]>
Commit | Line | Data |
---|---|---|
b49e97c9 | 1 | /* MIPS-specific support for ELF |
4b95cf5c | 2 | Copyright (C) 1993-2014 Free Software Foundation, Inc. |
b49e97c9 TS |
3 | |
4 | Most of the information added by Ian Lance Taylor, Cygnus Support, | |
5 | <[email protected]>. | |
6 | N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC. | |
7 | <[email protected]> | |
8 | Traditional MIPS targets support added by Koundinya.K, Dansk Data | |
9 | Elektronik & Operations Research Group. <[email protected]> | |
10 | ||
ae9a127f | 11 | This file is part of BFD, the Binary File Descriptor library. |
b49e97c9 | 12 | |
ae9a127f NC |
13 | This program is free software; you can redistribute it and/or modify |
14 | it under the terms of the GNU General Public License as published by | |
cd123cb7 | 15 | the Free Software Foundation; either version 3 of the License, or |
ae9a127f | 16 | (at your option) any later version. |
b49e97c9 | 17 | |
ae9a127f NC |
18 | This program is distributed in the hope that it will be useful, |
19 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
20 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
21 | GNU General Public License for more details. | |
b49e97c9 | 22 | |
ae9a127f NC |
23 | You should have received a copy of the GNU General Public License |
24 | along with this program; if not, write to the Free Software | |
cd123cb7 NC |
25 | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
26 | MA 02110-1301, USA. */ | |
27 | ||
b49e97c9 TS |
28 | |
29 | /* This file handles functionality common to the different MIPS ABI's. */ | |
30 | ||
b49e97c9 | 31 | #include "sysdep.h" |
3db64b00 | 32 | #include "bfd.h" |
b49e97c9 | 33 | #include "libbfd.h" |
64543e1a | 34 | #include "libiberty.h" |
b49e97c9 TS |
35 | #include "elf-bfd.h" |
36 | #include "elfxx-mips.h" | |
37 | #include "elf/mips.h" | |
0a44bf69 | 38 | #include "elf-vxworks.h" |
b49e97c9 TS |
39 | |
40 | /* Get the ECOFF swapping routines. */ | |
41 | #include "coff/sym.h" | |
42 | #include "coff/symconst.h" | |
43 | #include "coff/ecoff.h" | |
44 | #include "coff/mips.h" | |
45 | ||
b15e6682 AO |
46 | #include "hashtab.h" |
47 | ||
9ab066b4 RS |
48 | /* Types of TLS GOT entry. */ |
49 | enum mips_got_tls_type { | |
50 | GOT_TLS_NONE, | |
51 | GOT_TLS_GD, | |
52 | GOT_TLS_LDM, | |
53 | GOT_TLS_IE | |
54 | }; | |
55 | ||
ead49a57 | 56 | /* This structure is used to hold information about one GOT entry. |
3dff0dd1 RS |
57 | There are four types of entry: |
58 | ||
59 | (1) an absolute address | |
60 | requires: abfd == NULL | |
61 | fields: d.address | |
62 | ||
63 | (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd | |
64 | requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM | |
65 | fields: abfd, symndx, d.addend, tls_type | |
66 | ||
67 | (3) a SYMBOL address, where SYMBOL is not local to an input bfd | |
68 | requires: abfd != NULL, symndx == -1 | |
69 | fields: d.h, tls_type | |
70 | ||
71 | (4) a TLS LDM slot | |
72 | requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM | |
73 | fields: none; there's only one of these per GOT. */ | |
b15e6682 AO |
74 | struct mips_got_entry |
75 | { | |
3dff0dd1 | 76 | /* One input bfd that needs the GOT entry. */ |
b15e6682 | 77 | bfd *abfd; |
f4416af6 AO |
78 | /* The index of the symbol, as stored in the relocation r_info, if |
79 | we have a local symbol; -1 otherwise. */ | |
80 | long symndx; | |
81 | union | |
82 | { | |
83 | /* If abfd == NULL, an address that must be stored in the got. */ | |
84 | bfd_vma address; | |
85 | /* If abfd != NULL && symndx != -1, the addend of the relocation | |
86 | that should be added to the symbol value. */ | |
87 | bfd_vma addend; | |
88 | /* If abfd != NULL && symndx == -1, the hash table entry | |
3dff0dd1 | 89 | corresponding to a symbol in the GOT. The symbol's entry |
020d7251 RS |
90 | is in the local area if h->global_got_area is GGA_NONE, |
91 | otherwise it is in the global area. */ | |
f4416af6 AO |
92 | struct mips_elf_link_hash_entry *h; |
93 | } d; | |
0f20cc35 | 94 | |
9ab066b4 RS |
95 | /* The TLS type of this GOT entry. An LDM GOT entry will be a local |
96 | symbol entry with r_symndx == 0. */ | |
0f20cc35 DJ |
97 | unsigned char tls_type; |
98 | ||
9ab066b4 RS |
99 | /* True if we have filled in the GOT contents for a TLS entry, |
100 | and created the associated relocations. */ | |
101 | unsigned char tls_initialized; | |
102 | ||
b15e6682 | 103 | /* The offset from the beginning of the .got section to the entry |
f4416af6 AO |
104 | corresponding to this symbol+addend. If it's a global symbol |
105 | whose offset is yet to be decided, it's going to be -1. */ | |
106 | long gotidx; | |
b15e6682 AO |
107 | }; |
108 | ||
13db6b44 RS |
109 | /* This structure represents a GOT page reference from an input bfd. |
110 | Each instance represents a symbol + ADDEND, where the representation | |
111 | of the symbol depends on whether it is local to the input bfd. | |
112 | If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD. | |
113 | Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry. | |
114 | ||
115 | Page references with SYMNDX >= 0 always become page references | |
116 | in the output. Page references with SYMNDX < 0 only become page | |
117 | references if the symbol binds locally; in other cases, the page | |
118 | reference decays to a global GOT reference. */ | |
119 | struct mips_got_page_ref | |
120 | { | |
121 | long symndx; | |
122 | union | |
123 | { | |
124 | struct mips_elf_link_hash_entry *h; | |
125 | bfd *abfd; | |
126 | } u; | |
127 | bfd_vma addend; | |
128 | }; | |
129 | ||
c224138d RS |
130 | /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND]. |
131 | The structures form a non-overlapping list that is sorted by increasing | |
132 | MIN_ADDEND. */ | |
133 | struct mips_got_page_range | |
134 | { | |
135 | struct mips_got_page_range *next; | |
136 | bfd_signed_vma min_addend; | |
137 | bfd_signed_vma max_addend; | |
138 | }; | |
139 | ||
140 | /* This structure describes the range of addends that are applied to page | |
13db6b44 | 141 | relocations against a given section. */ |
c224138d RS |
142 | struct mips_got_page_entry |
143 | { | |
13db6b44 RS |
144 | /* The section that these entries are based on. */ |
145 | asection *sec; | |
c224138d RS |
146 | /* The ranges for this page entry. */ |
147 | struct mips_got_page_range *ranges; | |
148 | /* The maximum number of page entries needed for RANGES. */ | |
149 | bfd_vma num_pages; | |
150 | }; | |
151 | ||
f0abc2a1 | 152 | /* This structure is used to hold .got information when linking. */ |
b49e97c9 TS |
153 | |
154 | struct mips_got_info | |
155 | { | |
b49e97c9 TS |
156 | /* The number of global .got entries. */ |
157 | unsigned int global_gotno; | |
23cc69b6 RS |
158 | /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */ |
159 | unsigned int reloc_only_gotno; | |
0f20cc35 DJ |
160 | /* The number of .got slots used for TLS. */ |
161 | unsigned int tls_gotno; | |
162 | /* The first unused TLS .got entry. Used only during | |
163 | mips_elf_initialize_tls_index. */ | |
164 | unsigned int tls_assigned_gotno; | |
c224138d | 165 | /* The number of local .got entries, eventually including page entries. */ |
b49e97c9 | 166 | unsigned int local_gotno; |
c224138d RS |
167 | /* The maximum number of page entries needed. */ |
168 | unsigned int page_gotno; | |
ab361d49 RS |
169 | /* The number of relocations needed for the GOT entries. */ |
170 | unsigned int relocs; | |
cb22ccf4 KCY |
171 | /* The first unused local .got entry. */ |
172 | unsigned int assigned_low_gotno; | |
173 | /* The last unused local .got entry. */ | |
174 | unsigned int assigned_high_gotno; | |
b15e6682 AO |
175 | /* A hash table holding members of the got. */ |
176 | struct htab *got_entries; | |
13db6b44 RS |
177 | /* A hash table holding mips_got_page_ref structures. */ |
178 | struct htab *got_page_refs; | |
c224138d RS |
179 | /* A hash table of mips_got_page_entry structures. */ |
180 | struct htab *got_page_entries; | |
f4416af6 AO |
181 | /* In multi-got links, a pointer to the next got (err, rather, most |
182 | of the time, it points to the previous got). */ | |
183 | struct mips_got_info *next; | |
184 | }; | |
185 | ||
d7206569 | 186 | /* Structure passed when merging bfds' gots. */ |
f4416af6 AO |
187 | |
188 | struct mips_elf_got_per_bfd_arg | |
189 | { | |
f4416af6 AO |
190 | /* The output bfd. */ |
191 | bfd *obfd; | |
192 | /* The link information. */ | |
193 | struct bfd_link_info *info; | |
194 | /* A pointer to the primary got, i.e., the one that's going to get | |
195 | the implicit relocations from DT_MIPS_LOCAL_GOTNO and | |
196 | DT_MIPS_GOTSYM. */ | |
197 | struct mips_got_info *primary; | |
198 | /* A non-primary got we're trying to merge with other input bfd's | |
199 | gots. */ | |
200 | struct mips_got_info *current; | |
201 | /* The maximum number of got entries that can be addressed with a | |
202 | 16-bit offset. */ | |
203 | unsigned int max_count; | |
c224138d RS |
204 | /* The maximum number of page entries needed by each got. */ |
205 | unsigned int max_pages; | |
0f20cc35 DJ |
206 | /* The total number of global entries which will live in the |
207 | primary got and be automatically relocated. This includes | |
208 | those not referenced by the primary GOT but included in | |
209 | the "master" GOT. */ | |
210 | unsigned int global_count; | |
f4416af6 AO |
211 | }; |
212 | ||
ab361d49 RS |
213 | /* A structure used to pass information to htab_traverse callbacks |
214 | when laying out the GOT. */ | |
f4416af6 | 215 | |
ab361d49 | 216 | struct mips_elf_traverse_got_arg |
f4416af6 | 217 | { |
ab361d49 | 218 | struct bfd_link_info *info; |
f4416af6 AO |
219 | struct mips_got_info *g; |
220 | int value; | |
0f20cc35 DJ |
221 | }; |
222 | ||
f0abc2a1 AM |
223 | struct _mips_elf_section_data |
224 | { | |
225 | struct bfd_elf_section_data elf; | |
226 | union | |
227 | { | |
f0abc2a1 AM |
228 | bfd_byte *tdata; |
229 | } u; | |
230 | }; | |
231 | ||
232 | #define mips_elf_section_data(sec) \ | |
68bfbfcc | 233 | ((struct _mips_elf_section_data *) elf_section_data (sec)) |
f0abc2a1 | 234 | |
d5eaccd7 RS |
235 | #define is_mips_elf(bfd) \ |
236 | (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ | |
237 | && elf_tdata (bfd) != NULL \ | |
4dfe6ac6 | 238 | && elf_object_id (bfd) == MIPS_ELF_DATA) |
d5eaccd7 | 239 | |
634835ae RS |
240 | /* The ABI says that every symbol used by dynamic relocations must have |
241 | a global GOT entry. Among other things, this provides the dynamic | |
242 | linker with a free, directly-indexed cache. The GOT can therefore | |
243 | contain symbols that are not referenced by GOT relocations themselves | |
244 | (in other words, it may have symbols that are not referenced by things | |
245 | like R_MIPS_GOT16 and R_MIPS_GOT_PAGE). | |
246 | ||
247 | GOT relocations are less likely to overflow if we put the associated | |
248 | GOT entries towards the beginning. We therefore divide the global | |
249 | GOT entries into two areas: "normal" and "reloc-only". Entries in | |
250 | the first area can be used for both dynamic relocations and GP-relative | |
251 | accesses, while those in the "reloc-only" area are for dynamic | |
252 | relocations only. | |
253 | ||
254 | These GGA_* ("Global GOT Area") values are organised so that lower | |
255 | values are more general than higher values. Also, non-GGA_NONE | |
256 | values are ordered by the position of the area in the GOT. */ | |
257 | #define GGA_NORMAL 0 | |
258 | #define GGA_RELOC_ONLY 1 | |
259 | #define GGA_NONE 2 | |
260 | ||
861fb55a DJ |
261 | /* Information about a non-PIC interface to a PIC function. There are |
262 | two ways of creating these interfaces. The first is to add: | |
263 | ||
264 | lui $25,%hi(func) | |
265 | addiu $25,$25,%lo(func) | |
266 | ||
267 | immediately before a PIC function "func". The second is to add: | |
268 | ||
269 | lui $25,%hi(func) | |
270 | j func | |
271 | addiu $25,$25,%lo(func) | |
272 | ||
273 | to a separate trampoline section. | |
274 | ||
275 | Stubs of the first kind go in a new section immediately before the | |
276 | target function. Stubs of the second kind go in a single section | |
277 | pointed to by the hash table's "strampoline" field. */ | |
278 | struct mips_elf_la25_stub { | |
279 | /* The generated section that contains this stub. */ | |
280 | asection *stub_section; | |
281 | ||
282 | /* The offset of the stub from the start of STUB_SECTION. */ | |
283 | bfd_vma offset; | |
284 | ||
285 | /* One symbol for the original function. Its location is available | |
286 | in H->root.root.u.def. */ | |
287 | struct mips_elf_link_hash_entry *h; | |
288 | }; | |
289 | ||
290 | /* Macros for populating a mips_elf_la25_stub. */ | |
291 | ||
292 | #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */ | |
293 | #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */ | |
294 | #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */ | |
d21911ea MR |
295 | #define LA25_LUI_MICROMIPS(VAL) \ |
296 | (0x41b90000 | (VAL)) /* lui t9,VAL */ | |
297 | #define LA25_J_MICROMIPS(VAL) \ | |
298 | (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */ | |
299 | #define LA25_ADDIU_MICROMIPS(VAL) \ | |
300 | (0x33390000 | (VAL)) /* addiu t9,t9,VAL */ | |
861fb55a | 301 | |
b49e97c9 TS |
302 | /* This structure is passed to mips_elf_sort_hash_table_f when sorting |
303 | the dynamic symbols. */ | |
304 | ||
305 | struct mips_elf_hash_sort_data | |
306 | { | |
307 | /* The symbol in the global GOT with the lowest dynamic symbol table | |
308 | index. */ | |
309 | struct elf_link_hash_entry *low; | |
0f20cc35 DJ |
310 | /* The least dynamic symbol table index corresponding to a non-TLS |
311 | symbol with a GOT entry. */ | |
b49e97c9 | 312 | long min_got_dynindx; |
f4416af6 AO |
313 | /* The greatest dynamic symbol table index corresponding to a symbol |
314 | with a GOT entry that is not referenced (e.g., a dynamic symbol | |
9e4aeb93 | 315 | with dynamic relocations pointing to it from non-primary GOTs). */ |
f4416af6 | 316 | long max_unref_got_dynindx; |
b49e97c9 TS |
317 | /* The greatest dynamic symbol table index not corresponding to a |
318 | symbol without a GOT entry. */ | |
319 | long max_non_got_dynindx; | |
320 | }; | |
321 | ||
1bbce132 MR |
322 | /* We make up to two PLT entries if needed, one for standard MIPS code |
323 | and one for compressed code, either a MIPS16 or microMIPS one. We | |
324 | keep a separate record of traditional lazy-binding stubs, for easier | |
325 | processing. */ | |
326 | ||
327 | struct plt_entry | |
328 | { | |
329 | /* Traditional SVR4 stub offset, or -1 if none. */ | |
330 | bfd_vma stub_offset; | |
331 | ||
332 | /* Standard PLT entry offset, or -1 if none. */ | |
333 | bfd_vma mips_offset; | |
334 | ||
335 | /* Compressed PLT entry offset, or -1 if none. */ | |
336 | bfd_vma comp_offset; | |
337 | ||
338 | /* The corresponding .got.plt index, or -1 if none. */ | |
339 | bfd_vma gotplt_index; | |
340 | ||
341 | /* Whether we need a standard PLT entry. */ | |
342 | unsigned int need_mips : 1; | |
343 | ||
344 | /* Whether we need a compressed PLT entry. */ | |
345 | unsigned int need_comp : 1; | |
346 | }; | |
347 | ||
b49e97c9 TS |
348 | /* The MIPS ELF linker needs additional information for each symbol in |
349 | the global hash table. */ | |
350 | ||
351 | struct mips_elf_link_hash_entry | |
352 | { | |
353 | struct elf_link_hash_entry root; | |
354 | ||
355 | /* External symbol information. */ | |
356 | EXTR esym; | |
357 | ||
861fb55a DJ |
358 | /* The la25 stub we have created for ths symbol, if any. */ |
359 | struct mips_elf_la25_stub *la25_stub; | |
360 | ||
b49e97c9 TS |
361 | /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against |
362 | this symbol. */ | |
363 | unsigned int possibly_dynamic_relocs; | |
364 | ||
b49e97c9 TS |
365 | /* If there is a stub that 32 bit functions should use to call this |
366 | 16 bit function, this points to the section containing the stub. */ | |
367 | asection *fn_stub; | |
368 | ||
b49e97c9 TS |
369 | /* If there is a stub that 16 bit functions should use to call this |
370 | 32 bit function, this points to the section containing the stub. */ | |
371 | asection *call_stub; | |
372 | ||
373 | /* This is like the call_stub field, but it is used if the function | |
374 | being called returns a floating point value. */ | |
375 | asection *call_fp_stub; | |
7c5fcef7 | 376 | |
634835ae RS |
377 | /* The highest GGA_* value that satisfies all references to this symbol. */ |
378 | unsigned int global_got_area : 2; | |
379 | ||
6ccf4795 RS |
380 | /* True if all GOT relocations against this symbol are for calls. This is |
381 | a looser condition than no_fn_stub below, because there may be other | |
382 | non-call non-GOT relocations against the symbol. */ | |
383 | unsigned int got_only_for_calls : 1; | |
384 | ||
71782a75 RS |
385 | /* True if one of the relocations described by possibly_dynamic_relocs |
386 | is against a readonly section. */ | |
387 | unsigned int readonly_reloc : 1; | |
388 | ||
861fb55a DJ |
389 | /* True if there is a relocation against this symbol that must be |
390 | resolved by the static linker (in other words, if the relocation | |
391 | cannot possibly be made dynamic). */ | |
392 | unsigned int has_static_relocs : 1; | |
393 | ||
71782a75 RS |
394 | /* True if we must not create a .MIPS.stubs entry for this symbol. |
395 | This is set, for example, if there are relocations related to | |
396 | taking the function's address, i.e. any but R_MIPS_CALL*16 ones. | |
397 | See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */ | |
398 | unsigned int no_fn_stub : 1; | |
399 | ||
400 | /* Whether we need the fn_stub; this is true if this symbol appears | |
401 | in any relocs other than a 16 bit call. */ | |
402 | unsigned int need_fn_stub : 1; | |
403 | ||
861fb55a DJ |
404 | /* True if this symbol is referenced by branch relocations from |
405 | any non-PIC input file. This is used to determine whether an | |
406 | la25 stub is required. */ | |
407 | unsigned int has_nonpic_branches : 1; | |
33bb52fb RS |
408 | |
409 | /* Does this symbol need a traditional MIPS lazy-binding stub | |
410 | (as opposed to a PLT entry)? */ | |
411 | unsigned int needs_lazy_stub : 1; | |
1bbce132 MR |
412 | |
413 | /* Does this symbol resolve to a PLT entry? */ | |
414 | unsigned int use_plt_entry : 1; | |
b49e97c9 TS |
415 | }; |
416 | ||
417 | /* MIPS ELF linker hash table. */ | |
418 | ||
419 | struct mips_elf_link_hash_table | |
420 | { | |
421 | struct elf_link_hash_table root; | |
861fb55a | 422 | |
b49e97c9 TS |
423 | /* The number of .rtproc entries. */ |
424 | bfd_size_type procedure_count; | |
861fb55a | 425 | |
b49e97c9 TS |
426 | /* The size of the .compact_rel section (if SGI_COMPAT). */ |
427 | bfd_size_type compact_rel_size; | |
861fb55a | 428 | |
e6aea42d MR |
429 | /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry |
430 | is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */ | |
b34976b6 | 431 | bfd_boolean use_rld_obj_head; |
861fb55a | 432 | |
b4082c70 DD |
433 | /* The __rld_map or __rld_obj_head symbol. */ |
434 | struct elf_link_hash_entry *rld_symbol; | |
861fb55a | 435 | |
b49e97c9 | 436 | /* This is set if we see any mips16 stub sections. */ |
b34976b6 | 437 | bfd_boolean mips16_stubs_seen; |
861fb55a DJ |
438 | |
439 | /* True if we can generate copy relocs and PLTs. */ | |
440 | bfd_boolean use_plts_and_copy_relocs; | |
441 | ||
833794fc MR |
442 | /* True if we can only use 32-bit microMIPS instructions. */ |
443 | bfd_boolean insn32; | |
444 | ||
0a44bf69 RS |
445 | /* True if we're generating code for VxWorks. */ |
446 | bfd_boolean is_vxworks; | |
861fb55a | 447 | |
0e53d9da AN |
448 | /* True if we already reported the small-data section overflow. */ |
449 | bfd_boolean small_data_overflow_reported; | |
861fb55a | 450 | |
0a44bf69 RS |
451 | /* Shortcuts to some dynamic sections, or NULL if they are not |
452 | being used. */ | |
453 | asection *srelbss; | |
454 | asection *sdynbss; | |
455 | asection *srelplt; | |
456 | asection *srelplt2; | |
457 | asection *sgotplt; | |
458 | asection *splt; | |
4e41d0d7 | 459 | asection *sstubs; |
a8028dd0 | 460 | asection *sgot; |
861fb55a | 461 | |
a8028dd0 RS |
462 | /* The master GOT information. */ |
463 | struct mips_got_info *got_info; | |
861fb55a | 464 | |
d222d210 RS |
465 | /* The global symbol in the GOT with the lowest index in the dynamic |
466 | symbol table. */ | |
467 | struct elf_link_hash_entry *global_gotsym; | |
468 | ||
861fb55a | 469 | /* The size of the PLT header in bytes. */ |
0a44bf69 | 470 | bfd_vma plt_header_size; |
861fb55a | 471 | |
1bbce132 MR |
472 | /* The size of a standard PLT entry in bytes. */ |
473 | bfd_vma plt_mips_entry_size; | |
474 | ||
475 | /* The size of a compressed PLT entry in bytes. */ | |
476 | bfd_vma plt_comp_entry_size; | |
477 | ||
478 | /* The offset of the next standard PLT entry to create. */ | |
479 | bfd_vma plt_mips_offset; | |
480 | ||
481 | /* The offset of the next compressed PLT entry to create. */ | |
482 | bfd_vma plt_comp_offset; | |
483 | ||
484 | /* The index of the next .got.plt entry to create. */ | |
485 | bfd_vma plt_got_index; | |
861fb55a | 486 | |
33bb52fb RS |
487 | /* The number of functions that need a lazy-binding stub. */ |
488 | bfd_vma lazy_stub_count; | |
861fb55a | 489 | |
5108fc1b RS |
490 | /* The size of a function stub entry in bytes. */ |
491 | bfd_vma function_stub_size; | |
861fb55a DJ |
492 | |
493 | /* The number of reserved entries at the beginning of the GOT. */ | |
494 | unsigned int reserved_gotno; | |
495 | ||
496 | /* The section used for mips_elf_la25_stub trampolines. | |
497 | See the comment above that structure for details. */ | |
498 | asection *strampoline; | |
499 | ||
500 | /* A table of mips_elf_la25_stubs, indexed by (input_section, offset) | |
501 | pairs. */ | |
502 | htab_t la25_stubs; | |
503 | ||
504 | /* A function FN (NAME, IS, OS) that creates a new input section | |
505 | called NAME and links it to output section OS. If IS is nonnull, | |
506 | the new section should go immediately before it, otherwise it | |
507 | should go at the (current) beginning of OS. | |
508 | ||
509 | The function returns the new section on success, otherwise it | |
510 | returns null. */ | |
511 | asection *(*add_stub_section) (const char *, asection *, asection *); | |
13db6b44 RS |
512 | |
513 | /* Small local sym cache. */ | |
514 | struct sym_cache sym_cache; | |
1bbce132 MR |
515 | |
516 | /* Is the PLT header compressed? */ | |
517 | unsigned int plt_header_is_comp : 1; | |
861fb55a DJ |
518 | }; |
519 | ||
4dfe6ac6 NC |
520 | /* Get the MIPS ELF linker hash table from a link_info structure. */ |
521 | ||
522 | #define mips_elf_hash_table(p) \ | |
523 | (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \ | |
524 | == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL) | |
525 | ||
861fb55a | 526 | /* A structure used to communicate with htab_traverse callbacks. */ |
4dfe6ac6 NC |
527 | struct mips_htab_traverse_info |
528 | { | |
861fb55a DJ |
529 | /* The usual link-wide information. */ |
530 | struct bfd_link_info *info; | |
531 | bfd *output_bfd; | |
532 | ||
533 | /* Starts off FALSE and is set to TRUE if the link should be aborted. */ | |
534 | bfd_boolean error; | |
b49e97c9 TS |
535 | }; |
536 | ||
6ae68ba3 MR |
537 | /* MIPS ELF private object data. */ |
538 | ||
539 | struct mips_elf_obj_tdata | |
540 | { | |
541 | /* Generic ELF private object data. */ | |
542 | struct elf_obj_tdata root; | |
543 | ||
544 | /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */ | |
545 | bfd *abi_fp_bfd; | |
ee227692 | 546 | |
b60bf9be CF |
547 | /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */ |
548 | bfd *abi_msa_bfd; | |
549 | ||
ee227692 RS |
550 | /* The GOT requirements of input bfds. */ |
551 | struct mips_got_info *got; | |
698600e4 AM |
552 | |
553 | /* Used by _bfd_mips_elf_find_nearest_line. The structure could be | |
554 | included directly in this one, but there's no point to wasting | |
555 | the memory just for the infrequently called find_nearest_line. */ | |
556 | struct mips_elf_find_line *find_line_info; | |
557 | ||
558 | /* An array of stub sections indexed by symbol number. */ | |
559 | asection **local_stubs; | |
560 | asection **local_call_stubs; | |
561 | ||
562 | /* The Irix 5 support uses two virtual sections, which represent | |
563 | text/data symbols defined in dynamic objects. */ | |
564 | asymbol *elf_data_symbol; | |
565 | asymbol *elf_text_symbol; | |
566 | asection *elf_data_section; | |
567 | asection *elf_text_section; | |
6ae68ba3 MR |
568 | }; |
569 | ||
570 | /* Get MIPS ELF private object data from BFD's tdata. */ | |
571 | ||
572 | #define mips_elf_tdata(bfd) \ | |
573 | ((struct mips_elf_obj_tdata *) (bfd)->tdata.any) | |
574 | ||
0f20cc35 DJ |
575 | #define TLS_RELOC_P(r_type) \ |
576 | (r_type == R_MIPS_TLS_DTPMOD32 \ | |
577 | || r_type == R_MIPS_TLS_DTPMOD64 \ | |
578 | || r_type == R_MIPS_TLS_DTPREL32 \ | |
579 | || r_type == R_MIPS_TLS_DTPREL64 \ | |
580 | || r_type == R_MIPS_TLS_GD \ | |
581 | || r_type == R_MIPS_TLS_LDM \ | |
582 | || r_type == R_MIPS_TLS_DTPREL_HI16 \ | |
583 | || r_type == R_MIPS_TLS_DTPREL_LO16 \ | |
584 | || r_type == R_MIPS_TLS_GOTTPREL \ | |
585 | || r_type == R_MIPS_TLS_TPREL32 \ | |
586 | || r_type == R_MIPS_TLS_TPREL64 \ | |
587 | || r_type == R_MIPS_TLS_TPREL_HI16 \ | |
df58fc94 | 588 | || r_type == R_MIPS_TLS_TPREL_LO16 \ |
d0f13682 CLT |
589 | || r_type == R_MIPS16_TLS_GD \ |
590 | || r_type == R_MIPS16_TLS_LDM \ | |
591 | || r_type == R_MIPS16_TLS_DTPREL_HI16 \ | |
592 | || r_type == R_MIPS16_TLS_DTPREL_LO16 \ | |
593 | || r_type == R_MIPS16_TLS_GOTTPREL \ | |
594 | || r_type == R_MIPS16_TLS_TPREL_HI16 \ | |
595 | || r_type == R_MIPS16_TLS_TPREL_LO16 \ | |
df58fc94 RS |
596 | || r_type == R_MICROMIPS_TLS_GD \ |
597 | || r_type == R_MICROMIPS_TLS_LDM \ | |
598 | || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \ | |
599 | || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \ | |
600 | || r_type == R_MICROMIPS_TLS_GOTTPREL \ | |
601 | || r_type == R_MICROMIPS_TLS_TPREL_HI16 \ | |
602 | || r_type == R_MICROMIPS_TLS_TPREL_LO16) | |
0f20cc35 | 603 | |
b49e97c9 TS |
604 | /* Structure used to pass information to mips_elf_output_extsym. */ |
605 | ||
606 | struct extsym_info | |
607 | { | |
9e4aeb93 RS |
608 | bfd *abfd; |
609 | struct bfd_link_info *info; | |
b49e97c9 TS |
610 | struct ecoff_debug_info *debug; |
611 | const struct ecoff_debug_swap *swap; | |
b34976b6 | 612 | bfd_boolean failed; |
b49e97c9 TS |
613 | }; |
614 | ||
8dc1a139 | 615 | /* The names of the runtime procedure table symbols used on IRIX5. */ |
b49e97c9 TS |
616 | |
617 | static const char * const mips_elf_dynsym_rtproc_names[] = | |
618 | { | |
619 | "_procedure_table", | |
620 | "_procedure_string_table", | |
621 | "_procedure_table_size", | |
622 | NULL | |
623 | }; | |
624 | ||
625 | /* These structures are used to generate the .compact_rel section on | |
8dc1a139 | 626 | IRIX5. */ |
b49e97c9 TS |
627 | |
628 | typedef struct | |
629 | { | |
630 | unsigned long id1; /* Always one? */ | |
631 | unsigned long num; /* Number of compact relocation entries. */ | |
632 | unsigned long id2; /* Always two? */ | |
633 | unsigned long offset; /* The file offset of the first relocation. */ | |
634 | unsigned long reserved0; /* Zero? */ | |
635 | unsigned long reserved1; /* Zero? */ | |
636 | } Elf32_compact_rel; | |
637 | ||
638 | typedef struct | |
639 | { | |
640 | bfd_byte id1[4]; | |
641 | bfd_byte num[4]; | |
642 | bfd_byte id2[4]; | |
643 | bfd_byte offset[4]; | |
644 | bfd_byte reserved0[4]; | |
645 | bfd_byte reserved1[4]; | |
646 | } Elf32_External_compact_rel; | |
647 | ||
648 | typedef struct | |
649 | { | |
650 | unsigned int ctype : 1; /* 1: long 0: short format. See below. */ | |
651 | unsigned int rtype : 4; /* Relocation types. See below. */ | |
652 | unsigned int dist2to : 8; | |
653 | unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ | |
654 | unsigned long konst; /* KONST field. See below. */ | |
655 | unsigned long vaddr; /* VADDR to be relocated. */ | |
656 | } Elf32_crinfo; | |
657 | ||
658 | typedef struct | |
659 | { | |
660 | unsigned int ctype : 1; /* 1: long 0: short format. See below. */ | |
661 | unsigned int rtype : 4; /* Relocation types. See below. */ | |
662 | unsigned int dist2to : 8; | |
663 | unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ | |
664 | unsigned long konst; /* KONST field. See below. */ | |
665 | } Elf32_crinfo2; | |
666 | ||
667 | typedef struct | |
668 | { | |
669 | bfd_byte info[4]; | |
670 | bfd_byte konst[4]; | |
671 | bfd_byte vaddr[4]; | |
672 | } Elf32_External_crinfo; | |
673 | ||
674 | typedef struct | |
675 | { | |
676 | bfd_byte info[4]; | |
677 | bfd_byte konst[4]; | |
678 | } Elf32_External_crinfo2; | |
679 | ||
680 | /* These are the constants used to swap the bitfields in a crinfo. */ | |
681 | ||
682 | #define CRINFO_CTYPE (0x1) | |
683 | #define CRINFO_CTYPE_SH (31) | |
684 | #define CRINFO_RTYPE (0xf) | |
685 | #define CRINFO_RTYPE_SH (27) | |
686 | #define CRINFO_DIST2TO (0xff) | |
687 | #define CRINFO_DIST2TO_SH (19) | |
688 | #define CRINFO_RELVADDR (0x7ffff) | |
689 | #define CRINFO_RELVADDR_SH (0) | |
690 | ||
691 | /* A compact relocation info has long (3 words) or short (2 words) | |
692 | formats. A short format doesn't have VADDR field and relvaddr | |
693 | fields contains ((VADDR - vaddr of the previous entry) >> 2). */ | |
694 | #define CRF_MIPS_LONG 1 | |
695 | #define CRF_MIPS_SHORT 0 | |
696 | ||
697 | /* There are 4 types of compact relocation at least. The value KONST | |
698 | has different meaning for each type: | |
699 | ||
700 | (type) (konst) | |
701 | CT_MIPS_REL32 Address in data | |
702 | CT_MIPS_WORD Address in word (XXX) | |
703 | CT_MIPS_GPHI_LO GP - vaddr | |
704 | CT_MIPS_JMPAD Address to jump | |
705 | */ | |
706 | ||
707 | #define CRT_MIPS_REL32 0xa | |
708 | #define CRT_MIPS_WORD 0xb | |
709 | #define CRT_MIPS_GPHI_LO 0xc | |
710 | #define CRT_MIPS_JMPAD 0xd | |
711 | ||
712 | #define mips_elf_set_cr_format(x,format) ((x).ctype = (format)) | |
713 | #define mips_elf_set_cr_type(x,type) ((x).rtype = (type)) | |
714 | #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v)) | |
715 | #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2) | |
716 | \f | |
717 | /* The structure of the runtime procedure descriptor created by the | |
718 | loader for use by the static exception system. */ | |
719 | ||
720 | typedef struct runtime_pdr { | |
ae9a127f NC |
721 | bfd_vma adr; /* Memory address of start of procedure. */ |
722 | long regmask; /* Save register mask. */ | |
723 | long regoffset; /* Save register offset. */ | |
724 | long fregmask; /* Save floating point register mask. */ | |
725 | long fregoffset; /* Save floating point register offset. */ | |
726 | long frameoffset; /* Frame size. */ | |
727 | short framereg; /* Frame pointer register. */ | |
728 | short pcreg; /* Offset or reg of return pc. */ | |
729 | long irpss; /* Index into the runtime string table. */ | |
b49e97c9 | 730 | long reserved; |
ae9a127f | 731 | struct exception_info *exception_info;/* Pointer to exception array. */ |
b49e97c9 TS |
732 | } RPDR, *pRPDR; |
733 | #define cbRPDR sizeof (RPDR) | |
734 | #define rpdNil ((pRPDR) 0) | |
735 | \f | |
b15e6682 | 736 | static struct mips_got_entry *mips_elf_create_local_got_entry |
a8028dd0 RS |
737 | (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long, |
738 | struct mips_elf_link_hash_entry *, int); | |
b34976b6 | 739 | static bfd_boolean mips_elf_sort_hash_table_f |
9719ad41 | 740 | (struct mips_elf_link_hash_entry *, void *); |
9719ad41 RS |
741 | static bfd_vma mips_elf_high |
742 | (bfd_vma); | |
b34976b6 | 743 | static bfd_boolean mips_elf_create_dynamic_relocation |
9719ad41 RS |
744 | (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *, |
745 | struct mips_elf_link_hash_entry *, asection *, bfd_vma, | |
746 | bfd_vma *, asection *); | |
f4416af6 | 747 | static bfd_vma mips_elf_adjust_gp |
9719ad41 | 748 | (bfd *, struct mips_got_info *, bfd *); |
f4416af6 | 749 | |
b49e97c9 TS |
750 | /* This will be used when we sort the dynamic relocation records. */ |
751 | static bfd *reldyn_sorting_bfd; | |
752 | ||
6d30f5b2 NC |
753 | /* True if ABFD is for CPUs with load interlocking that include |
754 | non-MIPS1 CPUs and R3900. */ | |
755 | #define LOAD_INTERLOCKS_P(abfd) \ | |
756 | ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \ | |
757 | || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900)) | |
758 | ||
cd8d5a82 CF |
759 | /* True if ABFD is for CPUs that are faster if JAL is converted to BAL. |
760 | This should be safe for all architectures. We enable this predicate | |
761 | for RM9000 for now. */ | |
762 | #define JAL_TO_BAL_P(abfd) \ | |
763 | ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000) | |
764 | ||
765 | /* True if ABFD is for CPUs that are faster if JALR is converted to BAL. | |
766 | This should be safe for all architectures. We enable this predicate for | |
767 | all CPUs. */ | |
768 | #define JALR_TO_BAL_P(abfd) 1 | |
769 | ||
38a7df63 CF |
770 | /* True if ABFD is for CPUs that are faster if JR is converted to B. |
771 | This should be safe for all architectures. We enable this predicate for | |
772 | all CPUs. */ | |
773 | #define JR_TO_B_P(abfd) 1 | |
774 | ||
861fb55a DJ |
775 | /* True if ABFD is a PIC object. */ |
776 | #define PIC_OBJECT_P(abfd) \ | |
777 | ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0) | |
778 | ||
b49e97c9 | 779 | /* Nonzero if ABFD is using the N32 ABI. */ |
b49e97c9 TS |
780 | #define ABI_N32_P(abfd) \ |
781 | ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0) | |
782 | ||
4a14403c | 783 | /* Nonzero if ABFD is using the N64 ABI. */ |
b49e97c9 | 784 | #define ABI_64_P(abfd) \ |
141ff970 | 785 | (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64) |
b49e97c9 | 786 | |
4a14403c TS |
787 | /* Nonzero if ABFD is using NewABI conventions. */ |
788 | #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd)) | |
789 | ||
e8faf7d1 MR |
790 | /* Nonzero if ABFD has microMIPS code. */ |
791 | #define MICROMIPS_P(abfd) \ | |
792 | ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0) | |
793 | ||
4a14403c | 794 | /* The IRIX compatibility level we are striving for. */ |
b49e97c9 TS |
795 | #define IRIX_COMPAT(abfd) \ |
796 | (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd)) | |
797 | ||
b49e97c9 TS |
798 | /* Whether we are trying to be compatible with IRIX at all. */ |
799 | #define SGI_COMPAT(abfd) \ | |
800 | (IRIX_COMPAT (abfd) != ict_none) | |
801 | ||
802 | /* The name of the options section. */ | |
803 | #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \ | |
d80dcc6a | 804 | (NEWABI_P (abfd) ? ".MIPS.options" : ".options") |
b49e97c9 | 805 | |
cc2e31b9 RS |
806 | /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section. |
807 | Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */ | |
808 | #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \ | |
809 | (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0) | |
810 | ||
943284cc DJ |
811 | /* Whether the section is readonly. */ |
812 | #define MIPS_ELF_READONLY_SECTION(sec) \ | |
813 | ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \ | |
814 | == (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) | |
815 | ||
b49e97c9 | 816 | /* The name of the stub section. */ |
ca07892d | 817 | #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs" |
b49e97c9 TS |
818 | |
819 | /* The size of an external REL relocation. */ | |
820 | #define MIPS_ELF_REL_SIZE(abfd) \ | |
821 | (get_elf_backend_data (abfd)->s->sizeof_rel) | |
822 | ||
0a44bf69 RS |
823 | /* The size of an external RELA relocation. */ |
824 | #define MIPS_ELF_RELA_SIZE(abfd) \ | |
825 | (get_elf_backend_data (abfd)->s->sizeof_rela) | |
826 | ||
b49e97c9 TS |
827 | /* The size of an external dynamic table entry. */ |
828 | #define MIPS_ELF_DYN_SIZE(abfd) \ | |
829 | (get_elf_backend_data (abfd)->s->sizeof_dyn) | |
830 | ||
831 | /* The size of a GOT entry. */ | |
832 | #define MIPS_ELF_GOT_SIZE(abfd) \ | |
833 | (get_elf_backend_data (abfd)->s->arch_size / 8) | |
834 | ||
b4082c70 DD |
835 | /* The size of the .rld_map section. */ |
836 | #define MIPS_ELF_RLD_MAP_SIZE(abfd) \ | |
837 | (get_elf_backend_data (abfd)->s->arch_size / 8) | |
838 | ||
b49e97c9 TS |
839 | /* The size of a symbol-table entry. */ |
840 | #define MIPS_ELF_SYM_SIZE(abfd) \ | |
841 | (get_elf_backend_data (abfd)->s->sizeof_sym) | |
842 | ||
843 | /* The default alignment for sections, as a power of two. */ | |
844 | #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \ | |
45d6a902 | 845 | (get_elf_backend_data (abfd)->s->log_file_align) |
b49e97c9 TS |
846 | |
847 | /* Get word-sized data. */ | |
848 | #define MIPS_ELF_GET_WORD(abfd, ptr) \ | |
849 | (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr)) | |
850 | ||
851 | /* Put out word-sized data. */ | |
852 | #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \ | |
853 | (ABI_64_P (abfd) \ | |
854 | ? bfd_put_64 (abfd, val, ptr) \ | |
855 | : bfd_put_32 (abfd, val, ptr)) | |
856 | ||
861fb55a DJ |
857 | /* The opcode for word-sized loads (LW or LD). */ |
858 | #define MIPS_ELF_LOAD_WORD(abfd) \ | |
859 | (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000) | |
860 | ||
b49e97c9 | 861 | /* Add a dynamic symbol table-entry. */ |
9719ad41 | 862 | #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \ |
5a580b3a | 863 | _bfd_elf_add_dynamic_entry (info, tag, val) |
b49e97c9 TS |
864 | |
865 | #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \ | |
866 | (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela)) | |
867 | ||
0a44bf69 RS |
868 | /* The name of the dynamic relocation section. */ |
869 | #define MIPS_ELF_REL_DYN_NAME(INFO) \ | |
870 | (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn") | |
871 | ||
b49e97c9 TS |
872 | /* In case we're on a 32-bit machine, construct a 64-bit "-1" value |
873 | from smaller values. Start with zero, widen, *then* decrement. */ | |
874 | #define MINUS_ONE (((bfd_vma)0) - 1) | |
c5ae1840 | 875 | #define MINUS_TWO (((bfd_vma)0) - 2) |
b49e97c9 | 876 | |
51e38d68 RS |
877 | /* The value to write into got[1] for SVR4 targets, to identify it is |
878 | a GNU object. The dynamic linker can then use got[1] to store the | |
879 | module pointer. */ | |
880 | #define MIPS_ELF_GNU_GOT1_MASK(abfd) \ | |
881 | ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31)) | |
882 | ||
f4416af6 | 883 | /* The offset of $gp from the beginning of the .got section. */ |
0a44bf69 RS |
884 | #define ELF_MIPS_GP_OFFSET(INFO) \ |
885 | (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0) | |
f4416af6 AO |
886 | |
887 | /* The maximum size of the GOT for it to be addressable using 16-bit | |
888 | offsets from $gp. */ | |
0a44bf69 | 889 | #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff) |
f4416af6 | 890 | |
6a691779 | 891 | /* Instructions which appear in a stub. */ |
3d6746ca DD |
892 | #define STUB_LW(abfd) \ |
893 | ((ABI_64_P (abfd) \ | |
894 | ? 0xdf998010 /* ld t9,0x8010(gp) */ \ | |
895 | : 0x8f998010)) /* lw t9,0x8010(gp) */ | |
896 | #define STUB_MOVE(abfd) \ | |
897 | ((ABI_64_P (abfd) \ | |
898 | ? 0x03e0782d /* daddu t7,ra */ \ | |
899 | : 0x03e07821)) /* addu t7,ra */ | |
900 | #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */ | |
901 | #define STUB_JALR 0x0320f809 /* jalr t9,ra */ | |
5108fc1b RS |
902 | #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */ |
903 | #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */ | |
3d6746ca DD |
904 | #define STUB_LI16S(abfd, VAL) \ |
905 | ((ABI_64_P (abfd) \ | |
906 | ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \ | |
907 | : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */ | |
908 | ||
1bbce132 MR |
909 | /* Likewise for the microMIPS ASE. */ |
910 | #define STUB_LW_MICROMIPS(abfd) \ | |
911 | (ABI_64_P (abfd) \ | |
912 | ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \ | |
913 | : 0xff3c8010) /* lw t9,0x8010(gp) */ | |
914 | #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */ | |
833794fc MR |
915 | #define STUB_MOVE32_MICROMIPS(abfd) \ |
916 | (ABI_64_P (abfd) \ | |
917 | ? 0x581f7950 /* daddu t7,ra,zero */ \ | |
918 | : 0x001f7950) /* addu t7,ra,zero */ | |
1bbce132 MR |
919 | #define STUB_LUI_MICROMIPS(VAL) \ |
920 | (0x41b80000 + (VAL)) /* lui t8,VAL */ | |
921 | #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */ | |
833794fc | 922 | #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */ |
1bbce132 MR |
923 | #define STUB_ORI_MICROMIPS(VAL) \ |
924 | (0x53180000 + (VAL)) /* ori t8,t8,VAL */ | |
925 | #define STUB_LI16U_MICROMIPS(VAL) \ | |
926 | (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */ | |
927 | #define STUB_LI16S_MICROMIPS(abfd, VAL) \ | |
928 | (ABI_64_P (abfd) \ | |
929 | ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \ | |
930 | : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */ | |
931 | ||
5108fc1b RS |
932 | #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16 |
933 | #define MIPS_FUNCTION_STUB_BIG_SIZE 20 | |
1bbce132 MR |
934 | #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12 |
935 | #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16 | |
833794fc MR |
936 | #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16 |
937 | #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20 | |
b49e97c9 TS |
938 | |
939 | /* The name of the dynamic interpreter. This is put in the .interp | |
940 | section. */ | |
941 | ||
942 | #define ELF_DYNAMIC_INTERPRETER(abfd) \ | |
943 | (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \ | |
944 | : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \ | |
945 | : "/usr/lib/libc.so.1") | |
946 | ||
947 | #ifdef BFD64 | |
ee6423ed AO |
948 | #define MNAME(bfd,pre,pos) \ |
949 | (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos)) | |
b49e97c9 TS |
950 | #define ELF_R_SYM(bfd, i) \ |
951 | (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i)) | |
952 | #define ELF_R_TYPE(bfd, i) \ | |
953 | (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i)) | |
954 | #define ELF_R_INFO(bfd, s, t) \ | |
955 | (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t)) | |
956 | #else | |
ee6423ed | 957 | #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos) |
b49e97c9 TS |
958 | #define ELF_R_SYM(bfd, i) \ |
959 | (ELF32_R_SYM (i)) | |
960 | #define ELF_R_TYPE(bfd, i) \ | |
961 | (ELF32_R_TYPE (i)) | |
962 | #define ELF_R_INFO(bfd, s, t) \ | |
963 | (ELF32_R_INFO (s, t)) | |
964 | #endif | |
965 | \f | |
966 | /* The mips16 compiler uses a couple of special sections to handle | |
967 | floating point arguments. | |
968 | ||
969 | Section names that look like .mips16.fn.FNNAME contain stubs that | |
970 | copy floating point arguments from the fp regs to the gp regs and | |
971 | then jump to FNNAME. If any 32 bit function calls FNNAME, the | |
972 | call should be redirected to the stub instead. If no 32 bit | |
973 | function calls FNNAME, the stub should be discarded. We need to | |
974 | consider any reference to the function, not just a call, because | |
975 | if the address of the function is taken we will need the stub, | |
976 | since the address might be passed to a 32 bit function. | |
977 | ||
978 | Section names that look like .mips16.call.FNNAME contain stubs | |
979 | that copy floating point arguments from the gp regs to the fp | |
980 | regs and then jump to FNNAME. If FNNAME is a 32 bit function, | |
981 | then any 16 bit function that calls FNNAME should be redirected | |
982 | to the stub instead. If FNNAME is not a 32 bit function, the | |
983 | stub should be discarded. | |
984 | ||
985 | .mips16.call.fp.FNNAME sections are similar, but contain stubs | |
986 | which call FNNAME and then copy the return value from the fp regs | |
987 | to the gp regs. These stubs store the return value in $18 while | |
988 | calling FNNAME; any function which might call one of these stubs | |
989 | must arrange to save $18 around the call. (This case is not | |
990 | needed for 32 bit functions that call 16 bit functions, because | |
991 | 16 bit functions always return floating point values in both | |
992 | $f0/$f1 and $2/$3.) | |
993 | ||
994 | Note that in all cases FNNAME might be defined statically. | |
995 | Therefore, FNNAME is not used literally. Instead, the relocation | |
996 | information will indicate which symbol the section is for. | |
997 | ||
998 | We record any stubs that we find in the symbol table. */ | |
999 | ||
1000 | #define FN_STUB ".mips16.fn." | |
1001 | #define CALL_STUB ".mips16.call." | |
1002 | #define CALL_FP_STUB ".mips16.call.fp." | |
b9d58d71 TS |
1003 | |
1004 | #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB) | |
1005 | #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB) | |
1006 | #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB) | |
b49e97c9 | 1007 | \f |
861fb55a | 1008 | /* The format of the first PLT entry in an O32 executable. */ |
6d30f5b2 NC |
1009 | static const bfd_vma mips_o32_exec_plt0_entry[] = |
1010 | { | |
861fb55a DJ |
1011 | 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */ |
1012 | 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */ | |
1013 | 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */ | |
1014 | 0x031cc023, /* subu $24, $24, $28 */ | |
81f5d455 | 1015 | 0x03e07821, /* move $15, $31 # 32-bit move (addu) */ |
861fb55a DJ |
1016 | 0x0018c082, /* srl $24, $24, 2 */ |
1017 | 0x0320f809, /* jalr $25 */ | |
1018 | 0x2718fffe /* subu $24, $24, 2 */ | |
1019 | }; | |
1020 | ||
1021 | /* The format of the first PLT entry in an N32 executable. Different | |
1022 | because gp ($28) is not available; we use t2 ($14) instead. */ | |
6d30f5b2 NC |
1023 | static const bfd_vma mips_n32_exec_plt0_entry[] = |
1024 | { | |
861fb55a DJ |
1025 | 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */ |
1026 | 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */ | |
1027 | 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */ | |
1028 | 0x030ec023, /* subu $24, $24, $14 */ | |
81f5d455 | 1029 | 0x03e07821, /* move $15, $31 # 32-bit move (addu) */ |
861fb55a DJ |
1030 | 0x0018c082, /* srl $24, $24, 2 */ |
1031 | 0x0320f809, /* jalr $25 */ | |
1032 | 0x2718fffe /* subu $24, $24, 2 */ | |
1033 | }; | |
1034 | ||
1035 | /* The format of the first PLT entry in an N64 executable. Different | |
1036 | from N32 because of the increased size of GOT entries. */ | |
6d30f5b2 NC |
1037 | static const bfd_vma mips_n64_exec_plt0_entry[] = |
1038 | { | |
861fb55a DJ |
1039 | 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */ |
1040 | 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */ | |
1041 | 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */ | |
1042 | 0x030ec023, /* subu $24, $24, $14 */ | |
81f5d455 | 1043 | 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */ |
861fb55a DJ |
1044 | 0x0018c0c2, /* srl $24, $24, 3 */ |
1045 | 0x0320f809, /* jalr $25 */ | |
1046 | 0x2718fffe /* subu $24, $24, 2 */ | |
1047 | }; | |
1048 | ||
1bbce132 MR |
1049 | /* The format of the microMIPS first PLT entry in an O32 executable. |
1050 | We rely on v0 ($2) rather than t8 ($24) to contain the address | |
1051 | of the GOTPLT entry handled, so this stub may only be used when | |
1052 | all the subsequent PLT entries are microMIPS code too. | |
1053 | ||
1054 | The trailing NOP is for alignment and correct disassembly only. */ | |
1055 | static const bfd_vma micromips_o32_exec_plt0_entry[] = | |
1056 | { | |
1057 | 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */ | |
1058 | 0xff23, 0x0000, /* lw $25, 0($3) */ | |
1059 | 0x0535, /* subu $2, $2, $3 */ | |
1060 | 0x2525, /* srl $2, $2, 2 */ | |
1061 | 0x3302, 0xfffe, /* subu $24, $2, 2 */ | |
1062 | 0x0dff, /* move $15, $31 */ | |
1063 | 0x45f9, /* jalrs $25 */ | |
1064 | 0x0f83, /* move $28, $3 */ | |
1065 | 0x0c00 /* nop */ | |
1066 | }; | |
1067 | ||
833794fc MR |
1068 | /* The format of the microMIPS first PLT entry in an O32 executable |
1069 | in the insn32 mode. */ | |
1070 | static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] = | |
1071 | { | |
1072 | 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */ | |
1073 | 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */ | |
1074 | 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */ | |
1075 | 0x0398, 0xc1d0, /* subu $24, $24, $28 */ | |
1076 | 0x001f, 0x7950, /* move $15, $31 */ | |
1077 | 0x0318, 0x1040, /* srl $24, $24, 2 */ | |
1078 | 0x03f9, 0x0f3c, /* jalr $25 */ | |
1079 | 0x3318, 0xfffe /* subu $24, $24, 2 */ | |
1080 | }; | |
1081 | ||
1bbce132 | 1082 | /* The format of subsequent standard PLT entries. */ |
6d30f5b2 NC |
1083 | static const bfd_vma mips_exec_plt_entry[] = |
1084 | { | |
861fb55a DJ |
1085 | 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */ |
1086 | 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */ | |
1087 | 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */ | |
1088 | 0x03200008 /* jr $25 */ | |
1089 | }; | |
1090 | ||
1bbce132 MR |
1091 | /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2) |
1092 | and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not | |
1093 | directly addressable. */ | |
1094 | static const bfd_vma mips16_o32_exec_plt_entry[] = | |
1095 | { | |
1096 | 0xb203, /* lw $2, 12($pc) */ | |
1097 | 0x9a60, /* lw $3, 0($2) */ | |
1098 | 0x651a, /* move $24, $2 */ | |
1099 | 0xeb00, /* jr $3 */ | |
1100 | 0x653b, /* move $25, $3 */ | |
1101 | 0x6500, /* nop */ | |
1102 | 0x0000, 0x0000 /* .word (.got.plt entry) */ | |
1103 | }; | |
1104 | ||
1105 | /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2) | |
1106 | as a temporary because t8 ($24) is not addressable with ADDIUPC. */ | |
1107 | static const bfd_vma micromips_o32_exec_plt_entry[] = | |
1108 | { | |
1109 | 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */ | |
1110 | 0xff22, 0x0000, /* lw $25, 0($2) */ | |
1111 | 0x4599, /* jr $25 */ | |
1112 | 0x0f02 /* move $24, $2 */ | |
1113 | }; | |
1114 | ||
833794fc MR |
1115 | /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */ |
1116 | static const bfd_vma micromips_insn32_o32_exec_plt_entry[] = | |
1117 | { | |
1118 | 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */ | |
1119 | 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */ | |
1120 | 0x0019, 0x0f3c, /* jr $25 */ | |
1121 | 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */ | |
1122 | }; | |
1123 | ||
0a44bf69 | 1124 | /* The format of the first PLT entry in a VxWorks executable. */ |
6d30f5b2 NC |
1125 | static const bfd_vma mips_vxworks_exec_plt0_entry[] = |
1126 | { | |
0a44bf69 RS |
1127 | 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */ |
1128 | 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */ | |
1129 | 0x8f390008, /* lw t9, 8(t9) */ | |
1130 | 0x00000000, /* nop */ | |
1131 | 0x03200008, /* jr t9 */ | |
1132 | 0x00000000 /* nop */ | |
1133 | }; | |
1134 | ||
1135 | /* The format of subsequent PLT entries. */ | |
6d30f5b2 NC |
1136 | static const bfd_vma mips_vxworks_exec_plt_entry[] = |
1137 | { | |
0a44bf69 RS |
1138 | 0x10000000, /* b .PLT_resolver */ |
1139 | 0x24180000, /* li t8, <pltindex> */ | |
1140 | 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */ | |
1141 | 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */ | |
1142 | 0x8f390000, /* lw t9, 0(t9) */ | |
1143 | 0x00000000, /* nop */ | |
1144 | 0x03200008, /* jr t9 */ | |
1145 | 0x00000000 /* nop */ | |
1146 | }; | |
1147 | ||
1148 | /* The format of the first PLT entry in a VxWorks shared object. */ | |
6d30f5b2 NC |
1149 | static const bfd_vma mips_vxworks_shared_plt0_entry[] = |
1150 | { | |
0a44bf69 RS |
1151 | 0x8f990008, /* lw t9, 8(gp) */ |
1152 | 0x00000000, /* nop */ | |
1153 | 0x03200008, /* jr t9 */ | |
1154 | 0x00000000, /* nop */ | |
1155 | 0x00000000, /* nop */ | |
1156 | 0x00000000 /* nop */ | |
1157 | }; | |
1158 | ||
1159 | /* The format of subsequent PLT entries. */ | |
6d30f5b2 NC |
1160 | static const bfd_vma mips_vxworks_shared_plt_entry[] = |
1161 | { | |
0a44bf69 RS |
1162 | 0x10000000, /* b .PLT_resolver */ |
1163 | 0x24180000 /* li t8, <pltindex> */ | |
1164 | }; | |
1165 | \f | |
d21911ea MR |
1166 | /* microMIPS 32-bit opcode helper installer. */ |
1167 | ||
1168 | static void | |
1169 | bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr) | |
1170 | { | |
1171 | bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr); | |
1172 | bfd_put_16 (abfd, opcode & 0xffff, ptr + 2); | |
1173 | } | |
1174 | ||
1175 | /* microMIPS 32-bit opcode helper retriever. */ | |
1176 | ||
1177 | static bfd_vma | |
1178 | bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr) | |
1179 | { | |
1180 | return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2); | |
1181 | } | |
1182 | \f | |
b49e97c9 TS |
1183 | /* Look up an entry in a MIPS ELF linker hash table. */ |
1184 | ||
1185 | #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \ | |
1186 | ((struct mips_elf_link_hash_entry *) \ | |
1187 | elf_link_hash_lookup (&(table)->root, (string), (create), \ | |
1188 | (copy), (follow))) | |
1189 | ||
1190 | /* Traverse a MIPS ELF linker hash table. */ | |
1191 | ||
1192 | #define mips_elf_link_hash_traverse(table, func, info) \ | |
1193 | (elf_link_hash_traverse \ | |
1194 | (&(table)->root, \ | |
9719ad41 | 1195 | (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \ |
b49e97c9 TS |
1196 | (info))) |
1197 | ||
0f20cc35 DJ |
1198 | /* Find the base offsets for thread-local storage in this object, |
1199 | for GD/LD and IE/LE respectively. */ | |
1200 | ||
1201 | #define TP_OFFSET 0x7000 | |
1202 | #define DTP_OFFSET 0x8000 | |
1203 | ||
1204 | static bfd_vma | |
1205 | dtprel_base (struct bfd_link_info *info) | |
1206 | { | |
1207 | /* If tls_sec is NULL, we should have signalled an error already. */ | |
1208 | if (elf_hash_table (info)->tls_sec == NULL) | |
1209 | return 0; | |
1210 | return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET; | |
1211 | } | |
1212 | ||
1213 | static bfd_vma | |
1214 | tprel_base (struct bfd_link_info *info) | |
1215 | { | |
1216 | /* If tls_sec is NULL, we should have signalled an error already. */ | |
1217 | if (elf_hash_table (info)->tls_sec == NULL) | |
1218 | return 0; | |
1219 | return elf_hash_table (info)->tls_sec->vma + TP_OFFSET; | |
1220 | } | |
1221 | ||
b49e97c9 TS |
1222 | /* Create an entry in a MIPS ELF linker hash table. */ |
1223 | ||
1224 | static struct bfd_hash_entry * | |
9719ad41 RS |
1225 | mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry, |
1226 | struct bfd_hash_table *table, const char *string) | |
b49e97c9 TS |
1227 | { |
1228 | struct mips_elf_link_hash_entry *ret = | |
1229 | (struct mips_elf_link_hash_entry *) entry; | |
1230 | ||
1231 | /* Allocate the structure if it has not already been allocated by a | |
1232 | subclass. */ | |
9719ad41 RS |
1233 | if (ret == NULL) |
1234 | ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry)); | |
1235 | if (ret == NULL) | |
b49e97c9 TS |
1236 | return (struct bfd_hash_entry *) ret; |
1237 | ||
1238 | /* Call the allocation method of the superclass. */ | |
1239 | ret = ((struct mips_elf_link_hash_entry *) | |
1240 | _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, | |
1241 | table, string)); | |
9719ad41 | 1242 | if (ret != NULL) |
b49e97c9 TS |
1243 | { |
1244 | /* Set local fields. */ | |
1245 | memset (&ret->esym, 0, sizeof (EXTR)); | |
1246 | /* We use -2 as a marker to indicate that the information has | |
1247 | not been set. -1 means there is no associated ifd. */ | |
1248 | ret->esym.ifd = -2; | |
861fb55a | 1249 | ret->la25_stub = 0; |
b49e97c9 | 1250 | ret->possibly_dynamic_relocs = 0; |
b49e97c9 | 1251 | ret->fn_stub = NULL; |
b49e97c9 TS |
1252 | ret->call_stub = NULL; |
1253 | ret->call_fp_stub = NULL; | |
634835ae | 1254 | ret->global_got_area = GGA_NONE; |
6ccf4795 | 1255 | ret->got_only_for_calls = TRUE; |
71782a75 | 1256 | ret->readonly_reloc = FALSE; |
861fb55a | 1257 | ret->has_static_relocs = FALSE; |
71782a75 RS |
1258 | ret->no_fn_stub = FALSE; |
1259 | ret->need_fn_stub = FALSE; | |
861fb55a | 1260 | ret->has_nonpic_branches = FALSE; |
33bb52fb | 1261 | ret->needs_lazy_stub = FALSE; |
1bbce132 | 1262 | ret->use_plt_entry = FALSE; |
b49e97c9 TS |
1263 | } |
1264 | ||
1265 | return (struct bfd_hash_entry *) ret; | |
1266 | } | |
f0abc2a1 | 1267 | |
6ae68ba3 MR |
1268 | /* Allocate MIPS ELF private object data. */ |
1269 | ||
1270 | bfd_boolean | |
1271 | _bfd_mips_elf_mkobject (bfd *abfd) | |
1272 | { | |
1273 | return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata), | |
1274 | MIPS_ELF_DATA); | |
1275 | } | |
1276 | ||
f0abc2a1 | 1277 | bfd_boolean |
9719ad41 | 1278 | _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec) |
f0abc2a1 | 1279 | { |
f592407e AM |
1280 | if (!sec->used_by_bfd) |
1281 | { | |
1282 | struct _mips_elf_section_data *sdata; | |
1283 | bfd_size_type amt = sizeof (*sdata); | |
f0abc2a1 | 1284 | |
f592407e AM |
1285 | sdata = bfd_zalloc (abfd, amt); |
1286 | if (sdata == NULL) | |
1287 | return FALSE; | |
1288 | sec->used_by_bfd = sdata; | |
1289 | } | |
f0abc2a1 AM |
1290 | |
1291 | return _bfd_elf_new_section_hook (abfd, sec); | |
1292 | } | |
b49e97c9 TS |
1293 | \f |
1294 | /* Read ECOFF debugging information from a .mdebug section into a | |
1295 | ecoff_debug_info structure. */ | |
1296 | ||
b34976b6 | 1297 | bfd_boolean |
9719ad41 RS |
1298 | _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section, |
1299 | struct ecoff_debug_info *debug) | |
b49e97c9 TS |
1300 | { |
1301 | HDRR *symhdr; | |
1302 | const struct ecoff_debug_swap *swap; | |
9719ad41 | 1303 | char *ext_hdr; |
b49e97c9 TS |
1304 | |
1305 | swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; | |
1306 | memset (debug, 0, sizeof (*debug)); | |
1307 | ||
9719ad41 | 1308 | ext_hdr = bfd_malloc (swap->external_hdr_size); |
b49e97c9 TS |
1309 | if (ext_hdr == NULL && swap->external_hdr_size != 0) |
1310 | goto error_return; | |
1311 | ||
9719ad41 | 1312 | if (! bfd_get_section_contents (abfd, section, ext_hdr, 0, |
82e51918 | 1313 | swap->external_hdr_size)) |
b49e97c9 TS |
1314 | goto error_return; |
1315 | ||
1316 | symhdr = &debug->symbolic_header; | |
1317 | (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr); | |
1318 | ||
1319 | /* The symbolic header contains absolute file offsets and sizes to | |
1320 | read. */ | |
1321 | #define READ(ptr, offset, count, size, type) \ | |
1322 | if (symhdr->count == 0) \ | |
1323 | debug->ptr = NULL; \ | |
1324 | else \ | |
1325 | { \ | |
1326 | bfd_size_type amt = (bfd_size_type) size * symhdr->count; \ | |
9719ad41 | 1327 | debug->ptr = bfd_malloc (amt); \ |
b49e97c9 TS |
1328 | if (debug->ptr == NULL) \ |
1329 | goto error_return; \ | |
9719ad41 | 1330 | if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \ |
b49e97c9 TS |
1331 | || bfd_bread (debug->ptr, amt, abfd) != amt) \ |
1332 | goto error_return; \ | |
1333 | } | |
1334 | ||
1335 | READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *); | |
9719ad41 RS |
1336 | READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *); |
1337 | READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *); | |
1338 | READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *); | |
1339 | READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *); | |
b49e97c9 TS |
1340 | READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext), |
1341 | union aux_ext *); | |
1342 | READ (ss, cbSsOffset, issMax, sizeof (char), char *); | |
1343 | READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *); | |
9719ad41 RS |
1344 | READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *); |
1345 | READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *); | |
1346 | READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *); | |
b49e97c9 TS |
1347 | #undef READ |
1348 | ||
1349 | debug->fdr = NULL; | |
b49e97c9 | 1350 | |
b34976b6 | 1351 | return TRUE; |
b49e97c9 TS |
1352 | |
1353 | error_return: | |
1354 | if (ext_hdr != NULL) | |
1355 | free (ext_hdr); | |
1356 | if (debug->line != NULL) | |
1357 | free (debug->line); | |
1358 | if (debug->external_dnr != NULL) | |
1359 | free (debug->external_dnr); | |
1360 | if (debug->external_pdr != NULL) | |
1361 | free (debug->external_pdr); | |
1362 | if (debug->external_sym != NULL) | |
1363 | free (debug->external_sym); | |
1364 | if (debug->external_opt != NULL) | |
1365 | free (debug->external_opt); | |
1366 | if (debug->external_aux != NULL) | |
1367 | free (debug->external_aux); | |
1368 | if (debug->ss != NULL) | |
1369 | free (debug->ss); | |
1370 | if (debug->ssext != NULL) | |
1371 | free (debug->ssext); | |
1372 | if (debug->external_fdr != NULL) | |
1373 | free (debug->external_fdr); | |
1374 | if (debug->external_rfd != NULL) | |
1375 | free (debug->external_rfd); | |
1376 | if (debug->external_ext != NULL) | |
1377 | free (debug->external_ext); | |
b34976b6 | 1378 | return FALSE; |
b49e97c9 TS |
1379 | } |
1380 | \f | |
1381 | /* Swap RPDR (runtime procedure table entry) for output. */ | |
1382 | ||
1383 | static void | |
9719ad41 | 1384 | ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex) |
b49e97c9 TS |
1385 | { |
1386 | H_PUT_S32 (abfd, in->adr, ex->p_adr); | |
1387 | H_PUT_32 (abfd, in->regmask, ex->p_regmask); | |
1388 | H_PUT_32 (abfd, in->regoffset, ex->p_regoffset); | |
1389 | H_PUT_32 (abfd, in->fregmask, ex->p_fregmask); | |
1390 | H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset); | |
1391 | H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset); | |
1392 | ||
1393 | H_PUT_16 (abfd, in->framereg, ex->p_framereg); | |
1394 | H_PUT_16 (abfd, in->pcreg, ex->p_pcreg); | |
1395 | ||
1396 | H_PUT_32 (abfd, in->irpss, ex->p_irpss); | |
b49e97c9 TS |
1397 | } |
1398 | ||
1399 | /* Create a runtime procedure table from the .mdebug section. */ | |
1400 | ||
b34976b6 | 1401 | static bfd_boolean |
9719ad41 RS |
1402 | mips_elf_create_procedure_table (void *handle, bfd *abfd, |
1403 | struct bfd_link_info *info, asection *s, | |
1404 | struct ecoff_debug_info *debug) | |
b49e97c9 TS |
1405 | { |
1406 | const struct ecoff_debug_swap *swap; | |
1407 | HDRR *hdr = &debug->symbolic_header; | |
1408 | RPDR *rpdr, *rp; | |
1409 | struct rpdr_ext *erp; | |
9719ad41 | 1410 | void *rtproc; |
b49e97c9 TS |
1411 | struct pdr_ext *epdr; |
1412 | struct sym_ext *esym; | |
1413 | char *ss, **sv; | |
1414 | char *str; | |
1415 | bfd_size_type size; | |
1416 | bfd_size_type count; | |
1417 | unsigned long sindex; | |
1418 | unsigned long i; | |
1419 | PDR pdr; | |
1420 | SYMR sym; | |
1421 | const char *no_name_func = _("static procedure (no name)"); | |
1422 | ||
1423 | epdr = NULL; | |
1424 | rpdr = NULL; | |
1425 | esym = NULL; | |
1426 | ss = NULL; | |
1427 | sv = NULL; | |
1428 | ||
1429 | swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; | |
1430 | ||
1431 | sindex = strlen (no_name_func) + 1; | |
1432 | count = hdr->ipdMax; | |
1433 | if (count > 0) | |
1434 | { | |
1435 | size = swap->external_pdr_size; | |
1436 | ||
9719ad41 | 1437 | epdr = bfd_malloc (size * count); |
b49e97c9 TS |
1438 | if (epdr == NULL) |
1439 | goto error_return; | |
1440 | ||
9719ad41 | 1441 | if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr)) |
b49e97c9 TS |
1442 | goto error_return; |
1443 | ||
1444 | size = sizeof (RPDR); | |
9719ad41 | 1445 | rp = rpdr = bfd_malloc (size * count); |
b49e97c9 TS |
1446 | if (rpdr == NULL) |
1447 | goto error_return; | |
1448 | ||
1449 | size = sizeof (char *); | |
9719ad41 | 1450 | sv = bfd_malloc (size * count); |
b49e97c9 TS |
1451 | if (sv == NULL) |
1452 | goto error_return; | |
1453 | ||
1454 | count = hdr->isymMax; | |
1455 | size = swap->external_sym_size; | |
9719ad41 | 1456 | esym = bfd_malloc (size * count); |
b49e97c9 TS |
1457 | if (esym == NULL) |
1458 | goto error_return; | |
1459 | ||
9719ad41 | 1460 | if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym)) |
b49e97c9 TS |
1461 | goto error_return; |
1462 | ||
1463 | count = hdr->issMax; | |
9719ad41 | 1464 | ss = bfd_malloc (count); |
b49e97c9 TS |
1465 | if (ss == NULL) |
1466 | goto error_return; | |
f075ee0c | 1467 | if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss)) |
b49e97c9 TS |
1468 | goto error_return; |
1469 | ||
1470 | count = hdr->ipdMax; | |
1471 | for (i = 0; i < (unsigned long) count; i++, rp++) | |
1472 | { | |
9719ad41 RS |
1473 | (*swap->swap_pdr_in) (abfd, epdr + i, &pdr); |
1474 | (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym); | |
b49e97c9 TS |
1475 | rp->adr = sym.value; |
1476 | rp->regmask = pdr.regmask; | |
1477 | rp->regoffset = pdr.regoffset; | |
1478 | rp->fregmask = pdr.fregmask; | |
1479 | rp->fregoffset = pdr.fregoffset; | |
1480 | rp->frameoffset = pdr.frameoffset; | |
1481 | rp->framereg = pdr.framereg; | |
1482 | rp->pcreg = pdr.pcreg; | |
1483 | rp->irpss = sindex; | |
1484 | sv[i] = ss + sym.iss; | |
1485 | sindex += strlen (sv[i]) + 1; | |
1486 | } | |
1487 | } | |
1488 | ||
1489 | size = sizeof (struct rpdr_ext) * (count + 2) + sindex; | |
1490 | size = BFD_ALIGN (size, 16); | |
9719ad41 | 1491 | rtproc = bfd_alloc (abfd, size); |
b49e97c9 TS |
1492 | if (rtproc == NULL) |
1493 | { | |
1494 | mips_elf_hash_table (info)->procedure_count = 0; | |
1495 | goto error_return; | |
1496 | } | |
1497 | ||
1498 | mips_elf_hash_table (info)->procedure_count = count + 2; | |
1499 | ||
9719ad41 | 1500 | erp = rtproc; |
b49e97c9 TS |
1501 | memset (erp, 0, sizeof (struct rpdr_ext)); |
1502 | erp++; | |
1503 | str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2); | |
1504 | strcpy (str, no_name_func); | |
1505 | str += strlen (no_name_func) + 1; | |
1506 | for (i = 0; i < count; i++) | |
1507 | { | |
1508 | ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i); | |
1509 | strcpy (str, sv[i]); | |
1510 | str += strlen (sv[i]) + 1; | |
1511 | } | |
1512 | H_PUT_S32 (abfd, -1, (erp + count)->p_adr); | |
1513 | ||
1514 | /* Set the size and contents of .rtproc section. */ | |
eea6121a | 1515 | s->size = size; |
9719ad41 | 1516 | s->contents = rtproc; |
b49e97c9 TS |
1517 | |
1518 | /* Skip this section later on (I don't think this currently | |
1519 | matters, but someday it might). */ | |
8423293d | 1520 | s->map_head.link_order = NULL; |
b49e97c9 TS |
1521 | |
1522 | if (epdr != NULL) | |
1523 | free (epdr); | |
1524 | if (rpdr != NULL) | |
1525 | free (rpdr); | |
1526 | if (esym != NULL) | |
1527 | free (esym); | |
1528 | if (ss != NULL) | |
1529 | free (ss); | |
1530 | if (sv != NULL) | |
1531 | free (sv); | |
1532 | ||
b34976b6 | 1533 | return TRUE; |
b49e97c9 TS |
1534 | |
1535 | error_return: | |
1536 | if (epdr != NULL) | |
1537 | free (epdr); | |
1538 | if (rpdr != NULL) | |
1539 | free (rpdr); | |
1540 | if (esym != NULL) | |
1541 | free (esym); | |
1542 | if (ss != NULL) | |
1543 | free (ss); | |
1544 | if (sv != NULL) | |
1545 | free (sv); | |
b34976b6 | 1546 | return FALSE; |
b49e97c9 | 1547 | } |
738e5348 | 1548 | \f |
861fb55a DJ |
1549 | /* We're going to create a stub for H. Create a symbol for the stub's |
1550 | value and size, to help make the disassembly easier to read. */ | |
1551 | ||
1552 | static bfd_boolean | |
1553 | mips_elf_create_stub_symbol (struct bfd_link_info *info, | |
1554 | struct mips_elf_link_hash_entry *h, | |
1555 | const char *prefix, asection *s, bfd_vma value, | |
1556 | bfd_vma size) | |
1557 | { | |
1558 | struct bfd_link_hash_entry *bh; | |
1559 | struct elf_link_hash_entry *elfh; | |
1560 | const char *name; | |
1561 | ||
df58fc94 RS |
1562 | if (ELF_ST_IS_MICROMIPS (h->root.other)) |
1563 | value |= 1; | |
1564 | ||
861fb55a DJ |
1565 | /* Create a new symbol. */ |
1566 | name = ACONCAT ((prefix, h->root.root.root.string, NULL)); | |
1567 | bh = NULL; | |
1568 | if (!_bfd_generic_link_add_one_symbol (info, s->owner, name, | |
1569 | BSF_LOCAL, s, value, NULL, | |
1570 | TRUE, FALSE, &bh)) | |
1571 | return FALSE; | |
1572 | ||
1573 | /* Make it a local function. */ | |
1574 | elfh = (struct elf_link_hash_entry *) bh; | |
1575 | elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); | |
1576 | elfh->size = size; | |
1577 | elfh->forced_local = 1; | |
1578 | return TRUE; | |
1579 | } | |
1580 | ||
738e5348 RS |
1581 | /* We're about to redefine H. Create a symbol to represent H's |
1582 | current value and size, to help make the disassembly easier | |
1583 | to read. */ | |
1584 | ||
1585 | static bfd_boolean | |
1586 | mips_elf_create_shadow_symbol (struct bfd_link_info *info, | |
1587 | struct mips_elf_link_hash_entry *h, | |
1588 | const char *prefix) | |
1589 | { | |
1590 | struct bfd_link_hash_entry *bh; | |
1591 | struct elf_link_hash_entry *elfh; | |
1592 | const char *name; | |
1593 | asection *s; | |
1594 | bfd_vma value; | |
1595 | ||
1596 | /* Read the symbol's value. */ | |
1597 | BFD_ASSERT (h->root.root.type == bfd_link_hash_defined | |
1598 | || h->root.root.type == bfd_link_hash_defweak); | |
1599 | s = h->root.root.u.def.section; | |
1600 | value = h->root.root.u.def.value; | |
1601 | ||
1602 | /* Create a new symbol. */ | |
1603 | name = ACONCAT ((prefix, h->root.root.root.string, NULL)); | |
1604 | bh = NULL; | |
1605 | if (!_bfd_generic_link_add_one_symbol (info, s->owner, name, | |
1606 | BSF_LOCAL, s, value, NULL, | |
1607 | TRUE, FALSE, &bh)) | |
1608 | return FALSE; | |
1609 | ||
1610 | /* Make it local and copy the other attributes from H. */ | |
1611 | elfh = (struct elf_link_hash_entry *) bh; | |
1612 | elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type)); | |
1613 | elfh->other = h->root.other; | |
1614 | elfh->size = h->root.size; | |
1615 | elfh->forced_local = 1; | |
1616 | return TRUE; | |
1617 | } | |
1618 | ||
1619 | /* Return TRUE if relocations in SECTION can refer directly to a MIPS16 | |
1620 | function rather than to a hard-float stub. */ | |
1621 | ||
1622 | static bfd_boolean | |
1623 | section_allows_mips16_refs_p (asection *section) | |
1624 | { | |
1625 | const char *name; | |
1626 | ||
1627 | name = bfd_get_section_name (section->owner, section); | |
1628 | return (FN_STUB_P (name) | |
1629 | || CALL_STUB_P (name) | |
1630 | || CALL_FP_STUB_P (name) | |
1631 | || strcmp (name, ".pdr") == 0); | |
1632 | } | |
1633 | ||
1634 | /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16 | |
1635 | stub section of some kind. Return the R_SYMNDX of the target | |
1636 | function, or 0 if we can't decide which function that is. */ | |
1637 | ||
1638 | static unsigned long | |
cb4437b8 MR |
1639 | mips16_stub_symndx (const struct elf_backend_data *bed, |
1640 | asection *sec ATTRIBUTE_UNUSED, | |
502e814e | 1641 | const Elf_Internal_Rela *relocs, |
738e5348 RS |
1642 | const Elf_Internal_Rela *relend) |
1643 | { | |
cb4437b8 | 1644 | int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel; |
738e5348 RS |
1645 | const Elf_Internal_Rela *rel; |
1646 | ||
cb4437b8 MR |
1647 | /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent |
1648 | one in a compound relocation. */ | |
1649 | for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel) | |
738e5348 RS |
1650 | if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE) |
1651 | return ELF_R_SYM (sec->owner, rel->r_info); | |
1652 | ||
1653 | /* Otherwise trust the first relocation, whatever its kind. This is | |
1654 | the traditional behavior. */ | |
1655 | if (relocs < relend) | |
1656 | return ELF_R_SYM (sec->owner, relocs->r_info); | |
1657 | ||
1658 | return 0; | |
1659 | } | |
b49e97c9 TS |
1660 | |
1661 | /* Check the mips16 stubs for a particular symbol, and see if we can | |
1662 | discard them. */ | |
1663 | ||
861fb55a DJ |
1664 | static void |
1665 | mips_elf_check_mips16_stubs (struct bfd_link_info *info, | |
1666 | struct mips_elf_link_hash_entry *h) | |
b49e97c9 | 1667 | { |
738e5348 RS |
1668 | /* Dynamic symbols must use the standard call interface, in case other |
1669 | objects try to call them. */ | |
1670 | if (h->fn_stub != NULL | |
1671 | && h->root.dynindx != -1) | |
1672 | { | |
1673 | mips_elf_create_shadow_symbol (info, h, ".mips16."); | |
1674 | h->need_fn_stub = TRUE; | |
1675 | } | |
1676 | ||
b49e97c9 TS |
1677 | if (h->fn_stub != NULL |
1678 | && ! h->need_fn_stub) | |
1679 | { | |
1680 | /* We don't need the fn_stub; the only references to this symbol | |
1681 | are 16 bit calls. Clobber the size to 0 to prevent it from | |
1682 | being included in the link. */ | |
eea6121a | 1683 | h->fn_stub->size = 0; |
b49e97c9 TS |
1684 | h->fn_stub->flags &= ~SEC_RELOC; |
1685 | h->fn_stub->reloc_count = 0; | |
1686 | h->fn_stub->flags |= SEC_EXCLUDE; | |
1687 | } | |
1688 | ||
1689 | if (h->call_stub != NULL | |
30c09090 | 1690 | && ELF_ST_IS_MIPS16 (h->root.other)) |
b49e97c9 TS |
1691 | { |
1692 | /* We don't need the call_stub; this is a 16 bit function, so | |
1693 | calls from other 16 bit functions are OK. Clobber the size | |
1694 | to 0 to prevent it from being included in the link. */ | |
eea6121a | 1695 | h->call_stub->size = 0; |
b49e97c9 TS |
1696 | h->call_stub->flags &= ~SEC_RELOC; |
1697 | h->call_stub->reloc_count = 0; | |
1698 | h->call_stub->flags |= SEC_EXCLUDE; | |
1699 | } | |
1700 | ||
1701 | if (h->call_fp_stub != NULL | |
30c09090 | 1702 | && ELF_ST_IS_MIPS16 (h->root.other)) |
b49e97c9 TS |
1703 | { |
1704 | /* We don't need the call_stub; this is a 16 bit function, so | |
1705 | calls from other 16 bit functions are OK. Clobber the size | |
1706 | to 0 to prevent it from being included in the link. */ | |
eea6121a | 1707 | h->call_fp_stub->size = 0; |
b49e97c9 TS |
1708 | h->call_fp_stub->flags &= ~SEC_RELOC; |
1709 | h->call_fp_stub->reloc_count = 0; | |
1710 | h->call_fp_stub->flags |= SEC_EXCLUDE; | |
1711 | } | |
861fb55a DJ |
1712 | } |
1713 | ||
1714 | /* Hashtable callbacks for mips_elf_la25_stubs. */ | |
1715 | ||
1716 | static hashval_t | |
1717 | mips_elf_la25_stub_hash (const void *entry_) | |
1718 | { | |
1719 | const struct mips_elf_la25_stub *entry; | |
1720 | ||
1721 | entry = (struct mips_elf_la25_stub *) entry_; | |
1722 | return entry->h->root.root.u.def.section->id | |
1723 | + entry->h->root.root.u.def.value; | |
1724 | } | |
1725 | ||
1726 | static int | |
1727 | mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_) | |
1728 | { | |
1729 | const struct mips_elf_la25_stub *entry1, *entry2; | |
1730 | ||
1731 | entry1 = (struct mips_elf_la25_stub *) entry1_; | |
1732 | entry2 = (struct mips_elf_la25_stub *) entry2_; | |
1733 | return ((entry1->h->root.root.u.def.section | |
1734 | == entry2->h->root.root.u.def.section) | |
1735 | && (entry1->h->root.root.u.def.value | |
1736 | == entry2->h->root.root.u.def.value)); | |
1737 | } | |
1738 | ||
1739 | /* Called by the linker to set up the la25 stub-creation code. FN is | |
1740 | the linker's implementation of add_stub_function. Return true on | |
1741 | success. */ | |
1742 | ||
1743 | bfd_boolean | |
1744 | _bfd_mips_elf_init_stubs (struct bfd_link_info *info, | |
1745 | asection *(*fn) (const char *, asection *, | |
1746 | asection *)) | |
1747 | { | |
1748 | struct mips_elf_link_hash_table *htab; | |
1749 | ||
1750 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 NC |
1751 | if (htab == NULL) |
1752 | return FALSE; | |
1753 | ||
861fb55a DJ |
1754 | htab->add_stub_section = fn; |
1755 | htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash, | |
1756 | mips_elf_la25_stub_eq, NULL); | |
1757 | if (htab->la25_stubs == NULL) | |
1758 | return FALSE; | |
1759 | ||
1760 | return TRUE; | |
1761 | } | |
1762 | ||
1763 | /* Return true if H is a locally-defined PIC function, in the sense | |
8f0c309a CLT |
1764 | that it or its fn_stub might need $25 to be valid on entry. |
1765 | Note that MIPS16 functions set up $gp using PC-relative instructions, | |
1766 | so they themselves never need $25 to be valid. Only non-MIPS16 | |
1767 | entry points are of interest here. */ | |
861fb55a DJ |
1768 | |
1769 | static bfd_boolean | |
1770 | mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h) | |
1771 | { | |
1772 | return ((h->root.root.type == bfd_link_hash_defined | |
1773 | || h->root.root.type == bfd_link_hash_defweak) | |
1774 | && h->root.def_regular | |
1775 | && !bfd_is_abs_section (h->root.root.u.def.section) | |
8f0c309a CLT |
1776 | && (!ELF_ST_IS_MIPS16 (h->root.other) |
1777 | || (h->fn_stub && h->need_fn_stub)) | |
861fb55a DJ |
1778 | && (PIC_OBJECT_P (h->root.root.u.def.section->owner) |
1779 | || ELF_ST_IS_MIPS_PIC (h->root.other))); | |
1780 | } | |
1781 | ||
8f0c309a CLT |
1782 | /* Set *SEC to the input section that contains the target of STUB. |
1783 | Return the offset of the target from the start of that section. */ | |
1784 | ||
1785 | static bfd_vma | |
1786 | mips_elf_get_la25_target (struct mips_elf_la25_stub *stub, | |
1787 | asection **sec) | |
1788 | { | |
1789 | if (ELF_ST_IS_MIPS16 (stub->h->root.other)) | |
1790 | { | |
1791 | BFD_ASSERT (stub->h->need_fn_stub); | |
1792 | *sec = stub->h->fn_stub; | |
1793 | return 0; | |
1794 | } | |
1795 | else | |
1796 | { | |
1797 | *sec = stub->h->root.root.u.def.section; | |
1798 | return stub->h->root.root.u.def.value; | |
1799 | } | |
1800 | } | |
1801 | ||
861fb55a DJ |
1802 | /* STUB describes an la25 stub that we have decided to implement |
1803 | by inserting an LUI/ADDIU pair before the target function. | |
1804 | Create the section and redirect the function symbol to it. */ | |
1805 | ||
1806 | static bfd_boolean | |
1807 | mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub, | |
1808 | struct bfd_link_info *info) | |
1809 | { | |
1810 | struct mips_elf_link_hash_table *htab; | |
1811 | char *name; | |
1812 | asection *s, *input_section; | |
1813 | unsigned int align; | |
1814 | ||
1815 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 NC |
1816 | if (htab == NULL) |
1817 | return FALSE; | |
861fb55a DJ |
1818 | |
1819 | /* Create a unique name for the new section. */ | |
1820 | name = bfd_malloc (11 + sizeof (".text.stub.")); | |
1821 | if (name == NULL) | |
1822 | return FALSE; | |
1823 | sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs)); | |
1824 | ||
1825 | /* Create the section. */ | |
8f0c309a | 1826 | mips_elf_get_la25_target (stub, &input_section); |
861fb55a DJ |
1827 | s = htab->add_stub_section (name, input_section, |
1828 | input_section->output_section); | |
1829 | if (s == NULL) | |
1830 | return FALSE; | |
1831 | ||
1832 | /* Make sure that any padding goes before the stub. */ | |
1833 | align = input_section->alignment_power; | |
1834 | if (!bfd_set_section_alignment (s->owner, s, align)) | |
1835 | return FALSE; | |
1836 | if (align > 3) | |
1837 | s->size = (1 << align) - 8; | |
1838 | ||
1839 | /* Create a symbol for the stub. */ | |
1840 | mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8); | |
1841 | stub->stub_section = s; | |
1842 | stub->offset = s->size; | |
1843 | ||
1844 | /* Allocate room for it. */ | |
1845 | s->size += 8; | |
1846 | return TRUE; | |
1847 | } | |
1848 | ||
1849 | /* STUB describes an la25 stub that we have decided to implement | |
1850 | with a separate trampoline. Allocate room for it and redirect | |
1851 | the function symbol to it. */ | |
1852 | ||
1853 | static bfd_boolean | |
1854 | mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub, | |
1855 | struct bfd_link_info *info) | |
1856 | { | |
1857 | struct mips_elf_link_hash_table *htab; | |
1858 | asection *s; | |
1859 | ||
1860 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 NC |
1861 | if (htab == NULL) |
1862 | return FALSE; | |
861fb55a DJ |
1863 | |
1864 | /* Create a trampoline section, if we haven't already. */ | |
1865 | s = htab->strampoline; | |
1866 | if (s == NULL) | |
1867 | { | |
1868 | asection *input_section = stub->h->root.root.u.def.section; | |
1869 | s = htab->add_stub_section (".text", NULL, | |
1870 | input_section->output_section); | |
1871 | if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4)) | |
1872 | return FALSE; | |
1873 | htab->strampoline = s; | |
1874 | } | |
1875 | ||
1876 | /* Create a symbol for the stub. */ | |
1877 | mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16); | |
1878 | stub->stub_section = s; | |
1879 | stub->offset = s->size; | |
1880 | ||
1881 | /* Allocate room for it. */ | |
1882 | s->size += 16; | |
1883 | return TRUE; | |
1884 | } | |
1885 | ||
1886 | /* H describes a symbol that needs an la25 stub. Make sure that an | |
1887 | appropriate stub exists and point H at it. */ | |
1888 | ||
1889 | static bfd_boolean | |
1890 | mips_elf_add_la25_stub (struct bfd_link_info *info, | |
1891 | struct mips_elf_link_hash_entry *h) | |
1892 | { | |
1893 | struct mips_elf_link_hash_table *htab; | |
1894 | struct mips_elf_la25_stub search, *stub; | |
1895 | bfd_boolean use_trampoline_p; | |
1896 | asection *s; | |
1897 | bfd_vma value; | |
1898 | void **slot; | |
1899 | ||
861fb55a DJ |
1900 | /* Describe the stub we want. */ |
1901 | search.stub_section = NULL; | |
1902 | search.offset = 0; | |
1903 | search.h = h; | |
1904 | ||
1905 | /* See if we've already created an equivalent stub. */ | |
1906 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 NC |
1907 | if (htab == NULL) |
1908 | return FALSE; | |
1909 | ||
861fb55a DJ |
1910 | slot = htab_find_slot (htab->la25_stubs, &search, INSERT); |
1911 | if (slot == NULL) | |
1912 | return FALSE; | |
1913 | ||
1914 | stub = (struct mips_elf_la25_stub *) *slot; | |
1915 | if (stub != NULL) | |
1916 | { | |
1917 | /* We can reuse the existing stub. */ | |
1918 | h->la25_stub = stub; | |
1919 | return TRUE; | |
1920 | } | |
1921 | ||
1922 | /* Create a permanent copy of ENTRY and add it to the hash table. */ | |
1923 | stub = bfd_malloc (sizeof (search)); | |
1924 | if (stub == NULL) | |
1925 | return FALSE; | |
1926 | *stub = search; | |
1927 | *slot = stub; | |
1928 | ||
8f0c309a CLT |
1929 | /* Prefer to use LUI/ADDIU stubs if the function is at the beginning |
1930 | of the section and if we would need no more than 2 nops. */ | |
1931 | value = mips_elf_get_la25_target (stub, &s); | |
1932 | use_trampoline_p = (value != 0 || s->alignment_power > 4); | |
1933 | ||
861fb55a DJ |
1934 | h->la25_stub = stub; |
1935 | return (use_trampoline_p | |
1936 | ? mips_elf_add_la25_trampoline (stub, info) | |
1937 | : mips_elf_add_la25_intro (stub, info)); | |
1938 | } | |
1939 | ||
1940 | /* A mips_elf_link_hash_traverse callback that is called before sizing | |
1941 | sections. DATA points to a mips_htab_traverse_info structure. */ | |
1942 | ||
1943 | static bfd_boolean | |
1944 | mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data) | |
1945 | { | |
1946 | struct mips_htab_traverse_info *hti; | |
1947 | ||
1948 | hti = (struct mips_htab_traverse_info *) data; | |
861fb55a DJ |
1949 | if (!hti->info->relocatable) |
1950 | mips_elf_check_mips16_stubs (hti->info, h); | |
b49e97c9 | 1951 | |
861fb55a DJ |
1952 | if (mips_elf_local_pic_function_p (h)) |
1953 | { | |
ba85c43e NC |
1954 | /* PR 12845: If H is in a section that has been garbage |
1955 | collected it will have its output section set to *ABS*. */ | |
1956 | if (bfd_is_abs_section (h->root.root.u.def.section->output_section)) | |
1957 | return TRUE; | |
1958 | ||
861fb55a DJ |
1959 | /* H is a function that might need $25 to be valid on entry. |
1960 | If we're creating a non-PIC relocatable object, mark H as | |
1961 | being PIC. If we're creating a non-relocatable object with | |
1962 | non-PIC branches and jumps to H, make sure that H has an la25 | |
1963 | stub. */ | |
1964 | if (hti->info->relocatable) | |
1965 | { | |
1966 | if (!PIC_OBJECT_P (hti->output_bfd)) | |
1967 | h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other); | |
1968 | } | |
1969 | else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h)) | |
1970 | { | |
1971 | hti->error = TRUE; | |
1972 | return FALSE; | |
1973 | } | |
1974 | } | |
b34976b6 | 1975 | return TRUE; |
b49e97c9 TS |
1976 | } |
1977 | \f | |
d6f16593 MR |
1978 | /* R_MIPS16_26 is used for the mips16 jal and jalx instructions. |
1979 | Most mips16 instructions are 16 bits, but these instructions | |
1980 | are 32 bits. | |
1981 | ||
1982 | The format of these instructions is: | |
1983 | ||
1984 | +--------------+--------------------------------+ | |
1985 | | JALX | X| Imm 20:16 | Imm 25:21 | | |
1986 | +--------------+--------------------------------+ | |
1987 | | Immediate 15:0 | | |
1988 | +-----------------------------------------------+ | |
1989 | ||
1990 | JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx. | |
1991 | Note that the immediate value in the first word is swapped. | |
1992 | ||
1993 | When producing a relocatable object file, R_MIPS16_26 is | |
1994 | handled mostly like R_MIPS_26. In particular, the addend is | |
1995 | stored as a straight 26-bit value in a 32-bit instruction. | |
1996 | (gas makes life simpler for itself by never adjusting a | |
1997 | R_MIPS16_26 reloc to be against a section, so the addend is | |
1998 | always zero). However, the 32 bit instruction is stored as 2 | |
1999 | 16-bit values, rather than a single 32-bit value. In a | |
2000 | big-endian file, the result is the same; in a little-endian | |
2001 | file, the two 16-bit halves of the 32 bit value are swapped. | |
2002 | This is so that a disassembler can recognize the jal | |
2003 | instruction. | |
2004 | ||
2005 | When doing a final link, R_MIPS16_26 is treated as a 32 bit | |
2006 | instruction stored as two 16-bit values. The addend A is the | |
2007 | contents of the targ26 field. The calculation is the same as | |
2008 | R_MIPS_26. When storing the calculated value, reorder the | |
2009 | immediate value as shown above, and don't forget to store the | |
2010 | value as two 16-bit values. | |
2011 | ||
2012 | To put it in MIPS ABI terms, the relocation field is T-targ26-16, | |
2013 | defined as | |
2014 | ||
2015 | big-endian: | |
2016 | +--------+----------------------+ | |
2017 | | | | | |
2018 | | | targ26-16 | | |
2019 | |31 26|25 0| | |
2020 | +--------+----------------------+ | |
2021 | ||
2022 | little-endian: | |
2023 | +----------+------+-------------+ | |
2024 | | | | | | |
2025 | | sub1 | | sub2 | | |
2026 | |0 9|10 15|16 31| | |
2027 | +----------+--------------------+ | |
2028 | where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is | |
2029 | ((sub1 << 16) | sub2)). | |
2030 | ||
2031 | When producing a relocatable object file, the calculation is | |
2032 | (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) | |
2033 | When producing a fully linked file, the calculation is | |
2034 | let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) | |
2035 | ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) | |
2036 | ||
738e5348 RS |
2037 | The table below lists the other MIPS16 instruction relocations. |
2038 | Each one is calculated in the same way as the non-MIPS16 relocation | |
2039 | given on the right, but using the extended MIPS16 layout of 16-bit | |
2040 | immediate fields: | |
2041 | ||
2042 | R_MIPS16_GPREL R_MIPS_GPREL16 | |
2043 | R_MIPS16_GOT16 R_MIPS_GOT16 | |
2044 | R_MIPS16_CALL16 R_MIPS_CALL16 | |
2045 | R_MIPS16_HI16 R_MIPS_HI16 | |
2046 | R_MIPS16_LO16 R_MIPS_LO16 | |
2047 | ||
2048 | A typical instruction will have a format like this: | |
d6f16593 MR |
2049 | |
2050 | +--------------+--------------------------------+ | |
2051 | | EXTEND | Imm 10:5 | Imm 15:11 | | |
2052 | +--------------+--------------------------------+ | |
2053 | | Major | rx | ry | Imm 4:0 | | |
2054 | +--------------+--------------------------------+ | |
2055 | ||
2056 | EXTEND is the five bit value 11110. Major is the instruction | |
2057 | opcode. | |
2058 | ||
738e5348 RS |
2059 | All we need to do here is shuffle the bits appropriately. |
2060 | As above, the two 16-bit halves must be swapped on a | |
2061 | little-endian system. */ | |
2062 | ||
2063 | static inline bfd_boolean | |
2064 | mips16_reloc_p (int r_type) | |
2065 | { | |
2066 | switch (r_type) | |
2067 | { | |
2068 | case R_MIPS16_26: | |
2069 | case R_MIPS16_GPREL: | |
2070 | case R_MIPS16_GOT16: | |
2071 | case R_MIPS16_CALL16: | |
2072 | case R_MIPS16_HI16: | |
2073 | case R_MIPS16_LO16: | |
d0f13682 CLT |
2074 | case R_MIPS16_TLS_GD: |
2075 | case R_MIPS16_TLS_LDM: | |
2076 | case R_MIPS16_TLS_DTPREL_HI16: | |
2077 | case R_MIPS16_TLS_DTPREL_LO16: | |
2078 | case R_MIPS16_TLS_GOTTPREL: | |
2079 | case R_MIPS16_TLS_TPREL_HI16: | |
2080 | case R_MIPS16_TLS_TPREL_LO16: | |
738e5348 RS |
2081 | return TRUE; |
2082 | ||
2083 | default: | |
2084 | return FALSE; | |
2085 | } | |
2086 | } | |
2087 | ||
df58fc94 RS |
2088 | /* Check if a microMIPS reloc. */ |
2089 | ||
2090 | static inline bfd_boolean | |
2091 | micromips_reloc_p (unsigned int r_type) | |
2092 | { | |
2093 | return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max; | |
2094 | } | |
2095 | ||
2096 | /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped | |
2097 | on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1 | |
2098 | and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */ | |
2099 | ||
2100 | static inline bfd_boolean | |
2101 | micromips_reloc_shuffle_p (unsigned int r_type) | |
2102 | { | |
2103 | return (micromips_reloc_p (r_type) | |
2104 | && r_type != R_MICROMIPS_PC7_S1 | |
2105 | && r_type != R_MICROMIPS_PC10_S1); | |
2106 | } | |
2107 | ||
738e5348 RS |
2108 | static inline bfd_boolean |
2109 | got16_reloc_p (int r_type) | |
2110 | { | |
df58fc94 RS |
2111 | return (r_type == R_MIPS_GOT16 |
2112 | || r_type == R_MIPS16_GOT16 | |
2113 | || r_type == R_MICROMIPS_GOT16); | |
738e5348 RS |
2114 | } |
2115 | ||
2116 | static inline bfd_boolean | |
2117 | call16_reloc_p (int r_type) | |
2118 | { | |
df58fc94 RS |
2119 | return (r_type == R_MIPS_CALL16 |
2120 | || r_type == R_MIPS16_CALL16 | |
2121 | || r_type == R_MICROMIPS_CALL16); | |
2122 | } | |
2123 | ||
2124 | static inline bfd_boolean | |
2125 | got_disp_reloc_p (unsigned int r_type) | |
2126 | { | |
2127 | return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP; | |
2128 | } | |
2129 | ||
2130 | static inline bfd_boolean | |
2131 | got_page_reloc_p (unsigned int r_type) | |
2132 | { | |
2133 | return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE; | |
2134 | } | |
2135 | ||
2136 | static inline bfd_boolean | |
2137 | got_ofst_reloc_p (unsigned int r_type) | |
2138 | { | |
2139 | return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST; | |
2140 | } | |
2141 | ||
2142 | static inline bfd_boolean | |
2143 | got_hi16_reloc_p (unsigned int r_type) | |
2144 | { | |
2145 | return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16; | |
2146 | } | |
2147 | ||
2148 | static inline bfd_boolean | |
2149 | got_lo16_reloc_p (unsigned int r_type) | |
2150 | { | |
2151 | return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16; | |
2152 | } | |
2153 | ||
2154 | static inline bfd_boolean | |
2155 | call_hi16_reloc_p (unsigned int r_type) | |
2156 | { | |
2157 | return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16; | |
2158 | } | |
2159 | ||
2160 | static inline bfd_boolean | |
2161 | call_lo16_reloc_p (unsigned int r_type) | |
2162 | { | |
2163 | return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16; | |
738e5348 RS |
2164 | } |
2165 | ||
2166 | static inline bfd_boolean | |
2167 | hi16_reloc_p (int r_type) | |
2168 | { | |
df58fc94 RS |
2169 | return (r_type == R_MIPS_HI16 |
2170 | || r_type == R_MIPS16_HI16 | |
2171 | || r_type == R_MICROMIPS_HI16); | |
738e5348 | 2172 | } |
d6f16593 | 2173 | |
738e5348 RS |
2174 | static inline bfd_boolean |
2175 | lo16_reloc_p (int r_type) | |
2176 | { | |
df58fc94 RS |
2177 | return (r_type == R_MIPS_LO16 |
2178 | || r_type == R_MIPS16_LO16 | |
2179 | || r_type == R_MICROMIPS_LO16); | |
738e5348 RS |
2180 | } |
2181 | ||
2182 | static inline bfd_boolean | |
2183 | mips16_call_reloc_p (int r_type) | |
2184 | { | |
2185 | return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16; | |
2186 | } | |
d6f16593 | 2187 | |
38a7df63 CF |
2188 | static inline bfd_boolean |
2189 | jal_reloc_p (int r_type) | |
2190 | { | |
df58fc94 RS |
2191 | return (r_type == R_MIPS_26 |
2192 | || r_type == R_MIPS16_26 | |
2193 | || r_type == R_MICROMIPS_26_S1); | |
2194 | } | |
2195 | ||
2196 | static inline bfd_boolean | |
2197 | micromips_branch_reloc_p (int r_type) | |
2198 | { | |
2199 | return (r_type == R_MICROMIPS_26_S1 | |
2200 | || r_type == R_MICROMIPS_PC16_S1 | |
2201 | || r_type == R_MICROMIPS_PC10_S1 | |
2202 | || r_type == R_MICROMIPS_PC7_S1); | |
2203 | } | |
2204 | ||
2205 | static inline bfd_boolean | |
2206 | tls_gd_reloc_p (unsigned int r_type) | |
2207 | { | |
d0f13682 CLT |
2208 | return (r_type == R_MIPS_TLS_GD |
2209 | || r_type == R_MIPS16_TLS_GD | |
2210 | || r_type == R_MICROMIPS_TLS_GD); | |
df58fc94 RS |
2211 | } |
2212 | ||
2213 | static inline bfd_boolean | |
2214 | tls_ldm_reloc_p (unsigned int r_type) | |
2215 | { | |
d0f13682 CLT |
2216 | return (r_type == R_MIPS_TLS_LDM |
2217 | || r_type == R_MIPS16_TLS_LDM | |
2218 | || r_type == R_MICROMIPS_TLS_LDM); | |
df58fc94 RS |
2219 | } |
2220 | ||
2221 | static inline bfd_boolean | |
2222 | tls_gottprel_reloc_p (unsigned int r_type) | |
2223 | { | |
d0f13682 CLT |
2224 | return (r_type == R_MIPS_TLS_GOTTPREL |
2225 | || r_type == R_MIPS16_TLS_GOTTPREL | |
2226 | || r_type == R_MICROMIPS_TLS_GOTTPREL); | |
38a7df63 CF |
2227 | } |
2228 | ||
d6f16593 | 2229 | void |
df58fc94 RS |
2230 | _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type, |
2231 | bfd_boolean jal_shuffle, bfd_byte *data) | |
d6f16593 | 2232 | { |
df58fc94 | 2233 | bfd_vma first, second, val; |
d6f16593 | 2234 | |
df58fc94 | 2235 | if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type)) |
d6f16593 MR |
2236 | return; |
2237 | ||
df58fc94 RS |
2238 | /* Pick up the first and second halfwords of the instruction. */ |
2239 | first = bfd_get_16 (abfd, data); | |
2240 | second = bfd_get_16 (abfd, data + 2); | |
2241 | if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle)) | |
2242 | val = first << 16 | second; | |
2243 | else if (r_type != R_MIPS16_26) | |
2244 | val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11) | |
2245 | | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f)); | |
d6f16593 | 2246 | else |
df58fc94 RS |
2247 | val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11) |
2248 | | ((first & 0x1f) << 21) | second); | |
d6f16593 MR |
2249 | bfd_put_32 (abfd, val, data); |
2250 | } | |
2251 | ||
2252 | void | |
df58fc94 RS |
2253 | _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type, |
2254 | bfd_boolean jal_shuffle, bfd_byte *data) | |
d6f16593 | 2255 | { |
df58fc94 | 2256 | bfd_vma first, second, val; |
d6f16593 | 2257 | |
df58fc94 | 2258 | if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type)) |
d6f16593 MR |
2259 | return; |
2260 | ||
2261 | val = bfd_get_32 (abfd, data); | |
df58fc94 | 2262 | if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle)) |
d6f16593 | 2263 | { |
df58fc94 RS |
2264 | second = val & 0xffff; |
2265 | first = val >> 16; | |
2266 | } | |
2267 | else if (r_type != R_MIPS16_26) | |
2268 | { | |
2269 | second = ((val >> 11) & 0xffe0) | (val & 0x1f); | |
2270 | first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0); | |
d6f16593 MR |
2271 | } |
2272 | else | |
2273 | { | |
df58fc94 RS |
2274 | second = val & 0xffff; |
2275 | first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0) | |
2276 | | ((val >> 21) & 0x1f); | |
d6f16593 | 2277 | } |
df58fc94 RS |
2278 | bfd_put_16 (abfd, second, data + 2); |
2279 | bfd_put_16 (abfd, first, data); | |
d6f16593 MR |
2280 | } |
2281 | ||
b49e97c9 | 2282 | bfd_reloc_status_type |
9719ad41 RS |
2283 | _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol, |
2284 | arelent *reloc_entry, asection *input_section, | |
2285 | bfd_boolean relocatable, void *data, bfd_vma gp) | |
b49e97c9 TS |
2286 | { |
2287 | bfd_vma relocation; | |
a7ebbfdf | 2288 | bfd_signed_vma val; |
30ac9238 | 2289 | bfd_reloc_status_type status; |
b49e97c9 TS |
2290 | |
2291 | if (bfd_is_com_section (symbol->section)) | |
2292 | relocation = 0; | |
2293 | else | |
2294 | relocation = symbol->value; | |
2295 | ||
2296 | relocation += symbol->section->output_section->vma; | |
2297 | relocation += symbol->section->output_offset; | |
2298 | ||
07515404 | 2299 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
b49e97c9 TS |
2300 | return bfd_reloc_outofrange; |
2301 | ||
b49e97c9 | 2302 | /* Set val to the offset into the section or symbol. */ |
a7ebbfdf TS |
2303 | val = reloc_entry->addend; |
2304 | ||
30ac9238 | 2305 | _bfd_mips_elf_sign_extend (val, 16); |
a7ebbfdf | 2306 | |
b49e97c9 | 2307 | /* Adjust val for the final section location and GP value. If we |
1049f94e | 2308 | are producing relocatable output, we don't want to do this for |
b49e97c9 | 2309 | an external symbol. */ |
1049f94e | 2310 | if (! relocatable |
b49e97c9 TS |
2311 | || (symbol->flags & BSF_SECTION_SYM) != 0) |
2312 | val += relocation - gp; | |
2313 | ||
a7ebbfdf TS |
2314 | if (reloc_entry->howto->partial_inplace) |
2315 | { | |
30ac9238 RS |
2316 | status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, |
2317 | (bfd_byte *) data | |
2318 | + reloc_entry->address); | |
2319 | if (status != bfd_reloc_ok) | |
2320 | return status; | |
a7ebbfdf TS |
2321 | } |
2322 | else | |
2323 | reloc_entry->addend = val; | |
b49e97c9 | 2324 | |
1049f94e | 2325 | if (relocatable) |
b49e97c9 | 2326 | reloc_entry->address += input_section->output_offset; |
30ac9238 RS |
2327 | |
2328 | return bfd_reloc_ok; | |
2329 | } | |
2330 | ||
2331 | /* Used to store a REL high-part relocation such as R_MIPS_HI16 or | |
2332 | R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section | |
2333 | that contains the relocation field and DATA points to the start of | |
2334 | INPUT_SECTION. */ | |
2335 | ||
2336 | struct mips_hi16 | |
2337 | { | |
2338 | struct mips_hi16 *next; | |
2339 | bfd_byte *data; | |
2340 | asection *input_section; | |
2341 | arelent rel; | |
2342 | }; | |
2343 | ||
2344 | /* FIXME: This should not be a static variable. */ | |
2345 | ||
2346 | static struct mips_hi16 *mips_hi16_list; | |
2347 | ||
2348 | /* A howto special_function for REL *HI16 relocations. We can only | |
2349 | calculate the correct value once we've seen the partnering | |
2350 | *LO16 relocation, so just save the information for later. | |
2351 | ||
2352 | The ABI requires that the *LO16 immediately follow the *HI16. | |
2353 | However, as a GNU extension, we permit an arbitrary number of | |
2354 | *HI16s to be associated with a single *LO16. This significantly | |
2355 | simplies the relocation handling in gcc. */ | |
2356 | ||
2357 | bfd_reloc_status_type | |
2358 | _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, | |
2359 | asymbol *symbol ATTRIBUTE_UNUSED, void *data, | |
2360 | asection *input_section, bfd *output_bfd, | |
2361 | char **error_message ATTRIBUTE_UNUSED) | |
2362 | { | |
2363 | struct mips_hi16 *n; | |
2364 | ||
07515404 | 2365 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
30ac9238 RS |
2366 | return bfd_reloc_outofrange; |
2367 | ||
2368 | n = bfd_malloc (sizeof *n); | |
2369 | if (n == NULL) | |
2370 | return bfd_reloc_outofrange; | |
2371 | ||
2372 | n->next = mips_hi16_list; | |
2373 | n->data = data; | |
2374 | n->input_section = input_section; | |
2375 | n->rel = *reloc_entry; | |
2376 | mips_hi16_list = n; | |
2377 | ||
2378 | if (output_bfd != NULL) | |
2379 | reloc_entry->address += input_section->output_offset; | |
2380 | ||
2381 | return bfd_reloc_ok; | |
2382 | } | |
2383 | ||
738e5348 | 2384 | /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just |
30ac9238 RS |
2385 | like any other 16-bit relocation when applied to global symbols, but is |
2386 | treated in the same as R_MIPS_HI16 when applied to local symbols. */ | |
2387 | ||
2388 | bfd_reloc_status_type | |
2389 | _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, | |
2390 | void *data, asection *input_section, | |
2391 | bfd *output_bfd, char **error_message) | |
2392 | { | |
2393 | if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0 | |
2394 | || bfd_is_und_section (bfd_get_section (symbol)) | |
2395 | || bfd_is_com_section (bfd_get_section (symbol))) | |
2396 | /* The relocation is against a global symbol. */ | |
2397 | return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, | |
2398 | input_section, output_bfd, | |
2399 | error_message); | |
2400 | ||
2401 | return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data, | |
2402 | input_section, output_bfd, error_message); | |
2403 | } | |
2404 | ||
2405 | /* A howto special_function for REL *LO16 relocations. The *LO16 itself | |
2406 | is a straightforward 16 bit inplace relocation, but we must deal with | |
2407 | any partnering high-part relocations as well. */ | |
2408 | ||
2409 | bfd_reloc_status_type | |
2410 | _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, | |
2411 | void *data, asection *input_section, | |
2412 | bfd *output_bfd, char **error_message) | |
2413 | { | |
2414 | bfd_vma vallo; | |
d6f16593 | 2415 | bfd_byte *location = (bfd_byte *) data + reloc_entry->address; |
30ac9238 | 2416 | |
07515404 | 2417 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
30ac9238 RS |
2418 | return bfd_reloc_outofrange; |
2419 | ||
df58fc94 | 2420 | _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE, |
d6f16593 | 2421 | location); |
df58fc94 RS |
2422 | vallo = bfd_get_32 (abfd, location); |
2423 | _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE, | |
2424 | location); | |
d6f16593 | 2425 | |
30ac9238 RS |
2426 | while (mips_hi16_list != NULL) |
2427 | { | |
2428 | bfd_reloc_status_type ret; | |
2429 | struct mips_hi16 *hi; | |
2430 | ||
2431 | hi = mips_hi16_list; | |
2432 | ||
738e5348 RS |
2433 | /* R_MIPS*_GOT16 relocations are something of a special case. We |
2434 | want to install the addend in the same way as for a R_MIPS*_HI16 | |
30ac9238 RS |
2435 | relocation (with a rightshift of 16). However, since GOT16 |
2436 | relocations can also be used with global symbols, their howto | |
2437 | has a rightshift of 0. */ | |
2438 | if (hi->rel.howto->type == R_MIPS_GOT16) | |
2439 | hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE); | |
738e5348 RS |
2440 | else if (hi->rel.howto->type == R_MIPS16_GOT16) |
2441 | hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE); | |
df58fc94 RS |
2442 | else if (hi->rel.howto->type == R_MICROMIPS_GOT16) |
2443 | hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE); | |
30ac9238 RS |
2444 | |
2445 | /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any | |
2446 | carry or borrow will induce a change of +1 or -1 in the high part. */ | |
2447 | hi->rel.addend += (vallo + 0x8000) & 0xffff; | |
2448 | ||
30ac9238 RS |
2449 | ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data, |
2450 | hi->input_section, output_bfd, | |
2451 | error_message); | |
2452 | if (ret != bfd_reloc_ok) | |
2453 | return ret; | |
2454 | ||
2455 | mips_hi16_list = hi->next; | |
2456 | free (hi); | |
2457 | } | |
2458 | ||
2459 | return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, | |
2460 | input_section, output_bfd, | |
2461 | error_message); | |
2462 | } | |
2463 | ||
2464 | /* A generic howto special_function. This calculates and installs the | |
2465 | relocation itself, thus avoiding the oft-discussed problems in | |
2466 | bfd_perform_relocation and bfd_install_relocation. */ | |
2467 | ||
2468 | bfd_reloc_status_type | |
2469 | _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, | |
2470 | asymbol *symbol, void *data ATTRIBUTE_UNUSED, | |
2471 | asection *input_section, bfd *output_bfd, | |
2472 | char **error_message ATTRIBUTE_UNUSED) | |
2473 | { | |
2474 | bfd_signed_vma val; | |
2475 | bfd_reloc_status_type status; | |
2476 | bfd_boolean relocatable; | |
2477 | ||
2478 | relocatable = (output_bfd != NULL); | |
2479 | ||
07515404 | 2480 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
30ac9238 RS |
2481 | return bfd_reloc_outofrange; |
2482 | ||
2483 | /* Build up the field adjustment in VAL. */ | |
2484 | val = 0; | |
2485 | if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0) | |
2486 | { | |
2487 | /* Either we're calculating the final field value or we have a | |
2488 | relocation against a section symbol. Add in the section's | |
2489 | offset or address. */ | |
2490 | val += symbol->section->output_section->vma; | |
2491 | val += symbol->section->output_offset; | |
2492 | } | |
2493 | ||
2494 | if (!relocatable) | |
2495 | { | |
2496 | /* We're calculating the final field value. Add in the symbol's value | |
2497 | and, if pc-relative, subtract the address of the field itself. */ | |
2498 | val += symbol->value; | |
2499 | if (reloc_entry->howto->pc_relative) | |
2500 | { | |
2501 | val -= input_section->output_section->vma; | |
2502 | val -= input_section->output_offset; | |
2503 | val -= reloc_entry->address; | |
2504 | } | |
2505 | } | |
2506 | ||
2507 | /* VAL is now the final adjustment. If we're keeping this relocation | |
2508 | in the output file, and if the relocation uses a separate addend, | |
2509 | we just need to add VAL to that addend. Otherwise we need to add | |
2510 | VAL to the relocation field itself. */ | |
2511 | if (relocatable && !reloc_entry->howto->partial_inplace) | |
2512 | reloc_entry->addend += val; | |
2513 | else | |
2514 | { | |
d6f16593 MR |
2515 | bfd_byte *location = (bfd_byte *) data + reloc_entry->address; |
2516 | ||
30ac9238 RS |
2517 | /* Add in the separate addend, if any. */ |
2518 | val += reloc_entry->addend; | |
2519 | ||
2520 | /* Add VAL to the relocation field. */ | |
df58fc94 RS |
2521 | _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE, |
2522 | location); | |
30ac9238 | 2523 | status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, |
d6f16593 | 2524 | location); |
df58fc94 RS |
2525 | _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE, |
2526 | location); | |
d6f16593 | 2527 | |
30ac9238 RS |
2528 | if (status != bfd_reloc_ok) |
2529 | return status; | |
2530 | } | |
2531 | ||
2532 | if (relocatable) | |
2533 | reloc_entry->address += input_section->output_offset; | |
b49e97c9 TS |
2534 | |
2535 | return bfd_reloc_ok; | |
2536 | } | |
2537 | \f | |
2538 | /* Swap an entry in a .gptab section. Note that these routines rely | |
2539 | on the equivalence of the two elements of the union. */ | |
2540 | ||
2541 | static void | |
9719ad41 RS |
2542 | bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex, |
2543 | Elf32_gptab *in) | |
b49e97c9 TS |
2544 | { |
2545 | in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value); | |
2546 | in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes); | |
2547 | } | |
2548 | ||
2549 | static void | |
9719ad41 RS |
2550 | bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in, |
2551 | Elf32_External_gptab *ex) | |
b49e97c9 TS |
2552 | { |
2553 | H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value); | |
2554 | H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes); | |
2555 | } | |
2556 | ||
2557 | static void | |
9719ad41 RS |
2558 | bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in, |
2559 | Elf32_External_compact_rel *ex) | |
b49e97c9 TS |
2560 | { |
2561 | H_PUT_32 (abfd, in->id1, ex->id1); | |
2562 | H_PUT_32 (abfd, in->num, ex->num); | |
2563 | H_PUT_32 (abfd, in->id2, ex->id2); | |
2564 | H_PUT_32 (abfd, in->offset, ex->offset); | |
2565 | H_PUT_32 (abfd, in->reserved0, ex->reserved0); | |
2566 | H_PUT_32 (abfd, in->reserved1, ex->reserved1); | |
2567 | } | |
2568 | ||
2569 | static void | |
9719ad41 RS |
2570 | bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in, |
2571 | Elf32_External_crinfo *ex) | |
b49e97c9 TS |
2572 | { |
2573 | unsigned long l; | |
2574 | ||
2575 | l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH) | |
2576 | | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH) | |
2577 | | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH) | |
2578 | | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH)); | |
2579 | H_PUT_32 (abfd, l, ex->info); | |
2580 | H_PUT_32 (abfd, in->konst, ex->konst); | |
2581 | H_PUT_32 (abfd, in->vaddr, ex->vaddr); | |
2582 | } | |
b49e97c9 TS |
2583 | \f |
2584 | /* A .reginfo section holds a single Elf32_RegInfo structure. These | |
2585 | routines swap this structure in and out. They are used outside of | |
2586 | BFD, so they are globally visible. */ | |
2587 | ||
2588 | void | |
9719ad41 RS |
2589 | bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex, |
2590 | Elf32_RegInfo *in) | |
b49e97c9 TS |
2591 | { |
2592 | in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); | |
2593 | in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); | |
2594 | in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); | |
2595 | in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); | |
2596 | in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); | |
2597 | in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value); | |
2598 | } | |
2599 | ||
2600 | void | |
9719ad41 RS |
2601 | bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in, |
2602 | Elf32_External_RegInfo *ex) | |
b49e97c9 TS |
2603 | { |
2604 | H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); | |
2605 | H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); | |
2606 | H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); | |
2607 | H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); | |
2608 | H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); | |
2609 | H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value); | |
2610 | } | |
2611 | ||
2612 | /* In the 64 bit ABI, the .MIPS.options section holds register | |
2613 | information in an Elf64_Reginfo structure. These routines swap | |
2614 | them in and out. They are globally visible because they are used | |
2615 | outside of BFD. These routines are here so that gas can call them | |
2616 | without worrying about whether the 64 bit ABI has been included. */ | |
2617 | ||
2618 | void | |
9719ad41 RS |
2619 | bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex, |
2620 | Elf64_Internal_RegInfo *in) | |
b49e97c9 TS |
2621 | { |
2622 | in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); | |
2623 | in->ri_pad = H_GET_32 (abfd, ex->ri_pad); | |
2624 | in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); | |
2625 | in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); | |
2626 | in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); | |
2627 | in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); | |
2628 | in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value); | |
2629 | } | |
2630 | ||
2631 | void | |
9719ad41 RS |
2632 | bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in, |
2633 | Elf64_External_RegInfo *ex) | |
b49e97c9 TS |
2634 | { |
2635 | H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); | |
2636 | H_PUT_32 (abfd, in->ri_pad, ex->ri_pad); | |
2637 | H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); | |
2638 | H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); | |
2639 | H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); | |
2640 | H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); | |
2641 | H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value); | |
2642 | } | |
2643 | ||
2644 | /* Swap in an options header. */ | |
2645 | ||
2646 | void | |
9719ad41 RS |
2647 | bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex, |
2648 | Elf_Internal_Options *in) | |
b49e97c9 TS |
2649 | { |
2650 | in->kind = H_GET_8 (abfd, ex->kind); | |
2651 | in->size = H_GET_8 (abfd, ex->size); | |
2652 | in->section = H_GET_16 (abfd, ex->section); | |
2653 | in->info = H_GET_32 (abfd, ex->info); | |
2654 | } | |
2655 | ||
2656 | /* Swap out an options header. */ | |
2657 | ||
2658 | void | |
9719ad41 RS |
2659 | bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in, |
2660 | Elf_External_Options *ex) | |
b49e97c9 TS |
2661 | { |
2662 | H_PUT_8 (abfd, in->kind, ex->kind); | |
2663 | H_PUT_8 (abfd, in->size, ex->size); | |
2664 | H_PUT_16 (abfd, in->section, ex->section); | |
2665 | H_PUT_32 (abfd, in->info, ex->info); | |
2666 | } | |
2667 | \f | |
2668 | /* This function is called via qsort() to sort the dynamic relocation | |
2669 | entries by increasing r_symndx value. */ | |
2670 | ||
2671 | static int | |
9719ad41 | 2672 | sort_dynamic_relocs (const void *arg1, const void *arg2) |
b49e97c9 | 2673 | { |
947216bf AM |
2674 | Elf_Internal_Rela int_reloc1; |
2675 | Elf_Internal_Rela int_reloc2; | |
6870500c | 2676 | int diff; |
b49e97c9 | 2677 | |
947216bf AM |
2678 | bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1); |
2679 | bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2); | |
b49e97c9 | 2680 | |
6870500c RS |
2681 | diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info); |
2682 | if (diff != 0) | |
2683 | return diff; | |
2684 | ||
2685 | if (int_reloc1.r_offset < int_reloc2.r_offset) | |
2686 | return -1; | |
2687 | if (int_reloc1.r_offset > int_reloc2.r_offset) | |
2688 | return 1; | |
2689 | return 0; | |
b49e97c9 TS |
2690 | } |
2691 | ||
f4416af6 AO |
2692 | /* Like sort_dynamic_relocs, but used for elf64 relocations. */ |
2693 | ||
2694 | static int | |
7e3102a7 AM |
2695 | sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED, |
2696 | const void *arg2 ATTRIBUTE_UNUSED) | |
f4416af6 | 2697 | { |
7e3102a7 | 2698 | #ifdef BFD64 |
f4416af6 AO |
2699 | Elf_Internal_Rela int_reloc1[3]; |
2700 | Elf_Internal_Rela int_reloc2[3]; | |
2701 | ||
2702 | (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) | |
2703 | (reldyn_sorting_bfd, arg1, int_reloc1); | |
2704 | (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) | |
2705 | (reldyn_sorting_bfd, arg2, int_reloc2); | |
2706 | ||
6870500c RS |
2707 | if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info)) |
2708 | return -1; | |
2709 | if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info)) | |
2710 | return 1; | |
2711 | ||
2712 | if (int_reloc1[0].r_offset < int_reloc2[0].r_offset) | |
2713 | return -1; | |
2714 | if (int_reloc1[0].r_offset > int_reloc2[0].r_offset) | |
2715 | return 1; | |
2716 | return 0; | |
7e3102a7 AM |
2717 | #else |
2718 | abort (); | |
2719 | #endif | |
f4416af6 AO |
2720 | } |
2721 | ||
2722 | ||
b49e97c9 TS |
2723 | /* This routine is used to write out ECOFF debugging external symbol |
2724 | information. It is called via mips_elf_link_hash_traverse. The | |
2725 | ECOFF external symbol information must match the ELF external | |
2726 | symbol information. Unfortunately, at this point we don't know | |
2727 | whether a symbol is required by reloc information, so the two | |
2728 | tables may wind up being different. We must sort out the external | |
2729 | symbol information before we can set the final size of the .mdebug | |
2730 | section, and we must set the size of the .mdebug section before we | |
2731 | can relocate any sections, and we can't know which symbols are | |
2732 | required by relocation until we relocate the sections. | |
2733 | Fortunately, it is relatively unlikely that any symbol will be | |
2734 | stripped but required by a reloc. In particular, it can not happen | |
2735 | when generating a final executable. */ | |
2736 | ||
b34976b6 | 2737 | static bfd_boolean |
9719ad41 | 2738 | mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data) |
b49e97c9 | 2739 | { |
9719ad41 | 2740 | struct extsym_info *einfo = data; |
b34976b6 | 2741 | bfd_boolean strip; |
b49e97c9 TS |
2742 | asection *sec, *output_section; |
2743 | ||
b49e97c9 | 2744 | if (h->root.indx == -2) |
b34976b6 | 2745 | strip = FALSE; |
f5385ebf | 2746 | else if ((h->root.def_dynamic |
77cfaee6 AM |
2747 | || h->root.ref_dynamic |
2748 | || h->root.type == bfd_link_hash_new) | |
f5385ebf AM |
2749 | && !h->root.def_regular |
2750 | && !h->root.ref_regular) | |
b34976b6 | 2751 | strip = TRUE; |
b49e97c9 TS |
2752 | else if (einfo->info->strip == strip_all |
2753 | || (einfo->info->strip == strip_some | |
2754 | && bfd_hash_lookup (einfo->info->keep_hash, | |
2755 | h->root.root.root.string, | |
b34976b6 AM |
2756 | FALSE, FALSE) == NULL)) |
2757 | strip = TRUE; | |
b49e97c9 | 2758 | else |
b34976b6 | 2759 | strip = FALSE; |
b49e97c9 TS |
2760 | |
2761 | if (strip) | |
b34976b6 | 2762 | return TRUE; |
b49e97c9 TS |
2763 | |
2764 | if (h->esym.ifd == -2) | |
2765 | { | |
2766 | h->esym.jmptbl = 0; | |
2767 | h->esym.cobol_main = 0; | |
2768 | h->esym.weakext = 0; | |
2769 | h->esym.reserved = 0; | |
2770 | h->esym.ifd = ifdNil; | |
2771 | h->esym.asym.value = 0; | |
2772 | h->esym.asym.st = stGlobal; | |
2773 | ||
2774 | if (h->root.root.type == bfd_link_hash_undefined | |
2775 | || h->root.root.type == bfd_link_hash_undefweak) | |
2776 | { | |
2777 | const char *name; | |
2778 | ||
2779 | /* Use undefined class. Also, set class and type for some | |
2780 | special symbols. */ | |
2781 | name = h->root.root.root.string; | |
2782 | if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 | |
2783 | || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) | |
2784 | { | |
2785 | h->esym.asym.sc = scData; | |
2786 | h->esym.asym.st = stLabel; | |
2787 | h->esym.asym.value = 0; | |
2788 | } | |
2789 | else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) | |
2790 | { | |
2791 | h->esym.asym.sc = scAbs; | |
2792 | h->esym.asym.st = stLabel; | |
2793 | h->esym.asym.value = | |
2794 | mips_elf_hash_table (einfo->info)->procedure_count; | |
2795 | } | |
4a14403c | 2796 | else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd)) |
b49e97c9 TS |
2797 | { |
2798 | h->esym.asym.sc = scAbs; | |
2799 | h->esym.asym.st = stLabel; | |
2800 | h->esym.asym.value = elf_gp (einfo->abfd); | |
2801 | } | |
2802 | else | |
2803 | h->esym.asym.sc = scUndefined; | |
2804 | } | |
2805 | else if (h->root.root.type != bfd_link_hash_defined | |
2806 | && h->root.root.type != bfd_link_hash_defweak) | |
2807 | h->esym.asym.sc = scAbs; | |
2808 | else | |
2809 | { | |
2810 | const char *name; | |
2811 | ||
2812 | sec = h->root.root.u.def.section; | |
2813 | output_section = sec->output_section; | |
2814 | ||
2815 | /* When making a shared library and symbol h is the one from | |
2816 | the another shared library, OUTPUT_SECTION may be null. */ | |
2817 | if (output_section == NULL) | |
2818 | h->esym.asym.sc = scUndefined; | |
2819 | else | |
2820 | { | |
2821 | name = bfd_section_name (output_section->owner, output_section); | |
2822 | ||
2823 | if (strcmp (name, ".text") == 0) | |
2824 | h->esym.asym.sc = scText; | |
2825 | else if (strcmp (name, ".data") == 0) | |
2826 | h->esym.asym.sc = scData; | |
2827 | else if (strcmp (name, ".sdata") == 0) | |
2828 | h->esym.asym.sc = scSData; | |
2829 | else if (strcmp (name, ".rodata") == 0 | |
2830 | || strcmp (name, ".rdata") == 0) | |
2831 | h->esym.asym.sc = scRData; | |
2832 | else if (strcmp (name, ".bss") == 0) | |
2833 | h->esym.asym.sc = scBss; | |
2834 | else if (strcmp (name, ".sbss") == 0) | |
2835 | h->esym.asym.sc = scSBss; | |
2836 | else if (strcmp (name, ".init") == 0) | |
2837 | h->esym.asym.sc = scInit; | |
2838 | else if (strcmp (name, ".fini") == 0) | |
2839 | h->esym.asym.sc = scFini; | |
2840 | else | |
2841 | h->esym.asym.sc = scAbs; | |
2842 | } | |
2843 | } | |
2844 | ||
2845 | h->esym.asym.reserved = 0; | |
2846 | h->esym.asym.index = indexNil; | |
2847 | } | |
2848 | ||
2849 | if (h->root.root.type == bfd_link_hash_common) | |
2850 | h->esym.asym.value = h->root.root.u.c.size; | |
2851 | else if (h->root.root.type == bfd_link_hash_defined | |
2852 | || h->root.root.type == bfd_link_hash_defweak) | |
2853 | { | |
2854 | if (h->esym.asym.sc == scCommon) | |
2855 | h->esym.asym.sc = scBss; | |
2856 | else if (h->esym.asym.sc == scSCommon) | |
2857 | h->esym.asym.sc = scSBss; | |
2858 | ||
2859 | sec = h->root.root.u.def.section; | |
2860 | output_section = sec->output_section; | |
2861 | if (output_section != NULL) | |
2862 | h->esym.asym.value = (h->root.root.u.def.value | |
2863 | + sec->output_offset | |
2864 | + output_section->vma); | |
2865 | else | |
2866 | h->esym.asym.value = 0; | |
2867 | } | |
33bb52fb | 2868 | else |
b49e97c9 TS |
2869 | { |
2870 | struct mips_elf_link_hash_entry *hd = h; | |
b49e97c9 TS |
2871 | |
2872 | while (hd->root.root.type == bfd_link_hash_indirect) | |
33bb52fb | 2873 | hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link; |
b49e97c9 | 2874 | |
33bb52fb | 2875 | if (hd->needs_lazy_stub) |
b49e97c9 | 2876 | { |
1bbce132 MR |
2877 | BFD_ASSERT (hd->root.plt.plist != NULL); |
2878 | BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE); | |
b49e97c9 TS |
2879 | /* Set type and value for a symbol with a function stub. */ |
2880 | h->esym.asym.st = stProc; | |
2881 | sec = hd->root.root.u.def.section; | |
2882 | if (sec == NULL) | |
2883 | h->esym.asym.value = 0; | |
2884 | else | |
2885 | { | |
2886 | output_section = sec->output_section; | |
2887 | if (output_section != NULL) | |
1bbce132 | 2888 | h->esym.asym.value = (hd->root.plt.plist->stub_offset |
b49e97c9 TS |
2889 | + sec->output_offset |
2890 | + output_section->vma); | |
2891 | else | |
2892 | h->esym.asym.value = 0; | |
2893 | } | |
b49e97c9 TS |
2894 | } |
2895 | } | |
2896 | ||
2897 | if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap, | |
2898 | h->root.root.root.string, | |
2899 | &h->esym)) | |
2900 | { | |
b34976b6 AM |
2901 | einfo->failed = TRUE; |
2902 | return FALSE; | |
b49e97c9 TS |
2903 | } |
2904 | ||
b34976b6 | 2905 | return TRUE; |
b49e97c9 TS |
2906 | } |
2907 | ||
2908 | /* A comparison routine used to sort .gptab entries. */ | |
2909 | ||
2910 | static int | |
9719ad41 | 2911 | gptab_compare (const void *p1, const void *p2) |
b49e97c9 | 2912 | { |
9719ad41 RS |
2913 | const Elf32_gptab *a1 = p1; |
2914 | const Elf32_gptab *a2 = p2; | |
b49e97c9 TS |
2915 | |
2916 | return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value; | |
2917 | } | |
2918 | \f | |
b15e6682 | 2919 | /* Functions to manage the got entry hash table. */ |
f4416af6 AO |
2920 | |
2921 | /* Use all 64 bits of a bfd_vma for the computation of a 32-bit | |
2922 | hash number. */ | |
2923 | ||
2924 | static INLINE hashval_t | |
9719ad41 | 2925 | mips_elf_hash_bfd_vma (bfd_vma addr) |
f4416af6 AO |
2926 | { |
2927 | #ifdef BFD64 | |
2928 | return addr + (addr >> 32); | |
2929 | #else | |
2930 | return addr; | |
2931 | #endif | |
2932 | } | |
2933 | ||
f4416af6 | 2934 | static hashval_t |
d9bf376d | 2935 | mips_elf_got_entry_hash (const void *entry_) |
f4416af6 AO |
2936 | { |
2937 | const struct mips_got_entry *entry = (struct mips_got_entry *)entry_; | |
2938 | ||
e641e783 | 2939 | return (entry->symndx |
9ab066b4 RS |
2940 | + ((entry->tls_type == GOT_TLS_LDM) << 18) |
2941 | + (entry->tls_type == GOT_TLS_LDM ? 0 | |
e641e783 RS |
2942 | : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address) |
2943 | : entry->symndx >= 0 ? (entry->abfd->id | |
2944 | + mips_elf_hash_bfd_vma (entry->d.addend)) | |
2945 | : entry->d.h->root.root.root.hash)); | |
f4416af6 AO |
2946 | } |
2947 | ||
2948 | static int | |
3dff0dd1 | 2949 | mips_elf_got_entry_eq (const void *entry1, const void *entry2) |
f4416af6 AO |
2950 | { |
2951 | const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1; | |
2952 | const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2; | |
2953 | ||
e641e783 | 2954 | return (e1->symndx == e2->symndx |
9ab066b4 RS |
2955 | && e1->tls_type == e2->tls_type |
2956 | && (e1->tls_type == GOT_TLS_LDM ? TRUE | |
e641e783 RS |
2957 | : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address |
2958 | : e1->symndx >= 0 ? (e1->abfd == e2->abfd | |
2959 | && e1->d.addend == e2->d.addend) | |
2960 | : e2->abfd && e1->d.h == e2->d.h)); | |
b15e6682 | 2961 | } |
c224138d | 2962 | |
13db6b44 RS |
2963 | static hashval_t |
2964 | mips_got_page_ref_hash (const void *ref_) | |
2965 | { | |
2966 | const struct mips_got_page_ref *ref; | |
2967 | ||
2968 | ref = (const struct mips_got_page_ref *) ref_; | |
2969 | return ((ref->symndx >= 0 | |
2970 | ? (hashval_t) (ref->u.abfd->id + ref->symndx) | |
2971 | : ref->u.h->root.root.root.hash) | |
2972 | + mips_elf_hash_bfd_vma (ref->addend)); | |
2973 | } | |
2974 | ||
2975 | static int | |
2976 | mips_got_page_ref_eq (const void *ref1_, const void *ref2_) | |
2977 | { | |
2978 | const struct mips_got_page_ref *ref1, *ref2; | |
2979 | ||
2980 | ref1 = (const struct mips_got_page_ref *) ref1_; | |
2981 | ref2 = (const struct mips_got_page_ref *) ref2_; | |
2982 | return (ref1->symndx == ref2->symndx | |
2983 | && (ref1->symndx < 0 | |
2984 | ? ref1->u.h == ref2->u.h | |
2985 | : ref1->u.abfd == ref2->u.abfd) | |
2986 | && ref1->addend == ref2->addend); | |
2987 | } | |
2988 | ||
c224138d RS |
2989 | static hashval_t |
2990 | mips_got_page_entry_hash (const void *entry_) | |
2991 | { | |
2992 | const struct mips_got_page_entry *entry; | |
2993 | ||
2994 | entry = (const struct mips_got_page_entry *) entry_; | |
13db6b44 | 2995 | return entry->sec->id; |
c224138d RS |
2996 | } |
2997 | ||
2998 | static int | |
2999 | mips_got_page_entry_eq (const void *entry1_, const void *entry2_) | |
3000 | { | |
3001 | const struct mips_got_page_entry *entry1, *entry2; | |
3002 | ||
3003 | entry1 = (const struct mips_got_page_entry *) entry1_; | |
3004 | entry2 = (const struct mips_got_page_entry *) entry2_; | |
13db6b44 | 3005 | return entry1->sec == entry2->sec; |
c224138d | 3006 | } |
b15e6682 | 3007 | \f |
3dff0dd1 | 3008 | /* Create and return a new mips_got_info structure. */ |
5334aa52 RS |
3009 | |
3010 | static struct mips_got_info * | |
3dff0dd1 | 3011 | mips_elf_create_got_info (bfd *abfd) |
5334aa52 RS |
3012 | { |
3013 | struct mips_got_info *g; | |
3014 | ||
3015 | g = bfd_zalloc (abfd, sizeof (struct mips_got_info)); | |
3016 | if (g == NULL) | |
3017 | return NULL; | |
3018 | ||
3dff0dd1 RS |
3019 | g->got_entries = htab_try_create (1, mips_elf_got_entry_hash, |
3020 | mips_elf_got_entry_eq, NULL); | |
5334aa52 RS |
3021 | if (g->got_entries == NULL) |
3022 | return NULL; | |
3023 | ||
13db6b44 RS |
3024 | g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash, |
3025 | mips_got_page_ref_eq, NULL); | |
3026 | if (g->got_page_refs == NULL) | |
5334aa52 RS |
3027 | return NULL; |
3028 | ||
3029 | return g; | |
3030 | } | |
3031 | ||
ee227692 RS |
3032 | /* Return the GOT info for input bfd ABFD, trying to create a new one if |
3033 | CREATE_P and if ABFD doesn't already have a GOT. */ | |
3034 | ||
3035 | static struct mips_got_info * | |
3036 | mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p) | |
3037 | { | |
3038 | struct mips_elf_obj_tdata *tdata; | |
3039 | ||
3040 | if (!is_mips_elf (abfd)) | |
3041 | return NULL; | |
3042 | ||
3043 | tdata = mips_elf_tdata (abfd); | |
3044 | if (!tdata->got && create_p) | |
3dff0dd1 | 3045 | tdata->got = mips_elf_create_got_info (abfd); |
ee227692 RS |
3046 | return tdata->got; |
3047 | } | |
3048 | ||
d7206569 RS |
3049 | /* Record that ABFD should use output GOT G. */ |
3050 | ||
3051 | static void | |
3052 | mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g) | |
3053 | { | |
3054 | struct mips_elf_obj_tdata *tdata; | |
3055 | ||
3056 | BFD_ASSERT (is_mips_elf (abfd)); | |
3057 | tdata = mips_elf_tdata (abfd); | |
3058 | if (tdata->got) | |
3059 | { | |
3060 | /* The GOT structure itself and the hash table entries are | |
3061 | allocated to a bfd, but the hash tables aren't. */ | |
3062 | htab_delete (tdata->got->got_entries); | |
13db6b44 RS |
3063 | htab_delete (tdata->got->got_page_refs); |
3064 | if (tdata->got->got_page_entries) | |
3065 | htab_delete (tdata->got->got_page_entries); | |
d7206569 RS |
3066 | } |
3067 | tdata->got = g; | |
3068 | } | |
3069 | ||
0a44bf69 RS |
3070 | /* Return the dynamic relocation section. If it doesn't exist, try to |
3071 | create a new it if CREATE_P, otherwise return NULL. Also return NULL | |
3072 | if creation fails. */ | |
f4416af6 AO |
3073 | |
3074 | static asection * | |
0a44bf69 | 3075 | mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p) |
f4416af6 | 3076 | { |
0a44bf69 | 3077 | const char *dname; |
f4416af6 | 3078 | asection *sreloc; |
0a44bf69 | 3079 | bfd *dynobj; |
f4416af6 | 3080 | |
0a44bf69 RS |
3081 | dname = MIPS_ELF_REL_DYN_NAME (info); |
3082 | dynobj = elf_hash_table (info)->dynobj; | |
3d4d4302 | 3083 | sreloc = bfd_get_linker_section (dynobj, dname); |
f4416af6 AO |
3084 | if (sreloc == NULL && create_p) |
3085 | { | |
3d4d4302 AM |
3086 | sreloc = bfd_make_section_anyway_with_flags (dynobj, dname, |
3087 | (SEC_ALLOC | |
3088 | | SEC_LOAD | |
3089 | | SEC_HAS_CONTENTS | |
3090 | | SEC_IN_MEMORY | |
3091 | | SEC_LINKER_CREATED | |
3092 | | SEC_READONLY)); | |
f4416af6 | 3093 | if (sreloc == NULL |
f4416af6 | 3094 | || ! bfd_set_section_alignment (dynobj, sreloc, |
d80dcc6a | 3095 | MIPS_ELF_LOG_FILE_ALIGN (dynobj))) |
f4416af6 AO |
3096 | return NULL; |
3097 | } | |
3098 | return sreloc; | |
3099 | } | |
3100 | ||
e641e783 RS |
3101 | /* Return the GOT_TLS_* type required by relocation type R_TYPE. */ |
3102 | ||
3103 | static int | |
3104 | mips_elf_reloc_tls_type (unsigned int r_type) | |
3105 | { | |
3106 | if (tls_gd_reloc_p (r_type)) | |
3107 | return GOT_TLS_GD; | |
3108 | ||
3109 | if (tls_ldm_reloc_p (r_type)) | |
3110 | return GOT_TLS_LDM; | |
3111 | ||
3112 | if (tls_gottprel_reloc_p (r_type)) | |
3113 | return GOT_TLS_IE; | |
3114 | ||
9ab066b4 | 3115 | return GOT_TLS_NONE; |
e641e783 RS |
3116 | } |
3117 | ||
3118 | /* Return the number of GOT slots needed for GOT TLS type TYPE. */ | |
3119 | ||
3120 | static int | |
3121 | mips_tls_got_entries (unsigned int type) | |
3122 | { | |
3123 | switch (type) | |
3124 | { | |
3125 | case GOT_TLS_GD: | |
3126 | case GOT_TLS_LDM: | |
3127 | return 2; | |
3128 | ||
3129 | case GOT_TLS_IE: | |
3130 | return 1; | |
3131 | ||
9ab066b4 | 3132 | case GOT_TLS_NONE: |
e641e783 RS |
3133 | return 0; |
3134 | } | |
3135 | abort (); | |
3136 | } | |
3137 | ||
0f20cc35 DJ |
3138 | /* Count the number of relocations needed for a TLS GOT entry, with |
3139 | access types from TLS_TYPE, and symbol H (or a local symbol if H | |
3140 | is NULL). */ | |
3141 | ||
3142 | static int | |
3143 | mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type, | |
3144 | struct elf_link_hash_entry *h) | |
3145 | { | |
3146 | int indx = 0; | |
0f20cc35 DJ |
3147 | bfd_boolean need_relocs = FALSE; |
3148 | bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created; | |
3149 | ||
3150 | if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h) | |
3151 | && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h))) | |
3152 | indx = h->dynindx; | |
3153 | ||
3154 | if ((info->shared || indx != 0) | |
3155 | && (h == NULL | |
3156 | || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT | |
3157 | || h->root.type != bfd_link_hash_undefweak)) | |
3158 | need_relocs = TRUE; | |
3159 | ||
3160 | if (!need_relocs) | |
e641e783 | 3161 | return 0; |
0f20cc35 | 3162 | |
9ab066b4 | 3163 | switch (tls_type) |
0f20cc35 | 3164 | { |
e641e783 RS |
3165 | case GOT_TLS_GD: |
3166 | return indx != 0 ? 2 : 1; | |
0f20cc35 | 3167 | |
e641e783 RS |
3168 | case GOT_TLS_IE: |
3169 | return 1; | |
0f20cc35 | 3170 | |
e641e783 RS |
3171 | case GOT_TLS_LDM: |
3172 | return info->shared ? 1 : 0; | |
0f20cc35 | 3173 | |
e641e783 RS |
3174 | default: |
3175 | return 0; | |
3176 | } | |
0f20cc35 DJ |
3177 | } |
3178 | ||
ab361d49 RS |
3179 | /* Add the number of GOT entries and TLS relocations required by ENTRY |
3180 | to G. */ | |
0f20cc35 | 3181 | |
ab361d49 RS |
3182 | static void |
3183 | mips_elf_count_got_entry (struct bfd_link_info *info, | |
3184 | struct mips_got_info *g, | |
3185 | struct mips_got_entry *entry) | |
0f20cc35 | 3186 | { |
9ab066b4 | 3187 | if (entry->tls_type) |
ab361d49 | 3188 | { |
9ab066b4 RS |
3189 | g->tls_gotno += mips_tls_got_entries (entry->tls_type); |
3190 | g->relocs += mips_tls_got_relocs (info, entry->tls_type, | |
ab361d49 RS |
3191 | entry->symndx < 0 |
3192 | ? &entry->d.h->root : NULL); | |
3193 | } | |
3194 | else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE) | |
3195 | g->local_gotno += 1; | |
3196 | else | |
3197 | g->global_gotno += 1; | |
0f20cc35 DJ |
3198 | } |
3199 | ||
0f20cc35 DJ |
3200 | /* Output a simple dynamic relocation into SRELOC. */ |
3201 | ||
3202 | static void | |
3203 | mips_elf_output_dynamic_relocation (bfd *output_bfd, | |
3204 | asection *sreloc, | |
861fb55a | 3205 | unsigned long reloc_index, |
0f20cc35 DJ |
3206 | unsigned long indx, |
3207 | int r_type, | |
3208 | bfd_vma offset) | |
3209 | { | |
3210 | Elf_Internal_Rela rel[3]; | |
3211 | ||
3212 | memset (rel, 0, sizeof (rel)); | |
3213 | ||
3214 | rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type); | |
3215 | rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; | |
3216 | ||
3217 | if (ABI_64_P (output_bfd)) | |
3218 | { | |
3219 | (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) | |
3220 | (output_bfd, &rel[0], | |
3221 | (sreloc->contents | |
861fb55a | 3222 | + reloc_index * sizeof (Elf64_Mips_External_Rel))); |
0f20cc35 DJ |
3223 | } |
3224 | else | |
3225 | bfd_elf32_swap_reloc_out | |
3226 | (output_bfd, &rel[0], | |
3227 | (sreloc->contents | |
861fb55a | 3228 | + reloc_index * sizeof (Elf32_External_Rel))); |
0f20cc35 DJ |
3229 | } |
3230 | ||
3231 | /* Initialize a set of TLS GOT entries for one symbol. */ | |
3232 | ||
3233 | static void | |
9ab066b4 RS |
3234 | mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info, |
3235 | struct mips_got_entry *entry, | |
0f20cc35 DJ |
3236 | struct mips_elf_link_hash_entry *h, |
3237 | bfd_vma value) | |
3238 | { | |
23cc69b6 | 3239 | struct mips_elf_link_hash_table *htab; |
0f20cc35 DJ |
3240 | int indx; |
3241 | asection *sreloc, *sgot; | |
9ab066b4 | 3242 | bfd_vma got_offset, got_offset2; |
0f20cc35 DJ |
3243 | bfd_boolean need_relocs = FALSE; |
3244 | ||
23cc69b6 | 3245 | htab = mips_elf_hash_table (info); |
4dfe6ac6 NC |
3246 | if (htab == NULL) |
3247 | return; | |
3248 | ||
23cc69b6 | 3249 | sgot = htab->sgot; |
0f20cc35 DJ |
3250 | |
3251 | indx = 0; | |
3252 | if (h != NULL) | |
3253 | { | |
3254 | bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created; | |
3255 | ||
3256 | if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root) | |
3257 | && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root))) | |
3258 | indx = h->root.dynindx; | |
3259 | } | |
3260 | ||
9ab066b4 | 3261 | if (entry->tls_initialized) |
0f20cc35 DJ |
3262 | return; |
3263 | ||
3264 | if ((info->shared || indx != 0) | |
3265 | && (h == NULL | |
3266 | || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT | |
3267 | || h->root.type != bfd_link_hash_undefweak)) | |
3268 | need_relocs = TRUE; | |
3269 | ||
3270 | /* MINUS_ONE means the symbol is not defined in this object. It may not | |
3271 | be defined at all; assume that the value doesn't matter in that | |
3272 | case. Otherwise complain if we would use the value. */ | |
3273 | BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs) | |
3274 | || h->root.root.type == bfd_link_hash_undefweak); | |
3275 | ||
3276 | /* Emit necessary relocations. */ | |
0a44bf69 | 3277 | sreloc = mips_elf_rel_dyn_section (info, FALSE); |
9ab066b4 | 3278 | got_offset = entry->gotidx; |
0f20cc35 | 3279 | |
9ab066b4 | 3280 | switch (entry->tls_type) |
0f20cc35 | 3281 | { |
e641e783 RS |
3282 | case GOT_TLS_GD: |
3283 | /* General Dynamic. */ | |
3284 | got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd); | |
0f20cc35 DJ |
3285 | |
3286 | if (need_relocs) | |
3287 | { | |
3288 | mips_elf_output_dynamic_relocation | |
861fb55a | 3289 | (abfd, sreloc, sreloc->reloc_count++, indx, |
0f20cc35 | 3290 | ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32, |
e641e783 | 3291 | sgot->output_offset + sgot->output_section->vma + got_offset); |
0f20cc35 DJ |
3292 | |
3293 | if (indx) | |
3294 | mips_elf_output_dynamic_relocation | |
861fb55a | 3295 | (abfd, sreloc, sreloc->reloc_count++, indx, |
0f20cc35 | 3296 | ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32, |
e641e783 | 3297 | sgot->output_offset + sgot->output_section->vma + got_offset2); |
0f20cc35 DJ |
3298 | else |
3299 | MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info), | |
e641e783 | 3300 | sgot->contents + got_offset2); |
0f20cc35 DJ |
3301 | } |
3302 | else | |
3303 | { | |
3304 | MIPS_ELF_PUT_WORD (abfd, 1, | |
e641e783 | 3305 | sgot->contents + got_offset); |
0f20cc35 | 3306 | MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info), |
e641e783 | 3307 | sgot->contents + got_offset2); |
0f20cc35 | 3308 | } |
e641e783 | 3309 | break; |
0f20cc35 | 3310 | |
e641e783 RS |
3311 | case GOT_TLS_IE: |
3312 | /* Initial Exec model. */ | |
0f20cc35 DJ |
3313 | if (need_relocs) |
3314 | { | |
3315 | if (indx == 0) | |
3316 | MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma, | |
e641e783 | 3317 | sgot->contents + got_offset); |
0f20cc35 DJ |
3318 | else |
3319 | MIPS_ELF_PUT_WORD (abfd, 0, | |
e641e783 | 3320 | sgot->contents + got_offset); |
0f20cc35 DJ |
3321 | |
3322 | mips_elf_output_dynamic_relocation | |
861fb55a | 3323 | (abfd, sreloc, sreloc->reloc_count++, indx, |
0f20cc35 | 3324 | ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32, |
e641e783 | 3325 | sgot->output_offset + sgot->output_section->vma + got_offset); |
0f20cc35 DJ |
3326 | } |
3327 | else | |
3328 | MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info), | |
e641e783 RS |
3329 | sgot->contents + got_offset); |
3330 | break; | |
0f20cc35 | 3331 | |
e641e783 | 3332 | case GOT_TLS_LDM: |
0f20cc35 DJ |
3333 | /* The initial offset is zero, and the LD offsets will include the |
3334 | bias by DTP_OFFSET. */ | |
3335 | MIPS_ELF_PUT_WORD (abfd, 0, | |
3336 | sgot->contents + got_offset | |
3337 | + MIPS_ELF_GOT_SIZE (abfd)); | |
3338 | ||
3339 | if (!info->shared) | |
3340 | MIPS_ELF_PUT_WORD (abfd, 1, | |
3341 | sgot->contents + got_offset); | |
3342 | else | |
3343 | mips_elf_output_dynamic_relocation | |
861fb55a | 3344 | (abfd, sreloc, sreloc->reloc_count++, indx, |
0f20cc35 DJ |
3345 | ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32, |
3346 | sgot->output_offset + sgot->output_section->vma + got_offset); | |
e641e783 RS |
3347 | break; |
3348 | ||
3349 | default: | |
3350 | abort (); | |
0f20cc35 DJ |
3351 | } |
3352 | ||
9ab066b4 | 3353 | entry->tls_initialized = TRUE; |
e641e783 | 3354 | } |
0f20cc35 | 3355 | |
0a44bf69 RS |
3356 | /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry |
3357 | for global symbol H. .got.plt comes before the GOT, so the offset | |
3358 | will be negative. */ | |
3359 | ||
3360 | static bfd_vma | |
3361 | mips_elf_gotplt_index (struct bfd_link_info *info, | |
3362 | struct elf_link_hash_entry *h) | |
3363 | { | |
1bbce132 | 3364 | bfd_vma got_address, got_value; |
0a44bf69 RS |
3365 | struct mips_elf_link_hash_table *htab; |
3366 | ||
3367 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 NC |
3368 | BFD_ASSERT (htab != NULL); |
3369 | ||
1bbce132 MR |
3370 | BFD_ASSERT (h->plt.plist != NULL); |
3371 | BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE); | |
0a44bf69 RS |
3372 | |
3373 | /* Calculate the address of the associated .got.plt entry. */ | |
3374 | got_address = (htab->sgotplt->output_section->vma | |
3375 | + htab->sgotplt->output_offset | |
1bbce132 MR |
3376 | + (h->plt.plist->gotplt_index |
3377 | * MIPS_ELF_GOT_SIZE (info->output_bfd))); | |
0a44bf69 RS |
3378 | |
3379 | /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */ | |
3380 | got_value = (htab->root.hgot->root.u.def.section->output_section->vma | |
3381 | + htab->root.hgot->root.u.def.section->output_offset | |
3382 | + htab->root.hgot->root.u.def.value); | |
3383 | ||
3384 | return got_address - got_value; | |
3385 | } | |
3386 | ||
5c18022e | 3387 | /* Return the GOT offset for address VALUE. If there is not yet a GOT |
0a44bf69 RS |
3388 | entry for this value, create one. If R_SYMNDX refers to a TLS symbol, |
3389 | create a TLS GOT entry instead. Return -1 if no satisfactory GOT | |
3390 | offset can be found. */ | |
b49e97c9 TS |
3391 | |
3392 | static bfd_vma | |
9719ad41 | 3393 | mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, |
5c18022e | 3394 | bfd_vma value, unsigned long r_symndx, |
0f20cc35 | 3395 | struct mips_elf_link_hash_entry *h, int r_type) |
b49e97c9 | 3396 | { |
a8028dd0 | 3397 | struct mips_elf_link_hash_table *htab; |
b15e6682 | 3398 | struct mips_got_entry *entry; |
b49e97c9 | 3399 | |
a8028dd0 | 3400 | htab = mips_elf_hash_table (info); |
4dfe6ac6 NC |
3401 | BFD_ASSERT (htab != NULL); |
3402 | ||
a8028dd0 RS |
3403 | entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, |
3404 | r_symndx, h, r_type); | |
0f20cc35 | 3405 | if (!entry) |
b15e6682 | 3406 | return MINUS_ONE; |
0f20cc35 | 3407 | |
e641e783 | 3408 | if (entry->tls_type) |
9ab066b4 RS |
3409 | mips_elf_initialize_tls_slots (abfd, info, entry, h, value); |
3410 | return entry->gotidx; | |
b49e97c9 TS |
3411 | } |
3412 | ||
13fbec83 | 3413 | /* Return the GOT index of global symbol H in the primary GOT. */ |
b49e97c9 TS |
3414 | |
3415 | static bfd_vma | |
13fbec83 RS |
3416 | mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info, |
3417 | struct elf_link_hash_entry *h) | |
3418 | { | |
3419 | struct mips_elf_link_hash_table *htab; | |
3420 | long global_got_dynindx; | |
3421 | struct mips_got_info *g; | |
3422 | bfd_vma got_index; | |
3423 | ||
3424 | htab = mips_elf_hash_table (info); | |
3425 | BFD_ASSERT (htab != NULL); | |
3426 | ||
3427 | global_got_dynindx = 0; | |
3428 | if (htab->global_gotsym != NULL) | |
3429 | global_got_dynindx = htab->global_gotsym->dynindx; | |
3430 | ||
3431 | /* Once we determine the global GOT entry with the lowest dynamic | |
3432 | symbol table index, we must put all dynamic symbols with greater | |
3433 | indices into the primary GOT. That makes it easy to calculate the | |
3434 | GOT offset. */ | |
3435 | BFD_ASSERT (h->dynindx >= global_got_dynindx); | |
3436 | g = mips_elf_bfd_got (obfd, FALSE); | |
3437 | got_index = ((h->dynindx - global_got_dynindx + g->local_gotno) | |
3438 | * MIPS_ELF_GOT_SIZE (obfd)); | |
3439 | BFD_ASSERT (got_index < htab->sgot->size); | |
3440 | ||
3441 | return got_index; | |
3442 | } | |
3443 | ||
3444 | /* Return the GOT index for the global symbol indicated by H, which is | |
3445 | referenced by a relocation of type R_TYPE in IBFD. */ | |
3446 | ||
3447 | static bfd_vma | |
3448 | mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd, | |
3449 | struct elf_link_hash_entry *h, int r_type) | |
b49e97c9 | 3450 | { |
a8028dd0 | 3451 | struct mips_elf_link_hash_table *htab; |
6c42ddb9 RS |
3452 | struct mips_got_info *g; |
3453 | struct mips_got_entry lookup, *entry; | |
3454 | bfd_vma gotidx; | |
b49e97c9 | 3455 | |
a8028dd0 | 3456 | htab = mips_elf_hash_table (info); |
4dfe6ac6 NC |
3457 | BFD_ASSERT (htab != NULL); |
3458 | ||
6c42ddb9 RS |
3459 | g = mips_elf_bfd_got (ibfd, FALSE); |
3460 | BFD_ASSERT (g); | |
f4416af6 | 3461 | |
6c42ddb9 RS |
3462 | lookup.tls_type = mips_elf_reloc_tls_type (r_type); |
3463 | if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE)) | |
3464 | return mips_elf_primary_global_got_index (obfd, info, h); | |
f4416af6 | 3465 | |
6c42ddb9 RS |
3466 | lookup.abfd = ibfd; |
3467 | lookup.symndx = -1; | |
3468 | lookup.d.h = (struct mips_elf_link_hash_entry *) h; | |
3469 | entry = htab_find (g->got_entries, &lookup); | |
3470 | BFD_ASSERT (entry); | |
0f20cc35 | 3471 | |
6c42ddb9 RS |
3472 | gotidx = entry->gotidx; |
3473 | BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size); | |
f4416af6 | 3474 | |
6c42ddb9 | 3475 | if (lookup.tls_type) |
0f20cc35 | 3476 | { |
0f20cc35 DJ |
3477 | bfd_vma value = MINUS_ONE; |
3478 | ||
3479 | if ((h->root.type == bfd_link_hash_defined | |
3480 | || h->root.type == bfd_link_hash_defweak) | |
3481 | && h->root.u.def.section->output_section) | |
3482 | value = (h->root.u.def.value | |
3483 | + h->root.u.def.section->output_offset | |
3484 | + h->root.u.def.section->output_section->vma); | |
3485 | ||
9ab066b4 | 3486 | mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value); |
0f20cc35 | 3487 | } |
6c42ddb9 | 3488 | return gotidx; |
b49e97c9 TS |
3489 | } |
3490 | ||
5c18022e RS |
3491 | /* Find a GOT page entry that points to within 32KB of VALUE. These |
3492 | entries are supposed to be placed at small offsets in the GOT, i.e., | |
3493 | within 32KB of GP. Return the index of the GOT entry, or -1 if no | |
3494 | entry could be created. If OFFSETP is nonnull, use it to return the | |
0a44bf69 | 3495 | offset of the GOT entry from VALUE. */ |
b49e97c9 TS |
3496 | |
3497 | static bfd_vma | |
9719ad41 | 3498 | mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, |
5c18022e | 3499 | bfd_vma value, bfd_vma *offsetp) |
b49e97c9 | 3500 | { |
91d6fa6a | 3501 | bfd_vma page, got_index; |
b15e6682 | 3502 | struct mips_got_entry *entry; |
b49e97c9 | 3503 | |
0a44bf69 | 3504 | page = (value + 0x8000) & ~(bfd_vma) 0xffff; |
a8028dd0 RS |
3505 | entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0, |
3506 | NULL, R_MIPS_GOT_PAGE); | |
b49e97c9 | 3507 | |
b15e6682 AO |
3508 | if (!entry) |
3509 | return MINUS_ONE; | |
143d77c5 | 3510 | |
91d6fa6a | 3511 | got_index = entry->gotidx; |
b49e97c9 TS |
3512 | |
3513 | if (offsetp) | |
f4416af6 | 3514 | *offsetp = value - entry->d.address; |
b49e97c9 | 3515 | |
91d6fa6a | 3516 | return got_index; |
b49e97c9 TS |
3517 | } |
3518 | ||
738e5348 | 3519 | /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE. |
020d7251 RS |
3520 | EXTERNAL is true if the relocation was originally against a global |
3521 | symbol that binds locally. */ | |
b49e97c9 TS |
3522 | |
3523 | static bfd_vma | |
9719ad41 | 3524 | mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, |
5c18022e | 3525 | bfd_vma value, bfd_boolean external) |
b49e97c9 | 3526 | { |
b15e6682 | 3527 | struct mips_got_entry *entry; |
b49e97c9 | 3528 | |
0a44bf69 RS |
3529 | /* GOT16 relocations against local symbols are followed by a LO16 |
3530 | relocation; those against global symbols are not. Thus if the | |
3531 | symbol was originally local, the GOT16 relocation should load the | |
3532 | equivalent of %hi(VALUE), otherwise it should load VALUE itself. */ | |
b49e97c9 | 3533 | if (! external) |
0a44bf69 | 3534 | value = mips_elf_high (value) << 16; |
b49e97c9 | 3535 | |
738e5348 RS |
3536 | /* It doesn't matter whether the original relocation was R_MIPS_GOT16, |
3537 | R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the | |
3538 | same in all cases. */ | |
a8028dd0 RS |
3539 | entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0, |
3540 | NULL, R_MIPS_GOT16); | |
b15e6682 AO |
3541 | if (entry) |
3542 | return entry->gotidx; | |
3543 | else | |
3544 | return MINUS_ONE; | |
b49e97c9 TS |
3545 | } |
3546 | ||
3547 | /* Returns the offset for the entry at the INDEXth position | |
3548 | in the GOT. */ | |
3549 | ||
3550 | static bfd_vma | |
a8028dd0 | 3551 | mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd, |
91d6fa6a | 3552 | bfd *input_bfd, bfd_vma got_index) |
b49e97c9 | 3553 | { |
a8028dd0 | 3554 | struct mips_elf_link_hash_table *htab; |
b49e97c9 TS |
3555 | asection *sgot; |
3556 | bfd_vma gp; | |
3557 | ||
a8028dd0 | 3558 | htab = mips_elf_hash_table (info); |
4dfe6ac6 NC |
3559 | BFD_ASSERT (htab != NULL); |
3560 | ||
a8028dd0 | 3561 | sgot = htab->sgot; |
f4416af6 | 3562 | gp = _bfd_get_gp_value (output_bfd) |
a8028dd0 | 3563 | + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd); |
143d77c5 | 3564 | |
91d6fa6a | 3565 | return sgot->output_section->vma + sgot->output_offset + got_index - gp; |
b49e97c9 TS |
3566 | } |
3567 | ||
0a44bf69 RS |
3568 | /* Create and return a local GOT entry for VALUE, which was calculated |
3569 | from a symbol belonging to INPUT_SECTON. Return NULL if it could not | |
3570 | be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry | |
3571 | instead. */ | |
b49e97c9 | 3572 | |
b15e6682 | 3573 | static struct mips_got_entry * |
0a44bf69 | 3574 | mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info, |
a8028dd0 | 3575 | bfd *ibfd, bfd_vma value, |
5c18022e | 3576 | unsigned long r_symndx, |
0f20cc35 DJ |
3577 | struct mips_elf_link_hash_entry *h, |
3578 | int r_type) | |
b49e97c9 | 3579 | { |
ebc53538 RS |
3580 | struct mips_got_entry lookup, *entry; |
3581 | void **loc; | |
f4416af6 | 3582 | struct mips_got_info *g; |
0a44bf69 | 3583 | struct mips_elf_link_hash_table *htab; |
6c42ddb9 | 3584 | bfd_vma gotidx; |
0a44bf69 RS |
3585 | |
3586 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 | 3587 | BFD_ASSERT (htab != NULL); |
b15e6682 | 3588 | |
d7206569 | 3589 | g = mips_elf_bfd_got (ibfd, FALSE); |
f4416af6 AO |
3590 | if (g == NULL) |
3591 | { | |
d7206569 | 3592 | g = mips_elf_bfd_got (abfd, FALSE); |
f4416af6 AO |
3593 | BFD_ASSERT (g != NULL); |
3594 | } | |
b15e6682 | 3595 | |
020d7251 RS |
3596 | /* This function shouldn't be called for symbols that live in the global |
3597 | area of the GOT. */ | |
3598 | BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE); | |
0f20cc35 | 3599 | |
ebc53538 RS |
3600 | lookup.tls_type = mips_elf_reloc_tls_type (r_type); |
3601 | if (lookup.tls_type) | |
3602 | { | |
3603 | lookup.abfd = ibfd; | |
df58fc94 | 3604 | if (tls_ldm_reloc_p (r_type)) |
0f20cc35 | 3605 | { |
ebc53538 RS |
3606 | lookup.symndx = 0; |
3607 | lookup.d.addend = 0; | |
0f20cc35 DJ |
3608 | } |
3609 | else if (h == NULL) | |
3610 | { | |
ebc53538 RS |
3611 | lookup.symndx = r_symndx; |
3612 | lookup.d.addend = 0; | |
0f20cc35 DJ |
3613 | } |
3614 | else | |
ebc53538 RS |
3615 | { |
3616 | lookup.symndx = -1; | |
3617 | lookup.d.h = h; | |
3618 | } | |
0f20cc35 | 3619 | |
ebc53538 RS |
3620 | entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup); |
3621 | BFD_ASSERT (entry); | |
0f20cc35 | 3622 | |
6c42ddb9 RS |
3623 | gotidx = entry->gotidx; |
3624 | BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size); | |
3625 | ||
ebc53538 | 3626 | return entry; |
0f20cc35 DJ |
3627 | } |
3628 | ||
ebc53538 RS |
3629 | lookup.abfd = NULL; |
3630 | lookup.symndx = -1; | |
3631 | lookup.d.address = value; | |
3632 | loc = htab_find_slot (g->got_entries, &lookup, INSERT); | |
3633 | if (!loc) | |
b15e6682 | 3634 | return NULL; |
143d77c5 | 3635 | |
ebc53538 RS |
3636 | entry = (struct mips_got_entry *) *loc; |
3637 | if (entry) | |
3638 | return entry; | |
b15e6682 | 3639 | |
cb22ccf4 | 3640 | if (g->assigned_low_gotno > g->assigned_high_gotno) |
b49e97c9 TS |
3641 | { |
3642 | /* We didn't allocate enough space in the GOT. */ | |
3643 | (*_bfd_error_handler) | |
3644 | (_("not enough GOT space for local GOT entries")); | |
3645 | bfd_set_error (bfd_error_bad_value); | |
b15e6682 | 3646 | return NULL; |
b49e97c9 TS |
3647 | } |
3648 | ||
ebc53538 RS |
3649 | entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry)); |
3650 | if (!entry) | |
3651 | return NULL; | |
3652 | ||
cb22ccf4 KCY |
3653 | if (got16_reloc_p (r_type) |
3654 | || call16_reloc_p (r_type) | |
3655 | || got_page_reloc_p (r_type) | |
3656 | || got_disp_reloc_p (r_type)) | |
3657 | lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++; | |
3658 | else | |
3659 | lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--; | |
3660 | ||
ebc53538 RS |
3661 | *entry = lookup; |
3662 | *loc = entry; | |
3663 | ||
3664 | MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx); | |
b15e6682 | 3665 | |
5c18022e | 3666 | /* These GOT entries need a dynamic relocation on VxWorks. */ |
0a44bf69 RS |
3667 | if (htab->is_vxworks) |
3668 | { | |
3669 | Elf_Internal_Rela outrel; | |
5c18022e | 3670 | asection *s; |
91d6fa6a | 3671 | bfd_byte *rloc; |
0a44bf69 | 3672 | bfd_vma got_address; |
0a44bf69 RS |
3673 | |
3674 | s = mips_elf_rel_dyn_section (info, FALSE); | |
a8028dd0 RS |
3675 | got_address = (htab->sgot->output_section->vma |
3676 | + htab->sgot->output_offset | |
ebc53538 | 3677 | + entry->gotidx); |
0a44bf69 | 3678 | |
91d6fa6a | 3679 | rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela)); |
0a44bf69 | 3680 | outrel.r_offset = got_address; |
5c18022e RS |
3681 | outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32); |
3682 | outrel.r_addend = value; | |
91d6fa6a | 3683 | bfd_elf32_swap_reloca_out (abfd, &outrel, rloc); |
0a44bf69 RS |
3684 | } |
3685 | ||
ebc53538 | 3686 | return entry; |
b49e97c9 TS |
3687 | } |
3688 | ||
d4596a51 RS |
3689 | /* Return the number of dynamic section symbols required by OUTPUT_BFD. |
3690 | The number might be exact or a worst-case estimate, depending on how | |
3691 | much information is available to elf_backend_omit_section_dynsym at | |
3692 | the current linking stage. */ | |
3693 | ||
3694 | static bfd_size_type | |
3695 | count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info) | |
3696 | { | |
3697 | bfd_size_type count; | |
3698 | ||
3699 | count = 0; | |
3700 | if (info->shared || elf_hash_table (info)->is_relocatable_executable) | |
3701 | { | |
3702 | asection *p; | |
3703 | const struct elf_backend_data *bed; | |
3704 | ||
3705 | bed = get_elf_backend_data (output_bfd); | |
3706 | for (p = output_bfd->sections; p ; p = p->next) | |
3707 | if ((p->flags & SEC_EXCLUDE) == 0 | |
3708 | && (p->flags & SEC_ALLOC) != 0 | |
3709 | && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p)) | |
3710 | ++count; | |
3711 | } | |
3712 | return count; | |
3713 | } | |
3714 | ||
b49e97c9 | 3715 | /* Sort the dynamic symbol table so that symbols that need GOT entries |
d4596a51 | 3716 | appear towards the end. */ |
b49e97c9 | 3717 | |
b34976b6 | 3718 | static bfd_boolean |
d4596a51 | 3719 | mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info) |
b49e97c9 | 3720 | { |
a8028dd0 | 3721 | struct mips_elf_link_hash_table *htab; |
b49e97c9 TS |
3722 | struct mips_elf_hash_sort_data hsd; |
3723 | struct mips_got_info *g; | |
b49e97c9 | 3724 | |
d4596a51 RS |
3725 | if (elf_hash_table (info)->dynsymcount == 0) |
3726 | return TRUE; | |
3727 | ||
a8028dd0 | 3728 | htab = mips_elf_hash_table (info); |
4dfe6ac6 NC |
3729 | BFD_ASSERT (htab != NULL); |
3730 | ||
a8028dd0 | 3731 | g = htab->got_info; |
d4596a51 RS |
3732 | if (g == NULL) |
3733 | return TRUE; | |
f4416af6 | 3734 | |
b49e97c9 | 3735 | hsd.low = NULL; |
23cc69b6 RS |
3736 | hsd.max_unref_got_dynindx |
3737 | = hsd.min_got_dynindx | |
3738 | = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno); | |
d4596a51 | 3739 | hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1; |
b49e97c9 TS |
3740 | mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *) |
3741 | elf_hash_table (info)), | |
3742 | mips_elf_sort_hash_table_f, | |
3743 | &hsd); | |
3744 | ||
3745 | /* There should have been enough room in the symbol table to | |
44c410de | 3746 | accommodate both the GOT and non-GOT symbols. */ |
b49e97c9 | 3747 | BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx); |
d4596a51 RS |
3748 | BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx |
3749 | == elf_hash_table (info)->dynsymcount); | |
3750 | BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx | |
3751 | == g->global_gotno); | |
b49e97c9 TS |
3752 | |
3753 | /* Now we know which dynamic symbol has the lowest dynamic symbol | |
3754 | table index in the GOT. */ | |
d222d210 | 3755 | htab->global_gotsym = hsd.low; |
b49e97c9 | 3756 | |
b34976b6 | 3757 | return TRUE; |
b49e97c9 TS |
3758 | } |
3759 | ||
3760 | /* If H needs a GOT entry, assign it the highest available dynamic | |
3761 | index. Otherwise, assign it the lowest available dynamic | |
3762 | index. */ | |
3763 | ||
b34976b6 | 3764 | static bfd_boolean |
9719ad41 | 3765 | mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data) |
b49e97c9 | 3766 | { |
9719ad41 | 3767 | struct mips_elf_hash_sort_data *hsd = data; |
b49e97c9 | 3768 | |
b49e97c9 TS |
3769 | /* Symbols without dynamic symbol table entries aren't interesting |
3770 | at all. */ | |
3771 | if (h->root.dynindx == -1) | |
b34976b6 | 3772 | return TRUE; |
b49e97c9 | 3773 | |
634835ae | 3774 | switch (h->global_got_area) |
f4416af6 | 3775 | { |
634835ae RS |
3776 | case GGA_NONE: |
3777 | h->root.dynindx = hsd->max_non_got_dynindx++; | |
3778 | break; | |
0f20cc35 | 3779 | |
634835ae | 3780 | case GGA_NORMAL: |
b49e97c9 TS |
3781 | h->root.dynindx = --hsd->min_got_dynindx; |
3782 | hsd->low = (struct elf_link_hash_entry *) h; | |
634835ae RS |
3783 | break; |
3784 | ||
3785 | case GGA_RELOC_ONLY: | |
634835ae RS |
3786 | if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx) |
3787 | hsd->low = (struct elf_link_hash_entry *) h; | |
3788 | h->root.dynindx = hsd->max_unref_got_dynindx++; | |
3789 | break; | |
b49e97c9 TS |
3790 | } |
3791 | ||
b34976b6 | 3792 | return TRUE; |
b49e97c9 TS |
3793 | } |
3794 | ||
ee227692 RS |
3795 | /* Record that input bfd ABFD requires a GOT entry like *LOOKUP |
3796 | (which is owned by the caller and shouldn't be added to the | |
3797 | hash table directly). */ | |
3798 | ||
3799 | static bfd_boolean | |
3800 | mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd, | |
3801 | struct mips_got_entry *lookup) | |
3802 | { | |
3803 | struct mips_elf_link_hash_table *htab; | |
3804 | struct mips_got_entry *entry; | |
3805 | struct mips_got_info *g; | |
3806 | void **loc, **bfd_loc; | |
3807 | ||
3808 | /* Make sure there's a slot for this entry in the master GOT. */ | |
3809 | htab = mips_elf_hash_table (info); | |
3810 | g = htab->got_info; | |
3811 | loc = htab_find_slot (g->got_entries, lookup, INSERT); | |
3812 | if (!loc) | |
3813 | return FALSE; | |
3814 | ||
3815 | /* Populate the entry if it isn't already. */ | |
3816 | entry = (struct mips_got_entry *) *loc; | |
3817 | if (!entry) | |
3818 | { | |
3819 | entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry)); | |
3820 | if (!entry) | |
3821 | return FALSE; | |
3822 | ||
9ab066b4 | 3823 | lookup->tls_initialized = FALSE; |
ee227692 RS |
3824 | lookup->gotidx = -1; |
3825 | *entry = *lookup; | |
3826 | *loc = entry; | |
3827 | } | |
3828 | ||
3829 | /* Reuse the same GOT entry for the BFD's GOT. */ | |
3830 | g = mips_elf_bfd_got (abfd, TRUE); | |
3831 | if (!g) | |
3832 | return FALSE; | |
3833 | ||
3834 | bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT); | |
3835 | if (!bfd_loc) | |
3836 | return FALSE; | |
3837 | ||
3838 | if (!*bfd_loc) | |
3839 | *bfd_loc = entry; | |
3840 | return TRUE; | |
3841 | } | |
3842 | ||
e641e783 RS |
3843 | /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT |
3844 | entry for it. FOR_CALL is true if the caller is only interested in | |
6ccf4795 | 3845 | using the GOT entry for calls. */ |
b49e97c9 | 3846 | |
b34976b6 | 3847 | static bfd_boolean |
9719ad41 RS |
3848 | mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h, |
3849 | bfd *abfd, struct bfd_link_info *info, | |
e641e783 | 3850 | bfd_boolean for_call, int r_type) |
b49e97c9 | 3851 | { |
a8028dd0 | 3852 | struct mips_elf_link_hash_table *htab; |
634835ae | 3853 | struct mips_elf_link_hash_entry *hmips; |
ee227692 RS |
3854 | struct mips_got_entry entry; |
3855 | unsigned char tls_type; | |
a8028dd0 RS |
3856 | |
3857 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 NC |
3858 | BFD_ASSERT (htab != NULL); |
3859 | ||
634835ae | 3860 | hmips = (struct mips_elf_link_hash_entry *) h; |
6ccf4795 RS |
3861 | if (!for_call) |
3862 | hmips->got_only_for_calls = FALSE; | |
f4416af6 | 3863 | |
b49e97c9 TS |
3864 | /* A global symbol in the GOT must also be in the dynamic symbol |
3865 | table. */ | |
7c5fcef7 L |
3866 | if (h->dynindx == -1) |
3867 | { | |
3868 | switch (ELF_ST_VISIBILITY (h->other)) | |
3869 | { | |
3870 | case STV_INTERNAL: | |
3871 | case STV_HIDDEN: | |
33bb52fb | 3872 | _bfd_elf_link_hash_hide_symbol (info, h, TRUE); |
7c5fcef7 L |
3873 | break; |
3874 | } | |
c152c796 | 3875 | if (!bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 3876 | return FALSE; |
7c5fcef7 | 3877 | } |
b49e97c9 | 3878 | |
ee227692 | 3879 | tls_type = mips_elf_reloc_tls_type (r_type); |
9ab066b4 | 3880 | if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL) |
ee227692 | 3881 | hmips->global_got_area = GGA_NORMAL; |
86324f90 | 3882 | |
f4416af6 AO |
3883 | entry.abfd = abfd; |
3884 | entry.symndx = -1; | |
3885 | entry.d.h = (struct mips_elf_link_hash_entry *) h; | |
ee227692 RS |
3886 | entry.tls_type = tls_type; |
3887 | return mips_elf_record_got_entry (info, abfd, &entry); | |
b49e97c9 | 3888 | } |
f4416af6 | 3889 | |
e641e783 RS |
3890 | /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND, |
3891 | where SYMNDX is a local symbol. Reserve a GOT entry for it. */ | |
f4416af6 AO |
3892 | |
3893 | static bfd_boolean | |
9719ad41 | 3894 | mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend, |
e641e783 | 3895 | struct bfd_link_info *info, int r_type) |
f4416af6 | 3896 | { |
a8028dd0 RS |
3897 | struct mips_elf_link_hash_table *htab; |
3898 | struct mips_got_info *g; | |
ee227692 | 3899 | struct mips_got_entry entry; |
f4416af6 | 3900 | |
a8028dd0 | 3901 | htab = mips_elf_hash_table (info); |
4dfe6ac6 NC |
3902 | BFD_ASSERT (htab != NULL); |
3903 | ||
a8028dd0 RS |
3904 | g = htab->got_info; |
3905 | BFD_ASSERT (g != NULL); | |
3906 | ||
f4416af6 AO |
3907 | entry.abfd = abfd; |
3908 | entry.symndx = symndx; | |
3909 | entry.d.addend = addend; | |
e641e783 | 3910 | entry.tls_type = mips_elf_reloc_tls_type (r_type); |
ee227692 | 3911 | return mips_elf_record_got_entry (info, abfd, &entry); |
f4416af6 | 3912 | } |
c224138d | 3913 | |
13db6b44 RS |
3914 | /* Record that ABFD has a page relocation against SYMNDX + ADDEND. |
3915 | H is the symbol's hash table entry, or null if SYMNDX is local | |
3916 | to ABFD. */ | |
c224138d RS |
3917 | |
3918 | static bfd_boolean | |
13db6b44 RS |
3919 | mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd, |
3920 | long symndx, struct elf_link_hash_entry *h, | |
3921 | bfd_signed_vma addend) | |
c224138d | 3922 | { |
a8028dd0 | 3923 | struct mips_elf_link_hash_table *htab; |
ee227692 | 3924 | struct mips_got_info *g1, *g2; |
13db6b44 | 3925 | struct mips_got_page_ref lookup, *entry; |
ee227692 | 3926 | void **loc, **bfd_loc; |
c224138d | 3927 | |
a8028dd0 | 3928 | htab = mips_elf_hash_table (info); |
4dfe6ac6 NC |
3929 | BFD_ASSERT (htab != NULL); |
3930 | ||
ee227692 RS |
3931 | g1 = htab->got_info; |
3932 | BFD_ASSERT (g1 != NULL); | |
a8028dd0 | 3933 | |
13db6b44 RS |
3934 | if (h) |
3935 | { | |
3936 | lookup.symndx = -1; | |
3937 | lookup.u.h = (struct mips_elf_link_hash_entry *) h; | |
3938 | } | |
3939 | else | |
3940 | { | |
3941 | lookup.symndx = symndx; | |
3942 | lookup.u.abfd = abfd; | |
3943 | } | |
3944 | lookup.addend = addend; | |
3945 | loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT); | |
c224138d RS |
3946 | if (loc == NULL) |
3947 | return FALSE; | |
3948 | ||
13db6b44 | 3949 | entry = (struct mips_got_page_ref *) *loc; |
c224138d RS |
3950 | if (!entry) |
3951 | { | |
3952 | entry = bfd_alloc (abfd, sizeof (*entry)); | |
3953 | if (!entry) | |
3954 | return FALSE; | |
3955 | ||
13db6b44 | 3956 | *entry = lookup; |
c224138d RS |
3957 | *loc = entry; |
3958 | } | |
3959 | ||
ee227692 RS |
3960 | /* Add the same entry to the BFD's GOT. */ |
3961 | g2 = mips_elf_bfd_got (abfd, TRUE); | |
3962 | if (!g2) | |
3963 | return FALSE; | |
3964 | ||
13db6b44 | 3965 | bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT); |
ee227692 RS |
3966 | if (!bfd_loc) |
3967 | return FALSE; | |
3968 | ||
3969 | if (!*bfd_loc) | |
3970 | *bfd_loc = entry; | |
3971 | ||
c224138d RS |
3972 | return TRUE; |
3973 | } | |
33bb52fb RS |
3974 | |
3975 | /* Add room for N relocations to the .rel(a).dyn section in ABFD. */ | |
3976 | ||
3977 | static void | |
3978 | mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info, | |
3979 | unsigned int n) | |
3980 | { | |
3981 | asection *s; | |
3982 | struct mips_elf_link_hash_table *htab; | |
3983 | ||
3984 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 NC |
3985 | BFD_ASSERT (htab != NULL); |
3986 | ||
33bb52fb RS |
3987 | s = mips_elf_rel_dyn_section (info, FALSE); |
3988 | BFD_ASSERT (s != NULL); | |
3989 | ||
3990 | if (htab->is_vxworks) | |
3991 | s->size += n * MIPS_ELF_RELA_SIZE (abfd); | |
3992 | else | |
3993 | { | |
3994 | if (s->size == 0) | |
3995 | { | |
3996 | /* Make room for a null element. */ | |
3997 | s->size += MIPS_ELF_REL_SIZE (abfd); | |
3998 | ++s->reloc_count; | |
3999 | } | |
4000 | s->size += n * MIPS_ELF_REL_SIZE (abfd); | |
4001 | } | |
4002 | } | |
4003 | \f | |
476366af RS |
4004 | /* A htab_traverse callback for GOT entries, with DATA pointing to a |
4005 | mips_elf_traverse_got_arg structure. Count the number of GOT | |
4006 | entries and TLS relocs. Set DATA->value to true if we need | |
4007 | to resolve indirect or warning symbols and then recreate the GOT. */ | |
33bb52fb RS |
4008 | |
4009 | static int | |
4010 | mips_elf_check_recreate_got (void **entryp, void *data) | |
4011 | { | |
4012 | struct mips_got_entry *entry; | |
476366af | 4013 | struct mips_elf_traverse_got_arg *arg; |
33bb52fb RS |
4014 | |
4015 | entry = (struct mips_got_entry *) *entryp; | |
476366af | 4016 | arg = (struct mips_elf_traverse_got_arg *) data; |
33bb52fb RS |
4017 | if (entry->abfd != NULL && entry->symndx == -1) |
4018 | { | |
4019 | struct mips_elf_link_hash_entry *h; | |
4020 | ||
4021 | h = entry->d.h; | |
4022 | if (h->root.root.type == bfd_link_hash_indirect | |
4023 | || h->root.root.type == bfd_link_hash_warning) | |
4024 | { | |
476366af | 4025 | arg->value = TRUE; |
33bb52fb RS |
4026 | return 0; |
4027 | } | |
4028 | } | |
476366af | 4029 | mips_elf_count_got_entry (arg->info, arg->g, entry); |
33bb52fb RS |
4030 | return 1; |
4031 | } | |
4032 | ||
476366af RS |
4033 | /* A htab_traverse callback for GOT entries, with DATA pointing to a |
4034 | mips_elf_traverse_got_arg structure. Add all entries to DATA->g, | |
4035 | converting entries for indirect and warning symbols into entries | |
4036 | for the target symbol. Set DATA->g to null on error. */ | |
33bb52fb RS |
4037 | |
4038 | static int | |
4039 | mips_elf_recreate_got (void **entryp, void *data) | |
4040 | { | |
72e7511a | 4041 | struct mips_got_entry new_entry, *entry; |
476366af | 4042 | struct mips_elf_traverse_got_arg *arg; |
33bb52fb RS |
4043 | void **slot; |
4044 | ||
33bb52fb | 4045 | entry = (struct mips_got_entry *) *entryp; |
476366af | 4046 | arg = (struct mips_elf_traverse_got_arg *) data; |
72e7511a RS |
4047 | if (entry->abfd != NULL |
4048 | && entry->symndx == -1 | |
4049 | && (entry->d.h->root.root.type == bfd_link_hash_indirect | |
4050 | || entry->d.h->root.root.type == bfd_link_hash_warning)) | |
33bb52fb RS |
4051 | { |
4052 | struct mips_elf_link_hash_entry *h; | |
4053 | ||
72e7511a RS |
4054 | new_entry = *entry; |
4055 | entry = &new_entry; | |
33bb52fb | 4056 | h = entry->d.h; |
72e7511a | 4057 | do |
634835ae RS |
4058 | { |
4059 | BFD_ASSERT (h->global_got_area == GGA_NONE); | |
4060 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
4061 | } | |
72e7511a RS |
4062 | while (h->root.root.type == bfd_link_hash_indirect |
4063 | || h->root.root.type == bfd_link_hash_warning); | |
33bb52fb RS |
4064 | entry->d.h = h; |
4065 | } | |
476366af | 4066 | slot = htab_find_slot (arg->g->got_entries, entry, INSERT); |
33bb52fb RS |
4067 | if (slot == NULL) |
4068 | { | |
476366af | 4069 | arg->g = NULL; |
33bb52fb RS |
4070 | return 0; |
4071 | } | |
4072 | if (*slot == NULL) | |
72e7511a RS |
4073 | { |
4074 | if (entry == &new_entry) | |
4075 | { | |
4076 | entry = bfd_alloc (entry->abfd, sizeof (*entry)); | |
4077 | if (!entry) | |
4078 | { | |
476366af | 4079 | arg->g = NULL; |
72e7511a RS |
4080 | return 0; |
4081 | } | |
4082 | *entry = new_entry; | |
4083 | } | |
4084 | *slot = entry; | |
476366af | 4085 | mips_elf_count_got_entry (arg->info, arg->g, entry); |
72e7511a | 4086 | } |
33bb52fb RS |
4087 | return 1; |
4088 | } | |
4089 | ||
13db6b44 RS |
4090 | /* Return the maximum number of GOT page entries required for RANGE. */ |
4091 | ||
4092 | static bfd_vma | |
4093 | mips_elf_pages_for_range (const struct mips_got_page_range *range) | |
4094 | { | |
4095 | return (range->max_addend - range->min_addend + 0x1ffff) >> 16; | |
4096 | } | |
4097 | ||
4098 | /* Record that G requires a page entry that can reach SEC + ADDEND. */ | |
4099 | ||
4100 | static bfd_boolean | |
b75d42bc | 4101 | mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg, |
13db6b44 RS |
4102 | asection *sec, bfd_signed_vma addend) |
4103 | { | |
b75d42bc | 4104 | struct mips_got_info *g = arg->g; |
13db6b44 RS |
4105 | struct mips_got_page_entry lookup, *entry; |
4106 | struct mips_got_page_range **range_ptr, *range; | |
4107 | bfd_vma old_pages, new_pages; | |
4108 | void **loc; | |
4109 | ||
4110 | /* Find the mips_got_page_entry hash table entry for this section. */ | |
4111 | lookup.sec = sec; | |
4112 | loc = htab_find_slot (g->got_page_entries, &lookup, INSERT); | |
4113 | if (loc == NULL) | |
4114 | return FALSE; | |
4115 | ||
4116 | /* Create a mips_got_page_entry if this is the first time we've | |
4117 | seen the section. */ | |
4118 | entry = (struct mips_got_page_entry *) *loc; | |
4119 | if (!entry) | |
4120 | { | |
b75d42bc | 4121 | entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry)); |
13db6b44 RS |
4122 | if (!entry) |
4123 | return FALSE; | |
4124 | ||
4125 | entry->sec = sec; | |
4126 | *loc = entry; | |
4127 | } | |
4128 | ||
4129 | /* Skip over ranges whose maximum extent cannot share a page entry | |
4130 | with ADDEND. */ | |
4131 | range_ptr = &entry->ranges; | |
4132 | while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff) | |
4133 | range_ptr = &(*range_ptr)->next; | |
4134 | ||
4135 | /* If we scanned to the end of the list, or found a range whose | |
4136 | minimum extent cannot share a page entry with ADDEND, create | |
4137 | a new singleton range. */ | |
4138 | range = *range_ptr; | |
4139 | if (!range || addend < range->min_addend - 0xffff) | |
4140 | { | |
b75d42bc | 4141 | range = bfd_zalloc (arg->info->output_bfd, sizeof (*range)); |
13db6b44 RS |
4142 | if (!range) |
4143 | return FALSE; | |
4144 | ||
4145 | range->next = *range_ptr; | |
4146 | range->min_addend = addend; | |
4147 | range->max_addend = addend; | |
4148 | ||
4149 | *range_ptr = range; | |
4150 | entry->num_pages++; | |
4151 | g->page_gotno++; | |
4152 | return TRUE; | |
4153 | } | |
4154 | ||
4155 | /* Remember how many pages the old range contributed. */ | |
4156 | old_pages = mips_elf_pages_for_range (range); | |
4157 | ||
4158 | /* Update the ranges. */ | |
4159 | if (addend < range->min_addend) | |
4160 | range->min_addend = addend; | |
4161 | else if (addend > range->max_addend) | |
4162 | { | |
4163 | if (range->next && addend >= range->next->min_addend - 0xffff) | |
4164 | { | |
4165 | old_pages += mips_elf_pages_for_range (range->next); | |
4166 | range->max_addend = range->next->max_addend; | |
4167 | range->next = range->next->next; | |
4168 | } | |
4169 | else | |
4170 | range->max_addend = addend; | |
4171 | } | |
4172 | ||
4173 | /* Record any change in the total estimate. */ | |
4174 | new_pages = mips_elf_pages_for_range (range); | |
4175 | if (old_pages != new_pages) | |
4176 | { | |
4177 | entry->num_pages += new_pages - old_pages; | |
4178 | g->page_gotno += new_pages - old_pages; | |
4179 | } | |
4180 | ||
4181 | return TRUE; | |
4182 | } | |
4183 | ||
4184 | /* A htab_traverse callback for which *REFP points to a mips_got_page_ref | |
4185 | and for which DATA points to a mips_elf_traverse_got_arg. Work out | |
4186 | whether the page reference described by *REFP needs a GOT page entry, | |
4187 | and record that entry in DATA->g if so. Set DATA->g to null on failure. */ | |
4188 | ||
4189 | static bfd_boolean | |
4190 | mips_elf_resolve_got_page_ref (void **refp, void *data) | |
4191 | { | |
4192 | struct mips_got_page_ref *ref; | |
4193 | struct mips_elf_traverse_got_arg *arg; | |
4194 | struct mips_elf_link_hash_table *htab; | |
4195 | asection *sec; | |
4196 | bfd_vma addend; | |
4197 | ||
4198 | ref = (struct mips_got_page_ref *) *refp; | |
4199 | arg = (struct mips_elf_traverse_got_arg *) data; | |
4200 | htab = mips_elf_hash_table (arg->info); | |
4201 | ||
4202 | if (ref->symndx < 0) | |
4203 | { | |
4204 | struct mips_elf_link_hash_entry *h; | |
4205 | ||
4206 | /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */ | |
4207 | h = ref->u.h; | |
4208 | if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root)) | |
4209 | return 1; | |
4210 | ||
4211 | /* Ignore undefined symbols; we'll issue an error later if | |
4212 | appropriate. */ | |
4213 | if (!((h->root.root.type == bfd_link_hash_defined | |
4214 | || h->root.root.type == bfd_link_hash_defweak) | |
4215 | && h->root.root.u.def.section)) | |
4216 | return 1; | |
4217 | ||
4218 | sec = h->root.root.u.def.section; | |
4219 | addend = h->root.root.u.def.value + ref->addend; | |
4220 | } | |
4221 | else | |
4222 | { | |
4223 | Elf_Internal_Sym *isym; | |
4224 | ||
4225 | /* Read in the symbol. */ | |
4226 | isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd, | |
4227 | ref->symndx); | |
4228 | if (isym == NULL) | |
4229 | { | |
4230 | arg->g = NULL; | |
4231 | return 0; | |
4232 | } | |
4233 | ||
4234 | /* Get the associated input section. */ | |
4235 | sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx); | |
4236 | if (sec == NULL) | |
4237 | { | |
4238 | arg->g = NULL; | |
4239 | return 0; | |
4240 | } | |
4241 | ||
4242 | /* If this is a mergable section, work out the section and offset | |
4243 | of the merged data. For section symbols, the addend specifies | |
4244 | of the offset _of_ the first byte in the data, otherwise it | |
4245 | specifies the offset _from_ the first byte. */ | |
4246 | if (sec->flags & SEC_MERGE) | |
4247 | { | |
4248 | void *secinfo; | |
4249 | ||
4250 | secinfo = elf_section_data (sec)->sec_info; | |
4251 | if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) | |
4252 | addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo, | |
4253 | isym->st_value + ref->addend); | |
4254 | else | |
4255 | addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo, | |
4256 | isym->st_value) + ref->addend; | |
4257 | } | |
4258 | else | |
4259 | addend = isym->st_value + ref->addend; | |
4260 | } | |
b75d42bc | 4261 | if (!mips_elf_record_got_page_entry (arg, sec, addend)) |
13db6b44 RS |
4262 | { |
4263 | arg->g = NULL; | |
4264 | return 0; | |
4265 | } | |
4266 | return 1; | |
4267 | } | |
4268 | ||
33bb52fb | 4269 | /* If any entries in G->got_entries are for indirect or warning symbols, |
13db6b44 RS |
4270 | replace them with entries for the target symbol. Convert g->got_page_refs |
4271 | into got_page_entry structures and estimate the number of page entries | |
4272 | that they require. */ | |
33bb52fb RS |
4273 | |
4274 | static bfd_boolean | |
476366af RS |
4275 | mips_elf_resolve_final_got_entries (struct bfd_link_info *info, |
4276 | struct mips_got_info *g) | |
33bb52fb | 4277 | { |
476366af RS |
4278 | struct mips_elf_traverse_got_arg tga; |
4279 | struct mips_got_info oldg; | |
4280 | ||
4281 | oldg = *g; | |
33bb52fb | 4282 | |
476366af RS |
4283 | tga.info = info; |
4284 | tga.g = g; | |
4285 | tga.value = FALSE; | |
4286 | htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga); | |
4287 | if (tga.value) | |
33bb52fb | 4288 | { |
476366af RS |
4289 | *g = oldg; |
4290 | g->got_entries = htab_create (htab_size (oldg.got_entries), | |
4291 | mips_elf_got_entry_hash, | |
4292 | mips_elf_got_entry_eq, NULL); | |
4293 | if (!g->got_entries) | |
33bb52fb RS |
4294 | return FALSE; |
4295 | ||
476366af RS |
4296 | htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga); |
4297 | if (!tga.g) | |
4298 | return FALSE; | |
4299 | ||
4300 | htab_delete (oldg.got_entries); | |
33bb52fb | 4301 | } |
13db6b44 RS |
4302 | |
4303 | g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash, | |
4304 | mips_got_page_entry_eq, NULL); | |
4305 | if (g->got_page_entries == NULL) | |
4306 | return FALSE; | |
4307 | ||
4308 | tga.info = info; | |
4309 | tga.g = g; | |
4310 | htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga); | |
4311 | ||
33bb52fb RS |
4312 | return TRUE; |
4313 | } | |
4314 | ||
c5d6fa44 RS |
4315 | /* Return true if a GOT entry for H should live in the local rather than |
4316 | global GOT area. */ | |
4317 | ||
4318 | static bfd_boolean | |
4319 | mips_use_local_got_p (struct bfd_link_info *info, | |
4320 | struct mips_elf_link_hash_entry *h) | |
4321 | { | |
4322 | /* Symbols that aren't in the dynamic symbol table must live in the | |
4323 | local GOT. This includes symbols that are completely undefined | |
4324 | and which therefore don't bind locally. We'll report undefined | |
4325 | symbols later if appropriate. */ | |
4326 | if (h->root.dynindx == -1) | |
4327 | return TRUE; | |
4328 | ||
4329 | /* Symbols that bind locally can (and in the case of forced-local | |
4330 | symbols, must) live in the local GOT. */ | |
4331 | if (h->got_only_for_calls | |
4332 | ? SYMBOL_CALLS_LOCAL (info, &h->root) | |
4333 | : SYMBOL_REFERENCES_LOCAL (info, &h->root)) | |
4334 | return TRUE; | |
4335 | ||
4336 | /* If this is an executable that must provide a definition of the symbol, | |
4337 | either though PLTs or copy relocations, then that address should go in | |
4338 | the local rather than global GOT. */ | |
4339 | if (info->executable && h->has_static_relocs) | |
4340 | return TRUE; | |
4341 | ||
4342 | return FALSE; | |
4343 | } | |
4344 | ||
6c42ddb9 RS |
4345 | /* A mips_elf_link_hash_traverse callback for which DATA points to the |
4346 | link_info structure. Decide whether the hash entry needs an entry in | |
4347 | the global part of the primary GOT, setting global_got_area accordingly. | |
4348 | Count the number of global symbols that are in the primary GOT only | |
4349 | because they have relocations against them (reloc_only_gotno). */ | |
33bb52fb RS |
4350 | |
4351 | static int | |
d4596a51 | 4352 | mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data) |
33bb52fb | 4353 | { |
020d7251 | 4354 | struct bfd_link_info *info; |
6ccf4795 | 4355 | struct mips_elf_link_hash_table *htab; |
33bb52fb RS |
4356 | struct mips_got_info *g; |
4357 | ||
020d7251 | 4358 | info = (struct bfd_link_info *) data; |
6ccf4795 RS |
4359 | htab = mips_elf_hash_table (info); |
4360 | g = htab->got_info; | |
d4596a51 | 4361 | if (h->global_got_area != GGA_NONE) |
33bb52fb | 4362 | { |
020d7251 | 4363 | /* Make a final decision about whether the symbol belongs in the |
c5d6fa44 RS |
4364 | local or global GOT. */ |
4365 | if (mips_use_local_got_p (info, h)) | |
6c42ddb9 RS |
4366 | /* The symbol belongs in the local GOT. We no longer need this |
4367 | entry if it was only used for relocations; those relocations | |
4368 | will be against the null or section symbol instead of H. */ | |
4369 | h->global_got_area = GGA_NONE; | |
6ccf4795 RS |
4370 | else if (htab->is_vxworks |
4371 | && h->got_only_for_calls | |
1bbce132 | 4372 | && h->root.plt.plist->mips_offset != MINUS_ONE) |
6ccf4795 RS |
4373 | /* On VxWorks, calls can refer directly to the .got.plt entry; |
4374 | they don't need entries in the regular GOT. .got.plt entries | |
4375 | will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */ | |
4376 | h->global_got_area = GGA_NONE; | |
6c42ddb9 | 4377 | else if (h->global_got_area == GGA_RELOC_ONLY) |
23cc69b6 | 4378 | { |
6c42ddb9 | 4379 | g->reloc_only_gotno++; |
23cc69b6 | 4380 | g->global_gotno++; |
23cc69b6 | 4381 | } |
33bb52fb RS |
4382 | } |
4383 | return 1; | |
4384 | } | |
f4416af6 | 4385 | \f |
d7206569 RS |
4386 | /* A htab_traverse callback for GOT entries. Add each one to the GOT |
4387 | given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */ | |
f4416af6 AO |
4388 | |
4389 | static int | |
d7206569 | 4390 | mips_elf_add_got_entry (void **entryp, void *data) |
f4416af6 | 4391 | { |
d7206569 RS |
4392 | struct mips_got_entry *entry; |
4393 | struct mips_elf_traverse_got_arg *arg; | |
4394 | void **slot; | |
f4416af6 | 4395 | |
d7206569 RS |
4396 | entry = (struct mips_got_entry *) *entryp; |
4397 | arg = (struct mips_elf_traverse_got_arg *) data; | |
4398 | slot = htab_find_slot (arg->g->got_entries, entry, INSERT); | |
4399 | if (!slot) | |
f4416af6 | 4400 | { |
d7206569 RS |
4401 | arg->g = NULL; |
4402 | return 0; | |
f4416af6 | 4403 | } |
d7206569 | 4404 | if (!*slot) |
c224138d | 4405 | { |
d7206569 RS |
4406 | *slot = entry; |
4407 | mips_elf_count_got_entry (arg->info, arg->g, entry); | |
c224138d | 4408 | } |
f4416af6 AO |
4409 | return 1; |
4410 | } | |
4411 | ||
d7206569 RS |
4412 | /* A htab_traverse callback for GOT page entries. Add each one to the GOT |
4413 | given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */ | |
c224138d RS |
4414 | |
4415 | static int | |
d7206569 | 4416 | mips_elf_add_got_page_entry (void **entryp, void *data) |
c224138d | 4417 | { |
d7206569 RS |
4418 | struct mips_got_page_entry *entry; |
4419 | struct mips_elf_traverse_got_arg *arg; | |
4420 | void **slot; | |
c224138d | 4421 | |
d7206569 RS |
4422 | entry = (struct mips_got_page_entry *) *entryp; |
4423 | arg = (struct mips_elf_traverse_got_arg *) data; | |
4424 | slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT); | |
4425 | if (!slot) | |
c224138d | 4426 | { |
d7206569 | 4427 | arg->g = NULL; |
c224138d RS |
4428 | return 0; |
4429 | } | |
d7206569 RS |
4430 | if (!*slot) |
4431 | { | |
4432 | *slot = entry; | |
4433 | arg->g->page_gotno += entry->num_pages; | |
4434 | } | |
c224138d RS |
4435 | return 1; |
4436 | } | |
4437 | ||
d7206569 RS |
4438 | /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if |
4439 | this would lead to overflow, 1 if they were merged successfully, | |
4440 | and 0 if a merge failed due to lack of memory. (These values are chosen | |
4441 | so that nonnegative return values can be returned by a htab_traverse | |
4442 | callback.) */ | |
c224138d RS |
4443 | |
4444 | static int | |
d7206569 | 4445 | mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from, |
c224138d RS |
4446 | struct mips_got_info *to, |
4447 | struct mips_elf_got_per_bfd_arg *arg) | |
4448 | { | |
d7206569 | 4449 | struct mips_elf_traverse_got_arg tga; |
c224138d RS |
4450 | unsigned int estimate; |
4451 | ||
4452 | /* Work out how many page entries we would need for the combined GOT. */ | |
4453 | estimate = arg->max_pages; | |
4454 | if (estimate >= from->page_gotno + to->page_gotno) | |
4455 | estimate = from->page_gotno + to->page_gotno; | |
4456 | ||
e2ece73c | 4457 | /* And conservatively estimate how many local and TLS entries |
c224138d | 4458 | would be needed. */ |
e2ece73c RS |
4459 | estimate += from->local_gotno + to->local_gotno; |
4460 | estimate += from->tls_gotno + to->tls_gotno; | |
4461 | ||
17214937 RS |
4462 | /* If we're merging with the primary got, any TLS relocations will |
4463 | come after the full set of global entries. Otherwise estimate those | |
e2ece73c | 4464 | conservatively as well. */ |
17214937 | 4465 | if (to == arg->primary && from->tls_gotno + to->tls_gotno) |
e2ece73c RS |
4466 | estimate += arg->global_count; |
4467 | else | |
4468 | estimate += from->global_gotno + to->global_gotno; | |
c224138d RS |
4469 | |
4470 | /* Bail out if the combined GOT might be too big. */ | |
4471 | if (estimate > arg->max_count) | |
4472 | return -1; | |
4473 | ||
c224138d | 4474 | /* Transfer the bfd's got information from FROM to TO. */ |
d7206569 RS |
4475 | tga.info = arg->info; |
4476 | tga.g = to; | |
4477 | htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga); | |
4478 | if (!tga.g) | |
c224138d RS |
4479 | return 0; |
4480 | ||
d7206569 RS |
4481 | htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga); |
4482 | if (!tga.g) | |
c224138d RS |
4483 | return 0; |
4484 | ||
d7206569 | 4485 | mips_elf_replace_bfd_got (abfd, to); |
c224138d RS |
4486 | return 1; |
4487 | } | |
4488 | ||
d7206569 | 4489 | /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much |
f4416af6 AO |
4490 | as possible of the primary got, since it doesn't require explicit |
4491 | dynamic relocations, but don't use bfds that would reference global | |
4492 | symbols out of the addressable range. Failing the primary got, | |
4493 | attempt to merge with the current got, or finish the current got | |
4494 | and then make make the new got current. */ | |
4495 | ||
d7206569 RS |
4496 | static bfd_boolean |
4497 | mips_elf_merge_got (bfd *abfd, struct mips_got_info *g, | |
4498 | struct mips_elf_got_per_bfd_arg *arg) | |
f4416af6 | 4499 | { |
c224138d RS |
4500 | unsigned int estimate; |
4501 | int result; | |
4502 | ||
476366af | 4503 | if (!mips_elf_resolve_final_got_entries (arg->info, g)) |
d7206569 RS |
4504 | return FALSE; |
4505 | ||
c224138d RS |
4506 | /* Work out the number of page, local and TLS entries. */ |
4507 | estimate = arg->max_pages; | |
4508 | if (estimate > g->page_gotno) | |
4509 | estimate = g->page_gotno; | |
4510 | estimate += g->local_gotno + g->tls_gotno; | |
0f20cc35 DJ |
4511 | |
4512 | /* We place TLS GOT entries after both locals and globals. The globals | |
4513 | for the primary GOT may overflow the normal GOT size limit, so be | |
4514 | sure not to merge a GOT which requires TLS with the primary GOT in that | |
4515 | case. This doesn't affect non-primary GOTs. */ | |
c224138d | 4516 | estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno); |
143d77c5 | 4517 | |
c224138d | 4518 | if (estimate <= arg->max_count) |
f4416af6 | 4519 | { |
c224138d RS |
4520 | /* If we don't have a primary GOT, use it as |
4521 | a starting point for the primary GOT. */ | |
4522 | if (!arg->primary) | |
4523 | { | |
d7206569 RS |
4524 | arg->primary = g; |
4525 | return TRUE; | |
c224138d | 4526 | } |
f4416af6 | 4527 | |
c224138d | 4528 | /* Try merging with the primary GOT. */ |
d7206569 | 4529 | result = mips_elf_merge_got_with (abfd, g, arg->primary, arg); |
c224138d RS |
4530 | if (result >= 0) |
4531 | return result; | |
f4416af6 | 4532 | } |
c224138d | 4533 | |
f4416af6 | 4534 | /* If we can merge with the last-created got, do it. */ |
c224138d | 4535 | if (arg->current) |
f4416af6 | 4536 | { |
d7206569 | 4537 | result = mips_elf_merge_got_with (abfd, g, arg->current, arg); |
c224138d RS |
4538 | if (result >= 0) |
4539 | return result; | |
f4416af6 | 4540 | } |
c224138d | 4541 | |
f4416af6 AO |
4542 | /* Well, we couldn't merge, so create a new GOT. Don't check if it |
4543 | fits; if it turns out that it doesn't, we'll get relocation | |
4544 | overflows anyway. */ | |
c224138d RS |
4545 | g->next = arg->current; |
4546 | arg->current = g; | |
0f20cc35 | 4547 | |
d7206569 | 4548 | return TRUE; |
0f20cc35 DJ |
4549 | } |
4550 | ||
72e7511a RS |
4551 | /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx |
4552 | to GOTIDX, duplicating the entry if it has already been assigned | |
4553 | an index in a different GOT. */ | |
4554 | ||
4555 | static bfd_boolean | |
4556 | mips_elf_set_gotidx (void **entryp, long gotidx) | |
4557 | { | |
4558 | struct mips_got_entry *entry; | |
4559 | ||
4560 | entry = (struct mips_got_entry *) *entryp; | |
4561 | if (entry->gotidx > 0) | |
4562 | { | |
4563 | struct mips_got_entry *new_entry; | |
4564 | ||
4565 | new_entry = bfd_alloc (entry->abfd, sizeof (*entry)); | |
4566 | if (!new_entry) | |
4567 | return FALSE; | |
4568 | ||
4569 | *new_entry = *entry; | |
4570 | *entryp = new_entry; | |
4571 | entry = new_entry; | |
4572 | } | |
4573 | entry->gotidx = gotidx; | |
4574 | return TRUE; | |
4575 | } | |
4576 | ||
4577 | /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a | |
4578 | mips_elf_traverse_got_arg in which DATA->value is the size of one | |
4579 | GOT entry. Set DATA->g to null on failure. */ | |
0f20cc35 DJ |
4580 | |
4581 | static int | |
72e7511a | 4582 | mips_elf_initialize_tls_index (void **entryp, void *data) |
0f20cc35 | 4583 | { |
72e7511a RS |
4584 | struct mips_got_entry *entry; |
4585 | struct mips_elf_traverse_got_arg *arg; | |
0f20cc35 DJ |
4586 | |
4587 | /* We're only interested in TLS symbols. */ | |
72e7511a | 4588 | entry = (struct mips_got_entry *) *entryp; |
9ab066b4 | 4589 | if (entry->tls_type == GOT_TLS_NONE) |
0f20cc35 DJ |
4590 | return 1; |
4591 | ||
72e7511a | 4592 | arg = (struct mips_elf_traverse_got_arg *) data; |
6c42ddb9 | 4593 | if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno)) |
ead49a57 | 4594 | { |
6c42ddb9 RS |
4595 | arg->g = NULL; |
4596 | return 0; | |
f4416af6 AO |
4597 | } |
4598 | ||
ead49a57 | 4599 | /* Account for the entries we've just allocated. */ |
9ab066b4 | 4600 | arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type); |
f4416af6 AO |
4601 | return 1; |
4602 | } | |
4603 | ||
ab361d49 RS |
4604 | /* A htab_traverse callback for GOT entries, where DATA points to a |
4605 | mips_elf_traverse_got_arg. Set the global_got_area of each global | |
4606 | symbol to DATA->value. */ | |
f4416af6 | 4607 | |
f4416af6 | 4608 | static int |
ab361d49 | 4609 | mips_elf_set_global_got_area (void **entryp, void *data) |
f4416af6 | 4610 | { |
ab361d49 RS |
4611 | struct mips_got_entry *entry; |
4612 | struct mips_elf_traverse_got_arg *arg; | |
f4416af6 | 4613 | |
ab361d49 RS |
4614 | entry = (struct mips_got_entry *) *entryp; |
4615 | arg = (struct mips_elf_traverse_got_arg *) data; | |
4616 | if (entry->abfd != NULL | |
4617 | && entry->symndx == -1 | |
4618 | && entry->d.h->global_got_area != GGA_NONE) | |
4619 | entry->d.h->global_got_area = arg->value; | |
4620 | return 1; | |
4621 | } | |
4622 | ||
4623 | /* A htab_traverse callback for secondary GOT entries, where DATA points | |
4624 | to a mips_elf_traverse_got_arg. Assign GOT indices to global entries | |
4625 | and record the number of relocations they require. DATA->value is | |
72e7511a | 4626 | the size of one GOT entry. Set DATA->g to null on failure. */ |
ab361d49 RS |
4627 | |
4628 | static int | |
4629 | mips_elf_set_global_gotidx (void **entryp, void *data) | |
4630 | { | |
4631 | struct mips_got_entry *entry; | |
4632 | struct mips_elf_traverse_got_arg *arg; | |
0f20cc35 | 4633 | |
ab361d49 RS |
4634 | entry = (struct mips_got_entry *) *entryp; |
4635 | arg = (struct mips_elf_traverse_got_arg *) data; | |
634835ae RS |
4636 | if (entry->abfd != NULL |
4637 | && entry->symndx == -1 | |
4638 | && entry->d.h->global_got_area != GGA_NONE) | |
f4416af6 | 4639 | { |
cb22ccf4 | 4640 | if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno)) |
72e7511a RS |
4641 | { |
4642 | arg->g = NULL; | |
4643 | return 0; | |
4644 | } | |
cb22ccf4 | 4645 | arg->g->assigned_low_gotno += 1; |
72e7511a | 4646 | |
ab361d49 RS |
4647 | if (arg->info->shared |
4648 | || (elf_hash_table (arg->info)->dynamic_sections_created | |
4649 | && entry->d.h->root.def_dynamic | |
4650 | && !entry->d.h->root.def_regular)) | |
4651 | arg->g->relocs += 1; | |
f4416af6 AO |
4652 | } |
4653 | ||
4654 | return 1; | |
4655 | } | |
4656 | ||
33bb52fb RS |
4657 | /* A htab_traverse callback for GOT entries for which DATA is the |
4658 | bfd_link_info. Forbid any global symbols from having traditional | |
4659 | lazy-binding stubs. */ | |
4660 | ||
0626d451 | 4661 | static int |
33bb52fb | 4662 | mips_elf_forbid_lazy_stubs (void **entryp, void *data) |
0626d451 | 4663 | { |
33bb52fb RS |
4664 | struct bfd_link_info *info; |
4665 | struct mips_elf_link_hash_table *htab; | |
4666 | struct mips_got_entry *entry; | |
0626d451 | 4667 | |
33bb52fb RS |
4668 | entry = (struct mips_got_entry *) *entryp; |
4669 | info = (struct bfd_link_info *) data; | |
4670 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 NC |
4671 | BFD_ASSERT (htab != NULL); |
4672 | ||
0626d451 RS |
4673 | if (entry->abfd != NULL |
4674 | && entry->symndx == -1 | |
33bb52fb | 4675 | && entry->d.h->needs_lazy_stub) |
f4416af6 | 4676 | { |
33bb52fb RS |
4677 | entry->d.h->needs_lazy_stub = FALSE; |
4678 | htab->lazy_stub_count--; | |
f4416af6 | 4679 | } |
143d77c5 | 4680 | |
f4416af6 AO |
4681 | return 1; |
4682 | } | |
4683 | ||
f4416af6 AO |
4684 | /* Return the offset of an input bfd IBFD's GOT from the beginning of |
4685 | the primary GOT. */ | |
4686 | static bfd_vma | |
9719ad41 | 4687 | mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd) |
f4416af6 | 4688 | { |
d7206569 | 4689 | if (!g->next) |
f4416af6 AO |
4690 | return 0; |
4691 | ||
d7206569 | 4692 | g = mips_elf_bfd_got (ibfd, FALSE); |
f4416af6 AO |
4693 | if (! g) |
4694 | return 0; | |
4695 | ||
4696 | BFD_ASSERT (g->next); | |
4697 | ||
4698 | g = g->next; | |
143d77c5 | 4699 | |
0f20cc35 DJ |
4700 | return (g->local_gotno + g->global_gotno + g->tls_gotno) |
4701 | * MIPS_ELF_GOT_SIZE (abfd); | |
f4416af6 AO |
4702 | } |
4703 | ||
4704 | /* Turn a single GOT that is too big for 16-bit addressing into | |
4705 | a sequence of GOTs, each one 16-bit addressable. */ | |
4706 | ||
4707 | static bfd_boolean | |
9719ad41 | 4708 | mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info, |
a8028dd0 | 4709 | asection *got, bfd_size_type pages) |
f4416af6 | 4710 | { |
a8028dd0 | 4711 | struct mips_elf_link_hash_table *htab; |
f4416af6 | 4712 | struct mips_elf_got_per_bfd_arg got_per_bfd_arg; |
ab361d49 | 4713 | struct mips_elf_traverse_got_arg tga; |
a8028dd0 | 4714 | struct mips_got_info *g, *gg; |
33bb52fb | 4715 | unsigned int assign, needed_relocs; |
d7206569 | 4716 | bfd *dynobj, *ibfd; |
f4416af6 | 4717 | |
33bb52fb | 4718 | dynobj = elf_hash_table (info)->dynobj; |
a8028dd0 | 4719 | htab = mips_elf_hash_table (info); |
4dfe6ac6 NC |
4720 | BFD_ASSERT (htab != NULL); |
4721 | ||
a8028dd0 | 4722 | g = htab->got_info; |
f4416af6 | 4723 | |
f4416af6 AO |
4724 | got_per_bfd_arg.obfd = abfd; |
4725 | got_per_bfd_arg.info = info; | |
f4416af6 AO |
4726 | got_per_bfd_arg.current = NULL; |
4727 | got_per_bfd_arg.primary = NULL; | |
0a44bf69 | 4728 | got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info) |
f4416af6 | 4729 | / MIPS_ELF_GOT_SIZE (abfd)) |
861fb55a | 4730 | - htab->reserved_gotno); |
c224138d | 4731 | got_per_bfd_arg.max_pages = pages; |
0f20cc35 | 4732 | /* The number of globals that will be included in the primary GOT. |
ab361d49 | 4733 | See the calls to mips_elf_set_global_got_area below for more |
0f20cc35 DJ |
4734 | information. */ |
4735 | got_per_bfd_arg.global_count = g->global_gotno; | |
f4416af6 AO |
4736 | |
4737 | /* Try to merge the GOTs of input bfds together, as long as they | |
4738 | don't seem to exceed the maximum GOT size, choosing one of them | |
4739 | to be the primary GOT. */ | |
d7206569 RS |
4740 | for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next) |
4741 | { | |
4742 | gg = mips_elf_bfd_got (ibfd, FALSE); | |
4743 | if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg)) | |
4744 | return FALSE; | |
4745 | } | |
f4416af6 | 4746 | |
0f20cc35 | 4747 | /* If we do not find any suitable primary GOT, create an empty one. */ |
f4416af6 | 4748 | if (got_per_bfd_arg.primary == NULL) |
3dff0dd1 | 4749 | g->next = mips_elf_create_got_info (abfd); |
f4416af6 AO |
4750 | else |
4751 | g->next = got_per_bfd_arg.primary; | |
4752 | g->next->next = got_per_bfd_arg.current; | |
4753 | ||
4754 | /* GG is now the master GOT, and G is the primary GOT. */ | |
4755 | gg = g; | |
4756 | g = g->next; | |
4757 | ||
4758 | /* Map the output bfd to the primary got. That's what we're going | |
4759 | to use for bfds that use GOT16 or GOT_PAGE relocations that we | |
4760 | didn't mark in check_relocs, and we want a quick way to find it. | |
4761 | We can't just use gg->next because we're going to reverse the | |
4762 | list. */ | |
d7206569 | 4763 | mips_elf_replace_bfd_got (abfd, g); |
f4416af6 | 4764 | |
634835ae RS |
4765 | /* Every symbol that is referenced in a dynamic relocation must be |
4766 | present in the primary GOT, so arrange for them to appear after | |
4767 | those that are actually referenced. */ | |
23cc69b6 | 4768 | gg->reloc_only_gotno = gg->global_gotno - g->global_gotno; |
634835ae | 4769 | g->global_gotno = gg->global_gotno; |
f4416af6 | 4770 | |
ab361d49 RS |
4771 | tga.info = info; |
4772 | tga.value = GGA_RELOC_ONLY; | |
4773 | htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga); | |
4774 | tga.value = GGA_NORMAL; | |
4775 | htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga); | |
f4416af6 AO |
4776 | |
4777 | /* Now go through the GOTs assigning them offset ranges. | |
cb22ccf4 | 4778 | [assigned_low_gotno, local_gotno[ will be set to the range of local |
f4416af6 AO |
4779 | entries in each GOT. We can then compute the end of a GOT by |
4780 | adding local_gotno to global_gotno. We reverse the list and make | |
4781 | it circular since then we'll be able to quickly compute the | |
4782 | beginning of a GOT, by computing the end of its predecessor. To | |
4783 | avoid special cases for the primary GOT, while still preserving | |
4784 | assertions that are valid for both single- and multi-got links, | |
4785 | we arrange for the main got struct to have the right number of | |
4786 | global entries, but set its local_gotno such that the initial | |
4787 | offset of the primary GOT is zero. Remember that the primary GOT | |
4788 | will become the last item in the circular linked list, so it | |
4789 | points back to the master GOT. */ | |
4790 | gg->local_gotno = -g->global_gotno; | |
4791 | gg->global_gotno = g->global_gotno; | |
0f20cc35 | 4792 | gg->tls_gotno = 0; |
f4416af6 AO |
4793 | assign = 0; |
4794 | gg->next = gg; | |
4795 | ||
4796 | do | |
4797 | { | |
4798 | struct mips_got_info *gn; | |
4799 | ||
861fb55a | 4800 | assign += htab->reserved_gotno; |
cb22ccf4 | 4801 | g->assigned_low_gotno = assign; |
c224138d RS |
4802 | g->local_gotno += assign; |
4803 | g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno); | |
cb22ccf4 | 4804 | g->assigned_high_gotno = g->local_gotno - 1; |
0f20cc35 DJ |
4805 | assign = g->local_gotno + g->global_gotno + g->tls_gotno; |
4806 | ||
ead49a57 RS |
4807 | /* Take g out of the direct list, and push it onto the reversed |
4808 | list that gg points to. g->next is guaranteed to be nonnull after | |
4809 | this operation, as required by mips_elf_initialize_tls_index. */ | |
4810 | gn = g->next; | |
4811 | g->next = gg->next; | |
4812 | gg->next = g; | |
4813 | ||
0f20cc35 DJ |
4814 | /* Set up any TLS entries. We always place the TLS entries after |
4815 | all non-TLS entries. */ | |
4816 | g->tls_assigned_gotno = g->local_gotno + g->global_gotno; | |
72e7511a RS |
4817 | tga.g = g; |
4818 | tga.value = MIPS_ELF_GOT_SIZE (abfd); | |
4819 | htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga); | |
4820 | if (!tga.g) | |
4821 | return FALSE; | |
1fd20d70 | 4822 | BFD_ASSERT (g->tls_assigned_gotno == assign); |
f4416af6 | 4823 | |
ead49a57 | 4824 | /* Move onto the next GOT. It will be a secondary GOT if nonull. */ |
f4416af6 | 4825 | g = gn; |
0626d451 | 4826 | |
33bb52fb RS |
4827 | /* Forbid global symbols in every non-primary GOT from having |
4828 | lazy-binding stubs. */ | |
0626d451 | 4829 | if (g) |
33bb52fb | 4830 | htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info); |
f4416af6 AO |
4831 | } |
4832 | while (g); | |
4833 | ||
59b08994 | 4834 | got->size = assign * MIPS_ELF_GOT_SIZE (abfd); |
33bb52fb RS |
4835 | |
4836 | needed_relocs = 0; | |
33bb52fb RS |
4837 | for (g = gg->next; g && g->next != gg; g = g->next) |
4838 | { | |
4839 | unsigned int save_assign; | |
4840 | ||
ab361d49 RS |
4841 | /* Assign offsets to global GOT entries and count how many |
4842 | relocations they need. */ | |
cb22ccf4 KCY |
4843 | save_assign = g->assigned_low_gotno; |
4844 | g->assigned_low_gotno = g->local_gotno; | |
ab361d49 RS |
4845 | tga.info = info; |
4846 | tga.value = MIPS_ELF_GOT_SIZE (abfd); | |
4847 | tga.g = g; | |
4848 | htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga); | |
72e7511a RS |
4849 | if (!tga.g) |
4850 | return FALSE; | |
cb22ccf4 KCY |
4851 | BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno); |
4852 | g->assigned_low_gotno = save_assign; | |
72e7511a | 4853 | |
33bb52fb RS |
4854 | if (info->shared) |
4855 | { | |
cb22ccf4 KCY |
4856 | g->relocs += g->local_gotno - g->assigned_low_gotno; |
4857 | BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno | |
33bb52fb RS |
4858 | + g->next->global_gotno |
4859 | + g->next->tls_gotno | |
861fb55a | 4860 | + htab->reserved_gotno); |
33bb52fb | 4861 | } |
ab361d49 | 4862 | needed_relocs += g->relocs; |
33bb52fb | 4863 | } |
ab361d49 | 4864 | needed_relocs += g->relocs; |
33bb52fb RS |
4865 | |
4866 | if (needed_relocs) | |
4867 | mips_elf_allocate_dynamic_relocations (dynobj, info, | |
4868 | needed_relocs); | |
143d77c5 | 4869 | |
f4416af6 AO |
4870 | return TRUE; |
4871 | } | |
143d77c5 | 4872 | |
b49e97c9 TS |
4873 | \f |
4874 | /* Returns the first relocation of type r_type found, beginning with | |
4875 | RELOCATION. RELEND is one-past-the-end of the relocation table. */ | |
4876 | ||
4877 | static const Elf_Internal_Rela * | |
9719ad41 RS |
4878 | mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type, |
4879 | const Elf_Internal_Rela *relocation, | |
4880 | const Elf_Internal_Rela *relend) | |
b49e97c9 | 4881 | { |
c000e262 TS |
4882 | unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info); |
4883 | ||
b49e97c9 TS |
4884 | while (relocation < relend) |
4885 | { | |
c000e262 TS |
4886 | if (ELF_R_TYPE (abfd, relocation->r_info) == r_type |
4887 | && ELF_R_SYM (abfd, relocation->r_info) == r_symndx) | |
b49e97c9 TS |
4888 | return relocation; |
4889 | ||
4890 | ++relocation; | |
4891 | } | |
4892 | ||
4893 | /* We didn't find it. */ | |
b49e97c9 TS |
4894 | return NULL; |
4895 | } | |
4896 | ||
020d7251 | 4897 | /* Return whether an input relocation is against a local symbol. */ |
b49e97c9 | 4898 | |
b34976b6 | 4899 | static bfd_boolean |
9719ad41 RS |
4900 | mips_elf_local_relocation_p (bfd *input_bfd, |
4901 | const Elf_Internal_Rela *relocation, | |
020d7251 | 4902 | asection **local_sections) |
b49e97c9 TS |
4903 | { |
4904 | unsigned long r_symndx; | |
4905 | Elf_Internal_Shdr *symtab_hdr; | |
b49e97c9 TS |
4906 | size_t extsymoff; |
4907 | ||
4908 | r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); | |
4909 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
4910 | extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info; | |
4911 | ||
4912 | if (r_symndx < extsymoff) | |
b34976b6 | 4913 | return TRUE; |
b49e97c9 | 4914 | if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL) |
b34976b6 | 4915 | return TRUE; |
b49e97c9 | 4916 | |
b34976b6 | 4917 | return FALSE; |
b49e97c9 TS |
4918 | } |
4919 | \f | |
4920 | /* Sign-extend VALUE, which has the indicated number of BITS. */ | |
4921 | ||
a7ebbfdf | 4922 | bfd_vma |
9719ad41 | 4923 | _bfd_mips_elf_sign_extend (bfd_vma value, int bits) |
b49e97c9 TS |
4924 | { |
4925 | if (value & ((bfd_vma) 1 << (bits - 1))) | |
4926 | /* VALUE is negative. */ | |
4927 | value |= ((bfd_vma) - 1) << bits; | |
4928 | ||
4929 | return value; | |
4930 | } | |
4931 | ||
4932 | /* Return non-zero if the indicated VALUE has overflowed the maximum | |
4cc11e76 | 4933 | range expressible by a signed number with the indicated number of |
b49e97c9 TS |
4934 | BITS. */ |
4935 | ||
b34976b6 | 4936 | static bfd_boolean |
9719ad41 | 4937 | mips_elf_overflow_p (bfd_vma value, int bits) |
b49e97c9 TS |
4938 | { |
4939 | bfd_signed_vma svalue = (bfd_signed_vma) value; | |
4940 | ||
4941 | if (svalue > (1 << (bits - 1)) - 1) | |
4942 | /* The value is too big. */ | |
b34976b6 | 4943 | return TRUE; |
b49e97c9 TS |
4944 | else if (svalue < -(1 << (bits - 1))) |
4945 | /* The value is too small. */ | |
b34976b6 | 4946 | return TRUE; |
b49e97c9 TS |
4947 | |
4948 | /* All is well. */ | |
b34976b6 | 4949 | return FALSE; |
b49e97c9 TS |
4950 | } |
4951 | ||
4952 | /* Calculate the %high function. */ | |
4953 | ||
4954 | static bfd_vma | |
9719ad41 | 4955 | mips_elf_high (bfd_vma value) |
b49e97c9 TS |
4956 | { |
4957 | return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff; | |
4958 | } | |
4959 | ||
4960 | /* Calculate the %higher function. */ | |
4961 | ||
4962 | static bfd_vma | |
9719ad41 | 4963 | mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED) |
b49e97c9 TS |
4964 | { |
4965 | #ifdef BFD64 | |
4966 | return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff; | |
4967 | #else | |
4968 | abort (); | |
c5ae1840 | 4969 | return MINUS_ONE; |
b49e97c9 TS |
4970 | #endif |
4971 | } | |
4972 | ||
4973 | /* Calculate the %highest function. */ | |
4974 | ||
4975 | static bfd_vma | |
9719ad41 | 4976 | mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED) |
b49e97c9 TS |
4977 | { |
4978 | #ifdef BFD64 | |
b15e6682 | 4979 | return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff; |
b49e97c9 TS |
4980 | #else |
4981 | abort (); | |
c5ae1840 | 4982 | return MINUS_ONE; |
b49e97c9 TS |
4983 | #endif |
4984 | } | |
4985 | \f | |
4986 | /* Create the .compact_rel section. */ | |
4987 | ||
b34976b6 | 4988 | static bfd_boolean |
9719ad41 RS |
4989 | mips_elf_create_compact_rel_section |
4990 | (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
4991 | { |
4992 | flagword flags; | |
4993 | register asection *s; | |
4994 | ||
3d4d4302 | 4995 | if (bfd_get_linker_section (abfd, ".compact_rel") == NULL) |
b49e97c9 TS |
4996 | { |
4997 | flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | |
4998 | | SEC_READONLY); | |
4999 | ||
3d4d4302 | 5000 | s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags); |
b49e97c9 | 5001 | if (s == NULL |
b49e97c9 TS |
5002 | || ! bfd_set_section_alignment (abfd, s, |
5003 | MIPS_ELF_LOG_FILE_ALIGN (abfd))) | |
b34976b6 | 5004 | return FALSE; |
b49e97c9 | 5005 | |
eea6121a | 5006 | s->size = sizeof (Elf32_External_compact_rel); |
b49e97c9 TS |
5007 | } |
5008 | ||
b34976b6 | 5009 | return TRUE; |
b49e97c9 TS |
5010 | } |
5011 | ||
5012 | /* Create the .got section to hold the global offset table. */ | |
5013 | ||
b34976b6 | 5014 | static bfd_boolean |
23cc69b6 | 5015 | mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info) |
b49e97c9 TS |
5016 | { |
5017 | flagword flags; | |
5018 | register asection *s; | |
5019 | struct elf_link_hash_entry *h; | |
14a793b2 | 5020 | struct bfd_link_hash_entry *bh; |
0a44bf69 RS |
5021 | struct mips_elf_link_hash_table *htab; |
5022 | ||
5023 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 | 5024 | BFD_ASSERT (htab != NULL); |
b49e97c9 TS |
5025 | |
5026 | /* This function may be called more than once. */ | |
23cc69b6 RS |
5027 | if (htab->sgot) |
5028 | return TRUE; | |
b49e97c9 TS |
5029 | |
5030 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
5031 | | SEC_LINKER_CREATED); | |
5032 | ||
72b4917c TS |
5033 | /* We have to use an alignment of 2**4 here because this is hardcoded |
5034 | in the function stub generation and in the linker script. */ | |
87e0a731 | 5035 | s = bfd_make_section_anyway_with_flags (abfd, ".got", flags); |
b49e97c9 | 5036 | if (s == NULL |
72b4917c | 5037 | || ! bfd_set_section_alignment (abfd, s, 4)) |
b34976b6 | 5038 | return FALSE; |
a8028dd0 | 5039 | htab->sgot = s; |
b49e97c9 TS |
5040 | |
5041 | /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the | |
5042 | linker script because we don't want to define the symbol if we | |
5043 | are not creating a global offset table. */ | |
14a793b2 | 5044 | bh = NULL; |
b49e97c9 TS |
5045 | if (! (_bfd_generic_link_add_one_symbol |
5046 | (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s, | |
9719ad41 | 5047 | 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) |
b34976b6 | 5048 | return FALSE; |
14a793b2 AM |
5049 | |
5050 | h = (struct elf_link_hash_entry *) bh; | |
f5385ebf AM |
5051 | h->non_elf = 0; |
5052 | h->def_regular = 1; | |
b49e97c9 | 5053 | h->type = STT_OBJECT; |
2f9efdfc | 5054 | h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN; |
d329bcd1 | 5055 | elf_hash_table (info)->hgot = h; |
b49e97c9 TS |
5056 | |
5057 | if (info->shared | |
c152c796 | 5058 | && ! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 5059 | return FALSE; |
b49e97c9 | 5060 | |
3dff0dd1 | 5061 | htab->got_info = mips_elf_create_got_info (abfd); |
f0abc2a1 | 5062 | mips_elf_section_data (s)->elf.this_hdr.sh_flags |
b49e97c9 TS |
5063 | |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; |
5064 | ||
861fb55a | 5065 | /* We also need a .got.plt section when generating PLTs. */ |
87e0a731 AM |
5066 | s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", |
5067 | SEC_ALLOC | SEC_LOAD | |
5068 | | SEC_HAS_CONTENTS | |
5069 | | SEC_IN_MEMORY | |
5070 | | SEC_LINKER_CREATED); | |
861fb55a DJ |
5071 | if (s == NULL) |
5072 | return FALSE; | |
5073 | htab->sgotplt = s; | |
0a44bf69 | 5074 | |
b34976b6 | 5075 | return TRUE; |
b49e97c9 | 5076 | } |
b49e97c9 | 5077 | \f |
0a44bf69 RS |
5078 | /* Return true if H refers to the special VxWorks __GOTT_BASE__ or |
5079 | __GOTT_INDEX__ symbols. These symbols are only special for | |
5080 | shared objects; they are not used in executables. */ | |
5081 | ||
5082 | static bfd_boolean | |
5083 | is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h) | |
5084 | { | |
5085 | return (mips_elf_hash_table (info)->is_vxworks | |
5086 | && info->shared | |
5087 | && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0 | |
5088 | || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0)); | |
5089 | } | |
861fb55a DJ |
5090 | |
5091 | /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might | |
5092 | require an la25 stub. See also mips_elf_local_pic_function_p, | |
5093 | which determines whether the destination function ever requires a | |
5094 | stub. */ | |
5095 | ||
5096 | static bfd_boolean | |
8f0c309a CLT |
5097 | mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type, |
5098 | bfd_boolean target_is_16_bit_code_p) | |
861fb55a DJ |
5099 | { |
5100 | /* We specifically ignore branches and jumps from EF_PIC objects, | |
5101 | where the onus is on the compiler or programmer to perform any | |
5102 | necessary initialization of $25. Sometimes such initialization | |
5103 | is unnecessary; for example, -mno-shared functions do not use | |
5104 | the incoming value of $25, and may therefore be called directly. */ | |
5105 | if (PIC_OBJECT_P (input_bfd)) | |
5106 | return FALSE; | |
5107 | ||
5108 | switch (r_type) | |
5109 | { | |
5110 | case R_MIPS_26: | |
5111 | case R_MIPS_PC16: | |
df58fc94 RS |
5112 | case R_MICROMIPS_26_S1: |
5113 | case R_MICROMIPS_PC7_S1: | |
5114 | case R_MICROMIPS_PC10_S1: | |
5115 | case R_MICROMIPS_PC16_S1: | |
5116 | case R_MICROMIPS_PC23_S2: | |
861fb55a DJ |
5117 | return TRUE; |
5118 | ||
8f0c309a CLT |
5119 | case R_MIPS16_26: |
5120 | return !target_is_16_bit_code_p; | |
5121 | ||
861fb55a DJ |
5122 | default: |
5123 | return FALSE; | |
5124 | } | |
5125 | } | |
0a44bf69 | 5126 | \f |
b49e97c9 TS |
5127 | /* Calculate the value produced by the RELOCATION (which comes from |
5128 | the INPUT_BFD). The ADDEND is the addend to use for this | |
5129 | RELOCATION; RELOCATION->R_ADDEND is ignored. | |
5130 | ||
5131 | The result of the relocation calculation is stored in VALUEP. | |
38a7df63 | 5132 | On exit, set *CROSS_MODE_JUMP_P to true if the relocation field |
df58fc94 | 5133 | is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa. |
b49e97c9 TS |
5134 | |
5135 | This function returns bfd_reloc_continue if the caller need take no | |
5136 | further action regarding this relocation, bfd_reloc_notsupported if | |
5137 | something goes dramatically wrong, bfd_reloc_overflow if an | |
5138 | overflow occurs, and bfd_reloc_ok to indicate success. */ | |
5139 | ||
5140 | static bfd_reloc_status_type | |
9719ad41 RS |
5141 | mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd, |
5142 | asection *input_section, | |
5143 | struct bfd_link_info *info, | |
5144 | const Elf_Internal_Rela *relocation, | |
5145 | bfd_vma addend, reloc_howto_type *howto, | |
5146 | Elf_Internal_Sym *local_syms, | |
5147 | asection **local_sections, bfd_vma *valuep, | |
38a7df63 CF |
5148 | const char **namep, |
5149 | bfd_boolean *cross_mode_jump_p, | |
9719ad41 | 5150 | bfd_boolean save_addend) |
b49e97c9 TS |
5151 | { |
5152 | /* The eventual value we will return. */ | |
5153 | bfd_vma value; | |
5154 | /* The address of the symbol against which the relocation is | |
5155 | occurring. */ | |
5156 | bfd_vma symbol = 0; | |
5157 | /* The final GP value to be used for the relocatable, executable, or | |
5158 | shared object file being produced. */ | |
0a61c8c2 | 5159 | bfd_vma gp; |
b49e97c9 TS |
5160 | /* The place (section offset or address) of the storage unit being |
5161 | relocated. */ | |
5162 | bfd_vma p; | |
5163 | /* The value of GP used to create the relocatable object. */ | |
0a61c8c2 | 5164 | bfd_vma gp0; |
b49e97c9 TS |
5165 | /* The offset into the global offset table at which the address of |
5166 | the relocation entry symbol, adjusted by the addend, resides | |
5167 | during execution. */ | |
5168 | bfd_vma g = MINUS_ONE; | |
5169 | /* The section in which the symbol referenced by the relocation is | |
5170 | located. */ | |
5171 | asection *sec = NULL; | |
5172 | struct mips_elf_link_hash_entry *h = NULL; | |
b34976b6 | 5173 | /* TRUE if the symbol referred to by this relocation is a local |
b49e97c9 | 5174 | symbol. */ |
b34976b6 AM |
5175 | bfd_boolean local_p, was_local_p; |
5176 | /* TRUE if the symbol referred to by this relocation is "_gp_disp". */ | |
5177 | bfd_boolean gp_disp_p = FALSE; | |
bbe506e8 TS |
5178 | /* TRUE if the symbol referred to by this relocation is |
5179 | "__gnu_local_gp". */ | |
5180 | bfd_boolean gnu_local_gp_p = FALSE; | |
b49e97c9 TS |
5181 | Elf_Internal_Shdr *symtab_hdr; |
5182 | size_t extsymoff; | |
5183 | unsigned long r_symndx; | |
5184 | int r_type; | |
b34976b6 | 5185 | /* TRUE if overflow occurred during the calculation of the |
b49e97c9 | 5186 | relocation value. */ |
b34976b6 AM |
5187 | bfd_boolean overflowed_p; |
5188 | /* TRUE if this relocation refers to a MIPS16 function. */ | |
5189 | bfd_boolean target_is_16_bit_code_p = FALSE; | |
df58fc94 | 5190 | bfd_boolean target_is_micromips_code_p = FALSE; |
0a44bf69 RS |
5191 | struct mips_elf_link_hash_table *htab; |
5192 | bfd *dynobj; | |
5193 | ||
5194 | dynobj = elf_hash_table (info)->dynobj; | |
5195 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 | 5196 | BFD_ASSERT (htab != NULL); |
b49e97c9 TS |
5197 | |
5198 | /* Parse the relocation. */ | |
5199 | r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); | |
5200 | r_type = ELF_R_TYPE (input_bfd, relocation->r_info); | |
5201 | p = (input_section->output_section->vma | |
5202 | + input_section->output_offset | |
5203 | + relocation->r_offset); | |
5204 | ||
5205 | /* Assume that there will be no overflow. */ | |
b34976b6 | 5206 | overflowed_p = FALSE; |
b49e97c9 TS |
5207 | |
5208 | /* Figure out whether or not the symbol is local, and get the offset | |
5209 | used in the array of hash table entries. */ | |
5210 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
5211 | local_p = mips_elf_local_relocation_p (input_bfd, relocation, | |
020d7251 | 5212 | local_sections); |
bce03d3d | 5213 | was_local_p = local_p; |
b49e97c9 TS |
5214 | if (! elf_bad_symtab (input_bfd)) |
5215 | extsymoff = symtab_hdr->sh_info; | |
5216 | else | |
5217 | { | |
5218 | /* The symbol table does not follow the rule that local symbols | |
5219 | must come before globals. */ | |
5220 | extsymoff = 0; | |
5221 | } | |
5222 | ||
5223 | /* Figure out the value of the symbol. */ | |
5224 | if (local_p) | |
5225 | { | |
5226 | Elf_Internal_Sym *sym; | |
5227 | ||
5228 | sym = local_syms + r_symndx; | |
5229 | sec = local_sections[r_symndx]; | |
5230 | ||
5231 | symbol = sec->output_section->vma + sec->output_offset; | |
d4df96e6 L |
5232 | if (ELF_ST_TYPE (sym->st_info) != STT_SECTION |
5233 | || (sec->flags & SEC_MERGE)) | |
b49e97c9 | 5234 | symbol += sym->st_value; |
d4df96e6 L |
5235 | if ((sec->flags & SEC_MERGE) |
5236 | && ELF_ST_TYPE (sym->st_info) == STT_SECTION) | |
5237 | { | |
5238 | addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend); | |
5239 | addend -= symbol; | |
5240 | addend += sec->output_section->vma + sec->output_offset; | |
5241 | } | |
b49e97c9 | 5242 | |
df58fc94 RS |
5243 | /* MIPS16/microMIPS text labels should be treated as odd. */ |
5244 | if (ELF_ST_IS_COMPRESSED (sym->st_other)) | |
b49e97c9 TS |
5245 | ++symbol; |
5246 | ||
5247 | /* Record the name of this symbol, for our caller. */ | |
5248 | *namep = bfd_elf_string_from_elf_section (input_bfd, | |
5249 | symtab_hdr->sh_link, | |
5250 | sym->st_name); | |
5251 | if (*namep == '\0') | |
5252 | *namep = bfd_section_name (input_bfd, sec); | |
5253 | ||
30c09090 | 5254 | target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other); |
df58fc94 | 5255 | target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other); |
b49e97c9 TS |
5256 | } |
5257 | else | |
5258 | { | |
560e09e9 NC |
5259 | /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */ |
5260 | ||
b49e97c9 TS |
5261 | /* For global symbols we look up the symbol in the hash-table. */ |
5262 | h = ((struct mips_elf_link_hash_entry *) | |
5263 | elf_sym_hashes (input_bfd) [r_symndx - extsymoff]); | |
5264 | /* Find the real hash-table entry for this symbol. */ | |
5265 | while (h->root.root.type == bfd_link_hash_indirect | |
5266 | || h->root.root.type == bfd_link_hash_warning) | |
5267 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
5268 | ||
5269 | /* Record the name of this symbol, for our caller. */ | |
5270 | *namep = h->root.root.root.string; | |
5271 | ||
5272 | /* See if this is the special _gp_disp symbol. Note that such a | |
5273 | symbol must always be a global symbol. */ | |
560e09e9 | 5274 | if (strcmp (*namep, "_gp_disp") == 0 |
b49e97c9 TS |
5275 | && ! NEWABI_P (input_bfd)) |
5276 | { | |
5277 | /* Relocations against _gp_disp are permitted only with | |
5278 | R_MIPS_HI16 and R_MIPS_LO16 relocations. */ | |
738e5348 | 5279 | if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type)) |
b49e97c9 TS |
5280 | return bfd_reloc_notsupported; |
5281 | ||
b34976b6 | 5282 | gp_disp_p = TRUE; |
b49e97c9 | 5283 | } |
bbe506e8 TS |
5284 | /* See if this is the special _gp symbol. Note that such a |
5285 | symbol must always be a global symbol. */ | |
5286 | else if (strcmp (*namep, "__gnu_local_gp") == 0) | |
5287 | gnu_local_gp_p = TRUE; | |
5288 | ||
5289 | ||
b49e97c9 TS |
5290 | /* If this symbol is defined, calculate its address. Note that |
5291 | _gp_disp is a magic symbol, always implicitly defined by the | |
5292 | linker, so it's inappropriate to check to see whether or not | |
5293 | its defined. */ | |
5294 | else if ((h->root.root.type == bfd_link_hash_defined | |
5295 | || h->root.root.type == bfd_link_hash_defweak) | |
5296 | && h->root.root.u.def.section) | |
5297 | { | |
5298 | sec = h->root.root.u.def.section; | |
5299 | if (sec->output_section) | |
5300 | symbol = (h->root.root.u.def.value | |
5301 | + sec->output_section->vma | |
5302 | + sec->output_offset); | |
5303 | else | |
5304 | symbol = h->root.root.u.def.value; | |
5305 | } | |
5306 | else if (h->root.root.type == bfd_link_hash_undefweak) | |
5307 | /* We allow relocations against undefined weak symbols, giving | |
5308 | it the value zero, so that you can undefined weak functions | |
5309 | and check to see if they exist by looking at their | |
5310 | addresses. */ | |
5311 | symbol = 0; | |
59c2e50f | 5312 | else if (info->unresolved_syms_in_objects == RM_IGNORE |
b49e97c9 TS |
5313 | && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT) |
5314 | symbol = 0; | |
a4d0f181 TS |
5315 | else if (strcmp (*namep, SGI_COMPAT (input_bfd) |
5316 | ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0) | |
b49e97c9 TS |
5317 | { |
5318 | /* If this is a dynamic link, we should have created a | |
5319 | _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol | |
5320 | in in _bfd_mips_elf_create_dynamic_sections. | |
5321 | Otherwise, we should define the symbol with a value of 0. | |
5322 | FIXME: It should probably get into the symbol table | |
5323 | somehow as well. */ | |
5324 | BFD_ASSERT (! info->shared); | |
5325 | BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL); | |
5326 | symbol = 0; | |
5327 | } | |
5e2b0d47 NC |
5328 | else if (ELF_MIPS_IS_OPTIONAL (h->root.other)) |
5329 | { | |
5330 | /* This is an optional symbol - an Irix specific extension to the | |
5331 | ELF spec. Ignore it for now. | |
5332 | XXX - FIXME - there is more to the spec for OPTIONAL symbols | |
5333 | than simply ignoring them, but we do not handle this for now. | |
5334 | For information see the "64-bit ELF Object File Specification" | |
5335 | which is available from here: | |
5336 | http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */ | |
5337 | symbol = 0; | |
5338 | } | |
e7e2196d MR |
5339 | else if ((*info->callbacks->undefined_symbol) |
5340 | (info, h->root.root.root.string, input_bfd, | |
5341 | input_section, relocation->r_offset, | |
5342 | (info->unresolved_syms_in_objects == RM_GENERATE_ERROR) | |
5343 | || ELF_ST_VISIBILITY (h->root.other))) | |
5344 | { | |
5345 | return bfd_reloc_undefined; | |
5346 | } | |
b49e97c9 TS |
5347 | else |
5348 | { | |
e7e2196d | 5349 | return bfd_reloc_notsupported; |
b49e97c9 TS |
5350 | } |
5351 | ||
30c09090 | 5352 | target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other); |
1bbce132 | 5353 | target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other); |
b49e97c9 TS |
5354 | } |
5355 | ||
738e5348 RS |
5356 | /* If this is a reference to a 16-bit function with a stub, we need |
5357 | to redirect the relocation to the stub unless: | |
5358 | ||
5359 | (a) the relocation is for a MIPS16 JAL; | |
5360 | ||
5361 | (b) the relocation is for a MIPS16 PIC call, and there are no | |
5362 | non-MIPS16 uses of the GOT slot; or | |
5363 | ||
5364 | (c) the section allows direct references to MIPS16 functions. */ | |
5365 | if (r_type != R_MIPS16_26 | |
5366 | && !info->relocatable | |
5367 | && ((h != NULL | |
5368 | && h->fn_stub != NULL | |
5369 | && (r_type != R_MIPS16_CALL16 || h->need_fn_stub)) | |
b9d58d71 | 5370 | || (local_p |
698600e4 AM |
5371 | && mips_elf_tdata (input_bfd)->local_stubs != NULL |
5372 | && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL)) | |
738e5348 | 5373 | && !section_allows_mips16_refs_p (input_section)) |
b49e97c9 TS |
5374 | { |
5375 | /* This is a 32- or 64-bit call to a 16-bit function. We should | |
5376 | have already noticed that we were going to need the | |
5377 | stub. */ | |
5378 | if (local_p) | |
8f0c309a | 5379 | { |
698600e4 | 5380 | sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx]; |
8f0c309a CLT |
5381 | value = 0; |
5382 | } | |
b49e97c9 TS |
5383 | else |
5384 | { | |
5385 | BFD_ASSERT (h->need_fn_stub); | |
8f0c309a CLT |
5386 | if (h->la25_stub) |
5387 | { | |
5388 | /* If a LA25 header for the stub itself exists, point to the | |
5389 | prepended LUI/ADDIU sequence. */ | |
5390 | sec = h->la25_stub->stub_section; | |
5391 | value = h->la25_stub->offset; | |
5392 | } | |
5393 | else | |
5394 | { | |
5395 | sec = h->fn_stub; | |
5396 | value = 0; | |
5397 | } | |
b49e97c9 TS |
5398 | } |
5399 | ||
8f0c309a | 5400 | symbol = sec->output_section->vma + sec->output_offset + value; |
f38c2df5 TS |
5401 | /* The target is 16-bit, but the stub isn't. */ |
5402 | target_is_16_bit_code_p = FALSE; | |
b49e97c9 | 5403 | } |
1bbce132 MR |
5404 | /* If this is a MIPS16 call with a stub, that is made through the PLT or |
5405 | to a standard MIPS function, we need to redirect the call to the stub. | |
5406 | Note that we specifically exclude R_MIPS16_CALL16 from this behavior; | |
5407 | indirect calls should use an indirect stub instead. */ | |
1049f94e | 5408 | else if (r_type == R_MIPS16_26 && !info->relocatable |
b314ec0e | 5409 | && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL)) |
b9d58d71 | 5410 | || (local_p |
698600e4 AM |
5411 | && mips_elf_tdata (input_bfd)->local_call_stubs != NULL |
5412 | && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL)) | |
1bbce132 | 5413 | && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p)) |
b49e97c9 | 5414 | { |
b9d58d71 | 5415 | if (local_p) |
698600e4 | 5416 | sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx]; |
b9d58d71 | 5417 | else |
b49e97c9 | 5418 | { |
b9d58d71 TS |
5419 | /* If both call_stub and call_fp_stub are defined, we can figure |
5420 | out which one to use by checking which one appears in the input | |
5421 | file. */ | |
5422 | if (h->call_stub != NULL && h->call_fp_stub != NULL) | |
b49e97c9 | 5423 | { |
b9d58d71 | 5424 | asection *o; |
68ffbac6 | 5425 | |
b9d58d71 TS |
5426 | sec = NULL; |
5427 | for (o = input_bfd->sections; o != NULL; o = o->next) | |
b49e97c9 | 5428 | { |
b9d58d71 TS |
5429 | if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o))) |
5430 | { | |
5431 | sec = h->call_fp_stub; | |
5432 | break; | |
5433 | } | |
b49e97c9 | 5434 | } |
b9d58d71 TS |
5435 | if (sec == NULL) |
5436 | sec = h->call_stub; | |
b49e97c9 | 5437 | } |
b9d58d71 | 5438 | else if (h->call_stub != NULL) |
b49e97c9 | 5439 | sec = h->call_stub; |
b9d58d71 TS |
5440 | else |
5441 | sec = h->call_fp_stub; | |
5442 | } | |
b49e97c9 | 5443 | |
eea6121a | 5444 | BFD_ASSERT (sec->size > 0); |
b49e97c9 TS |
5445 | symbol = sec->output_section->vma + sec->output_offset; |
5446 | } | |
861fb55a DJ |
5447 | /* If this is a direct call to a PIC function, redirect to the |
5448 | non-PIC stub. */ | |
5449 | else if (h != NULL && h->la25_stub | |
8f0c309a CLT |
5450 | && mips_elf_relocation_needs_la25_stub (input_bfd, r_type, |
5451 | target_is_16_bit_code_p)) | |
861fb55a DJ |
5452 | symbol = (h->la25_stub->stub_section->output_section->vma |
5453 | + h->la25_stub->stub_section->output_offset | |
5454 | + h->la25_stub->offset); | |
1bbce132 MR |
5455 | /* For direct MIPS16 and microMIPS calls make sure the compressed PLT |
5456 | entry is used if a standard PLT entry has also been made. In this | |
5457 | case the symbol will have been set by mips_elf_set_plt_sym_value | |
5458 | to point to the standard PLT entry, so redirect to the compressed | |
5459 | one. */ | |
5460 | else if ((r_type == R_MIPS16_26 || r_type == R_MICROMIPS_26_S1) | |
5461 | && !info->relocatable | |
5462 | && h != NULL | |
5463 | && h->use_plt_entry | |
5464 | && h->root.plt.plist->comp_offset != MINUS_ONE | |
5465 | && h->root.plt.plist->mips_offset != MINUS_ONE) | |
5466 | { | |
5467 | bfd_boolean micromips_p = MICROMIPS_P (abfd); | |
5468 | ||
5469 | sec = htab->splt; | |
5470 | symbol = (sec->output_section->vma | |
5471 | + sec->output_offset | |
5472 | + htab->plt_header_size | |
5473 | + htab->plt_mips_offset | |
5474 | + h->root.plt.plist->comp_offset | |
5475 | + 1); | |
5476 | ||
5477 | target_is_16_bit_code_p = !micromips_p; | |
5478 | target_is_micromips_code_p = micromips_p; | |
5479 | } | |
b49e97c9 | 5480 | |
df58fc94 RS |
5481 | /* Make sure MIPS16 and microMIPS are not used together. */ |
5482 | if ((r_type == R_MIPS16_26 && target_is_micromips_code_p) | |
5483 | || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p)) | |
5484 | { | |
5485 | (*_bfd_error_handler) | |
5486 | (_("MIPS16 and microMIPS functions cannot call each other")); | |
5487 | return bfd_reloc_notsupported; | |
5488 | } | |
5489 | ||
b49e97c9 | 5490 | /* Calls from 16-bit code to 32-bit code and vice versa require the |
df58fc94 RS |
5491 | mode change. However, we can ignore calls to undefined weak symbols, |
5492 | which should never be executed at runtime. This exception is important | |
5493 | because the assembly writer may have "known" that any definition of the | |
5494 | symbol would be 16-bit code, and that direct jumps were therefore | |
5495 | acceptable. */ | |
5496 | *cross_mode_jump_p = (!info->relocatable | |
5497 | && !(h && h->root.root.type == bfd_link_hash_undefweak) | |
5498 | && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p) | |
5499 | || (r_type == R_MICROMIPS_26_S1 | |
5500 | && !target_is_micromips_code_p) | |
5501 | || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR) | |
5502 | && (target_is_16_bit_code_p | |
5503 | || target_is_micromips_code_p)))); | |
b49e97c9 | 5504 | |
c5d6fa44 | 5505 | local_p = (h == NULL || mips_use_local_got_p (info, h)); |
b49e97c9 | 5506 | |
0a61c8c2 RS |
5507 | gp0 = _bfd_get_gp_value (input_bfd); |
5508 | gp = _bfd_get_gp_value (abfd); | |
23cc69b6 | 5509 | if (htab->got_info) |
a8028dd0 | 5510 | gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd); |
0a61c8c2 RS |
5511 | |
5512 | if (gnu_local_gp_p) | |
5513 | symbol = gp; | |
5514 | ||
df58fc94 RS |
5515 | /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent |
5516 | to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the | |
5517 | corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */ | |
5518 | if (got_page_reloc_p (r_type) && !local_p) | |
020d7251 | 5519 | { |
df58fc94 RS |
5520 | r_type = (micromips_reloc_p (r_type) |
5521 | ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP); | |
020d7251 RS |
5522 | addend = 0; |
5523 | } | |
5524 | ||
e77760d2 | 5525 | /* If we haven't already determined the GOT offset, and we're going |
0a61c8c2 | 5526 | to need it, get it now. */ |
b49e97c9 TS |
5527 | switch (r_type) |
5528 | { | |
738e5348 RS |
5529 | case R_MIPS16_CALL16: |
5530 | case R_MIPS16_GOT16: | |
b49e97c9 TS |
5531 | case R_MIPS_CALL16: |
5532 | case R_MIPS_GOT16: | |
5533 | case R_MIPS_GOT_DISP: | |
5534 | case R_MIPS_GOT_HI16: | |
5535 | case R_MIPS_CALL_HI16: | |
5536 | case R_MIPS_GOT_LO16: | |
5537 | case R_MIPS_CALL_LO16: | |
df58fc94 RS |
5538 | case R_MICROMIPS_CALL16: |
5539 | case R_MICROMIPS_GOT16: | |
5540 | case R_MICROMIPS_GOT_DISP: | |
5541 | case R_MICROMIPS_GOT_HI16: | |
5542 | case R_MICROMIPS_CALL_HI16: | |
5543 | case R_MICROMIPS_GOT_LO16: | |
5544 | case R_MICROMIPS_CALL_LO16: | |
0f20cc35 DJ |
5545 | case R_MIPS_TLS_GD: |
5546 | case R_MIPS_TLS_GOTTPREL: | |
5547 | case R_MIPS_TLS_LDM: | |
d0f13682 CLT |
5548 | case R_MIPS16_TLS_GD: |
5549 | case R_MIPS16_TLS_GOTTPREL: | |
5550 | case R_MIPS16_TLS_LDM: | |
df58fc94 RS |
5551 | case R_MICROMIPS_TLS_GD: |
5552 | case R_MICROMIPS_TLS_GOTTPREL: | |
5553 | case R_MICROMIPS_TLS_LDM: | |
b49e97c9 | 5554 | /* Find the index into the GOT where this value is located. */ |
df58fc94 | 5555 | if (tls_ldm_reloc_p (r_type)) |
0f20cc35 | 5556 | { |
0a44bf69 | 5557 | g = mips_elf_local_got_index (abfd, input_bfd, info, |
5c18022e | 5558 | 0, 0, NULL, r_type); |
0f20cc35 DJ |
5559 | if (g == MINUS_ONE) |
5560 | return bfd_reloc_outofrange; | |
5561 | } | |
5562 | else if (!local_p) | |
b49e97c9 | 5563 | { |
0a44bf69 RS |
5564 | /* On VxWorks, CALL relocations should refer to the .got.plt |
5565 | entry, which is initialized to point at the PLT stub. */ | |
5566 | if (htab->is_vxworks | |
df58fc94 RS |
5567 | && (call_hi16_reloc_p (r_type) |
5568 | || call_lo16_reloc_p (r_type) | |
738e5348 | 5569 | || call16_reloc_p (r_type))) |
0a44bf69 RS |
5570 | { |
5571 | BFD_ASSERT (addend == 0); | |
5572 | BFD_ASSERT (h->root.needs_plt); | |
5573 | g = mips_elf_gotplt_index (info, &h->root); | |
5574 | } | |
5575 | else | |
b49e97c9 | 5576 | { |
020d7251 | 5577 | BFD_ASSERT (addend == 0); |
13fbec83 RS |
5578 | g = mips_elf_global_got_index (abfd, info, input_bfd, |
5579 | &h->root, r_type); | |
e641e783 | 5580 | if (!TLS_RELOC_P (r_type) |
020d7251 RS |
5581 | && !elf_hash_table (info)->dynamic_sections_created) |
5582 | /* This is a static link. We must initialize the GOT entry. */ | |
a8028dd0 | 5583 | MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g); |
b49e97c9 TS |
5584 | } |
5585 | } | |
0a44bf69 | 5586 | else if (!htab->is_vxworks |
738e5348 | 5587 | && (call16_reloc_p (r_type) || got16_reloc_p (r_type))) |
0a44bf69 | 5588 | /* The calculation below does not involve "g". */ |
b49e97c9 TS |
5589 | break; |
5590 | else | |
5591 | { | |
5c18022e | 5592 | g = mips_elf_local_got_index (abfd, input_bfd, info, |
0a44bf69 | 5593 | symbol + addend, r_symndx, h, r_type); |
b49e97c9 TS |
5594 | if (g == MINUS_ONE) |
5595 | return bfd_reloc_outofrange; | |
5596 | } | |
5597 | ||
5598 | /* Convert GOT indices to actual offsets. */ | |
a8028dd0 | 5599 | g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g); |
b49e97c9 | 5600 | break; |
b49e97c9 TS |
5601 | } |
5602 | ||
0a44bf69 RS |
5603 | /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__ |
5604 | symbols are resolved by the loader. Add them to .rela.dyn. */ | |
5605 | if (h != NULL && is_gott_symbol (info, &h->root)) | |
5606 | { | |
5607 | Elf_Internal_Rela outrel; | |
5608 | bfd_byte *loc; | |
5609 | asection *s; | |
5610 | ||
5611 | s = mips_elf_rel_dyn_section (info, FALSE); | |
5612 | loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela); | |
5613 | ||
5614 | outrel.r_offset = (input_section->output_section->vma | |
5615 | + input_section->output_offset | |
5616 | + relocation->r_offset); | |
5617 | outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type); | |
5618 | outrel.r_addend = addend; | |
5619 | bfd_elf32_swap_reloca_out (abfd, &outrel, loc); | |
9e3313ae RS |
5620 | |
5621 | /* If we've written this relocation for a readonly section, | |
5622 | we need to set DF_TEXTREL again, so that we do not delete the | |
5623 | DT_TEXTREL tag. */ | |
5624 | if (MIPS_ELF_READONLY_SECTION (input_section)) | |
5625 | info->flags |= DF_TEXTREL; | |
5626 | ||
0a44bf69 RS |
5627 | *valuep = 0; |
5628 | return bfd_reloc_ok; | |
5629 | } | |
5630 | ||
b49e97c9 TS |
5631 | /* Figure out what kind of relocation is being performed. */ |
5632 | switch (r_type) | |
5633 | { | |
5634 | case R_MIPS_NONE: | |
5635 | return bfd_reloc_continue; | |
5636 | ||
5637 | case R_MIPS_16: | |
a7ebbfdf | 5638 | value = symbol + _bfd_mips_elf_sign_extend (addend, 16); |
b49e97c9 TS |
5639 | overflowed_p = mips_elf_overflow_p (value, 16); |
5640 | break; | |
5641 | ||
5642 | case R_MIPS_32: | |
5643 | case R_MIPS_REL32: | |
5644 | case R_MIPS_64: | |
5645 | if ((info->shared | |
861fb55a | 5646 | || (htab->root.dynamic_sections_created |
b49e97c9 | 5647 | && h != NULL |
f5385ebf | 5648 | && h->root.def_dynamic |
861fb55a DJ |
5649 | && !h->root.def_regular |
5650 | && !h->has_static_relocs)) | |
cf35638d | 5651 | && r_symndx != STN_UNDEF |
9a59ad6b DJ |
5652 | && (h == NULL |
5653 | || h->root.root.type != bfd_link_hash_undefweak | |
5654 | || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT) | |
b49e97c9 TS |
5655 | && (input_section->flags & SEC_ALLOC) != 0) |
5656 | { | |
861fb55a | 5657 | /* If we're creating a shared library, then we can't know |
b49e97c9 TS |
5658 | where the symbol will end up. So, we create a relocation |
5659 | record in the output, and leave the job up to the dynamic | |
861fb55a DJ |
5660 | linker. We must do the same for executable references to |
5661 | shared library symbols, unless we've decided to use copy | |
5662 | relocs or PLTs instead. */ | |
b49e97c9 TS |
5663 | value = addend; |
5664 | if (!mips_elf_create_dynamic_relocation (abfd, | |
5665 | info, | |
5666 | relocation, | |
5667 | h, | |
5668 | sec, | |
5669 | symbol, | |
5670 | &value, | |
5671 | input_section)) | |
5672 | return bfd_reloc_undefined; | |
5673 | } | |
5674 | else | |
5675 | { | |
5676 | if (r_type != R_MIPS_REL32) | |
5677 | value = symbol + addend; | |
5678 | else | |
5679 | value = addend; | |
5680 | } | |
5681 | value &= howto->dst_mask; | |
092dcd75 CD |
5682 | break; |
5683 | ||
5684 | case R_MIPS_PC32: | |
5685 | value = symbol + addend - p; | |
5686 | value &= howto->dst_mask; | |
b49e97c9 TS |
5687 | break; |
5688 | ||
b49e97c9 TS |
5689 | case R_MIPS16_26: |
5690 | /* The calculation for R_MIPS16_26 is just the same as for an | |
5691 | R_MIPS_26. It's only the storage of the relocated field into | |
5692 | the output file that's different. That's handled in | |
5693 | mips_elf_perform_relocation. So, we just fall through to the | |
5694 | R_MIPS_26 case here. */ | |
5695 | case R_MIPS_26: | |
df58fc94 RS |
5696 | case R_MICROMIPS_26_S1: |
5697 | { | |
5698 | unsigned int shift; | |
5699 | ||
5700 | /* Make sure the target of JALX is word-aligned. Bit 0 must be | |
5701 | the correct ISA mode selector and bit 1 must be 0. */ | |
5702 | if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26)) | |
5703 | return bfd_reloc_outofrange; | |
5704 | ||
5705 | /* Shift is 2, unusually, for microMIPS JALX. */ | |
5706 | shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2; | |
5707 | ||
5708 | if (was_local_p) | |
5709 | value = addend | ((p + 4) & (0xfc000000 << shift)); | |
5710 | else | |
5711 | value = _bfd_mips_elf_sign_extend (addend, 26 + shift); | |
5712 | value = (value + symbol) >> shift; | |
5713 | if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak) | |
5714 | overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift)); | |
5715 | value &= howto->dst_mask; | |
5716 | } | |
b49e97c9 TS |
5717 | break; |
5718 | ||
0f20cc35 | 5719 | case R_MIPS_TLS_DTPREL_HI16: |
d0f13682 | 5720 | case R_MIPS16_TLS_DTPREL_HI16: |
df58fc94 | 5721 | case R_MICROMIPS_TLS_DTPREL_HI16: |
0f20cc35 DJ |
5722 | value = (mips_elf_high (addend + symbol - dtprel_base (info)) |
5723 | & howto->dst_mask); | |
5724 | break; | |
5725 | ||
5726 | case R_MIPS_TLS_DTPREL_LO16: | |
741d6ea8 JM |
5727 | case R_MIPS_TLS_DTPREL32: |
5728 | case R_MIPS_TLS_DTPREL64: | |
d0f13682 | 5729 | case R_MIPS16_TLS_DTPREL_LO16: |
df58fc94 | 5730 | case R_MICROMIPS_TLS_DTPREL_LO16: |
0f20cc35 DJ |
5731 | value = (symbol + addend - dtprel_base (info)) & howto->dst_mask; |
5732 | break; | |
5733 | ||
5734 | case R_MIPS_TLS_TPREL_HI16: | |
d0f13682 | 5735 | case R_MIPS16_TLS_TPREL_HI16: |
df58fc94 | 5736 | case R_MICROMIPS_TLS_TPREL_HI16: |
0f20cc35 DJ |
5737 | value = (mips_elf_high (addend + symbol - tprel_base (info)) |
5738 | & howto->dst_mask); | |
5739 | break; | |
5740 | ||
5741 | case R_MIPS_TLS_TPREL_LO16: | |
d0f13682 CLT |
5742 | case R_MIPS_TLS_TPREL32: |
5743 | case R_MIPS_TLS_TPREL64: | |
5744 | case R_MIPS16_TLS_TPREL_LO16: | |
df58fc94 | 5745 | case R_MICROMIPS_TLS_TPREL_LO16: |
0f20cc35 DJ |
5746 | value = (symbol + addend - tprel_base (info)) & howto->dst_mask; |
5747 | break; | |
5748 | ||
b49e97c9 | 5749 | case R_MIPS_HI16: |
d6f16593 | 5750 | case R_MIPS16_HI16: |
df58fc94 | 5751 | case R_MICROMIPS_HI16: |
b49e97c9 TS |
5752 | if (!gp_disp_p) |
5753 | { | |
5754 | value = mips_elf_high (addend + symbol); | |
5755 | value &= howto->dst_mask; | |
5756 | } | |
5757 | else | |
5758 | { | |
d6f16593 MR |
5759 | /* For MIPS16 ABI code we generate this sequence |
5760 | 0: li $v0,%hi(_gp_disp) | |
5761 | 4: addiupc $v1,%lo(_gp_disp) | |
5762 | 8: sll $v0,16 | |
5763 | 12: addu $v0,$v1 | |
5764 | 14: move $gp,$v0 | |
5765 | So the offsets of hi and lo relocs are the same, but the | |
888b9c01 CLT |
5766 | base $pc is that used by the ADDIUPC instruction at $t9 + 4. |
5767 | ADDIUPC clears the low two bits of the instruction address, | |
5768 | so the base is ($t9 + 4) & ~3. */ | |
d6f16593 | 5769 | if (r_type == R_MIPS16_HI16) |
888b9c01 | 5770 | value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3)); |
df58fc94 RS |
5771 | /* The microMIPS .cpload sequence uses the same assembly |
5772 | instructions as the traditional psABI version, but the | |
5773 | incoming $t9 has the low bit set. */ | |
5774 | else if (r_type == R_MICROMIPS_HI16) | |
5775 | value = mips_elf_high (addend + gp - p - 1); | |
d6f16593 MR |
5776 | else |
5777 | value = mips_elf_high (addend + gp - p); | |
b49e97c9 TS |
5778 | overflowed_p = mips_elf_overflow_p (value, 16); |
5779 | } | |
5780 | break; | |
5781 | ||
5782 | case R_MIPS_LO16: | |
d6f16593 | 5783 | case R_MIPS16_LO16: |
df58fc94 RS |
5784 | case R_MICROMIPS_LO16: |
5785 | case R_MICROMIPS_HI0_LO16: | |
b49e97c9 TS |
5786 | if (!gp_disp_p) |
5787 | value = (symbol + addend) & howto->dst_mask; | |
5788 | else | |
5789 | { | |
d6f16593 MR |
5790 | /* See the comment for R_MIPS16_HI16 above for the reason |
5791 | for this conditional. */ | |
5792 | if (r_type == R_MIPS16_LO16) | |
888b9c01 | 5793 | value = addend + gp - (p & ~(bfd_vma) 0x3); |
df58fc94 RS |
5794 | else if (r_type == R_MICROMIPS_LO16 |
5795 | || r_type == R_MICROMIPS_HI0_LO16) | |
5796 | value = addend + gp - p + 3; | |
d6f16593 MR |
5797 | else |
5798 | value = addend + gp - p + 4; | |
b49e97c9 | 5799 | /* The MIPS ABI requires checking the R_MIPS_LO16 relocation |
8dc1a139 | 5800 | for overflow. But, on, say, IRIX5, relocations against |
b49e97c9 TS |
5801 | _gp_disp are normally generated from the .cpload |
5802 | pseudo-op. It generates code that normally looks like | |
5803 | this: | |
5804 | ||
5805 | lui $gp,%hi(_gp_disp) | |
5806 | addiu $gp,$gp,%lo(_gp_disp) | |
5807 | addu $gp,$gp,$t9 | |
5808 | ||
5809 | Here $t9 holds the address of the function being called, | |
5810 | as required by the MIPS ELF ABI. The R_MIPS_LO16 | |
5811 | relocation can easily overflow in this situation, but the | |
5812 | R_MIPS_HI16 relocation will handle the overflow. | |
5813 | Therefore, we consider this a bug in the MIPS ABI, and do | |
5814 | not check for overflow here. */ | |
5815 | } | |
5816 | break; | |
5817 | ||
5818 | case R_MIPS_LITERAL: | |
df58fc94 | 5819 | case R_MICROMIPS_LITERAL: |
b49e97c9 TS |
5820 | /* Because we don't merge literal sections, we can handle this |
5821 | just like R_MIPS_GPREL16. In the long run, we should merge | |
5822 | shared literals, and then we will need to additional work | |
5823 | here. */ | |
5824 | ||
5825 | /* Fall through. */ | |
5826 | ||
5827 | case R_MIPS16_GPREL: | |
5828 | /* The R_MIPS16_GPREL performs the same calculation as | |
5829 | R_MIPS_GPREL16, but stores the relocated bits in a different | |
5830 | order. We don't need to do anything special here; the | |
5831 | differences are handled in mips_elf_perform_relocation. */ | |
5832 | case R_MIPS_GPREL16: | |
df58fc94 RS |
5833 | case R_MICROMIPS_GPREL7_S2: |
5834 | case R_MICROMIPS_GPREL16: | |
bce03d3d AO |
5835 | /* Only sign-extend the addend if it was extracted from the |
5836 | instruction. If the addend was separate, leave it alone, | |
5837 | otherwise we may lose significant bits. */ | |
5838 | if (howto->partial_inplace) | |
a7ebbfdf | 5839 | addend = _bfd_mips_elf_sign_extend (addend, 16); |
bce03d3d AO |
5840 | value = symbol + addend - gp; |
5841 | /* If the symbol was local, any earlier relocatable links will | |
5842 | have adjusted its addend with the gp offset, so compensate | |
5843 | for that now. Don't do it for symbols forced local in this | |
5844 | link, though, since they won't have had the gp offset applied | |
5845 | to them before. */ | |
5846 | if (was_local_p) | |
5847 | value += gp0; | |
b49e97c9 TS |
5848 | overflowed_p = mips_elf_overflow_p (value, 16); |
5849 | break; | |
5850 | ||
738e5348 RS |
5851 | case R_MIPS16_GOT16: |
5852 | case R_MIPS16_CALL16: | |
b49e97c9 TS |
5853 | case R_MIPS_GOT16: |
5854 | case R_MIPS_CALL16: | |
df58fc94 RS |
5855 | case R_MICROMIPS_GOT16: |
5856 | case R_MICROMIPS_CALL16: | |
0a44bf69 | 5857 | /* VxWorks does not have separate local and global semantics for |
738e5348 | 5858 | R_MIPS*_GOT16; every relocation evaluates to "G". */ |
0a44bf69 | 5859 | if (!htab->is_vxworks && local_p) |
b49e97c9 | 5860 | { |
5c18022e | 5861 | value = mips_elf_got16_entry (abfd, input_bfd, info, |
020d7251 | 5862 | symbol + addend, !was_local_p); |
b49e97c9 TS |
5863 | if (value == MINUS_ONE) |
5864 | return bfd_reloc_outofrange; | |
5865 | value | |
a8028dd0 | 5866 | = mips_elf_got_offset_from_index (info, abfd, input_bfd, value); |
b49e97c9 TS |
5867 | overflowed_p = mips_elf_overflow_p (value, 16); |
5868 | break; | |
5869 | } | |
5870 | ||
5871 | /* Fall through. */ | |
5872 | ||
0f20cc35 DJ |
5873 | case R_MIPS_TLS_GD: |
5874 | case R_MIPS_TLS_GOTTPREL: | |
5875 | case R_MIPS_TLS_LDM: | |
b49e97c9 | 5876 | case R_MIPS_GOT_DISP: |
d0f13682 CLT |
5877 | case R_MIPS16_TLS_GD: |
5878 | case R_MIPS16_TLS_GOTTPREL: | |
5879 | case R_MIPS16_TLS_LDM: | |
df58fc94 RS |
5880 | case R_MICROMIPS_TLS_GD: |
5881 | case R_MICROMIPS_TLS_GOTTPREL: | |
5882 | case R_MICROMIPS_TLS_LDM: | |
5883 | case R_MICROMIPS_GOT_DISP: | |
b49e97c9 TS |
5884 | value = g; |
5885 | overflowed_p = mips_elf_overflow_p (value, 16); | |
5886 | break; | |
5887 | ||
5888 | case R_MIPS_GPREL32: | |
bce03d3d AO |
5889 | value = (addend + symbol + gp0 - gp); |
5890 | if (!save_addend) | |
5891 | value &= howto->dst_mask; | |
b49e97c9 TS |
5892 | break; |
5893 | ||
5894 | case R_MIPS_PC16: | |
bad36eac DJ |
5895 | case R_MIPS_GNU_REL16_S2: |
5896 | value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p; | |
5897 | overflowed_p = mips_elf_overflow_p (value, 18); | |
37caec6b TS |
5898 | value >>= howto->rightshift; |
5899 | value &= howto->dst_mask; | |
b49e97c9 TS |
5900 | break; |
5901 | ||
df58fc94 RS |
5902 | case R_MICROMIPS_PC7_S1: |
5903 | value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p; | |
5904 | overflowed_p = mips_elf_overflow_p (value, 8); | |
5905 | value >>= howto->rightshift; | |
5906 | value &= howto->dst_mask; | |
5907 | break; | |
5908 | ||
5909 | case R_MICROMIPS_PC10_S1: | |
5910 | value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p; | |
5911 | overflowed_p = mips_elf_overflow_p (value, 11); | |
5912 | value >>= howto->rightshift; | |
5913 | value &= howto->dst_mask; | |
5914 | break; | |
5915 | ||
5916 | case R_MICROMIPS_PC16_S1: | |
5917 | value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p; | |
5918 | overflowed_p = mips_elf_overflow_p (value, 17); | |
5919 | value >>= howto->rightshift; | |
5920 | value &= howto->dst_mask; | |
5921 | break; | |
5922 | ||
5923 | case R_MICROMIPS_PC23_S2: | |
5924 | value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3); | |
5925 | overflowed_p = mips_elf_overflow_p (value, 25); | |
5926 | value >>= howto->rightshift; | |
5927 | value &= howto->dst_mask; | |
5928 | break; | |
5929 | ||
b49e97c9 TS |
5930 | case R_MIPS_GOT_HI16: |
5931 | case R_MIPS_CALL_HI16: | |
df58fc94 RS |
5932 | case R_MICROMIPS_GOT_HI16: |
5933 | case R_MICROMIPS_CALL_HI16: | |
b49e97c9 TS |
5934 | /* We're allowed to handle these two relocations identically. |
5935 | The dynamic linker is allowed to handle the CALL relocations | |
5936 | differently by creating a lazy evaluation stub. */ | |
5937 | value = g; | |
5938 | value = mips_elf_high (value); | |
5939 | value &= howto->dst_mask; | |
5940 | break; | |
5941 | ||
5942 | case R_MIPS_GOT_LO16: | |
5943 | case R_MIPS_CALL_LO16: | |
df58fc94 RS |
5944 | case R_MICROMIPS_GOT_LO16: |
5945 | case R_MICROMIPS_CALL_LO16: | |
b49e97c9 TS |
5946 | value = g & howto->dst_mask; |
5947 | break; | |
5948 | ||
5949 | case R_MIPS_GOT_PAGE: | |
df58fc94 | 5950 | case R_MICROMIPS_GOT_PAGE: |
5c18022e | 5951 | value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL); |
b49e97c9 TS |
5952 | if (value == MINUS_ONE) |
5953 | return bfd_reloc_outofrange; | |
a8028dd0 | 5954 | value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value); |
b49e97c9 TS |
5955 | overflowed_p = mips_elf_overflow_p (value, 16); |
5956 | break; | |
5957 | ||
5958 | case R_MIPS_GOT_OFST: | |
df58fc94 | 5959 | case R_MICROMIPS_GOT_OFST: |
93a2b7ae | 5960 | if (local_p) |
5c18022e | 5961 | mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value); |
0fdc1bf1 AO |
5962 | else |
5963 | value = addend; | |
b49e97c9 TS |
5964 | overflowed_p = mips_elf_overflow_p (value, 16); |
5965 | break; | |
5966 | ||
5967 | case R_MIPS_SUB: | |
df58fc94 | 5968 | case R_MICROMIPS_SUB: |
b49e97c9 TS |
5969 | value = symbol - addend; |
5970 | value &= howto->dst_mask; | |
5971 | break; | |
5972 | ||
5973 | case R_MIPS_HIGHER: | |
df58fc94 | 5974 | case R_MICROMIPS_HIGHER: |
b49e97c9 TS |
5975 | value = mips_elf_higher (addend + symbol); |
5976 | value &= howto->dst_mask; | |
5977 | break; | |
5978 | ||
5979 | case R_MIPS_HIGHEST: | |
df58fc94 | 5980 | case R_MICROMIPS_HIGHEST: |
b49e97c9 TS |
5981 | value = mips_elf_highest (addend + symbol); |
5982 | value &= howto->dst_mask; | |
5983 | break; | |
5984 | ||
5985 | case R_MIPS_SCN_DISP: | |
df58fc94 | 5986 | case R_MICROMIPS_SCN_DISP: |
b49e97c9 TS |
5987 | value = symbol + addend - sec->output_offset; |
5988 | value &= howto->dst_mask; | |
5989 | break; | |
5990 | ||
b49e97c9 | 5991 | case R_MIPS_JALR: |
df58fc94 | 5992 | case R_MICROMIPS_JALR: |
1367d393 ILT |
5993 | /* This relocation is only a hint. In some cases, we optimize |
5994 | it into a bal instruction. But we don't try to optimize | |
5bbc5ae7 AN |
5995 | when the symbol does not resolve locally. */ |
5996 | if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root)) | |
1367d393 ILT |
5997 | return bfd_reloc_continue; |
5998 | value = symbol + addend; | |
5999 | break; | |
b49e97c9 | 6000 | |
1367d393 | 6001 | case R_MIPS_PJUMP: |
b49e97c9 TS |
6002 | case R_MIPS_GNU_VTINHERIT: |
6003 | case R_MIPS_GNU_VTENTRY: | |
6004 | /* We don't do anything with these at present. */ | |
6005 | return bfd_reloc_continue; | |
6006 | ||
6007 | default: | |
6008 | /* An unrecognized relocation type. */ | |
6009 | return bfd_reloc_notsupported; | |
6010 | } | |
6011 | ||
6012 | /* Store the VALUE for our caller. */ | |
6013 | *valuep = value; | |
6014 | return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok; | |
6015 | } | |
6016 | ||
6017 | /* Obtain the field relocated by RELOCATION. */ | |
6018 | ||
6019 | static bfd_vma | |
9719ad41 RS |
6020 | mips_elf_obtain_contents (reloc_howto_type *howto, |
6021 | const Elf_Internal_Rela *relocation, | |
6022 | bfd *input_bfd, bfd_byte *contents) | |
b49e97c9 TS |
6023 | { |
6024 | bfd_vma x; | |
6025 | bfd_byte *location = contents + relocation->r_offset; | |
6026 | ||
6027 | /* Obtain the bytes. */ | |
6028 | x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location); | |
6029 | ||
b49e97c9 TS |
6030 | return x; |
6031 | } | |
6032 | ||
6033 | /* It has been determined that the result of the RELOCATION is the | |
6034 | VALUE. Use HOWTO to place VALUE into the output file at the | |
6035 | appropriate position. The SECTION is the section to which the | |
68ffbac6 | 6036 | relocation applies. |
38a7df63 | 6037 | CROSS_MODE_JUMP_P is true if the relocation field |
df58fc94 | 6038 | is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa. |
b49e97c9 | 6039 | |
b34976b6 | 6040 | Returns FALSE if anything goes wrong. */ |
b49e97c9 | 6041 | |
b34976b6 | 6042 | static bfd_boolean |
9719ad41 RS |
6043 | mips_elf_perform_relocation (struct bfd_link_info *info, |
6044 | reloc_howto_type *howto, | |
6045 | const Elf_Internal_Rela *relocation, | |
6046 | bfd_vma value, bfd *input_bfd, | |
6047 | asection *input_section, bfd_byte *contents, | |
38a7df63 | 6048 | bfd_boolean cross_mode_jump_p) |
b49e97c9 TS |
6049 | { |
6050 | bfd_vma x; | |
6051 | bfd_byte *location; | |
6052 | int r_type = ELF_R_TYPE (input_bfd, relocation->r_info); | |
6053 | ||
6054 | /* Figure out where the relocation is occurring. */ | |
6055 | location = contents + relocation->r_offset; | |
6056 | ||
df58fc94 | 6057 | _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location); |
d6f16593 | 6058 | |
b49e97c9 TS |
6059 | /* Obtain the current value. */ |
6060 | x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents); | |
6061 | ||
6062 | /* Clear the field we are setting. */ | |
6063 | x &= ~howto->dst_mask; | |
6064 | ||
b49e97c9 TS |
6065 | /* Set the field. */ |
6066 | x |= (value & howto->dst_mask); | |
6067 | ||
6068 | /* If required, turn JAL into JALX. */ | |
38a7df63 | 6069 | if (cross_mode_jump_p && jal_reloc_p (r_type)) |
b49e97c9 | 6070 | { |
b34976b6 | 6071 | bfd_boolean ok; |
b49e97c9 TS |
6072 | bfd_vma opcode = x >> 26; |
6073 | bfd_vma jalx_opcode; | |
6074 | ||
6075 | /* Check to see if the opcode is already JAL or JALX. */ | |
6076 | if (r_type == R_MIPS16_26) | |
6077 | { | |
6078 | ok = ((opcode == 0x6) || (opcode == 0x7)); | |
6079 | jalx_opcode = 0x7; | |
6080 | } | |
df58fc94 RS |
6081 | else if (r_type == R_MICROMIPS_26_S1) |
6082 | { | |
6083 | ok = ((opcode == 0x3d) || (opcode == 0x3c)); | |
6084 | jalx_opcode = 0x3c; | |
6085 | } | |
b49e97c9 TS |
6086 | else |
6087 | { | |
6088 | ok = ((opcode == 0x3) || (opcode == 0x1d)); | |
6089 | jalx_opcode = 0x1d; | |
6090 | } | |
6091 | ||
3bdf9505 MR |
6092 | /* If the opcode is not JAL or JALX, there's a problem. We cannot |
6093 | convert J or JALS to JALX. */ | |
b49e97c9 TS |
6094 | if (!ok) |
6095 | { | |
6096 | (*_bfd_error_handler) | |
3bdf9505 | 6097 | (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."), |
d003868e AM |
6098 | input_bfd, |
6099 | input_section, | |
b49e97c9 TS |
6100 | (unsigned long) relocation->r_offset); |
6101 | bfd_set_error (bfd_error_bad_value); | |
b34976b6 | 6102 | return FALSE; |
b49e97c9 TS |
6103 | } |
6104 | ||
6105 | /* Make this the JALX opcode. */ | |
6106 | x = (x & ~(0x3f << 26)) | (jalx_opcode << 26); | |
6107 | } | |
6108 | ||
38a7df63 CF |
6109 | /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in |
6110 | range. */ | |
cd8d5a82 | 6111 | if (!info->relocatable |
38a7df63 | 6112 | && !cross_mode_jump_p |
cd8d5a82 CF |
6113 | && ((JAL_TO_BAL_P (input_bfd) |
6114 | && r_type == R_MIPS_26 | |
6115 | && (x >> 26) == 0x3) /* jal addr */ | |
6116 | || (JALR_TO_BAL_P (input_bfd) | |
6117 | && r_type == R_MIPS_JALR | |
38a7df63 CF |
6118 | && x == 0x0320f809) /* jalr t9 */ |
6119 | || (JR_TO_B_P (input_bfd) | |
6120 | && r_type == R_MIPS_JALR | |
6121 | && x == 0x03200008))) /* jr t9 */ | |
1367d393 ILT |
6122 | { |
6123 | bfd_vma addr; | |
6124 | bfd_vma dest; | |
6125 | bfd_signed_vma off; | |
6126 | ||
6127 | addr = (input_section->output_section->vma | |
6128 | + input_section->output_offset | |
6129 | + relocation->r_offset | |
6130 | + 4); | |
6131 | if (r_type == R_MIPS_26) | |
6132 | dest = (value << 2) | ((addr >> 28) << 28); | |
6133 | else | |
6134 | dest = value; | |
6135 | off = dest - addr; | |
6136 | if (off <= 0x1ffff && off >= -0x20000) | |
38a7df63 CF |
6137 | { |
6138 | if (x == 0x03200008) /* jr t9 */ | |
6139 | x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */ | |
6140 | else | |
6141 | x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */ | |
6142 | } | |
1367d393 ILT |
6143 | } |
6144 | ||
b49e97c9 TS |
6145 | /* Put the value into the output. */ |
6146 | bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location); | |
d6f16593 | 6147 | |
df58fc94 RS |
6148 | _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable, |
6149 | location); | |
d6f16593 | 6150 | |
b34976b6 | 6151 | return TRUE; |
b49e97c9 | 6152 | } |
b49e97c9 | 6153 | \f |
b49e97c9 TS |
6154 | /* Create a rel.dyn relocation for the dynamic linker to resolve. REL |
6155 | is the original relocation, which is now being transformed into a | |
6156 | dynamic relocation. The ADDENDP is adjusted if necessary; the | |
6157 | caller should store the result in place of the original addend. */ | |
6158 | ||
b34976b6 | 6159 | static bfd_boolean |
9719ad41 RS |
6160 | mips_elf_create_dynamic_relocation (bfd *output_bfd, |
6161 | struct bfd_link_info *info, | |
6162 | const Elf_Internal_Rela *rel, | |
6163 | struct mips_elf_link_hash_entry *h, | |
6164 | asection *sec, bfd_vma symbol, | |
6165 | bfd_vma *addendp, asection *input_section) | |
b49e97c9 | 6166 | { |
947216bf | 6167 | Elf_Internal_Rela outrel[3]; |
b49e97c9 TS |
6168 | asection *sreloc; |
6169 | bfd *dynobj; | |
6170 | int r_type; | |
5d41f0b6 RS |
6171 | long indx; |
6172 | bfd_boolean defined_p; | |
0a44bf69 | 6173 | struct mips_elf_link_hash_table *htab; |
b49e97c9 | 6174 | |
0a44bf69 | 6175 | htab = mips_elf_hash_table (info); |
4dfe6ac6 NC |
6176 | BFD_ASSERT (htab != NULL); |
6177 | ||
b49e97c9 TS |
6178 | r_type = ELF_R_TYPE (output_bfd, rel->r_info); |
6179 | dynobj = elf_hash_table (info)->dynobj; | |
0a44bf69 | 6180 | sreloc = mips_elf_rel_dyn_section (info, FALSE); |
b49e97c9 TS |
6181 | BFD_ASSERT (sreloc != NULL); |
6182 | BFD_ASSERT (sreloc->contents != NULL); | |
6183 | BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd) | |
eea6121a | 6184 | < sreloc->size); |
b49e97c9 | 6185 | |
b49e97c9 TS |
6186 | outrel[0].r_offset = |
6187 | _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset); | |
9ddf8309 TS |
6188 | if (ABI_64_P (output_bfd)) |
6189 | { | |
6190 | outrel[1].r_offset = | |
6191 | _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset); | |
6192 | outrel[2].r_offset = | |
6193 | _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset); | |
6194 | } | |
b49e97c9 | 6195 | |
c5ae1840 | 6196 | if (outrel[0].r_offset == MINUS_ONE) |
0d591ff7 | 6197 | /* The relocation field has been deleted. */ |
5d41f0b6 RS |
6198 | return TRUE; |
6199 | ||
6200 | if (outrel[0].r_offset == MINUS_TWO) | |
0d591ff7 RS |
6201 | { |
6202 | /* The relocation field has been converted into a relative value of | |
6203 | some sort. Functions like _bfd_elf_write_section_eh_frame expect | |
6204 | the field to be fully relocated, so add in the symbol's value. */ | |
0d591ff7 | 6205 | *addendp += symbol; |
5d41f0b6 | 6206 | return TRUE; |
0d591ff7 | 6207 | } |
b49e97c9 | 6208 | |
5d41f0b6 RS |
6209 | /* We must now calculate the dynamic symbol table index to use |
6210 | in the relocation. */ | |
d4a77f3f | 6211 | if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root)) |
5d41f0b6 | 6212 | { |
020d7251 | 6213 | BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE); |
5d41f0b6 RS |
6214 | indx = h->root.dynindx; |
6215 | if (SGI_COMPAT (output_bfd)) | |
6216 | defined_p = h->root.def_regular; | |
6217 | else | |
6218 | /* ??? glibc's ld.so just adds the final GOT entry to the | |
6219 | relocation field. It therefore treats relocs against | |
6220 | defined symbols in the same way as relocs against | |
6221 | undefined symbols. */ | |
6222 | defined_p = FALSE; | |
6223 | } | |
b49e97c9 TS |
6224 | else |
6225 | { | |
5d41f0b6 RS |
6226 | if (sec != NULL && bfd_is_abs_section (sec)) |
6227 | indx = 0; | |
6228 | else if (sec == NULL || sec->owner == NULL) | |
fdd07405 | 6229 | { |
5d41f0b6 RS |
6230 | bfd_set_error (bfd_error_bad_value); |
6231 | return FALSE; | |
b49e97c9 TS |
6232 | } |
6233 | else | |
6234 | { | |
5d41f0b6 | 6235 | indx = elf_section_data (sec->output_section)->dynindx; |
74541ad4 AM |
6236 | if (indx == 0) |
6237 | { | |
6238 | asection *osec = htab->root.text_index_section; | |
6239 | indx = elf_section_data (osec)->dynindx; | |
6240 | } | |
5d41f0b6 RS |
6241 | if (indx == 0) |
6242 | abort (); | |
b49e97c9 TS |
6243 | } |
6244 | ||
5d41f0b6 RS |
6245 | /* Instead of generating a relocation using the section |
6246 | symbol, we may as well make it a fully relative | |
6247 | relocation. We want to avoid generating relocations to | |
6248 | local symbols because we used to generate them | |
6249 | incorrectly, without adding the original symbol value, | |
6250 | which is mandated by the ABI for section symbols. In | |
6251 | order to give dynamic loaders and applications time to | |
6252 | phase out the incorrect use, we refrain from emitting | |
6253 | section-relative relocations. It's not like they're | |
6254 | useful, after all. This should be a bit more efficient | |
6255 | as well. */ | |
6256 | /* ??? Although this behavior is compatible with glibc's ld.so, | |
6257 | the ABI says that relocations against STN_UNDEF should have | |
6258 | a symbol value of 0. Irix rld honors this, so relocations | |
6259 | against STN_UNDEF have no effect. */ | |
6260 | if (!SGI_COMPAT (output_bfd)) | |
6261 | indx = 0; | |
6262 | defined_p = TRUE; | |
b49e97c9 TS |
6263 | } |
6264 | ||
5d41f0b6 RS |
6265 | /* If the relocation was previously an absolute relocation and |
6266 | this symbol will not be referred to by the relocation, we must | |
6267 | adjust it by the value we give it in the dynamic symbol table. | |
6268 | Otherwise leave the job up to the dynamic linker. */ | |
6269 | if (defined_p && r_type != R_MIPS_REL32) | |
6270 | *addendp += symbol; | |
6271 | ||
0a44bf69 RS |
6272 | if (htab->is_vxworks) |
6273 | /* VxWorks uses non-relative relocations for this. */ | |
6274 | outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32); | |
6275 | else | |
6276 | /* The relocation is always an REL32 relocation because we don't | |
6277 | know where the shared library will wind up at load-time. */ | |
6278 | outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx, | |
6279 | R_MIPS_REL32); | |
6280 | ||
5d41f0b6 RS |
6281 | /* For strict adherence to the ABI specification, we should |
6282 | generate a R_MIPS_64 relocation record by itself before the | |
6283 | _REL32/_64 record as well, such that the addend is read in as | |
6284 | a 64-bit value (REL32 is a 32-bit relocation, after all). | |
6285 | However, since none of the existing ELF64 MIPS dynamic | |
6286 | loaders seems to care, we don't waste space with these | |
6287 | artificial relocations. If this turns out to not be true, | |
6288 | mips_elf_allocate_dynamic_relocation() should be tweaked so | |
6289 | as to make room for a pair of dynamic relocations per | |
6290 | invocation if ABI_64_P, and here we should generate an | |
6291 | additional relocation record with R_MIPS_64 by itself for a | |
6292 | NULL symbol before this relocation record. */ | |
6293 | outrel[1].r_info = ELF_R_INFO (output_bfd, 0, | |
6294 | ABI_64_P (output_bfd) | |
6295 | ? R_MIPS_64 | |
6296 | : R_MIPS_NONE); | |
6297 | outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE); | |
6298 | ||
6299 | /* Adjust the output offset of the relocation to reference the | |
6300 | correct location in the output file. */ | |
6301 | outrel[0].r_offset += (input_section->output_section->vma | |
6302 | + input_section->output_offset); | |
6303 | outrel[1].r_offset += (input_section->output_section->vma | |
6304 | + input_section->output_offset); | |
6305 | outrel[2].r_offset += (input_section->output_section->vma | |
6306 | + input_section->output_offset); | |
6307 | ||
b49e97c9 TS |
6308 | /* Put the relocation back out. We have to use the special |
6309 | relocation outputter in the 64-bit case since the 64-bit | |
6310 | relocation format is non-standard. */ | |
6311 | if (ABI_64_P (output_bfd)) | |
6312 | { | |
6313 | (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) | |
6314 | (output_bfd, &outrel[0], | |
6315 | (sreloc->contents | |
6316 | + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel))); | |
6317 | } | |
0a44bf69 RS |
6318 | else if (htab->is_vxworks) |
6319 | { | |
6320 | /* VxWorks uses RELA rather than REL dynamic relocations. */ | |
6321 | outrel[0].r_addend = *addendp; | |
6322 | bfd_elf32_swap_reloca_out | |
6323 | (output_bfd, &outrel[0], | |
6324 | (sreloc->contents | |
6325 | + sreloc->reloc_count * sizeof (Elf32_External_Rela))); | |
6326 | } | |
b49e97c9 | 6327 | else |
947216bf AM |
6328 | bfd_elf32_swap_reloc_out |
6329 | (output_bfd, &outrel[0], | |
6330 | (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel))); | |
b49e97c9 | 6331 | |
b49e97c9 TS |
6332 | /* We've now added another relocation. */ |
6333 | ++sreloc->reloc_count; | |
6334 | ||
6335 | /* Make sure the output section is writable. The dynamic linker | |
6336 | will be writing to it. */ | |
6337 | elf_section_data (input_section->output_section)->this_hdr.sh_flags | |
6338 | |= SHF_WRITE; | |
6339 | ||
6340 | /* On IRIX5, make an entry of compact relocation info. */ | |
5d41f0b6 | 6341 | if (IRIX_COMPAT (output_bfd) == ict_irix5) |
b49e97c9 | 6342 | { |
3d4d4302 | 6343 | asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel"); |
b49e97c9 TS |
6344 | bfd_byte *cr; |
6345 | ||
6346 | if (scpt) | |
6347 | { | |
6348 | Elf32_crinfo cptrel; | |
6349 | ||
6350 | mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG); | |
6351 | cptrel.vaddr = (rel->r_offset | |
6352 | + input_section->output_section->vma | |
6353 | + input_section->output_offset); | |
6354 | if (r_type == R_MIPS_REL32) | |
6355 | mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32); | |
6356 | else | |
6357 | mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD); | |
6358 | mips_elf_set_cr_dist2to (cptrel, 0); | |
6359 | cptrel.konst = *addendp; | |
6360 | ||
6361 | cr = (scpt->contents | |
6362 | + sizeof (Elf32_External_compact_rel)); | |
abc0f8d0 | 6363 | mips_elf_set_cr_relvaddr (cptrel, 0); |
b49e97c9 TS |
6364 | bfd_elf32_swap_crinfo_out (output_bfd, &cptrel, |
6365 | ((Elf32_External_crinfo *) cr | |
6366 | + scpt->reloc_count)); | |
6367 | ++scpt->reloc_count; | |
6368 | } | |
6369 | } | |
6370 | ||
943284cc DJ |
6371 | /* If we've written this relocation for a readonly section, |
6372 | we need to set DF_TEXTREL again, so that we do not delete the | |
6373 | DT_TEXTREL tag. */ | |
6374 | if (MIPS_ELF_READONLY_SECTION (input_section)) | |
6375 | info->flags |= DF_TEXTREL; | |
6376 | ||
b34976b6 | 6377 | return TRUE; |
b49e97c9 TS |
6378 | } |
6379 | \f | |
b49e97c9 TS |
6380 | /* Return the MACH for a MIPS e_flags value. */ |
6381 | ||
6382 | unsigned long | |
9719ad41 | 6383 | _bfd_elf_mips_mach (flagword flags) |
b49e97c9 TS |
6384 | { |
6385 | switch (flags & EF_MIPS_MACH) | |
6386 | { | |
6387 | case E_MIPS_MACH_3900: | |
6388 | return bfd_mach_mips3900; | |
6389 | ||
6390 | case E_MIPS_MACH_4010: | |
6391 | return bfd_mach_mips4010; | |
6392 | ||
6393 | case E_MIPS_MACH_4100: | |
6394 | return bfd_mach_mips4100; | |
6395 | ||
6396 | case E_MIPS_MACH_4111: | |
6397 | return bfd_mach_mips4111; | |
6398 | ||
00707a0e RS |
6399 | case E_MIPS_MACH_4120: |
6400 | return bfd_mach_mips4120; | |
6401 | ||
b49e97c9 TS |
6402 | case E_MIPS_MACH_4650: |
6403 | return bfd_mach_mips4650; | |
6404 | ||
00707a0e RS |
6405 | case E_MIPS_MACH_5400: |
6406 | return bfd_mach_mips5400; | |
6407 | ||
6408 | case E_MIPS_MACH_5500: | |
6409 | return bfd_mach_mips5500; | |
6410 | ||
e407c74b NC |
6411 | case E_MIPS_MACH_5900: |
6412 | return bfd_mach_mips5900; | |
6413 | ||
0d2e43ed ILT |
6414 | case E_MIPS_MACH_9000: |
6415 | return bfd_mach_mips9000; | |
6416 | ||
b49e97c9 TS |
6417 | case E_MIPS_MACH_SB1: |
6418 | return bfd_mach_mips_sb1; | |
6419 | ||
350cc38d MS |
6420 | case E_MIPS_MACH_LS2E: |
6421 | return bfd_mach_mips_loongson_2e; | |
6422 | ||
6423 | case E_MIPS_MACH_LS2F: | |
6424 | return bfd_mach_mips_loongson_2f; | |
6425 | ||
fd503541 NC |
6426 | case E_MIPS_MACH_LS3A: |
6427 | return bfd_mach_mips_loongson_3a; | |
6428 | ||
432233b3 AP |
6429 | case E_MIPS_MACH_OCTEON2: |
6430 | return bfd_mach_mips_octeon2; | |
6431 | ||
6f179bd0 AN |
6432 | case E_MIPS_MACH_OCTEON: |
6433 | return bfd_mach_mips_octeon; | |
6434 | ||
52b6b6b9 JM |
6435 | case E_MIPS_MACH_XLR: |
6436 | return bfd_mach_mips_xlr; | |
6437 | ||
b49e97c9 TS |
6438 | default: |
6439 | switch (flags & EF_MIPS_ARCH) | |
6440 | { | |
6441 | default: | |
6442 | case E_MIPS_ARCH_1: | |
6443 | return bfd_mach_mips3000; | |
b49e97c9 TS |
6444 | |
6445 | case E_MIPS_ARCH_2: | |
6446 | return bfd_mach_mips6000; | |
b49e97c9 TS |
6447 | |
6448 | case E_MIPS_ARCH_3: | |
6449 | return bfd_mach_mips4000; | |
b49e97c9 TS |
6450 | |
6451 | case E_MIPS_ARCH_4: | |
6452 | return bfd_mach_mips8000; | |
b49e97c9 TS |
6453 | |
6454 | case E_MIPS_ARCH_5: | |
6455 | return bfd_mach_mips5; | |
b49e97c9 TS |
6456 | |
6457 | case E_MIPS_ARCH_32: | |
6458 | return bfd_mach_mipsisa32; | |
b49e97c9 TS |
6459 | |
6460 | case E_MIPS_ARCH_64: | |
6461 | return bfd_mach_mipsisa64; | |
af7ee8bf CD |
6462 | |
6463 | case E_MIPS_ARCH_32R2: | |
6464 | return bfd_mach_mipsisa32r2; | |
5f74bc13 CD |
6465 | |
6466 | case E_MIPS_ARCH_64R2: | |
6467 | return bfd_mach_mipsisa64r2; | |
b49e97c9 TS |
6468 | } |
6469 | } | |
6470 | ||
6471 | return 0; | |
6472 | } | |
6473 | ||
6474 | /* Return printable name for ABI. */ | |
6475 | ||
6476 | static INLINE char * | |
9719ad41 | 6477 | elf_mips_abi_name (bfd *abfd) |
b49e97c9 TS |
6478 | { |
6479 | flagword flags; | |
6480 | ||
6481 | flags = elf_elfheader (abfd)->e_flags; | |
6482 | switch (flags & EF_MIPS_ABI) | |
6483 | { | |
6484 | case 0: | |
6485 | if (ABI_N32_P (abfd)) | |
6486 | return "N32"; | |
6487 | else if (ABI_64_P (abfd)) | |
6488 | return "64"; | |
6489 | else | |
6490 | return "none"; | |
6491 | case E_MIPS_ABI_O32: | |
6492 | return "O32"; | |
6493 | case E_MIPS_ABI_O64: | |
6494 | return "O64"; | |
6495 | case E_MIPS_ABI_EABI32: | |
6496 | return "EABI32"; | |
6497 | case E_MIPS_ABI_EABI64: | |
6498 | return "EABI64"; | |
6499 | default: | |
6500 | return "unknown abi"; | |
6501 | } | |
6502 | } | |
6503 | \f | |
6504 | /* MIPS ELF uses two common sections. One is the usual one, and the | |
6505 | other is for small objects. All the small objects are kept | |
6506 | together, and then referenced via the gp pointer, which yields | |
6507 | faster assembler code. This is what we use for the small common | |
6508 | section. This approach is copied from ecoff.c. */ | |
6509 | static asection mips_elf_scom_section; | |
6510 | static asymbol mips_elf_scom_symbol; | |
6511 | static asymbol *mips_elf_scom_symbol_ptr; | |
6512 | ||
6513 | /* MIPS ELF also uses an acommon section, which represents an | |
6514 | allocated common symbol which may be overridden by a | |
6515 | definition in a shared library. */ | |
6516 | static asection mips_elf_acom_section; | |
6517 | static asymbol mips_elf_acom_symbol; | |
6518 | static asymbol *mips_elf_acom_symbol_ptr; | |
6519 | ||
738e5348 | 6520 | /* This is used for both the 32-bit and the 64-bit ABI. */ |
b49e97c9 TS |
6521 | |
6522 | void | |
9719ad41 | 6523 | _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym) |
b49e97c9 TS |
6524 | { |
6525 | elf_symbol_type *elfsym; | |
6526 | ||
738e5348 | 6527 | /* Handle the special MIPS section numbers that a symbol may use. */ |
b49e97c9 TS |
6528 | elfsym = (elf_symbol_type *) asym; |
6529 | switch (elfsym->internal_elf_sym.st_shndx) | |
6530 | { | |
6531 | case SHN_MIPS_ACOMMON: | |
6532 | /* This section is used in a dynamically linked executable file. | |
6533 | It is an allocated common section. The dynamic linker can | |
6534 | either resolve these symbols to something in a shared | |
6535 | library, or it can just leave them here. For our purposes, | |
6536 | we can consider these symbols to be in a new section. */ | |
6537 | if (mips_elf_acom_section.name == NULL) | |
6538 | { | |
6539 | /* Initialize the acommon section. */ | |
6540 | mips_elf_acom_section.name = ".acommon"; | |
6541 | mips_elf_acom_section.flags = SEC_ALLOC; | |
6542 | mips_elf_acom_section.output_section = &mips_elf_acom_section; | |
6543 | mips_elf_acom_section.symbol = &mips_elf_acom_symbol; | |
6544 | mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr; | |
6545 | mips_elf_acom_symbol.name = ".acommon"; | |
6546 | mips_elf_acom_symbol.flags = BSF_SECTION_SYM; | |
6547 | mips_elf_acom_symbol.section = &mips_elf_acom_section; | |
6548 | mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol; | |
6549 | } | |
6550 | asym->section = &mips_elf_acom_section; | |
6551 | break; | |
6552 | ||
6553 | case SHN_COMMON: | |
6554 | /* Common symbols less than the GP size are automatically | |
6555 | treated as SHN_MIPS_SCOMMON symbols on IRIX5. */ | |
6556 | if (asym->value > elf_gp_size (abfd) | |
b59eed79 | 6557 | || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS |
b49e97c9 TS |
6558 | || IRIX_COMPAT (abfd) == ict_irix6) |
6559 | break; | |
6560 | /* Fall through. */ | |
6561 | case SHN_MIPS_SCOMMON: | |
6562 | if (mips_elf_scom_section.name == NULL) | |
6563 | { | |
6564 | /* Initialize the small common section. */ | |
6565 | mips_elf_scom_section.name = ".scommon"; | |
6566 | mips_elf_scom_section.flags = SEC_IS_COMMON; | |
6567 | mips_elf_scom_section.output_section = &mips_elf_scom_section; | |
6568 | mips_elf_scom_section.symbol = &mips_elf_scom_symbol; | |
6569 | mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr; | |
6570 | mips_elf_scom_symbol.name = ".scommon"; | |
6571 | mips_elf_scom_symbol.flags = BSF_SECTION_SYM; | |
6572 | mips_elf_scom_symbol.section = &mips_elf_scom_section; | |
6573 | mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol; | |
6574 | } | |
6575 | asym->section = &mips_elf_scom_section; | |
6576 | asym->value = elfsym->internal_elf_sym.st_size; | |
6577 | break; | |
6578 | ||
6579 | case SHN_MIPS_SUNDEFINED: | |
6580 | asym->section = bfd_und_section_ptr; | |
6581 | break; | |
6582 | ||
b49e97c9 | 6583 | case SHN_MIPS_TEXT: |
00b4930b TS |
6584 | { |
6585 | asection *section = bfd_get_section_by_name (abfd, ".text"); | |
6586 | ||
00b4930b TS |
6587 | if (section != NULL) |
6588 | { | |
6589 | asym->section = section; | |
6590 | /* MIPS_TEXT is a bit special, the address is not an offset | |
6591 | to the base of the .text section. So substract the section | |
6592 | base address to make it an offset. */ | |
6593 | asym->value -= section->vma; | |
6594 | } | |
6595 | } | |
b49e97c9 TS |
6596 | break; |
6597 | ||
6598 | case SHN_MIPS_DATA: | |
00b4930b TS |
6599 | { |
6600 | asection *section = bfd_get_section_by_name (abfd, ".data"); | |
6601 | ||
00b4930b TS |
6602 | if (section != NULL) |
6603 | { | |
6604 | asym->section = section; | |
6605 | /* MIPS_DATA is a bit special, the address is not an offset | |
6606 | to the base of the .data section. So substract the section | |
6607 | base address to make it an offset. */ | |
6608 | asym->value -= section->vma; | |
6609 | } | |
6610 | } | |
b49e97c9 | 6611 | break; |
b49e97c9 | 6612 | } |
738e5348 | 6613 | |
df58fc94 RS |
6614 | /* If this is an odd-valued function symbol, assume it's a MIPS16 |
6615 | or microMIPS one. */ | |
738e5348 RS |
6616 | if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC |
6617 | && (asym->value & 1) != 0) | |
6618 | { | |
6619 | asym->value--; | |
e8faf7d1 | 6620 | if (MICROMIPS_P (abfd)) |
df58fc94 RS |
6621 | elfsym->internal_elf_sym.st_other |
6622 | = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other); | |
6623 | else | |
6624 | elfsym->internal_elf_sym.st_other | |
6625 | = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other); | |
738e5348 | 6626 | } |
b49e97c9 TS |
6627 | } |
6628 | \f | |
8c946ed5 RS |
6629 | /* Implement elf_backend_eh_frame_address_size. This differs from |
6630 | the default in the way it handles EABI64. | |
6631 | ||
6632 | EABI64 was originally specified as an LP64 ABI, and that is what | |
6633 | -mabi=eabi normally gives on a 64-bit target. However, gcc has | |
6634 | historically accepted the combination of -mabi=eabi and -mlong32, | |
6635 | and this ILP32 variation has become semi-official over time. | |
6636 | Both forms use elf32 and have pointer-sized FDE addresses. | |
6637 | ||
6638 | If an EABI object was generated by GCC 4.0 or above, it will have | |
6639 | an empty .gcc_compiled_longXX section, where XX is the size of longs | |
6640 | in bits. Unfortunately, ILP32 objects generated by earlier compilers | |
6641 | have no special marking to distinguish them from LP64 objects. | |
6642 | ||
6643 | We don't want users of the official LP64 ABI to be punished for the | |
6644 | existence of the ILP32 variant, but at the same time, we don't want | |
6645 | to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects. | |
6646 | We therefore take the following approach: | |
6647 | ||
6648 | - If ABFD contains a .gcc_compiled_longXX section, use it to | |
6649 | determine the pointer size. | |
6650 | ||
6651 | - Otherwise check the type of the first relocation. Assume that | |
6652 | the LP64 ABI is being used if the relocation is of type R_MIPS_64. | |
6653 | ||
6654 | - Otherwise punt. | |
6655 | ||
6656 | The second check is enough to detect LP64 objects generated by pre-4.0 | |
6657 | compilers because, in the kind of output generated by those compilers, | |
6658 | the first relocation will be associated with either a CIE personality | |
6659 | routine or an FDE start address. Furthermore, the compilers never | |
6660 | used a special (non-pointer) encoding for this ABI. | |
6661 | ||
6662 | Checking the relocation type should also be safe because there is no | |
6663 | reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never | |
6664 | did so. */ | |
6665 | ||
6666 | unsigned int | |
6667 | _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec) | |
6668 | { | |
6669 | if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) | |
6670 | return 8; | |
6671 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) | |
6672 | { | |
6673 | bfd_boolean long32_p, long64_p; | |
6674 | ||
6675 | long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0; | |
6676 | long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0; | |
6677 | if (long32_p && long64_p) | |
6678 | return 0; | |
6679 | if (long32_p) | |
6680 | return 4; | |
6681 | if (long64_p) | |
6682 | return 8; | |
6683 | ||
6684 | if (sec->reloc_count > 0 | |
6685 | && elf_section_data (sec)->relocs != NULL | |
6686 | && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info) | |
6687 | == R_MIPS_64)) | |
6688 | return 8; | |
6689 | ||
6690 | return 0; | |
6691 | } | |
6692 | return 4; | |
6693 | } | |
6694 | \f | |
174fd7f9 RS |
6695 | /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP |
6696 | relocations against two unnamed section symbols to resolve to the | |
6697 | same address. For example, if we have code like: | |
6698 | ||
6699 | lw $4,%got_disp(.data)($gp) | |
6700 | lw $25,%got_disp(.text)($gp) | |
6701 | jalr $25 | |
6702 | ||
6703 | then the linker will resolve both relocations to .data and the program | |
6704 | will jump there rather than to .text. | |
6705 | ||
6706 | We can work around this problem by giving names to local section symbols. | |
6707 | This is also what the MIPSpro tools do. */ | |
6708 | ||
6709 | bfd_boolean | |
6710 | _bfd_mips_elf_name_local_section_symbols (bfd *abfd) | |
6711 | { | |
6712 | return SGI_COMPAT (abfd); | |
6713 | } | |
6714 | \f | |
b49e97c9 TS |
6715 | /* Work over a section just before writing it out. This routine is |
6716 | used by both the 32-bit and the 64-bit ABI. FIXME: We recognize | |
6717 | sections that need the SHF_MIPS_GPREL flag by name; there has to be | |
6718 | a better way. */ | |
6719 | ||
b34976b6 | 6720 | bfd_boolean |
9719ad41 | 6721 | _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr) |
b49e97c9 TS |
6722 | { |
6723 | if (hdr->sh_type == SHT_MIPS_REGINFO | |
6724 | && hdr->sh_size > 0) | |
6725 | { | |
6726 | bfd_byte buf[4]; | |
6727 | ||
6728 | BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo)); | |
6729 | BFD_ASSERT (hdr->contents == NULL); | |
6730 | ||
6731 | if (bfd_seek (abfd, | |
6732 | hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4, | |
6733 | SEEK_SET) != 0) | |
b34976b6 | 6734 | return FALSE; |
b49e97c9 | 6735 | H_PUT_32 (abfd, elf_gp (abfd), buf); |
9719ad41 | 6736 | if (bfd_bwrite (buf, 4, abfd) != 4) |
b34976b6 | 6737 | return FALSE; |
b49e97c9 TS |
6738 | } |
6739 | ||
6740 | if (hdr->sh_type == SHT_MIPS_OPTIONS | |
6741 | && hdr->bfd_section != NULL | |
f0abc2a1 AM |
6742 | && mips_elf_section_data (hdr->bfd_section) != NULL |
6743 | && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL) | |
b49e97c9 TS |
6744 | { |
6745 | bfd_byte *contents, *l, *lend; | |
6746 | ||
f0abc2a1 AM |
6747 | /* We stored the section contents in the tdata field in the |
6748 | set_section_contents routine. We save the section contents | |
6749 | so that we don't have to read them again. | |
b49e97c9 TS |
6750 | At this point we know that elf_gp is set, so we can look |
6751 | through the section contents to see if there is an | |
6752 | ODK_REGINFO structure. */ | |
6753 | ||
f0abc2a1 | 6754 | contents = mips_elf_section_data (hdr->bfd_section)->u.tdata; |
b49e97c9 TS |
6755 | l = contents; |
6756 | lend = contents + hdr->sh_size; | |
6757 | while (l + sizeof (Elf_External_Options) <= lend) | |
6758 | { | |
6759 | Elf_Internal_Options intopt; | |
6760 | ||
6761 | bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, | |
6762 | &intopt); | |
1bc8074d MR |
6763 | if (intopt.size < sizeof (Elf_External_Options)) |
6764 | { | |
6765 | (*_bfd_error_handler) | |
6766 | (_("%B: Warning: bad `%s' option size %u smaller than its header"), | |
6767 | abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size); | |
6768 | break; | |
6769 | } | |
b49e97c9 TS |
6770 | if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) |
6771 | { | |
6772 | bfd_byte buf[8]; | |
6773 | ||
6774 | if (bfd_seek (abfd, | |
6775 | (hdr->sh_offset | |
6776 | + (l - contents) | |
6777 | + sizeof (Elf_External_Options) | |
6778 | + (sizeof (Elf64_External_RegInfo) - 8)), | |
6779 | SEEK_SET) != 0) | |
b34976b6 | 6780 | return FALSE; |
b49e97c9 | 6781 | H_PUT_64 (abfd, elf_gp (abfd), buf); |
9719ad41 | 6782 | if (bfd_bwrite (buf, 8, abfd) != 8) |
b34976b6 | 6783 | return FALSE; |
b49e97c9 TS |
6784 | } |
6785 | else if (intopt.kind == ODK_REGINFO) | |
6786 | { | |
6787 | bfd_byte buf[4]; | |
6788 | ||
6789 | if (bfd_seek (abfd, | |
6790 | (hdr->sh_offset | |
6791 | + (l - contents) | |
6792 | + sizeof (Elf_External_Options) | |
6793 | + (sizeof (Elf32_External_RegInfo) - 4)), | |
6794 | SEEK_SET) != 0) | |
b34976b6 | 6795 | return FALSE; |
b49e97c9 | 6796 | H_PUT_32 (abfd, elf_gp (abfd), buf); |
9719ad41 | 6797 | if (bfd_bwrite (buf, 4, abfd) != 4) |
b34976b6 | 6798 | return FALSE; |
b49e97c9 TS |
6799 | } |
6800 | l += intopt.size; | |
6801 | } | |
6802 | } | |
6803 | ||
6804 | if (hdr->bfd_section != NULL) | |
6805 | { | |
6806 | const char *name = bfd_get_section_name (abfd, hdr->bfd_section); | |
6807 | ||
2d0f9ad9 JM |
6808 | /* .sbss is not handled specially here because the GNU/Linux |
6809 | prelinker can convert .sbss from NOBITS to PROGBITS and | |
6810 | changing it back to NOBITS breaks the binary. The entry in | |
6811 | _bfd_mips_elf_special_sections will ensure the correct flags | |
6812 | are set on .sbss if BFD creates it without reading it from an | |
6813 | input file, and without special handling here the flags set | |
6814 | on it in an input file will be followed. */ | |
b49e97c9 TS |
6815 | if (strcmp (name, ".sdata") == 0 |
6816 | || strcmp (name, ".lit8") == 0 | |
6817 | || strcmp (name, ".lit4") == 0) | |
6818 | { | |
6819 | hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; | |
6820 | hdr->sh_type = SHT_PROGBITS; | |
6821 | } | |
b49e97c9 TS |
6822 | else if (strcmp (name, ".srdata") == 0) |
6823 | { | |
6824 | hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL; | |
6825 | hdr->sh_type = SHT_PROGBITS; | |
6826 | } | |
6827 | else if (strcmp (name, ".compact_rel") == 0) | |
6828 | { | |
6829 | hdr->sh_flags = 0; | |
6830 | hdr->sh_type = SHT_PROGBITS; | |
6831 | } | |
6832 | else if (strcmp (name, ".rtproc") == 0) | |
6833 | { | |
6834 | if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0) | |
6835 | { | |
6836 | unsigned int adjust; | |
6837 | ||
6838 | adjust = hdr->sh_size % hdr->sh_addralign; | |
6839 | if (adjust != 0) | |
6840 | hdr->sh_size += hdr->sh_addralign - adjust; | |
6841 | } | |
6842 | } | |
6843 | } | |
6844 | ||
b34976b6 | 6845 | return TRUE; |
b49e97c9 TS |
6846 | } |
6847 | ||
6848 | /* Handle a MIPS specific section when reading an object file. This | |
6849 | is called when elfcode.h finds a section with an unknown type. | |
6850 | This routine supports both the 32-bit and 64-bit ELF ABI. | |
6851 | ||
6852 | FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure | |
6853 | how to. */ | |
6854 | ||
b34976b6 | 6855 | bfd_boolean |
6dc132d9 L |
6856 | _bfd_mips_elf_section_from_shdr (bfd *abfd, |
6857 | Elf_Internal_Shdr *hdr, | |
6858 | const char *name, | |
6859 | int shindex) | |
b49e97c9 TS |
6860 | { |
6861 | flagword flags = 0; | |
6862 | ||
6863 | /* There ought to be a place to keep ELF backend specific flags, but | |
6864 | at the moment there isn't one. We just keep track of the | |
6865 | sections by their name, instead. Fortunately, the ABI gives | |
6866 | suggested names for all the MIPS specific sections, so we will | |
6867 | probably get away with this. */ | |
6868 | switch (hdr->sh_type) | |
6869 | { | |
6870 | case SHT_MIPS_LIBLIST: | |
6871 | if (strcmp (name, ".liblist") != 0) | |
b34976b6 | 6872 | return FALSE; |
b49e97c9 TS |
6873 | break; |
6874 | case SHT_MIPS_MSYM: | |
6875 | if (strcmp (name, ".msym") != 0) | |
b34976b6 | 6876 | return FALSE; |
b49e97c9 TS |
6877 | break; |
6878 | case SHT_MIPS_CONFLICT: | |
6879 | if (strcmp (name, ".conflict") != 0) | |
b34976b6 | 6880 | return FALSE; |
b49e97c9 TS |
6881 | break; |
6882 | case SHT_MIPS_GPTAB: | |
0112cd26 | 6883 | if (! CONST_STRNEQ (name, ".gptab.")) |
b34976b6 | 6884 | return FALSE; |
b49e97c9 TS |
6885 | break; |
6886 | case SHT_MIPS_UCODE: | |
6887 | if (strcmp (name, ".ucode") != 0) | |
b34976b6 | 6888 | return FALSE; |
b49e97c9 TS |
6889 | break; |
6890 | case SHT_MIPS_DEBUG: | |
6891 | if (strcmp (name, ".mdebug") != 0) | |
b34976b6 | 6892 | return FALSE; |
b49e97c9 TS |
6893 | flags = SEC_DEBUGGING; |
6894 | break; | |
6895 | case SHT_MIPS_REGINFO: | |
6896 | if (strcmp (name, ".reginfo") != 0 | |
6897 | || hdr->sh_size != sizeof (Elf32_External_RegInfo)) | |
b34976b6 | 6898 | return FALSE; |
b49e97c9 TS |
6899 | flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE); |
6900 | break; | |
6901 | case SHT_MIPS_IFACE: | |
6902 | if (strcmp (name, ".MIPS.interfaces") != 0) | |
b34976b6 | 6903 | return FALSE; |
b49e97c9 TS |
6904 | break; |
6905 | case SHT_MIPS_CONTENT: | |
0112cd26 | 6906 | if (! CONST_STRNEQ (name, ".MIPS.content")) |
b34976b6 | 6907 | return FALSE; |
b49e97c9 TS |
6908 | break; |
6909 | case SHT_MIPS_OPTIONS: | |
cc2e31b9 | 6910 | if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name)) |
b34976b6 | 6911 | return FALSE; |
b49e97c9 TS |
6912 | break; |
6913 | case SHT_MIPS_DWARF: | |
1b315056 | 6914 | if (! CONST_STRNEQ (name, ".debug_") |
355d10dc | 6915 | && ! CONST_STRNEQ (name, ".zdebug_")) |
b34976b6 | 6916 | return FALSE; |
b49e97c9 TS |
6917 | break; |
6918 | case SHT_MIPS_SYMBOL_LIB: | |
6919 | if (strcmp (name, ".MIPS.symlib") != 0) | |
b34976b6 | 6920 | return FALSE; |
b49e97c9 TS |
6921 | break; |
6922 | case SHT_MIPS_EVENTS: | |
0112cd26 NC |
6923 | if (! CONST_STRNEQ (name, ".MIPS.events") |
6924 | && ! CONST_STRNEQ (name, ".MIPS.post_rel")) | |
b34976b6 | 6925 | return FALSE; |
b49e97c9 TS |
6926 | break; |
6927 | default: | |
cc2e31b9 | 6928 | break; |
b49e97c9 TS |
6929 | } |
6930 | ||
6dc132d9 | 6931 | if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) |
b34976b6 | 6932 | return FALSE; |
b49e97c9 TS |
6933 | |
6934 | if (flags) | |
6935 | { | |
6936 | if (! bfd_set_section_flags (abfd, hdr->bfd_section, | |
6937 | (bfd_get_section_flags (abfd, | |
6938 | hdr->bfd_section) | |
6939 | | flags))) | |
b34976b6 | 6940 | return FALSE; |
b49e97c9 TS |
6941 | } |
6942 | ||
6943 | /* FIXME: We should record sh_info for a .gptab section. */ | |
6944 | ||
6945 | /* For a .reginfo section, set the gp value in the tdata information | |
6946 | from the contents of this section. We need the gp value while | |
6947 | processing relocs, so we just get it now. The .reginfo section | |
6948 | is not used in the 64-bit MIPS ELF ABI. */ | |
6949 | if (hdr->sh_type == SHT_MIPS_REGINFO) | |
6950 | { | |
6951 | Elf32_External_RegInfo ext; | |
6952 | Elf32_RegInfo s; | |
6953 | ||
9719ad41 RS |
6954 | if (! bfd_get_section_contents (abfd, hdr->bfd_section, |
6955 | &ext, 0, sizeof ext)) | |
b34976b6 | 6956 | return FALSE; |
b49e97c9 TS |
6957 | bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s); |
6958 | elf_gp (abfd) = s.ri_gp_value; | |
6959 | } | |
6960 | ||
6961 | /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and | |
6962 | set the gp value based on what we find. We may see both | |
6963 | SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, | |
6964 | they should agree. */ | |
6965 | if (hdr->sh_type == SHT_MIPS_OPTIONS) | |
6966 | { | |
6967 | bfd_byte *contents, *l, *lend; | |
6968 | ||
9719ad41 | 6969 | contents = bfd_malloc (hdr->sh_size); |
b49e97c9 | 6970 | if (contents == NULL) |
b34976b6 | 6971 | return FALSE; |
b49e97c9 | 6972 | if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents, |
9719ad41 | 6973 | 0, hdr->sh_size)) |
b49e97c9 TS |
6974 | { |
6975 | free (contents); | |
b34976b6 | 6976 | return FALSE; |
b49e97c9 TS |
6977 | } |
6978 | l = contents; | |
6979 | lend = contents + hdr->sh_size; | |
6980 | while (l + sizeof (Elf_External_Options) <= lend) | |
6981 | { | |
6982 | Elf_Internal_Options intopt; | |
6983 | ||
6984 | bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, | |
6985 | &intopt); | |
1bc8074d MR |
6986 | if (intopt.size < sizeof (Elf_External_Options)) |
6987 | { | |
6988 | (*_bfd_error_handler) | |
6989 | (_("%B: Warning: bad `%s' option size %u smaller than its header"), | |
6990 | abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size); | |
6991 | break; | |
6992 | } | |
b49e97c9 TS |
6993 | if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) |
6994 | { | |
6995 | Elf64_Internal_RegInfo intreg; | |
6996 | ||
6997 | bfd_mips_elf64_swap_reginfo_in | |
6998 | (abfd, | |
6999 | ((Elf64_External_RegInfo *) | |
7000 | (l + sizeof (Elf_External_Options))), | |
7001 | &intreg); | |
7002 | elf_gp (abfd) = intreg.ri_gp_value; | |
7003 | } | |
7004 | else if (intopt.kind == ODK_REGINFO) | |
7005 | { | |
7006 | Elf32_RegInfo intreg; | |
7007 | ||
7008 | bfd_mips_elf32_swap_reginfo_in | |
7009 | (abfd, | |
7010 | ((Elf32_External_RegInfo *) | |
7011 | (l + sizeof (Elf_External_Options))), | |
7012 | &intreg); | |
7013 | elf_gp (abfd) = intreg.ri_gp_value; | |
7014 | } | |
7015 | l += intopt.size; | |
7016 | } | |
7017 | free (contents); | |
7018 | } | |
7019 | ||
b34976b6 | 7020 | return TRUE; |
b49e97c9 TS |
7021 | } |
7022 | ||
7023 | /* Set the correct type for a MIPS ELF section. We do this by the | |
7024 | section name, which is a hack, but ought to work. This routine is | |
7025 | used by both the 32-bit and the 64-bit ABI. */ | |
7026 | ||
b34976b6 | 7027 | bfd_boolean |
9719ad41 | 7028 | _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec) |
b49e97c9 | 7029 | { |
0414f35b | 7030 | const char *name = bfd_get_section_name (abfd, sec); |
b49e97c9 TS |
7031 | |
7032 | if (strcmp (name, ".liblist") == 0) | |
7033 | { | |
7034 | hdr->sh_type = SHT_MIPS_LIBLIST; | |
eea6121a | 7035 | hdr->sh_info = sec->size / sizeof (Elf32_Lib); |
b49e97c9 TS |
7036 | /* The sh_link field is set in final_write_processing. */ |
7037 | } | |
7038 | else if (strcmp (name, ".conflict") == 0) | |
7039 | hdr->sh_type = SHT_MIPS_CONFLICT; | |
0112cd26 | 7040 | else if (CONST_STRNEQ (name, ".gptab.")) |
b49e97c9 TS |
7041 | { |
7042 | hdr->sh_type = SHT_MIPS_GPTAB; | |
7043 | hdr->sh_entsize = sizeof (Elf32_External_gptab); | |
7044 | /* The sh_info field is set in final_write_processing. */ | |
7045 | } | |
7046 | else if (strcmp (name, ".ucode") == 0) | |
7047 | hdr->sh_type = SHT_MIPS_UCODE; | |
7048 | else if (strcmp (name, ".mdebug") == 0) | |
7049 | { | |
7050 | hdr->sh_type = SHT_MIPS_DEBUG; | |
8dc1a139 | 7051 | /* In a shared object on IRIX 5.3, the .mdebug section has an |
b49e97c9 TS |
7052 | entsize of 0. FIXME: Does this matter? */ |
7053 | if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0) | |
7054 | hdr->sh_entsize = 0; | |
7055 | else | |
7056 | hdr->sh_entsize = 1; | |
7057 | } | |
7058 | else if (strcmp (name, ".reginfo") == 0) | |
7059 | { | |
7060 | hdr->sh_type = SHT_MIPS_REGINFO; | |
8dc1a139 | 7061 | /* In a shared object on IRIX 5.3, the .reginfo section has an |
b49e97c9 TS |
7062 | entsize of 0x18. FIXME: Does this matter? */ |
7063 | if (SGI_COMPAT (abfd)) | |
7064 | { | |
7065 | if ((abfd->flags & DYNAMIC) != 0) | |
7066 | hdr->sh_entsize = sizeof (Elf32_External_RegInfo); | |
7067 | else | |
7068 | hdr->sh_entsize = 1; | |
7069 | } | |
7070 | else | |
7071 | hdr->sh_entsize = sizeof (Elf32_External_RegInfo); | |
7072 | } | |
7073 | else if (SGI_COMPAT (abfd) | |
7074 | && (strcmp (name, ".hash") == 0 | |
7075 | || strcmp (name, ".dynamic") == 0 | |
7076 | || strcmp (name, ".dynstr") == 0)) | |
7077 | { | |
7078 | if (SGI_COMPAT (abfd)) | |
7079 | hdr->sh_entsize = 0; | |
7080 | #if 0 | |
8dc1a139 | 7081 | /* This isn't how the IRIX6 linker behaves. */ |
b49e97c9 TS |
7082 | hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES; |
7083 | #endif | |
7084 | } | |
7085 | else if (strcmp (name, ".got") == 0 | |
7086 | || strcmp (name, ".srdata") == 0 | |
7087 | || strcmp (name, ".sdata") == 0 | |
7088 | || strcmp (name, ".sbss") == 0 | |
7089 | || strcmp (name, ".lit4") == 0 | |
7090 | || strcmp (name, ".lit8") == 0) | |
7091 | hdr->sh_flags |= SHF_MIPS_GPREL; | |
7092 | else if (strcmp (name, ".MIPS.interfaces") == 0) | |
7093 | { | |
7094 | hdr->sh_type = SHT_MIPS_IFACE; | |
7095 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
7096 | } | |
0112cd26 | 7097 | else if (CONST_STRNEQ (name, ".MIPS.content")) |
b49e97c9 TS |
7098 | { |
7099 | hdr->sh_type = SHT_MIPS_CONTENT; | |
7100 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
7101 | /* The sh_info field is set in final_write_processing. */ | |
7102 | } | |
cc2e31b9 | 7103 | else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name)) |
b49e97c9 TS |
7104 | { |
7105 | hdr->sh_type = SHT_MIPS_OPTIONS; | |
7106 | hdr->sh_entsize = 1; | |
7107 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
7108 | } | |
1b315056 CS |
7109 | else if (CONST_STRNEQ (name, ".debug_") |
7110 | || CONST_STRNEQ (name, ".zdebug_")) | |
b5482f21 NC |
7111 | { |
7112 | hdr->sh_type = SHT_MIPS_DWARF; | |
7113 | ||
7114 | /* Irix facilities such as libexc expect a single .debug_frame | |
7115 | per executable, the system ones have NOSTRIP set and the linker | |
7116 | doesn't merge sections with different flags so ... */ | |
7117 | if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame")) | |
7118 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
7119 | } | |
b49e97c9 TS |
7120 | else if (strcmp (name, ".MIPS.symlib") == 0) |
7121 | { | |
7122 | hdr->sh_type = SHT_MIPS_SYMBOL_LIB; | |
7123 | /* The sh_link and sh_info fields are set in | |
7124 | final_write_processing. */ | |
7125 | } | |
0112cd26 NC |
7126 | else if (CONST_STRNEQ (name, ".MIPS.events") |
7127 | || CONST_STRNEQ (name, ".MIPS.post_rel")) | |
b49e97c9 TS |
7128 | { |
7129 | hdr->sh_type = SHT_MIPS_EVENTS; | |
7130 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
7131 | /* The sh_link field is set in final_write_processing. */ | |
7132 | } | |
7133 | else if (strcmp (name, ".msym") == 0) | |
7134 | { | |
7135 | hdr->sh_type = SHT_MIPS_MSYM; | |
7136 | hdr->sh_flags |= SHF_ALLOC; | |
7137 | hdr->sh_entsize = 8; | |
7138 | } | |
7139 | ||
7a79a000 TS |
7140 | /* The generic elf_fake_sections will set up REL_HDR using the default |
7141 | kind of relocations. We used to set up a second header for the | |
7142 | non-default kind of relocations here, but only NewABI would use | |
7143 | these, and the IRIX ld doesn't like resulting empty RELA sections. | |
7144 | Thus we create those header only on demand now. */ | |
b49e97c9 | 7145 | |
b34976b6 | 7146 | return TRUE; |
b49e97c9 TS |
7147 | } |
7148 | ||
7149 | /* Given a BFD section, try to locate the corresponding ELF section | |
7150 | index. This is used by both the 32-bit and the 64-bit ABI. | |
7151 | Actually, it's not clear to me that the 64-bit ABI supports these, | |
7152 | but for non-PIC objects we will certainly want support for at least | |
7153 | the .scommon section. */ | |
7154 | ||
b34976b6 | 7155 | bfd_boolean |
9719ad41 RS |
7156 | _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED, |
7157 | asection *sec, int *retval) | |
b49e97c9 TS |
7158 | { |
7159 | if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0) | |
7160 | { | |
7161 | *retval = SHN_MIPS_SCOMMON; | |
b34976b6 | 7162 | return TRUE; |
b49e97c9 TS |
7163 | } |
7164 | if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0) | |
7165 | { | |
7166 | *retval = SHN_MIPS_ACOMMON; | |
b34976b6 | 7167 | return TRUE; |
b49e97c9 | 7168 | } |
b34976b6 | 7169 | return FALSE; |
b49e97c9 TS |
7170 | } |
7171 | \f | |
7172 | /* Hook called by the linker routine which adds symbols from an object | |
7173 | file. We must handle the special MIPS section numbers here. */ | |
7174 | ||
b34976b6 | 7175 | bfd_boolean |
9719ad41 | 7176 | _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, |
555cd476 | 7177 | Elf_Internal_Sym *sym, const char **namep, |
9719ad41 RS |
7178 | flagword *flagsp ATTRIBUTE_UNUSED, |
7179 | asection **secp, bfd_vma *valp) | |
b49e97c9 TS |
7180 | { |
7181 | if (SGI_COMPAT (abfd) | |
7182 | && (abfd->flags & DYNAMIC) != 0 | |
7183 | && strcmp (*namep, "_rld_new_interface") == 0) | |
7184 | { | |
8dc1a139 | 7185 | /* Skip IRIX5 rld entry name. */ |
b49e97c9 | 7186 | *namep = NULL; |
b34976b6 | 7187 | return TRUE; |
b49e97c9 TS |
7188 | } |
7189 | ||
eedecc07 DD |
7190 | /* Shared objects may have a dynamic symbol '_gp_disp' defined as |
7191 | a SECTION *ABS*. This causes ld to think it can resolve _gp_disp | |
7192 | by setting a DT_NEEDED for the shared object. Since _gp_disp is | |
7193 | a magic symbol resolved by the linker, we ignore this bogus definition | |
7194 | of _gp_disp. New ABI objects do not suffer from this problem so this | |
7195 | is not done for them. */ | |
7196 | if (!NEWABI_P(abfd) | |
7197 | && (sym->st_shndx == SHN_ABS) | |
7198 | && (strcmp (*namep, "_gp_disp") == 0)) | |
7199 | { | |
7200 | *namep = NULL; | |
7201 | return TRUE; | |
7202 | } | |
7203 | ||
b49e97c9 TS |
7204 | switch (sym->st_shndx) |
7205 | { | |
7206 | case SHN_COMMON: | |
7207 | /* Common symbols less than the GP size are automatically | |
7208 | treated as SHN_MIPS_SCOMMON symbols. */ | |
7209 | if (sym->st_size > elf_gp_size (abfd) | |
b59eed79 | 7210 | || ELF_ST_TYPE (sym->st_info) == STT_TLS |
b49e97c9 TS |
7211 | || IRIX_COMPAT (abfd) == ict_irix6) |
7212 | break; | |
7213 | /* Fall through. */ | |
7214 | case SHN_MIPS_SCOMMON: | |
7215 | *secp = bfd_make_section_old_way (abfd, ".scommon"); | |
7216 | (*secp)->flags |= SEC_IS_COMMON; | |
7217 | *valp = sym->st_size; | |
7218 | break; | |
7219 | ||
7220 | case SHN_MIPS_TEXT: | |
7221 | /* This section is used in a shared object. */ | |
698600e4 | 7222 | if (mips_elf_tdata (abfd)->elf_text_section == NULL) |
b49e97c9 TS |
7223 | { |
7224 | asymbol *elf_text_symbol; | |
7225 | asection *elf_text_section; | |
7226 | bfd_size_type amt = sizeof (asection); | |
7227 | ||
7228 | elf_text_section = bfd_zalloc (abfd, amt); | |
7229 | if (elf_text_section == NULL) | |
b34976b6 | 7230 | return FALSE; |
b49e97c9 TS |
7231 | |
7232 | amt = sizeof (asymbol); | |
7233 | elf_text_symbol = bfd_zalloc (abfd, amt); | |
7234 | if (elf_text_symbol == NULL) | |
b34976b6 | 7235 | return FALSE; |
b49e97c9 TS |
7236 | |
7237 | /* Initialize the section. */ | |
7238 | ||
698600e4 AM |
7239 | mips_elf_tdata (abfd)->elf_text_section = elf_text_section; |
7240 | mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol; | |
b49e97c9 TS |
7241 | |
7242 | elf_text_section->symbol = elf_text_symbol; | |
698600e4 | 7243 | elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol; |
b49e97c9 TS |
7244 | |
7245 | elf_text_section->name = ".text"; | |
7246 | elf_text_section->flags = SEC_NO_FLAGS; | |
7247 | elf_text_section->output_section = NULL; | |
7248 | elf_text_section->owner = abfd; | |
7249 | elf_text_symbol->name = ".text"; | |
7250 | elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; | |
7251 | elf_text_symbol->section = elf_text_section; | |
7252 | } | |
7253 | /* This code used to do *secp = bfd_und_section_ptr if | |
7254 | info->shared. I don't know why, and that doesn't make sense, | |
7255 | so I took it out. */ | |
698600e4 | 7256 | *secp = mips_elf_tdata (abfd)->elf_text_section; |
b49e97c9 TS |
7257 | break; |
7258 | ||
7259 | case SHN_MIPS_ACOMMON: | |
7260 | /* Fall through. XXX Can we treat this as allocated data? */ | |
7261 | case SHN_MIPS_DATA: | |
7262 | /* This section is used in a shared object. */ | |
698600e4 | 7263 | if (mips_elf_tdata (abfd)->elf_data_section == NULL) |
b49e97c9 TS |
7264 | { |
7265 | asymbol *elf_data_symbol; | |
7266 | asection *elf_data_section; | |
7267 | bfd_size_type amt = sizeof (asection); | |
7268 | ||
7269 | elf_data_section = bfd_zalloc (abfd, amt); | |
7270 | if (elf_data_section == NULL) | |
b34976b6 | 7271 | return FALSE; |
b49e97c9 TS |
7272 | |
7273 | amt = sizeof (asymbol); | |
7274 | elf_data_symbol = bfd_zalloc (abfd, amt); | |
7275 | if (elf_data_symbol == NULL) | |
b34976b6 | 7276 | return FALSE; |
b49e97c9 TS |
7277 | |
7278 | /* Initialize the section. */ | |
7279 | ||
698600e4 AM |
7280 | mips_elf_tdata (abfd)->elf_data_section = elf_data_section; |
7281 | mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol; | |
b49e97c9 TS |
7282 | |
7283 | elf_data_section->symbol = elf_data_symbol; | |
698600e4 | 7284 | elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol; |
b49e97c9 TS |
7285 | |
7286 | elf_data_section->name = ".data"; | |
7287 | elf_data_section->flags = SEC_NO_FLAGS; | |
7288 | elf_data_section->output_section = NULL; | |
7289 | elf_data_section->owner = abfd; | |
7290 | elf_data_symbol->name = ".data"; | |
7291 | elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; | |
7292 | elf_data_symbol->section = elf_data_section; | |
7293 | } | |
7294 | /* This code used to do *secp = bfd_und_section_ptr if | |
7295 | info->shared. I don't know why, and that doesn't make sense, | |
7296 | so I took it out. */ | |
698600e4 | 7297 | *secp = mips_elf_tdata (abfd)->elf_data_section; |
b49e97c9 TS |
7298 | break; |
7299 | ||
7300 | case SHN_MIPS_SUNDEFINED: | |
7301 | *secp = bfd_und_section_ptr; | |
7302 | break; | |
7303 | } | |
7304 | ||
7305 | if (SGI_COMPAT (abfd) | |
7306 | && ! info->shared | |
f13a99db | 7307 | && info->output_bfd->xvec == abfd->xvec |
b49e97c9 TS |
7308 | && strcmp (*namep, "__rld_obj_head") == 0) |
7309 | { | |
7310 | struct elf_link_hash_entry *h; | |
14a793b2 | 7311 | struct bfd_link_hash_entry *bh; |
b49e97c9 TS |
7312 | |
7313 | /* Mark __rld_obj_head as dynamic. */ | |
14a793b2 | 7314 | bh = NULL; |
b49e97c9 | 7315 | if (! (_bfd_generic_link_add_one_symbol |
9719ad41 | 7316 | (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE, |
14a793b2 | 7317 | get_elf_backend_data (abfd)->collect, &bh))) |
b34976b6 | 7318 | return FALSE; |
14a793b2 AM |
7319 | |
7320 | h = (struct elf_link_hash_entry *) bh; | |
f5385ebf AM |
7321 | h->non_elf = 0; |
7322 | h->def_regular = 1; | |
b49e97c9 TS |
7323 | h->type = STT_OBJECT; |
7324 | ||
c152c796 | 7325 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 7326 | return FALSE; |
b49e97c9 | 7327 | |
b34976b6 | 7328 | mips_elf_hash_table (info)->use_rld_obj_head = TRUE; |
b4082c70 | 7329 | mips_elf_hash_table (info)->rld_symbol = h; |
b49e97c9 TS |
7330 | } |
7331 | ||
7332 | /* If this is a mips16 text symbol, add 1 to the value to make it | |
7333 | odd. This will cause something like .word SYM to come up with | |
7334 | the right value when it is loaded into the PC. */ | |
df58fc94 | 7335 | if (ELF_ST_IS_COMPRESSED (sym->st_other)) |
b49e97c9 TS |
7336 | ++*valp; |
7337 | ||
b34976b6 | 7338 | return TRUE; |
b49e97c9 TS |
7339 | } |
7340 | ||
7341 | /* This hook function is called before the linker writes out a global | |
7342 | symbol. We mark symbols as small common if appropriate. This is | |
7343 | also where we undo the increment of the value for a mips16 symbol. */ | |
7344 | ||
6e0b88f1 | 7345 | int |
9719ad41 RS |
7346 | _bfd_mips_elf_link_output_symbol_hook |
7347 | (struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
7348 | const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym, | |
7349 | asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
7350 | { |
7351 | /* If we see a common symbol, which implies a relocatable link, then | |
7352 | if a symbol was small common in an input file, mark it as small | |
7353 | common in the output file. */ | |
7354 | if (sym->st_shndx == SHN_COMMON | |
7355 | && strcmp (input_sec->name, ".scommon") == 0) | |
7356 | sym->st_shndx = SHN_MIPS_SCOMMON; | |
7357 | ||
df58fc94 | 7358 | if (ELF_ST_IS_COMPRESSED (sym->st_other)) |
79cda7cf | 7359 | sym->st_value &= ~1; |
b49e97c9 | 7360 | |
6e0b88f1 | 7361 | return 1; |
b49e97c9 TS |
7362 | } |
7363 | \f | |
7364 | /* Functions for the dynamic linker. */ | |
7365 | ||
7366 | /* Create dynamic sections when linking against a dynamic object. */ | |
7367 | ||
b34976b6 | 7368 | bfd_boolean |
9719ad41 | 7369 | _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) |
b49e97c9 TS |
7370 | { |
7371 | struct elf_link_hash_entry *h; | |
14a793b2 | 7372 | struct bfd_link_hash_entry *bh; |
b49e97c9 TS |
7373 | flagword flags; |
7374 | register asection *s; | |
7375 | const char * const *namep; | |
0a44bf69 | 7376 | struct mips_elf_link_hash_table *htab; |
b49e97c9 | 7377 | |
0a44bf69 | 7378 | htab = mips_elf_hash_table (info); |
4dfe6ac6 NC |
7379 | BFD_ASSERT (htab != NULL); |
7380 | ||
b49e97c9 TS |
7381 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY |
7382 | | SEC_LINKER_CREATED | SEC_READONLY); | |
7383 | ||
0a44bf69 RS |
7384 | /* The psABI requires a read-only .dynamic section, but the VxWorks |
7385 | EABI doesn't. */ | |
7386 | if (!htab->is_vxworks) | |
b49e97c9 | 7387 | { |
3d4d4302 | 7388 | s = bfd_get_linker_section (abfd, ".dynamic"); |
0a44bf69 RS |
7389 | if (s != NULL) |
7390 | { | |
7391 | if (! bfd_set_section_flags (abfd, s, flags)) | |
7392 | return FALSE; | |
7393 | } | |
b49e97c9 TS |
7394 | } |
7395 | ||
7396 | /* We need to create .got section. */ | |
23cc69b6 | 7397 | if (!mips_elf_create_got_section (abfd, info)) |
f4416af6 AO |
7398 | return FALSE; |
7399 | ||
0a44bf69 | 7400 | if (! mips_elf_rel_dyn_section (info, TRUE)) |
b34976b6 | 7401 | return FALSE; |
b49e97c9 | 7402 | |
b49e97c9 | 7403 | /* Create .stub section. */ |
3d4d4302 AM |
7404 | s = bfd_make_section_anyway_with_flags (abfd, |
7405 | MIPS_ELF_STUB_SECTION_NAME (abfd), | |
7406 | flags | SEC_CODE); | |
4e41d0d7 RS |
7407 | if (s == NULL |
7408 | || ! bfd_set_section_alignment (abfd, s, | |
7409 | MIPS_ELF_LOG_FILE_ALIGN (abfd))) | |
7410 | return FALSE; | |
7411 | htab->sstubs = s; | |
b49e97c9 | 7412 | |
e6aea42d | 7413 | if (!mips_elf_hash_table (info)->use_rld_obj_head |
b49e97c9 | 7414 | && !info->shared |
3d4d4302 | 7415 | && bfd_get_linker_section (abfd, ".rld_map") == NULL) |
b49e97c9 | 7416 | { |
3d4d4302 AM |
7417 | s = bfd_make_section_anyway_with_flags (abfd, ".rld_map", |
7418 | flags &~ (flagword) SEC_READONLY); | |
b49e97c9 | 7419 | if (s == NULL |
b49e97c9 TS |
7420 | || ! bfd_set_section_alignment (abfd, s, |
7421 | MIPS_ELF_LOG_FILE_ALIGN (abfd))) | |
b34976b6 | 7422 | return FALSE; |
b49e97c9 TS |
7423 | } |
7424 | ||
7425 | /* On IRIX5, we adjust add some additional symbols and change the | |
7426 | alignments of several sections. There is no ABI documentation | |
7427 | indicating that this is necessary on IRIX6, nor any evidence that | |
7428 | the linker takes such action. */ | |
7429 | if (IRIX_COMPAT (abfd) == ict_irix5) | |
7430 | { | |
7431 | for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++) | |
7432 | { | |
14a793b2 | 7433 | bh = NULL; |
b49e97c9 | 7434 | if (! (_bfd_generic_link_add_one_symbol |
9719ad41 RS |
7435 | (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0, |
7436 | NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) | |
b34976b6 | 7437 | return FALSE; |
14a793b2 AM |
7438 | |
7439 | h = (struct elf_link_hash_entry *) bh; | |
f5385ebf AM |
7440 | h->non_elf = 0; |
7441 | h->def_regular = 1; | |
b49e97c9 TS |
7442 | h->type = STT_SECTION; |
7443 | ||
c152c796 | 7444 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 7445 | return FALSE; |
b49e97c9 TS |
7446 | } |
7447 | ||
7448 | /* We need to create a .compact_rel section. */ | |
7449 | if (SGI_COMPAT (abfd)) | |
7450 | { | |
7451 | if (!mips_elf_create_compact_rel_section (abfd, info)) | |
b34976b6 | 7452 | return FALSE; |
b49e97c9 TS |
7453 | } |
7454 | ||
44c410de | 7455 | /* Change alignments of some sections. */ |
3d4d4302 | 7456 | s = bfd_get_linker_section (abfd, ".hash"); |
b49e97c9 | 7457 | if (s != NULL) |
a253d456 NC |
7458 | (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
7459 | ||
3d4d4302 | 7460 | s = bfd_get_linker_section (abfd, ".dynsym"); |
b49e97c9 | 7461 | if (s != NULL) |
a253d456 NC |
7462 | (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
7463 | ||
3d4d4302 | 7464 | s = bfd_get_linker_section (abfd, ".dynstr"); |
b49e97c9 | 7465 | if (s != NULL) |
a253d456 NC |
7466 | (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
7467 | ||
3d4d4302 | 7468 | /* ??? */ |
b49e97c9 TS |
7469 | s = bfd_get_section_by_name (abfd, ".reginfo"); |
7470 | if (s != NULL) | |
a253d456 NC |
7471 | (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
7472 | ||
3d4d4302 | 7473 | s = bfd_get_linker_section (abfd, ".dynamic"); |
b49e97c9 | 7474 | if (s != NULL) |
a253d456 | 7475 | (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
7476 | } |
7477 | ||
7478 | if (!info->shared) | |
7479 | { | |
14a793b2 AM |
7480 | const char *name; |
7481 | ||
7482 | name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING"; | |
7483 | bh = NULL; | |
7484 | if (!(_bfd_generic_link_add_one_symbol | |
9719ad41 RS |
7485 | (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0, |
7486 | NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) | |
b34976b6 | 7487 | return FALSE; |
14a793b2 AM |
7488 | |
7489 | h = (struct elf_link_hash_entry *) bh; | |
f5385ebf AM |
7490 | h->non_elf = 0; |
7491 | h->def_regular = 1; | |
b49e97c9 TS |
7492 | h->type = STT_SECTION; |
7493 | ||
c152c796 | 7494 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 7495 | return FALSE; |
b49e97c9 TS |
7496 | |
7497 | if (! mips_elf_hash_table (info)->use_rld_obj_head) | |
7498 | { | |
7499 | /* __rld_map is a four byte word located in the .data section | |
7500 | and is filled in by the rtld to contain a pointer to | |
7501 | the _r_debug structure. Its symbol value will be set in | |
7502 | _bfd_mips_elf_finish_dynamic_symbol. */ | |
3d4d4302 | 7503 | s = bfd_get_linker_section (abfd, ".rld_map"); |
0abfb97a | 7504 | BFD_ASSERT (s != NULL); |
14a793b2 | 7505 | |
0abfb97a L |
7506 | name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP"; |
7507 | bh = NULL; | |
7508 | if (!(_bfd_generic_link_add_one_symbol | |
7509 | (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE, | |
7510 | get_elf_backend_data (abfd)->collect, &bh))) | |
7511 | return FALSE; | |
b49e97c9 | 7512 | |
0abfb97a L |
7513 | h = (struct elf_link_hash_entry *) bh; |
7514 | h->non_elf = 0; | |
7515 | h->def_regular = 1; | |
7516 | h->type = STT_OBJECT; | |
7517 | ||
7518 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) | |
7519 | return FALSE; | |
b4082c70 | 7520 | mips_elf_hash_table (info)->rld_symbol = h; |
b49e97c9 TS |
7521 | } |
7522 | } | |
7523 | ||
861fb55a | 7524 | /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections. |
c164a95d | 7525 | Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */ |
861fb55a DJ |
7526 | if (!_bfd_elf_create_dynamic_sections (abfd, info)) |
7527 | return FALSE; | |
7528 | ||
7529 | /* Cache the sections created above. */ | |
3d4d4302 AM |
7530 | htab->splt = bfd_get_linker_section (abfd, ".plt"); |
7531 | htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss"); | |
0a44bf69 RS |
7532 | if (htab->is_vxworks) |
7533 | { | |
3d4d4302 AM |
7534 | htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss"); |
7535 | htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt"); | |
861fb55a DJ |
7536 | } |
7537 | else | |
3d4d4302 | 7538 | htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt"); |
861fb55a DJ |
7539 | if (!htab->sdynbss |
7540 | || (htab->is_vxworks && !htab->srelbss && !info->shared) | |
7541 | || !htab->srelplt | |
7542 | || !htab->splt) | |
7543 | abort (); | |
0a44bf69 | 7544 | |
1bbce132 MR |
7545 | /* Do the usual VxWorks handling. */ |
7546 | if (htab->is_vxworks | |
7547 | && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2)) | |
7548 | return FALSE; | |
0a44bf69 | 7549 | |
b34976b6 | 7550 | return TRUE; |
b49e97c9 TS |
7551 | } |
7552 | \f | |
c224138d RS |
7553 | /* Return true if relocation REL against section SEC is a REL rather than |
7554 | RELA relocation. RELOCS is the first relocation in the section and | |
7555 | ABFD is the bfd that contains SEC. */ | |
7556 | ||
7557 | static bfd_boolean | |
7558 | mips_elf_rel_relocation_p (bfd *abfd, asection *sec, | |
7559 | const Elf_Internal_Rela *relocs, | |
7560 | const Elf_Internal_Rela *rel) | |
7561 | { | |
7562 | Elf_Internal_Shdr *rel_hdr; | |
7563 | const struct elf_backend_data *bed; | |
7564 | ||
d4730f92 BS |
7565 | /* To determine which flavor of relocation this is, we depend on the |
7566 | fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */ | |
7567 | rel_hdr = elf_section_data (sec)->rel.hdr; | |
7568 | if (rel_hdr == NULL) | |
7569 | return FALSE; | |
c224138d | 7570 | bed = get_elf_backend_data (abfd); |
d4730f92 BS |
7571 | return ((size_t) (rel - relocs) |
7572 | < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel); | |
c224138d RS |
7573 | } |
7574 | ||
7575 | /* Read the addend for REL relocation REL, which belongs to bfd ABFD. | |
7576 | HOWTO is the relocation's howto and CONTENTS points to the contents | |
7577 | of the section that REL is against. */ | |
7578 | ||
7579 | static bfd_vma | |
7580 | mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel, | |
7581 | reloc_howto_type *howto, bfd_byte *contents) | |
7582 | { | |
7583 | bfd_byte *location; | |
7584 | unsigned int r_type; | |
7585 | bfd_vma addend; | |
7586 | ||
7587 | r_type = ELF_R_TYPE (abfd, rel->r_info); | |
7588 | location = contents + rel->r_offset; | |
7589 | ||
7590 | /* Get the addend, which is stored in the input file. */ | |
df58fc94 | 7591 | _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location); |
c224138d | 7592 | addend = mips_elf_obtain_contents (howto, rel, abfd, contents); |
df58fc94 | 7593 | _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location); |
c224138d RS |
7594 | |
7595 | return addend & howto->src_mask; | |
7596 | } | |
7597 | ||
7598 | /* REL is a relocation in ABFD that needs a partnering LO16 relocation | |
7599 | and *ADDEND is the addend for REL itself. Look for the LO16 relocation | |
7600 | and update *ADDEND with the final addend. Return true on success | |
7601 | or false if the LO16 could not be found. RELEND is the exclusive | |
7602 | upper bound on the relocations for REL's section. */ | |
7603 | ||
7604 | static bfd_boolean | |
7605 | mips_elf_add_lo16_rel_addend (bfd *abfd, | |
7606 | const Elf_Internal_Rela *rel, | |
7607 | const Elf_Internal_Rela *relend, | |
7608 | bfd_byte *contents, bfd_vma *addend) | |
7609 | { | |
7610 | unsigned int r_type, lo16_type; | |
7611 | const Elf_Internal_Rela *lo16_relocation; | |
7612 | reloc_howto_type *lo16_howto; | |
7613 | bfd_vma l; | |
7614 | ||
7615 | r_type = ELF_R_TYPE (abfd, rel->r_info); | |
738e5348 | 7616 | if (mips16_reloc_p (r_type)) |
c224138d | 7617 | lo16_type = R_MIPS16_LO16; |
df58fc94 RS |
7618 | else if (micromips_reloc_p (r_type)) |
7619 | lo16_type = R_MICROMIPS_LO16; | |
c224138d RS |
7620 | else |
7621 | lo16_type = R_MIPS_LO16; | |
7622 | ||
7623 | /* The combined value is the sum of the HI16 addend, left-shifted by | |
7624 | sixteen bits, and the LO16 addend, sign extended. (Usually, the | |
7625 | code does a `lui' of the HI16 value, and then an `addiu' of the | |
7626 | LO16 value.) | |
7627 | ||
7628 | Scan ahead to find a matching LO16 relocation. | |
7629 | ||
7630 | According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must | |
7631 | be immediately following. However, for the IRIX6 ABI, the next | |
7632 | relocation may be a composed relocation consisting of several | |
7633 | relocations for the same address. In that case, the R_MIPS_LO16 | |
7634 | relocation may occur as one of these. We permit a similar | |
7635 | extension in general, as that is useful for GCC. | |
7636 | ||
7637 | In some cases GCC dead code elimination removes the LO16 but keeps | |
7638 | the corresponding HI16. This is strictly speaking a violation of | |
7639 | the ABI but not immediately harmful. */ | |
7640 | lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend); | |
7641 | if (lo16_relocation == NULL) | |
7642 | return FALSE; | |
7643 | ||
7644 | /* Obtain the addend kept there. */ | |
7645 | lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE); | |
7646 | l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents); | |
7647 | ||
7648 | l <<= lo16_howto->rightshift; | |
7649 | l = _bfd_mips_elf_sign_extend (l, 16); | |
7650 | ||
7651 | *addend <<= 16; | |
7652 | *addend += l; | |
7653 | return TRUE; | |
7654 | } | |
7655 | ||
7656 | /* Try to read the contents of section SEC in bfd ABFD. Return true and | |
7657 | store the contents in *CONTENTS on success. Assume that *CONTENTS | |
7658 | already holds the contents if it is nonull on entry. */ | |
7659 | ||
7660 | static bfd_boolean | |
7661 | mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents) | |
7662 | { | |
7663 | if (*contents) | |
7664 | return TRUE; | |
7665 | ||
7666 | /* Get cached copy if it exists. */ | |
7667 | if (elf_section_data (sec)->this_hdr.contents != NULL) | |
7668 | { | |
7669 | *contents = elf_section_data (sec)->this_hdr.contents; | |
7670 | return TRUE; | |
7671 | } | |
7672 | ||
7673 | return bfd_malloc_and_get_section (abfd, sec, contents); | |
7674 | } | |
7675 | ||
1bbce132 MR |
7676 | /* Make a new PLT record to keep internal data. */ |
7677 | ||
7678 | static struct plt_entry * | |
7679 | mips_elf_make_plt_record (bfd *abfd) | |
7680 | { | |
7681 | struct plt_entry *entry; | |
7682 | ||
7683 | entry = bfd_zalloc (abfd, sizeof (*entry)); | |
7684 | if (entry == NULL) | |
7685 | return NULL; | |
7686 | ||
7687 | entry->stub_offset = MINUS_ONE; | |
7688 | entry->mips_offset = MINUS_ONE; | |
7689 | entry->comp_offset = MINUS_ONE; | |
7690 | entry->gotplt_index = MINUS_ONE; | |
7691 | return entry; | |
7692 | } | |
7693 | ||
b49e97c9 | 7694 | /* Look through the relocs for a section during the first phase, and |
1bbce132 MR |
7695 | allocate space in the global offset table and record the need for |
7696 | standard MIPS and compressed procedure linkage table entries. */ | |
b49e97c9 | 7697 | |
b34976b6 | 7698 | bfd_boolean |
9719ad41 RS |
7699 | _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info, |
7700 | asection *sec, const Elf_Internal_Rela *relocs) | |
b49e97c9 TS |
7701 | { |
7702 | const char *name; | |
7703 | bfd *dynobj; | |
7704 | Elf_Internal_Shdr *symtab_hdr; | |
7705 | struct elf_link_hash_entry **sym_hashes; | |
b49e97c9 TS |
7706 | size_t extsymoff; |
7707 | const Elf_Internal_Rela *rel; | |
7708 | const Elf_Internal_Rela *rel_end; | |
b49e97c9 | 7709 | asection *sreloc; |
9c5bfbb7 | 7710 | const struct elf_backend_data *bed; |
0a44bf69 | 7711 | struct mips_elf_link_hash_table *htab; |
c224138d RS |
7712 | bfd_byte *contents; |
7713 | bfd_vma addend; | |
7714 | reloc_howto_type *howto; | |
b49e97c9 | 7715 | |
1049f94e | 7716 | if (info->relocatable) |
b34976b6 | 7717 | return TRUE; |
b49e97c9 | 7718 | |
0a44bf69 | 7719 | htab = mips_elf_hash_table (info); |
4dfe6ac6 NC |
7720 | BFD_ASSERT (htab != NULL); |
7721 | ||
b49e97c9 TS |
7722 | dynobj = elf_hash_table (info)->dynobj; |
7723 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
7724 | sym_hashes = elf_sym_hashes (abfd); | |
7725 | extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; | |
7726 | ||
738e5348 RS |
7727 | bed = get_elf_backend_data (abfd); |
7728 | rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel; | |
7729 | ||
b49e97c9 TS |
7730 | /* Check for the mips16 stub sections. */ |
7731 | ||
7732 | name = bfd_get_section_name (abfd, sec); | |
b9d58d71 | 7733 | if (FN_STUB_P (name)) |
b49e97c9 TS |
7734 | { |
7735 | unsigned long r_symndx; | |
7736 | ||
7737 | /* Look at the relocation information to figure out which symbol | |
7738 | this is for. */ | |
7739 | ||
cb4437b8 | 7740 | r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end); |
738e5348 RS |
7741 | if (r_symndx == 0) |
7742 | { | |
7743 | (*_bfd_error_handler) | |
7744 | (_("%B: Warning: cannot determine the target function for" | |
7745 | " stub section `%s'"), | |
7746 | abfd, name); | |
7747 | bfd_set_error (bfd_error_bad_value); | |
7748 | return FALSE; | |
7749 | } | |
b49e97c9 TS |
7750 | |
7751 | if (r_symndx < extsymoff | |
7752 | || sym_hashes[r_symndx - extsymoff] == NULL) | |
7753 | { | |
7754 | asection *o; | |
7755 | ||
7756 | /* This stub is for a local symbol. This stub will only be | |
7757 | needed if there is some relocation in this BFD, other | |
7758 | than a 16 bit function call, which refers to this symbol. */ | |
7759 | for (o = abfd->sections; o != NULL; o = o->next) | |
7760 | { | |
7761 | Elf_Internal_Rela *sec_relocs; | |
7762 | const Elf_Internal_Rela *r, *rend; | |
7763 | ||
7764 | /* We can ignore stub sections when looking for relocs. */ | |
7765 | if ((o->flags & SEC_RELOC) == 0 | |
7766 | || o->reloc_count == 0 | |
738e5348 | 7767 | || section_allows_mips16_refs_p (o)) |
b49e97c9 TS |
7768 | continue; |
7769 | ||
45d6a902 | 7770 | sec_relocs |
9719ad41 | 7771 | = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, |
45d6a902 | 7772 | info->keep_memory); |
b49e97c9 | 7773 | if (sec_relocs == NULL) |
b34976b6 | 7774 | return FALSE; |
b49e97c9 TS |
7775 | |
7776 | rend = sec_relocs + o->reloc_count; | |
7777 | for (r = sec_relocs; r < rend; r++) | |
7778 | if (ELF_R_SYM (abfd, r->r_info) == r_symndx | |
738e5348 | 7779 | && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info))) |
b49e97c9 TS |
7780 | break; |
7781 | ||
6cdc0ccc | 7782 | if (elf_section_data (o)->relocs != sec_relocs) |
b49e97c9 TS |
7783 | free (sec_relocs); |
7784 | ||
7785 | if (r < rend) | |
7786 | break; | |
7787 | } | |
7788 | ||
7789 | if (o == NULL) | |
7790 | { | |
7791 | /* There is no non-call reloc for this stub, so we do | |
7792 | not need it. Since this function is called before | |
7793 | the linker maps input sections to output sections, we | |
7794 | can easily discard it by setting the SEC_EXCLUDE | |
7795 | flag. */ | |
7796 | sec->flags |= SEC_EXCLUDE; | |
b34976b6 | 7797 | return TRUE; |
b49e97c9 TS |
7798 | } |
7799 | ||
7800 | /* Record this stub in an array of local symbol stubs for | |
7801 | this BFD. */ | |
698600e4 | 7802 | if (mips_elf_tdata (abfd)->local_stubs == NULL) |
b49e97c9 TS |
7803 | { |
7804 | unsigned long symcount; | |
7805 | asection **n; | |
7806 | bfd_size_type amt; | |
7807 | ||
7808 | if (elf_bad_symtab (abfd)) | |
7809 | symcount = NUM_SHDR_ENTRIES (symtab_hdr); | |
7810 | else | |
7811 | symcount = symtab_hdr->sh_info; | |
7812 | amt = symcount * sizeof (asection *); | |
9719ad41 | 7813 | n = bfd_zalloc (abfd, amt); |
b49e97c9 | 7814 | if (n == NULL) |
b34976b6 | 7815 | return FALSE; |
698600e4 | 7816 | mips_elf_tdata (abfd)->local_stubs = n; |
b49e97c9 TS |
7817 | } |
7818 | ||
b9d58d71 | 7819 | sec->flags |= SEC_KEEP; |
698600e4 | 7820 | mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec; |
b49e97c9 TS |
7821 | |
7822 | /* We don't need to set mips16_stubs_seen in this case. | |
7823 | That flag is used to see whether we need to look through | |
7824 | the global symbol table for stubs. We don't need to set | |
7825 | it here, because we just have a local stub. */ | |
7826 | } | |
7827 | else | |
7828 | { | |
7829 | struct mips_elf_link_hash_entry *h; | |
7830 | ||
7831 | h = ((struct mips_elf_link_hash_entry *) | |
7832 | sym_hashes[r_symndx - extsymoff]); | |
7833 | ||
973a3492 L |
7834 | while (h->root.root.type == bfd_link_hash_indirect |
7835 | || h->root.root.type == bfd_link_hash_warning) | |
7836 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
7837 | ||
b49e97c9 TS |
7838 | /* H is the symbol this stub is for. */ |
7839 | ||
b9d58d71 TS |
7840 | /* If we already have an appropriate stub for this function, we |
7841 | don't need another one, so we can discard this one. Since | |
7842 | this function is called before the linker maps input sections | |
7843 | to output sections, we can easily discard it by setting the | |
7844 | SEC_EXCLUDE flag. */ | |
7845 | if (h->fn_stub != NULL) | |
7846 | { | |
7847 | sec->flags |= SEC_EXCLUDE; | |
7848 | return TRUE; | |
7849 | } | |
7850 | ||
7851 | sec->flags |= SEC_KEEP; | |
b49e97c9 | 7852 | h->fn_stub = sec; |
b34976b6 | 7853 | mips_elf_hash_table (info)->mips16_stubs_seen = TRUE; |
b49e97c9 TS |
7854 | } |
7855 | } | |
b9d58d71 | 7856 | else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name)) |
b49e97c9 TS |
7857 | { |
7858 | unsigned long r_symndx; | |
7859 | struct mips_elf_link_hash_entry *h; | |
7860 | asection **loc; | |
7861 | ||
7862 | /* Look at the relocation information to figure out which symbol | |
7863 | this is for. */ | |
7864 | ||
cb4437b8 | 7865 | r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end); |
738e5348 RS |
7866 | if (r_symndx == 0) |
7867 | { | |
7868 | (*_bfd_error_handler) | |
7869 | (_("%B: Warning: cannot determine the target function for" | |
7870 | " stub section `%s'"), | |
7871 | abfd, name); | |
7872 | bfd_set_error (bfd_error_bad_value); | |
7873 | return FALSE; | |
7874 | } | |
b49e97c9 TS |
7875 | |
7876 | if (r_symndx < extsymoff | |
7877 | || sym_hashes[r_symndx - extsymoff] == NULL) | |
7878 | { | |
b9d58d71 | 7879 | asection *o; |
b49e97c9 | 7880 | |
b9d58d71 TS |
7881 | /* This stub is for a local symbol. This stub will only be |
7882 | needed if there is some relocation (R_MIPS16_26) in this BFD | |
7883 | that refers to this symbol. */ | |
7884 | for (o = abfd->sections; o != NULL; o = o->next) | |
7885 | { | |
7886 | Elf_Internal_Rela *sec_relocs; | |
7887 | const Elf_Internal_Rela *r, *rend; | |
7888 | ||
7889 | /* We can ignore stub sections when looking for relocs. */ | |
7890 | if ((o->flags & SEC_RELOC) == 0 | |
7891 | || o->reloc_count == 0 | |
738e5348 | 7892 | || section_allows_mips16_refs_p (o)) |
b9d58d71 TS |
7893 | continue; |
7894 | ||
7895 | sec_relocs | |
7896 | = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, | |
7897 | info->keep_memory); | |
7898 | if (sec_relocs == NULL) | |
7899 | return FALSE; | |
7900 | ||
7901 | rend = sec_relocs + o->reloc_count; | |
7902 | for (r = sec_relocs; r < rend; r++) | |
7903 | if (ELF_R_SYM (abfd, r->r_info) == r_symndx | |
7904 | && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26) | |
7905 | break; | |
7906 | ||
7907 | if (elf_section_data (o)->relocs != sec_relocs) | |
7908 | free (sec_relocs); | |
7909 | ||
7910 | if (r < rend) | |
7911 | break; | |
7912 | } | |
7913 | ||
7914 | if (o == NULL) | |
7915 | { | |
7916 | /* There is no non-call reloc for this stub, so we do | |
7917 | not need it. Since this function is called before | |
7918 | the linker maps input sections to output sections, we | |
7919 | can easily discard it by setting the SEC_EXCLUDE | |
7920 | flag. */ | |
7921 | sec->flags |= SEC_EXCLUDE; | |
7922 | return TRUE; | |
7923 | } | |
7924 | ||
7925 | /* Record this stub in an array of local symbol call_stubs for | |
7926 | this BFD. */ | |
698600e4 | 7927 | if (mips_elf_tdata (abfd)->local_call_stubs == NULL) |
b9d58d71 TS |
7928 | { |
7929 | unsigned long symcount; | |
7930 | asection **n; | |
7931 | bfd_size_type amt; | |
7932 | ||
7933 | if (elf_bad_symtab (abfd)) | |
7934 | symcount = NUM_SHDR_ENTRIES (symtab_hdr); | |
7935 | else | |
7936 | symcount = symtab_hdr->sh_info; | |
7937 | amt = symcount * sizeof (asection *); | |
7938 | n = bfd_zalloc (abfd, amt); | |
7939 | if (n == NULL) | |
7940 | return FALSE; | |
698600e4 | 7941 | mips_elf_tdata (abfd)->local_call_stubs = n; |
b9d58d71 | 7942 | } |
b49e97c9 | 7943 | |
b9d58d71 | 7944 | sec->flags |= SEC_KEEP; |
698600e4 | 7945 | mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec; |
b49e97c9 | 7946 | |
b9d58d71 TS |
7947 | /* We don't need to set mips16_stubs_seen in this case. |
7948 | That flag is used to see whether we need to look through | |
7949 | the global symbol table for stubs. We don't need to set | |
7950 | it here, because we just have a local stub. */ | |
7951 | } | |
b49e97c9 | 7952 | else |
b49e97c9 | 7953 | { |
b9d58d71 TS |
7954 | h = ((struct mips_elf_link_hash_entry *) |
7955 | sym_hashes[r_symndx - extsymoff]); | |
68ffbac6 | 7956 | |
b9d58d71 | 7957 | /* H is the symbol this stub is for. */ |
68ffbac6 | 7958 | |
b9d58d71 TS |
7959 | if (CALL_FP_STUB_P (name)) |
7960 | loc = &h->call_fp_stub; | |
7961 | else | |
7962 | loc = &h->call_stub; | |
68ffbac6 | 7963 | |
b9d58d71 TS |
7964 | /* If we already have an appropriate stub for this function, we |
7965 | don't need another one, so we can discard this one. Since | |
7966 | this function is called before the linker maps input sections | |
7967 | to output sections, we can easily discard it by setting the | |
7968 | SEC_EXCLUDE flag. */ | |
7969 | if (*loc != NULL) | |
7970 | { | |
7971 | sec->flags |= SEC_EXCLUDE; | |
7972 | return TRUE; | |
7973 | } | |
b49e97c9 | 7974 | |
b9d58d71 TS |
7975 | sec->flags |= SEC_KEEP; |
7976 | *loc = sec; | |
7977 | mips_elf_hash_table (info)->mips16_stubs_seen = TRUE; | |
7978 | } | |
b49e97c9 TS |
7979 | } |
7980 | ||
b49e97c9 | 7981 | sreloc = NULL; |
c224138d | 7982 | contents = NULL; |
b49e97c9 TS |
7983 | for (rel = relocs; rel < rel_end; ++rel) |
7984 | { | |
7985 | unsigned long r_symndx; | |
7986 | unsigned int r_type; | |
7987 | struct elf_link_hash_entry *h; | |
861fb55a | 7988 | bfd_boolean can_make_dynamic_p; |
c5d6fa44 RS |
7989 | bfd_boolean call_reloc_p; |
7990 | bfd_boolean constrain_symbol_p; | |
b49e97c9 TS |
7991 | |
7992 | r_symndx = ELF_R_SYM (abfd, rel->r_info); | |
7993 | r_type = ELF_R_TYPE (abfd, rel->r_info); | |
7994 | ||
7995 | if (r_symndx < extsymoff) | |
7996 | h = NULL; | |
7997 | else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr)) | |
7998 | { | |
7999 | (*_bfd_error_handler) | |
d003868e AM |
8000 | (_("%B: Malformed reloc detected for section %s"), |
8001 | abfd, name); | |
b49e97c9 | 8002 | bfd_set_error (bfd_error_bad_value); |
b34976b6 | 8003 | return FALSE; |
b49e97c9 TS |
8004 | } |
8005 | else | |
8006 | { | |
8007 | h = sym_hashes[r_symndx - extsymoff]; | |
81fbe831 AM |
8008 | if (h != NULL) |
8009 | { | |
8010 | while (h->root.type == bfd_link_hash_indirect | |
8011 | || h->root.type == bfd_link_hash_warning) | |
8012 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
8013 | ||
8014 | /* PR15323, ref flags aren't set for references in the | |
8015 | same object. */ | |
8016 | h->root.non_ir_ref = 1; | |
8017 | } | |
861fb55a | 8018 | } |
b49e97c9 | 8019 | |
861fb55a DJ |
8020 | /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this |
8021 | relocation into a dynamic one. */ | |
8022 | can_make_dynamic_p = FALSE; | |
c5d6fa44 RS |
8023 | |
8024 | /* Set CALL_RELOC_P to true if the relocation is for a call, | |
8025 | and if pointer equality therefore doesn't matter. */ | |
8026 | call_reloc_p = FALSE; | |
8027 | ||
8028 | /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation | |
8029 | into account when deciding how to define the symbol. | |
8030 | Relocations in nonallocatable sections such as .pdr and | |
8031 | .debug* should have no effect. */ | |
8032 | constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0); | |
8033 | ||
861fb55a DJ |
8034 | switch (r_type) |
8035 | { | |
861fb55a DJ |
8036 | case R_MIPS_CALL16: |
8037 | case R_MIPS_CALL_HI16: | |
8038 | case R_MIPS_CALL_LO16: | |
c5d6fa44 RS |
8039 | case R_MIPS16_CALL16: |
8040 | case R_MICROMIPS_CALL16: | |
8041 | case R_MICROMIPS_CALL_HI16: | |
8042 | case R_MICROMIPS_CALL_LO16: | |
8043 | call_reloc_p = TRUE; | |
8044 | /* Fall through. */ | |
8045 | ||
8046 | case R_MIPS_GOT16: | |
861fb55a DJ |
8047 | case R_MIPS_GOT_HI16: |
8048 | case R_MIPS_GOT_LO16: | |
8049 | case R_MIPS_GOT_PAGE: | |
8050 | case R_MIPS_GOT_OFST: | |
8051 | case R_MIPS_GOT_DISP: | |
8052 | case R_MIPS_TLS_GOTTPREL: | |
8053 | case R_MIPS_TLS_GD: | |
8054 | case R_MIPS_TLS_LDM: | |
d0f13682 | 8055 | case R_MIPS16_GOT16: |
d0f13682 CLT |
8056 | case R_MIPS16_TLS_GOTTPREL: |
8057 | case R_MIPS16_TLS_GD: | |
8058 | case R_MIPS16_TLS_LDM: | |
df58fc94 | 8059 | case R_MICROMIPS_GOT16: |
df58fc94 RS |
8060 | case R_MICROMIPS_GOT_HI16: |
8061 | case R_MICROMIPS_GOT_LO16: | |
8062 | case R_MICROMIPS_GOT_PAGE: | |
8063 | case R_MICROMIPS_GOT_OFST: | |
8064 | case R_MICROMIPS_GOT_DISP: | |
8065 | case R_MICROMIPS_TLS_GOTTPREL: | |
8066 | case R_MICROMIPS_TLS_GD: | |
8067 | case R_MICROMIPS_TLS_LDM: | |
861fb55a DJ |
8068 | if (dynobj == NULL) |
8069 | elf_hash_table (info)->dynobj = dynobj = abfd; | |
8070 | if (!mips_elf_create_got_section (dynobj, info)) | |
8071 | return FALSE; | |
8072 | if (htab->is_vxworks && !info->shared) | |
b49e97c9 | 8073 | { |
861fb55a DJ |
8074 | (*_bfd_error_handler) |
8075 | (_("%B: GOT reloc at 0x%lx not expected in executables"), | |
8076 | abfd, (unsigned long) rel->r_offset); | |
8077 | bfd_set_error (bfd_error_bad_value); | |
8078 | return FALSE; | |
b49e97c9 | 8079 | } |
c5d6fa44 | 8080 | can_make_dynamic_p = TRUE; |
861fb55a | 8081 | break; |
b49e97c9 | 8082 | |
c5d6fa44 | 8083 | case R_MIPS_NONE: |
99da6b5f | 8084 | case R_MIPS_JALR: |
df58fc94 | 8085 | case R_MICROMIPS_JALR: |
c5d6fa44 RS |
8086 | /* These relocations have empty fields and are purely there to |
8087 | provide link information. The symbol value doesn't matter. */ | |
8088 | constrain_symbol_p = FALSE; | |
8089 | break; | |
8090 | ||
8091 | case R_MIPS_GPREL16: | |
8092 | case R_MIPS_GPREL32: | |
8093 | case R_MIPS16_GPREL: | |
8094 | case R_MICROMIPS_GPREL16: | |
8095 | /* GP-relative relocations always resolve to a definition in a | |
8096 | regular input file, ignoring the one-definition rule. This is | |
8097 | important for the GP setup sequence in NewABI code, which | |
8098 | always resolves to a local function even if other relocations | |
8099 | against the symbol wouldn't. */ | |
8100 | constrain_symbol_p = FALSE; | |
99da6b5f AN |
8101 | break; |
8102 | ||
861fb55a DJ |
8103 | case R_MIPS_32: |
8104 | case R_MIPS_REL32: | |
8105 | case R_MIPS_64: | |
8106 | /* In VxWorks executables, references to external symbols | |
8107 | must be handled using copy relocs or PLT entries; it is not | |
8108 | possible to convert this relocation into a dynamic one. | |
8109 | ||
8110 | For executables that use PLTs and copy-relocs, we have a | |
8111 | choice between converting the relocation into a dynamic | |
8112 | one or using copy relocations or PLT entries. It is | |
8113 | usually better to do the former, unless the relocation is | |
8114 | against a read-only section. */ | |
8115 | if ((info->shared | |
8116 | || (h != NULL | |
8117 | && !htab->is_vxworks | |
8118 | && strcmp (h->root.root.string, "__gnu_local_gp") != 0 | |
8119 | && !(!info->nocopyreloc | |
8120 | && !PIC_OBJECT_P (abfd) | |
8121 | && MIPS_ELF_READONLY_SECTION (sec)))) | |
8122 | && (sec->flags & SEC_ALLOC) != 0) | |
b49e97c9 | 8123 | { |
861fb55a | 8124 | can_make_dynamic_p = TRUE; |
b49e97c9 TS |
8125 | if (dynobj == NULL) |
8126 | elf_hash_table (info)->dynobj = dynobj = abfd; | |
861fb55a | 8127 | } |
c5d6fa44 | 8128 | break; |
b49e97c9 | 8129 | |
861fb55a DJ |
8130 | case R_MIPS_26: |
8131 | case R_MIPS_PC16: | |
8132 | case R_MIPS16_26: | |
df58fc94 RS |
8133 | case R_MICROMIPS_26_S1: |
8134 | case R_MICROMIPS_PC7_S1: | |
8135 | case R_MICROMIPS_PC10_S1: | |
8136 | case R_MICROMIPS_PC16_S1: | |
8137 | case R_MICROMIPS_PC23_S2: | |
c5d6fa44 | 8138 | call_reloc_p = TRUE; |
861fb55a | 8139 | break; |
b49e97c9 TS |
8140 | } |
8141 | ||
0a44bf69 RS |
8142 | if (h) |
8143 | { | |
c5d6fa44 RS |
8144 | if (constrain_symbol_p) |
8145 | { | |
8146 | if (!can_make_dynamic_p) | |
8147 | ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1; | |
8148 | ||
8149 | if (!call_reloc_p) | |
8150 | h->pointer_equality_needed = 1; | |
8151 | ||
8152 | /* We must not create a stub for a symbol that has | |
8153 | relocations related to taking the function's address. | |
8154 | This doesn't apply to VxWorks, where CALL relocs refer | |
8155 | to a .got.plt entry instead of a normal .got entry. */ | |
8156 | if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p)) | |
8157 | ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE; | |
8158 | } | |
8159 | ||
0a44bf69 RS |
8160 | /* Relocations against the special VxWorks __GOTT_BASE__ and |
8161 | __GOTT_INDEX__ symbols must be left to the loader. Allocate | |
8162 | room for them in .rela.dyn. */ | |
8163 | if (is_gott_symbol (info, h)) | |
8164 | { | |
8165 | if (sreloc == NULL) | |
8166 | { | |
8167 | sreloc = mips_elf_rel_dyn_section (info, TRUE); | |
8168 | if (sreloc == NULL) | |
8169 | return FALSE; | |
8170 | } | |
8171 | mips_elf_allocate_dynamic_relocations (dynobj, info, 1); | |
9e3313ae RS |
8172 | if (MIPS_ELF_READONLY_SECTION (sec)) |
8173 | /* We tell the dynamic linker that there are | |
8174 | relocations against the text segment. */ | |
8175 | info->flags |= DF_TEXTREL; | |
0a44bf69 RS |
8176 | } |
8177 | } | |
df58fc94 RS |
8178 | else if (call_lo16_reloc_p (r_type) |
8179 | || got_lo16_reloc_p (r_type) | |
8180 | || got_disp_reloc_p (r_type) | |
738e5348 | 8181 | || (got16_reloc_p (r_type) && htab->is_vxworks)) |
b49e97c9 TS |
8182 | { |
8183 | /* We may need a local GOT entry for this relocation. We | |
8184 | don't count R_MIPS_GOT_PAGE because we can estimate the | |
8185 | maximum number of pages needed by looking at the size of | |
738e5348 RS |
8186 | the segment. Similar comments apply to R_MIPS*_GOT16 and |
8187 | R_MIPS*_CALL16, except on VxWorks, where GOT relocations | |
0a44bf69 | 8188 | always evaluate to "G". We don't count R_MIPS_GOT_HI16, or |
b49e97c9 | 8189 | R_MIPS_CALL_HI16 because these are always followed by an |
b15e6682 | 8190 | R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */ |
a8028dd0 | 8191 | if (!mips_elf_record_local_got_symbol (abfd, r_symndx, |
e641e783 | 8192 | rel->r_addend, info, r_type)) |
f4416af6 | 8193 | return FALSE; |
b49e97c9 TS |
8194 | } |
8195 | ||
8f0c309a CLT |
8196 | if (h != NULL |
8197 | && mips_elf_relocation_needs_la25_stub (abfd, r_type, | |
8198 | ELF_ST_IS_MIPS16 (h->other))) | |
861fb55a DJ |
8199 | ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE; |
8200 | ||
b49e97c9 TS |
8201 | switch (r_type) |
8202 | { | |
8203 | case R_MIPS_CALL16: | |
738e5348 | 8204 | case R_MIPS16_CALL16: |
df58fc94 | 8205 | case R_MICROMIPS_CALL16: |
b49e97c9 TS |
8206 | if (h == NULL) |
8207 | { | |
8208 | (*_bfd_error_handler) | |
d003868e AM |
8209 | (_("%B: CALL16 reloc at 0x%lx not against global symbol"), |
8210 | abfd, (unsigned long) rel->r_offset); | |
b49e97c9 | 8211 | bfd_set_error (bfd_error_bad_value); |
b34976b6 | 8212 | return FALSE; |
b49e97c9 TS |
8213 | } |
8214 | /* Fall through. */ | |
8215 | ||
8216 | case R_MIPS_CALL_HI16: | |
8217 | case R_MIPS_CALL_LO16: | |
df58fc94 RS |
8218 | case R_MICROMIPS_CALL_HI16: |
8219 | case R_MICROMIPS_CALL_LO16: | |
b49e97c9 TS |
8220 | if (h != NULL) |
8221 | { | |
6ccf4795 RS |
8222 | /* Make sure there is room in the regular GOT to hold the |
8223 | function's address. We may eliminate it in favour of | |
8224 | a .got.plt entry later; see mips_elf_count_got_symbols. */ | |
e641e783 RS |
8225 | if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, |
8226 | r_type)) | |
b34976b6 | 8227 | return FALSE; |
b49e97c9 TS |
8228 | |
8229 | /* We need a stub, not a plt entry for the undefined | |
8230 | function. But we record it as if it needs plt. See | |
c152c796 | 8231 | _bfd_elf_adjust_dynamic_symbol. */ |
f5385ebf | 8232 | h->needs_plt = 1; |
b49e97c9 TS |
8233 | h->type = STT_FUNC; |
8234 | } | |
8235 | break; | |
8236 | ||
0fdc1bf1 | 8237 | case R_MIPS_GOT_PAGE: |
df58fc94 | 8238 | case R_MICROMIPS_GOT_PAGE: |
738e5348 | 8239 | case R_MIPS16_GOT16: |
b49e97c9 TS |
8240 | case R_MIPS_GOT16: |
8241 | case R_MIPS_GOT_HI16: | |
8242 | case R_MIPS_GOT_LO16: | |
df58fc94 RS |
8243 | case R_MICROMIPS_GOT16: |
8244 | case R_MICROMIPS_GOT_HI16: | |
8245 | case R_MICROMIPS_GOT_LO16: | |
8246 | if (!h || got_page_reloc_p (r_type)) | |
c224138d | 8247 | { |
3a3b6725 DJ |
8248 | /* This relocation needs (or may need, if h != NULL) a |
8249 | page entry in the GOT. For R_MIPS_GOT_PAGE we do not | |
8250 | know for sure until we know whether the symbol is | |
8251 | preemptible. */ | |
c224138d RS |
8252 | if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel)) |
8253 | { | |
8254 | if (!mips_elf_get_section_contents (abfd, sec, &contents)) | |
8255 | return FALSE; | |
8256 | howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE); | |
8257 | addend = mips_elf_read_rel_addend (abfd, rel, | |
8258 | howto, contents); | |
9684f078 | 8259 | if (got16_reloc_p (r_type)) |
c224138d RS |
8260 | mips_elf_add_lo16_rel_addend (abfd, rel, rel_end, |
8261 | contents, &addend); | |
8262 | else | |
8263 | addend <<= howto->rightshift; | |
8264 | } | |
8265 | else | |
8266 | addend = rel->r_addend; | |
13db6b44 RS |
8267 | if (!mips_elf_record_got_page_ref (info, abfd, r_symndx, |
8268 | h, addend)) | |
c224138d | 8269 | return FALSE; |
13db6b44 RS |
8270 | |
8271 | if (h) | |
8272 | { | |
8273 | struct mips_elf_link_hash_entry *hmips = | |
8274 | (struct mips_elf_link_hash_entry *) h; | |
8275 | ||
8276 | /* This symbol is definitely not overridable. */ | |
8277 | if (hmips->root.def_regular | |
8278 | && ! (info->shared && ! info->symbolic | |
8279 | && ! hmips->root.forced_local)) | |
8280 | h = NULL; | |
8281 | } | |
c224138d | 8282 | } |
13db6b44 RS |
8283 | /* If this is a global, overridable symbol, GOT_PAGE will |
8284 | decay to GOT_DISP, so we'll need a GOT entry for it. */ | |
c224138d RS |
8285 | /* Fall through. */ |
8286 | ||
b49e97c9 | 8287 | case R_MIPS_GOT_DISP: |
df58fc94 | 8288 | case R_MICROMIPS_GOT_DISP: |
6ccf4795 | 8289 | if (h && !mips_elf_record_global_got_symbol (h, abfd, info, |
e641e783 | 8290 | FALSE, r_type)) |
b34976b6 | 8291 | return FALSE; |
b49e97c9 TS |
8292 | break; |
8293 | ||
0f20cc35 | 8294 | case R_MIPS_TLS_GOTTPREL: |
d0f13682 | 8295 | case R_MIPS16_TLS_GOTTPREL: |
df58fc94 | 8296 | case R_MICROMIPS_TLS_GOTTPREL: |
0f20cc35 DJ |
8297 | if (info->shared) |
8298 | info->flags |= DF_STATIC_TLS; | |
8299 | /* Fall through */ | |
8300 | ||
8301 | case R_MIPS_TLS_LDM: | |
d0f13682 | 8302 | case R_MIPS16_TLS_LDM: |
df58fc94 RS |
8303 | case R_MICROMIPS_TLS_LDM: |
8304 | if (tls_ldm_reloc_p (r_type)) | |
0f20cc35 | 8305 | { |
cf35638d | 8306 | r_symndx = STN_UNDEF; |
0f20cc35 DJ |
8307 | h = NULL; |
8308 | } | |
8309 | /* Fall through */ | |
8310 | ||
8311 | case R_MIPS_TLS_GD: | |
d0f13682 | 8312 | case R_MIPS16_TLS_GD: |
df58fc94 | 8313 | case R_MICROMIPS_TLS_GD: |
0f20cc35 DJ |
8314 | /* This symbol requires a global offset table entry, or two |
8315 | for TLS GD relocations. */ | |
e641e783 RS |
8316 | if (h != NULL) |
8317 | { | |
8318 | if (!mips_elf_record_global_got_symbol (h, abfd, info, | |
8319 | FALSE, r_type)) | |
8320 | return FALSE; | |
8321 | } | |
8322 | else | |
8323 | { | |
8324 | if (!mips_elf_record_local_got_symbol (abfd, r_symndx, | |
8325 | rel->r_addend, | |
8326 | info, r_type)) | |
8327 | return FALSE; | |
8328 | } | |
0f20cc35 DJ |
8329 | break; |
8330 | ||
b49e97c9 TS |
8331 | case R_MIPS_32: |
8332 | case R_MIPS_REL32: | |
8333 | case R_MIPS_64: | |
0a44bf69 RS |
8334 | /* In VxWorks executables, references to external symbols |
8335 | are handled using copy relocs or PLT stubs, so there's | |
8336 | no need to add a .rela.dyn entry for this relocation. */ | |
861fb55a | 8337 | if (can_make_dynamic_p) |
b49e97c9 TS |
8338 | { |
8339 | if (sreloc == NULL) | |
8340 | { | |
0a44bf69 | 8341 | sreloc = mips_elf_rel_dyn_section (info, TRUE); |
b49e97c9 | 8342 | if (sreloc == NULL) |
f4416af6 | 8343 | return FALSE; |
b49e97c9 | 8344 | } |
9a59ad6b | 8345 | if (info->shared && h == NULL) |
82f0cfbd EC |
8346 | { |
8347 | /* When creating a shared object, we must copy these | |
8348 | reloc types into the output file as R_MIPS_REL32 | |
0a44bf69 RS |
8349 | relocs. Make room for this reloc in .rel(a).dyn. */ |
8350 | mips_elf_allocate_dynamic_relocations (dynobj, info, 1); | |
943284cc | 8351 | if (MIPS_ELF_READONLY_SECTION (sec)) |
82f0cfbd EC |
8352 | /* We tell the dynamic linker that there are |
8353 | relocations against the text segment. */ | |
8354 | info->flags |= DF_TEXTREL; | |
8355 | } | |
b49e97c9 TS |
8356 | else |
8357 | { | |
8358 | struct mips_elf_link_hash_entry *hmips; | |
82f0cfbd | 8359 | |
9a59ad6b DJ |
8360 | /* For a shared object, we must copy this relocation |
8361 | unless the symbol turns out to be undefined and | |
8362 | weak with non-default visibility, in which case | |
8363 | it will be left as zero. | |
8364 | ||
8365 | We could elide R_MIPS_REL32 for locally binding symbols | |
8366 | in shared libraries, but do not yet do so. | |
8367 | ||
8368 | For an executable, we only need to copy this | |
8369 | reloc if the symbol is defined in a dynamic | |
8370 | object. */ | |
b49e97c9 TS |
8371 | hmips = (struct mips_elf_link_hash_entry *) h; |
8372 | ++hmips->possibly_dynamic_relocs; | |
943284cc | 8373 | if (MIPS_ELF_READONLY_SECTION (sec)) |
82f0cfbd EC |
8374 | /* We need it to tell the dynamic linker if there |
8375 | are relocations against the text segment. */ | |
8376 | hmips->readonly_reloc = TRUE; | |
b49e97c9 | 8377 | } |
b49e97c9 TS |
8378 | } |
8379 | ||
8380 | if (SGI_COMPAT (abfd)) | |
8381 | mips_elf_hash_table (info)->compact_rel_size += | |
8382 | sizeof (Elf32_External_crinfo); | |
8383 | break; | |
8384 | ||
8385 | case R_MIPS_26: | |
8386 | case R_MIPS_GPREL16: | |
8387 | case R_MIPS_LITERAL: | |
8388 | case R_MIPS_GPREL32: | |
df58fc94 RS |
8389 | case R_MICROMIPS_26_S1: |
8390 | case R_MICROMIPS_GPREL16: | |
8391 | case R_MICROMIPS_LITERAL: | |
8392 | case R_MICROMIPS_GPREL7_S2: | |
b49e97c9 TS |
8393 | if (SGI_COMPAT (abfd)) |
8394 | mips_elf_hash_table (info)->compact_rel_size += | |
8395 | sizeof (Elf32_External_crinfo); | |
8396 | break; | |
8397 | ||
8398 | /* This relocation describes the C++ object vtable hierarchy. | |
8399 | Reconstruct it for later use during GC. */ | |
8400 | case R_MIPS_GNU_VTINHERIT: | |
c152c796 | 8401 | if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) |
b34976b6 | 8402 | return FALSE; |
b49e97c9 TS |
8403 | break; |
8404 | ||
8405 | /* This relocation describes which C++ vtable entries are actually | |
8406 | used. Record for later use during GC. */ | |
8407 | case R_MIPS_GNU_VTENTRY: | |
d17e0c6e JB |
8408 | BFD_ASSERT (h != NULL); |
8409 | if (h != NULL | |
8410 | && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset)) | |
b34976b6 | 8411 | return FALSE; |
b49e97c9 TS |
8412 | break; |
8413 | ||
8414 | default: | |
8415 | break; | |
8416 | } | |
8417 | ||
1bbce132 MR |
8418 | /* Record the need for a PLT entry. At this point we don't know |
8419 | yet if we are going to create a PLT in the first place, but | |
8420 | we only record whether the relocation requires a standard MIPS | |
8421 | or a compressed code entry anyway. If we don't make a PLT after | |
8422 | all, then we'll just ignore these arrangements. Likewise if | |
8423 | a PLT entry is not created because the symbol is satisfied | |
8424 | locally. */ | |
8425 | if (h != NULL | |
8426 | && jal_reloc_p (r_type) | |
8427 | && !SYMBOL_CALLS_LOCAL (info, h)) | |
8428 | { | |
8429 | if (h->plt.plist == NULL) | |
8430 | h->plt.plist = mips_elf_make_plt_record (abfd); | |
8431 | if (h->plt.plist == NULL) | |
8432 | return FALSE; | |
8433 | ||
8434 | if (r_type == R_MIPS_26) | |
8435 | h->plt.plist->need_mips = TRUE; | |
8436 | else | |
8437 | h->plt.plist->need_comp = TRUE; | |
8438 | } | |
8439 | ||
738e5348 RS |
8440 | /* See if this reloc would need to refer to a MIPS16 hard-float stub, |
8441 | if there is one. We only need to handle global symbols here; | |
8442 | we decide whether to keep or delete stubs for local symbols | |
8443 | when processing the stub's relocations. */ | |
b49e97c9 | 8444 | if (h != NULL |
738e5348 RS |
8445 | && !mips16_call_reloc_p (r_type) |
8446 | && !section_allows_mips16_refs_p (sec)) | |
b49e97c9 TS |
8447 | { |
8448 | struct mips_elf_link_hash_entry *mh; | |
8449 | ||
8450 | mh = (struct mips_elf_link_hash_entry *) h; | |
b34976b6 | 8451 | mh->need_fn_stub = TRUE; |
b49e97c9 | 8452 | } |
861fb55a DJ |
8453 | |
8454 | /* Refuse some position-dependent relocations when creating a | |
8455 | shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're | |
8456 | not PIC, but we can create dynamic relocations and the result | |
8457 | will be fine. Also do not refuse R_MIPS_LO16, which can be | |
8458 | combined with R_MIPS_GOT16. */ | |
8459 | if (info->shared) | |
8460 | { | |
8461 | switch (r_type) | |
8462 | { | |
8463 | case R_MIPS16_HI16: | |
8464 | case R_MIPS_HI16: | |
8465 | case R_MIPS_HIGHER: | |
8466 | case R_MIPS_HIGHEST: | |
df58fc94 RS |
8467 | case R_MICROMIPS_HI16: |
8468 | case R_MICROMIPS_HIGHER: | |
8469 | case R_MICROMIPS_HIGHEST: | |
861fb55a DJ |
8470 | /* Don't refuse a high part relocation if it's against |
8471 | no symbol (e.g. part of a compound relocation). */ | |
cf35638d | 8472 | if (r_symndx == STN_UNDEF) |
861fb55a DJ |
8473 | break; |
8474 | ||
8475 | /* R_MIPS_HI16 against _gp_disp is used for $gp setup, | |
8476 | and has a special meaning. */ | |
8477 | if (!NEWABI_P (abfd) && h != NULL | |
8478 | && strcmp (h->root.root.string, "_gp_disp") == 0) | |
8479 | break; | |
8480 | ||
0fc1eb3c RS |
8481 | /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */ |
8482 | if (is_gott_symbol (info, h)) | |
8483 | break; | |
8484 | ||
861fb55a DJ |
8485 | /* FALLTHROUGH */ |
8486 | ||
8487 | case R_MIPS16_26: | |
8488 | case R_MIPS_26: | |
df58fc94 | 8489 | case R_MICROMIPS_26_S1: |
861fb55a DJ |
8490 | howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE); |
8491 | (*_bfd_error_handler) | |
8492 | (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"), | |
8493 | abfd, howto->name, | |
8494 | (h) ? h->root.root.string : "a local symbol"); | |
8495 | bfd_set_error (bfd_error_bad_value); | |
8496 | return FALSE; | |
8497 | default: | |
8498 | break; | |
8499 | } | |
8500 | } | |
b49e97c9 TS |
8501 | } |
8502 | ||
b34976b6 | 8503 | return TRUE; |
b49e97c9 TS |
8504 | } |
8505 | \f | |
d0647110 | 8506 | bfd_boolean |
9719ad41 RS |
8507 | _bfd_mips_relax_section (bfd *abfd, asection *sec, |
8508 | struct bfd_link_info *link_info, | |
8509 | bfd_boolean *again) | |
d0647110 AO |
8510 | { |
8511 | Elf_Internal_Rela *internal_relocs; | |
8512 | Elf_Internal_Rela *irel, *irelend; | |
8513 | Elf_Internal_Shdr *symtab_hdr; | |
8514 | bfd_byte *contents = NULL; | |
d0647110 AO |
8515 | size_t extsymoff; |
8516 | bfd_boolean changed_contents = FALSE; | |
8517 | bfd_vma sec_start = sec->output_section->vma + sec->output_offset; | |
8518 | Elf_Internal_Sym *isymbuf = NULL; | |
8519 | ||
8520 | /* We are not currently changing any sizes, so only one pass. */ | |
8521 | *again = FALSE; | |
8522 | ||
1049f94e | 8523 | if (link_info->relocatable) |
d0647110 AO |
8524 | return TRUE; |
8525 | ||
9719ad41 | 8526 | internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, |
45d6a902 | 8527 | link_info->keep_memory); |
d0647110 AO |
8528 | if (internal_relocs == NULL) |
8529 | return TRUE; | |
8530 | ||
8531 | irelend = internal_relocs + sec->reloc_count | |
8532 | * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel; | |
8533 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
8534 | extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; | |
8535 | ||
8536 | for (irel = internal_relocs; irel < irelend; irel++) | |
8537 | { | |
8538 | bfd_vma symval; | |
8539 | bfd_signed_vma sym_offset; | |
8540 | unsigned int r_type; | |
8541 | unsigned long r_symndx; | |
8542 | asection *sym_sec; | |
8543 | unsigned long instruction; | |
8544 | ||
8545 | /* Turn jalr into bgezal, and jr into beq, if they're marked | |
8546 | with a JALR relocation, that indicate where they jump to. | |
8547 | This saves some pipeline bubbles. */ | |
8548 | r_type = ELF_R_TYPE (abfd, irel->r_info); | |
8549 | if (r_type != R_MIPS_JALR) | |
8550 | continue; | |
8551 | ||
8552 | r_symndx = ELF_R_SYM (abfd, irel->r_info); | |
8553 | /* Compute the address of the jump target. */ | |
8554 | if (r_symndx >= extsymoff) | |
8555 | { | |
8556 | struct mips_elf_link_hash_entry *h | |
8557 | = ((struct mips_elf_link_hash_entry *) | |
8558 | elf_sym_hashes (abfd) [r_symndx - extsymoff]); | |
8559 | ||
8560 | while (h->root.root.type == bfd_link_hash_indirect | |
8561 | || h->root.root.type == bfd_link_hash_warning) | |
8562 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
143d77c5 | 8563 | |
d0647110 AO |
8564 | /* If a symbol is undefined, or if it may be overridden, |
8565 | skip it. */ | |
8566 | if (! ((h->root.root.type == bfd_link_hash_defined | |
8567 | || h->root.root.type == bfd_link_hash_defweak) | |
8568 | && h->root.root.u.def.section) | |
8569 | || (link_info->shared && ! link_info->symbolic | |
f5385ebf | 8570 | && !h->root.forced_local)) |
d0647110 AO |
8571 | continue; |
8572 | ||
8573 | sym_sec = h->root.root.u.def.section; | |
8574 | if (sym_sec->output_section) | |
8575 | symval = (h->root.root.u.def.value | |
8576 | + sym_sec->output_section->vma | |
8577 | + sym_sec->output_offset); | |
8578 | else | |
8579 | symval = h->root.root.u.def.value; | |
8580 | } | |
8581 | else | |
8582 | { | |
8583 | Elf_Internal_Sym *isym; | |
8584 | ||
8585 | /* Read this BFD's symbols if we haven't done so already. */ | |
8586 | if (isymbuf == NULL && symtab_hdr->sh_info != 0) | |
8587 | { | |
8588 | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; | |
8589 | if (isymbuf == NULL) | |
8590 | isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, | |
8591 | symtab_hdr->sh_info, 0, | |
8592 | NULL, NULL, NULL); | |
8593 | if (isymbuf == NULL) | |
8594 | goto relax_return; | |
8595 | } | |
8596 | ||
8597 | isym = isymbuf + r_symndx; | |
8598 | if (isym->st_shndx == SHN_UNDEF) | |
8599 | continue; | |
8600 | else if (isym->st_shndx == SHN_ABS) | |
8601 | sym_sec = bfd_abs_section_ptr; | |
8602 | else if (isym->st_shndx == SHN_COMMON) | |
8603 | sym_sec = bfd_com_section_ptr; | |
8604 | else | |
8605 | sym_sec | |
8606 | = bfd_section_from_elf_index (abfd, isym->st_shndx); | |
8607 | symval = isym->st_value | |
8608 | + sym_sec->output_section->vma | |
8609 | + sym_sec->output_offset; | |
8610 | } | |
8611 | ||
8612 | /* Compute branch offset, from delay slot of the jump to the | |
8613 | branch target. */ | |
8614 | sym_offset = (symval + irel->r_addend) | |
8615 | - (sec_start + irel->r_offset + 4); | |
8616 | ||
8617 | /* Branch offset must be properly aligned. */ | |
8618 | if ((sym_offset & 3) != 0) | |
8619 | continue; | |
8620 | ||
8621 | sym_offset >>= 2; | |
8622 | ||
8623 | /* Check that it's in range. */ | |
8624 | if (sym_offset < -0x8000 || sym_offset >= 0x8000) | |
8625 | continue; | |
143d77c5 | 8626 | |
d0647110 | 8627 | /* Get the section contents if we haven't done so already. */ |
c224138d RS |
8628 | if (!mips_elf_get_section_contents (abfd, sec, &contents)) |
8629 | goto relax_return; | |
d0647110 AO |
8630 | |
8631 | instruction = bfd_get_32 (abfd, contents + irel->r_offset); | |
8632 | ||
8633 | /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */ | |
8634 | if ((instruction & 0xfc1fffff) == 0x0000f809) | |
8635 | instruction = 0x04110000; | |
8636 | /* If it was jr <reg>, turn it into b <target>. */ | |
8637 | else if ((instruction & 0xfc1fffff) == 0x00000008) | |
8638 | instruction = 0x10000000; | |
8639 | else | |
8640 | continue; | |
8641 | ||
8642 | instruction |= (sym_offset & 0xffff); | |
8643 | bfd_put_32 (abfd, instruction, contents + irel->r_offset); | |
8644 | changed_contents = TRUE; | |
8645 | } | |
8646 | ||
8647 | if (contents != NULL | |
8648 | && elf_section_data (sec)->this_hdr.contents != contents) | |
8649 | { | |
8650 | if (!changed_contents && !link_info->keep_memory) | |
8651 | free (contents); | |
8652 | else | |
8653 | { | |
8654 | /* Cache the section contents for elf_link_input_bfd. */ | |
8655 | elf_section_data (sec)->this_hdr.contents = contents; | |
8656 | } | |
8657 | } | |
8658 | return TRUE; | |
8659 | ||
143d77c5 | 8660 | relax_return: |
eea6121a AM |
8661 | if (contents != NULL |
8662 | && elf_section_data (sec)->this_hdr.contents != contents) | |
8663 | free (contents); | |
d0647110 AO |
8664 | return FALSE; |
8665 | } | |
8666 | \f | |
9a59ad6b DJ |
8667 | /* Allocate space for global sym dynamic relocs. */ |
8668 | ||
8669 | static bfd_boolean | |
8670 | allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf) | |
8671 | { | |
8672 | struct bfd_link_info *info = inf; | |
8673 | bfd *dynobj; | |
8674 | struct mips_elf_link_hash_entry *hmips; | |
8675 | struct mips_elf_link_hash_table *htab; | |
8676 | ||
8677 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 NC |
8678 | BFD_ASSERT (htab != NULL); |
8679 | ||
9a59ad6b DJ |
8680 | dynobj = elf_hash_table (info)->dynobj; |
8681 | hmips = (struct mips_elf_link_hash_entry *) h; | |
8682 | ||
8683 | /* VxWorks executables are handled elsewhere; we only need to | |
8684 | allocate relocations in shared objects. */ | |
8685 | if (htab->is_vxworks && !info->shared) | |
8686 | return TRUE; | |
8687 | ||
7686d77d AM |
8688 | /* Ignore indirect symbols. All relocations against such symbols |
8689 | will be redirected to the target symbol. */ | |
8690 | if (h->root.type == bfd_link_hash_indirect) | |
63897e2c RS |
8691 | return TRUE; |
8692 | ||
9a59ad6b DJ |
8693 | /* If this symbol is defined in a dynamic object, or we are creating |
8694 | a shared library, we will need to copy any R_MIPS_32 or | |
8695 | R_MIPS_REL32 relocs against it into the output file. */ | |
8696 | if (! info->relocatable | |
8697 | && hmips->possibly_dynamic_relocs != 0 | |
8698 | && (h->root.type == bfd_link_hash_defweak | |
625ef6dc | 8699 | || (!h->def_regular && !ELF_COMMON_DEF_P (h)) |
9a59ad6b DJ |
8700 | || info->shared)) |
8701 | { | |
8702 | bfd_boolean do_copy = TRUE; | |
8703 | ||
8704 | if (h->root.type == bfd_link_hash_undefweak) | |
8705 | { | |
8706 | /* Do not copy relocations for undefined weak symbols with | |
8707 | non-default visibility. */ | |
8708 | if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) | |
8709 | do_copy = FALSE; | |
8710 | ||
8711 | /* Make sure undefined weak symbols are output as a dynamic | |
8712 | symbol in PIEs. */ | |
8713 | else if (h->dynindx == -1 && !h->forced_local) | |
8714 | { | |
8715 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) | |
8716 | return FALSE; | |
8717 | } | |
8718 | } | |
8719 | ||
8720 | if (do_copy) | |
8721 | { | |
aff469fa | 8722 | /* Even though we don't directly need a GOT entry for this symbol, |
f7ff1106 RS |
8723 | the SVR4 psABI requires it to have a dynamic symbol table |
8724 | index greater that DT_MIPS_GOTSYM if there are dynamic | |
8725 | relocations against it. | |
8726 | ||
8727 | VxWorks does not enforce the same mapping between the GOT | |
8728 | and the symbol table, so the same requirement does not | |
8729 | apply there. */ | |
6ccf4795 RS |
8730 | if (!htab->is_vxworks) |
8731 | { | |
8732 | if (hmips->global_got_area > GGA_RELOC_ONLY) | |
8733 | hmips->global_got_area = GGA_RELOC_ONLY; | |
8734 | hmips->got_only_for_calls = FALSE; | |
8735 | } | |
aff469fa | 8736 | |
9a59ad6b DJ |
8737 | mips_elf_allocate_dynamic_relocations |
8738 | (dynobj, info, hmips->possibly_dynamic_relocs); | |
8739 | if (hmips->readonly_reloc) | |
8740 | /* We tell the dynamic linker that there are relocations | |
8741 | against the text segment. */ | |
8742 | info->flags |= DF_TEXTREL; | |
8743 | } | |
8744 | } | |
8745 | ||
8746 | return TRUE; | |
8747 | } | |
8748 | ||
b49e97c9 TS |
8749 | /* Adjust a symbol defined by a dynamic object and referenced by a |
8750 | regular object. The current definition is in some section of the | |
8751 | dynamic object, but we're not including those sections. We have to | |
8752 | change the definition to something the rest of the link can | |
8753 | understand. */ | |
8754 | ||
b34976b6 | 8755 | bfd_boolean |
9719ad41 RS |
8756 | _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info, |
8757 | struct elf_link_hash_entry *h) | |
b49e97c9 TS |
8758 | { |
8759 | bfd *dynobj; | |
8760 | struct mips_elf_link_hash_entry *hmips; | |
5108fc1b | 8761 | struct mips_elf_link_hash_table *htab; |
b49e97c9 | 8762 | |
5108fc1b | 8763 | htab = mips_elf_hash_table (info); |
4dfe6ac6 NC |
8764 | BFD_ASSERT (htab != NULL); |
8765 | ||
b49e97c9 | 8766 | dynobj = elf_hash_table (info)->dynobj; |
861fb55a | 8767 | hmips = (struct mips_elf_link_hash_entry *) h; |
b49e97c9 TS |
8768 | |
8769 | /* Make sure we know what is going on here. */ | |
8770 | BFD_ASSERT (dynobj != NULL | |
f5385ebf | 8771 | && (h->needs_plt |
f6e332e6 | 8772 | || h->u.weakdef != NULL |
f5385ebf AM |
8773 | || (h->def_dynamic |
8774 | && h->ref_regular | |
8775 | && !h->def_regular))); | |
b49e97c9 | 8776 | |
b49e97c9 | 8777 | hmips = (struct mips_elf_link_hash_entry *) h; |
b49e97c9 | 8778 | |
861fb55a DJ |
8779 | /* If there are call relocations against an externally-defined symbol, |
8780 | see whether we can create a MIPS lazy-binding stub for it. We can | |
8781 | only do this if all references to the function are through call | |
8782 | relocations, and in that case, the traditional lazy-binding stubs | |
8783 | are much more efficient than PLT entries. | |
8784 | ||
8785 | Traditional stubs are only available on SVR4 psABI-based systems; | |
8786 | VxWorks always uses PLTs instead. */ | |
8787 | if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub) | |
b49e97c9 TS |
8788 | { |
8789 | if (! elf_hash_table (info)->dynamic_sections_created) | |
b34976b6 | 8790 | return TRUE; |
b49e97c9 TS |
8791 | |
8792 | /* If this symbol is not defined in a regular file, then set | |
8793 | the symbol to the stub location. This is required to make | |
8794 | function pointers compare as equal between the normal | |
8795 | executable and the shared library. */ | |
f5385ebf | 8796 | if (!h->def_regular) |
b49e97c9 | 8797 | { |
33bb52fb RS |
8798 | hmips->needs_lazy_stub = TRUE; |
8799 | htab->lazy_stub_count++; | |
b34976b6 | 8800 | return TRUE; |
b49e97c9 TS |
8801 | } |
8802 | } | |
861fb55a DJ |
8803 | /* As above, VxWorks requires PLT entries for externally-defined |
8804 | functions that are only accessed through call relocations. | |
b49e97c9 | 8805 | |
861fb55a DJ |
8806 | Both VxWorks and non-VxWorks targets also need PLT entries if there |
8807 | are static-only relocations against an externally-defined function. | |
8808 | This can technically occur for shared libraries if there are | |
8809 | branches to the symbol, although it is unlikely that this will be | |
8810 | used in practice due to the short ranges involved. It can occur | |
8811 | for any relative or absolute relocation in executables; in that | |
8812 | case, the PLT entry becomes the function's canonical address. */ | |
8813 | else if (((h->needs_plt && !hmips->no_fn_stub) | |
8814 | || (h->type == STT_FUNC && hmips->has_static_relocs)) | |
8815 | && htab->use_plts_and_copy_relocs | |
8816 | && !SYMBOL_CALLS_LOCAL (info, h) | |
8817 | && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT | |
8818 | && h->root.type == bfd_link_hash_undefweak)) | |
b49e97c9 | 8819 | { |
1bbce132 MR |
8820 | bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd); |
8821 | bfd_boolean newabi_p = NEWABI_P (info->output_bfd); | |
8822 | ||
8823 | /* If this is the first symbol to need a PLT entry, then make some | |
8824 | basic setup. Also work out PLT entry sizes. We'll need them | |
8825 | for PLT offset calculations. */ | |
8826 | if (htab->plt_mips_offset + htab->plt_comp_offset == 0) | |
861fb55a DJ |
8827 | { |
8828 | BFD_ASSERT (htab->sgotplt->size == 0); | |
1bbce132 | 8829 | BFD_ASSERT (htab->plt_got_index == 0); |
0a44bf69 | 8830 | |
861fb55a DJ |
8831 | /* If we're using the PLT additions to the psABI, each PLT |
8832 | entry is 16 bytes and the PLT0 entry is 32 bytes. | |
8833 | Encourage better cache usage by aligning. We do this | |
8834 | lazily to avoid pessimizing traditional objects. */ | |
8835 | if (!htab->is_vxworks | |
8836 | && !bfd_set_section_alignment (dynobj, htab->splt, 5)) | |
8837 | return FALSE; | |
0a44bf69 | 8838 | |
861fb55a DJ |
8839 | /* Make sure that .got.plt is word-aligned. We do this lazily |
8840 | for the same reason as above. */ | |
8841 | if (!bfd_set_section_alignment (dynobj, htab->sgotplt, | |
8842 | MIPS_ELF_LOG_FILE_ALIGN (dynobj))) | |
8843 | return FALSE; | |
0a44bf69 | 8844 | |
861fb55a DJ |
8845 | /* On non-VxWorks targets, the first two entries in .got.plt |
8846 | are reserved. */ | |
8847 | if (!htab->is_vxworks) | |
1bbce132 MR |
8848 | htab->plt_got_index |
8849 | += (get_elf_backend_data (dynobj)->got_header_size | |
8850 | / MIPS_ELF_GOT_SIZE (dynobj)); | |
0a44bf69 | 8851 | |
861fb55a DJ |
8852 | /* On VxWorks, also allocate room for the header's |
8853 | .rela.plt.unloaded entries. */ | |
8854 | if (htab->is_vxworks && !info->shared) | |
0a44bf69 | 8855 | htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela); |
1bbce132 MR |
8856 | |
8857 | /* Now work out the sizes of individual PLT entries. */ | |
8858 | if (htab->is_vxworks && info->shared) | |
8859 | htab->plt_mips_entry_size | |
8860 | = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry); | |
8861 | else if (htab->is_vxworks) | |
8862 | htab->plt_mips_entry_size | |
8863 | = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry); | |
8864 | else if (newabi_p) | |
8865 | htab->plt_mips_entry_size | |
8866 | = 4 * ARRAY_SIZE (mips_exec_plt_entry); | |
833794fc | 8867 | else if (!micromips_p) |
1bbce132 MR |
8868 | { |
8869 | htab->plt_mips_entry_size | |
8870 | = 4 * ARRAY_SIZE (mips_exec_plt_entry); | |
8871 | htab->plt_comp_entry_size | |
833794fc MR |
8872 | = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry); |
8873 | } | |
8874 | else if (htab->insn32) | |
8875 | { | |
8876 | htab->plt_mips_entry_size | |
8877 | = 4 * ARRAY_SIZE (mips_exec_plt_entry); | |
8878 | htab->plt_comp_entry_size | |
8879 | = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry); | |
1bbce132 MR |
8880 | } |
8881 | else | |
8882 | { | |
8883 | htab->plt_mips_entry_size | |
8884 | = 4 * ARRAY_SIZE (mips_exec_plt_entry); | |
8885 | htab->plt_comp_entry_size | |
833794fc | 8886 | = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry); |
1bbce132 | 8887 | } |
0a44bf69 RS |
8888 | } |
8889 | ||
1bbce132 MR |
8890 | if (h->plt.plist == NULL) |
8891 | h->plt.plist = mips_elf_make_plt_record (dynobj); | |
8892 | if (h->plt.plist == NULL) | |
8893 | return FALSE; | |
8894 | ||
8895 | /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks, | |
8896 | n32 or n64, so always use a standard entry there. | |
8897 | ||
8898 | If the symbol has a MIPS16 call stub and gets a PLT entry, then | |
8899 | all MIPS16 calls will go via that stub, and there is no benefit | |
8900 | to having a MIPS16 entry. And in the case of call_stub a | |
8901 | standard entry actually has to be used as the stub ends with a J | |
8902 | instruction. */ | |
8903 | if (newabi_p | |
8904 | || htab->is_vxworks | |
8905 | || hmips->call_stub | |
8906 | || hmips->call_fp_stub) | |
8907 | { | |
8908 | h->plt.plist->need_mips = TRUE; | |
8909 | h->plt.plist->need_comp = FALSE; | |
8910 | } | |
8911 | ||
8912 | /* Otherwise, if there are no direct calls to the function, we | |
8913 | have a free choice of whether to use standard or compressed | |
8914 | entries. Prefer microMIPS entries if the object is known to | |
8915 | contain microMIPS code, so that it becomes possible to create | |
8916 | pure microMIPS binaries. Prefer standard entries otherwise, | |
8917 | because MIPS16 ones are no smaller and are usually slower. */ | |
8918 | if (!h->plt.plist->need_mips && !h->plt.plist->need_comp) | |
8919 | { | |
8920 | if (micromips_p) | |
8921 | h->plt.plist->need_comp = TRUE; | |
8922 | else | |
8923 | h->plt.plist->need_mips = TRUE; | |
8924 | } | |
8925 | ||
8926 | if (h->plt.plist->need_mips) | |
8927 | { | |
8928 | h->plt.plist->mips_offset = htab->plt_mips_offset; | |
8929 | htab->plt_mips_offset += htab->plt_mips_entry_size; | |
8930 | } | |
8931 | if (h->plt.plist->need_comp) | |
8932 | { | |
8933 | h->plt.plist->comp_offset = htab->plt_comp_offset; | |
8934 | htab->plt_comp_offset += htab->plt_comp_entry_size; | |
8935 | } | |
8936 | ||
8937 | /* Reserve the corresponding .got.plt entry now too. */ | |
8938 | h->plt.plist->gotplt_index = htab->plt_got_index++; | |
0a44bf69 RS |
8939 | |
8940 | /* If the output file has no definition of the symbol, set the | |
861fb55a | 8941 | symbol's value to the address of the stub. */ |
131eb6b7 | 8942 | if (!info->shared && !h->def_regular) |
1bbce132 | 8943 | hmips->use_plt_entry = TRUE; |
0a44bf69 | 8944 | |
1bbce132 | 8945 | /* Make room for the R_MIPS_JUMP_SLOT relocation. */ |
861fb55a DJ |
8946 | htab->srelplt->size += (htab->is_vxworks |
8947 | ? MIPS_ELF_RELA_SIZE (dynobj) | |
8948 | : MIPS_ELF_REL_SIZE (dynobj)); | |
0a44bf69 RS |
8949 | |
8950 | /* Make room for the .rela.plt.unloaded relocations. */ | |
861fb55a | 8951 | if (htab->is_vxworks && !info->shared) |
0a44bf69 RS |
8952 | htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela); |
8953 | ||
861fb55a DJ |
8954 | /* All relocations against this symbol that could have been made |
8955 | dynamic will now refer to the PLT entry instead. */ | |
8956 | hmips->possibly_dynamic_relocs = 0; | |
0a44bf69 | 8957 | |
0a44bf69 RS |
8958 | return TRUE; |
8959 | } | |
8960 | ||
8961 | /* If this is a weak symbol, and there is a real definition, the | |
8962 | processor independent code will have arranged for us to see the | |
8963 | real definition first, and we can just use the same value. */ | |
8964 | if (h->u.weakdef != NULL) | |
8965 | { | |
8966 | BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined | |
8967 | || h->u.weakdef->root.type == bfd_link_hash_defweak); | |
8968 | h->root.u.def.section = h->u.weakdef->root.u.def.section; | |
8969 | h->root.u.def.value = h->u.weakdef->root.u.def.value; | |
8970 | return TRUE; | |
8971 | } | |
8972 | ||
861fb55a DJ |
8973 | /* Otherwise, there is nothing further to do for symbols defined |
8974 | in regular objects. */ | |
8975 | if (h->def_regular) | |
0a44bf69 RS |
8976 | return TRUE; |
8977 | ||
861fb55a DJ |
8978 | /* There's also nothing more to do if we'll convert all relocations |
8979 | against this symbol into dynamic relocations. */ | |
8980 | if (!hmips->has_static_relocs) | |
8981 | return TRUE; | |
8982 | ||
8983 | /* We're now relying on copy relocations. Complain if we have | |
8984 | some that we can't convert. */ | |
8985 | if (!htab->use_plts_and_copy_relocs || info->shared) | |
8986 | { | |
8987 | (*_bfd_error_handler) (_("non-dynamic relocations refer to " | |
8988 | "dynamic symbol %s"), | |
8989 | h->root.root.string); | |
8990 | bfd_set_error (bfd_error_bad_value); | |
8991 | return FALSE; | |
8992 | } | |
8993 | ||
0a44bf69 RS |
8994 | /* We must allocate the symbol in our .dynbss section, which will |
8995 | become part of the .bss section of the executable. There will be | |
8996 | an entry for this symbol in the .dynsym section. The dynamic | |
8997 | object will contain position independent code, so all references | |
8998 | from the dynamic object to this symbol will go through the global | |
8999 | offset table. The dynamic linker will use the .dynsym entry to | |
9000 | determine the address it must put in the global offset table, so | |
9001 | both the dynamic object and the regular object will refer to the | |
9002 | same memory location for the variable. */ | |
9003 | ||
9004 | if ((h->root.u.def.section->flags & SEC_ALLOC) != 0) | |
9005 | { | |
861fb55a DJ |
9006 | if (htab->is_vxworks) |
9007 | htab->srelbss->size += sizeof (Elf32_External_Rela); | |
9008 | else | |
9009 | mips_elf_allocate_dynamic_relocations (dynobj, info, 1); | |
0a44bf69 RS |
9010 | h->needs_copy = 1; |
9011 | } | |
9012 | ||
861fb55a DJ |
9013 | /* All relocations against this symbol that could have been made |
9014 | dynamic will now refer to the local copy instead. */ | |
9015 | hmips->possibly_dynamic_relocs = 0; | |
9016 | ||
027297b7 | 9017 | return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss); |
0a44bf69 | 9018 | } |
b49e97c9 TS |
9019 | \f |
9020 | /* This function is called after all the input files have been read, | |
9021 | and the input sections have been assigned to output sections. We | |
9022 | check for any mips16 stub sections that we can discard. */ | |
9023 | ||
b34976b6 | 9024 | bfd_boolean |
9719ad41 RS |
9025 | _bfd_mips_elf_always_size_sections (bfd *output_bfd, |
9026 | struct bfd_link_info *info) | |
b49e97c9 TS |
9027 | { |
9028 | asection *ri; | |
0a44bf69 | 9029 | struct mips_elf_link_hash_table *htab; |
861fb55a | 9030 | struct mips_htab_traverse_info hti; |
0a44bf69 RS |
9031 | |
9032 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 | 9033 | BFD_ASSERT (htab != NULL); |
f4416af6 | 9034 | |
b49e97c9 TS |
9035 | /* The .reginfo section has a fixed size. */ |
9036 | ri = bfd_get_section_by_name (output_bfd, ".reginfo"); | |
9037 | if (ri != NULL) | |
9719ad41 | 9038 | bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo)); |
b49e97c9 | 9039 | |
861fb55a DJ |
9040 | hti.info = info; |
9041 | hti.output_bfd = output_bfd; | |
9042 | hti.error = FALSE; | |
9043 | mips_elf_link_hash_traverse (mips_elf_hash_table (info), | |
9044 | mips_elf_check_symbols, &hti); | |
9045 | if (hti.error) | |
9046 | return FALSE; | |
f4416af6 | 9047 | |
33bb52fb RS |
9048 | return TRUE; |
9049 | } | |
9050 | ||
9051 | /* If the link uses a GOT, lay it out and work out its size. */ | |
9052 | ||
9053 | static bfd_boolean | |
9054 | mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info) | |
9055 | { | |
9056 | bfd *dynobj; | |
9057 | asection *s; | |
9058 | struct mips_got_info *g; | |
33bb52fb RS |
9059 | bfd_size_type loadable_size = 0; |
9060 | bfd_size_type page_gotno; | |
d7206569 | 9061 | bfd *ibfd; |
ab361d49 | 9062 | struct mips_elf_traverse_got_arg tga; |
33bb52fb RS |
9063 | struct mips_elf_link_hash_table *htab; |
9064 | ||
9065 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 NC |
9066 | BFD_ASSERT (htab != NULL); |
9067 | ||
a8028dd0 | 9068 | s = htab->sgot; |
f4416af6 | 9069 | if (s == NULL) |
b34976b6 | 9070 | return TRUE; |
b49e97c9 | 9071 | |
33bb52fb | 9072 | dynobj = elf_hash_table (info)->dynobj; |
a8028dd0 RS |
9073 | g = htab->got_info; |
9074 | ||
861fb55a DJ |
9075 | /* Allocate room for the reserved entries. VxWorks always reserves |
9076 | 3 entries; other objects only reserve 2 entries. */ | |
cb22ccf4 | 9077 | BFD_ASSERT (g->assigned_low_gotno == 0); |
861fb55a DJ |
9078 | if (htab->is_vxworks) |
9079 | htab->reserved_gotno = 3; | |
9080 | else | |
9081 | htab->reserved_gotno = 2; | |
9082 | g->local_gotno += htab->reserved_gotno; | |
cb22ccf4 | 9083 | g->assigned_low_gotno = htab->reserved_gotno; |
861fb55a | 9084 | |
6c42ddb9 RS |
9085 | /* Decide which symbols need to go in the global part of the GOT and |
9086 | count the number of reloc-only GOT symbols. */ | |
020d7251 | 9087 | mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info); |
f4416af6 | 9088 | |
13db6b44 RS |
9089 | if (!mips_elf_resolve_final_got_entries (info, g)) |
9090 | return FALSE; | |
9091 | ||
33bb52fb RS |
9092 | /* Calculate the total loadable size of the output. That |
9093 | will give us the maximum number of GOT_PAGE entries | |
9094 | required. */ | |
d7206569 | 9095 | for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next) |
33bb52fb RS |
9096 | { |
9097 | asection *subsection; | |
5108fc1b | 9098 | |
d7206569 | 9099 | for (subsection = ibfd->sections; |
33bb52fb RS |
9100 | subsection; |
9101 | subsection = subsection->next) | |
9102 | { | |
9103 | if ((subsection->flags & SEC_ALLOC) == 0) | |
9104 | continue; | |
9105 | loadable_size += ((subsection->size + 0xf) | |
9106 | &~ (bfd_size_type) 0xf); | |
9107 | } | |
9108 | } | |
f4416af6 | 9109 | |
0a44bf69 | 9110 | if (htab->is_vxworks) |
738e5348 | 9111 | /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16 |
0a44bf69 RS |
9112 | relocations against local symbols evaluate to "G", and the EABI does |
9113 | not include R_MIPS_GOT_PAGE. */ | |
c224138d | 9114 | page_gotno = 0; |
0a44bf69 RS |
9115 | else |
9116 | /* Assume there are two loadable segments consisting of contiguous | |
9117 | sections. Is 5 enough? */ | |
c224138d RS |
9118 | page_gotno = (loadable_size >> 16) + 5; |
9119 | ||
13db6b44 | 9120 | /* Choose the smaller of the two page estimates; both are intended to be |
c224138d RS |
9121 | conservative. */ |
9122 | if (page_gotno > g->page_gotno) | |
9123 | page_gotno = g->page_gotno; | |
f4416af6 | 9124 | |
c224138d | 9125 | g->local_gotno += page_gotno; |
cb22ccf4 | 9126 | g->assigned_high_gotno = g->local_gotno - 1; |
ab361d49 | 9127 | |
ab361d49 RS |
9128 | s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd); |
9129 | s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd); | |
0f20cc35 DJ |
9130 | s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd); |
9131 | ||
0a44bf69 RS |
9132 | /* VxWorks does not support multiple GOTs. It initializes $gp to |
9133 | __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the | |
9134 | dynamic loader. */ | |
57093f5e | 9135 | if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info)) |
0f20cc35 | 9136 | { |
a8028dd0 | 9137 | if (!mips_elf_multi_got (output_bfd, info, s, page_gotno)) |
0f20cc35 DJ |
9138 | return FALSE; |
9139 | } | |
9140 | else | |
9141 | { | |
d7206569 RS |
9142 | /* Record that all bfds use G. This also has the effect of freeing |
9143 | the per-bfd GOTs, which we no longer need. */ | |
9144 | for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next) | |
9145 | if (mips_elf_bfd_got (ibfd, FALSE)) | |
9146 | mips_elf_replace_bfd_got (ibfd, g); | |
9147 | mips_elf_replace_bfd_got (output_bfd, g); | |
9148 | ||
33bb52fb | 9149 | /* Set up TLS entries. */ |
0f20cc35 | 9150 | g->tls_assigned_gotno = g->global_gotno + g->local_gotno; |
72e7511a RS |
9151 | tga.info = info; |
9152 | tga.g = g; | |
9153 | tga.value = MIPS_ELF_GOT_SIZE (output_bfd); | |
9154 | htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga); | |
9155 | if (!tga.g) | |
9156 | return FALSE; | |
1fd20d70 RS |
9157 | BFD_ASSERT (g->tls_assigned_gotno |
9158 | == g->global_gotno + g->local_gotno + g->tls_gotno); | |
33bb52fb | 9159 | |
57093f5e RS |
9160 | /* Each VxWorks GOT entry needs an explicit relocation. */ |
9161 | if (htab->is_vxworks && info->shared) | |
9162 | g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno; | |
9163 | ||
33bb52fb | 9164 | /* Allocate room for the TLS relocations. */ |
ab361d49 RS |
9165 | if (g->relocs) |
9166 | mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs); | |
0f20cc35 | 9167 | } |
b49e97c9 | 9168 | |
b34976b6 | 9169 | return TRUE; |
b49e97c9 TS |
9170 | } |
9171 | ||
33bb52fb RS |
9172 | /* Estimate the size of the .MIPS.stubs section. */ |
9173 | ||
9174 | static void | |
9175 | mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info) | |
9176 | { | |
9177 | struct mips_elf_link_hash_table *htab; | |
9178 | bfd_size_type dynsymcount; | |
9179 | ||
9180 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 NC |
9181 | BFD_ASSERT (htab != NULL); |
9182 | ||
33bb52fb RS |
9183 | if (htab->lazy_stub_count == 0) |
9184 | return; | |
9185 | ||
9186 | /* IRIX rld assumes that a function stub isn't at the end of the .text | |
9187 | section, so add a dummy entry to the end. */ | |
9188 | htab->lazy_stub_count++; | |
9189 | ||
9190 | /* Get a worst-case estimate of the number of dynamic symbols needed. | |
9191 | At this point, dynsymcount does not account for section symbols | |
9192 | and count_section_dynsyms may overestimate the number that will | |
9193 | be needed. */ | |
9194 | dynsymcount = (elf_hash_table (info)->dynsymcount | |
9195 | + count_section_dynsyms (output_bfd, info)); | |
9196 | ||
1bbce132 MR |
9197 | /* Determine the size of one stub entry. There's no disadvantage |
9198 | from using microMIPS code here, so for the sake of pure-microMIPS | |
9199 | binaries we prefer it whenever there's any microMIPS code in | |
9200 | output produced at all. This has a benefit of stubs being | |
833794fc MR |
9201 | shorter by 4 bytes each too, unless in the insn32 mode. */ |
9202 | if (!MICROMIPS_P (output_bfd)) | |
1bbce132 MR |
9203 | htab->function_stub_size = (dynsymcount > 0x10000 |
9204 | ? MIPS_FUNCTION_STUB_BIG_SIZE | |
9205 | : MIPS_FUNCTION_STUB_NORMAL_SIZE); | |
833794fc MR |
9206 | else if (htab->insn32) |
9207 | htab->function_stub_size = (dynsymcount > 0x10000 | |
9208 | ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE | |
9209 | : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE); | |
9210 | else | |
9211 | htab->function_stub_size = (dynsymcount > 0x10000 | |
9212 | ? MICROMIPS_FUNCTION_STUB_BIG_SIZE | |
9213 | : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE); | |
33bb52fb RS |
9214 | |
9215 | htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size; | |
9216 | } | |
9217 | ||
1bbce132 MR |
9218 | /* A mips_elf_link_hash_traverse callback for which DATA points to a |
9219 | mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding | |
9220 | stub, allocate an entry in the stubs section. */ | |
33bb52fb RS |
9221 | |
9222 | static bfd_boolean | |
af924177 | 9223 | mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data) |
33bb52fb | 9224 | { |
1bbce132 | 9225 | struct mips_htab_traverse_info *hti = data; |
33bb52fb | 9226 | struct mips_elf_link_hash_table *htab; |
1bbce132 MR |
9227 | struct bfd_link_info *info; |
9228 | bfd *output_bfd; | |
9229 | ||
9230 | info = hti->info; | |
9231 | output_bfd = hti->output_bfd; | |
9232 | htab = mips_elf_hash_table (info); | |
9233 | BFD_ASSERT (htab != NULL); | |
33bb52fb | 9234 | |
33bb52fb RS |
9235 | if (h->needs_lazy_stub) |
9236 | { | |
1bbce132 MR |
9237 | bfd_boolean micromips_p = MICROMIPS_P (output_bfd); |
9238 | unsigned int other = micromips_p ? STO_MICROMIPS : 0; | |
9239 | bfd_vma isa_bit = micromips_p; | |
9240 | ||
9241 | BFD_ASSERT (htab->root.dynobj != NULL); | |
9242 | if (h->root.plt.plist == NULL) | |
9243 | h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner); | |
9244 | if (h->root.plt.plist == NULL) | |
9245 | { | |
9246 | hti->error = TRUE; | |
9247 | return FALSE; | |
9248 | } | |
33bb52fb | 9249 | h->root.root.u.def.section = htab->sstubs; |
1bbce132 MR |
9250 | h->root.root.u.def.value = htab->sstubs->size + isa_bit; |
9251 | h->root.plt.plist->stub_offset = htab->sstubs->size; | |
9252 | h->root.other = other; | |
33bb52fb RS |
9253 | htab->sstubs->size += htab->function_stub_size; |
9254 | } | |
9255 | return TRUE; | |
9256 | } | |
9257 | ||
9258 | /* Allocate offsets in the stubs section to each symbol that needs one. | |
9259 | Set the final size of the .MIPS.stub section. */ | |
9260 | ||
1bbce132 | 9261 | static bfd_boolean |
33bb52fb RS |
9262 | mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info) |
9263 | { | |
1bbce132 MR |
9264 | bfd *output_bfd = info->output_bfd; |
9265 | bfd_boolean micromips_p = MICROMIPS_P (output_bfd); | |
9266 | unsigned int other = micromips_p ? STO_MICROMIPS : 0; | |
9267 | bfd_vma isa_bit = micromips_p; | |
33bb52fb | 9268 | struct mips_elf_link_hash_table *htab; |
1bbce132 MR |
9269 | struct mips_htab_traverse_info hti; |
9270 | struct elf_link_hash_entry *h; | |
9271 | bfd *dynobj; | |
33bb52fb RS |
9272 | |
9273 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 NC |
9274 | BFD_ASSERT (htab != NULL); |
9275 | ||
33bb52fb | 9276 | if (htab->lazy_stub_count == 0) |
1bbce132 | 9277 | return TRUE; |
33bb52fb RS |
9278 | |
9279 | htab->sstubs->size = 0; | |
1bbce132 MR |
9280 | hti.info = info; |
9281 | hti.output_bfd = output_bfd; | |
9282 | hti.error = FALSE; | |
9283 | mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti); | |
9284 | if (hti.error) | |
9285 | return FALSE; | |
33bb52fb RS |
9286 | htab->sstubs->size += htab->function_stub_size; |
9287 | BFD_ASSERT (htab->sstubs->size | |
9288 | == htab->lazy_stub_count * htab->function_stub_size); | |
1bbce132 MR |
9289 | |
9290 | dynobj = elf_hash_table (info)->dynobj; | |
9291 | BFD_ASSERT (dynobj != NULL); | |
9292 | h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_"); | |
9293 | if (h == NULL) | |
9294 | return FALSE; | |
9295 | h->root.u.def.value = isa_bit; | |
9296 | h->other = other; | |
9297 | h->type = STT_FUNC; | |
9298 | ||
9299 | return TRUE; | |
9300 | } | |
9301 | ||
9302 | /* A mips_elf_link_hash_traverse callback for which DATA points to a | |
9303 | bfd_link_info. If H uses the address of a PLT entry as the value | |
9304 | of the symbol, then set the entry in the symbol table now. Prefer | |
9305 | a standard MIPS PLT entry. */ | |
9306 | ||
9307 | static bfd_boolean | |
9308 | mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data) | |
9309 | { | |
9310 | struct bfd_link_info *info = data; | |
9311 | bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd); | |
9312 | struct mips_elf_link_hash_table *htab; | |
9313 | unsigned int other; | |
9314 | bfd_vma isa_bit; | |
9315 | bfd_vma val; | |
9316 | ||
9317 | htab = mips_elf_hash_table (info); | |
9318 | BFD_ASSERT (htab != NULL); | |
9319 | ||
9320 | if (h->use_plt_entry) | |
9321 | { | |
9322 | BFD_ASSERT (h->root.plt.plist != NULL); | |
9323 | BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE | |
9324 | || h->root.plt.plist->comp_offset != MINUS_ONE); | |
9325 | ||
9326 | val = htab->plt_header_size; | |
9327 | if (h->root.plt.plist->mips_offset != MINUS_ONE) | |
9328 | { | |
9329 | isa_bit = 0; | |
9330 | val += h->root.plt.plist->mips_offset; | |
9331 | other = 0; | |
9332 | } | |
9333 | else | |
9334 | { | |
9335 | isa_bit = 1; | |
9336 | val += htab->plt_mips_offset + h->root.plt.plist->comp_offset; | |
9337 | other = micromips_p ? STO_MICROMIPS : STO_MIPS16; | |
9338 | } | |
9339 | val += isa_bit; | |
9340 | /* For VxWorks, point at the PLT load stub rather than the lazy | |
9341 | resolution stub; this stub will become the canonical function | |
9342 | address. */ | |
9343 | if (htab->is_vxworks) | |
9344 | val += 8; | |
9345 | ||
9346 | h->root.root.u.def.section = htab->splt; | |
9347 | h->root.root.u.def.value = val; | |
9348 | h->root.other = other; | |
9349 | } | |
9350 | ||
9351 | return TRUE; | |
33bb52fb RS |
9352 | } |
9353 | ||
b49e97c9 TS |
9354 | /* Set the sizes of the dynamic sections. */ |
9355 | ||
b34976b6 | 9356 | bfd_boolean |
9719ad41 RS |
9357 | _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd, |
9358 | struct bfd_link_info *info) | |
b49e97c9 TS |
9359 | { |
9360 | bfd *dynobj; | |
861fb55a | 9361 | asection *s, *sreldyn; |
b34976b6 | 9362 | bfd_boolean reltext; |
0a44bf69 | 9363 | struct mips_elf_link_hash_table *htab; |
b49e97c9 | 9364 | |
0a44bf69 | 9365 | htab = mips_elf_hash_table (info); |
4dfe6ac6 | 9366 | BFD_ASSERT (htab != NULL); |
b49e97c9 TS |
9367 | dynobj = elf_hash_table (info)->dynobj; |
9368 | BFD_ASSERT (dynobj != NULL); | |
9369 | ||
9370 | if (elf_hash_table (info)->dynamic_sections_created) | |
9371 | { | |
9372 | /* Set the contents of the .interp section to the interpreter. */ | |
893c4fe2 | 9373 | if (info->executable) |
b49e97c9 | 9374 | { |
3d4d4302 | 9375 | s = bfd_get_linker_section (dynobj, ".interp"); |
b49e97c9 | 9376 | BFD_ASSERT (s != NULL); |
eea6121a | 9377 | s->size |
b49e97c9 TS |
9378 | = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1; |
9379 | s->contents | |
9380 | = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd); | |
9381 | } | |
861fb55a | 9382 | |
1bbce132 MR |
9383 | /* Figure out the size of the PLT header if we know that we |
9384 | are using it. For the sake of cache alignment always use | |
9385 | a standard header whenever any standard entries are present | |
9386 | even if microMIPS entries are present as well. This also | |
9387 | lets the microMIPS header rely on the value of $v0 only set | |
9388 | by microMIPS entries, for a small size reduction. | |
9389 | ||
9390 | Set symbol table entry values for symbols that use the | |
9391 | address of their PLT entry now that we can calculate it. | |
9392 | ||
9393 | Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we | |
9394 | haven't already in _bfd_elf_create_dynamic_sections. */ | |
9395 | if (htab->splt && htab->plt_mips_offset + htab->plt_comp_offset != 0) | |
861fb55a | 9396 | { |
1bbce132 MR |
9397 | bfd_boolean micromips_p = (MICROMIPS_P (output_bfd) |
9398 | && !htab->plt_mips_offset); | |
9399 | unsigned int other = micromips_p ? STO_MICROMIPS : 0; | |
9400 | bfd_vma isa_bit = micromips_p; | |
861fb55a | 9401 | struct elf_link_hash_entry *h; |
1bbce132 | 9402 | bfd_vma size; |
861fb55a DJ |
9403 | |
9404 | BFD_ASSERT (htab->use_plts_and_copy_relocs); | |
1bbce132 MR |
9405 | BFD_ASSERT (htab->sgotplt->size == 0); |
9406 | BFD_ASSERT (htab->splt->size == 0); | |
9407 | ||
9408 | if (htab->is_vxworks && info->shared) | |
9409 | size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry); | |
9410 | else if (htab->is_vxworks) | |
9411 | size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry); | |
9412 | else if (ABI_64_P (output_bfd)) | |
9413 | size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry); | |
9414 | else if (ABI_N32_P (output_bfd)) | |
9415 | size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry); | |
9416 | else if (!micromips_p) | |
9417 | size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry); | |
833794fc MR |
9418 | else if (htab->insn32) |
9419 | size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); | |
1bbce132 MR |
9420 | else |
9421 | size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry); | |
861fb55a | 9422 | |
1bbce132 MR |
9423 | htab->plt_header_is_comp = micromips_p; |
9424 | htab->plt_header_size = size; | |
9425 | htab->splt->size = (size | |
9426 | + htab->plt_mips_offset | |
9427 | + htab->plt_comp_offset); | |
9428 | htab->sgotplt->size = (htab->plt_got_index | |
9429 | * MIPS_ELF_GOT_SIZE (dynobj)); | |
9430 | ||
9431 | mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info); | |
9432 | ||
9433 | if (htab->root.hplt == NULL) | |
9434 | { | |
9435 | h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt, | |
9436 | "_PROCEDURE_LINKAGE_TABLE_"); | |
9437 | htab->root.hplt = h; | |
9438 | if (h == NULL) | |
9439 | return FALSE; | |
9440 | } | |
9441 | ||
9442 | h = htab->root.hplt; | |
9443 | h->root.u.def.value = isa_bit; | |
9444 | h->other = other; | |
861fb55a DJ |
9445 | h->type = STT_FUNC; |
9446 | } | |
9447 | } | |
4e41d0d7 | 9448 | |
9a59ad6b | 9449 | /* Allocate space for global sym dynamic relocs. */ |
2c3fc389 | 9450 | elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info); |
9a59ad6b | 9451 | |
33bb52fb RS |
9452 | mips_elf_estimate_stub_size (output_bfd, info); |
9453 | ||
9454 | if (!mips_elf_lay_out_got (output_bfd, info)) | |
9455 | return FALSE; | |
9456 | ||
9457 | mips_elf_lay_out_lazy_stubs (info); | |
9458 | ||
b49e97c9 TS |
9459 | /* The check_relocs and adjust_dynamic_symbol entry points have |
9460 | determined the sizes of the various dynamic sections. Allocate | |
9461 | memory for them. */ | |
b34976b6 | 9462 | reltext = FALSE; |
b49e97c9 TS |
9463 | for (s = dynobj->sections; s != NULL; s = s->next) |
9464 | { | |
9465 | const char *name; | |
b49e97c9 TS |
9466 | |
9467 | /* It's OK to base decisions on the section name, because none | |
9468 | of the dynobj section names depend upon the input files. */ | |
9469 | name = bfd_get_section_name (dynobj, s); | |
9470 | ||
9471 | if ((s->flags & SEC_LINKER_CREATED) == 0) | |
9472 | continue; | |
9473 | ||
0112cd26 | 9474 | if (CONST_STRNEQ (name, ".rel")) |
b49e97c9 | 9475 | { |
c456f082 | 9476 | if (s->size != 0) |
b49e97c9 TS |
9477 | { |
9478 | const char *outname; | |
9479 | asection *target; | |
9480 | ||
9481 | /* If this relocation section applies to a read only | |
9482 | section, then we probably need a DT_TEXTREL entry. | |
0a44bf69 | 9483 | If the relocation section is .rel(a).dyn, we always |
b49e97c9 TS |
9484 | assert a DT_TEXTREL entry rather than testing whether |
9485 | there exists a relocation to a read only section or | |
9486 | not. */ | |
9487 | outname = bfd_get_section_name (output_bfd, | |
9488 | s->output_section); | |
9489 | target = bfd_get_section_by_name (output_bfd, outname + 4); | |
9490 | if ((target != NULL | |
9491 | && (target->flags & SEC_READONLY) != 0 | |
9492 | && (target->flags & SEC_ALLOC) != 0) | |
0a44bf69 | 9493 | || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0) |
b34976b6 | 9494 | reltext = TRUE; |
b49e97c9 TS |
9495 | |
9496 | /* We use the reloc_count field as a counter if we need | |
9497 | to copy relocs into the output file. */ | |
0a44bf69 | 9498 | if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0) |
b49e97c9 | 9499 | s->reloc_count = 0; |
f4416af6 AO |
9500 | |
9501 | /* If combreloc is enabled, elf_link_sort_relocs() will | |
9502 | sort relocations, but in a different way than we do, | |
9503 | and before we're done creating relocations. Also, it | |
9504 | will move them around between input sections' | |
9505 | relocation's contents, so our sorting would be | |
9506 | broken, so don't let it run. */ | |
9507 | info->combreloc = 0; | |
b49e97c9 TS |
9508 | } |
9509 | } | |
b49e97c9 TS |
9510 | else if (! info->shared |
9511 | && ! mips_elf_hash_table (info)->use_rld_obj_head | |
0112cd26 | 9512 | && CONST_STRNEQ (name, ".rld_map")) |
b49e97c9 | 9513 | { |
5108fc1b | 9514 | /* We add a room for __rld_map. It will be filled in by the |
b49e97c9 | 9515 | rtld to contain a pointer to the _r_debug structure. */ |
b4082c70 | 9516 | s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd); |
b49e97c9 TS |
9517 | } |
9518 | else if (SGI_COMPAT (output_bfd) | |
0112cd26 | 9519 | && CONST_STRNEQ (name, ".compact_rel")) |
eea6121a | 9520 | s->size += mips_elf_hash_table (info)->compact_rel_size; |
861fb55a DJ |
9521 | else if (s == htab->splt) |
9522 | { | |
9523 | /* If the last PLT entry has a branch delay slot, allocate | |
6d30f5b2 NC |
9524 | room for an extra nop to fill the delay slot. This is |
9525 | for CPUs without load interlocking. */ | |
9526 | if (! LOAD_INTERLOCKS_P (output_bfd) | |
9527 | && ! htab->is_vxworks && s->size > 0) | |
861fb55a DJ |
9528 | s->size += 4; |
9529 | } | |
0112cd26 | 9530 | else if (! CONST_STRNEQ (name, ".init") |
33bb52fb | 9531 | && s != htab->sgot |
0a44bf69 | 9532 | && s != htab->sgotplt |
861fb55a DJ |
9533 | && s != htab->sstubs |
9534 | && s != htab->sdynbss) | |
b49e97c9 TS |
9535 | { |
9536 | /* It's not one of our sections, so don't allocate space. */ | |
9537 | continue; | |
9538 | } | |
9539 | ||
c456f082 | 9540 | if (s->size == 0) |
b49e97c9 | 9541 | { |
8423293d | 9542 | s->flags |= SEC_EXCLUDE; |
b49e97c9 TS |
9543 | continue; |
9544 | } | |
9545 | ||
c456f082 AM |
9546 | if ((s->flags & SEC_HAS_CONTENTS) == 0) |
9547 | continue; | |
9548 | ||
b49e97c9 | 9549 | /* Allocate memory for the section contents. */ |
eea6121a | 9550 | s->contents = bfd_zalloc (dynobj, s->size); |
c456f082 | 9551 | if (s->contents == NULL) |
b49e97c9 TS |
9552 | { |
9553 | bfd_set_error (bfd_error_no_memory); | |
b34976b6 | 9554 | return FALSE; |
b49e97c9 TS |
9555 | } |
9556 | } | |
9557 | ||
9558 | if (elf_hash_table (info)->dynamic_sections_created) | |
9559 | { | |
9560 | /* Add some entries to the .dynamic section. We fill in the | |
9561 | values later, in _bfd_mips_elf_finish_dynamic_sections, but we | |
9562 | must add the entries now so that we get the correct size for | |
5750dcec | 9563 | the .dynamic section. */ |
af5978fb RS |
9564 | |
9565 | /* SGI object has the equivalence of DT_DEBUG in the | |
5750dcec | 9566 | DT_MIPS_RLD_MAP entry. This must come first because glibc |
6e6be592 MR |
9567 | only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools |
9568 | may only look at the first one they see. */ | |
af5978fb RS |
9569 | if (!info->shared |
9570 | && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0)) | |
9571 | return FALSE; | |
b49e97c9 | 9572 | |
5750dcec DJ |
9573 | /* The DT_DEBUG entry may be filled in by the dynamic linker and |
9574 | used by the debugger. */ | |
9575 | if (info->executable | |
9576 | && !SGI_COMPAT (output_bfd) | |
9577 | && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0)) | |
9578 | return FALSE; | |
9579 | ||
0a44bf69 | 9580 | if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks)) |
b49e97c9 TS |
9581 | info->flags |= DF_TEXTREL; |
9582 | ||
9583 | if ((info->flags & DF_TEXTREL) != 0) | |
9584 | { | |
9585 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0)) | |
b34976b6 | 9586 | return FALSE; |
943284cc DJ |
9587 | |
9588 | /* Clear the DF_TEXTREL flag. It will be set again if we | |
9589 | write out an actual text relocation; we may not, because | |
9590 | at this point we do not know whether e.g. any .eh_frame | |
9591 | absolute relocations have been converted to PC-relative. */ | |
9592 | info->flags &= ~DF_TEXTREL; | |
b49e97c9 TS |
9593 | } |
9594 | ||
9595 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0)) | |
b34976b6 | 9596 | return FALSE; |
b49e97c9 | 9597 | |
861fb55a | 9598 | sreldyn = mips_elf_rel_dyn_section (info, FALSE); |
0a44bf69 | 9599 | if (htab->is_vxworks) |
b49e97c9 | 9600 | { |
0a44bf69 RS |
9601 | /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not |
9602 | use any of the DT_MIPS_* tags. */ | |
861fb55a | 9603 | if (sreldyn && sreldyn->size > 0) |
0a44bf69 RS |
9604 | { |
9605 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0)) | |
9606 | return FALSE; | |
b49e97c9 | 9607 | |
0a44bf69 RS |
9608 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0)) |
9609 | return FALSE; | |
b49e97c9 | 9610 | |
0a44bf69 RS |
9611 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0)) |
9612 | return FALSE; | |
9613 | } | |
b49e97c9 | 9614 | } |
0a44bf69 RS |
9615 | else |
9616 | { | |
861fb55a | 9617 | if (sreldyn && sreldyn->size > 0) |
0a44bf69 RS |
9618 | { |
9619 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0)) | |
9620 | return FALSE; | |
b49e97c9 | 9621 | |
0a44bf69 RS |
9622 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0)) |
9623 | return FALSE; | |
b49e97c9 | 9624 | |
0a44bf69 RS |
9625 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0)) |
9626 | return FALSE; | |
9627 | } | |
b49e97c9 | 9628 | |
0a44bf69 RS |
9629 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0)) |
9630 | return FALSE; | |
b49e97c9 | 9631 | |
0a44bf69 RS |
9632 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0)) |
9633 | return FALSE; | |
b49e97c9 | 9634 | |
0a44bf69 RS |
9635 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0)) |
9636 | return FALSE; | |
b49e97c9 | 9637 | |
0a44bf69 RS |
9638 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0)) |
9639 | return FALSE; | |
b49e97c9 | 9640 | |
0a44bf69 RS |
9641 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0)) |
9642 | return FALSE; | |
b49e97c9 | 9643 | |
0a44bf69 RS |
9644 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0)) |
9645 | return FALSE; | |
b49e97c9 | 9646 | |
0a44bf69 RS |
9647 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0)) |
9648 | return FALSE; | |
9649 | ||
9650 | if (IRIX_COMPAT (dynobj) == ict_irix5 | |
9651 | && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0)) | |
9652 | return FALSE; | |
9653 | ||
9654 | if (IRIX_COMPAT (dynobj) == ict_irix6 | |
9655 | && (bfd_get_section_by_name | |
af0edeb8 | 9656 | (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj))) |
0a44bf69 RS |
9657 | && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0)) |
9658 | return FALSE; | |
9659 | } | |
861fb55a DJ |
9660 | if (htab->splt->size > 0) |
9661 | { | |
9662 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0)) | |
9663 | return FALSE; | |
9664 | ||
9665 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0)) | |
9666 | return FALSE; | |
9667 | ||
9668 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0)) | |
9669 | return FALSE; | |
9670 | ||
9671 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0)) | |
9672 | return FALSE; | |
9673 | } | |
7a2b07ff NS |
9674 | if (htab->is_vxworks |
9675 | && !elf_vxworks_add_dynamic_entries (output_bfd, info)) | |
9676 | return FALSE; | |
b49e97c9 TS |
9677 | } |
9678 | ||
b34976b6 | 9679 | return TRUE; |
b49e97c9 TS |
9680 | } |
9681 | \f | |
81d43bff RS |
9682 | /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD. |
9683 | Adjust its R_ADDEND field so that it is correct for the output file. | |
9684 | LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols | |
9685 | and sections respectively; both use symbol indexes. */ | |
9686 | ||
9687 | static void | |
9688 | mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info, | |
9689 | bfd *input_bfd, Elf_Internal_Sym *local_syms, | |
9690 | asection **local_sections, Elf_Internal_Rela *rel) | |
9691 | { | |
9692 | unsigned int r_type, r_symndx; | |
9693 | Elf_Internal_Sym *sym; | |
9694 | asection *sec; | |
9695 | ||
020d7251 | 9696 | if (mips_elf_local_relocation_p (input_bfd, rel, local_sections)) |
81d43bff RS |
9697 | { |
9698 | r_type = ELF_R_TYPE (output_bfd, rel->r_info); | |
df58fc94 | 9699 | if (gprel16_reloc_p (r_type) |
81d43bff | 9700 | || r_type == R_MIPS_GPREL32 |
df58fc94 | 9701 | || literal_reloc_p (r_type)) |
81d43bff RS |
9702 | { |
9703 | rel->r_addend += _bfd_get_gp_value (input_bfd); | |
9704 | rel->r_addend -= _bfd_get_gp_value (output_bfd); | |
9705 | } | |
9706 | ||
9707 | r_symndx = ELF_R_SYM (output_bfd, rel->r_info); | |
9708 | sym = local_syms + r_symndx; | |
9709 | ||
9710 | /* Adjust REL's addend to account for section merging. */ | |
9711 | if (!info->relocatable) | |
9712 | { | |
9713 | sec = local_sections[r_symndx]; | |
9714 | _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); | |
9715 | } | |
9716 | ||
9717 | /* This would normally be done by the rela_normal code in elflink.c. */ | |
9718 | if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) | |
9719 | rel->r_addend += local_sections[r_symndx]->output_offset; | |
9720 | } | |
9721 | } | |
9722 | ||
545fd46b MR |
9723 | /* Handle relocations against symbols from removed linkonce sections, |
9724 | or sections discarded by a linker script. We use this wrapper around | |
9725 | RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs | |
9726 | on 64-bit ELF targets. In this case for any relocation handled, which | |
9727 | always be the first in a triplet, the remaining two have to be processed | |
9728 | together with the first, even if they are R_MIPS_NONE. It is the symbol | |
9729 | index referred by the first reloc that applies to all the three and the | |
9730 | remaining two never refer to an object symbol. And it is the final | |
9731 | relocation (the last non-null one) that determines the output field of | |
9732 | the whole relocation so retrieve the corresponding howto structure for | |
9733 | the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION. | |
9734 | ||
9735 | Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue" | |
9736 | and therefore requires to be pasted in a loop. It also defines a block | |
9737 | and does not protect any of its arguments, hence the extra brackets. */ | |
9738 | ||
9739 | static void | |
9740 | mips_reloc_against_discarded_section (bfd *output_bfd, | |
9741 | struct bfd_link_info *info, | |
9742 | bfd *input_bfd, asection *input_section, | |
9743 | Elf_Internal_Rela **rel, | |
9744 | const Elf_Internal_Rela **relend, | |
9745 | bfd_boolean rel_reloc, | |
9746 | reloc_howto_type *howto, | |
9747 | bfd_byte *contents) | |
9748 | { | |
9749 | const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); | |
9750 | int count = bed->s->int_rels_per_ext_rel; | |
9751 | unsigned int r_type; | |
9752 | int i; | |
9753 | ||
9754 | for (i = count - 1; i > 0; i--) | |
9755 | { | |
9756 | r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info); | |
9757 | if (r_type != R_MIPS_NONE) | |
9758 | { | |
9759 | howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc); | |
9760 | break; | |
9761 | } | |
9762 | } | |
9763 | do | |
9764 | { | |
9765 | RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, | |
9766 | (*rel), count, (*relend), | |
9767 | howto, i, contents); | |
9768 | } | |
9769 | while (0); | |
9770 | } | |
9771 | ||
b49e97c9 TS |
9772 | /* Relocate a MIPS ELF section. */ |
9773 | ||
b34976b6 | 9774 | bfd_boolean |
9719ad41 RS |
9775 | _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info, |
9776 | bfd *input_bfd, asection *input_section, | |
9777 | bfd_byte *contents, Elf_Internal_Rela *relocs, | |
9778 | Elf_Internal_Sym *local_syms, | |
9779 | asection **local_sections) | |
b49e97c9 TS |
9780 | { |
9781 | Elf_Internal_Rela *rel; | |
9782 | const Elf_Internal_Rela *relend; | |
9783 | bfd_vma addend = 0; | |
b34976b6 | 9784 | bfd_boolean use_saved_addend_p = FALSE; |
9c5bfbb7 | 9785 | const struct elf_backend_data *bed; |
b49e97c9 TS |
9786 | |
9787 | bed = get_elf_backend_data (output_bfd); | |
9788 | relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel; | |
9789 | for (rel = relocs; rel < relend; ++rel) | |
9790 | { | |
9791 | const char *name; | |
c9adbffe | 9792 | bfd_vma value = 0; |
b49e97c9 | 9793 | reloc_howto_type *howto; |
ad3d9127 | 9794 | bfd_boolean cross_mode_jump_p = FALSE; |
b34976b6 | 9795 | /* TRUE if the relocation is a RELA relocation, rather than a |
b49e97c9 | 9796 | REL relocation. */ |
b34976b6 | 9797 | bfd_boolean rela_relocation_p = TRUE; |
b49e97c9 | 9798 | unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info); |
9719ad41 | 9799 | const char *msg; |
ab96bf03 AM |
9800 | unsigned long r_symndx; |
9801 | asection *sec; | |
749b8d9d L |
9802 | Elf_Internal_Shdr *symtab_hdr; |
9803 | struct elf_link_hash_entry *h; | |
d4730f92 | 9804 | bfd_boolean rel_reloc; |
b49e97c9 | 9805 | |
d4730f92 BS |
9806 | rel_reloc = (NEWABI_P (input_bfd) |
9807 | && mips_elf_rel_relocation_p (input_bfd, input_section, | |
9808 | relocs, rel)); | |
b49e97c9 | 9809 | /* Find the relocation howto for this relocation. */ |
d4730f92 | 9810 | howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc); |
ab96bf03 AM |
9811 | |
9812 | r_symndx = ELF_R_SYM (input_bfd, rel->r_info); | |
749b8d9d | 9813 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
020d7251 | 9814 | if (mips_elf_local_relocation_p (input_bfd, rel, local_sections)) |
749b8d9d L |
9815 | { |
9816 | sec = local_sections[r_symndx]; | |
9817 | h = NULL; | |
9818 | } | |
ab96bf03 AM |
9819 | else |
9820 | { | |
ab96bf03 | 9821 | unsigned long extsymoff; |
ab96bf03 | 9822 | |
ab96bf03 AM |
9823 | extsymoff = 0; |
9824 | if (!elf_bad_symtab (input_bfd)) | |
9825 | extsymoff = symtab_hdr->sh_info; | |
9826 | h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff]; | |
9827 | while (h->root.type == bfd_link_hash_indirect | |
9828 | || h->root.type == bfd_link_hash_warning) | |
9829 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
9830 | ||
9831 | sec = NULL; | |
9832 | if (h->root.type == bfd_link_hash_defined | |
9833 | || h->root.type == bfd_link_hash_defweak) | |
9834 | sec = h->root.u.def.section; | |
9835 | } | |
9836 | ||
dbaa2011 | 9837 | if (sec != NULL && discarded_section (sec)) |
545fd46b MR |
9838 | { |
9839 | mips_reloc_against_discarded_section (output_bfd, info, input_bfd, | |
9840 | input_section, &rel, &relend, | |
9841 | rel_reloc, howto, contents); | |
9842 | continue; | |
9843 | } | |
ab96bf03 | 9844 | |
4a14403c | 9845 | if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd)) |
b49e97c9 TS |
9846 | { |
9847 | /* Some 32-bit code uses R_MIPS_64. In particular, people use | |
9848 | 64-bit code, but make sure all their addresses are in the | |
9849 | lowermost or uppermost 32-bit section of the 64-bit address | |
9850 | space. Thus, when they use an R_MIPS_64 they mean what is | |
9851 | usually meant by R_MIPS_32, with the exception that the | |
9852 | stored value is sign-extended to 64 bits. */ | |
b34976b6 | 9853 | howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE); |
b49e97c9 TS |
9854 | |
9855 | /* On big-endian systems, we need to lie about the position | |
9856 | of the reloc. */ | |
9857 | if (bfd_big_endian (input_bfd)) | |
9858 | rel->r_offset += 4; | |
9859 | } | |
b49e97c9 TS |
9860 | |
9861 | if (!use_saved_addend_p) | |
9862 | { | |
b49e97c9 TS |
9863 | /* If these relocations were originally of the REL variety, |
9864 | we must pull the addend out of the field that will be | |
9865 | relocated. Otherwise, we simply use the contents of the | |
c224138d RS |
9866 | RELA relocation. */ |
9867 | if (mips_elf_rel_relocation_p (input_bfd, input_section, | |
9868 | relocs, rel)) | |
b49e97c9 | 9869 | { |
b34976b6 | 9870 | rela_relocation_p = FALSE; |
c224138d RS |
9871 | addend = mips_elf_read_rel_addend (input_bfd, rel, |
9872 | howto, contents); | |
738e5348 RS |
9873 | if (hi16_reloc_p (r_type) |
9874 | || (got16_reloc_p (r_type) | |
b49e97c9 | 9875 | && mips_elf_local_relocation_p (input_bfd, rel, |
020d7251 | 9876 | local_sections))) |
b49e97c9 | 9877 | { |
c224138d RS |
9878 | if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend, |
9879 | contents, &addend)) | |
749b8d9d | 9880 | { |
749b8d9d L |
9881 | if (h) |
9882 | name = h->root.root.string; | |
9883 | else | |
9884 | name = bfd_elf_sym_name (input_bfd, symtab_hdr, | |
9885 | local_syms + r_symndx, | |
9886 | sec); | |
9887 | (*_bfd_error_handler) | |
9888 | (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"), | |
9889 | input_bfd, input_section, name, howto->name, | |
9890 | rel->r_offset); | |
749b8d9d | 9891 | } |
b49e97c9 | 9892 | } |
30ac9238 RS |
9893 | else |
9894 | addend <<= howto->rightshift; | |
b49e97c9 TS |
9895 | } |
9896 | else | |
9897 | addend = rel->r_addend; | |
81d43bff RS |
9898 | mips_elf_adjust_addend (output_bfd, info, input_bfd, |
9899 | local_syms, local_sections, rel); | |
b49e97c9 TS |
9900 | } |
9901 | ||
1049f94e | 9902 | if (info->relocatable) |
b49e97c9 | 9903 | { |
4a14403c | 9904 | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd) |
b49e97c9 TS |
9905 | && bfd_big_endian (input_bfd)) |
9906 | rel->r_offset -= 4; | |
9907 | ||
81d43bff | 9908 | if (!rela_relocation_p && rel->r_addend) |
5a659663 | 9909 | { |
81d43bff | 9910 | addend += rel->r_addend; |
738e5348 | 9911 | if (hi16_reloc_p (r_type) || got16_reloc_p (r_type)) |
5a659663 TS |
9912 | addend = mips_elf_high (addend); |
9913 | else if (r_type == R_MIPS_HIGHER) | |
9914 | addend = mips_elf_higher (addend); | |
9915 | else if (r_type == R_MIPS_HIGHEST) | |
9916 | addend = mips_elf_highest (addend); | |
30ac9238 RS |
9917 | else |
9918 | addend >>= howto->rightshift; | |
b49e97c9 | 9919 | |
30ac9238 RS |
9920 | /* We use the source mask, rather than the destination |
9921 | mask because the place to which we are writing will be | |
9922 | source of the addend in the final link. */ | |
b49e97c9 TS |
9923 | addend &= howto->src_mask; |
9924 | ||
5a659663 | 9925 | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) |
b49e97c9 TS |
9926 | /* See the comment above about using R_MIPS_64 in the 32-bit |
9927 | ABI. Here, we need to update the addend. It would be | |
9928 | possible to get away with just using the R_MIPS_32 reloc | |
9929 | but for endianness. */ | |
9930 | { | |
9931 | bfd_vma sign_bits; | |
9932 | bfd_vma low_bits; | |
9933 | bfd_vma high_bits; | |
9934 | ||
9935 | if (addend & ((bfd_vma) 1 << 31)) | |
9936 | #ifdef BFD64 | |
9937 | sign_bits = ((bfd_vma) 1 << 32) - 1; | |
9938 | #else | |
9939 | sign_bits = -1; | |
9940 | #endif | |
9941 | else | |
9942 | sign_bits = 0; | |
9943 | ||
9944 | /* If we don't know that we have a 64-bit type, | |
9945 | do two separate stores. */ | |
9946 | if (bfd_big_endian (input_bfd)) | |
9947 | { | |
9948 | /* Store the sign-bits (which are most significant) | |
9949 | first. */ | |
9950 | low_bits = sign_bits; | |
9951 | high_bits = addend; | |
9952 | } | |
9953 | else | |
9954 | { | |
9955 | low_bits = addend; | |
9956 | high_bits = sign_bits; | |
9957 | } | |
9958 | bfd_put_32 (input_bfd, low_bits, | |
9959 | contents + rel->r_offset); | |
9960 | bfd_put_32 (input_bfd, high_bits, | |
9961 | contents + rel->r_offset + 4); | |
9962 | continue; | |
9963 | } | |
9964 | ||
9965 | if (! mips_elf_perform_relocation (info, howto, rel, addend, | |
9966 | input_bfd, input_section, | |
b34976b6 AM |
9967 | contents, FALSE)) |
9968 | return FALSE; | |
b49e97c9 TS |
9969 | } |
9970 | ||
9971 | /* Go on to the next relocation. */ | |
9972 | continue; | |
9973 | } | |
9974 | ||
9975 | /* In the N32 and 64-bit ABIs there may be multiple consecutive | |
9976 | relocations for the same offset. In that case we are | |
9977 | supposed to treat the output of each relocation as the addend | |
9978 | for the next. */ | |
9979 | if (rel + 1 < relend | |
9980 | && rel->r_offset == rel[1].r_offset | |
9981 | && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE) | |
b34976b6 | 9982 | use_saved_addend_p = TRUE; |
b49e97c9 | 9983 | else |
b34976b6 | 9984 | use_saved_addend_p = FALSE; |
b49e97c9 TS |
9985 | |
9986 | /* Figure out what value we are supposed to relocate. */ | |
9987 | switch (mips_elf_calculate_relocation (output_bfd, input_bfd, | |
9988 | input_section, info, rel, | |
9989 | addend, howto, local_syms, | |
9990 | local_sections, &value, | |
38a7df63 | 9991 | &name, &cross_mode_jump_p, |
bce03d3d | 9992 | use_saved_addend_p)) |
b49e97c9 TS |
9993 | { |
9994 | case bfd_reloc_continue: | |
9995 | /* There's nothing to do. */ | |
9996 | continue; | |
9997 | ||
9998 | case bfd_reloc_undefined: | |
9999 | /* mips_elf_calculate_relocation already called the | |
10000 | undefined_symbol callback. There's no real point in | |
10001 | trying to perform the relocation at this point, so we | |
10002 | just skip ahead to the next relocation. */ | |
10003 | continue; | |
10004 | ||
10005 | case bfd_reloc_notsupported: | |
10006 | msg = _("internal error: unsupported relocation error"); | |
10007 | info->callbacks->warning | |
10008 | (info, msg, name, input_bfd, input_section, rel->r_offset); | |
b34976b6 | 10009 | return FALSE; |
b49e97c9 TS |
10010 | |
10011 | case bfd_reloc_overflow: | |
10012 | if (use_saved_addend_p) | |
10013 | /* Ignore overflow until we reach the last relocation for | |
10014 | a given location. */ | |
10015 | ; | |
10016 | else | |
10017 | { | |
0e53d9da AN |
10018 | struct mips_elf_link_hash_table *htab; |
10019 | ||
10020 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 | 10021 | BFD_ASSERT (htab != NULL); |
b49e97c9 | 10022 | BFD_ASSERT (name != NULL); |
0e53d9da | 10023 | if (!htab->small_data_overflow_reported |
9684f078 | 10024 | && (gprel16_reloc_p (howto->type) |
df58fc94 | 10025 | || literal_reloc_p (howto->type))) |
0e53d9da | 10026 | { |
91d6fa6a NC |
10027 | msg = _("small-data section exceeds 64KB;" |
10028 | " lower small-data size limit (see option -G)"); | |
0e53d9da AN |
10029 | |
10030 | htab->small_data_overflow_reported = TRUE; | |
10031 | (*info->callbacks->einfo) ("%P: %s\n", msg); | |
10032 | } | |
b49e97c9 | 10033 | if (! ((*info->callbacks->reloc_overflow) |
dfeffb9f | 10034 | (info, NULL, name, howto->name, (bfd_vma) 0, |
b49e97c9 | 10035 | input_bfd, input_section, rel->r_offset))) |
b34976b6 | 10036 | return FALSE; |
b49e97c9 TS |
10037 | } |
10038 | break; | |
10039 | ||
10040 | case bfd_reloc_ok: | |
10041 | break; | |
10042 | ||
df58fc94 RS |
10043 | case bfd_reloc_outofrange: |
10044 | if (jal_reloc_p (howto->type)) | |
10045 | { | |
10046 | msg = _("JALX to a non-word-aligned address"); | |
10047 | info->callbacks->warning | |
10048 | (info, msg, name, input_bfd, input_section, rel->r_offset); | |
10049 | return FALSE; | |
10050 | } | |
10051 | /* Fall through. */ | |
10052 | ||
b49e97c9 TS |
10053 | default: |
10054 | abort (); | |
10055 | break; | |
10056 | } | |
10057 | ||
10058 | /* If we've got another relocation for the address, keep going | |
10059 | until we reach the last one. */ | |
10060 | if (use_saved_addend_p) | |
10061 | { | |
10062 | addend = value; | |
10063 | continue; | |
10064 | } | |
10065 | ||
4a14403c | 10066 | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) |
b49e97c9 TS |
10067 | /* See the comment above about using R_MIPS_64 in the 32-bit |
10068 | ABI. Until now, we've been using the HOWTO for R_MIPS_32; | |
10069 | that calculated the right value. Now, however, we | |
10070 | sign-extend the 32-bit result to 64-bits, and store it as a | |
10071 | 64-bit value. We are especially generous here in that we | |
10072 | go to extreme lengths to support this usage on systems with | |
10073 | only a 32-bit VMA. */ | |
10074 | { | |
10075 | bfd_vma sign_bits; | |
10076 | bfd_vma low_bits; | |
10077 | bfd_vma high_bits; | |
10078 | ||
10079 | if (value & ((bfd_vma) 1 << 31)) | |
10080 | #ifdef BFD64 | |
10081 | sign_bits = ((bfd_vma) 1 << 32) - 1; | |
10082 | #else | |
10083 | sign_bits = -1; | |
10084 | #endif | |
10085 | else | |
10086 | sign_bits = 0; | |
10087 | ||
10088 | /* If we don't know that we have a 64-bit type, | |
10089 | do two separate stores. */ | |
10090 | if (bfd_big_endian (input_bfd)) | |
10091 | { | |
10092 | /* Undo what we did above. */ | |
10093 | rel->r_offset -= 4; | |
10094 | /* Store the sign-bits (which are most significant) | |
10095 | first. */ | |
10096 | low_bits = sign_bits; | |
10097 | high_bits = value; | |
10098 | } | |
10099 | else | |
10100 | { | |
10101 | low_bits = value; | |
10102 | high_bits = sign_bits; | |
10103 | } | |
10104 | bfd_put_32 (input_bfd, low_bits, | |
10105 | contents + rel->r_offset); | |
10106 | bfd_put_32 (input_bfd, high_bits, | |
10107 | contents + rel->r_offset + 4); | |
10108 | continue; | |
10109 | } | |
10110 | ||
10111 | /* Actually perform the relocation. */ | |
10112 | if (! mips_elf_perform_relocation (info, howto, rel, value, | |
10113 | input_bfd, input_section, | |
38a7df63 | 10114 | contents, cross_mode_jump_p)) |
b34976b6 | 10115 | return FALSE; |
b49e97c9 TS |
10116 | } |
10117 | ||
b34976b6 | 10118 | return TRUE; |
b49e97c9 TS |
10119 | } |
10120 | \f | |
861fb55a DJ |
10121 | /* A function that iterates over each entry in la25_stubs and fills |
10122 | in the code for each one. DATA points to a mips_htab_traverse_info. */ | |
10123 | ||
10124 | static int | |
10125 | mips_elf_create_la25_stub (void **slot, void *data) | |
10126 | { | |
10127 | struct mips_htab_traverse_info *hti; | |
10128 | struct mips_elf_link_hash_table *htab; | |
10129 | struct mips_elf_la25_stub *stub; | |
10130 | asection *s; | |
10131 | bfd_byte *loc; | |
10132 | bfd_vma offset, target, target_high, target_low; | |
10133 | ||
10134 | stub = (struct mips_elf_la25_stub *) *slot; | |
10135 | hti = (struct mips_htab_traverse_info *) data; | |
10136 | htab = mips_elf_hash_table (hti->info); | |
4dfe6ac6 | 10137 | BFD_ASSERT (htab != NULL); |
861fb55a DJ |
10138 | |
10139 | /* Create the section contents, if we haven't already. */ | |
10140 | s = stub->stub_section; | |
10141 | loc = s->contents; | |
10142 | if (loc == NULL) | |
10143 | { | |
10144 | loc = bfd_malloc (s->size); | |
10145 | if (loc == NULL) | |
10146 | { | |
10147 | hti->error = TRUE; | |
10148 | return FALSE; | |
10149 | } | |
10150 | s->contents = loc; | |
10151 | } | |
10152 | ||
10153 | /* Work out where in the section this stub should go. */ | |
10154 | offset = stub->offset; | |
10155 | ||
10156 | /* Work out the target address. */ | |
8f0c309a CLT |
10157 | target = mips_elf_get_la25_target (stub, &s); |
10158 | target += s->output_section->vma + s->output_offset; | |
10159 | ||
861fb55a DJ |
10160 | target_high = ((target + 0x8000) >> 16) & 0xffff; |
10161 | target_low = (target & 0xffff); | |
10162 | ||
10163 | if (stub->stub_section != htab->strampoline) | |
10164 | { | |
df58fc94 | 10165 | /* This is a simple LUI/ADDIU stub. Zero out the beginning |
861fb55a DJ |
10166 | of the section and write the two instructions at the end. */ |
10167 | memset (loc, 0, offset); | |
10168 | loc += offset; | |
df58fc94 RS |
10169 | if (ELF_ST_IS_MICROMIPS (stub->h->root.other)) |
10170 | { | |
d21911ea MR |
10171 | bfd_put_micromips_32 (hti->output_bfd, |
10172 | LA25_LUI_MICROMIPS (target_high), | |
10173 | loc); | |
10174 | bfd_put_micromips_32 (hti->output_bfd, | |
10175 | LA25_ADDIU_MICROMIPS (target_low), | |
10176 | loc + 4); | |
df58fc94 RS |
10177 | } |
10178 | else | |
10179 | { | |
10180 | bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc); | |
10181 | bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4); | |
10182 | } | |
861fb55a DJ |
10183 | } |
10184 | else | |
10185 | { | |
10186 | /* This is trampoline. */ | |
10187 | loc += offset; | |
df58fc94 RS |
10188 | if (ELF_ST_IS_MICROMIPS (stub->h->root.other)) |
10189 | { | |
d21911ea MR |
10190 | bfd_put_micromips_32 (hti->output_bfd, |
10191 | LA25_LUI_MICROMIPS (target_high), loc); | |
10192 | bfd_put_micromips_32 (hti->output_bfd, | |
10193 | LA25_J_MICROMIPS (target), loc + 4); | |
10194 | bfd_put_micromips_32 (hti->output_bfd, | |
10195 | LA25_ADDIU_MICROMIPS (target_low), loc + 8); | |
df58fc94 RS |
10196 | bfd_put_32 (hti->output_bfd, 0, loc + 12); |
10197 | } | |
10198 | else | |
10199 | { | |
10200 | bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc); | |
10201 | bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4); | |
10202 | bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8); | |
10203 | bfd_put_32 (hti->output_bfd, 0, loc + 12); | |
10204 | } | |
861fb55a DJ |
10205 | } |
10206 | return TRUE; | |
10207 | } | |
10208 | ||
b49e97c9 TS |
10209 | /* If NAME is one of the special IRIX6 symbols defined by the linker, |
10210 | adjust it appropriately now. */ | |
10211 | ||
10212 | static void | |
9719ad41 RS |
10213 | mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED, |
10214 | const char *name, Elf_Internal_Sym *sym) | |
b49e97c9 TS |
10215 | { |
10216 | /* The linker script takes care of providing names and values for | |
10217 | these, but we must place them into the right sections. */ | |
10218 | static const char* const text_section_symbols[] = { | |
10219 | "_ftext", | |
10220 | "_etext", | |
10221 | "__dso_displacement", | |
10222 | "__elf_header", | |
10223 | "__program_header_table", | |
10224 | NULL | |
10225 | }; | |
10226 | ||
10227 | static const char* const data_section_symbols[] = { | |
10228 | "_fdata", | |
10229 | "_edata", | |
10230 | "_end", | |
10231 | "_fbss", | |
10232 | NULL | |
10233 | }; | |
10234 | ||
10235 | const char* const *p; | |
10236 | int i; | |
10237 | ||
10238 | for (i = 0; i < 2; ++i) | |
10239 | for (p = (i == 0) ? text_section_symbols : data_section_symbols; | |
10240 | *p; | |
10241 | ++p) | |
10242 | if (strcmp (*p, name) == 0) | |
10243 | { | |
10244 | /* All of these symbols are given type STT_SECTION by the | |
10245 | IRIX6 linker. */ | |
10246 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
e10609d3 | 10247 | sym->st_other = STO_PROTECTED; |
b49e97c9 TS |
10248 | |
10249 | /* The IRIX linker puts these symbols in special sections. */ | |
10250 | if (i == 0) | |
10251 | sym->st_shndx = SHN_MIPS_TEXT; | |
10252 | else | |
10253 | sym->st_shndx = SHN_MIPS_DATA; | |
10254 | ||
10255 | break; | |
10256 | } | |
10257 | } | |
10258 | ||
10259 | /* Finish up dynamic symbol handling. We set the contents of various | |
10260 | dynamic sections here. */ | |
10261 | ||
b34976b6 | 10262 | bfd_boolean |
9719ad41 RS |
10263 | _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd, |
10264 | struct bfd_link_info *info, | |
10265 | struct elf_link_hash_entry *h, | |
10266 | Elf_Internal_Sym *sym) | |
b49e97c9 TS |
10267 | { |
10268 | bfd *dynobj; | |
b49e97c9 | 10269 | asection *sgot; |
f4416af6 | 10270 | struct mips_got_info *g, *gg; |
b49e97c9 | 10271 | const char *name; |
3d6746ca | 10272 | int idx; |
5108fc1b | 10273 | struct mips_elf_link_hash_table *htab; |
738e5348 | 10274 | struct mips_elf_link_hash_entry *hmips; |
b49e97c9 | 10275 | |
5108fc1b | 10276 | htab = mips_elf_hash_table (info); |
4dfe6ac6 | 10277 | BFD_ASSERT (htab != NULL); |
b49e97c9 | 10278 | dynobj = elf_hash_table (info)->dynobj; |
738e5348 | 10279 | hmips = (struct mips_elf_link_hash_entry *) h; |
b49e97c9 | 10280 | |
861fb55a DJ |
10281 | BFD_ASSERT (!htab->is_vxworks); |
10282 | ||
1bbce132 MR |
10283 | if (h->plt.plist != NULL |
10284 | && (h->plt.plist->mips_offset != MINUS_ONE | |
10285 | || h->plt.plist->comp_offset != MINUS_ONE)) | |
861fb55a DJ |
10286 | { |
10287 | /* We've decided to create a PLT entry for this symbol. */ | |
10288 | bfd_byte *loc; | |
1bbce132 | 10289 | bfd_vma header_address, got_address; |
861fb55a | 10290 | bfd_vma got_address_high, got_address_low, load; |
1bbce132 MR |
10291 | bfd_vma got_index; |
10292 | bfd_vma isa_bit; | |
10293 | ||
10294 | got_index = h->plt.plist->gotplt_index; | |
861fb55a DJ |
10295 | |
10296 | BFD_ASSERT (htab->use_plts_and_copy_relocs); | |
10297 | BFD_ASSERT (h->dynindx != -1); | |
10298 | BFD_ASSERT (htab->splt != NULL); | |
1bbce132 | 10299 | BFD_ASSERT (got_index != MINUS_ONE); |
861fb55a DJ |
10300 | BFD_ASSERT (!h->def_regular); |
10301 | ||
10302 | /* Calculate the address of the PLT header. */ | |
1bbce132 | 10303 | isa_bit = htab->plt_header_is_comp; |
861fb55a | 10304 | header_address = (htab->splt->output_section->vma |
1bbce132 | 10305 | + htab->splt->output_offset + isa_bit); |
861fb55a DJ |
10306 | |
10307 | /* Calculate the address of the .got.plt entry. */ | |
10308 | got_address = (htab->sgotplt->output_section->vma | |
10309 | + htab->sgotplt->output_offset | |
1bbce132 MR |
10310 | + got_index * MIPS_ELF_GOT_SIZE (dynobj)); |
10311 | ||
861fb55a DJ |
10312 | got_address_high = ((got_address + 0x8000) >> 16) & 0xffff; |
10313 | got_address_low = got_address & 0xffff; | |
10314 | ||
10315 | /* Initially point the .got.plt entry at the PLT header. */ | |
1bbce132 | 10316 | loc = (htab->sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj)); |
861fb55a DJ |
10317 | if (ABI_64_P (output_bfd)) |
10318 | bfd_put_64 (output_bfd, header_address, loc); | |
10319 | else | |
10320 | bfd_put_32 (output_bfd, header_address, loc); | |
10321 | ||
1bbce132 MR |
10322 | /* Now handle the PLT itself. First the standard entry (the order |
10323 | does not matter, we just have to pick one). */ | |
10324 | if (h->plt.plist->mips_offset != MINUS_ONE) | |
10325 | { | |
10326 | const bfd_vma *plt_entry; | |
10327 | bfd_vma plt_offset; | |
861fb55a | 10328 | |
1bbce132 | 10329 | plt_offset = htab->plt_header_size + h->plt.plist->mips_offset; |
861fb55a | 10330 | |
1bbce132 | 10331 | BFD_ASSERT (plt_offset <= htab->splt->size); |
6d30f5b2 | 10332 | |
1bbce132 MR |
10333 | /* Find out where the .plt entry should go. */ |
10334 | loc = htab->splt->contents + plt_offset; | |
10335 | ||
10336 | /* Pick the load opcode. */ | |
10337 | load = MIPS_ELF_LOAD_WORD (output_bfd); | |
10338 | ||
10339 | /* Fill in the PLT entry itself. */ | |
10340 | plt_entry = mips_exec_plt_entry; | |
10341 | bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc); | |
10342 | bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, | |
10343 | loc + 4); | |
10344 | ||
10345 | if (! LOAD_INTERLOCKS_P (output_bfd)) | |
10346 | { | |
10347 | bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8); | |
10348 | bfd_put_32 (output_bfd, plt_entry[3], loc + 12); | |
10349 | } | |
10350 | else | |
10351 | { | |
10352 | bfd_put_32 (output_bfd, plt_entry[3], loc + 8); | |
10353 | bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, | |
10354 | loc + 12); | |
10355 | } | |
6d30f5b2 | 10356 | } |
1bbce132 MR |
10357 | |
10358 | /* Now the compressed entry. They come after any standard ones. */ | |
10359 | if (h->plt.plist->comp_offset != MINUS_ONE) | |
6d30f5b2 | 10360 | { |
1bbce132 MR |
10361 | bfd_vma plt_offset; |
10362 | ||
10363 | plt_offset = (htab->plt_header_size + htab->plt_mips_offset | |
10364 | + h->plt.plist->comp_offset); | |
10365 | ||
10366 | BFD_ASSERT (plt_offset <= htab->splt->size); | |
10367 | ||
10368 | /* Find out where the .plt entry should go. */ | |
10369 | loc = htab->splt->contents + plt_offset; | |
10370 | ||
10371 | /* Fill in the PLT entry itself. */ | |
833794fc MR |
10372 | if (!MICROMIPS_P (output_bfd)) |
10373 | { | |
10374 | const bfd_vma *plt_entry = mips16_o32_exec_plt_entry; | |
10375 | ||
10376 | bfd_put_16 (output_bfd, plt_entry[0], loc); | |
10377 | bfd_put_16 (output_bfd, plt_entry[1], loc + 2); | |
10378 | bfd_put_16 (output_bfd, plt_entry[2], loc + 4); | |
10379 | bfd_put_16 (output_bfd, plt_entry[3], loc + 6); | |
10380 | bfd_put_16 (output_bfd, plt_entry[4], loc + 8); | |
10381 | bfd_put_16 (output_bfd, plt_entry[5], loc + 10); | |
10382 | bfd_put_32 (output_bfd, got_address, loc + 12); | |
10383 | } | |
10384 | else if (htab->insn32) | |
10385 | { | |
10386 | const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry; | |
10387 | ||
10388 | bfd_put_16 (output_bfd, plt_entry[0], loc); | |
10389 | bfd_put_16 (output_bfd, got_address_high, loc + 2); | |
10390 | bfd_put_16 (output_bfd, plt_entry[2], loc + 4); | |
10391 | bfd_put_16 (output_bfd, got_address_low, loc + 6); | |
10392 | bfd_put_16 (output_bfd, plt_entry[4], loc + 8); | |
10393 | bfd_put_16 (output_bfd, plt_entry[5], loc + 10); | |
10394 | bfd_put_16 (output_bfd, plt_entry[6], loc + 12); | |
10395 | bfd_put_16 (output_bfd, got_address_low, loc + 14); | |
10396 | } | |
10397 | else | |
1bbce132 MR |
10398 | { |
10399 | const bfd_vma *plt_entry = micromips_o32_exec_plt_entry; | |
10400 | bfd_signed_vma gotpc_offset; | |
10401 | bfd_vma loc_address; | |
10402 | ||
10403 | BFD_ASSERT (got_address % 4 == 0); | |
10404 | ||
10405 | loc_address = (htab->splt->output_section->vma | |
10406 | + htab->splt->output_offset + plt_offset); | |
10407 | gotpc_offset = got_address - ((loc_address | 3) ^ 3); | |
10408 | ||
10409 | /* ADDIUPC has a span of +/-16MB, check we're in range. */ | |
10410 | if (gotpc_offset + 0x1000000 >= 0x2000000) | |
10411 | { | |
10412 | (*_bfd_error_handler) | |
10413 | (_("%B: `%A' offset of %ld from `%A' " | |
10414 | "beyond the range of ADDIUPC"), | |
10415 | output_bfd, | |
10416 | htab->sgotplt->output_section, | |
10417 | htab->splt->output_section, | |
10418 | (long) gotpc_offset); | |
10419 | bfd_set_error (bfd_error_no_error); | |
10420 | return FALSE; | |
10421 | } | |
10422 | bfd_put_16 (output_bfd, | |
10423 | plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc); | |
10424 | bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2); | |
10425 | bfd_put_16 (output_bfd, plt_entry[2], loc + 4); | |
10426 | bfd_put_16 (output_bfd, plt_entry[3], loc + 6); | |
10427 | bfd_put_16 (output_bfd, plt_entry[4], loc + 8); | |
10428 | bfd_put_16 (output_bfd, plt_entry[5], loc + 10); | |
10429 | } | |
6d30f5b2 | 10430 | } |
861fb55a DJ |
10431 | |
10432 | /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */ | |
10433 | mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt, | |
1bbce132 | 10434 | got_index - 2, h->dynindx, |
861fb55a DJ |
10435 | R_MIPS_JUMP_SLOT, got_address); |
10436 | ||
10437 | /* We distinguish between PLT entries and lazy-binding stubs by | |
10438 | giving the former an st_other value of STO_MIPS_PLT. Set the | |
10439 | flag and leave the value if there are any relocations in the | |
10440 | binary where pointer equality matters. */ | |
10441 | sym->st_shndx = SHN_UNDEF; | |
10442 | if (h->pointer_equality_needed) | |
1bbce132 | 10443 | sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other); |
861fb55a | 10444 | else |
1bbce132 MR |
10445 | { |
10446 | sym->st_value = 0; | |
10447 | sym->st_other = 0; | |
10448 | } | |
861fb55a | 10449 | } |
1bbce132 MR |
10450 | |
10451 | if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE) | |
b49e97c9 | 10452 | { |
861fb55a | 10453 | /* We've decided to create a lazy-binding stub. */ |
1bbce132 MR |
10454 | bfd_boolean micromips_p = MICROMIPS_P (output_bfd); |
10455 | unsigned int other = micromips_p ? STO_MICROMIPS : 0; | |
10456 | bfd_vma stub_size = htab->function_stub_size; | |
5108fc1b | 10457 | bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE]; |
1bbce132 MR |
10458 | bfd_vma isa_bit = micromips_p; |
10459 | bfd_vma stub_big_size; | |
10460 | ||
833794fc | 10461 | if (!micromips_p) |
1bbce132 | 10462 | stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE; |
833794fc MR |
10463 | else if (htab->insn32) |
10464 | stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE; | |
10465 | else | |
10466 | stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE; | |
b49e97c9 TS |
10467 | |
10468 | /* This symbol has a stub. Set it up. */ | |
10469 | ||
10470 | BFD_ASSERT (h->dynindx != -1); | |
10471 | ||
1bbce132 | 10472 | BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff); |
3d6746ca DD |
10473 | |
10474 | /* Values up to 2^31 - 1 are allowed. Larger values would cause | |
5108fc1b RS |
10475 | sign extension at runtime in the stub, resulting in a negative |
10476 | index value. */ | |
10477 | if (h->dynindx & ~0x7fffffff) | |
b34976b6 | 10478 | return FALSE; |
b49e97c9 TS |
10479 | |
10480 | /* Fill the stub. */ | |
1bbce132 MR |
10481 | if (micromips_p) |
10482 | { | |
10483 | idx = 0; | |
10484 | bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd), | |
10485 | stub + idx); | |
10486 | idx += 4; | |
833794fc MR |
10487 | if (htab->insn32) |
10488 | { | |
10489 | bfd_put_micromips_32 (output_bfd, | |
10490 | STUB_MOVE32_MICROMIPS (output_bfd), | |
10491 | stub + idx); | |
10492 | idx += 4; | |
10493 | } | |
10494 | else | |
10495 | { | |
10496 | bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx); | |
10497 | idx += 2; | |
10498 | } | |
1bbce132 MR |
10499 | if (stub_size == stub_big_size) |
10500 | { | |
10501 | long dynindx_hi = (h->dynindx >> 16) & 0x7fff; | |
10502 | ||
10503 | bfd_put_micromips_32 (output_bfd, | |
10504 | STUB_LUI_MICROMIPS (dynindx_hi), | |
10505 | stub + idx); | |
10506 | idx += 4; | |
10507 | } | |
833794fc MR |
10508 | if (htab->insn32) |
10509 | { | |
10510 | bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS, | |
10511 | stub + idx); | |
10512 | idx += 4; | |
10513 | } | |
10514 | else | |
10515 | { | |
10516 | bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx); | |
10517 | idx += 2; | |
10518 | } | |
1bbce132 MR |
10519 | |
10520 | /* If a large stub is not required and sign extension is not a | |
10521 | problem, then use legacy code in the stub. */ | |
10522 | if (stub_size == stub_big_size) | |
10523 | bfd_put_micromips_32 (output_bfd, | |
10524 | STUB_ORI_MICROMIPS (h->dynindx & 0xffff), | |
10525 | stub + idx); | |
10526 | else if (h->dynindx & ~0x7fff) | |
10527 | bfd_put_micromips_32 (output_bfd, | |
10528 | STUB_LI16U_MICROMIPS (h->dynindx & 0xffff), | |
10529 | stub + idx); | |
10530 | else | |
10531 | bfd_put_micromips_32 (output_bfd, | |
10532 | STUB_LI16S_MICROMIPS (output_bfd, | |
10533 | h->dynindx), | |
10534 | stub + idx); | |
10535 | } | |
3d6746ca | 10536 | else |
1bbce132 MR |
10537 | { |
10538 | idx = 0; | |
10539 | bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx); | |
10540 | idx += 4; | |
10541 | bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx); | |
10542 | idx += 4; | |
10543 | if (stub_size == stub_big_size) | |
10544 | { | |
10545 | bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff), | |
10546 | stub + idx); | |
10547 | idx += 4; | |
10548 | } | |
10549 | bfd_put_32 (output_bfd, STUB_JALR, stub + idx); | |
10550 | idx += 4; | |
10551 | ||
10552 | /* If a large stub is not required and sign extension is not a | |
10553 | problem, then use legacy code in the stub. */ | |
10554 | if (stub_size == stub_big_size) | |
10555 | bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), | |
10556 | stub + idx); | |
10557 | else if (h->dynindx & ~0x7fff) | |
10558 | bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), | |
10559 | stub + idx); | |
10560 | else | |
10561 | bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx), | |
10562 | stub + idx); | |
10563 | } | |
5108fc1b | 10564 | |
1bbce132 MR |
10565 | BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size); |
10566 | memcpy (htab->sstubs->contents + h->plt.plist->stub_offset, | |
10567 | stub, stub_size); | |
b49e97c9 | 10568 | |
1bbce132 | 10569 | /* Mark the symbol as undefined. stub_offset != -1 occurs |
b49e97c9 TS |
10570 | only for the referenced symbol. */ |
10571 | sym->st_shndx = SHN_UNDEF; | |
10572 | ||
10573 | /* The run-time linker uses the st_value field of the symbol | |
10574 | to reset the global offset table entry for this external | |
10575 | to its stub address when unlinking a shared object. */ | |
4e41d0d7 RS |
10576 | sym->st_value = (htab->sstubs->output_section->vma |
10577 | + htab->sstubs->output_offset | |
1bbce132 MR |
10578 | + h->plt.plist->stub_offset |
10579 | + isa_bit); | |
10580 | sym->st_other = other; | |
b49e97c9 TS |
10581 | } |
10582 | ||
738e5348 RS |
10583 | /* If we have a MIPS16 function with a stub, the dynamic symbol must |
10584 | refer to the stub, since only the stub uses the standard calling | |
10585 | conventions. */ | |
10586 | if (h->dynindx != -1 && hmips->fn_stub != NULL) | |
10587 | { | |
10588 | BFD_ASSERT (hmips->need_fn_stub); | |
10589 | sym->st_value = (hmips->fn_stub->output_section->vma | |
10590 | + hmips->fn_stub->output_offset); | |
10591 | sym->st_size = hmips->fn_stub->size; | |
10592 | sym->st_other = ELF_ST_VISIBILITY (sym->st_other); | |
10593 | } | |
10594 | ||
b49e97c9 | 10595 | BFD_ASSERT (h->dynindx != -1 |
f5385ebf | 10596 | || h->forced_local); |
b49e97c9 | 10597 | |
23cc69b6 | 10598 | sgot = htab->sgot; |
a8028dd0 | 10599 | g = htab->got_info; |
b49e97c9 TS |
10600 | BFD_ASSERT (g != NULL); |
10601 | ||
10602 | /* Run through the global symbol table, creating GOT entries for all | |
10603 | the symbols that need them. */ | |
020d7251 | 10604 | if (hmips->global_got_area != GGA_NONE) |
b49e97c9 TS |
10605 | { |
10606 | bfd_vma offset; | |
10607 | bfd_vma value; | |
10608 | ||
6eaa6adc | 10609 | value = sym->st_value; |
13fbec83 | 10610 | offset = mips_elf_primary_global_got_index (output_bfd, info, h); |
b49e97c9 TS |
10611 | MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset); |
10612 | } | |
10613 | ||
e641e783 | 10614 | if (hmips->global_got_area != GGA_NONE && g->next) |
f4416af6 AO |
10615 | { |
10616 | struct mips_got_entry e, *p; | |
0626d451 | 10617 | bfd_vma entry; |
f4416af6 | 10618 | bfd_vma offset; |
f4416af6 AO |
10619 | |
10620 | gg = g; | |
10621 | ||
10622 | e.abfd = output_bfd; | |
10623 | e.symndx = -1; | |
738e5348 | 10624 | e.d.h = hmips; |
9ab066b4 | 10625 | e.tls_type = GOT_TLS_NONE; |
143d77c5 | 10626 | |
f4416af6 AO |
10627 | for (g = g->next; g->next != gg; g = g->next) |
10628 | { | |
10629 | if (g->got_entries | |
10630 | && (p = (struct mips_got_entry *) htab_find (g->got_entries, | |
10631 | &e))) | |
10632 | { | |
10633 | offset = p->gotidx; | |
6c42ddb9 | 10634 | BFD_ASSERT (offset > 0 && offset < htab->sgot->size); |
0626d451 RS |
10635 | if (info->shared |
10636 | || (elf_hash_table (info)->dynamic_sections_created | |
10637 | && p->d.h != NULL | |
f5385ebf AM |
10638 | && p->d.h->root.def_dynamic |
10639 | && !p->d.h->root.def_regular)) | |
0626d451 RS |
10640 | { |
10641 | /* Create an R_MIPS_REL32 relocation for this entry. Due to | |
10642 | the various compatibility problems, it's easier to mock | |
10643 | up an R_MIPS_32 or R_MIPS_64 relocation and leave | |
10644 | mips_elf_create_dynamic_relocation to calculate the | |
10645 | appropriate addend. */ | |
10646 | Elf_Internal_Rela rel[3]; | |
10647 | ||
10648 | memset (rel, 0, sizeof (rel)); | |
10649 | if (ABI_64_P (output_bfd)) | |
10650 | rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64); | |
10651 | else | |
10652 | rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32); | |
10653 | rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; | |
10654 | ||
10655 | entry = 0; | |
10656 | if (! (mips_elf_create_dynamic_relocation | |
10657 | (output_bfd, info, rel, | |
10658 | e.d.h, NULL, sym->st_value, &entry, sgot))) | |
10659 | return FALSE; | |
10660 | } | |
10661 | else | |
10662 | entry = sym->st_value; | |
10663 | MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset); | |
f4416af6 AO |
10664 | } |
10665 | } | |
10666 | } | |
10667 | ||
b49e97c9 TS |
10668 | /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ |
10669 | name = h->root.root.string; | |
9637f6ef | 10670 | if (h == elf_hash_table (info)->hdynamic |
22edb2f1 | 10671 | || h == elf_hash_table (info)->hgot) |
b49e97c9 TS |
10672 | sym->st_shndx = SHN_ABS; |
10673 | else if (strcmp (name, "_DYNAMIC_LINK") == 0 | |
10674 | || strcmp (name, "_DYNAMIC_LINKING") == 0) | |
10675 | { | |
10676 | sym->st_shndx = SHN_ABS; | |
10677 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
10678 | sym->st_value = 1; | |
10679 | } | |
4a14403c | 10680 | else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd)) |
b49e97c9 TS |
10681 | { |
10682 | sym->st_shndx = SHN_ABS; | |
10683 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
10684 | sym->st_value = elf_gp (output_bfd); | |
10685 | } | |
10686 | else if (SGI_COMPAT (output_bfd)) | |
10687 | { | |
10688 | if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 | |
10689 | || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) | |
10690 | { | |
10691 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
10692 | sym->st_other = STO_PROTECTED; | |
10693 | sym->st_value = 0; | |
10694 | sym->st_shndx = SHN_MIPS_DATA; | |
10695 | } | |
10696 | else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) | |
10697 | { | |
10698 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
10699 | sym->st_other = STO_PROTECTED; | |
10700 | sym->st_value = mips_elf_hash_table (info)->procedure_count; | |
10701 | sym->st_shndx = SHN_ABS; | |
10702 | } | |
10703 | else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS) | |
10704 | { | |
10705 | if (h->type == STT_FUNC) | |
10706 | sym->st_shndx = SHN_MIPS_TEXT; | |
10707 | else if (h->type == STT_OBJECT) | |
10708 | sym->st_shndx = SHN_MIPS_DATA; | |
10709 | } | |
10710 | } | |
10711 | ||
861fb55a DJ |
10712 | /* Emit a copy reloc, if needed. */ |
10713 | if (h->needs_copy) | |
10714 | { | |
10715 | asection *s; | |
10716 | bfd_vma symval; | |
10717 | ||
10718 | BFD_ASSERT (h->dynindx != -1); | |
10719 | BFD_ASSERT (htab->use_plts_and_copy_relocs); | |
10720 | ||
10721 | s = mips_elf_rel_dyn_section (info, FALSE); | |
10722 | symval = (h->root.u.def.section->output_section->vma | |
10723 | + h->root.u.def.section->output_offset | |
10724 | + h->root.u.def.value); | |
10725 | mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++, | |
10726 | h->dynindx, R_MIPS_COPY, symval); | |
10727 | } | |
10728 | ||
b49e97c9 TS |
10729 | /* Handle the IRIX6-specific symbols. */ |
10730 | if (IRIX_COMPAT (output_bfd) == ict_irix6) | |
10731 | mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym); | |
10732 | ||
cbf8d970 MR |
10733 | /* Keep dynamic compressed symbols odd. This allows the dynamic linker |
10734 | to treat compressed symbols like any other. */ | |
30c09090 | 10735 | if (ELF_ST_IS_MIPS16 (sym->st_other)) |
738e5348 RS |
10736 | { |
10737 | BFD_ASSERT (sym->st_value & 1); | |
10738 | sym->st_other -= STO_MIPS16; | |
10739 | } | |
cbf8d970 MR |
10740 | else if (ELF_ST_IS_MICROMIPS (sym->st_other)) |
10741 | { | |
10742 | BFD_ASSERT (sym->st_value & 1); | |
10743 | sym->st_other -= STO_MICROMIPS; | |
10744 | } | |
b49e97c9 | 10745 | |
b34976b6 | 10746 | return TRUE; |
b49e97c9 TS |
10747 | } |
10748 | ||
0a44bf69 RS |
10749 | /* Likewise, for VxWorks. */ |
10750 | ||
10751 | bfd_boolean | |
10752 | _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd, | |
10753 | struct bfd_link_info *info, | |
10754 | struct elf_link_hash_entry *h, | |
10755 | Elf_Internal_Sym *sym) | |
10756 | { | |
10757 | bfd *dynobj; | |
10758 | asection *sgot; | |
10759 | struct mips_got_info *g; | |
10760 | struct mips_elf_link_hash_table *htab; | |
020d7251 | 10761 | struct mips_elf_link_hash_entry *hmips; |
0a44bf69 RS |
10762 | |
10763 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 | 10764 | BFD_ASSERT (htab != NULL); |
0a44bf69 | 10765 | dynobj = elf_hash_table (info)->dynobj; |
020d7251 | 10766 | hmips = (struct mips_elf_link_hash_entry *) h; |
0a44bf69 | 10767 | |
1bbce132 | 10768 | if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE) |
0a44bf69 | 10769 | { |
6d79d2ed | 10770 | bfd_byte *loc; |
1bbce132 | 10771 | bfd_vma plt_address, got_address, got_offset, branch_offset; |
0a44bf69 RS |
10772 | Elf_Internal_Rela rel; |
10773 | static const bfd_vma *plt_entry; | |
1bbce132 MR |
10774 | bfd_vma gotplt_index; |
10775 | bfd_vma plt_offset; | |
10776 | ||
10777 | plt_offset = htab->plt_header_size + h->plt.plist->mips_offset; | |
10778 | gotplt_index = h->plt.plist->gotplt_index; | |
0a44bf69 RS |
10779 | |
10780 | BFD_ASSERT (h->dynindx != -1); | |
10781 | BFD_ASSERT (htab->splt != NULL); | |
1bbce132 MR |
10782 | BFD_ASSERT (gotplt_index != MINUS_ONE); |
10783 | BFD_ASSERT (plt_offset <= htab->splt->size); | |
0a44bf69 RS |
10784 | |
10785 | /* Calculate the address of the .plt entry. */ | |
10786 | plt_address = (htab->splt->output_section->vma | |
10787 | + htab->splt->output_offset | |
1bbce132 | 10788 | + plt_offset); |
0a44bf69 RS |
10789 | |
10790 | /* Calculate the address of the .got.plt entry. */ | |
10791 | got_address = (htab->sgotplt->output_section->vma | |
10792 | + htab->sgotplt->output_offset | |
1bbce132 | 10793 | + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)); |
0a44bf69 RS |
10794 | |
10795 | /* Calculate the offset of the .got.plt entry from | |
10796 | _GLOBAL_OFFSET_TABLE_. */ | |
10797 | got_offset = mips_elf_gotplt_index (info, h); | |
10798 | ||
10799 | /* Calculate the offset for the branch at the start of the PLT | |
10800 | entry. The branch jumps to the beginning of .plt. */ | |
1bbce132 | 10801 | branch_offset = -(plt_offset / 4 + 1) & 0xffff; |
0a44bf69 RS |
10802 | |
10803 | /* Fill in the initial value of the .got.plt entry. */ | |
10804 | bfd_put_32 (output_bfd, plt_address, | |
1bbce132 MR |
10805 | (htab->sgotplt->contents |
10806 | + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd))); | |
0a44bf69 RS |
10807 | |
10808 | /* Find out where the .plt entry should go. */ | |
1bbce132 | 10809 | loc = htab->splt->contents + plt_offset; |
0a44bf69 RS |
10810 | |
10811 | if (info->shared) | |
10812 | { | |
10813 | plt_entry = mips_vxworks_shared_plt_entry; | |
10814 | bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc); | |
1bbce132 | 10815 | bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4); |
0a44bf69 RS |
10816 | } |
10817 | else | |
10818 | { | |
10819 | bfd_vma got_address_high, got_address_low; | |
10820 | ||
10821 | plt_entry = mips_vxworks_exec_plt_entry; | |
10822 | got_address_high = ((got_address + 0x8000) >> 16) & 0xffff; | |
10823 | got_address_low = got_address & 0xffff; | |
10824 | ||
10825 | bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc); | |
1bbce132 | 10826 | bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4); |
0a44bf69 RS |
10827 | bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8); |
10828 | bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12); | |
10829 | bfd_put_32 (output_bfd, plt_entry[4], loc + 16); | |
10830 | bfd_put_32 (output_bfd, plt_entry[5], loc + 20); | |
10831 | bfd_put_32 (output_bfd, plt_entry[6], loc + 24); | |
10832 | bfd_put_32 (output_bfd, plt_entry[7], loc + 28); | |
10833 | ||
10834 | loc = (htab->srelplt2->contents | |
1bbce132 | 10835 | + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela)); |
0a44bf69 RS |
10836 | |
10837 | /* Emit a relocation for the .got.plt entry. */ | |
10838 | rel.r_offset = got_address; | |
10839 | rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32); | |
1bbce132 | 10840 | rel.r_addend = plt_offset; |
0a44bf69 RS |
10841 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); |
10842 | ||
10843 | /* Emit a relocation for the lui of %hi(<.got.plt slot>). */ | |
10844 | loc += sizeof (Elf32_External_Rela); | |
10845 | rel.r_offset = plt_address + 8; | |
10846 | rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); | |
10847 | rel.r_addend = got_offset; | |
10848 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
10849 | ||
10850 | /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */ | |
10851 | loc += sizeof (Elf32_External_Rela); | |
10852 | rel.r_offset += 4; | |
10853 | rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); | |
10854 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
10855 | } | |
10856 | ||
10857 | /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */ | |
1bbce132 MR |
10858 | loc = (htab->srelplt->contents |
10859 | + gotplt_index * sizeof (Elf32_External_Rela)); | |
0a44bf69 RS |
10860 | rel.r_offset = got_address; |
10861 | rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT); | |
10862 | rel.r_addend = 0; | |
10863 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
10864 | ||
10865 | if (!h->def_regular) | |
10866 | sym->st_shndx = SHN_UNDEF; | |
10867 | } | |
10868 | ||
10869 | BFD_ASSERT (h->dynindx != -1 || h->forced_local); | |
10870 | ||
23cc69b6 | 10871 | sgot = htab->sgot; |
a8028dd0 | 10872 | g = htab->got_info; |
0a44bf69 RS |
10873 | BFD_ASSERT (g != NULL); |
10874 | ||
10875 | /* See if this symbol has an entry in the GOT. */ | |
020d7251 | 10876 | if (hmips->global_got_area != GGA_NONE) |
0a44bf69 RS |
10877 | { |
10878 | bfd_vma offset; | |
10879 | Elf_Internal_Rela outrel; | |
10880 | bfd_byte *loc; | |
10881 | asection *s; | |
10882 | ||
10883 | /* Install the symbol value in the GOT. */ | |
13fbec83 | 10884 | offset = mips_elf_primary_global_got_index (output_bfd, info, h); |
0a44bf69 RS |
10885 | MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset); |
10886 | ||
10887 | /* Add a dynamic relocation for it. */ | |
10888 | s = mips_elf_rel_dyn_section (info, FALSE); | |
10889 | loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela)); | |
10890 | outrel.r_offset = (sgot->output_section->vma | |
10891 | + sgot->output_offset | |
10892 | + offset); | |
10893 | outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32); | |
10894 | outrel.r_addend = 0; | |
10895 | bfd_elf32_swap_reloca_out (dynobj, &outrel, loc); | |
10896 | } | |
10897 | ||
10898 | /* Emit a copy reloc, if needed. */ | |
10899 | if (h->needs_copy) | |
10900 | { | |
10901 | Elf_Internal_Rela rel; | |
10902 | ||
10903 | BFD_ASSERT (h->dynindx != -1); | |
10904 | ||
10905 | rel.r_offset = (h->root.u.def.section->output_section->vma | |
10906 | + h->root.u.def.section->output_offset | |
10907 | + h->root.u.def.value); | |
10908 | rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY); | |
10909 | rel.r_addend = 0; | |
10910 | bfd_elf32_swap_reloca_out (output_bfd, &rel, | |
10911 | htab->srelbss->contents | |
10912 | + (htab->srelbss->reloc_count | |
10913 | * sizeof (Elf32_External_Rela))); | |
10914 | ++htab->srelbss->reloc_count; | |
10915 | } | |
10916 | ||
df58fc94 RS |
10917 | /* If this is a mips16/microMIPS symbol, force the value to be even. */ |
10918 | if (ELF_ST_IS_COMPRESSED (sym->st_other)) | |
0a44bf69 RS |
10919 | sym->st_value &= ~1; |
10920 | ||
10921 | return TRUE; | |
10922 | } | |
10923 | ||
861fb55a DJ |
10924 | /* Write out a plt0 entry to the beginning of .plt. */ |
10925 | ||
1bbce132 | 10926 | static bfd_boolean |
861fb55a DJ |
10927 | mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info) |
10928 | { | |
10929 | bfd_byte *loc; | |
10930 | bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low; | |
10931 | static const bfd_vma *plt_entry; | |
10932 | struct mips_elf_link_hash_table *htab; | |
10933 | ||
10934 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 NC |
10935 | BFD_ASSERT (htab != NULL); |
10936 | ||
861fb55a DJ |
10937 | if (ABI_64_P (output_bfd)) |
10938 | plt_entry = mips_n64_exec_plt0_entry; | |
10939 | else if (ABI_N32_P (output_bfd)) | |
10940 | plt_entry = mips_n32_exec_plt0_entry; | |
833794fc | 10941 | else if (!htab->plt_header_is_comp) |
861fb55a | 10942 | plt_entry = mips_o32_exec_plt0_entry; |
833794fc MR |
10943 | else if (htab->insn32) |
10944 | plt_entry = micromips_insn32_o32_exec_plt0_entry; | |
10945 | else | |
10946 | plt_entry = micromips_o32_exec_plt0_entry; | |
861fb55a DJ |
10947 | |
10948 | /* Calculate the value of .got.plt. */ | |
10949 | gotplt_value = (htab->sgotplt->output_section->vma | |
10950 | + htab->sgotplt->output_offset); | |
10951 | gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff; | |
10952 | gotplt_value_low = gotplt_value & 0xffff; | |
10953 | ||
10954 | /* The PLT sequence is not safe for N64 if .got.plt's address can | |
10955 | not be loaded in two instructions. */ | |
10956 | BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0 | |
10957 | || ~(gotplt_value | 0x7fffffff) == 0); | |
10958 | ||
10959 | /* Install the PLT header. */ | |
10960 | loc = htab->splt->contents; | |
1bbce132 MR |
10961 | if (plt_entry == micromips_o32_exec_plt0_entry) |
10962 | { | |
10963 | bfd_vma gotpc_offset; | |
10964 | bfd_vma loc_address; | |
10965 | size_t i; | |
10966 | ||
10967 | BFD_ASSERT (gotplt_value % 4 == 0); | |
10968 | ||
10969 | loc_address = (htab->splt->output_section->vma | |
10970 | + htab->splt->output_offset); | |
10971 | gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3); | |
10972 | ||
10973 | /* ADDIUPC has a span of +/-16MB, check we're in range. */ | |
10974 | if (gotpc_offset + 0x1000000 >= 0x2000000) | |
10975 | { | |
10976 | (*_bfd_error_handler) | |
10977 | (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"), | |
10978 | output_bfd, | |
10979 | htab->sgotplt->output_section, | |
10980 | htab->splt->output_section, | |
10981 | (long) gotpc_offset); | |
10982 | bfd_set_error (bfd_error_no_error); | |
10983 | return FALSE; | |
10984 | } | |
10985 | bfd_put_16 (output_bfd, | |
10986 | plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc); | |
10987 | bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2); | |
10988 | for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++) | |
10989 | bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2)); | |
10990 | } | |
833794fc MR |
10991 | else if (plt_entry == micromips_insn32_o32_exec_plt0_entry) |
10992 | { | |
10993 | size_t i; | |
10994 | ||
10995 | bfd_put_16 (output_bfd, plt_entry[0], loc); | |
10996 | bfd_put_16 (output_bfd, gotplt_value_high, loc + 2); | |
10997 | bfd_put_16 (output_bfd, plt_entry[2], loc + 4); | |
10998 | bfd_put_16 (output_bfd, gotplt_value_low, loc + 6); | |
10999 | bfd_put_16 (output_bfd, plt_entry[4], loc + 8); | |
11000 | bfd_put_16 (output_bfd, gotplt_value_low, loc + 10); | |
11001 | for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++) | |
11002 | bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2)); | |
11003 | } | |
1bbce132 MR |
11004 | else |
11005 | { | |
11006 | bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc); | |
11007 | bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4); | |
11008 | bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8); | |
11009 | bfd_put_32 (output_bfd, plt_entry[3], loc + 12); | |
11010 | bfd_put_32 (output_bfd, plt_entry[4], loc + 16); | |
11011 | bfd_put_32 (output_bfd, plt_entry[5], loc + 20); | |
11012 | bfd_put_32 (output_bfd, plt_entry[6], loc + 24); | |
11013 | bfd_put_32 (output_bfd, plt_entry[7], loc + 28); | |
11014 | } | |
11015 | ||
11016 | return TRUE; | |
861fb55a DJ |
11017 | } |
11018 | ||
0a44bf69 RS |
11019 | /* Install the PLT header for a VxWorks executable and finalize the |
11020 | contents of .rela.plt.unloaded. */ | |
11021 | ||
11022 | static void | |
11023 | mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info) | |
11024 | { | |
11025 | Elf_Internal_Rela rela; | |
11026 | bfd_byte *loc; | |
11027 | bfd_vma got_value, got_value_high, got_value_low, plt_address; | |
11028 | static const bfd_vma *plt_entry; | |
11029 | struct mips_elf_link_hash_table *htab; | |
11030 | ||
11031 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 NC |
11032 | BFD_ASSERT (htab != NULL); |
11033 | ||
0a44bf69 RS |
11034 | plt_entry = mips_vxworks_exec_plt0_entry; |
11035 | ||
11036 | /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */ | |
11037 | got_value = (htab->root.hgot->root.u.def.section->output_section->vma | |
11038 | + htab->root.hgot->root.u.def.section->output_offset | |
11039 | + htab->root.hgot->root.u.def.value); | |
11040 | ||
11041 | got_value_high = ((got_value + 0x8000) >> 16) & 0xffff; | |
11042 | got_value_low = got_value & 0xffff; | |
11043 | ||
11044 | /* Calculate the address of the PLT header. */ | |
11045 | plt_address = htab->splt->output_section->vma + htab->splt->output_offset; | |
11046 | ||
11047 | /* Install the PLT header. */ | |
11048 | loc = htab->splt->contents; | |
11049 | bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc); | |
11050 | bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4); | |
11051 | bfd_put_32 (output_bfd, plt_entry[2], loc + 8); | |
11052 | bfd_put_32 (output_bfd, plt_entry[3], loc + 12); | |
11053 | bfd_put_32 (output_bfd, plt_entry[4], loc + 16); | |
11054 | bfd_put_32 (output_bfd, plt_entry[5], loc + 20); | |
11055 | ||
11056 | /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */ | |
11057 | loc = htab->srelplt2->contents; | |
11058 | rela.r_offset = plt_address; | |
11059 | rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); | |
11060 | rela.r_addend = 0; | |
11061 | bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); | |
11062 | loc += sizeof (Elf32_External_Rela); | |
11063 | ||
11064 | /* Output the relocation for the following addiu of | |
11065 | %lo(_GLOBAL_OFFSET_TABLE_). */ | |
11066 | rela.r_offset += 4; | |
11067 | rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); | |
11068 | bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); | |
11069 | loc += sizeof (Elf32_External_Rela); | |
11070 | ||
11071 | /* Fix up the remaining relocations. They may have the wrong | |
11072 | symbol index for _G_O_T_ or _P_L_T_ depending on the order | |
11073 | in which symbols were output. */ | |
11074 | while (loc < htab->srelplt2->contents + htab->srelplt2->size) | |
11075 | { | |
11076 | Elf_Internal_Rela rel; | |
11077 | ||
11078 | bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); | |
11079 | rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32); | |
11080 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
11081 | loc += sizeof (Elf32_External_Rela); | |
11082 | ||
11083 | bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); | |
11084 | rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); | |
11085 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
11086 | loc += sizeof (Elf32_External_Rela); | |
11087 | ||
11088 | bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); | |
11089 | rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); | |
11090 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
11091 | loc += sizeof (Elf32_External_Rela); | |
11092 | } | |
11093 | } | |
11094 | ||
11095 | /* Install the PLT header for a VxWorks shared library. */ | |
11096 | ||
11097 | static void | |
11098 | mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info) | |
11099 | { | |
11100 | unsigned int i; | |
11101 | struct mips_elf_link_hash_table *htab; | |
11102 | ||
11103 | htab = mips_elf_hash_table (info); | |
4dfe6ac6 | 11104 | BFD_ASSERT (htab != NULL); |
0a44bf69 RS |
11105 | |
11106 | /* We just need to copy the entry byte-by-byte. */ | |
11107 | for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++) | |
11108 | bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i], | |
11109 | htab->splt->contents + i * 4); | |
11110 | } | |
11111 | ||
b49e97c9 TS |
11112 | /* Finish up the dynamic sections. */ |
11113 | ||
b34976b6 | 11114 | bfd_boolean |
9719ad41 RS |
11115 | _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd, |
11116 | struct bfd_link_info *info) | |
b49e97c9 TS |
11117 | { |
11118 | bfd *dynobj; | |
11119 | asection *sdyn; | |
11120 | asection *sgot; | |
f4416af6 | 11121 | struct mips_got_info *gg, *g; |
0a44bf69 | 11122 | struct mips_elf_link_hash_table *htab; |
b49e97c9 | 11123 | |
0a44bf69 | 11124 | htab = mips_elf_hash_table (info); |
4dfe6ac6 NC |
11125 | BFD_ASSERT (htab != NULL); |
11126 | ||
b49e97c9 TS |
11127 | dynobj = elf_hash_table (info)->dynobj; |
11128 | ||
3d4d4302 | 11129 | sdyn = bfd_get_linker_section (dynobj, ".dynamic"); |
b49e97c9 | 11130 | |
23cc69b6 RS |
11131 | sgot = htab->sgot; |
11132 | gg = htab->got_info; | |
b49e97c9 TS |
11133 | |
11134 | if (elf_hash_table (info)->dynamic_sections_created) | |
11135 | { | |
11136 | bfd_byte *b; | |
943284cc | 11137 | int dyn_to_skip = 0, dyn_skipped = 0; |
b49e97c9 TS |
11138 | |
11139 | BFD_ASSERT (sdyn != NULL); | |
23cc69b6 RS |
11140 | BFD_ASSERT (gg != NULL); |
11141 | ||
d7206569 | 11142 | g = mips_elf_bfd_got (output_bfd, FALSE); |
b49e97c9 TS |
11143 | BFD_ASSERT (g != NULL); |
11144 | ||
11145 | for (b = sdyn->contents; | |
eea6121a | 11146 | b < sdyn->contents + sdyn->size; |
b49e97c9 TS |
11147 | b += MIPS_ELF_DYN_SIZE (dynobj)) |
11148 | { | |
11149 | Elf_Internal_Dyn dyn; | |
11150 | const char *name; | |
11151 | size_t elemsize; | |
11152 | asection *s; | |
b34976b6 | 11153 | bfd_boolean swap_out_p; |
b49e97c9 TS |
11154 | |
11155 | /* Read in the current dynamic entry. */ | |
11156 | (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); | |
11157 | ||
11158 | /* Assume that we're going to modify it and write it out. */ | |
b34976b6 | 11159 | swap_out_p = TRUE; |
b49e97c9 TS |
11160 | |
11161 | switch (dyn.d_tag) | |
11162 | { | |
11163 | case DT_RELENT: | |
b49e97c9 TS |
11164 | dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj); |
11165 | break; | |
11166 | ||
0a44bf69 RS |
11167 | case DT_RELAENT: |
11168 | BFD_ASSERT (htab->is_vxworks); | |
11169 | dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj); | |
11170 | break; | |
11171 | ||
b49e97c9 TS |
11172 | case DT_STRSZ: |
11173 | /* Rewrite DT_STRSZ. */ | |
11174 | dyn.d_un.d_val = | |
11175 | _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); | |
11176 | break; | |
11177 | ||
11178 | case DT_PLTGOT: | |
861fb55a DJ |
11179 | s = htab->sgot; |
11180 | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; | |
11181 | break; | |
11182 | ||
11183 | case DT_MIPS_PLTGOT: | |
11184 | s = htab->sgotplt; | |
11185 | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; | |
b49e97c9 TS |
11186 | break; |
11187 | ||
11188 | case DT_MIPS_RLD_VERSION: | |
11189 | dyn.d_un.d_val = 1; /* XXX */ | |
11190 | break; | |
11191 | ||
11192 | case DT_MIPS_FLAGS: | |
11193 | dyn.d_un.d_val = RHF_NOTPOT; /* XXX */ | |
11194 | break; | |
11195 | ||
b49e97c9 | 11196 | case DT_MIPS_TIME_STAMP: |
6edfbbad DJ |
11197 | { |
11198 | time_t t; | |
11199 | time (&t); | |
11200 | dyn.d_un.d_val = t; | |
11201 | } | |
b49e97c9 TS |
11202 | break; |
11203 | ||
11204 | case DT_MIPS_ICHECKSUM: | |
11205 | /* XXX FIXME: */ | |
b34976b6 | 11206 | swap_out_p = FALSE; |
b49e97c9 TS |
11207 | break; |
11208 | ||
11209 | case DT_MIPS_IVERSION: | |
11210 | /* XXX FIXME: */ | |
b34976b6 | 11211 | swap_out_p = FALSE; |
b49e97c9 TS |
11212 | break; |
11213 | ||
11214 | case DT_MIPS_BASE_ADDRESS: | |
11215 | s = output_bfd->sections; | |
11216 | BFD_ASSERT (s != NULL); | |
11217 | dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff; | |
11218 | break; | |
11219 | ||
11220 | case DT_MIPS_LOCAL_GOTNO: | |
11221 | dyn.d_un.d_val = g->local_gotno; | |
11222 | break; | |
11223 | ||
11224 | case DT_MIPS_UNREFEXTNO: | |
11225 | /* The index into the dynamic symbol table which is the | |
11226 | entry of the first external symbol that is not | |
11227 | referenced within the same object. */ | |
11228 | dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1; | |
11229 | break; | |
11230 | ||
11231 | case DT_MIPS_GOTSYM: | |
d222d210 | 11232 | if (htab->global_gotsym) |
b49e97c9 | 11233 | { |
d222d210 | 11234 | dyn.d_un.d_val = htab->global_gotsym->dynindx; |
b49e97c9 TS |
11235 | break; |
11236 | } | |
11237 | /* In case if we don't have global got symbols we default | |
11238 | to setting DT_MIPS_GOTSYM to the same value as | |
11239 | DT_MIPS_SYMTABNO, so we just fall through. */ | |
11240 | ||
11241 | case DT_MIPS_SYMTABNO: | |
11242 | name = ".dynsym"; | |
11243 | elemsize = MIPS_ELF_SYM_SIZE (output_bfd); | |
11244 | s = bfd_get_section_by_name (output_bfd, name); | |
11245 | BFD_ASSERT (s != NULL); | |
11246 | ||
eea6121a | 11247 | dyn.d_un.d_val = s->size / elemsize; |
b49e97c9 TS |
11248 | break; |
11249 | ||
11250 | case DT_MIPS_HIPAGENO: | |
861fb55a | 11251 | dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno; |
b49e97c9 TS |
11252 | break; |
11253 | ||
11254 | case DT_MIPS_RLD_MAP: | |
b4082c70 DD |
11255 | { |
11256 | struct elf_link_hash_entry *h; | |
11257 | h = mips_elf_hash_table (info)->rld_symbol; | |
11258 | if (!h) | |
11259 | { | |
11260 | dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj); | |
11261 | swap_out_p = FALSE; | |
11262 | break; | |
11263 | } | |
11264 | s = h->root.u.def.section; | |
11265 | dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset | |
11266 | + h->root.u.def.value); | |
11267 | } | |
b49e97c9 TS |
11268 | break; |
11269 | ||
11270 | case DT_MIPS_OPTIONS: | |
11271 | s = (bfd_get_section_by_name | |
11272 | (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd))); | |
11273 | dyn.d_un.d_ptr = s->vma; | |
11274 | break; | |
11275 | ||
0a44bf69 RS |
11276 | case DT_RELASZ: |
11277 | BFD_ASSERT (htab->is_vxworks); | |
11278 | /* The count does not include the JUMP_SLOT relocations. */ | |
11279 | if (htab->srelplt) | |
11280 | dyn.d_un.d_val -= htab->srelplt->size; | |
11281 | break; | |
11282 | ||
11283 | case DT_PLTREL: | |
861fb55a DJ |
11284 | BFD_ASSERT (htab->use_plts_and_copy_relocs); |
11285 | if (htab->is_vxworks) | |
11286 | dyn.d_un.d_val = DT_RELA; | |
11287 | else | |
11288 | dyn.d_un.d_val = DT_REL; | |
0a44bf69 RS |
11289 | break; |
11290 | ||
11291 | case DT_PLTRELSZ: | |
861fb55a | 11292 | BFD_ASSERT (htab->use_plts_and_copy_relocs); |
0a44bf69 RS |
11293 | dyn.d_un.d_val = htab->srelplt->size; |
11294 | break; | |
11295 | ||
11296 | case DT_JMPREL: | |
861fb55a DJ |
11297 | BFD_ASSERT (htab->use_plts_and_copy_relocs); |
11298 | dyn.d_un.d_ptr = (htab->srelplt->output_section->vma | |
0a44bf69 RS |
11299 | + htab->srelplt->output_offset); |
11300 | break; | |
11301 | ||
943284cc DJ |
11302 | case DT_TEXTREL: |
11303 | /* If we didn't need any text relocations after all, delete | |
11304 | the dynamic tag. */ | |
11305 | if (!(info->flags & DF_TEXTREL)) | |
11306 | { | |
11307 | dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj); | |
11308 | swap_out_p = FALSE; | |
11309 | } | |
11310 | break; | |
11311 | ||
11312 | case DT_FLAGS: | |
11313 | /* If we didn't need any text relocations after all, clear | |
11314 | DF_TEXTREL from DT_FLAGS. */ | |
11315 | if (!(info->flags & DF_TEXTREL)) | |
11316 | dyn.d_un.d_val &= ~DF_TEXTREL; | |
11317 | else | |
11318 | swap_out_p = FALSE; | |
11319 | break; | |
11320 | ||
b49e97c9 | 11321 | default: |
b34976b6 | 11322 | swap_out_p = FALSE; |
7a2b07ff NS |
11323 | if (htab->is_vxworks |
11324 | && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn)) | |
11325 | swap_out_p = TRUE; | |
b49e97c9 TS |
11326 | break; |
11327 | } | |
11328 | ||
943284cc | 11329 | if (swap_out_p || dyn_skipped) |
b49e97c9 | 11330 | (*get_elf_backend_data (dynobj)->s->swap_dyn_out) |
943284cc DJ |
11331 | (dynobj, &dyn, b - dyn_skipped); |
11332 | ||
11333 | if (dyn_to_skip) | |
11334 | { | |
11335 | dyn_skipped += dyn_to_skip; | |
11336 | dyn_to_skip = 0; | |
11337 | } | |
b49e97c9 | 11338 | } |
943284cc DJ |
11339 | |
11340 | /* Wipe out any trailing entries if we shifted down a dynamic tag. */ | |
11341 | if (dyn_skipped > 0) | |
11342 | memset (b - dyn_skipped, 0, dyn_skipped); | |
b49e97c9 TS |
11343 | } |
11344 | ||
b55fd4d4 DJ |
11345 | if (sgot != NULL && sgot->size > 0 |
11346 | && !bfd_is_abs_section (sgot->output_section)) | |
b49e97c9 | 11347 | { |
0a44bf69 RS |
11348 | if (htab->is_vxworks) |
11349 | { | |
11350 | /* The first entry of the global offset table points to the | |
11351 | ".dynamic" section. The second is initialized by the | |
11352 | loader and contains the shared library identifier. | |
11353 | The third is also initialized by the loader and points | |
11354 | to the lazy resolution stub. */ | |
11355 | MIPS_ELF_PUT_WORD (output_bfd, | |
11356 | sdyn->output_offset + sdyn->output_section->vma, | |
11357 | sgot->contents); | |
11358 | MIPS_ELF_PUT_WORD (output_bfd, 0, | |
11359 | sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); | |
11360 | MIPS_ELF_PUT_WORD (output_bfd, 0, | |
11361 | sgot->contents | |
11362 | + 2 * MIPS_ELF_GOT_SIZE (output_bfd)); | |
11363 | } | |
11364 | else | |
11365 | { | |
11366 | /* The first entry of the global offset table will be filled at | |
11367 | runtime. The second entry will be used by some runtime loaders. | |
11368 | This isn't the case of IRIX rld. */ | |
11369 | MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents); | |
51e38d68 | 11370 | MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd), |
0a44bf69 RS |
11371 | sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); |
11372 | } | |
b49e97c9 | 11373 | |
54938e2a TS |
11374 | elf_section_data (sgot->output_section)->this_hdr.sh_entsize |
11375 | = MIPS_ELF_GOT_SIZE (output_bfd); | |
11376 | } | |
b49e97c9 | 11377 | |
f4416af6 AO |
11378 | /* Generate dynamic relocations for the non-primary gots. */ |
11379 | if (gg != NULL && gg->next) | |
11380 | { | |
11381 | Elf_Internal_Rela rel[3]; | |
11382 | bfd_vma addend = 0; | |
11383 | ||
11384 | memset (rel, 0, sizeof (rel)); | |
11385 | rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32); | |
11386 | ||
11387 | for (g = gg->next; g->next != gg; g = g->next) | |
11388 | { | |
91d6fa6a | 11389 | bfd_vma got_index = g->next->local_gotno + g->next->global_gotno |
0f20cc35 | 11390 | + g->next->tls_gotno; |
f4416af6 | 11391 | |
9719ad41 | 11392 | MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents |
91d6fa6a | 11393 | + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd)); |
51e38d68 RS |
11394 | MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd), |
11395 | sgot->contents | |
91d6fa6a | 11396 | + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd)); |
f4416af6 AO |
11397 | |
11398 | if (! info->shared) | |
11399 | continue; | |
11400 | ||
cb22ccf4 | 11401 | for (; got_index < g->local_gotno; got_index++) |
f4416af6 | 11402 | { |
cb22ccf4 KCY |
11403 | if (got_index >= g->assigned_low_gotno |
11404 | && got_index <= g->assigned_high_gotno) | |
11405 | continue; | |
11406 | ||
f4416af6 | 11407 | rel[0].r_offset = rel[1].r_offset = rel[2].r_offset |
cb22ccf4 | 11408 | = got_index * MIPS_ELF_GOT_SIZE (output_bfd); |
f4416af6 AO |
11409 | if (!(mips_elf_create_dynamic_relocation |
11410 | (output_bfd, info, rel, NULL, | |
11411 | bfd_abs_section_ptr, | |
11412 | 0, &addend, sgot))) | |
11413 | return FALSE; | |
11414 | BFD_ASSERT (addend == 0); | |
11415 | } | |
11416 | } | |
11417 | } | |
11418 | ||
3133ddbf DJ |
11419 | /* The generation of dynamic relocations for the non-primary gots |
11420 | adds more dynamic relocations. We cannot count them until | |
11421 | here. */ | |
11422 | ||
11423 | if (elf_hash_table (info)->dynamic_sections_created) | |
11424 | { | |
11425 | bfd_byte *b; | |
11426 | bfd_boolean swap_out_p; | |
11427 | ||
11428 | BFD_ASSERT (sdyn != NULL); | |
11429 | ||
11430 | for (b = sdyn->contents; | |
11431 | b < sdyn->contents + sdyn->size; | |
11432 | b += MIPS_ELF_DYN_SIZE (dynobj)) | |
11433 | { | |
11434 | Elf_Internal_Dyn dyn; | |
11435 | asection *s; | |
11436 | ||
11437 | /* Read in the current dynamic entry. */ | |
11438 | (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); | |
11439 | ||
11440 | /* Assume that we're going to modify it and write it out. */ | |
11441 | swap_out_p = TRUE; | |
11442 | ||
11443 | switch (dyn.d_tag) | |
11444 | { | |
11445 | case DT_RELSZ: | |
11446 | /* Reduce DT_RELSZ to account for any relocations we | |
11447 | decided not to make. This is for the n64 irix rld, | |
11448 | which doesn't seem to apply any relocations if there | |
11449 | are trailing null entries. */ | |
0a44bf69 | 11450 | s = mips_elf_rel_dyn_section (info, FALSE); |
3133ddbf DJ |
11451 | dyn.d_un.d_val = (s->reloc_count |
11452 | * (ABI_64_P (output_bfd) | |
11453 | ? sizeof (Elf64_Mips_External_Rel) | |
11454 | : sizeof (Elf32_External_Rel))); | |
bcfdf036 RS |
11455 | /* Adjust the section size too. Tools like the prelinker |
11456 | can reasonably expect the values to the same. */ | |
11457 | elf_section_data (s->output_section)->this_hdr.sh_size | |
11458 | = dyn.d_un.d_val; | |
3133ddbf DJ |
11459 | break; |
11460 | ||
11461 | default: | |
11462 | swap_out_p = FALSE; | |
11463 | break; | |
11464 | } | |
11465 | ||
11466 | if (swap_out_p) | |
11467 | (*get_elf_backend_data (dynobj)->s->swap_dyn_out) | |
11468 | (dynobj, &dyn, b); | |
11469 | } | |
11470 | } | |
11471 | ||
b49e97c9 | 11472 | { |
b49e97c9 TS |
11473 | asection *s; |
11474 | Elf32_compact_rel cpt; | |
11475 | ||
b49e97c9 TS |
11476 | if (SGI_COMPAT (output_bfd)) |
11477 | { | |
11478 | /* Write .compact_rel section out. */ | |
3d4d4302 | 11479 | s = bfd_get_linker_section (dynobj, ".compact_rel"); |
b49e97c9 TS |
11480 | if (s != NULL) |
11481 | { | |
11482 | cpt.id1 = 1; | |
11483 | cpt.num = s->reloc_count; | |
11484 | cpt.id2 = 2; | |
11485 | cpt.offset = (s->output_section->filepos | |
11486 | + sizeof (Elf32_External_compact_rel)); | |
11487 | cpt.reserved0 = 0; | |
11488 | cpt.reserved1 = 0; | |
11489 | bfd_elf32_swap_compact_rel_out (output_bfd, &cpt, | |
11490 | ((Elf32_External_compact_rel *) | |
11491 | s->contents)); | |
11492 | ||
11493 | /* Clean up a dummy stub function entry in .text. */ | |
4e41d0d7 | 11494 | if (htab->sstubs != NULL) |
b49e97c9 TS |
11495 | { |
11496 | file_ptr dummy_offset; | |
11497 | ||
4e41d0d7 RS |
11498 | BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size); |
11499 | dummy_offset = htab->sstubs->size - htab->function_stub_size; | |
11500 | memset (htab->sstubs->contents + dummy_offset, 0, | |
5108fc1b | 11501 | htab->function_stub_size); |
b49e97c9 TS |
11502 | } |
11503 | } | |
11504 | } | |
11505 | ||
0a44bf69 RS |
11506 | /* The psABI says that the dynamic relocations must be sorted in |
11507 | increasing order of r_symndx. The VxWorks EABI doesn't require | |
11508 | this, and because the code below handles REL rather than RELA | |
11509 | relocations, using it for VxWorks would be outright harmful. */ | |
11510 | if (!htab->is_vxworks) | |
b49e97c9 | 11511 | { |
0a44bf69 RS |
11512 | s = mips_elf_rel_dyn_section (info, FALSE); |
11513 | if (s != NULL | |
11514 | && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd)) | |
11515 | { | |
11516 | reldyn_sorting_bfd = output_bfd; | |
b49e97c9 | 11517 | |
0a44bf69 RS |
11518 | if (ABI_64_P (output_bfd)) |
11519 | qsort ((Elf64_External_Rel *) s->contents + 1, | |
11520 | s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel), | |
11521 | sort_dynamic_relocs_64); | |
11522 | else | |
11523 | qsort ((Elf32_External_Rel *) s->contents + 1, | |
11524 | s->reloc_count - 1, sizeof (Elf32_External_Rel), | |
11525 | sort_dynamic_relocs); | |
11526 | } | |
b49e97c9 | 11527 | } |
b49e97c9 TS |
11528 | } |
11529 | ||
861fb55a | 11530 | if (htab->splt && htab->splt->size > 0) |
0a44bf69 | 11531 | { |
861fb55a DJ |
11532 | if (htab->is_vxworks) |
11533 | { | |
11534 | if (info->shared) | |
11535 | mips_vxworks_finish_shared_plt (output_bfd, info); | |
11536 | else | |
11537 | mips_vxworks_finish_exec_plt (output_bfd, info); | |
11538 | } | |
0a44bf69 | 11539 | else |
861fb55a DJ |
11540 | { |
11541 | BFD_ASSERT (!info->shared); | |
1bbce132 MR |
11542 | if (!mips_finish_exec_plt (output_bfd, info)) |
11543 | return FALSE; | |
861fb55a | 11544 | } |
0a44bf69 | 11545 | } |
b34976b6 | 11546 | return TRUE; |
b49e97c9 TS |
11547 | } |
11548 | ||
b49e97c9 | 11549 | |
64543e1a RS |
11550 | /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */ |
11551 | ||
11552 | static void | |
9719ad41 | 11553 | mips_set_isa_flags (bfd *abfd) |
b49e97c9 | 11554 | { |
64543e1a | 11555 | flagword val; |
b49e97c9 TS |
11556 | |
11557 | switch (bfd_get_mach (abfd)) | |
11558 | { | |
11559 | default: | |
11560 | case bfd_mach_mips3000: | |
11561 | val = E_MIPS_ARCH_1; | |
11562 | break; | |
11563 | ||
11564 | case bfd_mach_mips3900: | |
11565 | val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900; | |
11566 | break; | |
11567 | ||
11568 | case bfd_mach_mips6000: | |
11569 | val = E_MIPS_ARCH_2; | |
11570 | break; | |
11571 | ||
11572 | case bfd_mach_mips4000: | |
11573 | case bfd_mach_mips4300: | |
11574 | case bfd_mach_mips4400: | |
11575 | case bfd_mach_mips4600: | |
11576 | val = E_MIPS_ARCH_3; | |
11577 | break; | |
11578 | ||
11579 | case bfd_mach_mips4010: | |
11580 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010; | |
11581 | break; | |
11582 | ||
11583 | case bfd_mach_mips4100: | |
11584 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100; | |
11585 | break; | |
11586 | ||
11587 | case bfd_mach_mips4111: | |
11588 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111; | |
11589 | break; | |
11590 | ||
00707a0e RS |
11591 | case bfd_mach_mips4120: |
11592 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120; | |
11593 | break; | |
11594 | ||
b49e97c9 TS |
11595 | case bfd_mach_mips4650: |
11596 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650; | |
11597 | break; | |
11598 | ||
00707a0e RS |
11599 | case bfd_mach_mips5400: |
11600 | val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400; | |
11601 | break; | |
11602 | ||
11603 | case bfd_mach_mips5500: | |
11604 | val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500; | |
11605 | break; | |
11606 | ||
e407c74b NC |
11607 | case bfd_mach_mips5900: |
11608 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900; | |
11609 | break; | |
11610 | ||
0d2e43ed ILT |
11611 | case bfd_mach_mips9000: |
11612 | val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000; | |
11613 | break; | |
11614 | ||
b49e97c9 | 11615 | case bfd_mach_mips5000: |
5a7ea749 | 11616 | case bfd_mach_mips7000: |
b49e97c9 TS |
11617 | case bfd_mach_mips8000: |
11618 | case bfd_mach_mips10000: | |
11619 | case bfd_mach_mips12000: | |
3aa3176b TS |
11620 | case bfd_mach_mips14000: |
11621 | case bfd_mach_mips16000: | |
b49e97c9 TS |
11622 | val = E_MIPS_ARCH_4; |
11623 | break; | |
11624 | ||
11625 | case bfd_mach_mips5: | |
11626 | val = E_MIPS_ARCH_5; | |
11627 | break; | |
11628 | ||
350cc38d MS |
11629 | case bfd_mach_mips_loongson_2e: |
11630 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E; | |
11631 | break; | |
11632 | ||
11633 | case bfd_mach_mips_loongson_2f: | |
11634 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F; | |
11635 | break; | |
11636 | ||
b49e97c9 TS |
11637 | case bfd_mach_mips_sb1: |
11638 | val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1; | |
11639 | break; | |
11640 | ||
d051516a | 11641 | case bfd_mach_mips_loongson_3a: |
4ba154f5 | 11642 | val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A; |
d051516a NC |
11643 | break; |
11644 | ||
6f179bd0 | 11645 | case bfd_mach_mips_octeon: |
dd6a37e7 | 11646 | case bfd_mach_mips_octeonp: |
6f179bd0 AN |
11647 | val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON; |
11648 | break; | |
11649 | ||
52b6b6b9 JM |
11650 | case bfd_mach_mips_xlr: |
11651 | val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR; | |
11652 | break; | |
11653 | ||
432233b3 AP |
11654 | case bfd_mach_mips_octeon2: |
11655 | val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2; | |
11656 | break; | |
11657 | ||
b49e97c9 TS |
11658 | case bfd_mach_mipsisa32: |
11659 | val = E_MIPS_ARCH_32; | |
11660 | break; | |
11661 | ||
11662 | case bfd_mach_mipsisa64: | |
11663 | val = E_MIPS_ARCH_64; | |
af7ee8bf CD |
11664 | break; |
11665 | ||
11666 | case bfd_mach_mipsisa32r2: | |
11667 | val = E_MIPS_ARCH_32R2; | |
11668 | break; | |
5f74bc13 CD |
11669 | |
11670 | case bfd_mach_mipsisa64r2: | |
11671 | val = E_MIPS_ARCH_64R2; | |
11672 | break; | |
b49e97c9 | 11673 | } |
b49e97c9 TS |
11674 | elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); |
11675 | elf_elfheader (abfd)->e_flags |= val; | |
11676 | ||
64543e1a RS |
11677 | } |
11678 | ||
11679 | ||
11680 | /* The final processing done just before writing out a MIPS ELF object | |
11681 | file. This gets the MIPS architecture right based on the machine | |
11682 | number. This is used by both the 32-bit and the 64-bit ABI. */ | |
11683 | ||
11684 | void | |
9719ad41 RS |
11685 | _bfd_mips_elf_final_write_processing (bfd *abfd, |
11686 | bfd_boolean linker ATTRIBUTE_UNUSED) | |
64543e1a RS |
11687 | { |
11688 | unsigned int i; | |
11689 | Elf_Internal_Shdr **hdrpp; | |
11690 | const char *name; | |
11691 | asection *sec; | |
11692 | ||
11693 | /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former | |
11694 | is nonzero. This is for compatibility with old objects, which used | |
11695 | a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */ | |
11696 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0) | |
11697 | mips_set_isa_flags (abfd); | |
11698 | ||
b49e97c9 TS |
11699 | /* Set the sh_info field for .gptab sections and other appropriate |
11700 | info for each special section. */ | |
11701 | for (i = 1, hdrpp = elf_elfsections (abfd) + 1; | |
11702 | i < elf_numsections (abfd); | |
11703 | i++, hdrpp++) | |
11704 | { | |
11705 | switch ((*hdrpp)->sh_type) | |
11706 | { | |
11707 | case SHT_MIPS_MSYM: | |
11708 | case SHT_MIPS_LIBLIST: | |
11709 | sec = bfd_get_section_by_name (abfd, ".dynstr"); | |
11710 | if (sec != NULL) | |
11711 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
11712 | break; | |
11713 | ||
11714 | case SHT_MIPS_GPTAB: | |
11715 | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); | |
11716 | name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); | |
11717 | BFD_ASSERT (name != NULL | |
0112cd26 | 11718 | && CONST_STRNEQ (name, ".gptab.")); |
b49e97c9 TS |
11719 | sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1); |
11720 | BFD_ASSERT (sec != NULL); | |
11721 | (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; | |
11722 | break; | |
11723 | ||
11724 | case SHT_MIPS_CONTENT: | |
11725 | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); | |
11726 | name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); | |
11727 | BFD_ASSERT (name != NULL | |
0112cd26 | 11728 | && CONST_STRNEQ (name, ".MIPS.content")); |
b49e97c9 TS |
11729 | sec = bfd_get_section_by_name (abfd, |
11730 | name + sizeof ".MIPS.content" - 1); | |
11731 | BFD_ASSERT (sec != NULL); | |
11732 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
11733 | break; | |
11734 | ||
11735 | case SHT_MIPS_SYMBOL_LIB: | |
11736 | sec = bfd_get_section_by_name (abfd, ".dynsym"); | |
11737 | if (sec != NULL) | |
11738 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
11739 | sec = bfd_get_section_by_name (abfd, ".liblist"); | |
11740 | if (sec != NULL) | |
11741 | (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; | |
11742 | break; | |
11743 | ||
11744 | case SHT_MIPS_EVENTS: | |
11745 | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); | |
11746 | name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); | |
11747 | BFD_ASSERT (name != NULL); | |
0112cd26 | 11748 | if (CONST_STRNEQ (name, ".MIPS.events")) |
b49e97c9 TS |
11749 | sec = bfd_get_section_by_name (abfd, |
11750 | name + sizeof ".MIPS.events" - 1); | |
11751 | else | |
11752 | { | |
0112cd26 | 11753 | BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel")); |
b49e97c9 TS |
11754 | sec = bfd_get_section_by_name (abfd, |
11755 | (name | |
11756 | + sizeof ".MIPS.post_rel" - 1)); | |
11757 | } | |
11758 | BFD_ASSERT (sec != NULL); | |
11759 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
11760 | break; | |
11761 | ||
11762 | } | |
11763 | } | |
11764 | } | |
11765 | \f | |
8dc1a139 | 11766 | /* When creating an IRIX5 executable, we need REGINFO and RTPROC |
b49e97c9 TS |
11767 | segments. */ |
11768 | ||
11769 | int | |
a6b96beb AM |
11770 | _bfd_mips_elf_additional_program_headers (bfd *abfd, |
11771 | struct bfd_link_info *info ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
11772 | { |
11773 | asection *s; | |
11774 | int ret = 0; | |
11775 | ||
11776 | /* See if we need a PT_MIPS_REGINFO segment. */ | |
11777 | s = bfd_get_section_by_name (abfd, ".reginfo"); | |
11778 | if (s && (s->flags & SEC_LOAD)) | |
11779 | ++ret; | |
11780 | ||
11781 | /* See if we need a PT_MIPS_OPTIONS segment. */ | |
11782 | if (IRIX_COMPAT (abfd) == ict_irix6 | |
11783 | && bfd_get_section_by_name (abfd, | |
11784 | MIPS_ELF_OPTIONS_SECTION_NAME (abfd))) | |
11785 | ++ret; | |
11786 | ||
11787 | /* See if we need a PT_MIPS_RTPROC segment. */ | |
11788 | if (IRIX_COMPAT (abfd) == ict_irix5 | |
11789 | && bfd_get_section_by_name (abfd, ".dynamic") | |
11790 | && bfd_get_section_by_name (abfd, ".mdebug")) | |
11791 | ++ret; | |
11792 | ||
98c904a8 RS |
11793 | /* Allocate a PT_NULL header in dynamic objects. See |
11794 | _bfd_mips_elf_modify_segment_map for details. */ | |
11795 | if (!SGI_COMPAT (abfd) | |
11796 | && bfd_get_section_by_name (abfd, ".dynamic")) | |
11797 | ++ret; | |
11798 | ||
b49e97c9 TS |
11799 | return ret; |
11800 | } | |
11801 | ||
8dc1a139 | 11802 | /* Modify the segment map for an IRIX5 executable. */ |
b49e97c9 | 11803 | |
b34976b6 | 11804 | bfd_boolean |
9719ad41 | 11805 | _bfd_mips_elf_modify_segment_map (bfd *abfd, |
7c8b76cc | 11806 | struct bfd_link_info *info) |
b49e97c9 TS |
11807 | { |
11808 | asection *s; | |
11809 | struct elf_segment_map *m, **pm; | |
11810 | bfd_size_type amt; | |
11811 | ||
11812 | /* If there is a .reginfo section, we need a PT_MIPS_REGINFO | |
11813 | segment. */ | |
11814 | s = bfd_get_section_by_name (abfd, ".reginfo"); | |
11815 | if (s != NULL && (s->flags & SEC_LOAD) != 0) | |
11816 | { | |
12bd6957 | 11817 | for (m = elf_seg_map (abfd); m != NULL; m = m->next) |
b49e97c9 TS |
11818 | if (m->p_type == PT_MIPS_REGINFO) |
11819 | break; | |
11820 | if (m == NULL) | |
11821 | { | |
11822 | amt = sizeof *m; | |
9719ad41 | 11823 | m = bfd_zalloc (abfd, amt); |
b49e97c9 | 11824 | if (m == NULL) |
b34976b6 | 11825 | return FALSE; |
b49e97c9 TS |
11826 | |
11827 | m->p_type = PT_MIPS_REGINFO; | |
11828 | m->count = 1; | |
11829 | m->sections[0] = s; | |
11830 | ||
11831 | /* We want to put it after the PHDR and INTERP segments. */ | |
12bd6957 | 11832 | pm = &elf_seg_map (abfd); |
b49e97c9 TS |
11833 | while (*pm != NULL |
11834 | && ((*pm)->p_type == PT_PHDR | |
11835 | || (*pm)->p_type == PT_INTERP)) | |
11836 | pm = &(*pm)->next; | |
11837 | ||
11838 | m->next = *pm; | |
11839 | *pm = m; | |
11840 | } | |
11841 | } | |
11842 | ||
11843 | /* For IRIX 6, we don't have .mdebug sections, nor does anything but | |
11844 | .dynamic end up in PT_DYNAMIC. However, we do have to insert a | |
98a8deaf | 11845 | PT_MIPS_OPTIONS segment immediately following the program header |
b49e97c9 | 11846 | table. */ |
c1fd6598 AO |
11847 | if (NEWABI_P (abfd) |
11848 | /* On non-IRIX6 new abi, we'll have already created a segment | |
11849 | for this section, so don't create another. I'm not sure this | |
11850 | is not also the case for IRIX 6, but I can't test it right | |
11851 | now. */ | |
11852 | && IRIX_COMPAT (abfd) == ict_irix6) | |
b49e97c9 TS |
11853 | { |
11854 | for (s = abfd->sections; s; s = s->next) | |
11855 | if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS) | |
11856 | break; | |
11857 | ||
11858 | if (s) | |
11859 | { | |
11860 | struct elf_segment_map *options_segment; | |
11861 | ||
12bd6957 | 11862 | pm = &elf_seg_map (abfd); |
98a8deaf RS |
11863 | while (*pm != NULL |
11864 | && ((*pm)->p_type == PT_PHDR | |
11865 | || (*pm)->p_type == PT_INTERP)) | |
11866 | pm = &(*pm)->next; | |
b49e97c9 | 11867 | |
8ded5a0f AM |
11868 | if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS) |
11869 | { | |
11870 | amt = sizeof (struct elf_segment_map); | |
11871 | options_segment = bfd_zalloc (abfd, amt); | |
11872 | options_segment->next = *pm; | |
11873 | options_segment->p_type = PT_MIPS_OPTIONS; | |
11874 | options_segment->p_flags = PF_R; | |
11875 | options_segment->p_flags_valid = TRUE; | |
11876 | options_segment->count = 1; | |
11877 | options_segment->sections[0] = s; | |
11878 | *pm = options_segment; | |
11879 | } | |
b49e97c9 TS |
11880 | } |
11881 | } | |
11882 | else | |
11883 | { | |
11884 | if (IRIX_COMPAT (abfd) == ict_irix5) | |
11885 | { | |
11886 | /* If there are .dynamic and .mdebug sections, we make a room | |
11887 | for the RTPROC header. FIXME: Rewrite without section names. */ | |
11888 | if (bfd_get_section_by_name (abfd, ".interp") == NULL | |
11889 | && bfd_get_section_by_name (abfd, ".dynamic") != NULL | |
11890 | && bfd_get_section_by_name (abfd, ".mdebug") != NULL) | |
11891 | { | |
12bd6957 | 11892 | for (m = elf_seg_map (abfd); m != NULL; m = m->next) |
b49e97c9 TS |
11893 | if (m->p_type == PT_MIPS_RTPROC) |
11894 | break; | |
11895 | if (m == NULL) | |
11896 | { | |
11897 | amt = sizeof *m; | |
9719ad41 | 11898 | m = bfd_zalloc (abfd, amt); |
b49e97c9 | 11899 | if (m == NULL) |
b34976b6 | 11900 | return FALSE; |
b49e97c9 TS |
11901 | |
11902 | m->p_type = PT_MIPS_RTPROC; | |
11903 | ||
11904 | s = bfd_get_section_by_name (abfd, ".rtproc"); | |
11905 | if (s == NULL) | |
11906 | { | |
11907 | m->count = 0; | |
11908 | m->p_flags = 0; | |
11909 | m->p_flags_valid = 1; | |
11910 | } | |
11911 | else | |
11912 | { | |
11913 | m->count = 1; | |
11914 | m->sections[0] = s; | |
11915 | } | |
11916 | ||
11917 | /* We want to put it after the DYNAMIC segment. */ | |
12bd6957 | 11918 | pm = &elf_seg_map (abfd); |
b49e97c9 TS |
11919 | while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC) |
11920 | pm = &(*pm)->next; | |
11921 | if (*pm != NULL) | |
11922 | pm = &(*pm)->next; | |
11923 | ||
11924 | m->next = *pm; | |
11925 | *pm = m; | |
11926 | } | |
11927 | } | |
11928 | } | |
8dc1a139 | 11929 | /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic, |
b49e97c9 TS |
11930 | .dynstr, .dynsym, and .hash sections, and everything in |
11931 | between. */ | |
12bd6957 | 11932 | for (pm = &elf_seg_map (abfd); *pm != NULL; |
b49e97c9 TS |
11933 | pm = &(*pm)->next) |
11934 | if ((*pm)->p_type == PT_DYNAMIC) | |
11935 | break; | |
11936 | m = *pm; | |
f6f62d6f RS |
11937 | /* GNU/Linux binaries do not need the extended PT_DYNAMIC section. |
11938 | glibc's dynamic linker has traditionally derived the number of | |
11939 | tags from the p_filesz field, and sometimes allocates stack | |
11940 | arrays of that size. An overly-big PT_DYNAMIC segment can | |
11941 | be actively harmful in such cases. Making PT_DYNAMIC contain | |
11942 | other sections can also make life hard for the prelinker, | |
11943 | which might move one of the other sections to a different | |
11944 | PT_LOAD segment. */ | |
11945 | if (SGI_COMPAT (abfd) | |
11946 | && m != NULL | |
11947 | && m->count == 1 | |
11948 | && strcmp (m->sections[0]->name, ".dynamic") == 0) | |
b49e97c9 TS |
11949 | { |
11950 | static const char *sec_names[] = | |
11951 | { | |
11952 | ".dynamic", ".dynstr", ".dynsym", ".hash" | |
11953 | }; | |
11954 | bfd_vma low, high; | |
11955 | unsigned int i, c; | |
11956 | struct elf_segment_map *n; | |
11957 | ||
792b4a53 | 11958 | low = ~(bfd_vma) 0; |
b49e97c9 TS |
11959 | high = 0; |
11960 | for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++) | |
11961 | { | |
11962 | s = bfd_get_section_by_name (abfd, sec_names[i]); | |
11963 | if (s != NULL && (s->flags & SEC_LOAD) != 0) | |
11964 | { | |
11965 | bfd_size_type sz; | |
11966 | ||
11967 | if (low > s->vma) | |
11968 | low = s->vma; | |
eea6121a | 11969 | sz = s->size; |
b49e97c9 TS |
11970 | if (high < s->vma + sz) |
11971 | high = s->vma + sz; | |
11972 | } | |
11973 | } | |
11974 | ||
11975 | c = 0; | |
11976 | for (s = abfd->sections; s != NULL; s = s->next) | |
11977 | if ((s->flags & SEC_LOAD) != 0 | |
11978 | && s->vma >= low | |
eea6121a | 11979 | && s->vma + s->size <= high) |
b49e97c9 TS |
11980 | ++c; |
11981 | ||
11982 | amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *); | |
9719ad41 | 11983 | n = bfd_zalloc (abfd, amt); |
b49e97c9 | 11984 | if (n == NULL) |
b34976b6 | 11985 | return FALSE; |
b49e97c9 TS |
11986 | *n = *m; |
11987 | n->count = c; | |
11988 | ||
11989 | i = 0; | |
11990 | for (s = abfd->sections; s != NULL; s = s->next) | |
11991 | { | |
11992 | if ((s->flags & SEC_LOAD) != 0 | |
11993 | && s->vma >= low | |
eea6121a | 11994 | && s->vma + s->size <= high) |
b49e97c9 TS |
11995 | { |
11996 | n->sections[i] = s; | |
11997 | ++i; | |
11998 | } | |
11999 | } | |
12000 | ||
12001 | *pm = n; | |
12002 | } | |
12003 | } | |
12004 | ||
98c904a8 RS |
12005 | /* Allocate a spare program header in dynamic objects so that tools |
12006 | like the prelinker can add an extra PT_LOAD entry. | |
12007 | ||
12008 | If the prelinker needs to make room for a new PT_LOAD entry, its | |
12009 | standard procedure is to move the first (read-only) sections into | |
12010 | the new (writable) segment. However, the MIPS ABI requires | |
12011 | .dynamic to be in a read-only segment, and the section will often | |
12012 | start within sizeof (ElfNN_Phdr) bytes of the last program header. | |
12013 | ||
12014 | Although the prelinker could in principle move .dynamic to a | |
12015 | writable segment, it seems better to allocate a spare program | |
12016 | header instead, and avoid the need to move any sections. | |
12017 | There is a long tradition of allocating spare dynamic tags, | |
12018 | so allocating a spare program header seems like a natural | |
7c8b76cc JM |
12019 | extension. |
12020 | ||
12021 | If INFO is NULL, we may be copying an already prelinked binary | |
12022 | with objcopy or strip, so do not add this header. */ | |
12023 | if (info != NULL | |
12024 | && !SGI_COMPAT (abfd) | |
98c904a8 RS |
12025 | && bfd_get_section_by_name (abfd, ".dynamic")) |
12026 | { | |
12bd6957 | 12027 | for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next) |
98c904a8 RS |
12028 | if ((*pm)->p_type == PT_NULL) |
12029 | break; | |
12030 | if (*pm == NULL) | |
12031 | { | |
12032 | m = bfd_zalloc (abfd, sizeof (*m)); | |
12033 | if (m == NULL) | |
12034 | return FALSE; | |
12035 | ||
12036 | m->p_type = PT_NULL; | |
12037 | *pm = m; | |
12038 | } | |
12039 | } | |
12040 | ||
b34976b6 | 12041 | return TRUE; |
b49e97c9 TS |
12042 | } |
12043 | \f | |
12044 | /* Return the section that should be marked against GC for a given | |
12045 | relocation. */ | |
12046 | ||
12047 | asection * | |
9719ad41 | 12048 | _bfd_mips_elf_gc_mark_hook (asection *sec, |
07adf181 | 12049 | struct bfd_link_info *info, |
9719ad41 RS |
12050 | Elf_Internal_Rela *rel, |
12051 | struct elf_link_hash_entry *h, | |
12052 | Elf_Internal_Sym *sym) | |
b49e97c9 TS |
12053 | { |
12054 | /* ??? Do mips16 stub sections need to be handled special? */ | |
12055 | ||
12056 | if (h != NULL) | |
07adf181 AM |
12057 | switch (ELF_R_TYPE (sec->owner, rel->r_info)) |
12058 | { | |
12059 | case R_MIPS_GNU_VTINHERIT: | |
12060 | case R_MIPS_GNU_VTENTRY: | |
12061 | return NULL; | |
12062 | } | |
b49e97c9 | 12063 | |
07adf181 | 12064 | return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); |
b49e97c9 TS |
12065 | } |
12066 | ||
12067 | /* Update the got entry reference counts for the section being removed. */ | |
12068 | ||
b34976b6 | 12069 | bfd_boolean |
9719ad41 RS |
12070 | _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED, |
12071 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
12072 | asection *sec ATTRIBUTE_UNUSED, | |
12073 | const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
12074 | { |
12075 | #if 0 | |
12076 | Elf_Internal_Shdr *symtab_hdr; | |
12077 | struct elf_link_hash_entry **sym_hashes; | |
12078 | bfd_signed_vma *local_got_refcounts; | |
12079 | const Elf_Internal_Rela *rel, *relend; | |
12080 | unsigned long r_symndx; | |
12081 | struct elf_link_hash_entry *h; | |
12082 | ||
7dda2462 TG |
12083 | if (info->relocatable) |
12084 | return TRUE; | |
12085 | ||
b49e97c9 TS |
12086 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
12087 | sym_hashes = elf_sym_hashes (abfd); | |
12088 | local_got_refcounts = elf_local_got_refcounts (abfd); | |
12089 | ||
12090 | relend = relocs + sec->reloc_count; | |
12091 | for (rel = relocs; rel < relend; rel++) | |
12092 | switch (ELF_R_TYPE (abfd, rel->r_info)) | |
12093 | { | |
738e5348 RS |
12094 | case R_MIPS16_GOT16: |
12095 | case R_MIPS16_CALL16: | |
b49e97c9 TS |
12096 | case R_MIPS_GOT16: |
12097 | case R_MIPS_CALL16: | |
12098 | case R_MIPS_CALL_HI16: | |
12099 | case R_MIPS_CALL_LO16: | |
12100 | case R_MIPS_GOT_HI16: | |
12101 | case R_MIPS_GOT_LO16: | |
4a14403c TS |
12102 | case R_MIPS_GOT_DISP: |
12103 | case R_MIPS_GOT_PAGE: | |
12104 | case R_MIPS_GOT_OFST: | |
df58fc94 RS |
12105 | case R_MICROMIPS_GOT16: |
12106 | case R_MICROMIPS_CALL16: | |
12107 | case R_MICROMIPS_CALL_HI16: | |
12108 | case R_MICROMIPS_CALL_LO16: | |
12109 | case R_MICROMIPS_GOT_HI16: | |
12110 | case R_MICROMIPS_GOT_LO16: | |
12111 | case R_MICROMIPS_GOT_DISP: | |
12112 | case R_MICROMIPS_GOT_PAGE: | |
12113 | case R_MICROMIPS_GOT_OFST: | |
b49e97c9 TS |
12114 | /* ??? It would seem that the existing MIPS code does no sort |
12115 | of reference counting or whatnot on its GOT and PLT entries, | |
12116 | so it is not possible to garbage collect them at this time. */ | |
12117 | break; | |
12118 | ||
12119 | default: | |
12120 | break; | |
12121 | } | |
12122 | #endif | |
12123 | ||
b34976b6 | 12124 | return TRUE; |
b49e97c9 TS |
12125 | } |
12126 | \f | |
12127 | /* Copy data from a MIPS ELF indirect symbol to its direct symbol, | |
12128 | hiding the old indirect symbol. Process additional relocation | |
12129 | information. Also called for weakdefs, in which case we just let | |
12130 | _bfd_elf_link_hash_copy_indirect copy the flags for us. */ | |
12131 | ||
12132 | void | |
fcfa13d2 | 12133 | _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info, |
9719ad41 RS |
12134 | struct elf_link_hash_entry *dir, |
12135 | struct elf_link_hash_entry *ind) | |
b49e97c9 TS |
12136 | { |
12137 | struct mips_elf_link_hash_entry *dirmips, *indmips; | |
12138 | ||
fcfa13d2 | 12139 | _bfd_elf_link_hash_copy_indirect (info, dir, ind); |
b49e97c9 | 12140 | |
861fb55a DJ |
12141 | dirmips = (struct mips_elf_link_hash_entry *) dir; |
12142 | indmips = (struct mips_elf_link_hash_entry *) ind; | |
12143 | /* Any absolute non-dynamic relocations against an indirect or weak | |
12144 | definition will be against the target symbol. */ | |
12145 | if (indmips->has_static_relocs) | |
12146 | dirmips->has_static_relocs = TRUE; | |
12147 | ||
b49e97c9 TS |
12148 | if (ind->root.type != bfd_link_hash_indirect) |
12149 | return; | |
12150 | ||
b49e97c9 TS |
12151 | dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs; |
12152 | if (indmips->readonly_reloc) | |
b34976b6 | 12153 | dirmips->readonly_reloc = TRUE; |
b49e97c9 | 12154 | if (indmips->no_fn_stub) |
b34976b6 | 12155 | dirmips->no_fn_stub = TRUE; |
61b0a4af RS |
12156 | if (indmips->fn_stub) |
12157 | { | |
12158 | dirmips->fn_stub = indmips->fn_stub; | |
12159 | indmips->fn_stub = NULL; | |
12160 | } | |
12161 | if (indmips->need_fn_stub) | |
12162 | { | |
12163 | dirmips->need_fn_stub = TRUE; | |
12164 | indmips->need_fn_stub = FALSE; | |
12165 | } | |
12166 | if (indmips->call_stub) | |
12167 | { | |
12168 | dirmips->call_stub = indmips->call_stub; | |
12169 | indmips->call_stub = NULL; | |
12170 | } | |
12171 | if (indmips->call_fp_stub) | |
12172 | { | |
12173 | dirmips->call_fp_stub = indmips->call_fp_stub; | |
12174 | indmips->call_fp_stub = NULL; | |
12175 | } | |
634835ae RS |
12176 | if (indmips->global_got_area < dirmips->global_got_area) |
12177 | dirmips->global_got_area = indmips->global_got_area; | |
12178 | if (indmips->global_got_area < GGA_NONE) | |
12179 | indmips->global_got_area = GGA_NONE; | |
861fb55a DJ |
12180 | if (indmips->has_nonpic_branches) |
12181 | dirmips->has_nonpic_branches = TRUE; | |
b49e97c9 | 12182 | } |
b49e97c9 | 12183 | \f |
d01414a5 TS |
12184 | #define PDR_SIZE 32 |
12185 | ||
b34976b6 | 12186 | bfd_boolean |
9719ad41 RS |
12187 | _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie, |
12188 | struct bfd_link_info *info) | |
d01414a5 TS |
12189 | { |
12190 | asection *o; | |
b34976b6 | 12191 | bfd_boolean ret = FALSE; |
d01414a5 TS |
12192 | unsigned char *tdata; |
12193 | size_t i, skip; | |
12194 | ||
12195 | o = bfd_get_section_by_name (abfd, ".pdr"); | |
12196 | if (! o) | |
b34976b6 | 12197 | return FALSE; |
eea6121a | 12198 | if (o->size == 0) |
b34976b6 | 12199 | return FALSE; |
eea6121a | 12200 | if (o->size % PDR_SIZE != 0) |
b34976b6 | 12201 | return FALSE; |
d01414a5 TS |
12202 | if (o->output_section != NULL |
12203 | && bfd_is_abs_section (o->output_section)) | |
b34976b6 | 12204 | return FALSE; |
d01414a5 | 12205 | |
eea6121a | 12206 | tdata = bfd_zmalloc (o->size / PDR_SIZE); |
d01414a5 | 12207 | if (! tdata) |
b34976b6 | 12208 | return FALSE; |
d01414a5 | 12209 | |
9719ad41 | 12210 | cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, |
45d6a902 | 12211 | info->keep_memory); |
d01414a5 TS |
12212 | if (!cookie->rels) |
12213 | { | |
12214 | free (tdata); | |
b34976b6 | 12215 | return FALSE; |
d01414a5 TS |
12216 | } |
12217 | ||
12218 | cookie->rel = cookie->rels; | |
12219 | cookie->relend = cookie->rels + o->reloc_count; | |
12220 | ||
eea6121a | 12221 | for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++) |
d01414a5 | 12222 | { |
c152c796 | 12223 | if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie)) |
d01414a5 TS |
12224 | { |
12225 | tdata[i] = 1; | |
12226 | skip ++; | |
12227 | } | |
12228 | } | |
12229 | ||
12230 | if (skip != 0) | |
12231 | { | |
f0abc2a1 | 12232 | mips_elf_section_data (o)->u.tdata = tdata; |
eea6121a | 12233 | o->size -= skip * PDR_SIZE; |
b34976b6 | 12234 | ret = TRUE; |
d01414a5 TS |
12235 | } |
12236 | else | |
12237 | free (tdata); | |
12238 | ||
12239 | if (! info->keep_memory) | |
12240 | free (cookie->rels); | |
12241 | ||
12242 | return ret; | |
12243 | } | |
12244 | ||
b34976b6 | 12245 | bfd_boolean |
9719ad41 | 12246 | _bfd_mips_elf_ignore_discarded_relocs (asection *sec) |
53bfd6b4 MR |
12247 | { |
12248 | if (strcmp (sec->name, ".pdr") == 0) | |
b34976b6 AM |
12249 | return TRUE; |
12250 | return FALSE; | |
53bfd6b4 | 12251 | } |
d01414a5 | 12252 | |
b34976b6 | 12253 | bfd_boolean |
c7b8f16e JB |
12254 | _bfd_mips_elf_write_section (bfd *output_bfd, |
12255 | struct bfd_link_info *link_info ATTRIBUTE_UNUSED, | |
12256 | asection *sec, bfd_byte *contents) | |
d01414a5 TS |
12257 | { |
12258 | bfd_byte *to, *from, *end; | |
12259 | int i; | |
12260 | ||
12261 | if (strcmp (sec->name, ".pdr") != 0) | |
b34976b6 | 12262 | return FALSE; |
d01414a5 | 12263 | |
f0abc2a1 | 12264 | if (mips_elf_section_data (sec)->u.tdata == NULL) |
b34976b6 | 12265 | return FALSE; |
d01414a5 TS |
12266 | |
12267 | to = contents; | |
eea6121a | 12268 | end = contents + sec->size; |
d01414a5 TS |
12269 | for (from = contents, i = 0; |
12270 | from < end; | |
12271 | from += PDR_SIZE, i++) | |
12272 | { | |
f0abc2a1 | 12273 | if ((mips_elf_section_data (sec)->u.tdata)[i] == 1) |
d01414a5 TS |
12274 | continue; |
12275 | if (to != from) | |
12276 | memcpy (to, from, PDR_SIZE); | |
12277 | to += PDR_SIZE; | |
12278 | } | |
12279 | bfd_set_section_contents (output_bfd, sec->output_section, contents, | |
eea6121a | 12280 | sec->output_offset, sec->size); |
b34976b6 | 12281 | return TRUE; |
d01414a5 | 12282 | } |
53bfd6b4 | 12283 | \f |
df58fc94 RS |
12284 | /* microMIPS code retains local labels for linker relaxation. Omit them |
12285 | from output by default for clarity. */ | |
12286 | ||
12287 | bfd_boolean | |
12288 | _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym) | |
12289 | { | |
12290 | return _bfd_elf_is_local_label_name (abfd, sym->name); | |
12291 | } | |
12292 | ||
b49e97c9 TS |
12293 | /* MIPS ELF uses a special find_nearest_line routine in order the |
12294 | handle the ECOFF debugging information. */ | |
12295 | ||
12296 | struct mips_elf_find_line | |
12297 | { | |
12298 | struct ecoff_debug_info d; | |
12299 | struct ecoff_find_line i; | |
12300 | }; | |
12301 | ||
b34976b6 | 12302 | bfd_boolean |
9719ad41 RS |
12303 | _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section, |
12304 | asymbol **symbols, bfd_vma offset, | |
12305 | const char **filename_ptr, | |
12306 | const char **functionname_ptr, | |
12307 | unsigned int *line_ptr) | |
b49e97c9 TS |
12308 | { |
12309 | asection *msec; | |
12310 | ||
12311 | if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset, | |
12312 | filename_ptr, functionname_ptr, | |
12313 | line_ptr)) | |
b34976b6 | 12314 | return TRUE; |
b49e97c9 | 12315 | |
fc28f9aa TG |
12316 | if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections, |
12317 | section, symbols, offset, | |
b49e97c9 | 12318 | filename_ptr, functionname_ptr, |
9b8d1a36 | 12319 | line_ptr, NULL, ABI_64_P (abfd) ? 8 : 0, |
b49e97c9 | 12320 | &elf_tdata (abfd)->dwarf2_find_line_info)) |
b34976b6 | 12321 | return TRUE; |
b49e97c9 TS |
12322 | |
12323 | msec = bfd_get_section_by_name (abfd, ".mdebug"); | |
12324 | if (msec != NULL) | |
12325 | { | |
12326 | flagword origflags; | |
12327 | struct mips_elf_find_line *fi; | |
12328 | const struct ecoff_debug_swap * const swap = | |
12329 | get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; | |
12330 | ||
12331 | /* If we are called during a link, mips_elf_final_link may have | |
12332 | cleared the SEC_HAS_CONTENTS field. We force it back on here | |
12333 | if appropriate (which it normally will be). */ | |
12334 | origflags = msec->flags; | |
12335 | if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS) | |
12336 | msec->flags |= SEC_HAS_CONTENTS; | |
12337 | ||
698600e4 | 12338 | fi = mips_elf_tdata (abfd)->find_line_info; |
b49e97c9 TS |
12339 | if (fi == NULL) |
12340 | { | |
12341 | bfd_size_type external_fdr_size; | |
12342 | char *fraw_src; | |
12343 | char *fraw_end; | |
12344 | struct fdr *fdr_ptr; | |
12345 | bfd_size_type amt = sizeof (struct mips_elf_find_line); | |
12346 | ||
9719ad41 | 12347 | fi = bfd_zalloc (abfd, amt); |
b49e97c9 TS |
12348 | if (fi == NULL) |
12349 | { | |
12350 | msec->flags = origflags; | |
b34976b6 | 12351 | return FALSE; |
b49e97c9 TS |
12352 | } |
12353 | ||
12354 | if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d)) | |
12355 | { | |
12356 | msec->flags = origflags; | |
b34976b6 | 12357 | return FALSE; |
b49e97c9 TS |
12358 | } |
12359 | ||
12360 | /* Swap in the FDR information. */ | |
12361 | amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr); | |
9719ad41 | 12362 | fi->d.fdr = bfd_alloc (abfd, amt); |
b49e97c9 TS |
12363 | if (fi->d.fdr == NULL) |
12364 | { | |
12365 | msec->flags = origflags; | |
b34976b6 | 12366 | return FALSE; |
b49e97c9 TS |
12367 | } |
12368 | external_fdr_size = swap->external_fdr_size; | |
12369 | fdr_ptr = fi->d.fdr; | |
12370 | fraw_src = (char *) fi->d.external_fdr; | |
12371 | fraw_end = (fraw_src | |
12372 | + fi->d.symbolic_header.ifdMax * external_fdr_size); | |
12373 | for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++) | |
9719ad41 | 12374 | (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr); |
b49e97c9 | 12375 | |
698600e4 | 12376 | mips_elf_tdata (abfd)->find_line_info = fi; |
b49e97c9 TS |
12377 | |
12378 | /* Note that we don't bother to ever free this information. | |
12379 | find_nearest_line is either called all the time, as in | |
12380 | objdump -l, so the information should be saved, or it is | |
12381 | rarely called, as in ld error messages, so the memory | |
12382 | wasted is unimportant. Still, it would probably be a | |
12383 | good idea for free_cached_info to throw it away. */ | |
12384 | } | |
12385 | ||
12386 | if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap, | |
12387 | &fi->i, filename_ptr, functionname_ptr, | |
12388 | line_ptr)) | |
12389 | { | |
12390 | msec->flags = origflags; | |
b34976b6 | 12391 | return TRUE; |
b49e97c9 TS |
12392 | } |
12393 | ||
12394 | msec->flags = origflags; | |
12395 | } | |
12396 | ||
12397 | /* Fall back on the generic ELF find_nearest_line routine. */ | |
12398 | ||
12399 | return _bfd_elf_find_nearest_line (abfd, section, symbols, offset, | |
12400 | filename_ptr, functionname_ptr, | |
12401 | line_ptr); | |
12402 | } | |
4ab527b0 FF |
12403 | |
12404 | bfd_boolean | |
12405 | _bfd_mips_elf_find_inliner_info (bfd *abfd, | |
12406 | const char **filename_ptr, | |
12407 | const char **functionname_ptr, | |
12408 | unsigned int *line_ptr) | |
12409 | { | |
12410 | bfd_boolean found; | |
12411 | found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr, | |
12412 | functionname_ptr, line_ptr, | |
12413 | & elf_tdata (abfd)->dwarf2_find_line_info); | |
12414 | return found; | |
12415 | } | |
12416 | ||
b49e97c9 TS |
12417 | \f |
12418 | /* When are writing out the .options or .MIPS.options section, | |
12419 | remember the bytes we are writing out, so that we can install the | |
12420 | GP value in the section_processing routine. */ | |
12421 | ||
b34976b6 | 12422 | bfd_boolean |
9719ad41 RS |
12423 | _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section, |
12424 | const void *location, | |
12425 | file_ptr offset, bfd_size_type count) | |
b49e97c9 | 12426 | { |
cc2e31b9 | 12427 | if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name)) |
b49e97c9 TS |
12428 | { |
12429 | bfd_byte *c; | |
12430 | ||
12431 | if (elf_section_data (section) == NULL) | |
12432 | { | |
12433 | bfd_size_type amt = sizeof (struct bfd_elf_section_data); | |
9719ad41 | 12434 | section->used_by_bfd = bfd_zalloc (abfd, amt); |
b49e97c9 | 12435 | if (elf_section_data (section) == NULL) |
b34976b6 | 12436 | return FALSE; |
b49e97c9 | 12437 | } |
f0abc2a1 | 12438 | c = mips_elf_section_data (section)->u.tdata; |
b49e97c9 TS |
12439 | if (c == NULL) |
12440 | { | |
eea6121a | 12441 | c = bfd_zalloc (abfd, section->size); |
b49e97c9 | 12442 | if (c == NULL) |
b34976b6 | 12443 | return FALSE; |
f0abc2a1 | 12444 | mips_elf_section_data (section)->u.tdata = c; |
b49e97c9 TS |
12445 | } |
12446 | ||
9719ad41 | 12447 | memcpy (c + offset, location, count); |
b49e97c9 TS |
12448 | } |
12449 | ||
12450 | return _bfd_elf_set_section_contents (abfd, section, location, offset, | |
12451 | count); | |
12452 | } | |
12453 | ||
12454 | /* This is almost identical to bfd_generic_get_... except that some | |
12455 | MIPS relocations need to be handled specially. Sigh. */ | |
12456 | ||
12457 | bfd_byte * | |
9719ad41 RS |
12458 | _bfd_elf_mips_get_relocated_section_contents |
12459 | (bfd *abfd, | |
12460 | struct bfd_link_info *link_info, | |
12461 | struct bfd_link_order *link_order, | |
12462 | bfd_byte *data, | |
12463 | bfd_boolean relocatable, | |
12464 | asymbol **symbols) | |
b49e97c9 TS |
12465 | { |
12466 | /* Get enough memory to hold the stuff */ | |
12467 | bfd *input_bfd = link_order->u.indirect.section->owner; | |
12468 | asection *input_section = link_order->u.indirect.section; | |
eea6121a | 12469 | bfd_size_type sz; |
b49e97c9 TS |
12470 | |
12471 | long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section); | |
12472 | arelent **reloc_vector = NULL; | |
12473 | long reloc_count; | |
12474 | ||
12475 | if (reloc_size < 0) | |
12476 | goto error_return; | |
12477 | ||
9719ad41 | 12478 | reloc_vector = bfd_malloc (reloc_size); |
b49e97c9 TS |
12479 | if (reloc_vector == NULL && reloc_size != 0) |
12480 | goto error_return; | |
12481 | ||
12482 | /* read in the section */ | |
eea6121a AM |
12483 | sz = input_section->rawsize ? input_section->rawsize : input_section->size; |
12484 | if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz)) | |
b49e97c9 TS |
12485 | goto error_return; |
12486 | ||
b49e97c9 TS |
12487 | reloc_count = bfd_canonicalize_reloc (input_bfd, |
12488 | input_section, | |
12489 | reloc_vector, | |
12490 | symbols); | |
12491 | if (reloc_count < 0) | |
12492 | goto error_return; | |
12493 | ||
12494 | if (reloc_count > 0) | |
12495 | { | |
12496 | arelent **parent; | |
12497 | /* for mips */ | |
12498 | int gp_found; | |
12499 | bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */ | |
12500 | ||
12501 | { | |
12502 | struct bfd_hash_entry *h; | |
12503 | struct bfd_link_hash_entry *lh; | |
12504 | /* Skip all this stuff if we aren't mixing formats. */ | |
12505 | if (abfd && input_bfd | |
12506 | && abfd->xvec == input_bfd->xvec) | |
12507 | lh = 0; | |
12508 | else | |
12509 | { | |
b34976b6 | 12510 | h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE); |
b49e97c9 TS |
12511 | lh = (struct bfd_link_hash_entry *) h; |
12512 | } | |
12513 | lookup: | |
12514 | if (lh) | |
12515 | { | |
12516 | switch (lh->type) | |
12517 | { | |
12518 | case bfd_link_hash_undefined: | |
12519 | case bfd_link_hash_undefweak: | |
12520 | case bfd_link_hash_common: | |
12521 | gp_found = 0; | |
12522 | break; | |
12523 | case bfd_link_hash_defined: | |
12524 | case bfd_link_hash_defweak: | |
12525 | gp_found = 1; | |
12526 | gp = lh->u.def.value; | |
12527 | break; | |
12528 | case bfd_link_hash_indirect: | |
12529 | case bfd_link_hash_warning: | |
12530 | lh = lh->u.i.link; | |
12531 | /* @@FIXME ignoring warning for now */ | |
12532 | goto lookup; | |
12533 | case bfd_link_hash_new: | |
12534 | default: | |
12535 | abort (); | |
12536 | } | |
12537 | } | |
12538 | else | |
12539 | gp_found = 0; | |
12540 | } | |
12541 | /* end mips */ | |
9719ad41 | 12542 | for (parent = reloc_vector; *parent != NULL; parent++) |
b49e97c9 | 12543 | { |
9719ad41 | 12544 | char *error_message = NULL; |
b49e97c9 TS |
12545 | bfd_reloc_status_type r; |
12546 | ||
12547 | /* Specific to MIPS: Deal with relocation types that require | |
12548 | knowing the gp of the output bfd. */ | |
12549 | asymbol *sym = *(*parent)->sym_ptr_ptr; | |
b49e97c9 | 12550 | |
8236346f EC |
12551 | /* If we've managed to find the gp and have a special |
12552 | function for the relocation then go ahead, else default | |
12553 | to the generic handling. */ | |
12554 | if (gp_found | |
12555 | && (*parent)->howto->special_function | |
12556 | == _bfd_mips_elf32_gprel16_reloc) | |
12557 | r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent, | |
12558 | input_section, relocatable, | |
12559 | data, gp); | |
12560 | else | |
86324f90 | 12561 | r = bfd_perform_relocation (input_bfd, *parent, data, |
8236346f EC |
12562 | input_section, |
12563 | relocatable ? abfd : NULL, | |
12564 | &error_message); | |
b49e97c9 | 12565 | |
1049f94e | 12566 | if (relocatable) |
b49e97c9 TS |
12567 | { |
12568 | asection *os = input_section->output_section; | |
12569 | ||
12570 | /* A partial link, so keep the relocs */ | |
12571 | os->orelocation[os->reloc_count] = *parent; | |
12572 | os->reloc_count++; | |
12573 | } | |
12574 | ||
12575 | if (r != bfd_reloc_ok) | |
12576 | { | |
12577 | switch (r) | |
12578 | { | |
12579 | case bfd_reloc_undefined: | |
12580 | if (!((*link_info->callbacks->undefined_symbol) | |
12581 | (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr), | |
5e2b0d47 | 12582 | input_bfd, input_section, (*parent)->address, TRUE))) |
b49e97c9 TS |
12583 | goto error_return; |
12584 | break; | |
12585 | case bfd_reloc_dangerous: | |
9719ad41 | 12586 | BFD_ASSERT (error_message != NULL); |
b49e97c9 TS |
12587 | if (!((*link_info->callbacks->reloc_dangerous) |
12588 | (link_info, error_message, input_bfd, input_section, | |
12589 | (*parent)->address))) | |
12590 | goto error_return; | |
12591 | break; | |
12592 | case bfd_reloc_overflow: | |
12593 | if (!((*link_info->callbacks->reloc_overflow) | |
dfeffb9f L |
12594 | (link_info, NULL, |
12595 | bfd_asymbol_name (*(*parent)->sym_ptr_ptr), | |
b49e97c9 TS |
12596 | (*parent)->howto->name, (*parent)->addend, |
12597 | input_bfd, input_section, (*parent)->address))) | |
12598 | goto error_return; | |
12599 | break; | |
12600 | case bfd_reloc_outofrange: | |
12601 | default: | |
12602 | abort (); | |
12603 | break; | |
12604 | } | |
12605 | ||
12606 | } | |
12607 | } | |
12608 | } | |
12609 | if (reloc_vector != NULL) | |
12610 | free (reloc_vector); | |
12611 | return data; | |
12612 | ||
12613 | error_return: | |
12614 | if (reloc_vector != NULL) | |
12615 | free (reloc_vector); | |
12616 | return NULL; | |
12617 | } | |
12618 | \f | |
df58fc94 RS |
12619 | static bfd_boolean |
12620 | mips_elf_relax_delete_bytes (bfd *abfd, | |
12621 | asection *sec, bfd_vma addr, int count) | |
12622 | { | |
12623 | Elf_Internal_Shdr *symtab_hdr; | |
12624 | unsigned int sec_shndx; | |
12625 | bfd_byte *contents; | |
12626 | Elf_Internal_Rela *irel, *irelend; | |
12627 | Elf_Internal_Sym *isym; | |
12628 | Elf_Internal_Sym *isymend; | |
12629 | struct elf_link_hash_entry **sym_hashes; | |
12630 | struct elf_link_hash_entry **end_hashes; | |
12631 | struct elf_link_hash_entry **start_hashes; | |
12632 | unsigned int symcount; | |
12633 | ||
12634 | sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); | |
12635 | contents = elf_section_data (sec)->this_hdr.contents; | |
12636 | ||
12637 | irel = elf_section_data (sec)->relocs; | |
12638 | irelend = irel + sec->reloc_count; | |
12639 | ||
12640 | /* Actually delete the bytes. */ | |
12641 | memmove (contents + addr, contents + addr + count, | |
12642 | (size_t) (sec->size - addr - count)); | |
12643 | sec->size -= count; | |
12644 | ||
12645 | /* Adjust all the relocs. */ | |
12646 | for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++) | |
12647 | { | |
12648 | /* Get the new reloc address. */ | |
12649 | if (irel->r_offset > addr) | |
12650 | irel->r_offset -= count; | |
12651 | } | |
12652 | ||
12653 | BFD_ASSERT (addr % 2 == 0); | |
12654 | BFD_ASSERT (count % 2 == 0); | |
12655 | ||
12656 | /* Adjust the local symbols defined in this section. */ | |
12657 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
12658 | isym = (Elf_Internal_Sym *) symtab_hdr->contents; | |
12659 | for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++) | |
2309ddf2 | 12660 | if (isym->st_shndx == sec_shndx && isym->st_value > addr) |
df58fc94 RS |
12661 | isym->st_value -= count; |
12662 | ||
12663 | /* Now adjust the global symbols defined in this section. */ | |
12664 | symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) | |
12665 | - symtab_hdr->sh_info); | |
12666 | sym_hashes = start_hashes = elf_sym_hashes (abfd); | |
12667 | end_hashes = sym_hashes + symcount; | |
12668 | ||
12669 | for (; sym_hashes < end_hashes; sym_hashes++) | |
12670 | { | |
12671 | struct elf_link_hash_entry *sym_hash = *sym_hashes; | |
12672 | ||
12673 | if ((sym_hash->root.type == bfd_link_hash_defined | |
12674 | || sym_hash->root.type == bfd_link_hash_defweak) | |
12675 | && sym_hash->root.u.def.section == sec) | |
12676 | { | |
2309ddf2 | 12677 | bfd_vma value = sym_hash->root.u.def.value; |
df58fc94 | 12678 | |
df58fc94 RS |
12679 | if (ELF_ST_IS_MICROMIPS (sym_hash->other)) |
12680 | value &= MINUS_TWO; | |
12681 | if (value > addr) | |
12682 | sym_hash->root.u.def.value -= count; | |
12683 | } | |
12684 | } | |
12685 | ||
12686 | return TRUE; | |
12687 | } | |
12688 | ||
12689 | ||
12690 | /* Opcodes needed for microMIPS relaxation as found in | |
12691 | opcodes/micromips-opc.c. */ | |
12692 | ||
12693 | struct opcode_descriptor { | |
12694 | unsigned long match; | |
12695 | unsigned long mask; | |
12696 | }; | |
12697 | ||
12698 | /* The $ra register aka $31. */ | |
12699 | ||
12700 | #define RA 31 | |
12701 | ||
12702 | /* 32-bit instruction format register fields. */ | |
12703 | ||
12704 | #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f) | |
12705 | #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f) | |
12706 | ||
12707 | /* Check if a 5-bit register index can be abbreviated to 3 bits. */ | |
12708 | ||
12709 | #define OP16_VALID_REG(r) \ | |
12710 | ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17)) | |
12711 | ||
12712 | ||
12713 | /* 32-bit and 16-bit branches. */ | |
12714 | ||
12715 | static const struct opcode_descriptor b_insns_32[] = { | |
12716 | { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */ | |
12717 | { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */ | |
12718 | { 0, 0 } /* End marker for find_match(). */ | |
12719 | }; | |
12720 | ||
12721 | static const struct opcode_descriptor bc_insn_32 = | |
12722 | { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 }; | |
12723 | ||
12724 | static const struct opcode_descriptor bz_insn_32 = | |
12725 | { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 }; | |
12726 | ||
12727 | static const struct opcode_descriptor bzal_insn_32 = | |
12728 | { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 }; | |
12729 | ||
12730 | static const struct opcode_descriptor beq_insn_32 = | |
12731 | { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 }; | |
12732 | ||
12733 | static const struct opcode_descriptor b_insn_16 = | |
12734 | { /* "b", "mD", */ 0xcc00, 0xfc00 }; | |
12735 | ||
12736 | static const struct opcode_descriptor bz_insn_16 = | |
c088dedf | 12737 | { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 }; |
df58fc94 RS |
12738 | |
12739 | ||
12740 | /* 32-bit and 16-bit branch EQ and NE zero. */ | |
12741 | ||
12742 | /* NOTE: All opcode tables have BEQ/BNE in the same order: first the | |
12743 | eq and second the ne. This convention is used when replacing a | |
12744 | 32-bit BEQ/BNE with the 16-bit version. */ | |
12745 | ||
12746 | #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16) | |
12747 | ||
12748 | static const struct opcode_descriptor bz_rs_insns_32[] = { | |
12749 | { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 }, | |
12750 | { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 }, | |
12751 | { 0, 0 } /* End marker for find_match(). */ | |
12752 | }; | |
12753 | ||
12754 | static const struct opcode_descriptor bz_rt_insns_32[] = { | |
12755 | { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 }, | |
12756 | { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 }, | |
12757 | { 0, 0 } /* End marker for find_match(). */ | |
12758 | }; | |
12759 | ||
12760 | static const struct opcode_descriptor bzc_insns_32[] = { | |
12761 | { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 }, | |
12762 | { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 }, | |
12763 | { 0, 0 } /* End marker for find_match(). */ | |
12764 | }; | |
12765 | ||
12766 | static const struct opcode_descriptor bz_insns_16[] = { | |
12767 | { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 }, | |
12768 | { /* "bnez", "md,mE", */ 0xac00, 0xfc00 }, | |
12769 | { 0, 0 } /* End marker for find_match(). */ | |
12770 | }; | |
12771 | ||
12772 | /* Switch between a 5-bit register index and its 3-bit shorthand. */ | |
12773 | ||
12774 | #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2) | |
12775 | #define BZ16_REG_FIELD(r) \ | |
12776 | (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7) | |
12777 | ||
12778 | ||
12779 | /* 32-bit instructions with a delay slot. */ | |
12780 | ||
12781 | static const struct opcode_descriptor jal_insn_32_bd16 = | |
12782 | { /* "jals", "a", */ 0x74000000, 0xfc000000 }; | |
12783 | ||
12784 | static const struct opcode_descriptor jal_insn_32_bd32 = | |
12785 | { /* "jal", "a", */ 0xf4000000, 0xfc000000 }; | |
12786 | ||
12787 | static const struct opcode_descriptor jal_x_insn_32_bd32 = | |
12788 | { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 }; | |
12789 | ||
12790 | static const struct opcode_descriptor j_insn_32 = | |
12791 | { /* "j", "a", */ 0xd4000000, 0xfc000000 }; | |
12792 | ||
12793 | static const struct opcode_descriptor jalr_insn_32 = | |
12794 | { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff }; | |
12795 | ||
12796 | /* This table can be compacted, because no opcode replacement is made. */ | |
12797 | ||
12798 | static const struct opcode_descriptor ds_insns_32_bd16[] = { | |
12799 | { /* "jals", "a", */ 0x74000000, 0xfc000000 }, | |
12800 | ||
12801 | { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff }, | |
12802 | { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 }, | |
12803 | ||
12804 | { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 }, | |
12805 | { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 }, | |
12806 | { /* "j", "a", */ 0xd4000000, 0xfc000000 }, | |
12807 | { 0, 0 } /* End marker for find_match(). */ | |
12808 | }; | |
12809 | ||
12810 | /* This table can be compacted, because no opcode replacement is made. */ | |
12811 | ||
12812 | static const struct opcode_descriptor ds_insns_32_bd32[] = { | |
12813 | { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 }, | |
12814 | ||
12815 | { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff }, | |
12816 | { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 }, | |
12817 | { 0, 0 } /* End marker for find_match(). */ | |
12818 | }; | |
12819 | ||
12820 | ||
12821 | /* 16-bit instructions with a delay slot. */ | |
12822 | ||
12823 | static const struct opcode_descriptor jalr_insn_16_bd16 = | |
12824 | { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 }; | |
12825 | ||
12826 | static const struct opcode_descriptor jalr_insn_16_bd32 = | |
12827 | { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 }; | |
12828 | ||
12829 | static const struct opcode_descriptor jr_insn_16 = | |
12830 | { /* "jr", "mj", */ 0x4580, 0xffe0 }; | |
12831 | ||
12832 | #define JR16_REG(opcode) ((opcode) & 0x1f) | |
12833 | ||
12834 | /* This table can be compacted, because no opcode replacement is made. */ | |
12835 | ||
12836 | static const struct opcode_descriptor ds_insns_16_bd16[] = { | |
12837 | { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 }, | |
12838 | ||
12839 | { /* "b", "mD", */ 0xcc00, 0xfc00 }, | |
12840 | { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 }, | |
12841 | { /* "jr", "mj", */ 0x4580, 0xffe0 }, | |
12842 | { 0, 0 } /* End marker for find_match(). */ | |
12843 | }; | |
12844 | ||
12845 | ||
12846 | /* LUI instruction. */ | |
12847 | ||
12848 | static const struct opcode_descriptor lui_insn = | |
12849 | { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 }; | |
12850 | ||
12851 | ||
12852 | /* ADDIU instruction. */ | |
12853 | ||
12854 | static const struct opcode_descriptor addiu_insn = | |
12855 | { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 }; | |
12856 | ||
12857 | static const struct opcode_descriptor addiupc_insn = | |
12858 | { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 }; | |
12859 | ||
12860 | #define ADDIUPC_REG_FIELD(r) \ | |
12861 | (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23) | |
12862 | ||
12863 | ||
12864 | /* Relaxable instructions in a JAL delay slot: MOVE. */ | |
12865 | ||
12866 | /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves | |
12867 | (ADDU, OR) have rd in 15:11 and rs in 10:16. */ | |
12868 | #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f) | |
12869 | #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f) | |
12870 | ||
12871 | #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5) | |
12872 | #define MOVE16_RS_FIELD(r) (((r) & 0x1f) ) | |
12873 | ||
12874 | static const struct opcode_descriptor move_insns_32[] = { | |
12875 | { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */ | |
12876 | { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */ | |
12877 | { 0, 0 } /* End marker for find_match(). */ | |
12878 | }; | |
12879 | ||
12880 | static const struct opcode_descriptor move_insn_16 = | |
12881 | { /* "move", "mp,mj", */ 0x0c00, 0xfc00 }; | |
12882 | ||
12883 | ||
12884 | /* NOP instructions. */ | |
12885 | ||
12886 | static const struct opcode_descriptor nop_insn_32 = | |
12887 | { /* "nop", "", */ 0x00000000, 0xffffffff }; | |
12888 | ||
12889 | static const struct opcode_descriptor nop_insn_16 = | |
12890 | { /* "nop", "", */ 0x0c00, 0xffff }; | |
12891 | ||
12892 | ||
12893 | /* Instruction match support. */ | |
12894 | ||
12895 | #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match) | |
12896 | ||
12897 | static int | |
12898 | find_match (unsigned long opcode, const struct opcode_descriptor insn[]) | |
12899 | { | |
12900 | unsigned long indx; | |
12901 | ||
12902 | for (indx = 0; insn[indx].mask != 0; indx++) | |
12903 | if (MATCH (opcode, insn[indx])) | |
12904 | return indx; | |
12905 | ||
12906 | return -1; | |
12907 | } | |
12908 | ||
12909 | ||
12910 | /* Branch and delay slot decoding support. */ | |
12911 | ||
12912 | /* If PTR points to what *might* be a 16-bit branch or jump, then | |
12913 | return the minimum length of its delay slot, otherwise return 0. | |
12914 | Non-zero results are not definitive as we might be checking against | |
12915 | the second half of another instruction. */ | |
12916 | ||
12917 | static int | |
12918 | check_br16_dslot (bfd *abfd, bfd_byte *ptr) | |
12919 | { | |
12920 | unsigned long opcode; | |
12921 | int bdsize; | |
12922 | ||
12923 | opcode = bfd_get_16 (abfd, ptr); | |
12924 | if (MATCH (opcode, jalr_insn_16_bd32) != 0) | |
12925 | /* 16-bit branch/jump with a 32-bit delay slot. */ | |
12926 | bdsize = 4; | |
12927 | else if (MATCH (opcode, jalr_insn_16_bd16) != 0 | |
12928 | || find_match (opcode, ds_insns_16_bd16) >= 0) | |
12929 | /* 16-bit branch/jump with a 16-bit delay slot. */ | |
12930 | bdsize = 2; | |
12931 | else | |
12932 | /* No delay slot. */ | |
12933 | bdsize = 0; | |
12934 | ||
12935 | return bdsize; | |
12936 | } | |
12937 | ||
12938 | /* If PTR points to what *might* be a 32-bit branch or jump, then | |
12939 | return the minimum length of its delay slot, otherwise return 0. | |
12940 | Non-zero results are not definitive as we might be checking against | |
12941 | the second half of another instruction. */ | |
12942 | ||
12943 | static int | |
12944 | check_br32_dslot (bfd *abfd, bfd_byte *ptr) | |
12945 | { | |
12946 | unsigned long opcode; | |
12947 | int bdsize; | |
12948 | ||
d21911ea | 12949 | opcode = bfd_get_micromips_32 (abfd, ptr); |
df58fc94 RS |
12950 | if (find_match (opcode, ds_insns_32_bd32) >= 0) |
12951 | /* 32-bit branch/jump with a 32-bit delay slot. */ | |
12952 | bdsize = 4; | |
12953 | else if (find_match (opcode, ds_insns_32_bd16) >= 0) | |
12954 | /* 32-bit branch/jump with a 16-bit delay slot. */ | |
12955 | bdsize = 2; | |
12956 | else | |
12957 | /* No delay slot. */ | |
12958 | bdsize = 0; | |
12959 | ||
12960 | return bdsize; | |
12961 | } | |
12962 | ||
12963 | /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot | |
12964 | that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */ | |
12965 | ||
12966 | static bfd_boolean | |
12967 | check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg) | |
12968 | { | |
12969 | unsigned long opcode; | |
12970 | ||
12971 | opcode = bfd_get_16 (abfd, ptr); | |
12972 | if (MATCH (opcode, b_insn_16) | |
12973 | /* B16 */ | |
12974 | || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode)) | |
12975 | /* JR16 */ | |
12976 | || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode)) | |
12977 | /* BEQZ16, BNEZ16 */ | |
12978 | || (MATCH (opcode, jalr_insn_16_bd32) | |
12979 | /* JALR16 */ | |
12980 | && reg != JR16_REG (opcode) && reg != RA)) | |
12981 | return TRUE; | |
12982 | ||
12983 | return FALSE; | |
12984 | } | |
12985 | ||
12986 | /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG, | |
12987 | then return TRUE, otherwise FALSE. */ | |
12988 | ||
f41e5fcc | 12989 | static bfd_boolean |
df58fc94 RS |
12990 | check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg) |
12991 | { | |
12992 | unsigned long opcode; | |
12993 | ||
d21911ea | 12994 | opcode = bfd_get_micromips_32 (abfd, ptr); |
df58fc94 RS |
12995 | if (MATCH (opcode, j_insn_32) |
12996 | /* J */ | |
12997 | || MATCH (opcode, bc_insn_32) | |
12998 | /* BC1F, BC1T, BC2F, BC2T */ | |
12999 | || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA) | |
13000 | /* JAL, JALX */ | |
13001 | || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode)) | |
13002 | /* BGEZ, BGTZ, BLEZ, BLTZ */ | |
13003 | || (MATCH (opcode, bzal_insn_32) | |
13004 | /* BGEZAL, BLTZAL */ | |
13005 | && reg != OP32_SREG (opcode) && reg != RA) | |
13006 | || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32)) | |
13007 | /* JALR, JALR.HB, BEQ, BNE */ | |
13008 | && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode))) | |
13009 | return TRUE; | |
13010 | ||
13011 | return FALSE; | |
13012 | } | |
13013 | ||
80cab405 MR |
13014 | /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS, |
13015 | IRELEND) at OFFSET indicate that there must be a compact branch there, | |
13016 | then return TRUE, otherwise FALSE. */ | |
df58fc94 RS |
13017 | |
13018 | static bfd_boolean | |
80cab405 MR |
13019 | check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset, |
13020 | const Elf_Internal_Rela *internal_relocs, | |
13021 | const Elf_Internal_Rela *irelend) | |
df58fc94 | 13022 | { |
80cab405 MR |
13023 | const Elf_Internal_Rela *irel; |
13024 | unsigned long opcode; | |
13025 | ||
d21911ea | 13026 | opcode = bfd_get_micromips_32 (abfd, ptr); |
80cab405 MR |
13027 | if (find_match (opcode, bzc_insns_32) < 0) |
13028 | return FALSE; | |
df58fc94 RS |
13029 | |
13030 | for (irel = internal_relocs; irel < irelend; irel++) | |
80cab405 MR |
13031 | if (irel->r_offset == offset |
13032 | && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1) | |
13033 | return TRUE; | |
13034 | ||
df58fc94 RS |
13035 | return FALSE; |
13036 | } | |
80cab405 MR |
13037 | |
13038 | /* Bitsize checking. */ | |
13039 | #define IS_BITSIZE(val, N) \ | |
13040 | (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \ | |
13041 | - (1ULL << ((N) - 1))) == (val)) | |
13042 | ||
df58fc94 RS |
13043 | \f |
13044 | bfd_boolean | |
13045 | _bfd_mips_elf_relax_section (bfd *abfd, asection *sec, | |
13046 | struct bfd_link_info *link_info, | |
13047 | bfd_boolean *again) | |
13048 | { | |
833794fc | 13049 | bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32; |
df58fc94 RS |
13050 | Elf_Internal_Shdr *symtab_hdr; |
13051 | Elf_Internal_Rela *internal_relocs; | |
13052 | Elf_Internal_Rela *irel, *irelend; | |
13053 | bfd_byte *contents = NULL; | |
13054 | Elf_Internal_Sym *isymbuf = NULL; | |
13055 | ||
13056 | /* Assume nothing changes. */ | |
13057 | *again = FALSE; | |
13058 | ||
13059 | /* We don't have to do anything for a relocatable link, if | |
13060 | this section does not have relocs, or if this is not a | |
13061 | code section. */ | |
13062 | ||
13063 | if (link_info->relocatable | |
13064 | || (sec->flags & SEC_RELOC) == 0 | |
13065 | || sec->reloc_count == 0 | |
13066 | || (sec->flags & SEC_CODE) == 0) | |
13067 | return TRUE; | |
13068 | ||
13069 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
13070 | ||
13071 | /* Get a copy of the native relocations. */ | |
13072 | internal_relocs = (_bfd_elf_link_read_relocs | |
2c3fc389 | 13073 | (abfd, sec, NULL, (Elf_Internal_Rela *) NULL, |
df58fc94 RS |
13074 | link_info->keep_memory)); |
13075 | if (internal_relocs == NULL) | |
13076 | goto error_return; | |
13077 | ||
13078 | /* Walk through them looking for relaxing opportunities. */ | |
13079 | irelend = internal_relocs + sec->reloc_count; | |
13080 | for (irel = internal_relocs; irel < irelend; irel++) | |
13081 | { | |
13082 | unsigned long r_symndx = ELF32_R_SYM (irel->r_info); | |
13083 | unsigned int r_type = ELF32_R_TYPE (irel->r_info); | |
13084 | bfd_boolean target_is_micromips_code_p; | |
13085 | unsigned long opcode; | |
13086 | bfd_vma symval; | |
13087 | bfd_vma pcrval; | |
2309ddf2 | 13088 | bfd_byte *ptr; |
df58fc94 RS |
13089 | int fndopc; |
13090 | ||
13091 | /* The number of bytes to delete for relaxation and from where | |
13092 | to delete these bytes starting at irel->r_offset. */ | |
13093 | int delcnt = 0; | |
13094 | int deloff = 0; | |
13095 | ||
13096 | /* If this isn't something that can be relaxed, then ignore | |
13097 | this reloc. */ | |
13098 | if (r_type != R_MICROMIPS_HI16 | |
13099 | && r_type != R_MICROMIPS_PC16_S1 | |
2309ddf2 | 13100 | && r_type != R_MICROMIPS_26_S1) |
df58fc94 RS |
13101 | continue; |
13102 | ||
13103 | /* Get the section contents if we haven't done so already. */ | |
13104 | if (contents == NULL) | |
13105 | { | |
13106 | /* Get cached copy if it exists. */ | |
13107 | if (elf_section_data (sec)->this_hdr.contents != NULL) | |
13108 | contents = elf_section_data (sec)->this_hdr.contents; | |
13109 | /* Go get them off disk. */ | |
13110 | else if (!bfd_malloc_and_get_section (abfd, sec, &contents)) | |
13111 | goto error_return; | |
13112 | } | |
2309ddf2 | 13113 | ptr = contents + irel->r_offset; |
df58fc94 RS |
13114 | |
13115 | /* Read this BFD's local symbols if we haven't done so already. */ | |
13116 | if (isymbuf == NULL && symtab_hdr->sh_info != 0) | |
13117 | { | |
13118 | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; | |
13119 | if (isymbuf == NULL) | |
13120 | isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, | |
13121 | symtab_hdr->sh_info, 0, | |
13122 | NULL, NULL, NULL); | |
13123 | if (isymbuf == NULL) | |
13124 | goto error_return; | |
13125 | } | |
13126 | ||
13127 | /* Get the value of the symbol referred to by the reloc. */ | |
13128 | if (r_symndx < symtab_hdr->sh_info) | |
13129 | { | |
13130 | /* A local symbol. */ | |
13131 | Elf_Internal_Sym *isym; | |
13132 | asection *sym_sec; | |
13133 | ||
13134 | isym = isymbuf + r_symndx; | |
13135 | if (isym->st_shndx == SHN_UNDEF) | |
13136 | sym_sec = bfd_und_section_ptr; | |
13137 | else if (isym->st_shndx == SHN_ABS) | |
13138 | sym_sec = bfd_abs_section_ptr; | |
13139 | else if (isym->st_shndx == SHN_COMMON) | |
13140 | sym_sec = bfd_com_section_ptr; | |
13141 | else | |
13142 | sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx); | |
13143 | symval = (isym->st_value | |
13144 | + sym_sec->output_section->vma | |
13145 | + sym_sec->output_offset); | |
13146 | target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other); | |
13147 | } | |
13148 | else | |
13149 | { | |
13150 | unsigned long indx; | |
13151 | struct elf_link_hash_entry *h; | |
13152 | ||
13153 | /* An external symbol. */ | |
13154 | indx = r_symndx - symtab_hdr->sh_info; | |
13155 | h = elf_sym_hashes (abfd)[indx]; | |
13156 | BFD_ASSERT (h != NULL); | |
13157 | ||
13158 | if (h->root.type != bfd_link_hash_defined | |
13159 | && h->root.type != bfd_link_hash_defweak) | |
13160 | /* This appears to be a reference to an undefined | |
13161 | symbol. Just ignore it -- it will be caught by the | |
13162 | regular reloc processing. */ | |
13163 | continue; | |
13164 | ||
13165 | symval = (h->root.u.def.value | |
13166 | + h->root.u.def.section->output_section->vma | |
13167 | + h->root.u.def.section->output_offset); | |
13168 | target_is_micromips_code_p = (!h->needs_plt | |
13169 | && ELF_ST_IS_MICROMIPS (h->other)); | |
13170 | } | |
13171 | ||
13172 | ||
13173 | /* For simplicity of coding, we are going to modify the | |
13174 | section contents, the section relocs, and the BFD symbol | |
13175 | table. We must tell the rest of the code not to free up this | |
13176 | information. It would be possible to instead create a table | |
13177 | of changes which have to be made, as is done in coff-mips.c; | |
13178 | that would be more work, but would require less memory when | |
13179 | the linker is run. */ | |
13180 | ||
13181 | /* Only 32-bit instructions relaxed. */ | |
13182 | if (irel->r_offset + 4 > sec->size) | |
13183 | continue; | |
13184 | ||
d21911ea | 13185 | opcode = bfd_get_micromips_32 (abfd, ptr); |
df58fc94 RS |
13186 | |
13187 | /* This is the pc-relative distance from the instruction the | |
13188 | relocation is applied to, to the symbol referred. */ | |
13189 | pcrval = (symval | |
13190 | - (sec->output_section->vma + sec->output_offset) | |
13191 | - irel->r_offset); | |
13192 | ||
13193 | /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation | |
13194 | of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or | |
13195 | R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is | |
13196 | ||
13197 | (symval % 4 == 0 && IS_BITSIZE (pcrval, 25)) | |
13198 | ||
13199 | where pcrval has first to be adjusted to apply against the LO16 | |
13200 | location (we make the adjustment later on, when we have figured | |
13201 | out the offset). */ | |
13202 | if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn)) | |
13203 | { | |
80cab405 | 13204 | bfd_boolean bzc = FALSE; |
df58fc94 RS |
13205 | unsigned long nextopc; |
13206 | unsigned long reg; | |
13207 | bfd_vma offset; | |
13208 | ||
13209 | /* Give up if the previous reloc was a HI16 against this symbol | |
13210 | too. */ | |
13211 | if (irel > internal_relocs | |
13212 | && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16 | |
13213 | && ELF32_R_SYM (irel[-1].r_info) == r_symndx) | |
13214 | continue; | |
13215 | ||
13216 | /* Or if the next reloc is not a LO16 against this symbol. */ | |
13217 | if (irel + 1 >= irelend | |
13218 | || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16 | |
13219 | || ELF32_R_SYM (irel[1].r_info) != r_symndx) | |
13220 | continue; | |
13221 | ||
13222 | /* Or if the second next reloc is a LO16 against this symbol too. */ | |
13223 | if (irel + 2 >= irelend | |
13224 | && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16 | |
13225 | && ELF32_R_SYM (irel[2].r_info) == r_symndx) | |
13226 | continue; | |
13227 | ||
80cab405 MR |
13228 | /* See if the LUI instruction *might* be in a branch delay slot. |
13229 | We check whether what looks like a 16-bit branch or jump is | |
13230 | actually an immediate argument to a compact branch, and let | |
13231 | it through if so. */ | |
df58fc94 | 13232 | if (irel->r_offset >= 2 |
2309ddf2 | 13233 | && check_br16_dslot (abfd, ptr - 2) |
df58fc94 | 13234 | && !(irel->r_offset >= 4 |
80cab405 MR |
13235 | && (bzc = check_relocated_bzc (abfd, |
13236 | ptr - 4, irel->r_offset - 4, | |
13237 | internal_relocs, irelend)))) | |
df58fc94 RS |
13238 | continue; |
13239 | if (irel->r_offset >= 4 | |
80cab405 | 13240 | && !bzc |
2309ddf2 | 13241 | && check_br32_dslot (abfd, ptr - 4)) |
df58fc94 RS |
13242 | continue; |
13243 | ||
13244 | reg = OP32_SREG (opcode); | |
13245 | ||
13246 | /* We only relax adjacent instructions or ones separated with | |
13247 | a branch or jump that has a delay slot. The branch or jump | |
13248 | must not fiddle with the register used to hold the address. | |
13249 | Subtract 4 for the LUI itself. */ | |
13250 | offset = irel[1].r_offset - irel[0].r_offset; | |
13251 | switch (offset - 4) | |
13252 | { | |
13253 | case 0: | |
13254 | break; | |
13255 | case 2: | |
2309ddf2 | 13256 | if (check_br16 (abfd, ptr + 4, reg)) |
df58fc94 RS |
13257 | break; |
13258 | continue; | |
13259 | case 4: | |
2309ddf2 | 13260 | if (check_br32 (abfd, ptr + 4, reg)) |
df58fc94 RS |
13261 | break; |
13262 | continue; | |
13263 | default: | |
13264 | continue; | |
13265 | } | |
13266 | ||
d21911ea | 13267 | nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset); |
df58fc94 RS |
13268 | |
13269 | /* Give up unless the same register is used with both | |
13270 | relocations. */ | |
13271 | if (OP32_SREG (nextopc) != reg) | |
13272 | continue; | |
13273 | ||
13274 | /* Now adjust pcrval, subtracting the offset to the LO16 reloc | |
13275 | and rounding up to take masking of the two LSBs into account. */ | |
13276 | pcrval = ((pcrval - offset + 3) | 3) ^ 3; | |
13277 | ||
13278 | /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */ | |
13279 | if (IS_BITSIZE (symval, 16)) | |
13280 | { | |
13281 | /* Fix the relocation's type. */ | |
13282 | irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16); | |
13283 | ||
13284 | /* Instructions using R_MICROMIPS_LO16 have the base or | |
13285 | source register in bits 20:16. This register becomes $0 | |
13286 | (zero) as the result of the R_MICROMIPS_HI16 being 0. */ | |
13287 | nextopc &= ~0x001f0000; | |
13288 | bfd_put_16 (abfd, (nextopc >> 16) & 0xffff, | |
13289 | contents + irel[1].r_offset); | |
13290 | } | |
13291 | ||
13292 | /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2. | |
13293 | We add 4 to take LUI deletion into account while checking | |
13294 | the PC-relative distance. */ | |
13295 | else if (symval % 4 == 0 | |
13296 | && IS_BITSIZE (pcrval + 4, 25) | |
13297 | && MATCH (nextopc, addiu_insn) | |
13298 | && OP32_TREG (nextopc) == OP32_SREG (nextopc) | |
13299 | && OP16_VALID_REG (OP32_TREG (nextopc))) | |
13300 | { | |
13301 | /* Fix the relocation's type. */ | |
13302 | irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2); | |
13303 | ||
13304 | /* Replace ADDIU with the ADDIUPC version. */ | |
13305 | nextopc = (addiupc_insn.match | |
13306 | | ADDIUPC_REG_FIELD (OP32_TREG (nextopc))); | |
13307 | ||
d21911ea MR |
13308 | bfd_put_micromips_32 (abfd, nextopc, |
13309 | contents + irel[1].r_offset); | |
df58fc94 RS |
13310 | } |
13311 | ||
13312 | /* Can't do anything, give up, sigh... */ | |
13313 | else | |
13314 | continue; | |
13315 | ||
13316 | /* Fix the relocation's type. */ | |
13317 | irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE); | |
13318 | ||
13319 | /* Delete the LUI instruction: 4 bytes at irel->r_offset. */ | |
13320 | delcnt = 4; | |
13321 | deloff = 0; | |
13322 | } | |
13323 | ||
13324 | /* Compact branch relaxation -- due to the multitude of macros | |
13325 | employed by the compiler/assembler, compact branches are not | |
13326 | always generated. Obviously, this can/will be fixed elsewhere, | |
13327 | but there is no drawback in double checking it here. */ | |
13328 | else if (r_type == R_MICROMIPS_PC16_S1 | |
13329 | && irel->r_offset + 5 < sec->size | |
13330 | && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0 | |
13331 | || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0) | |
833794fc MR |
13332 | && ((!insn32 |
13333 | && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4), | |
13334 | nop_insn_16) ? 2 : 0)) | |
13335 | || (irel->r_offset + 7 < sec->size | |
13336 | && (delcnt = MATCH (bfd_get_micromips_32 (abfd, | |
13337 | ptr + 4), | |
13338 | nop_insn_32) ? 4 : 0)))) | |
df58fc94 RS |
13339 | { |
13340 | unsigned long reg; | |
13341 | ||
13342 | reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode); | |
13343 | ||
13344 | /* Replace BEQZ/BNEZ with the compact version. */ | |
13345 | opcode = (bzc_insns_32[fndopc].match | |
13346 | | BZC32_REG_FIELD (reg) | |
13347 | | (opcode & 0xffff)); /* Addend value. */ | |
13348 | ||
d21911ea | 13349 | bfd_put_micromips_32 (abfd, opcode, ptr); |
df58fc94 | 13350 | |
833794fc MR |
13351 | /* Delete the delay slot NOP: two or four bytes from |
13352 | irel->offset + 4; delcnt has already been set above. */ | |
df58fc94 RS |
13353 | deloff = 4; |
13354 | } | |
13355 | ||
13356 | /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need | |
13357 | to check the distance from the next instruction, so subtract 2. */ | |
833794fc MR |
13358 | else if (!insn32 |
13359 | && r_type == R_MICROMIPS_PC16_S1 | |
df58fc94 RS |
13360 | && IS_BITSIZE (pcrval - 2, 11) |
13361 | && find_match (opcode, b_insns_32) >= 0) | |
13362 | { | |
13363 | /* Fix the relocation's type. */ | |
13364 | irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1); | |
13365 | ||
a8685210 | 13366 | /* Replace the 32-bit opcode with a 16-bit opcode. */ |
df58fc94 RS |
13367 | bfd_put_16 (abfd, |
13368 | (b_insn_16.match | |
13369 | | (opcode & 0x3ff)), /* Addend value. */ | |
2309ddf2 | 13370 | ptr); |
df58fc94 RS |
13371 | |
13372 | /* Delete 2 bytes from irel->r_offset + 2. */ | |
13373 | delcnt = 2; | |
13374 | deloff = 2; | |
13375 | } | |
13376 | ||
13377 | /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need | |
13378 | to check the distance from the next instruction, so subtract 2. */ | |
833794fc MR |
13379 | else if (!insn32 |
13380 | && r_type == R_MICROMIPS_PC16_S1 | |
df58fc94 RS |
13381 | && IS_BITSIZE (pcrval - 2, 8) |
13382 | && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0 | |
13383 | && OP16_VALID_REG (OP32_SREG (opcode))) | |
13384 | || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0 | |
13385 | && OP16_VALID_REG (OP32_TREG (opcode))))) | |
13386 | { | |
13387 | unsigned long reg; | |
13388 | ||
13389 | reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode); | |
13390 | ||
13391 | /* Fix the relocation's type. */ | |
13392 | irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1); | |
13393 | ||
a8685210 | 13394 | /* Replace the 32-bit opcode with a 16-bit opcode. */ |
df58fc94 RS |
13395 | bfd_put_16 (abfd, |
13396 | (bz_insns_16[fndopc].match | |
13397 | | BZ16_REG_FIELD (reg) | |
13398 | | (opcode & 0x7f)), /* Addend value. */ | |
2309ddf2 | 13399 | ptr); |
df58fc94 RS |
13400 | |
13401 | /* Delete 2 bytes from irel->r_offset + 2. */ | |
13402 | delcnt = 2; | |
13403 | deloff = 2; | |
13404 | } | |
13405 | ||
13406 | /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */ | |
833794fc MR |
13407 | else if (!insn32 |
13408 | && r_type == R_MICROMIPS_26_S1 | |
df58fc94 RS |
13409 | && target_is_micromips_code_p |
13410 | && irel->r_offset + 7 < sec->size | |
13411 | && MATCH (opcode, jal_insn_32_bd32)) | |
13412 | { | |
13413 | unsigned long n32opc; | |
13414 | bfd_boolean relaxed = FALSE; | |
13415 | ||
d21911ea | 13416 | n32opc = bfd_get_micromips_32 (abfd, ptr + 4); |
df58fc94 RS |
13417 | |
13418 | if (MATCH (n32opc, nop_insn_32)) | |
13419 | { | |
13420 | /* Replace delay slot 32-bit NOP with a 16-bit NOP. */ | |
2309ddf2 | 13421 | bfd_put_16 (abfd, nop_insn_16.match, ptr + 4); |
df58fc94 RS |
13422 | |
13423 | relaxed = TRUE; | |
13424 | } | |
13425 | else if (find_match (n32opc, move_insns_32) >= 0) | |
13426 | { | |
13427 | /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */ | |
13428 | bfd_put_16 (abfd, | |
13429 | (move_insn_16.match | |
13430 | | MOVE16_RD_FIELD (MOVE32_RD (n32opc)) | |
13431 | | MOVE16_RS_FIELD (MOVE32_RS (n32opc))), | |
2309ddf2 | 13432 | ptr + 4); |
df58fc94 RS |
13433 | |
13434 | relaxed = TRUE; | |
13435 | } | |
13436 | /* Other 32-bit instructions relaxable to 16-bit | |
13437 | instructions will be handled here later. */ | |
13438 | ||
13439 | if (relaxed) | |
13440 | { | |
13441 | /* JAL with 32-bit delay slot that is changed to a JALS | |
13442 | with 16-bit delay slot. */ | |
d21911ea | 13443 | bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr); |
df58fc94 RS |
13444 | |
13445 | /* Delete 2 bytes from irel->r_offset + 6. */ | |
13446 | delcnt = 2; | |
13447 | deloff = 6; | |
13448 | } | |
13449 | } | |
13450 | ||
13451 | if (delcnt != 0) | |
13452 | { | |
13453 | /* Note that we've changed the relocs, section contents, etc. */ | |
13454 | elf_section_data (sec)->relocs = internal_relocs; | |
13455 | elf_section_data (sec)->this_hdr.contents = contents; | |
13456 | symtab_hdr->contents = (unsigned char *) isymbuf; | |
13457 | ||
13458 | /* Delete bytes depending on the delcnt and deloff. */ | |
13459 | if (!mips_elf_relax_delete_bytes (abfd, sec, | |
13460 | irel->r_offset + deloff, delcnt)) | |
13461 | goto error_return; | |
13462 | ||
13463 | /* That will change things, so we should relax again. | |
13464 | Note that this is not required, and it may be slow. */ | |
13465 | *again = TRUE; | |
13466 | } | |
13467 | } | |
13468 | ||
13469 | if (isymbuf != NULL | |
13470 | && symtab_hdr->contents != (unsigned char *) isymbuf) | |
13471 | { | |
13472 | if (! link_info->keep_memory) | |
13473 | free (isymbuf); | |
13474 | else | |
13475 | { | |
13476 | /* Cache the symbols for elf_link_input_bfd. */ | |
13477 | symtab_hdr->contents = (unsigned char *) isymbuf; | |
13478 | } | |
13479 | } | |
13480 | ||
13481 | if (contents != NULL | |
13482 | && elf_section_data (sec)->this_hdr.contents != contents) | |
13483 | { | |
13484 | if (! link_info->keep_memory) | |
13485 | free (contents); | |
13486 | else | |
13487 | { | |
13488 | /* Cache the section contents for elf_link_input_bfd. */ | |
13489 | elf_section_data (sec)->this_hdr.contents = contents; | |
13490 | } | |
13491 | } | |
13492 | ||
13493 | if (internal_relocs != NULL | |
13494 | && elf_section_data (sec)->relocs != internal_relocs) | |
13495 | free (internal_relocs); | |
13496 | ||
13497 | return TRUE; | |
13498 | ||
13499 | error_return: | |
13500 | if (isymbuf != NULL | |
13501 | && symtab_hdr->contents != (unsigned char *) isymbuf) | |
13502 | free (isymbuf); | |
13503 | if (contents != NULL | |
13504 | && elf_section_data (sec)->this_hdr.contents != contents) | |
13505 | free (contents); | |
13506 | if (internal_relocs != NULL | |
13507 | && elf_section_data (sec)->relocs != internal_relocs) | |
13508 | free (internal_relocs); | |
13509 | ||
13510 | return FALSE; | |
13511 | } | |
13512 | \f | |
b49e97c9 TS |
13513 | /* Create a MIPS ELF linker hash table. */ |
13514 | ||
13515 | struct bfd_link_hash_table * | |
9719ad41 | 13516 | _bfd_mips_elf_link_hash_table_create (bfd *abfd) |
b49e97c9 TS |
13517 | { |
13518 | struct mips_elf_link_hash_table *ret; | |
13519 | bfd_size_type amt = sizeof (struct mips_elf_link_hash_table); | |
13520 | ||
7bf52ea2 | 13521 | ret = bfd_zmalloc (amt); |
9719ad41 | 13522 | if (ret == NULL) |
b49e97c9 TS |
13523 | return NULL; |
13524 | ||
66eb6687 AM |
13525 | if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, |
13526 | mips_elf_link_hash_newfunc, | |
4dfe6ac6 NC |
13527 | sizeof (struct mips_elf_link_hash_entry), |
13528 | MIPS_ELF_DATA)) | |
b49e97c9 | 13529 | { |
e2d34d7d | 13530 | free (ret); |
b49e97c9 TS |
13531 | return NULL; |
13532 | } | |
1bbce132 MR |
13533 | ret->root.init_plt_refcount.plist = NULL; |
13534 | ret->root.init_plt_offset.plist = NULL; | |
b49e97c9 | 13535 | |
b49e97c9 TS |
13536 | return &ret->root.root; |
13537 | } | |
0a44bf69 RS |
13538 | |
13539 | /* Likewise, but indicate that the target is VxWorks. */ | |
13540 | ||
13541 | struct bfd_link_hash_table * | |
13542 | _bfd_mips_vxworks_link_hash_table_create (bfd *abfd) | |
13543 | { | |
13544 | struct bfd_link_hash_table *ret; | |
13545 | ||
13546 | ret = _bfd_mips_elf_link_hash_table_create (abfd); | |
13547 | if (ret) | |
13548 | { | |
13549 | struct mips_elf_link_hash_table *htab; | |
13550 | ||
13551 | htab = (struct mips_elf_link_hash_table *) ret; | |
861fb55a DJ |
13552 | htab->use_plts_and_copy_relocs = TRUE; |
13553 | htab->is_vxworks = TRUE; | |
0a44bf69 RS |
13554 | } |
13555 | return ret; | |
13556 | } | |
861fb55a DJ |
13557 | |
13558 | /* A function that the linker calls if we are allowed to use PLTs | |
13559 | and copy relocs. */ | |
13560 | ||
13561 | void | |
13562 | _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info) | |
13563 | { | |
13564 | mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE; | |
13565 | } | |
833794fc MR |
13566 | |
13567 | /* A function that the linker calls to select between all or only | |
13568 | 32-bit microMIPS instructions. */ | |
13569 | ||
13570 | void | |
13571 | _bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on) | |
13572 | { | |
13573 | mips_elf_hash_table (info)->insn32 = on; | |
13574 | } | |
b49e97c9 TS |
13575 | \f |
13576 | /* We need to use a special link routine to handle the .reginfo and | |
13577 | the .mdebug sections. We need to merge all instances of these | |
13578 | sections together, not write them all out sequentially. */ | |
13579 | ||
b34976b6 | 13580 | bfd_boolean |
9719ad41 | 13581 | _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info) |
b49e97c9 | 13582 | { |
b49e97c9 TS |
13583 | asection *o; |
13584 | struct bfd_link_order *p; | |
13585 | asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec; | |
13586 | asection *rtproc_sec; | |
13587 | Elf32_RegInfo reginfo; | |
13588 | struct ecoff_debug_info debug; | |
861fb55a | 13589 | struct mips_htab_traverse_info hti; |
7a2a6943 NC |
13590 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
13591 | const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap; | |
b49e97c9 | 13592 | HDRR *symhdr = &debug.symbolic_header; |
9719ad41 | 13593 | void *mdebug_handle = NULL; |
b49e97c9 TS |
13594 | asection *s; |
13595 | EXTR esym; | |
13596 | unsigned int i; | |
13597 | bfd_size_type amt; | |
0a44bf69 | 13598 | struct mips_elf_link_hash_table *htab; |
b49e97c9 TS |
13599 | |
13600 | static const char * const secname[] = | |
13601 | { | |
13602 | ".text", ".init", ".fini", ".data", | |
13603 | ".rodata", ".sdata", ".sbss", ".bss" | |
13604 | }; | |
13605 | static const int sc[] = | |
13606 | { | |
13607 | scText, scInit, scFini, scData, | |
13608 | scRData, scSData, scSBss, scBss | |
13609 | }; | |
13610 | ||
d4596a51 RS |
13611 | /* Sort the dynamic symbols so that those with GOT entries come after |
13612 | those without. */ | |
0a44bf69 | 13613 | htab = mips_elf_hash_table (info); |
4dfe6ac6 NC |
13614 | BFD_ASSERT (htab != NULL); |
13615 | ||
d4596a51 RS |
13616 | if (!mips_elf_sort_hash_table (abfd, info)) |
13617 | return FALSE; | |
b49e97c9 | 13618 | |
861fb55a DJ |
13619 | /* Create any scheduled LA25 stubs. */ |
13620 | hti.info = info; | |
13621 | hti.output_bfd = abfd; | |
13622 | hti.error = FALSE; | |
13623 | htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti); | |
13624 | if (hti.error) | |
13625 | return FALSE; | |
13626 | ||
b49e97c9 TS |
13627 | /* Get a value for the GP register. */ |
13628 | if (elf_gp (abfd) == 0) | |
13629 | { | |
13630 | struct bfd_link_hash_entry *h; | |
13631 | ||
b34976b6 | 13632 | h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE); |
9719ad41 | 13633 | if (h != NULL && h->type == bfd_link_hash_defined) |
b49e97c9 TS |
13634 | elf_gp (abfd) = (h->u.def.value |
13635 | + h->u.def.section->output_section->vma | |
13636 | + h->u.def.section->output_offset); | |
0a44bf69 RS |
13637 | else if (htab->is_vxworks |
13638 | && (h = bfd_link_hash_lookup (info->hash, | |
13639 | "_GLOBAL_OFFSET_TABLE_", | |
13640 | FALSE, FALSE, TRUE)) | |
13641 | && h->type == bfd_link_hash_defined) | |
13642 | elf_gp (abfd) = (h->u.def.section->output_section->vma | |
13643 | + h->u.def.section->output_offset | |
13644 | + h->u.def.value); | |
1049f94e | 13645 | else if (info->relocatable) |
b49e97c9 TS |
13646 | { |
13647 | bfd_vma lo = MINUS_ONE; | |
13648 | ||
13649 | /* Find the GP-relative section with the lowest offset. */ | |
9719ad41 | 13650 | for (o = abfd->sections; o != NULL; o = o->next) |
b49e97c9 TS |
13651 | if (o->vma < lo |
13652 | && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL)) | |
13653 | lo = o->vma; | |
13654 | ||
13655 | /* And calculate GP relative to that. */ | |
0a44bf69 | 13656 | elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info); |
b49e97c9 TS |
13657 | } |
13658 | else | |
13659 | { | |
13660 | /* If the relocate_section function needs to do a reloc | |
13661 | involving the GP value, it should make a reloc_dangerous | |
13662 | callback to warn that GP is not defined. */ | |
13663 | } | |
13664 | } | |
13665 | ||
13666 | /* Go through the sections and collect the .reginfo and .mdebug | |
13667 | information. */ | |
13668 | reginfo_sec = NULL; | |
13669 | mdebug_sec = NULL; | |
13670 | gptab_data_sec = NULL; | |
13671 | gptab_bss_sec = NULL; | |
9719ad41 | 13672 | for (o = abfd->sections; o != NULL; o = o->next) |
b49e97c9 TS |
13673 | { |
13674 | if (strcmp (o->name, ".reginfo") == 0) | |
13675 | { | |
13676 | memset (®info, 0, sizeof reginfo); | |
13677 | ||
13678 | /* We have found the .reginfo section in the output file. | |
13679 | Look through all the link_orders comprising it and merge | |
13680 | the information together. */ | |
8423293d | 13681 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
b49e97c9 TS |
13682 | { |
13683 | asection *input_section; | |
13684 | bfd *input_bfd; | |
13685 | Elf32_External_RegInfo ext; | |
13686 | Elf32_RegInfo sub; | |
13687 | ||
13688 | if (p->type != bfd_indirect_link_order) | |
13689 | { | |
13690 | if (p->type == bfd_data_link_order) | |
13691 | continue; | |
13692 | abort (); | |
13693 | } | |
13694 | ||
13695 | input_section = p->u.indirect.section; | |
13696 | input_bfd = input_section->owner; | |
13697 | ||
b49e97c9 | 13698 | if (! bfd_get_section_contents (input_bfd, input_section, |
9719ad41 | 13699 | &ext, 0, sizeof ext)) |
b34976b6 | 13700 | return FALSE; |
b49e97c9 TS |
13701 | |
13702 | bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub); | |
13703 | ||
13704 | reginfo.ri_gprmask |= sub.ri_gprmask; | |
13705 | reginfo.ri_cprmask[0] |= sub.ri_cprmask[0]; | |
13706 | reginfo.ri_cprmask[1] |= sub.ri_cprmask[1]; | |
13707 | reginfo.ri_cprmask[2] |= sub.ri_cprmask[2]; | |
13708 | reginfo.ri_cprmask[3] |= sub.ri_cprmask[3]; | |
13709 | ||
13710 | /* ri_gp_value is set by the function | |
13711 | mips_elf32_section_processing when the section is | |
13712 | finally written out. */ | |
13713 | ||
13714 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
13715 | elf_link_input_bfd ignores this section. */ | |
13716 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
13717 | } | |
13718 | ||
13719 | /* Size has been set in _bfd_mips_elf_always_size_sections. */ | |
eea6121a | 13720 | BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo)); |
b49e97c9 TS |
13721 | |
13722 | /* Skip this section later on (I don't think this currently | |
13723 | matters, but someday it might). */ | |
8423293d | 13724 | o->map_head.link_order = NULL; |
b49e97c9 TS |
13725 | |
13726 | reginfo_sec = o; | |
13727 | } | |
13728 | ||
13729 | if (strcmp (o->name, ".mdebug") == 0) | |
13730 | { | |
13731 | struct extsym_info einfo; | |
13732 | bfd_vma last; | |
13733 | ||
13734 | /* We have found the .mdebug section in the output file. | |
13735 | Look through all the link_orders comprising it and merge | |
13736 | the information together. */ | |
13737 | symhdr->magic = swap->sym_magic; | |
13738 | /* FIXME: What should the version stamp be? */ | |
13739 | symhdr->vstamp = 0; | |
13740 | symhdr->ilineMax = 0; | |
13741 | symhdr->cbLine = 0; | |
13742 | symhdr->idnMax = 0; | |
13743 | symhdr->ipdMax = 0; | |
13744 | symhdr->isymMax = 0; | |
13745 | symhdr->ioptMax = 0; | |
13746 | symhdr->iauxMax = 0; | |
13747 | symhdr->issMax = 0; | |
13748 | symhdr->issExtMax = 0; | |
13749 | symhdr->ifdMax = 0; | |
13750 | symhdr->crfd = 0; | |
13751 | symhdr->iextMax = 0; | |
13752 | ||
13753 | /* We accumulate the debugging information itself in the | |
13754 | debug_info structure. */ | |
13755 | debug.line = NULL; | |
13756 | debug.external_dnr = NULL; | |
13757 | debug.external_pdr = NULL; | |
13758 | debug.external_sym = NULL; | |
13759 | debug.external_opt = NULL; | |
13760 | debug.external_aux = NULL; | |
13761 | debug.ss = NULL; | |
13762 | debug.ssext = debug.ssext_end = NULL; | |
13763 | debug.external_fdr = NULL; | |
13764 | debug.external_rfd = NULL; | |
13765 | debug.external_ext = debug.external_ext_end = NULL; | |
13766 | ||
13767 | mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info); | |
9719ad41 | 13768 | if (mdebug_handle == NULL) |
b34976b6 | 13769 | return FALSE; |
b49e97c9 TS |
13770 | |
13771 | esym.jmptbl = 0; | |
13772 | esym.cobol_main = 0; | |
13773 | esym.weakext = 0; | |
13774 | esym.reserved = 0; | |
13775 | esym.ifd = ifdNil; | |
13776 | esym.asym.iss = issNil; | |
13777 | esym.asym.st = stLocal; | |
13778 | esym.asym.reserved = 0; | |
13779 | esym.asym.index = indexNil; | |
13780 | last = 0; | |
13781 | for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++) | |
13782 | { | |
13783 | esym.asym.sc = sc[i]; | |
13784 | s = bfd_get_section_by_name (abfd, secname[i]); | |
13785 | if (s != NULL) | |
13786 | { | |
13787 | esym.asym.value = s->vma; | |
eea6121a | 13788 | last = s->vma + s->size; |
b49e97c9 TS |
13789 | } |
13790 | else | |
13791 | esym.asym.value = last; | |
13792 | if (!bfd_ecoff_debug_one_external (abfd, &debug, swap, | |
13793 | secname[i], &esym)) | |
b34976b6 | 13794 | return FALSE; |
b49e97c9 TS |
13795 | } |
13796 | ||
8423293d | 13797 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
b49e97c9 TS |
13798 | { |
13799 | asection *input_section; | |
13800 | bfd *input_bfd; | |
13801 | const struct ecoff_debug_swap *input_swap; | |
13802 | struct ecoff_debug_info input_debug; | |
13803 | char *eraw_src; | |
13804 | char *eraw_end; | |
13805 | ||
13806 | if (p->type != bfd_indirect_link_order) | |
13807 | { | |
13808 | if (p->type == bfd_data_link_order) | |
13809 | continue; | |
13810 | abort (); | |
13811 | } | |
13812 | ||
13813 | input_section = p->u.indirect.section; | |
13814 | input_bfd = input_section->owner; | |
13815 | ||
d5eaccd7 | 13816 | if (!is_mips_elf (input_bfd)) |
b49e97c9 TS |
13817 | { |
13818 | /* I don't know what a non MIPS ELF bfd would be | |
13819 | doing with a .mdebug section, but I don't really | |
13820 | want to deal with it. */ | |
13821 | continue; | |
13822 | } | |
13823 | ||
13824 | input_swap = (get_elf_backend_data (input_bfd) | |
13825 | ->elf_backend_ecoff_debug_swap); | |
13826 | ||
eea6121a | 13827 | BFD_ASSERT (p->size == input_section->size); |
b49e97c9 TS |
13828 | |
13829 | /* The ECOFF linking code expects that we have already | |
13830 | read in the debugging information and set up an | |
13831 | ecoff_debug_info structure, so we do that now. */ | |
13832 | if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section, | |
13833 | &input_debug)) | |
b34976b6 | 13834 | return FALSE; |
b49e97c9 TS |
13835 | |
13836 | if (! (bfd_ecoff_debug_accumulate | |
13837 | (mdebug_handle, abfd, &debug, swap, input_bfd, | |
13838 | &input_debug, input_swap, info))) | |
b34976b6 | 13839 | return FALSE; |
b49e97c9 TS |
13840 | |
13841 | /* Loop through the external symbols. For each one with | |
13842 | interesting information, try to find the symbol in | |
13843 | the linker global hash table and save the information | |
13844 | for the output external symbols. */ | |
13845 | eraw_src = input_debug.external_ext; | |
13846 | eraw_end = (eraw_src | |
13847 | + (input_debug.symbolic_header.iextMax | |
13848 | * input_swap->external_ext_size)); | |
13849 | for (; | |
13850 | eraw_src < eraw_end; | |
13851 | eraw_src += input_swap->external_ext_size) | |
13852 | { | |
13853 | EXTR ext; | |
13854 | const char *name; | |
13855 | struct mips_elf_link_hash_entry *h; | |
13856 | ||
9719ad41 | 13857 | (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext); |
b49e97c9 TS |
13858 | if (ext.asym.sc == scNil |
13859 | || ext.asym.sc == scUndefined | |
13860 | || ext.asym.sc == scSUndefined) | |
13861 | continue; | |
13862 | ||
13863 | name = input_debug.ssext + ext.asym.iss; | |
13864 | h = mips_elf_link_hash_lookup (mips_elf_hash_table (info), | |
b34976b6 | 13865 | name, FALSE, FALSE, TRUE); |
b49e97c9 TS |
13866 | if (h == NULL || h->esym.ifd != -2) |
13867 | continue; | |
13868 | ||
13869 | if (ext.ifd != -1) | |
13870 | { | |
13871 | BFD_ASSERT (ext.ifd | |
13872 | < input_debug.symbolic_header.ifdMax); | |
13873 | ext.ifd = input_debug.ifdmap[ext.ifd]; | |
13874 | } | |
13875 | ||
13876 | h->esym = ext; | |
13877 | } | |
13878 | ||
13879 | /* Free up the information we just read. */ | |
13880 | free (input_debug.line); | |
13881 | free (input_debug.external_dnr); | |
13882 | free (input_debug.external_pdr); | |
13883 | free (input_debug.external_sym); | |
13884 | free (input_debug.external_opt); | |
13885 | free (input_debug.external_aux); | |
13886 | free (input_debug.ss); | |
13887 | free (input_debug.ssext); | |
13888 | free (input_debug.external_fdr); | |
13889 | free (input_debug.external_rfd); | |
13890 | free (input_debug.external_ext); | |
13891 | ||
13892 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
13893 | elf_link_input_bfd ignores this section. */ | |
13894 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
13895 | } | |
13896 | ||
13897 | if (SGI_COMPAT (abfd) && info->shared) | |
13898 | { | |
13899 | /* Create .rtproc section. */ | |
87e0a731 | 13900 | rtproc_sec = bfd_get_linker_section (abfd, ".rtproc"); |
b49e97c9 TS |
13901 | if (rtproc_sec == NULL) |
13902 | { | |
13903 | flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
13904 | | SEC_LINKER_CREATED | SEC_READONLY); | |
13905 | ||
87e0a731 AM |
13906 | rtproc_sec = bfd_make_section_anyway_with_flags (abfd, |
13907 | ".rtproc", | |
13908 | flags); | |
b49e97c9 | 13909 | if (rtproc_sec == NULL |
b49e97c9 | 13910 | || ! bfd_set_section_alignment (abfd, rtproc_sec, 4)) |
b34976b6 | 13911 | return FALSE; |
b49e97c9 TS |
13912 | } |
13913 | ||
13914 | if (! mips_elf_create_procedure_table (mdebug_handle, abfd, | |
13915 | info, rtproc_sec, | |
13916 | &debug)) | |
b34976b6 | 13917 | return FALSE; |
b49e97c9 TS |
13918 | } |
13919 | ||
13920 | /* Build the external symbol information. */ | |
13921 | einfo.abfd = abfd; | |
13922 | einfo.info = info; | |
13923 | einfo.debug = &debug; | |
13924 | einfo.swap = swap; | |
b34976b6 | 13925 | einfo.failed = FALSE; |
b49e97c9 | 13926 | mips_elf_link_hash_traverse (mips_elf_hash_table (info), |
9719ad41 | 13927 | mips_elf_output_extsym, &einfo); |
b49e97c9 | 13928 | if (einfo.failed) |
b34976b6 | 13929 | return FALSE; |
b49e97c9 TS |
13930 | |
13931 | /* Set the size of the .mdebug section. */ | |
eea6121a | 13932 | o->size = bfd_ecoff_debug_size (abfd, &debug, swap); |
b49e97c9 TS |
13933 | |
13934 | /* Skip this section later on (I don't think this currently | |
13935 | matters, but someday it might). */ | |
8423293d | 13936 | o->map_head.link_order = NULL; |
b49e97c9 TS |
13937 | |
13938 | mdebug_sec = o; | |
13939 | } | |
13940 | ||
0112cd26 | 13941 | if (CONST_STRNEQ (o->name, ".gptab.")) |
b49e97c9 TS |
13942 | { |
13943 | const char *subname; | |
13944 | unsigned int c; | |
13945 | Elf32_gptab *tab; | |
13946 | Elf32_External_gptab *ext_tab; | |
13947 | unsigned int j; | |
13948 | ||
13949 | /* The .gptab.sdata and .gptab.sbss sections hold | |
13950 | information describing how the small data area would | |
13951 | change depending upon the -G switch. These sections | |
13952 | not used in executables files. */ | |
1049f94e | 13953 | if (! info->relocatable) |
b49e97c9 | 13954 | { |
8423293d | 13955 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
b49e97c9 TS |
13956 | { |
13957 | asection *input_section; | |
13958 | ||
13959 | if (p->type != bfd_indirect_link_order) | |
13960 | { | |
13961 | if (p->type == bfd_data_link_order) | |
13962 | continue; | |
13963 | abort (); | |
13964 | } | |
13965 | ||
13966 | input_section = p->u.indirect.section; | |
13967 | ||
13968 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
13969 | elf_link_input_bfd ignores this section. */ | |
13970 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
13971 | } | |
13972 | ||
13973 | /* Skip this section later on (I don't think this | |
13974 | currently matters, but someday it might). */ | |
8423293d | 13975 | o->map_head.link_order = NULL; |
b49e97c9 TS |
13976 | |
13977 | /* Really remove the section. */ | |
5daa8fe7 | 13978 | bfd_section_list_remove (abfd, o); |
b49e97c9 TS |
13979 | --abfd->section_count; |
13980 | ||
13981 | continue; | |
13982 | } | |
13983 | ||
13984 | /* There is one gptab for initialized data, and one for | |
13985 | uninitialized data. */ | |
13986 | if (strcmp (o->name, ".gptab.sdata") == 0) | |
13987 | gptab_data_sec = o; | |
13988 | else if (strcmp (o->name, ".gptab.sbss") == 0) | |
13989 | gptab_bss_sec = o; | |
13990 | else | |
13991 | { | |
13992 | (*_bfd_error_handler) | |
13993 | (_("%s: illegal section name `%s'"), | |
13994 | bfd_get_filename (abfd), o->name); | |
13995 | bfd_set_error (bfd_error_nonrepresentable_section); | |
b34976b6 | 13996 | return FALSE; |
b49e97c9 TS |
13997 | } |
13998 | ||
13999 | /* The linker script always combines .gptab.data and | |
14000 | .gptab.sdata into .gptab.sdata, and likewise for | |
14001 | .gptab.bss and .gptab.sbss. It is possible that there is | |
14002 | no .sdata or .sbss section in the output file, in which | |
14003 | case we must change the name of the output section. */ | |
14004 | subname = o->name + sizeof ".gptab" - 1; | |
14005 | if (bfd_get_section_by_name (abfd, subname) == NULL) | |
14006 | { | |
14007 | if (o == gptab_data_sec) | |
14008 | o->name = ".gptab.data"; | |
14009 | else | |
14010 | o->name = ".gptab.bss"; | |
14011 | subname = o->name + sizeof ".gptab" - 1; | |
14012 | BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL); | |
14013 | } | |
14014 | ||
14015 | /* Set up the first entry. */ | |
14016 | c = 1; | |
14017 | amt = c * sizeof (Elf32_gptab); | |
9719ad41 | 14018 | tab = bfd_malloc (amt); |
b49e97c9 | 14019 | if (tab == NULL) |
b34976b6 | 14020 | return FALSE; |
b49e97c9 TS |
14021 | tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd); |
14022 | tab[0].gt_header.gt_unused = 0; | |
14023 | ||
14024 | /* Combine the input sections. */ | |
8423293d | 14025 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
b49e97c9 TS |
14026 | { |
14027 | asection *input_section; | |
14028 | bfd *input_bfd; | |
14029 | bfd_size_type size; | |
14030 | unsigned long last; | |
14031 | bfd_size_type gpentry; | |
14032 | ||
14033 | if (p->type != bfd_indirect_link_order) | |
14034 | { | |
14035 | if (p->type == bfd_data_link_order) | |
14036 | continue; | |
14037 | abort (); | |
14038 | } | |
14039 | ||
14040 | input_section = p->u.indirect.section; | |
14041 | input_bfd = input_section->owner; | |
14042 | ||
14043 | /* Combine the gptab entries for this input section one | |
14044 | by one. We know that the input gptab entries are | |
14045 | sorted by ascending -G value. */ | |
eea6121a | 14046 | size = input_section->size; |
b49e97c9 TS |
14047 | last = 0; |
14048 | for (gpentry = sizeof (Elf32_External_gptab); | |
14049 | gpentry < size; | |
14050 | gpentry += sizeof (Elf32_External_gptab)) | |
14051 | { | |
14052 | Elf32_External_gptab ext_gptab; | |
14053 | Elf32_gptab int_gptab; | |
14054 | unsigned long val; | |
14055 | unsigned long add; | |
b34976b6 | 14056 | bfd_boolean exact; |
b49e97c9 TS |
14057 | unsigned int look; |
14058 | ||
14059 | if (! (bfd_get_section_contents | |
9719ad41 RS |
14060 | (input_bfd, input_section, &ext_gptab, gpentry, |
14061 | sizeof (Elf32_External_gptab)))) | |
b49e97c9 TS |
14062 | { |
14063 | free (tab); | |
b34976b6 | 14064 | return FALSE; |
b49e97c9 TS |
14065 | } |
14066 | ||
14067 | bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab, | |
14068 | &int_gptab); | |
14069 | val = int_gptab.gt_entry.gt_g_value; | |
14070 | add = int_gptab.gt_entry.gt_bytes - last; | |
14071 | ||
b34976b6 | 14072 | exact = FALSE; |
b49e97c9 TS |
14073 | for (look = 1; look < c; look++) |
14074 | { | |
14075 | if (tab[look].gt_entry.gt_g_value >= val) | |
14076 | tab[look].gt_entry.gt_bytes += add; | |
14077 | ||
14078 | if (tab[look].gt_entry.gt_g_value == val) | |
b34976b6 | 14079 | exact = TRUE; |
b49e97c9 TS |
14080 | } |
14081 | ||
14082 | if (! exact) | |
14083 | { | |
14084 | Elf32_gptab *new_tab; | |
14085 | unsigned int max; | |
14086 | ||
14087 | /* We need a new table entry. */ | |
14088 | amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab); | |
9719ad41 | 14089 | new_tab = bfd_realloc (tab, amt); |
b49e97c9 TS |
14090 | if (new_tab == NULL) |
14091 | { | |
14092 | free (tab); | |
b34976b6 | 14093 | return FALSE; |
b49e97c9 TS |
14094 | } |
14095 | tab = new_tab; | |
14096 | tab[c].gt_entry.gt_g_value = val; | |
14097 | tab[c].gt_entry.gt_bytes = add; | |
14098 | ||
14099 | /* Merge in the size for the next smallest -G | |
14100 | value, since that will be implied by this new | |
14101 | value. */ | |
14102 | max = 0; | |
14103 | for (look = 1; look < c; look++) | |
14104 | { | |
14105 | if (tab[look].gt_entry.gt_g_value < val | |
14106 | && (max == 0 | |
14107 | || (tab[look].gt_entry.gt_g_value | |
14108 | > tab[max].gt_entry.gt_g_value))) | |
14109 | max = look; | |
14110 | } | |
14111 | if (max != 0) | |
14112 | tab[c].gt_entry.gt_bytes += | |
14113 | tab[max].gt_entry.gt_bytes; | |
14114 | ||
14115 | ++c; | |
14116 | } | |
14117 | ||
14118 | last = int_gptab.gt_entry.gt_bytes; | |
14119 | } | |
14120 | ||
14121 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
14122 | elf_link_input_bfd ignores this section. */ | |
14123 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
14124 | } | |
14125 | ||
14126 | /* The table must be sorted by -G value. */ | |
14127 | if (c > 2) | |
14128 | qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare); | |
14129 | ||
14130 | /* Swap out the table. */ | |
14131 | amt = (bfd_size_type) c * sizeof (Elf32_External_gptab); | |
9719ad41 | 14132 | ext_tab = bfd_alloc (abfd, amt); |
b49e97c9 TS |
14133 | if (ext_tab == NULL) |
14134 | { | |
14135 | free (tab); | |
b34976b6 | 14136 | return FALSE; |
b49e97c9 TS |
14137 | } |
14138 | ||
14139 | for (j = 0; j < c; j++) | |
14140 | bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j); | |
14141 | free (tab); | |
14142 | ||
eea6121a | 14143 | o->size = c * sizeof (Elf32_External_gptab); |
b49e97c9 TS |
14144 | o->contents = (bfd_byte *) ext_tab; |
14145 | ||
14146 | /* Skip this section later on (I don't think this currently | |
14147 | matters, but someday it might). */ | |
8423293d | 14148 | o->map_head.link_order = NULL; |
b49e97c9 TS |
14149 | } |
14150 | } | |
14151 | ||
14152 | /* Invoke the regular ELF backend linker to do all the work. */ | |
c152c796 | 14153 | if (!bfd_elf_final_link (abfd, info)) |
b34976b6 | 14154 | return FALSE; |
b49e97c9 TS |
14155 | |
14156 | /* Now write out the computed sections. */ | |
14157 | ||
9719ad41 | 14158 | if (reginfo_sec != NULL) |
b49e97c9 TS |
14159 | { |
14160 | Elf32_External_RegInfo ext; | |
14161 | ||
14162 | bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext); | |
9719ad41 | 14163 | if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext)) |
b34976b6 | 14164 | return FALSE; |
b49e97c9 TS |
14165 | } |
14166 | ||
9719ad41 | 14167 | if (mdebug_sec != NULL) |
b49e97c9 TS |
14168 | { |
14169 | BFD_ASSERT (abfd->output_has_begun); | |
14170 | if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug, | |
14171 | swap, info, | |
14172 | mdebug_sec->filepos)) | |
b34976b6 | 14173 | return FALSE; |
b49e97c9 TS |
14174 | |
14175 | bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info); | |
14176 | } | |
14177 | ||
9719ad41 | 14178 | if (gptab_data_sec != NULL) |
b49e97c9 TS |
14179 | { |
14180 | if (! bfd_set_section_contents (abfd, gptab_data_sec, | |
14181 | gptab_data_sec->contents, | |
eea6121a | 14182 | 0, gptab_data_sec->size)) |
b34976b6 | 14183 | return FALSE; |
b49e97c9 TS |
14184 | } |
14185 | ||
9719ad41 | 14186 | if (gptab_bss_sec != NULL) |
b49e97c9 TS |
14187 | { |
14188 | if (! bfd_set_section_contents (abfd, gptab_bss_sec, | |
14189 | gptab_bss_sec->contents, | |
eea6121a | 14190 | 0, gptab_bss_sec->size)) |
b34976b6 | 14191 | return FALSE; |
b49e97c9 TS |
14192 | } |
14193 | ||
14194 | if (SGI_COMPAT (abfd)) | |
14195 | { | |
14196 | rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); | |
14197 | if (rtproc_sec != NULL) | |
14198 | { | |
14199 | if (! bfd_set_section_contents (abfd, rtproc_sec, | |
14200 | rtproc_sec->contents, | |
eea6121a | 14201 | 0, rtproc_sec->size)) |
b34976b6 | 14202 | return FALSE; |
b49e97c9 TS |
14203 | } |
14204 | } | |
14205 | ||
b34976b6 | 14206 | return TRUE; |
b49e97c9 TS |
14207 | } |
14208 | \f | |
64543e1a RS |
14209 | /* Structure for saying that BFD machine EXTENSION extends BASE. */ |
14210 | ||
a253d456 NC |
14211 | struct mips_mach_extension |
14212 | { | |
64543e1a RS |
14213 | unsigned long extension, base; |
14214 | }; | |
14215 | ||
14216 | ||
14217 | /* An array describing how BFD machines relate to one another. The entries | |
14218 | are ordered topologically with MIPS I extensions listed last. */ | |
14219 | ||
a253d456 NC |
14220 | static const struct mips_mach_extension mips_mach_extensions[] = |
14221 | { | |
6f179bd0 | 14222 | /* MIPS64r2 extensions. */ |
432233b3 | 14223 | { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp }, |
dd6a37e7 | 14224 | { bfd_mach_mips_octeonp, bfd_mach_mips_octeon }, |
6f179bd0 | 14225 | { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 }, |
4ba154f5 | 14226 | { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 }, |
6f179bd0 | 14227 | |
64543e1a | 14228 | /* MIPS64 extensions. */ |
5f74bc13 | 14229 | { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 }, |
64543e1a | 14230 | { bfd_mach_mips_sb1, bfd_mach_mipsisa64 }, |
52b6b6b9 | 14231 | { bfd_mach_mips_xlr, bfd_mach_mipsisa64 }, |
64543e1a RS |
14232 | |
14233 | /* MIPS V extensions. */ | |
14234 | { bfd_mach_mipsisa64, bfd_mach_mips5 }, | |
14235 | ||
14236 | /* R10000 extensions. */ | |
14237 | { bfd_mach_mips12000, bfd_mach_mips10000 }, | |
3aa3176b TS |
14238 | { bfd_mach_mips14000, bfd_mach_mips10000 }, |
14239 | { bfd_mach_mips16000, bfd_mach_mips10000 }, | |
64543e1a RS |
14240 | |
14241 | /* R5000 extensions. Note: the vr5500 ISA is an extension of the core | |
14242 | vr5400 ISA, but doesn't include the multimedia stuff. It seems | |
14243 | better to allow vr5400 and vr5500 code to be merged anyway, since | |
14244 | many libraries will just use the core ISA. Perhaps we could add | |
14245 | some sort of ASE flag if this ever proves a problem. */ | |
14246 | { bfd_mach_mips5500, bfd_mach_mips5400 }, | |
14247 | { bfd_mach_mips5400, bfd_mach_mips5000 }, | |
14248 | ||
14249 | /* MIPS IV extensions. */ | |
14250 | { bfd_mach_mips5, bfd_mach_mips8000 }, | |
14251 | { bfd_mach_mips10000, bfd_mach_mips8000 }, | |
14252 | { bfd_mach_mips5000, bfd_mach_mips8000 }, | |
5a7ea749 | 14253 | { bfd_mach_mips7000, bfd_mach_mips8000 }, |
0d2e43ed | 14254 | { bfd_mach_mips9000, bfd_mach_mips8000 }, |
64543e1a RS |
14255 | |
14256 | /* VR4100 extensions. */ | |
14257 | { bfd_mach_mips4120, bfd_mach_mips4100 }, | |
14258 | { bfd_mach_mips4111, bfd_mach_mips4100 }, | |
14259 | ||
14260 | /* MIPS III extensions. */ | |
350cc38d MS |
14261 | { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 }, |
14262 | { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 }, | |
64543e1a RS |
14263 | { bfd_mach_mips8000, bfd_mach_mips4000 }, |
14264 | { bfd_mach_mips4650, bfd_mach_mips4000 }, | |
14265 | { bfd_mach_mips4600, bfd_mach_mips4000 }, | |
14266 | { bfd_mach_mips4400, bfd_mach_mips4000 }, | |
14267 | { bfd_mach_mips4300, bfd_mach_mips4000 }, | |
14268 | { bfd_mach_mips4100, bfd_mach_mips4000 }, | |
14269 | { bfd_mach_mips4010, bfd_mach_mips4000 }, | |
e407c74b | 14270 | { bfd_mach_mips5900, bfd_mach_mips4000 }, |
64543e1a RS |
14271 | |
14272 | /* MIPS32 extensions. */ | |
14273 | { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 }, | |
14274 | ||
14275 | /* MIPS II extensions. */ | |
14276 | { bfd_mach_mips4000, bfd_mach_mips6000 }, | |
14277 | { bfd_mach_mipsisa32, bfd_mach_mips6000 }, | |
14278 | ||
14279 | /* MIPS I extensions. */ | |
14280 | { bfd_mach_mips6000, bfd_mach_mips3000 }, | |
14281 | { bfd_mach_mips3900, bfd_mach_mips3000 } | |
14282 | }; | |
14283 | ||
14284 | ||
14285 | /* Return true if bfd machine EXTENSION is an extension of machine BASE. */ | |
14286 | ||
14287 | static bfd_boolean | |
9719ad41 | 14288 | mips_mach_extends_p (unsigned long base, unsigned long extension) |
64543e1a RS |
14289 | { |
14290 | size_t i; | |
14291 | ||
c5211a54 RS |
14292 | if (extension == base) |
14293 | return TRUE; | |
14294 | ||
14295 | if (base == bfd_mach_mipsisa32 | |
14296 | && mips_mach_extends_p (bfd_mach_mipsisa64, extension)) | |
14297 | return TRUE; | |
14298 | ||
14299 | if (base == bfd_mach_mipsisa32r2 | |
14300 | && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension)) | |
14301 | return TRUE; | |
14302 | ||
14303 | for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++) | |
64543e1a | 14304 | if (extension == mips_mach_extensions[i].extension) |
c5211a54 RS |
14305 | { |
14306 | extension = mips_mach_extensions[i].base; | |
14307 | if (extension == base) | |
14308 | return TRUE; | |
14309 | } | |
64543e1a | 14310 | |
c5211a54 | 14311 | return FALSE; |
64543e1a RS |
14312 | } |
14313 | ||
14314 | ||
14315 | /* Return true if the given ELF header flags describe a 32-bit binary. */ | |
00707a0e | 14316 | |
b34976b6 | 14317 | static bfd_boolean |
9719ad41 | 14318 | mips_32bit_flags_p (flagword flags) |
00707a0e | 14319 | { |
64543e1a RS |
14320 | return ((flags & EF_MIPS_32BITMODE) != 0 |
14321 | || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32 | |
14322 | || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32 | |
14323 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1 | |
14324 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2 | |
14325 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32 | |
14326 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2); | |
00707a0e RS |
14327 | } |
14328 | ||
64543e1a | 14329 | |
2cf19d5c JM |
14330 | /* Merge object attributes from IBFD into OBFD. Raise an error if |
14331 | there are conflicting attributes. */ | |
14332 | static bfd_boolean | |
14333 | mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd) | |
14334 | { | |
14335 | obj_attribute *in_attr; | |
14336 | obj_attribute *out_attr; | |
6ae68ba3 | 14337 | bfd *abi_fp_bfd; |
b60bf9be | 14338 | bfd *abi_msa_bfd; |
6ae68ba3 MR |
14339 | |
14340 | abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd; | |
14341 | in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU]; | |
d929bc19 | 14342 | if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY) |
6ae68ba3 | 14343 | mips_elf_tdata (obfd)->abi_fp_bfd = ibfd; |
2cf19d5c | 14344 | |
b60bf9be CF |
14345 | abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd; |
14346 | if (!abi_msa_bfd | |
14347 | && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY) | |
14348 | mips_elf_tdata (obfd)->abi_msa_bfd = ibfd; | |
14349 | ||
2cf19d5c JM |
14350 | if (!elf_known_obj_attributes_proc (obfd)[0].i) |
14351 | { | |
14352 | /* This is the first object. Copy the attributes. */ | |
14353 | _bfd_elf_copy_obj_attributes (ibfd, obfd); | |
14354 | ||
14355 | /* Use the Tag_null value to indicate the attributes have been | |
14356 | initialized. */ | |
14357 | elf_known_obj_attributes_proc (obfd)[0].i = 1; | |
14358 | ||
14359 | return TRUE; | |
14360 | } | |
14361 | ||
14362 | /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge | |
14363 | non-conflicting ones. */ | |
2cf19d5c JM |
14364 | out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU]; |
14365 | if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i) | |
14366 | { | |
14367 | out_attr[Tag_GNU_MIPS_ABI_FP].type = 1; | |
d929bc19 | 14368 | if (out_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY) |
2cf19d5c | 14369 | out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i; |
d929bc19 | 14370 | else if (in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY) |
2cf19d5c JM |
14371 | switch (out_attr[Tag_GNU_MIPS_ABI_FP].i) |
14372 | { | |
d929bc19 | 14373 | case Val_GNU_MIPS_ABI_FP_DOUBLE: |
2cf19d5c JM |
14374 | switch (in_attr[Tag_GNU_MIPS_ABI_FP].i) |
14375 | { | |
d929bc19 | 14376 | case Val_GNU_MIPS_ABI_FP_SINGLE: |
2cf19d5c | 14377 | _bfd_error_handler |
6ae68ba3 MR |
14378 | (_("Warning: %B uses %s (set by %B), %B uses %s"), |
14379 | obfd, abi_fp_bfd, ibfd, "-mdouble-float", "-msingle-float"); | |
51a0dd31 | 14380 | break; |
2cf19d5c | 14381 | |
d929bc19 | 14382 | case Val_GNU_MIPS_ABI_FP_SOFT: |
2cf19d5c | 14383 | _bfd_error_handler |
6ae68ba3 MR |
14384 | (_("Warning: %B uses %s (set by %B), %B uses %s"), |
14385 | obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float"); | |
2cf19d5c JM |
14386 | break; |
14387 | ||
d929bc19 | 14388 | case Val_GNU_MIPS_ABI_FP_64: |
42554f6a | 14389 | _bfd_error_handler |
6ae68ba3 MR |
14390 | (_("Warning: %B uses %s (set by %B), %B uses %s"), |
14391 | obfd, abi_fp_bfd, ibfd, | |
14392 | "-mdouble-float", "-mips32r2 -mfp64"); | |
42554f6a TS |
14393 | break; |
14394 | ||
2cf19d5c | 14395 | default: |
6ae68ba3 MR |
14396 | _bfd_error_handler |
14397 | (_("Warning: %B uses %s (set by %B), " | |
14398 | "%B uses unknown floating point ABI %d"), | |
14399 | obfd, abi_fp_bfd, ibfd, | |
14400 | "-mdouble-float", in_attr[Tag_GNU_MIPS_ABI_FP].i); | |
14401 | break; | |
2cf19d5c JM |
14402 | } |
14403 | break; | |
14404 | ||
d929bc19 | 14405 | case Val_GNU_MIPS_ABI_FP_SINGLE: |
2cf19d5c JM |
14406 | switch (in_attr[Tag_GNU_MIPS_ABI_FP].i) |
14407 | { | |
d929bc19 | 14408 | case Val_GNU_MIPS_ABI_FP_DOUBLE: |
2cf19d5c | 14409 | _bfd_error_handler |
6ae68ba3 MR |
14410 | (_("Warning: %B uses %s (set by %B), %B uses %s"), |
14411 | obfd, abi_fp_bfd, ibfd, "-msingle-float", "-mdouble-float"); | |
51a0dd31 | 14412 | break; |
2cf19d5c | 14413 | |
d929bc19 | 14414 | case Val_GNU_MIPS_ABI_FP_SOFT: |
2cf19d5c | 14415 | _bfd_error_handler |
6ae68ba3 MR |
14416 | (_("Warning: %B uses %s (set by %B), %B uses %s"), |
14417 | obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float"); | |
2cf19d5c JM |
14418 | break; |
14419 | ||
d929bc19 | 14420 | case Val_GNU_MIPS_ABI_FP_64: |
42554f6a | 14421 | _bfd_error_handler |
6ae68ba3 MR |
14422 | (_("Warning: %B uses %s (set by %B), %B uses %s"), |
14423 | obfd, abi_fp_bfd, ibfd, | |
14424 | "-msingle-float", "-mips32r2 -mfp64"); | |
42554f6a TS |
14425 | break; |
14426 | ||
2cf19d5c | 14427 | default: |
6ae68ba3 MR |
14428 | _bfd_error_handler |
14429 | (_("Warning: %B uses %s (set by %B), " | |
14430 | "%B uses unknown floating point ABI %d"), | |
14431 | obfd, abi_fp_bfd, ibfd, | |
14432 | "-msingle-float", in_attr[Tag_GNU_MIPS_ABI_FP].i); | |
14433 | break; | |
2cf19d5c JM |
14434 | } |
14435 | break; | |
14436 | ||
d929bc19 | 14437 | case Val_GNU_MIPS_ABI_FP_SOFT: |
2cf19d5c JM |
14438 | switch (in_attr[Tag_GNU_MIPS_ABI_FP].i) |
14439 | { | |
d929bc19 MR |
14440 | case Val_GNU_MIPS_ABI_FP_DOUBLE: |
14441 | case Val_GNU_MIPS_ABI_FP_SINGLE: | |
14442 | case Val_GNU_MIPS_ABI_FP_64: | |
2cf19d5c | 14443 | _bfd_error_handler |
6ae68ba3 MR |
14444 | (_("Warning: %B uses %s (set by %B), %B uses %s"), |
14445 | obfd, abi_fp_bfd, ibfd, "-msoft-float", "-mhard-float"); | |
2cf19d5c JM |
14446 | break; |
14447 | ||
14448 | default: | |
6ae68ba3 MR |
14449 | _bfd_error_handler |
14450 | (_("Warning: %B uses %s (set by %B), " | |
14451 | "%B uses unknown floating point ABI %d"), | |
14452 | obfd, abi_fp_bfd, ibfd, | |
14453 | "-msoft-float", in_attr[Tag_GNU_MIPS_ABI_FP].i); | |
14454 | break; | |
2cf19d5c JM |
14455 | } |
14456 | break; | |
14457 | ||
d929bc19 | 14458 | case Val_GNU_MIPS_ABI_FP_64: |
42554f6a TS |
14459 | switch (in_attr[Tag_GNU_MIPS_ABI_FP].i) |
14460 | { | |
d929bc19 | 14461 | case Val_GNU_MIPS_ABI_FP_DOUBLE: |
42554f6a | 14462 | _bfd_error_handler |
6ae68ba3 MR |
14463 | (_("Warning: %B uses %s (set by %B), %B uses %s"), |
14464 | obfd, abi_fp_bfd, ibfd, | |
14465 | "-mips32r2 -mfp64", "-mdouble-float"); | |
42554f6a TS |
14466 | break; |
14467 | ||
d929bc19 | 14468 | case Val_GNU_MIPS_ABI_FP_SINGLE: |
42554f6a | 14469 | _bfd_error_handler |
6ae68ba3 MR |
14470 | (_("Warning: %B uses %s (set by %B), %B uses %s"), |
14471 | obfd, abi_fp_bfd, ibfd, | |
14472 | "-mips32r2 -mfp64", "-msingle-float"); | |
42554f6a TS |
14473 | break; |
14474 | ||
d929bc19 | 14475 | case Val_GNU_MIPS_ABI_FP_SOFT: |
42554f6a | 14476 | _bfd_error_handler |
6ae68ba3 MR |
14477 | (_("Warning: %B uses %s (set by %B), %B uses %s"), |
14478 | obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float"); | |
42554f6a TS |
14479 | break; |
14480 | ||
14481 | default: | |
6ae68ba3 MR |
14482 | _bfd_error_handler |
14483 | (_("Warning: %B uses %s (set by %B), " | |
14484 | "%B uses unknown floating point ABI %d"), | |
14485 | obfd, abi_fp_bfd, ibfd, | |
14486 | "-mips32r2 -mfp64", in_attr[Tag_GNU_MIPS_ABI_FP].i); | |
14487 | break; | |
42554f6a TS |
14488 | } |
14489 | break; | |
14490 | ||
2cf19d5c | 14491 | default: |
6ae68ba3 MR |
14492 | switch (in_attr[Tag_GNU_MIPS_ABI_FP].i) |
14493 | { | |
d929bc19 | 14494 | case Val_GNU_MIPS_ABI_FP_DOUBLE: |
6ae68ba3 MR |
14495 | _bfd_error_handler |
14496 | (_("Warning: %B uses unknown floating point ABI %d " | |
14497 | "(set by %B), %B uses %s"), | |
14498 | obfd, abi_fp_bfd, ibfd, | |
14499 | out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mdouble-float"); | |
14500 | break; | |
14501 | ||
d929bc19 | 14502 | case Val_GNU_MIPS_ABI_FP_SINGLE: |
6ae68ba3 MR |
14503 | _bfd_error_handler |
14504 | (_("Warning: %B uses unknown floating point ABI %d " | |
14505 | "(set by %B), %B uses %s"), | |
14506 | obfd, abi_fp_bfd, ibfd, | |
14507 | out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msingle-float"); | |
14508 | break; | |
14509 | ||
d929bc19 | 14510 | case Val_GNU_MIPS_ABI_FP_SOFT: |
6ae68ba3 MR |
14511 | _bfd_error_handler |
14512 | (_("Warning: %B uses unknown floating point ABI %d " | |
14513 | "(set by %B), %B uses %s"), | |
14514 | obfd, abi_fp_bfd, ibfd, | |
14515 | out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msoft-float"); | |
14516 | break; | |
14517 | ||
d929bc19 | 14518 | case Val_GNU_MIPS_ABI_FP_64: |
6ae68ba3 MR |
14519 | _bfd_error_handler |
14520 | (_("Warning: %B uses unknown floating point ABI %d " | |
14521 | "(set by %B), %B uses %s"), | |
14522 | obfd, abi_fp_bfd, ibfd, | |
14523 | out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mips32r2 -mfp64"); | |
14524 | break; | |
14525 | ||
14526 | default: | |
14527 | _bfd_error_handler | |
14528 | (_("Warning: %B uses unknown floating point ABI %d " | |
14529 | "(set by %B), %B uses unknown floating point ABI %d"), | |
14530 | obfd, abi_fp_bfd, ibfd, | |
14531 | out_attr[Tag_GNU_MIPS_ABI_FP].i, | |
14532 | in_attr[Tag_GNU_MIPS_ABI_FP].i); | |
14533 | break; | |
14534 | } | |
14535 | break; | |
2cf19d5c JM |
14536 | } |
14537 | } | |
14538 | ||
b60bf9be CF |
14539 | /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge |
14540 | non-conflicting ones. */ | |
14541 | if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i) | |
14542 | { | |
14543 | out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1; | |
14544 | if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY) | |
14545 | out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i; | |
14546 | else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY) | |
14547 | switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i) | |
14548 | { | |
14549 | case Val_GNU_MIPS_ABI_MSA_128: | |
14550 | _bfd_error_handler | |
14551 | (_("Warning: %B uses %s (set by %B), " | |
14552 | "%B uses unknown MSA ABI %d"), | |
14553 | obfd, abi_msa_bfd, ibfd, | |
14554 | "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i); | |
14555 | break; | |
14556 | ||
14557 | default: | |
14558 | switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i) | |
14559 | { | |
14560 | case Val_GNU_MIPS_ABI_MSA_128: | |
14561 | _bfd_error_handler | |
14562 | (_("Warning: %B uses unknown MSA ABI %d " | |
14563 | "(set by %B), %B uses %s"), | |
14564 | obfd, abi_msa_bfd, ibfd, | |
14565 | out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa"); | |
14566 | break; | |
14567 | ||
14568 | default: | |
14569 | _bfd_error_handler | |
14570 | (_("Warning: %B uses unknown MSA ABI %d " | |
14571 | "(set by %B), %B uses unknown MSA ABI %d"), | |
14572 | obfd, abi_msa_bfd, ibfd, | |
14573 | out_attr[Tag_GNU_MIPS_ABI_MSA].i, | |
14574 | in_attr[Tag_GNU_MIPS_ABI_MSA].i); | |
14575 | break; | |
14576 | } | |
14577 | } | |
14578 | } | |
14579 | ||
2cf19d5c JM |
14580 | /* Merge Tag_compatibility attributes and any common GNU ones. */ |
14581 | _bfd_elf_merge_object_attributes (ibfd, obfd); | |
14582 | ||
14583 | return TRUE; | |
14584 | } | |
14585 | ||
b49e97c9 TS |
14586 | /* Merge backend specific data from an object file to the output |
14587 | object file when linking. */ | |
14588 | ||
b34976b6 | 14589 | bfd_boolean |
9719ad41 | 14590 | _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd) |
b49e97c9 TS |
14591 | { |
14592 | flagword old_flags; | |
14593 | flagword new_flags; | |
b34976b6 AM |
14594 | bfd_boolean ok; |
14595 | bfd_boolean null_input_bfd = TRUE; | |
b49e97c9 TS |
14596 | asection *sec; |
14597 | ||
58238693 | 14598 | /* Check if we have the same endianness. */ |
82e51918 | 14599 | if (! _bfd_generic_verify_endian_match (ibfd, obfd)) |
aa701218 AO |
14600 | { |
14601 | (*_bfd_error_handler) | |
d003868e AM |
14602 | (_("%B: endianness incompatible with that of the selected emulation"), |
14603 | ibfd); | |
aa701218 AO |
14604 | return FALSE; |
14605 | } | |
b49e97c9 | 14606 | |
d5eaccd7 | 14607 | if (!is_mips_elf (ibfd) || !is_mips_elf (obfd)) |
b34976b6 | 14608 | return TRUE; |
b49e97c9 | 14609 | |
aa701218 AO |
14610 | if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0) |
14611 | { | |
14612 | (*_bfd_error_handler) | |
d003868e AM |
14613 | (_("%B: ABI is incompatible with that of the selected emulation"), |
14614 | ibfd); | |
aa701218 AO |
14615 | return FALSE; |
14616 | } | |
14617 | ||
2cf19d5c JM |
14618 | if (!mips_elf_merge_obj_attributes (ibfd, obfd)) |
14619 | return FALSE; | |
14620 | ||
b49e97c9 TS |
14621 | new_flags = elf_elfheader (ibfd)->e_flags; |
14622 | elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER; | |
14623 | old_flags = elf_elfheader (obfd)->e_flags; | |
14624 | ||
14625 | if (! elf_flags_init (obfd)) | |
14626 | { | |
b34976b6 | 14627 | elf_flags_init (obfd) = TRUE; |
b49e97c9 TS |
14628 | elf_elfheader (obfd)->e_flags = new_flags; |
14629 | elf_elfheader (obfd)->e_ident[EI_CLASS] | |
14630 | = elf_elfheader (ibfd)->e_ident[EI_CLASS]; | |
14631 | ||
14632 | if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) | |
2907b861 | 14633 | && (bfd_get_arch_info (obfd)->the_default |
68ffbac6 | 14634 | || mips_mach_extends_p (bfd_get_mach (obfd), |
2907b861 | 14635 | bfd_get_mach (ibfd)))) |
b49e97c9 TS |
14636 | { |
14637 | if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), | |
14638 | bfd_get_mach (ibfd))) | |
b34976b6 | 14639 | return FALSE; |
b49e97c9 TS |
14640 | } |
14641 | ||
b34976b6 | 14642 | return TRUE; |
b49e97c9 TS |
14643 | } |
14644 | ||
14645 | /* Check flag compatibility. */ | |
14646 | ||
14647 | new_flags &= ~EF_MIPS_NOREORDER; | |
14648 | old_flags &= ~EF_MIPS_NOREORDER; | |
14649 | ||
f4416af6 AO |
14650 | /* Some IRIX 6 BSD-compatibility objects have this bit set. It |
14651 | doesn't seem to matter. */ | |
14652 | new_flags &= ~EF_MIPS_XGOT; | |
14653 | old_flags &= ~EF_MIPS_XGOT; | |
14654 | ||
98a8deaf RS |
14655 | /* MIPSpro generates ucode info in n64 objects. Again, we should |
14656 | just be able to ignore this. */ | |
14657 | new_flags &= ~EF_MIPS_UCODE; | |
14658 | old_flags &= ~EF_MIPS_UCODE; | |
14659 | ||
861fb55a DJ |
14660 | /* DSOs should only be linked with CPIC code. */ |
14661 | if ((ibfd->flags & DYNAMIC) != 0) | |
14662 | new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC; | |
0a44bf69 | 14663 | |
b49e97c9 | 14664 | if (new_flags == old_flags) |
b34976b6 | 14665 | return TRUE; |
b49e97c9 TS |
14666 | |
14667 | /* Check to see if the input BFD actually contains any sections. | |
14668 | If not, its flags may not have been initialised either, but it cannot | |
14669 | actually cause any incompatibility. */ | |
14670 | for (sec = ibfd->sections; sec != NULL; sec = sec->next) | |
14671 | { | |
14672 | /* Ignore synthetic sections and empty .text, .data and .bss sections | |
ed88c97e RS |
14673 | which are automatically generated by gas. Also ignore fake |
14674 | (s)common sections, since merely defining a common symbol does | |
14675 | not affect compatibility. */ | |
14676 | if ((sec->flags & SEC_IS_COMMON) == 0 | |
14677 | && strcmp (sec->name, ".reginfo") | |
b49e97c9 | 14678 | && strcmp (sec->name, ".mdebug") |
eea6121a | 14679 | && (sec->size != 0 |
d13d89fa NS |
14680 | || (strcmp (sec->name, ".text") |
14681 | && strcmp (sec->name, ".data") | |
14682 | && strcmp (sec->name, ".bss")))) | |
b49e97c9 | 14683 | { |
b34976b6 | 14684 | null_input_bfd = FALSE; |
b49e97c9 TS |
14685 | break; |
14686 | } | |
14687 | } | |
14688 | if (null_input_bfd) | |
b34976b6 | 14689 | return TRUE; |
b49e97c9 | 14690 | |
b34976b6 | 14691 | ok = TRUE; |
b49e97c9 | 14692 | |
143d77c5 EC |
14693 | if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0) |
14694 | != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)) | |
b49e97c9 | 14695 | { |
b49e97c9 | 14696 | (*_bfd_error_handler) |
861fb55a | 14697 | (_("%B: warning: linking abicalls files with non-abicalls files"), |
d003868e | 14698 | ibfd); |
143d77c5 | 14699 | ok = TRUE; |
b49e97c9 TS |
14700 | } |
14701 | ||
143d77c5 EC |
14702 | if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) |
14703 | elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC; | |
14704 | if (! (new_flags & EF_MIPS_PIC)) | |
14705 | elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC; | |
14706 | ||
14707 | new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); | |
14708 | old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); | |
b49e97c9 | 14709 | |
64543e1a RS |
14710 | /* Compare the ISAs. */ |
14711 | if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags)) | |
b49e97c9 | 14712 | { |
64543e1a | 14713 | (*_bfd_error_handler) |
d003868e AM |
14714 | (_("%B: linking 32-bit code with 64-bit code"), |
14715 | ibfd); | |
64543e1a RS |
14716 | ok = FALSE; |
14717 | } | |
14718 | else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd))) | |
14719 | { | |
14720 | /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */ | |
14721 | if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd))) | |
b49e97c9 | 14722 | { |
64543e1a RS |
14723 | /* Copy the architecture info from IBFD to OBFD. Also copy |
14724 | the 32-bit flag (if set) so that we continue to recognise | |
14725 | OBFD as a 32-bit binary. */ | |
14726 | bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd)); | |
14727 | elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); | |
14728 | elf_elfheader (obfd)->e_flags | |
14729 | |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); | |
14730 | ||
14731 | /* Copy across the ABI flags if OBFD doesn't use them | |
14732 | and if that was what caused us to treat IBFD as 32-bit. */ | |
14733 | if ((old_flags & EF_MIPS_ABI) == 0 | |
14734 | && mips_32bit_flags_p (new_flags) | |
14735 | && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI)) | |
14736 | elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI; | |
b49e97c9 TS |
14737 | } |
14738 | else | |
14739 | { | |
64543e1a | 14740 | /* The ISAs aren't compatible. */ |
b49e97c9 | 14741 | (*_bfd_error_handler) |
d003868e AM |
14742 | (_("%B: linking %s module with previous %s modules"), |
14743 | ibfd, | |
64543e1a RS |
14744 | bfd_printable_name (ibfd), |
14745 | bfd_printable_name (obfd)); | |
b34976b6 | 14746 | ok = FALSE; |
b49e97c9 | 14747 | } |
b49e97c9 TS |
14748 | } |
14749 | ||
64543e1a RS |
14750 | new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); |
14751 | old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); | |
14752 | ||
14753 | /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it | |
b49e97c9 TS |
14754 | does set EI_CLASS differently from any 32-bit ABI. */ |
14755 | if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI) | |
14756 | || (elf_elfheader (ibfd)->e_ident[EI_CLASS] | |
14757 | != elf_elfheader (obfd)->e_ident[EI_CLASS])) | |
14758 | { | |
14759 | /* Only error if both are set (to different values). */ | |
14760 | if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI)) | |
14761 | || (elf_elfheader (ibfd)->e_ident[EI_CLASS] | |
14762 | != elf_elfheader (obfd)->e_ident[EI_CLASS])) | |
14763 | { | |
14764 | (*_bfd_error_handler) | |
d003868e AM |
14765 | (_("%B: ABI mismatch: linking %s module with previous %s modules"), |
14766 | ibfd, | |
b49e97c9 TS |
14767 | elf_mips_abi_name (ibfd), |
14768 | elf_mips_abi_name (obfd)); | |
b34976b6 | 14769 | ok = FALSE; |
b49e97c9 TS |
14770 | } |
14771 | new_flags &= ~EF_MIPS_ABI; | |
14772 | old_flags &= ~EF_MIPS_ABI; | |
14773 | } | |
14774 | ||
df58fc94 RS |
14775 | /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together |
14776 | and allow arbitrary mixing of the remaining ASEs (retain the union). */ | |
fb39dac1 RS |
14777 | if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE)) |
14778 | { | |
df58fc94 RS |
14779 | int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS; |
14780 | int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS; | |
14781 | int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16; | |
14782 | int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16; | |
14783 | int micro_mis = old_m16 && new_micro; | |
14784 | int m16_mis = old_micro && new_m16; | |
14785 | ||
14786 | if (m16_mis || micro_mis) | |
14787 | { | |
14788 | (*_bfd_error_handler) | |
14789 | (_("%B: ASE mismatch: linking %s module with previous %s modules"), | |
14790 | ibfd, | |
14791 | m16_mis ? "MIPS16" : "microMIPS", | |
14792 | m16_mis ? "microMIPS" : "MIPS16"); | |
14793 | ok = FALSE; | |
14794 | } | |
14795 | ||
fb39dac1 RS |
14796 | elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE; |
14797 | ||
14798 | new_flags &= ~ EF_MIPS_ARCH_ASE; | |
14799 | old_flags &= ~ EF_MIPS_ARCH_ASE; | |
14800 | } | |
14801 | ||
ba92f887 MR |
14802 | /* Compare NaN encodings. */ |
14803 | if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008)) | |
14804 | { | |
14805 | _bfd_error_handler (_("%B: linking %s module with previous %s modules"), | |
14806 | ibfd, | |
14807 | (new_flags & EF_MIPS_NAN2008 | |
14808 | ? "-mnan=2008" : "-mnan=legacy"), | |
14809 | (old_flags & EF_MIPS_NAN2008 | |
14810 | ? "-mnan=2008" : "-mnan=legacy")); | |
14811 | ok = FALSE; | |
14812 | new_flags &= ~EF_MIPS_NAN2008; | |
14813 | old_flags &= ~EF_MIPS_NAN2008; | |
14814 | } | |
14815 | ||
b49e97c9 TS |
14816 | /* Warn about any other mismatches */ |
14817 | if (new_flags != old_flags) | |
14818 | { | |
14819 | (*_bfd_error_handler) | |
d003868e AM |
14820 | (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"), |
14821 | ibfd, (unsigned long) new_flags, | |
b49e97c9 | 14822 | (unsigned long) old_flags); |
b34976b6 | 14823 | ok = FALSE; |
b49e97c9 TS |
14824 | } |
14825 | ||
14826 | if (! ok) | |
14827 | { | |
14828 | bfd_set_error (bfd_error_bad_value); | |
b34976b6 | 14829 | return FALSE; |
b49e97c9 TS |
14830 | } |
14831 | ||
b34976b6 | 14832 | return TRUE; |
b49e97c9 TS |
14833 | } |
14834 | ||
14835 | /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */ | |
14836 | ||
b34976b6 | 14837 | bfd_boolean |
9719ad41 | 14838 | _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags) |
b49e97c9 TS |
14839 | { |
14840 | BFD_ASSERT (!elf_flags_init (abfd) | |
14841 | || elf_elfheader (abfd)->e_flags == flags); | |
14842 | ||
14843 | elf_elfheader (abfd)->e_flags = flags; | |
b34976b6 AM |
14844 | elf_flags_init (abfd) = TRUE; |
14845 | return TRUE; | |
b49e97c9 TS |
14846 | } |
14847 | ||
ad9563d6 CM |
14848 | char * |
14849 | _bfd_mips_elf_get_target_dtag (bfd_vma dtag) | |
14850 | { | |
14851 | switch (dtag) | |
14852 | { | |
14853 | default: return ""; | |
14854 | case DT_MIPS_RLD_VERSION: | |
14855 | return "MIPS_RLD_VERSION"; | |
14856 | case DT_MIPS_TIME_STAMP: | |
14857 | return "MIPS_TIME_STAMP"; | |
14858 | case DT_MIPS_ICHECKSUM: | |
14859 | return "MIPS_ICHECKSUM"; | |
14860 | case DT_MIPS_IVERSION: | |
14861 | return "MIPS_IVERSION"; | |
14862 | case DT_MIPS_FLAGS: | |
14863 | return "MIPS_FLAGS"; | |
14864 | case DT_MIPS_BASE_ADDRESS: | |
14865 | return "MIPS_BASE_ADDRESS"; | |
14866 | case DT_MIPS_MSYM: | |
14867 | return "MIPS_MSYM"; | |
14868 | case DT_MIPS_CONFLICT: | |
14869 | return "MIPS_CONFLICT"; | |
14870 | case DT_MIPS_LIBLIST: | |
14871 | return "MIPS_LIBLIST"; | |
14872 | case DT_MIPS_LOCAL_GOTNO: | |
14873 | return "MIPS_LOCAL_GOTNO"; | |
14874 | case DT_MIPS_CONFLICTNO: | |
14875 | return "MIPS_CONFLICTNO"; | |
14876 | case DT_MIPS_LIBLISTNO: | |
14877 | return "MIPS_LIBLISTNO"; | |
14878 | case DT_MIPS_SYMTABNO: | |
14879 | return "MIPS_SYMTABNO"; | |
14880 | case DT_MIPS_UNREFEXTNO: | |
14881 | return "MIPS_UNREFEXTNO"; | |
14882 | case DT_MIPS_GOTSYM: | |
14883 | return "MIPS_GOTSYM"; | |
14884 | case DT_MIPS_HIPAGENO: | |
14885 | return "MIPS_HIPAGENO"; | |
14886 | case DT_MIPS_RLD_MAP: | |
14887 | return "MIPS_RLD_MAP"; | |
14888 | case DT_MIPS_DELTA_CLASS: | |
14889 | return "MIPS_DELTA_CLASS"; | |
14890 | case DT_MIPS_DELTA_CLASS_NO: | |
14891 | return "MIPS_DELTA_CLASS_NO"; | |
14892 | case DT_MIPS_DELTA_INSTANCE: | |
14893 | return "MIPS_DELTA_INSTANCE"; | |
14894 | case DT_MIPS_DELTA_INSTANCE_NO: | |
14895 | return "MIPS_DELTA_INSTANCE_NO"; | |
14896 | case DT_MIPS_DELTA_RELOC: | |
14897 | return "MIPS_DELTA_RELOC"; | |
14898 | case DT_MIPS_DELTA_RELOC_NO: | |
14899 | return "MIPS_DELTA_RELOC_NO"; | |
14900 | case DT_MIPS_DELTA_SYM: | |
14901 | return "MIPS_DELTA_SYM"; | |
14902 | case DT_MIPS_DELTA_SYM_NO: | |
14903 | return "MIPS_DELTA_SYM_NO"; | |
14904 | case DT_MIPS_DELTA_CLASSSYM: | |
14905 | return "MIPS_DELTA_CLASSSYM"; | |
14906 | case DT_MIPS_DELTA_CLASSSYM_NO: | |
14907 | return "MIPS_DELTA_CLASSSYM_NO"; | |
14908 | case DT_MIPS_CXX_FLAGS: | |
14909 | return "MIPS_CXX_FLAGS"; | |
14910 | case DT_MIPS_PIXIE_INIT: | |
14911 | return "MIPS_PIXIE_INIT"; | |
14912 | case DT_MIPS_SYMBOL_LIB: | |
14913 | return "MIPS_SYMBOL_LIB"; | |
14914 | case DT_MIPS_LOCALPAGE_GOTIDX: | |
14915 | return "MIPS_LOCALPAGE_GOTIDX"; | |
14916 | case DT_MIPS_LOCAL_GOTIDX: | |
14917 | return "MIPS_LOCAL_GOTIDX"; | |
14918 | case DT_MIPS_HIDDEN_GOTIDX: | |
14919 | return "MIPS_HIDDEN_GOTIDX"; | |
14920 | case DT_MIPS_PROTECTED_GOTIDX: | |
14921 | return "MIPS_PROTECTED_GOT_IDX"; | |
14922 | case DT_MIPS_OPTIONS: | |
14923 | return "MIPS_OPTIONS"; | |
14924 | case DT_MIPS_INTERFACE: | |
14925 | return "MIPS_INTERFACE"; | |
14926 | case DT_MIPS_DYNSTR_ALIGN: | |
14927 | return "DT_MIPS_DYNSTR_ALIGN"; | |
14928 | case DT_MIPS_INTERFACE_SIZE: | |
14929 | return "DT_MIPS_INTERFACE_SIZE"; | |
14930 | case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: | |
14931 | return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR"; | |
14932 | case DT_MIPS_PERF_SUFFIX: | |
14933 | return "DT_MIPS_PERF_SUFFIX"; | |
14934 | case DT_MIPS_COMPACT_SIZE: | |
14935 | return "DT_MIPS_COMPACT_SIZE"; | |
14936 | case DT_MIPS_GP_VALUE: | |
14937 | return "DT_MIPS_GP_VALUE"; | |
14938 | case DT_MIPS_AUX_DYNAMIC: | |
14939 | return "DT_MIPS_AUX_DYNAMIC"; | |
861fb55a DJ |
14940 | case DT_MIPS_PLTGOT: |
14941 | return "DT_MIPS_PLTGOT"; | |
14942 | case DT_MIPS_RWPLT: | |
14943 | return "DT_MIPS_RWPLT"; | |
ad9563d6 CM |
14944 | } |
14945 | } | |
14946 | ||
b34976b6 | 14947 | bfd_boolean |
9719ad41 | 14948 | _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr) |
b49e97c9 | 14949 | { |
9719ad41 | 14950 | FILE *file = ptr; |
b49e97c9 TS |
14951 | |
14952 | BFD_ASSERT (abfd != NULL && ptr != NULL); | |
14953 | ||
14954 | /* Print normal ELF private data. */ | |
14955 | _bfd_elf_print_private_bfd_data (abfd, ptr); | |
14956 | ||
14957 | /* xgettext:c-format */ | |
14958 | fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); | |
14959 | ||
14960 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32) | |
14961 | fprintf (file, _(" [abi=O32]")); | |
14962 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64) | |
14963 | fprintf (file, _(" [abi=O64]")); | |
14964 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32) | |
14965 | fprintf (file, _(" [abi=EABI32]")); | |
14966 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) | |
14967 | fprintf (file, _(" [abi=EABI64]")); | |
14968 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI)) | |
14969 | fprintf (file, _(" [abi unknown]")); | |
14970 | else if (ABI_N32_P (abfd)) | |
14971 | fprintf (file, _(" [abi=N32]")); | |
14972 | else if (ABI_64_P (abfd)) | |
14973 | fprintf (file, _(" [abi=64]")); | |
14974 | else | |
14975 | fprintf (file, _(" [no abi set]")); | |
14976 | ||
14977 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1) | |
ae0d2616 | 14978 | fprintf (file, " [mips1]"); |
b49e97c9 | 14979 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2) |
ae0d2616 | 14980 | fprintf (file, " [mips2]"); |
b49e97c9 | 14981 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3) |
ae0d2616 | 14982 | fprintf (file, " [mips3]"); |
b49e97c9 | 14983 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4) |
ae0d2616 | 14984 | fprintf (file, " [mips4]"); |
b49e97c9 | 14985 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5) |
ae0d2616 | 14986 | fprintf (file, " [mips5]"); |
b49e97c9 | 14987 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32) |
ae0d2616 | 14988 | fprintf (file, " [mips32]"); |
b49e97c9 | 14989 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64) |
ae0d2616 | 14990 | fprintf (file, " [mips64]"); |
af7ee8bf | 14991 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2) |
ae0d2616 | 14992 | fprintf (file, " [mips32r2]"); |
5f74bc13 | 14993 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2) |
ae0d2616 | 14994 | fprintf (file, " [mips64r2]"); |
b49e97c9 TS |
14995 | else |
14996 | fprintf (file, _(" [unknown ISA]")); | |
14997 | ||
40d32fc6 | 14998 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX) |
ae0d2616 | 14999 | fprintf (file, " [mdmx]"); |
40d32fc6 CD |
15000 | |
15001 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16) | |
ae0d2616 | 15002 | fprintf (file, " [mips16]"); |
40d32fc6 | 15003 | |
df58fc94 RS |
15004 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) |
15005 | fprintf (file, " [micromips]"); | |
15006 | ||
ba92f887 MR |
15007 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008) |
15008 | fprintf (file, " [nan2008]"); | |
15009 | ||
5baf5e34 SE |
15010 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64) |
15011 | fprintf (file, " [fp64]"); | |
15012 | ||
b49e97c9 | 15013 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE) |
ae0d2616 | 15014 | fprintf (file, " [32bitmode]"); |
b49e97c9 TS |
15015 | else |
15016 | fprintf (file, _(" [not 32bitmode]")); | |
15017 | ||
c0e3f241 | 15018 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER) |
ae0d2616 | 15019 | fprintf (file, " [noreorder]"); |
c0e3f241 CD |
15020 | |
15021 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) | |
ae0d2616 | 15022 | fprintf (file, " [PIC]"); |
c0e3f241 CD |
15023 | |
15024 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC) | |
ae0d2616 | 15025 | fprintf (file, " [CPIC]"); |
c0e3f241 CD |
15026 | |
15027 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT) | |
ae0d2616 | 15028 | fprintf (file, " [XGOT]"); |
c0e3f241 CD |
15029 | |
15030 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE) | |
ae0d2616 | 15031 | fprintf (file, " [UCODE]"); |
c0e3f241 | 15032 | |
b49e97c9 TS |
15033 | fputc ('\n', file); |
15034 | ||
b34976b6 | 15035 | return TRUE; |
b49e97c9 | 15036 | } |
2f89ff8d | 15037 | |
b35d266b | 15038 | const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] = |
2f89ff8d | 15039 | { |
0112cd26 NC |
15040 | { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, |
15041 | { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, | |
15042 | { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 }, | |
15043 | { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, | |
15044 | { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, | |
15045 | { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 }, | |
15046 | { NULL, 0, 0, 0, 0 } | |
2f89ff8d | 15047 | }; |
5e2b0d47 | 15048 | |
8992f0d7 TS |
15049 | /* Merge non visibility st_other attributes. Ensure that the |
15050 | STO_OPTIONAL flag is copied into h->other, even if this is not a | |
15051 | definiton of the symbol. */ | |
5e2b0d47 NC |
15052 | void |
15053 | _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h, | |
15054 | const Elf_Internal_Sym *isym, | |
15055 | bfd_boolean definition, | |
15056 | bfd_boolean dynamic ATTRIBUTE_UNUSED) | |
15057 | { | |
8992f0d7 TS |
15058 | if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0) |
15059 | { | |
15060 | unsigned char other; | |
15061 | ||
15062 | other = (definition ? isym->st_other : h->other); | |
15063 | other &= ~ELF_ST_VISIBILITY (-1); | |
15064 | h->other = other | ELF_ST_VISIBILITY (h->other); | |
15065 | } | |
15066 | ||
15067 | if (!definition | |
5e2b0d47 NC |
15068 | && ELF_MIPS_IS_OPTIONAL (isym->st_other)) |
15069 | h->other |= STO_OPTIONAL; | |
15070 | } | |
12ac1cf5 NC |
15071 | |
15072 | /* Decide whether an undefined symbol is special and can be ignored. | |
15073 | This is the case for OPTIONAL symbols on IRIX. */ | |
15074 | bfd_boolean | |
15075 | _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h) | |
15076 | { | |
15077 | return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE; | |
15078 | } | |
e0764319 NC |
15079 | |
15080 | bfd_boolean | |
15081 | _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym) | |
15082 | { | |
15083 | return (sym->st_shndx == SHN_COMMON | |
15084 | || sym->st_shndx == SHN_MIPS_ACOMMON | |
15085 | || sym->st_shndx == SHN_MIPS_SCOMMON); | |
15086 | } | |
861fb55a DJ |
15087 | |
15088 | /* Return address for Ith PLT stub in section PLT, for relocation REL | |
15089 | or (bfd_vma) -1 if it should not be included. */ | |
15090 | ||
15091 | bfd_vma | |
15092 | _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt, | |
15093 | const arelent *rel ATTRIBUTE_UNUSED) | |
15094 | { | |
15095 | return (plt->vma | |
15096 | + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry) | |
15097 | + i * 4 * ARRAY_SIZE (mips_exec_plt_entry)); | |
15098 | } | |
15099 | ||
1bbce132 MR |
15100 | /* Build a table of synthetic symbols to represent the PLT. As with MIPS16 |
15101 | and microMIPS PLT slots we may have a many-to-one mapping between .plt | |
15102 | and .got.plt and also the slots may be of a different size each we walk | |
15103 | the PLT manually fetching instructions and matching them against known | |
15104 | patterns. To make things easier standard MIPS slots, if any, always come | |
15105 | first. As we don't create proper ELF symbols we use the UDATA.I member | |
15106 | of ASYMBOL to carry ISA annotation. The encoding used is the same as | |
15107 | with the ST_OTHER member of the ELF symbol. */ | |
15108 | ||
15109 | long | |
15110 | _bfd_mips_elf_get_synthetic_symtab (bfd *abfd, | |
15111 | long symcount ATTRIBUTE_UNUSED, | |
15112 | asymbol **syms ATTRIBUTE_UNUSED, | |
15113 | long dynsymcount, asymbol **dynsyms, | |
15114 | asymbol **ret) | |
15115 | { | |
15116 | static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_"; | |
15117 | static const char microsuffix[] = "@micromipsplt"; | |
15118 | static const char m16suffix[] = "@mips16plt"; | |
15119 | static const char mipssuffix[] = "@plt"; | |
15120 | ||
15121 | bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean); | |
15122 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
15123 | bfd_boolean micromips_p = MICROMIPS_P (abfd); | |
15124 | Elf_Internal_Shdr *hdr; | |
15125 | bfd_byte *plt_data; | |
15126 | bfd_vma plt_offset; | |
15127 | unsigned int other; | |
15128 | bfd_vma entry_size; | |
15129 | bfd_vma plt0_size; | |
15130 | asection *relplt; | |
15131 | bfd_vma opcode; | |
15132 | asection *plt; | |
15133 | asymbol *send; | |
15134 | size_t size; | |
15135 | char *names; | |
15136 | long counti; | |
15137 | arelent *p; | |
15138 | asymbol *s; | |
15139 | char *nend; | |
15140 | long count; | |
15141 | long pi; | |
15142 | long i; | |
15143 | long n; | |
15144 | ||
15145 | *ret = NULL; | |
15146 | ||
15147 | if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0) | |
15148 | return 0; | |
15149 | ||
15150 | relplt = bfd_get_section_by_name (abfd, ".rel.plt"); | |
15151 | if (relplt == NULL) | |
15152 | return 0; | |
15153 | ||
15154 | hdr = &elf_section_data (relplt)->this_hdr; | |
15155 | if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL) | |
15156 | return 0; | |
15157 | ||
15158 | plt = bfd_get_section_by_name (abfd, ".plt"); | |
15159 | if (plt == NULL) | |
15160 | return 0; | |
15161 | ||
15162 | slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table; | |
15163 | if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE)) | |
15164 | return -1; | |
15165 | p = relplt->relocation; | |
15166 | ||
15167 | /* Calculating the exact amount of space required for symbols would | |
15168 | require two passes over the PLT, so just pessimise assuming two | |
15169 | PLT slots per relocation. */ | |
15170 | count = relplt->size / hdr->sh_entsize; | |
15171 | counti = count * bed->s->int_rels_per_ext_rel; | |
15172 | size = 2 * count * sizeof (asymbol); | |
15173 | size += count * (sizeof (mipssuffix) + | |
15174 | (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix))); | |
15175 | for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel) | |
15176 | size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name); | |
15177 | ||
15178 | /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */ | |
15179 | size += sizeof (asymbol) + sizeof (pltname); | |
15180 | ||
15181 | if (!bfd_malloc_and_get_section (abfd, plt, &plt_data)) | |
15182 | return -1; | |
15183 | ||
15184 | if (plt->size < 16) | |
15185 | return -1; | |
15186 | ||
15187 | s = *ret = bfd_malloc (size); | |
15188 | if (s == NULL) | |
15189 | return -1; | |
15190 | send = s + 2 * count + 1; | |
15191 | ||
15192 | names = (char *) send; | |
15193 | nend = (char *) s + size; | |
15194 | n = 0; | |
15195 | ||
15196 | opcode = bfd_get_micromips_32 (abfd, plt_data + 12); | |
15197 | if (opcode == 0x3302fffe) | |
15198 | { | |
15199 | if (!micromips_p) | |
15200 | return -1; | |
15201 | plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry); | |
15202 | other = STO_MICROMIPS; | |
15203 | } | |
833794fc MR |
15204 | else if (opcode == 0x0398c1d0) |
15205 | { | |
15206 | if (!micromips_p) | |
15207 | return -1; | |
15208 | plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); | |
15209 | other = STO_MICROMIPS; | |
15210 | } | |
1bbce132 MR |
15211 | else |
15212 | { | |
15213 | plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry); | |
15214 | other = 0; | |
15215 | } | |
15216 | ||
15217 | s->the_bfd = abfd; | |
15218 | s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL; | |
15219 | s->section = plt; | |
15220 | s->value = 0; | |
15221 | s->name = names; | |
15222 | s->udata.i = other; | |
15223 | memcpy (names, pltname, sizeof (pltname)); | |
15224 | names += sizeof (pltname); | |
15225 | ++s, ++n; | |
15226 | ||
15227 | pi = 0; | |
15228 | for (plt_offset = plt0_size; | |
15229 | plt_offset + 8 <= plt->size && s < send; | |
15230 | plt_offset += entry_size) | |
15231 | { | |
15232 | bfd_vma gotplt_addr; | |
15233 | const char *suffix; | |
15234 | bfd_vma gotplt_hi; | |
15235 | bfd_vma gotplt_lo; | |
15236 | size_t suffixlen; | |
15237 | ||
15238 | opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4); | |
15239 | ||
15240 | /* Check if the second word matches the expected MIPS16 instruction. */ | |
15241 | if (opcode == 0x651aeb00) | |
15242 | { | |
15243 | if (micromips_p) | |
15244 | return -1; | |
15245 | /* Truncated table??? */ | |
15246 | if (plt_offset + 16 > plt->size) | |
15247 | break; | |
15248 | gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12); | |
15249 | entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry); | |
15250 | suffixlen = sizeof (m16suffix); | |
15251 | suffix = m16suffix; | |
15252 | other = STO_MIPS16; | |
15253 | } | |
833794fc | 15254 | /* Likewise the expected microMIPS instruction (no insn32 mode). */ |
1bbce132 MR |
15255 | else if (opcode == 0xff220000) |
15256 | { | |
15257 | if (!micromips_p) | |
15258 | return -1; | |
15259 | gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f; | |
15260 | gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff; | |
15261 | gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18; | |
15262 | gotplt_lo <<= 2; | |
15263 | gotplt_addr = gotplt_hi + gotplt_lo; | |
15264 | gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3; | |
15265 | entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry); | |
15266 | suffixlen = sizeof (microsuffix); | |
15267 | suffix = microsuffix; | |
15268 | other = STO_MICROMIPS; | |
15269 | } | |
833794fc MR |
15270 | /* Likewise the expected microMIPS instruction (insn32 mode). */ |
15271 | else if ((opcode & 0xffff0000) == 0xff2f0000) | |
15272 | { | |
15273 | gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff; | |
15274 | gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff; | |
15275 | gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16; | |
15276 | gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000; | |
15277 | gotplt_addr = gotplt_hi + gotplt_lo; | |
15278 | entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry); | |
15279 | suffixlen = sizeof (microsuffix); | |
15280 | suffix = microsuffix; | |
15281 | other = STO_MICROMIPS; | |
15282 | } | |
1bbce132 MR |
15283 | /* Otherwise assume standard MIPS code. */ |
15284 | else | |
15285 | { | |
15286 | gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff; | |
15287 | gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff; | |
15288 | gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16; | |
15289 | gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000; | |
15290 | gotplt_addr = gotplt_hi + gotplt_lo; | |
15291 | entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry); | |
15292 | suffixlen = sizeof (mipssuffix); | |
15293 | suffix = mipssuffix; | |
15294 | other = 0; | |
15295 | } | |
15296 | /* Truncated table??? */ | |
15297 | if (plt_offset + entry_size > plt->size) | |
15298 | break; | |
15299 | ||
15300 | for (i = 0; | |
15301 | i < count && p[pi].address != gotplt_addr; | |
15302 | i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti); | |
15303 | ||
15304 | if (i < count) | |
15305 | { | |
15306 | size_t namelen; | |
15307 | size_t len; | |
15308 | ||
15309 | *s = **p[pi].sym_ptr_ptr; | |
15310 | /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since | |
15311 | we are defining a symbol, ensure one of them is set. */ | |
15312 | if ((s->flags & BSF_LOCAL) == 0) | |
15313 | s->flags |= BSF_GLOBAL; | |
15314 | s->flags |= BSF_SYNTHETIC; | |
15315 | s->section = plt; | |
15316 | s->value = plt_offset; | |
15317 | s->name = names; | |
15318 | s->udata.i = other; | |
15319 | ||
15320 | len = strlen ((*p[pi].sym_ptr_ptr)->name); | |
15321 | namelen = len + suffixlen; | |
15322 | if (names + namelen > nend) | |
15323 | break; | |
15324 | ||
15325 | memcpy (names, (*p[pi].sym_ptr_ptr)->name, len); | |
15326 | names += len; | |
15327 | memcpy (names, suffix, suffixlen); | |
15328 | names += suffixlen; | |
15329 | ||
15330 | ++s, ++n; | |
15331 | pi = (pi + bed->s->int_rels_per_ext_rel) % counti; | |
15332 | } | |
15333 | } | |
15334 | ||
15335 | free (plt_data); | |
15336 | ||
15337 | return n; | |
15338 | } | |
15339 | ||
861fb55a DJ |
15340 | void |
15341 | _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info) | |
15342 | { | |
15343 | struct mips_elf_link_hash_table *htab; | |
15344 | Elf_Internal_Ehdr *i_ehdrp; | |
15345 | ||
15346 | i_ehdrp = elf_elfheader (abfd); | |
15347 | if (link_info) | |
15348 | { | |
15349 | htab = mips_elf_hash_table (link_info); | |
4dfe6ac6 NC |
15350 | BFD_ASSERT (htab != NULL); |
15351 | ||
861fb55a DJ |
15352 | if (htab->use_plts_and_copy_relocs && !htab->is_vxworks) |
15353 | i_ehdrp->e_ident[EI_ABIVERSION] = 1; | |
15354 | } | |
0af03126 L |
15355 | |
15356 | _bfd_elf_post_process_headers (abfd, link_info); | |
861fb55a | 15357 | } |