local_p) | |
020d7251 | 5598 | { |
df58fc94 RS |
5599 | r_type = (micromips_reloc_p (r_type) |
5600 | ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP); | |
020d7251 RS |
5601 | addend = 0; |
5602 | } | |
5603 | ||
e77760d2 | 5604 | /* If we haven't already determined the GOT offset, and we're going |
0a61c8c2 | 5605 | to need it, get it now. */ |
b49e97c9 TS |
5606 | switch (r_type) |
5607 | { | |
738e5348 RS |
5608 | case R_MIPS16_CALL16: |
5609 | case R_MIPS16_GOT16: | |
b49e97c9 TS |
5610 | case R_MIPS_CALL16: |
5611 | case R_MIPS_GOT16: | |
5612 | case R_MIPS_GOT_DISP: | |
5613 | case R_MIPS_GOT_HI16: | |
5614 | case R_MIPS_CALL_HI16: | |
5615 | case R_MIPS_GOT_LO16: | |
5616 | case R_MIPS_CALL_LO16: | |
df58fc94 RS |
5617 | case R_MICROMIPS_CALL16: |
5618 | case R_MICROMIPS_GOT16: | |
5619 | case R_MICROMIPS_GOT_DISP: | |
5620 | case R_MICROMIPS_GOT_HI16: | |
5621 | case R_MICROMIPS_CALL_HI16: | |
5622 | case R_MICROMIPS_GOT_LO16: | |
5623 | case R_MICROMIPS_CALL_LO16: | |
0f20cc35 DJ |
5624 | case R_MIPS_TLS_GD: |
5625 | case R_MIPS_TLS_GOTTPREL: | |
5626 | case R_MIPS_TLS_LDM: | |
d0f13682 CLT |
5627 | case R_MIPS16_TLS_GD: |
5628 | case R_MIPS16_TLS_GOTTPREL: | |
5629 | case R_MIPS16_TLS_LDM: | |
df58fc94 RS |
5630 | case R_MICROMIPS_TLS_GD: |
5631 | case R_MICROMIPS_TLS_GOTTPREL: | |
5632 | case R_MICROMIPS_TLS_LDM: | |
b49e97c9 | 5633 | /* Find the index into the GOT where this value is located. */ |
df58fc94 | 5634 | if (tls_ldm_reloc_p (r_type)) |
0f20cc35 | 5635 | { |
0a44bf69 | 5636 | g = mips_elf_local_got_index (abfd, input_bfd, info, |
5c18022e | 5637 | 0, 0, NULL, r_type); |
0f20cc35 DJ |
5638 | if (g == MINUS_ONE) |
5639 | return bfd_reloc_outofrange; | |
5640 | } | |
5641 | else if (!local_p) | |
b49e97c9 | 5642 | { |
0a44bf69 RS |
5643 | /* On VxWorks, CALL relocations should refer to the .got.plt |
5644 | entry, which is initialized to point at the PLT stub. */ | |
5645 | if (htab->is_vxworks | |
df58fc94 RS |
5646 | && (call_hi16_reloc_p (r_type) |
5647 | || call_lo16_reloc_p (r_type) | |
738e5348 | 5648 | || call16_reloc_p (r_type))) |
0a44bf69 RS |
5649 | { |
5650 | BFD_ASSERT (addend == 0); | |
5651 | BFD_ASSERT (h->root.needs_plt); | |
5652 | g = mips_elf_gotplt_index (info, &h->root); | |
5653 | } | |
5654 | else | |
b49e97c9 | 5655 | { |
020d7251 | 5656 | BFD_ASSERT (addend == 0); |
13fbec83 RS |
5657 | g = mips_elf_global_got_index (abfd, info, input_bfd, |
5658 | &h->root, r_type); | |
e641e783 | 5659 | if (!TLS_RELOC_P (r_type) |
020d7251 RS |
5660 | && !elf_hash_table (info)->dynamic_sections_created) |
5661 | /* This is a static link. We must initialize the GOT entry. */ | |
a8028dd0 | 5662 | MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g); |
b49e97c9 TS |
5663 | } |
5664 | } | |
0a44bf69 | 5665 | else if (!htab->is_vxworks |
738e5348 | 5666 | && (call16_reloc_p (r_type) || got16_reloc_p (r_type))) |
0a44bf69 | 5667 | /* The calculation below does not involve "g". */ |
b49e97c9 TS |
5668 | break; |
5669 | else | |
5670 | { | |
5c18022e | 5671 | g = mips_elf_local_got_index (abfd, input_bfd, info, |
0a44bf69 | 5672 | symbol + addend, r_symndx, h, r_type); |
b49e97c9 TS |
5673 | if (g == MINUS_ONE) |
5674 | return bfd_reloc_outofrange; | |
5675 | } | |
5676 | ||
5677 | /* Convert GOT indices to actual offsets. */ | |
a8028dd0 | 5678 | g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g); |
b49e97c9 | 5679 | break; |
b49e97c9 TS |
5680 | } |
5681 | ||
0a44bf69 RS |
5682 | /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__ |
5683 | symbols are resolved by the loader. Add them to .rela.dyn. */ | |
5684 | if (h != NULL && is_gott_symbol (info, &h->root)) | |
5685 | { | |
5686 | Elf_Internal_Rela outrel; | |
5687 | bfd_byte *loc; | |
5688 | asection *s; | |
5689 | ||
5690 | s = mips_elf_rel_dyn_section (info, FALSE); | |
5691 | loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela); | |
5692 | ||
5693 | outrel.r_offset = (input_section->output_section->vma | |
5694 | + input_section->output_offset | |
5695 | + relocation->r_offset); | |
5696 | outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type); | |
5697 | outrel.r_addend = addend; | |
5698 | bfd_elf32_swap_reloca_out (abfd, &outrel, loc); | |
9e3313ae RS |
5699 | |
5700 | /* If we've written this relocation for a readonly section, | |
5701 | we need to set DF_TEXTREL again, so that we do not delete the | |
5702 | DT_TEXTREL tag. */ | |
5703 | if (MIPS_ELF_READONLY_SECTION (input_section)) | |
5704 | info->flags |= DF_TEXTREL; | |
5705 | ||
0a44bf69 RS |
5706 | *valuep = 0; |
5707 | return bfd_reloc_ok; | |
5708 | } | |
5709 | ||
b49e97c9 TS |
5710 | /* Figure out what kind of relocation is being performed. */ |
5711 | switch (r_type) | |
5712 | { | |
5713 | case R_MIPS_NONE: | |
5714 | return bfd_reloc_continue; | |
5715 | ||
5716 | case R_MIPS_16: | |
c3eb94b4 MF |
5717 | if (howto->partial_inplace) |
5718 | addend = _bfd_mips_elf_sign_extend (addend, 16); | |
5719 | value = symbol + addend; | |
b49e97c9 TS |
5720 | overflowed_p = mips_elf_overflow_p (value, 16); |
5721 | break; | |
5722 | ||
5723 | case R_MIPS_32: | |
5724 | case R_MIPS_REL32: | |
5725 | case R_MIPS_64: | |
5726 | if ((info->shared | |
861fb55a | 5727 | || (htab->root.dynamic_sections_created |
b49e97c9 | 5728 | && h != NULL |
f5385ebf | 5729 | && h->root.def_dynamic |
861fb55a DJ |
5730 | && !h->root.def_regular |
5731 | && !h->has_static_relocs)) | |
cf35638d | 5732 | && r_symndx != STN_UNDEF |
9a59ad6b DJ |
5733 | && (h == NULL |
5734 | || h->root.root.type != bfd_link_hash_undefweak | |
5735 | || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT) | |
b49e97c9 TS |
5736 | && (input_section->flags & SEC_ALLOC) != 0) |
5737 | { | |
861fb55a | 5738 | /* If we're creating a shared library, then we can't know |
b49e97c9 TS |
5739 | where the symbol will end up. So, we create a relocation |
5740 | record in the output, and leave the job up to the dynamic | |
861fb55a DJ |
5741 | linker. We must do the same for executable references to |
5742 | shared library symbols, unless we've decided to use copy | |
5743 | relocs or PLTs instead. */ | |
b49e97c9 TS |
5744 | value = addend; |
5745 | if (!mips_elf_create_dynamic_relocation (abfd, | |
5746 | info, | |
5747 | relocation, | |
5748 | h, | |
5749 | sec, | |
5750 | symbol, | |
5751 | &value, | |
5752 | input_section)) | |
5753 | return bfd_reloc_undefined; | |
5754 | } | |
5755 | else | |
5756 | { | |
5757 | if (r_type != R_MIPS_REL32) | |
5758 | value = symbol + addend; | |
5759 | else | |
5760 | value = addend; | |
5761 | } | |
5762 | value &= howto->dst_mask; | |
092dcd75 CD |
5763 | break; |
5764 | ||
5765 | case R_MIPS_PC32: | |
5766 | value = symbol + addend - p; | |
5767 | value &= howto->dst_mask; | |
b49e97c9 TS |
5768 | break; |
5769 | ||
b49e97c9 TS |
5770 | case R_MIPS16_26: |
5771 | /* The calculation for R_MIPS16_26 is just the same as for an | |
5772 | R_MIPS_26. It's only the storage of the relocated field into | |
5773 | the output file that's different. That's handled in | |
5774 | mips_elf_perform_relocation. So, we just fall through to the | |
5775 | R_MIPS_26 case here. */ | |
5776 | case R_MIPS_26: | |
df58fc94 RS |
5777 | case R_MICROMIPS_26_S1: |
5778 | { | |
5779 | unsigned int shift; | |
5780 | ||
5781 | /* Make sure the target of JALX is word-aligned. Bit 0 must be | |
5782 | the correct ISA mode selector and bit 1 must be 0. */ | |
5783 | if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26)) | |
5784 | return bfd_reloc_outofrange; | |
5785 | ||
5786 | /* Shift is 2, unusually, for microMIPS JALX. */ | |
5787 | shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2; | |
5788 | ||
5789 | if (was_local_p) | |
5790 | value = addend | ((p + 4) & (0xfc000000 << shift)); | |
c3eb94b4 | 5791 | else if (howto->partial_inplace) |
df58fc94 | 5792 | value = _bfd_mips_elf_sign_extend (addend, 26 + shift); |
c3eb94b4 MF |
5793 | else |
5794 | value = addend; | |
df58fc94 RS |
5795 | value = (value + symbol) >> shift; |
5796 | if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak) | |
5797 | overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift)); | |
5798 | value &= howto->dst_mask; | |
5799 | } | |
b49e97c9 TS |
5800 | break; |
5801 | ||
0f20cc35 | 5802 | case R_MIPS_TLS_DTPREL_HI16: |
d0f13682 | 5803 | case R_MIPS16_TLS_DTPREL_HI16: |
df58fc94 | 5804 | case R_MICROMIPS_TLS_DTPREL_HI16: |
0f20cc35 DJ |
5805 | value = (mips_elf_high (addend + symbol - dtprel_base (info)) |
5806 | & howto->dst_mask); | |
5807 | break; | |
5808 | ||
5809 | case R_MIPS_TLS_DTPREL_LO16: | |
741d6ea8 JM |
5810 | case R_MIPS_TLS_DTPREL32: |
5811 | case R_MIPS_TLS_DTPREL64: | |
d0f13682 | 5812 | case R_MIPS16_TLS_DTPREL_LO16: |
df58fc94 | 5813 | case R_MICROMIPS_TLS_DTPREL_LO16: |
0f20cc35 DJ |
5814 | value = (symbol + addend - dtprel_base (info)) & howto->dst_mask; |
5815 | break; | |
5816 | ||
5817 | case R_MIPS_TLS_TPREL_HI16: | |
d0f13682 | 5818 | case R_MIPS16_TLS_TPREL_HI16: |
df58fc94 | 5819 | case R_MICROMIPS_TLS_TPREL_HI16: |
0f20cc35 DJ |
5820 | value = (mips_elf_high (addend + symbol - tprel_base (info)) |
5821 | & howto->dst_mask); | |
5822 | break; | |
5823 | ||
5824 | case R_MIPS_TLS_TPREL_LO16: | |
d0f13682 CLT |
5825 | case R_MIPS_TLS_TPREL32: |
5826 | case R_MIPS_TLS_TPREL64: | |
5827 | case R_MIPS16_TLS_TPREL_LO16: | |
df58fc94 | 5828 | case R_MICROMIPS_TLS_TPREL_LO16: |
0f20cc35 DJ |
5829 | value = (symbol + addend - tprel_base (info)) & howto->dst_mask; |
5830 | break; | |
5831 | ||
b49e97c9 | 5832 | case R_MIPS_HI16: |
d6f16593 | 5833 | case R_MIPS16_HI16: |
df58fc94 | 5834 | case R_MICROMIPS_HI16: |
b49e97c9 TS |
5835 | if (!gp_disp_p) |
5836 | { | |
5837 | value = mips_elf_high (addend + symbol); | |
5838 | value &= howto->dst_mask; | |
5839 | } | |
5840 | else | |
5841 | { | |
d6f16593 MR |
5842 | /* For MIPS16 ABI code we generate this sequence |
5843 | 0: li $v0,%hi(_gp_disp) | |
5844 | 4: addiupc $v1,%lo(_gp_disp) | |
5845 | 8: sll $v0,16 | |
5846 | 12: addu $v0,$v1 | |
5847 | 14: move $gp,$v0 | |
5848 | So the offsets of hi and lo relocs are the same, but the | |
888b9c01 CLT |
5849 | base $pc is that used by the ADDIUPC instruction at $t9 + 4. |
5850 | ADDIUPC clears the low two bits of the instruction address, | |
5851 | so the base is ($t9 + 4) & ~3. */ | |
d6f16593 | 5852 | if (r_type == R_MIPS16_HI16) |
888b9c01 | 5853 | value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3)); |
df58fc94 RS |
5854 | /* The microMIPS .cpload sequence uses the same assembly |
5855 | instructions as the traditional psABI version, but the | |
5856 | incoming $t9 has the low bit set. */ | |
5857 | else if (r_type == R_MICROMIPS_HI16) | |
5858 | value = mips_elf_high (addend + gp - p - 1); | |
d6f16593 MR |
5859 | else |
5860 | value = mips_elf_high (addend + gp - p); | |
b49e97c9 TS |
5861 | overflowed_p = mips_elf_overflow_p (value, 16); |
5862 | } | |
5863 | break; | |
5864 | ||
5865 | case R_MIPS_LO16: | |
d6f16593 | 5866 | case R_MIPS16_LO16: |
df58fc94 RS |
5867 | case R_MICROMIPS_LO16: |
5868 | case R_MICROMIPS_HI0_LO16: | |
b49e97c9 TS |
5869 | if (!gp_disp_p) |
5870 | value = (symbol + addend) & howto->dst_mask; | |
5871 | else | |
5872 | { | |
d6f16593 MR |
5873 | /* See the comment for R_MIPS16_HI16 above for the reason |
5874 | for this conditional. */ | |
5875 | if (r_type == R_MIPS16_LO16) | |
888b9c01 | 5876 | value = addend + gp - (p & ~(bfd_vma) 0x3); |
df58fc94 RS |
5877 | else if (r_type == R_MICROMIPS_LO16 |
5878 | || r_type == R_MICROMIPS_HI0_LO16) | |
5879 | value = addend + gp - p + 3; | |
d6f16593 MR |
5880 | else |
5881 | value = addend + gp - p + 4; | |
b49e97c9 | 5882 | /* The MIPS ABI requires checking the R_MIPS_LO16 relocation |
8dc1a139 | 5883 | for overflow. But, on, say, IRIX5, relocations against |
b49e97c9 TS |
5884 | _gp_disp are normally generated from the .cpload |
5885 | pseudo-op. It generates code that normally looks like | |
5886 | this: | |
5887 | ||
5888 | lui $gp,%hi(_gp_disp) | |
5889 | addiu $gp,$gp,%lo(_gp_disp) | |
5890 | addu $gp,$gp,$t9 | |
5891 | ||
5892 | Here $t9 holds the address of the function being called, | |
5893 | as required by the MIPS ELF ABI. The R_MIPS_LO16 | |
5894 | relocation can easily overflow in this situation, but the | |
5895 | R_MIPS_HI16 relocation will handle the overflow. | |
5896 | Therefore, we consider this a bug in the MIPS ABI, and do | |
5897 | not check for overflow here. */ | |
5898 | } | |
5899 | break; | |
5900 | ||
5901 | case R_MIPS_LITERAL: | |
df58fc94 | 5902 | case R_MICROMIPS_LITERAL: |
b49e97c9 TS |
5903 | /* Because we don't merge literal sections, we can handle this |
5904 | just like R_MIPS_GPREL16. In the long run, we should merge | |
5905 | shared literals, and then we will need to additional work | |
5906 | here. */ | |
5907 | ||
5908 | /* Fall through. */ | |
5909 | ||
5910 | case R_MIPS16_GPREL: | |
5911 | /* The R_MIPS16_GPREL performs the same calculation as | |
5912 | R_MIPS_GPREL16, but stores the relocated bits in a different | |
5913 | order. We don't need to do anything special here; the | |
5914 | differences are handled in mips_elf_perform_relocation. */ | |
5915 | case R_MIPS_GPREL16: | |
df58fc94 RS |
5916 | case R_MICROMIPS_GPREL7_S2: |
5917 | case R_MICROMIPS_GPREL16: | |
bce03d3d AO |
5918 | /* Only sign-extend the addend if it was extracted from the |
5919 | instruction. If the addend was separate, leave it alone, | |
5920 | otherwise we may lose significant bits. */ | |
5921 | if (howto->partial_inplace) | |
a7ebbfdf | 5922 | addend = _bfd_mips_elf_sign_extend (addend, 16); |
bce03d3d AO |
5923 | value = symbol + addend - gp; |
5924 | /* If the symbol was local, any earlier relocatable links will | |
5925 | have adjusted its addend with the gp offset, so compensate | |
5926 | for that now. Don't do it for symbols forced local in this | |
5927 | link, though, since they won't have had the gp offset applied | |
5928 | to them before. */ | |
5929 | if (was_local_p) | |
5930 | value += gp0; | |
b49e97c9 TS |
5931 | overflowed_p = mips_elf_overflow_p (value, 16); |
5932 | break; | |
5933 | ||
738e5348 RS |
5934 | case R_MIPS16_GOT16: |
5935 | case R_MIPS16_CALL16: | |
b49e97c9 TS |
5936 | case R_MIPS_GOT16: |
5937 | case R_MIPS_CALL16: | |
df58fc94 RS |
5938 | case R_MICROMIPS_GOT16: |
5939 | case R_MICROMIPS_CALL16: | |
0a44bf69 | 5940 | /* VxWorks does not have separate local and global semantics for |
738e5348 | 5941 | R_MIPS*_GOT16; every relocation evaluates to "G". */ |
0a44bf69 | 5942 | if (!htab->is_vxworks && local_p) |
b49e97c9 | 5943 | { |
5c18022e | 5944 | value = mips_elf_got16_entry (abfd, input_bfd, info, |
020d7251 | 5945 | symbol + addend, !was_local_p); |
b49e97c9 TS |
5946 | if (value == MINUS_ONE) |
5947 | return bfd_reloc_outofrange; | |
5948 | value | |
a8028dd0 | 5949 | = mips_elf_got_offset_from_index (info, abfd, input_bfd, value); |
b49e97c9 TS |
5950 | overflowed_p = mips_elf_overflow_p (value, 16); |
5951 | break; | |
5952 | } | |
5953 | ||
5954 | /* Fall through. */ | |
5955 | ||
0f20cc35 DJ |
5956 | case R_MIPS_TLS_GD: |
5957 | case R_MIPS_TLS_GOTTPREL: | |
5958 | case R_MIPS_TLS_LDM: | |
b49e97c9 | 5959 | case R_MIPS_GOT_DISP: |
d0f13682 CLT |
5960 | case R_MIPS16_TLS_GD: |
5961 | case R_MIPS16_TLS_GOTTPREL: | |
5962 | case R_MIPS16_TLS_LDM: | |
df58fc94 RS |
5963 | case R_MICROMIPS_TLS_GD: |
5964 | case R_MICROMIPS_TLS_GOTTPREL: | |
5965 | case R_MICROMIPS_TLS_LDM: | |
5966 | case R_MICROMIPS_GOT_DISP: | |
b49e97c9 TS |
5967 | value = g; |
5968 | overflowed_p = mips_elf_overflow_p (value, 16); | |
5969 | break; | |
5970 | ||
5971 | case R_MIPS_GPREL32: | |
bce03d3d AO |
5972 | value = (addend + symbol + gp0 - gp); |
5973 | if (!save_addend) | |
5974 | value &= howto->dst_mask; | |
b49e97c9 TS |
5975 | break; |
5976 | ||
5977 | case R_MIPS_PC16: | |
bad36eac | 5978 | case R_MIPS_GNU_REL16_S2: |
c3eb94b4 MF |
5979 | if (howto->partial_inplace) |
5980 | addend = _bfd_mips_elf_sign_extend (addend, 18); | |
5981 | ||
5982 | if ((symbol + addend) & 3) | |
5983 | return bfd_reloc_outofrange; | |
5984 | ||
5985 | value = symbol + addend - p; | |
bad36eac | 5986 | overflowed_p = mips_elf_overflow_p (value, 18); |
37caec6b TS |
5987 | value >>= howto->rightshift; |
5988 | value &= howto->dst_mask; | |
b49e97c9 TS |
5989 | break; |
5990 | ||
7361da2c AB |
5991 | case R_MIPS_PC21_S2: |
5992 | if (howto->partial_inplace) | |
5993 | addend = _bfd_mips_elf_sign_extend (addend, 23); | |
5994 | ||
5995 | if ((symbol + addend) & 3) | |
5996 | return bfd_reloc_outofrange; | |
5997 | ||
5998 | value = symbol + addend - p; | |
5999 | overflowed_p = mips_elf_overflow_p (value, 23); | |
6000 | value >>= howto->rightshift; | |
6001 | value &= howto->dst_mask; | |
6002 | break; | |
6003 | ||
6004 | case R_MIPS_PC26_S2: | |
6005 | if (howto->partial_inplace) | |
6006 | addend = _bfd_mips_elf_sign_extend (addend, 28); | |
6007 | ||
6008 | if ((symbol + addend) & 3) | |
6009 | return bfd_reloc_outofrange; | |
6010 | ||
6011 | value = symbol + addend - p; | |
6012 | overflowed_p = mips_elf_overflow_p (value, 28); | |
6013 | value >>= howto->rightshift; | |
6014 | value &= howto->dst_mask; | |
6015 | break; | |
6016 | ||
6017 | case R_MIPS_PC18_S3: | |
6018 | if (howto->partial_inplace) | |
6019 | addend = _bfd_mips_elf_sign_extend (addend, 21); | |
6020 | ||
6021 | if ((symbol + addend) & 7) | |
6022 | return bfd_reloc_outofrange; | |
6023 | ||
6024 | value = symbol + addend - ((p | 7) ^ 7); | |
6025 | overflowed_p = mips_elf_overflow_p (value, 21); | |
6026 | value >>= howto->rightshift; | |
6027 | value &= howto->dst_mask; | |
6028 | break; | |
6029 | ||
6030 | case R_MIPS_PC19_S2: | |
6031 | if (howto->partial_inplace) | |
6032 | addend = _bfd_mips_elf_sign_extend (addend, 21); | |
6033 | ||
6034 | if ((symbol + addend) & 3) | |
6035 | return bfd_reloc_outofrange; | |
6036 | ||
6037 | value = symbol + addend - p; | |
6038 | overflowed_p = mips_elf_overflow_p (value, 21); | |
6039 | value >>= howto->rightshift; | |
6040 | value &= howto->dst_mask; | |
6041 | break; | |
6042 | ||
6043 | case R_MIPS_PCHI16: | |
6044 | value = mips_elf_high (symbol + addend - p); | |
6045 | overflowed_p = mips_elf_overflow_p (value, 16); | |
6046 | value &= howto->dst_mask; | |
6047 | break; | |
6048 | ||
6049 | case R_MIPS_PCLO16: | |
6050 | if (howto->partial_inplace) | |
6051 | addend = _bfd_mips_elf_sign_extend (addend, 16); | |
6052 | value = symbol + addend - p; | |
6053 | value &= howto->dst_mask; | |
6054 | break; | |
6055 | ||
df58fc94 | 6056 | case R_MICROMIPS_PC7_S1: |
c3eb94b4 MF |
6057 | if (howto->partial_inplace) |
6058 | addend = _bfd_mips_elf_sign_extend (addend, 8); | |
6059 | value = symbol + addend - p; | |
df58fc94 RS |
6060 | overflowed_p = mips_elf_overflow_p (value, 8); |
6061 | value >>= howto->rightshift; | |
6062 | value &= howto->dst_mask; | |
6063 | break; | |
6064 | ||
6065 | case R_MICROMIPS_PC10_S1: | |
c3eb94b4 MF |
6066 | if (howto->partial_inplace) |
6067 | addend = _bfd_mips_elf_sign_extend (addend, 11); | |
6068 | value = symbol + addend - p; | |
df58fc94 RS |
6069 | overflowed_p = mips_elf_overflow_p (value, 11); |
6070 | value >>= howto->rightshift; | |
6071 | value &= howto->dst_mask; | |
6072 | break; | |
6073 | ||
6074 | case R_MICROMIPS_PC16_S1: | |
c3eb94b4 MF |
6075 | if (howto->partial_inplace) |
6076 | addend = _bfd_mips_elf_sign_extend (addend, 17); | |
6077 | value = symbol + addend - p; | |
df58fc94 RS |
6078 | overflowed_p = mips_elf_overflow_p (value, 17); |
6079 | value >>= howto->rightshift; | |
6080 | value &= howto->dst_mask; | |
6081 | break; | |
6082 | ||
6083 | case R_MICROMIPS_PC23_S2: | |
c3eb94b4 MF |
6084 | if (howto->partial_inplace) |
6085 | addend = _bfd_mips_elf_sign_extend (addend, 25); | |
6086 | value = symbol + addend - ((p | 3) ^ 3); | |
df58fc94 RS |
6087 | overflowed_p = mips_elf_overflow_p (value, 25); |
6088 | value >>= howto->rightshift; | |
6089 | value &= howto->dst_mask; | |
6090 | break; | |
6091 | ||
b49e97c9 TS |
6092 | case R_MIPS_GOT_HI16: |
6093 | case R_MIPS_CALL_HI16: | |
df58fc94 RS |
6094 | case R_MICROMIPS_GOT_HI16: |
6095 | case R_MICROMIPS_CALL_HI16: | |
b49e97c9 TS |
6096 | /* We're allowed to handle these two relocations identically. |
6097 | The dynamic linker is allowed to handle the CALL relocations | |
6098 | differently by creating a lazy evaluation stub. */ | |
6099 | value = g; | |
6100 | value = mips_elf_high (value); | |
6101 | value &= howto->dst_mask; | |
6102 | break; | |
6103 | ||
6104 | case R_MIPS_GOT_LO16: | |
6105 | case R_MIPS_CALL_LO16: | |
df58fc94 RS |
6106 | case R_MICROMIPS_GOT_LO16: |
6107 | case R_MICROMIPS_CALL_LO16: | |
b49e97c9 TS |
6108 | value = g & howto->dst_mask; |
6109 | break; | |
6110 | ||
6111 | case R_MIPS_GOT_PAGE: | |
df58fc94 | 6112 | case R_MICROMIPS_GOT_PAGE: |
5c18022e | 6113 | value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL); |
b49e97c9 TS |
6114 | if (value == MINUS_ONE) |
6115 | return bfd_reloc_outofrange; | |
a8028dd0 | 6116 | value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value); |
b49e97c9 TS |
6117 | overflowed_p = mips_elf_overflow_p (value, 16); |
6118 | break; | |
6119 | ||
6120 | case R_MIPS_GOT_OFST: | |
df58fc94 | 6121 | case R_MICROMIPS_GOT_OFST: |
93a2b7ae | 6122 | if (local_p) |
5c18022e | 6123 | mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value); |
0fdc1bf1 AO |
6124 | else |
6125 | value = addend; | |
b49e97c9 TS |
6126 | overflowed_p = mips_elf_overflow_p (value, 16); |
6127 | break; | |
6128 | ||
6129 | case R_MIPS_SUB: | |
df58fc94 | 6130 | case R_MICROMIPS_SUB: |
b49e97c9 TS |
6131 | value = symbol - addend; |
6132 | value &= howto->dst_mask; | |
6133 | break; | |
6134 | ||
6135 | case R_MIPS_HIGHER: | |
df58fc94 | 6136 | case R_MICROMIPS_HIGHER: |
b49e97c9 TS |
6137 | value = mips_elf_higher (addend + symbol); |
6138 | value &= howto->dst_mask; | |
6139 | break; | |
6140 | ||
6141 | case R_MIPS_HIGHEST: | |
df58fc94 | 6142 | case R_MICROMIPS_HIGHEST: |
b49e97c9 TS |
6143 | value = mips_elf_highest (addend + symbol); |
6144 | value &= howto->dst_mask; | |
6145 | break; | |
6146 | ||
6147 | case R_MIPS_SCN_DISP: | |
df58fc94 | 6148 | case R_MICROMIPS_SCN_DISP: |
b49e97c9 TS |
6149 | value = symbol + addend - sec->output_offset; |
6150 | value &= howto->dst_mask; | |
6151 | break; | |
6152 | ||
b49e97c9 | 6153 | case R_MIPS_JALR: |
df58fc94 | 6154 | case R_MICROMIPS_JALR: |
1367d393 ILT |
6155 | /* This relocation is only a hint. In some cases, we optimize |
6156 | it into a bal instruction. But we don't try to optimize | |
5bbc5ae7 AN |
6157 | when the symbol does not resolve locally. */ |
6158 | if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root)) | |
1367d393 ILT |
6159 | return bfd_reloc_continue; |
6160 | value = symbol + addend; | |
6161 | break; | |
b49e97c9 | 6162 | |
1367d393 | 6163 | case R_MIPS_PJUMP: |
b49e97c9 TS |
6164 | case R_MIPS_GNU_VTINHERIT: |
6165 | case R_MIPS_GNU_VTENTRY: | |
6166 | /* We don't do anything with these at present. */ | |
6167 | return bfd_reloc_continue; | |
6168 | ||
6169 | default: | |
6170 | /* An unrecognized relocation type. */ | |
6171 | return bfd_reloc_notsupported; | |
6172 | } | |
6173 | ||
6174 | /* Store the VALUE for our caller. */ | |
6175 | *valuep = value; | |
6176 | return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok; | |
6177 | } | |
6178 | ||
6179 | /* Obtain the field relocated by RELOCATION. */ | |
6180 | ||
6181 | static bfd_vma | |
9719ad41 RS |
6182 | mips_elf_obtain_contents (reloc_howto_type *howto, |
6183 | const Elf_Internal_Rela *relocation, | |
6184 | bfd *input_bfd, bfd_byte *contents) | |
b49e97c9 TS |
6185 | { |
6186 | bfd_vma x; | |
6187 | bfd_byte *location = contents + relocation->r_offset; | |
6188 | ||
6189 | /* Obtain the bytes. */ | |
6190 | x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location); | |
6191 | ||
b49e97c9 TS |
6192 | return x; |
6193 | } | |
6194 | ||
6195 | /* It has been determined that the result of the RELOCATION is the | |
6196 | VALUE. Use HOWTO to place VALUE into the output file at the | |
6197 | appropriate position. The SECTION is the section to which the | |
68ffbac6 | 6198 | relocation applies. |
38a7df63 | 6199 | CROSS_MODE_JUMP_P is true if the relocation field |
df58fc94 | 6200 | is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa. |
b49e97c9 | 6201 | |
b34976b6 | 6202 | Returns FALSE if anything goes wrong. */ |
b49e97c9 | 6203 | |
b34976b6 | 6204 | static bfd_boolean |
9719ad41 RS |
6205 | mips_elf_perform_relocation (struct bfd_link_info *info, |
6206 | reloc_howto_type *howto, | |
6207 | const Elf_Internal_Rela *relocation, | |
6208 | bfd_vma value, bfd *input_bfd, | |
6209 | asection *input_section, bfd_byte *contents, | |
38a7df63 | 6210 | bfd_boolean cross_mode_jump_p) |
b49e97c9 TS |
6211 | { |
6212 | bfd_vma x; | |
6213 | bfd_byte *location; | |
6214 | int r_type = ELF_R_TYPE (input_bfd, relocation->r_info); | |
6215 | ||
6216 | /* Figure out where the relocation is occurring. */ | |
6217 | location = contents + relocation->r_offset; | |
6218 | ||
df58fc94 | 6219 | _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location); |
d6f16593 | 6220 | |
b49e97c9 TS |
6221 | /* Obtain the current value. */ |
6222 | x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents); | |
6223 | ||
6224 | /* Clear the field we are setting. */ | |
6225 | x &= ~howto->dst_mask; | |
6226 | ||
b49e97c9 TS |
6227 | /* Set the field. */ |
6228 | x |= (value & howto->dst_mask); | |
6229 | ||
6230 | /* If required, turn JAL into JALX. */ | |
38a7df63 | 6231 | if (cross_mode_jump_p && jal_reloc_p (r_type)) |
b49e97c9 | 6232 | { |
b34976b6 | 6233 | bfd_boolean ok; |
b49e97c9 TS |
6234 | bfd_vma opcode = x >> 26; |
6235 | bfd_vma jalx_opcode; | |
6236 | ||
6237 | /* Check to see if the opcode is already JAL or JALX. */ | |
6238 | if (r_type == R_MIPS16_26) | |
6239 | { | |
6240 | ok = ((opcode == 0x6) || (opcode == 0x7)); | |
6241 | jalx_opcode = 0x7; | |
6242 | } | |
df58fc94 RS |
6243 | else if (r_type == R_MICROMIPS_26_S1) |
6244 | { | |
6245 | ok = ((opcode == 0x3d) || (opcode == 0x3c)); | |
6246 | jalx_opcode = 0x3c; | |
6247 | } | |
b49e97c9 TS |
6248 | else |
6249 | { | |
6250 | ok = ((opcode == 0x3) || (opcode == 0x1d)); | |
6251 | jalx_opcode = 0x1d; | |
6252 | } | |
6253 | ||
3bdf9505 MR |
6254 | /* If the opcode is not JAL or JALX, there's a problem. We cannot |
6255 | convert J or JALS to JALX. */ | |
b49e97c9 TS |
6256 | if (!ok) |
6257 | { | |
6258 | (*_bfd_error_handler) | |
3bdf9505 | 6259 | (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."), |
d003868e AM |
6260 | input_bfd, |
6261 | input_section, | |
b49e97c9 TS |
6262 | (unsigned long) relocation->r_offset); |
6263 | bfd_set_error (bfd_error_bad_value); | |
b34976b6 | 6264 | return FALSE; |
b49e97c9 TS |
6265 | } |
6266 | ||
6267 | /* Make this the JALX opcode. */ | |
6268 | x = (x & ~(0x3f << 26)) | (jalx_opcode << 26); | |
6269 | } | |
6270 | ||
38a7df63 CF |
6271 | /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in |
6272 | range. */ | |
cd8d5a82 | 6273 | if (!info->relocatable |
38a7df63 | 6274 | && !cross_mode_jump_p |
cd8d5a82 CF |
6275 | && ((JAL_TO_BAL_P (input_bfd) |
6276 | && r_type == R_MIPS_26 | |
6277 | && (x >> 26) == 0x3) /* jal addr */ | |
6278 | || (JALR_TO_BAL_P (input_bfd) | |
6279 | && r_type == R_MIPS_JALR | |
38a7df63 CF |
6280 | && x == 0x0320f809) /* jalr t9 */ |
6281 | || (JR_TO_B_P (input_bfd) | |
6282 | && r_type == R_MIPS_JALR | |
6283 | && x == 0x03200008))) /* jr t9 */ | |
1367d393 ILT |
6284 | { |
6285 | bfd_vma addr; | |
6286 | bfd_vma dest; | |
6287 | bfd_signed_vma off; | |
6288 | ||
6289 | addr = (input_section->output_section->vma | |
6290 | + input_section->output_offset | |
6291 | + relocation->r_offset | |
6292 | + 4); | |
6293 | if (r_type == R_MIPS_26) | |
6294 | dest = (value << 2) | ((addr >> 28) << 28); | |
6295 | else | |
6296 | dest = value; | |
6297 | off = dest - addr; | |
6298 | if (off <= 0x1ffff && off >= -0x20000) | |
38a7df63 CF |
6299 | { |
6300 | if (x == 0x03200008) /* jr t9 */ | |
6301 | x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */ | |
6302 | else | |
6303 | x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */ | |
6304 | } | |
1367d393 ILT |
6305 | } |
6306 | ||
b49e97c9 TS |
6307 | /* Put the value into the output. */ |
6308 | bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location); | |
d6f16593 | 6309 | |
df58fc94 RS |
6310 | _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable, |
6311 | location); | |
d6f16593 | 6312 | |
b34976b6 | 6313 | return TRUE; |
b49e97c9 | 6314 | } |
b49e97c9 | 6315 | \f |
b49e97c9 TS |
6316 | /* Create a rel.dyn relocation for the dynamic linker to resolve. REL |
6317 | is the original relocation, which is now being transformed into a | |
6318 | dynamic relocation. The ADDENDP is adjusted if necessary; the | |
6319 | caller should store the result in place of the original addend. */ | |
6320 | ||
b34976b6 | 6321 | static bfd_boolean |
9719ad41 RS |
6322 | mips_elf_create_dynamic_relocation (bfd *output_bfd, |
6323 | struct bfd_link_info *info, | |
6324 | const Elf_Internal_Rela *rel, | |
6325 | struct mips_elf_link_hash_entry *h, | |
6326 | asection *sec, bfd_vma symbol, | |
6327 | bfd_vma *addendp, asection *input_section) | |
b49e97c9 | 6328 | { |
947216bf | 6329 | Elf_Internal_Rela outrel[3]; |
b49e97c9 TS |
6330 | asection *sreloc; |
6331 | bfd *dynobj; | |
6332 | int r_type; | |
5d41f0b6 RS |
6333 | long indx; |
6334 | bfd_boolean defined_p; | |
0a44bf69 | 6335 | struct mips_elf_link_hash_table *htab; |
b49e97c9 | 6336 | |
0a44bf69 | 6337 | htab = mips_elf_hash_table (info); |
4dfe6ac6 NC |
6338 | BFD_ASSERT (htab != NULL); |
6339 | ||
b49e97c9 TS |
6340 | r_type = ELF_R_TYPE (output_bfd, rel->r_info); |
6341 | dynobj = elf_hash_table (info)->dynobj; | |
0a44bf69 | 6342 | sreloc = mips_elf_rel_dyn_section (info, FALSE); |
b49e97c9 TS |
6343 | BFD_ASSERT (sreloc != NULL); |
6344 | BFD_ASSERT (sreloc->contents != NULL); | |
6345 | BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd) | |
eea6121a | 6346 | < sreloc->size); |
b49e97c9 | 6347 | |
b49e97c9 TS |
6348 | outrel[0].r_offset = |
6349 | _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset); | |
9ddf8309 TS |
6350 | if (ABI_64_P (output_bfd)) |
6351 | { | |
6352 | outrel[1].r_offset = | |
6353 | _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset); | |
6354 | outrel[2].r_offset = | |
6355 | _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset); | |
6356 | } | |
b49e97c9 | 6357 | |
c5ae1840 | 6358 | if (outrel[0].r_offset == MINUS_ONE) |
0d591ff7 | 6359 | /* The relocation field has been deleted. */ |
5d41f0b6 RS |
6360 | return TRUE; |
6361 | ||
6362 | if (outrel[0].r_offset == MINUS_TWO) | |
0d591ff7 RS |
6363 | { |
6364 | /* The relocation field has been converted into a relative value of | |
6365 | some sort. Functions like _bfd_elf_write_section_eh_frame expect | |
6366 | the field to be fully relocated, so add in the symbol's value. */ | |
0d591ff7 | 6367 | *addendp += symbol; |
5d41f0b6 | 6368 | return TRUE; |
0d591ff7 | 6369 | } |
b49e97c9 | 6370 | |
5d41f0b6 RS |
6371 | /* We must now calculate the dynamic symbol table index to use |
6372 | in the relocation. */ | |
d4a77f3f | 6373 | if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root)) |
5d41f0b6 | 6374 | { |
020d7251 | 6375 | BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE); |
5d41f0b6 RS |
6376 | indx = h->root.dynindx; |
6377 | if (SGI_COMPAT (output_bfd)) | |
6378 | defined_p = h->root.def_regular; | |
6379 | else | |
6380 | /* ??? glibc's ld.so just adds the final GOT entry to the | |
6381 | relocation field. It therefore treats relocs against | |
6382 | defined symbols in the same way as relocs against | |
6383 | undefined symbols. */ | |
6384 | defined_p = FALSE; | |
6385 | } | |
b49e97c9 TS |
6386 | else |
6387 | { | |
5d41f0b6 RS |
6388 | if (sec != NULL && bfd_is_abs_section (sec)) |
6389 | indx = 0; | |
6390 | else if (sec == NULL || sec->owner == NULL) | |
fdd07405 | 6391 | { |
5d41f0b6 RS |
6392 | bfd_set_error (bfd_error_bad_value); |
6393 | return FALSE; | |
b49e97c9 TS |
6394 | } |
6395 | else | |
6396 | { | |
5d41f0b6 | 6397 | indx = elf_section_data (sec->output_section)->dynindx; |
74541ad4 AM |
6398 | if (indx == 0) |
6399 | { | |
6400 | asection *osec = htab->root.text_index_section; | |
6401 | indx = elf_section_data (osec)->dynindx; | |
6402 | } | |
5d41f0b6 RS |
6403 | if (indx == 0) |
6404 | abort (); | |
b49e97c9 TS |
6405 | } |
6406 | ||
5d41f0b6 RS |
6407 | /* Instead of generating a relocation using the section |
6408 | symbol, we may as well make it a fully relative | |
6409 | relocation. We want to avoid generating relocations to | |
6410 | local symbols because we used to generate them | |
6411 | incorrectly, without adding the original symbol value, | |
6412 | which is mandated by the ABI for section symbols. In | |
6413 | order to give dynamic loaders and applications time to | |
6414 | phase out the incorrect use, we refrain from emitting | |
6415 | section-relative relocations. It's not like they're | |
6416 | useful, after all. This should be a bit more efficient | |
6417 | as well. */ | |
6418 | /* ??? Although this behavior is compatible with glibc's ld.so, | |
6419 | the ABI says that relocations against STN_UNDEF should have | |
6420 | a symbol value of 0. Irix rld honors this, so relocations | |
6421 | against STN_UNDEF have no effect. */ | |
6422 | if (!SGI_COMPAT (output_bfd)) | |
6423 | indx = 0; | |
6424 | defined_p = TRUE; | |
b49e97c9 TS |
6425 | } |
6426 | ||
5d41f0b6 RS |
6427 | /* If the relocation was previously an absolute relocation and |
6428 | this symbol will not be referred to by the relocation, we must | |
6429 | adjust it by the value we give it in the dynamic symbol table. | |
6430 | Otherwise leave the job up to the dynamic linker. */ | |
6431 | if (defined_p && r_type != R_MIPS_REL32) | |
6432 | *addendp += symbol; | |
6433 | ||
0a44bf69 RS |
6434 | if (htab->is_vxworks) |
6435 | /* VxWorks uses non-relative relocations for this. */ | |
6436 | outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32); | |
6437 | else | |
6438 | /* The relocation is always an REL32 relocation because we don't | |
6439 | know where the shared library will wind up at load-time. */ | |
6440 | outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx, | |
6441 | R_MIPS_REL32); | |
6442 | ||
5d41f0b6 RS |
6443 | /* For strict adherence to the ABI specification, we should |
6444 | generate a R_MIPS_64 relocation record by itself before the | |
6445 | _REL32/_64 record as well, such that the addend is read in as | |
6446 | a 64-bit value (REL32 is a 32-bit relocation, after all). | |
6447 | However, since none of the existing ELF64 MIPS dynamic | |
6448 | loaders seems to care, we don't waste space with these | |
6449 | artificial relocations. If this turns out to not be true, | |
6450 | mips_elf_allocate_dynamic_relocation() should be tweaked so | |
6451 | as to make room for a pair of dynamic relocations per | |
6452 | invocation if ABI_64_P, and here we should generate an | |
6453 | additional relocation record with R_MIPS_64 by itself for a | |
6454 | NULL symbol before this relocation record. */ | |
6455 | outrel[1].r_info = ELF_R_INFO (output_bfd, 0, | |
6456 | ABI_64_P (output_bfd) | |
6457 | ? R_MIPS_64 | |
6458 | : R_MIPS_NONE); | |
6459 | outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE); | |
6460 | ||
6461 | /* Adjust the output offset of the relocation to reference the | |
6462 | correct location in the output file. */ | |
6463 | outrel[0].r_offset += (input_section->output_section->vma | |
6464 | + input_section->output_offset); | |
6465 | outrel[1].r_offset += (input_section->output_section->vma | |
6466 | + input_section->output_offset); | |
6467 | outrel[2].r_offset += (input_section->output_section->vma | |
6468 | + input_section->output_offset); | |
6469 | ||
b49e97c9 TS |
6470 | /* Put the relocation back out. We have to use the special |
6471 | relocation outputter in the 64-bit case since the 64-bit | |
6472 | relocation format is non-standard. */ | |
6473 | if (ABI_64_P (output_bfd)) | |
6474 | { | |
6475 | (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) | |
6476 | (output_bfd, &outrel[0], | |
6477 | (sreloc->contents | |
6478 | + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel))); | |
6479 | } | |
0a44bf69 RS |
6480 | else if (htab->is_vxworks) |
6481 | { | |
6482 | /* VxWorks uses RELA rather than REL dynamic relocations. */ | |
6483 | outrel[0].r_addend = *addendp; | |
6484 | bfd_elf32_swap_reloca_out | |
6485 | (output_bfd, &outrel[0], | |
6486 | (sreloc->contents | |
6487 | + sreloc->reloc_count * sizeof (Elf32_External_Rela))); | |
6488 | } | |
b49e97c9 | 6489 | else |
947216bf AM |
6490 | bfd_elf32_swap_reloc_out |
6491 | (output_bfd, &outrel[0], | |
6492 | (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel))); | |
b49e97c9 | 6493 | |
b49e97c9 TS |
6494 | /* We've now added another relocation. */ |
6495 | ++sreloc->reloc_count; | |
6496 | ||
6497 | /* Make sure the output section is writable. The dynamic linker | |
6498 | will be writing to it. */ | |
6499 | elf_section_data (input_section->output_section)->this_hdr.sh_flags | |
6500 | |= SHF_WRITE; | |
6501 | ||
6502 | /* On IRIX5, make an entry of compact relocation info. */ | |
5d41f0b6 | 6503 | if (IRIX_COMPAT (output_bfd) == ict_irix5) |
b49e97c9 | 6504 | { |
3d4d4302 | 6505 | asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel"); |
b49e97c9 TS |
6506 | bfd_byte *cr; |
6507 | ||
6508 | if (scpt) | |
6509 | { | |
6510 | Elf32_crinfo cptrel; | |
6511 | ||
6512 | mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG); | |
6513 | cptrel.vaddr = (rel->r_offset | |
6514 | + input_section->output_section->vma | |
6515 | + input_section->output_offset); | |
6516 | if (r_type == R_MIPS_REL32) | |
6517 | mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32); | |
6518 | else | |
6519 | mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD); | |
6520 | mips_elf_set_cr_dist2to (cptrel, 0); | |
6521 | cptrel.konst = *addendp; | |
6522 | ||
6523 | cr = (scpt->contents | |
6524 | + sizeof (Elf32_External_compact_rel)); | |
abc0f8d0 | 6525 | mips_elf_set_cr_relvaddr (cptrel, 0); |
b49e97c9 TS |
6526 | bfd_elf32_swap_crinfo_out (output_bfd, &cptrel, |
6527 | ((Elf32_External_crinfo *) cr | |
6528 | + scpt->reloc_count)); | |
6529 | ++scpt->reloc_count; | |
6530 | } | |
6531 | } | |
6532 | ||
943284cc DJ |
6533 | /* If we've written this relocation for a readonly section, |
6534 | we need to set DF_TEXTREL again, so that we do not delete the | |
6535 | DT_TEXTREL tag. */ | |
6536 | if (MIPS_ELF_READONLY_SECTION (input_section)) | |
6537 | info->flags |= DF_TEXTREL; | |
6538 | ||
b34976b6 | 6539 | return TRUE; |
b49e97c9 TS |
6540 | } |
6541 | \f | |
b49e97c9 TS |
6542 | /* Return the MACH for a MIPS e_flags value. */ |
6543 | ||
6544 | unsigned long | |
9719ad41 | 6545 | _bfd_elf_mips_mach (flagword flags) |
b49e97c9 TS |
6546 | { |
6547 | switch (flags & EF_MIPS_MACH) | |
6548 | { | |
6549 | case E_MIPS_MACH_3900: | |
6550 | return bfd_mach_mips3900; | |
6551 | ||
6552 | case E_MIPS_MACH_4010: | |
6553 | return bfd_mach_mips4010; | |
6554 | ||
6555 | case E_MIPS_MACH_4100: | |
6556 | return bfd_mach_mips4100; | |
6557 | ||
6558 | case E_MIPS_MACH_4111: | |
6559 | return bfd_mach_mips4111; | |
6560 | ||
00707a0e RS |
6561 | case E_MIPS_MACH_4120: |
6562 | return bfd_mach_mips4120; | |
6563 | ||
b49e97c9 TS |
6564 | case E_MIPS_MACH_4650: |
6565 | return bfd_mach_mips4650; | |
6566 | ||
00707a0e RS |
6567 | case E_MIPS_MACH_5400: |
6568 | return bfd_mach_mips5400; | |
6569 | ||
6570 | case E_MIPS_MACH_5500: | |
6571 | return bfd_mach_mips5500; | |
6572 | ||
e407c74b NC |
6573 | case E_MIPS_MACH_5900: |
6574 | return bfd_mach_mips5900; | |
6575 | ||
0d2e43ed ILT |
6576 | case E_MIPS_MACH_9000: |
6577 | return bfd_mach_mips9000; | |
6578 | ||
b49e97c9 TS |
6579 | case E_MIPS_MACH_SB1: |
6580 | return bfd_mach_mips_sb1; | |
6581 | ||
350cc38d MS |
6582 | case E_MIPS_MACH_LS2E: |
6583 | return bfd_mach_mips_loongson_2e; | |
6584 | ||
6585 | case E_MIPS_MACH_LS2F: | |
6586 | return bfd_mach_mips_loongson_2f; | |
6587 | ||
fd503541 NC |
6588 | case E_MIPS_MACH_LS3A: |
6589 | return bfd_mach_mips_loongson_3a; | |
6590 | ||
432233b3 AP |
6591 | case E_MIPS_MACH_OCTEON2: |
6592 | return bfd_mach_mips_octeon2; | |
6593 | ||
6f179bd0 AN |
6594 | case E_MIPS_MACH_OCTEON: |
6595 | return bfd_mach_mips_octeon; | |
6596 | ||
52b6b6b9 JM |
6597 | case E_MIPS_MACH_XLR: |
6598 | return bfd_mach_mips_xlr; | |
6599 | ||
b49e97c9 TS |
6600 | default: |
6601 | switch (flags & EF_MIPS_ARCH) | |
6602 | { | |
6603 | default: | |
6604 | case E_MIPS_ARCH_1: | |
6605 | return bfd_mach_mips3000; | |
b49e97c9 TS |
6606 | |
6607 | case E_MIPS_ARCH_2: | |
6608 | return bfd_mach_mips6000; | |
b49e97c9 TS |
6609 | |
6610 | case E_MIPS_ARCH_3: | |
6611 | return bfd_mach_mips4000; | |
b49e97c9 TS |
6612 | |
6613 | case E_MIPS_ARCH_4: | |
6614 | return bfd_mach_mips8000; | |
b49e97c9 TS |
6615 | |
6616 | case E_MIPS_ARCH_5: | |
6617 | return bfd_mach_mips5; | |
b49e97c9 TS |
6618 | |
6619 | case E_MIPS_ARCH_32: | |
6620 | return bfd_mach_mipsisa32; | |
b49e97c9 TS |
6621 | |
6622 | case E_MIPS_ARCH_64: | |
6623 | return bfd_mach_mipsisa64; | |
af7ee8bf CD |
6624 | |
6625 | case E_MIPS_ARCH_32R2: | |
6626 | return bfd_mach_mipsisa32r2; | |
5f74bc13 CD |
6627 | |
6628 | case E_MIPS_ARCH_64R2: | |
6629 | return bfd_mach_mipsisa64r2; | |
7361da2c AB |
6630 | |
6631 | case E_MIPS_ARCH_32R6: | |
6632 | return bfd_mach_mipsisa32r6; | |
6633 | ||
6634 | case E_MIPS_ARCH_64R6: | |
6635 | return bfd_mach_mipsisa64r6; | |
b49e97c9 TS |
6636 | } |
6637 | } | |
6638 | ||
6639 | return 0; | |
6640 | } | |
6641 | ||
6642 | /* Return printable name for ABI. */ | |
6643 | ||
6644 | static INLINE char * | |
9719ad41 | 6645 | elf_mips_abi_name (bfd *abfd) |
b49e97c9 TS |
6646 | { |
6647 | flagword flags; | |
6648 | ||
6649 | flags = elf_elfheader (abfd)->e_flags; | |
6650 | switch (flags & EF_MIPS_ABI) | |
6651 | { | |
6652 | case 0: | |
6653 | if (ABI_N32_P (abfd)) | |
6654 | return "N32"; | |
6655 | else if (ABI_64_P (abfd)) | |
6656 | return "64"; | |
6657 | else | |
6658 | return "none"; | |
6659 | case E_MIPS_ABI_O32: | |
6660 | return "O32"; | |
6661 | case E_MIPS_ABI_O64: | |
6662 | return "O64"; | |
6663 | case E_MIPS_ABI_EABI32: | |
6664 | return "EABI32"; | |
6665 | case E_MIPS_ABI_EABI64: | |
6666 | return "EABI64"; | |
6667 | default: | |
6668 | return "unknown abi"; | |
6669 | } | |
6670 | } | |
6671 | \f | |
6672 | /* MIPS ELF uses two common sections. One is the usual one, and the | |
6673 | other is for small objects. All the small objects are kept | |
6674 | together, and then referenced via the gp pointer, which yields | |
6675 | faster assembler code. This is what we use for the small common | |
6676 | section. This approach is copied from ecoff.c. */ | |
6677 | static asection mips_elf_scom_section; | |
6678 | static asymbol mips_elf_scom_symbol; | |
6679 | static asymbol *mips_elf_scom_symbol_ptr; | |
6680 | ||
6681 | /* MIPS ELF also uses an acommon section, which represents an | |
6682 | allocated common symbol which may be overridden by a | |
6683 | definition in a shared library. */ | |
6684 | static asection mips_elf_acom_section; | |
6685 | static asymbol mips_elf_acom_symbol; | |
6686 | static asymbol *mips_elf_acom_symbol_ptr; | |
6687 | ||
738e5348 | 6688 | /* This is used for both the 32-bit and the 64-bit ABI. */ |
b49e97c9 TS |
6689 | |
6690 | void | |
9719ad41 | 6691 | _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym) |
b49e97c9 TS |
6692 | { |
6693 | elf_symbol_type *elfsym; | |
6694 | ||
738e5348 | 6695 | /* Handle the special MIPS section numbers that a symbol may use. */ |
b49e97c9 TS |
6696 | elfsym = (elf_symbol_type *) asym; |
6697 | switch (elfsym->internal_elf_sym.st_shndx) | |
6698 | { | |
6699 | case SHN_MIPS_ACOMMON: | |
6700 | /* This section is used in a dynamically linked executable file. | |
6701 | It is an allocated common section. The dynamic linker can | |
6702 | either resolve these symbols to something in a shared | |
6703 | library, or it can just leave them here. For our purposes, | |
6704 | we can consider these symbols to be in a new section. */ | |
6705 | if (mips_elf_acom_section.name == NULL) | |
6706 | { | |
6707 | /* Initialize the acommon section. */ | |
6708 | mips_elf_acom_section.name = ".acommon"; | |
6709 | mips_elf_acom_section.flags = SEC_ALLOC; | |
6710 | mips_elf_acom_section.output_section = &mips_elf_acom_section; | |
6711 | mips_elf_acom_section.symbol = &mips_elf_acom_symbol; | |
6712 | mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr; | |
6713 | mips_elf_acom_symbol.name = ".acommon"; | |
6714 | mips_elf_acom_symbol.flags = BSF_SECTION_SYM; | |
6715 | mips_elf_acom_symbol.section = &mips_elf_acom_section; | |
6716 | mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol; | |
6717 | } | |
6718 | asym->section = &mips_elf_acom_section; | |
6719 | break; | |
6720 | ||
6721 | case SHN_COMMON: | |
6722 | /* Common symbols less than the GP size are automatically | |
6723 | treated as SHN_MIPS_SCOMMON symbols on IRIX5. */ | |
6724 | if (asym->value > elf_gp_size (abfd) | |
b59eed79 | 6725 | || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS |
b49e97c9 TS |
6726 | || IRIX_COMPAT (abfd) == ict_irix6) |
6727 | break; | |
6728 | /* Fall through. */ | |
6729 | case SHN_MIPS_SCOMMON: | |
6730 | if (mips_elf_scom_section.name == NULL) | |
6731 | { | |
6732 | /* Initialize the small common section. */ | |
6733 | mips_elf_scom_section.name = ".scommon"; | |
6734 | mips_elf_scom_section.flags = SEC_IS_COMMON; | |
6735 | mips_elf_scom_section.output_section = &mips_elf_scom_section; | |
6736 | mips_elf_scom_section.symbol = &mips_elf_scom_symbol; | |
6737 | mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr; | |
6738 | mips_elf_scom_symbol.name = ".scommon"; | |
6739 | mips_elf_scom_symbol.flags = BSF_SECTION_SYM; | |
6740 | mips_elf_scom_symbol.section = &mips_elf_scom_section; | |
6741 | mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol; | |
6742 | } | |
6743 | asym->section = &mips_elf_scom_section; | |
6744 | asym->value = elfsym->internal_elf_sym.st_size; | |
6745 | break; | |
6746 | ||
6747 | case SHN_MIPS_SUNDEFINED: | |
6748 | asym->section = bfd_und_section_ptr; | |
6749 | break; | |
6750 | ||
b49e97c9 | 6751 | case SHN_MIPS_TEXT: |
00b4930b TS |
6752 | { |
6753 | asection *section = bfd_get_section_by_name (abfd, ".text"); | |
6754 | ||
00b4930b TS |
6755 | if (section != NULL) |
6756 | { | |
6757 | asym->section = section; | |
6758 | /* MIPS_TEXT is a bit special, the address is not an offset | |
6759 | to the base of the .text section. So substract the section | |
6760 | base address to make it an offset. */ | |
6761 | asym->value -= section->vma; | |
6762 | } | |
6763 | } | |
b49e97c9 TS |
6764 | break; |
6765 | ||
6766 | case SHN_MIPS_DATA: | |
00b4930b TS |
6767 | { |
6768 | asection *section = bfd_get_section_by_name (abfd, ".data"); | |
6769 | ||
00b4930b TS |
6770 | if (section != NULL) |
6771 | { | |
6772 | asym->section = section; | |
6773 | /* MIPS_DATA is a bit special, the address is not an offset | |
6774 | to the base of the .data section. So substract the section | |
6775 | base address to make it an offset. */ | |
6776 | asym->value -= section->vma; | |
6777 | } | |
6778 | } | |
b49e97c9 | 6779 | break; |
b49e97c9 | 6780 | } |
738e5348 | 6781 | |
df58fc94 RS |
6782 | /* If this is an odd-valued function symbol, assume it's a MIPS16 |
6783 | or microMIPS one. */ | |
738e5348 RS |
6784 | if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC |
6785 | && (asym->value & 1) != 0) | |
6786 | { | |
6787 | asym->value--; | |
e8faf7d1 | 6788 | if (MICROMIPS_P (abfd)) |
df58fc94 RS |
6789 | elfsym->internal_elf_sym.st_other |
6790 | = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other); | |
6791 | else | |
6792 | elfsym->internal_elf_sym.st_other | |
6793 | = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other); | |
738e5348 | 6794 | } |
b49e97c9 TS |
6795 | } |
6796 | \f | |
8c946ed5 RS |
6797 | /* Implement elf_backend_eh_frame_address_size. This differs from |
6798 | the default in the way it handles EABI64. | |
6799 | ||
6800 | EABI64 was originally specified as an LP64 ABI, and that is what | |
6801 | -mabi=eabi normally gives on a 64-bit target. However, gcc has | |
6802 | historically accepted the combination of -mabi=eabi and -mlong32, | |
6803 | and this ILP32 variation has become semi-official over time. | |
6804 | Both forms use elf32 and have pointer-sized FDE addresses. | |
6805 | ||
6806 | If an EABI object was generated by GCC 4.0 or above, it will have | |
6807 | an empty .gcc_compiled_longXX section, where XX is the size of longs | |
6808 | in bits. Unfortunately, ILP32 objects generated by earlier compilers | |
6809 | have no special marking to distinguish them from LP64 objects. | |
6810 | ||
6811 | We don't want users of the official LP64 ABI to be punished for the | |
6812 | existence of the ILP32 variant, but at the same time, we don't want | |
6813 | to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects. | |
6814 | We therefore take the following approach: | |
6815 | ||
6816 | - If ABFD contains a .gcc_compiled_longXX section, use it to | |
6817 | determine the pointer size. | |
6818 | ||
6819 | - Otherwise check the type of the first relocation. Assume that | |
6820 | the LP64 ABI is being used if the relocation is of type R_MIPS_64. | |
6821 | ||
6822 | - Otherwise punt. | |
6823 | ||
6824 | The second check is enough to detect LP64 objects generated by pre-4.0 | |
6825 | compilers because, in the kind of output generated by those compilers, | |
6826 | the first relocation will be associated with either a CIE personality | |
6827 | routine or an FDE start address. Furthermore, the compilers never | |
6828 | used a special (non-pointer) encoding for this ABI. | |
6829 | ||
6830 | Checking the relocation type should also be safe because there is no | |
6831 | reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never | |
6832 | did so. */ | |
6833 | ||
6834 | unsigned int | |
6835 | _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec) | |
6836 | { | |
6837 | if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) | |
6838 | return 8; | |
6839 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) | |
6840 | { | |
6841 | bfd_boolean long32_p, long64_p; | |
6842 | ||
6843 | long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0; | |
6844 | long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0; | |
6845 | if (long32_p && long64_p) | |
6846 | return 0; | |
6847 | if (long32_p) | |
6848 | return 4; | |
6849 | if (long64_p) | |
6850 | return 8; | |
6851 | ||
6852 | if (sec->reloc_count > 0 | |
6853 | && elf_section_data (sec)->relocs != NULL | |
6854 | && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info) | |
6855 | == R_MIPS_64)) | |
6856 | return 8; | |
6857 | ||
6858 | return 0; | |
6859 | } | |
6860 | return 4; | |
6861 | } | |
6862 | \f | |
174fd7f9 RS |
6863 | /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP |
6864 | relocations against two unnamed section symbols to resolve to the | |
6865 | same address. For example, if we have code like: | |
6866 | ||
6867 | lw $4,%got_disp(.data)($gp) | |
6868 | lw $25,%got_disp(.text)($gp) | |
6869 | jalr $25 | |
6870 | ||
6871 | then the linker will resolve both relocations to .data and the program | |
6872 | will jump there rather than to .text. | |
6873 | ||
6874 | We can work around this problem by giving names to local section symbols. | |
6875 | This is also what the MIPSpro tools do. */ | |
6876 | ||
6877 | bfd_boolean | |
6878 | _bfd_mips_elf_name_local_section_symbols (bfd *abfd) | |
6879 | { | |
6880 | return SGI_COMPAT (abfd); | |
6881 | } | |
6882 | \f | |
b49e97c9 TS |
6883 | /* Work over a section just before writing it out. This routine is |
6884 | used by both the 32-bit and the 64-bit ABI. FIXME: We recognize | |
6885 | sections that need the SHF_MIPS_GPREL flag by name; there has to be | |
6886 | a better way. */ | |
6887 | ||
b34976b6 | 6888 | bfd_boolean |
9719ad41 | 6889 | _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr) |
b49e97c9 TS |
6890 | { |
6891 | if (hdr->sh_type == SHT_MIPS_REGINFO | |
6892 | && hdr->sh_size > 0) | |
6893 | { | |
6894 | bfd_byte buf[4]; | |
6895 | ||
6896 | BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo)); | |
6897 | BFD_ASSERT (hdr->contents == NULL); | |
6898 | ||
6899 | if (bfd_seek (abfd, | |
6900 | hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4, | |
6901 | SEEK_SET) != 0) | |
b34976b6 | 6902 | return FALSE; |
b49e97c9 | 6903 | H_PUT_32 (abfd, elf_gp (abfd), buf); |
9719ad41 | 6904 | if (bfd_bwrite (buf, 4, abfd) != 4) |
b34976b6 | 6905 | return FALSE; |
b49e97c9 TS |
6906 | } |
6907 | ||
6908 | if (hdr->sh_type == SHT_MIPS_OPTIONS | |
6909 | && hdr->bfd_section != NULL | |
f0abc2a1 AM |
6910 | && mips_elf_section_data (hdr->bfd_section) != NULL |
6911 | && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL) | |
b49e97c9 TS |
6912 | { |
6913 | bfd_byte *contents, *l, *lend; | |
6914 | ||
f0abc2a1 AM |
6915 | /* We stored the section contents in the tdata field in the |
6916 | set_section_contents routine. We save the section contents | |
6917 | so that we don't have to read them again. | |
b49e97c9 TS |
6918 | At this point we know that elf_gp is set, so we can look |
6919 | through the section contents to see if there is an | |
6920 | ODK_REGINFO structure. */ | |
6921 | ||
f0abc2a1 | 6922 | contents = mips_elf_section_data (hdr->bfd_section)->u.tdata; |
b49e97c9 TS |
6923 | l = contents; |
6924 | lend = contents + hdr->sh_size; | |
6925 | while (l + sizeof (Elf_External_Options) <= lend) | |
6926 | { | |
6927 | Elf_Internal_Options intopt; | |
6928 | ||
6929 | bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, | |
6930 | &intopt); | |
1bc8074d MR |
6931 | if (intopt.size < sizeof (Elf_External_Options)) |
6932 | { | |
6933 | (*_bfd_error_handler) | |
6934 | (_("%B: Warning: bad `%s' option size %u smaller than its header"), | |
6935 | abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size); | |
6936 | break; | |
6937 | } | |
b49e97c9 TS |
6938 | if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) |
6939 | { | |
6940 | bfd_byte buf[8]; | |
6941 | ||
6942 | if (bfd_seek (abfd, | |
6943 | (hdr->sh_offset | |
6944 | + (l - contents) | |
6945 | + sizeof (Elf_External_Options) | |
6946 | + (sizeof (Elf64_External_RegInfo) - 8)), | |
6947 | SEEK_SET) != 0) | |
b34976b6 | 6948 | return FALSE; |
b49e97c9 | 6949 | H_PUT_64 (abfd, elf_gp (abfd), buf); |
9719ad41 | 6950 | if (bfd_bwrite (buf, 8, abfd) != 8) |
b34976b6 | 6951 | return FALSE; |
b49e97c9 TS |
6952 | } |
6953 | else if (intopt.kind == ODK_REGINFO) | |
6954 | { | |
6955 | bfd_byte buf[4]; | |
6956 | ||
6957 | if (bfd_seek (abfd, | |
6958 | (hdr->sh_offset | |
6959 | + (l - contents) | |
6960 | + sizeof (Elf_External_Options) | |
6961 | + (sizeof (Elf32_External_RegInfo) - 4)), | |
6962 | SEEK_SET) != 0) | |
b34976b6 | 6963 | return FALSE; |
b49e97c9 | 6964 | H_PUT_32 (abfd, elf_gp (abfd), buf); |
9719ad41 | 6965 | if (bfd_bwrite (buf, 4, abfd) != 4) |
b34976b6 | 6966 | return FALSE; |
b49e97c9 TS |
6967 | } |
6968 | l += intopt.size; | |
6969 | } | |
6970 | } | |
6971 | ||
6972 | if (hdr->bfd_section != NULL) | |
6973 | { | |
6974 | const char *name = bfd_get_section_name (abfd, hdr->bfd_section); | |
6975 | ||
2d0f9ad9 JM |
6976 | /* .sbss is not handled specially here because the GNU/Linux |
6977 | prelinker can convert .sbss from NOBITS to PROGBITS and | |
6978 | changing it back to NOBITS breaks the binary. The entry in | |
6979 | _bfd_mips_elf_special_sections will ensure the correct flags | |
6980 | are set on .sbss if BFD creates it without reading it from an | |
6981 | input file, and without special handling here the flags set | |
6982 | on it in an input file will be followed. */ | |
b49e97c9 TS |
6983 | if (strcmp (name, ".sdata") == 0 |
6984 | || strcmp (name, ".lit8") == 0 | |
6985 | || strcmp (name, ".lit4") == 0) | |
6986 | { | |
6987 | hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; | |
6988 | hdr->sh_type = SHT_PROGBITS; | |
6989 | } | |
b49e97c9 TS |
6990 | else if (strcmp (name, ".srdata") == 0) |
6991 | { | |
6992 | hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL; | |
6993 | hdr->sh_type = SHT_PROGBITS; | |
6994 | } | |
6995 | else if (strcmp (name, ".compact_rel") == 0) | |
6996 | { | |
6997 | hdr->sh_flags = 0; | |
6998 | hdr->sh_type = SHT_PROGBITS; | |
6999 | } | |
7000 | else if (strcmp (name, ".rtproc") == 0) | |
7001 | { | |
7002 | if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0) | |
7003 | { | |
7004 | unsigned int adjust; | |
7005 | ||
7006 | adjust = hdr->sh_size % hdr->sh_addralign; | |
7007 | if (adjust != 0) | |
7008 | hdr->sh_size += hdr->sh_addralign - adjust; | |
7009 | } | |
7010 | } | |
7011 | } | |
7012 | ||
b34976b6 | 7013 | return TRUE; |
b49e97c9 TS |
7014 | } |
7015 | ||
7016 | /* Handle a MIPS specific section when reading an object file. This | |
7017 | is called when elfcode.h finds a section with an unknown type. | |
7018 | This routine supports both the 32-bit and 64-bit ELF ABI. | |
7019 | ||
7020 | FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure | |
7021 | how to. */ | |
7022 | ||
b34976b6 | 7023 | bfd_boolean |
6dc132d9 L |
7024 | _bfd_mips_elf_section_from_shdr (bfd *abfd, |
7025 | Elf_Internal_Shdr *hdr, | |
7026 | const char *name, | |
7027 | int shindex) | |
b49e97c9 TS |
7028 | { |
7029 | flagword flags = 0; | |
7030 | ||
7031 | /* There ought to be a place to keep ELF backend specific flags, but | |
7032 | at the moment there isn't one. We just keep track of the | |
7033 | sections by their name, instead. Fortunately, the ABI gives | |
7034 | suggested names for all the MIPS specific sections, so we will | |
7035 | probably get away with this. */ | |
7036 | switch (hdr->sh_type) | |
7037 | { | |
7038 | case SHT_MIPS_LIBLIST: | |
7039 | if (strcmp (name, ".liblist") != 0) | |
b34976b6 | 7040 | return FALSE; |
b49e97c9 TS |
7041 | break; |
7042 | case SHT_MIPS_MSYM: | |
7043 | if (strcmp (name, ".msym") != 0) | |
b34976b6 | 7044 | return FALSE; |
b49e97c9 TS |
7045 | break; |
7046 | case SHT_MIPS_CONFLICT: | |
7047 | if (strcmp (name, ".conflict") != 0) | |
b34976b6 | 7048 | return FALSE; |
b49e97c9 TS |
7049 | break; |
7050 | case SHT_MIPS_GPTAB: | |
0112cd26 | 7051 | if (! CONST_STRNEQ (name, ".gptab.")) |
b34976b6 | 7052 | return FALSE; |
b49e97c9 TS |
7053 | break; |
7054 | case SHT_MIPS_UCODE: | |
7055 | if (strcmp (name, ".ucode") != 0) | |
b34976b6 | 7056 | return FALSE; |
b49e97c9 TS |
7057 | break; |
7058 | case SHT_MIPS_DEBUG: | |
7059 | if (strcmp (name, ".mdebug") != 0) | |
b34976b6 | 7060 | return FALSE; |
b49e97c9 TS |
7061 | flags = SEC_DEBUGGING; |
7062 | break; | |
7063 | case SHT_MIPS_REGINFO: | |
7064 | if (strcmp (name, ".reginfo") != 0 | |
7065 | || hdr->sh_size != sizeof (Elf32_External_RegInfo)) | |
b34976b6 | 7066 | return FALSE; |
b49e97c9 TS |
7067 | flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE); |
7068 | break; | |
7069 | case SHT_MIPS_IFACE: | |
7070 | if (strcmp (name, ".MIPS.interfaces") != 0) | |
b34976b6 | 7071 | return FALSE; |
b49e97c9 TS |
7072 | break; |
7073 | case SHT_MIPS_CONTENT: | |
0112cd26 | 7074 | if (! CONST_STRNEQ (name, ".MIPS.content")) |
b34976b6 | 7075 | return FALSE; |
b49e97c9 TS |
7076 | break; |
7077 | case SHT_MIPS_OPTIONS: | |
cc2e31b9 | 7078 | if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name)) |
b34976b6 | 7079 | return FALSE; |
b49e97c9 | 7080 | break; |
351cdf24 MF |
7081 | case SHT_MIPS_ABIFLAGS: |
7082 | if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name)) | |
7083 | return FALSE; | |
7084 | flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE); | |
7085 | break; | |
b49e97c9 | 7086 | case SHT_MIPS_DWARF: |
1b315056 | 7087 | if (! CONST_STRNEQ (name, ".debug_") |
355d10dc | 7088 | && ! CONST_STRNEQ (name, ".zdebug_")) |
b34976b6 | 7089 | return FALSE; |
b49e97c9 TS |
7090 | break; |
7091 | case SHT_MIPS_SYMBOL_LIB: | |
7092 | if (strcmp (name, ".MIPS.symlib") != 0) | |
b34976b6 | 7093 | return FALSE; |
b49e97c9 TS |
7094 | break; |
7095 | case SHT_MIPS_EVENTS: | |
0112cd26 NC |
7096 | if (! CONST_STRNEQ (name, ".MIPS.events") |
7097 | && ! CONST_STRNEQ (name, ".MIPS.post_rel")) | |
b34976b6 | 7098 | return FALSE; |
b49e97c9 TS |
7099 | break; |
7100 | default: | |
cc2e31b9 | 7101 | break; |
b49e97c9 TS |
7102 | } |
7103 | ||
6dc132d9 | 7104 | if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) |
b34976b6 | 7105 | return FALSE; |
b49e97c9 TS |
7106 | |
7107 | if (flags) | |
7108 | { | |
7109 | if (! bfd_set_section_flags (abfd, hdr->bfd_section, | |
7110 | (bfd_get_section_flags (abfd, | |
7111 | hdr->bfd_section) | |
7112 | | flags))) | |
b34976b6 | 7113 | return FALSE; |
b49e97c9 TS |
7114 | } |
7115 | ||
351cdf24 MF |
7116 | if (hdr->sh_type == SHT_MIPS_ABIFLAGS) |
7117 | { | |
7118 | Elf_External_ABIFlags_v0 ext; | |
7119 | ||
7120 | if (! bfd_get_section_contents (abfd, hdr->bfd_section, | |
7121 | &ext, 0, sizeof ext)) | |
7122 | return FALSE; | |
7123 | bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext, | |
7124 | &mips_elf_tdata (abfd)->abiflags); | |
7125 | if (mips_elf_tdata (abfd)->abiflags.version != 0) | |
7126 | return FALSE; | |
7127 | mips_elf_tdata (abfd)->abiflags_valid = TRUE; | |
7128 | } | |
7129 | ||
b49e97c9 TS |
7130 | /* FIXME: We should record sh_info for a .gptab section. */ |
7131 | ||
7132 | /* For a .reginfo section, set the gp value in the tdata information | |
7133 | from the contents of this section. We need the gp value while | |
7134 | processing relocs, so we just get it now. The .reginfo section | |
7135 | is not used in the 64-bit MIPS ELF ABI. */ | |
7136 | if (hdr->sh_type == SHT_MIPS_REGINFO) | |
7137 | { | |
7138 | Elf32_External_RegInfo ext; | |
7139 | Elf32_RegInfo s; | |
7140 | ||
9719ad41 RS |
7141 | if (! bfd_get_section_contents (abfd, hdr->bfd_section, |
7142 | &ext, 0, sizeof ext)) | |
b34976b6 | 7143 | return FALSE; |
b49e97c9 TS |
7144 | bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s); |
7145 | elf_gp (abfd) = s.ri_gp_value; | |
7146 | } | |
7147 | ||
7148 | /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and | |
7149 | set the gp value based on what we find. We may see both | |
7150 | SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, | |
7151 | they should agree. */ | |
7152 | if (hdr->sh_type == SHT_MIPS_OPTIONS) | |
7153 | { | |
7154 | bfd_byte *contents, *l, *lend; | |
7155 | ||
9719ad41 | 7156 | contents = bfd_malloc (hdr->sh_size); |
b49e97c9 | 7157 | if (contents == NULL) |
b34976b6 | 7158 | return FALSE; |
b49e97c9 | 7159 | if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents, |
9719ad41 | 7160 | 0, hdr->sh_size)) |
b49e97c9 TS |
7161 | { |
7162 | free (contents); | |
b34976b6 | 7163 | return FALSE; |
b49e97c9 TS |
7164 | } |
7165 | l = contents; | |
7166 | lend = contents + hdr->sh_size; | |
7167 | while (l + sizeof (Elf_External_Options) <= lend) | |
7168 | { | |
7169 | Elf_Internal_Options intopt; | |
7170 | ||
7171 | bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, | |
7172 | &intopt); | |
1bc8074d MR |
7173 | if (intopt.size < sizeof (Elf_External_Options)) |
7174 | { | |
7175 | (*_bfd_error_handler) | |
7176 | (_("%B: Warning: bad `%s' option size %u smaller than its header"), | |
7177 | abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size); | |
7178 | break; | |
7179 | } | |
b49e97c9 TS |
7180 | if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) |
7181 | { | |
7182 | Elf64_Internal_RegInfo intreg; | |
7183 | ||
7184 | bfd_mips_elf64_swap_reginfo_in | |
7185 | (abfd, | |
7186 | ((Elf64_External_RegInfo *) | |
7187 | (l + sizeof (Elf_External_Options))), | |
7188 | &intreg); | |
7189 | elf_gp (abfd) = intreg.ri_gp_value; | |
7190 | } | |
7191 | else if (intopt.kind == ODK_REGINFO) | |
7192 | { | |
7193 | Elf32_RegInfo intreg; | |
7194 | ||
7195 | bfd_mips_elf32_swap_reginfo_in | |
7196 | (abfd, | |
7197 | ((Elf32_External_RegInfo *) | |
7198 | (l + sizeof (Elf_External_Options))), | |
7199 | &intreg); | |
7200 | elf_gp (abfd) = intreg.ri_gp_value; | |
7201 | } | |
7202 | l += intopt.size; | |
7203 | } | |
7204 | free (contents); | |
7205 | } | |
7206 | ||
b34976b6 | 7207 | return TRUE; |
b49e97c9 TS |
7208 | } |
7209 | ||
7210 | /* Set the correct type for a MIPS ELF section. We do this by the | |
7211 | section name, which is a hack, but ought to work. This routine is | |
7212 | used by both the 32-bit and the 64-bit ABI. */ | |
7213 | ||
b34976b6 | 7214 | bfd_boolean |
9719ad41 | 7215 | _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec) |
b49e97c9 | 7216 | { |
0414f35b | 7217 | const char *name = bfd_get_section_name (abfd, sec); |
b49e97c9 TS |
7218 | |
7219 | if (strcmp (name, ".liblist") == 0) | |
7220 | { | |
7221 | hdr->sh_type = SHT_MIPS_LIBLIST; | |
eea6121a | 7222 | hdr->sh_info = sec->size / sizeof (Elf32_Lib); |
b49e97c9 TS |
7223 | /* The sh_link field is set in final_write_processing. */ |
7224 | } | |
7225 | else if (strcmp (name, ".conflict") == 0) | |
7226 | hdr->sh_type = SHT_MIPS_CONFLICT; | |
0112cd26 | 7227 | else if (CONST_STRNEQ (name, ".gptab.")) |
b49e97c9 TS |
7228 | { |
7229 | hdr->sh_type = SHT_MIPS_GPTAB; | |
7230 | hdr->sh_entsize = sizeof (Elf32_External_gptab); | |
7231 | /* The sh_info field is set in final_write_processing. */ | |
7232 | } | |
7233 | else if (strcmp (name, ".ucode") == 0) | |
7234 | hdr->sh_type = SHT_MIPS_UCODE; | |
7235 | else if (strcmp (name, ".mdebug") == 0) | |
7236 | { | |
7237 | hdr->sh_type = SHT_MIPS_DEBUG; | |
8dc1a139 | 7238 | /* In a shared object on IRIX 5.3, the .mdebug section has an |
b49e97c9 TS |
7239 | entsize of 0. FIXME: Does this matter? */ |
7240 | if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0) | |
7241 | hdr->sh_entsize = 0; | |
7242 | else | |
7243 | hdr->sh_entsize = 1; | |
7244 | } | |
7245 | else if (strcmp (name, ".reginfo") == 0) | |
7246 | { | |
7247 | hdr->sh_type = SHT_MIPS_REGINFO; | |
8dc1a139 | 7248 | /* In a shared object on IRIX 5.3, the .reginfo section has an |
b49e97c9 TS |
7249 | entsize of 0x18. FIXME: Does this matter? */ |
7250 | if (SGI_COMPAT (abfd)) | |
7251 | { | |
7252 | if ((abfd->flags & DYNAMIC) != 0) | |
7253 | hdr->sh_entsize = sizeof (Elf32_External_RegInfo); | |
7254 | else | |
7255 | hdr->sh_entsize = 1; | |
7256 | } | |
7257 | else | |
7258 | hdr->sh_entsize = sizeof (Elf32_External_RegInfo); | |
7259 | } | |
7260 | else if (SGI_COMPAT (abfd) | |
7261 | && (strcmp (name, ".hash") == 0 | |
7262 | || strcmp (name, ".dynamic") == 0 | |
7263 | || strcmp (name, ".dynstr") == 0)) | |
7264 | { | |
7265 | if (SGI_COMPAT (abfd)) | |
7266 | hdr->sh_entsize = 0; | |
7267 | #if 0 | |
8dc1a139 | 7268 | /* This isn't how the IRIX6 linker behaves. */ |
b49e97c9 TS |
7269 | hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES; |
7270 | #endif | |
7271 | } | |
7272 | else if (strcmp (name, ".got") == 0 | |
7273 | || strcmp (name, ".srdata") == 0 | |
7274 | || strcmp (name, ".sdata") == 0 | |
7275 | || strcmp (name, ".sbss") == 0 | |
7276 | || strcmp (name, ".lit4") == 0 | |
7277 | || strcmp (name, ".lit8") == 0) | |
7278 | hdr->sh_flags |= SHF_MIPS_GPREL; | |
7279 | else if (strcmp (name, ".MIPS.interfaces") == 0) | |
7280 | { | |
7281 | hdr->sh_type = SHT_MIPS_IFACE; | |
7282 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
7283 | } | |
0112cd26 | 7284 | else if (CONST_STRNEQ (name, ".MIPS.content")) |
b49e97c9 TS |
7285 | { |
7286 | hdr->sh_type = SHT_MIPS_CONTENT; | |
7287 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
7288 | /* The sh_info field is set in final_write_processing. */ | |
7289 | } | |
cc2e31b9 | 7290 | else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name)) |
b49e97c9 TS |
7291 | { |
7292 | hdr->sh_type = SHT_MIPS_OPTIONS; | |
7293 | hdr->sh_entsize = 1; | |
7294 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
7295 | } | |
351cdf24 MF |
7296 | else if (CONST_STRNEQ (name, ".MIPS.abiflags")) |
7297 | { | |
7298 | hdr->sh_type = SHT_MIPS_ABIFLAGS; | |
7299 | hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0); | |
7300 | } | |
1b315056 CS |
7301 | else if (CONST_STRNEQ (name, ".debug_") |
7302 | || CONST_STRNEQ (name, ".zdebug_")) | |
b5482f21 NC |
7303 | { |
7304 | hdr->sh_type = SHT_MIPS_DWARF; | |
7305 | ||
7306 | /* Irix facilities such as libexc expect a single .debug_frame | |
7307 | per executable, the system ones have NOSTRIP set and the linker | |
7308 | doesn't merge sections with different flags so ... */ | |
7309 | if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame")) | |
7310 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
7311 | } | |
b49e97c9 TS |
7312 | else if (strcmp (name, ".MIPS.symlib") == 0) |
7313 | { | |
7314 | hdr->sh_type = SHT_MIPS_SYMBOL_LIB; | |
7315 | /* The sh_link and sh_info fields are set in | |
7316 | final_write_processing. */ | |
7317 | } | |
0112cd26 NC |
7318 | else if (CONST_STRNEQ (name, ".MIPS.events") |
7319 | || CONST_STRNEQ (name, ".MIPS.post_rel")) | |
b49e97c9 TS |
7320 | { |
7321 | hdr->sh_type = SHT_MIPS_EVENTS; | |
7322 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
7323 | /* The sh_link field is set in final_write_processing. */ | |
7324 | } | |
7325 | else if (strcmp (name, ".msym") == 0) | |
7326 | { | |
7327 | hdr->sh_type = SHT_MIPS_MSYM; | |
7328 | hdr->sh_flags |= SHF_ALLOC; | |
7329 | hdr->sh_entsize = 8; | |
7330 | } | |
7331 | ||
7a79a000 TS |
7332 | /* The generic elf_fake_sections will set up REL_HDR using the default |
7333 | kind of relocations. We used to set up a second header for the | |
7334 | non-default kind of relocations here, but only NewABI would use | |
7335 | these, and the IRIX ld doesn't like resulting empty RELA sections. | |
7336 | Thus we create those header only on demand now. */ | |
b49e97c9 | 7337 | |
b34976b6 | 7338 | return TRUE; |
b49e97c9 TS |
7339 | } |
7340 | ||
7341 | /* Given a BFD section, try to locate the corresponding ELF section | |
7342 | index. This is used by both the 32-bit and the 64-bit ABI. | |
7343 | Actually, it's not clear to me that the 64-bit ABI supports these, | |
7344 | but for non-PIC objects we will certainly want support for at least | |
7345 | the .scommon section. */ | |
7346 | ||
b34976b6 | 7347 | bfd_boolean |
9719ad41 RS |
7348 | _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED, |
7349 | asection *sec, int *retval) | |
b49e97c9 TS |
7350 | { |
7351 | if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0) | |
7352 | { | |
7353 | *retval = SHN_MIPS_SCOMMON; | |
b34976b6 | 7354 | return TRUE; |
b49e97c9 TS |
7355 | } |
7356 | if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0) | |
7357 | { | |
7358 | *retval = SHN_MIPS_ACOMMON; | |
b34976b6 | 7359 | return TRUE; |
b49e97c9 | 7360 | } |
b34976b6 | 7361 | return FALSE; |
b49e97c9 TS |
7362 | } |
7363 | \f | |
7364 | /* Hook called by the linker routine which adds symbols from an object | |
7365 | file. We must handle the special MIPS section numbers here. */ | |
7366 | ||
b34976b6 | 7367 | bfd_boolean |
9719ad41 | 7368 | _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, |
555cd476 | 7369 | Elf_Internal_Sym *sym, const char **namep, |
9719ad41 RS |
7370 | flagword *flagsp ATTRIBUTE_UNUSED, |
7371 | asection **secp, bfd_vma *valp) | |
b49e97c9 TS |
7372 | { |
7373 | if (SGI_COMPAT (abfd) | |
7374 | && (abfd->flags & DYNAMIC) != 0 | |
7375 | && strcmp (*namep, "_rld_new_interface") == 0) | |
7376 | { | |
8dc1a139 | 7377 | /* Skip IRIX5 rld entry name. */ |
b49e97c9 | 7378 | *namep = NULL; |
b34976b6 | 7379 | return TRUE; |
b49e97c9 TS |
7380 | } |
7381 | ||
eedecc07 DD |
7382 | /* Shared objects may have a dynamic symbol '_gp_disp' defined as |
7383 | a SECTION *ABS*. This causes ld to think it can resolve _gp_disp | |
7384 | by setting a DT_NEEDED for the shared object. Since _gp_disp is | |
7385 | a magic symbol resolved by the linker, we ignore this bogus definition | |
7386 | of _gp_disp. New ABI objects do not suffer from this problem so this | |
7387 | is not done for them. */ | |
7388 | if (!NEWABI_P(abfd) | |
7389 | && (sym->st_shndx == SHN_ABS) | |
7390 | && (strcmp (*namep, "_gp_disp") == 0)) | |
7391 | { | |
7392 | *namep = NULL; | |
7393 | return TRUE; | |
7394 | } | |
7395 | ||
b49e97c9 TS |
7396 | switch (sym->st_shndx) |
7397 | { | |
7398 | case SHN_COMMON: | |
7399 | /* Common symbols less than the GP size are automatically | |
7400 | treated as SHN_MIPS_SCOMMON symbols. */ | |
7401 | if (sym->st_size > elf_gp_size (abfd) | |
b59eed79 | 7402 | || ELF_ST_TYPE (sym->st_info) == STT_TLS |
b49e97c9 TS |
7403 | || IRIX_COMPAT (abfd) == ict_irix6) |
7404 | break; | |
7405 | /* Fall through. */ | |
7406 | case SHN_MIPS_SCOMMON: | |
7407 | *secp = bfd_make_section_old_way (abfd, ".scommon"); | |
7408 | (*secp)->flags |= SEC_IS_COMMON; | |
7409 | *valp = sym->st_size; | |
7410 | break; | |
7411 | ||
7412 | case SHN_MIPS_TEXT: | |
7413 | /* This section is used in a shared object. */ | |
698600e4 | 7414 | if (mips_elf_tdata (abfd)->elf_text_section == NULL) |
b49e97c9 TS |
7415 | { |
7416 | asymbol *elf_text_symbol; | |
7417 | asection *elf_text_section; | |
7418 | bfd_size_type amt = sizeof (asection); | |
7419 | ||
7420 | elf_text_section = bfd_zalloc (abfd, amt); | |
7421 | if (elf_text_section == NULL) | |
b34976b6 | 7422 | return FALSE; |
b49e97c9 TS |
7423 | |
7424 | amt = sizeof (asymbol); | |
7425 | elf_text_symbol = bfd_zalloc (abfd, amt); | |
7426 | if (elf_text_symbol == NULL) | |
b34976b6 | 7427 | return FALSE; |
b49e97c9 TS |
7428 | |
7429 | /* Initialize the section. */ | |
7430 | ||
698600e4 AM |
7431 | mips_elf_tdata (abfd)->elf_text_section = elf_text_section; |
7432 | mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol; | |
b49e97c9 TS |
7433 | |
7434 | elf_text_section->symbol = elf_text_symbol; | |
698600e4 | 7435 | elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol; |
b49e97c9 TS |
7436 | |
7437 | elf_text_section->name = ".text"; | |
7438 | elf_text_section->flags = SEC_NO_FLAGS; | |
7439 | elf_text_section->output_section = NULL; | |
7440 | elf_text_section->owner = abfd; | |
7441 | elf_text_symbol->name = ".text"; | |
7442 | elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; | |
7443 | elf_text_symbol->section = elf_text_section; | |
7444 | } | |
7445 | /* This code used to do *secp = bfd_und_section_ptr if | |
7446 | info->shared. I don't know why, and that doesn't make sense, | |
7447 | so I took it out. */ | |
698600e4 | 7448 | *secp = mips_elf_tdata (abfd)->elf_text_section; |
b49e97c9 TS |
7449 | break; |
7450 | ||
7451 | case SHN_MIPS_ACOMMON: | |
7452 | /* Fall through. XXX Can we treat this as allocated data? */ | |
7453 | case SHN_MIPS_DATA: | |
7454 | /* This section is used in a shared object. */ | |
698600e4 | 7455 | if (mips_elf_tdata (abfd)->elf_data_section == NULL) |
b49e97c9 TS |
7456 | { |
7457 | asymbol *elf_data_symbol; | |
7458 | asection *elf_data_section; | |
7459 | bfd_size_type amt = sizeof (asection); | |
7460 | ||
7461 | elf_data_section = bfd_zalloc (abfd, amt); | |
7462 | if (elf_data_section == NULL) | |
b34976b6 | 7463 | return FALSE; |
b49e97c9 TS |
7464 | |
7465 | amt = sizeof (asymbol); | |
7466 | elf_data_symbol = bfd_zalloc (abfd, amt); | |
7467 | if (elf_data_symbol == NULL) | |
b34976b6 | 7468 | return FALSE; |
b49e97c9 TS |
7469 | |
7470 | /* Initialize the section. */ | |
7471 | ||
698600e4 AM |
7472 | mips_elf_tdata (abfd)->elf_data_section = elf_data_section; |
7473 | mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol; | |
b49e97c9 TS |
7474 | |
7475 | elf_data_section->symbol = elf_data_symbol; | |
698600e4 | 7476 | elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol; |
b49e97c9 TS |
7477 | |
7478 | elf_data_section->name = ".data"; | |
7479 | elf_data_section->flags = SEC_NO_FLAGS; | |
7480 | elf_data_section->output_section = NULL; | |
7481 | elf_data_section->owner = abfd; | |
7482 | elf_data_symbol->name = ".data"; | |
7483 | elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; | |
7484 | elf_data_symbol->section = elf_data_section; | |
7485 | } | |
7486 | /* This code used to do *secp = bfd_und_section_ptr if | |
7487 | info->shared. I don't know why, and that doesn't make sense, | |
7488 | so I took it out. */ | |
698600e4 | 7489 | *secp = mips_elf_tdata (abfd)->elf_data_section; |
b49e97c9 TS |
7490 | break; |
7491 | ||
7492 | case SHN_MIPS_SUNDEFINED: | |
7493 | *secp = bfd_und_section_ptr; | |
7494 | break; | |
7495 | } | |
7496 | ||
7497 | if (SGI_COMPAT (abfd) | |
7498 | && ! info->shared | |
f13a99db | 7499 | && info->output_bfd->xvec == abfd->xvec |
b49e97c9 TS |
7500 | && strcmp (*namep, "__rld_obj_head") == 0) |
7501 | { | |
7502 | struct elf_link_hash_entry *h; | |
14a793b2 | 7503 | struct bfd_link_hash_entry *bh; |
b49e97c9 TS |
7504 | |
7505 | /* Mark __rld_obj_head as dynamic. */ | |
14a793b2 | 7506 | bh = NULL; |
b49e97c9 | 7507 | if (! (_bfd_generic_link_add_one_symbol |
9719ad41 | 7508 | (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE, |
14a793b2 | 7509 | get_elf_backend_data (abfd)->collect, &bh))) |
b34976b6 | 7510 | return FALSE; |
14a793b2 AM |
7511 | |
7512 | h = (struct elf_link_hash_entry *) bh; | |
f5385ebf AM |
7513 | h->non_elf = 0; |
7514 | h->def_regular = 1; | |
b49e97c9 TS |
7515 | h->type = STT_OBJECT; |
7516 | ||
c152c796 | 7517 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 7518 | return FALSE; |
b49e97c9 | 7519 | |
b34976b6 | 7520 | mips_elf_hash_table (info)->use_rld_obj_head = TRUE; |
b4082c70 | 7521 | mips_elf_hash_table (info)->rld_symbol = h; |
b49e97c9 TS |
7522 | } |
7523 | ||
7524 | /* If this is a mips16 text symbol, add 1 to the value to make it | |
7525 | odd. This will cause something like .word SYM to come up with | |
7526 | the right value when it is loaded into the PC. */ | |
df58fc94 | 7527 | if (ELF_ST_IS_COMPRESSED (sym->st_other)) |
b49e97c9 TS |
7528 | ++*valp; |
7529 | ||
b34976b6 | 7530 | return TRUE; |
b49e97c9 TS |
7531 | } |
7532 | ||
7533 | /* This hook function is called before the linker writes out a global | |
7534 | symbol. We mark symbols as small common if appropriate. This is | |
7535 | also where we undo the increment of the value for a mips16 symbol. */ | |
7536 | ||
6e0b88f1 | 7537 | int |
9719ad41 RS |
7538 | _bfd_mips_elf_link_output_symbol_hook |
7539 | (struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
7540 | const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym, | |
7541 | asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
7542 | { |
7543 | /* If we see a common symbol, which implies a relocatable link, then | |
7544 | if a symbol was small common in an input file, mark it as small | |
7545 | common in the output file. */ | |
7546 | if (sym->st_shndx == SHN_COMMON | |
7547 | && strcmp (input_sec->name, ".scommon") == 0) | |
7548 | sym->st_shndx = SHN_MIPS_SCOMMON; | |
7549 | ||
df58fc94 | 7550 | if (ELF_ST_IS_COMPRESSED (sym->st_other)) |
79cda7cf | 7551 | sym->st_value &= ~1; |
b49e97c9 | 7552 | |
6e0b88f1 | 7553 | return 1; |
b49e97c9 TS |
7554 | } |
7555 | \f | |
7556 | /* Functions for the dynamic linker. */ | |
7557 | ||
7558 | /* Create dynamic sections when linking against a dynamic object. */ | |
7559 | ||
b34976b6 | 7560 | bfd_boolean |
9719ad41 | 7561 | _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) |
b49e97c9 TS |
7562 | { |
7563 | struct elf_link_hash_entry *h; | |
14a793b2 | 7564 | struct bfd_link_hash_entry *bh; |
b49e97c9 TS |
7565 | flagword flags; |
7566 | register asection *s; | |
7567 | const char * const *namep; | |
0a44bf69 | 7568 | struct mips_elf_link_hash_table *htab; |
b49e97c9 | 7569 | |
0a44bf69 | 7570 | htab = mips_elf_hash_table (info); |
4dfe6ac6 NC |
7571 | BFD_ASSERT (htab != NULL); |
7572 | ||
b49e97c9 TS |
7573 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY |
7574 | | SEC_LINKER_CREATED | SEC_READONLY); | |
7575 | ||
0a44bf69 RS |
7576 | /* The psABI requires a read-only .dynamic section, but the VxWorks |
7577 | EABI doesn't. */ | |
7578 | if (!htab->is_vxworks) | |
b49e97c9 | 7579 | { |
3d4d4302 | 7580 | s = bfd_get_linker_section (abfd, ".dynamic"); |
0a44bf69 RS |
7581 | if (s != NULL) |
7582 | { | |
7583 | if (! bfd_set_section_flags (abfd, s, flags)) | |
7584 | return FALSE; | |
7585 | } | |
b49e97c9 TS |
7586 | } |
7587 | ||
7588 | /* We need to create .got section. */ | |
23cc69b6 | 7589 | if (!mips_elf_create_got_section (abfd, info)) |
f4416af6 AO |
7590 | return FALSE; |
7591 | ||
0a44bf69 | 7592 | if (! mips_elf_rel_dyn_section (info, TRUE)) |
b34976b6 | 7593 | return FALSE; |
b49e97c9 | 7594 | |
b49e97c9 | 7595 | /* Create .stub section. */ |
3d4d4302 AM |
7596 | s = bfd_make_section_anyway_with_flags (abfd, |
7597 | MIPS_ELF_STUB_SECTION_NAME (abfd), | |
7598 | flags | SEC_CODE); | |
4e41d0d7 RS |
7599 | if (s == NULL |
7600 | || ! bfd_set_section_alignment (abfd, s, | |
7601 | MIPS_ELF_LOG_FILE_ALIGN (abfd))) | |
7602 | return FALSE; | |
7603 | htab->sstubs = s; | |
b49e97c9 | 7604 | |
e6aea42d | 7605 | if (!mips_elf_hash_table (info)->use_rld_obj_head |
b49e97c9 | 7606 | && !info->shared |
3d4d4302 | 7607 | && bfd_get_linker_section (abfd, ".rld_map") == NULL) |
b49e97c9 | 7608 | { |
3d4d4302 AM |
7609 | s = bfd_make_section_anyway_with_flags (abfd, ".rld_map", |
7610 | flags &~ (flagword) SEC_READONLY); | |
b49e97c9 | 7611 | if (s == NULL |
b49e97c9 TS |
7612 | || ! bfd_set_section_alignment (abfd, s, |
7613 | MIPS_ELF_LOG_FILE_ALIGN (abfd))) | |
b34976b6 | 7614 | return FALSE; |
b49e97c9 TS |
7615 | } |
7616 | ||
7617 | /* On IRIX5, we adjust add some additional symbols and change the | |
7618 | alignments of several sections. There is no ABI documentation | |
7619 | indicating that this is necessary on IRIX6, nor any evidence that | |
7620 | the linker takes such action. */ | |
7621 | if (IRIX_COMPAT (abfd) == ict_irix5) | |
7622 | { | |
7623 | for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++) | |
7624 | { | |
14a793b2 | 7625 | bh = NULL; |
b49e97c9 | 7626 | if (! (_bfd_generic_link_add_one_symbol |
9719ad41 RS |
7627 | (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0, |
7628 | NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) | |
b34976b6 | 7629 | return FALSE; |
14a793b2 AM |
7630 | |
7631 | h = (struct elf_link_hash_entry *) bh; | |
f5385ebf AM |
7632 | h->non_elf = 0; |
7633 | h->def_regular = 1; | |
b49e97c9 TS |
7634 | h->type = STT_SECTION; |
7635 | ||
c152c796 | 7636 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 7637 | return FALSE; |
b49e97c9 TS |
7638 | } |
7639 | ||
7640 | /* We need to create a .compact_rel section. */ | |
7641 | if (SGI_COMPAT (abfd)) | |
7642 | { | |
7643 | if (!mips_elf_create_compact_rel_section (abfd, info)) | |
b34976b6 | 7644 | return FALSE; |
b49e97c9 TS |
7645 | } |
7646 | ||
44c410de | 7647 | /* Change alignments of some sections. */ |
3d4d4302 | 7648 | s = bfd_get_linker_section (abfd, ".hash"); |
b49e97c9 | 7649 | if (s != NULL) |
a253d456 NC |
7650 | (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
7651 | ||
3d4d4302 | 7652 | s = bfd_get_linker_section (abfd, ".dynsym"); |
b49e97c9 | 7653 | if (s != NULL) |
a253d456 NC |
7654 | (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
7655 | ||
3d4d4302 | 7656 | s = bfd_get_linker_section (abfd, ".dynstr"); |
b49e97c9 | 7657 | if (s != NULL) |
a253d456 NC |
7658 | (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
7659 | ||
3d4d4302 | 7660 | /* ??? */ |
b49e97c9 TS |
7661 | s = bfd_get_section_by_name (abfd, ".reginfo"); |
7662 | if (s != NULL) | |
a253d456 NC |
7663 | (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
7664 | ||
3d4d4302 | 7665 | s = bfd_get_linker_section (abfd, ".dynamic"); |
b49e97c9 | 7666 | if (s != NULL) |
a253d456 | 7667 | (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
7668 | } |
7669 | ||
7670 | if (!info->shared) | |
7671 | { | |
14a793b2 AM |
7672 | const char *name; |
7673 | ||
7674 | name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING"; | |
7675 | bh = NULL; | |
7676 | if (!(_bfd_generic_link_add_one_symbol | |
9719ad41 RS |
7677 | (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0, |
7678 | NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) | |
b34976b6 | 7679 | return FALSE; |
14a793b2 AM |
7680 | |
7681 | h = (struct elf_link_hash_entry *) bh; | |
f5385ebf AM |
7682 | h->non_elf = 0; |
7683 | h->def_regular = 1; | |
b49e97c9 TS |
7684 | h->type = STT_SECTION; |
7685 | ||
c152c796 | 7686 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 7687 | return FALSE; |
b49e97c9 TS |
7688 | |
7689 | if (! mips_elf_hash_table (info)->use_rld_obj_head) | |
7690 | { | |
7691 | /* __rld_map is a four byte word located in the .data section | |
7692 | and is filled in by the rtld to contain a pointer to | |
7693 | the _r_debug structure. Its symbol value will be set in | |
7694 | _bfd_mips_elf_finish_dynamic_symbol. */ | |
3d4d4302 | 7695 | s = bfd_get_linker_section (abfd, ".rld_map"); |
0abfb97a | 7696 | BFD_ASSERT (s != NULL); |
14a793b2 | 7697 | |
0abfb97a L |
7698 | name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP"; |
7699 | bh = NULL; | |
7700 | if (!(_bfd_generic_link_add_one_symbol | |
7701 | (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE, | |
7702 | get_elf_backend_data (abfd)->collect, &bh))) | |
7703 | return FALSE; | |
b49e97c9 | 7704 | |
0abfb97a L |
7705 | h = (struct elf_link_hash_entry *) bh; |
7706 | h->non_elf = 0; | |
7707 | h->def_regular = 1; | |
7708 | h->type = STT_OBJECT; | |
7709 | ||
7710 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) | |
7711 | return FALSE; | |
b4082c70 | 7712 | mips_elf_hash_table (info)->rld_symbol = h; |
b49e97c9 TS |
7713 | } |
7714 | } | |
7715 | ||
861fb55a | 7716 | /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections. |
c164a95d | 7717 | Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */ |
861fb55a DJ |
7718 | if (!_bfd_elf_create_dynamic_sections (abfd, info)) |
7719 | return FALSE; | |
7720 | ||
7721 | /* Cache the sections created above. */ | |
3d4d4302 AM |
7722 | htab->splt = bfd_get_linker_section (abfd, ".plt"); |
7723 | htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss"); | |
0a44bf69 RS |
7724 | if (htab->is_vxworks) |
7725 | { | |
3d4d4302 AM |
7726 | htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss"); |
7727 | htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt"); | |
861fb55a DJ |
7728 | } |
7729 | else | |
3d4d4302 | 7730 | htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt"); |
861fb55a DJ |
7731 | if (!htab->sdynbss |
7732 | || (htab->is_vxworks && !htab->srelbss && !info->shared) | |
7733 | || !htab->srelplt | |
7734 | || !htab->splt) | |
7735 | abort (); | |
0a44bf69 | 7736 | |
1bbce132 MR |
7737 | /* Do the usual VxWorks handling. */ |
7738 | if (htab->is_vxworks | |
7739 | && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2)) | |
7740 | return FALSE; | |
0a44bf69 | 7741 | |
b34976b6 | 7742 | return TRUE; |
b49e97c9 TS |
7743 | } |
7744 | \f | |
c224138d RS |
7745 | /* Return true if relocation REL against section SEC is a REL rather than |
7746 | RELA relocation. RELOCS is the first relocation in the section and | |
7747 | ABFD is the bfd that contains SEC. */ | |
7748 | ||
7749 | static bfd_boolean | |
7750 | mips_elf_rel_relocation_p (bfd *abfd, asection *sec, | |
7751 | const Elf_Internal_Rela *relocs, | |
7752 | const Elf_Internal_Rela *rel) | |
7753 | { | |
7754 | Elf_Internal_Shdr *rel_hdr; | |
7755 | const struct elf_backend_data *bed; | |
7756 | ||
d4730f92 BS |
7757 | /* To determine which flavor of relocation this is, we depend on the |
7758 | fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */ | |
7759 | rel_hdr = elf_section_data (sec)->rel.hdr; | |
7760 | if (rel_hdr == NULL) | |
7761 | return FALSE; | |
c224138d | 7762 | bed = get_elf_backend_data (abfd); |
d4730f92 BS |
7763 | return ((size_t) (rel - relocs) |
7764 | < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel); | |
c224138d RS |
7765 | } |
7766 | ||
7767 | /* Read the addend for REL relocation REL, which belongs to bfd ABFD. | |
7768 | HOWTO is the relocation's howto and CONTENTS points to the contents | |
7769 | of the section that REL is against. */ | |
7770 | ||
7771 | static bfd_vma | |
7772 | mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel, | |
7773 | reloc_howto_type *howto, bfd_byte *contents) | |
7774 | { | |
7775 | bfd_byte *location; | |
7776 | unsigned int r_type; | |
7777 | bfd_vma addend; | |
7778 | ||
7779 | r_type = ELF_R_TYPE (abfd, rel->r_info); | |
7780 | location = contents + rel->r_offset; | |
7781 | ||
7782 | /* Get the addend, which is stored in the input file. */ | |
df58fc94 | 7783 | _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location); |
c224138d | 7784 | addend = mips_elf_obtain_contents (howto, rel, abfd, contents); |
df58fc94 | 7785 | _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location); |
c224138d RS |
7786 | |
7787 | return addend & howto->src_mask; | |
7788 | } | |
7789 | ||
7790 | /* REL is a relocation in ABFD that needs a partnering LO16 relocation | |
7791 | and *ADDEND is the addend for REL itself. Look for the LO16 relocation | |
7792 | and update *ADDEND with the final addend. Return true on success | |
7793 | or false if the LO16 could not be found. RELEND is the exclusive | |
7794 | upper bound on the relocations for REL's section. */ | |
7795 | ||
7796 | static bfd_boolean | |
7797 | mips_elf_add_lo16_rel_addend (bfd *abfd, | |
7798 | const Elf_Internal_Rela *rel, | |
7799 | const Elf_Internal_Rela *relend, | |
7800 | bfd_byte *contents, bfd_vma *addend) | |
7801 | { | |
7802 | unsigned int r_type, lo16_type; | |
7803 | const Elf_Internal_Rela *lo16_relocation; | |
7804 | reloc_howto_type *lo16_howto; | |
7805 | bfd_vma l; | |
7806 | ||
7807 | r_type = ELF_R_TYPE (abfd, rel->r_info); | |
738e5348 | 7808 | if (mips16_reloc_p (r_type)) |
c224138d | 7809 | lo16_type = R_MIPS16_LO16; |
df58fc94 RS |
7810 | else if (micromips_reloc_p (r_type)) |
7811 | lo16_type = R_MICROMIPS_LO16; | |
7361da2c AB |
7812 | else if (r_type == R_MIPS_PCHI16) |
7813 | lo16_type = R_MIPS_PCLO16; | |
c224138d RS |
7814 | else |
7815 | lo16_type = R_MIPS_LO16; | |
7816 | ||
7817 | /* The combined value is the sum of the HI16 addend, left-shifted by | |
7818 | sixteen bits, and the LO16 addend, sign extended. (Usually, the | |
7819 | code does a `lui' of the HI16 value, and then an `addiu' of the | |
7820 | LO16 value.) | |
7821 | ||
7822 | Scan ahead to find a matching LO16 relocation. | |
7823 | ||
7824 | According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must | |
7825 | be immediately following. However, for the IRIX6 ABI, the next | |
7826 | relocation may be a composed relocation consisting of several | |
7827 | relocations for the same address. In that case, the R_MIPS_LO16 | |
7828 | relocation may occur as one of these. We permit a similar | |
7829 | extension in general, as that is useful for GCC. | |
7830 | ||
7831 | In some cases GCC dead code elimination removes the LO16 but keeps | |
7832 | the corresponding HI16. This is strictly speaking a violation of | |
7833 | the ABI but not immediately harmful. */ | |
7834 | lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend); | |
7835 | if (lo16_relocation == NULL) | |
7836 | return FALSE; | |
7837 | ||
7838 | /* Obtain the addend kept there. */ | |
7839 | lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE); | |
7840 | l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents); | |
7841 | ||
7842 | l <<= lo16_howto->rightshift; | |
7843 | l = _bfd_mips_elf_sign_extend (l, 16); | |
7844 | ||
7845 | *addend <<= 16; | |
7846 | *addend += l; | |
7847 | return TRUE; | |
7848 | } | |
7849 | ||
7850 | /* Try to read the contents of section SEC in bfd ABFD. Return true and | |
7851 | store the contents in *CONTENTS on success. Assume that *CONTENTS | |
7852 | already holds the contents if it is nonull on entry. */ | |
7853 | ||
7854 | static bfd_boolean | |
7855 | mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents) | |
7856 | { | |
7857 | if (*contents) | |
7858 | return TRUE; | |
7859 | ||
7860 | /* Get cached copy if it exists. */ | |
7861 | if (elf_section_data (sec)->this_hdr.contents != NULL) | |
7862 | { | |
7863 | *contents = elf_section_data (sec)->this_hdr.contents; | |
7864 | return TRUE; | |
7865 | } | |
7866 | ||
7867 | return bfd_malloc_and_get_section (abfd, sec, contents); | |
7868 | } | |
7869 | ||
1bbce132 MR |
7870 | /* Make a new PLT record to keep internal data. */ |
7871 | ||
7872 | static struct plt_entry * | |
7873 | mips_elf_make_plt_record (bfd *abfd) | |
7874 | { | |
7875 | struct plt_entry *entry; | |
7876 | ||
7877 | entry = bfd_zalloc (abfd, sizeof (*entry)); | |
7878 | if (entry == NULL) | |
7879 | return NULL; | |
7880 | ||
7881 | entry->stub_offset = MINUS_ONE; | |
7882 | entry->mips_offset = MINUS_ONE; | |
7883 | entry->comp_offset = MINUS_ONE; | |
7884 | entry->gotplt_index = MINUS_ONE; | |
7885 | return entry; | |
7886 | } | |
7887 | ||
b49e97c9 | 7888 | /* Look through the relocs for a section during the first phase, and |
1bbce132 MR |
7889 | allocate space in the global offset table and record the need for |
7890 | standard MIPS and compressed procedure linkage table entries. */ | |
b49e97c9 | 7891 | |
b34976b6 | 7892 | bfd_boolean |
9719ad41 RS |
7893 | _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info, |
7894 | asection *sec, const Elf_Internal_Rela *relocs) | |
b49e97c9 TS |
7895 | { |
7896 | const char *name; | |
7897 | bfd *dynobj; | |
7898 | Elf_Internal_Shdr *symtab_hdr; | |
7899 | struct elf_link_hash_entry **sym_hashes; | |
b49e97c9 TS |
7900 | size_t extsymoff; |
7901 | const Elf_Internal_Rela *rel; | |
7902 | const Elf_Internal_Rela *rel_end; | |
b49e97c9 | 7903 | asection *sreloc; |
9c5bfbb7 | 7904 | const struct elf_backend_data *bed; |
0a44bf69 | 7905 | struct mips_elf_link_hash_table *htab; |
c224138d RS |
7906 | bfd_byte *contents; |
7907 | bfd_vma addend; | |
7908 | reloc_howto_type *howto; | |
b49e97c9 | 7909 | |
1049f94e | 7910 | if (info->relocatable) |
b34976b6 | 7911 | return TRUE; |
b49e97c9 | 7912 | |
0a44bf69 | 7913 | htab = mips_elf_hash_table (info); |
4dfe6ac6 NC |
7914 | BFD_ASSERT (htab != NULL); |
7915 | ||
b49e97c9 TS |
7916 | dynobj = elf_hash_table (info)->dynobj; |
7917 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
7918 | sym_hashes = elf_sym_hashes (abfd); | |
7919 | extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; | |
7920 | ||
738e5348 RS |
7921 | bed = get_elf_backend_data (abfd); |
7922 | rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel; | |
7923 | ||
b49e97c9 TS |
7924 | /* Check for the mips16 stub sections. */ |
7925 | ||
7926 | name = bfd_get_section_name (abfd, sec); | |
b9d58d71 | 7927 | if (FN_STUB_P (name)) |
b49e97c9 TS |
7928 | { |
7929 | unsigned long r_symndx; | |
7930 | ||
7931 | /* Look at the relocation information to figure out which symbol | |
7932 | this is for. */ | |
7933 | ||
cb4437b8 | 7934 | r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end); |
738e5348 RS |
7935 | if (r_symndx == 0) |
7936 | { | |
7937 | (*_bfd_error_handler) | |
7938 | (_("%B: Warning: cannot determine the target function for" | |
7939 | " stub section `%s'"), | |
7940 | abfd, name); | |
7941 | bfd_set_error (bfd_error_bad_value); | |
7942 | return FALSE; | |
7943 | } | |
b49e97c9 TS |
7944 | |
7945 | if (r_symndx < extsymoff | |
7946 | || sym_hashes[r_symndx - extsymoff] == NULL) | |
7947 | { | |
7948 | asection *o; | |
7949 | ||
7950 | /* This stub is for a local symbol. This stub will only be | |
7951 | needed if there is some relocation in this BFD, other | |
7952 | than a 16 bit function call, which refers to this symbol. */ | |
7953 | for (o = abfd->sections; o != NULL; o = o->next) | |
7954 | { | |
7955 | Elf_Internal_Rela *sec_relocs; | |
7956 | const Elf_Internal_Rela *r, *rend; | |
7957 | ||
7958 | /* We can ignore stub sections when looking for relocs. */ | |
7959 | if ((o->flags & SEC_RELOC) == 0 | |
7960 | || o->reloc_count == 0 | |
738e5348 | 7961 | || section_allows_mips16_refs_p (o)) |
b49e97c9 TS |
7962 | continue; |
7963 | ||
45d6a902 | 7964 | sec_relocs |
9719ad41 | 7965 | = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, |
45d6a902 | 7966 | info->keep_memory); |
b49e97c9 | 7967 | if (sec_relocs == NULL) |
b34976b6 | 7968 | return FALSE; |
b49e97c9 TS |
7969 | |
7970 | rend = sec_relocs + o->reloc_count; | |
7971 | for (r = sec_relocs; r < rend; r++) | |
7972 | if (ELF_R_SYM (abfd, r->r_info) == r_symndx | |
738e5348 | 7973 | && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info))) |
b49e97c9 TS |
7974 | break; |
7975 | ||
6cdc0ccc | 7976 | if (elf_section_data (o)->relocs != sec_relocs) |
b49e97c9 TS |
7977 | free (sec_relocs); |
7978 | ||
7979 | if (r < rend) | |
7980 | break; | |
7981 | } | |
7982 | ||
7983 | if (o == NULL) | |
7984 | { | |
7985 | /* There is no non-call reloc for this stub, so we do | |
7986 | not need it. Since this function is called before | |
7987 | the linker maps input sections to output sections, we | |
7988 | can easily discard it by setting the SEC_EXCLUDE | |
7989 | flag. */ | |
7990 | sec->flags |= SEC_EXCLUDE; | |
b34976b6 | 7991 | return TRUE; |
b49e97c9 TS |
7992 | } |
7993 | ||
7994 | /* Record this stub in an array of local symbol stubs for | |
7995 | this BFD. */ | |
698600e4 | 7996 | if (mips_elf_tdata (abfd)->local_stubs == NULL) |
b49e97c9 TS |
7997 | { |
7998 | unsigned long symcount; | |
7999 | asection **n; | |
8000 | bfd_size_type amt; | |
8001 | ||
8002 | if (elf_bad_symtab (abfd)) | |
8003 | symcount = NUM_SHDR_ENTRIES (symtab_hdr); | |
8004 | else | |
8005 | symcount = symtab_hdr->sh_info; | |
8006 | amt = symcount * sizeof (asection *); | |
9719ad41 | 8007 | n = bfd_zalloc (abfd, amt); |
b49e97c9 | 8008 | if (n == NULL) |
b34976b6 | 8009 | return FALSE; |
698600e4 | 8010 | mips_elf_tdata (abfd)->local_stubs = n; |
b49e97c9 TS |
8011 | } |
8012 | ||
b9d58d71 | 8013 | sec->flags |= SEC_KEEP; |
698600e4 | 8014 | mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec; |
b49e97c9 TS |
8015 | |
8016 | /* We don't need to set mips16_stubs_seen in this case. | |
8017 | That flag is used to see whether we need to look through | |
8018 | the global symbol table for stubs. We don't need to set | |
8019 | it here, because we just have a local stub. */ | |
8020 | } | |
8021 | else | |
8022 | { | |
8023 | struct mips_elf_link_hash_entry *h; | |
8024 | ||
8025 | h = ((struct mips_elf_link_hash_entry *) | |
8026 | sym_hashes[r_symndx - extsymoff]); | |
8027 | ||
973a3492 L |
8028 | while (h->root.root.type == bfd_link_hash_indirect |
8029 | || h->root.root.type == bfd_link_hash_warning) | |
8030 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
8031 | ||
b49e97c9 TS |
8032 | /* H is the symbol this stub is for. */ |
8033 | ||
b9d58d71 TS |
8034 | /* If we already have an appropriate stub for this function, we |
8035 | don't need another one, so we can discard this one. Since | |
8036 | this function is called before the linker maps input sections | |
8037 | to output sections, we can easily discard it by setting the | |
8038 | SEC_EXCLUDE flag. */ | |
8039 | if (h->fn_stub != NULL) | |
8040 | { | |
8041 | sec->flags |= SEC_EXCLUDE; | |
8042 | return TRUE; | |
8043 | } | |
8044 | ||
8045 | sec->flags |= SEC_KEEP; | |
b49e97c9 | 8046 | h->fn_stub = sec; |
b34976b6 | 8047 | mips_elf_hash_table (info)->mips16_stubs_seen = TRUE; |
b49e97c9 TS |
8048 | } |
8049 | } | |
b9d58d71 | 8050 | else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name)) |
b49e97c9 TS |
8051 | { |
8052 | unsigned long r_symndx; | |
8053 | struct mips_elf_link_hash_entry *h; | |
8054 | asection **loc; | |
8055 | ||
8056 | /* Look at the relocation information to figure out which symbol | |
8057 | this is for. */ | |
8058 | ||
cb4437b8 | 8059 | r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end); |
738e5348 RS |
8060 | if (r_symndx == 0) |
8061 | { | |
8062 | (*_bfd_error_handler) | |
8063 | (_("%B: Warning: cannot determine the target function for" | |
8064 | " stub section `%s'"), | |
8065 | abfd, name); | |
8066 | bfd_set_error (bfd_error_bad_value); | |
8067 | return FALSE; | |
8068 | } | |
b49e97c9 TS |
8069 | |
8070 | if (r_symndx < extsymoff | |
8071 | || sym_hashes[r_symndx - extsymoff] == NULL) | |
8072 | { | |
b9d58d71 | 8073 | asection *o; |
b49e97c9 | 8074 | |
b9d58d71 TS |
8075 | /* This stub is for a local symbol. This stub will only be |
8076 | needed if there is some relocation (R_MIPS16_26) in this BFD | |
8077 | that refers to this symbol. */ | |
8078 | for (o = abfd->sections; o != NULL; o = o->next) | |
8079 | { | |
8080 | Elf_Internal_Rela *sec_relocs; | |
8081 | const Elf_Internal_Rela *r, *rend; | |
8082 | ||
8083 | /* We can ignore stub sections when looking for relocs. */ | |
8084 | if ((o->flags & SEC_RELOC) == 0 | |
8085 | || o->reloc_count == 0 | |
738e5348 | 8086 | || section_allows_mips16_refs_p (o)) |
b9d58d71 TS |
8087 | continue; |
8088 | ||
8089 | sec_relocs | |
8090 | = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, | |
8091 | info->keep_memory); | |
8092 | if (sec_relocs == NULL) | |
8093 | return FALSE; | |
8094 | ||
8095 | rend = sec_relocs + o->reloc_count; | |
8096 | for (r = sec_relocs; r < rend; r++) | |
8097 | if (ELF_R_SYM (abfd, r->r_info) == r_symndx | |
8098 | && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26) | |
8099 | break; | |
8100 | ||
8101 | if (elf_section_data (o)->relocs != sec_relocs) | |
8102 | free (sec_relocs); | |
8103 | ||
8104 | if (r < rend) | |
8105 | break; | |
8106 | } | |
8107 | ||
8108 | if (o == NULL) | |
8109 | { | |
8110 | /* There is no non-call reloc for this stub, so we do | |
8111 | not need it. Since this function is called before | |
8112 | the linker maps input sections to output sections, we | |
8113 | can easily discard it by setting the SEC_EXCLUDE | |
8114 | flag. */ | |
8115 | sec->flags |= SEC_EXCLUDE; | |
8116 | return TRUE; | |
8117 | } | |
8118 | ||
8119 | /* Record this stub in an array of local symbol call_stubs for | |
8120 | this BFD. */ | |
698600e4 | 8121 | if (mips_elf_tdata (abfd)->local_call_stubs == NULL) |
b9d58d71 TS |
8122 | { |
8123 | unsigned long symcount; | |
8124 | asection **n; | |
8125 | bfd_size_type amt; | |
8126 | ||
8127 | if (elf_bad_symtab (abfd)) | |
8128 | symcount = NUM_SHDR_ENTRIES (symtab_hdr); | |
8129 | else | |
8130 | symcount = symtab_hdr->sh_info; | |
8131 | amt = symcount * sizeof (asection *); | |
8132 | n = bfd_zalloc (abfd, amt); | |
8133 | if (n == NULL) | |
8134 | return FALSE; | |
698600e4 | 8135 | mips_elf_tdata (abfd)->local_call_stubs = n; |
b9d58d71 | 8136 | } |
b49e97c9 | 8137 | |
b9d58d71 | 8138 | sec->flags |= SEC_KEEP; |
698600e4 | 8139 | mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec; |
b49e97c9 | 8140 | |
b9d58d71 TS |
8141 | /* We don't need to set mips16_stubs_seen in this case. |
8142 | That flag is used to see whether we need to look through | |
8143 | the global symbol table for stubs. We don't need to set | |
8144 | it here, because we just have a local stub. */ | |
8145 | } | |
b49e97c9 | 8146 | else |
b49e97c9 | 8147 | { |
b9d58d71 TS |
8148 | h = ((struct mips_elf_link_hash_entry *) |
8149 | sym_hashes[r_symndx - extsymoff]); | |
68ffbac6 | 8150 | |
b9d58d71 | 8151 | /* H is the symbol this stub is for. */ |
68ffbac6 | 8152 | |
b9d58d71 TS |
8153 | if (CALL_FP_STUB_P (name)) |
8154 | loc = &h->call_fp_stub; | |
8155 | else | |
8156 | loc = &h->call_stub; | |
68ffbac6 | 8157 | |
b9d58d71 TS |
8158 | /* If we already have an appropriate stub for this function, we |
8159 | don't need another one, so we can discard this one. Since | |
8160 | this function is called before the linker maps input sections | |
8161 | to output sections, we can easily discard it by setting the | |
8162 | SEC_EXCLUDE flag. */ | |
8163 | if (*loc != NULL) | |
8164 | { | |
8165 | sec->flags |= SEC_EXCLUDE; | |
8166 | return TRUE; | |
8167 | } | |
b49e97c9 | 8168 | |
b9d58d71 TS |
8169 | sec->flags |= SEC_KEEP; |
8170 | *loc = sec; | |
8171 | mips_elf_hash_table (info)->mips16_stubs_seen = TRUE; | |
8172 | } | |
b49e97c9 TS |
8173 | } |
8174 | ||
b49e97c9 | 8175 | sreloc = NULL; |
c224138d | 8176 | contents = NULL; |
b49e97c9 TS |
8177 | for (rel = relocs; rel < rel_end; ++rel) |
8178 | { | |
8179 | unsigned long r_symndx; | |
8180 | unsigned int r_type; | |
8181 | struct elf_link_hash_entry *h; | |
861fb55a | 8182 | bfd_boolean can_make_dynamic_p; |
c5d6fa44 RS |
8183 | bfd_boolean call_reloc_p; |
8184 | bfd_boolean constrain_symbol_p; | |
b49e97c9 TS |
8185 | |
8186 | r_symndx = ELF_R_SYM (abfd, rel->r_info); | |
8187 | r_type = ELF_R_TYPE (abfd, rel->r_info); | |
8188 | ||
8189 | if (r_symndx < extsymoff) | |
8190 | h = NULL; | |
8191 | else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr)) | |
8192 | { | |
8193 | (*_bfd_error_handler) | |
d003868e AM |
8194 | (_("%B: Malformed reloc detected for section %s"), |
8195 | abfd, name); | |
b49e97c9 | 8196 | bfd_set_error (bfd_error_bad_value); |
b34976b6 | 8197 | return FALSE; |
b49e97c9 TS |
8198 | } |
8199 | else | |
8200 | { | |
8201 | h = sym_hashes[r_symndx - extsymoff]; | |
81fbe831 AM |
8202 | if (h != NULL) |
8203 | { | |
8204 | while (h->root.type == bfd_link_hash_indirect | |
8205 | || h->root.type == bfd_link_hash_warning) | |
8206 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
8207 | ||
8208 | /* PR15323, ref flags aren't set for references in the | |
8209 | same object. */ | |
8210 | h->root.non_ir_ref = 1; | |
8211 | } | |
861fb55a | 8212 | } |
b49e97c9 | 8213 | |
861fb55a DJ |
8214 | /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this |
8215 | relocation into a dynamic one. */ | |
8216 | can_make_dynamic_p = FALSE; | |
c5d6fa44 RS |
8217 | |
8218 | /* Set CALL_RELOC_P to true if the relocation is for a call, | |
8219 | and if pointer equality therefore doesn't matter. */ | |
8220 | call_reloc_p = FALSE; | |
8221 | ||
8222 | /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation | |
8223 | into account when deciding how to define the symbol. | |
8224 | Relocations in nonallocatable sections such as .pdr and | |
8225 | .debug* should have no effect. */ | |
8226 | constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0); | |
8227 | ||
861fb55a DJ |
8228 | switch (r_type) |
8229 | { | |
861fb55a DJ |
8230 | case R_MIPS_CALL16: |
8231 | case R_MIPS_CALL_HI16: | |
8232 | case R_MIPS_CALL_LO16: | |
c5d6fa44 RS |
8233 | case R_MIPS16_CALL16: |
8234 | case R_MICROMIPS_CALL16: | |
8235 | case R_MICROMIPS_CALL_HI16: | |
8236 | case R_MICROMIPS_CALL_LO16: | |
8237 | call_reloc_p = TRUE; | |
8238 | /* Fall through. */ | |
8239 | ||
8240 | case R_MIPS_GOT16: | |
861fb55a DJ |
8241 | case R_MIPS_GOT_HI16: |
8242 | case R_MIPS_GOT_LO16: | |
8243 | case R_MIPS_GOT_PAGE: | |
8244 | case R_MIPS_GOT_OFST: | |
8245 | case R_MIPS_GOT_DISP: | |
8246 | case R_MIPS_TLS_GOTTPREL: | |
8247 | case R_MIPS_TLS_GD: | |
8248 | case R_MIPS_TLS_LDM: | |
d0f13682 | 8249 | case R_MIPS16_GOT16: |
d0f13682 CLT |
8250 | case R_MIPS16_TLS_GOTTPREL: |
8251 | case R_MIPS16_TLS_GD: | |
8252 | case R_MIPS16_TLS_LDM: | |
df58fc94 | 8253 | case R_MICROMIPS_GOT16: |
df58fc94 RS |
8254 | case R_MICROMIPS_GOT_HI16: |
8255 | case R_MICROMIPS_GOT_LO16: | |
8256 | case R_MICROMIPS_GOT_PAGE: | |
8257 | case R_MICROMIPS_GOT_OFST: | |
8258 | case R_MICROMIPS_GOT_DISP: | |
8259 | case R_MICROMIPS_TLS_GOTTPREL: | |
8260 | case R_MICROMIPS_TLS_GD: | |
8261 | case R_MICROMIPS_TLS_LDM: | |
861fb55a DJ |
8262 | if (dynobj == NULL) |
8263 | elf_hash_table (info)->dynobj = dynobj = abfd; | |
8264 | if (!mips_elf_create_got_section (dynobj, info)) | |
8265 | return FALSE; | |
8266 | if (htab->is_vxworks && !info->shared) | |
b49e97c9 | 8267 | { |
861fb55a DJ |
8268 | (*_bfd_error_handler) |
8269 | (_("%B: GOT reloc at 0x%lx not expected in executables"), | |
8270 | abfd, (unsigned long) rel->r_offset); | |
8271 | bfd_set_error (bfd_error_bad_value); | |
8272 | return FALSE; | |
b49e97c9 | 8273 | } |
c5d6fa44 | 8274 | can_make_dynamic_p = TRUE; |
861fb55a | 8275 | break; |
b49e97c9 | 8276 | |
c5d6fa44 | 8277 | case R_MIPS_NONE: |
99da6b5f | 8278 | case R_MIPS_JALR: |
df58fc94 | 8279 | case R_MICROMIPS_JALR: |
c5d6fa44 RS |
8280 | /* These relocations have empty fields and are purely there to |
8281 | provide link information. The symbol value doesn't matter. */ | |
8282 | constrain_symbol_p = FALSE; | |
8283 | break; | |
8284 | ||
8285 | case R_MIPS_GPREL16: | |
8286 | case R_MIPS_GPREL32: | |
8287 | case R_MIPS16_GPREL: | |
8288 | case R_MICROMIPS_GPREL16: | |
8289 | /* GP-relative relocations always resolve to a definition in a | |
8290 | regular input file, ignoring the one-definition rule. This is | |
8291 | important for the GP setup sequence in NewABI code, which | |
8292 | always resolves to a local function even if other relocations | |
8293 | against the symbol wouldn't. */ | |
8294 | constrain_symbol_p = FALSE; | |
99da6b5f AN |
8295 | break; |
8296 | ||
861fb55a DJ |
8297 | case R_MIPS_32: |
8298 | case R_MIPS_REL32: | |
8299 | case R_MIPS_64: | |
8300 | /* In VxWorks executables, references to external symbols | |
8301 | must be handled using copy relocs or PLT entries; it is not | |
8302 | possible to convert this relocation into a dynamic one. | |
8303 | ||
8304 | For executables that use PLTs and copy-relocs, we have a | |
8305 | choice between converting the relocation into a dynamic | |
8306 | one or using copy relocations or PLT entries. It is | |
8307 | usually better to do the former, unless the relocation is | |
8308 | against a read-only section. */ | |
8309 | if ((info->shared | |
8310 | || (h != NULL | |
8311 | && !htab->is_vxworks | |
8312 | && strcmp (h->root.root.string, "__gnu_local_gp") != 0 | |
8313 | && !(!info->nocopyreloc | |
8314 | && !PIC_OBJECT_P (abfd) | |
8315 | && MIPS_ELF_READONLY_SECTION (sec)))) | |
8316 | && (sec->flags & SEC_ALLOC) != 0) | |
b49e97c9 | 8317 | { |
861fb55a | 8318 | can_make_dynamic_p = TRUE; |
b49e97c9 TS |
8319 | if (dynobj == NULL) |
8320 | elf_hash_table (info)->dynobj = dynobj = abfd; | |
861fb55a | 8321 | } |
c5d6fa44 | 8322 | break; |
b49e97c9 | 8323 | |
861fb55a DJ |
8324 | case R_MIPS_26: |
8325 | case R_MIPS_PC16: | |
7361da2c AB |
8326 | case R_MIPS_PC21_S2: |
8327 | case R_MIPS_PC26_S2: | |
861fb55a | 8328 | case R_MIPS16_26: |
df58fc94 RS |
8329 | case R_MICROMIPS_26_S1: |
8330 | case R_MICROMIPS_PC7_S1: | |
8331 | case R_MICROMIPS_PC10_S1: | |
8332 | case R_MICROMIPS_PC16_S1: | |
8333 | case R_MICROMIPS_PC23_S2: | |
c5d6fa44 | 8334 | call_reloc_p = TRUE; |
861fb55a | 8335 | break; |
b49e97c9 TS |
8336 | } |
8337 | ||
0a44bf69 RS |
8338 | if (h) |
8339 | { | |
c5d6fa44 RS |
8340 | if (constrain_symbol_p) |
8341 | { | |
8342 | if (!can_make_dynamic_p) | |
8343 | ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1; | |
8344 | ||
8345 | if (!call_reloc_p) | |
8346 | h->pointer_equality_needed = 1; | |
8347 | ||
8348 | /* We must not create a stub for a symbol that has | |
8349 | relocations related to taking the function's address. | |
8350 | This doesn't apply to VxWorks, where CALL relocs refer | |
8351 | to a .got.plt entry instead of a normal .got entry. */ | |
8352 | if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p)) | |
8353 | ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE; | |
8354 | } | |
8355 | ||
0a44bf69 RS |
8356 | /* Relocations against the special VxWorks __GOTT_BASE__ and |
8357 | __GOTT_INDEX__ symbols must be left to the loader. Allocate | |
8358 | room for them in .rela.dyn. */ | |
8359 | if (is_gott_symbol (info, h)) | |
8360 | { | |
8361 | if (sreloc == NULL) | |
8362 | { | |
8363 | sreloc = mips_elf_rel_dyn_section (info, TRUE); | |
8364 | if (sreloc == NULL) | |
8365 | return FALSE; | |
8366 | } | |
8367 | mips_elf_allocate_dynamic_relocations (dynobj, info, 1); | |
9e3313ae RS |
8368 | if (MIPS_ELF_READONLY_SECTION (sec)) |
8369 | /* We tell the dynamic linker that there are | |
8370 | relocations against the text segment. */ | |
8371 | info->flags |= DF_TEXTREL; | |
0a44bf69 RS |
8372 | } |
8373 | } | |
df58fc94 RS |
8374 | else if (call_lo16_reloc_p (r_type) |
8375 | || got_lo16_reloc_p (r_type) | |
8376 | || got_disp_reloc_p (r_type) | |
738e5348 | 8377 | || (got16_reloc_p (r_type) && htab->is_vxworks)) |
b49e97c9 TS |
8378 | { |
8379 | /* We may need a local GOT entry for this relocation. We | |
8380 | don't count R_MIPS_GOT_PAGE because we can estimate the | |
8381 | maximum number of pages needed by looking at the size of | |
738e5348 RS |
8382 | the segment. Similar comments apply to R_MIPS*_GOT16 and |
8383 | R_MIPS*_CALL16, except on VxWorks, where GOT relocations | |
0a44bf69 | 8384 | always evaluate to "G". We don't count R_MIPS_GOT_HI16, or |
b49e97c9 | 8385 | R_MIPS_CALL_HI16 because these are always followed by an |
b15e6682 | 8386 | R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */ |
a8028dd0 | 8387 | if (!mips_elf_record_local_got_symbol (abfd, r_symndx, |
e641e783 | 8388 | rel->r_addend, info, r_type)) |
f4416af6 | 8389 | return FALSE; |
b49e97c9 TS |
8390 | } |
8391 | ||
8f0c309a CLT |
8392 | if (h != NULL |
8393 | && mips_elf_relocation_needs_la25_stub (abfd, r_type, | |
8394 | ELF_ST_IS_MIPS16 (h->other))) | |
861fb55a DJ |
8395 | ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE; |
8396 | ||
b49e97c9 TS |
8397 | switch (r_type) |
8398 | { | |
8399 | case R_MIPS_CALL16: | |
738e5348 | 8400 | case R_MIPS16_CALL16: |
df58fc94 | 8401 | case R_MICROMIPS_CALL16: |
b49e97c9 TS |
8402 | if (h == NULL) |
8403 | { | |
8404 | (*_bfd_error_handler) | |
d003868e AM |
8405 | (_("%B: CALL16 reloc at 0x%lx not against global symbol"), |
8406 | abfd, (unsigned long) rel->r_offset); | |
b49e97c9 | 8407 | bfd_set_error (bfd_error_bad_value); |
b34976b6 | 8408 | return FALSE; |
b49e97c9 TS |
8409 | } |
8410 | /* Fall through. */ | |
8411 | ||
8412 | case R_MIPS_CALL_HI16: | |
8413 | case R_MIPS_CALL_LO16: | |
df58fc94 RS |
8414 | case R_MICROMIPS_CALL_HI16: |
8415 | case R_MICROMIPS_CALL_LO16: | |
b49e97c9 TS |
8416 | if (h != NULL) |
8417 | { | |
6ccf4795 RS |
8418 | /* Make sure there is room in the regular GOT to hold the |
8419 | function's address. We may eliminate it in favour of | |
8420 | a .got.plt entry later; see mips_elf_count_got_symbols. */ | |
e641e783 RS |
8421 | if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, |
8422 | r_type)) | |
b34976b6 | 8423 | return FALSE; |
b49e97c9 TS |
8424 | |
8425 | /* We need a stub, not a plt entry for the undefined | |
8426 | function. But we record it as if it needs plt. See | |
c152c796 | 8427 | _bfd_elf_adjust_dynamic_symbol. */ |
f5385ebf | 8428 | h->needs_plt = 1; |
b49e97c9 TS |
8429 | h->type = STT_FUNC; |
8430 | } | |
8431 | break; | |
8432 | ||
0fdc1bf1 | 8433 | case R_MIPS_GOT_PAGE: |
df58fc94 | 8434 | case R_MICROMIPS_GOT_PAGE: |
738e5348 | 8435 | case R_MIPS16_GOT16: |
b49e97c9 TS |
8436 | case R_MIPS_GOT16: |
8437 | case R_MIPS_GOT_HI16: | |
8438 | case R_MIPS_GOT_LO16: | |
df58fc94 RS |
8439 | case R_MICROMIPS_GOT16: |
8440 | case R_MICROMIPS_GOT_HI16: | |
8441 | case R_MICROMIPS_GOT_LO16: | |
8442 | if (!h || got_page_reloc_p (r_type)) | |
c224138d | 8443 | { |
3a3b6725 DJ |
8444 | /* This relocation needs (or may need, if h != NULL) a |
8445 | page entry in the GOT. For R_MIPS_GOT_PAGE we do not | |
8446 | know for sure until we know whether the symbol is | |
8447 | preemptible. */ | |
c224138d RS |
8448 | if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel)) |
8449 | { | |
8450 | if (!mips_elf_get_section_contents (abfd, sec, &contents)) | |
8451 | return FALSE; | |
8452 | howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE); | |
8453 | addend = mips_elf_read_rel_addend (abfd, rel, | |
8454 | howto, contents); | |
9684f078 | 8455 | if (got16_reloc_p (r_type)) |
c224138d RS |
8456 | mips_elf_add_lo16_rel_addend (abfd, rel, rel_end, |
8457 | contents, &addend); | |
8458 | else | |
8459 | addend <<= howto->rightshift; | |
8460 | } | |
8461 | else | |
8462 | addend = rel->r_addend; | |
13db6b44 RS |
8463 | if (!mips_elf_record_got_page_ref (info, abfd, r_symndx, |
8464 | h, addend)) | |
c224138d | 8465 | return FALSE; |
13db6b44 RS |
8466 | |
8467 | if (h) | |
8468 | { | |
8469 | struct mips_elf_link_hash_entry *hmips = | |
8470 | (struct mips_elf_link_hash_entry *) h; | |
8471 | ||
8472 | /* This symbol is definitely not overridable. */ | |
8473 | if (hmips->root.def_regular | |
8474 | && ! (info->shared && ! info->symbolic | |
8475 | && ! hmips->root.forced_local)) | |
8476 | h = NULL; | |
8477 | } | |
c224138d | 8478 | } |
13db6b44 RS |
8479 | /* If this is a global, overridable symbol, GOT_PAGE will |
8480 | decay to GOT_DISP, so we'll need a GOT entry for it. */ | |
c224138d RS |
8481 | /* Fall through. */ |
8482 | ||
b49e97c9 | 8483 | case R_MIPS_GOT_DISP: |
df58fc94 | 8484 | case R_MICROMIPS_GOT_DISP: |
6ccf4795 | 8485 | if (h && !mips_elf_record_global_got_symbol (h, abfd, info, |
e641e783 | 8486 | FALSE, r_type)) |
b34976b6 | 8487 | return FALSE; |
b49e97c9 TS |
8488 | break; |
8489 | ||
0f20cc35 | 8490 | case R_MIPS_TLS_GOTTPREL: |
d0f13682 | 8491 | case R_MIPS16_TLS_GOTTPREL: |
df58fc94 | 8492 | case R_MICROMIPS_TLS_GOTTPREL: |
0f20cc35 DJ |
8493 | if (info->shared) |
8494 | info->flags |= DF_STATIC_TLS; | |
8495 | /* Fall through */ | |
8496 | ||
8497 | case R_MIPS_TLS_LDM: | |
d0f13682 | 8498 | case R_MIPS16_TLS_LDM: |
df58fc94 RS |
8499 | case R_MICROMIPS_TLS_LDM: |
8500 | if (tls_ldm_reloc_p (r_type)) | |
0f20cc35 | 8501 | { |
cf35638d | 8502 | r_symndx = STN_UNDEF; |
0f20cc35 DJ |
8503 | h = NULL; |
8504 | } | |
8505 | /* Fall through */ | |
8506 | ||
8507 | case R_MIPS_TLS_GD: | |
d0f13682 | 8508 | case R_MIPS16_TLS_GD: |
df58fc94 | 8509 | case R_MICROMIPS_TLS_GD: |
0f20cc35 DJ |
8510 | /* This symbol requires a global offset table entry, or two |
8511 | for TLS GD relocations. */ | |
e641e783 RS |
8512 | if (h != NULL) |
8513 | { | |
8514 | if (!mips_elf_record_global_got_symbol (h, abfd, info, | |
8515 | FALSE, r_type)) | |
8516 | return FALSE; | |
8517 | } | |
8518 | else | |
8519 | { | |
8520 | if (!mips_elf_record_local_got_symbol (abfd, r_symndx, | |
8521 | rel->r_addend, | |
8522 | info, r_type)) | |
8523 | return FALSE; | |
8524 | } | |
0f20cc35 DJ |
8525 | break; |
8526 | ||
b49e97c9 TS |
8527 | case R_MIPS_32: |
8528 | case R_MIPS_REL32: | |
8529 | case R_MIPS_64: | |
0a44bf69 RS |
8530 | /* In VxWorks executables, references to external symbols |
8531 | are handled using copy relocs or PLT stubs, so there's | |
8532 | no need to add a .rela.dyn entry for this relocation. */ | |
861fb55a | 8533 | if (can_make_dynamic_p) |
b49e97c9 TS |
8534 | { |
8535 | if (sreloc == NULL) | |
8536 | { | |
0a44bf69 | 8537 | sreloc = mips_elf_rel_dyn_section (info, TRUE); |
b49e97c9 | 8538 | if (sreloc == NULL) |
f4416af6 | 8539 | return FALSE; |
b49e97c9 | 8540 | } |
9a59ad6b | 8541 | if (info->shared && h == NULL) |
82f0cfbd EC |
8542 | { |
8543 | /* When creating a shared object, we must copy these | |
8544 | reloc types into the output file as R_MIPS_REL32 | |
0a44bf69 RS |
8545 | relocs. Make room for this reloc in .rel(a).dyn. */ |
8546 | mips_elf_allocate_dynamic_relocations (dynobj, info, 1); | |
943284cc | 8547 | if (MIPS_ELF_READONLY_SECTION (sec)) |
82f0cfbd EC |
8548 | /* We tell the dynamic linker that there are |
8549 | relocations against the text segment. */ | |
8550 | info->flags |= DF_TEXTREL; | |
8551 | } | |
b49e97c9 TS |
8552 | else |
8553 | { | |
8554 | struct mips_elf_link_hash_entry *hmips; | |
82f0cfbd | 8555 | |
9a59ad6b DJ |
8556 | /* For a shared object, we must copy this relocation |
8557 | unless the symbol turns out to be undefined and | |
8558 | weak with non-default visibility, in which case | |
8559 | it will be left as zero. | |
8560 | ||
8561 | We could elide R_MIPS_REL32 for locally binding symbols | |
8562 | in shared libraries, but do not yet do so. | |
8563 | ||
8564 | For an executable, we only need to copy this | |
8565 | reloc if the symbol is defined in a dynamic | |
8566 | object. */ | |
b49e97c9 TS |
8567 | hmips = (struct mips_elf_link_hash_entry *) h; |
8568 | ++hmips->possibly_dynamic_relocs; | |
943284cc | 8569 | if (MIPS_ELF_READONLY_SECTION (sec)) |
82f0cfbd EC |
8570 | /* We need it to tell the dynamic linker if there |
8571 | are relocations against the text segment. */ | |
8572 | hmips->readonly_reloc = TRUE; | |
b49e97c9 | 8573 | } |
b49e97c9 TS |
8574 | } |
8575 | ||
8576 | if (SGI_COMPAT (abfd)) | |
8577 | mips_elf_hash_table (info)->compact_rel_size += | |
8578 | sizeof (Elf32_External_crinfo); | |
8579 | break; | |
8580 | ||
8581 | case R_MIPS_26: | |
8582 | case R_MIPS_GPREL16: | |
8583 | case R_MIPS_LITERAL: | |
8584 | case R_MIPS_GPREL32: | |
df58fc94 RS |
8585 | case R_MICROMIPS_26_S1: |
8586 | case R_MICROMIPS_GPREL16: | |
8587 | case R_MICROMIPS_LITERAL: | |
8588 | case R_MICROMIPS_GPREL7_S2: | |
b49e97c9 TS |
8589 | if (SGI_COMPAT (abfd)) |
8590 | mips_elf_hash_table (info)->compact_rel_size += | |
8591 | sizeof (Elf32_External_crinfo); | |
8592 | break; | |
8593 | ||
8594 | /* This relocation describes the C++ object vtable hierarchy. | |
8595 | Reconstruct it for later use during GC. */ | |
8596 | case R_MIPS_GNU_VTINHERIT: | |
c152c796 | 8597 | if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) |
b34976b6 | 8598 | return FALSE; |
b49e97c9 TS |
8599 | break; |
8600 | ||
8601 | /* This relocation describes which C++ vtable entries are actually | |
8602 | used. Record for later use during GC. */ | |
8603 | case R_MIPS_GNU_VTENTRY: | |
d17e0c6e JB |
8604 | BFD_ASSERT (h != NULL); |
8605 | if (h != NULL | |
8606 | && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset)) | |
b34976b6 | 8607 | return FALSE; |
b49e97c9 TS |
8608 | break; |
8609 | ||
8610 | default: | |
8611 | break; | |
8612 | } | |
8613 | ||
1bbce132 MR |
8614 | /* Record the need for a PLT entry. At this point we don't know |
8615 | yet if we are going to create a PLT in the first place, but | |
8616 | we only record whether the relocation requires a standard MIPS | |
8617 | or a compressed code entry anyway. If we don't make a PLT after | |
8618 | all, then we'll just ignore these arrangements. Likewise if | |
8619 | a PLT entry is not created because the symbol is satisfied | |
8620 | locally. */ | |
8621 | if (h != NULL | |
8622 | && jal_reloc_p (r_type) | |
8623 | && !SYMBOL_CALLS_LOCAL (info, h)) | |
8624 | { | |
8625 | if (h->plt.plist == NULL) | |
8626 | h->plt.plist = mips_elf_make_plt_record (abfd); | |
8627 | if (h->plt.plist == NULL) | |
8628 | return FALSE; | |
8629 | ||
8630 | if (r_type == R_MIPS_26) | |
8631 | h->plt.plist->need_mips = TRUE; | |
8632 | else | |
8633 | h->plt.plist->need_comp = TRUE; | |
8634 | } | |
8635 | ||
738e5348 RS |
8636 | /* See if this reloc would need to refer to a MIPS16 hard-float stub, |
8637 | if there is one. We only need to handle global symbols here; | |
8638 | we decide whether to keep or delete stubs for local symbols | |
8639 | when processing the stub's relocations. */ | |
b49e97c9 | 8640 | if (h != NULL |
738e5348 RS |
8641 | && !mips16_call_reloc_p (r_type) |
8642 | && !section_allows_mips16_refs_p (sec)) | |
b49e97c9 TS |
8643 | { |
8644 | struct mips_elf_link_hash_entry *mh; | |
8645 | ||
8646 | mh = (struct mips_elf_link_hash_entry *) h; | |
b34976b6 | 8647 | mh->need_fn_stub = TRUE; |
b49e97c9 | 8648 | } |
861fb55a DJ |
8649 | |
8650 | /* Refuse some position-dependent relocations when creating a | |
8651 | shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're | |
8652 | not PIC, but we can create dynamic relocations and the result | |
8653 | will be fine. Also do not refuse R_MIPS_LO16, which can be | |
8654 | combined with R_MIPS_GOT16. */ | |
8655 | if (info->shared) | |
8656 | { | |
8657 | switch (r_type) | |
8658 | { | |
8659 | case R_MIPS16_HI16: | |
8660 | case R_MIPS_HI16: | |
8661 | case R_MIPS_HIGHER: | |
8662 | case R_MIPS_HIGHEST: | |
df58fc94 RS |
8663 | case R_MICROMIPS_HI16: |
8664 | case R_MICROMIPS_HIGHER: | |
8665 | case R_MICROMIPS_HIGHEST: | |
861fb55a DJ |
8666 | /* Don't refuse a high part relocation if it's against |
8667 | no symbol (e.g. part of a compound relocation). */ | |
cf35638d | 8668 | if (r_symndx == STN_UNDEF) |
861fb55a DJ |
8669 | break; |
8670 | ||
8671 | /* R_MIPS_HI16 against _gp_disp is used for $gp setup, | |
8672 | and has a special meaning. */ | |
8673 | if (!NEWABI_P (abfd) && h != NULL | |
8674 | && strcmp (h->root.root.string, "_gp_disp") == 0) | |
8675 | break; | |
8676 | ||
0fc1eb3c RS |
8677 | /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */ |
8678 | if (is_gott_symbol (info, h)) | |
8679 | break; | |
8680 | ||
861fb55a DJ |
8681 | /* FALLTHROUGH */ |
8682 | ||
8683 | case R_MIPS16_26: | |
8684 | case R_MIPS_26: | |
df58fc94 | 8685 | case R_MICROMIPS_26_S1: |
861fb55a DJ |
8686 | howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE); |
8687 | (*_bfd_error_handler) | |
8688 | (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"), | |
8689 | abfd, howto->name, | |
8690 | (h) ? h->root.root.string : "a local symbol"); | |
8691 | bfd_set_error (bfd_error_bad_value); | |
8692 | return FALSE; | |
8693 | default: | |
8694 | break; | |
8695 | } | |
8696 | } | |
b49e97c9 TS |
8697 | } |
8698 | ||
b34976b6 | 8699 | return TRUE; |
b49e97c9 TS |
8700 | } |
8701 | \f | |
d0647110 | 8702 | bfd_boolean |
9719ad41 RS |
8703 | _bfd_mips_relax_section (bfd *abfd, asection *sec, |
8704 | struct bfd_link_info *link_info, | |
8705 | bfd_boolean *again) | |
d0647110 AO |
8706 | { |
8707 | Elf_Internal_Rela *internal_relocs; | |
8708 | Elf_Internal_Rela *irel, *irelend; | |
8709 | Elf_Internal_Shdr *symtab_hdr; | |
8710 | bfd_byte *contents = NULL; | |
d0647110 AO |
8711 | size_t extsymoff; |
8712 | bfd_boolean changed_contents = FALSE; | |
8713 | bfd_vma sec_start = sec->output_section->vma + sec->output_offset; | |
8714 | Elf_Internal_Sym *isymbuf = NULL; | |
8715 | ||
8716 | /* We are not currently changing any sizes, so only one pass. */ | |
8717 | *again = FALSE; | |
8718 | ||
1049f94e | 8719 | if (link_info->relocatable) |
d0647110 AO |
8720 | return TRUE; |
8721 | ||
9719ad41 | 8722 | internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, |
45d6a902 | 8723 | link_info->keep_memory); |
d0647110 AO |
8724 | if (internal_relocs == NULL) |
8725 | return TRUE; | |
8726 | ||
8727 | irelend = internal_relocs + sec->reloc_count | |
8728 | * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel; | |
8729 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
8730 | extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; | |
8731 | ||
8732 | for (irel = internal_relocs; irel < irelend; irel++) | |
8733 | { | |
8734 | bfd_vma symval; | |
8735 | bfd_signed_vma sym_offset; | |
8736 | unsigned int r_type; | |
8737 | unsigned long r_symndx; | |
8738 | asection *sym_sec; | |
8739 | unsigned long instruction; | |
8740 | ||
8741 | /* Turn jalr into bgezal, and jr into beq, if they're marked | |
8742 | with a JALR relocation, that indicate where they jump to. | |
8743 | This saves some pipeline bubbles. */ | |
8744 | r_type = ELF_R_TYPE (abfd, irel->r_info); | |
8745 | if (r_type != R_MIPS_JALR) | |
8746 | continue; | |
8747 | ||
8748 | r_symndx = ELF_R_SYM (abfd, irel->r_info); | |
8749 | /* Compute the address of the jump target. */ | |
8750 | if (r_symndx >= extsymoff) | |
8751 | { | |
8752 | struct mips_elf_link_hash_entry *h | |
8753 | = ((struct mips_elf_link_hash_entry *) | |
8754 | elf_sym_hashes (abfd) [r_symndx - extsymoff]); | |
8755 | ||
8756 | while (h->root.root.type == bfd_link_hash_indirect | |
8757 | || h->root.root.type == bfd_link_hash_warning) | |
8758 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
143d77c5 | 8759 | |
d0647110 AO |
8760 | /* If a symbol is undefined, or if it may be overridden, |
8761 | skip it. */ | |
8762 | if (! ((h->root.root.type == bfd_link_hash_defined | |
8763 | || h->root.root.type == bfd_link_hash_defweak) | |
8764 | && h->root.root.u.def.section) | |
8765 | || (link_info->shared && ! link_info->symbolic | |
f5385ebf | 8766 | && !h->root.forced_local)) |
d0647110 AO |
8767 | continue; |
8768 | ||
8769 | sym_sec = h->root.root.u.def.section; | |
8770 | if (sym_sec->output_section) | |
8771 | symval = (h->root.root.u.def.value | |
8772 | + sym_sec->output_section->vma | |
8773 | + sym_sec->output_offset); | |
8774 | else | |
8775 | symval = h->root.root.u.def.value; | |
8776 | } | |
8777 | else | |
8778 | { | |
8779 | Elf_Internal_Sym *isym; | |
8780 | ||
8781 | /* Read this BFD's symbols if we haven't done so already. */ | |
8782 | if (isymbuf == NULL && symtab_hdr->sh_info != 0) | |
8783 | { | |
8784 | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; | |
8785 | if (isymbuf == NULL) | |
8786 | isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, | |
8787 | symtab_hdr->sh_info, 0, | |
8788 | NULL, NULL, NULL); | |
8789 | if (isymbuf == NULL) | |
8790 | goto relax_return; | |
8791 | } | |
8792 | ||
8793 | isym = isymbuf + r_symndx; | |
8794 | if (isym->st_shndx == SHN_UNDEF) | |
8795 | continue; | |
8796 | else if (isym->st_shndx == SHN_ABS) | |
8797 | sym_sec = bfd_abs_section_ptr; | |
8798 | else if (isym->st_shndx == SHN_COMMON) | |
8799 | sym_sec = bfd_com_section_ptr; | |
8800 | else | |
8801 | sym_sec | |
8802 | = bfd_section_from_elf_index (abfd, isym->st_shndx); | |
8803 | symval = isym->st_value | |
8804 | + sym_sec->output_section->vma | |
8805 | + sym_sec->output_offset; | |
8806 | } | |
8807 | ||
8808 | /* Compute branch offset, from delay slot of the jump to the | |
8809 | branch target. */ | |
8810 | sym_offset = (symval + irel->r_addend) | |
8811 | - (sec_start + irel->r_offset + 4); | |
8812 | ||
8813 | /* Branch offset must be properly aligned. */ | |
8814 | if ((sym_offset & 3) != 0) | |
8815 | continue; | |
8816 | ||
8817 | sym_offset >>= 2; | |
8818 | ||
8819 | /* Check that it's in range. */ | |
8820 | if (sym_offset < -0x8000 || sym_offset >= 0x8000) | |
8821 | continue; | |
143d77c5 | 8822 | |
d0647110 | 8823 | /* Get the section contents if we haven't done so already. */ |
c224138d RS |
8824 | if (!mips_elf_get_section_contents (abfd, sec, &contents)) |
8825 | goto relax_return; | |
d0647110 AO |
8826 | |
8827 | instruction = bfd_get_32 (abfd, contents + irel->r_offset); | |
8828 | ||
8829 | /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */ | |
8830 | if ((instruction & 0xfc1fffff) == 0x0000f809) | |
8831 | instruction = 0x04110000; | |
8832 | /* If it was jr <reg>, turn it into b <target>. */ | |
8833 | else if ((instruction & 0xfc1fffff) == 0x00000008) | |
8834 | instruction = 0x10000000; | |
8835 | else | |
8836 | continue; | |
8837 | ||
8838 | instruction |= (sym_offset & 0xffff); | |
8839 | bfd_put_32 (abfd, instruction, contents + irel->r_offset); | |
8840 | changed_contents = TRUE; | |
8841 | } | |
8842 | ||
8843 | if (contents != NULL | |
8844 | && elf_section_data (sec)->this_hdr.contents != contents) | |
8845 | { | |
8846 | if (!changed_contents && !link_info->keep_memory) | |
8847 | free (contents); | |
8848 | else | |
8849 | { | |
8850 | /* Cache the section contents for elf_link_input_bfd. */ | |
8851 | elf_section_data (sec)->this_hdr.contents = contents; | |
8852 | } | |
8853 | } | |
8854 | return TRUE; | |
8855 | ||
143d77c5 | 8856 | relax_return: |
eea6121a AM |
8857 | if (contents != NULL |
8858 | && elf_section_data (sec)->this_hdr.contents != contents) | |
8859 | free (contents); | |
d0647110 AO |
8860 | return FALSE; |
8861 | } | |
8862 | \f | |
9a59ad6b DJ |
8863 | /* Allocate space for global sym dynamic relocs. */ |
8864 | ||
8865 | static bfd_boolean | |
8866 | allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf) | |
8867 | { | |
8868 | struct bfd_link_info *info = inf; | |
8869 | bfd *dynobj; | |
8870 | struct mips_elf_link_hash_entry *hmips; | |
8871 | struct mips_elf_link_hash_table *htab; | |
8872 | ||
8873 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 NC |
8874 | BFD_ASSERT (htab != NULL); |
8875 | ||
9a59ad6b DJ |
8876 | dynobj = elf_hash_table (info)->dynobj; |
8877 | hmips = (struct mips_elf_link_hash_entry *) h; | |
8878 | ||
8879 | /* VxWorks executables are handled elsewhere; we only need to | |
8880 | allocate relocations in shared objects. */ | |
8881 | if (htab->is_vxworks && !info->shared) | |
8882 | return TRUE; | |
8883 | ||
7686d77d AM |
8884 | /* Ignore indirect symbols. All relocations against such symbols |
8885 | will be redirected to the target symbol. */ | |
8886 | if (h->root.type == bfd_link_hash_indirect) | |
63897e2c RS |
8887 | return TRUE; |
8888 | ||
9a59ad6b DJ |
8889 | /* If this symbol is defined in a dynamic object, or we are creating |
8890 | a shared library, we will need to copy any R_MIPS_32 or | |
8891 | R_MIPS_REL32 relocs against it into the output file. */ | |
8892 | if (! info->relocatable | |
8893 | && hmips->possibly_dynamic_relocs != 0 | |
8894 | && (h->root.type == bfd_link_hash_defweak | |
625ef6dc | 8895 | || (!h->def_regular && !ELF_COMMON_DEF_P (h)) |
9a59ad6b DJ |
8896 | || info->shared)) |
8897 | { | |
8898 | bfd_boolean do_copy = TRUE; | |
8899 | ||
8900 | if (h->root.type == bfd_link_hash_undefweak) | |
8901 | { | |
8902 | /* Do not copy relocations for undefined weak symbols with | |
8903 | non-default visibility. */ | |
8904 | if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) | |
8905 | do_copy = FALSE; | |
8906 | ||
8907 | /* Make sure undefined weak symbols are output as a dynamic | |
8908 | symbol in PIEs. */ | |
8909 | else if (h->dynindx == -1 && !h->forced_local) | |
8910 | { | |
8911 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) | |
8912 | return FALSE; | |
8913 | } | |
8914 | } | |
8915 | ||
8916 | if (do_copy) | |
8917 | { | |
aff469fa | 8918 | /* Even though we don't directly need a GOT entry for this symbol, |
f7ff1106 RS |
8919 | the SVR4 psABI requires it to have a dynamic symbol table |
8920 | index greater that DT_MIPS_GOTSYM if there are dynamic | |
8921 | relocations against it. | |
8922 | ||
8923 | VxWorks does not enforce the same mapping between the GOT | |
8924 | and the symbol table, so the same requirement does not | |
8925 | apply there. */ | |
6ccf4795 RS |
8926 | if (!htab->is_vxworks) |
8927 | { | |
8928 | if (hmips->global_got_area > GGA_RELOC_ONLY) | |
8929 | hmips->global_got_area = GGA_RELOC_ONLY; | |
8930 | hmips->got_only_for_calls = FALSE; | |
8931 | } | |
aff469fa | 8932 | |
9a59ad6b DJ |
8933 | mips_elf_allocate_dynamic_relocations |
8934 | (dynobj, info, hmips->possibly_dynamic_relocs); | |
8935 | if (hmips->readonly_reloc) | |
8936 | /* We tell the dynamic linker that there are relocations | |
8937 | against the text segment. */ | |
8938 | info->flags |= DF_TEXTREL; | |
8939 | } | |
8940 | } | |
8941 | ||
8942 | return TRUE; | |
8943 | } | |
8944 | ||
b49e97c9 TS |
8945 | /* Adjust a symbol defined by a dynamic object and referenced by a |
8946 | regular object. The current definition is in some section of the | |
8947 | dynamic object, but we're not including those sections. We have to | |
8948 | change the definition to something the rest of the link can | |
8949 | understand. */ | |
8950 | ||
b34976b6 | 8951 | bfd_boolean |
9719ad41 RS |
8952 | _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info, |
8953 | struct elf_link_hash_entry *h) | |
b49e97c9 TS |
8954 | { |
8955 | bfd *dynobj; | |
8956 | struct mips_elf_link_hash_entry *hmips; | |
5108fc1b | 8957 | struct mips_elf_link_hash_table *htab; |
b49e97c9 | 8958 | |
5108fc1b | 8959 | htab = mips_elf_hash_table (info); |
4dfe6ac6 NC |
8960 | BFD_ASSERT (htab != NULL); |
8961 | ||
b49e97c9 | 8962 | dynobj = elf_hash_table (info)->dynobj; |
861fb55a | 8963 | hmips = (struct mips_elf_link_hash_entry *) h; |
b49e97c9 TS |
8964 | |
8965 | /* Make sure we know what is going on here. */ | |
8966 | BFD_ASSERT (dynobj != NULL | |
f5385ebf | 8967 | && (h->needs_plt |
f6e332e6 | 8968 | || h->u.weakdef != NULL |
f5385ebf AM |
8969 | || (h->def_dynamic |
8970 | && h->ref_regular | |
8971 | && !h->def_regular))); | |
b49e97c9 | 8972 | |
b49e97c9 | 8973 | hmips = (struct mips_elf_link_hash_entry *) h; |
b49e97c9 | 8974 | |
861fb55a DJ |
8975 | /* If there are call relocations against an externally-defined symbol, |
8976 | see whether we can create a MIPS lazy-binding stub for it. We can | |
8977 | only do this if all references to the function are through call | |
8978 | relocations, and in that case, the traditional lazy-binding stubs | |
8979 | are much more efficient than PLT entries. | |
8980 | ||
8981 | Traditional stubs are only available on SVR4 psABI-based systems; | |
8982 | VxWorks always uses PLTs instead. */ | |
8983 | if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub) | |
b49e97c9 TS |
8984 | { |
8985 | if (! elf_hash_table (info)->dynamic_sections_created) | |
b34976b6 | 8986 | return TRUE; |
b49e97c9 TS |
8987 | |
8988 | /* If this symbol is not defined in a regular file, then set | |
8989 | the symbol to the stub location. This is required to make | |
8990 | function pointers compare as equal between the normal | |
8991 | executable and the shared library. */ | |
f5385ebf | 8992 | if (!h->def_regular) |
b49e97c9 | 8993 | { |
33bb52fb RS |
8994 | hmips->needs_lazy_stub = TRUE; |
8995 | htab->lazy_stub_count++; | |
b34976b6 | 8996 | return TRUE; |
b49e97c9 TS |
8997 | } |
8998 | } | |
861fb55a DJ |
8999 | /* As above, VxWorks requires PLT entries for externally-defined |
9000 | functions that are only accessed through call relocations. | |
b49e97c9 | 9001 | |
861fb55a DJ |
9002 | Both VxWorks and non-VxWorks targets also need PLT entries if there |
9003 | are static-only relocations against an externally-defined function. | |
9004 | This can technically occur for shared libraries if there are | |
9005 | branches to the symbol, although it is unlikely that this will be | |
9006 | used in practice due to the short ranges involved. It can occur | |
9007 | for any relative or absolute relocation in executables; in that | |
9008 | case, the PLT entry becomes the function's canonical address. */ | |
9009 | else if (((h->needs_plt && !hmips->no_fn_stub) | |
9010 | || (h->type == STT_FUNC && hmips->has_static_relocs)) | |
9011 | && htab->use_plts_and_copy_relocs | |
9012 | && !SYMBOL_CALLS_LOCAL (info, h) | |
9013 | && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT | |
9014 | && h->root.type == bfd_link_hash_undefweak)) | |
b49e97c9 | 9015 | { |
1bbce132 MR |
9016 | bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd); |
9017 | bfd_boolean newabi_p = NEWABI_P (info->output_bfd); | |
9018 | ||
9019 | /* If this is the first symbol to need a PLT entry, then make some | |
9020 | basic setup. Also work out PLT entry sizes. We'll need them | |
9021 | for PLT offset calculations. */ | |
9022 | if (htab->plt_mips_offset + htab->plt_comp_offset == 0) | |
861fb55a DJ |
9023 | { |
9024 | BFD_ASSERT (htab->sgotplt->size == 0); | |
1bbce132 | 9025 | BFD_ASSERT (htab->plt_got_index == 0); |
0a44bf69 | 9026 | |
861fb55a DJ |
9027 | /* If we're using the PLT additions to the psABI, each PLT |
9028 | entry is 16 bytes and the PLT0 entry is 32 bytes. | |
9029 | Encourage better cache usage by aligning. We do this | |
9030 | lazily to avoid pessimizing traditional objects. */ | |
9031 | if (!htab->is_vxworks | |
9032 | && !bfd_set_section_alignment (dynobj, htab->splt, 5)) | |
9033 | return FALSE; | |
0a44bf69 | 9034 | |
861fb55a DJ |
9035 | /* Make sure that .got.plt is word-aligned. We do this lazily |
9036 | for the same reason as above. */ | |
9037 | if (!bfd_set_section_alignment (dynobj, htab->sgotplt, | |
9038 | MIPS_ELF_LOG_FILE_ALIGN (dynobj))) | |
9039 | return FALSE; | |
0a44bf69 | 9040 | |
861fb55a DJ |
9041 | /* On non-VxWorks targets, the first two entries in .got.plt |
9042 | are reserved. */ | |
9043 | if (!htab->is_vxworks) | |
1bbce132 MR |
9044 | htab->plt_got_index |
9045 | += (get_elf_backend_data (dynobj)->got_header_size | |
9046 | / MIPS_ELF_GOT_SIZE (dynobj)); | |
0a44bf69 | 9047 | |
861fb55a DJ |
9048 | /* On VxWorks, also allocate room for the header's |
9049 | .rela.plt.unloaded entries. */ | |
9050 | if (htab->is_vxworks && !info->shared) | |
0a44bf69 | 9051 | htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela); |
1bbce132 MR |
9052 | |
9053 | /* Now work out the sizes of individual PLT entries. */ | |
9054 | if (htab->is_vxworks && info->shared) | |
9055 | htab->plt_mips_entry_size | |
9056 | = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry); | |
9057 | else if (htab->is_vxworks) | |
9058 | htab->plt_mips_entry_size | |
9059 | = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry); | |
9060 | else if (newabi_p) | |
9061 | htab->plt_mips_entry_size | |
9062 | = 4 * ARRAY_SIZE (mips_exec_plt_entry); | |
833794fc | 9063 | else if (!micromips_p) |
1bbce132 MR |
9064 | { |
9065 | htab->plt_mips_entry_size | |
9066 | = 4 * ARRAY_SIZE (mips_exec_plt_entry); | |
9067 | htab->plt_comp_entry_size | |
833794fc MR |
9068 | = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry); |
9069 | } | |
9070 | else if (htab->insn32) | |
9071 | { | |
9072 | htab->plt_mips_entry_size | |
9073 | = 4 * ARRAY_SIZE (mips_exec_plt_entry); | |
9074 | htab->plt_comp_entry_size | |
9075 | = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry); | |
1bbce132 MR |
9076 | } |
9077 | else | |
9078 | { | |
9079 | htab->plt_mips_entry_size | |
9080 | = 4 * ARRAY_SIZE (mips_exec_plt_entry); | |
9081 | htab->plt_comp_entry_size | |
833794fc | 9082 | = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry); |
1bbce132 | 9083 | } |
0a44bf69 RS |
9084 | } |
9085 | ||
1bbce132 MR |
9086 | if (h->plt.plist == NULL) |
9087 | h->plt.plist = mips_elf_make_plt_record (dynobj); | |
9088 | if (h->plt.plist == NULL) | |
9089 | return FALSE; | |
9090 | ||
9091 | /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks, | |
9092 | n32 or n64, so always use a standard entry there. | |
9093 | ||
9094 | If the symbol has a MIPS16 call stub and gets a PLT entry, then | |
9095 | all MIPS16 calls will go via that stub, and there is no benefit | |
9096 | to having a MIPS16 entry. And in the case of call_stub a | |
9097 | standard entry actually has to be used as the stub ends with a J | |
9098 | instruction. */ | |
9099 | if (newabi_p | |
9100 | || htab->is_vxworks | |
9101 | || hmips->call_stub | |
9102 | || hmips->call_fp_stub) | |
9103 | { | |
9104 | h->plt.plist->need_mips = TRUE; | |
9105 | h->plt.plist->need_comp = FALSE; | |
9106 | } | |
9107 | ||
9108 | /* Otherwise, if there are no direct calls to the function, we | |
9109 | have a free choice of whether to use standard or compressed | |
9110 | entries. Prefer microMIPS entries if the object is known to | |
9111 | contain microMIPS code, so that it becomes possible to create | |
9112 | pure microMIPS binaries. Prefer standard entries otherwise, | |
9113 | because MIPS16 ones are no smaller and are usually slower. */ | |
9114 | if (!h->plt.plist->need_mips && !h->plt.plist->need_comp) | |
9115 | { | |
9116 | if (micromips_p) | |
9117 | h->plt.plist->need_comp = TRUE; | |
9118 | else | |
9119 | h->plt.plist->need_mips = TRUE; | |
9120 | } | |
9121 | ||
9122 | if (h->plt.plist->need_mips) | |
9123 | { | |
9124 | h->plt.plist->mips_offset = htab->plt_mips_offset; | |
9125 | htab->plt_mips_offset += htab->plt_mips_entry_size; | |
9126 | } | |
9127 | if (h->plt.plist->need_comp) | |
9128 | { | |
9129 | h->plt.plist->comp_offset = htab->plt_comp_offset; | |
9130 | htab->plt_comp_offset += htab->plt_comp_entry_size; | |
9131 | } | |
9132 | ||
9133 | /* Reserve the corresponding .got.plt entry now too. */ | |
9134 | h->plt.plist->gotplt_index = htab->plt_got_index++; | |
0a44bf69 RS |
9135 | |
9136 | /* If the output file has no definition of the symbol, set the | |
861fb55a | 9137 | symbol's value to the address of the stub. */ |
131eb6b7 | 9138 | if (!info->shared && !h->def_regular) |
1bbce132 | 9139 | hmips->use_plt_entry = TRUE; |
0a44bf69 | 9140 | |
1bbce132 | 9141 | /* Make room for the R_MIPS_JUMP_SLOT relocation. */ |
861fb55a DJ |
9142 | htab->srelplt->size += (htab->is_vxworks |
9143 | ? MIPS_ELF_RELA_SIZE (dynobj) | |
9144 | : MIPS_ELF_REL_SIZE (dynobj)); | |
0a44bf69 RS |
9145 | |
9146 | /* Make room for the .rela.plt.unloaded relocations. */ | |
861fb55a | 9147 | if (htab->is_vxworks && !info->shared) |
0a44bf69 RS |
9148 | htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela); |
9149 | ||
861fb55a DJ |
9150 | /* All relocations against this symbol that could have been made |
9151 | dynamic will now refer to the PLT entry instead. */ | |
9152 | hmips->possibly_dynamic_relocs = 0; | |
0a44bf69 | 9153 | |
0a44bf69 RS |
9154 | return TRUE; |
9155 | } | |
9156 | ||
9157 | /* If this is a weak symbol, and there is a real definition, the | |
9158 | processor independent code will have arranged for us to see the | |
9159 | real definition first, and we can just use the same value. */ | |
9160 | if (h->u.weakdef != NULL) | |
9161 | { | |
9162 | BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined | |
9163 | || h->u.weakdef->root.type == bfd_link_hash_defweak); | |
9164 | h->root.u.def.section = h->u.weakdef->root.u.def.section; | |
9165 | h->root.u.def.value = h->u.weakdef->root.u.def.value; | |
9166 | return TRUE; | |
9167 | } | |
9168 | ||
861fb55a DJ |
9169 | /* Otherwise, there is nothing further to do for symbols defined |
9170 | in regular objects. */ | |
9171 | if (h->def_regular) | |
0a44bf69 RS |
9172 | return TRUE; |
9173 | ||
861fb55a DJ |
9174 | /* There's also nothing more to do if we'll convert all relocations |
9175 | against this symbol into dynamic relocations. */ | |
9176 | if (!hmips->has_static_relocs) | |
9177 | return TRUE; | |
9178 | ||
9179 | /* We're now relying on copy relocations. Complain if we have | |
9180 | some that we can't convert. */ | |
9181 | if (!htab->use_plts_and_copy_relocs || info->shared) | |
9182 | { | |
9183 | (*_bfd_error_handler) (_("non-dynamic relocations refer to " | |
9184 | "dynamic symbol %s"), | |
9185 | h->root.root.string); | |
9186 | bfd_set_error (bfd_error_bad_value); | |
9187 | return FALSE; | |
9188 | } | |
9189 | ||
0a44bf69 RS |
9190 | /* We must allocate the symbol in our .dynbss section, which will |
9191 | become part of the .bss section of the executable. There will be | |
9192 | an entry for this symbol in the .dynsym section. The dynamic | |
9193 | object will contain position independent code, so all references | |
9194 | from the dynamic object to this symbol will go through the global | |
9195 | offset table. The dynamic linker will use the .dynsym entry to | |
9196 | determine the address it must put in the global offset table, so | |
9197 | both the dynamic object and the regular object will refer to the | |
9198 | same memory location for the variable. */ | |
9199 | ||
9200 | if ((h->root.u.def.section->flags & SEC_ALLOC) != 0) | |
9201 | { | |
861fb55a DJ |
9202 | if (htab->is_vxworks) |
9203 | htab->srelbss->size += sizeof (Elf32_External_Rela); | |
9204 | else | |
9205 | mips_elf_allocate_dynamic_relocations (dynobj, info, 1); | |
0a44bf69 RS |
9206 | h->needs_copy = 1; |
9207 | } | |
9208 | ||
861fb55a DJ |
9209 | /* All relocations against this symbol that could have been made |
9210 | dynamic will now refer to the local copy instead. */ | |
9211 | hmips->possibly_dynamic_relocs = 0; | |
9212 | ||
027297b7 | 9213 | return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss); |
0a44bf69 | 9214 | } |
b49e97c9 TS |
9215 | \f |
9216 | /* This function is called after all the input files have been read, | |
9217 | and the input sections have been assigned to output sections. We | |
9218 | check for any mips16 stub sections that we can discard. */ | |
9219 | ||
b34976b6 | 9220 | bfd_boolean |
9719ad41 RS |
9221 | _bfd_mips_elf_always_size_sections (bfd *output_bfd, |
9222 | struct bfd_link_info *info) | |
b49e97c9 | 9223 | { |
351cdf24 | 9224 | asection *sect; |
0a44bf69 | 9225 | struct mips_elf_link_hash_table *htab; |
861fb55a | 9226 | struct mips_htab_traverse_info hti; |
0a44bf69 RS |
9227 | |
9228 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 | 9229 | BFD_ASSERT (htab != NULL); |
f4416af6 | 9230 | |
b49e97c9 | 9231 | /* The .reginfo section has a fixed size. */ |
351cdf24 MF |
9232 | sect = bfd_get_section_by_name (output_bfd, ".reginfo"); |
9233 | if (sect != NULL) | |
9234 | bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo)); | |
9235 | ||
9236 | /* The .MIPS.abiflags section has a fixed size. */ | |
9237 | sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags"); | |
9238 | if (sect != NULL) | |
9239 | bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0)); | |
b49e97c9 | 9240 | |
861fb55a DJ |
9241 | hti.info = info; |
9242 | hti.output_bfd = output_bfd; | |
9243 | hti.error = FALSE; | |
9244 | mips_elf_link_hash_traverse (mips_elf_hash_table (info), | |
9245 | mips_elf_check_symbols, &hti); | |
9246 | if (hti.error) | |
9247 | return FALSE; | |
f4416af6 | 9248 | |
33bb52fb RS |
9249 | return TRUE; |
9250 | } | |
9251 | ||
9252 | /* If the link uses a GOT, lay it out and work out its size. */ | |
9253 | ||
9254 | static bfd_boolean | |
9255 | mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info) | |
9256 | { | |
9257 | bfd *dynobj; | |
9258 | asection *s; | |
9259 | struct mips_got_info *g; | |
33bb52fb RS |
9260 | bfd_size_type loadable_size = 0; |
9261 | bfd_size_type page_gotno; | |
d7206569 | 9262 | bfd *ibfd; |
ab361d49 | 9263 | struct mips_elf_traverse_got_arg tga; |
33bb52fb RS |
9264 | struct mips_elf_link_hash_table *htab; |
9265 | ||
9266 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 NC |
9267 | BFD_ASSERT (htab != NULL); |
9268 | ||
a8028dd0 | 9269 | s = htab->sgot; |
f4416af6 | 9270 | if (s == NULL) |
b34976b6 | 9271 | return TRUE; |
b49e97c9 | 9272 | |
33bb52fb | 9273 | dynobj = elf_hash_table (info)->dynobj; |
a8028dd0 RS |
9274 | g = htab->got_info; |
9275 | ||
861fb55a DJ |
9276 | /* Allocate room for the reserved entries. VxWorks always reserves |
9277 | 3 entries; other objects only reserve 2 entries. */ | |
cb22ccf4 | 9278 | BFD_ASSERT (g->assigned_low_gotno == 0); |
861fb55a DJ |
9279 | if (htab->is_vxworks) |
9280 | htab->reserved_gotno = 3; | |
9281 | else | |
9282 | htab->reserved_gotno = 2; | |
9283 | g->local_gotno += htab->reserved_gotno; | |
cb22ccf4 | 9284 | g->assigned_low_gotno = htab->reserved_gotno; |
861fb55a | 9285 | |
6c42ddb9 RS |
9286 | /* Decide which symbols need to go in the global part of the GOT and |
9287 | count the number of reloc-only GOT symbols. */ | |
020d7251 | 9288 | mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info); |
f4416af6 | 9289 | |
13db6b44 RS |
9290 | if (!mips_elf_resolve_final_got_entries (info, g)) |
9291 | return FALSE; | |
9292 | ||
33bb52fb RS |
9293 | /* Calculate the total loadable size of the output. That |
9294 | will give us the maximum number of GOT_PAGE entries | |
9295 | required. */ | |
c72f2fb2 | 9296 | for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next) |
33bb52fb RS |
9297 | { |
9298 | asection *subsection; | |
5108fc1b | 9299 | |
d7206569 | 9300 | for (subsection = ibfd->sections; |
33bb52fb RS |
9301 | subsection; |
9302 | subsection = subsection->next) | |
9303 | { | |
9304 | if ((subsection->flags & SEC_ALLOC) == 0) | |
9305 | continue; | |
9306 | loadable_size += ((subsection->size + 0xf) | |
9307 | &~ (bfd_size_type) 0xf); | |
9308 | } | |
9309 | } | |
f4416af6 | 9310 | |
0a44bf69 | 9311 | if (htab->is_vxworks) |
738e5348 | 9312 | /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16 |
0a44bf69 RS |
9313 | relocations against local symbols evaluate to "G", and the EABI does |
9314 | not include R_MIPS_GOT_PAGE. */ | |
c224138d | 9315 | page_gotno = 0; |
0a44bf69 RS |
9316 | else |
9317 | /* Assume there are two loadable segments consisting of contiguous | |
9318 | sections. Is 5 enough? */ | |
c224138d RS |
9319 | page_gotno = (loadable_size >> 16) + 5; |
9320 | ||
13db6b44 | 9321 | /* Choose the smaller of the two page estimates; both are intended to be |
c224138d RS |
9322 | conservative. */ |
9323 | if (page_gotno > g->page_gotno) | |
9324 | page_gotno = g->page_gotno; | |
f4416af6 | 9325 | |
c224138d | 9326 | g->local_gotno += page_gotno; |
cb22ccf4 | 9327 | g->assigned_high_gotno = g->local_gotno - 1; |
ab361d49 | 9328 | |
ab361d49 RS |
9329 | s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd); |
9330 | s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd); | |
0f20cc35 DJ |
9331 | s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd); |
9332 | ||
0a44bf69 RS |
9333 | /* VxWorks does not support multiple GOTs. It initializes $gp to |
9334 | __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the | |
9335 | dynamic loader. */ | |
57093f5e | 9336 | if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info)) |
0f20cc35 | 9337 | { |
a8028dd0 | 9338 | if (!mips_elf_multi_got (output_bfd, info, s, page_gotno)) |
0f20cc35 DJ |
9339 | return FALSE; |
9340 | } | |
9341 | else | |
9342 | { | |
d7206569 RS |
9343 | /* Record that all bfds use G. This also has the effect of freeing |
9344 | the per-bfd GOTs, which we no longer need. */ | |
c72f2fb2 | 9345 | for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next) |
d7206569 RS |
9346 | if (mips_elf_bfd_got (ibfd, FALSE)) |
9347 | mips_elf_replace_bfd_got (ibfd, g); | |
9348 | mips_elf_replace_bfd_got (output_bfd, g); | |
9349 | ||
33bb52fb | 9350 | /* Set up TLS entries. */ |
0f20cc35 | 9351 | g->tls_assigned_gotno = g->global_gotno + g->local_gotno; |
72e7511a RS |
9352 | tga.info = info; |
9353 | tga.g = g; | |
9354 | tga.value = MIPS_ELF_GOT_SIZE (output_bfd); | |
9355 | htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga); | |
9356 | if (!tga.g) | |
9357 | return FALSE; | |
1fd20d70 RS |
9358 | BFD_ASSERT (g->tls_assigned_gotno |
9359 | == g->global_gotno + g->local_gotno + g->tls_gotno); | |
33bb52fb | 9360 | |
57093f5e RS |
9361 | /* Each VxWorks GOT entry needs an explicit relocation. */ |
9362 | if (htab->is_vxworks && info->shared) | |
9363 | g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno; | |
9364 | ||
33bb52fb | 9365 | /* Allocate room for the TLS relocations. */ |
ab361d49 RS |
9366 | if (g->relocs) |
9367 | mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs); | |
0f20cc35 | 9368 | } |
b49e97c9 | 9369 | |
b34976b6 | 9370 | return TRUE; |
b49e97c9 TS |
9371 | } |
9372 | ||
33bb52fb RS |
9373 | /* Estimate the size of the .MIPS.stubs section. */ |
9374 | ||
9375 | static void | |
9376 | mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info) | |
9377 | { | |
9378 | struct mips_elf_link_hash_table *htab; | |
9379 | bfd_size_type dynsymcount; | |
9380 | ||
9381 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 NC |
9382 | BFD_ASSERT (htab != NULL); |
9383 | ||
33bb52fb RS |
9384 | if (htab->lazy_stub_count == 0) |
9385 | return; | |
9386 | ||
9387 | /* IRIX rld assumes that a function stub isn't at the end of the .text | |
9388 | section, so add a dummy entry to the end. */ | |
9389 | htab->lazy_stub_count++; | |
9390 | ||
9391 | /* Get a worst-case estimate of the number of dynamic symbols needed. | |
9392 | At this point, dynsymcount does not account for section symbols | |
9393 | and count_section_dynsyms may overestimate the number that will | |
9394 | be needed. */ | |
9395 | dynsymcount = (elf_hash_table (info)->dynsymcount | |
9396 | + count_section_dynsyms (output_bfd, info)); | |
9397 | ||
1bbce132 MR |
9398 | /* Determine the size of one stub entry. There's no disadvantage |
9399 | from using microMIPS code here, so for the sake of pure-microMIPS | |
9400 | binaries we prefer it whenever there's any microMIPS code in | |
9401 | output produced at all. This has a benefit of stubs being | |
833794fc MR |
9402 | shorter by 4 bytes each too, unless in the insn32 mode. */ |
9403 | if (!MICROMIPS_P (output_bfd)) | |
1bbce132 MR |
9404 | htab->function_stub_size = (dynsymcount > 0x10000 |
9405 | ? MIPS_FUNCTION_STUB_BIG_SIZE | |
9406 | : MIPS_FUNCTION_STUB_NORMAL_SIZE); | |
833794fc MR |
9407 | else if (htab->insn32) |
9408 | htab->function_stub_size = (dynsymcount > 0x10000 | |
9409 | ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE | |
9410 | : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE); | |
9411 | else | |
9412 | htab->function_stub_size = (dynsymcount > 0x10000 | |
9413 | ? MICROMIPS_FUNCTION_STUB_BIG_SIZE | |
9414 | : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE); | |
33bb52fb RS |
9415 | |
9416 | htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size; | |
9417 | } | |
9418 | ||
1bbce132 MR |
9419 | /* A mips_elf_link_hash_traverse callback for which DATA points to a |
9420 | mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding | |
9421 | stub, allocate an entry in the stubs section. */ | |
33bb52fb RS |
9422 | |
9423 | static bfd_boolean | |
af924177 | 9424 | mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data) |
33bb52fb | 9425 | { |
1bbce132 | 9426 | struct mips_htab_traverse_info *hti = data; |
33bb52fb | 9427 | struct mips_elf_link_hash_table *htab; |
1bbce132 MR |
9428 | struct bfd_link_info *info; |
9429 | bfd *output_bfd; | |
9430 | ||
9431 | info = hti->info; | |
9432 | output_bfd = hti->output_bfd; | |
9433 | htab = mips_elf_hash_table (info); | |
9434 | BFD_ASSERT (htab != NULL); | |
33bb52fb | 9435 | |
33bb52fb RS |
9436 | if (h->needs_lazy_stub) |
9437 | { | |
1bbce132 MR |
9438 | bfd_boolean micromips_p = MICROMIPS_P (output_bfd); |
9439 | unsigned int other = micromips_p ? STO_MICROMIPS : 0; | |
9440 | bfd_vma isa_bit = micromips_p; | |
9441 | ||
9442 | BFD_ASSERT (htab->root.dynobj != NULL); | |
9443 | if (h->root.plt.plist == NULL) | |
9444 | h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner); | |
9445 | if (h->root.plt.plist == NULL) | |
9446 | { | |
9447 | hti->error = TRUE; | |
9448 | return FALSE; | |
9449 | } | |
33bb52fb | 9450 | h->root.root.u.def.section = htab->sstubs; |
1bbce132 MR |
9451 | h->root.root.u.def.value = htab->sstubs->size + isa_bit; |
9452 | h->root.plt.plist->stub_offset = htab->sstubs->size; | |
9453 | h->root.other = other; | |
33bb52fb RS |
9454 | htab->sstubs->size += htab->function_stub_size; |
9455 | } | |
9456 | return TRUE; | |
9457 | } | |
9458 | ||
9459 | /* Allocate offsets in the stubs section to each symbol that needs one. | |
9460 | Set the final size of the .MIPS.stub section. */ | |
9461 | ||
1bbce132 | 9462 | static bfd_boolean |
33bb52fb RS |
9463 | mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info) |
9464 | { | |
1bbce132 MR |
9465 | bfd *output_bfd = info->output_bfd; |
9466 | bfd_boolean micromips_p = MICROMIPS_P (output_bfd); | |
9467 | unsigned int other = micromips_p ? STO_MICROMIPS : 0; | |
9468 | bfd_vma isa_bit = micromips_p; | |
33bb52fb | 9469 | struct mips_elf_link_hash_table *htab; |
1bbce132 MR |
9470 | struct mips_htab_traverse_info hti; |
9471 | struct elf_link_hash_entry *h; | |
9472 | bfd *dynobj; | |
33bb52fb RS |
9473 | |
9474 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 NC |
9475 | BFD_ASSERT (htab != NULL); |
9476 | ||
33bb52fb | 9477 | if (htab->lazy_stub_count == 0) |
1bbce132 | 9478 | return TRUE; |
33bb52fb RS |
9479 | |
9480 | htab->sstubs->size = 0; | |
1bbce132 MR |
9481 | hti.info = info; |
9482 | hti.output_bfd = output_bfd; | |
9483 | hti.error = FALSE; | |
9484 | mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti); | |
9485 | if (hti.error) | |
9486 | return FALSE; | |
33bb52fb RS |
9487 | htab->sstubs->size += htab->function_stub_size; |
9488 | BFD_ASSERT (htab->sstubs->size | |
9489 | == htab->lazy_stub_count * htab->function_stub_size); | |
1bbce132 MR |
9490 | |
9491 | dynobj = elf_hash_table (info)->dynobj; | |
9492 | BFD_ASSERT (dynobj != NULL); | |
9493 | h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_"); | |
9494 | if (h == NULL) | |
9495 | return FALSE; | |
9496 | h->root.u.def.value = isa_bit; | |
9497 | h->other = other; | |
9498 | h->type = STT_FUNC; | |
9499 | ||
9500 | return TRUE; | |
9501 | } | |
9502 | ||
9503 | /* A mips_elf_link_hash_traverse callback for which DATA points to a | |
9504 | bfd_link_info. If H uses the address of a PLT entry as the value | |
9505 | of the symbol, then set the entry in the symbol table now. Prefer | |
9506 | a standard MIPS PLT entry. */ | |
9507 | ||
9508 | static bfd_boolean | |
9509 | mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data) | |
9510 | { | |
9511 | struct bfd_link_info *info = data; | |
9512 | bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd); | |
9513 | struct mips_elf_link_hash_table *htab; | |
9514 | unsigned int other; | |
9515 | bfd_vma isa_bit; | |
9516 | bfd_vma val; | |
9517 | ||
9518 | htab = mips_elf_hash_table (info); | |
9519 | BFD_ASSERT (htab != NULL); | |
9520 | ||
9521 | if (h->use_plt_entry) | |
9522 | { | |
9523 | BFD_ASSERT (h->root.plt.plist != NULL); | |
9524 | BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE | |
9525 | || h->root.plt.plist->comp_offset != MINUS_ONE); | |
9526 | ||
9527 | val = htab->plt_header_size; | |
9528 | if (h->root.plt.plist->mips_offset != MINUS_ONE) | |
9529 | { | |
9530 | isa_bit = 0; | |
9531 | val += h->root.plt.plist->mips_offset; | |
9532 | other = 0; | |
9533 | } | |
9534 | else | |
9535 | { | |
9536 | isa_bit = 1; | |
9537 | val += htab->plt_mips_offset + h->root.plt.plist->comp_offset; | |
9538 | other = micromips_p ? STO_MICROMIPS : STO_MIPS16; | |
9539 | } | |
9540 | val += isa_bit; | |
9541 | /* For VxWorks, point at the PLT load stub rather than the lazy | |
9542 | resolution stub; this stub will become the canonical function | |
9543 | address. */ | |
9544 | if (htab->is_vxworks) | |
9545 | val += 8; | |
9546 | ||
9547 | h->root.root.u.def.section = htab->splt; | |
9548 | h->root.root.u.def.value = val; | |
9549 | h->root.other = other; | |
9550 | } | |
9551 | ||
9552 | return TRUE; | |
33bb52fb RS |
9553 | } |
9554 | ||
b49e97c9 TS |
9555 | /* Set the sizes of the dynamic sections. */ |
9556 | ||
b34976b6 | 9557 | bfd_boolean |
9719ad41 RS |
9558 | _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd, |
9559 | struct bfd_link_info *info) | |
b49e97c9 TS |
9560 | { |
9561 | bfd *dynobj; | |
861fb55a | 9562 | asection *s, *sreldyn; |
b34976b6 | 9563 | bfd_boolean reltext; |
0a44bf69 | 9564 | struct mips_elf_link_hash_table *htab; |
b49e97c9 | 9565 | |
0a44bf69 | 9566 | htab = mips_elf_hash_table (info); |
4dfe6ac6 | 9567 | BFD_ASSERT (htab != NULL); |
b49e97c9 TS |
9568 | dynobj = elf_hash_table (info)->dynobj; |
9569 | BFD_ASSERT (dynobj != NULL); | |
9570 | ||
9571 | if (elf_hash_table (info)->dynamic_sections_created) | |
9572 | { | |
9573 | /* Set the contents of the .interp section to the interpreter. */ | |
893c4fe2 | 9574 | if (info->executable) |
b49e97c9 | 9575 | { |
3d4d4302 | 9576 | s = bfd_get_linker_section (dynobj, ".interp"); |
b49e97c9 | 9577 | BFD_ASSERT (s != NULL); |
eea6121a | 9578 | s->size |
b49e97c9 TS |
9579 | = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1; |
9580 | s->contents | |
9581 | = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd); | |
9582 | } | |
861fb55a | 9583 | |
1bbce132 MR |
9584 | /* Figure out the size of the PLT header if we know that we |
9585 | are using it. For the sake of cache alignment always use | |
9586 | a standard header whenever any standard entries are present | |
9587 | even if microMIPS entries are present as well. This also | |
9588 | lets the microMIPS header rely on the value of $v0 only set | |
9589 | by microMIPS entries, for a small size reduction. | |
9590 | ||
9591 | Set symbol table entry values for symbols that use the | |
9592 | address of their PLT entry now that we can calculate it. | |
9593 | ||
9594 | Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we | |
9595 | haven't already in _bfd_elf_create_dynamic_sections. */ | |
9596 | if (htab->splt && htab->plt_mips_offset + htab->plt_comp_offset != 0) | |
861fb55a | 9597 | { |
1bbce132 MR |
9598 | bfd_boolean micromips_p = (MICROMIPS_P (output_bfd) |
9599 | && !htab->plt_mips_offset); | |
9600 | unsigned int other = micromips_p ? STO_MICROMIPS : 0; | |
9601 | bfd_vma isa_bit = micromips_p; | |
861fb55a | 9602 | struct elf_link_hash_entry *h; |
1bbce132 | 9603 | bfd_vma size; |
861fb55a DJ |
9604 | |
9605 | BFD_ASSERT (htab->use_plts_and_copy_relocs); | |
1bbce132 MR |
9606 | BFD_ASSERT (htab->sgotplt->size == 0); |
9607 | BFD_ASSERT (htab->splt->size == 0); | |
9608 | ||
9609 | if (htab->is_vxworks && info->shared) | |
9610 | size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry); | |
9611 | else if (htab->is_vxworks) | |
9612 | size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry); | |
9613 | else if (ABI_64_P (output_bfd)) | |
9614 | size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry); | |
9615 | else if (ABI_N32_P (output_bfd)) | |
9616 | size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry); | |
9617 | else if (!micromips_p) | |
9618 | size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry); | |
833794fc MR |
9619 | else if (htab->insn32) |
9620 | size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); | |
1bbce132 MR |
9621 | else |
9622 | size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry); | |
861fb55a | 9623 | |
1bbce132 MR |
9624 | htab->plt_header_is_comp = micromips_p; |
9625 | htab->plt_header_size = size; | |
9626 | htab->splt->size = (size | |
9627 | + htab->plt_mips_offset | |
9628 | + htab->plt_comp_offset); | |
9629 | htab->sgotplt->size = (htab->plt_got_index | |
9630 | * MIPS_ELF_GOT_SIZE (dynobj)); | |
9631 | ||
9632 | mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info); | |
9633 | ||
9634 | if (htab->root.hplt == NULL) | |
9635 | { | |
9636 | h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt, | |
9637 | "_PROCEDURE_LINKAGE_TABLE_"); | |
9638 | htab->root.hplt = h; | |
9639 | if (h == NULL) | |
9640 | return FALSE; | |
9641 | } | |
9642 | ||
9643 | h = htab->root.hplt; | |
9644 | h->root.u.def.value = isa_bit; | |
9645 | h->other = other; | |
861fb55a DJ |
9646 | h->type = STT_FUNC; |
9647 | } | |
9648 | } | |
4e41d0d7 | 9649 | |
9a59ad6b | 9650 | /* Allocate space for global sym dynamic relocs. */ |
2c3fc389 | 9651 | elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info); |
9a59ad6b | 9652 | |
33bb52fb RS |
9653 | mips_elf_estimate_stub_size (output_bfd, info); |
9654 | ||
9655 | if (!mips_elf_lay_out_got (output_bfd, info)) | |
9656 | return FALSE; | |
9657 | ||
9658 | mips_elf_lay_out_lazy_stubs (info); | |
9659 | ||
b49e97c9 TS |
9660 | /* The check_relocs and adjust_dynamic_symbol entry points have |
9661 | determined the sizes of the various dynamic sections. Allocate | |
9662 | memory for them. */ | |
b34976b6 | 9663 | reltext = FALSE; |
b49e97c9 TS |
9664 | for (s = dynobj->sections; s != NULL; s = s->next) |
9665 | { | |
9666 | const char *name; | |
b49e97c9 TS |
9667 | |
9668 | /* It's OK to base decisions on the section name, because none | |
9669 | of the dynobj section names depend upon the input files. */ | |
9670 | name = bfd_get_section_name (dynobj, s); | |
9671 | ||
9672 | if ((s->flags & SEC_LINKER_CREATED) == 0) | |
9673 | continue; | |
9674 | ||
0112cd26 | 9675 | if (CONST_STRNEQ (name, ".rel")) |
b49e97c9 | 9676 | { |
c456f082 | 9677 | if (s->size != 0) |
b49e97c9 TS |
9678 | { |
9679 | const char *outname; | |
9680 | asection *target; | |
9681 | ||
9682 | /* If this relocation section applies to a read only | |
9683 | section, then we probably need a DT_TEXTREL entry. | |
0a44bf69 | 9684 | If the relocation section is .rel(a).dyn, we always |
b49e97c9 TS |
9685 | assert a DT_TEXTREL entry rather than testing whether |
9686 | there exists a relocation to a read only section or | |
9687 | not. */ | |
9688 | outname = bfd_get_section_name (output_bfd, | |
9689 | s->output_section); | |
9690 | target = bfd_get_section_by_name (output_bfd, outname + 4); | |
9691 | if ((target != NULL | |
9692 | && (target->flags & SEC_READONLY) != 0 | |
9693 | && (target->flags & SEC_ALLOC) != 0) | |
0a44bf69 | 9694 | || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0) |
b34976b6 | 9695 | reltext = TRUE; |
b49e97c9 TS |
9696 | |
9697 | /* We use the reloc_count field as a counter if we need | |
9698 | to copy relocs into the output file. */ | |
0a44bf69 | 9699 | if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0) |
b49e97c9 | 9700 | s->reloc_count = 0; |
f4416af6 AO |
9701 | |
9702 | /* If combreloc is enabled, elf_link_sort_relocs() will | |
9703 | sort relocations, but in a different way than we do, | |
9704 | and before we're done creating relocations. Also, it | |
9705 | will move them around between input sections' | |
9706 | relocation's contents, so our sorting would be | |
9707 | broken, so don't let it run. */ | |
9708 | info->combreloc = 0; | |
b49e97c9 TS |
9709 | } |
9710 | } | |
b49e97c9 TS |
9711 | else if (! info->shared |
9712 | && ! mips_elf_hash_table (info)->use_rld_obj_head | |
0112cd26 | 9713 | && CONST_STRNEQ (name, ".rld_map")) |
b49e97c9 | 9714 | { |
5108fc1b | 9715 | /* We add a room for __rld_map. It will be filled in by the |
b49e97c9 | 9716 | rtld to contain a pointer to the _r_debug structure. */ |
b4082c70 | 9717 | s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd); |
b49e97c9 TS |
9718 | } |
9719 | else if (SGI_COMPAT (output_bfd) | |
0112cd26 | 9720 | && CONST_STRNEQ (name, ".compact_rel")) |
eea6121a | 9721 | s->size += mips_elf_hash_table (info)->compact_rel_size; |
861fb55a DJ |
9722 | else if (s == htab->splt) |
9723 | { | |
9724 | /* If the last PLT entry has a branch delay slot, allocate | |
6d30f5b2 NC |
9725 | room for an extra nop to fill the delay slot. This is |
9726 | for CPUs without load interlocking. */ | |
9727 | if (! LOAD_INTERLOCKS_P (output_bfd) | |
9728 | && ! htab->is_vxworks && s->size > 0) | |
861fb55a DJ |
9729 | s->size += 4; |
9730 | } | |
0112cd26 | 9731 | else if (! CONST_STRNEQ (name, ".init") |
33bb52fb | 9732 | && s != htab->sgot |
0a44bf69 | 9733 | && s != htab->sgotplt |
861fb55a DJ |
9734 | && s != htab->sstubs |
9735 | && s != htab->sdynbss) | |
b49e97c9 TS |
9736 | { |
9737 | /* It's not one of our sections, so don't allocate space. */ | |
9738 | continue; | |
9739 | } | |
9740 | ||
c456f082 | 9741 | if (s->size == 0) |
b49e97c9 | 9742 | { |
8423293d | 9743 | s->flags |= SEC_EXCLUDE; |
b49e97c9 TS |
9744 | continue; |
9745 | } | |
9746 | ||
c456f082 AM |
9747 | if ((s->flags & SEC_HAS_CONTENTS) == 0) |
9748 | continue; | |
9749 | ||
b49e97c9 | 9750 | /* Allocate memory for the section contents. */ |
eea6121a | 9751 | s->contents = bfd_zalloc (dynobj, s->size); |
c456f082 | 9752 | if (s->contents == NULL) |
b49e97c9 TS |
9753 | { |
9754 | bfd_set_error (bfd_error_no_memory); | |
b34976b6 | 9755 | return FALSE; |
b49e97c9 TS |
9756 | } |
9757 | } | |
9758 | ||
9759 | if (elf_hash_table (info)->dynamic_sections_created) | |
9760 | { | |
9761 | /* Add some entries to the .dynamic section. We fill in the | |
9762 | values later, in _bfd_mips_elf_finish_dynamic_sections, but we | |
9763 | must add the entries now so that we get the correct size for | |
5750dcec | 9764 | the .dynamic section. */ |
af5978fb RS |
9765 | |
9766 | /* SGI object has the equivalence of DT_DEBUG in the | |
5750dcec | 9767 | DT_MIPS_RLD_MAP entry. This must come first because glibc |
6e6be592 MR |
9768 | only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools |
9769 | may only look at the first one they see. */ | |
af5978fb RS |
9770 | if (!info->shared |
9771 | && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0)) | |
9772 | return FALSE; | |
b49e97c9 | 9773 | |
5750dcec DJ |
9774 | /* The DT_DEBUG entry may be filled in by the dynamic linker and |
9775 | used by the debugger. */ | |
9776 | if (info->executable | |
9777 | && !SGI_COMPAT (output_bfd) | |
9778 | && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0)) | |
9779 | return FALSE; | |
9780 | ||
0a44bf69 | 9781 | if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks)) |
b49e97c9 TS |
9782 | info->flags |= DF_TEXTREL; |
9783 | ||
9784 | if ((info->flags & DF_TEXTREL) != 0) | |
9785 | { | |
9786 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0)) | |
b34976b6 | 9787 | return FALSE; |
943284cc DJ |
9788 | |
9789 | /* Clear the DF_TEXTREL flag. It will be set again if we | |
9790 | write out an actual text relocation; we may not, because | |
9791 | at this point we do not know whether e.g. any .eh_frame | |
9792 | absolute relocations have been converted to PC-relative. */ | |
9793 | info->flags &= ~DF_TEXTREL; | |
b49e97c9 TS |
9794 | } |
9795 | ||
9796 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0)) | |
b34976b6 | 9797 | return FALSE; |
b49e97c9 | 9798 | |
861fb55a | 9799 | sreldyn = mips_elf_rel_dyn_section (info, FALSE); |
0a44bf69 | 9800 | if (htab->is_vxworks) |
b49e97c9 | 9801 | { |
0a44bf69 RS |
9802 | /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not |
9803 | use any of the DT_MIPS_* tags. */ | |
861fb55a | 9804 | if (sreldyn && sreldyn->size > 0) |
0a44bf69 RS |
9805 | { |
9806 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0)) | |
9807 | return FALSE; | |
b49e97c9 | 9808 | |
0a44bf69 RS |
9809 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0)) |
9810 | return FALSE; | |
b49e97c9 | 9811 | |
0a44bf69 RS |
9812 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0)) |
9813 | return FALSE; | |
9814 | } | |
b49e97c9 | 9815 | } |
0a44bf69 RS |
9816 | else |
9817 | { | |
861fb55a | 9818 | if (sreldyn && sreldyn->size > 0) |
0a44bf69 RS |
9819 | { |
9820 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0)) | |
9821 | return FALSE; | |
b49e97c9 | 9822 | |
0a44bf69 RS |
9823 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0)) |
9824 | return FALSE; | |
b49e97c9 | 9825 | |
0a44bf69 RS |
9826 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0)) |
9827 | return FALSE; | |
9828 | } | |
b49e97c9 | 9829 | |
0a44bf69 RS |
9830 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0)) |
9831 | return FALSE; | |
b49e97c9 | 9832 | |
0a44bf69 RS |
9833 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0)) |
9834 | return FALSE; | |
b49e97c9 | 9835 | |
0a44bf69 RS |
9836 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0)) |
9837 | return FALSE; | |
b49e97c9 | 9838 | |
0a44bf69 RS |
9839 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0)) |
9840 | return FALSE; | |
b49e97c9 | 9841 | |
0a44bf69 RS |
9842 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0)) |
9843 | return FALSE; | |
b49e97c9 | 9844 | |
0a44bf69 RS |
9845 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0)) |
9846 | return FALSE; | |
b49e97c9 | 9847 | |
0a44bf69 RS |
9848 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0)) |
9849 | return FALSE; | |
9850 | ||
9851 | if (IRIX_COMPAT (dynobj) == ict_irix5 | |
9852 | && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0)) | |
9853 | return FALSE; | |
9854 | ||
9855 | if (IRIX_COMPAT (dynobj) == ict_irix6 | |
9856 | && (bfd_get_section_by_name | |
af0edeb8 | 9857 | (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj))) |
0a44bf69 RS |
9858 | && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0)) |
9859 | return FALSE; | |
9860 | } | |
861fb55a DJ |
9861 | if (htab->splt->size > 0) |
9862 | { | |
9863 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0)) | |
9864 | return FALSE; | |
9865 | ||
9866 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0)) | |
9867 | return FALSE; | |
9868 | ||
9869 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0)) | |
9870 | return FALSE; | |
9871 | ||
9872 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0)) | |
9873 | return FALSE; | |
9874 | } | |
7a2b07ff NS |
9875 | if (htab->is_vxworks |
9876 | && !elf_vxworks_add_dynamic_entries (output_bfd, info)) | |
9877 | return FALSE; | |
b49e97c9 TS |
9878 | } |
9879 | ||
b34976b6 | 9880 | return TRUE; |
b49e97c9 TS |
9881 | } |
9882 | \f | |
81d43bff RS |
9883 | /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD. |
9884 | Adjust its R_ADDEND field so that it is correct for the output file. | |
9885 | LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols | |
9886 | and sections respectively; both use symbol indexes. */ | |
9887 | ||
9888 | static void | |
9889 | mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info, | |
9890 | bfd *input_bfd, Elf_Internal_Sym *local_syms, | |
9891 | asection **local_sections, Elf_Internal_Rela *rel) | |
9892 | { | |
9893 | unsigned int r_type, r_symndx; | |
9894 | Elf_Internal_Sym *sym; | |
9895 | asection *sec; | |
9896 | ||
020d7251 | 9897 | if (mips_elf_local_relocation_p (input_bfd, rel, local_sections)) |
81d43bff RS |
9898 | { |
9899 | r_type = ELF_R_TYPE (output_bfd, rel->r_info); | |
df58fc94 | 9900 | if (gprel16_reloc_p (r_type) |
81d43bff | 9901 | || r_type == R_MIPS_GPREL32 |
df58fc94 | 9902 | || literal_reloc_p (r_type)) |
81d43bff RS |
9903 | { |
9904 | rel->r_addend += _bfd_get_gp_value (input_bfd); | |
9905 | rel->r_addend -= _bfd_get_gp_value (output_bfd); | |
9906 | } | |
9907 | ||
9908 | r_symndx = ELF_R_SYM (output_bfd, rel->r_info); | |
9909 | sym = local_syms + r_symndx; | |
9910 | ||
9911 | /* Adjust REL's addend to account for section merging. */ | |
9912 | if (!info->relocatable) | |
9913 | { | |
9914 | sec = local_sections[r_symndx]; | |
9915 | _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); | |
9916 | } | |
9917 | ||
9918 | /* This would normally be done by the rela_normal code in elflink.c. */ | |
9919 | if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) | |
9920 | rel->r_addend += local_sections[r_symndx]->output_offset; | |
9921 | } | |
9922 | } | |
9923 | ||
545fd46b MR |
9924 | /* Handle relocations against symbols from removed linkonce sections, |
9925 | or sections discarded by a linker script. We use this wrapper around | |
9926 | RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs | |
9927 | on 64-bit ELF targets. In this case for any relocation handled, which | |
9928 | always be the first in a triplet, the remaining two have to be processed | |
9929 | together with the first, even if they are R_MIPS_NONE. It is the symbol | |
9930 | index referred by the first reloc that applies to all the three and the | |
9931 | remaining two never refer to an object symbol. And it is the final | |
9932 | relocation (the last non-null one) that determines the output field of | |
9933 | the whole relocation so retrieve the corresponding howto structure for | |
9934 | the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION. | |
9935 | ||
9936 | Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue" | |
9937 | and therefore requires to be pasted in a loop. It also defines a block | |
9938 | and does not protect any of its arguments, hence the extra brackets. */ | |
9939 | ||
9940 | static void | |
9941 | mips_reloc_against_discarded_section (bfd *output_bfd, | |
9942 | struct bfd_link_info *info, | |
9943 | bfd *input_bfd, asection *input_section, | |
9944 | Elf_Internal_Rela **rel, | |
9945 | const Elf_Internal_Rela **relend, | |
9946 | bfd_boolean rel_reloc, | |
9947 | reloc_howto_type *howto, | |
9948 | bfd_byte *contents) | |
9949 | { | |
9950 | const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); | |
9951 | int count = bed->s->int_rels_per_ext_rel; | |
9952 | unsigned int r_type; | |
9953 | int i; | |
9954 | ||
9955 | for (i = count - 1; i > 0; i--) | |
9956 | { | |
9957 | r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info); | |
9958 | if (r_type != R_MIPS_NONE) | |
9959 | { | |
9960 | howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc); | |
9961 | break; | |
9962 | } | |
9963 | } | |
9964 | do | |
9965 | { | |
9966 | RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, | |
9967 | (*rel), count, (*relend), | |
9968 | howto, i, contents); | |
9969 | } | |
9970 | while (0); | |
9971 | } | |
9972 | ||
b49e97c9 TS |
9973 | /* Relocate a MIPS ELF section. */ |
9974 | ||
b34976b6 | 9975 | bfd_boolean |
9719ad41 RS |
9976 | _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info, |
9977 | bfd *input_bfd, asection *input_section, | |
9978 | bfd_byte *contents, Elf_Internal_Rela *relocs, | |
9979 | Elf_Internal_Sym *local_syms, | |
9980 | asection **local_sections) | |
b49e97c9 TS |
9981 | { |
9982 | Elf_Internal_Rela *rel; | |
9983 | const Elf_Internal_Rela *relend; | |
9984 | bfd_vma addend = 0; | |
b34976b6 | 9985 | bfd_boolean use_saved_addend_p = FALSE; |
9c5bfbb7 | 9986 | const struct elf_backend_data *bed; |
b49e97c9 TS |
9987 | |
9988 | bed = get_elf_backend_data (output_bfd); | |
9989 | relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel; | |
9990 | for (rel = relocs; rel < relend; ++rel) | |
9991 | { | |
9992 | const char *name; | |
c9adbffe | 9993 | bfd_vma value = 0; |
b49e97c9 | 9994 | reloc_howto_type *howto; |
ad3d9127 | 9995 | bfd_boolean cross_mode_jump_p = FALSE; |
b34976b6 | 9996 | /* TRUE if the relocation is a RELA relocation, rather than a |
b49e97c9 | 9997 | REL relocation. */ |
b34976b6 | 9998 | bfd_boolean rela_relocation_p = TRUE; |
b49e97c9 | 9999 | unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info); |
9719ad41 | 10000 | const char *msg; |
ab96bf03 AM |
10001 | unsigned long r_symndx; |
10002 | asection *sec; | |
749b8d9d L |
10003 | Elf_Internal_Shdr *symtab_hdr; |
10004 | struct elf_link_hash_entry *h; | |
d4730f92 | 10005 | bfd_boolean rel_reloc; |
b49e97c9 | 10006 | |
d4730f92 BS |
10007 | rel_reloc = (NEWABI_P (input_bfd) |
10008 | && mips_elf_rel_relocation_p (input_bfd, input_section, | |
10009 | relocs, rel)); | |
b49e97c9 | 10010 | /* Find the relocation howto for this relocation. */ |
d4730f92 | 10011 | howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc); |
ab96bf03 AM |
10012 | |
10013 | r_symndx = ELF_R_SYM (input_bfd, rel->r_info); | |
749b8d9d | 10014 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
020d7251 | 10015 | if (mips_elf_local_relocation_p (input_bfd, rel, local_sections)) |
749b8d9d L |
10016 | { |
10017 | sec = local_sections[r_symndx]; | |
10018 | h = NULL; | |
10019 | } | |
ab96bf03 AM |
10020 | else |
10021 | { | |
ab96bf03 | 10022 | unsigned long extsymoff; |
ab96bf03 | 10023 | |
ab96bf03 AM |
10024 | extsymoff = 0; |
10025 | if (!elf_bad_symtab (input_bfd)) | |
10026 | extsymoff = symtab_hdr->sh_info; | |
10027 | h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff]; | |
10028 | while (h->root.type == bfd_link_hash_indirect | |
10029 | || h->root.type == bfd_link_hash_warning) | |
10030 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
10031 | ||
10032 | sec = NULL; | |
10033 | if (h->root.type == bfd_link_hash_defined | |
10034 | || h->root.type == bfd_link_hash_defweak) | |
10035 | sec = h->root.u.def.section; | |
10036 | } | |
10037 | ||
dbaa2011 | 10038 | if (sec != NULL && discarded_section (sec)) |
545fd46b MR |
10039 | { |
10040 | mips_reloc_against_discarded_section (output_bfd, info, input_bfd, | |
10041 | input_section, &rel, &relend, | |
10042 | rel_reloc, howto, contents); | |
10043 | continue; | |
10044 | } | |
ab96bf03 | 10045 | |
4a14403c | 10046 | if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd)) |
b49e97c9 TS |
10047 | { |
10048 | /* Some 32-bit code uses R_MIPS_64. In particular, people use | |
10049 | 64-bit code, but make sure all their addresses are in the | |
10050 | lowermost or uppermost 32-bit section of the 64-bit address | |
10051 | space. Thus, when they use an R_MIPS_64 they mean what is | |
10052 | usually meant by R_MIPS_32, with the exception that the | |
10053 | stored value is sign-extended to 64 bits. */ | |
b34976b6 | 10054 | howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE); |
b49e97c9 TS |
10055 | |
10056 | /* On big-endian systems, we need to lie about the position | |
10057 | of the reloc. */ | |
10058 | if (bfd_big_endian (input_bfd)) | |
10059 | rel->r_offset += 4; | |
10060 | } | |
b49e97c9 TS |
10061 | |
10062 | if (!use_saved_addend_p) | |
10063 | { | |
b49e97c9 TS |
10064 | /* If these relocations were originally of the REL variety, |
10065 | we must pull the addend out of the field that will be | |
10066 | relocated. Otherwise, we simply use the contents of the | |
c224138d RS |
10067 | RELA relocation. */ |
10068 | if (mips_elf_rel_relocation_p (input_bfd, input_section, | |
10069 | relocs, rel)) | |
b49e97c9 | 10070 | { |
b34976b6 | 10071 | rela_relocation_p = FALSE; |
c224138d RS |
10072 | addend = mips_elf_read_rel_addend (input_bfd, rel, |
10073 | howto, contents); | |
738e5348 RS |
10074 | if (hi16_reloc_p (r_type) |
10075 | || (got16_reloc_p (r_type) | |
b49e97c9 | 10076 | && mips_elf_local_relocation_p (input_bfd, rel, |
020d7251 | 10077 | local_sections))) |
b49e97c9 | 10078 | { |
c224138d RS |
10079 | if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend, |
10080 | contents, &addend)) | |
749b8d9d | 10081 | { |
749b8d9d L |
10082 | if (h) |
10083 | name = h->root.root.string; | |
10084 | else | |
10085 | name = bfd_elf_sym_name (input_bfd, symtab_hdr, | |
10086 | local_syms + r_symndx, | |
10087 | sec); | |
10088 | (*_bfd_error_handler) | |
10089 | (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"), | |
10090 | input_bfd, input_section, name, howto->name, | |
10091 | rel->r_offset); | |
749b8d9d | 10092 | } |
b49e97c9 | 10093 | } |
30ac9238 RS |
10094 | else |
10095 | addend <<= howto->rightshift; | |
b49e97c9 TS |
10096 | } |
10097 | else | |
10098 | addend = rel->r_addend; | |
81d43bff RS |
10099 | mips_elf_adjust_addend (output_bfd, info, input_bfd, |
10100 | local_syms, local_sections, rel); | |
b49e97c9 TS |
10101 | } |
10102 | ||
1049f94e | 10103 | if (info->relocatable) |
b49e97c9 | 10104 | { |
4a14403c | 10105 | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd) |
b49e97c9 TS |
10106 | && bfd_big_endian (input_bfd)) |
10107 | rel->r_offset -= 4; | |
10108 | ||
81d43bff | 10109 | if (!rela_relocation_p && rel->r_addend) |
5a659663 | 10110 | { |
81d43bff | 10111 | addend += rel->r_addend; |
738e5348 | 10112 | if (hi16_reloc_p (r_type) || got16_reloc_p (r_type)) |
5a659663 TS |
10113 | addend = mips_elf_high (addend); |
10114 | else if (r_type == R_MIPS_HIGHER) | |
10115 | addend = mips_elf_higher (addend); | |
10116 | else if (r_type == R_MIPS_HIGHEST) | |
10117 | addend = mips_elf_highest (addend); | |
30ac9238 RS |
10118 | else |
10119 | addend >>= howto->rightshift; | |
b49e97c9 | 10120 | |
30ac9238 RS |
10121 | /* We use the source mask, rather than the destination |
10122 | mask because the place to which we are writing will be | |
10123 | source of the addend in the final link. */ | |
b49e97c9 TS |
10124 | addend &= howto->src_mask; |
10125 | ||
5a659663 | 10126 | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) |
b49e97c9 TS |
10127 | /* See the comment above about using R_MIPS_64 in the 32-bit |
10128 | ABI. Here, we need to update the addend. It would be | |
10129 | possible to get away with just using the R_MIPS_32 reloc | |
10130 | but for endianness. */ | |
10131 | { | |
10132 | bfd_vma sign_bits; | |
10133 | bfd_vma low_bits; | |
10134 | bfd_vma high_bits; | |
10135 | ||
10136 | if (addend & ((bfd_vma) 1 << 31)) | |
10137 | #ifdef BFD64 | |
10138 | sign_bits = ((bfd_vma) 1 << 32) - 1; | |
10139 | #else | |
10140 | sign_bits = -1; | |
10141 | #endif | |
10142 | else | |
10143 | sign_bits = 0; | |
10144 | ||
10145 | /* If we don't know that we have a 64-bit type, | |
10146 | do two separate stores. */ | |
10147 | if (bfd_big_endian (input_bfd)) | |
10148 | { | |
10149 | /* Store the sign-bits (which are most significant) | |
10150 | first. */ | |
10151 | low_bits = sign_bits; | |
10152 | high_bits = addend; | |
10153 | } | |
10154 | else | |
10155 | { | |
10156 | low_bits = addend; | |
10157 | high_bits = sign_bits; | |
10158 | } | |
10159 | bfd_put_32 (input_bfd, low_bits, | |
10160 | contents + rel->r_offset); | |
10161 | bfd_put_32 (input_bfd, high_bits, | |
10162 | contents + rel->r_offset + 4); | |
10163 | continue; | |
10164 | } | |
10165 | ||
10166 | if (! mips_elf_perform_relocation (info, howto, rel, addend, | |
10167 | input_bfd, input_section, | |
b34976b6 AM |
10168 | contents, FALSE)) |
10169 | return FALSE; | |
b49e97c9 TS |
10170 | } |
10171 | ||
10172 | /* Go on to the next relocation. */ | |
10173 | continue; | |
10174 | } | |
10175 | ||
10176 | /* In the N32 and 64-bit ABIs there may be multiple consecutive | |
10177 | relocations for the same offset. In that case we are | |
10178 | supposed to treat the output of each relocation as the addend | |
10179 | for the next. */ | |
10180 | if (rel + 1 < relend | |
10181 | && rel->r_offset == rel[1].r_offset | |
10182 | && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE) | |
b34976b6 | 10183 | use_saved_addend_p = TRUE; |
b49e97c9 | 10184 | else |
b34976b6 | 10185 | use_saved_addend_p = FALSE; |
b49e97c9 TS |
10186 | |
10187 | /* Figure out what value we are supposed to relocate. */ | |
10188 | switch (mips_elf_calculate_relocation (output_bfd, input_bfd, | |
10189 | input_section, info, rel, | |
10190 | addend, howto, local_syms, | |
10191 | local_sections, &value, | |
38a7df63 | 10192 | &name, &cross_mode_jump_p, |
bce03d3d | 10193 | use_saved_addend_p)) |
b49e97c9 TS |
10194 | { |
10195 | case bfd_reloc_continue: | |
10196 | /* There's nothing to do. */ | |
10197 | continue; | |
10198 | ||
10199 | case bfd_reloc_undefined: | |
10200 | /* mips_elf_calculate_relocation already called the | |
10201 | undefined_symbol callback. There's no real point in | |
10202 | trying to perform the relocation at this point, so we | |
10203 | just skip ahead to the next relocation. */ | |
10204 | continue; | |
10205 | ||
10206 | case bfd_reloc_notsupported: | |
10207 | msg = _("internal error: unsupported relocation error"); | |
10208 | info->callbacks->warning | |
10209 | (info, msg, name, input_bfd, input_section, rel->r_offset); | |
b34976b6 | 10210 | return FALSE; |
b49e97c9 TS |
10211 | |
10212 | case bfd_reloc_overflow: | |
10213 | if (use_saved_addend_p) | |
10214 | /* Ignore overflow until we reach the last relocation for | |
10215 | a given location. */ | |
10216 | ; | |
10217 | else | |
10218 | { | |
0e53d9da AN |
10219 | struct mips_elf_link_hash_table *htab; |
10220 | ||
10221 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 | 10222 | BFD_ASSERT (htab != NULL); |
b49e97c9 | 10223 | BFD_ASSERT (name != NULL); |
0e53d9da | 10224 | if (!htab->small_data_overflow_reported |
9684f078 | 10225 | && (gprel16_reloc_p (howto->type) |
df58fc94 | 10226 | || literal_reloc_p (howto->type))) |
0e53d9da | 10227 | { |
91d6fa6a NC |
10228 | msg = _("small-data section exceeds 64KB;" |
10229 | " lower small-data size limit (see option -G)"); | |
0e53d9da AN |
10230 | |
10231 | htab->small_data_overflow_reported = TRUE; | |
10232 | (*info->callbacks->einfo) ("%P: %s\n", msg); | |
10233 | } | |
b49e97c9 | 10234 | if (! ((*info->callbacks->reloc_overflow) |
dfeffb9f | 10235 | (info, NULL, name, howto->name, (bfd_vma) 0, |
b49e97c9 | 10236 | input_bfd, input_section, rel->r_offset))) |
b34976b6 | 10237 | return FALSE; |
b49e97c9 TS |
10238 | } |
10239 | break; | |
10240 | ||
10241 | case bfd_reloc_ok: | |
10242 | break; | |
10243 | ||
df58fc94 RS |
10244 | case bfd_reloc_outofrange: |
10245 | if (jal_reloc_p (howto->type)) | |
10246 | { | |
10247 | msg = _("JALX to a non-word-aligned address"); | |
10248 | info->callbacks->warning | |
10249 | (info, msg, name, input_bfd, input_section, rel->r_offset); | |
10250 | return FALSE; | |
10251 | } | |
7361da2c AB |
10252 | if (aligned_pcrel_reloc_p (howto->type)) |
10253 | { | |
10254 | msg = _("PC-relative load from unaligned address"); | |
10255 | info->callbacks->warning | |
10256 | (info, msg, name, input_bfd, input_section, rel->r_offset); | |
10257 | return FALSE; | |
10258 | } | |
df58fc94 RS |
10259 | /* Fall through. */ |
10260 | ||
b49e97c9 TS |
10261 | default: |
10262 | abort (); | |
10263 | break; | |
10264 | } | |
10265 | ||
10266 | /* If we've got another relocation for the address, keep going | |
10267 | until we reach the last one. */ | |
10268 | if (use_saved_addend_p) | |
10269 | { | |
10270 | addend = value; | |
10271 | continue; | |
10272 | } | |
10273 | ||
4a14403c | 10274 | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) |
b49e97c9 TS |
10275 | /* See the comment above about using R_MIPS_64 in the 32-bit |
10276 | ABI. Until now, we've been using the HOWTO for R_MIPS_32; | |
10277 | that calculated the right value. Now, however, we | |
10278 | sign-extend the 32-bit result to 64-bits, and store it as a | |
10279 | 64-bit value. We are especially generous here in that we | |
10280 | go to extreme lengths to support this usage on systems with | |
10281 | only a 32-bit VMA. */ | |
10282 | { | |
10283 | bfd_vma sign_bits; | |
10284 | bfd_vma low_bits; | |
10285 | bfd_vma high_bits; | |
10286 | ||
10287 | if (value & ((bfd_vma) 1 << 31)) | |
10288 | #ifdef BFD64 | |
10289 | sign_bits = ((bfd_vma) 1 << 32) - 1; | |
10290 | #else | |
10291 | sign_bits = -1; | |
10292 | #endif | |
10293 | else | |
10294 | sign_bits = 0; | |
10295 | ||
10296 | /* If we don't know that we have a 64-bit type, | |
10297 | do two separate stores. */ | |
10298 | if (bfd_big_endian (input_bfd)) | |
10299 | { | |
10300 | /* Undo what we did above. */ | |
10301 | rel->r_offset -= 4; | |
10302 | /* Store the sign-bits (which are most significant) | |
10303 | first. */ | |
10304 | low_bits = sign_bits; | |
10305 | high_bits = value; | |
10306 | } | |
10307 | else | |
10308 | { | |
10309 | low_bits = value; | |
10310 | high_bits = sign_bits; | |
10311 | } | |
10312 | bfd_put_32 (input_bfd, low_bits, | |
10313 | contents + rel->r_offset); | |
10314 | bfd_put_32 (input_bfd, high_bits, | |
10315 | contents + rel->r_offset + 4); | |
10316 | continue; | |
10317 | } | |
10318 | ||
10319 | /* Actually perform the relocation. */ | |
10320 | if (! mips_elf_perform_relocation (info, howto, rel, value, | |
10321 | input_bfd, input_section, | |
38a7df63 | 10322 | contents, cross_mode_jump_p)) |
b34976b6 | 10323 | return FALSE; |
b49e97c9 TS |
10324 | } |
10325 | ||
b34976b6 | 10326 | return TRUE; |
b49e97c9 TS |
10327 | } |
10328 | \f | |
861fb55a DJ |
10329 | /* A function that iterates over each entry in la25_stubs and fills |
10330 | in the code for each one. DATA points to a mips_htab_traverse_info. */ | |
10331 | ||
10332 | static int | |
10333 | mips_elf_create_la25_stub (void **slot, void *data) | |
10334 | { | |
10335 | struct mips_htab_traverse_info *hti; | |
10336 | struct mips_elf_link_hash_table *htab; | |
10337 | struct mips_elf_la25_stub *stub; | |
10338 | asection *s; | |
10339 | bfd_byte *loc; | |
10340 | bfd_vma offset, target, target_high, target_low; | |
10341 | ||
10342 | stub = (struct mips_elf_la25_stub *) *slot; | |
10343 | hti = (struct mips_htab_traverse_info *) data; | |
10344 | htab = mips_elf_hash_table (hti->info); | |
4dfe6ac6 | 10345 | BFD_ASSERT (htab != NULL); |
861fb55a DJ |
10346 | |
10347 | /* Create the section contents, if we haven't already. */ | |
10348 | s = stub->stub_section; | |
10349 | loc = s->contents; | |
10350 | if (loc == NULL) | |
10351 | { | |
10352 | loc = bfd_malloc (s->size); | |
10353 | if (loc == NULL) | |
10354 | { | |
10355 | hti->error = TRUE; | |
10356 | return FALSE; | |
10357 | } | |
10358 | s->contents = loc; | |
10359 | } | |
10360 | ||
10361 | /* Work out where in the section this stub should go. */ | |
10362 | offset = stub->offset; | |
10363 | ||
10364 | /* Work out the target address. */ | |
8f0c309a CLT |
10365 | target = mips_elf_get_la25_target (stub, &s); |
10366 | target += s->output_section->vma + s->output_offset; | |
10367 | ||
861fb55a DJ |
10368 | target_high = ((target + 0x8000) >> 16) & 0xffff; |
10369 | target_low = (target & 0xffff); | |
10370 | ||
10371 | if (stub->stub_section != htab->strampoline) | |
10372 | { | |
df58fc94 | 10373 | /* This is a simple LUI/ADDIU stub. Zero out the beginning |
861fb55a DJ |
10374 | of the section and write the two instructions at the end. */ |
10375 | memset (loc, 0, offset); | |
10376 | loc += offset; | |
df58fc94 RS |
10377 | if (ELF_ST_IS_MICROMIPS (stub->h->root.other)) |
10378 | { | |
d21911ea MR |
10379 | bfd_put_micromips_32 (hti->output_bfd, |
10380 | LA25_LUI_MICROMIPS (target_high), | |
10381 | loc); | |
10382 | bfd_put_micromips_32 (hti->output_bfd, | |
10383 | LA25_ADDIU_MICROMIPS (target_low), | |
10384 | loc + 4); | |
df58fc94 RS |
10385 | } |
10386 | else | |
10387 | { | |
10388 | bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc); | |
10389 | bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4); | |
10390 | } | |
861fb55a DJ |
10391 | } |
10392 | else | |
10393 | { | |
10394 | /* This is trampoline. */ | |
10395 | loc += offset; | |
df58fc94 RS |
10396 | if (ELF_ST_IS_MICROMIPS (stub->h->root.other)) |
10397 | { | |
d21911ea MR |
10398 | bfd_put_micromips_32 (hti->output_bfd, |
10399 | LA25_LUI_MICROMIPS (target_high), loc); | |
10400 | bfd_put_micromips_32 (hti->output_bfd, | |
10401 | LA25_J_MICROMIPS (target), loc + 4); | |
10402 | bfd_put_micromips_32 (hti->output_bfd, | |
10403 | LA25_ADDIU_MICROMIPS (target_low), loc + 8); | |
df58fc94 RS |
10404 | bfd_put_32 (hti->output_bfd, 0, loc + 12); |
10405 | } | |
10406 | else | |
10407 | { | |
10408 | bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc); | |
10409 | bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4); | |
10410 | bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8); | |
10411 | bfd_put_32 (hti->output_bfd, 0, loc + 12); | |
10412 | } | |
861fb55a DJ |
10413 | } |
10414 | return TRUE; | |
10415 | } | |
10416 | ||
b49e97c9 TS |
10417 | /* If NAME is one of the special IRIX6 symbols defined by the linker, |
10418 | adjust it appropriately now. */ | |
10419 | ||
10420 | static void | |
9719ad41 RS |
10421 | mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED, |
10422 | const char *name, Elf_Internal_Sym *sym) | |
b49e97c9 TS |
10423 | { |
10424 | /* The linker script takes care of providing names and values for | |
10425 | these, but we must place them into the right sections. */ | |
10426 | static const char* const text_section_symbols[] = { | |
10427 | "_ftext", | |
10428 | "_etext", | |
10429 | "__dso_displacement", | |
10430 | "__elf_header", | |
10431 | "__program_header_table", | |
10432 | NULL | |
10433 | }; | |
10434 | ||
10435 | static const char* const data_section_symbols[] = { | |
10436 | "_fdata", | |
10437 | "_edata", | |
10438 | "_end", | |
10439 | "_fbss", | |
10440 | NULL | |
10441 | }; | |
10442 | ||
10443 | const char* const *p; | |
10444 | int i; | |
10445 | ||
10446 | for (i = 0; i < 2; ++i) | |
10447 | for (p = (i == 0) ? text_section_symbols : data_section_symbols; | |
10448 | *p; | |
10449 | ++p) | |
10450 | if (strcmp (*p, name) == 0) | |
10451 | { | |
10452 | /* All of these symbols are given type STT_SECTION by the | |
10453 | IRIX6 linker. */ | |
10454 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
e10609d3 | 10455 | sym->st_other = STO_PROTECTED; |
b49e97c9 TS |
10456 | |
10457 | /* The IRIX linker puts these symbols in special sections. */ | |
10458 | if (i == 0) | |
10459 | sym->st_shndx = SHN_MIPS_TEXT; | |
10460 | else | |
10461 | sym->st_shndx = SHN_MIPS_DATA; | |
10462 | ||
10463 | break; | |
10464 | } | |
10465 | } | |
10466 | ||
10467 | /* Finish up dynamic symbol handling. We set the contents of various | |
10468 | dynamic sections here. */ | |
10469 | ||
b34976b6 | 10470 | bfd_boolean |
9719ad41 RS |
10471 | _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd, |
10472 | struct bfd_link_info *info, | |
10473 | struct elf_link_hash_entry *h, | |
10474 | Elf_Internal_Sym *sym) | |
b49e97c9 TS |
10475 | { |
10476 | bfd *dynobj; | |
b49e97c9 | 10477 | asection *sgot; |
f4416af6 | 10478 | struct mips_got_info *g, *gg; |
b49e97c9 | 10479 | const char *name; |
3d6746ca | 10480 | int idx; |
5108fc1b | 10481 | struct mips_elf_link_hash_table *htab; |
738e5348 | 10482 | struct mips_elf_link_hash_entry *hmips; |
b49e97c9 | 10483 | |
5108fc1b | 10484 | htab = mips_elf_hash_table (info); |
4dfe6ac6 | 10485 | BFD_ASSERT (htab != NULL); |
b49e97c9 | 10486 | dynobj = elf_hash_table (info)->dynobj; |
738e5348 | 10487 | hmips = (struct mips_elf_link_hash_entry *) h; |
b49e97c9 | 10488 | |
861fb55a DJ |
10489 | BFD_ASSERT (!htab->is_vxworks); |
10490 | ||
1bbce132 MR |
10491 | if (h->plt.plist != NULL |
10492 | && (h->plt.plist->mips_offset != MINUS_ONE | |
10493 | || h->plt.plist->comp_offset != MINUS_ONE)) | |
861fb55a DJ |
10494 | { |
10495 | /* We've decided to create a PLT entry for this symbol. */ | |
10496 | bfd_byte *loc; | |
1bbce132 | 10497 | bfd_vma header_address, got_address; |
861fb55a | 10498 | bfd_vma got_address_high, got_address_low, load; |
1bbce132 MR |
10499 | bfd_vma got_index; |
10500 | bfd_vma isa_bit; | |
10501 | ||
10502 | got_index = h->plt.plist->gotplt_index; | |
861fb55a DJ |
10503 | |
10504 | BFD_ASSERT (htab->use_plts_and_copy_relocs); | |
10505 | BFD_ASSERT (h->dynindx != -1); | |
10506 | BFD_ASSERT (htab->splt != NULL); | |
1bbce132 | 10507 | BFD_ASSERT (got_index != MINUS_ONE); |
861fb55a DJ |
10508 | BFD_ASSERT (!h->def_regular); |
10509 | ||
10510 | /* Calculate the address of the PLT header. */ | |
1bbce132 | 10511 | isa_bit = htab->plt_header_is_comp; |
861fb55a | 10512 | header_address = (htab->splt->output_section->vma |
1bbce132 | 10513 | + htab->splt->output_offset + isa_bit); |
861fb55a DJ |
10514 | |
10515 | /* Calculate the address of the .got.plt entry. */ | |
10516 | got_address = (htab->sgotplt->output_section->vma | |
10517 | + htab->sgotplt->output_offset | |
1bbce132 MR |
10518 | + got_index * MIPS_ELF_GOT_SIZE (dynobj)); |
10519 | ||
861fb55a DJ |
10520 | got_address_high = ((got_address + 0x8000) >> 16) & 0xffff; |
10521 | got_address_low = got_address & 0xffff; | |
10522 | ||
10523 | /* Initially point the .got.plt entry at the PLT header. */ | |
1bbce132 | 10524 | loc = (htab->sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj)); |
861fb55a DJ |
10525 | if (ABI_64_P (output_bfd)) |
10526 | bfd_put_64 (output_bfd, header_address, loc); | |
10527 | else | |
10528 | bfd_put_32 (output_bfd, header_address, loc); | |
10529 | ||
1bbce132 MR |
10530 | /* Now handle the PLT itself. First the standard entry (the order |
10531 | does not matter, we just have to pick one). */ | |
10532 | if (h->plt.plist->mips_offset != MINUS_ONE) | |
10533 | { | |
10534 | const bfd_vma *plt_entry; | |
10535 | bfd_vma plt_offset; | |
861fb55a | 10536 | |
1bbce132 | 10537 | plt_offset = htab->plt_header_size + h->plt.plist->mips_offset; |
861fb55a | 10538 | |
1bbce132 | 10539 | BFD_ASSERT (plt_offset <= htab->splt->size); |
6d30f5b2 | 10540 | |
1bbce132 MR |
10541 | /* Find out where the .plt entry should go. */ |
10542 | loc = htab->splt->contents + plt_offset; | |
10543 | ||
10544 | /* Pick the load opcode. */ | |
10545 | load = MIPS_ELF_LOAD_WORD (output_bfd); | |
10546 | ||
10547 | /* Fill in the PLT entry itself. */ | |
7361da2c AB |
10548 | |
10549 | if (MIPSR6_P (output_bfd)) | |
10550 | plt_entry = mipsr6_exec_plt_entry; | |
10551 | else | |
10552 | plt_entry = mips_exec_plt_entry; | |
1bbce132 MR |
10553 | bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc); |
10554 | bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, | |
10555 | loc + 4); | |
10556 | ||
10557 | if (! LOAD_INTERLOCKS_P (output_bfd)) | |
10558 | { | |
10559 | bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8); | |
10560 | bfd_put_32 (output_bfd, plt_entry[3], loc + 12); | |
10561 | } | |
10562 | else | |
10563 | { | |
10564 | bfd_put_32 (output_bfd, plt_entry[3], loc + 8); | |
10565 | bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, | |
10566 | loc + 12); | |
10567 | } | |
6d30f5b2 | 10568 | } |
1bbce132 MR |
10569 | |
10570 | /* Now the compressed entry. They come after any standard ones. */ | |
10571 | if (h->plt.plist->comp_offset != MINUS_ONE) | |
6d30f5b2 | 10572 | { |
1bbce132 MR |
10573 | bfd_vma plt_offset; |
10574 | ||
10575 | plt_offset = (htab->plt_header_size + htab->plt_mips_offset | |
10576 | + h->plt.plist->comp_offset); | |
10577 | ||
10578 | BFD_ASSERT (plt_offset <= htab->splt->size); | |
10579 | ||
10580 | /* Find out where the .plt entry should go. */ | |
10581 | loc = htab->splt->contents + plt_offset; | |
10582 | ||
10583 | /* Fill in the PLT entry itself. */ | |
833794fc MR |
10584 | if (!MICROMIPS_P (output_bfd)) |
10585 | { | |
10586 | const bfd_vma *plt_entry = mips16_o32_exec_plt_entry; | |
10587 | ||
10588 | bfd_put_16 (output_bfd, plt_entry[0], loc); | |
10589 | bfd_put_16 (output_bfd, plt_entry[1], loc + 2); | |
10590 | bfd_put_16 (output_bfd, plt_entry[2], loc + 4); | |
10591 | bfd_put_16 (output_bfd, plt_entry[3], loc + 6); | |
10592 | bfd_put_16 (output_bfd, plt_entry[4], loc + 8); | |
10593 | bfd_put_16 (output_bfd, plt_entry[5], loc + 10); | |
10594 | bfd_put_32 (output_bfd, got_address, loc + 12); | |
10595 | } | |
10596 | else if (htab->insn32) | |
10597 | { | |
10598 | const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry; | |
10599 | ||
10600 | bfd_put_16 (output_bfd, plt_entry[0], loc); | |
10601 | bfd_put_16 (output_bfd, got_address_high, loc + 2); | |
10602 | bfd_put_16 (output_bfd, plt_entry[2], loc + 4); | |
10603 | bfd_put_16 (output_bfd, got_address_low, loc + 6); | |
10604 | bfd_put_16 (output_bfd, plt_entry[4], loc + 8); | |
10605 | bfd_put_16 (output_bfd, plt_entry[5], loc + 10); | |
10606 | bfd_put_16 (output_bfd, plt_entry[6], loc + 12); | |
10607 | bfd_put_16 (output_bfd, got_address_low, loc + 14); | |
10608 | } | |
10609 | else | |
1bbce132 MR |
10610 | { |
10611 | const bfd_vma *plt_entry = micromips_o32_exec_plt_entry; | |
10612 | bfd_signed_vma gotpc_offset; | |
10613 | bfd_vma loc_address; | |
10614 | ||
10615 | BFD_ASSERT (got_address % 4 == 0); | |
10616 | ||
10617 | loc_address = (htab->splt->output_section->vma | |
10618 | + htab->splt->output_offset + plt_offset); | |
10619 | gotpc_offset = got_address - ((loc_address | 3) ^ 3); | |
10620 | ||
10621 | /* ADDIUPC has a span of +/-16MB, check we're in range. */ | |
10622 | if (gotpc_offset + 0x1000000 >= 0x2000000) | |
10623 | { | |
10624 | (*_bfd_error_handler) | |
10625 | (_("%B: `%A' offset of %ld from `%A' " | |
10626 | "beyond the range of ADDIUPC"), | |
10627 | output_bfd, | |
10628 | htab->sgotplt->output_section, | |
10629 | htab->splt->output_section, | |
10630 | (long) gotpc_offset); | |
10631 | bfd_set_error (bfd_error_no_error); | |
10632 | return FALSE; | |
10633 | } | |
10634 | bfd_put_16 (output_bfd, | |
10635 | plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc); | |
10636 | bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2); | |
10637 | bfd_put_16 (output_bfd, plt_entry[2], loc + 4); | |
10638 | bfd_put_16 (output_bfd, plt_entry[3], loc + 6); | |
10639 | bfd_put_16 (output_bfd, plt_entry[4], loc + 8); | |
10640 | bfd_put_16 (output_bfd, plt_entry[5], loc + 10); | |
10641 | } | |
6d30f5b2 | 10642 | } |
861fb55a DJ |
10643 | |
10644 | /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */ | |
10645 | mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt, | |
1bbce132 | 10646 | got_index - 2, h->dynindx, |
861fb55a DJ |
10647 | R_MIPS_JUMP_SLOT, got_address); |
10648 | ||
10649 | /* We distinguish between PLT entries and lazy-binding stubs by | |
10650 | giving the former an st_other value of STO_MIPS_PLT. Set the | |
10651 | flag and leave the value if there are any relocations in the | |
10652 | binary where pointer equality matters. */ | |
10653 | sym->st_shndx = SHN_UNDEF; | |
10654 | if (h->pointer_equality_needed) | |
1bbce132 | 10655 | sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other); |
861fb55a | 10656 | else |
1bbce132 MR |
10657 | { |
10658 | sym->st_value = 0; | |
10659 | sym->st_other = 0; | |
10660 | } | |
861fb55a | 10661 | } |
1bbce132 MR |
10662 | |
10663 | if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE) | |
b49e97c9 | 10664 | { |
861fb55a | 10665 | /* We've decided to create a lazy-binding stub. */ |
1bbce132 MR |
10666 | bfd_boolean micromips_p = MICROMIPS_P (output_bfd); |
10667 | unsigned int other = micromips_p ? STO_MICROMIPS : 0; | |
10668 | bfd_vma stub_size = htab->function_stub_size; | |
5108fc1b | 10669 | bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE]; |
1bbce132 MR |
10670 | bfd_vma isa_bit = micromips_p; |
10671 | bfd_vma stub_big_size; | |
10672 | ||
833794fc | 10673 | if (!micromips_p) |
1bbce132 | 10674 | stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE; |
833794fc MR |
10675 | else if (htab->insn32) |
10676 | stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE; | |
10677 | else | |
10678 | stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE; | |
b49e97c9 TS |
10679 | |
10680 | /* This symbol has a stub. Set it up. */ | |
10681 | ||
10682 | BFD_ASSERT (h->dynindx != -1); | |
10683 | ||
1bbce132 | 10684 | BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff); |
3d6746ca DD |
10685 | |
10686 | /* Values up to 2^31 - 1 are allowed. Larger values would cause | |
5108fc1b RS |
10687 | sign extension at runtime in the stub, resulting in a negative |
10688 | index value. */ | |
10689 | if (h->dynindx & ~0x7fffffff) | |
b34976b6 | 10690 | return FALSE; |
b49e97c9 TS |
10691 | |
10692 | /* Fill the stub. */ | |
1bbce132 MR |
10693 | if (micromips_p) |
10694 | { | |
10695 | idx = 0; | |
10696 | bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd), | |
10697 | stub + idx); | |
10698 | idx += 4; | |
833794fc MR |
10699 | if (htab->insn32) |
10700 | { | |
10701 | bfd_put_micromips_32 (output_bfd, | |
10702 | STUB_MOVE32_MICROMIPS (output_bfd), | |
10703 | stub + idx); | |
10704 | idx += 4; | |
10705 | } | |
10706 | else | |
10707 | { | |
10708 | bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx); | |
10709 | idx += 2; | |
10710 | } | |
1bbce132 MR |
10711 | if (stub_size == stub_big_size) |
10712 | { | |
10713 | long dynindx_hi = (h->dynindx >> 16) & 0x7fff; | |
10714 | ||
10715 | bfd_put_micromips_32 (output_bfd, | |
10716 | STUB_LUI_MICROMIPS (dynindx_hi), | |
10717 | stub + idx); | |
10718 | idx += 4; | |
10719 | } | |
833794fc MR |
10720 | if (htab->insn32) |
10721 | { | |
10722 | bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS, | |
10723 | stub + idx); | |
10724 | idx += 4; | |
10725 | } | |
10726 | else | |
10727 | { | |
10728 | bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx); | |
10729 | idx += 2; | |
10730 | } | |
1bbce132 MR |
10731 | |
10732 | /* If a large stub is not required and sign extension is not a | |
10733 | problem, then use legacy code in the stub. */ | |
10734 | if (stub_size == stub_big_size) | |
10735 | bfd_put_micromips_32 (output_bfd, | |
10736 | STUB_ORI_MICROMIPS (h->dynindx & 0xffff), | |
10737 | stub + idx); | |
10738 | else if (h->dynindx & ~0x7fff) | |
10739 | bfd_put_micromips_32 (output_bfd, | |
10740 | STUB_LI16U_MICROMIPS (h->dynindx & 0xffff), | |
10741 | stub + idx); | |
10742 | else | |
10743 | bfd_put_micromips_32 (output_bfd, | |
10744 | STUB_LI16S_MICROMIPS (output_bfd, | |
10745 | h->dynindx), | |
10746 | stub + idx); | |
10747 | } | |
3d6746ca | 10748 | else |
1bbce132 MR |
10749 | { |
10750 | idx = 0; | |
10751 | bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx); | |
10752 | idx += 4; | |
10753 | bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx); | |
10754 | idx += 4; | |
10755 | if (stub_size == stub_big_size) | |
10756 | { | |
10757 | bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff), | |
10758 | stub + idx); | |
10759 | idx += 4; | |
10760 | } | |
10761 | bfd_put_32 (output_bfd, STUB_JALR, stub + idx); | |
10762 | idx += 4; | |
10763 | ||
10764 | /* If a large stub is not required and sign extension is not a | |
10765 | problem, then use legacy code in the stub. */ | |
10766 | if (stub_size == stub_big_size) | |
10767 | bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), | |
10768 | stub + idx); | |
10769 | else if (h->dynindx & ~0x7fff) | |
10770 | bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), | |
10771 | stub + idx); | |
10772 | else | |
10773 | bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx), | |
10774 | stub + idx); | |
10775 | } | |
5108fc1b | 10776 | |
1bbce132 MR |
10777 | BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size); |
10778 | memcpy (htab->sstubs->contents + h->plt.plist->stub_offset, | |
10779 | stub, stub_size); | |
b49e97c9 | 10780 | |
1bbce132 | 10781 | /* Mark the symbol as undefined. stub_offset != -1 occurs |
b49e97c9 TS |
10782 | only for the referenced symbol. */ |
10783 | sym->st_shndx = SHN_UNDEF; | |
10784 | ||
10785 | /* The run-time linker uses the st_value field of the symbol | |
10786 | to reset the global offset table entry for this external | |
10787 | to its stub address when unlinking a shared object. */ | |
4e41d0d7 RS |
10788 | sym->st_value = (htab->sstubs->output_section->vma |
10789 | + htab->sstubs->output_offset | |
1bbce132 MR |
10790 | + h->plt.plist->stub_offset |
10791 | + isa_bit); | |
10792 | sym->st_other = other; | |
b49e97c9 TS |
10793 | } |
10794 | ||
738e5348 RS |
10795 | /* If we have a MIPS16 function with a stub, the dynamic symbol must |
10796 | refer to the stub, since only the stub uses the standard calling | |
10797 | conventions. */ | |
10798 | if (h->dynindx != -1 && hmips->fn_stub != NULL) | |
10799 | { | |
10800 | BFD_ASSERT (hmips->need_fn_stub); | |
10801 | sym->st_value = (hmips->fn_stub->output_section->vma | |
10802 | + hmips->fn_stub->output_offset); | |
10803 | sym->st_size = hmips->fn_stub->size; | |
10804 | sym->st_other = ELF_ST_VISIBILITY (sym->st_other); | |
10805 | } | |
10806 | ||
b49e97c9 | 10807 | BFD_ASSERT (h->dynindx != -1 |
f5385ebf | 10808 | || h->forced_local); |
b49e97c9 | 10809 | |
23cc69b6 | 10810 | sgot = htab->sgot; |
a8028dd0 | 10811 | g = htab->got_info; |
b49e97c9 TS |
10812 | BFD_ASSERT (g != NULL); |
10813 | ||
10814 | /* Run through the global symbol table, creating GOT entries for all | |
10815 | the symbols that need them. */ | |
020d7251 | 10816 | if (hmips->global_got_area != GGA_NONE) |
b49e97c9 TS |
10817 | { |
10818 | bfd_vma offset; | |
10819 | bfd_vma value; | |
10820 | ||
6eaa6adc | 10821 | value = sym->st_value; |
13fbec83 | 10822 | offset = mips_elf_primary_global_got_index (output_bfd, info, h); |
b49e97c9 TS |
10823 | MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset); |
10824 | } | |
10825 | ||
e641e783 | 10826 | if (hmips->global_got_area != GGA_NONE && g->next) |
f4416af6 AO |
10827 | { |
10828 | struct mips_got_entry e, *p; | |
0626d451 | 10829 | bfd_vma entry; |
f4416af6 | 10830 | bfd_vma offset; |
f4416af6 AO |
10831 | |
10832 | gg = g; | |
10833 | ||
10834 | e.abfd = output_bfd; | |
10835 | e.symndx = -1; | |
738e5348 | 10836 | e.d.h = hmips; |
9ab066b4 | 10837 | e.tls_type = GOT_TLS_NONE; |
143d77c5 | 10838 | |
f4416af6 AO |
10839 | for (g = g->next; g->next != gg; g = g->next) |
10840 | { | |
10841 | if (g->got_entries | |
10842 | && (p = (struct mips_got_entry *) htab_find (g->got_entries, | |
10843 | &e))) | |
10844 | { | |
10845 | offset = p->gotidx; | |
6c42ddb9 | 10846 | BFD_ASSERT (offset > 0 && offset < htab->sgot->size); |
0626d451 RS |
10847 | if (info->shared |
10848 | || (elf_hash_table (info)->dynamic_sections_created | |
10849 | && p->d.h != NULL | |
f5385ebf AM |
10850 | && p->d.h->root.def_dynamic |
10851 | && !p->d.h->root.def_regular)) | |
0626d451 RS |
10852 | { |
10853 | /* Create an R_MIPS_REL32 relocation for this entry. Due to | |
10854 | the various compatibility problems, it's easier to mock | |
10855 | up an R_MIPS_32 or R_MIPS_64 relocation and leave | |
10856 | mips_elf_create_dynamic_relocation to calculate the | |
10857 | appropriate addend. */ | |
10858 | Elf_Internal_Rela rel[3]; | |
10859 | ||
10860 | memset (rel, 0, sizeof (rel)); | |
10861 | if (ABI_64_P (output_bfd)) | |
10862 | rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64); | |
10863 | else | |
10864 | rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32); | |
10865 | rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; | |
10866 | ||
10867 | entry = 0; | |
10868 | if (! (mips_elf_create_dynamic_relocation | |
10869 | (output_bfd, info, rel, | |
10870 | e.d.h, NULL, sym->st_value, &entry, sgot))) | |
10871 | return FALSE; | |
10872 | } | |
10873 | else | |
10874 | entry = sym->st_value; | |
10875 | MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset); | |
f4416af6 AO |
10876 | } |
10877 | } | |
10878 | } | |
10879 | ||
b49e97c9 TS |
10880 | /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ |
10881 | name = h->root.root.string; | |
9637f6ef | 10882 | if (h == elf_hash_table (info)->hdynamic |
22edb2f1 | 10883 | || h == elf_hash_table (info)->hgot) |
b49e97c9 TS |
10884 | sym->st_shndx = SHN_ABS; |
10885 | else if (strcmp (name, "_DYNAMIC_LINK") == 0 | |
10886 | || strcmp (name, "_DYNAMIC_LINKING") == 0) | |
10887 | { | |
10888 | sym->st_shndx = SHN_ABS; | |
10889 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
10890 | sym->st_value = 1; | |
10891 | } | |
4a14403c | 10892 | else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd)) |
b49e97c9 TS |
10893 | { |
10894 | sym->st_shndx = SHN_ABS; | |
10895 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
10896 | sym->st_value = elf_gp (output_bfd); | |
10897 | } | |
10898 | else if (SGI_COMPAT (output_bfd)) | |
10899 | { | |
10900 | if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 | |
10901 | || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) | |
10902 | { | |
10903 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
10904 | sym->st_other = STO_PROTECTED; | |
10905 | sym->st_value = 0; | |
10906 | sym->st_shndx = SHN_MIPS_DATA; | |
10907 | } | |
10908 | else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) | |
10909 | { | |
10910 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
10911 | sym->st_other = STO_PROTECTED; | |
10912 | sym->st_value = mips_elf_hash_table (info)->procedure_count; | |
10913 | sym->st_shndx = SHN_ABS; | |
10914 | } | |
10915 | else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS) | |
10916 | { | |
10917 | if (h->type == STT_FUNC) | |
10918 | sym->st_shndx = SHN_MIPS_TEXT; | |
10919 | else if (h->type == STT_OBJECT) | |
10920 | sym->st_shndx = SHN_MIPS_DATA; | |
10921 | } | |
10922 | } | |
10923 | ||
861fb55a DJ |
10924 | /* Emit a copy reloc, if needed. */ |
10925 | if (h->needs_copy) | |
10926 | { | |
10927 | asection *s; | |
10928 | bfd_vma symval; | |
10929 | ||
10930 | BFD_ASSERT (h->dynindx != -1); | |
10931 | BFD_ASSERT (htab->use_plts_and_copy_relocs); | |
10932 | ||
10933 | s = mips_elf_rel_dyn_section (info, FALSE); | |
10934 | symval = (h->root.u.def.section->output_section->vma | |
10935 | + h->root.u.def.section->output_offset | |
10936 | + h->root.u.def.value); | |
10937 | mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++, | |
10938 | h->dynindx, R_MIPS_COPY, symval); | |
10939 | } | |
10940 | ||
b49e97c9 TS |
10941 | /* Handle the IRIX6-specific symbols. */ |
10942 | if (IRIX_COMPAT (output_bfd) == ict_irix6) | |
10943 | mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym); | |
10944 | ||
cbf8d970 MR |
10945 | /* Keep dynamic compressed symbols odd. This allows the dynamic linker |
10946 | to treat compressed symbols like any other. */ | |
30c09090 | 10947 | if (ELF_ST_IS_MIPS16 (sym->st_other)) |
738e5348 RS |
10948 | { |
10949 | BFD_ASSERT (sym->st_value & 1); | |
10950 | sym->st_other -= STO_MIPS16; | |
10951 | } | |
cbf8d970 MR |
10952 | else if (ELF_ST_IS_MICROMIPS (sym->st_other)) |
10953 | { | |
10954 | BFD_ASSERT (sym->st_value & 1); | |
10955 | sym->st_other -= STO_MICROMIPS; | |
10956 | } | |
b49e97c9 | 10957 | |
b34976b6 | 10958 | return TRUE; |
b49e97c9 TS |
10959 | } |
10960 | ||
0a44bf69 RS |
10961 | /* Likewise, for VxWorks. */ |
10962 | ||
10963 | bfd_boolean | |
10964 | _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd, | |
10965 | struct bfd_link_info *info, | |
10966 | struct elf_link_hash_entry *h, | |
10967 | Elf_Internal_Sym *sym) | |
10968 | { | |
10969 | bfd *dynobj; | |
10970 | asection *sgot; | |
10971 | struct mips_got_info *g; | |
10972 | struct mips_elf_link_hash_table *htab; | |
020d7251 | 10973 | struct mips_elf_link_hash_entry *hmips; |
0a44bf69 RS |
10974 | |
10975 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 | 10976 | BFD_ASSERT (htab != NULL); |
0a44bf69 | 10977 | dynobj = elf_hash_table (info)->dynobj; |
020d7251 | 10978 | hmips = (struct mips_elf_link_hash_entry *) h; |
0a44bf69 | 10979 | |
1bbce132 | 10980 | if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE) |
0a44bf69 | 10981 | { |
6d79d2ed | 10982 | bfd_byte *loc; |
1bbce132 | 10983 | bfd_vma plt_address, got_address, got_offset, branch_offset; |
0a44bf69 RS |
10984 | Elf_Internal_Rela rel; |
10985 | static const bfd_vma *plt_entry; | |
1bbce132 MR |
10986 | bfd_vma gotplt_index; |
10987 | bfd_vma plt_offset; | |
10988 | ||
10989 | plt_offset = htab->plt_header_size + h->plt.plist->mips_offset; | |
10990 | gotplt_index = h->plt.plist->gotplt_index; | |
0a44bf69 RS |
10991 | |
10992 | BFD_ASSERT (h->dynindx != -1); | |
10993 | BFD_ASSERT (htab->splt != NULL); | |
1bbce132 MR |
10994 | BFD_ASSERT (gotplt_index != MINUS_ONE); |
10995 | BFD_ASSERT (plt_offset <= htab->splt->size); | |
0a44bf69 RS |
10996 | |
10997 | /* Calculate the address of the .plt entry. */ | |
10998 | plt_address = (htab->splt->output_section->vma | |
10999 | + htab->splt->output_offset | |
1bbce132 | 11000 | + plt_offset); |
0a44bf69 RS |
11001 | |
11002 | /* Calculate the address of the .got.plt entry. */ | |
11003 | got_address = (htab->sgotplt->output_section->vma | |
11004 | + htab->sgotplt->output_offset | |
1bbce132 | 11005 | + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)); |
0a44bf69 RS |
11006 | |
11007 | /* Calculate the offset of the .got.plt entry from | |
11008 | _GLOBAL_OFFSET_TABLE_. */ | |
11009 | got_offset = mips_elf_gotplt_index (info, h); | |
11010 | ||
11011 | /* Calculate the offset for the branch at the start of the PLT | |
11012 | entry. The branch jumps to the beginning of .plt. */ | |
1bbce132 | 11013 | branch_offset = -(plt_offset / 4 + 1) & 0xffff; |
0a44bf69 RS |
11014 | |
11015 | /* Fill in the initial value of the .got.plt entry. */ | |
11016 | bfd_put_32 (output_bfd, plt_address, | |
1bbce132 MR |
11017 | (htab->sgotplt->contents |
11018 | + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd))); | |
0a44bf69 RS |
11019 | |
11020 | /* Find out where the .plt entry should go. */ | |
1bbce132 | 11021 | loc = htab->splt->contents + plt_offset; |
0a44bf69 RS |
11022 | |
11023 | if (info->shared) | |
11024 | { | |
11025 | plt_entry = mips_vxworks_shared_plt_entry; | |
11026 | bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc); | |
1bbce132 | 11027 | bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4); |
0a44bf69 RS |
11028 | } |
11029 | else | |
11030 | { | |
11031 | bfd_vma got_address_high, got_address_low; | |
11032 | ||
11033 | plt_entry = mips_vxworks_exec_plt_entry; | |
11034 | got_address_high = ((got_address + 0x8000) >> 16) & 0xffff; | |
11035 | got_address_low = got_address & 0xffff; | |
11036 | ||
11037 | bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc); | |
1bbce132 | 11038 | bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4); |
0a44bf69 RS |
11039 | bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8); |
11040 | bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12); | |
11041 | bfd_put_32 (output_bfd, plt_entry[4], loc + 16); | |
11042 | bfd_put_32 (output_bfd, plt_entry[5], loc + 20); | |
11043 | bfd_put_32 (output_bfd, plt_entry[6], loc + 24); | |
11044 | bfd_put_32 (output_bfd, plt_entry[7], loc + 28); | |
11045 | ||
11046 | loc = (htab->srelplt2->contents | |
1bbce132 | 11047 | + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela)); |
0a44bf69 RS |
11048 | |
11049 | /* Emit a relocation for the .got.plt entry. */ | |
11050 | rel.r_offset = got_address; | |
11051 | rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32); | |
1bbce132 | 11052 | rel.r_addend = plt_offset; |
0a44bf69 RS |
11053 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); |
11054 | ||
11055 | /* Emit a relocation for the lui of %hi(<.got.plt slot>). */ | |
11056 | loc += sizeof (Elf32_External_Rela); | |
11057 | rel.r_offset = plt_address + 8; | |
11058 | rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); | |
11059 | rel.r_addend = got_offset; | |
11060 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
11061 | ||
11062 | /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */ | |
11063 | loc += sizeof (Elf32_External_Rela); | |
11064 | rel.r_offset += 4; | |
11065 | rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); | |
11066 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
11067 | } | |
11068 | ||
11069 | /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */ | |
1bbce132 MR |
11070 | loc = (htab->srelplt->contents |
11071 | + gotplt_index * sizeof (Elf32_External_Rela)); | |
0a44bf69 RS |
11072 | rel.r_offset = got_address; |
11073 | rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT); | |
11074 | rel.r_addend = 0; | |
11075 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
11076 | ||
11077 | if (!h->def_regular) | |
11078 | sym->st_shndx = SHN_UNDEF; | |
11079 | } | |
11080 | ||
11081 | BFD_ASSERT (h->dynindx != -1 || h->forced_local); | |
11082 | ||
23cc69b6 | 11083 | sgot = htab->sgot; |
a8028dd0 | 11084 | g = htab->got_info; |
0a44bf69 RS |
11085 | BFD_ASSERT (g != NULL); |
11086 | ||
11087 | /* See if this symbol has an entry in the GOT. */ | |
020d7251 | 11088 | if (hmips->global_got_area != GGA_NONE) |
0a44bf69 RS |
11089 | { |
11090 | bfd_vma offset; | |
11091 | Elf_Internal_Rela outrel; | |
11092 | bfd_byte *loc; | |
11093 | asection *s; | |
11094 | ||
11095 | /* Install the symbol value in the GOT. */ | |
13fbec83 | 11096 | offset = mips_elf_primary_global_got_index (output_bfd, info, h); |
0a44bf69 RS |
11097 | MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset); |
11098 | ||
11099 | /* Add a dynamic relocation for it. */ | |
11100 | s = mips_elf_rel_dyn_section (info, FALSE); | |
11101 | loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela)); | |
11102 | outrel.r_offset = (sgot->output_section->vma | |
11103 | + sgot->output_offset | |
11104 | + offset); | |
11105 | outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32); | |
11106 | outrel.r_addend = 0; | |
11107 | bfd_elf32_swap_reloca_out (dynobj, &outrel, loc); | |
11108 | } | |
11109 | ||
11110 | /* Emit a copy reloc, if needed. */ | |
11111 | if (h->needs_copy) | |
11112 | { | |
11113 | Elf_Internal_Rela rel; | |
11114 | ||
11115 | BFD_ASSERT (h->dynindx != -1); | |
11116 | ||
11117 | rel.r_offset = (h->root.u.def.section->output_section->vma | |
11118 | + h->root.u.def.section->output_offset | |
11119 | + h->root.u.def.value); | |
11120 | rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY); | |
11121 | rel.r_addend = 0; | |
11122 | bfd_elf32_swap_reloca_out (output_bfd, &rel, | |
11123 | htab->srelbss->contents | |
11124 | + (htab->srelbss->reloc_count | |
11125 | * sizeof (Elf32_External_Rela))); | |
11126 | ++htab->srelbss->reloc_count; | |
11127 | } | |
11128 | ||
df58fc94 RS |
11129 | /* If this is a mips16/microMIPS symbol, force the value to be even. */ |
11130 | if (ELF_ST_IS_COMPRESSED (sym->st_other)) | |
0a44bf69 RS |
11131 | sym->st_value &= ~1; |
11132 | ||
11133 | return TRUE; | |
11134 | } | |
11135 | ||
861fb55a DJ |
11136 | /* Write out a plt0 entry to the beginning of .plt. */ |
11137 | ||
1bbce132 | 11138 | static bfd_boolean |
861fb55a DJ |
11139 | mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info) |
11140 | { | |
11141 | bfd_byte *loc; | |
11142 | bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low; | |
11143 | static const bfd_vma *plt_entry; | |
11144 | struct mips_elf_link_hash_table *htab; | |
11145 | ||
11146 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 NC |
11147 | BFD_ASSERT (htab != NULL); |
11148 | ||
861fb55a DJ |
11149 | if (ABI_64_P (output_bfd)) |
11150 | plt_entry = mips_n64_exec_plt0_entry; | |
11151 | else if (ABI_N32_P (output_bfd)) | |
11152 | plt_entry = mips_n32_exec_plt0_entry; | |
833794fc | 11153 | else if (!htab->plt_header_is_comp) |
861fb55a | 11154 | plt_entry = mips_o32_exec_plt0_entry; |
833794fc MR |
11155 | else if (htab->insn32) |
11156 | plt_entry = micromips_insn32_o32_exec_plt0_entry; | |
11157 | else | |
11158 | plt_entry = micromips_o32_exec_plt0_entry; | |
861fb55a DJ |
11159 | |
11160 | /* Calculate the value of .got.plt. */ | |
11161 | gotplt_value = (htab->sgotplt->output_section->vma | |
11162 | + htab->sgotplt->output_offset); | |
11163 | gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff; | |
11164 | gotplt_value_low = gotplt_value & 0xffff; | |
11165 | ||
11166 | /* The PLT sequence is not safe for N64 if .got.plt's address can | |
11167 | not be loaded in two instructions. */ | |
11168 | BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0 | |
11169 | || ~(gotplt_value | 0x7fffffff) == 0); | |
11170 | ||
11171 | /* Install the PLT header. */ | |
11172 | loc = htab->splt->contents; | |
1bbce132 MR |
11173 | if (plt_entry == micromips_o32_exec_plt0_entry) |
11174 | { | |
11175 | bfd_vma gotpc_offset; | |
11176 | bfd_vma loc_address; | |
11177 | size_t i; | |
11178 | ||
11179 | BFD_ASSERT (gotplt_value % 4 == 0); | |
11180 | ||
11181 | loc_address = (htab->splt->output_section->vma | |
11182 | + htab->splt->output_offset); | |
11183 | gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3); | |
11184 | ||
11185 | /* ADDIUPC has a span of +/-16MB, check we're in range. */ | |
11186 | if (gotpc_offset + 0x1000000 >= 0x2000000) | |
11187 | { | |
11188 | (*_bfd_error_handler) | |
11189 | (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"), | |
11190 | output_bfd, | |
11191 | htab->sgotplt->output_section, | |
11192 | htab->splt->output_section, | |
11193 | (long) gotpc_offset); | |
11194 | bfd_set_error (bfd_error_no_error); | |
11195 | return FALSE; | |
11196 | } | |
11197 | bfd_put_16 (output_bfd, | |
11198 | plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc); | |
11199 | bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2); | |
11200 | for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++) | |
11201 | bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2)); | |
11202 | } | |
833794fc MR |
11203 | else if (plt_entry == micromips_insn32_o32_exec_plt0_entry) |
11204 | { | |
11205 | size_t i; | |
11206 | ||
11207 | bfd_put_16 (output_bfd, plt_entry[0], loc); | |
11208 | bfd_put_16 (output_bfd, gotplt_value_high, loc + 2); | |
11209 | bfd_put_16 (output_bfd, plt_entry[2], loc + 4); | |
11210 | bfd_put_16 (output_bfd, gotplt_value_low, loc + 6); | |
11211 | bfd_put_16 (output_bfd, plt_entry[4], loc + 8); | |
11212 | bfd_put_16 (output_bfd, gotplt_value_low, loc + 10); | |
11213 | for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++) | |
11214 | bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2)); | |
11215 | } | |
1bbce132 MR |
11216 | else |
11217 | { | |
11218 | bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc); | |
11219 | bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4); | |
11220 | bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8); | |
11221 | bfd_put_32 (output_bfd, plt_entry[3], loc + 12); | |
11222 | bfd_put_32 (output_bfd, plt_entry[4], loc + 16); | |
11223 | bfd_put_32 (output_bfd, plt_entry[5], loc + 20); | |
11224 | bfd_put_32 (output_bfd, plt_entry[6], loc + 24); | |
11225 | bfd_put_32 (output_bfd, plt_entry[7], loc + 28); | |
11226 | } | |
11227 | ||
11228 | return TRUE; | |
861fb55a DJ |
11229 | } |
11230 | ||
0a44bf69 RS |
11231 | /* Install the PLT header for a VxWorks executable and finalize the |
11232 | contents of .rela.plt.unloaded. */ | |
11233 | ||
11234 | static void | |
11235 | mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info) | |
11236 | { | |
11237 | Elf_Internal_Rela rela; | |
11238 | bfd_byte *loc; | |
11239 | bfd_vma got_value, got_value_high, got_value_low, plt_address; | |
11240 | static const bfd_vma *plt_entry; | |
11241 | struct mips_elf_link_hash_table *htab; | |
11242 | ||
11243 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 NC |
11244 | BFD_ASSERT (htab != NULL); |
11245 | ||
0a44bf69 RS |
11246 | plt_entry = mips_vxworks_exec_plt0_entry; |
11247 | ||
11248 | /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */ | |
11249 | got_value = (htab->root.hgot->root.u.def.section->output_section->vma | |
11250 | + htab->root.hgot->root.u.def.section->output_offset | |
11251 | + htab->root.hgot->root.u.def.value); | |
11252 | ||
11253 | got_value_high = ((got_value + 0x8000) >> 16) & 0xffff; | |
11254 | got_value_low = got_value & 0xffff; | |
11255 | ||
11256 | /* Calculate the address of the PLT header. */ | |
11257 | plt_address = htab->splt->output_section->vma + htab->splt->output_offset; | |
11258 | ||
11259 | /* Install the PLT header. */ | |
11260 | loc = htab->splt->contents; | |
11261 | bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc); | |
11262 | bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4); | |
11263 | bfd_put_32 (output_bfd, plt_entry[2], loc + 8); | |
11264 | bfd_put_32 (output_bfd, plt_entry[3], loc + 12); | |
11265 | bfd_put_32 (output_bfd, plt_entry[4], loc + 16); | |
11266 | bfd_put_32 (output_bfd, plt_entry[5], loc + 20); | |
11267 | ||
11268 | /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */ | |
11269 | loc = htab->srelplt2->contents; | |
11270 | rela.r_offset = plt_address; | |
11271 | rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); | |
11272 | rela.r_addend = 0; | |
11273 | bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); | |
11274 | loc += sizeof (Elf32_External_Rela); | |
11275 | ||
11276 | /* Output the relocation for the following addiu of | |
11277 | %lo(_GLOBAL_OFFSET_TABLE_). */ | |
11278 | rela.r_offset += 4; | |
11279 | rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); | |
11280 | bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); | |
11281 | loc += sizeof (Elf32_External_Rela); | |
11282 | ||
11283 | /* Fix up the remaining relocations. They may have the wrong | |
11284 | symbol index for _G_O_T_ or _P_L_T_ depending on the order | |
11285 | in which symbols were output. */ | |
11286 | while (loc < htab->srelplt2->contents + htab->srelplt2->size) | |
11287 | { | |
11288 | Elf_Internal_Rela rel; | |
11289 | ||
11290 | bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); | |
11291 | rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32); | |
11292 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
11293 | loc += sizeof (Elf32_External_Rela); | |
11294 | ||
11295 | bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); | |
11296 | rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); | |
11297 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
11298 | loc += sizeof (Elf32_External_Rela); | |
11299 | ||
11300 | bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); | |
11301 | rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); | |
11302 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
11303 | loc += sizeof (Elf32_External_Rela); | |
11304 | } | |
11305 | } | |
11306 | ||
11307 | /* Install the PLT header for a VxWorks shared library. */ | |
11308 | ||
11309 | static void | |
11310 | mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info) | |
11311 | { | |
11312 | unsigned int i; | |
11313 | struct mips_elf_link_hash_table *htab; | |
11314 | ||
11315 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 | 11316 | BFD_ASSERT (htab != NULL); |
0a44bf69 RS |
11317 | |
11318 | /* We just need to copy the entry byte-by-byte. */ | |
11319 | for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++) | |
11320 | bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i], | |
11321 | htab->splt->contents + i * 4); | |
11322 | } | |
11323 | ||
b49e97c9 TS |
11324 | /* Finish up the dynamic sections. */ |
11325 | ||
b34976b6 | 11326 | bfd_boolean |
9719ad41 RS |
11327 | _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd, |
11328 | struct bfd_link_info *info) | |
b49e97c9 TS |
11329 | { |
11330 | bfd *dynobj; | |
11331 | asection *sdyn; | |
11332 | asection *sgot; | |
f4416af6 | 11333 | struct mips_got_info *gg, *g; |
0a44bf69 | 11334 | struct mips_elf_link_hash_table *htab; |
b49e97c9 | 11335 | |
0a44bf69 | 11336 | htab = mips_elf_hash_table (info); |
4dfe6ac6 NC |
11337 | BFD_ASSERT (htab != NULL); |
11338 | ||
b49e97c9 TS |
11339 | dynobj = elf_hash_table (info)->dynobj; |
11340 | ||
3d4d4302 | 11341 | sdyn = bfd_get_linker_section (dynobj, ".dynamic"); |
b49e97c9 | 11342 | |
23cc69b6 RS |
11343 | sgot = htab->sgot; |
11344 | gg = htab->got_info; | |
b49e97c9 TS |
11345 | |
11346 | if (elf_hash_table (info)->dynamic_sections_created) | |
11347 | { | |
11348 | bfd_byte *b; | |
943284cc | 11349 | int dyn_to_skip = 0, dyn_skipped = 0; |
b49e97c9 TS |
11350 | |
11351 | BFD_ASSERT (sdyn != NULL); | |
23cc69b6 RS |
11352 | BFD_ASSERT (gg != NULL); |
11353 | ||
d7206569 | 11354 | g = mips_elf_bfd_got (output_bfd, FALSE); |
b49e97c9 TS |
11355 | BFD_ASSERT (g != NULL); |
11356 | ||
11357 | for (b = sdyn->contents; | |
eea6121a | 11358 | b < sdyn->contents + sdyn->size; |
b49e97c9 TS |
11359 | b += MIPS_ELF_DYN_SIZE (dynobj)) |
11360 | { | |
11361 | Elf_Internal_Dyn dyn; | |
11362 | const char *name; | |
11363 | size_t elemsize; | |
11364 | asection *s; | |
b34976b6 | 11365 | bfd_boolean swap_out_p; |
b49e97c9 TS |
11366 | |
11367 | /* Read in the current dynamic entry. */ | |
11368 | (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); | |
11369 | ||
11370 | /* Assume that we're going to modify it and write it out. */ | |
b34976b6 | 11371 | swap_out_p = TRUE; |
b49e97c9 TS |
11372 | |
11373 | switch (dyn.d_tag) | |
11374 | { | |
11375 | case DT_RELENT: | |
b49e97c9 TS |
11376 | dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj); |
11377 | break; | |
11378 | ||
0a44bf69 RS |
11379 | case DT_RELAENT: |
11380 | BFD_ASSERT (htab->is_vxworks); | |
11381 | dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj); | |
11382 | break; | |
11383 | ||
b49e97c9 TS |
11384 | case DT_STRSZ: |
11385 | /* Rewrite DT_STRSZ. */ | |
11386 | dyn.d_un.d_val = | |
11387 | _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); | |
11388 | break; | |
11389 | ||
11390 | case DT_PLTGOT: | |
861fb55a DJ |
11391 | s = htab->sgot; |
11392 | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; | |
11393 | break; | |
11394 | ||
11395 | case DT_MIPS_PLTGOT: | |
11396 | s = htab->sgotplt; | |
11397 | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; | |
b49e97c9 TS |
11398 | break; |
11399 | ||
11400 | case DT_MIPS_RLD_VERSION: | |
11401 | dyn.d_un.d_val = 1; /* XXX */ | |
11402 | break; | |
11403 | ||
11404 | case DT_MIPS_FLAGS: | |
11405 | dyn.d_un.d_val = RHF_NOTPOT; /* XXX */ | |
11406 | break; | |
11407 | ||
b49e97c9 | 11408 | case DT_MIPS_TIME_STAMP: |
6edfbbad DJ |
11409 | { |
11410 | time_t t; | |
11411 | time (&t); | |
11412 | dyn.d_un.d_val = t; | |
11413 | } | |
b49e97c9 TS |
11414 | break; |
11415 | ||
11416 | case DT_MIPS_ICHECKSUM: | |
11417 | /* XXX FIXME: */ | |
b34976b6 | 11418 | swap_out_p = FALSE; |
b49e97c9 TS |
11419 | break; |
11420 | ||
11421 | case DT_MIPS_IVERSION: | |
11422 | /* XXX FIXME: */ | |
b34976b6 | 11423 | swap_out_p = FALSE; |
b49e97c9 TS |
11424 | break; |
11425 | ||
11426 | case DT_MIPS_BASE_ADDRESS: | |
11427 | s = output_bfd->sections; | |
11428 | BFD_ASSERT (s != NULL); | |
11429 | dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff; | |
11430 | break; | |
11431 | ||
11432 | case DT_MIPS_LOCAL_GOTNO: | |
11433 | dyn.d_un.d_val = g->local_gotno; | |
11434 | break; | |
11435 | ||
11436 | case DT_MIPS_UNREFEXTNO: | |
11437 | /* The index into the dynamic symbol table which is the | |
11438 | entry of the first external symbol that is not | |
11439 | referenced within the same object. */ | |
11440 | dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1; | |
11441 | break; | |
11442 | ||
11443 | case DT_MIPS_GOTSYM: | |
d222d210 | 11444 | if (htab->global_gotsym) |
b49e97c9 | 11445 | { |
d222d210 | 11446 | dyn.d_un.d_val = htab->global_gotsym->dynindx; |
b49e97c9 TS |
11447 | break; |
11448 | } | |
11449 | /* In case if we don't have global got symbols we default | |
11450 | to setting DT_MIPS_GOTSYM to the same value as | |
11451 | DT_MIPS_SYMTABNO, so we just fall through. */ | |
11452 | ||
11453 | case DT_MIPS_SYMTABNO: | |
11454 | name = ".dynsym"; | |
11455 | elemsize = MIPS_ELF_SYM_SIZE (output_bfd); | |
11456 | s = bfd_get_section_by_name (output_bfd, name); | |
11457 | BFD_ASSERT (s != NULL); | |
11458 | ||
eea6121a | 11459 | dyn.d_un.d_val = s->size / elemsize; |
b49e97c9 TS |
11460 | break; |
11461 | ||
11462 | case DT_MIPS_HIPAGENO: | |
861fb55a | 11463 | dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno; |
b49e97c9 TS |
11464 | break; |
11465 | ||
11466 | case DT_MIPS_RLD_MAP: | |
b4082c70 DD |
11467 | { |
11468 | struct elf_link_hash_entry *h; | |
11469 | h = mips_elf_hash_table (info)->rld_symbol; | |
11470 | if (!h) | |
11471 | { | |
11472 | dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj); | |
11473 | swap_out_p = FALSE; | |
11474 | break; | |
11475 | } | |
11476 | s = h->root.u.def.section; | |
11477 | dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset | |
11478 | + h->root.u.def.value); | |
11479 | } | |
b49e97c9 TS |
11480 | break; |
11481 | ||
11482 | case DT_MIPS_OPTIONS: | |
11483 | s = (bfd_get_section_by_name | |
11484 | (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd))); | |
11485 | dyn.d_un.d_ptr = s->vma; | |
11486 | break; | |
11487 | ||
0a44bf69 RS |
11488 | case DT_RELASZ: |
11489 | BFD_ASSERT (htab->is_vxworks); | |
11490 | /* The count does not include the JUMP_SLOT relocations. */ | |
11491 | if (htab->srelplt) | |
11492 | dyn.d_un.d_val -= htab->srelplt->size; | |
11493 | break; | |
11494 | ||
11495 | case DT_PLTREL: | |
861fb55a DJ |
11496 | BFD_ASSERT (htab->use_plts_and_copy_relocs); |
11497 | if (htab->is_vxworks) | |
11498 | dyn.d_un.d_val = DT_RELA; | |
11499 | else | |
11500 | dyn.d_un.d_val = DT_REL; | |
0a44bf69 RS |
11501 | break; |
11502 | ||
11503 | case DT_PLTRELSZ: | |
861fb55a | 11504 | BFD_ASSERT (htab->use_plts_and_copy_relocs); |
0a44bf69 RS |
11505 | dyn.d_un.d_val = htab->srelplt->size; |
11506 | break; | |
11507 | ||
11508 | case DT_JMPREL: | |
861fb55a DJ |
11509 | BFD_ASSERT (htab->use_plts_and_copy_relocs); |
11510 | dyn.d_un.d_ptr = (htab->srelplt->output_section->vma | |
0a44bf69 RS |
11511 | + htab->srelplt->output_offset); |
11512 | break; | |
11513 | ||
943284cc DJ |
11514 | case DT_TEXTREL: |
11515 | /* If we didn't need any text relocations after all, delete | |
11516 | the dynamic tag. */ | |
11517 | if (!(info->flags & DF_TEXTREL)) | |
11518 | { | |
11519 | dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj); | |
11520 | swap_out_p = FALSE; | |
11521 | } | |
11522 | break; | |
11523 | ||
11524 | case DT_FLAGS: | |
11525 | /* If we didn't need any text relocations after all, clear | |
11526 | DF_TEXTREL from DT_FLAGS. */ | |
11527 | if (!(info->flags & DF_TEXTREL)) | |
11528 | dyn.d_un.d_val &= ~DF_TEXTREL; | |
11529 | else | |
11530 | swap_out_p = FALSE; | |
11531 | break; | |
11532 | ||
b49e97c9 | 11533 | default: |
b34976b6 | 11534 | swap_out_p = FALSE; |
7a2b07ff NS |
11535 | if (htab->is_vxworks |
11536 | && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn)) | |
11537 | swap_out_p = TRUE; | |
b49e97c9 TS |
11538 | break; |
11539 | } | |
11540 | ||
943284cc | 11541 | if (swap_out_p || dyn_skipped) |
b49e97c9 | 11542 | (*get_elf_backend_data (dynobj)->s->swap_dyn_out) |
943284cc DJ |
11543 | (dynobj, &dyn, b - dyn_skipped); |
11544 | ||
11545 | if (dyn_to_skip) | |
11546 | { | |
11547 | dyn_skipped += dyn_to_skip; | |
11548 | dyn_to_skip = 0; | |
11549 | } | |
b49e97c9 | 11550 | } |
943284cc DJ |
11551 | |
11552 | /* Wipe out any trailing entries if we shifted down a dynamic tag. */ | |
11553 | if (dyn_skipped > 0) | |
11554 | memset (b - dyn_skipped, 0, dyn_skipped); | |
b49e97c9 TS |
11555 | } |
11556 | ||
b55fd4d4 DJ |
11557 | if (sgot != NULL && sgot->size > 0 |
11558 | && !bfd_is_abs_section (sgot->output_section)) | |
b49e97c9 | 11559 | { |
0a44bf69 RS |
11560 | if (htab->is_vxworks) |
11561 | { | |
11562 | /* The first entry of the global offset table points to the | |
11563 | ".dynamic" section. The second is initialized by the | |
11564 | loader and contains the shared library identifier. | |
11565 | The third is also initialized by the loader and points | |
11566 | to the lazy resolution stub. */ | |
11567 | MIPS_ELF_PUT_WORD (output_bfd, | |
11568 | sdyn->output_offset + sdyn->output_section->vma, | |
11569 | sgot->contents); | |
11570 | MIPS_ELF_PUT_WORD (output_bfd, 0, | |
11571 | sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); | |
11572 | MIPS_ELF_PUT_WORD (output_bfd, 0, | |
11573 | sgot->contents | |
11574 | + 2 * MIPS_ELF_GOT_SIZE (output_bfd)); | |
11575 | } | |
11576 | else | |
11577 | { | |
11578 | /* The first entry of the global offset table will be filled at | |
11579 | runtime. The second entry will be used by some runtime loaders. | |
11580 | This isn't the case of IRIX rld. */ | |
11581 | MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents); | |
51e38d68 | 11582 | MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd), |
0a44bf69 RS |
11583 | sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); |
11584 | } | |
b49e97c9 | 11585 | |
54938e2a TS |
11586 | elf_section_data (sgot->output_section)->this_hdr.sh_entsize |
11587 | = MIPS_ELF_GOT_SIZE (output_bfd); | |
11588 | } | |
b49e97c9 | 11589 | |
f4416af6 AO |
11590 | /* Generate dynamic relocations for the non-primary gots. */ |
11591 | if (gg != NULL && gg->next) | |
11592 | { | |
11593 | Elf_Internal_Rela rel[3]; | |
11594 | bfd_vma addend = 0; | |
11595 | ||
11596 | memset (rel, 0, sizeof (rel)); | |
11597 | rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32); | |
11598 | ||
11599 | for (g = gg->next; g->next != gg; g = g->next) | |
11600 | { | |
91d6fa6a | 11601 | bfd_vma got_index = g->next->local_gotno + g->next->global_gotno |
0f20cc35 | 11602 | + g->next->tls_gotno; |
f4416af6 | 11603 | |
9719ad41 | 11604 | MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents |
91d6fa6a | 11605 | + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd)); |
51e38d68 RS |
11606 | MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd), |
11607 | sgot->contents | |
91d6fa6a | 11608 | + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd)); |
f4416af6 AO |
11609 | |
11610 | if (! info->shared) | |
11611 | continue; | |
11612 | ||
cb22ccf4 | 11613 | for (; got_index < g->local_gotno; got_index++) |
f4416af6 | 11614 | { |
cb22ccf4 KCY |
11615 | if (got_index >= g->assigned_low_gotno |
11616 | && got_index <= g->assigned_high_gotno) | |
11617 | continue; | |
11618 | ||
f4416af6 | 11619 | rel[0].r_offset = rel[1].r_offset = rel[2].r_offset |
cb22ccf4 | 11620 | = got_index * MIPS_ELF_GOT_SIZE (output_bfd); |
f4416af6 AO |
11621 | if (!(mips_elf_create_dynamic_relocation |
11622 | (output_bfd, info, rel, NULL, | |
11623 | bfd_abs_section_ptr, | |
11624 | 0, &addend, sgot))) | |
11625 | return FALSE; | |
11626 | BFD_ASSERT (addend == 0); | |
11627 | } | |
11628 | } | |
11629 | } | |
11630 | ||
3133ddbf DJ |
11631 | /* The generation of dynamic relocations for the non-primary gots |
11632 | adds more dynamic relocations. We cannot count them until | |
11633 | here. */ | |
11634 | ||
11635 | if (elf_hash_table (info)->dynamic_sections_created) | |
11636 | { | |
11637 | bfd_byte *b; | |
11638 | bfd_boolean swap_out_p; | |
11639 | ||
11640 | BFD_ASSERT (sdyn != NULL); | |
11641 | ||
11642 | for (b = sdyn->contents; | |
11643 | b < sdyn->contents + sdyn->size; | |
11644 | b += MIPS_ELF_DYN_SIZE (dynobj)) | |
11645 | { | |
11646 | Elf_Internal_Dyn dyn; | |
11647 | asection *s; | |
11648 | ||
11649 | /* Read in the current dynamic entry. */ | |
11650 | (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); | |
11651 | ||
11652 | /* Assume that we're going to modify it and write it out. */ | |
11653 | swap_out_p = TRUE; | |
11654 | ||
11655 | switch (dyn.d_tag) | |
11656 | { | |
11657 | case DT_RELSZ: | |
11658 | /* Reduce DT_RELSZ to account for any relocations we | |
11659 | decided not to make. This is for the n64 irix rld, | |
11660 | which doesn't seem to apply any relocations if there | |
11661 | are trailing null entries. */ | |
0a44bf69 | 11662 | s = mips_elf_rel_dyn_section (info, FALSE); |
3133ddbf DJ |
11663 | dyn.d_un.d_val = (s->reloc_count |
11664 | * (ABI_64_P (output_bfd) | |
11665 | ? sizeof (Elf64_Mips_External_Rel) | |
11666 | : sizeof (Elf32_External_Rel))); | |
bcfdf036 RS |
11667 | /* Adjust the section size too. Tools like the prelinker |
11668 | can reasonably expect the values to the same. */ | |
11669 | elf_section_data (s->output_section)->this_hdr.sh_size | |
11670 | = dyn.d_un.d_val; | |
3133ddbf DJ |
11671 | break; |
11672 | ||
11673 | default: | |
11674 | swap_out_p = FALSE; | |
11675 | break; | |
11676 | } | |
11677 | ||
11678 | if (swap_out_p) | |
11679 | (*get_elf_backend_data (dynobj)->s->swap_dyn_out) | |
11680 | (dynobj, &dyn, b); | |
11681 | } | |
11682 | } | |
11683 | ||
b49e97c9 | 11684 | { |
b49e97c9 TS |
11685 | asection *s; |
11686 | Elf32_compact_rel cpt; | |
11687 | ||
b49e97c9 TS |
11688 | if (SGI_COMPAT (output_bfd)) |
11689 | { | |
11690 | /* Write .compact_rel section out. */ | |
3d4d4302 | 11691 | s = bfd_get_linker_section (dynobj, ".compact_rel"); |
b49e97c9 TS |
11692 | if (s != NULL) |
11693 | { | |
11694 | cpt.id1 = 1; | |
11695 | cpt.num = s->reloc_count; | |
11696 | cpt.id2 = 2; | |
11697 | cpt.offset = (s->output_section->filepos | |
11698 | + sizeof (Elf32_External_compact_rel)); | |
11699 | cpt.reserved0 = 0; | |
11700 | cpt.reserved1 = 0; | |
11701 | bfd_elf32_swap_compact_rel_out (output_bfd, &cpt, | |
11702 | ((Elf32_External_compact_rel *) | |
11703 | s->contents)); | |
11704 | ||
11705 | /* Clean up a dummy stub function entry in .text. */ | |
4e41d0d7 | 11706 | if (htab->sstubs != NULL) |
b49e97c9 TS |
11707 | { |
11708 | file_ptr dummy_offset; | |
11709 | ||
4e41d0d7 RS |
11710 | BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size); |
11711 | dummy_offset = htab->sstubs->size - htab->function_stub_size; | |
11712 | memset (htab->sstubs->contents + dummy_offset, 0, | |
5108fc1b | 11713 | htab->function_stub_size); |
b49e97c9 TS |
11714 | } |
11715 | } | |
11716 | } | |
11717 | ||
0a44bf69 RS |
11718 | /* The psABI says that the dynamic relocations must be sorted in |
11719 | increasing order of r_symndx. The VxWorks EABI doesn't require | |
11720 | this, and because the code below handles REL rather than RELA | |
11721 | relocations, using it for VxWorks would be outright harmful. */ | |
11722 | if (!htab->is_vxworks) | |
b49e97c9 | 11723 | { |
0a44bf69 RS |
11724 | s = mips_elf_rel_dyn_section (info, FALSE); |
11725 | if (s != NULL | |
11726 | && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd)) | |
11727 | { | |
11728 | reldyn_sorting_bfd = output_bfd; | |
b49e97c9 | 11729 | |
0a44bf69 RS |
11730 | if (ABI_64_P (output_bfd)) |
11731 | qsort ((Elf64_External_Rel *) s->contents + 1, | |
11732 | s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel), | |
11733 | sort_dynamic_relocs_64); | |
11734 | else | |
11735 | qsort ((Elf32_External_Rel *) s->contents + 1, | |
11736 | s->reloc_count - 1, sizeof (Elf32_External_Rel), | |
11737 | sort_dynamic_relocs); | |
11738 | } | |
b49e97c9 | 11739 | } |
b49e97c9 TS |
11740 | } |
11741 | ||
861fb55a | 11742 | if (htab->splt && htab->splt->size > 0) |
0a44bf69 | 11743 | { |
861fb55a DJ |
11744 | if (htab->is_vxworks) |
11745 | { | |
11746 | if (info->shared) | |
11747 | mips_vxworks_finish_shared_plt (output_bfd, info); | |
11748 | else | |
11749 | mips_vxworks_finish_exec_plt (output_bfd, info); | |
11750 | } | |
0a44bf69 | 11751 | else |
861fb55a DJ |
11752 | { |
11753 | BFD_ASSERT (!info->shared); | |
1bbce132 MR |
11754 | if (!mips_finish_exec_plt (output_bfd, info)) |
11755 | return FALSE; | |
861fb55a | 11756 | } |
0a44bf69 | 11757 | } |
b34976b6 | 11758 | return TRUE; |
b49e97c9 TS |
11759 | } |
11760 | ||
b49e97c9 | 11761 | |
64543e1a RS |
11762 | /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */ |
11763 | ||
11764 | static void | |
9719ad41 | 11765 | mips_set_isa_flags (bfd *abfd) |
b49e97c9 | 11766 | { |
64543e1a | 11767 | flagword val; |
b49e97c9 TS |
11768 | |
11769 | switch (bfd_get_mach (abfd)) | |
11770 | { | |
11771 | default: | |
11772 | case bfd_mach_mips3000: | |
11773 | val = E_MIPS_ARCH_1; | |
11774 | break; | |
11775 | ||
11776 | case bfd_mach_mips3900: | |
11777 | val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900; | |
11778 | break; | |
11779 | ||
11780 | case bfd_mach_mips6000: | |
11781 | val = E_MIPS_ARCH_2; | |
11782 | break; | |
11783 | ||
11784 | case bfd_mach_mips4000: | |
11785 | case bfd_mach_mips4300: | |
11786 | case bfd_mach_mips4400: | |
11787 | case bfd_mach_mips4600: | |
11788 | val = E_MIPS_ARCH_3; | |
11789 | break; | |
11790 | ||
11791 | case bfd_mach_mips4010: | |
11792 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010; | |
11793 | break; | |
11794 | ||
11795 | case bfd_mach_mips4100: | |
11796 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100; | |
11797 | break; | |
11798 | ||
11799 | case bfd_mach_mips4111: | |
11800 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111; | |
11801 | break; | |
11802 | ||
00707a0e RS |
11803 | case bfd_mach_mips4120: |
11804 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120; | |
11805 | break; | |
11806 | ||
b49e97c9 TS |
11807 | case bfd_mach_mips4650: |
11808 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650; | |
11809 | break; | |
11810 | ||
00707a0e RS |
11811 | case bfd_mach_mips5400: |
11812 | val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400; | |
11813 | break; | |
11814 | ||
11815 | case bfd_mach_mips5500: | |
11816 | val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500; | |
11817 | break; | |
11818 | ||
e407c74b NC |
11819 | case bfd_mach_mips5900: |
11820 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900; | |
11821 | break; | |
11822 | ||
0d2e43ed ILT |
11823 | case bfd_mach_mips9000: |
11824 | val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000; | |
11825 | break; | |
11826 | ||
b49e97c9 | 11827 | case bfd_mach_mips5000: |
5a7ea749 | 11828 | case bfd_mach_mips7000: |
b49e97c9 TS |
11829 | case bfd_mach_mips8000: |
11830 | case bfd_mach_mips10000: | |
11831 | case bfd_mach_mips12000: | |
3aa3176b TS |
11832 | case bfd_mach_mips14000: |
11833 | case bfd_mach_mips16000: | |
b49e97c9 TS |
11834 | val = E_MIPS_ARCH_4; |
11835 | break; | |
11836 | ||
11837 | case bfd_mach_mips5: | |
11838 | val = E_MIPS_ARCH_5; | |
11839 | break; | |
11840 | ||
350cc38d MS |
11841 | case bfd_mach_mips_loongson_2e: |
11842 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E; | |
11843 | break; | |
11844 | ||
11845 | case bfd_mach_mips_loongson_2f: | |
11846 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F; | |
11847 | break; | |
11848 | ||
b49e97c9 TS |
11849 | case bfd_mach_mips_sb1: |
11850 | val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1; | |
11851 | break; | |
11852 | ||
d051516a | 11853 | case bfd_mach_mips_loongson_3a: |
4ba154f5 | 11854 | val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A; |
d051516a NC |
11855 | break; |
11856 | ||
6f179bd0 | 11857 | case bfd_mach_mips_octeon: |
dd6a37e7 | 11858 | case bfd_mach_mips_octeonp: |
6f179bd0 AN |
11859 | val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON; |
11860 | break; | |
11861 | ||
52b6b6b9 JM |
11862 | case bfd_mach_mips_xlr: |
11863 | val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR; | |
11864 | break; | |
11865 | ||
432233b3 AP |
11866 | case bfd_mach_mips_octeon2: |
11867 | val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2; | |
11868 | break; | |
11869 | ||
b49e97c9 TS |
11870 | case bfd_mach_mipsisa32: |
11871 | val = E_MIPS_ARCH_32; | |
11872 | break; | |
11873 | ||
11874 | case bfd_mach_mipsisa64: | |
11875 | val = E_MIPS_ARCH_64; | |
af7ee8bf CD |
11876 | break; |
11877 | ||
11878 | case bfd_mach_mipsisa32r2: | |
ae52f483 AB |
11879 | case bfd_mach_mipsisa32r3: |
11880 | case bfd_mach_mipsisa32r5: | |
af7ee8bf CD |
11881 | val = E_MIPS_ARCH_32R2; |
11882 | break; | |
5f74bc13 CD |
11883 | |
11884 | case bfd_mach_mipsisa64r2: | |
ae52f483 AB |
11885 | case bfd_mach_mipsisa64r3: |
11886 | case bfd_mach_mipsisa64r5: | |
5f74bc13 CD |
11887 | val = E_MIPS_ARCH_64R2; |
11888 | break; | |
7361da2c AB |
11889 | |
11890 | case bfd_mach_mipsisa32r6: | |
11891 | val = E_MIPS_ARCH_32R6; | |
11892 | break; | |
11893 | ||
11894 | case bfd_mach_mipsisa64r6: | |
11895 | val = E_MIPS_ARCH_64R6; | |
11896 | break; | |
b49e97c9 | 11897 | } |
b49e97c9 TS |
11898 | elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); |
11899 | elf_elfheader (abfd)->e_flags |= val; | |
11900 | ||
64543e1a RS |
11901 | } |
11902 | ||
11903 | ||
11904 | /* The final processing done just before writing out a MIPS ELF object | |
11905 | file. This gets the MIPS architecture right based on the machine | |
11906 | number. This is used by both the 32-bit and the 64-bit ABI. */ | |
11907 | ||
11908 | void | |
9719ad41 RS |
11909 | _bfd_mips_elf_final_write_processing (bfd *abfd, |
11910 | bfd_boolean linker ATTRIBUTE_UNUSED) | |
64543e1a RS |
11911 | { |
11912 | unsigned int i; | |
11913 | Elf_Internal_Shdr **hdrpp; | |
11914 | const char *name; | |
11915 | asection *sec; | |
11916 | ||
11917 | /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former | |
11918 | is nonzero. This is for compatibility with old objects, which used | |
11919 | a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */ | |
11920 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0) | |
11921 | mips_set_isa_flags (abfd); | |
11922 | ||
b49e97c9 TS |
11923 | /* Set the sh_info field for .gptab sections and other appropriate |
11924 | info for each special section. */ | |
11925 | for (i = 1, hdrpp = elf_elfsections (abfd) + 1; | |
11926 | i < elf_numsections (abfd); | |
11927 | i++, hdrpp++) | |
11928 | { | |
11929 | switch ((*hdrpp)->sh_type) | |
11930 | { | |
11931 | case SHT_MIPS_MSYM: | |
11932 | case SHT_MIPS_LIBLIST: | |
11933 | sec = bfd_get_section_by_name (abfd, ".dynstr"); | |
11934 | if (sec != NULL) | |
11935 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
11936 | break; | |
11937 | ||
11938 | case SHT_MIPS_GPTAB: | |
11939 | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); | |
11940 | name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); | |
11941 | BFD_ASSERT (name != NULL | |
0112cd26 | 11942 | && CONST_STRNEQ (name, ".gptab.")); |
b49e97c9 TS |
11943 | sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1); |
11944 | BFD_ASSERT (sec != NULL); | |
11945 | (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; | |
11946 | break; | |
11947 | ||
11948 | case SHT_MIPS_CONTENT: | |
11949 | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); | |
11950 | name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); | |
11951 | BFD_ASSERT (name != NULL | |
0112cd26 | 11952 | && CONST_STRNEQ (name, ".MIPS.content")); |
b49e97c9 TS |
11953 | sec = bfd_get_section_by_name (abfd, |
11954 | name + sizeof ".MIPS.content" - 1); | |
11955 | BFD_ASSERT (sec != NULL); | |
11956 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
11957 | break; | |
11958 | ||
11959 | case SHT_MIPS_SYMBOL_LIB: | |
11960 | sec = bfd_get_section_by_name (abfd, ".dynsym"); | |
11961 | if (sec != NULL) | |
11962 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
11963 | sec = bfd_get_section_by_name (abfd, ".liblist"); | |
11964 | if (sec != NULL) | |
11965 | (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; | |
11966 | break; | |
11967 | ||
11968 | case SHT_MIPS_EVENTS: | |
11969 | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); | |
11970 | name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); | |
11971 | BFD_ASSERT (name != NULL); | |
0112cd26 | 11972 | if (CONST_STRNEQ (name, ".MIPS.events")) |
b49e97c9 TS |
11973 | sec = bfd_get_section_by_name (abfd, |
11974 | name + sizeof ".MIPS.events" - 1); | |
11975 | else | |
11976 | { | |
0112cd26 | 11977 | BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel")); |
b49e97c9 TS |
11978 | sec = bfd_get_section_by_name (abfd, |
11979 | (name | |
11980 | + sizeof ".MIPS.post_rel" - 1)); | |
11981 | } | |
11982 | BFD_ASSERT (sec != NULL); | |
11983 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
11984 | break; | |
11985 | ||
11986 | } | |
11987 | } | |
11988 | } | |
11989 | \f | |
8dc1a139 | 11990 | /* When creating an IRIX5 executable, we need REGINFO and RTPROC |
b49e97c9 TS |
11991 | segments. */ |
11992 | ||
11993 | int | |
a6b96beb AM |
11994 | _bfd_mips_elf_additional_program_headers (bfd *abfd, |
11995 | struct bfd_link_info *info ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
11996 | { |
11997 | asection *s; | |
11998 | int ret = 0; | |
11999 | ||
12000 | /* See if we need a PT_MIPS_REGINFO segment. */ | |
12001 | s = bfd_get_section_by_name (abfd, ".reginfo"); | |
12002 | if (s && (s->flags & SEC_LOAD)) | |
12003 | ++ret; | |
12004 | ||
351cdf24 MF |
12005 | /* See if we need a PT_MIPS_ABIFLAGS segment. */ |
12006 | if (bfd_get_section_by_name (abfd, ".MIPS.abiflags")) | |
12007 | ++ret; | |
12008 | ||
b49e97c9 TS |
12009 | /* See if we need a PT_MIPS_OPTIONS segment. */ |
12010 | if (IRIX_COMPAT (abfd) == ict_irix6 | |
12011 | && bfd_get_section_by_name (abfd, | |
12012 | MIPS_ELF_OPTIONS_SECTION_NAME (abfd))) | |
12013 | ++ret; | |
12014 | ||
12015 | /* See if we need a PT_MIPS_RTPROC segment. */ | |
12016 | if (IRIX_COMPAT (abfd) == ict_irix5 | |
12017 | && bfd_get_section_by_name (abfd, ".dynamic") | |
12018 | && bfd_get_section_by_name (abfd, ".mdebug")) | |
12019 | ++ret; | |
12020 | ||
98c904a8 RS |
12021 | /* Allocate a PT_NULL header in dynamic objects. See |
12022 | _bfd_mips_elf_modify_segment_map for details. */ | |
12023 | if (!SGI_COMPAT (abfd) | |
12024 | && bfd_get_section_by_name (abfd, ".dynamic")) | |
12025 | ++ret; | |
12026 | ||
b49e97c9 TS |
12027 | return ret; |
12028 | } | |
12029 | ||
8dc1a139 | 12030 | /* Modify the segment map for an IRIX5 executable. */ |
b49e97c9 | 12031 | |
b34976b6 | 12032 | bfd_boolean |
9719ad41 | 12033 | _bfd_mips_elf_modify_segment_map (bfd *abfd, |
7c8b76cc | 12034 | struct bfd_link_info *info) |
b49e97c9 TS |
12035 | { |
12036 | asection *s; | |
12037 | struct elf_segment_map *m, **pm; | |
12038 | bfd_size_type amt; | |
12039 | ||
12040 | /* If there is a .reginfo section, we need a PT_MIPS_REGINFO | |
12041 | segment. */ | |
12042 | s = bfd_get_section_by_name (abfd, ".reginfo"); | |
12043 | if (s != NULL && (s->flags & SEC_LOAD) != 0) | |
12044 | { | |
12bd6957 | 12045 | for (m = elf_seg_map (abfd); m != NULL; m = m->next) |
b49e97c9 TS |
12046 | if (m->p_type == PT_MIPS_REGINFO) |
12047 | break; | |
12048 | if (m == NULL) | |
12049 | { | |
12050 | amt = sizeof *m; | |
9719ad41 | 12051 | m = bfd_zalloc (abfd, amt); |
b49e97c9 | 12052 | if (m == NULL) |
b34976b6 | 12053 | return FALSE; |
b49e97c9 TS |
12054 | |
12055 | m->p_type = PT_MIPS_REGINFO; | |
12056 | m->count = 1; | |
12057 | m->sections[0] = s; | |
12058 | ||
12059 | /* We want to put it after the PHDR and INTERP segments. */ | |
12bd6957 | 12060 | pm = &elf_seg_map (abfd); |
b49e97c9 TS |
12061 | while (*pm != NULL |
12062 | && ((*pm)->p_type == PT_PHDR | |
12063 | || (*pm)->p_type == PT_INTERP)) | |
12064 | pm = &(*pm)->next; | |
12065 | ||
12066 | m->next = *pm; | |
12067 | *pm = m; | |
12068 | } | |
12069 | } | |
12070 | ||
351cdf24 MF |
12071 | /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS |
12072 | segment. */ | |
12073 | s = bfd_get_section_by_name (abfd, ".MIPS.abiflags"); | |
12074 | if (s != NULL && (s->flags & SEC_LOAD) != 0) | |
12075 | { | |
12076 | for (m = elf_seg_map (abfd); m != NULL; m = m->next) | |
12077 | if (m->p_type == PT_MIPS_ABIFLAGS) | |
12078 | break; | |
12079 | if (m == NULL) | |
12080 | { | |
12081 | amt = sizeof *m; | |
12082 | m = bfd_zalloc (abfd, amt); | |
12083 | if (m == NULL) | |
12084 | return FALSE; | |
12085 | ||
12086 | m->p_type = PT_MIPS_ABIFLAGS; | |
12087 | m->count = 1; | |
12088 | m->sections[0] = s; | |
12089 | ||
12090 | /* We want to put it after the PHDR and INTERP segments. */ | |
12091 | pm = &elf_seg_map (abfd); | |
12092 | while (*pm != NULL | |
12093 | && ((*pm)->p_type == PT_PHDR | |
12094 | || (*pm)->p_type == PT_INTERP)) | |
12095 | pm = &(*pm)->next; | |
12096 | ||
12097 | m->next = *pm; | |
12098 | *pm = m; | |
12099 | } | |
12100 | } | |
12101 | ||
b49e97c9 TS |
12102 | /* For IRIX 6, we don't have .mdebug sections, nor does anything but |
12103 | .dynamic end up in PT_DYNAMIC. However, we do have to insert a | |
98a8deaf | 12104 | PT_MIPS_OPTIONS segment immediately following the program header |
b49e97c9 | 12105 | table. */ |
c1fd6598 AO |
12106 | if (NEWABI_P (abfd) |
12107 | /* On non-IRIX6 new abi, we'll have already created a segment | |
12108 | for this section, so don't create another. I'm not sure this | |
12109 | is not also the case for IRIX 6, but I can't test it right | |
12110 | now. */ | |
12111 | && IRIX_COMPAT (abfd) == ict_irix6) | |
b49e97c9 TS |
12112 | { |
12113 | for (s = abfd->sections; s; s = s->next) | |
12114 | if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS) | |
12115 | break; | |
12116 | ||
12117 | if (s) | |
12118 | { | |
12119 | struct elf_segment_map *options_segment; | |
12120 | ||
12bd6957 | 12121 | pm = &elf_seg_map (abfd); |
98a8deaf RS |
12122 | while (*pm != NULL |
12123 | && ((*pm)->p_type == PT_PHDR | |
12124 | || (*pm)->p_type == PT_INTERP)) | |
12125 | pm = &(*pm)->next; | |
b49e97c9 | 12126 | |
8ded5a0f AM |
12127 | if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS) |
12128 | { | |
12129 | amt = sizeof (struct elf_segment_map); | |
12130 | options_segment = bfd_zalloc (abfd, amt); | |
12131 | options_segment->next = *pm; | |
12132 | options_segment->p_type = PT_MIPS_OPTIONS; | |
12133 | options_segment->p_flags = PF_R; | |
12134 | options_segment->p_flags_valid = TRUE; | |
12135 | options_segment->count = 1; | |
12136 | options_segment->sections[0] = s; | |
12137 | *pm = options_segment; | |
12138 | } | |
b49e97c9 TS |
12139 | } |
12140 | } | |
12141 | else | |
12142 | { | |
12143 | if (IRIX_COMPAT (abfd) == ict_irix5) | |
12144 | { | |
12145 | /* If there are .dynamic and .mdebug sections, we make a room | |
12146 | for the RTPROC header. FIXME: Rewrite without section names. */ | |
12147 | if (bfd_get_section_by_name (abfd, ".interp") == NULL | |
12148 | && bfd_get_section_by_name (abfd, ".dynamic") != NULL | |
12149 | && bfd_get_section_by_name (abfd, ".mdebug") != NULL) | |
12150 | { | |
12bd6957 | 12151 | for (m = elf_seg_map (abfd); m != NULL; m = m->next) |
b49e97c9 TS |
12152 | if (m->p_type == PT_MIPS_RTPROC) |
12153 | break; | |
12154 | if (m == NULL) | |
12155 | { | |
12156 | amt = sizeof *m; | |
9719ad41 | 12157 | m = bfd_zalloc (abfd, amt); |
b49e97c9 | 12158 | if (m == NULL) |
b34976b6 | 12159 | return FALSE; |
b49e97c9 TS |
12160 | |
12161 | m->p_type = PT_MIPS_RTPROC; | |
12162 | ||
12163 | s = bfd_get_section_by_name (abfd, ".rtproc"); | |
12164 | if (s == NULL) | |
12165 | { | |
12166 | m->count = 0; | |
12167 | m->p_flags = 0; | |
12168 | m->p_flags_valid = 1; | |
12169 | } | |
12170 | else | |
12171 | { | |
12172 | m->count = 1; | |
12173 | m->sections[0] = s; | |
12174 | } | |
12175 | ||
12176 | /* We want to put it after the DYNAMIC segment. */ | |
12bd6957 | 12177 | pm = &elf_seg_map (abfd); |
b49e97c9 TS |
12178 | while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC) |
12179 | pm = &(*pm)->next; | |
12180 | if (*pm != NULL) | |
12181 | pm = &(*pm)->next; | |
12182 | ||
12183 | m->next = *pm; | |
12184 | *pm = m; | |
12185 | } | |
12186 | } | |
12187 | } | |
8dc1a139 | 12188 | /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic, |
b49e97c9 TS |
12189 | .dynstr, .dynsym, and .hash sections, and everything in |
12190 | between. */ | |
12bd6957 | 12191 | for (pm = &elf_seg_map (abfd); *pm != NULL; |
b49e97c9 TS |
12192 | pm = &(*pm)->next) |
12193 | if ((*pm)->p_type == PT_DYNAMIC) | |
12194 | break; | |
12195 | m = *pm; | |
f6f62d6f RS |
12196 | /* GNU/Linux binaries do not need the extended PT_DYNAMIC section. |
12197 | glibc's dynamic linker has traditionally derived the number of | |
12198 | tags from the p_filesz field, and sometimes allocates stack | |
12199 | arrays of that size. An overly-big PT_DYNAMIC segment can | |
12200 | be actively harmful in such cases. Making PT_DYNAMIC contain | |
12201 | other sections can also make life hard for the prelinker, | |
12202 | which might move one of the other sections to a different | |
12203 | PT_LOAD segment. */ | |
12204 | if (SGI_COMPAT (abfd) | |
12205 | && m != NULL | |
12206 | && m->count == 1 | |
12207 | && strcmp (m->sections[0]->name, ".dynamic") == 0) | |
b49e97c9 TS |
12208 | { |
12209 | static const char *sec_names[] = | |
12210 | { | |
12211 | ".dynamic", ".dynstr", ".dynsym", ".hash" | |
12212 | }; | |
12213 | bfd_vma low, high; | |
12214 | unsigned int i, c; | |
12215 | struct elf_segment_map *n; | |
12216 | ||
792b4a53 | 12217 | low = ~(bfd_vma) 0; |
b49e97c9 TS |
12218 | high = 0; |
12219 | for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++) | |
12220 | { | |
12221 | s = bfd_get_section_by_name (abfd, sec_names[i]); | |
12222 | if (s != NULL && (s->flags & SEC_LOAD) != 0) | |
12223 | { | |
12224 | bfd_size_type sz; | |
12225 | ||
12226 | if (low > s->vma) | |
12227 | low = s->vma; | |
eea6121a | 12228 | sz = s->size; |
b49e97c9 TS |
12229 | if (high < s->vma + sz) |
12230 | high = s->vma + sz; | |
12231 | } | |
12232 | } | |
12233 | ||
12234 | c = 0; | |
12235 | for (s = abfd->sections; s != NULL; s = s->next) | |
12236 | if ((s->flags & SEC_LOAD) != 0 | |
12237 | && s->vma >= low | |
eea6121a | 12238 | && s->vma + s->size <= high) |
b49e97c9 TS |
12239 | ++c; |
12240 | ||
12241 | amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *); | |
9719ad41 | 12242 | n = bfd_zalloc (abfd, amt); |
b49e97c9 | 12243 | if (n == NULL) |
b34976b6 | 12244 | return FALSE; |
b49e97c9 TS |
12245 | *n = *m; |
12246 | n->count = c; | |
12247 | ||
12248 | i = 0; | |
12249 | for (s = abfd->sections; s != NULL; s = s->next) | |
12250 | { | |
12251 | if ((s->flags & SEC_LOAD) != 0 | |
12252 | && s->vma >= low | |
eea6121a | 12253 | && s->vma + s->size <= high) |
b49e97c9 TS |
12254 | { |
12255 | n->sections[i] = s; | |
12256 | ++i; | |
12257 | } | |
12258 | } | |
12259 | ||
12260 | *pm = n; | |
12261 | } | |
12262 | } | |
12263 | ||
98c904a8 RS |
12264 | /* Allocate a spare program header in dynamic objects so that tools |
12265 | like the prelinker can add an extra PT_LOAD entry. | |
12266 | ||
12267 | If the prelinker needs to make room for a new PT_LOAD entry, its | |
12268 | standard procedure is to move the first (read-only) sections into | |
12269 | the new (writable) segment. However, the MIPS ABI requires | |
12270 | .dynamic to be in a read-only segment, and the section will often | |
12271 | start within sizeof (ElfNN_Phdr) bytes of the last program header. | |
12272 | ||
12273 | Although the prelinker could in principle move .dynamic to a | |
12274 | writable segment, it seems better to allocate a spare program | |
12275 | header instead, and avoid the need to move any sections. | |
12276 | There is a long tradition of allocating spare dynamic tags, | |
12277 | so allocating a spare program header seems like a natural | |
7c8b76cc JM |
12278 | extension. |
12279 | ||
12280 | If INFO is NULL, we may be copying an already prelinked binary | |
12281 | with objcopy or strip, so do not add this header. */ | |
12282 | if (info != NULL | |
12283 | && !SGI_COMPAT (abfd) | |
98c904a8 RS |
12284 | && bfd_get_section_by_name (abfd, ".dynamic")) |
12285 | { | |
12bd6957 | 12286 | for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next) |
98c904a8 RS |
12287 | if ((*pm)->p_type == PT_NULL) |
12288 | break; | |
12289 | if (*pm == NULL) | |
12290 | { | |
12291 | m = bfd_zalloc (abfd, sizeof (*m)); | |
12292 | if (m == NULL) | |
12293 | return FALSE; | |
12294 | ||
12295 | m->p_type = PT_NULL; | |
12296 | *pm = m; | |
12297 | } | |
12298 | } | |
12299 | ||
b34976b6 | 12300 | return TRUE; |
b49e97c9 TS |
12301 | } |
12302 | \f | |
12303 | /* Return the section that should be marked against GC for a given | |
12304 | relocation. */ | |
12305 | ||
12306 | asection * | |
9719ad41 | 12307 | _bfd_mips_elf_gc_mark_hook (asection *sec, |
07adf181 | 12308 | struct bfd_link_info *info, |
9719ad41 RS |
12309 | Elf_Internal_Rela *rel, |
12310 | struct elf_link_hash_entry *h, | |
12311 | Elf_Internal_Sym *sym) | |
b49e97c9 TS |
12312 | { |
12313 | /* ??? Do mips16 stub sections need to be handled special? */ | |
12314 | ||
12315 | if (h != NULL) | |
07adf181 AM |
12316 | switch (ELF_R_TYPE (sec->owner, rel->r_info)) |
12317 | { | |
12318 | case R_MIPS_GNU_VTINHERIT: | |
12319 | case R_MIPS_GNU_VTENTRY: | |
12320 | return NULL; | |
12321 | } | |
b49e97c9 | 12322 | |
07adf181 | 12323 | return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); |
b49e97c9 TS |
12324 | } |
12325 | ||
12326 | /* Update the got entry reference counts for the section being removed. */ | |
12327 | ||
b34976b6 | 12328 | bfd_boolean |
9719ad41 RS |
12329 | _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED, |
12330 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
12331 | asection *sec ATTRIBUTE_UNUSED, | |
12332 | const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
12333 | { |
12334 | #if 0 | |
12335 | Elf_Internal_Shdr *symtab_hdr; | |
12336 | struct elf_link_hash_entry **sym_hashes; | |
12337 | bfd_signed_vma *local_got_refcounts; | |
12338 | const Elf_Internal_Rela *rel, *relend; | |
12339 | unsigned long r_symndx; | |
12340 | struct elf_link_hash_entry *h; | |
12341 | ||
7dda2462 TG |
12342 | if (info->relocatable) |
12343 | return TRUE; | |
12344 | ||
b49e97c9 TS |
12345 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
12346 | sym_hashes = elf_sym_hashes (abfd); | |
12347 | local_got_refcounts = elf_local_got_refcounts (abfd); | |
12348 | ||
12349 | relend = relocs + sec->reloc_count; | |
12350 | for (rel = relocs; rel < relend; rel++) | |
12351 | switch (ELF_R_TYPE (abfd, rel->r_info)) | |
12352 | { | |
738e5348 RS |
12353 | case R_MIPS16_GOT16: |
12354 | case R_MIPS16_CALL16: | |
b49e97c9 TS |
12355 | case R_MIPS_GOT16: |
12356 | case R_MIPS_CALL16: | |
12357 | case R_MIPS_CALL_HI16: | |
12358 | case R_MIPS_CALL_LO16: | |
12359 | case R_MIPS_GOT_HI16: | |
12360 | case R_MIPS_GOT_LO16: | |
4a14403c TS |
12361 | case R_MIPS_GOT_DISP: |
12362 | case R_MIPS_GOT_PAGE: | |
12363 | case R_MIPS_GOT_OFST: | |
df58fc94 RS |
12364 | case R_MICROMIPS_GOT16: |
12365 | case R_MICROMIPS_CALL16: | |
12366 | case R_MICROMIPS_CALL_HI16: | |
12367 | case R_MICROMIPS_CALL_LO16: | |
12368 | case R_MICROMIPS_GOT_HI16: | |
12369 | case R_MICROMIPS_GOT_LO16: | |
12370 | case R_MICROMIPS_GOT_DISP: | |
12371 | case R_MICROMIPS_GOT_PAGE: | |
12372 | case R_MICROMIPS_GOT_OFST: | |
b49e97c9 TS |
12373 | /* ??? It would seem that the existing MIPS code does no sort |
12374 | of reference counting or whatnot on its GOT and PLT entries, | |
12375 | so it is not possible to garbage collect them at this time. */ | |
12376 | break; | |
12377 | ||
12378 | default: | |
12379 | break; | |
12380 | } | |
12381 | #endif | |
12382 | ||
b34976b6 | 12383 | return TRUE; |
b49e97c9 | 12384 | } |
351cdf24 MF |
12385 | |
12386 | /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */ | |
12387 | ||
12388 | bfd_boolean | |
12389 | _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info, | |
12390 | elf_gc_mark_hook_fn gc_mark_hook) | |
12391 | { | |
12392 | bfd *sub; | |
12393 | ||
12394 | _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook); | |
12395 | ||
12396 | for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) | |
12397 | { | |
12398 | asection *o; | |
12399 | ||
12400 | if (! is_mips_elf (sub)) | |
12401 | continue; | |
12402 | ||
12403 | for (o = sub->sections; o != NULL; o = o->next) | |
12404 | if (!o->gc_mark | |
12405 | && MIPS_ELF_ABIFLAGS_SECTION_NAME_P | |
12406 | (bfd_get_section_name (sub, o))) | |
12407 | { | |
12408 | if (!_bfd_elf_gc_mark (info, o, gc_mark_hook)) | |
12409 | return FALSE; | |
12410 | } | |
12411 | } | |
12412 | ||
12413 | return TRUE; | |
12414 | } | |
b49e97c9 TS |
12415 | \f |
12416 | /* Copy data from a MIPS ELF indirect symbol to its direct symbol, | |
12417 | hiding the old indirect symbol. Process additional relocation | |
12418 | information. Also called for weakdefs, in which case we just let | |
12419 | _bfd_elf_link_hash_copy_indirect copy the flags for us. */ | |
12420 | ||
12421 | void | |
fcfa13d2 | 12422 | _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info, |
9719ad41 RS |
12423 | struct elf_link_hash_entry *dir, |
12424 | struct elf_link_hash_entry *ind) | |
b49e97c9 TS |
12425 | { |
12426 | struct mips_elf_link_hash_entry *dirmips, *indmips; | |
12427 | ||
fcfa13d2 | 12428 | _bfd_elf_link_hash_copy_indirect (info, dir, ind); |
b49e97c9 | 12429 | |
861fb55a DJ |
12430 | dirmips = (struct mips_elf_link_hash_entry *) dir; |
12431 | indmips = (struct mips_elf_link_hash_entry *) ind; | |
12432 | /* Any absolute non-dynamic relocations against an indirect or weak | |
12433 | definition will be against the target symbol. */ | |
12434 | if (indmips->has_static_relocs) | |
12435 | dirmips->has_static_relocs = TRUE; | |
12436 | ||
b49e97c9 TS |
12437 | if (ind->root.type != bfd_link_hash_indirect) |
12438 | return; | |
12439 | ||
b49e97c9 TS |
12440 | dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs; |
12441 | if (indmips->readonly_reloc) | |
b34976b6 | 12442 | dirmips->readonly_reloc = TRUE; |
b49e97c9 | 12443 | if (indmips->no_fn_stub) |
b34976b6 | 12444 | dirmips->no_fn_stub = TRUE; |
61b0a4af RS |
12445 | if (indmips->fn_stub) |
12446 | { | |
12447 | dirmips->fn_stub = indmips->fn_stub; | |
12448 | indmips->fn_stub = NULL; | |
12449 | } | |
12450 | if (indmips->need_fn_stub) | |
12451 | { | |
12452 | dirmips->need_fn_stub = TRUE; | |
12453 | indmips->need_fn_stub = FALSE; | |
12454 | } | |
12455 | if (indmips->call_stub) | |
12456 | { | |
12457 | dirmips->call_stub = indmips->call_stub; | |
12458 | indmips->call_stub = NULL; | |
12459 | } | |
12460 | if (indmips->call_fp_stub) | |
12461 | { | |
12462 | dirmips->call_fp_stub = indmips->call_fp_stub; | |
12463 | indmips->call_fp_stub = NULL; | |
12464 | } | |
634835ae RS |
12465 | if (indmips->global_got_area < dirmips->global_got_area) |
12466 | dirmips->global_got_area = indmips->global_got_area; | |
12467 | if (indmips->global_got_area < GGA_NONE) | |
12468 | indmips->global_got_area = GGA_NONE; | |
861fb55a DJ |
12469 | if (indmips->has_nonpic_branches) |
12470 | dirmips->has_nonpic_branches = TRUE; | |
b49e97c9 | 12471 | } |
b49e97c9 | 12472 | \f |
d01414a5 TS |
12473 | #define PDR_SIZE 32 |
12474 | ||
b34976b6 | 12475 | bfd_boolean |
9719ad41 RS |
12476 | _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie, |
12477 | struct bfd_link_info *info) | |
d01414a5 TS |
12478 | { |
12479 | asection *o; | |
b34976b6 | 12480 | bfd_boolean ret = FALSE; |
d01414a5 TS |
12481 | unsigned char *tdata; |
12482 | size_t i, skip; | |
12483 | ||
12484 | o = bfd_get_section_by_name (abfd, ".pdr"); | |
12485 | if (! o) | |
b34976b6 | 12486 | return FALSE; |
eea6121a | 12487 | if (o->size == 0) |
b34976b6 | 12488 | return FALSE; |
eea6121a | 12489 | if (o->size % PDR_SIZE != 0) |
b34976b6 | 12490 | return FALSE; |
d01414a5 TS |
12491 | if (o->output_section != NULL |
12492 | && bfd_is_abs_section (o->output_section)) | |
b34976b6 | 12493 | return FALSE; |
d01414a5 | 12494 | |
eea6121a | 12495 | tdata = bfd_zmalloc (o->size / PDR_SIZE); |
d01414a5 | 12496 | if (! tdata) |
b34976b6 | 12497 | return FALSE; |
d01414a5 | 12498 | |
9719ad41 | 12499 | cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, |
45d6a902 | 12500 | info->keep_memory); |
d01414a5 TS |
12501 | if (!cookie->rels) |
12502 | { | |
12503 | free (tdata); | |
b34976b6 | 12504 | return FALSE; |
d01414a5 TS |
12505 | } |
12506 | ||
12507 | cookie->rel = cookie->rels; | |
12508 | cookie->relend = cookie->rels + o->reloc_count; | |
12509 | ||
eea6121a | 12510 | for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++) |
d01414a5 | 12511 | { |
c152c796 | 12512 | if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie)) |
d01414a5 TS |
12513 | { |
12514 | tdata[i] = 1; | |
12515 | skip ++; | |
12516 | } | |
12517 | } | |
12518 | ||
12519 | if (skip != 0) | |
12520 | { | |
f0abc2a1 | 12521 | mips_elf_section_data (o)->u.tdata = tdata; |
e034b2cc MR |
12522 | if (o->rawsize == 0) |
12523 | o->rawsize = o->size; | |
eea6121a | 12524 | o->size -= skip * PDR_SIZE; |
b34976b6 | 12525 | ret = TRUE; |
d01414a5 TS |
12526 | } |
12527 | else | |
12528 | free (tdata); | |
12529 | ||
12530 | if (! info->keep_memory) | |
12531 | free (cookie->rels); | |
12532 | ||
12533 | return ret; | |
12534 | } | |
12535 | ||
b34976b6 | 12536 | bfd_boolean |
9719ad41 | 12537 | _bfd_mips_elf_ignore_discarded_relocs (asection *sec) |
53bfd6b4 MR |
12538 | { |
12539 | if (strcmp (sec->name, ".pdr") == 0) | |
b34976b6 AM |
12540 | return TRUE; |
12541 | return FALSE; | |
53bfd6b4 | 12542 | } |
d01414a5 | 12543 | |
b34976b6 | 12544 | bfd_boolean |
c7b8f16e JB |
12545 | _bfd_mips_elf_write_section (bfd *output_bfd, |
12546 | struct bfd_link_info *link_info ATTRIBUTE_UNUSED, | |
12547 | asection *sec, bfd_byte *contents) | |
d01414a5 TS |
12548 | { |
12549 | bfd_byte *to, *from, *end; | |
12550 | int i; | |
12551 | ||
12552 | if (strcmp (sec->name, ".pdr") != 0) | |
b34976b6 | 12553 | return FALSE; |
d01414a5 | 12554 | |
f0abc2a1 | 12555 | if (mips_elf_section_data (sec)->u.tdata == NULL) |
b34976b6 | 12556 | return FALSE; |
d01414a5 TS |
12557 | |
12558 | to = contents; | |
eea6121a | 12559 | end = contents + sec->size; |
d01414a5 TS |
12560 | for (from = contents, i = 0; |
12561 | from < end; | |
12562 | from += PDR_SIZE, i++) | |
12563 | { | |
f0abc2a1 | 12564 | if ((mips_elf_section_data (sec)->u.tdata)[i] == 1) |
d01414a5 TS |
12565 | continue; |
12566 | if (to != from) | |
12567 | memcpy (to, from, PDR_SIZE); | |
12568 | to += PDR_SIZE; | |
12569 | } | |
12570 | bfd_set_section_contents (output_bfd, sec->output_section, contents, | |
eea6121a | 12571 | sec->output_offset, sec->size); |
b34976b6 | 12572 | return TRUE; |
d01414a5 | 12573 | } |
53bfd6b4 | 12574 | \f |
df58fc94 RS |
12575 | /* microMIPS code retains local labels for linker relaxation. Omit them |
12576 | from output by default for clarity. */ | |
12577 | ||
12578 | bfd_boolean | |
12579 | _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym) | |
12580 | { | |
12581 | return _bfd_elf_is_local_label_name (abfd, sym->name); | |
12582 | } | |
12583 | ||
b49e97c9 TS |
12584 | /* MIPS ELF uses a special find_nearest_line routine in order the |
12585 | handle the ECOFF debugging information. */ | |
12586 | ||
12587 | struct mips_elf_find_line | |
12588 | { | |
12589 | struct ecoff_debug_info d; | |
12590 | struct ecoff_find_line i; | |
12591 | }; | |
12592 | ||
b34976b6 | 12593 | bfd_boolean |
fb167eb2 AM |
12594 | _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols, |
12595 | asection *section, bfd_vma offset, | |
9719ad41 RS |
12596 | const char **filename_ptr, |
12597 | const char **functionname_ptr, | |
fb167eb2 AM |
12598 | unsigned int *line_ptr, |
12599 | unsigned int *discriminator_ptr) | |
b49e97c9 TS |
12600 | { |
12601 | asection *msec; | |
12602 | ||
fb167eb2 | 12603 | if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset, |
b49e97c9 | 12604 | filename_ptr, functionname_ptr, |
fb167eb2 AM |
12605 | line_ptr, discriminator_ptr, |
12606 | dwarf_debug_sections, | |
12607 | ABI_64_P (abfd) ? 8 : 0, | |
12608 | &elf_tdata (abfd)->dwarf2_find_line_info)) | |
b34976b6 | 12609 | return TRUE; |
b49e97c9 | 12610 | |
fb167eb2 | 12611 | if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset, |
b49e97c9 | 12612 | filename_ptr, functionname_ptr, |
fb167eb2 | 12613 | line_ptr)) |
b34976b6 | 12614 | return TRUE; |
b49e97c9 TS |
12615 | |
12616 | msec = bfd_get_section_by_name (abfd, ".mdebug"); | |
12617 | if (msec != NULL) | |
12618 | { | |
12619 | flagword origflags; | |
12620 | struct mips_elf_find_line *fi; | |
12621 | const struct ecoff_debug_swap * const swap = | |
12622 | get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; | |
12623 | ||
12624 | /* If we are called during a link, mips_elf_final_link may have | |
12625 | cleared the SEC_HAS_CONTENTS field. We force it back on here | |
12626 | if appropriate (which it normally will be). */ | |
12627 | origflags = msec->flags; | |
12628 | if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS) | |
12629 | msec->flags |= SEC_HAS_CONTENTS; | |
12630 | ||
698600e4 | 12631 | fi = mips_elf_tdata (abfd)->find_line_info; |
b49e97c9 TS |
12632 | if (fi == NULL) |
12633 | { | |
12634 | bfd_size_type external_fdr_size; | |
12635 | char *fraw_src; | |
12636 | char *fraw_end; | |
12637 | struct fdr *fdr_ptr; | |
12638 | bfd_size_type amt = sizeof (struct mips_elf_find_line); | |
12639 | ||
9719ad41 | 12640 | fi = bfd_zalloc (abfd, amt); |
b49e97c9 TS |
12641 | if (fi == NULL) |
12642 | { | |
12643 | msec->flags = origflags; | |
b34976b6 | 12644 | return FALSE; |
b49e97c9 TS |
12645 | } |
12646 | ||
12647 | if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d)) | |
12648 | { | |
12649 | msec->flags = origflags; | |
b34976b6 | 12650 | return FALSE; |
b49e97c9 TS |
12651 | } |
12652 | ||
12653 | /* Swap in the FDR information. */ | |
12654 | amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr); | |
9719ad41 | 12655 | fi->d.fdr = bfd_alloc (abfd, amt); |
b49e97c9 TS |
12656 | if (fi->d.fdr == NULL) |
12657 | { | |
12658 | msec->flags = origflags; | |
b34976b6 | 12659 | return FALSE; |
b49e97c9 TS |
12660 | } |
12661 | external_fdr_size = swap->external_fdr_size; | |
12662 | fdr_ptr = fi->d.fdr; | |
12663 | fraw_src = (char *) fi->d.external_fdr; | |
12664 | fraw_end = (fraw_src | |
12665 | + fi->d.symbolic_header.ifdMax * external_fdr_size); | |
12666 | for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++) | |
9719ad41 | 12667 | (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr); |
b49e97c9 | 12668 | |
698600e4 | 12669 | mips_elf_tdata (abfd)->find_line_info = fi; |
b49e97c9 TS |
12670 | |
12671 | /* Note that we don't bother to ever free this information. | |
12672 | find_nearest_line is either called all the time, as in | |
12673 | objdump -l, so the information should be saved, or it is | |
12674 | rarely called, as in ld error messages, so the memory | |
12675 | wasted is unimportant. Still, it would probably be a | |
12676 | good idea for free_cached_info to throw it away. */ | |
12677 | } | |
12678 | ||
12679 | if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap, | |
12680 | &fi->i, filename_ptr, functionname_ptr, | |
12681 | line_ptr)) | |
12682 | { | |
12683 | msec->flags = origflags; | |
b34976b6 | 12684 | return TRUE; |
b49e97c9 TS |
12685 | } |
12686 | ||
12687 | msec->flags = origflags; | |
12688 | } | |
12689 | ||
12690 | /* Fall back on the generic ELF find_nearest_line routine. */ | |
12691 | ||
fb167eb2 | 12692 | return _bfd_elf_find_nearest_line (abfd, symbols, section, offset, |
b49e97c9 | 12693 | filename_ptr, functionname_ptr, |
fb167eb2 | 12694 | line_ptr, discriminator_ptr); |
b49e97c9 | 12695 | } |
4ab527b0 FF |
12696 | |
12697 | bfd_boolean | |
12698 | _bfd_mips_elf_find_inliner_info (bfd *abfd, | |
12699 | const char **filename_ptr, | |
12700 | const char **functionname_ptr, | |
12701 | unsigned int *line_ptr) | |
12702 | { | |
12703 | bfd_boolean found; | |
12704 | found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr, | |
12705 | functionname_ptr, line_ptr, | |
12706 | & elf_tdata (abfd)->dwarf2_find_line_info); | |
12707 | return found; | |
12708 | } | |
12709 | ||
b49e97c9 TS |
12710 | \f |
12711 | /* When are writing out the .options or .MIPS.options section, | |
12712 | remember the bytes we are writing out, so that we can install the | |
12713 | GP value in the section_processing routine. */ | |
12714 | ||
b34976b6 | 12715 | bfd_boolean |
9719ad41 RS |
12716 | _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section, |
12717 | const void *location, | |
12718 | file_ptr offset, bfd_size_type count) | |
b49e97c9 | 12719 | { |
cc2e31b9 | 12720 | if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name)) |
b49e97c9 TS |
12721 | { |
12722 | bfd_byte *c; | |
12723 | ||
12724 | if (elf_section_data (section) == NULL) | |
12725 | { | |
12726 | bfd_size_type amt = sizeof (struct bfd_elf_section_data); | |
9719ad41 | 12727 | section->used_by_bfd = bfd_zalloc (abfd, amt); |
b49e97c9 | 12728 | if (elf_section_data (section) == NULL) |
b34976b6 | 12729 | return FALSE; |
b49e97c9 | 12730 | } |
f0abc2a1 | 12731 | c = mips_elf_section_data (section)->u.tdata; |
b49e97c9 TS |
12732 | if (c == NULL) |
12733 | { | |
eea6121a | 12734 | c = bfd_zalloc (abfd, section->size); |
b49e97c9 | 12735 | if (c == NULL) |
b34976b6 | 12736 | return FALSE; |
f0abc2a1 | 12737 | mips_elf_section_data (section)->u.tdata = c; |
b49e97c9 TS |
12738 | } |
12739 | ||
9719ad41 | 12740 | memcpy (c + offset, location, count); |
b49e97c9 TS |
12741 | } |
12742 | ||
12743 | return _bfd_elf_set_section_contents (abfd, section, location, offset, | |
12744 | count); | |
12745 | } | |
12746 | ||
12747 | /* This is almost identical to bfd_generic_get_... except that some | |
12748 | MIPS relocations need to be handled specially. Sigh. */ | |
12749 | ||
12750 | bfd_byte * | |
9719ad41 RS |
12751 | _bfd_elf_mips_get_relocated_section_contents |
12752 | (bfd *abfd, | |
12753 | struct bfd_link_info *link_info, | |
12754 | struct bfd_link_order *link_order, | |
12755 | bfd_byte *data, | |
12756 | bfd_boolean relocatable, | |
12757 | asymbol **symbols) | |
b49e97c9 TS |
12758 | { |
12759 | /* Get enough memory to hold the stuff */ | |
12760 | bfd *input_bfd = link_order->u.indirect.section->owner; | |
12761 | asection *input_section = link_order->u.indirect.section; | |
eea6121a | 12762 | bfd_size_type sz; |
b49e97c9 TS |
12763 | |
12764 | long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section); | |
12765 | arelent **reloc_vector = NULL; | |
12766 | long reloc_count; | |
12767 | ||
12768 | if (reloc_size < 0) | |
12769 | goto error_return; | |
12770 | ||
9719ad41 | 12771 | reloc_vector = bfd_malloc (reloc_size); |
b49e97c9 TS |
12772 | if (reloc_vector == NULL && reloc_size != 0) |
12773 | goto error_return; | |
12774 | ||
12775 | /* read in the section */ | |
eea6121a AM |
12776 | sz = input_section->rawsize ? input_section->rawsize : input_section->size; |
12777 | if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz)) | |
b49e97c9 TS |
12778 | goto error_return; |
12779 | ||
b49e97c9 TS |
12780 | reloc_count = bfd_canonicalize_reloc (input_bfd, |
12781 | input_section, | |
12782 | reloc_vector, | |
12783 | symbols); | |
12784 | if (reloc_count < 0) | |
12785 | goto error_return; | |
12786 | ||
12787 | if (reloc_count > 0) | |
12788 | { | |
12789 | arelent **parent; | |
12790 | /* for mips */ | |
12791 | int gp_found; | |
12792 | bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */ | |
12793 | ||
12794 | { | |
12795 | struct bfd_hash_entry *h; | |
12796 | struct bfd_link_hash_entry *lh; | |
12797 | /* Skip all this stuff if we aren't mixing formats. */ | |
12798 | if (abfd && input_bfd | |
12799 | && abfd->xvec == input_bfd->xvec) | |
12800 | lh = 0; | |
12801 | else | |
12802 | { | |
b34976b6 | 12803 | h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE); |
b49e97c9 TS |
12804 | lh = (struct bfd_link_hash_entry *) h; |
12805 | } | |
12806 | lookup: | |
12807 | if (lh) | |
12808 | { | |
12809 | switch (lh->type) | |
12810 | { | |
12811 | case bfd_link_hash_undefined: | |
12812 | case bfd_link_hash_undefweak: | |
12813 | case bfd_link_hash_common: | |
12814 | gp_found = 0; | |
12815 | break; | |
12816 | case bfd_link_hash_defined: | |
12817 | case bfd_link_hash_defweak: | |
12818 | gp_found = 1; | |
12819 | gp = lh->u.def.value; | |
12820 | break; | |
12821 | case bfd_link_hash_indirect: | |
12822 | case bfd_link_hash_warning: | |
12823 | lh = lh->u.i.link; | |
12824 | /* @@FIXME ignoring warning for now */ | |
12825 | goto lookup; | |
12826 | case bfd_link_hash_new: | |
12827 | default: | |
12828 | abort (); | |
12829 | } | |
12830 | } | |
12831 | else | |
12832 | gp_found = 0; | |
12833 | } | |
12834 | /* end mips */ | |
9719ad41 | 12835 | for (parent = reloc_vector; *parent != NULL; parent++) |
b49e97c9 | 12836 | { |
9719ad41 | 12837 | char *error_message = NULL; |
b49e97c9 TS |
12838 | bfd_reloc_status_type r; |
12839 | ||
12840 | /* Specific to MIPS: Deal with relocation types that require | |
12841 | knowing the gp of the output bfd. */ | |
12842 | asymbol *sym = *(*parent)->sym_ptr_ptr; | |
b49e97c9 | 12843 | |
8236346f EC |
12844 | /* If we've managed to find the gp and have a special |
12845 | function for the relocation then go ahead, else default | |
12846 | to the generic handling. */ | |
12847 | if (gp_found | |
12848 | && (*parent)->howto->special_function | |
12849 | == _bfd_mips_elf32_gprel16_reloc) | |
12850 | r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent, | |
12851 | input_section, relocatable, | |
12852 | data, gp); | |
12853 | else | |
86324f90 | 12854 | r = bfd_perform_relocation (input_bfd, *parent, data, |
8236346f EC |
12855 | input_section, |
12856 | relocatable ? abfd : NULL, | |
12857 | &error_message); | |
b49e97c9 | 12858 | |
1049f94e | 12859 | if (relocatable) |
b49e97c9 TS |
12860 | { |
12861 | asection *os = input_section->output_section; | |
12862 | ||
12863 | /* A partial link, so keep the relocs */ | |
12864 | os->orelocation[os->reloc_count] = *parent; | |
12865 | os->reloc_count++; | |
12866 | } | |
12867 | ||
12868 | if (r != bfd_reloc_ok) | |
12869 | { | |
12870 | switch (r) | |
12871 | { | |
12872 | case bfd_reloc_undefined: | |
12873 | if (!((*link_info->callbacks->undefined_symbol) | |
12874 | (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr), | |
5e2b0d47 | 12875 | input_bfd, input_section, (*parent)->address, TRUE))) |
b49e97c9 TS |
12876 | goto error_return; |
12877 | break; | |
12878 | case bfd_reloc_dangerous: | |
9719ad41 | 12879 | BFD_ASSERT (error_message != NULL); |
b49e97c9 TS |
12880 | if (!((*link_info->callbacks->reloc_dangerous) |
12881 | (link_info, error_message, input_bfd, input_section, | |
12882 | (*parent)->address))) | |
12883 | goto error_return; | |
12884 | break; | |
12885 | case bfd_reloc_overflow: | |
12886 | if (!((*link_info->callbacks->reloc_overflow) | |
dfeffb9f L |
12887 | (link_info, NULL, |
12888 | bfd_asymbol_name (*(*parent)->sym_ptr_ptr), | |
b49e97c9 TS |
12889 | (*parent)->howto->name, (*parent)->addend, |
12890 | input_bfd, input_section, (*parent)->address))) | |
12891 | goto error_return; | |
12892 | break; | |
12893 | case bfd_reloc_outofrange: | |
12894 | default: | |
12895 | abort (); | |
12896 | break; | |
12897 | } | |
12898 | ||
12899 | } | |
12900 | } | |
12901 | } | |
12902 | if (reloc_vector != NULL) | |
12903 | free (reloc_vector); | |
12904 | return data; | |
12905 | ||
12906 | error_return: | |
12907 | if (reloc_vector != NULL) | |
12908 | free (reloc_vector); | |
12909 | return NULL; | |
12910 | } | |
12911 | \f | |
df58fc94 RS |
12912 | static bfd_boolean |
12913 | mips_elf_relax_delete_bytes (bfd *abfd, | |
12914 | asection *sec, bfd_vma addr, int count) | |
12915 | { | |
12916 | Elf_Internal_Shdr *symtab_hdr; | |
12917 | unsigned int sec_shndx; | |
12918 | bfd_byte *contents; | |
12919 | Elf_Internal_Rela *irel, *irelend; | |
12920 | Elf_Internal_Sym *isym; | |
12921 | Elf_Internal_Sym *isymend; | |
12922 | struct elf_link_hash_entry **sym_hashes; | |
12923 | struct elf_link_hash_entry **end_hashes; | |
12924 | struct elf_link_hash_entry **start_hashes; | |
12925 | unsigned int symcount; | |
12926 | ||
12927 | sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); | |
12928 | contents = elf_section_data (sec)->this_hdr.contents; | |
12929 | ||
12930 | irel = elf_section_data (sec)->relocs; | |
12931 | irelend = irel + sec->reloc_count; | |
12932 | ||
12933 | /* Actually delete the bytes. */ | |
12934 | memmove (contents + addr, contents + addr + count, | |
12935 | (size_t) (sec->size - addr - count)); | |
12936 | sec->size -= count; | |
12937 | ||
12938 | /* Adjust all the relocs. */ | |
12939 | for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++) | |
12940 | { | |
12941 | /* Get the new reloc address. */ | |
12942 | if (irel->r_offset > addr) | |
12943 | irel->r_offset -= count; | |
12944 | } | |
12945 | ||
12946 | BFD_ASSERT (addr % 2 == 0); | |
12947 | BFD_ASSERT (count % 2 == 0); | |
12948 | ||
12949 | /* Adjust the local symbols defined in this section. */ | |
12950 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
12951 | isym = (Elf_Internal_Sym *) symtab_hdr->contents; | |
12952 | for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++) | |
2309ddf2 | 12953 | if (isym->st_shndx == sec_shndx && isym->st_value > addr) |
df58fc94 RS |
12954 | isym->st_value -= count; |
12955 | ||
12956 | /* Now adjust the global symbols defined in this section. */ | |
12957 | symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) | |
12958 | - symtab_hdr->sh_info); | |
12959 | sym_hashes = start_hashes = elf_sym_hashes (abfd); | |
12960 | end_hashes = sym_hashes + symcount; | |
12961 | ||
12962 | for (; sym_hashes < end_hashes; sym_hashes++) | |
12963 | { | |
12964 | struct elf_link_hash_entry *sym_hash = *sym_hashes; | |
12965 | ||
12966 | if ((sym_hash->root.type == bfd_link_hash_defined | |
12967 | || sym_hash->root.type == bfd_link_hash_defweak) | |
12968 | && sym_hash->root.u.def.section == sec) | |
12969 | { | |
2309ddf2 | 12970 | bfd_vma value = sym_hash->root.u.def.value; |
df58fc94 | 12971 | |
df58fc94 RS |
12972 | if (ELF_ST_IS_MICROMIPS (sym_hash->other)) |
12973 | value &= MINUS_TWO; | |
12974 | if (value > addr) | |
12975 | sym_hash->root.u.def.value -= count; | |
12976 | } | |
12977 | } | |
12978 | ||
12979 | return TRUE; | |
12980 | } | |
12981 | ||
12982 | ||
12983 | /* Opcodes needed for microMIPS relaxation as found in | |
12984 | opcodes/micromips-opc.c. */ | |
12985 | ||
12986 | struct opcode_descriptor { | |
12987 | unsigned long match; | |
12988 | unsigned long mask; | |
12989 | }; | |
12990 | ||
12991 | /* The $ra register aka $31. */ | |
12992 | ||
12993 | #define RA 31 | |
12994 | ||
12995 | /* 32-bit instruction format register fields. */ | |
12996 | ||
12997 | #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f) | |
12998 | #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f) | |
12999 | ||
13000 | /* Check if a 5-bit register index can be abbreviated to 3 bits. */ | |
13001 | ||
13002 | #define OP16_VALID_REG(r) \ | |
13003 | ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17)) | |
13004 | ||
13005 | ||
13006 | /* 32-bit and 16-bit branches. */ | |
13007 | ||
13008 | static const struct opcode_descriptor b_insns_32[] = { | |
13009 | { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */ | |
13010 | { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */ | |
13011 | { 0, 0 } /* End marker for find_match(). */ | |
13012 | }; | |
13013 | ||
13014 | static const struct opcode_descriptor bc_insn_32 = | |
13015 | { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 }; | |
13016 | ||
13017 | static const struct opcode_descriptor bz_insn_32 = | |
13018 | { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 }; | |
13019 | ||
13020 | static const struct opcode_descriptor bzal_insn_32 = | |
13021 | { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 }; | |
13022 | ||
13023 | static const struct opcode_descriptor beq_insn_32 = | |
13024 | { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 }; | |
13025 | ||
13026 | static const struct opcode_descriptor b_insn_16 = | |
13027 | { /* "b", "mD", */ 0xcc00, 0xfc00 }; | |
13028 | ||
13029 | static const struct opcode_descriptor bz_insn_16 = | |
c088dedf | 13030 | { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 }; |
df58fc94 RS |
13031 | |
13032 | ||
13033 | /* 32-bit and 16-bit branch EQ and NE zero. */ | |
13034 | ||
13035 | /* NOTE: All opcode tables have BEQ/BNE in the same order: first the | |
13036 | eq and second the ne. This convention is used when replacing a | |
13037 | 32-bit BEQ/BNE with the 16-bit version. */ | |
13038 | ||
13039 | #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16) | |
13040 | ||
13041 | static const struct opcode_descriptor bz_rs_insns_32[] = { | |
13042 | { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 }, | |
13043 | { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 }, | |
13044 | { 0, 0 } /* End marker for find_match(). */ | |
13045 | }; | |
13046 | ||
13047 | static const struct opcode_descriptor bz_rt_insns_32[] = { | |
13048 | { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 }, | |
13049 | { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 }, | |
13050 | { 0, 0 } /* End marker for find_match(). */ | |
13051 | }; | |
13052 | ||
13053 | static const struct opcode_descriptor bzc_insns_32[] = { | |
13054 | { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 }, | |
13055 | { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 }, | |
13056 | { 0, 0 } /* End marker for find_match(). */ | |
13057 | }; | |
13058 | ||
13059 | static const struct opcode_descriptor bz_insns_16[] = { | |
13060 | { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 }, | |
13061 | { /* "bnez", "md,mE", */ 0xac00, 0xfc00 }, | |
13062 | { 0, 0 } /* End marker for find_match(). */ | |
13063 | }; | |
13064 | ||
13065 | /* Switch between a 5-bit register index and its 3-bit shorthand. */ | |
13066 | ||
13067 | #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2) | |
13068 | #define BZ16_REG_FIELD(r) \ | |
13069 | (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7) | |
13070 | ||
13071 | ||
13072 | /* 32-bit instructions with a delay slot. */ | |
13073 | ||
13074 | static const struct opcode_descriptor jal_insn_32_bd16 = | |
13075 | { /* "jals", "a", */ 0x74000000, 0xfc000000 }; | |
13076 | ||
13077 | static const struct opcode_descriptor jal_insn_32_bd32 = | |
13078 | { /* "jal", "a", */ 0xf4000000, 0xfc000000 }; | |
13079 | ||
13080 | static const struct opcode_descriptor jal_x_insn_32_bd32 = | |
13081 | { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 }; | |
13082 | ||
13083 | static const struct opcode_descriptor j_insn_32 = | |
13084 | { /* "j", "a", */ 0xd4000000, 0xfc000000 }; | |
13085 | ||
13086 | static const struct opcode_descriptor jalr_insn_32 = | |
13087 | { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff }; | |
13088 | ||
13089 | /* This table can be compacted, because no opcode replacement is made. */ | |
13090 | ||
13091 | static const struct opcode_descriptor ds_insns_32_bd16[] = { | |
13092 | { /* "jals", "a", */ 0x74000000, 0xfc000000 }, | |
13093 | ||
13094 | { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff }, | |
13095 | { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 }, | |
13096 | ||
13097 | { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 }, | |
13098 | { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 }, | |
13099 | { /* "j", "a", */ 0xd4000000, 0xfc000000 }, | |
13100 | { 0, 0 } /* End marker for find_match(). */ | |
13101 | }; | |
13102 | ||
13103 | /* This table can be compacted, because no opcode replacement is made. */ | |
13104 | ||
13105 | static const struct opcode_descriptor ds_insns_32_bd32[] = { | |
13106 | { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 }, | |
13107 | ||
13108 | { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff }, | |
13109 | { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 }, | |
13110 | { 0, 0 } /* End marker for find_match(). */ | |
13111 | }; | |
13112 | ||
13113 | ||
13114 | /* 16-bit instructions with a delay slot. */ | |
13115 | ||
13116 | static const struct opcode_descriptor jalr_insn_16_bd16 = | |
13117 | { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 }; | |
13118 | ||
13119 | static const struct opcode_descriptor jalr_insn_16_bd32 = | |
13120 | { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 }; | |
13121 | ||
13122 | static const struct opcode_descriptor jr_insn_16 = | |
13123 | { /* "jr", "mj", */ 0x4580, 0xffe0 }; | |
13124 | ||
13125 | #define JR16_REG(opcode) ((opcode) & 0x1f) | |
13126 | ||
13127 | /* This table can be compacted, because no opcode replacement is made. */ | |
13128 | ||
13129 | static const struct opcode_descriptor ds_insns_16_bd16[] = { | |
13130 | { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 }, | |
13131 | ||
13132 | { /* "b", "mD", */ 0xcc00, 0xfc00 }, | |
13133 | { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 }, | |
13134 | { /* "jr", "mj", */ 0x4580, 0xffe0 }, | |
13135 | { 0, 0 } /* End marker for find_match(). */ | |
13136 | }; | |
13137 | ||
13138 | ||
13139 | /* LUI instruction. */ | |
13140 | ||
13141 | static const struct opcode_descriptor lui_insn = | |
13142 | { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 }; | |
13143 | ||
13144 | ||
13145 | /* ADDIU instruction. */ | |
13146 | ||
13147 | static const struct opcode_descriptor addiu_insn = | |
13148 | { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 }; | |
13149 | ||
13150 | static const struct opcode_descriptor addiupc_insn = | |
13151 | { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 }; | |
13152 | ||
13153 | #define ADDIUPC_REG_FIELD(r) \ | |
13154 | (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23) | |
13155 | ||
13156 | ||
13157 | /* Relaxable instructions in a JAL delay slot: MOVE. */ | |
13158 | ||
13159 | /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves | |
13160 | (ADDU, OR) have rd in 15:11 and rs in 10:16. */ | |
13161 | #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f) | |
13162 | #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f) | |
13163 | ||
13164 | #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5) | |
13165 | #define MOVE16_RS_FIELD(r) (((r) & 0x1f) ) | |
13166 | ||
13167 | static const struct opcode_descriptor move_insns_32[] = { | |
13168 | { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */ | |
13169 | { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */ | |
13170 | { 0, 0 } /* End marker for find_match(). */ | |
13171 | }; | |
13172 | ||
13173 | static const struct opcode_descriptor move_insn_16 = | |
13174 | { /* "move", "mp,mj", */ 0x0c00, 0xfc00 }; | |
13175 | ||
13176 | ||
13177 | /* NOP instructions. */ | |
13178 | ||
13179 | static const struct opcode_descriptor nop_insn_32 = | |
13180 | { /* "nop", "", */ 0x00000000, 0xffffffff }; | |
13181 | ||
13182 | static const struct opcode_descriptor nop_insn_16 = | |
13183 | { /* "nop", "", */ 0x0c00, 0xffff }; | |
13184 | ||
13185 | ||
13186 | /* Instruction match support. */ | |
13187 | ||
13188 | #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match) | |
13189 | ||
13190 | static int | |
13191 | find_match (unsigned long opcode, const struct opcode_descriptor insn[]) | |
13192 | { | |
13193 | unsigned long indx; | |
13194 | ||
13195 | for (indx = 0; insn[indx].mask != 0; indx++) | |
13196 | if (MATCH (opcode, insn[indx])) | |
13197 | return indx; | |
13198 | ||
13199 | return -1; | |
13200 | } | |
13201 | ||
13202 | ||
13203 | /* Branch and delay slot decoding support. */ | |
13204 | ||
13205 | /* If PTR points to what *might* be a 16-bit branch or jump, then | |
13206 | return the minimum length of its delay slot, otherwise return 0. | |
13207 | Non-zero results are not definitive as we might be checking against | |
13208 | the second half of another instruction. */ | |
13209 | ||
13210 | static int | |
13211 | check_br16_dslot (bfd *abfd, bfd_byte *ptr) | |
13212 | { | |
13213 | unsigned long opcode; | |
13214 | int bdsize; | |
13215 | ||
13216 | opcode = bfd_get_16 (abfd, ptr); | |
13217 | if (MATCH (opcode, jalr_insn_16_bd32) != 0) | |
13218 | /* 16-bit branch/jump with a 32-bit delay slot. */ | |
13219 | bdsize = 4; | |
13220 | else if (MATCH (opcode, jalr_insn_16_bd16) != 0 | |
13221 | || find_match (opcode, ds_insns_16_bd16) >= 0) | |
13222 | /* 16-bit branch/jump with a 16-bit delay slot. */ | |
13223 | bdsize = 2; | |
13224 | else | |
13225 | /* No delay slot. */ | |
13226 | bdsize = 0; | |
13227 | ||
13228 | return bdsize; | |
13229 | } | |
13230 | ||
13231 | /* If PTR points to what *might* be a 32-bit branch or jump, then | |
13232 | return the minimum length of its delay slot, otherwise return 0. | |
13233 | Non-zero results are not definitive as we might be checking against | |
13234 | the second half of another instruction. */ | |
13235 | ||
13236 | static int | |
13237 | check_br32_dslot (bfd *abfd, bfd_byte *ptr) | |
13238 | { | |
13239 | unsigned long opcode; | |
13240 | int bdsize; | |
13241 | ||
d21911ea | 13242 | opcode = bfd_get_micromips_32 (abfd, ptr); |
df58fc94 RS |
13243 | if (find_match (opcode, ds_insns_32_bd32) >= 0) |
13244 | /* 32-bit branch/jump with a 32-bit delay slot. */ | |
13245 | bdsize = 4; | |
13246 | else if (find_match (opcode, ds_insns_32_bd16) >= 0) | |
13247 | /* 32-bit branch/jump with a 16-bit delay slot. */ | |
13248 | bdsize = 2; | |
13249 | else | |
13250 | /* No delay slot. */ | |
13251 | bdsize = 0; | |
13252 | ||
13253 | return bdsize; | |
13254 | } | |
13255 | ||
13256 | /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot | |
13257 | that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */ | |
13258 | ||
13259 | static bfd_boolean | |
13260 | check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg) | |
13261 | { | |
13262 | unsigned long opcode; | |
13263 | ||
13264 | opcode = bfd_get_16 (abfd, ptr); | |
13265 | if (MATCH (opcode, b_insn_16) | |
13266 | /* B16 */ | |
13267 | || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode)) | |
13268 | /* JR16 */ | |
13269 | || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode)) | |
13270 | /* BEQZ16, BNEZ16 */ | |
13271 | || (MATCH (opcode, jalr_insn_16_bd32) | |
13272 | /* JALR16 */ | |
13273 | && reg != JR16_REG (opcode) && reg != RA)) | |
13274 | return TRUE; | |
13275 | ||
13276 | return FALSE; | |
13277 | } | |
13278 | ||
13279 | /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG, | |
13280 | then return TRUE, otherwise FALSE. */ | |
13281 | ||
f41e5fcc | 13282 | static bfd_boolean |
df58fc94 RS |
13283 | check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg) |
13284 | { | |
13285 | unsigned long opcode; | |
13286 | ||
d21911ea | 13287 | opcode = bfd_get_micromips_32 (abfd, ptr); |
df58fc94 RS |
13288 | if (MATCH (opcode, j_insn_32) |
13289 | /* J */ | |
13290 | || MATCH (opcode, bc_insn_32) | |
13291 | /* BC1F, BC1T, BC2F, BC2T */ | |
13292 | || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA) | |
13293 | /* JAL, JALX */ | |
13294 | || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode)) | |
13295 | /* BGEZ, BGTZ, BLEZ, BLTZ */ | |
13296 | || (MATCH (opcode, bzal_insn_32) | |
13297 | /* BGEZAL, BLTZAL */ | |
13298 | && reg != OP32_SREG (opcode) && reg != RA) | |
13299 | || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32)) | |
13300 | /* JALR, JALR.HB, BEQ, BNE */ | |
13301 | && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode))) | |
13302 | return TRUE; | |
13303 | ||
13304 | return FALSE; | |
13305 | } | |
13306 | ||
80cab405 MR |
13307 | /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS, |
13308 | IRELEND) at OFFSET indicate that there must be a compact branch there, | |
13309 | then return TRUE, otherwise FALSE. */ | |
df58fc94 RS |
13310 | |
13311 | static bfd_boolean | |
80cab405 MR |
13312 | check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset, |
13313 | const Elf_Internal_Rela *internal_relocs, | |
13314 | const Elf_Internal_Rela *irelend) | |
df58fc94 | 13315 | { |
80cab405 MR |
13316 | const Elf_Internal_Rela *irel; |
13317 | unsigned long opcode; | |
13318 | ||
d21911ea | 13319 | opcode = bfd_get_micromips_32 (abfd, ptr); |
80cab405 MR |
13320 | if (find_match (opcode, bzc_insns_32) < 0) |
13321 | return FALSE; | |
df58fc94 RS |
13322 | |
13323 | for (irel = internal_relocs; irel < irelend; irel++) | |
80cab405 MR |
13324 | if (irel->r_offset == offset |
13325 | && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1) | |
13326 | return TRUE; | |
13327 | ||
df58fc94 RS |
13328 | return FALSE; |
13329 | } | |
80cab405 MR |
13330 | |
13331 | /* Bitsize checking. */ | |
13332 | #define IS_BITSIZE(val, N) \ | |
13333 | (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \ | |
13334 | - (1ULL << ((N) - 1))) == (val)) | |
13335 | ||
df58fc94 RS |
13336 | \f |
13337 | bfd_boolean | |
13338 | _bfd_mips_elf_relax_section (bfd *abfd, asection *sec, | |
13339 | struct bfd_link_info *link_info, | |
13340 | bfd_boolean *again) | |
13341 | { | |
833794fc | 13342 | bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32; |
df58fc94 RS |
13343 | Elf_Internal_Shdr *symtab_hdr; |
13344 | Elf_Internal_Rela *internal_relocs; | |
13345 | Elf_Internal_Rela *irel, *irelend; | |
13346 | bfd_byte *contents = NULL; | |
13347 | Elf_Internal_Sym *isymbuf = NULL; | |
13348 | ||
13349 | /* Assume nothing changes. */ | |
13350 | *again = FALSE; | |
13351 | ||
13352 | /* We don't have to do anything for a relocatable link, if | |
13353 | this section does not have relocs, or if this is not a | |
13354 | code section. */ | |
13355 | ||
13356 | if (link_info->relocatable | |
13357 | || (sec->flags & SEC_RELOC) == 0 | |
13358 | || sec->reloc_count == 0 | |
13359 | || (sec->flags & SEC_CODE) == 0) | |
13360 | return TRUE; | |
13361 | ||
13362 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
13363 | ||
13364 | /* Get a copy of the native relocations. */ | |
13365 | internal_relocs = (_bfd_elf_link_read_relocs | |
2c3fc389 | 13366 | (abfd, sec, NULL, (Elf_Internal_Rela *) NULL, |
df58fc94 RS |
13367 | link_info->keep_memory)); |
13368 | if (internal_relocs == NULL) | |
13369 | goto error_return; | |
13370 | ||
13371 | /* Walk through them looking for relaxing opportunities. */ | |
13372 | irelend = internal_relocs + sec->reloc_count; | |
13373 | for (irel = internal_relocs; irel < irelend; irel++) | |
13374 | { | |
13375 | unsigned long r_symndx = ELF32_R_SYM (irel->r_info); | |
13376 | unsigned int r_type = ELF32_R_TYPE (irel->r_info); | |
13377 | bfd_boolean target_is_micromips_code_p; | |
13378 | unsigned long opcode; | |
13379 | bfd_vma symval; | |
13380 | bfd_vma pcrval; | |
2309ddf2 | 13381 | bfd_byte *ptr; |
df58fc94 RS |
13382 | int fndopc; |
13383 | ||
13384 | /* The number of bytes to delete for relaxation and from where | |
13385 | to delete these bytes starting at irel->r_offset. */ | |
13386 | int delcnt = 0; | |
13387 | int deloff = 0; | |
13388 | ||
13389 | /* If this isn't something that can be relaxed, then ignore | |
13390 | this reloc. */ | |
13391 | if (r_type != R_MICROMIPS_HI16 | |
13392 | && r_type != R_MICROMIPS_PC16_S1 | |
2309ddf2 | 13393 | && r_type != R_MICROMIPS_26_S1) |
df58fc94 RS |
13394 | continue; |
13395 | ||
13396 | /* Get the section contents if we haven't done so already. */ | |
13397 | if (contents == NULL) | |
13398 | { | |
13399 | /* Get cached copy if it exists. */ | |
13400 | if (elf_section_data (sec)->this_hdr.contents != NULL) | |
13401 | contents = elf_section_data (sec)->this_hdr.contents; | |
13402 | /* Go get them off disk. */ | |
13403 | else if (!bfd_malloc_and_get_section (abfd, sec, &contents)) | |
13404 | goto error_return; | |
13405 | } | |
2309ddf2 | 13406 | ptr = contents + irel->r_offset; |
df58fc94 RS |
13407 | |
13408 | /* Read this BFD's local symbols if we haven't done so already. */ | |
13409 | if (isymbuf == NULL && symtab_hdr->sh_info != 0) | |
13410 | { | |
13411 | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; | |
13412 | if (isymbuf == NULL) | |
13413 | isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, | |
13414 | symtab_hdr->sh_info, 0, | |
13415 | NULL, NULL, NULL); | |
13416 | if (isymbuf == NULL) | |
13417 | goto error_return; | |
13418 | } | |
13419 | ||
13420 | /* Get the value of the symbol referred to by the reloc. */ | |
13421 | if (r_symndx < symtab_hdr->sh_info) | |
13422 | { | |
13423 | /* A local symbol. */ | |
13424 | Elf_Internal_Sym *isym; | |
13425 | asection *sym_sec; | |
13426 | ||
13427 | isym = isymbuf + r_symndx; | |
13428 | if (isym->st_shndx == SHN_UNDEF) | |
13429 | sym_sec = bfd_und_section_ptr; | |
13430 | else if (isym->st_shndx == SHN_ABS) | |
13431 | sym_sec = bfd_abs_section_ptr; | |
13432 | else if (isym->st_shndx == SHN_COMMON) | |
13433 | sym_sec = bfd_com_section_ptr; | |
13434 | else | |
13435 | sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx); | |
13436 | symval = (isym->st_value | |
13437 | + sym_sec->output_section->vma | |
13438 | + sym_sec->output_offset); | |
13439 | target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other); | |
13440 | } | |
13441 | else | |
13442 | { | |
13443 | unsigned long indx; | |
13444 | struct elf_link_hash_entry *h; | |
13445 | ||
13446 | /* An external symbol. */ | |
13447 | indx = r_symndx - symtab_hdr->sh_info; | |
13448 | h = elf_sym_hashes (abfd)[indx]; | |
13449 | BFD_ASSERT (h != NULL); | |
13450 | ||
13451 | if (h->root.type != bfd_link_hash_defined | |
13452 | && h->root.type != bfd_link_hash_defweak) | |
13453 | /* This appears to be a reference to an undefined | |
13454 | symbol. Just ignore it -- it will be caught by the | |
13455 | regular reloc processing. */ | |
13456 | continue; | |
13457 | ||
13458 | symval = (h->root.u.def.value | |
13459 | + h->root.u.def.section->output_section->vma | |
13460 | + h->root.u.def.section->output_offset); | |
13461 | target_is_micromips_code_p = (!h->needs_plt | |
13462 | && ELF_ST_IS_MICROMIPS (h->other)); | |
13463 | } | |
13464 | ||
13465 | ||
13466 | /* For simplicity of coding, we are going to modify the | |
13467 | section contents, the section relocs, and the BFD symbol | |
13468 | table. We must tell the rest of the code not to free up this | |
13469 | information. It would be possible to instead create a table | |
13470 | of changes which have to be made, as is done in coff-mips.c; | |
13471 | that would be more work, but would require less memory when | |
13472 | the linker is run. */ | |
13473 | ||
13474 | /* Only 32-bit instructions relaxed. */ | |
13475 | if (irel->r_offset + 4 > sec->size) | |
13476 | continue; | |
13477 | ||
d21911ea | 13478 | opcode = bfd_get_micromips_32 (abfd, ptr); |
df58fc94 RS |
13479 | |
13480 | /* This is the pc-relative distance from the instruction the | |
13481 | relocation is applied to, to the symbol referred. */ | |
13482 | pcrval = (symval | |
13483 | - (sec->output_section->vma + sec->output_offset) | |
13484 | - irel->r_offset); | |
13485 | ||
13486 | /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation | |
13487 | of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or | |
13488 | R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is | |
13489 | ||
13490 | (symval % 4 == 0 && IS_BITSIZE (pcrval, 25)) | |
13491 | ||
13492 | where pcrval has first to be adjusted to apply against the LO16 | |
13493 | location (we make the adjustment later on, when we have figured | |
13494 | out the offset). */ | |
13495 | if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn)) | |
13496 | { | |
80cab405 | 13497 | bfd_boolean bzc = FALSE; |
df58fc94 RS |
13498 | unsigned long nextopc; |
13499 | unsigned long reg; | |
13500 | bfd_vma offset; | |
13501 | ||
13502 | /* Give up if the previous reloc was a HI16 against this symbol | |
13503 | too. */ | |
13504 | if (irel > internal_relocs | |
13505 | && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16 | |
13506 | && ELF32_R_SYM (irel[-1].r_info) == r_symndx) | |
13507 | continue; | |
13508 | ||
13509 | /* Or if the next reloc is not a LO16 against this symbol. */ | |
13510 | if (irel + 1 >= irelend | |
13511 | || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16 | |
13512 | || ELF32_R_SYM (irel[1].r_info) != r_symndx) | |
13513 | continue; | |
13514 | ||
13515 | /* Or if the second next reloc is a LO16 against this symbol too. */ | |
13516 | if (irel + 2 >= irelend | |
13517 | && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16 | |
13518 | && ELF32_R_SYM (irel[2].r_info) == r_symndx) | |
13519 | continue; | |
13520 | ||
80cab405 MR |
13521 | /* See if the LUI instruction *might* be in a branch delay slot. |
13522 | We check whether what looks like a 16-bit branch or jump is | |
13523 | actually an immediate argument to a compact branch, and let | |
13524 | it through if so. */ | |
df58fc94 | 13525 | if (irel->r_offset >= 2 |
2309ddf2 | 13526 | && check_br16_dslot (abfd, ptr - 2) |
df58fc94 | 13527 | && !(irel->r_offset >= 4 |
80cab405 MR |
13528 | && (bzc = check_relocated_bzc (abfd, |
13529 | ptr - 4, irel->r_offset - 4, | |
13530 | internal_relocs, irelend)))) | |
df58fc94 RS |
13531 | continue; |
13532 | if (irel->r_offset >= 4 | |
80cab405 | 13533 | && !bzc |
2309ddf2 | 13534 | && check_br32_dslot (abfd, ptr - 4)) |
df58fc94 RS |
13535 | continue; |
13536 | ||
13537 | reg = OP32_SREG (opcode); | |
13538 | ||
13539 | /* We only relax adjacent instructions or ones separated with | |
13540 | a branch or jump that has a delay slot. The branch or jump | |
13541 | must not fiddle with the register used to hold the address. | |
13542 | Subtract 4 for the LUI itself. */ | |
13543 | offset = irel[1].r_offset - irel[0].r_offset; | |
13544 | switch (offset - 4) | |
13545 | { | |
13546 | case 0: | |
13547 | break; | |
13548 | case 2: | |
2309ddf2 | 13549 | if (check_br16 (abfd, ptr + 4, reg)) |
df58fc94 RS |
13550 | break; |
13551 | continue; | |
13552 | case 4: | |
2309ddf2 | 13553 | if (check_br32 (abfd, ptr + 4, reg)) |
df58fc94 RS |
13554 | break; |
13555 | continue; | |
13556 | default: | |
13557 | continue; | |
13558 | } | |
13559 | ||
d21911ea | 13560 | nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset); |
df58fc94 RS |
13561 | |
13562 | /* Give up unless the same register is used with both | |
13563 | relocations. */ | |
13564 | if (OP32_SREG (nextopc) != reg) | |
13565 | continue; | |
13566 | ||
13567 | /* Now adjust pcrval, subtracting the offset to the LO16 reloc | |
13568 | and rounding up to take masking of the two LSBs into account. */ | |
13569 | pcrval = ((pcrval - offset + 3) | 3) ^ 3; | |
13570 | ||
13571 | /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */ | |
13572 | if (IS_BITSIZE (symval, 16)) | |
13573 | { | |
13574 | /* Fix the relocation's type. */ | |
13575 | irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16); | |
13576 | ||
13577 | /* Instructions using R_MICROMIPS_LO16 have the base or | |
13578 | source register in bits 20:16. This register becomes $0 | |
13579 | (zero) as the result of the R_MICROMIPS_HI16 being 0. */ | |
13580 | nextopc &= ~0x001f0000; | |
13581 | bfd_put_16 (abfd, (nextopc >> 16) & 0xffff, | |
13582 | contents + irel[1].r_offset); | |
13583 | } | |
13584 | ||
13585 | /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2. | |
13586 | We add 4 to take LUI deletion into account while checking | |
13587 | the PC-relative distance. */ | |
13588 | else if (symval % 4 == 0 | |
13589 | && IS_BITSIZE (pcrval + 4, 25) | |
13590 | && MATCH (nextopc, addiu_insn) | |
13591 | && OP32_TREG (nextopc) == OP32_SREG (nextopc) | |
13592 | && OP16_VALID_REG (OP32_TREG (nextopc))) | |
13593 | { | |
13594 | /* Fix the relocation's type. */ | |
13595 | irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2); | |
13596 | ||
13597 | /* Replace ADDIU with the ADDIUPC version. */ | |
13598 | nextopc = (addiupc_insn.match | |
13599 | | ADDIUPC_REG_FIELD (OP32_TREG (nextopc))); | |
13600 | ||
d21911ea MR |
13601 | bfd_put_micromips_32 (abfd, nextopc, |
13602 | contents + irel[1].r_offset); | |
df58fc94 RS |
13603 | } |
13604 | ||
13605 | /* Can't do anything, give up, sigh... */ | |
13606 | else | |
13607 | continue; | |
13608 | ||
13609 | /* Fix the relocation's type. */ | |
13610 | irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE); | |
13611 | ||
13612 | /* Delete the LUI instruction: 4 bytes at irel->r_offset. */ | |
13613 | delcnt = 4; | |
13614 | deloff = 0; | |
13615 | } | |
13616 | ||
13617 | /* Compact branch relaxation -- due to the multitude of macros | |
13618 | employed by the compiler/assembler, compact branches are not | |
13619 | always generated. Obviously, this can/will be fixed elsewhere, | |
13620 | but there is no drawback in double checking it here. */ | |
13621 | else if (r_type == R_MICROMIPS_PC16_S1 | |
13622 | && irel->r_offset + 5 < sec->size | |
13623 | && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0 | |
13624 | || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0) | |
833794fc MR |
13625 | && ((!insn32 |
13626 | && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4), | |
13627 | nop_insn_16) ? 2 : 0)) | |
13628 | || (irel->r_offset + 7 < sec->size | |
13629 | && (delcnt = MATCH (bfd_get_micromips_32 (abfd, | |
13630 | ptr + 4), | |
13631 | nop_insn_32) ? 4 : 0)))) | |
df58fc94 RS |
13632 | { |
13633 | unsigned long reg; | |
13634 | ||
13635 | reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode); | |
13636 | ||
13637 | /* Replace BEQZ/BNEZ with the compact version. */ | |
13638 | opcode = (bzc_insns_32[fndopc].match | |
13639 | | BZC32_REG_FIELD (reg) | |
13640 | | (opcode & 0xffff)); /* Addend value. */ | |
13641 | ||
d21911ea | 13642 | bfd_put_micromips_32 (abfd, opcode, ptr); |
df58fc94 | 13643 | |
833794fc MR |
13644 | /* Delete the delay slot NOP: two or four bytes from |
13645 | irel->offset + 4; delcnt has already been set above. */ | |
df58fc94 RS |
13646 | deloff = 4; |
13647 | } | |
13648 | ||
13649 | /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need | |
13650 | to check the distance from the next instruction, so subtract 2. */ | |
833794fc MR |
13651 | else if (!insn32 |
13652 | && r_type == R_MICROMIPS_PC16_S1 | |
df58fc94 RS |
13653 | && IS_BITSIZE (pcrval - 2, 11) |
13654 | && find_match (opcode, b_insns_32) >= 0) | |
13655 | { | |
13656 | /* Fix the relocation's type. */ | |
13657 | irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1); | |
13658 | ||
a8685210 | 13659 | /* Replace the 32-bit opcode with a 16-bit opcode. */ |
df58fc94 RS |
13660 | bfd_put_16 (abfd, |
13661 | (b_insn_16.match | |
13662 | | (opcode & 0x3ff)), /* Addend value. */ | |
2309ddf2 | 13663 | ptr); |
df58fc94 RS |
13664 | |
13665 | /* Delete 2 bytes from irel->r_offset + 2. */ | |
13666 | delcnt = 2; | |
13667 | deloff = 2; | |
13668 | } | |
13669 | ||
13670 | /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need | |
13671 | to check the distance from the next instruction, so subtract 2. */ | |
833794fc MR |
13672 | else if (!insn32 |
13673 | && r_type == R_MICROMIPS_PC16_S1 | |
df58fc94 RS |
13674 | && IS_BITSIZE (pcrval - 2, 8) |
13675 | && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0 | |
13676 | && OP16_VALID_REG (OP32_SREG (opcode))) | |
13677 | || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0 | |
13678 | && OP16_VALID_REG (OP32_TREG (opcode))))) | |
13679 | { | |
13680 | unsigned long reg; | |
13681 | ||
13682 | reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode); | |
13683 | ||
13684 | /* Fix the relocation's type. */ | |
13685 | irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1); | |
13686 | ||
a8685210 | 13687 | /* Replace the 32-bit opcode with a 16-bit opcode. */ |
df58fc94 RS |
13688 | bfd_put_16 (abfd, |
13689 | (bz_insns_16[fndopc].match | |
13690 | | BZ16_REG_FIELD (reg) | |
13691 | | (opcode & 0x7f)), /* Addend value. */ | |
2309ddf2 | 13692 | ptr); |
df58fc94 RS |
13693 | |
13694 | /* Delete 2 bytes from irel->r_offset + 2. */ | |
13695 | delcnt = 2; | |
13696 | deloff = 2; | |
13697 | } | |
13698 | ||
13699 | /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */ | |
833794fc MR |
13700 | else if (!insn32 |
13701 | && r_type == R_MICROMIPS_26_S1 | |
df58fc94 RS |
13702 | && target_is_micromips_code_p |
13703 | && irel->r_offset + 7 < sec->size | |
13704 | && MATCH (opcode, jal_insn_32_bd32)) | |
13705 | { | |
13706 | unsigned long n32opc; | |
13707 | bfd_boolean relaxed = FALSE; | |
13708 | ||
d21911ea | 13709 | n32opc = bfd_get_micromips_32 (abfd, ptr + 4); |
df58fc94 RS |
13710 | |
13711 | if (MATCH (n32opc, nop_insn_32)) | |
13712 | { | |
13713 | /* Replace delay slot 32-bit NOP with a 16-bit NOP. */ | |
2309ddf2 | 13714 | bfd_put_16 (abfd, nop_insn_16.match, ptr + 4); |
df58fc94 RS |
13715 | |
13716 | relaxed = TRUE; | |
13717 | } | |
13718 | else if (find_match (n32opc, move_insns_32) >= 0) | |
13719 | { | |
13720 | /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */ | |
13721 | bfd_put_16 (abfd, | |
13722 | (move_insn_16.match | |
13723 | | MOVE16_RD_FIELD (MOVE32_RD (n32opc)) | |
13724 | | MOVE16_RS_FIELD (MOVE32_RS (n32opc))), | |
2309ddf2 | 13725 | ptr + 4); |
df58fc94 RS |
13726 | |
13727 | relaxed = TRUE; | |
13728 | } | |
13729 | /* Other 32-bit instructions relaxable to 16-bit | |
13730 | instructions will be handled here later. */ | |
13731 | ||
13732 | if (relaxed) | |
13733 | { | |
13734 | /* JAL with 32-bit delay slot that is changed to a JALS | |
13735 | with 16-bit delay slot. */ | |
d21911ea | 13736 | bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr); |
df58fc94 RS |
13737 | |
13738 | /* Delete 2 bytes from irel->r_offset + 6. */ | |
13739 | delcnt = 2; | |
13740 | deloff = 6; | |
13741 | } | |
13742 | } | |
13743 | ||
13744 | if (delcnt != 0) | |
13745 | { | |
13746 | /* Note that we've changed the relocs, section contents, etc. */ | |
13747 | elf_section_data (sec)->relocs = internal_relocs; | |
13748 | elf_section_data (sec)->this_hdr.contents = contents; | |
13749 | symtab_hdr->contents = (unsigned char *) isymbuf; | |
13750 | ||
13751 | /* Delete bytes depending on the delcnt and deloff. */ | |
13752 | if (!mips_elf_relax_delete_bytes (abfd, sec, | |
13753 | irel->r_offset + deloff, delcnt)) | |
13754 | goto error_return; | |
13755 | ||
13756 | /* That will change things, so we should relax again. | |
13757 | Note that this is not required, and it may be slow. */ | |
13758 | *again = TRUE; | |
13759 | } | |
13760 | } | |
13761 | ||
13762 | if (isymbuf != NULL | |
13763 | && symtab_hdr->contents != (unsigned char *) isymbuf) | |
13764 | { | |
13765 | if (! link_info->keep_memory) | |
13766 | free (isymbuf); | |
13767 | else | |
13768 | { | |
13769 | /* Cache the symbols for elf_link_input_bfd. */ | |
13770 | symtab_hdr->contents = (unsigned char *) isymbuf; | |
13771 | } | |
13772 | } | |
13773 | ||
13774 | if (contents != NULL | |
13775 | && elf_section_data (sec)->this_hdr.contents != contents) | |
13776 | { | |
13777 | if (! link_info->keep_memory) | |
13778 | free (contents); | |
13779 | else | |
13780 | { | |
13781 | /* Cache the section contents for elf_link_input_bfd. */ | |
13782 | elf_section_data (sec)->this_hdr.contents = contents; | |
13783 | } | |
13784 | } | |
13785 | ||
13786 | if (internal_relocs != NULL | |
13787 | && elf_section_data (sec)->relocs != internal_relocs) | |
13788 | free (internal_relocs); | |
13789 | ||
13790 | return TRUE; | |
13791 | ||
13792 | error_return: | |
13793 | if (isymbuf != NULL | |
13794 | && symtab_hdr->contents != (unsigned char *) isymbuf) | |
13795 | free (isymbuf); | |
13796 | if (contents != NULL | |
13797 | && elf_section_data (sec)->this_hdr.contents != contents) | |
13798 | free (contents); | |
13799 | if (internal_relocs != NULL | |
13800 | && elf_section_data (sec)->relocs != internal_relocs) | |
13801 | free (internal_relocs); | |
13802 | ||
13803 | return FALSE; | |
13804 | } | |
13805 | \f | |
b49e97c9 TS |
13806 | /* Create a MIPS ELF linker hash table. */ |
13807 | ||
13808 | struct bfd_link_hash_table * | |
9719ad41 | 13809 | _bfd_mips_elf_link_hash_table_create (bfd *abfd) |
b49e97c9 TS |
13810 | { |
13811 | struct mips_elf_link_hash_table *ret; | |
13812 | bfd_size_type amt = sizeof (struct mips_elf_link_hash_table); | |
13813 | ||
7bf52ea2 | 13814 | ret = bfd_zmalloc (amt); |
9719ad41 | 13815 | if (ret == NULL) |
b49e97c9 TS |
13816 | return NULL; |
13817 | ||
66eb6687 AM |
13818 | if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, |
13819 | mips_elf_link_hash_newfunc, | |
4dfe6ac6 NC |
13820 | sizeof (struct mips_elf_link_hash_entry), |
13821 | MIPS_ELF_DATA)) | |
b49e97c9 | 13822 | { |
e2d34d7d | 13823 | free (ret); |
b49e97c9 TS |
13824 | return NULL; |
13825 | } | |
1bbce132 MR |
13826 | ret->root.init_plt_refcount.plist = NULL; |
13827 | ret->root.init_plt_offset.plist = NULL; | |
b49e97c9 | 13828 | |
b49e97c9 TS |
13829 | return &ret->root.root; |
13830 | } | |
0a44bf69 RS |
13831 | |
13832 | /* Likewise, but indicate that the target is VxWorks. */ | |
13833 | ||
13834 | struct bfd_link_hash_table * | |
13835 | _bfd_mips_vxworks_link_hash_table_create (bfd *abfd) | |
13836 | { | |
13837 | struct bfd_link_hash_table *ret; | |
13838 | ||
13839 | ret = _bfd_mips_elf_link_hash_table_create (abfd); | |
13840 | if (ret) | |
13841 | { | |
13842 | struct mips_elf_link_hash_table *htab; | |
13843 | ||
13844 | htab = (struct mips_elf_link_hash_table *) ret; | |
861fb55a DJ |
13845 | htab->use_plts_and_copy_relocs = TRUE; |
13846 | htab->is_vxworks = TRUE; | |
0a44bf69 RS |
13847 | } |
13848 | return ret; | |
13849 | } | |
861fb55a DJ |
13850 | |
13851 | /* A function that the linker calls if we are allowed to use PLTs | |
13852 | and copy relocs. */ | |
13853 | ||
13854 | void | |
13855 | _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info) | |
13856 | { | |
13857 | mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE; | |
13858 | } | |
833794fc MR |
13859 | |
13860 | /* A function that the linker calls to select between all or only | |
13861 | 32-bit microMIPS instructions. */ | |
13862 | ||
13863 | void | |
13864 | _bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on) | |
13865 | { | |
13866 | mips_elf_hash_table (info)->insn32 = on; | |
13867 | } | |
b49e97c9 | 13868 | \f |
351cdf24 MF |
13869 | /* Return the .MIPS.abiflags value representing each ISA Extension. */ |
13870 | ||
13871 | unsigned int | |
13872 | bfd_mips_isa_ext (bfd *abfd) | |
13873 | { | |
13874 | switch (bfd_get_mach (abfd)) | |
13875 | { | |
13876 | case bfd_mach_mips3900: | |
13877 | return AFL_EXT_3900; | |
13878 | case bfd_mach_mips4010: | |
13879 | return AFL_EXT_4010; | |
13880 | case bfd_mach_mips4100: | |
13881 | return AFL_EXT_4100; | |
13882 | case bfd_mach_mips4111: | |
13883 | return AFL_EXT_4111; | |
13884 | case bfd_mach_mips4120: | |
13885 | return AFL_EXT_4120; | |
13886 | case bfd_mach_mips4650: | |
13887 | return AFL_EXT_4650; | |
13888 | case bfd_mach_mips5400: | |
13889 | return AFL_EXT_5400; | |
13890 | case bfd_mach_mips5500: | |
13891 | return AFL_EXT_5500; | |
13892 | case bfd_mach_mips5900: | |
13893 | return AFL_EXT_5900; | |
13894 | case bfd_mach_mips10000: | |
13895 | return AFL_EXT_10000; | |
13896 | case bfd_mach_mips_loongson_2e: | |
13897 | return AFL_EXT_LOONGSON_2E; | |
13898 | case bfd_mach_mips_loongson_2f: | |
13899 | return AFL_EXT_LOONGSON_2F; | |
13900 | case bfd_mach_mips_loongson_3a: | |
13901 | return AFL_EXT_LOONGSON_3A; | |
13902 | case bfd_mach_mips_sb1: | |
13903 | return AFL_EXT_SB1; | |
13904 | case bfd_mach_mips_octeon: | |
13905 | return AFL_EXT_OCTEON; | |
13906 | case bfd_mach_mips_octeonp: | |
13907 | return AFL_EXT_OCTEONP; | |
13908 | case bfd_mach_mips_octeon2: | |
13909 | return AFL_EXT_OCTEON2; | |
13910 | case bfd_mach_mips_xlr: | |
13911 | return AFL_EXT_XLR; | |
13912 | } | |
13913 | return 0; | |
13914 | } | |
13915 | ||
13916 | /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */ | |
13917 | ||
13918 | static void | |
13919 | update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags) | |
13920 | { | |
13921 | switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) | |
13922 | { | |
13923 | case E_MIPS_ARCH_1: | |
13924 | abiflags->isa_level = 1; | |
13925 | abiflags->isa_rev = 0; | |
13926 | break; | |
13927 | case E_MIPS_ARCH_2: | |
13928 | abiflags->isa_level = 2; | |
13929 | abiflags->isa_rev = 0; | |
13930 | break; | |
13931 | case E_MIPS_ARCH_3: | |
13932 | abiflags->isa_level = 3; | |
13933 | abiflags->isa_rev = 0; | |
13934 | break; | |
13935 | case E_MIPS_ARCH_4: | |
13936 | abiflags->isa_level = 4; | |
13937 | abiflags->isa_rev = 0; | |
13938 | break; | |
13939 | case E_MIPS_ARCH_5: | |
13940 | abiflags->isa_level = 5; | |
13941 | abiflags->isa_rev = 0; | |
13942 | break; | |
13943 | case E_MIPS_ARCH_32: | |
13944 | abiflags->isa_level = 32; | |
13945 | abiflags->isa_rev = 1; | |
13946 | break; | |
13947 | case E_MIPS_ARCH_32R2: | |
13948 | abiflags->isa_level = 32; | |
13949 | /* Handle MIPS32r3 and MIPS32r5 which do not have a header flag. */ | |
13950 | if (abiflags->isa_rev < 2) | |
13951 | abiflags->isa_rev = 2; | |
13952 | break; | |
13953 | case E_MIPS_ARCH_64: | |
13954 | abiflags->isa_level = 64; | |
13955 | abiflags->isa_rev = 1; | |
13956 | break; | |
13957 | case E_MIPS_ARCH_64R2: | |
13958 | /* Handle MIPS64r3 and MIPS64r5 which do not have a header flag. */ | |
13959 | abiflags->isa_level = 64; | |
13960 | if (abiflags->isa_rev < 2) | |
13961 | abiflags->isa_rev = 2; | |
13962 | break; | |
13963 | default: | |
13964 | (*_bfd_error_handler) | |
13965 | (_("%B: Unknown architecture %s"), | |
13966 | abfd, bfd_printable_name (abfd)); | |
13967 | } | |
13968 | ||
13969 | abiflags->isa_ext = bfd_mips_isa_ext (abfd); | |
13970 | } | |
13971 | ||
13972 | /* Return true if the given ELF header flags describe a 32-bit binary. */ | |
13973 | ||
13974 | static bfd_boolean | |
13975 | mips_32bit_flags_p (flagword flags) | |
13976 | { | |
13977 | return ((flags & EF_MIPS_32BITMODE) != 0 | |
13978 | || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32 | |
13979 | || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32 | |
13980 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1 | |
13981 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2 | |
13982 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32 | |
7361da2c AB |
13983 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2 |
13984 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6); | |
351cdf24 MF |
13985 | } |
13986 | ||
13987 | /* Infer the content of the ABI flags based on the elf header. */ | |
13988 | ||
13989 | static void | |
13990 | infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags) | |
13991 | { | |
13992 | obj_attribute *in_attr; | |
13993 | ||
13994 | memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0)); | |
13995 | update_mips_abiflags_isa (abfd, abiflags); | |
13996 | ||
13997 | if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags)) | |
13998 | abiflags->gpr_size = AFL_REG_32; | |
13999 | else | |
14000 | abiflags->gpr_size = AFL_REG_64; | |
14001 | ||
14002 | abiflags->cpr1_size = AFL_REG_NONE; | |
14003 | ||
14004 | in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU]; | |
14005 | abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i; | |
14006 | ||
14007 | if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE | |
14008 | || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX | |
14009 | || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE | |
14010 | && abiflags->gpr_size == AFL_REG_32)) | |
14011 | abiflags->cpr1_size = AFL_REG_32; | |
14012 | else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE | |
14013 | || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64 | |
14014 | || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A) | |
14015 | abiflags->cpr1_size = AFL_REG_64; | |
14016 | ||
14017 | abiflags->cpr2_size = AFL_REG_NONE; | |
14018 | ||
14019 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX) | |
14020 | abiflags->ases |= AFL_ASE_MDMX; | |
14021 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16) | |
14022 | abiflags->ases |= AFL_ASE_MIPS16; | |
14023 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) | |
14024 | abiflags->ases |= AFL_ASE_MICROMIPS; | |
14025 | ||
14026 | if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY | |
14027 | && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT | |
14028 | && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A | |
14029 | && abiflags->isa_level >= 32 | |
14030 | && abiflags->isa_ext != AFL_EXT_LOONGSON_3A) | |
14031 | abiflags->flags1 |= AFL_FLAGS1_ODDSPREG; | |
14032 | } | |
14033 | ||
b49e97c9 TS |
14034 | /* We need to use a special link routine to handle the .reginfo and |
14035 | the .mdebug sections. We need to merge all instances of these | |
14036 | sections together, not write them all out sequentially. */ | |
14037 | ||
b34976b6 | 14038 | bfd_boolean |
9719ad41 | 14039 | _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info) |
b49e97c9 | 14040 | { |
b49e97c9 TS |
14041 | asection *o; |
14042 | struct bfd_link_order *p; | |
14043 | asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec; | |
351cdf24 | 14044 | asection *rtproc_sec, *abiflags_sec; |
b49e97c9 TS |
14045 | Elf32_RegInfo reginfo; |
14046 | struct ecoff_debug_info debug; | |
861fb55a | 14047 | struct mips_htab_traverse_info hti; |
7a2a6943 NC |
14048 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
14049 | const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap; | |
b49e97c9 | 14050 | HDRR *symhdr = &debug.symbolic_header; |
9719ad41 | 14051 | void *mdebug_handle = NULL; |
b49e97c9 TS |
14052 | asection *s; |
14053 | EXTR esym; | |
14054 | unsigned int i; | |
14055 | bfd_size_type amt; | |
0a44bf69 | 14056 | struct mips_elf_link_hash_table *htab; |
b49e97c9 TS |
14057 | |
14058 | static const char * const secname[] = | |
14059 | { | |
14060 | ".text", ".init", ".fini", ".data", | |
14061 | ".rodata", ".sdata", ".sbss", ".bss" | |
14062 | }; | |
14063 | static const int sc[] = | |
14064 | { | |
14065 | scText, scInit, scFini, scData, | |
14066 | scRData, scSData, scSBss, scBss | |
14067 | }; | |
14068 | ||
d4596a51 RS |
14069 | /* Sort the dynamic symbols so that those with GOT entries come after |
14070 | those without. */ | |
0a44bf69 | 14071 | htab = mips_elf_hash_table (info); |
4dfe6ac6 NC |
14072 | BFD_ASSERT (htab != NULL); |
14073 | ||
d4596a51 RS |
14074 | if (!mips_elf_sort_hash_table (abfd, info)) |
14075 | return FALSE; | |
b49e97c9 | 14076 | |
861fb55a DJ |
14077 | /* Create any scheduled LA25 stubs. */ |
14078 | hti.info = info; | |
14079 | hti.output_bfd = abfd; | |
14080 | hti.error = FALSE; | |
14081 | htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti); | |
14082 | if (hti.error) | |
14083 | return FALSE; | |
14084 | ||
b49e97c9 TS |
14085 | /* Get a value for the GP register. */ |
14086 | if (elf_gp (abfd) == 0) | |
14087 | { | |
14088 | struct bfd_link_hash_entry *h; | |
14089 | ||
b34976b6 | 14090 | h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE); |
9719ad41 | 14091 | if (h != NULL && h->type == bfd_link_hash_defined) |
b49e97c9 TS |
14092 | elf_gp (abfd) = (h->u.def.value |
14093 | + h->u.def.section->output_section->vma | |
14094 | + h->u.def.section->output_offset); | |
0a44bf69 RS |
14095 | else if (htab->is_vxworks |
14096 | && (h = bfd_link_hash_lookup (info->hash, | |
14097 | "_GLOBAL_OFFSET_TABLE_", | |
14098 | FALSE, FALSE, TRUE)) | |
14099 | && h->type == bfd_link_hash_defined) | |
14100 | elf_gp (abfd) = (h->u.def.section->output_section->vma | |
14101 | + h->u.def.section->output_offset | |
14102 | + h->u.def.value); | |
1049f94e | 14103 | else if (info->relocatable) |
b49e97c9 TS |
14104 | { |
14105 | bfd_vma lo = MINUS_ONE; | |
14106 | ||
14107 | /* Find the GP-relative section with the lowest offset. */ | |
9719ad41 | 14108 | for (o = abfd->sections; o != NULL; o = o->next) |
b49e97c9 TS |
14109 | if (o->vma < lo |
14110 | && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL)) | |
14111 | lo = o->vma; | |
14112 | ||
14113 | /* And calculate GP relative to that. */ | |
0a44bf69 | 14114 | elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info); |
b49e97c9 TS |
14115 | } |
14116 | else | |
14117 | { | |
14118 | /* If the relocate_section function needs to do a reloc | |
14119 | involving the GP value, it should make a reloc_dangerous | |
14120 | callback to warn that GP is not defined. */ | |
14121 | } | |
14122 | } | |
14123 | ||
14124 | /* Go through the sections and collect the .reginfo and .mdebug | |
14125 | information. */ | |
351cdf24 | 14126 | abiflags_sec = NULL; |
b49e97c9 TS |
14127 | reginfo_sec = NULL; |
14128 | mdebug_sec = NULL; | |
14129 | gptab_data_sec = NULL; | |
14130 | gptab_bss_sec = NULL; | |
9719ad41 | 14131 | for (o = abfd->sections; o != NULL; o = o->next) |
b49e97c9 | 14132 | { |
351cdf24 MF |
14133 | if (strcmp (o->name, ".MIPS.abiflags") == 0) |
14134 | { | |
14135 | /* We have found the .MIPS.abiflags section in the output file. | |
14136 | Look through all the link_orders comprising it and remove them. | |
14137 | The data is merged in _bfd_mips_elf_merge_private_bfd_data. */ | |
14138 | for (p = o->map_head.link_order; p != NULL; p = p->next) | |
14139 | { | |
14140 | asection *input_section; | |
14141 | ||
14142 | if (p->type != bfd_indirect_link_order) | |
14143 | { | |
14144 | if (p->type == bfd_data_link_order) | |
14145 | continue; | |
14146 | abort (); | |
14147 | } | |
14148 | ||
14149 | input_section = p->u.indirect.section; | |
14150 | ||
14151 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
14152 | elf_link_input_bfd ignores this section. */ | |
14153 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
14154 | } | |
14155 | ||
14156 | /* Size has been set in _bfd_mips_elf_always_size_sections. */ | |
14157 | BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0)); | |
14158 | ||
14159 | /* Skip this section later on (I don't think this currently | |
14160 | matters, but someday it might). */ | |
14161 | o->map_head.link_order = NULL; | |
14162 | ||
14163 | abiflags_sec = o; | |
14164 | } | |
14165 | ||
b49e97c9 TS |
14166 | if (strcmp (o->name, ".reginfo") == 0) |
14167 | { | |
14168 | memset (®info, 0, sizeof reginfo); | |
14169 | ||
14170 | /* We have found the .reginfo section in the output file. | |
14171 | Look through all the link_orders comprising it and merge | |
14172 | the information together. */ | |
8423293d | 14173 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
b49e97c9 TS |
14174 | { |
14175 | asection *input_section; | |
14176 | bfd *input_bfd; | |
14177 | Elf32_External_RegInfo ext; | |
14178 | Elf32_RegInfo sub; | |
14179 | ||
14180 | if (p->type != bfd_indirect_link_order) | |
14181 | { | |
14182 | if (p->type == bfd_data_link_order) | |
14183 | continue; | |
14184 | abort (); | |
14185 | } | |
14186 | ||
14187 | input_section = p->u.indirect.section; | |
14188 | input_bfd = input_section->owner; | |
14189 | ||
b49e97c9 | 14190 | if (! bfd_get_section_contents (input_bfd, input_section, |
9719ad41 | 14191 | &ext, 0, sizeof ext)) |
b34976b6 | 14192 | return FALSE; |
b49e97c9 TS |
14193 | |
14194 | bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub); | |
14195 | ||
14196 | reginfo.ri_gprmask |= sub.ri_gprmask; | |
14197 | reginfo.ri_cprmask[0] |= sub.ri_cprmask[0]; | |
14198 | reginfo.ri_cprmask[1] |= sub.ri_cprmask[1]; | |
14199 | reginfo.ri_cprmask[2] |= sub.ri_cprmask[2]; | |
14200 | reginfo.ri_cprmask[3] |= sub.ri_cprmask[3]; | |
14201 | ||
14202 | /* ri_gp_value is set by the function | |
14203 | mips_elf32_section_processing when the section is | |
14204 | finally written out. */ | |
14205 | ||
14206 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
14207 | elf_link_input_bfd ignores this section. */ | |
14208 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
14209 | } | |
14210 | ||
14211 | /* Size has been set in _bfd_mips_elf_always_size_sections. */ | |
eea6121a | 14212 | BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo)); |
b49e97c9 TS |
14213 | |
14214 | /* Skip this section later on (I don't think this currently | |
14215 | matters, but someday it might). */ | |
8423293d | 14216 | o->map_head.link_order = NULL; |
b49e97c9 TS |
14217 | |
14218 | reginfo_sec = o; | |
14219 | } | |
14220 | ||
14221 | if (strcmp (o->name, ".mdebug") == 0) | |
14222 | { | |
14223 | struct extsym_info einfo; | |
14224 | bfd_vma last; | |
14225 | ||
14226 | /* We have found the .mdebug section in the output file. | |
14227 | Look through all the link_orders comprising it and merge | |
14228 | the information together. */ | |
14229 | symhdr->magic = swap->sym_magic; | |
14230 | /* FIXME: What should the version stamp be? */ | |
14231 | symhdr->vstamp = 0; | |
14232 | symhdr->ilineMax = 0; | |
14233 | symhdr->cbLine = 0; | |
14234 | symhdr->idnMax = 0; | |
14235 | symhdr->ipdMax = 0; | |
14236 | symhdr->isymMax = 0; | |
14237 | symhdr->ioptMax = 0; | |
14238 | symhdr->iauxMax = 0; | |
14239 | symhdr->issMax = 0; | |
14240 | symhdr->issExtMax = 0; | |
14241 | symhdr->ifdMax = 0; | |
14242 | symhdr->crfd = 0; | |
14243 | symhdr->iextMax = 0; | |
14244 | ||
14245 | /* We accumulate the debugging information itself in the | |
14246 | debug_info structure. */ | |
14247 | debug.line = NULL; | |
14248 | debug.external_dnr = NULL; | |
14249 | debug.external_pdr = NULL; | |
14250 | debug.external_sym = NULL; | |
14251 | debug.external_opt = NULL; | |
14252 | debug.external_aux = NULL; | |
14253 | debug.ss = NULL; | |
14254 | debug.ssext = debug.ssext_end = NULL; | |
14255 | debug.external_fdr = NULL; | |
14256 | debug.external_rfd = NULL; | |
14257 | debug.external_ext = debug.external_ext_end = NULL; | |
14258 | ||
14259 | mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info); | |
9719ad41 | 14260 | if (mdebug_handle == NULL) |
b34976b6 | 14261 | return FALSE; |
b49e97c9 TS |
14262 | |
14263 | esym.jmptbl = 0; | |
14264 | esym.cobol_main = 0; | |
14265 | esym.weakext = 0; | |
14266 | esym.reserved = 0; | |
14267 | esym.ifd = ifdNil; | |
14268 | esym.asym.iss = issNil; | |
14269 | esym.asym.st = stLocal; | |
14270 | esym.asym.reserved = 0; | |
14271 | esym.asym.index = indexNil; | |
14272 | last = 0; | |
14273 | for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++) | |
14274 | { | |
14275 | esym.asym.sc = sc[i]; | |
14276 | s = bfd_get_section_by_name (abfd, secname[i]); | |
14277 | if (s != NULL) | |
14278 | { | |
14279 | esym.asym.value = s->vma; | |
eea6121a | 14280 | last = s->vma + s->size; |
b49e97c9 TS |
14281 | } |
14282 | else | |
14283 | esym.asym.value = last; | |
14284 | if (!bfd_ecoff_debug_one_external (abfd, &debug, swap, | |
14285 | secname[i], &esym)) | |
b34976b6 | 14286 | return FALSE; |
b49e97c9 TS |
14287 | } |
14288 | ||
8423293d | 14289 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
b49e97c9 TS |
14290 | { |
14291 | asection *input_section; | |
14292 | bfd *input_bfd; | |
14293 | const struct ecoff_debug_swap *input_swap; | |
14294 | struct ecoff_debug_info input_debug; | |
14295 | char *eraw_src; | |
14296 | char *eraw_end; | |
14297 | ||
14298 | if (p->type != bfd_indirect_link_order) | |
14299 | { | |
14300 | if (p->type == bfd_data_link_order) | |
14301 | continue; | |
14302 | abort (); | |
14303 | } | |
14304 | ||
14305 | input_section = p->u.indirect.section; | |
14306 | input_bfd = input_section->owner; | |
14307 | ||
d5eaccd7 | 14308 | if (!is_mips_elf (input_bfd)) |
b49e97c9 TS |
14309 | { |
14310 | /* I don't know what a non MIPS ELF bfd would be | |
14311 | doing with a .mdebug section, but I don't really | |
14312 | want to deal with it. */ | |
14313 | continue; | |
14314 | } | |
14315 | ||
14316 | input_swap = (get_elf_backend_data (input_bfd) | |
14317 | ->elf_backend_ecoff_debug_swap); | |
14318 | ||
eea6121a | 14319 | BFD_ASSERT (p->size == input_section->size); |
b49e97c9 TS |
14320 | |
14321 | /* The ECOFF linking code expects that we have already | |
14322 | read in the debugging information and set up an | |
14323 | ecoff_debug_info structure, so we do that now. */ | |
14324 | if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section, | |
14325 | &input_debug)) | |
b34976b6 | 14326 | return FALSE; |
b49e97c9 TS |
14327 | |
14328 | if (! (bfd_ecoff_debug_accumulate | |
14329 | (mdebug_handle, abfd, &debug, swap, input_bfd, | |
14330 | &input_debug, input_swap, info))) | |
b34976b6 | 14331 | return FALSE; |
b49e97c9 TS |
14332 | |
14333 | /* Loop through the external symbols. For each one with | |
14334 | interesting information, try to find the symbol in | |
14335 | the linker global hash table and save the information | |
14336 | for the output external symbols. */ | |
14337 | eraw_src = input_debug.external_ext; | |
14338 | eraw_end = (eraw_src | |
14339 | + (input_debug.symbolic_header.iextMax | |
14340 | * input_swap->external_ext_size)); | |
14341 | for (; | |
14342 | eraw_src < eraw_end; | |
14343 | eraw_src += input_swap->external_ext_size) | |
14344 | { | |
14345 | EXTR ext; | |
14346 | const char *name; | |
14347 | struct mips_elf_link_hash_entry *h; | |
14348 | ||
9719ad41 | 14349 | (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext); |
b49e97c9 TS |
14350 | if (ext.asym.sc == scNil |
14351 | || ext.asym.sc == scUndefined | |
14352 | || ext.asym.sc == scSUndefined) | |
14353 | continue; | |
14354 | ||
14355 | name = input_debug.ssext + ext.asym.iss; | |
14356 | h = mips_elf_link_hash_lookup (mips_elf_hash_table (info), | |
b34976b6 | 14357 | name, FALSE, FALSE, TRUE); |
b49e97c9 TS |
14358 | if (h == NULL || h->esym.ifd != -2) |
14359 | continue; | |
14360 | ||
14361 | if (ext.ifd != -1) | |
14362 | { | |
14363 | BFD_ASSERT (ext.ifd | |
14364 | < input_debug.symbolic_header.ifdMax); | |
14365 | ext.ifd = input_debug.ifdmap[ext.ifd]; | |
14366 | } | |
14367 | ||
14368 | h->esym = ext; | |
14369 | } | |
14370 | ||
14371 | /* Free up the information we just read. */ | |
14372 | free (input_debug.line); | |
14373 | free (input_debug.external_dnr); | |
14374 | free (input_debug.external_pdr); | |
14375 | free (input_debug.external_sym); | |
14376 | free (input_debug.external_opt); | |
14377 | free (input_debug.external_aux); | |
14378 | free (input_debug.ss); | |
14379 | free (input_debug.ssext); | |
14380 | free (input_debug.external_fdr); | |
14381 | free (input_debug.external_rfd); | |
14382 | free (input_debug.external_ext); | |
14383 | ||
14384 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
14385 | elf_link_input_bfd ignores this section. */ | |
14386 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
14387 | } | |
14388 | ||
14389 | if (SGI_COMPAT (abfd) && info->shared) | |
14390 | { | |
14391 | /* Create .rtproc section. */ | |
87e0a731 | 14392 | rtproc_sec = bfd_get_linker_section (abfd, ".rtproc"); |
b49e97c9 TS |
14393 | if (rtproc_sec == NULL) |
14394 | { | |
14395 | flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
14396 | | SEC_LINKER_CREATED | SEC_READONLY); | |
14397 | ||
87e0a731 AM |
14398 | rtproc_sec = bfd_make_section_anyway_with_flags (abfd, |
14399 | ".rtproc", | |
14400 | flags); | |
b49e97c9 | 14401 | if (rtproc_sec == NULL |
b49e97c9 | 14402 | || ! bfd_set_section_alignment (abfd, rtproc_sec, 4)) |
b34976b6 | 14403 | return FALSE; |
b49e97c9 TS |
14404 | } |
14405 | ||
14406 | if (! mips_elf_create_procedure_table (mdebug_handle, abfd, | |
14407 | info, rtproc_sec, | |
14408 | &debug)) | |
b34976b6 | 14409 | return FALSE; |
b49e97c9 TS |
14410 | } |
14411 | ||
14412 | /* Build the external symbol information. */ | |
14413 | einfo.abfd = abfd; | |
14414 | einfo.info = info; | |
14415 | einfo.debug = &debug; | |
14416 | einfo.swap = swap; | |
b34976b6 | 14417 | einfo.failed = FALSE; |
b49e97c9 | 14418 | mips_elf_link_hash_traverse (mips_elf_hash_table (info), |
9719ad41 | 14419 | mips_elf_output_extsym, &einfo); |
b49e97c9 | 14420 | if (einfo.failed) |
b34976b6 | 14421 | return FALSE; |
b49e97c9 TS |
14422 | |
14423 | /* Set the size of the .mdebug section. */ | |
eea6121a | 14424 | o->size = bfd_ecoff_debug_size (abfd, &debug, swap); |
b49e97c9 TS |
14425 | |
14426 | /* Skip this section later on (I don't think this currently | |
14427 | matters, but someday it might). */ | |
8423293d | 14428 | o->map_head.link_order = NULL; |
b49e97c9 TS |
14429 | |
14430 | mdebug_sec = o; | |
14431 | } | |
14432 | ||
0112cd26 | 14433 | if (CONST_STRNEQ (o->name, ".gptab.")) |
b49e97c9 TS |
14434 | { |
14435 | const char *subname; | |
14436 | unsigned int c; | |
14437 | Elf32_gptab *tab; | |
14438 | Elf32_External_gptab *ext_tab; | |
14439 | unsigned int j; | |
14440 | ||
14441 | /* The .gptab.sdata and .gptab.sbss sections hold | |
14442 | information describing how the small data area would | |
14443 | change depending upon the -G switch. These sections | |
14444 | not used in executables files. */ | |
1049f94e | 14445 | if (! info->relocatable) |
b49e97c9 | 14446 | { |
8423293d | 14447 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
b49e97c9 TS |
14448 | { |
14449 | asection *input_section; | |
14450 | ||
14451 | if (p->type != bfd_indirect_link_order) | |
14452 | { | |
14453 | if (p->type == bfd_data_link_order) | |
14454 | continue; | |
14455 | abort (); | |
14456 | } | |
14457 | ||
14458 | input_section = p->u.indirect.section; | |
14459 | ||
14460 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
14461 | elf_link_input_bfd ignores this section. */ | |
14462 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
14463 | } | |
14464 | ||
14465 | /* Skip this section later on (I don't think this | |
14466 | currently matters, but someday it might). */ | |
8423293d | 14467 | o->map_head.link_order = NULL; |
b49e97c9 TS |
14468 | |
14469 | /* Really remove the section. */ | |
5daa8fe7 | 14470 | bfd_section_list_remove (abfd, o); |
b49e97c9 TS |
14471 | --abfd->section_count; |
14472 | ||
14473 | continue; | |
14474 | } | |
14475 | ||
14476 | /* There is one gptab for initialized data, and one for | |
14477 | uninitialized data. */ | |
14478 | if (strcmp (o->name, ".gptab.sdata") == 0) | |
14479 | gptab_data_sec = o; | |
14480 | else if (strcmp (o->name, ".gptab.sbss") == 0) | |
14481 | gptab_bss_sec = o; | |
14482 | else | |
14483 | { | |
14484 | (*_bfd_error_handler) | |
14485 | (_("%s: illegal section name `%s'"), | |
14486 | bfd_get_filename (abfd), o->name); | |
14487 | bfd_set_error (bfd_error_nonrepresentable_section); | |
b34976b6 | 14488 | return FALSE; |
b49e97c9 TS |
14489 | } |
14490 | ||
14491 | /* The linker script always combines .gptab.data and | |
14492 | .gptab.sdata into .gptab.sdata, and likewise for | |
14493 | .gptab.bss and .gptab.sbss. It is possible that there is | |
14494 | no .sdata or .sbss section in the output file, in which | |
14495 | case we must change the name of the output section. */ | |
14496 | subname = o->name + sizeof ".gptab" - 1; | |
14497 | if (bfd_get_section_by_name (abfd, subname) == NULL) | |
14498 | { | |
14499 | if (o == gptab_data_sec) | |
14500 | o->name = ".gptab.data"; | |
14501 | else | |
14502 | o->name = ".gptab.bss"; | |
14503 | subname = o->name + sizeof ".gptab" - 1; | |
14504 | BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL); | |
14505 | } | |
14506 | ||
14507 | /* Set up the first entry. */ | |
14508 | c = 1; | |
14509 | amt = c * sizeof (Elf32_gptab); | |
9719ad41 | 14510 | tab = bfd_malloc (amt); |
b49e97c9 | 14511 | if (tab == NULL) |
b34976b6 | 14512 | return FALSE; |
b49e97c9 TS |
14513 | tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd); |
14514 | tab[0].gt_header.gt_unused = 0; | |
14515 | ||
14516 | /* Combine the input sections. */ | |
8423293d | 14517 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
b49e97c9 TS |
14518 | { |
14519 | asection *input_section; | |
14520 | bfd *input_bfd; | |
14521 | bfd_size_type size; | |
14522 | unsigned long last; | |
14523 | bfd_size_type gpentry; | |
14524 | ||
14525 | if (p->type != bfd_indirect_link_order) | |
14526 | { | |
14527 | if (p->type == bfd_data_link_order) | |
14528 | continue; | |
14529 | abort (); | |
14530 | } | |
14531 | ||
14532 | input_section = p->u.indirect.section; | |
14533 | input_bfd = input_section->owner; | |
14534 | ||
14535 | /* Combine the gptab entries for this input section one | |
14536 | by one. We know that the input gptab entries are | |
14537 | sorted by ascending -G value. */ | |
eea6121a | 14538 | size = input_section->size; |
b49e97c9 TS |
14539 | last = 0; |
14540 | for (gpentry = sizeof (Elf32_External_gptab); | |
14541 | gpentry < size; | |
14542 | gpentry += sizeof (Elf32_External_gptab)) | |
14543 | { | |
14544 | Elf32_External_gptab ext_gptab; | |
14545 | Elf32_gptab int_gptab; | |
14546 | unsigned long val; | |
14547 | unsigned long add; | |
b34976b6 | 14548 | bfd_boolean exact; |
b49e97c9 TS |
14549 | unsigned int look; |
14550 | ||
14551 | if (! (bfd_get_section_contents | |
9719ad41 RS |
14552 | (input_bfd, input_section, &ext_gptab, gpentry, |
14553 | sizeof (Elf32_External_gptab)))) | |
b49e97c9 TS |
14554 | { |
14555 | free (tab); | |
b34976b6 | 14556 | return FALSE; |
b49e97c9 TS |
14557 | } |
14558 | ||
14559 | bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab, | |
14560 | &int_gptab); | |
14561 | val = int_gptab.gt_entry.gt_g_value; | |
14562 | add = int_gptab.gt_entry.gt_bytes - last; | |
14563 | ||
b34976b6 | 14564 | exact = FALSE; |
b49e97c9 TS |
14565 | for (look = 1; look < c; look++) |
14566 | { | |
14567 | if (tab[look].gt_entry.gt_g_value >= val) | |
14568 | tab[look].gt_entry.gt_bytes += add; | |
14569 | ||
14570 | if (tab[look].gt_entry.gt_g_value == val) | |
b34976b6 | 14571 | exact = TRUE; |
b49e97c9 TS |
14572 | } |
14573 | ||
14574 | if (! exact) | |
14575 | { | |
14576 | Elf32_gptab *new_tab; | |
14577 | unsigned int max; | |
14578 | ||
14579 | /* We need a new table entry. */ | |
14580 | amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab); | |
9719ad41 | 14581 | new_tab = bfd_realloc (tab, amt); |
b49e97c9 TS |
14582 | if (new_tab == NULL) |
14583 | { | |
14584 | free (tab); | |
b34976b6 | 14585 | return FALSE; |
b49e97c9 TS |
14586 | } |
14587 | tab = new_tab; | |
14588 | tab[c].gt_entry.gt_g_value = val; | |
14589 | tab[c].gt_entry.gt_bytes = add; | |
14590 | ||
14591 | /* Merge in the size for the next smallest -G | |
14592 | value, since that will be implied by this new | |
14593 | value. */ | |
14594 | max = 0; | |
14595 | for (look = 1; look < c; look++) | |
14596 | { | |
14597 | if (tab[look].gt_entry.gt_g_value < val | |
14598 | && (max == 0 | |
14599 | || (tab[look].gt_entry.gt_g_value | |
14600 | > tab[max].gt_entry.gt_g_value))) | |
14601 | max = look; | |
14602 | } | |
14603 | if (max != 0) | |
14604 | tab[c].gt_entry.gt_bytes += | |
14605 | tab[max].gt_entry.gt_bytes; | |
14606 | ||
14607 | ++c; | |
14608 | } | |
14609 | ||
14610 | last = int_gptab.gt_entry.gt_bytes; | |
14611 | } | |
14612 | ||
14613 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
14614 | elf_link_input_bfd ignores this section. */ | |
14615 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
14616 | } | |
14617 | ||
14618 | /* The table must be sorted by -G value. */ | |
14619 | if (c > 2) | |
14620 | qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare); | |
14621 | ||
14622 | /* Swap out the table. */ | |
14623 | amt = (bfd_size_type) c * sizeof (Elf32_External_gptab); | |
9719ad41 | 14624 | ext_tab = bfd_alloc (abfd, amt); |
b49e97c9 TS |
14625 | if (ext_tab == NULL) |
14626 | { | |
14627 | free (tab); | |
b34976b6 | 14628 | return FALSE; |
b49e97c9 TS |
14629 | } |
14630 | ||
14631 | for (j = 0; j < c; j++) | |
14632 | bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j); | |
14633 | free (tab); | |
14634 | ||
eea6121a | 14635 | o->size = c * sizeof (Elf32_External_gptab); |
b49e97c9 TS |
14636 | o->contents = (bfd_byte *) ext_tab; |
14637 | ||
14638 | /* Skip this section later on (I don't think this currently | |
14639 | matters, but someday it might). */ | |
8423293d | 14640 | o->map_head.link_order = NULL; |
b49e97c9 TS |
14641 | } |
14642 | } | |
14643 | ||
14644 | /* Invoke the regular ELF backend linker to do all the work. */ | |
c152c796 | 14645 | if (!bfd_elf_final_link (abfd, info)) |
b34976b6 | 14646 | return FALSE; |
b49e97c9 TS |
14647 | |
14648 | /* Now write out the computed sections. */ | |
14649 | ||
351cdf24 MF |
14650 | if (abiflags_sec != NULL) |
14651 | { | |
14652 | Elf_External_ABIFlags_v0 ext; | |
14653 | Elf_Internal_ABIFlags_v0 *abiflags; | |
14654 | ||
14655 | abiflags = &mips_elf_tdata (abfd)->abiflags; | |
14656 | ||
14657 | /* Set up the abiflags if no valid input sections were found. */ | |
14658 | if (!mips_elf_tdata (abfd)->abiflags_valid) | |
14659 | { | |
14660 | infer_mips_abiflags (abfd, abiflags); | |
14661 | mips_elf_tdata (abfd)->abiflags_valid = TRUE; | |
14662 | } | |
14663 | bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext); | |
14664 | if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext)) | |
14665 | return FALSE; | |
14666 | } | |
14667 | ||
9719ad41 | 14668 | if (reginfo_sec != NULL) |
b49e97c9 TS |
14669 | { |
14670 | Elf32_External_RegInfo ext; | |
14671 | ||
14672 | bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext); | |
9719ad41 | 14673 | if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext)) |
b34976b6 | 14674 | return FALSE; |
b49e97c9 TS |
14675 | } |
14676 | ||
9719ad41 | 14677 | if (mdebug_sec != NULL) |
b49e97c9 TS |
14678 | { |
14679 | BFD_ASSERT (abfd->output_has_begun); | |
14680 | if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug, | |
14681 | swap, info, | |
14682 | mdebug_sec->filepos)) | |
b34976b6 | 14683 | return FALSE; |
b49e97c9 TS |
14684 | |
14685 | bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info); | |
14686 | } | |
14687 | ||
9719ad41 | 14688 | if (gptab_data_sec != NULL) |
b49e97c9 TS |
14689 | { |
14690 | if (! bfd_set_section_contents (abfd, gptab_data_sec, | |
14691 | gptab_data_sec->contents, | |
eea6121a | 14692 | 0, gptab_data_sec->size)) |
b34976b6 | 14693 | return FALSE; |
b49e97c9 TS |
14694 | } |
14695 | ||
9719ad41 | 14696 | if (gptab_bss_sec != NULL) |
b49e97c9 TS |
14697 | { |
14698 | if (! bfd_set_section_contents (abfd, gptab_bss_sec, | |
14699 | gptab_bss_sec->contents, | |
eea6121a | 14700 | 0, gptab_bss_sec->size)) |
b34976b6 | 14701 | return FALSE; |
b49e97c9 TS |
14702 | } |
14703 | ||
14704 | if (SGI_COMPAT (abfd)) | |
14705 | { | |
14706 | rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); | |
14707 | if (rtproc_sec != NULL) | |
14708 | { | |
14709 | if (! bfd_set_section_contents (abfd, rtproc_sec, | |
14710 | rtproc_sec->contents, | |
eea6121a | 14711 | 0, rtproc_sec->size)) |
b34976b6 | 14712 | return FALSE; |
b49e97c9 TS |
14713 | } |
14714 | } | |
14715 | ||
b34976b6 | 14716 | return TRUE; |
b49e97c9 TS |
14717 | } |
14718 | \f | |
64543e1a RS |
14719 | /* Structure for saying that BFD machine EXTENSION extends BASE. */ |
14720 | ||
a253d456 NC |
14721 | struct mips_mach_extension |
14722 | { | |
64543e1a RS |
14723 | unsigned long extension, base; |
14724 | }; | |
14725 | ||
14726 | ||
14727 | /* An array describing how BFD machines relate to one another. The entries | |
14728 | are ordered topologically with MIPS I extensions listed last. */ | |
14729 | ||
a253d456 NC |
14730 | static const struct mips_mach_extension mips_mach_extensions[] = |
14731 | { | |
6f179bd0 | 14732 | /* MIPS64r2 extensions. */ |
432233b3 | 14733 | { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp }, |
dd6a37e7 | 14734 | { bfd_mach_mips_octeonp, bfd_mach_mips_octeon }, |
6f179bd0 | 14735 | { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 }, |
4ba154f5 | 14736 | { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 }, |
6f179bd0 | 14737 | |
64543e1a | 14738 | /* MIPS64 extensions. */ |
5f74bc13 | 14739 | { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 }, |
64543e1a | 14740 | { bfd_mach_mips_sb1, bfd_mach_mipsisa64 }, |
52b6b6b9 | 14741 | { bfd_mach_mips_xlr, bfd_mach_mipsisa64 }, |
64543e1a RS |
14742 | |
14743 | /* MIPS V extensions. */ | |
14744 | { bfd_mach_mipsisa64, bfd_mach_mips5 }, | |
14745 | ||
14746 | /* R10000 extensions. */ | |
14747 | { bfd_mach_mips12000, bfd_mach_mips10000 }, | |
3aa3176b TS |
14748 | { bfd_mach_mips14000, bfd_mach_mips10000 }, |
14749 | { bfd_mach_mips16000, bfd_mach_mips10000 }, | |
64543e1a RS |
14750 | |
14751 | /* R5000 extensions. Note: the vr5500 ISA is an extension of the core | |
14752 | vr5400 ISA, but doesn't include the multimedia stuff. It seems | |
14753 | better to allow vr5400 and vr5500 code to be merged anyway, since | |
14754 | many libraries will just use the core ISA. Perhaps we could add | |
14755 | some sort of ASE flag if this ever proves a problem. */ | |
14756 | { bfd_mach_mips5500, bfd_mach_mips5400 }, | |
14757 | { bfd_mach_mips5400, bfd_mach_mips5000 }, | |
14758 | ||
14759 | /* MIPS IV extensions. */ | |
14760 | { bfd_mach_mips5, bfd_mach_mips8000 }, | |
14761 | { bfd_mach_mips10000, bfd_mach_mips8000 }, | |
14762 | { bfd_mach_mips5000, bfd_mach_mips8000 }, | |
5a7ea749 | 14763 | { bfd_mach_mips7000, bfd_mach_mips8000 }, |
0d2e43ed | 14764 | { bfd_mach_mips9000, bfd_mach_mips8000 }, |
64543e1a RS |
14765 | |
14766 | /* VR4100 extensions. */ | |
14767 | { bfd_mach_mips4120, bfd_mach_mips4100 }, | |
14768 | { bfd_mach_mips4111, bfd_mach_mips4100 }, | |
14769 | ||
14770 | /* MIPS III extensions. */ | |
350cc38d MS |
14771 | { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 }, |
14772 | { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 }, | |
64543e1a RS |
14773 | { bfd_mach_mips8000, bfd_mach_mips4000 }, |
14774 | { bfd_mach_mips4650, bfd_mach_mips4000 }, | |
14775 | { bfd_mach_mips4600, bfd_mach_mips4000 }, | |
14776 | { bfd_mach_mips4400, bfd_mach_mips4000 }, | |
14777 | { bfd_mach_mips4300, bfd_mach_mips4000 }, | |
14778 | { bfd_mach_mips4100, bfd_mach_mips4000 }, | |
14779 | { bfd_mach_mips4010, bfd_mach_mips4000 }, | |
e407c74b | 14780 | { bfd_mach_mips5900, bfd_mach_mips4000 }, |
64543e1a RS |
14781 | |
14782 | /* MIPS32 extensions. */ | |
14783 | { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 }, | |
14784 | ||
14785 | /* MIPS II extensions. */ | |
14786 | { bfd_mach_mips4000, bfd_mach_mips6000 }, | |
14787 | { bfd_mach_mipsisa32, bfd_mach_mips6000 }, | |
14788 | ||
14789 | /* MIPS I extensions. */ | |
14790 | { bfd_mach_mips6000, bfd_mach_mips3000 }, | |
14791 | { bfd_mach_mips3900, bfd_mach_mips3000 } | |
14792 | }; | |
14793 | ||
14794 | ||
14795 | /* Return true if bfd machine EXTENSION is an extension of machine BASE. */ | |
14796 | ||
14797 | static bfd_boolean | |
9719ad41 | 14798 | mips_mach_extends_p (unsigned long base, unsigned long extension) |
64543e1a RS |
14799 | { |
14800 | size_t i; | |
14801 | ||
c5211a54 RS |
14802 | if (extension == base) |
14803 | return TRUE; | |
14804 | ||
14805 | if (base == bfd_mach_mipsisa32 | |
14806 | && mips_mach_extends_p (bfd_mach_mipsisa64, extension)) | |
14807 | return TRUE; | |
14808 | ||
14809 | if (base == bfd_mach_mipsisa32r2 | |
14810 | && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension)) | |
14811 | return TRUE; | |
14812 | ||
14813 | for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++) | |
64543e1a | 14814 | if (extension == mips_mach_extensions[i].extension) |
c5211a54 RS |
14815 | { |
14816 | extension = mips_mach_extensions[i].base; | |
14817 | if (extension == base) | |
14818 | return TRUE; | |
14819 | } | |
64543e1a | 14820 | |
c5211a54 | 14821 | return FALSE; |
64543e1a RS |
14822 | } |
14823 | ||
14824 | ||
2cf19d5c JM |
14825 | /* Merge object attributes from IBFD into OBFD. Raise an error if |
14826 | there are conflicting attributes. */ | |
14827 | static bfd_boolean | |
14828 | mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd) | |
14829 | { | |
14830 | obj_attribute *in_attr; | |
14831 | obj_attribute *out_attr; | |
6ae68ba3 | 14832 | bfd *abi_fp_bfd; |
b60bf9be | 14833 | bfd *abi_msa_bfd; |
6ae68ba3 MR |
14834 | |
14835 | abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd; | |
14836 | in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU]; | |
d929bc19 | 14837 | if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY) |
6ae68ba3 | 14838 | mips_elf_tdata (obfd)->abi_fp_bfd = ibfd; |
2cf19d5c | 14839 | |
b60bf9be CF |
14840 | abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd; |
14841 | if (!abi_msa_bfd | |
14842 | && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY) | |
14843 | mips_elf_tdata (obfd)->abi_msa_bfd = ibfd; | |
14844 | ||
2cf19d5c JM |
14845 | if (!elf_known_obj_attributes_proc (obfd)[0].i) |
14846 | { | |
14847 | /* This is the first object. Copy the attributes. */ | |
14848 | _bfd_elf_copy_obj_attributes (ibfd, obfd); | |
14849 | ||
14850 | /* Use the Tag_null value to indicate the attributes have been | |
14851 | initialized. */ | |
14852 | elf_known_obj_attributes_proc (obfd)[0].i = 1; | |
14853 | ||
14854 | return TRUE; | |
14855 | } | |
14856 | ||
14857 | /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge | |
14858 | non-conflicting ones. */ | |
2cf19d5c JM |
14859 | out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU]; |
14860 | if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i) | |
14861 | { | |
757a636f | 14862 | int out_fp, in_fp; |
6ae68ba3 | 14863 | |
757a636f RS |
14864 | out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i; |
14865 | in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i; | |
14866 | out_attr[Tag_GNU_MIPS_ABI_FP].type = 1; | |
14867 | if (out_fp == Val_GNU_MIPS_ABI_FP_ANY) | |
14868 | out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp; | |
351cdf24 MF |
14869 | else if (out_fp == Val_GNU_MIPS_ABI_FP_XX |
14870 | && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE | |
14871 | || in_fp == Val_GNU_MIPS_ABI_FP_64 | |
14872 | || in_fp == Val_GNU_MIPS_ABI_FP_64A)) | |
14873 | { | |
14874 | mips_elf_tdata (obfd)->abi_fp_bfd = ibfd; | |
14875 | out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i; | |
14876 | } | |
14877 | else if (in_fp == Val_GNU_MIPS_ABI_FP_XX | |
14878 | && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE | |
14879 | || out_fp == Val_GNU_MIPS_ABI_FP_64 | |
14880 | || out_fp == Val_GNU_MIPS_ABI_FP_64A)) | |
14881 | /* Keep the current setting. */; | |
14882 | else if (out_fp == Val_GNU_MIPS_ABI_FP_64A | |
14883 | && in_fp == Val_GNU_MIPS_ABI_FP_64) | |
14884 | { | |
14885 | mips_elf_tdata (obfd)->abi_fp_bfd = ibfd; | |
14886 | out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i; | |
14887 | } | |
14888 | else if (in_fp == Val_GNU_MIPS_ABI_FP_64A | |
14889 | && out_fp == Val_GNU_MIPS_ABI_FP_64) | |
14890 | /* Keep the current setting. */; | |
757a636f RS |
14891 | else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY) |
14892 | { | |
14893 | const char *out_string, *in_string; | |
6ae68ba3 | 14894 | |
757a636f RS |
14895 | out_string = _bfd_mips_fp_abi_string (out_fp); |
14896 | in_string = _bfd_mips_fp_abi_string (in_fp); | |
14897 | /* First warn about cases involving unrecognised ABIs. */ | |
14898 | if (!out_string && !in_string) | |
14899 | _bfd_error_handler | |
14900 | (_("Warning: %B uses unknown floating point ABI %d " | |
14901 | "(set by %B), %B uses unknown floating point ABI %d"), | |
14902 | obfd, abi_fp_bfd, ibfd, out_fp, in_fp); | |
14903 | else if (!out_string) | |
14904 | _bfd_error_handler | |
14905 | (_("Warning: %B uses unknown floating point ABI %d " | |
14906 | "(set by %B), %B uses %s"), | |
14907 | obfd, abi_fp_bfd, ibfd, out_fp, in_string); | |
14908 | else if (!in_string) | |
14909 | _bfd_error_handler | |
14910 | (_("Warning: %B uses %s (set by %B), " | |
14911 | "%B uses unknown floating point ABI %d"), | |
14912 | obfd, abi_fp_bfd, ibfd, out_string, in_fp); | |
14913 | else | |
14914 | { | |
14915 | /* If one of the bfds is soft-float, the other must be | |
14916 | hard-float. The exact choice of hard-float ABI isn't | |
14917 | really relevant to the error message. */ | |
14918 | if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT) | |
14919 | out_string = "-mhard-float"; | |
14920 | else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT) | |
14921 | in_string = "-mhard-float"; | |
14922 | _bfd_error_handler | |
14923 | (_("Warning: %B uses %s (set by %B), %B uses %s"), | |
14924 | obfd, abi_fp_bfd, ibfd, out_string, in_string); | |
14925 | } | |
14926 | } | |
2cf19d5c JM |
14927 | } |
14928 | ||
b60bf9be CF |
14929 | /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge |
14930 | non-conflicting ones. */ | |
14931 | if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i) | |
14932 | { | |
14933 | out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1; | |
14934 | if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY) | |
14935 | out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i; | |
14936 | else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY) | |
14937 | switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i) | |
14938 | { | |
14939 | case Val_GNU_MIPS_ABI_MSA_128: | |
14940 | _bfd_error_handler | |
14941 | (_("Warning: %B uses %s (set by %B), " | |
14942 | "%B uses unknown MSA ABI %d"), | |
14943 | obfd, abi_msa_bfd, ibfd, | |
14944 | "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i); | |
14945 | break; | |
14946 | ||
14947 | default: | |
14948 | switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i) | |
14949 | { | |
14950 | case Val_GNU_MIPS_ABI_MSA_128: | |
14951 | _bfd_error_handler | |
14952 | (_("Warning: %B uses unknown MSA ABI %d " | |
14953 | "(set by %B), %B uses %s"), | |
14954 | obfd, abi_msa_bfd, ibfd, | |
14955 | out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa"); | |
14956 | break; | |
14957 | ||
14958 | default: | |
14959 | _bfd_error_handler | |
14960 | (_("Warning: %B uses unknown MSA ABI %d " | |
14961 | "(set by %B), %B uses unknown MSA ABI %d"), | |
14962 | obfd, abi_msa_bfd, ibfd, | |
14963 | out_attr[Tag_GNU_MIPS_ABI_MSA].i, | |
14964 | in_attr[Tag_GNU_MIPS_ABI_MSA].i); | |
14965 | break; | |
14966 | } | |
14967 | } | |
14968 | } | |
14969 | ||
2cf19d5c JM |
14970 | /* Merge Tag_compatibility attributes and any common GNU ones. */ |
14971 | _bfd_elf_merge_object_attributes (ibfd, obfd); | |
14972 | ||
14973 | return TRUE; | |
14974 | } | |
14975 | ||
b49e97c9 TS |
14976 | /* Merge backend specific data from an object file to the output |
14977 | object file when linking. */ | |
14978 | ||
b34976b6 | 14979 | bfd_boolean |
9719ad41 | 14980 | _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd) |
b49e97c9 TS |
14981 | { |
14982 | flagword old_flags; | |
14983 | flagword new_flags; | |
b34976b6 AM |
14984 | bfd_boolean ok; |
14985 | bfd_boolean null_input_bfd = TRUE; | |
b49e97c9 | 14986 | asection *sec; |
351cdf24 | 14987 | obj_attribute *out_attr; |
b49e97c9 | 14988 | |
58238693 | 14989 | /* Check if we have the same endianness. */ |
82e51918 | 14990 | if (! _bfd_generic_verify_endian_match (ibfd, obfd)) |
aa701218 AO |
14991 | { |
14992 | (*_bfd_error_handler) | |
d003868e AM |
14993 | (_("%B: endianness incompatible with that of the selected emulation"), |
14994 | ibfd); | |
aa701218 AO |
14995 | return FALSE; |
14996 | } | |
b49e97c9 | 14997 | |
d5eaccd7 | 14998 | if (!is_mips_elf (ibfd) || !is_mips_elf (obfd)) |
b34976b6 | 14999 | return TRUE; |
b49e97c9 | 15000 | |
aa701218 AO |
15001 | if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0) |
15002 | { | |
15003 | (*_bfd_error_handler) | |
d003868e AM |
15004 | (_("%B: ABI is incompatible with that of the selected emulation"), |
15005 | ibfd); | |
aa701218 AO |
15006 | return FALSE; |
15007 | } | |
15008 | ||
351cdf24 MF |
15009 | /* Set up the FP ABI attribute from the abiflags if it is not already |
15010 | set. */ | |
15011 | if (mips_elf_tdata (ibfd)->abiflags_valid) | |
15012 | { | |
15013 | obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU]; | |
15014 | if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY) | |
15015 | in_attr[Tag_GNU_MIPS_ABI_FP].i = | |
15016 | mips_elf_tdata (ibfd)->abiflags.fp_abi; | |
15017 | } | |
15018 | ||
2cf19d5c JM |
15019 | if (!mips_elf_merge_obj_attributes (ibfd, obfd)) |
15020 | return FALSE; | |
15021 | ||
351cdf24 MF |
15022 | /* Check to see if the input BFD actually contains any sections. |
15023 | If not, its flags may not have been initialised either, but it cannot | |
15024 | actually cause any incompatibility. */ | |
15025 | for (sec = ibfd->sections; sec != NULL; sec = sec->next) | |
15026 | { | |
15027 | /* Ignore synthetic sections and empty .text, .data and .bss sections | |
15028 | which are automatically generated by gas. Also ignore fake | |
15029 | (s)common sections, since merely defining a common symbol does | |
15030 | not affect compatibility. */ | |
15031 | if ((sec->flags & SEC_IS_COMMON) == 0 | |
15032 | && strcmp (sec->name, ".reginfo") | |
15033 | && strcmp (sec->name, ".mdebug") | |
15034 | && (sec->size != 0 | |
15035 | || (strcmp (sec->name, ".text") | |
15036 | && strcmp (sec->name, ".data") | |
15037 | && strcmp (sec->name, ".bss")))) | |
15038 | { | |
15039 | null_input_bfd = FALSE; | |
15040 | break; | |
15041 | } | |
15042 | } | |
15043 | if (null_input_bfd) | |
15044 | return TRUE; | |
15045 | ||
15046 | /* Populate abiflags using existing information. */ | |
15047 | if (!mips_elf_tdata (ibfd)->abiflags_valid) | |
15048 | { | |
15049 | infer_mips_abiflags (ibfd, &mips_elf_tdata (ibfd)->abiflags); | |
15050 | mips_elf_tdata (ibfd)->abiflags_valid = TRUE; | |
15051 | } | |
15052 | else | |
15053 | { | |
15054 | Elf_Internal_ABIFlags_v0 abiflags; | |
15055 | Elf_Internal_ABIFlags_v0 in_abiflags; | |
15056 | infer_mips_abiflags (ibfd, &abiflags); | |
15057 | in_abiflags = mips_elf_tdata (ibfd)->abiflags; | |
15058 | ||
15059 | /* It is not possible to infer the correct ISA revision | |
15060 | for R3 or R5 so drop down to R2 for the checks. */ | |
15061 | if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5) | |
15062 | in_abiflags.isa_rev = 2; | |
15063 | ||
15064 | if (in_abiflags.isa_level != abiflags.isa_level | |
15065 | || in_abiflags.isa_rev != abiflags.isa_rev | |
15066 | || in_abiflags.isa_ext != abiflags.isa_ext) | |
15067 | (*_bfd_error_handler) | |
15068 | (_("%B: warning: Inconsistent ISA between e_flags and " | |
15069 | ".MIPS.abiflags"), ibfd); | |
15070 | if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY | |
15071 | && in_abiflags.fp_abi != abiflags.fp_abi) | |
15072 | (*_bfd_error_handler) | |
15073 | (_("%B: warning: Inconsistent FP ABI between e_flags and " | |
15074 | ".MIPS.abiflags"), ibfd); | |
15075 | if ((in_abiflags.ases & abiflags.ases) != abiflags.ases) | |
15076 | (*_bfd_error_handler) | |
15077 | (_("%B: warning: Inconsistent ASEs between e_flags and " | |
15078 | ".MIPS.abiflags"), ibfd); | |
15079 | if (in_abiflags.isa_ext != abiflags.isa_ext) | |
15080 | (*_bfd_error_handler) | |
15081 | (_("%B: warning: Inconsistent ISA extensions between e_flags and " | |
15082 | ".MIPS.abiflags"), ibfd); | |
15083 | if (in_abiflags.flags2 != 0) | |
15084 | (*_bfd_error_handler) | |
15085 | (_("%B: warning: Unexpected flag in the flags2 field of " | |
15086 | ".MIPS.abiflags (0x%lx)"), ibfd, | |
15087 | (unsigned long) in_abiflags.flags2); | |
15088 | } | |
15089 | ||
15090 | if (!mips_elf_tdata (obfd)->abiflags_valid) | |
15091 | { | |
15092 | /* Copy input abiflags if output abiflags are not already valid. */ | |
15093 | mips_elf_tdata (obfd)->abiflags = mips_elf_tdata (ibfd)->abiflags; | |
15094 | mips_elf_tdata (obfd)->abiflags_valid = TRUE; | |
15095 | } | |
b49e97c9 TS |
15096 | |
15097 | if (! elf_flags_init (obfd)) | |
15098 | { | |
b34976b6 | 15099 | elf_flags_init (obfd) = TRUE; |
351cdf24 | 15100 | elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags; |
b49e97c9 TS |
15101 | elf_elfheader (obfd)->e_ident[EI_CLASS] |
15102 | = elf_elfheader (ibfd)->e_ident[EI_CLASS]; | |
15103 | ||
15104 | if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) | |
2907b861 | 15105 | && (bfd_get_arch_info (obfd)->the_default |
68ffbac6 | 15106 | || mips_mach_extends_p (bfd_get_mach (obfd), |
2907b861 | 15107 | bfd_get_mach (ibfd)))) |
b49e97c9 TS |
15108 | { |
15109 | if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), | |
15110 | bfd_get_mach (ibfd))) | |
b34976b6 | 15111 | return FALSE; |
351cdf24 MF |
15112 | |
15113 | /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */ | |
15114 | update_mips_abiflags_isa (obfd, &mips_elf_tdata (obfd)->abiflags); | |
b49e97c9 TS |
15115 | } |
15116 | ||
b34976b6 | 15117 | return TRUE; |
b49e97c9 TS |
15118 | } |
15119 | ||
351cdf24 MF |
15120 | /* Update the output abiflags fp_abi using the computed fp_abi. */ |
15121 | out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU]; | |
15122 | mips_elf_tdata (obfd)->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i; | |
15123 | ||
15124 | #define max(a,b) ((a) > (b) ? (a) : (b)) | |
15125 | /* Merge abiflags. */ | |
15126 | mips_elf_tdata (obfd)->abiflags.isa_rev | |
15127 | = max (mips_elf_tdata (obfd)->abiflags.isa_rev, | |
15128 | mips_elf_tdata (ibfd)->abiflags.isa_rev); | |
15129 | mips_elf_tdata (obfd)->abiflags.gpr_size | |
15130 | = max (mips_elf_tdata (obfd)->abiflags.gpr_size, | |
15131 | mips_elf_tdata (ibfd)->abiflags.gpr_size); | |
15132 | mips_elf_tdata (obfd)->abiflags.cpr1_size | |
15133 | = max (mips_elf_tdata (obfd)->abiflags.cpr1_size, | |
15134 | mips_elf_tdata (ibfd)->abiflags.cpr1_size); | |
15135 | mips_elf_tdata (obfd)->abiflags.cpr2_size | |
15136 | = max (mips_elf_tdata (obfd)->abiflags.cpr2_size, | |
15137 | mips_elf_tdata (ibfd)->abiflags.cpr2_size); | |
15138 | #undef max | |
15139 | mips_elf_tdata (obfd)->abiflags.ases | |
15140 | |= mips_elf_tdata (ibfd)->abiflags.ases; | |
15141 | mips_elf_tdata (obfd)->abiflags.flags1 | |
15142 | |= mips_elf_tdata (ibfd)->abiflags.flags1; | |
15143 | ||
15144 | new_flags = elf_elfheader (ibfd)->e_flags; | |
15145 | elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER; | |
15146 | old_flags = elf_elfheader (obfd)->e_flags; | |
15147 | ||
b49e97c9 TS |
15148 | /* Check flag compatibility. */ |
15149 | ||
15150 | new_flags &= ~EF_MIPS_NOREORDER; | |
15151 | old_flags &= ~EF_MIPS_NOREORDER; | |
15152 | ||
f4416af6 AO |
15153 | /* Some IRIX 6 BSD-compatibility objects have this bit set. It |
15154 | doesn't seem to matter. */ | |
15155 | new_flags &= ~EF_MIPS_XGOT; | |
15156 | old_flags &= ~EF_MIPS_XGOT; | |
15157 | ||
98a8deaf RS |
15158 | /* MIPSpro generates ucode info in n64 objects. Again, we should |
15159 | just be able to ignore this. */ | |
15160 | new_flags &= ~EF_MIPS_UCODE; | |
15161 | old_flags &= ~EF_MIPS_UCODE; | |
15162 | ||
861fb55a DJ |
15163 | /* DSOs should only be linked with CPIC code. */ |
15164 | if ((ibfd->flags & DYNAMIC) != 0) | |
15165 | new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC; | |
0a44bf69 | 15166 | |
b49e97c9 | 15167 | if (new_flags == old_flags) |
b34976b6 | 15168 | return TRUE; |
b49e97c9 | 15169 | |
b34976b6 | 15170 | ok = TRUE; |
b49e97c9 | 15171 | |
143d77c5 EC |
15172 | if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0) |
15173 | != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)) | |
b49e97c9 | 15174 | { |
b49e97c9 | 15175 | (*_bfd_error_handler) |
861fb55a | 15176 | (_("%B: warning: linking abicalls files with non-abicalls files"), |
d003868e | 15177 | ibfd); |
143d77c5 | 15178 | ok = TRUE; |
b49e97c9 TS |
15179 | } |
15180 | ||
143d77c5 EC |
15181 | if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) |
15182 | elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC; | |
15183 | if (! (new_flags & EF_MIPS_PIC)) | |
15184 | elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC; | |
15185 | ||
15186 | new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); | |
15187 | old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); | |
b49e97c9 | 15188 | |
64543e1a RS |
15189 | /* Compare the ISAs. */ |
15190 | if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags)) | |
b49e97c9 | 15191 | { |
64543e1a | 15192 | (*_bfd_error_handler) |
d003868e AM |
15193 | (_("%B: linking 32-bit code with 64-bit code"), |
15194 | ibfd); | |
64543e1a RS |
15195 | ok = FALSE; |
15196 | } | |
15197 | else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd))) | |
15198 | { | |
15199 | /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */ | |
15200 | if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd))) | |
b49e97c9 | 15201 | { |
64543e1a RS |
15202 | /* Copy the architecture info from IBFD to OBFD. Also copy |
15203 | the 32-bit flag (if set) so that we continue to recognise | |
15204 | OBFD as a 32-bit binary. */ | |
15205 | bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd)); | |
15206 | elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); | |
15207 | elf_elfheader (obfd)->e_flags | |
15208 | |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); | |
15209 | ||
351cdf24 MF |
15210 | /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */ |
15211 | update_mips_abiflags_isa (obfd, &mips_elf_tdata (obfd)->abiflags); | |
15212 | ||
64543e1a RS |
15213 | /* Copy across the ABI flags if OBFD doesn't use them |
15214 | and if that was what caused us to treat IBFD as 32-bit. */ | |
15215 | if ((old_flags & EF_MIPS_ABI) == 0 | |
15216 | && mips_32bit_flags_p (new_flags) | |
15217 | && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI)) | |
15218 | elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI; | |
b49e97c9 TS |
15219 | } |
15220 | else | |
15221 | { | |
64543e1a | 15222 | /* The ISAs aren't compatible. */ |
b49e97c9 | 15223 | (*_bfd_error_handler) |
d003868e AM |
15224 | (_("%B: linking %s module with previous %s modules"), |
15225 | ibfd, | |
64543e1a RS |
15226 | bfd_printable_name (ibfd), |
15227 | bfd_printable_name (obfd)); | |
b34976b6 | 15228 | ok = FALSE; |
b49e97c9 | 15229 | } |
b49e97c9 TS |
15230 | } |
15231 | ||
64543e1a RS |
15232 | new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); |
15233 | old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); | |
15234 | ||
15235 | /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it | |
b49e97c9 TS |
15236 | does set EI_CLASS differently from any 32-bit ABI. */ |
15237 | if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI) | |
15238 | || (elf_elfheader (ibfd)->e_ident[EI_CLASS] | |
15239 | != elf_elfheader (obfd)->e_ident[EI_CLASS])) | |
15240 | { | |
15241 | /* Only error if both are set (to different values). */ | |
15242 | if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI)) | |
15243 | || (elf_elfheader (ibfd)->e_ident[EI_CLASS] | |
15244 | != elf_elfheader (obfd)->e_ident[EI_CLASS])) | |
15245 | { | |
15246 | (*_bfd_error_handler) | |
d003868e AM |
15247 | (_("%B: ABI mismatch: linking %s module with previous %s modules"), |
15248 | ibfd, | |
b49e97c9 TS |
15249 | elf_mips_abi_name (ibfd), |
15250 | elf_mips_abi_name (obfd)); | |
b34976b6 | 15251 | ok = FALSE; |
b49e97c9 TS |
15252 | } |
15253 | new_flags &= ~EF_MIPS_ABI; | |
15254 | old_flags &= ~EF_MIPS_ABI; | |
15255 | } | |
15256 | ||
df58fc94 RS |
15257 | /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together |
15258 | and allow arbitrary mixing of the remaining ASEs (retain the union). */ | |
fb39dac1 RS |
15259 | if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE)) |
15260 | { | |
df58fc94 RS |
15261 | int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS; |
15262 | int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS; | |
15263 | int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16; | |
15264 | int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16; | |
15265 | int micro_mis = old_m16 && new_micro; | |
15266 | int m16_mis = old_micro && new_m16; | |
15267 | ||
15268 | if (m16_mis || micro_mis) | |
15269 | { | |
15270 | (*_bfd_error_handler) | |
15271 | (_("%B: ASE mismatch: linking %s module with previous %s modules"), | |
15272 | ibfd, | |
15273 | m16_mis ? "MIPS16" : "microMIPS", | |
15274 | m16_mis ? "microMIPS" : "MIPS16"); | |
15275 | ok = FALSE; | |
15276 | } | |
15277 | ||
fb39dac1 RS |
15278 | elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE; |
15279 | ||
15280 | new_flags &= ~ EF_MIPS_ARCH_ASE; | |
15281 | old_flags &= ~ EF_MIPS_ARCH_ASE; | |
15282 | } | |
15283 | ||
ba92f887 MR |
15284 | /* Compare NaN encodings. */ |
15285 | if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008)) | |
15286 | { | |
15287 | _bfd_error_handler (_("%B: linking %s module with previous %s modules"), | |
15288 | ibfd, | |
15289 | (new_flags & EF_MIPS_NAN2008 | |
15290 | ? "-mnan=2008" : "-mnan=legacy"), | |
15291 | (old_flags & EF_MIPS_NAN2008 | |
15292 | ? "-mnan=2008" : "-mnan=legacy")); | |
15293 | ok = FALSE; | |
15294 | new_flags &= ~EF_MIPS_NAN2008; | |
15295 | old_flags &= ~EF_MIPS_NAN2008; | |
15296 | } | |
15297 | ||
351cdf24 MF |
15298 | /* Compare FP64 state. */ |
15299 | if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64)) | |
15300 | { | |
15301 | _bfd_error_handler (_("%B: linking %s module with previous %s modules"), | |
15302 | ibfd, | |
15303 | (new_flags & EF_MIPS_FP64 | |
15304 | ? "-mfp64" : "-mfp32"), | |
15305 | (old_flags & EF_MIPS_FP64 | |
15306 | ? "-mfp64" : "-mfp32")); | |
15307 | ok = FALSE; | |
15308 | new_flags &= ~EF_MIPS_FP64; | |
15309 | old_flags &= ~EF_MIPS_FP64; | |
15310 | } | |
15311 | ||
b49e97c9 TS |
15312 | /* Warn about any other mismatches */ |
15313 | if (new_flags != old_flags) | |
15314 | { | |
15315 | (*_bfd_error_handler) | |
d003868e AM |
15316 | (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"), |
15317 | ibfd, (unsigned long) new_flags, | |
b49e97c9 | 15318 | (unsigned long) old_flags); |
b34976b6 | 15319 | ok = FALSE; |
b49e97c9 TS |
15320 | } |
15321 | ||
15322 | if (! ok) | |
15323 | { | |
15324 | bfd_set_error (bfd_error_bad_value); | |
b34976b6 | 15325 | return FALSE; |
b49e97c9 TS |
15326 | } |
15327 | ||
b34976b6 | 15328 | return TRUE; |
b49e97c9 TS |
15329 | } |
15330 | ||
15331 | /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */ | |
15332 | ||
b34976b6 | 15333 | bfd_boolean |
9719ad41 | 15334 | _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags) |
b49e97c9 TS |
15335 | { |
15336 | BFD_ASSERT (!elf_flags_init (abfd) | |
15337 | || elf_elfheader (abfd)->e_flags == flags); | |
15338 | ||
15339 | elf_elfheader (abfd)->e_flags = flags; | |
b34976b6 AM |
15340 | elf_flags_init (abfd) = TRUE; |
15341 | return TRUE; | |
b49e97c9 TS |
15342 | } |
15343 | ||
ad9563d6 CM |
15344 | char * |
15345 | _bfd_mips_elf_get_target_dtag (bfd_vma dtag) | |
15346 | { | |
15347 | switch (dtag) | |
15348 | { | |
15349 | default: return ""; | |
15350 | case DT_MIPS_RLD_VERSION: | |
15351 | return "MIPS_RLD_VERSION"; | |
15352 | case DT_MIPS_TIME_STAMP: | |
15353 | return "MIPS_TIME_STAMP"; | |
15354 | case DT_MIPS_ICHECKSUM: | |
15355 | return "MIPS_ICHECKSUM"; | |
15356 | case DT_MIPS_IVERSION: | |
15357 | return "MIPS_IVERSION"; | |
15358 | case DT_MIPS_FLAGS: | |
15359 | return "MIPS_FLAGS"; | |
15360 | case DT_MIPS_BASE_ADDRESS: | |
15361 | return "MIPS_BASE_ADDRESS"; | |
15362 | case DT_MIPS_MSYM: | |
15363 | return "MIPS_MSYM"; | |
15364 | case DT_MIPS_CONFLICT: | |
15365 | return "MIPS_CONFLICT"; | |
15366 | case DT_MIPS_LIBLIST: | |
15367 | return "MIPS_LIBLIST"; | |
15368 | case DT_MIPS_LOCAL_GOTNO: | |
15369 | return "MIPS_LOCAL_GOTNO"; | |
15370 | case DT_MIPS_CONFLICTNO: | |
15371 | return "MIPS_CONFLICTNO"; | |
15372 | case DT_MIPS_LIBLISTNO: | |
15373 | return "MIPS_LIBLISTNO"; | |
15374 | case DT_MIPS_SYMTABNO: | |
15375 | return "MIPS_SYMTABNO"; | |
15376 | case DT_MIPS_UNREFEXTNO: | |
15377 | return "MIPS_UNREFEXTNO"; | |
15378 | case DT_MIPS_GOTSYM: | |
15379 | return "MIPS_GOTSYM"; | |
15380 | case DT_MIPS_HIPAGENO: | |
15381 | return "MIPS_HIPAGENO"; | |
15382 | case DT_MIPS_RLD_MAP: | |
15383 | return "MIPS_RLD_MAP"; | |
15384 | case DT_MIPS_DELTA_CLASS: | |
15385 | return "MIPS_DELTA_CLASS"; | |
15386 | case DT_MIPS_DELTA_CLASS_NO: | |
15387 | return "MIPS_DELTA_CLASS_NO"; | |
15388 | case DT_MIPS_DELTA_INSTANCE: | |
15389 | return "MIPS_DELTA_INSTANCE"; | |
15390 | case DT_MIPS_DELTA_INSTANCE_NO: | |
15391 | return "MIPS_DELTA_INSTANCE_NO"; | |
15392 | case DT_MIPS_DELTA_RELOC: | |
15393 | return "MIPS_DELTA_RELOC"; | |
15394 | case DT_MIPS_DELTA_RELOC_NO: | |
15395 | return "MIPS_DELTA_RELOC_NO"; | |
15396 | case DT_MIPS_DELTA_SYM: | |
15397 | return "MIPS_DELTA_SYM"; | |
15398 | case DT_MIPS_DELTA_SYM_NO: | |
15399 | return "MIPS_DELTA_SYM_NO"; | |
15400 | case DT_MIPS_DELTA_CLASSSYM: | |
15401 | return "MIPS_DELTA_CLASSSYM"; | |
15402 | case DT_MIPS_DELTA_CLASSSYM_NO: | |
15403 | return "MIPS_DELTA_CLASSSYM_NO"; | |
15404 | case DT_MIPS_CXX_FLAGS: | |
15405 | return "MIPS_CXX_FLAGS"; | |
15406 | case DT_MIPS_PIXIE_INIT: | |
15407 | return "MIPS_PIXIE_INIT"; | |
15408 | case DT_MIPS_SYMBOL_LIB: | |
15409 | return "MIPS_SYMBOL_LIB"; | |
15410 | case DT_MIPS_LOCALPAGE_GOTIDX: | |
15411 | return "MIPS_LOCALPAGE_GOTIDX"; | |
15412 | case DT_MIPS_LOCAL_GOTIDX: | |
15413 | return "MIPS_LOCAL_GOTIDX"; | |
15414 | case DT_MIPS_HIDDEN_GOTIDX: | |
15415 | return "MIPS_HIDDEN_GOTIDX"; | |
15416 | case DT_MIPS_PROTECTED_GOTIDX: | |
15417 | return "MIPS_PROTECTED_GOT_IDX"; | |
15418 | case DT_MIPS_OPTIONS: | |
15419 | return "MIPS_OPTIONS"; | |
15420 | case DT_MIPS_INTERFACE: | |
15421 | return "MIPS_INTERFACE"; | |
15422 | case DT_MIPS_DYNSTR_ALIGN: | |
15423 | return "DT_MIPS_DYNSTR_ALIGN"; | |
15424 | case DT_MIPS_INTERFACE_SIZE: | |
15425 | return "DT_MIPS_INTERFACE_SIZE"; | |
15426 | case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: | |
15427 | return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR"; | |
15428 | case DT_MIPS_PERF_SUFFIX: | |
15429 | return "DT_MIPS_PERF_SUFFIX"; | |
15430 | case DT_MIPS_COMPACT_SIZE: | |
15431 | return "DT_MIPS_COMPACT_SIZE"; | |
15432 | case DT_MIPS_GP_VALUE: | |
15433 | return "DT_MIPS_GP_VALUE"; | |
15434 | case DT_MIPS_AUX_DYNAMIC: | |
15435 | return "DT_MIPS_AUX_DYNAMIC"; | |
861fb55a DJ |
15436 | case DT_MIPS_PLTGOT: |
15437 | return "DT_MIPS_PLTGOT"; | |
15438 | case DT_MIPS_RWPLT: | |
15439 | return "DT_MIPS_RWPLT"; | |
ad9563d6 CM |
15440 | } |
15441 | } | |
15442 | ||
757a636f RS |
15443 | /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if |
15444 | not known. */ | |
15445 | ||
15446 | const char * | |
15447 | _bfd_mips_fp_abi_string (int fp) | |
15448 | { | |
15449 | switch (fp) | |
15450 | { | |
15451 | /* These strings aren't translated because they're simply | |
15452 | option lists. */ | |
15453 | case Val_GNU_MIPS_ABI_FP_DOUBLE: | |
15454 | return "-mdouble-float"; | |
15455 | ||
15456 | case Val_GNU_MIPS_ABI_FP_SINGLE: | |
15457 | return "-msingle-float"; | |
15458 | ||
15459 | case Val_GNU_MIPS_ABI_FP_SOFT: | |
15460 | return "-msoft-float"; | |
15461 | ||
351cdf24 MF |
15462 | case Val_GNU_MIPS_ABI_FP_OLD_64: |
15463 | return _("-mips32r2 -mfp64 (12 callee-saved)"); | |
15464 | ||
15465 | case Val_GNU_MIPS_ABI_FP_XX: | |
15466 | return "-mfpxx"; | |
15467 | ||
757a636f | 15468 | case Val_GNU_MIPS_ABI_FP_64: |
351cdf24 MF |
15469 | return "-mgp32 -mfp64"; |
15470 | ||
15471 | case Val_GNU_MIPS_ABI_FP_64A: | |
15472 | return "-mgp32 -mfp64 -mno-odd-spreg"; | |
757a636f RS |
15473 | |
15474 | default: | |
15475 | return 0; | |
15476 | } | |
15477 | } | |
15478 | ||
351cdf24 MF |
15479 | static void |
15480 | print_mips_ases (FILE *file, unsigned int mask) | |
15481 | { | |
15482 | if (mask & AFL_ASE_DSP) | |
15483 | fputs ("\n\tDSP ASE", file); | |
15484 | if (mask & AFL_ASE_DSPR2) | |
15485 | fputs ("\n\tDSP R2 ASE", file); | |
15486 | if (mask & AFL_ASE_EVA) | |
15487 | fputs ("\n\tEnhanced VA Scheme", file); | |
15488 | if (mask & AFL_ASE_MCU) | |
15489 | fputs ("\n\tMCU (MicroController) ASE", file); | |
15490 | if (mask & AFL_ASE_MDMX) | |
15491 | fputs ("\n\tMDMX ASE", file); | |
15492 | if (mask & AFL_ASE_MIPS3D) | |
15493 | fputs ("\n\tMIPS-3D ASE", file); | |
15494 | if (mask & AFL_ASE_MT) | |
15495 | fputs ("\n\tMT ASE", file); | |
15496 | if (mask & AFL_ASE_SMARTMIPS) | |
15497 | fputs ("\n\tSmartMIPS ASE", file); | |
15498 | if (mask & AFL_ASE_VIRT) | |
15499 | fputs ("\n\tVZ ASE", file); | |
15500 | if (mask & AFL_ASE_MSA) | |
15501 | fputs ("\n\tMSA ASE", file); | |
15502 | if (mask & AFL_ASE_MIPS16) | |
15503 | fputs ("\n\tMIPS16 ASE", file); | |
15504 | if (mask & AFL_ASE_MICROMIPS) | |
15505 | fputs ("\n\tMICROMIPS ASE", file); | |
15506 | if (mask & AFL_ASE_XPA) | |
15507 | fputs ("\n\tXPA ASE", file); | |
15508 | if (mask == 0) | |
15509 | fprintf (file, "\n\t%s", _("None")); | |
15510 | } | |
15511 | ||
15512 | static void | |
15513 | print_mips_isa_ext (FILE *file, unsigned int isa_ext) | |
15514 | { | |
15515 | switch (isa_ext) | |
15516 | { | |
15517 | case 0: | |
15518 | fputs (_("None"), file); | |
15519 | break; | |
15520 | case AFL_EXT_XLR: | |
15521 | fputs ("RMI XLR", file); | |
15522 | break; | |
15523 | case AFL_EXT_OCTEON2: | |
15524 | fputs ("Cavium Networks Octeon2", file); | |
15525 | break; | |
15526 | case AFL_EXT_OCTEONP: | |
15527 | fputs ("Cavium Networks OcteonP", file); | |
15528 | break; | |
15529 | case AFL_EXT_LOONGSON_3A: | |
15530 | fputs ("Loongson 3A", file); | |
15531 | break; | |
15532 | case AFL_EXT_OCTEON: | |
15533 | fputs ("Cavium Networks Octeon", file); | |
15534 | break; | |
15535 | case AFL_EXT_5900: | |
15536 | fputs ("Toshiba R5900", file); | |
15537 | break; | |
15538 | case AFL_EXT_4650: | |
15539 | fputs ("MIPS R4650", file); | |
15540 | break; | |
15541 | case AFL_EXT_4010: | |
15542 | fputs ("LSI R4010", file); | |
15543 | break; | |
15544 | case AFL_EXT_4100: | |
15545 | fputs ("NEC VR4100", file); | |
15546 | break; | |
15547 | case AFL_EXT_3900: | |
15548 | fputs ("Toshiba R3900", file); | |
15549 | break; | |
15550 | case AFL_EXT_10000: | |
15551 | fputs ("MIPS R10000", file); | |
15552 | break; | |
15553 | case AFL_EXT_SB1: | |
15554 | fputs ("Broadcom SB-1", file); | |
15555 | break; | |
15556 | case AFL_EXT_4111: | |
15557 | fputs ("NEC VR4111/VR4181", file); | |
15558 | break; | |
15559 | case AFL_EXT_4120: | |
15560 | fputs ("NEC VR4120", file); | |
15561 | break; | |
15562 | case AFL_EXT_5400: | |
15563 | fputs ("NEC VR5400", file); | |
15564 | break; | |
15565 | case AFL_EXT_5500: | |
15566 | fputs ("NEC VR5500", file); | |
15567 | break; | |
15568 | case AFL_EXT_LOONGSON_2E: | |
15569 | fputs ("ST Microelectronics Loongson 2E", file); | |
15570 | break; | |
15571 | case AFL_EXT_LOONGSON_2F: | |
15572 | fputs ("ST Microelectronics Loongson 2F", file); | |
15573 | break; | |
15574 | default: | |
15575 | fputs (_("Unknown"), file); | |
15576 | break; | |
15577 | } | |
15578 | } | |
15579 | ||
15580 | static void | |
15581 | print_mips_fp_abi_value (FILE *file, int val) | |
15582 | { | |
15583 | switch (val) | |
15584 | { | |
15585 | case Val_GNU_MIPS_ABI_FP_ANY: | |
15586 | fprintf (file, _("Hard or soft float\n")); | |
15587 | break; | |
15588 | case Val_GNU_MIPS_ABI_FP_DOUBLE: | |
15589 | fprintf (file, _("Hard float (double precision)\n")); | |
15590 | break; | |
15591 | case Val_GNU_MIPS_ABI_FP_SINGLE: | |
15592 | fprintf (file, _("Hard float (single precision)\n")); | |
15593 | break; | |
15594 | case Val_GNU_MIPS_ABI_FP_SOFT: | |
15595 | fprintf (file, _("Soft float\n")); | |
15596 | break; | |
15597 | case Val_GNU_MIPS_ABI_FP_OLD_64: | |
15598 | fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n")); | |
15599 | break; | |
15600 | case Val_GNU_MIPS_ABI_FP_XX: | |
15601 | fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n")); | |
15602 | break; | |
15603 | case Val_GNU_MIPS_ABI_FP_64: | |
15604 | fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n")); | |
15605 | break; | |
15606 | case Val_GNU_MIPS_ABI_FP_64A: | |
15607 | fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n")); | |
15608 | break; | |
15609 | default: | |
15610 | fprintf (file, "??? (%d)\n", val); | |
15611 | break; | |
15612 | } | |
15613 | } | |
15614 | ||
15615 | static int | |
15616 | get_mips_reg_size (int reg_size) | |
15617 | { | |
15618 | return (reg_size == AFL_REG_NONE) ? 0 | |
15619 | : (reg_size == AFL_REG_32) ? 32 | |
15620 | : (reg_size == AFL_REG_64) ? 64 | |
15621 | : (reg_size == AFL_REG_128) ? 128 | |
15622 | : -1; | |
15623 | } | |
15624 | ||
b34976b6 | 15625 | bfd_boolean |
9719ad41 | 15626 | _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr) |
b49e97c9 | 15627 | { |
9719ad41 | 15628 | FILE *file = ptr; |
b49e97c9 TS |
15629 | |
15630 | BFD_ASSERT (abfd != NULL && ptr != NULL); | |
15631 | ||
15632 | /* Print normal ELF private data. */ | |
15633 | _bfd_elf_print_private_bfd_data (abfd, ptr); | |
15634 | ||
15635 | /* xgettext:c-format */ | |
15636 | fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); | |
15637 | ||
15638 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32) | |
15639 | fprintf (file, _(" [abi=O32]")); | |
15640 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64) | |
15641 | fprintf (file, _(" [abi=O64]")); | |
15642 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32) | |
15643 | fprintf (file, _(" [abi=EABI32]")); | |
15644 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) | |
15645 | fprintf (file, _(" [abi=EABI64]")); | |
15646 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI)) | |
15647 | fprintf (file, _(" [abi unknown]")); | |
15648 | else if (ABI_N32_P (abfd)) | |
15649 | fprintf (file, _(" [abi=N32]")); | |
15650 | else if (ABI_64_P (abfd)) | |
15651 | fprintf (file, _(" [abi=64]")); | |
15652 | else | |
15653 | fprintf (file, _(" [no abi set]")); | |
15654 | ||
15655 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1) | |
ae0d2616 | 15656 | fprintf (file, " [mips1]"); |
b49e97c9 | 15657 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2) |
ae0d2616 | 15658 | fprintf (file, " [mips2]"); |
b49e97c9 | 15659 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3) |
ae0d2616 | 15660 | fprintf (file, " [mips3]"); |
b49e97c9 | 15661 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4) |
ae0d2616 | 15662 | fprintf (file, " [mips4]"); |
b49e97c9 | 15663 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5) |
ae0d2616 | 15664 | fprintf (file, " [mips5]"); |
b49e97c9 | 15665 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32) |
ae0d2616 | 15666 | fprintf (file, " [mips32]"); |
b49e97c9 | 15667 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64) |
ae0d2616 | 15668 | fprintf (file, " [mips64]"); |
af7ee8bf | 15669 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2) |
ae0d2616 | 15670 | fprintf (file, " [mips32r2]"); |
5f74bc13 | 15671 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2) |
ae0d2616 | 15672 | fprintf (file, " [mips64r2]"); |
7361da2c AB |
15673 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6) |
15674 | fprintf (file, " [mips32r6]"); | |
15675 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6) | |
15676 | fprintf (file, " [mips64r6]"); | |
b49e97c9 TS |
15677 | else |
15678 | fprintf (file, _(" [unknown ISA]")); | |
15679 | ||
40d32fc6 | 15680 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX) |
ae0d2616 | 15681 | fprintf (file, " [mdmx]"); |
40d32fc6 CD |
15682 | |
15683 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16) | |
ae0d2616 | 15684 | fprintf (file, " [mips16]"); |
40d32fc6 | 15685 | |
df58fc94 RS |
15686 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) |
15687 | fprintf (file, " [micromips]"); | |
15688 | ||
ba92f887 MR |
15689 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008) |
15690 | fprintf (file, " [nan2008]"); | |
15691 | ||
5baf5e34 | 15692 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64) |
351cdf24 | 15693 | fprintf (file, " [old fp64]"); |
5baf5e34 | 15694 | |
b49e97c9 | 15695 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE) |
ae0d2616 | 15696 | fprintf (file, " [32bitmode]"); |
b49e97c9 TS |
15697 | else |
15698 | fprintf (file, _(" [not 32bitmode]")); | |
15699 | ||
c0e3f241 | 15700 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER) |
ae0d2616 | 15701 | fprintf (file, " [noreorder]"); |
c0e3f241 CD |
15702 | |
15703 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) | |
ae0d2616 | 15704 | fprintf (file, " [PIC]"); |
c0e3f241 CD |
15705 | |
15706 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC) | |
ae0d2616 | 15707 | fprintf (file, " [CPIC]"); |
c0e3f241 CD |
15708 | |
15709 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT) | |
ae0d2616 | 15710 | fprintf (file, " [XGOT]"); |
c0e3f241 CD |
15711 | |
15712 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE) | |
ae0d2616 | 15713 | fprintf (file, " [UCODE]"); |
c0e3f241 | 15714 | |
b49e97c9 TS |
15715 | fputc ('\n', file); |
15716 | ||
351cdf24 MF |
15717 | if (mips_elf_tdata (abfd)->abiflags_valid) |
15718 | { | |
15719 | Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags; | |
15720 | fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version); | |
15721 | fprintf (file, "\nISA: MIPS%d", abiflags->isa_level); | |
15722 | if (abiflags->isa_rev > 1) | |
15723 | fprintf (file, "r%d", abiflags->isa_rev); | |
15724 | fprintf (file, "\nGPR size: %d", | |
15725 | get_mips_reg_size (abiflags->gpr_size)); | |
15726 | fprintf (file, "\nCPR1 size: %d", | |
15727 | get_mips_reg_size (abiflags->cpr1_size)); | |
15728 | fprintf (file, "\nCPR2 size: %d", | |
15729 | get_mips_reg_size (abiflags->cpr2_size)); | |
15730 | fputs ("\nFP ABI: ", file); | |
15731 | print_mips_fp_abi_value (file, abiflags->fp_abi); | |
15732 | fputs ("ISA Extension: ", file); | |
15733 | print_mips_isa_ext (file, abiflags->isa_ext); | |
15734 | fputs ("\nASEs:", file); | |
15735 | print_mips_ases (file, abiflags->ases); | |
15736 | fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1); | |
15737 | fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2); | |
15738 | fputc ('\n', file); | |
15739 | } | |
15740 | ||
b34976b6 | 15741 | return TRUE; |
b49e97c9 | 15742 | } |
2f89ff8d | 15743 | |
b35d266b | 15744 | const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] = |
2f89ff8d | 15745 | { |
0112cd26 NC |
15746 | { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, |
15747 | { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, | |
15748 | { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 }, | |
15749 | { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, | |
15750 | { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, | |
15751 | { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 }, | |
15752 | { NULL, 0, 0, 0, 0 } | |
2f89ff8d | 15753 | }; |
5e2b0d47 | 15754 | |
8992f0d7 TS |
15755 | /* Merge non visibility st_other attributes. Ensure that the |
15756 | STO_OPTIONAL flag is copied into h->other, even if this is not a | |
15757 | definiton of the symbol. */ | |
5e2b0d47 NC |
15758 | void |
15759 | _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h, | |
15760 | const Elf_Internal_Sym *isym, | |
15761 | bfd_boolean definition, | |
15762 | bfd_boolean dynamic ATTRIBUTE_UNUSED) | |
15763 | { | |
8992f0d7 TS |
15764 | if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0) |
15765 | { | |
15766 | unsigned char other; | |
15767 | ||
15768 | other = (definition ? isym->st_other : h->other); | |
15769 | other &= ~ELF_ST_VISIBILITY (-1); | |
15770 | h->other = other | ELF_ST_VISIBILITY (h->other); | |
15771 | } | |
15772 | ||
15773 | if (!definition | |
5e2b0d47 NC |
15774 | && ELF_MIPS_IS_OPTIONAL (isym->st_other)) |
15775 | h->other |= STO_OPTIONAL; | |
15776 | } | |
12ac1cf5 NC |
15777 | |
15778 | /* Decide whether an undefined symbol is special and can be ignored. | |
15779 | This is the case for OPTIONAL symbols on IRIX. */ | |
15780 | bfd_boolean | |
15781 | _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h) | |
15782 | { | |
15783 | return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE; | |
15784 | } | |
e0764319 NC |
15785 | |
15786 | bfd_boolean | |
15787 | _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym) | |
15788 | { | |
15789 | return (sym->st_shndx == SHN_COMMON | |
15790 | || sym->st_shndx == SHN_MIPS_ACOMMON | |
15791 | || sym->st_shndx == SHN_MIPS_SCOMMON); | |
15792 | } | |
861fb55a DJ |
15793 | |
15794 | /* Return address for Ith PLT stub in section PLT, for relocation REL | |
15795 | or (bfd_vma) -1 if it should not be included. */ | |
15796 | ||
15797 | bfd_vma | |
15798 | _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt, | |
15799 | const arelent *rel ATTRIBUTE_UNUSED) | |
15800 | { | |
15801 | return (plt->vma | |
15802 | + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry) | |
15803 | + i * 4 * ARRAY_SIZE (mips_exec_plt_entry)); | |
15804 | } | |
15805 | ||
1bbce132 MR |
15806 | /* Build a table of synthetic symbols to represent the PLT. As with MIPS16 |
15807 | and microMIPS PLT slots we may have a many-to-one mapping between .plt | |
15808 | and .got.plt and also the slots may be of a different size each we walk | |
15809 | the PLT manually fetching instructions and matching them against known | |
15810 | patterns. To make things easier standard MIPS slots, if any, always come | |
15811 | first. As we don't create proper ELF symbols we use the UDATA.I member | |
15812 | of ASYMBOL to carry ISA annotation. The encoding used is the same as | |
15813 | with the ST_OTHER member of the ELF symbol. */ | |
15814 | ||
15815 | long | |
15816 | _bfd_mips_elf_get_synthetic_symtab (bfd *abfd, | |
15817 | long symcount ATTRIBUTE_UNUSED, | |
15818 | asymbol **syms ATTRIBUTE_UNUSED, | |
15819 | long dynsymcount, asymbol **dynsyms, | |
15820 | asymbol **ret) | |
15821 | { | |
15822 | static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_"; | |
15823 | static const char microsuffix[] = "@micromipsplt"; | |
15824 | static const char m16suffix[] = "@mips16plt"; | |
15825 | static const char mipssuffix[] = "@plt"; | |
15826 | ||
15827 | bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean); | |
15828 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
15829 | bfd_boolean micromips_p = MICROMIPS_P (abfd); | |
15830 | Elf_Internal_Shdr *hdr; | |
15831 | bfd_byte *plt_data; | |
15832 | bfd_vma plt_offset; | |
15833 | unsigned int other; | |
15834 | bfd_vma entry_size; | |
15835 | bfd_vma plt0_size; | |
15836 | asection *relplt; | |
15837 | bfd_vma opcode; | |
15838 | asection *plt; | |
15839 | asymbol *send; | |
15840 | size_t size; | |
15841 | char *names; | |
15842 | long counti; | |
15843 | arelent *p; | |
15844 | asymbol *s; | |
15845 | char *nend; | |
15846 | long count; | |
15847 | long pi; | |
15848 | long i; | |
15849 | long n; | |
15850 | ||
15851 | *ret = NULL; | |
15852 | ||
15853 | if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0) | |
15854 | return 0; | |
15855 | ||
15856 | relplt = bfd_get_section_by_name (abfd, ".rel.plt"); | |
15857 | if (relplt == NULL) | |
15858 | return 0; | |
15859 | ||
15860 | hdr = &elf_section_data (relplt)->this_hdr; | |
15861 | if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL) | |
15862 | return 0; | |
15863 | ||
15864 | plt = bfd_get_section_by_name (abfd, ".plt"); | |
15865 | if (plt == NULL) | |
15866 | return 0; | |
15867 | ||
15868 | slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table; | |
15869 | if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE)) | |
15870 | return -1; | |
15871 | p = relplt->relocation; | |
15872 | ||
15873 | /* Calculating the exact amount of space required for symbols would | |
15874 | require two passes over the PLT, so just pessimise assuming two | |
15875 | PLT slots per relocation. */ | |
15876 | count = relplt->size / hdr->sh_entsize; | |
15877 | counti = count * bed->s->int_rels_per_ext_rel; | |
15878 | size = 2 * count * sizeof (asymbol); | |
15879 | size += count * (sizeof (mipssuffix) + | |
15880 | (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix))); | |
15881 | for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel) | |
15882 | size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name); | |
15883 | ||
15884 | /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */ | |
15885 | size += sizeof (asymbol) + sizeof (pltname); | |
15886 | ||
15887 | if (!bfd_malloc_and_get_section (abfd, plt, &plt_data)) | |
15888 | return -1; | |
15889 | ||
15890 | if (plt->size < 16) | |
15891 | return -1; | |
15892 | ||
15893 | s = *ret = bfd_malloc (size); | |
15894 | if (s == NULL) | |
15895 | return -1; | |
15896 | send = s + 2 * count + 1; | |
15897 | ||
15898 | names = (char *) send; | |
15899 | nend = (char *) s + size; | |
15900 | n = 0; | |
15901 | ||
15902 | opcode = bfd_get_micromips_32 (abfd, plt_data + 12); | |
15903 | if (opcode == 0x3302fffe) | |
15904 | { | |
15905 | if (!micromips_p) | |
15906 | return -1; | |
15907 | plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry); | |
15908 | other = STO_MICROMIPS; | |
15909 | } | |
833794fc MR |
15910 | else if (opcode == 0x0398c1d0) |
15911 | { | |
15912 | if (!micromips_p) | |
15913 | return -1; | |
15914 | plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); | |
15915 | other = STO_MICROMIPS; | |
15916 | } | |
1bbce132 MR |
15917 | else |
15918 | { | |
15919 | plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry); | |
15920 | other = 0; | |
15921 | } | |
15922 | ||
15923 | s->the_bfd = abfd; | |
15924 | s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL; | |
15925 | s->section = plt; | |
15926 | s->value = 0; | |
15927 | s->name = names; | |
15928 | s->udata.i = other; | |
15929 | memcpy (names, pltname, sizeof (pltname)); | |
15930 | names += sizeof (pltname); | |
15931 | ++s, ++n; | |
15932 | ||
15933 | pi = 0; | |
15934 | for (plt_offset = plt0_size; | |
15935 | plt_offset + 8 <= plt->size && s < send; | |
15936 | plt_offset += entry_size) | |
15937 | { | |
15938 | bfd_vma gotplt_addr; | |
15939 | const char *suffix; | |
15940 | bfd_vma gotplt_hi; | |
15941 | bfd_vma gotplt_lo; | |
15942 | size_t suffixlen; | |
15943 | ||
15944 | opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4); | |
15945 | ||
15946 | /* Check if the second word matches the expected MIPS16 instruction. */ | |
15947 | if (opcode == 0x651aeb00) | |
15948 | { | |
15949 | if (micromips_p) | |
15950 | return -1; | |
15951 | /* Truncated table??? */ | |
15952 | if (plt_offset + 16 > plt->size) | |
15953 | break; | |
15954 | gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12); | |
15955 | entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry); | |
15956 | suffixlen = sizeof (m16suffix); | |
15957 | suffix = m16suffix; | |
15958 | other = STO_MIPS16; | |
15959 | } | |
833794fc | 15960 | /* Likewise the expected microMIPS instruction (no insn32 mode). */ |
1bbce132 MR |
15961 | else if (opcode == 0xff220000) |
15962 | { | |
15963 | if (!micromips_p) | |
15964 | return -1; | |
15965 | gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f; | |
15966 | gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff; | |
15967 | gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18; | |
15968 | gotplt_lo <<= 2; | |
15969 | gotplt_addr = gotplt_hi + gotplt_lo; | |
15970 | gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3; | |
15971 | entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry); | |
15972 | suffixlen = sizeof (microsuffix); | |
15973 | suffix = microsuffix; | |
15974 | other = STO_MICROMIPS; | |
15975 | } | |
833794fc MR |
15976 | /* Likewise the expected microMIPS instruction (insn32 mode). */ |
15977 | else if ((opcode & 0xffff0000) == 0xff2f0000) | |
15978 | { | |
15979 | gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff; | |
15980 | gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff; | |
15981 | gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16; | |
15982 | gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000; | |
15983 | gotplt_addr = gotplt_hi + gotplt_lo; | |
15984 | entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry); | |
15985 | suffixlen = sizeof (microsuffix); | |
15986 | suffix = microsuffix; | |
15987 | other = STO_MICROMIPS; | |
15988 | } | |
1bbce132 MR |
15989 | /* Otherwise assume standard MIPS code. */ |
15990 | else | |
15991 | { | |
15992 | gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff; | |
15993 | gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff; | |
15994 | gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16; | |
15995 | gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000; | |
15996 | gotplt_addr = gotplt_hi + gotplt_lo; | |
15997 | entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry); | |
15998 | suffixlen = sizeof (mipssuffix); | |
15999 | suffix = mipssuffix; | |
16000 | other = 0; | |
16001 | } | |
16002 | /* Truncated table??? */ | |
16003 | if (plt_offset + entry_size > plt->size) | |
16004 | break; | |
16005 | ||
16006 | for (i = 0; | |
16007 | i < count && p[pi].address != gotplt_addr; | |
16008 | i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti); | |
16009 | ||
16010 | if (i < count) | |
16011 | { | |
16012 | size_t namelen; | |
16013 | size_t len; | |
16014 | ||
16015 | *s = **p[pi].sym_ptr_ptr; | |
16016 | /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since | |
16017 | we are defining a symbol, ensure one of them is set. */ | |
16018 | if ((s->flags & BSF_LOCAL) == 0) | |
16019 | s->flags |= BSF_GLOBAL; | |
16020 | s->flags |= BSF_SYNTHETIC; | |
16021 | s->section = plt; | |
16022 | s->value = plt_offset; | |
16023 | s->name = names; | |
16024 | s->udata.i = other; | |
16025 | ||
16026 | len = strlen ((*p[pi].sym_ptr_ptr)->name); | |
16027 | namelen = len + suffixlen; | |
16028 | if (names + namelen > nend) | |
16029 | break; | |
16030 | ||
16031 | memcpy (names, (*p[pi].sym_ptr_ptr)->name, len); | |
16032 | names += len; | |
16033 | memcpy (names, suffix, suffixlen); | |
16034 | names += suffixlen; | |
16035 | ||
16036 | ++s, ++n; | |
16037 | pi = (pi + bed->s->int_rels_per_ext_rel) % counti; | |
16038 | } | |
16039 | } | |
16040 | ||
16041 | free (plt_data); | |
16042 | ||
16043 | return n; | |
16044 | } | |
16045 | ||
861fb55a DJ |
16046 | void |
16047 | _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info) | |
16048 | { | |
16049 | struct mips_elf_link_hash_table *htab; | |
16050 | Elf_Internal_Ehdr *i_ehdrp; | |
16051 | ||
16052 | i_ehdrp = elf_elfheader (abfd); | |
16053 | if (link_info) | |
16054 | { | |
16055 | htab = mips_elf_hash_table (link_info); | |
4dfe6ac6 NC |
16056 | BFD_ASSERT (htab != NULL); |
16057 | ||
861fb55a DJ |
16058 | if (htab->use_plts_and_copy_relocs && !htab->is_vxworks) |
16059 | i_ehdrp->e_ident[EI_ABIVERSION] = 1; | |
16060 | } | |
0af03126 L |
16061 | |
16062 | _bfd_elf_post_process_headers (abfd, link_info); | |
351cdf24 MF |
16063 | |
16064 | if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64 | |
16065 | || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A) | |
16066 | i_ehdrp->e_ident[EI_ABIVERSION] = 3; | |
861fb55a | 16067 | } |