]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Perform non-arithmetic operations on values, for GDB. |
990a07ab | 2 | |
c5a57081 | 3 | Copyright (C) 1986-2012 Free Software Foundation, Inc. |
c906108c | 4 | |
c5aa993b | 5 | This file is part of GDB. |
c906108c | 6 | |
c5aa993b JM |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 10 | (at your option) any later version. |
c906108c | 11 | |
c5aa993b JM |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
c906108c | 16 | |
c5aa993b | 17 | You should have received a copy of the GNU General Public License |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
19 | |
20 | #include "defs.h" | |
21 | #include "symtab.h" | |
22 | #include "gdbtypes.h" | |
23 | #include "value.h" | |
24 | #include "frame.h" | |
25 | #include "inferior.h" | |
26 | #include "gdbcore.h" | |
27 | #include "target.h" | |
28 | #include "demangle.h" | |
29 | #include "language.h" | |
30 | #include "gdbcmd.h" | |
4e052eda | 31 | #include "regcache.h" |
015a42b4 | 32 | #include "cp-abi.h" |
fe898f56 | 33 | #include "block.h" |
04714b91 | 34 | #include "infcall.h" |
de4f826b | 35 | #include "dictionary.h" |
b6429628 | 36 | #include "cp-support.h" |
4ef30785 | 37 | #include "dfp.h" |
029a67e4 | 38 | #include "user-regs.h" |
e6ca34fc | 39 | #include "tracepoint.h" |
c906108c SS |
40 | #include <errno.h> |
41 | #include "gdb_string.h" | |
4a1970e4 | 42 | #include "gdb_assert.h" |
79c2c32d | 43 | #include "cp-support.h" |
f4c5303c | 44 | #include "observer.h" |
3e3b026f UW |
45 | #include "objfiles.h" |
46 | #include "symtab.h" | |
79afc5ef | 47 | #include "exceptions.h" |
c906108c | 48 | |
070ad9f0 | 49 | extern int overload_debug; |
c906108c SS |
50 | /* Local functions. */ |
51 | ||
ad2f7632 DJ |
52 | static int typecmp (int staticp, int varargs, int nargs, |
53 | struct field t1[], struct value *t2[]); | |
c906108c | 54 | |
714f19d5 | 55 | static struct value *search_struct_field (const char *, struct value *, |
ac3eeb49 | 56 | int, struct type *, int); |
c906108c | 57 | |
714f19d5 TT |
58 | static struct value *search_struct_method (const char *, struct value **, |
59 | struct value **, | |
60 | int, int *, struct type *); | |
c906108c | 61 | |
da096638 | 62 | static int find_oload_champ_namespace (struct value **, int, |
ac3eeb49 MS |
63 | const char *, const char *, |
64 | struct symbol ***, | |
7322dca9 SW |
65 | struct badness_vector **, |
66 | const int no_adl); | |
8d577d32 DC |
67 | |
68 | static | |
da096638 | 69 | int find_oload_champ_namespace_loop (struct value **, int, |
ac3eeb49 MS |
70 | const char *, const char *, |
71 | int, struct symbol ***, | |
7322dca9 SW |
72 | struct badness_vector **, int *, |
73 | const int no_adl); | |
ac3eeb49 | 74 | |
da096638 | 75 | static int find_oload_champ (struct value **, int, int, int, |
ac3eeb49 MS |
76 | struct fn_field *, struct symbol **, |
77 | struct badness_vector **); | |
78 | ||
79 | static int oload_method_static (int, struct fn_field *, int); | |
8d577d32 DC |
80 | |
81 | enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE }; | |
82 | ||
83 | static enum | |
ac3eeb49 MS |
84 | oload_classification classify_oload_match (struct badness_vector *, |
85 | int, int); | |
8d577d32 | 86 | |
ac3eeb49 MS |
87 | static struct value *value_struct_elt_for_reference (struct type *, |
88 | int, struct type *, | |
89 | char *, | |
90 | struct type *, | |
91 | int, enum noside); | |
79c2c32d | 92 | |
ac3eeb49 MS |
93 | static struct value *value_namespace_elt (const struct type *, |
94 | char *, int , enum noside); | |
79c2c32d | 95 | |
ac3eeb49 MS |
96 | static struct value *value_maybe_namespace_elt (const struct type *, |
97 | char *, int, | |
98 | enum noside); | |
63d06c5c | 99 | |
a14ed312 | 100 | static CORE_ADDR allocate_space_in_inferior (int); |
c906108c | 101 | |
f23631e4 | 102 | static struct value *cast_into_complex (struct type *, struct value *); |
c906108c | 103 | |
714f19d5 | 104 | static struct fn_field *find_method_list (struct value **, const char *, |
ac3eeb49 MS |
105 | int, struct type *, int *, |
106 | struct type **, int *); | |
7a292a7a | 107 | |
a14ed312 | 108 | void _initialize_valops (void); |
c906108c | 109 | |
c906108c | 110 | #if 0 |
ac3eeb49 MS |
111 | /* Flag for whether we want to abandon failed expression evals by |
112 | default. */ | |
113 | ||
c906108c SS |
114 | static int auto_abandon = 0; |
115 | #endif | |
116 | ||
117 | int overload_resolution = 0; | |
920d2a44 AC |
118 | static void |
119 | show_overload_resolution (struct ui_file *file, int from_tty, | |
ac3eeb49 MS |
120 | struct cmd_list_element *c, |
121 | const char *value) | |
920d2a44 | 122 | { |
3e43a32a MS |
123 | fprintf_filtered (file, _("Overload resolution in evaluating " |
124 | "C++ functions is %s.\n"), | |
920d2a44 AC |
125 | value); |
126 | } | |
242bfc55 | 127 | |
3e3b026f UW |
128 | /* Find the address of function name NAME in the inferior. If OBJF_P |
129 | is non-NULL, *OBJF_P will be set to the OBJFILE where the function | |
130 | is defined. */ | |
c906108c | 131 | |
f23631e4 | 132 | struct value * |
3e3b026f | 133 | find_function_in_inferior (const char *name, struct objfile **objf_p) |
c906108c | 134 | { |
52f0bd74 | 135 | struct symbol *sym; |
a109c7c1 | 136 | |
2570f2b7 | 137 | sym = lookup_symbol (name, 0, VAR_DOMAIN, 0); |
c906108c SS |
138 | if (sym != NULL) |
139 | { | |
140 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
141 | { | |
8a3fe4f8 | 142 | error (_("\"%s\" exists in this program but is not a function."), |
c906108c SS |
143 | name); |
144 | } | |
3e3b026f UW |
145 | |
146 | if (objf_p) | |
147 | *objf_p = SYMBOL_SYMTAB (sym)->objfile; | |
148 | ||
c906108c SS |
149 | return value_of_variable (sym, NULL); |
150 | } | |
151 | else | |
152 | { | |
ac3eeb49 MS |
153 | struct minimal_symbol *msymbol = |
154 | lookup_minimal_symbol (name, NULL, NULL); | |
a109c7c1 | 155 | |
c906108c SS |
156 | if (msymbol != NULL) |
157 | { | |
3e3b026f UW |
158 | struct objfile *objfile = msymbol_objfile (msymbol); |
159 | struct gdbarch *gdbarch = get_objfile_arch (objfile); | |
160 | ||
c906108c | 161 | struct type *type; |
4478b372 | 162 | CORE_ADDR maddr; |
3e3b026f | 163 | type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char); |
c906108c SS |
164 | type = lookup_function_type (type); |
165 | type = lookup_pointer_type (type); | |
4478b372 | 166 | maddr = SYMBOL_VALUE_ADDRESS (msymbol); |
3e3b026f UW |
167 | |
168 | if (objf_p) | |
169 | *objf_p = objfile; | |
170 | ||
4478b372 | 171 | return value_from_pointer (type, maddr); |
c906108c SS |
172 | } |
173 | else | |
174 | { | |
c5aa993b | 175 | if (!target_has_execution) |
3e43a32a MS |
176 | error (_("evaluation of this expression " |
177 | "requires the target program to be active")); | |
c5aa993b | 178 | else |
3e43a32a MS |
179 | error (_("evaluation of this expression requires the " |
180 | "program to have a function \"%s\"."), | |
181 | name); | |
c906108c SS |
182 | } |
183 | } | |
184 | } | |
185 | ||
ac3eeb49 MS |
186 | /* Allocate NBYTES of space in the inferior using the inferior's |
187 | malloc and return a value that is a pointer to the allocated | |
188 | space. */ | |
c906108c | 189 | |
f23631e4 | 190 | struct value * |
fba45db2 | 191 | value_allocate_space_in_inferior (int len) |
c906108c | 192 | { |
3e3b026f UW |
193 | struct objfile *objf; |
194 | struct value *val = find_function_in_inferior ("malloc", &objf); | |
195 | struct gdbarch *gdbarch = get_objfile_arch (objf); | |
f23631e4 | 196 | struct value *blocklen; |
c906108c | 197 | |
3e3b026f | 198 | blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len); |
c906108c SS |
199 | val = call_function_by_hand (val, 1, &blocklen); |
200 | if (value_logical_not (val)) | |
201 | { | |
202 | if (!target_has_execution) | |
3e43a32a MS |
203 | error (_("No memory available to program now: " |
204 | "you need to start the target first")); | |
c5aa993b | 205 | else |
8a3fe4f8 | 206 | error (_("No memory available to program: call to malloc failed")); |
c906108c SS |
207 | } |
208 | return val; | |
209 | } | |
210 | ||
211 | static CORE_ADDR | |
fba45db2 | 212 | allocate_space_in_inferior (int len) |
c906108c SS |
213 | { |
214 | return value_as_long (value_allocate_space_in_inferior (len)); | |
215 | } | |
216 | ||
6af87b03 AR |
217 | /* Cast struct value VAL to type TYPE and return as a value. |
218 | Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION | |
694182d2 DJ |
219 | for this to work. Typedef to one of the codes is permitted. |
220 | Returns NULL if the cast is neither an upcast nor a downcast. */ | |
6af87b03 AR |
221 | |
222 | static struct value * | |
223 | value_cast_structs (struct type *type, struct value *v2) | |
224 | { | |
225 | struct type *t1; | |
226 | struct type *t2; | |
227 | struct value *v; | |
228 | ||
229 | gdb_assert (type != NULL && v2 != NULL); | |
230 | ||
231 | t1 = check_typedef (type); | |
232 | t2 = check_typedef (value_type (v2)); | |
233 | ||
234 | /* Check preconditions. */ | |
235 | gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT | |
236 | || TYPE_CODE (t1) == TYPE_CODE_UNION) | |
237 | && !!"Precondition is that type is of STRUCT or UNION kind."); | |
238 | gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT | |
239 | || TYPE_CODE (t2) == TYPE_CODE_UNION) | |
240 | && !!"Precondition is that value is of STRUCT or UNION kind"); | |
241 | ||
191ca0a1 CM |
242 | if (TYPE_NAME (t1) != NULL |
243 | && TYPE_NAME (t2) != NULL | |
244 | && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2))) | |
245 | return NULL; | |
246 | ||
6af87b03 AR |
247 | /* Upcasting: look in the type of the source to see if it contains the |
248 | type of the target as a superclass. If so, we'll need to | |
249 | offset the pointer rather than just change its type. */ | |
250 | if (TYPE_NAME (t1) != NULL) | |
251 | { | |
252 | v = search_struct_field (type_name_no_tag (t1), | |
253 | v2, 0, t2, 1); | |
254 | if (v) | |
255 | return v; | |
256 | } | |
257 | ||
258 | /* Downcasting: look in the type of the target to see if it contains the | |
259 | type of the source as a superclass. If so, we'll need to | |
9c3c02fd | 260 | offset the pointer rather than just change its type. */ |
6af87b03 AR |
261 | if (TYPE_NAME (t2) != NULL) |
262 | { | |
9c3c02fd TT |
263 | /* Try downcasting using the run-time type of the value. */ |
264 | int full, top, using_enc; | |
265 | struct type *real_type; | |
266 | ||
267 | real_type = value_rtti_type (v2, &full, &top, &using_enc); | |
268 | if (real_type) | |
269 | { | |
270 | v = value_full_object (v2, real_type, full, top, using_enc); | |
271 | v = value_at_lazy (real_type, value_address (v)); | |
272 | ||
273 | /* We might be trying to cast to the outermost enclosing | |
274 | type, in which case search_struct_field won't work. */ | |
275 | if (TYPE_NAME (real_type) != NULL | |
276 | && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1))) | |
277 | return v; | |
278 | ||
279 | v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1); | |
280 | if (v) | |
281 | return v; | |
282 | } | |
283 | ||
284 | /* Try downcasting using information from the destination type | |
285 | T2. This wouldn't work properly for classes with virtual | |
286 | bases, but those were handled above. */ | |
6af87b03 AR |
287 | v = search_struct_field (type_name_no_tag (t2), |
288 | value_zero (t1, not_lval), 0, t1, 1); | |
289 | if (v) | |
290 | { | |
291 | /* Downcasting is possible (t1 is superclass of v2). */ | |
42ae5230 | 292 | CORE_ADDR addr2 = value_address (v2); |
a109c7c1 | 293 | |
42ae5230 | 294 | addr2 -= value_address (v) + value_embedded_offset (v); |
6af87b03 AR |
295 | return value_at (type, addr2); |
296 | } | |
297 | } | |
694182d2 DJ |
298 | |
299 | return NULL; | |
6af87b03 AR |
300 | } |
301 | ||
fb933624 DJ |
302 | /* Cast one pointer or reference type to another. Both TYPE and |
303 | the type of ARG2 should be pointer types, or else both should be | |
b1af9e97 TT |
304 | reference types. If SUBCLASS_CHECK is non-zero, this will force a |
305 | check to see whether TYPE is a superclass of ARG2's type. If | |
306 | SUBCLASS_CHECK is zero, then the subclass check is done only when | |
307 | ARG2 is itself non-zero. Returns the new pointer or reference. */ | |
fb933624 DJ |
308 | |
309 | struct value * | |
b1af9e97 TT |
310 | value_cast_pointers (struct type *type, struct value *arg2, |
311 | int subclass_check) | |
fb933624 | 312 | { |
d160942f | 313 | struct type *type1 = check_typedef (type); |
fb933624 | 314 | struct type *type2 = check_typedef (value_type (arg2)); |
d160942f | 315 | struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1)); |
fb933624 DJ |
316 | struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2)); |
317 | ||
318 | if (TYPE_CODE (t1) == TYPE_CODE_STRUCT | |
319 | && TYPE_CODE (t2) == TYPE_CODE_STRUCT | |
b1af9e97 | 320 | && (subclass_check || !value_logical_not (arg2))) |
fb933624 | 321 | { |
6af87b03 | 322 | struct value *v2; |
fb933624 | 323 | |
6af87b03 AR |
324 | if (TYPE_CODE (type2) == TYPE_CODE_REF) |
325 | v2 = coerce_ref (arg2); | |
326 | else | |
327 | v2 = value_ind (arg2); | |
3e43a32a MS |
328 | gdb_assert (TYPE_CODE (check_typedef (value_type (v2))) |
329 | == TYPE_CODE_STRUCT && !!"Why did coercion fail?"); | |
6af87b03 AR |
330 | v2 = value_cast_structs (t1, v2); |
331 | /* At this point we have what we can have, un-dereference if needed. */ | |
332 | if (v2) | |
fb933624 | 333 | { |
6af87b03 | 334 | struct value *v = value_addr (v2); |
a109c7c1 | 335 | |
6af87b03 AR |
336 | deprecated_set_value_type (v, type); |
337 | return v; | |
fb933624 | 338 | } |
6af87b03 | 339 | } |
fb933624 DJ |
340 | |
341 | /* No superclass found, just change the pointer type. */ | |
0d5de010 | 342 | arg2 = value_copy (arg2); |
fb933624 | 343 | deprecated_set_value_type (arg2, type); |
4dfea560 | 344 | set_value_enclosing_type (arg2, type); |
fb933624 DJ |
345 | set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */ |
346 | return arg2; | |
347 | } | |
348 | ||
c906108c SS |
349 | /* Cast value ARG2 to type TYPE and return as a value. |
350 | More general than a C cast: accepts any two types of the same length, | |
351 | and if ARG2 is an lvalue it can be cast into anything at all. */ | |
352 | /* In C++, casts may change pointer or object representations. */ | |
353 | ||
f23631e4 AC |
354 | struct value * |
355 | value_cast (struct type *type, struct value *arg2) | |
c906108c | 356 | { |
52f0bd74 AC |
357 | enum type_code code1; |
358 | enum type_code code2; | |
359 | int scalar; | |
c906108c SS |
360 | struct type *type2; |
361 | ||
362 | int convert_to_boolean = 0; | |
c5aa993b | 363 | |
df407dfe | 364 | if (value_type (arg2) == type) |
c906108c SS |
365 | return arg2; |
366 | ||
6af87b03 AR |
367 | code1 = TYPE_CODE (check_typedef (type)); |
368 | ||
369 | /* Check if we are casting struct reference to struct reference. */ | |
370 | if (code1 == TYPE_CODE_REF) | |
371 | { | |
372 | /* We dereference type; then we recurse and finally | |
581e13c1 | 373 | we generate value of the given reference. Nothing wrong with |
6af87b03 AR |
374 | that. */ |
375 | struct type *t1 = check_typedef (type); | |
376 | struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1)); | |
377 | struct value *val = value_cast (dereftype, arg2); | |
a109c7c1 | 378 | |
6af87b03 AR |
379 | return value_ref (val); |
380 | } | |
381 | ||
382 | code2 = TYPE_CODE (check_typedef (value_type (arg2))); | |
383 | ||
384 | if (code2 == TYPE_CODE_REF) | |
385 | /* We deref the value and then do the cast. */ | |
386 | return value_cast (type, coerce_ref (arg2)); | |
387 | ||
c906108c SS |
388 | CHECK_TYPEDEF (type); |
389 | code1 = TYPE_CODE (type); | |
994b9211 | 390 | arg2 = coerce_ref (arg2); |
df407dfe | 391 | type2 = check_typedef (value_type (arg2)); |
c906108c | 392 | |
fb933624 DJ |
393 | /* You can't cast to a reference type. See value_cast_pointers |
394 | instead. */ | |
395 | gdb_assert (code1 != TYPE_CODE_REF); | |
396 | ||
ac3eeb49 MS |
397 | /* A cast to an undetermined-length array_type, such as |
398 | (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT, | |
399 | where N is sizeof(OBJECT)/sizeof(TYPE). */ | |
c906108c SS |
400 | if (code1 == TYPE_CODE_ARRAY) |
401 | { | |
402 | struct type *element_type = TYPE_TARGET_TYPE (type); | |
403 | unsigned element_length = TYPE_LENGTH (check_typedef (element_type)); | |
a109c7c1 | 404 | |
d78df370 | 405 | if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type)) |
c906108c SS |
406 | { |
407 | struct type *range_type = TYPE_INDEX_TYPE (type); | |
408 | int val_length = TYPE_LENGTH (type2); | |
409 | LONGEST low_bound, high_bound, new_length; | |
a109c7c1 | 410 | |
c906108c SS |
411 | if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0) |
412 | low_bound = 0, high_bound = 0; | |
413 | new_length = val_length / element_length; | |
414 | if (val_length % element_length != 0) | |
3e43a32a MS |
415 | warning (_("array element type size does not " |
416 | "divide object size in cast")); | |
ac3eeb49 MS |
417 | /* FIXME-type-allocation: need a way to free this type when |
418 | we are done with it. */ | |
c906108c SS |
419 | range_type = create_range_type ((struct type *) NULL, |
420 | TYPE_TARGET_TYPE (range_type), | |
421 | low_bound, | |
422 | new_length + low_bound - 1); | |
ac3eeb49 MS |
423 | deprecated_set_value_type (arg2, |
424 | create_array_type ((struct type *) NULL, | |
425 | element_type, | |
426 | range_type)); | |
c906108c SS |
427 | return arg2; |
428 | } | |
429 | } | |
430 | ||
431 | if (current_language->c_style_arrays | |
3bdf2bbd KW |
432 | && TYPE_CODE (type2) == TYPE_CODE_ARRAY |
433 | && !TYPE_VECTOR (type2)) | |
c906108c SS |
434 | arg2 = value_coerce_array (arg2); |
435 | ||
436 | if (TYPE_CODE (type2) == TYPE_CODE_FUNC) | |
437 | arg2 = value_coerce_function (arg2); | |
438 | ||
df407dfe | 439 | type2 = check_typedef (value_type (arg2)); |
c906108c SS |
440 | code2 = TYPE_CODE (type2); |
441 | ||
442 | if (code1 == TYPE_CODE_COMPLEX) | |
443 | return cast_into_complex (type, arg2); | |
444 | if (code1 == TYPE_CODE_BOOL) | |
445 | { | |
446 | code1 = TYPE_CODE_INT; | |
447 | convert_to_boolean = 1; | |
448 | } | |
449 | if (code1 == TYPE_CODE_CHAR) | |
450 | code1 = TYPE_CODE_INT; | |
451 | if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR) | |
452 | code2 = TYPE_CODE_INT; | |
453 | ||
454 | scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT | |
4ef30785 TJB |
455 | || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM |
456 | || code2 == TYPE_CODE_RANGE); | |
c906108c | 457 | |
6af87b03 AR |
458 | if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION) |
459 | && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION) | |
c906108c | 460 | && TYPE_NAME (type) != 0) |
694182d2 DJ |
461 | { |
462 | struct value *v = value_cast_structs (type, arg2); | |
a109c7c1 | 463 | |
694182d2 DJ |
464 | if (v) |
465 | return v; | |
466 | } | |
467 | ||
c906108c SS |
468 | if (code1 == TYPE_CODE_FLT && scalar) |
469 | return value_from_double (type, value_as_double (arg2)); | |
4ef30785 TJB |
470 | else if (code1 == TYPE_CODE_DECFLOAT && scalar) |
471 | { | |
e17a4113 | 472 | enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); |
4ef30785 TJB |
473 | int dec_len = TYPE_LENGTH (type); |
474 | gdb_byte dec[16]; | |
475 | ||
476 | if (code2 == TYPE_CODE_FLT) | |
e17a4113 | 477 | decimal_from_floating (arg2, dec, dec_len, byte_order); |
4ef30785 TJB |
478 | else if (code2 == TYPE_CODE_DECFLOAT) |
479 | decimal_convert (value_contents (arg2), TYPE_LENGTH (type2), | |
e17a4113 | 480 | byte_order, dec, dec_len, byte_order); |
4ef30785 TJB |
481 | else |
482 | /* The only option left is an integral type. */ | |
e17a4113 | 483 | decimal_from_integral (arg2, dec, dec_len, byte_order); |
4ef30785 TJB |
484 | |
485 | return value_from_decfloat (type, dec); | |
486 | } | |
c906108c SS |
487 | else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM |
488 | || code1 == TYPE_CODE_RANGE) | |
0d5de010 DJ |
489 | && (scalar || code2 == TYPE_CODE_PTR |
490 | || code2 == TYPE_CODE_MEMBERPTR)) | |
c906108c SS |
491 | { |
492 | LONGEST longest; | |
c5aa993b | 493 | |
2bf1f4a1 | 494 | /* When we cast pointers to integers, we mustn't use |
76e71323 | 495 | gdbarch_pointer_to_address to find the address the pointer |
2bf1f4a1 JB |
496 | represents, as value_as_long would. GDB should evaluate |
497 | expressions just as the compiler would --- and the compiler | |
498 | sees a cast as a simple reinterpretation of the pointer's | |
499 | bits. */ | |
500 | if (code2 == TYPE_CODE_PTR) | |
e17a4113 UW |
501 | longest = extract_unsigned_integer |
502 | (value_contents (arg2), TYPE_LENGTH (type2), | |
503 | gdbarch_byte_order (get_type_arch (type2))); | |
2bf1f4a1 JB |
504 | else |
505 | longest = value_as_long (arg2); | |
802db21b | 506 | return value_from_longest (type, convert_to_boolean ? |
716c501e | 507 | (LONGEST) (longest ? 1 : 0) : longest); |
c906108c | 508 | } |
ac3eeb49 MS |
509 | else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT |
510 | || code2 == TYPE_CODE_ENUM | |
511 | || code2 == TYPE_CODE_RANGE)) | |
634acd5f | 512 | { |
4603e466 DT |
513 | /* TYPE_LENGTH (type) is the length of a pointer, but we really |
514 | want the length of an address! -- we are really dealing with | |
515 | addresses (i.e., gdb representations) not pointers (i.e., | |
516 | target representations) here. | |
517 | ||
518 | This allows things like "print *(int *)0x01000234" to work | |
519 | without printing a misleading message -- which would | |
520 | otherwise occur when dealing with a target having two byte | |
521 | pointers and four byte addresses. */ | |
522 | ||
50810684 | 523 | int addr_bit = gdbarch_addr_bit (get_type_arch (type2)); |
634acd5f | 524 | LONGEST longest = value_as_long (arg2); |
a109c7c1 | 525 | |
4603e466 | 526 | if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT) |
634acd5f | 527 | { |
4603e466 DT |
528 | if (longest >= ((LONGEST) 1 << addr_bit) |
529 | || longest <= -((LONGEST) 1 << addr_bit)) | |
8a3fe4f8 | 530 | warning (_("value truncated")); |
634acd5f AC |
531 | } |
532 | return value_from_longest (type, longest); | |
533 | } | |
0d5de010 DJ |
534 | else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT |
535 | && value_as_long (arg2) == 0) | |
536 | { | |
537 | struct value *result = allocate_value (type); | |
a109c7c1 | 538 | |
ad4820ab | 539 | cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0); |
0d5de010 DJ |
540 | return result; |
541 | } | |
542 | else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT | |
543 | && value_as_long (arg2) == 0) | |
544 | { | |
545 | /* The Itanium C++ ABI represents NULL pointers to members as | |
546 | minus one, instead of biasing the normal case. */ | |
547 | return value_from_longest (type, -1); | |
548 | } | |
3bdf2bbd KW |
549 | else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar) |
550 | { | |
551 | /* Widen the scalar to a vector. */ | |
552 | struct type *eltype; | |
553 | struct value *val; | |
dbc98a8b KW |
554 | LONGEST low_bound, high_bound; |
555 | int i; | |
556 | ||
557 | if (!get_array_bounds (type, &low_bound, &high_bound)) | |
558 | error (_("Could not determine the vector bounds")); | |
3bdf2bbd KW |
559 | |
560 | eltype = check_typedef (TYPE_TARGET_TYPE (type)); | |
561 | arg2 = value_cast (eltype, arg2); | |
562 | val = allocate_value (type); | |
3bdf2bbd | 563 | |
dbc98a8b | 564 | for (i = 0; i < high_bound - low_bound + 1; i++) |
3bdf2bbd KW |
565 | { |
566 | /* Duplicate the contents of arg2 into the destination vector. */ | |
567 | memcpy (value_contents_writeable (val) + (i * TYPE_LENGTH (eltype)), | |
568 | value_contents_all (arg2), TYPE_LENGTH (eltype)); | |
569 | } | |
570 | return val; | |
571 | } | |
c906108c SS |
572 | else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2)) |
573 | { | |
574 | if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR) | |
b1af9e97 | 575 | return value_cast_pointers (type, arg2, 0); |
fb933624 | 576 | |
0d5de010 | 577 | arg2 = value_copy (arg2); |
04624583 | 578 | deprecated_set_value_type (arg2, type); |
4dfea560 | 579 | set_value_enclosing_type (arg2, type); |
b44d461b | 580 | set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */ |
c906108c SS |
581 | return arg2; |
582 | } | |
c906108c | 583 | else if (VALUE_LVAL (arg2) == lval_memory) |
42ae5230 | 584 | return value_at_lazy (type, value_address (arg2)); |
c906108c SS |
585 | else if (code1 == TYPE_CODE_VOID) |
586 | { | |
48319d1f | 587 | return value_zero (type, not_lval); |
c906108c SS |
588 | } |
589 | else | |
590 | { | |
8a3fe4f8 | 591 | error (_("Invalid cast.")); |
c906108c SS |
592 | return 0; |
593 | } | |
594 | } | |
595 | ||
4e8f195d TT |
596 | /* The C++ reinterpret_cast operator. */ |
597 | ||
598 | struct value * | |
599 | value_reinterpret_cast (struct type *type, struct value *arg) | |
600 | { | |
601 | struct value *result; | |
602 | struct type *real_type = check_typedef (type); | |
603 | struct type *arg_type, *dest_type; | |
604 | int is_ref = 0; | |
605 | enum type_code dest_code, arg_code; | |
606 | ||
607 | /* Do reference, function, and array conversion. */ | |
608 | arg = coerce_array (arg); | |
609 | ||
610 | /* Attempt to preserve the type the user asked for. */ | |
611 | dest_type = type; | |
612 | ||
613 | /* If we are casting to a reference type, transform | |
614 | reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */ | |
615 | if (TYPE_CODE (real_type) == TYPE_CODE_REF) | |
616 | { | |
617 | is_ref = 1; | |
618 | arg = value_addr (arg); | |
619 | dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type)); | |
620 | real_type = lookup_pointer_type (real_type); | |
621 | } | |
622 | ||
623 | arg_type = value_type (arg); | |
624 | ||
625 | dest_code = TYPE_CODE (real_type); | |
626 | arg_code = TYPE_CODE (arg_type); | |
627 | ||
628 | /* We can convert pointer types, or any pointer type to int, or int | |
629 | type to pointer. */ | |
630 | if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT) | |
631 | || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR) | |
632 | || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT) | |
633 | || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR) | |
634 | || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT) | |
635 | || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR) | |
636 | || (dest_code == arg_code | |
637 | && (dest_code == TYPE_CODE_PTR | |
638 | || dest_code == TYPE_CODE_METHODPTR | |
639 | || dest_code == TYPE_CODE_MEMBERPTR))) | |
640 | result = value_cast (dest_type, arg); | |
641 | else | |
642 | error (_("Invalid reinterpret_cast")); | |
643 | ||
644 | if (is_ref) | |
645 | result = value_cast (type, value_ref (value_ind (result))); | |
646 | ||
647 | return result; | |
648 | } | |
649 | ||
650 | /* A helper for value_dynamic_cast. This implements the first of two | |
651 | runtime checks: we iterate over all the base classes of the value's | |
652 | class which are equal to the desired class; if only one of these | |
653 | holds the value, then it is the answer. */ | |
654 | ||
655 | static int | |
656 | dynamic_cast_check_1 (struct type *desired_type, | |
8af8e3bc PA |
657 | const gdb_byte *valaddr, |
658 | int embedded_offset, | |
4e8f195d | 659 | CORE_ADDR address, |
8af8e3bc | 660 | struct value *val, |
4e8f195d TT |
661 | struct type *search_type, |
662 | CORE_ADDR arg_addr, | |
663 | struct type *arg_type, | |
664 | struct value **result) | |
665 | { | |
666 | int i, result_count = 0; | |
667 | ||
668 | for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i) | |
669 | { | |
8af8e3bc PA |
670 | int offset = baseclass_offset (search_type, i, valaddr, embedded_offset, |
671 | address, val); | |
a109c7c1 | 672 | |
4e8f195d TT |
673 | if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i))) |
674 | { | |
8af8e3bc PA |
675 | if (address + embedded_offset + offset >= arg_addr |
676 | && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type)) | |
4e8f195d TT |
677 | { |
678 | ++result_count; | |
679 | if (!*result) | |
680 | *result = value_at_lazy (TYPE_BASECLASS (search_type, i), | |
8af8e3bc | 681 | address + embedded_offset + offset); |
4e8f195d TT |
682 | } |
683 | } | |
684 | else | |
685 | result_count += dynamic_cast_check_1 (desired_type, | |
8af8e3bc PA |
686 | valaddr, |
687 | embedded_offset + offset, | |
688 | address, val, | |
4e8f195d TT |
689 | TYPE_BASECLASS (search_type, i), |
690 | arg_addr, | |
691 | arg_type, | |
692 | result); | |
693 | } | |
694 | ||
695 | return result_count; | |
696 | } | |
697 | ||
698 | /* A helper for value_dynamic_cast. This implements the second of two | |
699 | runtime checks: we look for a unique public sibling class of the | |
700 | argument's declared class. */ | |
701 | ||
702 | static int | |
703 | dynamic_cast_check_2 (struct type *desired_type, | |
8af8e3bc PA |
704 | const gdb_byte *valaddr, |
705 | int embedded_offset, | |
4e8f195d | 706 | CORE_ADDR address, |
8af8e3bc | 707 | struct value *val, |
4e8f195d TT |
708 | struct type *search_type, |
709 | struct value **result) | |
710 | { | |
711 | int i, result_count = 0; | |
712 | ||
713 | for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i) | |
714 | { | |
715 | int offset; | |
716 | ||
717 | if (! BASETYPE_VIA_PUBLIC (search_type, i)) | |
718 | continue; | |
719 | ||
8af8e3bc PA |
720 | offset = baseclass_offset (search_type, i, valaddr, embedded_offset, |
721 | address, val); | |
4e8f195d TT |
722 | if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i))) |
723 | { | |
724 | ++result_count; | |
725 | if (*result == NULL) | |
726 | *result = value_at_lazy (TYPE_BASECLASS (search_type, i), | |
8af8e3bc | 727 | address + embedded_offset + offset); |
4e8f195d TT |
728 | } |
729 | else | |
730 | result_count += dynamic_cast_check_2 (desired_type, | |
8af8e3bc PA |
731 | valaddr, |
732 | embedded_offset + offset, | |
733 | address, val, | |
4e8f195d TT |
734 | TYPE_BASECLASS (search_type, i), |
735 | result); | |
736 | } | |
737 | ||
738 | return result_count; | |
739 | } | |
740 | ||
741 | /* The C++ dynamic_cast operator. */ | |
742 | ||
743 | struct value * | |
744 | value_dynamic_cast (struct type *type, struct value *arg) | |
745 | { | |
8f78b329 | 746 | int full, top, using_enc; |
4e8f195d TT |
747 | struct type *resolved_type = check_typedef (type); |
748 | struct type *arg_type = check_typedef (value_type (arg)); | |
749 | struct type *class_type, *rtti_type; | |
750 | struct value *result, *tem, *original_arg = arg; | |
751 | CORE_ADDR addr; | |
752 | int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF; | |
753 | ||
754 | if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR | |
755 | && TYPE_CODE (resolved_type) != TYPE_CODE_REF) | |
756 | error (_("Argument to dynamic_cast must be a pointer or reference type")); | |
757 | if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID | |
758 | && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS) | |
759 | error (_("Argument to dynamic_cast must be pointer to class or `void *'")); | |
760 | ||
761 | class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type)); | |
762 | if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR) | |
763 | { | |
764 | if (TYPE_CODE (arg_type) != TYPE_CODE_PTR | |
765 | && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT | |
766 | && value_as_long (arg) == 0)) | |
767 | error (_("Argument to dynamic_cast does not have pointer type")); | |
768 | if (TYPE_CODE (arg_type) == TYPE_CODE_PTR) | |
769 | { | |
770 | arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type)); | |
771 | if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS) | |
3e43a32a MS |
772 | error (_("Argument to dynamic_cast does " |
773 | "not have pointer to class type")); | |
4e8f195d TT |
774 | } |
775 | ||
776 | /* Handle NULL pointers. */ | |
777 | if (value_as_long (arg) == 0) | |
778 | return value_zero (type, not_lval); | |
779 | ||
780 | arg = value_ind (arg); | |
781 | } | |
782 | else | |
783 | { | |
784 | if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS) | |
785 | error (_("Argument to dynamic_cast does not have class type")); | |
786 | } | |
787 | ||
788 | /* If the classes are the same, just return the argument. */ | |
789 | if (class_types_same_p (class_type, arg_type)) | |
790 | return value_cast (type, arg); | |
791 | ||
792 | /* If the target type is a unique base class of the argument's | |
793 | declared type, just cast it. */ | |
794 | if (is_ancestor (class_type, arg_type)) | |
795 | { | |
796 | if (is_unique_ancestor (class_type, arg)) | |
797 | return value_cast (type, original_arg); | |
798 | error (_("Ambiguous dynamic_cast")); | |
799 | } | |
800 | ||
801 | rtti_type = value_rtti_type (arg, &full, &top, &using_enc); | |
802 | if (! rtti_type) | |
803 | error (_("Couldn't determine value's most derived type for dynamic_cast")); | |
804 | ||
805 | /* Compute the most derived object's address. */ | |
806 | addr = value_address (arg); | |
807 | if (full) | |
808 | { | |
809 | /* Done. */ | |
810 | } | |
811 | else if (using_enc) | |
812 | addr += top; | |
813 | else | |
814 | addr += top + value_embedded_offset (arg); | |
815 | ||
816 | /* dynamic_cast<void *> means to return a pointer to the | |
817 | most-derived object. */ | |
818 | if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR | |
819 | && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID) | |
820 | return value_at_lazy (type, addr); | |
821 | ||
822 | tem = value_at (type, addr); | |
823 | ||
824 | /* The first dynamic check specified in 5.2.7. */ | |
825 | if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type))) | |
826 | { | |
827 | if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type))) | |
828 | return tem; | |
829 | result = NULL; | |
830 | if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type), | |
8af8e3bc PA |
831 | value_contents_for_printing (tem), |
832 | value_embedded_offset (tem), | |
833 | value_address (tem), tem, | |
4e8f195d TT |
834 | rtti_type, addr, |
835 | arg_type, | |
836 | &result) == 1) | |
837 | return value_cast (type, | |
838 | is_ref ? value_ref (result) : value_addr (result)); | |
839 | } | |
840 | ||
841 | /* The second dynamic check specified in 5.2.7. */ | |
842 | result = NULL; | |
843 | if (is_public_ancestor (arg_type, rtti_type) | |
844 | && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type), | |
8af8e3bc PA |
845 | value_contents_for_printing (tem), |
846 | value_embedded_offset (tem), | |
847 | value_address (tem), tem, | |
4e8f195d TT |
848 | rtti_type, &result) == 1) |
849 | return value_cast (type, | |
850 | is_ref ? value_ref (result) : value_addr (result)); | |
851 | ||
852 | if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR) | |
853 | return value_zero (type, not_lval); | |
854 | ||
855 | error (_("dynamic_cast failed")); | |
856 | } | |
857 | ||
c906108c SS |
858 | /* Create a value of type TYPE that is zero, and return it. */ |
859 | ||
f23631e4 | 860 | struct value * |
fba45db2 | 861 | value_zero (struct type *type, enum lval_type lv) |
c906108c | 862 | { |
f23631e4 | 863 | struct value *val = allocate_value (type); |
c906108c | 864 | |
bb7da2bf | 865 | VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv); |
c906108c SS |
866 | return val; |
867 | } | |
868 | ||
18a46dbe | 869 | /* Create a not_lval value of numeric type TYPE that is one, and return it. */ |
301f0ecf DE |
870 | |
871 | struct value * | |
18a46dbe | 872 | value_one (struct type *type) |
301f0ecf DE |
873 | { |
874 | struct type *type1 = check_typedef (type); | |
4e608b4f | 875 | struct value *val; |
301f0ecf DE |
876 | |
877 | if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT) | |
878 | { | |
e17a4113 | 879 | enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); |
301f0ecf | 880 | gdb_byte v[16]; |
a109c7c1 | 881 | |
e17a4113 | 882 | decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1"); |
301f0ecf DE |
883 | val = value_from_decfloat (type, v); |
884 | } | |
885 | else if (TYPE_CODE (type1) == TYPE_CODE_FLT) | |
886 | { | |
887 | val = value_from_double (type, (DOUBLEST) 1); | |
888 | } | |
889 | else if (is_integral_type (type1)) | |
890 | { | |
891 | val = value_from_longest (type, (LONGEST) 1); | |
892 | } | |
120bd360 KW |
893 | else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1)) |
894 | { | |
895 | struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1)); | |
cfa6f054 KW |
896 | int i; |
897 | LONGEST low_bound, high_bound; | |
120bd360 KW |
898 | struct value *tmp; |
899 | ||
cfa6f054 KW |
900 | if (!get_array_bounds (type1, &low_bound, &high_bound)) |
901 | error (_("Could not determine the vector bounds")); | |
902 | ||
120bd360 | 903 | val = allocate_value (type); |
cfa6f054 | 904 | for (i = 0; i < high_bound - low_bound + 1; i++) |
120bd360 | 905 | { |
18a46dbe | 906 | tmp = value_one (eltype); |
120bd360 KW |
907 | memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype), |
908 | value_contents_all (tmp), TYPE_LENGTH (eltype)); | |
909 | } | |
910 | } | |
301f0ecf DE |
911 | else |
912 | { | |
913 | error (_("Not a numeric type.")); | |
914 | } | |
915 | ||
18a46dbe JK |
916 | /* value_one result is never used for assignments to. */ |
917 | gdb_assert (VALUE_LVAL (val) == not_lval); | |
918 | ||
301f0ecf DE |
919 | return val; |
920 | } | |
921 | ||
4e5d721f DE |
922 | /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. */ |
923 | ||
924 | static struct value * | |
925 | get_value_at (struct type *type, CORE_ADDR addr, int lazy) | |
926 | { | |
927 | struct value *val; | |
928 | ||
929 | if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID) | |
930 | error (_("Attempt to dereference a generic pointer.")); | |
931 | ||
a3d34bf4 | 932 | val = value_from_contents_and_address (type, NULL, addr); |
4e5d721f | 933 | |
a3d34bf4 PA |
934 | if (!lazy) |
935 | value_fetch_lazy (val); | |
4e5d721f DE |
936 | |
937 | return val; | |
938 | } | |
939 | ||
070ad9f0 | 940 | /* Return a value with type TYPE located at ADDR. |
c906108c SS |
941 | |
942 | Call value_at only if the data needs to be fetched immediately; | |
943 | if we can be 'lazy' and defer the fetch, perhaps indefinately, call | |
944 | value_at_lazy instead. value_at_lazy simply records the address of | |
070ad9f0 | 945 | the data and sets the lazy-evaluation-required flag. The lazy flag |
0fd88904 | 946 | is tested in the value_contents macro, which is used if and when |
070ad9f0 | 947 | the contents are actually required. |
c906108c SS |
948 | |
949 | Note: value_at does *NOT* handle embedded offsets; perform such | |
ac3eeb49 | 950 | adjustments before or after calling it. */ |
c906108c | 951 | |
f23631e4 | 952 | struct value * |
00a4c844 | 953 | value_at (struct type *type, CORE_ADDR addr) |
c906108c | 954 | { |
4e5d721f | 955 | return get_value_at (type, addr, 0); |
c906108c SS |
956 | } |
957 | ||
958 | /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */ | |
959 | ||
f23631e4 | 960 | struct value * |
00a4c844 | 961 | value_at_lazy (struct type *type, CORE_ADDR addr) |
c906108c | 962 | { |
4e5d721f | 963 | return get_value_at (type, addr, 1); |
c906108c SS |
964 | } |
965 | ||
0fd88904 | 966 | /* Called only from the value_contents and value_contents_all() |
46615f07 | 967 | macros, if the current data for a variable needs to be loaded into |
0fd88904 | 968 | value_contents(VAL). Fetches the data from the user's process, and |
46615f07 AC |
969 | clears the lazy flag to indicate that the data in the buffer is |
970 | valid. | |
c906108c | 971 | |
ac3eeb49 MS |
972 | If the value is zero-length, we avoid calling read_memory, which |
973 | would abort. We mark the value as fetched anyway -- all 0 bytes of | |
974 | it. | |
c906108c | 975 | |
ac3eeb49 MS |
976 | This function returns a value because it is used in the |
977 | value_contents macro as part of an expression, where a void would | |
978 | not work. The value is ignored. */ | |
c906108c SS |
979 | |
980 | int | |
f23631e4 | 981 | value_fetch_lazy (struct value *val) |
c906108c | 982 | { |
3e3d7139 JG |
983 | gdb_assert (value_lazy (val)); |
984 | allocate_value_contents (val); | |
4ea48cc1 DJ |
985 | if (value_bitsize (val)) |
986 | { | |
987 | /* To read a lazy bitfield, read the entire enclosing value. This | |
988 | prevents reading the same block of (possibly volatile) memory once | |
989 | per bitfield. It would be even better to read only the containing | |
990 | word, but we have no way to record that just specific bits of a | |
991 | value have been fetched. */ | |
992 | struct type *type = check_typedef (value_type (val)); | |
993 | enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); | |
994 | struct value *parent = value_parent (val); | |
995 | LONGEST offset = value_offset (val); | |
5467c6c8 | 996 | LONGEST num; |
4ea48cc1 | 997 | int length = TYPE_LENGTH (type); |
a109c7c1 | 998 | |
0e03807e TT |
999 | if (!value_bits_valid (val, |
1000 | TARGET_CHAR_BIT * offset + value_bitpos (val), | |
1001 | value_bitsize (val))) | |
1002 | error (_("value has been optimized out")); | |
1003 | ||
5467c6c8 PA |
1004 | if (!unpack_value_bits_as_long (value_type (val), |
1005 | value_contents_for_printing (parent), | |
1006 | offset, | |
1007 | value_bitpos (val), | |
1008 | value_bitsize (val), parent, &num)) | |
1009 | mark_value_bytes_unavailable (val, | |
1010 | value_embedded_offset (val), | |
1011 | length); | |
1012 | else | |
1013 | store_signed_integer (value_contents_raw (val), length, | |
1014 | byte_order, num); | |
4ea48cc1 DJ |
1015 | } |
1016 | else if (VALUE_LVAL (val) == lval_memory) | |
9214ee5f | 1017 | { |
42ae5230 | 1018 | CORE_ADDR addr = value_address (val); |
694182d2 | 1019 | int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val))); |
9214ee5f | 1020 | |
9214ee5f | 1021 | if (length) |
e6ca34fc PA |
1022 | read_value_memory (val, 0, value_stack (val), |
1023 | addr, value_contents_all_raw (val), length); | |
9214ee5f DJ |
1024 | } |
1025 | else if (VALUE_LVAL (val) == lval_register) | |
1026 | { | |
669fac23 DJ |
1027 | struct frame_info *frame; |
1028 | int regnum; | |
9214ee5f | 1029 | struct type *type = check_typedef (value_type (val)); |
669fac23 | 1030 | struct value *new_val = val, *mark = value_mark (); |
c906108c | 1031 | |
669fac23 DJ |
1032 | /* Offsets are not supported here; lazy register values must |
1033 | refer to the entire register. */ | |
1034 | gdb_assert (value_offset (val) == 0); | |
9214ee5f | 1035 | |
669fac23 DJ |
1036 | while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val)) |
1037 | { | |
1038 | frame = frame_find_by_id (VALUE_FRAME_ID (new_val)); | |
1039 | regnum = VALUE_REGNUM (new_val); | |
1040 | ||
1041 | gdb_assert (frame != NULL); | |
9214ee5f | 1042 | |
669fac23 DJ |
1043 | /* Convertible register routines are used for multi-register |
1044 | values and for interpretation in different types | |
1045 | (e.g. float or int from a double register). Lazy | |
1046 | register values should have the register's natural type, | |
1047 | so they do not apply. */ | |
1048 | gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame), | |
1049 | regnum, type)); | |
1050 | ||
1051 | new_val = get_frame_register_value (frame, regnum); | |
1052 | } | |
1053 | ||
1054 | /* If it's still lazy (for instance, a saved register on the | |
1055 | stack), fetch it. */ | |
1056 | if (value_lazy (new_val)) | |
1057 | value_fetch_lazy (new_val); | |
1058 | ||
39d37385 | 1059 | /* If the register was not saved, mark it optimized out. */ |
669fac23 | 1060 | if (value_optimized_out (new_val)) |
9214ee5f | 1061 | set_value_optimized_out (val, 1); |
669fac23 | 1062 | else |
39d37385 PA |
1063 | { |
1064 | set_value_lazy (val, 0); | |
1065 | value_contents_copy (val, value_embedded_offset (val), | |
1066 | new_val, value_embedded_offset (new_val), | |
1067 | TYPE_LENGTH (type)); | |
1068 | } | |
669fac23 DJ |
1069 | |
1070 | if (frame_debug) | |
1071 | { | |
029a67e4 | 1072 | struct gdbarch *gdbarch; |
669fac23 DJ |
1073 | frame = frame_find_by_id (VALUE_FRAME_ID (val)); |
1074 | regnum = VALUE_REGNUM (val); | |
029a67e4 | 1075 | gdbarch = get_frame_arch (frame); |
669fac23 | 1076 | |
3e43a32a MS |
1077 | fprintf_unfiltered (gdb_stdlog, |
1078 | "{ value_fetch_lazy " | |
1079 | "(frame=%d,regnum=%d(%s),...) ", | |
669fac23 | 1080 | frame_relative_level (frame), regnum, |
029a67e4 | 1081 | user_reg_map_regnum_to_name (gdbarch, regnum)); |
669fac23 DJ |
1082 | |
1083 | fprintf_unfiltered (gdb_stdlog, "->"); | |
1084 | if (value_optimized_out (new_val)) | |
1085 | fprintf_unfiltered (gdb_stdlog, " optimized out"); | |
1086 | else | |
1087 | { | |
1088 | int i; | |
1089 | const gdb_byte *buf = value_contents (new_val); | |
1090 | ||
1091 | if (VALUE_LVAL (new_val) == lval_register) | |
1092 | fprintf_unfiltered (gdb_stdlog, " register=%d", | |
1093 | VALUE_REGNUM (new_val)); | |
1094 | else if (VALUE_LVAL (new_val) == lval_memory) | |
5af949e3 UW |
1095 | fprintf_unfiltered (gdb_stdlog, " address=%s", |
1096 | paddress (gdbarch, | |
1097 | value_address (new_val))); | |
669fac23 DJ |
1098 | else |
1099 | fprintf_unfiltered (gdb_stdlog, " computed"); | |
1100 | ||
1101 | fprintf_unfiltered (gdb_stdlog, " bytes="); | |
1102 | fprintf_unfiltered (gdb_stdlog, "["); | |
029a67e4 | 1103 | for (i = 0; i < register_size (gdbarch, regnum); i++) |
669fac23 DJ |
1104 | fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]); |
1105 | fprintf_unfiltered (gdb_stdlog, "]"); | |
1106 | } | |
1107 | ||
1108 | fprintf_unfiltered (gdb_stdlog, " }\n"); | |
1109 | } | |
1110 | ||
1111 | /* Dispose of the intermediate values. This prevents | |
1112 | watchpoints from trying to watch the saved frame pointer. */ | |
1113 | value_free_to_mark (mark); | |
9214ee5f | 1114 | } |
ac71a68c JK |
1115 | else if (VALUE_LVAL (val) == lval_computed |
1116 | && value_computed_funcs (val)->read != NULL) | |
5f5233d4 | 1117 | value_computed_funcs (val)->read (val); |
41e8491f JK |
1118 | else if (value_optimized_out (val)) |
1119 | /* Keep it optimized out. */; | |
9214ee5f | 1120 | else |
9b20d036 | 1121 | internal_error (__FILE__, __LINE__, _("Unexpected lazy value type.")); |
802db21b | 1122 | |
dfa52d88 | 1123 | set_value_lazy (val, 0); |
c906108c SS |
1124 | return 0; |
1125 | } | |
1126 | ||
e6ca34fc PA |
1127 | void |
1128 | read_value_memory (struct value *val, int embedded_offset, | |
1129 | int stack, CORE_ADDR memaddr, | |
1130 | gdb_byte *buffer, size_t length) | |
1131 | { | |
1132 | if (length) | |
1133 | { | |
1134 | VEC(mem_range_s) *available_memory; | |
1135 | ||
1136 | if (get_traceframe_number () < 0 | |
1137 | || !traceframe_available_memory (&available_memory, memaddr, length)) | |
1138 | { | |
1139 | if (stack) | |
1140 | read_stack (memaddr, buffer, length); | |
1141 | else | |
1142 | read_memory (memaddr, buffer, length); | |
1143 | } | |
1144 | else | |
1145 | { | |
1146 | struct target_section_table *table; | |
1147 | struct cleanup *old_chain; | |
1148 | CORE_ADDR unavail; | |
1149 | mem_range_s *r; | |
1150 | int i; | |
1151 | ||
1152 | /* Fallback to reading from read-only sections. */ | |
1153 | table = target_get_section_table (&exec_ops); | |
1154 | available_memory = | |
1155 | section_table_available_memory (available_memory, | |
1156 | memaddr, length, | |
1157 | table->sections, | |
1158 | table->sections_end); | |
1159 | ||
1160 | old_chain = make_cleanup (VEC_cleanup(mem_range_s), | |
1161 | &available_memory); | |
1162 | ||
1163 | normalize_mem_ranges (available_memory); | |
1164 | ||
1165 | /* Mark which bytes are unavailable, and read those which | |
1166 | are available. */ | |
1167 | ||
1168 | unavail = memaddr; | |
1169 | ||
1170 | for (i = 0; | |
1171 | VEC_iterate (mem_range_s, available_memory, i, r); | |
1172 | i++) | |
1173 | { | |
1174 | if (mem_ranges_overlap (r->start, r->length, | |
1175 | memaddr, length)) | |
1176 | { | |
1177 | CORE_ADDR lo1, hi1, lo2, hi2; | |
1178 | CORE_ADDR start, end; | |
1179 | ||
1180 | /* Get the intersection window. */ | |
1181 | lo1 = memaddr; | |
1182 | hi1 = memaddr + length; | |
1183 | lo2 = r->start; | |
1184 | hi2 = r->start + r->length; | |
1185 | start = max (lo1, lo2); | |
1186 | end = min (hi1, hi2); | |
1187 | ||
1188 | gdb_assert (end - memaddr <= length); | |
1189 | ||
1190 | if (start > unavail) | |
1191 | mark_value_bytes_unavailable (val, | |
1192 | (embedded_offset | |
1193 | + unavail - memaddr), | |
1194 | start - unavail); | |
1195 | unavail = end; | |
1196 | ||
1197 | read_memory (start, buffer + start - memaddr, end - start); | |
1198 | } | |
1199 | } | |
1200 | ||
1201 | if (unavail != memaddr + length) | |
1202 | mark_value_bytes_unavailable (val, | |
1203 | embedded_offset + unavail - memaddr, | |
1204 | (memaddr + length) - unavail); | |
1205 | ||
1206 | do_cleanups (old_chain); | |
1207 | } | |
1208 | } | |
1209 | } | |
c906108c SS |
1210 | |
1211 | /* Store the contents of FROMVAL into the location of TOVAL. | |
1212 | Return a new value with the location of TOVAL and contents of FROMVAL. */ | |
1213 | ||
f23631e4 AC |
1214 | struct value * |
1215 | value_assign (struct value *toval, struct value *fromval) | |
c906108c | 1216 | { |
52f0bd74 | 1217 | struct type *type; |
f23631e4 | 1218 | struct value *val; |
cb741690 | 1219 | struct frame_id old_frame; |
c906108c | 1220 | |
88e3b34b | 1221 | if (!deprecated_value_modifiable (toval)) |
8a3fe4f8 | 1222 | error (_("Left operand of assignment is not a modifiable lvalue.")); |
c906108c | 1223 | |
994b9211 | 1224 | toval = coerce_ref (toval); |
c906108c | 1225 | |
df407dfe | 1226 | type = value_type (toval); |
c906108c | 1227 | if (VALUE_LVAL (toval) != lval_internalvar) |
3cbaedff | 1228 | fromval = value_cast (type, fromval); |
c906108c | 1229 | else |
63092375 DJ |
1230 | { |
1231 | /* Coerce arrays and functions to pointers, except for arrays | |
1232 | which only live in GDB's storage. */ | |
1233 | if (!value_must_coerce_to_target (fromval)) | |
1234 | fromval = coerce_array (fromval); | |
1235 | } | |
1236 | ||
c906108c SS |
1237 | CHECK_TYPEDEF (type); |
1238 | ||
ac3eeb49 MS |
1239 | /* Since modifying a register can trash the frame chain, and |
1240 | modifying memory can trash the frame cache, we save the old frame | |
1241 | and then restore the new frame afterwards. */ | |
206415a3 | 1242 | old_frame = get_frame_id (deprecated_safe_get_selected_frame ()); |
cb741690 | 1243 | |
c906108c SS |
1244 | switch (VALUE_LVAL (toval)) |
1245 | { | |
1246 | case lval_internalvar: | |
1247 | set_internalvar (VALUE_INTERNALVAR (toval), fromval); | |
4aac0db7 UW |
1248 | return value_of_internalvar (get_type_arch (type), |
1249 | VALUE_INTERNALVAR (toval)); | |
c906108c SS |
1250 | |
1251 | case lval_internalvar_component: | |
1252 | set_internalvar_component (VALUE_INTERNALVAR (toval), | |
df407dfe AC |
1253 | value_offset (toval), |
1254 | value_bitpos (toval), | |
1255 | value_bitsize (toval), | |
c906108c SS |
1256 | fromval); |
1257 | break; | |
1258 | ||
1259 | case lval_memory: | |
1260 | { | |
fc1a4b47 | 1261 | const gdb_byte *dest_buffer; |
c5aa993b JM |
1262 | CORE_ADDR changed_addr; |
1263 | int changed_len; | |
10c42a71 | 1264 | gdb_byte buffer[sizeof (LONGEST)]; |
c906108c | 1265 | |
df407dfe | 1266 | if (value_bitsize (toval)) |
c5aa993b | 1267 | { |
2d88202a | 1268 | struct value *parent = value_parent (toval); |
2d88202a | 1269 | |
a109c7c1 | 1270 | changed_addr = value_address (parent) + value_offset (toval); |
df407dfe AC |
1271 | changed_len = (value_bitpos (toval) |
1272 | + value_bitsize (toval) | |
c5aa993b JM |
1273 | + HOST_CHAR_BIT - 1) |
1274 | / HOST_CHAR_BIT; | |
c906108c | 1275 | |
4ea48cc1 DJ |
1276 | /* If we can read-modify-write exactly the size of the |
1277 | containing type (e.g. short or int) then do so. This | |
1278 | is safer for volatile bitfields mapped to hardware | |
1279 | registers. */ | |
1280 | if (changed_len < TYPE_LENGTH (type) | |
1281 | && TYPE_LENGTH (type) <= (int) sizeof (LONGEST) | |
2d88202a | 1282 | && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0) |
4ea48cc1 DJ |
1283 | changed_len = TYPE_LENGTH (type); |
1284 | ||
c906108c | 1285 | if (changed_len > (int) sizeof (LONGEST)) |
3e43a32a MS |
1286 | error (_("Can't handle bitfields which " |
1287 | "don't fit in a %d bit word."), | |
baa6f10b | 1288 | (int) sizeof (LONGEST) * HOST_CHAR_BIT); |
c906108c | 1289 | |
2d88202a | 1290 | read_memory (changed_addr, buffer, changed_len); |
50810684 | 1291 | modify_field (type, buffer, value_as_long (fromval), |
df407dfe | 1292 | value_bitpos (toval), value_bitsize (toval)); |
c906108c SS |
1293 | dest_buffer = buffer; |
1294 | } | |
c906108c SS |
1295 | else |
1296 | { | |
42ae5230 | 1297 | changed_addr = value_address (toval); |
c906108c | 1298 | changed_len = TYPE_LENGTH (type); |
0fd88904 | 1299 | dest_buffer = value_contents (fromval); |
c906108c SS |
1300 | } |
1301 | ||
1302 | write_memory (changed_addr, dest_buffer, changed_len); | |
8cebebb9 PP |
1303 | observer_notify_memory_changed (changed_addr, changed_len, |
1304 | dest_buffer); | |
c906108c SS |
1305 | } |
1306 | break; | |
1307 | ||
492254e9 | 1308 | case lval_register: |
c906108c | 1309 | { |
c906108c | 1310 | struct frame_info *frame; |
d80b854b | 1311 | struct gdbarch *gdbarch; |
ff2e87ac | 1312 | int value_reg; |
c906108c SS |
1313 | |
1314 | /* Figure out which frame this is in currently. */ | |
0c16dd26 AC |
1315 | frame = frame_find_by_id (VALUE_FRAME_ID (toval)); |
1316 | value_reg = VALUE_REGNUM (toval); | |
c906108c SS |
1317 | |
1318 | if (!frame) | |
8a3fe4f8 | 1319 | error (_("Value being assigned to is no longer active.")); |
d80b854b UW |
1320 | |
1321 | gdbarch = get_frame_arch (frame); | |
1322 | if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type)) | |
492254e9 | 1323 | { |
ff2e87ac | 1324 | /* If TOVAL is a special machine register requiring |
ac3eeb49 MS |
1325 | conversion of program values to a special raw |
1326 | format. */ | |
d80b854b | 1327 | gdbarch_value_to_register (gdbarch, frame, |
ac3eeb49 MS |
1328 | VALUE_REGNUM (toval), type, |
1329 | value_contents (fromval)); | |
492254e9 | 1330 | } |
c906108c | 1331 | else |
492254e9 | 1332 | { |
df407dfe | 1333 | if (value_bitsize (toval)) |
00fa51f6 | 1334 | { |
2d88202a UW |
1335 | struct value *parent = value_parent (toval); |
1336 | int offset = value_offset (parent) + value_offset (toval); | |
00fa51f6 UW |
1337 | int changed_len; |
1338 | gdb_byte buffer[sizeof (LONGEST)]; | |
8af8e3bc | 1339 | int optim, unavail; |
00fa51f6 UW |
1340 | |
1341 | changed_len = (value_bitpos (toval) | |
1342 | + value_bitsize (toval) | |
1343 | + HOST_CHAR_BIT - 1) | |
1344 | / HOST_CHAR_BIT; | |
1345 | ||
1346 | if (changed_len > (int) sizeof (LONGEST)) | |
3e43a32a MS |
1347 | error (_("Can't handle bitfields which " |
1348 | "don't fit in a %d bit word."), | |
00fa51f6 UW |
1349 | (int) sizeof (LONGEST) * HOST_CHAR_BIT); |
1350 | ||
8dccd430 PA |
1351 | if (!get_frame_register_bytes (frame, value_reg, offset, |
1352 | changed_len, buffer, | |
1353 | &optim, &unavail)) | |
1354 | { | |
1355 | if (optim) | |
1356 | error (_("value has been optimized out")); | |
1357 | if (unavail) | |
1358 | throw_error (NOT_AVAILABLE_ERROR, | |
1359 | _("value is not available")); | |
1360 | } | |
00fa51f6 | 1361 | |
50810684 UW |
1362 | modify_field (type, buffer, value_as_long (fromval), |
1363 | value_bitpos (toval), value_bitsize (toval)); | |
00fa51f6 | 1364 | |
2d88202a | 1365 | put_frame_register_bytes (frame, value_reg, offset, |
00fa51f6 UW |
1366 | changed_len, buffer); |
1367 | } | |
c906108c | 1368 | else |
00fa51f6 UW |
1369 | { |
1370 | put_frame_register_bytes (frame, value_reg, | |
1371 | value_offset (toval), | |
1372 | TYPE_LENGTH (type), | |
1373 | value_contents (fromval)); | |
1374 | } | |
ff2e87ac | 1375 | } |
00fa51f6 | 1376 | |
9a4105ab AC |
1377 | if (deprecated_register_changed_hook) |
1378 | deprecated_register_changed_hook (-1); | |
f4c5303c | 1379 | observer_notify_target_changed (¤t_target); |
ff2e87ac | 1380 | break; |
c906108c | 1381 | } |
5f5233d4 PA |
1382 | |
1383 | case lval_computed: | |
1384 | { | |
c8f2448a | 1385 | const struct lval_funcs *funcs = value_computed_funcs (toval); |
5f5233d4 | 1386 | |
ac71a68c JK |
1387 | if (funcs->write != NULL) |
1388 | { | |
1389 | funcs->write (toval, fromval); | |
1390 | break; | |
1391 | } | |
5f5233d4 | 1392 | } |
ac71a68c | 1393 | /* Fall through. */ |
5f5233d4 | 1394 | |
c906108c | 1395 | default: |
8a3fe4f8 | 1396 | error (_("Left operand of assignment is not an lvalue.")); |
c906108c SS |
1397 | } |
1398 | ||
cb741690 DJ |
1399 | /* Assigning to the stack pointer, frame pointer, and other |
1400 | (architecture and calling convention specific) registers may | |
1401 | cause the frame cache to be out of date. Assigning to memory | |
1402 | also can. We just do this on all assignments to registers or | |
1403 | memory, for simplicity's sake; I doubt the slowdown matters. */ | |
1404 | switch (VALUE_LVAL (toval)) | |
1405 | { | |
1406 | case lval_memory: | |
1407 | case lval_register: | |
0e03807e | 1408 | case lval_computed: |
cb741690 DJ |
1409 | |
1410 | reinit_frame_cache (); | |
1411 | ||
ac3eeb49 MS |
1412 | /* Having destroyed the frame cache, restore the selected |
1413 | frame. */ | |
cb741690 DJ |
1414 | |
1415 | /* FIXME: cagney/2002-11-02: There has to be a better way of | |
1416 | doing this. Instead of constantly saving/restoring the | |
1417 | frame. Why not create a get_selected_frame() function that, | |
1418 | having saved the selected frame's ID can automatically | |
1419 | re-find the previously selected frame automatically. */ | |
1420 | ||
1421 | { | |
1422 | struct frame_info *fi = frame_find_by_id (old_frame); | |
a109c7c1 | 1423 | |
cb741690 DJ |
1424 | if (fi != NULL) |
1425 | select_frame (fi); | |
1426 | } | |
1427 | ||
1428 | break; | |
1429 | default: | |
1430 | break; | |
1431 | } | |
1432 | ||
ac3eeb49 MS |
1433 | /* If the field does not entirely fill a LONGEST, then zero the sign |
1434 | bits. If the field is signed, and is negative, then sign | |
1435 | extend. */ | |
df407dfe AC |
1436 | if ((value_bitsize (toval) > 0) |
1437 | && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST))) | |
c906108c SS |
1438 | { |
1439 | LONGEST fieldval = value_as_long (fromval); | |
df407dfe | 1440 | LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1; |
c906108c SS |
1441 | |
1442 | fieldval &= valmask; | |
ac3eeb49 MS |
1443 | if (!TYPE_UNSIGNED (type) |
1444 | && (fieldval & (valmask ^ (valmask >> 1)))) | |
c906108c SS |
1445 | fieldval |= ~valmask; |
1446 | ||
1447 | fromval = value_from_longest (type, fieldval); | |
1448 | } | |
1449 | ||
4aac0db7 UW |
1450 | /* The return value is a copy of TOVAL so it shares its location |
1451 | information, but its contents are updated from FROMVAL. This | |
1452 | implies the returned value is not lazy, even if TOVAL was. */ | |
c906108c | 1453 | val = value_copy (toval); |
4aac0db7 | 1454 | set_value_lazy (val, 0); |
0fd88904 | 1455 | memcpy (value_contents_raw (val), value_contents (fromval), |
c906108c | 1456 | TYPE_LENGTH (type)); |
4aac0db7 UW |
1457 | |
1458 | /* We copy over the enclosing type and pointed-to offset from FROMVAL | |
1459 | in the case of pointer types. For object types, the enclosing type | |
1460 | and embedded offset must *not* be copied: the target object refered | |
1461 | to by TOVAL retains its original dynamic type after assignment. */ | |
1462 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
1463 | { | |
1464 | set_value_enclosing_type (val, value_enclosing_type (fromval)); | |
1465 | set_value_pointed_to_offset (val, value_pointed_to_offset (fromval)); | |
1466 | } | |
c5aa993b | 1467 | |
c906108c SS |
1468 | return val; |
1469 | } | |
1470 | ||
1471 | /* Extend a value VAL to COUNT repetitions of its type. */ | |
1472 | ||
f23631e4 AC |
1473 | struct value * |
1474 | value_repeat (struct value *arg1, int count) | |
c906108c | 1475 | { |
f23631e4 | 1476 | struct value *val; |
c906108c SS |
1477 | |
1478 | if (VALUE_LVAL (arg1) != lval_memory) | |
8a3fe4f8 | 1479 | error (_("Only values in memory can be extended with '@'.")); |
c906108c | 1480 | if (count < 1) |
8a3fe4f8 | 1481 | error (_("Invalid number %d of repetitions."), count); |
c906108c | 1482 | |
4754a64e | 1483 | val = allocate_repeat_value (value_enclosing_type (arg1), count); |
c906108c | 1484 | |
c906108c | 1485 | VALUE_LVAL (val) = lval_memory; |
42ae5230 | 1486 | set_value_address (val, value_address (arg1)); |
c906108c | 1487 | |
24e6bcee PA |
1488 | read_value_memory (val, 0, value_stack (val), value_address (val), |
1489 | value_contents_all_raw (val), | |
1490 | TYPE_LENGTH (value_enclosing_type (val))); | |
1491 | ||
c906108c SS |
1492 | return val; |
1493 | } | |
1494 | ||
f23631e4 | 1495 | struct value * |
9df2fbc4 | 1496 | value_of_variable (struct symbol *var, const struct block *b) |
c906108c | 1497 | { |
61212c0f | 1498 | struct frame_info *frame; |
c906108c | 1499 | |
61212c0f UW |
1500 | if (!symbol_read_needs_frame (var)) |
1501 | frame = NULL; | |
1502 | else if (!b) | |
1503 | frame = get_selected_frame (_("No frame selected.")); | |
1504 | else | |
c906108c SS |
1505 | { |
1506 | frame = block_innermost_frame (b); | |
1507 | if (!frame) | |
c5aa993b | 1508 | { |
edb3359d | 1509 | if (BLOCK_FUNCTION (b) && !block_inlined_p (b) |
de5ad195 | 1510 | && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b))) |
8a3fe4f8 | 1511 | error (_("No frame is currently executing in block %s."), |
de5ad195 | 1512 | SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b))); |
c906108c | 1513 | else |
8a3fe4f8 | 1514 | error (_("No frame is currently executing in specified block")); |
c5aa993b | 1515 | } |
c906108c SS |
1516 | } |
1517 | ||
8afd712c | 1518 | return read_var_value (var, frame); |
c906108c SS |
1519 | } |
1520 | ||
61212c0f UW |
1521 | struct value * |
1522 | address_of_variable (struct symbol *var, struct block *b) | |
1523 | { | |
1524 | struct type *type = SYMBOL_TYPE (var); | |
1525 | struct value *val; | |
1526 | ||
1527 | /* Evaluate it first; if the result is a memory address, we're fine. | |
581e13c1 | 1528 | Lazy evaluation pays off here. */ |
61212c0f UW |
1529 | |
1530 | val = value_of_variable (var, b); | |
1531 | ||
1532 | if ((VALUE_LVAL (val) == lval_memory && value_lazy (val)) | |
1533 | || TYPE_CODE (type) == TYPE_CODE_FUNC) | |
1534 | { | |
42ae5230 | 1535 | CORE_ADDR addr = value_address (val); |
a109c7c1 | 1536 | |
61212c0f UW |
1537 | return value_from_pointer (lookup_pointer_type (type), addr); |
1538 | } | |
1539 | ||
1540 | /* Not a memory address; check what the problem was. */ | |
1541 | switch (VALUE_LVAL (val)) | |
1542 | { | |
1543 | case lval_register: | |
1544 | { | |
1545 | struct frame_info *frame; | |
1546 | const char *regname; | |
1547 | ||
1548 | frame = frame_find_by_id (VALUE_FRAME_ID (val)); | |
1549 | gdb_assert (frame); | |
1550 | ||
1551 | regname = gdbarch_register_name (get_frame_arch (frame), | |
1552 | VALUE_REGNUM (val)); | |
1553 | gdb_assert (regname && *regname); | |
1554 | ||
1555 | error (_("Address requested for identifier " | |
1556 | "\"%s\" which is in register $%s"), | |
1557 | SYMBOL_PRINT_NAME (var), regname); | |
1558 | break; | |
1559 | } | |
1560 | ||
1561 | default: | |
1562 | error (_("Can't take address of \"%s\" which isn't an lvalue."), | |
1563 | SYMBOL_PRINT_NAME (var)); | |
1564 | break; | |
1565 | } | |
1566 | ||
1567 | return val; | |
1568 | } | |
1569 | ||
63092375 DJ |
1570 | /* Return one if VAL does not live in target memory, but should in order |
1571 | to operate on it. Otherwise return zero. */ | |
1572 | ||
1573 | int | |
1574 | value_must_coerce_to_target (struct value *val) | |
1575 | { | |
1576 | struct type *valtype; | |
1577 | ||
1578 | /* The only lval kinds which do not live in target memory. */ | |
1579 | if (VALUE_LVAL (val) != not_lval | |
1580 | && VALUE_LVAL (val) != lval_internalvar) | |
1581 | return 0; | |
1582 | ||
1583 | valtype = check_typedef (value_type (val)); | |
1584 | ||
1585 | switch (TYPE_CODE (valtype)) | |
1586 | { | |
1587 | case TYPE_CODE_ARRAY: | |
3cbaedff | 1588 | return TYPE_VECTOR (valtype) ? 0 : 1; |
63092375 DJ |
1589 | case TYPE_CODE_STRING: |
1590 | return 1; | |
1591 | default: | |
1592 | return 0; | |
1593 | } | |
1594 | } | |
1595 | ||
3e43a32a MS |
1596 | /* Make sure that VAL lives in target memory if it's supposed to. For |
1597 | instance, strings are constructed as character arrays in GDB's | |
1598 | storage, and this function copies them to the target. */ | |
63092375 DJ |
1599 | |
1600 | struct value * | |
1601 | value_coerce_to_target (struct value *val) | |
1602 | { | |
1603 | LONGEST length; | |
1604 | CORE_ADDR addr; | |
1605 | ||
1606 | if (!value_must_coerce_to_target (val)) | |
1607 | return val; | |
1608 | ||
1609 | length = TYPE_LENGTH (check_typedef (value_type (val))); | |
1610 | addr = allocate_space_in_inferior (length); | |
1611 | write_memory (addr, value_contents (val), length); | |
1612 | return value_at_lazy (value_type (val), addr); | |
1613 | } | |
1614 | ||
ac3eeb49 MS |
1615 | /* Given a value which is an array, return a value which is a pointer |
1616 | to its first element, regardless of whether or not the array has a | |
1617 | nonzero lower bound. | |
c906108c | 1618 | |
ac3eeb49 MS |
1619 | FIXME: A previous comment here indicated that this routine should |
1620 | be substracting the array's lower bound. It's not clear to me that | |
1621 | this is correct. Given an array subscripting operation, it would | |
1622 | certainly work to do the adjustment here, essentially computing: | |
c906108c SS |
1623 | |
1624 | (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0]) | |
1625 | ||
ac3eeb49 MS |
1626 | However I believe a more appropriate and logical place to account |
1627 | for the lower bound is to do so in value_subscript, essentially | |
1628 | computing: | |
c906108c SS |
1629 | |
1630 | (&array[0] + ((index - lowerbound) * sizeof array[0])) | |
1631 | ||
ac3eeb49 MS |
1632 | As further evidence consider what would happen with operations |
1633 | other than array subscripting, where the caller would get back a | |
1634 | value that had an address somewhere before the actual first element | |
1635 | of the array, and the information about the lower bound would be | |
581e13c1 | 1636 | lost because of the coercion to pointer type. */ |
c906108c | 1637 | |
f23631e4 AC |
1638 | struct value * |
1639 | value_coerce_array (struct value *arg1) | |
c906108c | 1640 | { |
df407dfe | 1641 | struct type *type = check_typedef (value_type (arg1)); |
c906108c | 1642 | |
63092375 DJ |
1643 | /* If the user tries to do something requiring a pointer with an |
1644 | array that has not yet been pushed to the target, then this would | |
1645 | be a good time to do so. */ | |
1646 | arg1 = value_coerce_to_target (arg1); | |
1647 | ||
c906108c | 1648 | if (VALUE_LVAL (arg1) != lval_memory) |
8a3fe4f8 | 1649 | error (_("Attempt to take address of value not located in memory.")); |
c906108c | 1650 | |
4478b372 | 1651 | return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
42ae5230 | 1652 | value_address (arg1)); |
c906108c SS |
1653 | } |
1654 | ||
1655 | /* Given a value which is a function, return a value which is a pointer | |
1656 | to it. */ | |
1657 | ||
f23631e4 AC |
1658 | struct value * |
1659 | value_coerce_function (struct value *arg1) | |
c906108c | 1660 | { |
f23631e4 | 1661 | struct value *retval; |
c906108c SS |
1662 | |
1663 | if (VALUE_LVAL (arg1) != lval_memory) | |
8a3fe4f8 | 1664 | error (_("Attempt to take address of value not located in memory.")); |
c906108c | 1665 | |
df407dfe | 1666 | retval = value_from_pointer (lookup_pointer_type (value_type (arg1)), |
42ae5230 | 1667 | value_address (arg1)); |
c906108c | 1668 | return retval; |
c5aa993b | 1669 | } |
c906108c | 1670 | |
ac3eeb49 MS |
1671 | /* Return a pointer value for the object for which ARG1 is the |
1672 | contents. */ | |
c906108c | 1673 | |
f23631e4 AC |
1674 | struct value * |
1675 | value_addr (struct value *arg1) | |
c906108c | 1676 | { |
f23631e4 | 1677 | struct value *arg2; |
df407dfe | 1678 | struct type *type = check_typedef (value_type (arg1)); |
a109c7c1 | 1679 | |
c906108c SS |
1680 | if (TYPE_CODE (type) == TYPE_CODE_REF) |
1681 | { | |
ac3eeb49 MS |
1682 | /* Copy the value, but change the type from (T&) to (T*). We |
1683 | keep the same location information, which is efficient, and | |
1684 | allows &(&X) to get the location containing the reference. */ | |
c906108c | 1685 | arg2 = value_copy (arg1); |
ac3eeb49 MS |
1686 | deprecated_set_value_type (arg2, |
1687 | lookup_pointer_type (TYPE_TARGET_TYPE (type))); | |
c906108c SS |
1688 | return arg2; |
1689 | } | |
1690 | if (TYPE_CODE (type) == TYPE_CODE_FUNC) | |
1691 | return value_coerce_function (arg1); | |
1692 | ||
63092375 DJ |
1693 | /* If this is an array that has not yet been pushed to the target, |
1694 | then this would be a good time to force it to memory. */ | |
1695 | arg1 = value_coerce_to_target (arg1); | |
1696 | ||
c906108c | 1697 | if (VALUE_LVAL (arg1) != lval_memory) |
8a3fe4f8 | 1698 | error (_("Attempt to take address of value not located in memory.")); |
c906108c | 1699 | |
581e13c1 | 1700 | /* Get target memory address. */ |
df407dfe | 1701 | arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)), |
42ae5230 | 1702 | (value_address (arg1) |
13c3b5f5 | 1703 | + value_embedded_offset (arg1))); |
c906108c SS |
1704 | |
1705 | /* This may be a pointer to a base subobject; so remember the | |
ac3eeb49 | 1706 | full derived object's type ... */ |
4dfea560 DE |
1707 | set_value_enclosing_type (arg2, |
1708 | lookup_pointer_type (value_enclosing_type (arg1))); | |
ac3eeb49 MS |
1709 | /* ... and also the relative position of the subobject in the full |
1710 | object. */ | |
b44d461b | 1711 | set_value_pointed_to_offset (arg2, value_embedded_offset (arg1)); |
c906108c SS |
1712 | return arg2; |
1713 | } | |
1714 | ||
ac3eeb49 MS |
1715 | /* Return a reference value for the object for which ARG1 is the |
1716 | contents. */ | |
fb933624 DJ |
1717 | |
1718 | struct value * | |
1719 | value_ref (struct value *arg1) | |
1720 | { | |
1721 | struct value *arg2; | |
fb933624 | 1722 | struct type *type = check_typedef (value_type (arg1)); |
a109c7c1 | 1723 | |
fb933624 DJ |
1724 | if (TYPE_CODE (type) == TYPE_CODE_REF) |
1725 | return arg1; | |
1726 | ||
1727 | arg2 = value_addr (arg1); | |
1728 | deprecated_set_value_type (arg2, lookup_reference_type (type)); | |
1729 | return arg2; | |
1730 | } | |
1731 | ||
ac3eeb49 MS |
1732 | /* Given a value of a pointer type, apply the C unary * operator to |
1733 | it. */ | |
c906108c | 1734 | |
f23631e4 AC |
1735 | struct value * |
1736 | value_ind (struct value *arg1) | |
c906108c SS |
1737 | { |
1738 | struct type *base_type; | |
f23631e4 | 1739 | struct value *arg2; |
c906108c | 1740 | |
994b9211 | 1741 | arg1 = coerce_array (arg1); |
c906108c | 1742 | |
df407dfe | 1743 | base_type = check_typedef (value_type (arg1)); |
c906108c | 1744 | |
8cf6f0b1 TT |
1745 | if (VALUE_LVAL (arg1) == lval_computed) |
1746 | { | |
c8f2448a | 1747 | const struct lval_funcs *funcs = value_computed_funcs (arg1); |
8cf6f0b1 TT |
1748 | |
1749 | if (funcs->indirect) | |
1750 | { | |
1751 | struct value *result = funcs->indirect (arg1); | |
1752 | ||
1753 | if (result) | |
1754 | return result; | |
1755 | } | |
1756 | } | |
1757 | ||
22fe0fbb | 1758 | if (TYPE_CODE (base_type) == TYPE_CODE_PTR) |
c906108c SS |
1759 | { |
1760 | struct type *enc_type; | |
a109c7c1 | 1761 | |
ac3eeb49 MS |
1762 | /* We may be pointing to something embedded in a larger object. |
1763 | Get the real type of the enclosing object. */ | |
4754a64e | 1764 | enc_type = check_typedef (value_enclosing_type (arg1)); |
c906108c | 1765 | enc_type = TYPE_TARGET_TYPE (enc_type); |
0d5de010 DJ |
1766 | |
1767 | if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC | |
1768 | || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD) | |
1769 | /* For functions, go through find_function_addr, which knows | |
1770 | how to handle function descriptors. */ | |
ac3eeb49 MS |
1771 | arg2 = value_at_lazy (enc_type, |
1772 | find_function_addr (arg1, NULL)); | |
0d5de010 | 1773 | else |
581e13c1 | 1774 | /* Retrieve the enclosing object pointed to. */ |
ac3eeb49 MS |
1775 | arg2 = value_at_lazy (enc_type, |
1776 | (value_as_address (arg1) | |
1777 | - value_pointed_to_offset (arg1))); | |
0d5de010 | 1778 | |
dfcee124 | 1779 | return readjust_indirect_value_type (arg2, enc_type, base_type, arg1); |
c906108c SS |
1780 | } |
1781 | ||
8a3fe4f8 | 1782 | error (_("Attempt to take contents of a non-pointer value.")); |
ac3eeb49 | 1783 | return 0; /* For lint -- never reached. */ |
c906108c SS |
1784 | } |
1785 | \f | |
39d37385 PA |
1786 | /* Create a value for an array by allocating space in GDB, copying the |
1787 | data into that space, and then setting up an array value. | |
c906108c | 1788 | |
ac3eeb49 MS |
1789 | The array bounds are set from LOWBOUND and HIGHBOUND, and the array |
1790 | is populated from the values passed in ELEMVEC. | |
c906108c SS |
1791 | |
1792 | The element type of the array is inherited from the type of the | |
1793 | first element, and all elements must have the same size (though we | |
ac3eeb49 | 1794 | don't currently enforce any restriction on their types). */ |
c906108c | 1795 | |
f23631e4 AC |
1796 | struct value * |
1797 | value_array (int lowbound, int highbound, struct value **elemvec) | |
c906108c SS |
1798 | { |
1799 | int nelem; | |
1800 | int idx; | |
1801 | unsigned int typelength; | |
f23631e4 | 1802 | struct value *val; |
c906108c | 1803 | struct type *arraytype; |
c906108c | 1804 | |
ac3eeb49 MS |
1805 | /* Validate that the bounds are reasonable and that each of the |
1806 | elements have the same size. */ | |
c906108c SS |
1807 | |
1808 | nelem = highbound - lowbound + 1; | |
1809 | if (nelem <= 0) | |
1810 | { | |
8a3fe4f8 | 1811 | error (_("bad array bounds (%d, %d)"), lowbound, highbound); |
c906108c | 1812 | } |
4754a64e | 1813 | typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0])); |
c906108c SS |
1814 | for (idx = 1; idx < nelem; idx++) |
1815 | { | |
4754a64e | 1816 | if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength) |
c906108c | 1817 | { |
8a3fe4f8 | 1818 | error (_("array elements must all be the same size")); |
c906108c SS |
1819 | } |
1820 | } | |
1821 | ||
e3506a9f UW |
1822 | arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]), |
1823 | lowbound, highbound); | |
c906108c SS |
1824 | |
1825 | if (!current_language->c_style_arrays) | |
1826 | { | |
1827 | val = allocate_value (arraytype); | |
1828 | for (idx = 0; idx < nelem; idx++) | |
39d37385 PA |
1829 | value_contents_copy (val, idx * typelength, elemvec[idx], 0, |
1830 | typelength); | |
c906108c SS |
1831 | return val; |
1832 | } | |
1833 | ||
63092375 DJ |
1834 | /* Allocate space to store the array, and then initialize it by |
1835 | copying in each element. */ | |
c906108c | 1836 | |
63092375 | 1837 | val = allocate_value (arraytype); |
c906108c | 1838 | for (idx = 0; idx < nelem; idx++) |
39d37385 | 1839 | value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength); |
63092375 | 1840 | return val; |
c906108c SS |
1841 | } |
1842 | ||
6c7a06a3 | 1843 | struct value * |
3b7538c0 | 1844 | value_cstring (char *ptr, int len, struct type *char_type) |
6c7a06a3 TT |
1845 | { |
1846 | struct value *val; | |
1847 | int lowbound = current_language->string_lower_bound; | |
1848 | int highbound = len / TYPE_LENGTH (char_type); | |
6c7a06a3 | 1849 | struct type *stringtype |
e3506a9f | 1850 | = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1); |
6c7a06a3 TT |
1851 | |
1852 | val = allocate_value (stringtype); | |
1853 | memcpy (value_contents_raw (val), ptr, len); | |
1854 | return val; | |
1855 | } | |
1856 | ||
ac3eeb49 MS |
1857 | /* Create a value for a string constant by allocating space in the |
1858 | inferior, copying the data into that space, and returning the | |
1859 | address with type TYPE_CODE_STRING. PTR points to the string | |
1860 | constant data; LEN is number of characters. | |
1861 | ||
1862 | Note that string types are like array of char types with a lower | |
1863 | bound of zero and an upper bound of LEN - 1. Also note that the | |
1864 | string may contain embedded null bytes. */ | |
c906108c | 1865 | |
f23631e4 | 1866 | struct value * |
3b7538c0 | 1867 | value_string (char *ptr, int len, struct type *char_type) |
c906108c | 1868 | { |
f23631e4 | 1869 | struct value *val; |
c906108c | 1870 | int lowbound = current_language->string_lower_bound; |
3b7538c0 | 1871 | int highbound = len / TYPE_LENGTH (char_type); |
c906108c | 1872 | struct type *stringtype |
e3506a9f | 1873 | = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1); |
c906108c | 1874 | |
3b7538c0 UW |
1875 | val = allocate_value (stringtype); |
1876 | memcpy (value_contents_raw (val), ptr, len); | |
1877 | return val; | |
c906108c SS |
1878 | } |
1879 | ||
f23631e4 | 1880 | struct value * |
22601c15 | 1881 | value_bitstring (char *ptr, int len, struct type *index_type) |
c906108c | 1882 | { |
f23631e4 | 1883 | struct value *val; |
22601c15 UW |
1884 | struct type *domain_type |
1885 | = create_range_type (NULL, index_type, 0, len - 1); | |
1886 | struct type *type = create_set_type (NULL, domain_type); | |
a109c7c1 | 1887 | |
c906108c SS |
1888 | TYPE_CODE (type) = TYPE_CODE_BITSTRING; |
1889 | val = allocate_value (type); | |
990a07ab | 1890 | memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type)); |
c906108c SS |
1891 | return val; |
1892 | } | |
1893 | \f | |
ac3eeb49 MS |
1894 | /* See if we can pass arguments in T2 to a function which takes |
1895 | arguments of types T1. T1 is a list of NARGS arguments, and T2 is | |
1896 | a NULL-terminated vector. If some arguments need coercion of some | |
1897 | sort, then the coerced values are written into T2. Return value is | |
1898 | 0 if the arguments could be matched, or the position at which they | |
1899 | differ if not. | |
c906108c | 1900 | |
ac3eeb49 MS |
1901 | STATICP is nonzero if the T1 argument list came from a static |
1902 | member function. T2 will still include the ``this'' pointer, but | |
1903 | it will be skipped. | |
c906108c SS |
1904 | |
1905 | For non-static member functions, we ignore the first argument, | |
ac3eeb49 MS |
1906 | which is the type of the instance variable. This is because we |
1907 | want to handle calls with objects from derived classes. This is | |
1908 | not entirely correct: we should actually check to make sure that a | |
c906108c SS |
1909 | requested operation is type secure, shouldn't we? FIXME. */ |
1910 | ||
1911 | static int | |
ad2f7632 DJ |
1912 | typecmp (int staticp, int varargs, int nargs, |
1913 | struct field t1[], struct value *t2[]) | |
c906108c SS |
1914 | { |
1915 | int i; | |
1916 | ||
1917 | if (t2 == 0) | |
ac3eeb49 MS |
1918 | internal_error (__FILE__, __LINE__, |
1919 | _("typecmp: no argument list")); | |
ad2f7632 | 1920 | |
ac3eeb49 MS |
1921 | /* Skip ``this'' argument if applicable. T2 will always include |
1922 | THIS. */ | |
4a1970e4 | 1923 | if (staticp) |
ad2f7632 DJ |
1924 | t2 ++; |
1925 | ||
1926 | for (i = 0; | |
1927 | (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID; | |
1928 | i++) | |
c906108c | 1929 | { |
c5aa993b | 1930 | struct type *tt1, *tt2; |
ad2f7632 | 1931 | |
c5aa993b JM |
1932 | if (!t2[i]) |
1933 | return i + 1; | |
ad2f7632 DJ |
1934 | |
1935 | tt1 = check_typedef (t1[i].type); | |
df407dfe | 1936 | tt2 = check_typedef (value_type (t2[i])); |
ad2f7632 | 1937 | |
c906108c | 1938 | if (TYPE_CODE (tt1) == TYPE_CODE_REF |
c5aa993b | 1939 | /* We should be doing hairy argument matching, as below. */ |
3e43a32a MS |
1940 | && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) |
1941 | == TYPE_CODE (tt2))) | |
c906108c SS |
1942 | { |
1943 | if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY) | |
1944 | t2[i] = value_coerce_array (t2[i]); | |
1945 | else | |
fb933624 | 1946 | t2[i] = value_ref (t2[i]); |
c906108c SS |
1947 | continue; |
1948 | } | |
1949 | ||
802db21b DB |
1950 | /* djb - 20000715 - Until the new type structure is in the |
1951 | place, and we can attempt things like implicit conversions, | |
1952 | we need to do this so you can take something like a map<const | |
1953 | char *>, and properly access map["hello"], because the | |
1954 | argument to [] will be a reference to a pointer to a char, | |
ac3eeb49 MS |
1955 | and the argument will be a pointer to a char. */ |
1956 | while (TYPE_CODE(tt1) == TYPE_CODE_REF | |
1957 | || TYPE_CODE (tt1) == TYPE_CODE_PTR) | |
802db21b DB |
1958 | { |
1959 | tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) ); | |
1960 | } | |
ac3eeb49 MS |
1961 | while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY |
1962 | || TYPE_CODE(tt2) == TYPE_CODE_PTR | |
1963 | || TYPE_CODE(tt2) == TYPE_CODE_REF) | |
c906108c | 1964 | { |
ac3eeb49 | 1965 | tt2 = check_typedef (TYPE_TARGET_TYPE(tt2)); |
c906108c | 1966 | } |
c5aa993b JM |
1967 | if (TYPE_CODE (tt1) == TYPE_CODE (tt2)) |
1968 | continue; | |
ac3eeb49 MS |
1969 | /* Array to pointer is a `trivial conversion' according to the |
1970 | ARM. */ | |
c906108c | 1971 | |
ac3eeb49 MS |
1972 | /* We should be doing much hairier argument matching (see |
1973 | section 13.2 of the ARM), but as a quick kludge, just check | |
1974 | for the same type code. */ | |
df407dfe | 1975 | if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i]))) |
c5aa993b | 1976 | return i + 1; |
c906108c | 1977 | } |
ad2f7632 | 1978 | if (varargs || t2[i] == NULL) |
c5aa993b | 1979 | return 0; |
ad2f7632 | 1980 | return i + 1; |
c906108c SS |
1981 | } |
1982 | ||
b1af9e97 TT |
1983 | /* Helper class for do_search_struct_field that updates *RESULT_PTR |
1984 | and *LAST_BOFFSET, and possibly throws an exception if the field | |
1985 | search has yielded ambiguous results. */ | |
c906108c | 1986 | |
b1af9e97 TT |
1987 | static void |
1988 | update_search_result (struct value **result_ptr, struct value *v, | |
1989 | int *last_boffset, int boffset, | |
1990 | const char *name, struct type *type) | |
1991 | { | |
1992 | if (v != NULL) | |
1993 | { | |
1994 | if (*result_ptr != NULL | |
1995 | /* The result is not ambiguous if all the classes that are | |
1996 | found occupy the same space. */ | |
1997 | && *last_boffset != boffset) | |
1998 | error (_("base class '%s' is ambiguous in type '%s'"), | |
1999 | name, TYPE_SAFE_NAME (type)); | |
2000 | *result_ptr = v; | |
2001 | *last_boffset = boffset; | |
2002 | } | |
2003 | } | |
c906108c | 2004 | |
b1af9e97 TT |
2005 | /* A helper for search_struct_field. This does all the work; most |
2006 | arguments are as passed to search_struct_field. The result is | |
2007 | stored in *RESULT_PTR, which must be initialized to NULL. | |
2008 | OUTERMOST_TYPE is the type of the initial type passed to | |
2009 | search_struct_field; this is used for error reporting when the | |
2010 | lookup is ambiguous. */ | |
2011 | ||
2012 | static void | |
2013 | do_search_struct_field (const char *name, struct value *arg1, int offset, | |
2014 | struct type *type, int looking_for_baseclass, | |
2015 | struct value **result_ptr, | |
2016 | int *last_boffset, | |
2017 | struct type *outermost_type) | |
c906108c SS |
2018 | { |
2019 | int i; | |
edf3d5f3 | 2020 | int nbases; |
c906108c SS |
2021 | |
2022 | CHECK_TYPEDEF (type); | |
edf3d5f3 | 2023 | nbases = TYPE_N_BASECLASSES (type); |
c906108c | 2024 | |
c5aa993b | 2025 | if (!looking_for_baseclass) |
c906108c SS |
2026 | for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--) |
2027 | { | |
0d5cff50 | 2028 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
c906108c | 2029 | |
db577aea | 2030 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c | 2031 | { |
f23631e4 | 2032 | struct value *v; |
a109c7c1 | 2033 | |
d6a843b5 | 2034 | if (field_is_static (&TYPE_FIELD (type, i))) |
2c2738a0 DC |
2035 | { |
2036 | v = value_static_field (type, i); | |
2037 | if (v == 0) | |
3e43a32a MS |
2038 | error (_("field %s is nonexistent or " |
2039 | "has been optimized out"), | |
2c2738a0 DC |
2040 | name); |
2041 | } | |
c906108c | 2042 | else |
b1af9e97 TT |
2043 | v = value_primitive_field (arg1, offset, i, type); |
2044 | *result_ptr = v; | |
2045 | return; | |
c906108c SS |
2046 | } |
2047 | ||
2048 | if (t_field_name | |
2049 | && (t_field_name[0] == '\0' | |
2050 | || (TYPE_CODE (type) == TYPE_CODE_UNION | |
db577aea | 2051 | && (strcmp_iw (t_field_name, "else") == 0)))) |
c906108c SS |
2052 | { |
2053 | struct type *field_type = TYPE_FIELD_TYPE (type, i); | |
a109c7c1 | 2054 | |
c906108c SS |
2055 | if (TYPE_CODE (field_type) == TYPE_CODE_UNION |
2056 | || TYPE_CODE (field_type) == TYPE_CODE_STRUCT) | |
2057 | { | |
ac3eeb49 MS |
2058 | /* Look for a match through the fields of an anonymous |
2059 | union, or anonymous struct. C++ provides anonymous | |
2060 | unions. | |
c906108c | 2061 | |
1b831c93 AC |
2062 | In the GNU Chill (now deleted from GDB) |
2063 | implementation of variant record types, each | |
2064 | <alternative field> has an (anonymous) union type, | |
2065 | each member of the union represents a <variant | |
2066 | alternative>. Each <variant alternative> is | |
2067 | represented as a struct, with a member for each | |
2068 | <variant field>. */ | |
c5aa993b | 2069 | |
b1af9e97 | 2070 | struct value *v = NULL; |
c906108c SS |
2071 | int new_offset = offset; |
2072 | ||
db034ac5 AC |
2073 | /* This is pretty gross. In G++, the offset in an |
2074 | anonymous union is relative to the beginning of the | |
1b831c93 AC |
2075 | enclosing struct. In the GNU Chill (now deleted |
2076 | from GDB) implementation of variant records, the | |
2077 | bitpos is zero in an anonymous union field, so we | |
ac3eeb49 | 2078 | have to add the offset of the union here. */ |
c906108c SS |
2079 | if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT |
2080 | || (TYPE_NFIELDS (field_type) > 0 | |
2081 | && TYPE_FIELD_BITPOS (field_type, 0) == 0)) | |
2082 | new_offset += TYPE_FIELD_BITPOS (type, i) / 8; | |
2083 | ||
b1af9e97 TT |
2084 | do_search_struct_field (name, arg1, new_offset, |
2085 | field_type, | |
2086 | looking_for_baseclass, &v, | |
2087 | last_boffset, | |
2088 | outermost_type); | |
c906108c | 2089 | if (v) |
b1af9e97 TT |
2090 | { |
2091 | *result_ptr = v; | |
2092 | return; | |
2093 | } | |
c906108c SS |
2094 | } |
2095 | } | |
2096 | } | |
2097 | ||
c5aa993b | 2098 | for (i = 0; i < nbases; i++) |
c906108c | 2099 | { |
b1af9e97 | 2100 | struct value *v = NULL; |
c906108c | 2101 | struct type *basetype = check_typedef (TYPE_BASECLASS (type, i)); |
ac3eeb49 MS |
2102 | /* If we are looking for baseclasses, this is what we get when |
2103 | we hit them. But it could happen that the base part's member | |
2104 | name is not yet filled in. */ | |
c906108c SS |
2105 | int found_baseclass = (looking_for_baseclass |
2106 | && TYPE_BASECLASS_NAME (type, i) != NULL | |
ac3eeb49 MS |
2107 | && (strcmp_iw (name, |
2108 | TYPE_BASECLASS_NAME (type, | |
2109 | i)) == 0)); | |
b1af9e97 | 2110 | int boffset = value_embedded_offset (arg1) + offset; |
c906108c SS |
2111 | |
2112 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
2113 | { | |
3e3d7139 | 2114 | struct value *v2; |
c906108c SS |
2115 | |
2116 | boffset = baseclass_offset (type, i, | |
8af8e3bc PA |
2117 | value_contents_for_printing (arg1), |
2118 | value_embedded_offset (arg1) + offset, | |
2119 | value_address (arg1), | |
2120 | arg1); | |
c906108c | 2121 | |
ac3eeb49 | 2122 | /* The virtual base class pointer might have been clobbered |
581e13c1 | 2123 | by the user program. Make sure that it still points to a |
ac3eeb49 | 2124 | valid memory location. */ |
c906108c | 2125 | |
1a334831 TT |
2126 | boffset += value_embedded_offset (arg1) + offset; |
2127 | if (boffset < 0 | |
2128 | || boffset >= TYPE_LENGTH (value_enclosing_type (arg1))) | |
c906108c SS |
2129 | { |
2130 | CORE_ADDR base_addr; | |
c5aa993b | 2131 | |
3e3d7139 | 2132 | v2 = allocate_value (basetype); |
42ae5230 | 2133 | base_addr = value_address (arg1) + boffset; |
ac3eeb49 MS |
2134 | if (target_read_memory (base_addr, |
2135 | value_contents_raw (v2), | |
c906108c | 2136 | TYPE_LENGTH (basetype)) != 0) |
8a3fe4f8 | 2137 | error (_("virtual baseclass botch")); |
c906108c | 2138 | VALUE_LVAL (v2) = lval_memory; |
42ae5230 | 2139 | set_value_address (v2, base_addr); |
c906108c SS |
2140 | } |
2141 | else | |
2142 | { | |
1a334831 TT |
2143 | v2 = value_copy (arg1); |
2144 | deprecated_set_value_type (v2, basetype); | |
2145 | set_value_embedded_offset (v2, boffset); | |
c906108c SS |
2146 | } |
2147 | ||
2148 | if (found_baseclass) | |
b1af9e97 TT |
2149 | v = v2; |
2150 | else | |
2151 | { | |
2152 | do_search_struct_field (name, v2, 0, | |
2153 | TYPE_BASECLASS (type, i), | |
2154 | looking_for_baseclass, | |
2155 | result_ptr, last_boffset, | |
2156 | outermost_type); | |
2157 | } | |
c906108c SS |
2158 | } |
2159 | else if (found_baseclass) | |
2160 | v = value_primitive_field (arg1, offset, i, type); | |
2161 | else | |
b1af9e97 TT |
2162 | { |
2163 | do_search_struct_field (name, arg1, | |
2164 | offset + TYPE_BASECLASS_BITPOS (type, | |
2165 | i) / 8, | |
2166 | basetype, looking_for_baseclass, | |
2167 | result_ptr, last_boffset, | |
2168 | outermost_type); | |
2169 | } | |
2170 | ||
2171 | update_search_result (result_ptr, v, last_boffset, | |
2172 | boffset, name, outermost_type); | |
c906108c | 2173 | } |
b1af9e97 TT |
2174 | } |
2175 | ||
2176 | /* Helper function used by value_struct_elt to recurse through | |
2177 | baseclasses. Look for a field NAME in ARG1. Adjust the address of | |
2178 | ARG1 by OFFSET bytes, and search in it assuming it has (class) type | |
2179 | TYPE. If found, return value, else return NULL. | |
2180 | ||
2181 | If LOOKING_FOR_BASECLASS, then instead of looking for struct | |
2182 | fields, look for a baseclass named NAME. */ | |
2183 | ||
2184 | static struct value * | |
2185 | search_struct_field (const char *name, struct value *arg1, int offset, | |
2186 | struct type *type, int looking_for_baseclass) | |
2187 | { | |
2188 | struct value *result = NULL; | |
2189 | int boffset = 0; | |
2190 | ||
2191 | do_search_struct_field (name, arg1, offset, type, looking_for_baseclass, | |
2192 | &result, &boffset, type); | |
2193 | return result; | |
c906108c SS |
2194 | } |
2195 | ||
ac3eeb49 | 2196 | /* Helper function used by value_struct_elt to recurse through |
581e13c1 | 2197 | baseclasses. Look for a field NAME in ARG1. Adjust the address of |
ac3eeb49 MS |
2198 | ARG1 by OFFSET bytes, and search in it assuming it has (class) type |
2199 | TYPE. | |
2200 | ||
2201 | If found, return value, else if name matched and args not return | |
2202 | (value) -1, else return NULL. */ | |
c906108c | 2203 | |
f23631e4 | 2204 | static struct value * |
714f19d5 | 2205 | search_struct_method (const char *name, struct value **arg1p, |
f23631e4 | 2206 | struct value **args, int offset, |
aa1ee363 | 2207 | int *static_memfuncp, struct type *type) |
c906108c SS |
2208 | { |
2209 | int i; | |
f23631e4 | 2210 | struct value *v; |
c906108c SS |
2211 | int name_matched = 0; |
2212 | char dem_opname[64]; | |
2213 | ||
2214 | CHECK_TYPEDEF (type); | |
2215 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) | |
2216 | { | |
0d5cff50 | 2217 | const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i); |
a109c7c1 | 2218 | |
581e13c1 | 2219 | /* FIXME! May need to check for ARM demangling here. */ |
c5aa993b JM |
2220 | if (strncmp (t_field_name, "__", 2) == 0 || |
2221 | strncmp (t_field_name, "op", 2) == 0 || | |
2222 | strncmp (t_field_name, "type", 4) == 0) | |
c906108c | 2223 | { |
c5aa993b JM |
2224 | if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI)) |
2225 | t_field_name = dem_opname; | |
2226 | else if (cplus_demangle_opname (t_field_name, dem_opname, 0)) | |
c906108c | 2227 | t_field_name = dem_opname; |
c906108c | 2228 | } |
db577aea | 2229 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c SS |
2230 | { |
2231 | int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1; | |
2232 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); | |
c906108c | 2233 | |
a109c7c1 | 2234 | name_matched = 1; |
de17c821 | 2235 | check_stub_method_group (type, i); |
c906108c | 2236 | if (j > 0 && args == 0) |
3e43a32a MS |
2237 | error (_("cannot resolve overloaded method " |
2238 | "`%s': no arguments supplied"), name); | |
acf5ed49 | 2239 | else if (j == 0 && args == 0) |
c906108c | 2240 | { |
acf5ed49 DJ |
2241 | v = value_fn_field (arg1p, f, j, type, offset); |
2242 | if (v != NULL) | |
2243 | return v; | |
c906108c | 2244 | } |
acf5ed49 DJ |
2245 | else |
2246 | while (j >= 0) | |
2247 | { | |
acf5ed49 | 2248 | if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j), |
ad2f7632 DJ |
2249 | TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)), |
2250 | TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)), | |
acf5ed49 DJ |
2251 | TYPE_FN_FIELD_ARGS (f, j), args)) |
2252 | { | |
2253 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) | |
ac3eeb49 MS |
2254 | return value_virtual_fn_field (arg1p, f, j, |
2255 | type, offset); | |
2256 | if (TYPE_FN_FIELD_STATIC_P (f, j) | |
2257 | && static_memfuncp) | |
acf5ed49 DJ |
2258 | *static_memfuncp = 1; |
2259 | v = value_fn_field (arg1p, f, j, type, offset); | |
2260 | if (v != NULL) | |
2261 | return v; | |
2262 | } | |
2263 | j--; | |
2264 | } | |
c906108c SS |
2265 | } |
2266 | } | |
2267 | ||
2268 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
2269 | { | |
2270 | int base_offset; | |
8af8e3bc PA |
2271 | int skip = 0; |
2272 | int this_offset; | |
c906108c SS |
2273 | |
2274 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
2275 | { | |
086280be | 2276 | struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i)); |
8af8e3bc | 2277 | struct value *base_val; |
086280be UW |
2278 | const gdb_byte *base_valaddr; |
2279 | ||
2280 | /* The virtual base class pointer might have been | |
581e13c1 | 2281 | clobbered by the user program. Make sure that it |
086280be UW |
2282 | still points to a valid memory location. */ |
2283 | ||
2284 | if (offset < 0 || offset >= TYPE_LENGTH (type)) | |
c5aa993b | 2285 | { |
086280be | 2286 | gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass)); |
8af8e3bc | 2287 | CORE_ADDR address = value_address (*arg1p); |
a109c7c1 | 2288 | |
8af8e3bc | 2289 | if (target_read_memory (address + offset, |
086280be UW |
2290 | tmp, TYPE_LENGTH (baseclass)) != 0) |
2291 | error (_("virtual baseclass botch")); | |
8af8e3bc PA |
2292 | |
2293 | base_val = value_from_contents_and_address (baseclass, | |
2294 | tmp, | |
2295 | address + offset); | |
2296 | base_valaddr = value_contents_for_printing (base_val); | |
2297 | this_offset = 0; | |
c5aa993b JM |
2298 | } |
2299 | else | |
8af8e3bc PA |
2300 | { |
2301 | base_val = *arg1p; | |
2302 | base_valaddr = value_contents_for_printing (*arg1p); | |
2303 | this_offset = offset; | |
2304 | } | |
c5aa993b | 2305 | |
086280be | 2306 | base_offset = baseclass_offset (type, i, base_valaddr, |
8af8e3bc PA |
2307 | this_offset, value_address (base_val), |
2308 | base_val); | |
c5aa993b | 2309 | } |
c906108c SS |
2310 | else |
2311 | { | |
2312 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | |
c5aa993b | 2313 | } |
c906108c SS |
2314 | v = search_struct_method (name, arg1p, args, base_offset + offset, |
2315 | static_memfuncp, TYPE_BASECLASS (type, i)); | |
f23631e4 | 2316 | if (v == (struct value *) - 1) |
c906108c SS |
2317 | { |
2318 | name_matched = 1; | |
2319 | } | |
2320 | else if (v) | |
2321 | { | |
ac3eeb49 MS |
2322 | /* FIXME-bothner: Why is this commented out? Why is it here? */ |
2323 | /* *arg1p = arg1_tmp; */ | |
c906108c | 2324 | return v; |
c5aa993b | 2325 | } |
c906108c | 2326 | } |
c5aa993b | 2327 | if (name_matched) |
f23631e4 | 2328 | return (struct value *) - 1; |
c5aa993b JM |
2329 | else |
2330 | return NULL; | |
c906108c SS |
2331 | } |
2332 | ||
2333 | /* Given *ARGP, a value of type (pointer to a)* structure/union, | |
ac3eeb49 MS |
2334 | extract the component named NAME from the ultimate target |
2335 | structure/union and return it as a value with its appropriate type. | |
c906108c SS |
2336 | ERR is used in the error message if *ARGP's type is wrong. |
2337 | ||
2338 | C++: ARGS is a list of argument types to aid in the selection of | |
581e13c1 | 2339 | an appropriate method. Also, handle derived types. |
c906108c SS |
2340 | |
2341 | STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location | |
2342 | where the truthvalue of whether the function that was resolved was | |
2343 | a static member function or not is stored. | |
2344 | ||
ac3eeb49 MS |
2345 | ERR is an error message to be printed in case the field is not |
2346 | found. */ | |
c906108c | 2347 | |
f23631e4 AC |
2348 | struct value * |
2349 | value_struct_elt (struct value **argp, struct value **args, | |
714f19d5 | 2350 | const char *name, int *static_memfuncp, const char *err) |
c906108c | 2351 | { |
52f0bd74 | 2352 | struct type *t; |
f23631e4 | 2353 | struct value *v; |
c906108c | 2354 | |
994b9211 | 2355 | *argp = coerce_array (*argp); |
c906108c | 2356 | |
df407dfe | 2357 | t = check_typedef (value_type (*argp)); |
c906108c SS |
2358 | |
2359 | /* Follow pointers until we get to a non-pointer. */ | |
2360 | ||
2361 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) | |
2362 | { | |
2363 | *argp = value_ind (*argp); | |
2364 | /* Don't coerce fn pointer to fn and then back again! */ | |
df407dfe | 2365 | if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC) |
994b9211 | 2366 | *argp = coerce_array (*argp); |
df407dfe | 2367 | t = check_typedef (value_type (*argp)); |
c906108c SS |
2368 | } |
2369 | ||
c5aa993b | 2370 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c | 2371 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
3e43a32a MS |
2372 | error (_("Attempt to extract a component of a value that is not a %s."), |
2373 | err); | |
c906108c SS |
2374 | |
2375 | /* Assume it's not, unless we see that it is. */ | |
2376 | if (static_memfuncp) | |
c5aa993b | 2377 | *static_memfuncp = 0; |
c906108c SS |
2378 | |
2379 | if (!args) | |
2380 | { | |
2381 | /* if there are no arguments ...do this... */ | |
2382 | ||
ac3eeb49 MS |
2383 | /* Try as a field first, because if we succeed, there is less |
2384 | work to be done. */ | |
c906108c SS |
2385 | v = search_struct_field (name, *argp, 0, t, 0); |
2386 | if (v) | |
2387 | return v; | |
2388 | ||
2389 | /* C++: If it was not found as a data field, then try to | |
7b83ea04 | 2390 | return it as a pointer to a method. */ |
ac3eeb49 MS |
2391 | v = search_struct_method (name, argp, args, 0, |
2392 | static_memfuncp, t); | |
c906108c | 2393 | |
f23631e4 | 2394 | if (v == (struct value *) - 1) |
55b39184 | 2395 | error (_("Cannot take address of method %s."), name); |
c906108c SS |
2396 | else if (v == 0) |
2397 | { | |
2398 | if (TYPE_NFN_FIELDS (t)) | |
8a3fe4f8 | 2399 | error (_("There is no member or method named %s."), name); |
c906108c | 2400 | else |
8a3fe4f8 | 2401 | error (_("There is no member named %s."), name); |
c906108c SS |
2402 | } |
2403 | return v; | |
2404 | } | |
2405 | ||
ac3eeb49 MS |
2406 | v = search_struct_method (name, argp, args, 0, |
2407 | static_memfuncp, t); | |
7168a814 | 2408 | |
f23631e4 | 2409 | if (v == (struct value *) - 1) |
c906108c | 2410 | { |
3e43a32a MS |
2411 | error (_("One of the arguments you tried to pass to %s could not " |
2412 | "be converted to what the function wants."), name); | |
c906108c SS |
2413 | } |
2414 | else if (v == 0) | |
2415 | { | |
ac3eeb49 MS |
2416 | /* See if user tried to invoke data as function. If so, hand it |
2417 | back. If it's not callable (i.e., a pointer to function), | |
7b83ea04 | 2418 | gdb should give an error. */ |
c906108c | 2419 | v = search_struct_field (name, *argp, 0, t, 0); |
fa8de41e TT |
2420 | /* If we found an ordinary field, then it is not a method call. |
2421 | So, treat it as if it were a static member function. */ | |
2422 | if (v && static_memfuncp) | |
2423 | *static_memfuncp = 1; | |
c906108c SS |
2424 | } |
2425 | ||
2426 | if (!v) | |
79afc5ef SW |
2427 | throw_error (NOT_FOUND_ERROR, |
2428 | _("Structure has no component named %s."), name); | |
c906108c SS |
2429 | return v; |
2430 | } | |
2431 | ||
ac3eeb49 | 2432 | /* Search through the methods of an object (and its bases) to find a |
cfe9eade | 2433 | specified method. Return the pointer to the fn_field list of |
ac3eeb49 MS |
2434 | overloaded instances. |
2435 | ||
2436 | Helper function for value_find_oload_list. | |
2437 | ARGP is a pointer to a pointer to a value (the object). | |
2438 | METHOD is a string containing the method name. | |
2439 | OFFSET is the offset within the value. | |
2440 | TYPE is the assumed type of the object. | |
2441 | NUM_FNS is the number of overloaded instances. | |
2442 | BASETYPE is set to the actual type of the subobject where the | |
2443 | method is found. | |
581e13c1 | 2444 | BOFFSET is the offset of the base subobject where the method is found. */ |
c906108c | 2445 | |
7a292a7a | 2446 | static struct fn_field * |
714f19d5 | 2447 | find_method_list (struct value **argp, const char *method, |
ac3eeb49 | 2448 | int offset, struct type *type, int *num_fns, |
fba45db2 | 2449 | struct type **basetype, int *boffset) |
c906108c SS |
2450 | { |
2451 | int i; | |
c5aa993b | 2452 | struct fn_field *f; |
c906108c SS |
2453 | CHECK_TYPEDEF (type); |
2454 | ||
2455 | *num_fns = 0; | |
2456 | ||
ac3eeb49 | 2457 | /* First check in object itself. */ |
c5aa993b | 2458 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) |
c906108c | 2459 | { |
ac3eeb49 | 2460 | /* pai: FIXME What about operators and type conversions? */ |
0d5cff50 | 2461 | const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i); |
a109c7c1 | 2462 | |
db577aea | 2463 | if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0)) |
c5aa993b | 2464 | { |
4a1970e4 DJ |
2465 | int len = TYPE_FN_FIELDLIST_LENGTH (type, i); |
2466 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); | |
4a1970e4 DJ |
2467 | |
2468 | *num_fns = len; | |
c5aa993b JM |
2469 | *basetype = type; |
2470 | *boffset = offset; | |
4a1970e4 | 2471 | |
de17c821 DJ |
2472 | /* Resolve any stub methods. */ |
2473 | check_stub_method_group (type, i); | |
4a1970e4 DJ |
2474 | |
2475 | return f; | |
c5aa993b JM |
2476 | } |
2477 | } | |
2478 | ||
ac3eeb49 | 2479 | /* Not found in object, check in base subobjects. */ |
c906108c SS |
2480 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) |
2481 | { | |
2482 | int base_offset; | |
a109c7c1 | 2483 | |
c906108c SS |
2484 | if (BASETYPE_VIA_VIRTUAL (type, i)) |
2485 | { | |
086280be | 2486 | base_offset = baseclass_offset (type, i, |
8af8e3bc PA |
2487 | value_contents_for_printing (*argp), |
2488 | value_offset (*argp) + offset, | |
2489 | value_address (*argp), *argp); | |
c5aa993b | 2490 | } |
ac3eeb49 MS |
2491 | else /* Non-virtual base, simply use bit position from debug |
2492 | info. */ | |
c906108c SS |
2493 | { |
2494 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | |
c5aa993b | 2495 | } |
c906108c | 2496 | f = find_method_list (argp, method, base_offset + offset, |
ac3eeb49 MS |
2497 | TYPE_BASECLASS (type, i), num_fns, |
2498 | basetype, boffset); | |
c906108c | 2499 | if (f) |
c5aa993b | 2500 | return f; |
c906108c | 2501 | } |
c5aa993b | 2502 | return NULL; |
c906108c SS |
2503 | } |
2504 | ||
2505 | /* Return the list of overloaded methods of a specified name. | |
ac3eeb49 MS |
2506 | |
2507 | ARGP is a pointer to a pointer to a value (the object). | |
2508 | METHOD is the method name. | |
2509 | OFFSET is the offset within the value contents. | |
2510 | NUM_FNS is the number of overloaded instances. | |
2511 | BASETYPE is set to the type of the base subobject that defines the | |
2512 | method. | |
581e13c1 | 2513 | BOFFSET is the offset of the base subobject which defines the method. */ |
c906108c SS |
2514 | |
2515 | struct fn_field * | |
714f19d5 | 2516 | value_find_oload_method_list (struct value **argp, const char *method, |
ac3eeb49 MS |
2517 | int offset, int *num_fns, |
2518 | struct type **basetype, int *boffset) | |
c906108c | 2519 | { |
c5aa993b | 2520 | struct type *t; |
c906108c | 2521 | |
df407dfe | 2522 | t = check_typedef (value_type (*argp)); |
c906108c | 2523 | |
ac3eeb49 | 2524 | /* Code snarfed from value_struct_elt. */ |
c906108c SS |
2525 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) |
2526 | { | |
2527 | *argp = value_ind (*argp); | |
2528 | /* Don't coerce fn pointer to fn and then back again! */ | |
df407dfe | 2529 | if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC) |
994b9211 | 2530 | *argp = coerce_array (*argp); |
df407dfe | 2531 | t = check_typedef (value_type (*argp)); |
c906108c | 2532 | } |
c5aa993b | 2533 | |
c5aa993b JM |
2534 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
2535 | && TYPE_CODE (t) != TYPE_CODE_UNION) | |
3e43a32a MS |
2536 | error (_("Attempt to extract a component of a " |
2537 | "value that is not a struct or union")); | |
c5aa993b | 2538 | |
ac3eeb49 MS |
2539 | return find_method_list (argp, method, 0, t, num_fns, |
2540 | basetype, boffset); | |
c906108c SS |
2541 | } |
2542 | ||
da096638 | 2543 | /* Given an array of arguments (ARGS) (which includes an |
c906108c SS |
2544 | entry for "this" in the case of C++ methods), the number of |
2545 | arguments NARGS, the NAME of a function whether it's a method or | |
2546 | not (METHOD), and the degree of laxness (LAX) in conforming to | |
2547 | overload resolution rules in ANSI C++, find the best function that | |
2548 | matches on the argument types according to the overload resolution | |
2549 | rules. | |
2550 | ||
4c3376c8 SW |
2551 | METHOD can be one of three values: |
2552 | NON_METHOD for non-member functions. | |
2553 | METHOD: for member functions. | |
2554 | BOTH: used for overload resolution of operators where the | |
2555 | candidates are expected to be either member or non member | |
581e13c1 | 2556 | functions. In this case the first argument ARGTYPES |
4c3376c8 SW |
2557 | (representing 'this') is expected to be a reference to the |
2558 | target object, and will be dereferenced when attempting the | |
2559 | non-member search. | |
2560 | ||
c906108c SS |
2561 | In the case of class methods, the parameter OBJ is an object value |
2562 | in which to search for overloaded methods. | |
2563 | ||
2564 | In the case of non-method functions, the parameter FSYM is a symbol | |
2565 | corresponding to one of the overloaded functions. | |
2566 | ||
2567 | Return value is an integer: 0 -> good match, 10 -> debugger applied | |
2568 | non-standard coercions, 100 -> incompatible. | |
2569 | ||
2570 | If a method is being searched for, VALP will hold the value. | |
ac3eeb49 MS |
2571 | If a non-method is being searched for, SYMP will hold the symbol |
2572 | for it. | |
c906108c SS |
2573 | |
2574 | If a method is being searched for, and it is a static method, | |
2575 | then STATICP will point to a non-zero value. | |
2576 | ||
7322dca9 SW |
2577 | If NO_ADL argument dependent lookup is disabled. This is used to prevent |
2578 | ADL overload candidates when performing overload resolution for a fully | |
2579 | qualified name. | |
2580 | ||
c906108c SS |
2581 | Note: This function does *not* check the value of |
2582 | overload_resolution. Caller must check it to see whether overload | |
581e13c1 | 2583 | resolution is permitted. */ |
c906108c SS |
2584 | |
2585 | int | |
da096638 | 2586 | find_overload_match (struct value **args, int nargs, |
4c3376c8 SW |
2587 | const char *name, enum oload_search_type method, |
2588 | int lax, struct value **objp, struct symbol *fsym, | |
ac3eeb49 | 2589 | struct value **valp, struct symbol **symp, |
7322dca9 | 2590 | int *staticp, const int no_adl) |
c906108c | 2591 | { |
7f8c9282 | 2592 | struct value *obj = (objp ? *objp : NULL); |
da096638 | 2593 | struct type *obj_type = obj ? value_type (obj) : NULL; |
ac3eeb49 | 2594 | /* Index of best overloaded function. */ |
4c3376c8 SW |
2595 | int func_oload_champ = -1; |
2596 | int method_oload_champ = -1; | |
2597 | ||
ac3eeb49 | 2598 | /* The measure for the current best match. */ |
4c3376c8 SW |
2599 | struct badness_vector *method_badness = NULL; |
2600 | struct badness_vector *func_badness = NULL; | |
2601 | ||
f23631e4 | 2602 | struct value *temp = obj; |
ac3eeb49 MS |
2603 | /* For methods, the list of overloaded methods. */ |
2604 | struct fn_field *fns_ptr = NULL; | |
2605 | /* For non-methods, the list of overloaded function symbols. */ | |
2606 | struct symbol **oload_syms = NULL; | |
2607 | /* Number of overloaded instances being considered. */ | |
2608 | int num_fns = 0; | |
c5aa993b | 2609 | struct type *basetype = NULL; |
c906108c | 2610 | int boffset; |
7322dca9 SW |
2611 | |
2612 | struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL); | |
c906108c | 2613 | |
8d577d32 | 2614 | const char *obj_type_name = NULL; |
7322dca9 | 2615 | const char *func_name = NULL; |
8d577d32 | 2616 | enum oload_classification match_quality; |
4c3376c8 SW |
2617 | enum oload_classification method_match_quality = INCOMPATIBLE; |
2618 | enum oload_classification func_match_quality = INCOMPATIBLE; | |
c906108c | 2619 | |
ac3eeb49 | 2620 | /* Get the list of overloaded methods or functions. */ |
4c3376c8 | 2621 | if (method == METHOD || method == BOTH) |
c906108c | 2622 | { |
a2ca50ae | 2623 | gdb_assert (obj); |
94af9270 KS |
2624 | |
2625 | /* OBJ may be a pointer value rather than the object itself. */ | |
2626 | obj = coerce_ref (obj); | |
2627 | while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR) | |
2628 | obj = coerce_ref (value_ind (obj)); | |
df407dfe | 2629 | obj_type_name = TYPE_NAME (value_type (obj)); |
94af9270 KS |
2630 | |
2631 | /* First check whether this is a data member, e.g. a pointer to | |
2632 | a function. */ | |
2633 | if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT) | |
2634 | { | |
2635 | *valp = search_struct_field (name, obj, 0, | |
2636 | check_typedef (value_type (obj)), 0); | |
2637 | if (*valp) | |
2638 | { | |
2639 | *staticp = 1; | |
f748fb40 | 2640 | do_cleanups (all_cleanups); |
94af9270 KS |
2641 | return 0; |
2642 | } | |
2643 | } | |
c906108c | 2644 | |
4c3376c8 | 2645 | /* Retrieve the list of methods with the name NAME. */ |
ac3eeb49 MS |
2646 | fns_ptr = value_find_oload_method_list (&temp, name, |
2647 | 0, &num_fns, | |
c5aa993b | 2648 | &basetype, &boffset); |
4c3376c8 SW |
2649 | /* If this is a method only search, and no methods were found |
2650 | the search has faild. */ | |
2651 | if (method == METHOD && (!fns_ptr || !num_fns)) | |
8a3fe4f8 | 2652 | error (_("Couldn't find method %s%s%s"), |
c5aa993b JM |
2653 | obj_type_name, |
2654 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2655 | name); | |
4a1970e4 | 2656 | /* If we are dealing with stub method types, they should have |
ac3eeb49 MS |
2657 | been resolved by find_method_list via |
2658 | value_find_oload_method_list above. */ | |
4c3376c8 SW |
2659 | if (fns_ptr) |
2660 | { | |
2661 | gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL); | |
da096638 | 2662 | method_oload_champ = find_oload_champ (args, nargs, method, |
4c3376c8 SW |
2663 | num_fns, fns_ptr, |
2664 | oload_syms, &method_badness); | |
2665 | ||
2666 | method_match_quality = | |
2667 | classify_oload_match (method_badness, nargs, | |
2668 | oload_method_static (method, fns_ptr, | |
2669 | method_oload_champ)); | |
2670 | ||
2671 | make_cleanup (xfree, method_badness); | |
2672 | } | |
2673 | ||
c906108c | 2674 | } |
4c3376c8 SW |
2675 | |
2676 | if (method == NON_METHOD || method == BOTH) | |
c906108c | 2677 | { |
7322dca9 | 2678 | const char *qualified_name = NULL; |
c906108c | 2679 | |
b021a221 MS |
2680 | /* If the overload match is being search for both as a method |
2681 | and non member function, the first argument must now be | |
2682 | dereferenced. */ | |
4c3376c8 | 2683 | if (method == BOTH) |
da096638 KS |
2684 | deprecated_set_value_type (args[0], |
2685 | TYPE_TARGET_TYPE (value_type (args[0]))); | |
4c3376c8 | 2686 | |
7322dca9 SW |
2687 | if (fsym) |
2688 | { | |
2689 | qualified_name = SYMBOL_NATURAL_NAME (fsym); | |
2690 | ||
2691 | /* If we have a function with a C++ name, try to extract just | |
2692 | the function part. Do not try this for non-functions (e.g. | |
2693 | function pointers). */ | |
2694 | if (qualified_name | |
3e43a32a MS |
2695 | && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym))) |
2696 | == TYPE_CODE_FUNC) | |
7322dca9 SW |
2697 | { |
2698 | char *temp; | |
2699 | ||
2700 | temp = cp_func_name (qualified_name); | |
2701 | ||
2702 | /* If cp_func_name did not remove anything, the name of the | |
2703 | symbol did not include scope or argument types - it was | |
2704 | probably a C-style function. */ | |
2705 | if (temp) | |
2706 | { | |
2707 | make_cleanup (xfree, temp); | |
2708 | if (strcmp (temp, qualified_name) == 0) | |
2709 | func_name = NULL; | |
2710 | else | |
2711 | func_name = temp; | |
2712 | } | |
2713 | } | |
2714 | } | |
2715 | else | |
94af9270 | 2716 | { |
7322dca9 SW |
2717 | func_name = name; |
2718 | qualified_name = name; | |
94af9270 | 2719 | } |
d9639e13 | 2720 | |
94af9270 KS |
2721 | /* If there was no C++ name, this must be a C-style function or |
2722 | not a function at all. Just return the same symbol. Do the | |
2723 | same if cp_func_name fails for some reason. */ | |
8d577d32 | 2724 | if (func_name == NULL) |
7b83ea04 | 2725 | { |
917317f4 | 2726 | *symp = fsym; |
5fe41fbf | 2727 | do_cleanups (all_cleanups); |
7b83ea04 AC |
2728 | return 0; |
2729 | } | |
917317f4 | 2730 | |
da096638 | 2731 | func_oload_champ = find_oload_champ_namespace (args, nargs, |
4c3376c8 SW |
2732 | func_name, |
2733 | qualified_name, | |
2734 | &oload_syms, | |
2735 | &func_badness, | |
2736 | no_adl); | |
8d577d32 | 2737 | |
4c3376c8 SW |
2738 | if (func_oload_champ >= 0) |
2739 | func_match_quality = classify_oload_match (func_badness, nargs, 0); | |
2740 | ||
2741 | make_cleanup (xfree, oload_syms); | |
2742 | make_cleanup (xfree, func_badness); | |
8d577d32 DC |
2743 | } |
2744 | ||
7322dca9 | 2745 | /* Did we find a match ? */ |
4c3376c8 | 2746 | if (method_oload_champ == -1 && func_oload_champ == -1) |
79afc5ef SW |
2747 | throw_error (NOT_FOUND_ERROR, |
2748 | _("No symbol \"%s\" in current context."), | |
2749 | name); | |
8d577d32 | 2750 | |
4c3376c8 SW |
2751 | /* If we have found both a method match and a function |
2752 | match, find out which one is better, and calculate match | |
2753 | quality. */ | |
2754 | if (method_oload_champ >= 0 && func_oload_champ >= 0) | |
2755 | { | |
2756 | switch (compare_badness (func_badness, method_badness)) | |
2757 | { | |
2758 | case 0: /* Top two contenders are equally good. */ | |
b021a221 MS |
2759 | /* FIXME: GDB does not support the general ambiguous case. |
2760 | All candidates should be collected and presented the | |
2761 | user. */ | |
4c3376c8 SW |
2762 | error (_("Ambiguous overload resolution")); |
2763 | break; | |
2764 | case 1: /* Incomparable top contenders. */ | |
2765 | /* This is an error incompatible candidates | |
2766 | should not have been proposed. */ | |
3e43a32a MS |
2767 | error (_("Internal error: incompatible " |
2768 | "overload candidates proposed")); | |
4c3376c8 SW |
2769 | break; |
2770 | case 2: /* Function champion. */ | |
2771 | method_oload_champ = -1; | |
2772 | match_quality = func_match_quality; | |
2773 | break; | |
2774 | case 3: /* Method champion. */ | |
2775 | func_oload_champ = -1; | |
2776 | match_quality = method_match_quality; | |
2777 | break; | |
2778 | default: | |
2779 | error (_("Internal error: unexpected overload comparison result")); | |
2780 | break; | |
2781 | } | |
2782 | } | |
2783 | else | |
2784 | { | |
2785 | /* We have either a method match or a function match. */ | |
2786 | if (method_oload_champ >= 0) | |
2787 | match_quality = method_match_quality; | |
2788 | else | |
2789 | match_quality = func_match_quality; | |
2790 | } | |
8d577d32 DC |
2791 | |
2792 | if (match_quality == INCOMPATIBLE) | |
2793 | { | |
4c3376c8 | 2794 | if (method == METHOD) |
8a3fe4f8 | 2795 | error (_("Cannot resolve method %s%s%s to any overloaded instance"), |
8d577d32 DC |
2796 | obj_type_name, |
2797 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2798 | name); | |
2799 | else | |
8a3fe4f8 | 2800 | error (_("Cannot resolve function %s to any overloaded instance"), |
8d577d32 DC |
2801 | func_name); |
2802 | } | |
2803 | else if (match_quality == NON_STANDARD) | |
2804 | { | |
4c3376c8 | 2805 | if (method == METHOD) |
3e43a32a MS |
2806 | warning (_("Using non-standard conversion to match " |
2807 | "method %s%s%s to supplied arguments"), | |
8d577d32 DC |
2808 | obj_type_name, |
2809 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2810 | name); | |
2811 | else | |
3e43a32a MS |
2812 | warning (_("Using non-standard conversion to match " |
2813 | "function %s to supplied arguments"), | |
8d577d32 DC |
2814 | func_name); |
2815 | } | |
2816 | ||
4c3376c8 SW |
2817 | if (staticp != NULL) |
2818 | *staticp = oload_method_static (method, fns_ptr, method_oload_champ); | |
2819 | ||
2820 | if (method_oload_champ >= 0) | |
8d577d32 | 2821 | { |
4c3376c8 SW |
2822 | if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ)) |
2823 | *valp = value_virtual_fn_field (&temp, fns_ptr, method_oload_champ, | |
ac3eeb49 | 2824 | basetype, boffset); |
8d577d32 | 2825 | else |
4c3376c8 | 2826 | *valp = value_fn_field (&temp, fns_ptr, method_oload_champ, |
ac3eeb49 | 2827 | basetype, boffset); |
8d577d32 DC |
2828 | } |
2829 | else | |
4c3376c8 | 2830 | *symp = oload_syms[func_oload_champ]; |
8d577d32 DC |
2831 | |
2832 | if (objp) | |
2833 | { | |
a4295225 | 2834 | struct type *temp_type = check_typedef (value_type (temp)); |
da096638 | 2835 | struct type *objtype = check_typedef (obj_type); |
a109c7c1 | 2836 | |
a4295225 | 2837 | if (TYPE_CODE (temp_type) != TYPE_CODE_PTR |
da096638 KS |
2838 | && (TYPE_CODE (objtype) == TYPE_CODE_PTR |
2839 | || TYPE_CODE (objtype) == TYPE_CODE_REF)) | |
8d577d32 DC |
2840 | { |
2841 | temp = value_addr (temp); | |
2842 | } | |
2843 | *objp = temp; | |
2844 | } | |
7322dca9 SW |
2845 | |
2846 | do_cleanups (all_cleanups); | |
8d577d32 DC |
2847 | |
2848 | switch (match_quality) | |
2849 | { | |
2850 | case INCOMPATIBLE: | |
2851 | return 100; | |
2852 | case NON_STANDARD: | |
2853 | return 10; | |
2854 | default: /* STANDARD */ | |
2855 | return 0; | |
2856 | } | |
2857 | } | |
2858 | ||
2859 | /* Find the best overload match, searching for FUNC_NAME in namespaces | |
2860 | contained in QUALIFIED_NAME until it either finds a good match or | |
2861 | runs out of namespaces. It stores the overloaded functions in | |
2862 | *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The | |
2863 | calling function is responsible for freeing *OLOAD_SYMS and | |
7322dca9 SW |
2864 | *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not |
2865 | performned. */ | |
8d577d32 DC |
2866 | |
2867 | static int | |
da096638 | 2868 | find_oload_champ_namespace (struct value **args, int nargs, |
8d577d32 DC |
2869 | const char *func_name, |
2870 | const char *qualified_name, | |
2871 | struct symbol ***oload_syms, | |
7322dca9 SW |
2872 | struct badness_vector **oload_champ_bv, |
2873 | const int no_adl) | |
8d577d32 DC |
2874 | { |
2875 | int oload_champ; | |
2876 | ||
da096638 | 2877 | find_oload_champ_namespace_loop (args, nargs, |
8d577d32 DC |
2878 | func_name, |
2879 | qualified_name, 0, | |
2880 | oload_syms, oload_champ_bv, | |
7322dca9 SW |
2881 | &oload_champ, |
2882 | no_adl); | |
8d577d32 DC |
2883 | |
2884 | return oload_champ; | |
2885 | } | |
2886 | ||
2887 | /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is | |
2888 | how deep we've looked for namespaces, and the champ is stored in | |
2889 | OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0 | |
7322dca9 SW |
2890 | if it isn't. Other arguments are the same as in |
2891 | find_oload_champ_namespace | |
8d577d32 DC |
2892 | |
2893 | It is the caller's responsibility to free *OLOAD_SYMS and | |
2894 | *OLOAD_CHAMP_BV. */ | |
2895 | ||
2896 | static int | |
da096638 | 2897 | find_oload_champ_namespace_loop (struct value **args, int nargs, |
8d577d32 DC |
2898 | const char *func_name, |
2899 | const char *qualified_name, | |
2900 | int namespace_len, | |
2901 | struct symbol ***oload_syms, | |
2902 | struct badness_vector **oload_champ_bv, | |
7322dca9 SW |
2903 | int *oload_champ, |
2904 | const int no_adl) | |
8d577d32 DC |
2905 | { |
2906 | int next_namespace_len = namespace_len; | |
2907 | int searched_deeper = 0; | |
2908 | int num_fns = 0; | |
2909 | struct cleanup *old_cleanups; | |
2910 | int new_oload_champ; | |
2911 | struct symbol **new_oload_syms; | |
2912 | struct badness_vector *new_oload_champ_bv; | |
2913 | char *new_namespace; | |
2914 | ||
2915 | if (next_namespace_len != 0) | |
2916 | { | |
2917 | gdb_assert (qualified_name[next_namespace_len] == ':'); | |
2918 | next_namespace_len += 2; | |
c906108c | 2919 | } |
ac3eeb49 MS |
2920 | next_namespace_len += |
2921 | cp_find_first_component (qualified_name + next_namespace_len); | |
8d577d32 DC |
2922 | |
2923 | /* Initialize these to values that can safely be xfree'd. */ | |
2924 | *oload_syms = NULL; | |
2925 | *oload_champ_bv = NULL; | |
c5aa993b | 2926 | |
581e13c1 | 2927 | /* First, see if we have a deeper namespace we can search in. |
ac3eeb49 | 2928 | If we get a good match there, use it. */ |
8d577d32 DC |
2929 | |
2930 | if (qualified_name[next_namespace_len] == ':') | |
2931 | { | |
2932 | searched_deeper = 1; | |
2933 | ||
da096638 | 2934 | if (find_oload_champ_namespace_loop (args, nargs, |
8d577d32 DC |
2935 | func_name, qualified_name, |
2936 | next_namespace_len, | |
2937 | oload_syms, oload_champ_bv, | |
7322dca9 | 2938 | oload_champ, no_adl)) |
8d577d32 DC |
2939 | { |
2940 | return 1; | |
2941 | } | |
2942 | }; | |
2943 | ||
2944 | /* If we reach here, either we're in the deepest namespace or we | |
2945 | didn't find a good match in a deeper namespace. But, in the | |
2946 | latter case, we still have a bad match in a deeper namespace; | |
2947 | note that we might not find any match at all in the current | |
2948 | namespace. (There's always a match in the deepest namespace, | |
2949 | because this overload mechanism only gets called if there's a | |
2950 | function symbol to start off with.) */ | |
2951 | ||
2952 | old_cleanups = make_cleanup (xfree, *oload_syms); | |
ec322823 | 2953 | make_cleanup (xfree, *oload_champ_bv); |
8d577d32 DC |
2954 | new_namespace = alloca (namespace_len + 1); |
2955 | strncpy (new_namespace, qualified_name, namespace_len); | |
2956 | new_namespace[namespace_len] = '\0'; | |
2957 | new_oload_syms = make_symbol_overload_list (func_name, | |
2958 | new_namespace); | |
7322dca9 SW |
2959 | |
2960 | /* If we have reached the deepest level perform argument | |
2961 | determined lookup. */ | |
2962 | if (!searched_deeper && !no_adl) | |
da096638 KS |
2963 | { |
2964 | int ix; | |
2965 | struct type **arg_types; | |
2966 | ||
2967 | /* Prepare list of argument types for overload resolution. */ | |
2968 | arg_types = (struct type **) | |
2969 | alloca (nargs * (sizeof (struct type *))); | |
2970 | for (ix = 0; ix < nargs; ix++) | |
2971 | arg_types[ix] = value_type (args[ix]); | |
2972 | make_symbol_overload_list_adl (arg_types, nargs, func_name); | |
2973 | } | |
7322dca9 | 2974 | |
8d577d32 DC |
2975 | while (new_oload_syms[num_fns]) |
2976 | ++num_fns; | |
2977 | ||
da096638 | 2978 | new_oload_champ = find_oload_champ (args, nargs, 0, num_fns, |
8d577d32 DC |
2979 | NULL, new_oload_syms, |
2980 | &new_oload_champ_bv); | |
2981 | ||
2982 | /* Case 1: We found a good match. Free earlier matches (if any), | |
2983 | and return it. Case 2: We didn't find a good match, but we're | |
2984 | not the deepest function. Then go with the bad match that the | |
2985 | deeper function found. Case 3: We found a bad match, and we're | |
2986 | the deepest function. Then return what we found, even though | |
2987 | it's a bad match. */ | |
2988 | ||
2989 | if (new_oload_champ != -1 | |
2990 | && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD) | |
2991 | { | |
2992 | *oload_syms = new_oload_syms; | |
2993 | *oload_champ = new_oload_champ; | |
2994 | *oload_champ_bv = new_oload_champ_bv; | |
2995 | do_cleanups (old_cleanups); | |
2996 | return 1; | |
2997 | } | |
2998 | else if (searched_deeper) | |
2999 | { | |
3000 | xfree (new_oload_syms); | |
3001 | xfree (new_oload_champ_bv); | |
3002 | discard_cleanups (old_cleanups); | |
3003 | return 0; | |
3004 | } | |
3005 | else | |
3006 | { | |
8d577d32 DC |
3007 | *oload_syms = new_oload_syms; |
3008 | *oload_champ = new_oload_champ; | |
3009 | *oload_champ_bv = new_oload_champ_bv; | |
2a7d6a25 | 3010 | do_cleanups (old_cleanups); |
8d577d32 DC |
3011 | return 0; |
3012 | } | |
3013 | } | |
3014 | ||
da096638 | 3015 | /* Look for a function to take NARGS args of ARGS. Find |
8d577d32 DC |
3016 | the best match from among the overloaded methods or functions |
3017 | (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively. | |
3018 | The number of methods/functions in the list is given by NUM_FNS. | |
3019 | Return the index of the best match; store an indication of the | |
3020 | quality of the match in OLOAD_CHAMP_BV. | |
3021 | ||
3022 | It is the caller's responsibility to free *OLOAD_CHAMP_BV. */ | |
3023 | ||
3024 | static int | |
da096638 | 3025 | find_oload_champ (struct value **args, int nargs, int method, |
8d577d32 DC |
3026 | int num_fns, struct fn_field *fns_ptr, |
3027 | struct symbol **oload_syms, | |
3028 | struct badness_vector **oload_champ_bv) | |
3029 | { | |
3030 | int ix; | |
ac3eeb49 MS |
3031 | /* A measure of how good an overloaded instance is. */ |
3032 | struct badness_vector *bv; | |
3033 | /* Index of best overloaded function. */ | |
3034 | int oload_champ = -1; | |
3035 | /* Current ambiguity state for overload resolution. */ | |
3036 | int oload_ambiguous = 0; | |
3037 | /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */ | |
8d577d32 DC |
3038 | |
3039 | *oload_champ_bv = NULL; | |
c906108c | 3040 | |
ac3eeb49 | 3041 | /* Consider each candidate in turn. */ |
c906108c SS |
3042 | for (ix = 0; ix < num_fns; ix++) |
3043 | { | |
8d577d32 DC |
3044 | int jj; |
3045 | int static_offset = oload_method_static (method, fns_ptr, ix); | |
3046 | int nparms; | |
3047 | struct type **parm_types; | |
3048 | ||
db577aea AC |
3049 | if (method) |
3050 | { | |
ad2f7632 | 3051 | nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix)); |
db577aea AC |
3052 | } |
3053 | else | |
3054 | { | |
ac3eeb49 MS |
3055 | /* If it's not a method, this is the proper place. */ |
3056 | nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix])); | |
db577aea | 3057 | } |
c906108c | 3058 | |
ac3eeb49 MS |
3059 | /* Prepare array of parameter types. */ |
3060 | parm_types = (struct type **) | |
3061 | xmalloc (nparms * (sizeof (struct type *))); | |
c906108c | 3062 | for (jj = 0; jj < nparms; jj++) |
db577aea | 3063 | parm_types[jj] = (method |
ad2f7632 | 3064 | ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type) |
ac3eeb49 MS |
3065 | : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), |
3066 | jj)); | |
c906108c | 3067 | |
ac3eeb49 MS |
3068 | /* Compare parameter types to supplied argument types. Skip |
3069 | THIS for static methods. */ | |
3070 | bv = rank_function (parm_types, nparms, | |
da096638 | 3071 | args + static_offset, |
4a1970e4 | 3072 | nargs - static_offset); |
c5aa993b | 3073 | |
8d577d32 | 3074 | if (!*oload_champ_bv) |
c5aa993b | 3075 | { |
8d577d32 | 3076 | *oload_champ_bv = bv; |
c5aa993b | 3077 | oload_champ = 0; |
c5aa993b | 3078 | } |
ac3eeb49 MS |
3079 | else /* See whether current candidate is better or worse than |
3080 | previous best. */ | |
8d577d32 | 3081 | switch (compare_badness (bv, *oload_champ_bv)) |
c5aa993b | 3082 | { |
ac3eeb49 MS |
3083 | case 0: /* Top two contenders are equally good. */ |
3084 | oload_ambiguous = 1; | |
c5aa993b | 3085 | break; |
ac3eeb49 MS |
3086 | case 1: /* Incomparable top contenders. */ |
3087 | oload_ambiguous = 2; | |
c5aa993b | 3088 | break; |
ac3eeb49 MS |
3089 | case 2: /* New champion, record details. */ |
3090 | *oload_champ_bv = bv; | |
c5aa993b JM |
3091 | oload_ambiguous = 0; |
3092 | oload_champ = ix; | |
c5aa993b JM |
3093 | break; |
3094 | case 3: | |
3095 | default: | |
3096 | break; | |
3097 | } | |
b8c9b27d | 3098 | xfree (parm_types); |
6b1ba9a0 ND |
3099 | if (overload_debug) |
3100 | { | |
3101 | if (method) | |
ac3eeb49 | 3102 | fprintf_filtered (gdb_stderr, |
3e43a32a | 3103 | "Overloaded method instance %s, # of parms %d\n", |
ac3eeb49 | 3104 | fns_ptr[ix].physname, nparms); |
6b1ba9a0 | 3105 | else |
ac3eeb49 | 3106 | fprintf_filtered (gdb_stderr, |
3e43a32a MS |
3107 | "Overloaded function instance " |
3108 | "%s # of parms %d\n", | |
ac3eeb49 MS |
3109 | SYMBOL_DEMANGLED_NAME (oload_syms[ix]), |
3110 | nparms); | |
4a1970e4 | 3111 | for (jj = 0; jj < nargs - static_offset; jj++) |
ac3eeb49 MS |
3112 | fprintf_filtered (gdb_stderr, |
3113 | "...Badness @ %d : %d\n", | |
6403aeea | 3114 | jj, bv->rank[jj].rank); |
3e43a32a MS |
3115 | fprintf_filtered (gdb_stderr, "Overload resolution " |
3116 | "champion is %d, ambiguous? %d\n", | |
ac3eeb49 | 3117 | oload_champ, oload_ambiguous); |
6b1ba9a0 | 3118 | } |
c906108c SS |
3119 | } |
3120 | ||
8d577d32 DC |
3121 | return oload_champ; |
3122 | } | |
6b1ba9a0 | 3123 | |
8d577d32 DC |
3124 | /* Return 1 if we're looking at a static method, 0 if we're looking at |
3125 | a non-static method or a function that isn't a method. */ | |
c906108c | 3126 | |
8d577d32 DC |
3127 | static int |
3128 | oload_method_static (int method, struct fn_field *fns_ptr, int index) | |
3129 | { | |
4c3376c8 SW |
3130 | if (method && fns_ptr && index >= 0 |
3131 | && TYPE_FN_FIELD_STATIC_P (fns_ptr, index)) | |
8d577d32 | 3132 | return 1; |
c906108c | 3133 | else |
8d577d32 DC |
3134 | return 0; |
3135 | } | |
c906108c | 3136 | |
8d577d32 DC |
3137 | /* Check how good an overload match OLOAD_CHAMP_BV represents. */ |
3138 | ||
3139 | static enum oload_classification | |
3140 | classify_oload_match (struct badness_vector *oload_champ_bv, | |
3141 | int nargs, | |
3142 | int static_offset) | |
3143 | { | |
3144 | int ix; | |
da096638 | 3145 | enum oload_classification worst = STANDARD; |
8d577d32 DC |
3146 | |
3147 | for (ix = 1; ix <= nargs - static_offset; ix++) | |
7f8c9282 | 3148 | { |
6403aeea SW |
3149 | /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS |
3150 | or worse return INCOMPATIBLE. */ | |
3151 | if (compare_ranks (oload_champ_bv->rank[ix], | |
3152 | INCOMPATIBLE_TYPE_BADNESS) <= 0) | |
ac3eeb49 | 3153 | return INCOMPATIBLE; /* Truly mismatched types. */ |
6403aeea SW |
3154 | /* Otherwise If this conversion is as bad as |
3155 | NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */ | |
3156 | else if (compare_ranks (oload_champ_bv->rank[ix], | |
3157 | NS_POINTER_CONVERSION_BADNESS) <= 0) | |
da096638 | 3158 | worst = NON_STANDARD; /* Non-standard type conversions |
ac3eeb49 | 3159 | needed. */ |
7f8c9282 | 3160 | } |
02f0d45d | 3161 | |
da096638 KS |
3162 | /* If no INCOMPATIBLE classification was found, return the worst one |
3163 | that was found (if any). */ | |
3164 | return worst; | |
c906108c SS |
3165 | } |
3166 | ||
ac3eeb49 MS |
3167 | /* C++: return 1 is NAME is a legitimate name for the destructor of |
3168 | type TYPE. If TYPE does not have a destructor, or if NAME is | |
d8228535 JK |
3169 | inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet |
3170 | have CHECK_TYPEDEF applied, this function will apply it itself. */ | |
3171 | ||
c906108c | 3172 | int |
d8228535 | 3173 | destructor_name_p (const char *name, struct type *type) |
c906108c | 3174 | { |
c906108c SS |
3175 | if (name[0] == '~') |
3176 | { | |
d8228535 JK |
3177 | const char *dname = type_name_no_tag_or_error (type); |
3178 | const char *cp = strchr (dname, '<'); | |
c906108c SS |
3179 | unsigned int len; |
3180 | ||
3181 | /* Do not compare the template part for template classes. */ | |
3182 | if (cp == NULL) | |
3183 | len = strlen (dname); | |
3184 | else | |
3185 | len = cp - dname; | |
bf896cb0 | 3186 | if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0) |
8a3fe4f8 | 3187 | error (_("name of destructor must equal name of class")); |
c906108c SS |
3188 | else |
3189 | return 1; | |
3190 | } | |
3191 | return 0; | |
3192 | } | |
3193 | ||
2b2d9e11 | 3194 | /* Given TYPE, a structure/union, |
ac3eeb49 MS |
3195 | return 1 if the component named NAME from the ultimate target |
3196 | structure/union is defined, otherwise, return 0. */ | |
c906108c | 3197 | |
2b2d9e11 VP |
3198 | int |
3199 | check_field (struct type *type, const char *name) | |
c906108c | 3200 | { |
52f0bd74 | 3201 | int i; |
c906108c | 3202 | |
edf3d5f3 TT |
3203 | /* The type may be a stub. */ |
3204 | CHECK_TYPEDEF (type); | |
3205 | ||
c906108c SS |
3206 | for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--) |
3207 | { | |
0d5cff50 | 3208 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
a109c7c1 | 3209 | |
db577aea | 3210 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c SS |
3211 | return 1; |
3212 | } | |
3213 | ||
ac3eeb49 MS |
3214 | /* C++: If it was not found as a data field, then try to return it |
3215 | as a pointer to a method. */ | |
c906108c | 3216 | |
c906108c SS |
3217 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i) |
3218 | { | |
db577aea | 3219 | if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0) |
c906108c SS |
3220 | return 1; |
3221 | } | |
3222 | ||
3223 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
2b2d9e11 | 3224 | if (check_field (TYPE_BASECLASS (type, i), name)) |
c906108c | 3225 | return 1; |
c5aa993b | 3226 | |
c906108c SS |
3227 | return 0; |
3228 | } | |
3229 | ||
79c2c32d | 3230 | /* C++: Given an aggregate type CURTYPE, and a member name NAME, |
0d5de010 DJ |
3231 | return the appropriate member (or the address of the member, if |
3232 | WANT_ADDRESS). This function is used to resolve user expressions | |
3233 | of the form "DOMAIN::NAME". For more details on what happens, see | |
3234 | the comment before value_struct_elt_for_reference. */ | |
79c2c32d DC |
3235 | |
3236 | struct value * | |
072bba3b KS |
3237 | value_aggregate_elt (struct type *curtype, char *name, |
3238 | struct type *expect_type, int want_address, | |
79c2c32d DC |
3239 | enum noside noside) |
3240 | { | |
3241 | switch (TYPE_CODE (curtype)) | |
3242 | { | |
3243 | case TYPE_CODE_STRUCT: | |
3244 | case TYPE_CODE_UNION: | |
ac3eeb49 | 3245 | return value_struct_elt_for_reference (curtype, 0, curtype, |
072bba3b | 3246 | name, expect_type, |
0d5de010 | 3247 | want_address, noside); |
79c2c32d | 3248 | case TYPE_CODE_NAMESPACE: |
ac3eeb49 MS |
3249 | return value_namespace_elt (curtype, name, |
3250 | want_address, noside); | |
79c2c32d DC |
3251 | default: |
3252 | internal_error (__FILE__, __LINE__, | |
e2e0b3e5 | 3253 | _("non-aggregate type in value_aggregate_elt")); |
79c2c32d DC |
3254 | } |
3255 | } | |
3256 | ||
072bba3b | 3257 | /* Compares the two method/function types T1 and T2 for "equality" |
b021a221 | 3258 | with respect to the methods' parameters. If the types of the |
072bba3b KS |
3259 | two parameter lists are the same, returns 1; 0 otherwise. This |
3260 | comparison may ignore any artificial parameters in T1 if | |
3261 | SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip | |
3262 | the first artificial parameter in T1, assumed to be a 'this' pointer. | |
3263 | ||
3264 | The type T2 is expected to have come from make_params (in eval.c). */ | |
3265 | ||
3266 | static int | |
3267 | compare_parameters (struct type *t1, struct type *t2, int skip_artificial) | |
3268 | { | |
3269 | int start = 0; | |
3270 | ||
80b23b6a | 3271 | if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0)) |
072bba3b KS |
3272 | ++start; |
3273 | ||
3274 | /* If skipping artificial fields, find the first real field | |
581e13c1 | 3275 | in T1. */ |
072bba3b KS |
3276 | if (skip_artificial) |
3277 | { | |
3278 | while (start < TYPE_NFIELDS (t1) | |
3279 | && TYPE_FIELD_ARTIFICIAL (t1, start)) | |
3280 | ++start; | |
3281 | } | |
3282 | ||
581e13c1 | 3283 | /* Now compare parameters. */ |
072bba3b KS |
3284 | |
3285 | /* Special case: a method taking void. T1 will contain no | |
3286 | non-artificial fields, and T2 will contain TYPE_CODE_VOID. */ | |
3287 | if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1 | |
3288 | && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID) | |
3289 | return 1; | |
3290 | ||
3291 | if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2)) | |
3292 | { | |
3293 | int i; | |
a109c7c1 | 3294 | |
072bba3b KS |
3295 | for (i = 0; i < TYPE_NFIELDS (t2); ++i) |
3296 | { | |
6403aeea | 3297 | if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i), |
da096638 | 3298 | TYPE_FIELD_TYPE (t2, i), NULL), |
6403aeea | 3299 | EXACT_MATCH_BADNESS) != 0) |
072bba3b KS |
3300 | return 0; |
3301 | } | |
3302 | ||
3303 | return 1; | |
3304 | } | |
3305 | ||
3306 | return 0; | |
3307 | } | |
3308 | ||
c906108c | 3309 | /* C++: Given an aggregate type CURTYPE, and a member name NAME, |
ac3eeb49 MS |
3310 | return the address of this member as a "pointer to member" type. |
3311 | If INTYPE is non-null, then it will be the type of the member we | |
3312 | are looking for. This will help us resolve "pointers to member | |
3313 | functions". This function is used to resolve user expressions of | |
3314 | the form "DOMAIN::NAME". */ | |
c906108c | 3315 | |
63d06c5c | 3316 | static struct value * |
fba45db2 KB |
3317 | value_struct_elt_for_reference (struct type *domain, int offset, |
3318 | struct type *curtype, char *name, | |
ac3eeb49 MS |
3319 | struct type *intype, |
3320 | int want_address, | |
63d06c5c | 3321 | enum noside noside) |
c906108c | 3322 | { |
52f0bd74 AC |
3323 | struct type *t = curtype; |
3324 | int i; | |
0d5de010 | 3325 | struct value *v, *result; |
c906108c | 3326 | |
c5aa993b | 3327 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c | 3328 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
3e43a32a MS |
3329 | error (_("Internal error: non-aggregate type " |
3330 | "to value_struct_elt_for_reference")); | |
c906108c SS |
3331 | |
3332 | for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--) | |
3333 | { | |
0d5cff50 | 3334 | const char *t_field_name = TYPE_FIELD_NAME (t, i); |
c5aa993b | 3335 | |
6314a349 | 3336 | if (t_field_name && strcmp (t_field_name, name) == 0) |
c906108c | 3337 | { |
d6a843b5 | 3338 | if (field_is_static (&TYPE_FIELD (t, i))) |
c906108c SS |
3339 | { |
3340 | v = value_static_field (t, i); | |
3341 | if (v == NULL) | |
8a3fe4f8 | 3342 | error (_("static field %s has been optimized out"), |
c906108c | 3343 | name); |
0d5de010 DJ |
3344 | if (want_address) |
3345 | v = value_addr (v); | |
c906108c SS |
3346 | return v; |
3347 | } | |
3348 | if (TYPE_FIELD_PACKED (t, i)) | |
8a3fe4f8 | 3349 | error (_("pointers to bitfield members not allowed")); |
c5aa993b | 3350 | |
0d5de010 DJ |
3351 | if (want_address) |
3352 | return value_from_longest | |
3353 | (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain), | |
3354 | offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3)); | |
3355 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
3356 | return allocate_value (TYPE_FIELD_TYPE (t, i)); | |
3357 | else | |
3358 | error (_("Cannot reference non-static field \"%s\""), name); | |
c906108c SS |
3359 | } |
3360 | } | |
3361 | ||
ac3eeb49 MS |
3362 | /* C++: If it was not found as a data field, then try to return it |
3363 | as a pointer to a method. */ | |
c906108c | 3364 | |
c906108c SS |
3365 | /* Perform all necessary dereferencing. */ |
3366 | while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR) | |
3367 | intype = TYPE_TARGET_TYPE (intype); | |
3368 | ||
3369 | for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i) | |
3370 | { | |
0d5cff50 | 3371 | const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i); |
c906108c SS |
3372 | char dem_opname[64]; |
3373 | ||
ac3eeb49 MS |
3374 | if (strncmp (t_field_name, "__", 2) == 0 |
3375 | || strncmp (t_field_name, "op", 2) == 0 | |
3376 | || strncmp (t_field_name, "type", 4) == 0) | |
c906108c | 3377 | { |
ac3eeb49 MS |
3378 | if (cplus_demangle_opname (t_field_name, |
3379 | dem_opname, DMGL_ANSI)) | |
c5aa993b | 3380 | t_field_name = dem_opname; |
ac3eeb49 MS |
3381 | else if (cplus_demangle_opname (t_field_name, |
3382 | dem_opname, 0)) | |
c906108c | 3383 | t_field_name = dem_opname; |
c906108c | 3384 | } |
6314a349 | 3385 | if (t_field_name && strcmp (t_field_name, name) == 0) |
c906108c | 3386 | { |
072bba3b KS |
3387 | int j; |
3388 | int len = TYPE_FN_FIELDLIST_LENGTH (t, i); | |
c906108c | 3389 | struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i); |
c5aa993b | 3390 | |
de17c821 DJ |
3391 | check_stub_method_group (t, i); |
3392 | ||
c906108c SS |
3393 | if (intype) |
3394 | { | |
072bba3b KS |
3395 | for (j = 0; j < len; ++j) |
3396 | { | |
3397 | if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0) | |
3e43a32a MS |
3398 | || compare_parameters (TYPE_FN_FIELD_TYPE (f, j), |
3399 | intype, 1)) | |
072bba3b KS |
3400 | break; |
3401 | } | |
3402 | ||
3403 | if (j == len) | |
3e43a32a MS |
3404 | error (_("no member function matches " |
3405 | "that type instantiation")); | |
7f79b1c5 | 3406 | } |
c906108c | 3407 | else |
072bba3b KS |
3408 | { |
3409 | int ii; | |
7f79b1c5 DJ |
3410 | |
3411 | j = -1; | |
53832f31 | 3412 | for (ii = 0; ii < len; ++ii) |
072bba3b | 3413 | { |
7f79b1c5 DJ |
3414 | /* Skip artificial methods. This is necessary if, |
3415 | for example, the user wants to "print | |
3416 | subclass::subclass" with only one user-defined | |
53832f31 TT |
3417 | constructor. There is no ambiguity in this case. |
3418 | We are careful here to allow artificial methods | |
3419 | if they are the unique result. */ | |
072bba3b | 3420 | if (TYPE_FN_FIELD_ARTIFICIAL (f, ii)) |
53832f31 TT |
3421 | { |
3422 | if (j == -1) | |
3423 | j = ii; | |
3424 | continue; | |
3425 | } | |
072bba3b | 3426 | |
7f79b1c5 DJ |
3427 | /* Desired method is ambiguous if more than one |
3428 | method is defined. */ | |
53832f31 | 3429 | if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j)) |
3e43a32a MS |
3430 | error (_("non-unique member `%s' requires " |
3431 | "type instantiation"), name); | |
072bba3b | 3432 | |
7f79b1c5 DJ |
3433 | j = ii; |
3434 | } | |
53832f31 TT |
3435 | |
3436 | if (j == -1) | |
3437 | error (_("no matching member function")); | |
072bba3b | 3438 | } |
c5aa993b | 3439 | |
0d5de010 DJ |
3440 | if (TYPE_FN_FIELD_STATIC_P (f, j)) |
3441 | { | |
ac3eeb49 MS |
3442 | struct symbol *s = |
3443 | lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), | |
2570f2b7 | 3444 | 0, VAR_DOMAIN, 0); |
a109c7c1 | 3445 | |
0d5de010 DJ |
3446 | if (s == NULL) |
3447 | return NULL; | |
3448 | ||
3449 | if (want_address) | |
3450 | return value_addr (read_var_value (s, 0)); | |
3451 | else | |
3452 | return read_var_value (s, 0); | |
3453 | } | |
3454 | ||
c906108c SS |
3455 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) |
3456 | { | |
0d5de010 DJ |
3457 | if (want_address) |
3458 | { | |
3459 | result = allocate_value | |
3460 | (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j))); | |
ad4820ab UW |
3461 | cplus_make_method_ptr (value_type (result), |
3462 | value_contents_writeable (result), | |
0d5de010 DJ |
3463 | TYPE_FN_FIELD_VOFFSET (f, j), 1); |
3464 | } | |
3465 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
3466 | return allocate_value (TYPE_FN_FIELD_TYPE (f, j)); | |
3467 | else | |
3468 | error (_("Cannot reference virtual member function \"%s\""), | |
3469 | name); | |
c906108c SS |
3470 | } |
3471 | else | |
3472 | { | |
ac3eeb49 MS |
3473 | struct symbol *s = |
3474 | lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), | |
2570f2b7 | 3475 | 0, VAR_DOMAIN, 0); |
a109c7c1 | 3476 | |
c906108c | 3477 | if (s == NULL) |
0d5de010 DJ |
3478 | return NULL; |
3479 | ||
3480 | v = read_var_value (s, 0); | |
3481 | if (!want_address) | |
3482 | result = v; | |
c906108c SS |
3483 | else |
3484 | { | |
0d5de010 | 3485 | result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j))); |
ad4820ab UW |
3486 | cplus_make_method_ptr (value_type (result), |
3487 | value_contents_writeable (result), | |
42ae5230 | 3488 | value_address (v), 0); |
c906108c | 3489 | } |
c906108c | 3490 | } |
0d5de010 | 3491 | return result; |
c906108c SS |
3492 | } |
3493 | } | |
3494 | for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--) | |
3495 | { | |
f23631e4 | 3496 | struct value *v; |
c906108c SS |
3497 | int base_offset; |
3498 | ||
3499 | if (BASETYPE_VIA_VIRTUAL (t, i)) | |
3500 | base_offset = 0; | |
3501 | else | |
3502 | base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8; | |
3503 | v = value_struct_elt_for_reference (domain, | |
3504 | offset + base_offset, | |
3505 | TYPE_BASECLASS (t, i), | |
ac3eeb49 MS |
3506 | name, intype, |
3507 | want_address, noside); | |
c906108c SS |
3508 | if (v) |
3509 | return v; | |
3510 | } | |
63d06c5c DC |
3511 | |
3512 | /* As a last chance, pretend that CURTYPE is a namespace, and look | |
3513 | it up that way; this (frequently) works for types nested inside | |
3514 | classes. */ | |
3515 | ||
ac3eeb49 MS |
3516 | return value_maybe_namespace_elt (curtype, name, |
3517 | want_address, noside); | |
c906108c SS |
3518 | } |
3519 | ||
79c2c32d DC |
3520 | /* C++: Return the member NAME of the namespace given by the type |
3521 | CURTYPE. */ | |
3522 | ||
3523 | static struct value * | |
3524 | value_namespace_elt (const struct type *curtype, | |
0d5de010 | 3525 | char *name, int want_address, |
79c2c32d | 3526 | enum noside noside) |
63d06c5c DC |
3527 | { |
3528 | struct value *retval = value_maybe_namespace_elt (curtype, name, | |
ac3eeb49 MS |
3529 | want_address, |
3530 | noside); | |
63d06c5c DC |
3531 | |
3532 | if (retval == NULL) | |
ac3eeb49 MS |
3533 | error (_("No symbol \"%s\" in namespace \"%s\"."), |
3534 | name, TYPE_TAG_NAME (curtype)); | |
63d06c5c DC |
3535 | |
3536 | return retval; | |
3537 | } | |
3538 | ||
3539 | /* A helper function used by value_namespace_elt and | |
3540 | value_struct_elt_for_reference. It looks up NAME inside the | |
3541 | context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE | |
3542 | is a class and NAME refers to a type in CURTYPE itself (as opposed | |
3543 | to, say, some base class of CURTYPE). */ | |
3544 | ||
3545 | static struct value * | |
3546 | value_maybe_namespace_elt (const struct type *curtype, | |
0d5de010 | 3547 | char *name, int want_address, |
63d06c5c | 3548 | enum noside noside) |
79c2c32d DC |
3549 | { |
3550 | const char *namespace_name = TYPE_TAG_NAME (curtype); | |
3551 | struct symbol *sym; | |
0d5de010 | 3552 | struct value *result; |
79c2c32d | 3553 | |
13387711 | 3554 | sym = cp_lookup_symbol_namespace (namespace_name, name, |
41f62f39 JK |
3555 | get_selected_block (0), VAR_DOMAIN); |
3556 | ||
3557 | if (sym == NULL) | |
3558 | { | |
3559 | char *concatenated_name = alloca (strlen (namespace_name) + 2 | |
3560 | + strlen (name) + 1); | |
3561 | ||
3562 | sprintf (concatenated_name, "%s::%s", namespace_name, name); | |
3563 | sym = lookup_static_symbol_aux (concatenated_name, VAR_DOMAIN); | |
3564 | } | |
79c2c32d DC |
3565 | |
3566 | if (sym == NULL) | |
63d06c5c | 3567 | return NULL; |
79c2c32d DC |
3568 | else if ((noside == EVAL_AVOID_SIDE_EFFECTS) |
3569 | && (SYMBOL_CLASS (sym) == LOC_TYPEDEF)) | |
0d5de010 | 3570 | result = allocate_value (SYMBOL_TYPE (sym)); |
79c2c32d | 3571 | else |
0d5de010 DJ |
3572 | result = value_of_variable (sym, get_selected_block (0)); |
3573 | ||
3574 | if (result && want_address) | |
3575 | result = value_addr (result); | |
3576 | ||
3577 | return result; | |
79c2c32d DC |
3578 | } |
3579 | ||
dfcee124 | 3580 | /* Given a pointer or a reference value V, find its real (RTTI) type. |
ac3eeb49 | 3581 | |
c906108c | 3582 | Other parameters FULL, TOP, USING_ENC as with value_rtti_type() |
ac3eeb49 | 3583 | and refer to the values computed for the object pointed to. */ |
c906108c SS |
3584 | |
3585 | struct type * | |
dfcee124 AG |
3586 | value_rtti_indirect_type (struct value *v, int *full, |
3587 | int *top, int *using_enc) | |
c906108c | 3588 | { |
f23631e4 | 3589 | struct value *target; |
dfcee124 AG |
3590 | struct type *type, *real_type, *target_type; |
3591 | ||
3592 | type = value_type (v); | |
3593 | type = check_typedef (type); | |
3594 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
3595 | target = coerce_ref (v); | |
3596 | else if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
3597 | target = value_ind (v); | |
3598 | else | |
3599 | return NULL; | |
c906108c | 3600 | |
dfcee124 AG |
3601 | real_type = value_rtti_type (target, full, top, using_enc); |
3602 | ||
3603 | if (real_type) | |
3604 | { | |
3605 | /* Copy qualifiers to the referenced object. */ | |
3606 | target_type = value_type (target); | |
3607 | real_type = make_cv_type (TYPE_CONST (target_type), | |
3608 | TYPE_VOLATILE (target_type), real_type, NULL); | |
3609 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
3610 | real_type = lookup_reference_type (real_type); | |
3611 | else if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
3612 | real_type = lookup_pointer_type (real_type); | |
3613 | else | |
3614 | internal_error (__FILE__, __LINE__, _("Unexpected value type.")); | |
3615 | ||
3616 | /* Copy qualifiers to the pointer/reference. */ | |
3617 | real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type), | |
3618 | real_type, NULL); | |
3619 | } | |
c906108c | 3620 | |
dfcee124 | 3621 | return real_type; |
c906108c SS |
3622 | } |
3623 | ||
3624 | /* Given a value pointed to by ARGP, check its real run-time type, and | |
3625 | if that is different from the enclosing type, create a new value | |
3626 | using the real run-time type as the enclosing type (and of the same | |
3627 | type as ARGP) and return it, with the embedded offset adjusted to | |
ac3eeb49 MS |
3628 | be the correct offset to the enclosed object. RTYPE is the type, |
3629 | and XFULL, XTOP, and XUSING_ENC are the other parameters, computed | |
3630 | by value_rtti_type(). If these are available, they can be supplied | |
3631 | and a second call to value_rtti_type() is avoided. (Pass RTYPE == | |
3632 | NULL if they're not available. */ | |
c906108c | 3633 | |
f23631e4 | 3634 | struct value * |
ac3eeb49 MS |
3635 | value_full_object (struct value *argp, |
3636 | struct type *rtype, | |
3637 | int xfull, int xtop, | |
fba45db2 | 3638 | int xusing_enc) |
c906108c | 3639 | { |
c5aa993b | 3640 | struct type *real_type; |
c906108c SS |
3641 | int full = 0; |
3642 | int top = -1; | |
3643 | int using_enc = 0; | |
f23631e4 | 3644 | struct value *new_val; |
c906108c SS |
3645 | |
3646 | if (rtype) | |
3647 | { | |
3648 | real_type = rtype; | |
3649 | full = xfull; | |
3650 | top = xtop; | |
3651 | using_enc = xusing_enc; | |
3652 | } | |
3653 | else | |
3654 | real_type = value_rtti_type (argp, &full, &top, &using_enc); | |
3655 | ||
ac3eeb49 | 3656 | /* If no RTTI data, or if object is already complete, do nothing. */ |
4754a64e | 3657 | if (!real_type || real_type == value_enclosing_type (argp)) |
c906108c SS |
3658 | return argp; |
3659 | ||
a7860e76 TT |
3660 | /* In a destructor we might see a real type that is a superclass of |
3661 | the object's type. In this case it is better to leave the object | |
3662 | as-is. */ | |
3663 | if (full | |
3664 | && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp))) | |
3665 | return argp; | |
3666 | ||
c906108c | 3667 | /* If we have the full object, but for some reason the enclosing |
ac3eeb49 MS |
3668 | type is wrong, set it. */ |
3669 | /* pai: FIXME -- sounds iffy */ | |
c906108c SS |
3670 | if (full) |
3671 | { | |
4dfea560 DE |
3672 | argp = value_copy (argp); |
3673 | set_value_enclosing_type (argp, real_type); | |
c906108c SS |
3674 | return argp; |
3675 | } | |
3676 | ||
581e13c1 | 3677 | /* Check if object is in memory. */ |
c906108c SS |
3678 | if (VALUE_LVAL (argp) != lval_memory) |
3679 | { | |
3e43a32a MS |
3680 | warning (_("Couldn't retrieve complete object of RTTI " |
3681 | "type %s; object may be in register(s)."), | |
ac3eeb49 | 3682 | TYPE_NAME (real_type)); |
c5aa993b | 3683 | |
c906108c SS |
3684 | return argp; |
3685 | } | |
c5aa993b | 3686 | |
ac3eeb49 MS |
3687 | /* All other cases -- retrieve the complete object. */ |
3688 | /* Go back by the computed top_offset from the beginning of the | |
3689 | object, adjusting for the embedded offset of argp if that's what | |
3690 | value_rtti_type used for its computation. */ | |
42ae5230 | 3691 | new_val = value_at_lazy (real_type, value_address (argp) - top + |
13c3b5f5 | 3692 | (using_enc ? 0 : value_embedded_offset (argp))); |
04624583 | 3693 | deprecated_set_value_type (new_val, value_type (argp)); |
13c3b5f5 AC |
3694 | set_value_embedded_offset (new_val, (using_enc |
3695 | ? top + value_embedded_offset (argp) | |
3696 | : top)); | |
c906108c SS |
3697 | return new_val; |
3698 | } | |
3699 | ||
389e51db | 3700 | |
85bc8cb7 JK |
3701 | /* Return the value of the local variable, if one exists. Throw error |
3702 | otherwise, such as if the request is made in an inappropriate context. */ | |
c906108c | 3703 | |
f23631e4 | 3704 | struct value * |
85bc8cb7 | 3705 | value_of_this (const struct language_defn *lang) |
c906108c | 3706 | { |
66a17cb6 | 3707 | struct symbol *sym; |
c906108c | 3708 | struct block *b; |
206415a3 | 3709 | struct frame_info *frame; |
c906108c | 3710 | |
66a17cb6 | 3711 | if (!lang->la_name_of_this) |
85bc8cb7 | 3712 | error (_("no `this' in current language")); |
aee28ec6 | 3713 | |
85bc8cb7 | 3714 | frame = get_selected_frame (_("no frame selected")); |
c906108c | 3715 | |
66a17cb6 | 3716 | b = get_frame_block (frame, NULL); |
c906108c | 3717 | |
66a17cb6 | 3718 | sym = lookup_language_this (lang, b); |
c906108c | 3719 | if (sym == NULL) |
85bc8cb7 JK |
3720 | error (_("current stack frame does not contain a variable named `%s'"), |
3721 | lang->la_name_of_this); | |
3722 | ||
3723 | return read_var_value (sym, frame); | |
3724 | } | |
3725 | ||
3726 | /* Return the value of the local variable, if one exists. Return NULL | |
3727 | otherwise. Never throw error. */ | |
3728 | ||
3729 | struct value * | |
3730 | value_of_this_silent (const struct language_defn *lang) | |
3731 | { | |
3732 | struct value *ret = NULL; | |
3733 | volatile struct gdb_exception except; | |
3734 | ||
3735 | TRY_CATCH (except, RETURN_MASK_ERROR) | |
c906108c | 3736 | { |
85bc8cb7 | 3737 | ret = value_of_this (lang); |
c906108c SS |
3738 | } |
3739 | ||
d069f99d AF |
3740 | return ret; |
3741 | } | |
3742 | ||
ac3eeb49 MS |
3743 | /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH |
3744 | elements long, starting at LOWBOUND. The result has the same lower | |
3745 | bound as the original ARRAY. */ | |
c906108c | 3746 | |
f23631e4 AC |
3747 | struct value * |
3748 | value_slice (struct value *array, int lowbound, int length) | |
c906108c SS |
3749 | { |
3750 | struct type *slice_range_type, *slice_type, *range_type; | |
7a67d0fe | 3751 | LONGEST lowerbound, upperbound; |
f23631e4 | 3752 | struct value *slice; |
c906108c | 3753 | struct type *array_type; |
ac3eeb49 | 3754 | |
df407dfe | 3755 | array_type = check_typedef (value_type (array)); |
c906108c SS |
3756 | if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY |
3757 | && TYPE_CODE (array_type) != TYPE_CODE_STRING | |
3758 | && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING) | |
8a3fe4f8 | 3759 | error (_("cannot take slice of non-array")); |
ac3eeb49 | 3760 | |
c906108c SS |
3761 | range_type = TYPE_INDEX_TYPE (array_type); |
3762 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
8a3fe4f8 | 3763 | error (_("slice from bad array or bitstring")); |
ac3eeb49 | 3764 | |
c906108c | 3765 | if (lowbound < lowerbound || length < 0 |
db034ac5 | 3766 | || lowbound + length - 1 > upperbound) |
8a3fe4f8 | 3767 | error (_("slice out of range")); |
ac3eeb49 | 3768 | |
c906108c SS |
3769 | /* FIXME-type-allocation: need a way to free this type when we are |
3770 | done with it. */ | |
c5aa993b | 3771 | slice_range_type = create_range_type ((struct type *) NULL, |
c906108c | 3772 | TYPE_TARGET_TYPE (range_type), |
ac3eeb49 MS |
3773 | lowbound, |
3774 | lowbound + length - 1); | |
c906108c SS |
3775 | if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING) |
3776 | { | |
3777 | int i; | |
ac3eeb49 MS |
3778 | |
3779 | slice_type = create_set_type ((struct type *) NULL, | |
3780 | slice_range_type); | |
c906108c SS |
3781 | TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING; |
3782 | slice = value_zero (slice_type, not_lval); | |
ac3eeb49 | 3783 | |
c906108c SS |
3784 | for (i = 0; i < length; i++) |
3785 | { | |
3786 | int element = value_bit_index (array_type, | |
0fd88904 | 3787 | value_contents (array), |
c906108c | 3788 | lowbound + i); |
a109c7c1 | 3789 | |
c906108c | 3790 | if (element < 0) |
8a3fe4f8 | 3791 | error (_("internal error accessing bitstring")); |
c906108c SS |
3792 | else if (element > 0) |
3793 | { | |
3794 | int j = i % TARGET_CHAR_BIT; | |
a109c7c1 | 3795 | |
50810684 | 3796 | if (gdbarch_bits_big_endian (get_type_arch (array_type))) |
c906108c | 3797 | j = TARGET_CHAR_BIT - 1 - j; |
990a07ab | 3798 | value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j); |
c906108c SS |
3799 | } |
3800 | } | |
ac3eeb49 MS |
3801 | /* We should set the address, bitssize, and bitspos, so the |
3802 | slice can be used on the LHS, but that may require extensions | |
3803 | to value_assign. For now, just leave as a non_lval. | |
3804 | FIXME. */ | |
c906108c SS |
3805 | } |
3806 | else | |
3807 | { | |
3808 | struct type *element_type = TYPE_TARGET_TYPE (array_type); | |
ac3eeb49 MS |
3809 | LONGEST offset = |
3810 | (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type)); | |
3811 | ||
3812 | slice_type = create_array_type ((struct type *) NULL, | |
3813 | element_type, | |
c906108c SS |
3814 | slice_range_type); |
3815 | TYPE_CODE (slice_type) = TYPE_CODE (array_type); | |
ac3eeb49 | 3816 | |
9214ee5f | 3817 | if (VALUE_LVAL (array) == lval_memory && value_lazy (array)) |
3e3d7139 | 3818 | slice = allocate_value_lazy (slice_type); |
c906108c | 3819 | else |
3e3d7139 JG |
3820 | { |
3821 | slice = allocate_value (slice_type); | |
39d37385 PA |
3822 | value_contents_copy (slice, 0, array, offset, |
3823 | TYPE_LENGTH (slice_type)); | |
3e3d7139 | 3824 | } |
ac3eeb49 | 3825 | |
74bcbdf3 | 3826 | set_value_component_location (slice, array); |
65d3800a | 3827 | VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array); |
f5cf64a7 | 3828 | set_value_offset (slice, value_offset (array) + offset); |
c906108c SS |
3829 | } |
3830 | return slice; | |
3831 | } | |
3832 | ||
ac3eeb49 MS |
3833 | /* Create a value for a FORTRAN complex number. Currently most of the |
3834 | time values are coerced to COMPLEX*16 (i.e. a complex number | |
070ad9f0 DB |
3835 | composed of 2 doubles. This really should be a smarter routine |
3836 | that figures out precision inteligently as opposed to assuming | |
ac3eeb49 | 3837 | doubles. FIXME: fmb */ |
c906108c | 3838 | |
f23631e4 | 3839 | struct value * |
ac3eeb49 MS |
3840 | value_literal_complex (struct value *arg1, |
3841 | struct value *arg2, | |
3842 | struct type *type) | |
c906108c | 3843 | { |
f23631e4 | 3844 | struct value *val; |
c906108c SS |
3845 | struct type *real_type = TYPE_TARGET_TYPE (type); |
3846 | ||
3847 | val = allocate_value (type); | |
3848 | arg1 = value_cast (real_type, arg1); | |
3849 | arg2 = value_cast (real_type, arg2); | |
3850 | ||
990a07ab | 3851 | memcpy (value_contents_raw (val), |
0fd88904 | 3852 | value_contents (arg1), TYPE_LENGTH (real_type)); |
990a07ab | 3853 | memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type), |
0fd88904 | 3854 | value_contents (arg2), TYPE_LENGTH (real_type)); |
c906108c SS |
3855 | return val; |
3856 | } | |
3857 | ||
ac3eeb49 | 3858 | /* Cast a value into the appropriate complex data type. */ |
c906108c | 3859 | |
f23631e4 AC |
3860 | static struct value * |
3861 | cast_into_complex (struct type *type, struct value *val) | |
c906108c SS |
3862 | { |
3863 | struct type *real_type = TYPE_TARGET_TYPE (type); | |
ac3eeb49 | 3864 | |
df407dfe | 3865 | if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX) |
c906108c | 3866 | { |
df407dfe | 3867 | struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val)); |
f23631e4 AC |
3868 | struct value *re_val = allocate_value (val_real_type); |
3869 | struct value *im_val = allocate_value (val_real_type); | |
c906108c | 3870 | |
990a07ab | 3871 | memcpy (value_contents_raw (re_val), |
0fd88904 | 3872 | value_contents (val), TYPE_LENGTH (val_real_type)); |
990a07ab | 3873 | memcpy (value_contents_raw (im_val), |
0fd88904 | 3874 | value_contents (val) + TYPE_LENGTH (val_real_type), |
c5aa993b | 3875 | TYPE_LENGTH (val_real_type)); |
c906108c SS |
3876 | |
3877 | return value_literal_complex (re_val, im_val, type); | |
3878 | } | |
df407dfe AC |
3879 | else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT |
3880 | || TYPE_CODE (value_type (val)) == TYPE_CODE_INT) | |
ac3eeb49 MS |
3881 | return value_literal_complex (val, |
3882 | value_zero (real_type, not_lval), | |
3883 | type); | |
c906108c | 3884 | else |
8a3fe4f8 | 3885 | error (_("cannot cast non-number to complex")); |
c906108c SS |
3886 | } |
3887 | ||
3888 | void | |
fba45db2 | 3889 | _initialize_valops (void) |
c906108c | 3890 | { |
5bf193a2 AC |
3891 | add_setshow_boolean_cmd ("overload-resolution", class_support, |
3892 | &overload_resolution, _("\ | |
3893 | Set overload resolution in evaluating C++ functions."), _("\ | |
ac3eeb49 MS |
3894 | Show overload resolution in evaluating C++ functions."), |
3895 | NULL, NULL, | |
920d2a44 | 3896 | show_overload_resolution, |
5bf193a2 | 3897 | &setlist, &showlist); |
c906108c | 3898 | overload_resolution = 1; |
c906108c | 3899 | } |