]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Perform non-arithmetic operations on values, for GDB. |
990a07ab | 2 | |
9b254dd1 DJ |
3 | Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, |
4 | 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, | |
7b6bb8da | 5 | 2008, 2009, 2010, 2011 Free Software Foundation, Inc. |
c906108c | 6 | |
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 11 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 12 | (at your option) any later version. |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b | 19 | You should have received a copy of the GNU General Public License |
a9762ec7 | 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
21 | |
22 | #include "defs.h" | |
23 | #include "symtab.h" | |
24 | #include "gdbtypes.h" | |
25 | #include "value.h" | |
26 | #include "frame.h" | |
27 | #include "inferior.h" | |
28 | #include "gdbcore.h" | |
29 | #include "target.h" | |
30 | #include "demangle.h" | |
31 | #include "language.h" | |
32 | #include "gdbcmd.h" | |
4e052eda | 33 | #include "regcache.h" |
015a42b4 | 34 | #include "cp-abi.h" |
fe898f56 | 35 | #include "block.h" |
04714b91 | 36 | #include "infcall.h" |
de4f826b | 37 | #include "dictionary.h" |
b6429628 | 38 | #include "cp-support.h" |
4ef30785 | 39 | #include "dfp.h" |
029a67e4 | 40 | #include "user-regs.h" |
c906108c SS |
41 | |
42 | #include <errno.h> | |
43 | #include "gdb_string.h" | |
4a1970e4 | 44 | #include "gdb_assert.h" |
79c2c32d | 45 | #include "cp-support.h" |
f4c5303c | 46 | #include "observer.h" |
3e3b026f UW |
47 | #include "objfiles.h" |
48 | #include "symtab.h" | |
79afc5ef | 49 | #include "exceptions.h" |
c906108c | 50 | |
070ad9f0 | 51 | extern int overload_debug; |
c906108c SS |
52 | /* Local functions. */ |
53 | ||
ad2f7632 DJ |
54 | static int typecmp (int staticp, int varargs, int nargs, |
55 | struct field t1[], struct value *t2[]); | |
c906108c | 56 | |
714f19d5 | 57 | static struct value *search_struct_field (const char *, struct value *, |
ac3eeb49 | 58 | int, struct type *, int); |
c906108c | 59 | |
714f19d5 TT |
60 | static struct value *search_struct_method (const char *, struct value **, |
61 | struct value **, | |
62 | int, int *, struct type *); | |
c906108c | 63 | |
ac3eeb49 MS |
64 | static int find_oload_champ_namespace (struct type **, int, |
65 | const char *, const char *, | |
66 | struct symbol ***, | |
7322dca9 SW |
67 | struct badness_vector **, |
68 | const int no_adl); | |
8d577d32 DC |
69 | |
70 | static | |
ac3eeb49 MS |
71 | int find_oload_champ_namespace_loop (struct type **, int, |
72 | const char *, const char *, | |
73 | int, struct symbol ***, | |
7322dca9 SW |
74 | struct badness_vector **, int *, |
75 | const int no_adl); | |
ac3eeb49 MS |
76 | |
77 | static int find_oload_champ (struct type **, int, int, int, | |
78 | struct fn_field *, struct symbol **, | |
79 | struct badness_vector **); | |
80 | ||
81 | static int oload_method_static (int, struct fn_field *, int); | |
8d577d32 DC |
82 | |
83 | enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE }; | |
84 | ||
85 | static enum | |
ac3eeb49 MS |
86 | oload_classification classify_oload_match (struct badness_vector *, |
87 | int, int); | |
8d577d32 | 88 | |
ac3eeb49 MS |
89 | static struct value *value_struct_elt_for_reference (struct type *, |
90 | int, struct type *, | |
91 | char *, | |
92 | struct type *, | |
93 | int, enum noside); | |
79c2c32d | 94 | |
ac3eeb49 MS |
95 | static struct value *value_namespace_elt (const struct type *, |
96 | char *, int , enum noside); | |
79c2c32d | 97 | |
ac3eeb49 MS |
98 | static struct value *value_maybe_namespace_elt (const struct type *, |
99 | char *, int, | |
100 | enum noside); | |
63d06c5c | 101 | |
a14ed312 | 102 | static CORE_ADDR allocate_space_in_inferior (int); |
c906108c | 103 | |
f23631e4 | 104 | static struct value *cast_into_complex (struct type *, struct value *); |
c906108c | 105 | |
714f19d5 | 106 | static struct fn_field *find_method_list (struct value **, const char *, |
ac3eeb49 MS |
107 | int, struct type *, int *, |
108 | struct type **, int *); | |
7a292a7a | 109 | |
a14ed312 | 110 | void _initialize_valops (void); |
c906108c | 111 | |
c906108c | 112 | #if 0 |
ac3eeb49 MS |
113 | /* Flag for whether we want to abandon failed expression evals by |
114 | default. */ | |
115 | ||
c906108c SS |
116 | static int auto_abandon = 0; |
117 | #endif | |
118 | ||
119 | int overload_resolution = 0; | |
920d2a44 AC |
120 | static void |
121 | show_overload_resolution (struct ui_file *file, int from_tty, | |
ac3eeb49 MS |
122 | struct cmd_list_element *c, |
123 | const char *value) | |
920d2a44 | 124 | { |
3e43a32a MS |
125 | fprintf_filtered (file, _("Overload resolution in evaluating " |
126 | "C++ functions is %s.\n"), | |
920d2a44 AC |
127 | value); |
128 | } | |
242bfc55 | 129 | |
3e3b026f UW |
130 | /* Find the address of function name NAME in the inferior. If OBJF_P |
131 | is non-NULL, *OBJF_P will be set to the OBJFILE where the function | |
132 | is defined. */ | |
c906108c | 133 | |
f23631e4 | 134 | struct value * |
3e3b026f | 135 | find_function_in_inferior (const char *name, struct objfile **objf_p) |
c906108c | 136 | { |
52f0bd74 | 137 | struct symbol *sym; |
a109c7c1 | 138 | |
2570f2b7 | 139 | sym = lookup_symbol (name, 0, VAR_DOMAIN, 0); |
c906108c SS |
140 | if (sym != NULL) |
141 | { | |
142 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
143 | { | |
8a3fe4f8 | 144 | error (_("\"%s\" exists in this program but is not a function."), |
c906108c SS |
145 | name); |
146 | } | |
3e3b026f UW |
147 | |
148 | if (objf_p) | |
149 | *objf_p = SYMBOL_SYMTAB (sym)->objfile; | |
150 | ||
c906108c SS |
151 | return value_of_variable (sym, NULL); |
152 | } | |
153 | else | |
154 | { | |
ac3eeb49 MS |
155 | struct minimal_symbol *msymbol = |
156 | lookup_minimal_symbol (name, NULL, NULL); | |
a109c7c1 | 157 | |
c906108c SS |
158 | if (msymbol != NULL) |
159 | { | |
3e3b026f UW |
160 | struct objfile *objfile = msymbol_objfile (msymbol); |
161 | struct gdbarch *gdbarch = get_objfile_arch (objfile); | |
162 | ||
c906108c | 163 | struct type *type; |
4478b372 | 164 | CORE_ADDR maddr; |
3e3b026f | 165 | type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char); |
c906108c SS |
166 | type = lookup_function_type (type); |
167 | type = lookup_pointer_type (type); | |
4478b372 | 168 | maddr = SYMBOL_VALUE_ADDRESS (msymbol); |
3e3b026f UW |
169 | |
170 | if (objf_p) | |
171 | *objf_p = objfile; | |
172 | ||
4478b372 | 173 | return value_from_pointer (type, maddr); |
c906108c SS |
174 | } |
175 | else | |
176 | { | |
c5aa993b | 177 | if (!target_has_execution) |
3e43a32a MS |
178 | error (_("evaluation of this expression " |
179 | "requires the target program to be active")); | |
c5aa993b | 180 | else |
3e43a32a MS |
181 | error (_("evaluation of this expression requires the " |
182 | "program to have a function \"%s\"."), | |
183 | name); | |
c906108c SS |
184 | } |
185 | } | |
186 | } | |
187 | ||
ac3eeb49 MS |
188 | /* Allocate NBYTES of space in the inferior using the inferior's |
189 | malloc and return a value that is a pointer to the allocated | |
190 | space. */ | |
c906108c | 191 | |
f23631e4 | 192 | struct value * |
fba45db2 | 193 | value_allocate_space_in_inferior (int len) |
c906108c | 194 | { |
3e3b026f UW |
195 | struct objfile *objf; |
196 | struct value *val = find_function_in_inferior ("malloc", &objf); | |
197 | struct gdbarch *gdbarch = get_objfile_arch (objf); | |
f23631e4 | 198 | struct value *blocklen; |
c906108c | 199 | |
3e3b026f | 200 | blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len); |
c906108c SS |
201 | val = call_function_by_hand (val, 1, &blocklen); |
202 | if (value_logical_not (val)) | |
203 | { | |
204 | if (!target_has_execution) | |
3e43a32a MS |
205 | error (_("No memory available to program now: " |
206 | "you need to start the target first")); | |
c5aa993b | 207 | else |
8a3fe4f8 | 208 | error (_("No memory available to program: call to malloc failed")); |
c906108c SS |
209 | } |
210 | return val; | |
211 | } | |
212 | ||
213 | static CORE_ADDR | |
fba45db2 | 214 | allocate_space_in_inferior (int len) |
c906108c SS |
215 | { |
216 | return value_as_long (value_allocate_space_in_inferior (len)); | |
217 | } | |
218 | ||
6af87b03 AR |
219 | /* Cast struct value VAL to type TYPE and return as a value. |
220 | Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION | |
694182d2 DJ |
221 | for this to work. Typedef to one of the codes is permitted. |
222 | Returns NULL if the cast is neither an upcast nor a downcast. */ | |
6af87b03 AR |
223 | |
224 | static struct value * | |
225 | value_cast_structs (struct type *type, struct value *v2) | |
226 | { | |
227 | struct type *t1; | |
228 | struct type *t2; | |
229 | struct value *v; | |
230 | ||
231 | gdb_assert (type != NULL && v2 != NULL); | |
232 | ||
233 | t1 = check_typedef (type); | |
234 | t2 = check_typedef (value_type (v2)); | |
235 | ||
236 | /* Check preconditions. */ | |
237 | gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT | |
238 | || TYPE_CODE (t1) == TYPE_CODE_UNION) | |
239 | && !!"Precondition is that type is of STRUCT or UNION kind."); | |
240 | gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT | |
241 | || TYPE_CODE (t2) == TYPE_CODE_UNION) | |
242 | && !!"Precondition is that value is of STRUCT or UNION kind"); | |
243 | ||
191ca0a1 CM |
244 | if (TYPE_NAME (t1) != NULL |
245 | && TYPE_NAME (t2) != NULL | |
246 | && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2))) | |
247 | return NULL; | |
248 | ||
6af87b03 AR |
249 | /* Upcasting: look in the type of the source to see if it contains the |
250 | type of the target as a superclass. If so, we'll need to | |
251 | offset the pointer rather than just change its type. */ | |
252 | if (TYPE_NAME (t1) != NULL) | |
253 | { | |
254 | v = search_struct_field (type_name_no_tag (t1), | |
255 | v2, 0, t2, 1); | |
256 | if (v) | |
257 | return v; | |
258 | } | |
259 | ||
260 | /* Downcasting: look in the type of the target to see if it contains the | |
261 | type of the source as a superclass. If so, we'll need to | |
9c3c02fd | 262 | offset the pointer rather than just change its type. */ |
6af87b03 AR |
263 | if (TYPE_NAME (t2) != NULL) |
264 | { | |
9c3c02fd TT |
265 | /* Try downcasting using the run-time type of the value. */ |
266 | int full, top, using_enc; | |
267 | struct type *real_type; | |
268 | ||
269 | real_type = value_rtti_type (v2, &full, &top, &using_enc); | |
270 | if (real_type) | |
271 | { | |
272 | v = value_full_object (v2, real_type, full, top, using_enc); | |
273 | v = value_at_lazy (real_type, value_address (v)); | |
274 | ||
275 | /* We might be trying to cast to the outermost enclosing | |
276 | type, in which case search_struct_field won't work. */ | |
277 | if (TYPE_NAME (real_type) != NULL | |
278 | && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1))) | |
279 | return v; | |
280 | ||
281 | v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1); | |
282 | if (v) | |
283 | return v; | |
284 | } | |
285 | ||
286 | /* Try downcasting using information from the destination type | |
287 | T2. This wouldn't work properly for classes with virtual | |
288 | bases, but those were handled above. */ | |
6af87b03 AR |
289 | v = search_struct_field (type_name_no_tag (t2), |
290 | value_zero (t1, not_lval), 0, t1, 1); | |
291 | if (v) | |
292 | { | |
293 | /* Downcasting is possible (t1 is superclass of v2). */ | |
42ae5230 | 294 | CORE_ADDR addr2 = value_address (v2); |
a109c7c1 | 295 | |
42ae5230 | 296 | addr2 -= value_address (v) + value_embedded_offset (v); |
6af87b03 AR |
297 | return value_at (type, addr2); |
298 | } | |
299 | } | |
694182d2 DJ |
300 | |
301 | return NULL; | |
6af87b03 AR |
302 | } |
303 | ||
fb933624 DJ |
304 | /* Cast one pointer or reference type to another. Both TYPE and |
305 | the type of ARG2 should be pointer types, or else both should be | |
306 | reference types. Returns the new pointer or reference. */ | |
307 | ||
308 | struct value * | |
309 | value_cast_pointers (struct type *type, struct value *arg2) | |
310 | { | |
d160942f | 311 | struct type *type1 = check_typedef (type); |
fb933624 | 312 | struct type *type2 = check_typedef (value_type (arg2)); |
d160942f | 313 | struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1)); |
fb933624 DJ |
314 | struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2)); |
315 | ||
316 | if (TYPE_CODE (t1) == TYPE_CODE_STRUCT | |
317 | && TYPE_CODE (t2) == TYPE_CODE_STRUCT | |
318 | && !value_logical_not (arg2)) | |
319 | { | |
6af87b03 | 320 | struct value *v2; |
fb933624 | 321 | |
6af87b03 AR |
322 | if (TYPE_CODE (type2) == TYPE_CODE_REF) |
323 | v2 = coerce_ref (arg2); | |
324 | else | |
325 | v2 = value_ind (arg2); | |
3e43a32a MS |
326 | gdb_assert (TYPE_CODE (check_typedef (value_type (v2))) |
327 | == TYPE_CODE_STRUCT && !!"Why did coercion fail?"); | |
6af87b03 AR |
328 | v2 = value_cast_structs (t1, v2); |
329 | /* At this point we have what we can have, un-dereference if needed. */ | |
330 | if (v2) | |
fb933624 | 331 | { |
6af87b03 | 332 | struct value *v = value_addr (v2); |
a109c7c1 | 333 | |
6af87b03 AR |
334 | deprecated_set_value_type (v, type); |
335 | return v; | |
fb933624 | 336 | } |
6af87b03 | 337 | } |
fb933624 DJ |
338 | |
339 | /* No superclass found, just change the pointer type. */ | |
0d5de010 | 340 | arg2 = value_copy (arg2); |
fb933624 | 341 | deprecated_set_value_type (arg2, type); |
4dfea560 | 342 | set_value_enclosing_type (arg2, type); |
fb933624 DJ |
343 | set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */ |
344 | return arg2; | |
345 | } | |
346 | ||
c906108c SS |
347 | /* Cast value ARG2 to type TYPE and return as a value. |
348 | More general than a C cast: accepts any two types of the same length, | |
349 | and if ARG2 is an lvalue it can be cast into anything at all. */ | |
350 | /* In C++, casts may change pointer or object representations. */ | |
351 | ||
f23631e4 AC |
352 | struct value * |
353 | value_cast (struct type *type, struct value *arg2) | |
c906108c | 354 | { |
52f0bd74 AC |
355 | enum type_code code1; |
356 | enum type_code code2; | |
357 | int scalar; | |
c906108c SS |
358 | struct type *type2; |
359 | ||
360 | int convert_to_boolean = 0; | |
c5aa993b | 361 | |
df407dfe | 362 | if (value_type (arg2) == type) |
c906108c SS |
363 | return arg2; |
364 | ||
6af87b03 AR |
365 | code1 = TYPE_CODE (check_typedef (type)); |
366 | ||
367 | /* Check if we are casting struct reference to struct reference. */ | |
368 | if (code1 == TYPE_CODE_REF) | |
369 | { | |
370 | /* We dereference type; then we recurse and finally | |
581e13c1 | 371 | we generate value of the given reference. Nothing wrong with |
6af87b03 AR |
372 | that. */ |
373 | struct type *t1 = check_typedef (type); | |
374 | struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1)); | |
375 | struct value *val = value_cast (dereftype, arg2); | |
a109c7c1 | 376 | |
6af87b03 AR |
377 | return value_ref (val); |
378 | } | |
379 | ||
380 | code2 = TYPE_CODE (check_typedef (value_type (arg2))); | |
381 | ||
382 | if (code2 == TYPE_CODE_REF) | |
383 | /* We deref the value and then do the cast. */ | |
384 | return value_cast (type, coerce_ref (arg2)); | |
385 | ||
c906108c SS |
386 | CHECK_TYPEDEF (type); |
387 | code1 = TYPE_CODE (type); | |
994b9211 | 388 | arg2 = coerce_ref (arg2); |
df407dfe | 389 | type2 = check_typedef (value_type (arg2)); |
c906108c | 390 | |
fb933624 DJ |
391 | /* You can't cast to a reference type. See value_cast_pointers |
392 | instead. */ | |
393 | gdb_assert (code1 != TYPE_CODE_REF); | |
394 | ||
ac3eeb49 MS |
395 | /* A cast to an undetermined-length array_type, such as |
396 | (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT, | |
397 | where N is sizeof(OBJECT)/sizeof(TYPE). */ | |
c906108c SS |
398 | if (code1 == TYPE_CODE_ARRAY) |
399 | { | |
400 | struct type *element_type = TYPE_TARGET_TYPE (type); | |
401 | unsigned element_length = TYPE_LENGTH (check_typedef (element_type)); | |
a109c7c1 | 402 | |
d78df370 | 403 | if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type)) |
c906108c SS |
404 | { |
405 | struct type *range_type = TYPE_INDEX_TYPE (type); | |
406 | int val_length = TYPE_LENGTH (type2); | |
407 | LONGEST low_bound, high_bound, new_length; | |
a109c7c1 | 408 | |
c906108c SS |
409 | if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0) |
410 | low_bound = 0, high_bound = 0; | |
411 | new_length = val_length / element_length; | |
412 | if (val_length % element_length != 0) | |
3e43a32a MS |
413 | warning (_("array element type size does not " |
414 | "divide object size in cast")); | |
ac3eeb49 MS |
415 | /* FIXME-type-allocation: need a way to free this type when |
416 | we are done with it. */ | |
c906108c SS |
417 | range_type = create_range_type ((struct type *) NULL, |
418 | TYPE_TARGET_TYPE (range_type), | |
419 | low_bound, | |
420 | new_length + low_bound - 1); | |
ac3eeb49 MS |
421 | deprecated_set_value_type (arg2, |
422 | create_array_type ((struct type *) NULL, | |
423 | element_type, | |
424 | range_type)); | |
c906108c SS |
425 | return arg2; |
426 | } | |
427 | } | |
428 | ||
429 | if (current_language->c_style_arrays | |
3bdf2bbd KW |
430 | && TYPE_CODE (type2) == TYPE_CODE_ARRAY |
431 | && !TYPE_VECTOR (type2)) | |
c906108c SS |
432 | arg2 = value_coerce_array (arg2); |
433 | ||
434 | if (TYPE_CODE (type2) == TYPE_CODE_FUNC) | |
435 | arg2 = value_coerce_function (arg2); | |
436 | ||
df407dfe | 437 | type2 = check_typedef (value_type (arg2)); |
c906108c SS |
438 | code2 = TYPE_CODE (type2); |
439 | ||
440 | if (code1 == TYPE_CODE_COMPLEX) | |
441 | return cast_into_complex (type, arg2); | |
442 | if (code1 == TYPE_CODE_BOOL) | |
443 | { | |
444 | code1 = TYPE_CODE_INT; | |
445 | convert_to_boolean = 1; | |
446 | } | |
447 | if (code1 == TYPE_CODE_CHAR) | |
448 | code1 = TYPE_CODE_INT; | |
449 | if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR) | |
450 | code2 = TYPE_CODE_INT; | |
451 | ||
452 | scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT | |
4ef30785 TJB |
453 | || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM |
454 | || code2 == TYPE_CODE_RANGE); | |
c906108c | 455 | |
6af87b03 AR |
456 | if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION) |
457 | && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION) | |
c906108c | 458 | && TYPE_NAME (type) != 0) |
694182d2 DJ |
459 | { |
460 | struct value *v = value_cast_structs (type, arg2); | |
a109c7c1 | 461 | |
694182d2 DJ |
462 | if (v) |
463 | return v; | |
464 | } | |
465 | ||
c906108c SS |
466 | if (code1 == TYPE_CODE_FLT && scalar) |
467 | return value_from_double (type, value_as_double (arg2)); | |
4ef30785 TJB |
468 | else if (code1 == TYPE_CODE_DECFLOAT && scalar) |
469 | { | |
e17a4113 | 470 | enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); |
4ef30785 TJB |
471 | int dec_len = TYPE_LENGTH (type); |
472 | gdb_byte dec[16]; | |
473 | ||
474 | if (code2 == TYPE_CODE_FLT) | |
e17a4113 | 475 | decimal_from_floating (arg2, dec, dec_len, byte_order); |
4ef30785 TJB |
476 | else if (code2 == TYPE_CODE_DECFLOAT) |
477 | decimal_convert (value_contents (arg2), TYPE_LENGTH (type2), | |
e17a4113 | 478 | byte_order, dec, dec_len, byte_order); |
4ef30785 TJB |
479 | else |
480 | /* The only option left is an integral type. */ | |
e17a4113 | 481 | decimal_from_integral (arg2, dec, dec_len, byte_order); |
4ef30785 TJB |
482 | |
483 | return value_from_decfloat (type, dec); | |
484 | } | |
c906108c SS |
485 | else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM |
486 | || code1 == TYPE_CODE_RANGE) | |
0d5de010 DJ |
487 | && (scalar || code2 == TYPE_CODE_PTR |
488 | || code2 == TYPE_CODE_MEMBERPTR)) | |
c906108c SS |
489 | { |
490 | LONGEST longest; | |
c5aa993b | 491 | |
2bf1f4a1 | 492 | /* When we cast pointers to integers, we mustn't use |
76e71323 | 493 | gdbarch_pointer_to_address to find the address the pointer |
2bf1f4a1 JB |
494 | represents, as value_as_long would. GDB should evaluate |
495 | expressions just as the compiler would --- and the compiler | |
496 | sees a cast as a simple reinterpretation of the pointer's | |
497 | bits. */ | |
498 | if (code2 == TYPE_CODE_PTR) | |
e17a4113 UW |
499 | longest = extract_unsigned_integer |
500 | (value_contents (arg2), TYPE_LENGTH (type2), | |
501 | gdbarch_byte_order (get_type_arch (type2))); | |
2bf1f4a1 JB |
502 | else |
503 | longest = value_as_long (arg2); | |
802db21b | 504 | return value_from_longest (type, convert_to_boolean ? |
716c501e | 505 | (LONGEST) (longest ? 1 : 0) : longest); |
c906108c | 506 | } |
ac3eeb49 MS |
507 | else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT |
508 | || code2 == TYPE_CODE_ENUM | |
509 | || code2 == TYPE_CODE_RANGE)) | |
634acd5f | 510 | { |
4603e466 DT |
511 | /* TYPE_LENGTH (type) is the length of a pointer, but we really |
512 | want the length of an address! -- we are really dealing with | |
513 | addresses (i.e., gdb representations) not pointers (i.e., | |
514 | target representations) here. | |
515 | ||
516 | This allows things like "print *(int *)0x01000234" to work | |
517 | without printing a misleading message -- which would | |
518 | otherwise occur when dealing with a target having two byte | |
519 | pointers and four byte addresses. */ | |
520 | ||
50810684 | 521 | int addr_bit = gdbarch_addr_bit (get_type_arch (type2)); |
634acd5f | 522 | LONGEST longest = value_as_long (arg2); |
a109c7c1 | 523 | |
4603e466 | 524 | if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT) |
634acd5f | 525 | { |
4603e466 DT |
526 | if (longest >= ((LONGEST) 1 << addr_bit) |
527 | || longest <= -((LONGEST) 1 << addr_bit)) | |
8a3fe4f8 | 528 | warning (_("value truncated")); |
634acd5f AC |
529 | } |
530 | return value_from_longest (type, longest); | |
531 | } | |
0d5de010 DJ |
532 | else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT |
533 | && value_as_long (arg2) == 0) | |
534 | { | |
535 | struct value *result = allocate_value (type); | |
a109c7c1 | 536 | |
ad4820ab | 537 | cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0); |
0d5de010 DJ |
538 | return result; |
539 | } | |
540 | else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT | |
541 | && value_as_long (arg2) == 0) | |
542 | { | |
543 | /* The Itanium C++ ABI represents NULL pointers to members as | |
544 | minus one, instead of biasing the normal case. */ | |
545 | return value_from_longest (type, -1); | |
546 | } | |
3bdf2bbd KW |
547 | else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar) |
548 | { | |
549 | /* Widen the scalar to a vector. */ | |
550 | struct type *eltype; | |
551 | struct value *val; | |
dbc98a8b KW |
552 | LONGEST low_bound, high_bound; |
553 | int i; | |
554 | ||
555 | if (!get_array_bounds (type, &low_bound, &high_bound)) | |
556 | error (_("Could not determine the vector bounds")); | |
3bdf2bbd KW |
557 | |
558 | eltype = check_typedef (TYPE_TARGET_TYPE (type)); | |
559 | arg2 = value_cast (eltype, arg2); | |
560 | val = allocate_value (type); | |
3bdf2bbd | 561 | |
dbc98a8b | 562 | for (i = 0; i < high_bound - low_bound + 1; i++) |
3bdf2bbd KW |
563 | { |
564 | /* Duplicate the contents of arg2 into the destination vector. */ | |
565 | memcpy (value_contents_writeable (val) + (i * TYPE_LENGTH (eltype)), | |
566 | value_contents_all (arg2), TYPE_LENGTH (eltype)); | |
567 | } | |
568 | return val; | |
569 | } | |
c906108c SS |
570 | else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2)) |
571 | { | |
572 | if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR) | |
fb933624 DJ |
573 | return value_cast_pointers (type, arg2); |
574 | ||
0d5de010 | 575 | arg2 = value_copy (arg2); |
04624583 | 576 | deprecated_set_value_type (arg2, type); |
4dfea560 | 577 | set_value_enclosing_type (arg2, type); |
b44d461b | 578 | set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */ |
c906108c SS |
579 | return arg2; |
580 | } | |
c906108c | 581 | else if (VALUE_LVAL (arg2) == lval_memory) |
42ae5230 | 582 | return value_at_lazy (type, value_address (arg2)); |
c906108c SS |
583 | else if (code1 == TYPE_CODE_VOID) |
584 | { | |
48319d1f | 585 | return value_zero (type, not_lval); |
c906108c SS |
586 | } |
587 | else | |
588 | { | |
8a3fe4f8 | 589 | error (_("Invalid cast.")); |
c906108c SS |
590 | return 0; |
591 | } | |
592 | } | |
593 | ||
4e8f195d TT |
594 | /* The C++ reinterpret_cast operator. */ |
595 | ||
596 | struct value * | |
597 | value_reinterpret_cast (struct type *type, struct value *arg) | |
598 | { | |
599 | struct value *result; | |
600 | struct type *real_type = check_typedef (type); | |
601 | struct type *arg_type, *dest_type; | |
602 | int is_ref = 0; | |
603 | enum type_code dest_code, arg_code; | |
604 | ||
605 | /* Do reference, function, and array conversion. */ | |
606 | arg = coerce_array (arg); | |
607 | ||
608 | /* Attempt to preserve the type the user asked for. */ | |
609 | dest_type = type; | |
610 | ||
611 | /* If we are casting to a reference type, transform | |
612 | reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */ | |
613 | if (TYPE_CODE (real_type) == TYPE_CODE_REF) | |
614 | { | |
615 | is_ref = 1; | |
616 | arg = value_addr (arg); | |
617 | dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type)); | |
618 | real_type = lookup_pointer_type (real_type); | |
619 | } | |
620 | ||
621 | arg_type = value_type (arg); | |
622 | ||
623 | dest_code = TYPE_CODE (real_type); | |
624 | arg_code = TYPE_CODE (arg_type); | |
625 | ||
626 | /* We can convert pointer types, or any pointer type to int, or int | |
627 | type to pointer. */ | |
628 | if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT) | |
629 | || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR) | |
630 | || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT) | |
631 | || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR) | |
632 | || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT) | |
633 | || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR) | |
634 | || (dest_code == arg_code | |
635 | && (dest_code == TYPE_CODE_PTR | |
636 | || dest_code == TYPE_CODE_METHODPTR | |
637 | || dest_code == TYPE_CODE_MEMBERPTR))) | |
638 | result = value_cast (dest_type, arg); | |
639 | else | |
640 | error (_("Invalid reinterpret_cast")); | |
641 | ||
642 | if (is_ref) | |
643 | result = value_cast (type, value_ref (value_ind (result))); | |
644 | ||
645 | return result; | |
646 | } | |
647 | ||
648 | /* A helper for value_dynamic_cast. This implements the first of two | |
649 | runtime checks: we iterate over all the base classes of the value's | |
650 | class which are equal to the desired class; if only one of these | |
651 | holds the value, then it is the answer. */ | |
652 | ||
653 | static int | |
654 | dynamic_cast_check_1 (struct type *desired_type, | |
655 | const bfd_byte *contents, | |
656 | CORE_ADDR address, | |
657 | struct type *search_type, | |
658 | CORE_ADDR arg_addr, | |
659 | struct type *arg_type, | |
660 | struct value **result) | |
661 | { | |
662 | int i, result_count = 0; | |
663 | ||
664 | for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i) | |
665 | { | |
666 | int offset = baseclass_offset (search_type, i, contents, address); | |
a109c7c1 | 667 | |
4e8f195d TT |
668 | if (offset == -1) |
669 | error (_("virtual baseclass botch")); | |
670 | if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i))) | |
671 | { | |
672 | if (address + offset >= arg_addr | |
673 | && address + offset < arg_addr + TYPE_LENGTH (arg_type)) | |
674 | { | |
675 | ++result_count; | |
676 | if (!*result) | |
677 | *result = value_at_lazy (TYPE_BASECLASS (search_type, i), | |
678 | address + offset); | |
679 | } | |
680 | } | |
681 | else | |
682 | result_count += dynamic_cast_check_1 (desired_type, | |
683 | contents + offset, | |
684 | address + offset, | |
685 | TYPE_BASECLASS (search_type, i), | |
686 | arg_addr, | |
687 | arg_type, | |
688 | result); | |
689 | } | |
690 | ||
691 | return result_count; | |
692 | } | |
693 | ||
694 | /* A helper for value_dynamic_cast. This implements the second of two | |
695 | runtime checks: we look for a unique public sibling class of the | |
696 | argument's declared class. */ | |
697 | ||
698 | static int | |
699 | dynamic_cast_check_2 (struct type *desired_type, | |
700 | const bfd_byte *contents, | |
701 | CORE_ADDR address, | |
702 | struct type *search_type, | |
703 | struct value **result) | |
704 | { | |
705 | int i, result_count = 0; | |
706 | ||
707 | for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i) | |
708 | { | |
709 | int offset; | |
710 | ||
711 | if (! BASETYPE_VIA_PUBLIC (search_type, i)) | |
712 | continue; | |
713 | ||
714 | offset = baseclass_offset (search_type, i, contents, address); | |
715 | if (offset == -1) | |
716 | error (_("virtual baseclass botch")); | |
717 | if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i))) | |
718 | { | |
719 | ++result_count; | |
720 | if (*result == NULL) | |
721 | *result = value_at_lazy (TYPE_BASECLASS (search_type, i), | |
722 | address + offset); | |
723 | } | |
724 | else | |
725 | result_count += dynamic_cast_check_2 (desired_type, | |
726 | contents + offset, | |
727 | address + offset, | |
728 | TYPE_BASECLASS (search_type, i), | |
729 | result); | |
730 | } | |
731 | ||
732 | return result_count; | |
733 | } | |
734 | ||
735 | /* The C++ dynamic_cast operator. */ | |
736 | ||
737 | struct value * | |
738 | value_dynamic_cast (struct type *type, struct value *arg) | |
739 | { | |
8f78b329 | 740 | int full, top, using_enc; |
4e8f195d TT |
741 | struct type *resolved_type = check_typedef (type); |
742 | struct type *arg_type = check_typedef (value_type (arg)); | |
743 | struct type *class_type, *rtti_type; | |
744 | struct value *result, *tem, *original_arg = arg; | |
745 | CORE_ADDR addr; | |
746 | int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF; | |
747 | ||
748 | if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR | |
749 | && TYPE_CODE (resolved_type) != TYPE_CODE_REF) | |
750 | error (_("Argument to dynamic_cast must be a pointer or reference type")); | |
751 | if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID | |
752 | && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS) | |
753 | error (_("Argument to dynamic_cast must be pointer to class or `void *'")); | |
754 | ||
755 | class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type)); | |
756 | if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR) | |
757 | { | |
758 | if (TYPE_CODE (arg_type) != TYPE_CODE_PTR | |
759 | && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT | |
760 | && value_as_long (arg) == 0)) | |
761 | error (_("Argument to dynamic_cast does not have pointer type")); | |
762 | if (TYPE_CODE (arg_type) == TYPE_CODE_PTR) | |
763 | { | |
764 | arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type)); | |
765 | if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS) | |
3e43a32a MS |
766 | error (_("Argument to dynamic_cast does " |
767 | "not have pointer to class type")); | |
4e8f195d TT |
768 | } |
769 | ||
770 | /* Handle NULL pointers. */ | |
771 | if (value_as_long (arg) == 0) | |
772 | return value_zero (type, not_lval); | |
773 | ||
774 | arg = value_ind (arg); | |
775 | } | |
776 | else | |
777 | { | |
778 | if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS) | |
779 | error (_("Argument to dynamic_cast does not have class type")); | |
780 | } | |
781 | ||
782 | /* If the classes are the same, just return the argument. */ | |
783 | if (class_types_same_p (class_type, arg_type)) | |
784 | return value_cast (type, arg); | |
785 | ||
786 | /* If the target type is a unique base class of the argument's | |
787 | declared type, just cast it. */ | |
788 | if (is_ancestor (class_type, arg_type)) | |
789 | { | |
790 | if (is_unique_ancestor (class_type, arg)) | |
791 | return value_cast (type, original_arg); | |
792 | error (_("Ambiguous dynamic_cast")); | |
793 | } | |
794 | ||
795 | rtti_type = value_rtti_type (arg, &full, &top, &using_enc); | |
796 | if (! rtti_type) | |
797 | error (_("Couldn't determine value's most derived type for dynamic_cast")); | |
798 | ||
799 | /* Compute the most derived object's address. */ | |
800 | addr = value_address (arg); | |
801 | if (full) | |
802 | { | |
803 | /* Done. */ | |
804 | } | |
805 | else if (using_enc) | |
806 | addr += top; | |
807 | else | |
808 | addr += top + value_embedded_offset (arg); | |
809 | ||
810 | /* dynamic_cast<void *> means to return a pointer to the | |
811 | most-derived object. */ | |
812 | if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR | |
813 | && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID) | |
814 | return value_at_lazy (type, addr); | |
815 | ||
816 | tem = value_at (type, addr); | |
817 | ||
818 | /* The first dynamic check specified in 5.2.7. */ | |
819 | if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type))) | |
820 | { | |
821 | if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type))) | |
822 | return tem; | |
823 | result = NULL; | |
824 | if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type), | |
825 | value_contents (tem), value_address (tem), | |
826 | rtti_type, addr, | |
827 | arg_type, | |
828 | &result) == 1) | |
829 | return value_cast (type, | |
830 | is_ref ? value_ref (result) : value_addr (result)); | |
831 | } | |
832 | ||
833 | /* The second dynamic check specified in 5.2.7. */ | |
834 | result = NULL; | |
835 | if (is_public_ancestor (arg_type, rtti_type) | |
836 | && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type), | |
837 | value_contents (tem), value_address (tem), | |
838 | rtti_type, &result) == 1) | |
839 | return value_cast (type, | |
840 | is_ref ? value_ref (result) : value_addr (result)); | |
841 | ||
842 | if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR) | |
843 | return value_zero (type, not_lval); | |
844 | ||
845 | error (_("dynamic_cast failed")); | |
846 | } | |
847 | ||
c906108c SS |
848 | /* Create a value of type TYPE that is zero, and return it. */ |
849 | ||
f23631e4 | 850 | struct value * |
fba45db2 | 851 | value_zero (struct type *type, enum lval_type lv) |
c906108c | 852 | { |
f23631e4 | 853 | struct value *val = allocate_value (type); |
c906108c | 854 | |
a109c7c1 | 855 | VALUE_LVAL (val) = lv; |
c906108c SS |
856 | return val; |
857 | } | |
858 | ||
301f0ecf DE |
859 | /* Create a value of numeric type TYPE that is one, and return it. */ |
860 | ||
861 | struct value * | |
862 | value_one (struct type *type, enum lval_type lv) | |
863 | { | |
864 | struct type *type1 = check_typedef (type); | |
4e608b4f | 865 | struct value *val; |
301f0ecf DE |
866 | |
867 | if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT) | |
868 | { | |
e17a4113 | 869 | enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); |
301f0ecf | 870 | gdb_byte v[16]; |
a109c7c1 | 871 | |
e17a4113 | 872 | decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1"); |
301f0ecf DE |
873 | val = value_from_decfloat (type, v); |
874 | } | |
875 | else if (TYPE_CODE (type1) == TYPE_CODE_FLT) | |
876 | { | |
877 | val = value_from_double (type, (DOUBLEST) 1); | |
878 | } | |
879 | else if (is_integral_type (type1)) | |
880 | { | |
881 | val = value_from_longest (type, (LONGEST) 1); | |
882 | } | |
120bd360 KW |
883 | else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1)) |
884 | { | |
885 | struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1)); | |
cfa6f054 KW |
886 | int i; |
887 | LONGEST low_bound, high_bound; | |
120bd360 KW |
888 | struct value *tmp; |
889 | ||
cfa6f054 KW |
890 | if (!get_array_bounds (type1, &low_bound, &high_bound)) |
891 | error (_("Could not determine the vector bounds")); | |
892 | ||
120bd360 | 893 | val = allocate_value (type); |
cfa6f054 | 894 | for (i = 0; i < high_bound - low_bound + 1; i++) |
120bd360 KW |
895 | { |
896 | tmp = value_one (eltype, lv); | |
897 | memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype), | |
898 | value_contents_all (tmp), TYPE_LENGTH (eltype)); | |
899 | } | |
900 | } | |
301f0ecf DE |
901 | else |
902 | { | |
903 | error (_("Not a numeric type.")); | |
904 | } | |
905 | ||
906 | VALUE_LVAL (val) = lv; | |
907 | return val; | |
908 | } | |
909 | ||
4e5d721f DE |
910 | /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. */ |
911 | ||
912 | static struct value * | |
913 | get_value_at (struct type *type, CORE_ADDR addr, int lazy) | |
914 | { | |
915 | struct value *val; | |
916 | ||
917 | if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID) | |
918 | error (_("Attempt to dereference a generic pointer.")); | |
919 | ||
920 | if (lazy) | |
921 | { | |
922 | val = allocate_value_lazy (type); | |
923 | } | |
924 | else | |
925 | { | |
926 | val = allocate_value (type); | |
927 | read_memory (addr, value_contents_all_raw (val), TYPE_LENGTH (type)); | |
928 | } | |
929 | ||
930 | VALUE_LVAL (val) = lval_memory; | |
931 | set_value_address (val, addr); | |
932 | ||
933 | return val; | |
934 | } | |
935 | ||
070ad9f0 | 936 | /* Return a value with type TYPE located at ADDR. |
c906108c SS |
937 | |
938 | Call value_at only if the data needs to be fetched immediately; | |
939 | if we can be 'lazy' and defer the fetch, perhaps indefinately, call | |
940 | value_at_lazy instead. value_at_lazy simply records the address of | |
070ad9f0 | 941 | the data and sets the lazy-evaluation-required flag. The lazy flag |
0fd88904 | 942 | is tested in the value_contents macro, which is used if and when |
070ad9f0 | 943 | the contents are actually required. |
c906108c SS |
944 | |
945 | Note: value_at does *NOT* handle embedded offsets; perform such | |
ac3eeb49 | 946 | adjustments before or after calling it. */ |
c906108c | 947 | |
f23631e4 | 948 | struct value * |
00a4c844 | 949 | value_at (struct type *type, CORE_ADDR addr) |
c906108c | 950 | { |
4e5d721f | 951 | return get_value_at (type, addr, 0); |
c906108c SS |
952 | } |
953 | ||
954 | /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */ | |
955 | ||
f23631e4 | 956 | struct value * |
00a4c844 | 957 | value_at_lazy (struct type *type, CORE_ADDR addr) |
c906108c | 958 | { |
4e5d721f | 959 | return get_value_at (type, addr, 1); |
c906108c SS |
960 | } |
961 | ||
0fd88904 | 962 | /* Called only from the value_contents and value_contents_all() |
46615f07 | 963 | macros, if the current data for a variable needs to be loaded into |
0fd88904 | 964 | value_contents(VAL). Fetches the data from the user's process, and |
46615f07 AC |
965 | clears the lazy flag to indicate that the data in the buffer is |
966 | valid. | |
c906108c | 967 | |
ac3eeb49 MS |
968 | If the value is zero-length, we avoid calling read_memory, which |
969 | would abort. We mark the value as fetched anyway -- all 0 bytes of | |
970 | it. | |
c906108c | 971 | |
ac3eeb49 MS |
972 | This function returns a value because it is used in the |
973 | value_contents macro as part of an expression, where a void would | |
974 | not work. The value is ignored. */ | |
c906108c SS |
975 | |
976 | int | |
f23631e4 | 977 | value_fetch_lazy (struct value *val) |
c906108c | 978 | { |
3e3d7139 JG |
979 | gdb_assert (value_lazy (val)); |
980 | allocate_value_contents (val); | |
4ea48cc1 DJ |
981 | if (value_bitsize (val)) |
982 | { | |
983 | /* To read a lazy bitfield, read the entire enclosing value. This | |
984 | prevents reading the same block of (possibly volatile) memory once | |
985 | per bitfield. It would be even better to read only the containing | |
986 | word, but we have no way to record that just specific bits of a | |
987 | value have been fetched. */ | |
988 | struct type *type = check_typedef (value_type (val)); | |
989 | enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); | |
990 | struct value *parent = value_parent (val); | |
991 | LONGEST offset = value_offset (val); | |
992 | LONGEST num = unpack_bits_as_long (value_type (val), | |
0e03807e TT |
993 | (value_contents_for_printing (parent) |
994 | + offset), | |
4ea48cc1 DJ |
995 | value_bitpos (val), |
996 | value_bitsize (val)); | |
997 | int length = TYPE_LENGTH (type); | |
a109c7c1 | 998 | |
0e03807e TT |
999 | if (!value_bits_valid (val, |
1000 | TARGET_CHAR_BIT * offset + value_bitpos (val), | |
1001 | value_bitsize (val))) | |
1002 | error (_("value has been optimized out")); | |
1003 | ||
4ea48cc1 DJ |
1004 | store_signed_integer (value_contents_raw (val), length, byte_order, num); |
1005 | } | |
1006 | else if (VALUE_LVAL (val) == lval_memory) | |
9214ee5f | 1007 | { |
42ae5230 | 1008 | CORE_ADDR addr = value_address (val); |
694182d2 | 1009 | int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val))); |
9214ee5f | 1010 | |
9214ee5f | 1011 | if (length) |
4e5d721f DE |
1012 | { |
1013 | if (value_stack (val)) | |
1014 | read_stack (addr, value_contents_all_raw (val), length); | |
1015 | else | |
1016 | read_memory (addr, value_contents_all_raw (val), length); | |
1017 | } | |
9214ee5f DJ |
1018 | } |
1019 | else if (VALUE_LVAL (val) == lval_register) | |
1020 | { | |
669fac23 DJ |
1021 | struct frame_info *frame; |
1022 | int regnum; | |
9214ee5f | 1023 | struct type *type = check_typedef (value_type (val)); |
669fac23 | 1024 | struct value *new_val = val, *mark = value_mark (); |
c906108c | 1025 | |
669fac23 DJ |
1026 | /* Offsets are not supported here; lazy register values must |
1027 | refer to the entire register. */ | |
1028 | gdb_assert (value_offset (val) == 0); | |
9214ee5f | 1029 | |
669fac23 DJ |
1030 | while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val)) |
1031 | { | |
1032 | frame = frame_find_by_id (VALUE_FRAME_ID (new_val)); | |
1033 | regnum = VALUE_REGNUM (new_val); | |
1034 | ||
1035 | gdb_assert (frame != NULL); | |
9214ee5f | 1036 | |
669fac23 DJ |
1037 | /* Convertible register routines are used for multi-register |
1038 | values and for interpretation in different types | |
1039 | (e.g. float or int from a double register). Lazy | |
1040 | register values should have the register's natural type, | |
1041 | so they do not apply. */ | |
1042 | gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame), | |
1043 | regnum, type)); | |
1044 | ||
1045 | new_val = get_frame_register_value (frame, regnum); | |
1046 | } | |
1047 | ||
1048 | /* If it's still lazy (for instance, a saved register on the | |
1049 | stack), fetch it. */ | |
1050 | if (value_lazy (new_val)) | |
1051 | value_fetch_lazy (new_val); | |
1052 | ||
1053 | /* If the register was not saved, mark it unavailable. */ | |
1054 | if (value_optimized_out (new_val)) | |
9214ee5f | 1055 | set_value_optimized_out (val, 1); |
669fac23 DJ |
1056 | else |
1057 | memcpy (value_contents_raw (val), value_contents (new_val), | |
1058 | TYPE_LENGTH (type)); | |
1059 | ||
1060 | if (frame_debug) | |
1061 | { | |
029a67e4 | 1062 | struct gdbarch *gdbarch; |
669fac23 DJ |
1063 | frame = frame_find_by_id (VALUE_FRAME_ID (val)); |
1064 | regnum = VALUE_REGNUM (val); | |
029a67e4 | 1065 | gdbarch = get_frame_arch (frame); |
669fac23 | 1066 | |
3e43a32a MS |
1067 | fprintf_unfiltered (gdb_stdlog, |
1068 | "{ value_fetch_lazy " | |
1069 | "(frame=%d,regnum=%d(%s),...) ", | |
669fac23 | 1070 | frame_relative_level (frame), regnum, |
029a67e4 | 1071 | user_reg_map_regnum_to_name (gdbarch, regnum)); |
669fac23 DJ |
1072 | |
1073 | fprintf_unfiltered (gdb_stdlog, "->"); | |
1074 | if (value_optimized_out (new_val)) | |
1075 | fprintf_unfiltered (gdb_stdlog, " optimized out"); | |
1076 | else | |
1077 | { | |
1078 | int i; | |
1079 | const gdb_byte *buf = value_contents (new_val); | |
1080 | ||
1081 | if (VALUE_LVAL (new_val) == lval_register) | |
1082 | fprintf_unfiltered (gdb_stdlog, " register=%d", | |
1083 | VALUE_REGNUM (new_val)); | |
1084 | else if (VALUE_LVAL (new_val) == lval_memory) | |
5af949e3 UW |
1085 | fprintf_unfiltered (gdb_stdlog, " address=%s", |
1086 | paddress (gdbarch, | |
1087 | value_address (new_val))); | |
669fac23 DJ |
1088 | else |
1089 | fprintf_unfiltered (gdb_stdlog, " computed"); | |
1090 | ||
1091 | fprintf_unfiltered (gdb_stdlog, " bytes="); | |
1092 | fprintf_unfiltered (gdb_stdlog, "["); | |
029a67e4 | 1093 | for (i = 0; i < register_size (gdbarch, regnum); i++) |
669fac23 DJ |
1094 | fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]); |
1095 | fprintf_unfiltered (gdb_stdlog, "]"); | |
1096 | } | |
1097 | ||
1098 | fprintf_unfiltered (gdb_stdlog, " }\n"); | |
1099 | } | |
1100 | ||
1101 | /* Dispose of the intermediate values. This prevents | |
1102 | watchpoints from trying to watch the saved frame pointer. */ | |
1103 | value_free_to_mark (mark); | |
9214ee5f | 1104 | } |
5f5233d4 PA |
1105 | else if (VALUE_LVAL (val) == lval_computed) |
1106 | value_computed_funcs (val)->read (val); | |
9214ee5f | 1107 | else |
9b20d036 | 1108 | internal_error (__FILE__, __LINE__, _("Unexpected lazy value type.")); |
802db21b | 1109 | |
dfa52d88 | 1110 | set_value_lazy (val, 0); |
c906108c SS |
1111 | return 0; |
1112 | } | |
1113 | ||
1114 | ||
1115 | /* Store the contents of FROMVAL into the location of TOVAL. | |
1116 | Return a new value with the location of TOVAL and contents of FROMVAL. */ | |
1117 | ||
f23631e4 AC |
1118 | struct value * |
1119 | value_assign (struct value *toval, struct value *fromval) | |
c906108c | 1120 | { |
52f0bd74 | 1121 | struct type *type; |
f23631e4 | 1122 | struct value *val; |
cb741690 | 1123 | struct frame_id old_frame; |
c906108c | 1124 | |
88e3b34b | 1125 | if (!deprecated_value_modifiable (toval)) |
8a3fe4f8 | 1126 | error (_("Left operand of assignment is not a modifiable lvalue.")); |
c906108c | 1127 | |
994b9211 | 1128 | toval = coerce_ref (toval); |
c906108c | 1129 | |
df407dfe | 1130 | type = value_type (toval); |
c906108c | 1131 | if (VALUE_LVAL (toval) != lval_internalvar) |
3cbaedff | 1132 | fromval = value_cast (type, fromval); |
c906108c | 1133 | else |
63092375 DJ |
1134 | { |
1135 | /* Coerce arrays and functions to pointers, except for arrays | |
1136 | which only live in GDB's storage. */ | |
1137 | if (!value_must_coerce_to_target (fromval)) | |
1138 | fromval = coerce_array (fromval); | |
1139 | } | |
1140 | ||
c906108c SS |
1141 | CHECK_TYPEDEF (type); |
1142 | ||
ac3eeb49 MS |
1143 | /* Since modifying a register can trash the frame chain, and |
1144 | modifying memory can trash the frame cache, we save the old frame | |
1145 | and then restore the new frame afterwards. */ | |
206415a3 | 1146 | old_frame = get_frame_id (deprecated_safe_get_selected_frame ()); |
cb741690 | 1147 | |
c906108c SS |
1148 | switch (VALUE_LVAL (toval)) |
1149 | { | |
1150 | case lval_internalvar: | |
1151 | set_internalvar (VALUE_INTERNALVAR (toval), fromval); | |
4aac0db7 UW |
1152 | return value_of_internalvar (get_type_arch (type), |
1153 | VALUE_INTERNALVAR (toval)); | |
c906108c SS |
1154 | |
1155 | case lval_internalvar_component: | |
1156 | set_internalvar_component (VALUE_INTERNALVAR (toval), | |
df407dfe AC |
1157 | value_offset (toval), |
1158 | value_bitpos (toval), | |
1159 | value_bitsize (toval), | |
c906108c SS |
1160 | fromval); |
1161 | break; | |
1162 | ||
1163 | case lval_memory: | |
1164 | { | |
fc1a4b47 | 1165 | const gdb_byte *dest_buffer; |
c5aa993b JM |
1166 | CORE_ADDR changed_addr; |
1167 | int changed_len; | |
10c42a71 | 1168 | gdb_byte buffer[sizeof (LONGEST)]; |
c906108c | 1169 | |
df407dfe | 1170 | if (value_bitsize (toval)) |
c5aa993b | 1171 | { |
2d88202a | 1172 | struct value *parent = value_parent (toval); |
2d88202a | 1173 | |
a109c7c1 | 1174 | changed_addr = value_address (parent) + value_offset (toval); |
df407dfe AC |
1175 | changed_len = (value_bitpos (toval) |
1176 | + value_bitsize (toval) | |
c5aa993b JM |
1177 | + HOST_CHAR_BIT - 1) |
1178 | / HOST_CHAR_BIT; | |
c906108c | 1179 | |
4ea48cc1 DJ |
1180 | /* If we can read-modify-write exactly the size of the |
1181 | containing type (e.g. short or int) then do so. This | |
1182 | is safer for volatile bitfields mapped to hardware | |
1183 | registers. */ | |
1184 | if (changed_len < TYPE_LENGTH (type) | |
1185 | && TYPE_LENGTH (type) <= (int) sizeof (LONGEST) | |
2d88202a | 1186 | && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0) |
4ea48cc1 DJ |
1187 | changed_len = TYPE_LENGTH (type); |
1188 | ||
c906108c | 1189 | if (changed_len > (int) sizeof (LONGEST)) |
3e43a32a MS |
1190 | error (_("Can't handle bitfields which " |
1191 | "don't fit in a %d bit word."), | |
baa6f10b | 1192 | (int) sizeof (LONGEST) * HOST_CHAR_BIT); |
c906108c | 1193 | |
2d88202a | 1194 | read_memory (changed_addr, buffer, changed_len); |
50810684 | 1195 | modify_field (type, buffer, value_as_long (fromval), |
df407dfe | 1196 | value_bitpos (toval), value_bitsize (toval)); |
c906108c SS |
1197 | dest_buffer = buffer; |
1198 | } | |
c906108c SS |
1199 | else |
1200 | { | |
42ae5230 | 1201 | changed_addr = value_address (toval); |
c906108c | 1202 | changed_len = TYPE_LENGTH (type); |
0fd88904 | 1203 | dest_buffer = value_contents (fromval); |
c906108c SS |
1204 | } |
1205 | ||
1206 | write_memory (changed_addr, dest_buffer, changed_len); | |
8cebebb9 PP |
1207 | observer_notify_memory_changed (changed_addr, changed_len, |
1208 | dest_buffer); | |
c906108c SS |
1209 | } |
1210 | break; | |
1211 | ||
492254e9 | 1212 | case lval_register: |
c906108c | 1213 | { |
c906108c | 1214 | struct frame_info *frame; |
d80b854b | 1215 | struct gdbarch *gdbarch; |
ff2e87ac | 1216 | int value_reg; |
c906108c SS |
1217 | |
1218 | /* Figure out which frame this is in currently. */ | |
0c16dd26 AC |
1219 | frame = frame_find_by_id (VALUE_FRAME_ID (toval)); |
1220 | value_reg = VALUE_REGNUM (toval); | |
c906108c SS |
1221 | |
1222 | if (!frame) | |
8a3fe4f8 | 1223 | error (_("Value being assigned to is no longer active.")); |
d80b854b UW |
1224 | |
1225 | gdbarch = get_frame_arch (frame); | |
1226 | if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type)) | |
492254e9 | 1227 | { |
ff2e87ac | 1228 | /* If TOVAL is a special machine register requiring |
ac3eeb49 MS |
1229 | conversion of program values to a special raw |
1230 | format. */ | |
d80b854b | 1231 | gdbarch_value_to_register (gdbarch, frame, |
ac3eeb49 MS |
1232 | VALUE_REGNUM (toval), type, |
1233 | value_contents (fromval)); | |
492254e9 | 1234 | } |
c906108c | 1235 | else |
492254e9 | 1236 | { |
df407dfe | 1237 | if (value_bitsize (toval)) |
00fa51f6 | 1238 | { |
2d88202a UW |
1239 | struct value *parent = value_parent (toval); |
1240 | int offset = value_offset (parent) + value_offset (toval); | |
00fa51f6 UW |
1241 | int changed_len; |
1242 | gdb_byte buffer[sizeof (LONGEST)]; | |
1243 | ||
1244 | changed_len = (value_bitpos (toval) | |
1245 | + value_bitsize (toval) | |
1246 | + HOST_CHAR_BIT - 1) | |
1247 | / HOST_CHAR_BIT; | |
1248 | ||
1249 | if (changed_len > (int) sizeof (LONGEST)) | |
3e43a32a MS |
1250 | error (_("Can't handle bitfields which " |
1251 | "don't fit in a %d bit word."), | |
00fa51f6 UW |
1252 | (int) sizeof (LONGEST) * HOST_CHAR_BIT); |
1253 | ||
2d88202a | 1254 | get_frame_register_bytes (frame, value_reg, offset, |
00fa51f6 UW |
1255 | changed_len, buffer); |
1256 | ||
50810684 UW |
1257 | modify_field (type, buffer, value_as_long (fromval), |
1258 | value_bitpos (toval), value_bitsize (toval)); | |
00fa51f6 | 1259 | |
2d88202a | 1260 | put_frame_register_bytes (frame, value_reg, offset, |
00fa51f6 UW |
1261 | changed_len, buffer); |
1262 | } | |
c906108c | 1263 | else |
00fa51f6 UW |
1264 | { |
1265 | put_frame_register_bytes (frame, value_reg, | |
1266 | value_offset (toval), | |
1267 | TYPE_LENGTH (type), | |
1268 | value_contents (fromval)); | |
1269 | } | |
ff2e87ac | 1270 | } |
00fa51f6 | 1271 | |
9a4105ab AC |
1272 | if (deprecated_register_changed_hook) |
1273 | deprecated_register_changed_hook (-1); | |
f4c5303c | 1274 | observer_notify_target_changed (¤t_target); |
ff2e87ac | 1275 | break; |
c906108c | 1276 | } |
5f5233d4 PA |
1277 | |
1278 | case lval_computed: | |
1279 | { | |
1280 | struct lval_funcs *funcs = value_computed_funcs (toval); | |
1281 | ||
1282 | funcs->write (toval, fromval); | |
1283 | } | |
1284 | break; | |
1285 | ||
c906108c | 1286 | default: |
8a3fe4f8 | 1287 | error (_("Left operand of assignment is not an lvalue.")); |
c906108c SS |
1288 | } |
1289 | ||
cb741690 DJ |
1290 | /* Assigning to the stack pointer, frame pointer, and other |
1291 | (architecture and calling convention specific) registers may | |
1292 | cause the frame cache to be out of date. Assigning to memory | |
1293 | also can. We just do this on all assignments to registers or | |
1294 | memory, for simplicity's sake; I doubt the slowdown matters. */ | |
1295 | switch (VALUE_LVAL (toval)) | |
1296 | { | |
1297 | case lval_memory: | |
1298 | case lval_register: | |
0e03807e | 1299 | case lval_computed: |
cb741690 DJ |
1300 | |
1301 | reinit_frame_cache (); | |
1302 | ||
ac3eeb49 MS |
1303 | /* Having destroyed the frame cache, restore the selected |
1304 | frame. */ | |
cb741690 DJ |
1305 | |
1306 | /* FIXME: cagney/2002-11-02: There has to be a better way of | |
1307 | doing this. Instead of constantly saving/restoring the | |
1308 | frame. Why not create a get_selected_frame() function that, | |
1309 | having saved the selected frame's ID can automatically | |
1310 | re-find the previously selected frame automatically. */ | |
1311 | ||
1312 | { | |
1313 | struct frame_info *fi = frame_find_by_id (old_frame); | |
a109c7c1 | 1314 | |
cb741690 DJ |
1315 | if (fi != NULL) |
1316 | select_frame (fi); | |
1317 | } | |
1318 | ||
1319 | break; | |
1320 | default: | |
1321 | break; | |
1322 | } | |
1323 | ||
ac3eeb49 MS |
1324 | /* If the field does not entirely fill a LONGEST, then zero the sign |
1325 | bits. If the field is signed, and is negative, then sign | |
1326 | extend. */ | |
df407dfe AC |
1327 | if ((value_bitsize (toval) > 0) |
1328 | && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST))) | |
c906108c SS |
1329 | { |
1330 | LONGEST fieldval = value_as_long (fromval); | |
df407dfe | 1331 | LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1; |
c906108c SS |
1332 | |
1333 | fieldval &= valmask; | |
ac3eeb49 MS |
1334 | if (!TYPE_UNSIGNED (type) |
1335 | && (fieldval & (valmask ^ (valmask >> 1)))) | |
c906108c SS |
1336 | fieldval |= ~valmask; |
1337 | ||
1338 | fromval = value_from_longest (type, fieldval); | |
1339 | } | |
1340 | ||
4aac0db7 UW |
1341 | /* The return value is a copy of TOVAL so it shares its location |
1342 | information, but its contents are updated from FROMVAL. This | |
1343 | implies the returned value is not lazy, even if TOVAL was. */ | |
c906108c | 1344 | val = value_copy (toval); |
4aac0db7 | 1345 | set_value_lazy (val, 0); |
0fd88904 | 1346 | memcpy (value_contents_raw (val), value_contents (fromval), |
c906108c | 1347 | TYPE_LENGTH (type)); |
4aac0db7 UW |
1348 | |
1349 | /* We copy over the enclosing type and pointed-to offset from FROMVAL | |
1350 | in the case of pointer types. For object types, the enclosing type | |
1351 | and embedded offset must *not* be copied: the target object refered | |
1352 | to by TOVAL retains its original dynamic type after assignment. */ | |
1353 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
1354 | { | |
1355 | set_value_enclosing_type (val, value_enclosing_type (fromval)); | |
1356 | set_value_pointed_to_offset (val, value_pointed_to_offset (fromval)); | |
1357 | } | |
c5aa993b | 1358 | |
c906108c SS |
1359 | return val; |
1360 | } | |
1361 | ||
1362 | /* Extend a value VAL to COUNT repetitions of its type. */ | |
1363 | ||
f23631e4 AC |
1364 | struct value * |
1365 | value_repeat (struct value *arg1, int count) | |
c906108c | 1366 | { |
f23631e4 | 1367 | struct value *val; |
c906108c SS |
1368 | |
1369 | if (VALUE_LVAL (arg1) != lval_memory) | |
8a3fe4f8 | 1370 | error (_("Only values in memory can be extended with '@'.")); |
c906108c | 1371 | if (count < 1) |
8a3fe4f8 | 1372 | error (_("Invalid number %d of repetitions."), count); |
c906108c | 1373 | |
4754a64e | 1374 | val = allocate_repeat_value (value_enclosing_type (arg1), count); |
c906108c | 1375 | |
42ae5230 | 1376 | read_memory (value_address (arg1), |
990a07ab | 1377 | value_contents_all_raw (val), |
4754a64e | 1378 | TYPE_LENGTH (value_enclosing_type (val))); |
c906108c | 1379 | VALUE_LVAL (val) = lval_memory; |
42ae5230 | 1380 | set_value_address (val, value_address (arg1)); |
c906108c SS |
1381 | |
1382 | return val; | |
1383 | } | |
1384 | ||
f23631e4 | 1385 | struct value * |
fba45db2 | 1386 | value_of_variable (struct symbol *var, struct block *b) |
c906108c | 1387 | { |
f23631e4 | 1388 | struct value *val; |
61212c0f | 1389 | struct frame_info *frame; |
c906108c | 1390 | |
61212c0f UW |
1391 | if (!symbol_read_needs_frame (var)) |
1392 | frame = NULL; | |
1393 | else if (!b) | |
1394 | frame = get_selected_frame (_("No frame selected.")); | |
1395 | else | |
c906108c SS |
1396 | { |
1397 | frame = block_innermost_frame (b); | |
1398 | if (!frame) | |
c5aa993b | 1399 | { |
edb3359d | 1400 | if (BLOCK_FUNCTION (b) && !block_inlined_p (b) |
de5ad195 | 1401 | && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b))) |
8a3fe4f8 | 1402 | error (_("No frame is currently executing in block %s."), |
de5ad195 | 1403 | SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b))); |
c906108c | 1404 | else |
8a3fe4f8 | 1405 | error (_("No frame is currently executing in specified block")); |
c5aa993b | 1406 | } |
c906108c SS |
1407 | } |
1408 | ||
1409 | val = read_var_value (var, frame); | |
1410 | if (!val) | |
8a3fe4f8 | 1411 | error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var)); |
c906108c SS |
1412 | |
1413 | return val; | |
1414 | } | |
1415 | ||
61212c0f UW |
1416 | struct value * |
1417 | address_of_variable (struct symbol *var, struct block *b) | |
1418 | { | |
1419 | struct type *type = SYMBOL_TYPE (var); | |
1420 | struct value *val; | |
1421 | ||
1422 | /* Evaluate it first; if the result is a memory address, we're fine. | |
581e13c1 | 1423 | Lazy evaluation pays off here. */ |
61212c0f UW |
1424 | |
1425 | val = value_of_variable (var, b); | |
1426 | ||
1427 | if ((VALUE_LVAL (val) == lval_memory && value_lazy (val)) | |
1428 | || TYPE_CODE (type) == TYPE_CODE_FUNC) | |
1429 | { | |
42ae5230 | 1430 | CORE_ADDR addr = value_address (val); |
a109c7c1 | 1431 | |
61212c0f UW |
1432 | return value_from_pointer (lookup_pointer_type (type), addr); |
1433 | } | |
1434 | ||
1435 | /* Not a memory address; check what the problem was. */ | |
1436 | switch (VALUE_LVAL (val)) | |
1437 | { | |
1438 | case lval_register: | |
1439 | { | |
1440 | struct frame_info *frame; | |
1441 | const char *regname; | |
1442 | ||
1443 | frame = frame_find_by_id (VALUE_FRAME_ID (val)); | |
1444 | gdb_assert (frame); | |
1445 | ||
1446 | regname = gdbarch_register_name (get_frame_arch (frame), | |
1447 | VALUE_REGNUM (val)); | |
1448 | gdb_assert (regname && *regname); | |
1449 | ||
1450 | error (_("Address requested for identifier " | |
1451 | "\"%s\" which is in register $%s"), | |
1452 | SYMBOL_PRINT_NAME (var), regname); | |
1453 | break; | |
1454 | } | |
1455 | ||
1456 | default: | |
1457 | error (_("Can't take address of \"%s\" which isn't an lvalue."), | |
1458 | SYMBOL_PRINT_NAME (var)); | |
1459 | break; | |
1460 | } | |
1461 | ||
1462 | return val; | |
1463 | } | |
1464 | ||
63092375 DJ |
1465 | /* Return one if VAL does not live in target memory, but should in order |
1466 | to operate on it. Otherwise return zero. */ | |
1467 | ||
1468 | int | |
1469 | value_must_coerce_to_target (struct value *val) | |
1470 | { | |
1471 | struct type *valtype; | |
1472 | ||
1473 | /* The only lval kinds which do not live in target memory. */ | |
1474 | if (VALUE_LVAL (val) != not_lval | |
1475 | && VALUE_LVAL (val) != lval_internalvar) | |
1476 | return 0; | |
1477 | ||
1478 | valtype = check_typedef (value_type (val)); | |
1479 | ||
1480 | switch (TYPE_CODE (valtype)) | |
1481 | { | |
1482 | case TYPE_CODE_ARRAY: | |
3cbaedff | 1483 | return TYPE_VECTOR (valtype) ? 0 : 1; |
63092375 DJ |
1484 | case TYPE_CODE_STRING: |
1485 | return 1; | |
1486 | default: | |
1487 | return 0; | |
1488 | } | |
1489 | } | |
1490 | ||
3e43a32a MS |
1491 | /* Make sure that VAL lives in target memory if it's supposed to. For |
1492 | instance, strings are constructed as character arrays in GDB's | |
1493 | storage, and this function copies them to the target. */ | |
63092375 DJ |
1494 | |
1495 | struct value * | |
1496 | value_coerce_to_target (struct value *val) | |
1497 | { | |
1498 | LONGEST length; | |
1499 | CORE_ADDR addr; | |
1500 | ||
1501 | if (!value_must_coerce_to_target (val)) | |
1502 | return val; | |
1503 | ||
1504 | length = TYPE_LENGTH (check_typedef (value_type (val))); | |
1505 | addr = allocate_space_in_inferior (length); | |
1506 | write_memory (addr, value_contents (val), length); | |
1507 | return value_at_lazy (value_type (val), addr); | |
1508 | } | |
1509 | ||
ac3eeb49 MS |
1510 | /* Given a value which is an array, return a value which is a pointer |
1511 | to its first element, regardless of whether or not the array has a | |
1512 | nonzero lower bound. | |
c906108c | 1513 | |
ac3eeb49 MS |
1514 | FIXME: A previous comment here indicated that this routine should |
1515 | be substracting the array's lower bound. It's not clear to me that | |
1516 | this is correct. Given an array subscripting operation, it would | |
1517 | certainly work to do the adjustment here, essentially computing: | |
c906108c SS |
1518 | |
1519 | (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0]) | |
1520 | ||
ac3eeb49 MS |
1521 | However I believe a more appropriate and logical place to account |
1522 | for the lower bound is to do so in value_subscript, essentially | |
1523 | computing: | |
c906108c SS |
1524 | |
1525 | (&array[0] + ((index - lowerbound) * sizeof array[0])) | |
1526 | ||
ac3eeb49 MS |
1527 | As further evidence consider what would happen with operations |
1528 | other than array subscripting, where the caller would get back a | |
1529 | value that had an address somewhere before the actual first element | |
1530 | of the array, and the information about the lower bound would be | |
581e13c1 | 1531 | lost because of the coercion to pointer type. */ |
c906108c | 1532 | |
f23631e4 AC |
1533 | struct value * |
1534 | value_coerce_array (struct value *arg1) | |
c906108c | 1535 | { |
df407dfe | 1536 | struct type *type = check_typedef (value_type (arg1)); |
c906108c | 1537 | |
63092375 DJ |
1538 | /* If the user tries to do something requiring a pointer with an |
1539 | array that has not yet been pushed to the target, then this would | |
1540 | be a good time to do so. */ | |
1541 | arg1 = value_coerce_to_target (arg1); | |
1542 | ||
c906108c | 1543 | if (VALUE_LVAL (arg1) != lval_memory) |
8a3fe4f8 | 1544 | error (_("Attempt to take address of value not located in memory.")); |
c906108c | 1545 | |
4478b372 | 1546 | return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
42ae5230 | 1547 | value_address (arg1)); |
c906108c SS |
1548 | } |
1549 | ||
1550 | /* Given a value which is a function, return a value which is a pointer | |
1551 | to it. */ | |
1552 | ||
f23631e4 AC |
1553 | struct value * |
1554 | value_coerce_function (struct value *arg1) | |
c906108c | 1555 | { |
f23631e4 | 1556 | struct value *retval; |
c906108c SS |
1557 | |
1558 | if (VALUE_LVAL (arg1) != lval_memory) | |
8a3fe4f8 | 1559 | error (_("Attempt to take address of value not located in memory.")); |
c906108c | 1560 | |
df407dfe | 1561 | retval = value_from_pointer (lookup_pointer_type (value_type (arg1)), |
42ae5230 | 1562 | value_address (arg1)); |
c906108c | 1563 | return retval; |
c5aa993b | 1564 | } |
c906108c | 1565 | |
ac3eeb49 MS |
1566 | /* Return a pointer value for the object for which ARG1 is the |
1567 | contents. */ | |
c906108c | 1568 | |
f23631e4 AC |
1569 | struct value * |
1570 | value_addr (struct value *arg1) | |
c906108c | 1571 | { |
f23631e4 | 1572 | struct value *arg2; |
df407dfe | 1573 | struct type *type = check_typedef (value_type (arg1)); |
a109c7c1 | 1574 | |
c906108c SS |
1575 | if (TYPE_CODE (type) == TYPE_CODE_REF) |
1576 | { | |
ac3eeb49 MS |
1577 | /* Copy the value, but change the type from (T&) to (T*). We |
1578 | keep the same location information, which is efficient, and | |
1579 | allows &(&X) to get the location containing the reference. */ | |
c906108c | 1580 | arg2 = value_copy (arg1); |
ac3eeb49 MS |
1581 | deprecated_set_value_type (arg2, |
1582 | lookup_pointer_type (TYPE_TARGET_TYPE (type))); | |
c906108c SS |
1583 | return arg2; |
1584 | } | |
1585 | if (TYPE_CODE (type) == TYPE_CODE_FUNC) | |
1586 | return value_coerce_function (arg1); | |
1587 | ||
63092375 DJ |
1588 | /* If this is an array that has not yet been pushed to the target, |
1589 | then this would be a good time to force it to memory. */ | |
1590 | arg1 = value_coerce_to_target (arg1); | |
1591 | ||
c906108c | 1592 | if (VALUE_LVAL (arg1) != lval_memory) |
8a3fe4f8 | 1593 | error (_("Attempt to take address of value not located in memory.")); |
c906108c | 1594 | |
581e13c1 | 1595 | /* Get target memory address. */ |
df407dfe | 1596 | arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)), |
42ae5230 | 1597 | (value_address (arg1) |
13c3b5f5 | 1598 | + value_embedded_offset (arg1))); |
c906108c SS |
1599 | |
1600 | /* This may be a pointer to a base subobject; so remember the | |
ac3eeb49 | 1601 | full derived object's type ... */ |
4dfea560 DE |
1602 | set_value_enclosing_type (arg2, |
1603 | lookup_pointer_type (value_enclosing_type (arg1))); | |
ac3eeb49 MS |
1604 | /* ... and also the relative position of the subobject in the full |
1605 | object. */ | |
b44d461b | 1606 | set_value_pointed_to_offset (arg2, value_embedded_offset (arg1)); |
c906108c SS |
1607 | return arg2; |
1608 | } | |
1609 | ||
ac3eeb49 MS |
1610 | /* Return a reference value for the object for which ARG1 is the |
1611 | contents. */ | |
fb933624 DJ |
1612 | |
1613 | struct value * | |
1614 | value_ref (struct value *arg1) | |
1615 | { | |
1616 | struct value *arg2; | |
fb933624 | 1617 | struct type *type = check_typedef (value_type (arg1)); |
a109c7c1 | 1618 | |
fb933624 DJ |
1619 | if (TYPE_CODE (type) == TYPE_CODE_REF) |
1620 | return arg1; | |
1621 | ||
1622 | arg2 = value_addr (arg1); | |
1623 | deprecated_set_value_type (arg2, lookup_reference_type (type)); | |
1624 | return arg2; | |
1625 | } | |
1626 | ||
ac3eeb49 MS |
1627 | /* Given a value of a pointer type, apply the C unary * operator to |
1628 | it. */ | |
c906108c | 1629 | |
f23631e4 AC |
1630 | struct value * |
1631 | value_ind (struct value *arg1) | |
c906108c SS |
1632 | { |
1633 | struct type *base_type; | |
f23631e4 | 1634 | struct value *arg2; |
c906108c | 1635 | |
994b9211 | 1636 | arg1 = coerce_array (arg1); |
c906108c | 1637 | |
df407dfe | 1638 | base_type = check_typedef (value_type (arg1)); |
c906108c | 1639 | |
8cf6f0b1 TT |
1640 | if (VALUE_LVAL (arg1) == lval_computed) |
1641 | { | |
1642 | struct lval_funcs *funcs = value_computed_funcs (arg1); | |
1643 | ||
1644 | if (funcs->indirect) | |
1645 | { | |
1646 | struct value *result = funcs->indirect (arg1); | |
1647 | ||
1648 | if (result) | |
1649 | return result; | |
1650 | } | |
1651 | } | |
1652 | ||
22fe0fbb | 1653 | if (TYPE_CODE (base_type) == TYPE_CODE_PTR) |
c906108c SS |
1654 | { |
1655 | struct type *enc_type; | |
a109c7c1 | 1656 | |
ac3eeb49 MS |
1657 | /* We may be pointing to something embedded in a larger object. |
1658 | Get the real type of the enclosing object. */ | |
4754a64e | 1659 | enc_type = check_typedef (value_enclosing_type (arg1)); |
c906108c | 1660 | enc_type = TYPE_TARGET_TYPE (enc_type); |
0d5de010 DJ |
1661 | |
1662 | if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC | |
1663 | || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD) | |
1664 | /* For functions, go through find_function_addr, which knows | |
1665 | how to handle function descriptors. */ | |
ac3eeb49 MS |
1666 | arg2 = value_at_lazy (enc_type, |
1667 | find_function_addr (arg1, NULL)); | |
0d5de010 | 1668 | else |
581e13c1 | 1669 | /* Retrieve the enclosing object pointed to. */ |
ac3eeb49 MS |
1670 | arg2 = value_at_lazy (enc_type, |
1671 | (value_as_address (arg1) | |
1672 | - value_pointed_to_offset (arg1))); | |
0d5de010 | 1673 | |
ac3eeb49 | 1674 | /* Re-adjust type. */ |
04624583 | 1675 | deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type)); |
ac3eeb49 | 1676 | /* Add embedding info. */ |
4dfea560 | 1677 | set_value_enclosing_type (arg2, enc_type); |
b44d461b | 1678 | set_value_embedded_offset (arg2, value_pointed_to_offset (arg1)); |
c906108c | 1679 | |
ac3eeb49 | 1680 | /* We may be pointing to an object of some derived type. */ |
c906108c SS |
1681 | arg2 = value_full_object (arg2, NULL, 0, 0, 0); |
1682 | return arg2; | |
1683 | } | |
1684 | ||
8a3fe4f8 | 1685 | error (_("Attempt to take contents of a non-pointer value.")); |
ac3eeb49 | 1686 | return 0; /* For lint -- never reached. */ |
c906108c SS |
1687 | } |
1688 | \f | |
63092375 | 1689 | /* Create a value for an array by allocating space in GDB, copying |
ac3eeb49 MS |
1690 | copying the data into that space, and then setting up an array |
1691 | value. | |
c906108c | 1692 | |
ac3eeb49 MS |
1693 | The array bounds are set from LOWBOUND and HIGHBOUND, and the array |
1694 | is populated from the values passed in ELEMVEC. | |
c906108c SS |
1695 | |
1696 | The element type of the array is inherited from the type of the | |
1697 | first element, and all elements must have the same size (though we | |
ac3eeb49 | 1698 | don't currently enforce any restriction on their types). */ |
c906108c | 1699 | |
f23631e4 AC |
1700 | struct value * |
1701 | value_array (int lowbound, int highbound, struct value **elemvec) | |
c906108c SS |
1702 | { |
1703 | int nelem; | |
1704 | int idx; | |
1705 | unsigned int typelength; | |
f23631e4 | 1706 | struct value *val; |
c906108c | 1707 | struct type *arraytype; |
c906108c | 1708 | |
ac3eeb49 MS |
1709 | /* Validate that the bounds are reasonable and that each of the |
1710 | elements have the same size. */ | |
c906108c SS |
1711 | |
1712 | nelem = highbound - lowbound + 1; | |
1713 | if (nelem <= 0) | |
1714 | { | |
8a3fe4f8 | 1715 | error (_("bad array bounds (%d, %d)"), lowbound, highbound); |
c906108c | 1716 | } |
4754a64e | 1717 | typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0])); |
c906108c SS |
1718 | for (idx = 1; idx < nelem; idx++) |
1719 | { | |
4754a64e | 1720 | if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength) |
c906108c | 1721 | { |
8a3fe4f8 | 1722 | error (_("array elements must all be the same size")); |
c906108c SS |
1723 | } |
1724 | } | |
1725 | ||
e3506a9f UW |
1726 | arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]), |
1727 | lowbound, highbound); | |
c906108c SS |
1728 | |
1729 | if (!current_language->c_style_arrays) | |
1730 | { | |
1731 | val = allocate_value (arraytype); | |
1732 | for (idx = 0; idx < nelem; idx++) | |
1733 | { | |
990a07ab | 1734 | memcpy (value_contents_all_raw (val) + (idx * typelength), |
46615f07 | 1735 | value_contents_all (elemvec[idx]), |
c906108c SS |
1736 | typelength); |
1737 | } | |
c906108c SS |
1738 | return val; |
1739 | } | |
1740 | ||
63092375 DJ |
1741 | /* Allocate space to store the array, and then initialize it by |
1742 | copying in each element. */ | |
c906108c | 1743 | |
63092375 | 1744 | val = allocate_value (arraytype); |
c906108c | 1745 | for (idx = 0; idx < nelem; idx++) |
63092375 DJ |
1746 | memcpy (value_contents_writeable (val) + (idx * typelength), |
1747 | value_contents_all (elemvec[idx]), | |
1748 | typelength); | |
1749 | return val; | |
c906108c SS |
1750 | } |
1751 | ||
6c7a06a3 | 1752 | struct value * |
3b7538c0 | 1753 | value_cstring (char *ptr, int len, struct type *char_type) |
6c7a06a3 TT |
1754 | { |
1755 | struct value *val; | |
1756 | int lowbound = current_language->string_lower_bound; | |
1757 | int highbound = len / TYPE_LENGTH (char_type); | |
6c7a06a3 | 1758 | struct type *stringtype |
e3506a9f | 1759 | = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1); |
6c7a06a3 TT |
1760 | |
1761 | val = allocate_value (stringtype); | |
1762 | memcpy (value_contents_raw (val), ptr, len); | |
1763 | return val; | |
1764 | } | |
1765 | ||
ac3eeb49 MS |
1766 | /* Create a value for a string constant by allocating space in the |
1767 | inferior, copying the data into that space, and returning the | |
1768 | address with type TYPE_CODE_STRING. PTR points to the string | |
1769 | constant data; LEN is number of characters. | |
1770 | ||
1771 | Note that string types are like array of char types with a lower | |
1772 | bound of zero and an upper bound of LEN - 1. Also note that the | |
1773 | string may contain embedded null bytes. */ | |
c906108c | 1774 | |
f23631e4 | 1775 | struct value * |
3b7538c0 | 1776 | value_string (char *ptr, int len, struct type *char_type) |
c906108c | 1777 | { |
f23631e4 | 1778 | struct value *val; |
c906108c | 1779 | int lowbound = current_language->string_lower_bound; |
3b7538c0 | 1780 | int highbound = len / TYPE_LENGTH (char_type); |
c906108c | 1781 | struct type *stringtype |
e3506a9f | 1782 | = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1); |
c906108c | 1783 | |
3b7538c0 UW |
1784 | val = allocate_value (stringtype); |
1785 | memcpy (value_contents_raw (val), ptr, len); | |
1786 | return val; | |
c906108c SS |
1787 | } |
1788 | ||
f23631e4 | 1789 | struct value * |
22601c15 | 1790 | value_bitstring (char *ptr, int len, struct type *index_type) |
c906108c | 1791 | { |
f23631e4 | 1792 | struct value *val; |
22601c15 UW |
1793 | struct type *domain_type |
1794 | = create_range_type (NULL, index_type, 0, len - 1); | |
1795 | struct type *type = create_set_type (NULL, domain_type); | |
a109c7c1 | 1796 | |
c906108c SS |
1797 | TYPE_CODE (type) = TYPE_CODE_BITSTRING; |
1798 | val = allocate_value (type); | |
990a07ab | 1799 | memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type)); |
c906108c SS |
1800 | return val; |
1801 | } | |
1802 | \f | |
ac3eeb49 MS |
1803 | /* See if we can pass arguments in T2 to a function which takes |
1804 | arguments of types T1. T1 is a list of NARGS arguments, and T2 is | |
1805 | a NULL-terminated vector. If some arguments need coercion of some | |
1806 | sort, then the coerced values are written into T2. Return value is | |
1807 | 0 if the arguments could be matched, or the position at which they | |
1808 | differ if not. | |
c906108c | 1809 | |
ac3eeb49 MS |
1810 | STATICP is nonzero if the T1 argument list came from a static |
1811 | member function. T2 will still include the ``this'' pointer, but | |
1812 | it will be skipped. | |
c906108c SS |
1813 | |
1814 | For non-static member functions, we ignore the first argument, | |
ac3eeb49 MS |
1815 | which is the type of the instance variable. This is because we |
1816 | want to handle calls with objects from derived classes. This is | |
1817 | not entirely correct: we should actually check to make sure that a | |
c906108c SS |
1818 | requested operation is type secure, shouldn't we? FIXME. */ |
1819 | ||
1820 | static int | |
ad2f7632 DJ |
1821 | typecmp (int staticp, int varargs, int nargs, |
1822 | struct field t1[], struct value *t2[]) | |
c906108c SS |
1823 | { |
1824 | int i; | |
1825 | ||
1826 | if (t2 == 0) | |
ac3eeb49 MS |
1827 | internal_error (__FILE__, __LINE__, |
1828 | _("typecmp: no argument list")); | |
ad2f7632 | 1829 | |
ac3eeb49 MS |
1830 | /* Skip ``this'' argument if applicable. T2 will always include |
1831 | THIS. */ | |
4a1970e4 | 1832 | if (staticp) |
ad2f7632 DJ |
1833 | t2 ++; |
1834 | ||
1835 | for (i = 0; | |
1836 | (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID; | |
1837 | i++) | |
c906108c | 1838 | { |
c5aa993b | 1839 | struct type *tt1, *tt2; |
ad2f7632 | 1840 | |
c5aa993b JM |
1841 | if (!t2[i]) |
1842 | return i + 1; | |
ad2f7632 DJ |
1843 | |
1844 | tt1 = check_typedef (t1[i].type); | |
df407dfe | 1845 | tt2 = check_typedef (value_type (t2[i])); |
ad2f7632 | 1846 | |
c906108c | 1847 | if (TYPE_CODE (tt1) == TYPE_CODE_REF |
c5aa993b | 1848 | /* We should be doing hairy argument matching, as below. */ |
3e43a32a MS |
1849 | && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) |
1850 | == TYPE_CODE (tt2))) | |
c906108c SS |
1851 | { |
1852 | if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY) | |
1853 | t2[i] = value_coerce_array (t2[i]); | |
1854 | else | |
fb933624 | 1855 | t2[i] = value_ref (t2[i]); |
c906108c SS |
1856 | continue; |
1857 | } | |
1858 | ||
802db21b DB |
1859 | /* djb - 20000715 - Until the new type structure is in the |
1860 | place, and we can attempt things like implicit conversions, | |
1861 | we need to do this so you can take something like a map<const | |
1862 | char *>, and properly access map["hello"], because the | |
1863 | argument to [] will be a reference to a pointer to a char, | |
ac3eeb49 MS |
1864 | and the argument will be a pointer to a char. */ |
1865 | while (TYPE_CODE(tt1) == TYPE_CODE_REF | |
1866 | || TYPE_CODE (tt1) == TYPE_CODE_PTR) | |
802db21b DB |
1867 | { |
1868 | tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) ); | |
1869 | } | |
ac3eeb49 MS |
1870 | while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY |
1871 | || TYPE_CODE(tt2) == TYPE_CODE_PTR | |
1872 | || TYPE_CODE(tt2) == TYPE_CODE_REF) | |
c906108c | 1873 | { |
ac3eeb49 | 1874 | tt2 = check_typedef (TYPE_TARGET_TYPE(tt2)); |
c906108c | 1875 | } |
c5aa993b JM |
1876 | if (TYPE_CODE (tt1) == TYPE_CODE (tt2)) |
1877 | continue; | |
ac3eeb49 MS |
1878 | /* Array to pointer is a `trivial conversion' according to the |
1879 | ARM. */ | |
c906108c | 1880 | |
ac3eeb49 MS |
1881 | /* We should be doing much hairier argument matching (see |
1882 | section 13.2 of the ARM), but as a quick kludge, just check | |
1883 | for the same type code. */ | |
df407dfe | 1884 | if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i]))) |
c5aa993b | 1885 | return i + 1; |
c906108c | 1886 | } |
ad2f7632 | 1887 | if (varargs || t2[i] == NULL) |
c5aa993b | 1888 | return 0; |
ad2f7632 | 1889 | return i + 1; |
c906108c SS |
1890 | } |
1891 | ||
ac3eeb49 | 1892 | /* Helper function used by value_struct_elt to recurse through |
581e13c1 | 1893 | baseclasses. Look for a field NAME in ARG1. Adjust the address of |
ac3eeb49 MS |
1894 | ARG1 by OFFSET bytes, and search in it assuming it has (class) type |
1895 | TYPE. If found, return value, else return NULL. | |
c906108c | 1896 | |
ac3eeb49 MS |
1897 | If LOOKING_FOR_BASECLASS, then instead of looking for struct |
1898 | fields, look for a baseclass named NAME. */ | |
c906108c | 1899 | |
f23631e4 | 1900 | static struct value * |
714f19d5 | 1901 | search_struct_field (const char *name, struct value *arg1, int offset, |
aa1ee363 | 1902 | struct type *type, int looking_for_baseclass) |
c906108c SS |
1903 | { |
1904 | int i; | |
edf3d5f3 | 1905 | int nbases; |
c906108c SS |
1906 | |
1907 | CHECK_TYPEDEF (type); | |
edf3d5f3 | 1908 | nbases = TYPE_N_BASECLASSES (type); |
c906108c | 1909 | |
c5aa993b | 1910 | if (!looking_for_baseclass) |
c906108c SS |
1911 | for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--) |
1912 | { | |
1913 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
1914 | ||
db577aea | 1915 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c | 1916 | { |
f23631e4 | 1917 | struct value *v; |
a109c7c1 | 1918 | |
d6a843b5 | 1919 | if (field_is_static (&TYPE_FIELD (type, i))) |
2c2738a0 DC |
1920 | { |
1921 | v = value_static_field (type, i); | |
1922 | if (v == 0) | |
3e43a32a MS |
1923 | error (_("field %s is nonexistent or " |
1924 | "has been optimized out"), | |
2c2738a0 DC |
1925 | name); |
1926 | } | |
c906108c | 1927 | else |
2c2738a0 DC |
1928 | { |
1929 | v = value_primitive_field (arg1, offset, i, type); | |
1930 | if (v == 0) | |
8a3fe4f8 | 1931 | error (_("there is no field named %s"), name); |
2c2738a0 | 1932 | } |
c906108c SS |
1933 | return v; |
1934 | } | |
1935 | ||
1936 | if (t_field_name | |
1937 | && (t_field_name[0] == '\0' | |
1938 | || (TYPE_CODE (type) == TYPE_CODE_UNION | |
db577aea | 1939 | && (strcmp_iw (t_field_name, "else") == 0)))) |
c906108c SS |
1940 | { |
1941 | struct type *field_type = TYPE_FIELD_TYPE (type, i); | |
a109c7c1 | 1942 | |
c906108c SS |
1943 | if (TYPE_CODE (field_type) == TYPE_CODE_UNION |
1944 | || TYPE_CODE (field_type) == TYPE_CODE_STRUCT) | |
1945 | { | |
ac3eeb49 MS |
1946 | /* Look for a match through the fields of an anonymous |
1947 | union, or anonymous struct. C++ provides anonymous | |
1948 | unions. | |
c906108c | 1949 | |
1b831c93 AC |
1950 | In the GNU Chill (now deleted from GDB) |
1951 | implementation of variant record types, each | |
1952 | <alternative field> has an (anonymous) union type, | |
1953 | each member of the union represents a <variant | |
1954 | alternative>. Each <variant alternative> is | |
1955 | represented as a struct, with a member for each | |
1956 | <variant field>. */ | |
c5aa993b | 1957 | |
f23631e4 | 1958 | struct value *v; |
c906108c SS |
1959 | int new_offset = offset; |
1960 | ||
db034ac5 AC |
1961 | /* This is pretty gross. In G++, the offset in an |
1962 | anonymous union is relative to the beginning of the | |
1b831c93 AC |
1963 | enclosing struct. In the GNU Chill (now deleted |
1964 | from GDB) implementation of variant records, the | |
1965 | bitpos is zero in an anonymous union field, so we | |
ac3eeb49 | 1966 | have to add the offset of the union here. */ |
c906108c SS |
1967 | if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT |
1968 | || (TYPE_NFIELDS (field_type) > 0 | |
1969 | && TYPE_FIELD_BITPOS (field_type, 0) == 0)) | |
1970 | new_offset += TYPE_FIELD_BITPOS (type, i) / 8; | |
1971 | ||
ac3eeb49 MS |
1972 | v = search_struct_field (name, arg1, new_offset, |
1973 | field_type, | |
c906108c SS |
1974 | looking_for_baseclass); |
1975 | if (v) | |
1976 | return v; | |
1977 | } | |
1978 | } | |
1979 | } | |
1980 | ||
c5aa993b | 1981 | for (i = 0; i < nbases; i++) |
c906108c | 1982 | { |
f23631e4 | 1983 | struct value *v; |
c906108c | 1984 | struct type *basetype = check_typedef (TYPE_BASECLASS (type, i)); |
ac3eeb49 MS |
1985 | /* If we are looking for baseclasses, this is what we get when |
1986 | we hit them. But it could happen that the base part's member | |
1987 | name is not yet filled in. */ | |
c906108c SS |
1988 | int found_baseclass = (looking_for_baseclass |
1989 | && TYPE_BASECLASS_NAME (type, i) != NULL | |
ac3eeb49 MS |
1990 | && (strcmp_iw (name, |
1991 | TYPE_BASECLASS_NAME (type, | |
1992 | i)) == 0)); | |
c906108c SS |
1993 | |
1994 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
1995 | { | |
1996 | int boffset; | |
3e3d7139 | 1997 | struct value *v2; |
c906108c SS |
1998 | |
1999 | boffset = baseclass_offset (type, i, | |
0fd88904 | 2000 | value_contents (arg1) + offset, |
1a334831 TT |
2001 | value_address (arg1) |
2002 | + value_embedded_offset (arg1) | |
2003 | + offset); | |
c906108c | 2004 | if (boffset == -1) |
8a3fe4f8 | 2005 | error (_("virtual baseclass botch")); |
c906108c | 2006 | |
ac3eeb49 | 2007 | /* The virtual base class pointer might have been clobbered |
581e13c1 | 2008 | by the user program. Make sure that it still points to a |
ac3eeb49 | 2009 | valid memory location. */ |
c906108c | 2010 | |
1a334831 TT |
2011 | boffset += value_embedded_offset (arg1) + offset; |
2012 | if (boffset < 0 | |
2013 | || boffset >= TYPE_LENGTH (value_enclosing_type (arg1))) | |
c906108c SS |
2014 | { |
2015 | CORE_ADDR base_addr; | |
c5aa993b | 2016 | |
3e3d7139 | 2017 | v2 = allocate_value (basetype); |
42ae5230 | 2018 | base_addr = value_address (arg1) + boffset; |
ac3eeb49 MS |
2019 | if (target_read_memory (base_addr, |
2020 | value_contents_raw (v2), | |
c906108c | 2021 | TYPE_LENGTH (basetype)) != 0) |
8a3fe4f8 | 2022 | error (_("virtual baseclass botch")); |
c906108c | 2023 | VALUE_LVAL (v2) = lval_memory; |
42ae5230 | 2024 | set_value_address (v2, base_addr); |
c906108c SS |
2025 | } |
2026 | else | |
2027 | { | |
1a334831 TT |
2028 | v2 = value_copy (arg1); |
2029 | deprecated_set_value_type (v2, basetype); | |
2030 | set_value_embedded_offset (v2, boffset); | |
c906108c SS |
2031 | } |
2032 | ||
2033 | if (found_baseclass) | |
2034 | return v2; | |
ac3eeb49 MS |
2035 | v = search_struct_field (name, v2, 0, |
2036 | TYPE_BASECLASS (type, i), | |
c906108c SS |
2037 | looking_for_baseclass); |
2038 | } | |
2039 | else if (found_baseclass) | |
2040 | v = value_primitive_field (arg1, offset, i, type); | |
2041 | else | |
2042 | v = search_struct_field (name, arg1, | |
ac3eeb49 MS |
2043 | offset + TYPE_BASECLASS_BITPOS (type, |
2044 | i) / 8, | |
c906108c | 2045 | basetype, looking_for_baseclass); |
c5aa993b JM |
2046 | if (v) |
2047 | return v; | |
c906108c SS |
2048 | } |
2049 | return NULL; | |
2050 | } | |
2051 | ||
ac3eeb49 | 2052 | /* Helper function used by value_struct_elt to recurse through |
581e13c1 | 2053 | baseclasses. Look for a field NAME in ARG1. Adjust the address of |
ac3eeb49 MS |
2054 | ARG1 by OFFSET bytes, and search in it assuming it has (class) type |
2055 | TYPE. | |
2056 | ||
2057 | If found, return value, else if name matched and args not return | |
2058 | (value) -1, else return NULL. */ | |
c906108c | 2059 | |
f23631e4 | 2060 | static struct value * |
714f19d5 | 2061 | search_struct_method (const char *name, struct value **arg1p, |
f23631e4 | 2062 | struct value **args, int offset, |
aa1ee363 | 2063 | int *static_memfuncp, struct type *type) |
c906108c SS |
2064 | { |
2065 | int i; | |
f23631e4 | 2066 | struct value *v; |
c906108c SS |
2067 | int name_matched = 0; |
2068 | char dem_opname[64]; | |
2069 | ||
2070 | CHECK_TYPEDEF (type); | |
2071 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) | |
2072 | { | |
2073 | char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i); | |
a109c7c1 | 2074 | |
581e13c1 | 2075 | /* FIXME! May need to check for ARM demangling here. */ |
c5aa993b JM |
2076 | if (strncmp (t_field_name, "__", 2) == 0 || |
2077 | strncmp (t_field_name, "op", 2) == 0 || | |
2078 | strncmp (t_field_name, "type", 4) == 0) | |
c906108c | 2079 | { |
c5aa993b JM |
2080 | if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI)) |
2081 | t_field_name = dem_opname; | |
2082 | else if (cplus_demangle_opname (t_field_name, dem_opname, 0)) | |
c906108c | 2083 | t_field_name = dem_opname; |
c906108c | 2084 | } |
db577aea | 2085 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c SS |
2086 | { |
2087 | int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1; | |
2088 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); | |
c906108c | 2089 | |
a109c7c1 | 2090 | name_matched = 1; |
de17c821 | 2091 | check_stub_method_group (type, i); |
c906108c | 2092 | if (j > 0 && args == 0) |
3e43a32a MS |
2093 | error (_("cannot resolve overloaded method " |
2094 | "`%s': no arguments supplied"), name); | |
acf5ed49 | 2095 | else if (j == 0 && args == 0) |
c906108c | 2096 | { |
acf5ed49 DJ |
2097 | v = value_fn_field (arg1p, f, j, type, offset); |
2098 | if (v != NULL) | |
2099 | return v; | |
c906108c | 2100 | } |
acf5ed49 DJ |
2101 | else |
2102 | while (j >= 0) | |
2103 | { | |
acf5ed49 | 2104 | if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j), |
ad2f7632 DJ |
2105 | TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)), |
2106 | TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)), | |
acf5ed49 DJ |
2107 | TYPE_FN_FIELD_ARGS (f, j), args)) |
2108 | { | |
2109 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) | |
ac3eeb49 MS |
2110 | return value_virtual_fn_field (arg1p, f, j, |
2111 | type, offset); | |
2112 | if (TYPE_FN_FIELD_STATIC_P (f, j) | |
2113 | && static_memfuncp) | |
acf5ed49 DJ |
2114 | *static_memfuncp = 1; |
2115 | v = value_fn_field (arg1p, f, j, type, offset); | |
2116 | if (v != NULL) | |
2117 | return v; | |
2118 | } | |
2119 | j--; | |
2120 | } | |
c906108c SS |
2121 | } |
2122 | } | |
2123 | ||
2124 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
2125 | { | |
2126 | int base_offset; | |
2127 | ||
2128 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
2129 | { | |
086280be UW |
2130 | struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i)); |
2131 | const gdb_byte *base_valaddr; | |
2132 | ||
2133 | /* The virtual base class pointer might have been | |
581e13c1 | 2134 | clobbered by the user program. Make sure that it |
086280be UW |
2135 | still points to a valid memory location. */ |
2136 | ||
2137 | if (offset < 0 || offset >= TYPE_LENGTH (type)) | |
c5aa993b | 2138 | { |
086280be | 2139 | gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass)); |
a109c7c1 | 2140 | |
42ae5230 | 2141 | if (target_read_memory (value_address (*arg1p) + offset, |
086280be UW |
2142 | tmp, TYPE_LENGTH (baseclass)) != 0) |
2143 | error (_("virtual baseclass botch")); | |
2144 | base_valaddr = tmp; | |
c5aa993b JM |
2145 | } |
2146 | else | |
086280be | 2147 | base_valaddr = value_contents (*arg1p) + offset; |
c5aa993b | 2148 | |
086280be | 2149 | base_offset = baseclass_offset (type, i, base_valaddr, |
42ae5230 | 2150 | value_address (*arg1p) + offset); |
086280be UW |
2151 | if (base_offset == -1) |
2152 | error (_("virtual baseclass botch")); | |
c5aa993b | 2153 | } |
c906108c SS |
2154 | else |
2155 | { | |
2156 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | |
c5aa993b | 2157 | } |
c906108c SS |
2158 | v = search_struct_method (name, arg1p, args, base_offset + offset, |
2159 | static_memfuncp, TYPE_BASECLASS (type, i)); | |
f23631e4 | 2160 | if (v == (struct value *) - 1) |
c906108c SS |
2161 | { |
2162 | name_matched = 1; | |
2163 | } | |
2164 | else if (v) | |
2165 | { | |
ac3eeb49 MS |
2166 | /* FIXME-bothner: Why is this commented out? Why is it here? */ |
2167 | /* *arg1p = arg1_tmp; */ | |
c906108c | 2168 | return v; |
c5aa993b | 2169 | } |
c906108c | 2170 | } |
c5aa993b | 2171 | if (name_matched) |
f23631e4 | 2172 | return (struct value *) - 1; |
c5aa993b JM |
2173 | else |
2174 | return NULL; | |
c906108c SS |
2175 | } |
2176 | ||
2177 | /* Given *ARGP, a value of type (pointer to a)* structure/union, | |
ac3eeb49 MS |
2178 | extract the component named NAME from the ultimate target |
2179 | structure/union and return it as a value with its appropriate type. | |
c906108c SS |
2180 | ERR is used in the error message if *ARGP's type is wrong. |
2181 | ||
2182 | C++: ARGS is a list of argument types to aid in the selection of | |
581e13c1 | 2183 | an appropriate method. Also, handle derived types. |
c906108c SS |
2184 | |
2185 | STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location | |
2186 | where the truthvalue of whether the function that was resolved was | |
2187 | a static member function or not is stored. | |
2188 | ||
ac3eeb49 MS |
2189 | ERR is an error message to be printed in case the field is not |
2190 | found. */ | |
c906108c | 2191 | |
f23631e4 AC |
2192 | struct value * |
2193 | value_struct_elt (struct value **argp, struct value **args, | |
714f19d5 | 2194 | const char *name, int *static_memfuncp, const char *err) |
c906108c | 2195 | { |
52f0bd74 | 2196 | struct type *t; |
f23631e4 | 2197 | struct value *v; |
c906108c | 2198 | |
994b9211 | 2199 | *argp = coerce_array (*argp); |
c906108c | 2200 | |
df407dfe | 2201 | t = check_typedef (value_type (*argp)); |
c906108c SS |
2202 | |
2203 | /* Follow pointers until we get to a non-pointer. */ | |
2204 | ||
2205 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) | |
2206 | { | |
2207 | *argp = value_ind (*argp); | |
2208 | /* Don't coerce fn pointer to fn and then back again! */ | |
df407dfe | 2209 | if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC) |
994b9211 | 2210 | *argp = coerce_array (*argp); |
df407dfe | 2211 | t = check_typedef (value_type (*argp)); |
c906108c SS |
2212 | } |
2213 | ||
c5aa993b | 2214 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c | 2215 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
3e43a32a MS |
2216 | error (_("Attempt to extract a component of a value that is not a %s."), |
2217 | err); | |
c906108c SS |
2218 | |
2219 | /* Assume it's not, unless we see that it is. */ | |
2220 | if (static_memfuncp) | |
c5aa993b | 2221 | *static_memfuncp = 0; |
c906108c SS |
2222 | |
2223 | if (!args) | |
2224 | { | |
2225 | /* if there are no arguments ...do this... */ | |
2226 | ||
ac3eeb49 MS |
2227 | /* Try as a field first, because if we succeed, there is less |
2228 | work to be done. */ | |
c906108c SS |
2229 | v = search_struct_field (name, *argp, 0, t, 0); |
2230 | if (v) | |
2231 | return v; | |
2232 | ||
2233 | /* C++: If it was not found as a data field, then try to | |
7b83ea04 | 2234 | return it as a pointer to a method. */ |
ac3eeb49 MS |
2235 | v = search_struct_method (name, argp, args, 0, |
2236 | static_memfuncp, t); | |
c906108c | 2237 | |
f23631e4 | 2238 | if (v == (struct value *) - 1) |
55b39184 | 2239 | error (_("Cannot take address of method %s."), name); |
c906108c SS |
2240 | else if (v == 0) |
2241 | { | |
2242 | if (TYPE_NFN_FIELDS (t)) | |
8a3fe4f8 | 2243 | error (_("There is no member or method named %s."), name); |
c906108c | 2244 | else |
8a3fe4f8 | 2245 | error (_("There is no member named %s."), name); |
c906108c SS |
2246 | } |
2247 | return v; | |
2248 | } | |
2249 | ||
ac3eeb49 MS |
2250 | v = search_struct_method (name, argp, args, 0, |
2251 | static_memfuncp, t); | |
7168a814 | 2252 | |
f23631e4 | 2253 | if (v == (struct value *) - 1) |
c906108c | 2254 | { |
3e43a32a MS |
2255 | error (_("One of the arguments you tried to pass to %s could not " |
2256 | "be converted to what the function wants."), name); | |
c906108c SS |
2257 | } |
2258 | else if (v == 0) | |
2259 | { | |
ac3eeb49 MS |
2260 | /* See if user tried to invoke data as function. If so, hand it |
2261 | back. If it's not callable (i.e., a pointer to function), | |
7b83ea04 | 2262 | gdb should give an error. */ |
c906108c | 2263 | v = search_struct_field (name, *argp, 0, t, 0); |
fa8de41e TT |
2264 | /* If we found an ordinary field, then it is not a method call. |
2265 | So, treat it as if it were a static member function. */ | |
2266 | if (v && static_memfuncp) | |
2267 | *static_memfuncp = 1; | |
c906108c SS |
2268 | } |
2269 | ||
2270 | if (!v) | |
79afc5ef SW |
2271 | throw_error (NOT_FOUND_ERROR, |
2272 | _("Structure has no component named %s."), name); | |
c906108c SS |
2273 | return v; |
2274 | } | |
2275 | ||
ac3eeb49 | 2276 | /* Search through the methods of an object (and its bases) to find a |
cfe9eade | 2277 | specified method. Return the pointer to the fn_field list of |
ac3eeb49 MS |
2278 | overloaded instances. |
2279 | ||
2280 | Helper function for value_find_oload_list. | |
2281 | ARGP is a pointer to a pointer to a value (the object). | |
2282 | METHOD is a string containing the method name. | |
2283 | OFFSET is the offset within the value. | |
2284 | TYPE is the assumed type of the object. | |
2285 | NUM_FNS is the number of overloaded instances. | |
2286 | BASETYPE is set to the actual type of the subobject where the | |
2287 | method is found. | |
581e13c1 | 2288 | BOFFSET is the offset of the base subobject where the method is found. */ |
c906108c | 2289 | |
7a292a7a | 2290 | static struct fn_field * |
714f19d5 | 2291 | find_method_list (struct value **argp, const char *method, |
ac3eeb49 | 2292 | int offset, struct type *type, int *num_fns, |
fba45db2 | 2293 | struct type **basetype, int *boffset) |
c906108c SS |
2294 | { |
2295 | int i; | |
c5aa993b | 2296 | struct fn_field *f; |
c906108c SS |
2297 | CHECK_TYPEDEF (type); |
2298 | ||
2299 | *num_fns = 0; | |
2300 | ||
ac3eeb49 | 2301 | /* First check in object itself. */ |
c5aa993b | 2302 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) |
c906108c | 2303 | { |
ac3eeb49 | 2304 | /* pai: FIXME What about operators and type conversions? */ |
c5aa993b | 2305 | char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i); |
a109c7c1 | 2306 | |
db577aea | 2307 | if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0)) |
c5aa993b | 2308 | { |
4a1970e4 DJ |
2309 | int len = TYPE_FN_FIELDLIST_LENGTH (type, i); |
2310 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); | |
4a1970e4 DJ |
2311 | |
2312 | *num_fns = len; | |
c5aa993b JM |
2313 | *basetype = type; |
2314 | *boffset = offset; | |
4a1970e4 | 2315 | |
de17c821 DJ |
2316 | /* Resolve any stub methods. */ |
2317 | check_stub_method_group (type, i); | |
4a1970e4 DJ |
2318 | |
2319 | return f; | |
c5aa993b JM |
2320 | } |
2321 | } | |
2322 | ||
ac3eeb49 | 2323 | /* Not found in object, check in base subobjects. */ |
c906108c SS |
2324 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) |
2325 | { | |
2326 | int base_offset; | |
a109c7c1 | 2327 | |
c906108c SS |
2328 | if (BASETYPE_VIA_VIRTUAL (type, i)) |
2329 | { | |
086280be UW |
2330 | base_offset = value_offset (*argp) + offset; |
2331 | base_offset = baseclass_offset (type, i, | |
2332 | value_contents (*argp) + base_offset, | |
42ae5230 | 2333 | value_address (*argp) + base_offset); |
086280be UW |
2334 | if (base_offset == -1) |
2335 | error (_("virtual baseclass botch")); | |
c5aa993b | 2336 | } |
ac3eeb49 MS |
2337 | else /* Non-virtual base, simply use bit position from debug |
2338 | info. */ | |
c906108c SS |
2339 | { |
2340 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | |
c5aa993b | 2341 | } |
c906108c | 2342 | f = find_method_list (argp, method, base_offset + offset, |
ac3eeb49 MS |
2343 | TYPE_BASECLASS (type, i), num_fns, |
2344 | basetype, boffset); | |
c906108c | 2345 | if (f) |
c5aa993b | 2346 | return f; |
c906108c | 2347 | } |
c5aa993b | 2348 | return NULL; |
c906108c SS |
2349 | } |
2350 | ||
2351 | /* Return the list of overloaded methods of a specified name. | |
ac3eeb49 MS |
2352 | |
2353 | ARGP is a pointer to a pointer to a value (the object). | |
2354 | METHOD is the method name. | |
2355 | OFFSET is the offset within the value contents. | |
2356 | NUM_FNS is the number of overloaded instances. | |
2357 | BASETYPE is set to the type of the base subobject that defines the | |
2358 | method. | |
581e13c1 | 2359 | BOFFSET is the offset of the base subobject which defines the method. */ |
c906108c SS |
2360 | |
2361 | struct fn_field * | |
714f19d5 | 2362 | value_find_oload_method_list (struct value **argp, const char *method, |
ac3eeb49 MS |
2363 | int offset, int *num_fns, |
2364 | struct type **basetype, int *boffset) | |
c906108c | 2365 | { |
c5aa993b | 2366 | struct type *t; |
c906108c | 2367 | |
df407dfe | 2368 | t = check_typedef (value_type (*argp)); |
c906108c | 2369 | |
ac3eeb49 | 2370 | /* Code snarfed from value_struct_elt. */ |
c906108c SS |
2371 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) |
2372 | { | |
2373 | *argp = value_ind (*argp); | |
2374 | /* Don't coerce fn pointer to fn and then back again! */ | |
df407dfe | 2375 | if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC) |
994b9211 | 2376 | *argp = coerce_array (*argp); |
df407dfe | 2377 | t = check_typedef (value_type (*argp)); |
c906108c | 2378 | } |
c5aa993b | 2379 | |
c5aa993b JM |
2380 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
2381 | && TYPE_CODE (t) != TYPE_CODE_UNION) | |
3e43a32a MS |
2382 | error (_("Attempt to extract a component of a " |
2383 | "value that is not a struct or union")); | |
c5aa993b | 2384 | |
ac3eeb49 MS |
2385 | return find_method_list (argp, method, 0, t, num_fns, |
2386 | basetype, boffset); | |
c906108c SS |
2387 | } |
2388 | ||
2389 | /* Given an array of argument types (ARGTYPES) (which includes an | |
2390 | entry for "this" in the case of C++ methods), the number of | |
2391 | arguments NARGS, the NAME of a function whether it's a method or | |
2392 | not (METHOD), and the degree of laxness (LAX) in conforming to | |
2393 | overload resolution rules in ANSI C++, find the best function that | |
2394 | matches on the argument types according to the overload resolution | |
2395 | rules. | |
2396 | ||
4c3376c8 SW |
2397 | METHOD can be one of three values: |
2398 | NON_METHOD for non-member functions. | |
2399 | METHOD: for member functions. | |
2400 | BOTH: used for overload resolution of operators where the | |
2401 | candidates are expected to be either member or non member | |
581e13c1 | 2402 | functions. In this case the first argument ARGTYPES |
4c3376c8 SW |
2403 | (representing 'this') is expected to be a reference to the |
2404 | target object, and will be dereferenced when attempting the | |
2405 | non-member search. | |
2406 | ||
c906108c SS |
2407 | In the case of class methods, the parameter OBJ is an object value |
2408 | in which to search for overloaded methods. | |
2409 | ||
2410 | In the case of non-method functions, the parameter FSYM is a symbol | |
2411 | corresponding to one of the overloaded functions. | |
2412 | ||
2413 | Return value is an integer: 0 -> good match, 10 -> debugger applied | |
2414 | non-standard coercions, 100 -> incompatible. | |
2415 | ||
2416 | If a method is being searched for, VALP will hold the value. | |
ac3eeb49 MS |
2417 | If a non-method is being searched for, SYMP will hold the symbol |
2418 | for it. | |
c906108c SS |
2419 | |
2420 | If a method is being searched for, and it is a static method, | |
2421 | then STATICP will point to a non-zero value. | |
2422 | ||
7322dca9 SW |
2423 | If NO_ADL argument dependent lookup is disabled. This is used to prevent |
2424 | ADL overload candidates when performing overload resolution for a fully | |
2425 | qualified name. | |
2426 | ||
c906108c SS |
2427 | Note: This function does *not* check the value of |
2428 | overload_resolution. Caller must check it to see whether overload | |
581e13c1 | 2429 | resolution is permitted. */ |
c906108c SS |
2430 | |
2431 | int | |
ac3eeb49 | 2432 | find_overload_match (struct type **arg_types, int nargs, |
4c3376c8 SW |
2433 | const char *name, enum oload_search_type method, |
2434 | int lax, struct value **objp, struct symbol *fsym, | |
ac3eeb49 | 2435 | struct value **valp, struct symbol **symp, |
7322dca9 | 2436 | int *staticp, const int no_adl) |
c906108c | 2437 | { |
7f8c9282 | 2438 | struct value *obj = (objp ? *objp : NULL); |
ac3eeb49 | 2439 | /* Index of best overloaded function. */ |
4c3376c8 SW |
2440 | int func_oload_champ = -1; |
2441 | int method_oload_champ = -1; | |
2442 | ||
ac3eeb49 | 2443 | /* The measure for the current best match. */ |
4c3376c8 SW |
2444 | struct badness_vector *method_badness = NULL; |
2445 | struct badness_vector *func_badness = NULL; | |
2446 | ||
f23631e4 | 2447 | struct value *temp = obj; |
ac3eeb49 MS |
2448 | /* For methods, the list of overloaded methods. */ |
2449 | struct fn_field *fns_ptr = NULL; | |
2450 | /* For non-methods, the list of overloaded function symbols. */ | |
2451 | struct symbol **oload_syms = NULL; | |
2452 | /* Number of overloaded instances being considered. */ | |
2453 | int num_fns = 0; | |
c5aa993b | 2454 | struct type *basetype = NULL; |
c906108c | 2455 | int boffset; |
7322dca9 SW |
2456 | |
2457 | struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL); | |
c906108c | 2458 | |
8d577d32 | 2459 | const char *obj_type_name = NULL; |
7322dca9 | 2460 | const char *func_name = NULL; |
8d577d32 | 2461 | enum oload_classification match_quality; |
4c3376c8 SW |
2462 | enum oload_classification method_match_quality = INCOMPATIBLE; |
2463 | enum oload_classification func_match_quality = INCOMPATIBLE; | |
c906108c | 2464 | |
ac3eeb49 | 2465 | /* Get the list of overloaded methods or functions. */ |
4c3376c8 | 2466 | if (method == METHOD || method == BOTH) |
c906108c | 2467 | { |
a2ca50ae | 2468 | gdb_assert (obj); |
94af9270 KS |
2469 | |
2470 | /* OBJ may be a pointer value rather than the object itself. */ | |
2471 | obj = coerce_ref (obj); | |
2472 | while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR) | |
2473 | obj = coerce_ref (value_ind (obj)); | |
df407dfe | 2474 | obj_type_name = TYPE_NAME (value_type (obj)); |
94af9270 KS |
2475 | |
2476 | /* First check whether this is a data member, e.g. a pointer to | |
2477 | a function. */ | |
2478 | if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT) | |
2479 | { | |
2480 | *valp = search_struct_field (name, obj, 0, | |
2481 | check_typedef (value_type (obj)), 0); | |
2482 | if (*valp) | |
2483 | { | |
2484 | *staticp = 1; | |
2485 | return 0; | |
2486 | } | |
2487 | } | |
c906108c | 2488 | |
4c3376c8 | 2489 | /* Retrieve the list of methods with the name NAME. */ |
ac3eeb49 MS |
2490 | fns_ptr = value_find_oload_method_list (&temp, name, |
2491 | 0, &num_fns, | |
c5aa993b | 2492 | &basetype, &boffset); |
4c3376c8 SW |
2493 | /* If this is a method only search, and no methods were found |
2494 | the search has faild. */ | |
2495 | if (method == METHOD && (!fns_ptr || !num_fns)) | |
8a3fe4f8 | 2496 | error (_("Couldn't find method %s%s%s"), |
c5aa993b JM |
2497 | obj_type_name, |
2498 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2499 | name); | |
4a1970e4 | 2500 | /* If we are dealing with stub method types, they should have |
ac3eeb49 MS |
2501 | been resolved by find_method_list via |
2502 | value_find_oload_method_list above. */ | |
4c3376c8 SW |
2503 | if (fns_ptr) |
2504 | { | |
2505 | gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL); | |
2506 | method_oload_champ = find_oload_champ (arg_types, nargs, method, | |
2507 | num_fns, fns_ptr, | |
2508 | oload_syms, &method_badness); | |
2509 | ||
2510 | method_match_quality = | |
2511 | classify_oload_match (method_badness, nargs, | |
2512 | oload_method_static (method, fns_ptr, | |
2513 | method_oload_champ)); | |
2514 | ||
2515 | make_cleanup (xfree, method_badness); | |
2516 | } | |
2517 | ||
c906108c | 2518 | } |
4c3376c8 SW |
2519 | |
2520 | if (method == NON_METHOD || method == BOTH) | |
c906108c | 2521 | { |
7322dca9 | 2522 | const char *qualified_name = NULL; |
c906108c | 2523 | |
4c3376c8 SW |
2524 | /* If the the overload match is being search for both |
2525 | as a method and non member function, the first argument | |
2526 | must now be dereferenced. */ | |
2527 | if (method == BOTH) | |
2528 | arg_types[0] = TYPE_TARGET_TYPE (arg_types[0]); | |
2529 | ||
7322dca9 SW |
2530 | if (fsym) |
2531 | { | |
2532 | qualified_name = SYMBOL_NATURAL_NAME (fsym); | |
2533 | ||
2534 | /* If we have a function with a C++ name, try to extract just | |
2535 | the function part. Do not try this for non-functions (e.g. | |
2536 | function pointers). */ | |
2537 | if (qualified_name | |
3e43a32a MS |
2538 | && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym))) |
2539 | == TYPE_CODE_FUNC) | |
7322dca9 SW |
2540 | { |
2541 | char *temp; | |
2542 | ||
2543 | temp = cp_func_name (qualified_name); | |
2544 | ||
2545 | /* If cp_func_name did not remove anything, the name of the | |
2546 | symbol did not include scope or argument types - it was | |
2547 | probably a C-style function. */ | |
2548 | if (temp) | |
2549 | { | |
2550 | make_cleanup (xfree, temp); | |
2551 | if (strcmp (temp, qualified_name) == 0) | |
2552 | func_name = NULL; | |
2553 | else | |
2554 | func_name = temp; | |
2555 | } | |
2556 | } | |
2557 | } | |
2558 | else | |
94af9270 | 2559 | { |
7322dca9 SW |
2560 | func_name = name; |
2561 | qualified_name = name; | |
94af9270 | 2562 | } |
d9639e13 | 2563 | |
94af9270 KS |
2564 | /* If there was no C++ name, this must be a C-style function or |
2565 | not a function at all. Just return the same symbol. Do the | |
2566 | same if cp_func_name fails for some reason. */ | |
8d577d32 | 2567 | if (func_name == NULL) |
7b83ea04 | 2568 | { |
917317f4 | 2569 | *symp = fsym; |
7b83ea04 AC |
2570 | return 0; |
2571 | } | |
917317f4 | 2572 | |
4c3376c8 SW |
2573 | func_oload_champ = find_oload_champ_namespace (arg_types, nargs, |
2574 | func_name, | |
2575 | qualified_name, | |
2576 | &oload_syms, | |
2577 | &func_badness, | |
2578 | no_adl); | |
8d577d32 | 2579 | |
4c3376c8 SW |
2580 | if (func_oload_champ >= 0) |
2581 | func_match_quality = classify_oload_match (func_badness, nargs, 0); | |
2582 | ||
2583 | make_cleanup (xfree, oload_syms); | |
2584 | make_cleanup (xfree, func_badness); | |
8d577d32 DC |
2585 | } |
2586 | ||
7322dca9 | 2587 | /* Did we find a match ? */ |
4c3376c8 | 2588 | if (method_oload_champ == -1 && func_oload_champ == -1) |
79afc5ef SW |
2589 | throw_error (NOT_FOUND_ERROR, |
2590 | _("No symbol \"%s\" in current context."), | |
2591 | name); | |
8d577d32 | 2592 | |
4c3376c8 SW |
2593 | /* If we have found both a method match and a function |
2594 | match, find out which one is better, and calculate match | |
2595 | quality. */ | |
2596 | if (method_oload_champ >= 0 && func_oload_champ >= 0) | |
2597 | { | |
2598 | switch (compare_badness (func_badness, method_badness)) | |
2599 | { | |
2600 | case 0: /* Top two contenders are equally good. */ | |
2601 | /* FIXME: GDB does not support the general ambiguous | |
2602 | case. All candidates should be collected and presented | |
2603 | the the user. */ | |
2604 | error (_("Ambiguous overload resolution")); | |
2605 | break; | |
2606 | case 1: /* Incomparable top contenders. */ | |
2607 | /* This is an error incompatible candidates | |
2608 | should not have been proposed. */ | |
3e43a32a MS |
2609 | error (_("Internal error: incompatible " |
2610 | "overload candidates proposed")); | |
4c3376c8 SW |
2611 | break; |
2612 | case 2: /* Function champion. */ | |
2613 | method_oload_champ = -1; | |
2614 | match_quality = func_match_quality; | |
2615 | break; | |
2616 | case 3: /* Method champion. */ | |
2617 | func_oload_champ = -1; | |
2618 | match_quality = method_match_quality; | |
2619 | break; | |
2620 | default: | |
2621 | error (_("Internal error: unexpected overload comparison result")); | |
2622 | break; | |
2623 | } | |
2624 | } | |
2625 | else | |
2626 | { | |
2627 | /* We have either a method match or a function match. */ | |
2628 | if (method_oload_champ >= 0) | |
2629 | match_quality = method_match_quality; | |
2630 | else | |
2631 | match_quality = func_match_quality; | |
2632 | } | |
8d577d32 DC |
2633 | |
2634 | if (match_quality == INCOMPATIBLE) | |
2635 | { | |
4c3376c8 | 2636 | if (method == METHOD) |
8a3fe4f8 | 2637 | error (_("Cannot resolve method %s%s%s to any overloaded instance"), |
8d577d32 DC |
2638 | obj_type_name, |
2639 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2640 | name); | |
2641 | else | |
8a3fe4f8 | 2642 | error (_("Cannot resolve function %s to any overloaded instance"), |
8d577d32 DC |
2643 | func_name); |
2644 | } | |
2645 | else if (match_quality == NON_STANDARD) | |
2646 | { | |
4c3376c8 | 2647 | if (method == METHOD) |
3e43a32a MS |
2648 | warning (_("Using non-standard conversion to match " |
2649 | "method %s%s%s to supplied arguments"), | |
8d577d32 DC |
2650 | obj_type_name, |
2651 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2652 | name); | |
2653 | else | |
3e43a32a MS |
2654 | warning (_("Using non-standard conversion to match " |
2655 | "function %s to supplied arguments"), | |
8d577d32 DC |
2656 | func_name); |
2657 | } | |
2658 | ||
4c3376c8 SW |
2659 | if (staticp != NULL) |
2660 | *staticp = oload_method_static (method, fns_ptr, method_oload_champ); | |
2661 | ||
2662 | if (method_oload_champ >= 0) | |
8d577d32 | 2663 | { |
4c3376c8 SW |
2664 | if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ)) |
2665 | *valp = value_virtual_fn_field (&temp, fns_ptr, method_oload_champ, | |
ac3eeb49 | 2666 | basetype, boffset); |
8d577d32 | 2667 | else |
4c3376c8 | 2668 | *valp = value_fn_field (&temp, fns_ptr, method_oload_champ, |
ac3eeb49 | 2669 | basetype, boffset); |
8d577d32 DC |
2670 | } |
2671 | else | |
4c3376c8 | 2672 | *symp = oload_syms[func_oload_champ]; |
8d577d32 DC |
2673 | |
2674 | if (objp) | |
2675 | { | |
a4295225 TT |
2676 | struct type *temp_type = check_typedef (value_type (temp)); |
2677 | struct type *obj_type = check_typedef (value_type (*objp)); | |
a109c7c1 | 2678 | |
a4295225 TT |
2679 | if (TYPE_CODE (temp_type) != TYPE_CODE_PTR |
2680 | && (TYPE_CODE (obj_type) == TYPE_CODE_PTR | |
2681 | || TYPE_CODE (obj_type) == TYPE_CODE_REF)) | |
8d577d32 DC |
2682 | { |
2683 | temp = value_addr (temp); | |
2684 | } | |
2685 | *objp = temp; | |
2686 | } | |
7322dca9 SW |
2687 | |
2688 | do_cleanups (all_cleanups); | |
8d577d32 DC |
2689 | |
2690 | switch (match_quality) | |
2691 | { | |
2692 | case INCOMPATIBLE: | |
2693 | return 100; | |
2694 | case NON_STANDARD: | |
2695 | return 10; | |
2696 | default: /* STANDARD */ | |
2697 | return 0; | |
2698 | } | |
2699 | } | |
2700 | ||
2701 | /* Find the best overload match, searching for FUNC_NAME in namespaces | |
2702 | contained in QUALIFIED_NAME until it either finds a good match or | |
2703 | runs out of namespaces. It stores the overloaded functions in | |
2704 | *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The | |
2705 | calling function is responsible for freeing *OLOAD_SYMS and | |
7322dca9 SW |
2706 | *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not |
2707 | performned. */ | |
8d577d32 DC |
2708 | |
2709 | static int | |
2710 | find_oload_champ_namespace (struct type **arg_types, int nargs, | |
2711 | const char *func_name, | |
2712 | const char *qualified_name, | |
2713 | struct symbol ***oload_syms, | |
7322dca9 SW |
2714 | struct badness_vector **oload_champ_bv, |
2715 | const int no_adl) | |
8d577d32 DC |
2716 | { |
2717 | int oload_champ; | |
2718 | ||
2719 | find_oload_champ_namespace_loop (arg_types, nargs, | |
2720 | func_name, | |
2721 | qualified_name, 0, | |
2722 | oload_syms, oload_champ_bv, | |
7322dca9 SW |
2723 | &oload_champ, |
2724 | no_adl); | |
8d577d32 DC |
2725 | |
2726 | return oload_champ; | |
2727 | } | |
2728 | ||
2729 | /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is | |
2730 | how deep we've looked for namespaces, and the champ is stored in | |
2731 | OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0 | |
7322dca9 SW |
2732 | if it isn't. Other arguments are the same as in |
2733 | find_oload_champ_namespace | |
8d577d32 DC |
2734 | |
2735 | It is the caller's responsibility to free *OLOAD_SYMS and | |
2736 | *OLOAD_CHAMP_BV. */ | |
2737 | ||
2738 | static int | |
2739 | find_oload_champ_namespace_loop (struct type **arg_types, int nargs, | |
2740 | const char *func_name, | |
2741 | const char *qualified_name, | |
2742 | int namespace_len, | |
2743 | struct symbol ***oload_syms, | |
2744 | struct badness_vector **oload_champ_bv, | |
7322dca9 SW |
2745 | int *oload_champ, |
2746 | const int no_adl) | |
8d577d32 DC |
2747 | { |
2748 | int next_namespace_len = namespace_len; | |
2749 | int searched_deeper = 0; | |
2750 | int num_fns = 0; | |
2751 | struct cleanup *old_cleanups; | |
2752 | int new_oload_champ; | |
2753 | struct symbol **new_oload_syms; | |
2754 | struct badness_vector *new_oload_champ_bv; | |
2755 | char *new_namespace; | |
2756 | ||
2757 | if (next_namespace_len != 0) | |
2758 | { | |
2759 | gdb_assert (qualified_name[next_namespace_len] == ':'); | |
2760 | next_namespace_len += 2; | |
c906108c | 2761 | } |
ac3eeb49 MS |
2762 | next_namespace_len += |
2763 | cp_find_first_component (qualified_name + next_namespace_len); | |
8d577d32 DC |
2764 | |
2765 | /* Initialize these to values that can safely be xfree'd. */ | |
2766 | *oload_syms = NULL; | |
2767 | *oload_champ_bv = NULL; | |
c5aa993b | 2768 | |
581e13c1 | 2769 | /* First, see if we have a deeper namespace we can search in. |
ac3eeb49 | 2770 | If we get a good match there, use it. */ |
8d577d32 DC |
2771 | |
2772 | if (qualified_name[next_namespace_len] == ':') | |
2773 | { | |
2774 | searched_deeper = 1; | |
2775 | ||
2776 | if (find_oload_champ_namespace_loop (arg_types, nargs, | |
2777 | func_name, qualified_name, | |
2778 | next_namespace_len, | |
2779 | oload_syms, oload_champ_bv, | |
7322dca9 | 2780 | oload_champ, no_adl)) |
8d577d32 DC |
2781 | { |
2782 | return 1; | |
2783 | } | |
2784 | }; | |
2785 | ||
2786 | /* If we reach here, either we're in the deepest namespace or we | |
2787 | didn't find a good match in a deeper namespace. But, in the | |
2788 | latter case, we still have a bad match in a deeper namespace; | |
2789 | note that we might not find any match at all in the current | |
2790 | namespace. (There's always a match in the deepest namespace, | |
2791 | because this overload mechanism only gets called if there's a | |
2792 | function symbol to start off with.) */ | |
2793 | ||
2794 | old_cleanups = make_cleanup (xfree, *oload_syms); | |
ec322823 | 2795 | make_cleanup (xfree, *oload_champ_bv); |
8d577d32 DC |
2796 | new_namespace = alloca (namespace_len + 1); |
2797 | strncpy (new_namespace, qualified_name, namespace_len); | |
2798 | new_namespace[namespace_len] = '\0'; | |
2799 | new_oload_syms = make_symbol_overload_list (func_name, | |
2800 | new_namespace); | |
7322dca9 SW |
2801 | |
2802 | /* If we have reached the deepest level perform argument | |
2803 | determined lookup. */ | |
2804 | if (!searched_deeper && !no_adl) | |
2805 | make_symbol_overload_list_adl (arg_types, nargs, func_name); | |
2806 | ||
8d577d32 DC |
2807 | while (new_oload_syms[num_fns]) |
2808 | ++num_fns; | |
2809 | ||
2810 | new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns, | |
2811 | NULL, new_oload_syms, | |
2812 | &new_oload_champ_bv); | |
2813 | ||
2814 | /* Case 1: We found a good match. Free earlier matches (if any), | |
2815 | and return it. Case 2: We didn't find a good match, but we're | |
2816 | not the deepest function. Then go with the bad match that the | |
2817 | deeper function found. Case 3: We found a bad match, and we're | |
2818 | the deepest function. Then return what we found, even though | |
2819 | it's a bad match. */ | |
2820 | ||
2821 | if (new_oload_champ != -1 | |
2822 | && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD) | |
2823 | { | |
2824 | *oload_syms = new_oload_syms; | |
2825 | *oload_champ = new_oload_champ; | |
2826 | *oload_champ_bv = new_oload_champ_bv; | |
2827 | do_cleanups (old_cleanups); | |
2828 | return 1; | |
2829 | } | |
2830 | else if (searched_deeper) | |
2831 | { | |
2832 | xfree (new_oload_syms); | |
2833 | xfree (new_oload_champ_bv); | |
2834 | discard_cleanups (old_cleanups); | |
2835 | return 0; | |
2836 | } | |
2837 | else | |
2838 | { | |
8d577d32 DC |
2839 | *oload_syms = new_oload_syms; |
2840 | *oload_champ = new_oload_champ; | |
2841 | *oload_champ_bv = new_oload_champ_bv; | |
2a7d6a25 | 2842 | do_cleanups (old_cleanups); |
8d577d32 DC |
2843 | return 0; |
2844 | } | |
2845 | } | |
2846 | ||
2847 | /* Look for a function to take NARGS args of types ARG_TYPES. Find | |
2848 | the best match from among the overloaded methods or functions | |
2849 | (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively. | |
2850 | The number of methods/functions in the list is given by NUM_FNS. | |
2851 | Return the index of the best match; store an indication of the | |
2852 | quality of the match in OLOAD_CHAMP_BV. | |
2853 | ||
2854 | It is the caller's responsibility to free *OLOAD_CHAMP_BV. */ | |
2855 | ||
2856 | static int | |
2857 | find_oload_champ (struct type **arg_types, int nargs, int method, | |
2858 | int num_fns, struct fn_field *fns_ptr, | |
2859 | struct symbol **oload_syms, | |
2860 | struct badness_vector **oload_champ_bv) | |
2861 | { | |
2862 | int ix; | |
ac3eeb49 MS |
2863 | /* A measure of how good an overloaded instance is. */ |
2864 | struct badness_vector *bv; | |
2865 | /* Index of best overloaded function. */ | |
2866 | int oload_champ = -1; | |
2867 | /* Current ambiguity state for overload resolution. */ | |
2868 | int oload_ambiguous = 0; | |
2869 | /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */ | |
8d577d32 DC |
2870 | |
2871 | *oload_champ_bv = NULL; | |
c906108c | 2872 | |
ac3eeb49 | 2873 | /* Consider each candidate in turn. */ |
c906108c SS |
2874 | for (ix = 0; ix < num_fns; ix++) |
2875 | { | |
8d577d32 DC |
2876 | int jj; |
2877 | int static_offset = oload_method_static (method, fns_ptr, ix); | |
2878 | int nparms; | |
2879 | struct type **parm_types; | |
2880 | ||
db577aea AC |
2881 | if (method) |
2882 | { | |
ad2f7632 | 2883 | nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix)); |
db577aea AC |
2884 | } |
2885 | else | |
2886 | { | |
ac3eeb49 MS |
2887 | /* If it's not a method, this is the proper place. */ |
2888 | nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix])); | |
db577aea | 2889 | } |
c906108c | 2890 | |
ac3eeb49 MS |
2891 | /* Prepare array of parameter types. */ |
2892 | parm_types = (struct type **) | |
2893 | xmalloc (nparms * (sizeof (struct type *))); | |
c906108c | 2894 | for (jj = 0; jj < nparms; jj++) |
db577aea | 2895 | parm_types[jj] = (method |
ad2f7632 | 2896 | ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type) |
ac3eeb49 MS |
2897 | : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), |
2898 | jj)); | |
c906108c | 2899 | |
ac3eeb49 MS |
2900 | /* Compare parameter types to supplied argument types. Skip |
2901 | THIS for static methods. */ | |
2902 | bv = rank_function (parm_types, nparms, | |
2903 | arg_types + static_offset, | |
4a1970e4 | 2904 | nargs - static_offset); |
c5aa993b | 2905 | |
8d577d32 | 2906 | if (!*oload_champ_bv) |
c5aa993b | 2907 | { |
8d577d32 | 2908 | *oload_champ_bv = bv; |
c5aa993b | 2909 | oload_champ = 0; |
c5aa993b | 2910 | } |
ac3eeb49 MS |
2911 | else /* See whether current candidate is better or worse than |
2912 | previous best. */ | |
8d577d32 | 2913 | switch (compare_badness (bv, *oload_champ_bv)) |
c5aa993b | 2914 | { |
ac3eeb49 MS |
2915 | case 0: /* Top two contenders are equally good. */ |
2916 | oload_ambiguous = 1; | |
c5aa993b | 2917 | break; |
ac3eeb49 MS |
2918 | case 1: /* Incomparable top contenders. */ |
2919 | oload_ambiguous = 2; | |
c5aa993b | 2920 | break; |
ac3eeb49 MS |
2921 | case 2: /* New champion, record details. */ |
2922 | *oload_champ_bv = bv; | |
c5aa993b JM |
2923 | oload_ambiguous = 0; |
2924 | oload_champ = ix; | |
c5aa993b JM |
2925 | break; |
2926 | case 3: | |
2927 | default: | |
2928 | break; | |
2929 | } | |
b8c9b27d | 2930 | xfree (parm_types); |
6b1ba9a0 ND |
2931 | if (overload_debug) |
2932 | { | |
2933 | if (method) | |
ac3eeb49 | 2934 | fprintf_filtered (gdb_stderr, |
3e43a32a | 2935 | "Overloaded method instance %s, # of parms %d\n", |
ac3eeb49 | 2936 | fns_ptr[ix].physname, nparms); |
6b1ba9a0 | 2937 | else |
ac3eeb49 | 2938 | fprintf_filtered (gdb_stderr, |
3e43a32a MS |
2939 | "Overloaded function instance " |
2940 | "%s # of parms %d\n", | |
ac3eeb49 MS |
2941 | SYMBOL_DEMANGLED_NAME (oload_syms[ix]), |
2942 | nparms); | |
4a1970e4 | 2943 | for (jj = 0; jj < nargs - static_offset; jj++) |
ac3eeb49 MS |
2944 | fprintf_filtered (gdb_stderr, |
2945 | "...Badness @ %d : %d\n", | |
6403aeea | 2946 | jj, bv->rank[jj].rank); |
3e43a32a MS |
2947 | fprintf_filtered (gdb_stderr, "Overload resolution " |
2948 | "champion is %d, ambiguous? %d\n", | |
ac3eeb49 | 2949 | oload_champ, oload_ambiguous); |
6b1ba9a0 | 2950 | } |
c906108c SS |
2951 | } |
2952 | ||
8d577d32 DC |
2953 | return oload_champ; |
2954 | } | |
6b1ba9a0 | 2955 | |
8d577d32 DC |
2956 | /* Return 1 if we're looking at a static method, 0 if we're looking at |
2957 | a non-static method or a function that isn't a method. */ | |
c906108c | 2958 | |
8d577d32 DC |
2959 | static int |
2960 | oload_method_static (int method, struct fn_field *fns_ptr, int index) | |
2961 | { | |
4c3376c8 SW |
2962 | if (method && fns_ptr && index >= 0 |
2963 | && TYPE_FN_FIELD_STATIC_P (fns_ptr, index)) | |
8d577d32 | 2964 | return 1; |
c906108c | 2965 | else |
8d577d32 DC |
2966 | return 0; |
2967 | } | |
c906108c | 2968 | |
8d577d32 DC |
2969 | /* Check how good an overload match OLOAD_CHAMP_BV represents. */ |
2970 | ||
2971 | static enum oload_classification | |
2972 | classify_oload_match (struct badness_vector *oload_champ_bv, | |
2973 | int nargs, | |
2974 | int static_offset) | |
2975 | { | |
2976 | int ix; | |
2977 | ||
2978 | for (ix = 1; ix <= nargs - static_offset; ix++) | |
7f8c9282 | 2979 | { |
6403aeea SW |
2980 | /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS |
2981 | or worse return INCOMPATIBLE. */ | |
2982 | if (compare_ranks (oload_champ_bv->rank[ix], | |
2983 | INCOMPATIBLE_TYPE_BADNESS) <= 0) | |
ac3eeb49 | 2984 | return INCOMPATIBLE; /* Truly mismatched types. */ |
6403aeea SW |
2985 | /* Otherwise If this conversion is as bad as |
2986 | NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */ | |
2987 | else if (compare_ranks (oload_champ_bv->rank[ix], | |
2988 | NS_POINTER_CONVERSION_BADNESS) <= 0) | |
ac3eeb49 MS |
2989 | return NON_STANDARD; /* Non-standard type conversions |
2990 | needed. */ | |
7f8c9282 | 2991 | } |
02f0d45d | 2992 | |
8d577d32 | 2993 | return STANDARD; /* Only standard conversions needed. */ |
c906108c SS |
2994 | } |
2995 | ||
ac3eeb49 MS |
2996 | /* C++: return 1 is NAME is a legitimate name for the destructor of |
2997 | type TYPE. If TYPE does not have a destructor, or if NAME is | |
2998 | inappropriate for TYPE, an error is signaled. */ | |
c906108c | 2999 | int |
fba45db2 | 3000 | destructor_name_p (const char *name, const struct type *type) |
c906108c | 3001 | { |
c906108c SS |
3002 | if (name[0] == '~') |
3003 | { | |
3004 | char *dname = type_name_no_tag (type); | |
3005 | char *cp = strchr (dname, '<'); | |
3006 | unsigned int len; | |
3007 | ||
3008 | /* Do not compare the template part for template classes. */ | |
3009 | if (cp == NULL) | |
3010 | len = strlen (dname); | |
3011 | else | |
3012 | len = cp - dname; | |
bf896cb0 | 3013 | if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0) |
8a3fe4f8 | 3014 | error (_("name of destructor must equal name of class")); |
c906108c SS |
3015 | else |
3016 | return 1; | |
3017 | } | |
3018 | return 0; | |
3019 | } | |
3020 | ||
2b2d9e11 | 3021 | /* Given TYPE, a structure/union, |
ac3eeb49 MS |
3022 | return 1 if the component named NAME from the ultimate target |
3023 | structure/union is defined, otherwise, return 0. */ | |
c906108c | 3024 | |
2b2d9e11 VP |
3025 | int |
3026 | check_field (struct type *type, const char *name) | |
c906108c | 3027 | { |
52f0bd74 | 3028 | int i; |
c906108c | 3029 | |
edf3d5f3 TT |
3030 | /* The type may be a stub. */ |
3031 | CHECK_TYPEDEF (type); | |
3032 | ||
c906108c SS |
3033 | for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--) |
3034 | { | |
3035 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
a109c7c1 | 3036 | |
db577aea | 3037 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c SS |
3038 | return 1; |
3039 | } | |
3040 | ||
ac3eeb49 MS |
3041 | /* C++: If it was not found as a data field, then try to return it |
3042 | as a pointer to a method. */ | |
c906108c | 3043 | |
c906108c SS |
3044 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i) |
3045 | { | |
db577aea | 3046 | if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0) |
c906108c SS |
3047 | return 1; |
3048 | } | |
3049 | ||
3050 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
2b2d9e11 | 3051 | if (check_field (TYPE_BASECLASS (type, i), name)) |
c906108c | 3052 | return 1; |
c5aa993b | 3053 | |
c906108c SS |
3054 | return 0; |
3055 | } | |
3056 | ||
79c2c32d | 3057 | /* C++: Given an aggregate type CURTYPE, and a member name NAME, |
0d5de010 DJ |
3058 | return the appropriate member (or the address of the member, if |
3059 | WANT_ADDRESS). This function is used to resolve user expressions | |
3060 | of the form "DOMAIN::NAME". For more details on what happens, see | |
3061 | the comment before value_struct_elt_for_reference. */ | |
79c2c32d DC |
3062 | |
3063 | struct value * | |
072bba3b KS |
3064 | value_aggregate_elt (struct type *curtype, char *name, |
3065 | struct type *expect_type, int want_address, | |
79c2c32d DC |
3066 | enum noside noside) |
3067 | { | |
3068 | switch (TYPE_CODE (curtype)) | |
3069 | { | |
3070 | case TYPE_CODE_STRUCT: | |
3071 | case TYPE_CODE_UNION: | |
ac3eeb49 | 3072 | return value_struct_elt_for_reference (curtype, 0, curtype, |
072bba3b | 3073 | name, expect_type, |
0d5de010 | 3074 | want_address, noside); |
79c2c32d | 3075 | case TYPE_CODE_NAMESPACE: |
ac3eeb49 MS |
3076 | return value_namespace_elt (curtype, name, |
3077 | want_address, noside); | |
79c2c32d DC |
3078 | default: |
3079 | internal_error (__FILE__, __LINE__, | |
e2e0b3e5 | 3080 | _("non-aggregate type in value_aggregate_elt")); |
79c2c32d DC |
3081 | } |
3082 | } | |
3083 | ||
072bba3b KS |
3084 | /* Compares the two method/function types T1 and T2 for "equality" |
3085 | with respect to the the methods' parameters. If the types of the | |
3086 | two parameter lists are the same, returns 1; 0 otherwise. This | |
3087 | comparison may ignore any artificial parameters in T1 if | |
3088 | SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip | |
3089 | the first artificial parameter in T1, assumed to be a 'this' pointer. | |
3090 | ||
3091 | The type T2 is expected to have come from make_params (in eval.c). */ | |
3092 | ||
3093 | static int | |
3094 | compare_parameters (struct type *t1, struct type *t2, int skip_artificial) | |
3095 | { | |
3096 | int start = 0; | |
3097 | ||
3098 | if (TYPE_FIELD_ARTIFICIAL (t1, 0)) | |
3099 | ++start; | |
3100 | ||
3101 | /* If skipping artificial fields, find the first real field | |
581e13c1 | 3102 | in T1. */ |
072bba3b KS |
3103 | if (skip_artificial) |
3104 | { | |
3105 | while (start < TYPE_NFIELDS (t1) | |
3106 | && TYPE_FIELD_ARTIFICIAL (t1, start)) | |
3107 | ++start; | |
3108 | } | |
3109 | ||
581e13c1 | 3110 | /* Now compare parameters. */ |
072bba3b KS |
3111 | |
3112 | /* Special case: a method taking void. T1 will contain no | |
3113 | non-artificial fields, and T2 will contain TYPE_CODE_VOID. */ | |
3114 | if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1 | |
3115 | && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID) | |
3116 | return 1; | |
3117 | ||
3118 | if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2)) | |
3119 | { | |
3120 | int i; | |
a109c7c1 | 3121 | |
072bba3b KS |
3122 | for (i = 0; i < TYPE_NFIELDS (t2); ++i) |
3123 | { | |
6403aeea SW |
3124 | if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i), |
3125 | TYPE_FIELD_TYPE (t2, i)), | |
3126 | EXACT_MATCH_BADNESS) != 0) | |
072bba3b KS |
3127 | return 0; |
3128 | } | |
3129 | ||
3130 | return 1; | |
3131 | } | |
3132 | ||
3133 | return 0; | |
3134 | } | |
3135 | ||
c906108c | 3136 | /* C++: Given an aggregate type CURTYPE, and a member name NAME, |
ac3eeb49 MS |
3137 | return the address of this member as a "pointer to member" type. |
3138 | If INTYPE is non-null, then it will be the type of the member we | |
3139 | are looking for. This will help us resolve "pointers to member | |
3140 | functions". This function is used to resolve user expressions of | |
3141 | the form "DOMAIN::NAME". */ | |
c906108c | 3142 | |
63d06c5c | 3143 | static struct value * |
fba45db2 KB |
3144 | value_struct_elt_for_reference (struct type *domain, int offset, |
3145 | struct type *curtype, char *name, | |
ac3eeb49 MS |
3146 | struct type *intype, |
3147 | int want_address, | |
63d06c5c | 3148 | enum noside noside) |
c906108c | 3149 | { |
52f0bd74 AC |
3150 | struct type *t = curtype; |
3151 | int i; | |
0d5de010 | 3152 | struct value *v, *result; |
c906108c | 3153 | |
c5aa993b | 3154 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c | 3155 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
3e43a32a MS |
3156 | error (_("Internal error: non-aggregate type " |
3157 | "to value_struct_elt_for_reference")); | |
c906108c SS |
3158 | |
3159 | for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--) | |
3160 | { | |
3161 | char *t_field_name = TYPE_FIELD_NAME (t, i); | |
c5aa993b | 3162 | |
6314a349 | 3163 | if (t_field_name && strcmp (t_field_name, name) == 0) |
c906108c | 3164 | { |
d6a843b5 | 3165 | if (field_is_static (&TYPE_FIELD (t, i))) |
c906108c SS |
3166 | { |
3167 | v = value_static_field (t, i); | |
3168 | if (v == NULL) | |
8a3fe4f8 | 3169 | error (_("static field %s has been optimized out"), |
c906108c | 3170 | name); |
0d5de010 DJ |
3171 | if (want_address) |
3172 | v = value_addr (v); | |
c906108c SS |
3173 | return v; |
3174 | } | |
3175 | if (TYPE_FIELD_PACKED (t, i)) | |
8a3fe4f8 | 3176 | error (_("pointers to bitfield members not allowed")); |
c5aa993b | 3177 | |
0d5de010 DJ |
3178 | if (want_address) |
3179 | return value_from_longest | |
3180 | (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain), | |
3181 | offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3)); | |
3182 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
3183 | return allocate_value (TYPE_FIELD_TYPE (t, i)); | |
3184 | else | |
3185 | error (_("Cannot reference non-static field \"%s\""), name); | |
c906108c SS |
3186 | } |
3187 | } | |
3188 | ||
ac3eeb49 MS |
3189 | /* C++: If it was not found as a data field, then try to return it |
3190 | as a pointer to a method. */ | |
c906108c | 3191 | |
c906108c SS |
3192 | /* Perform all necessary dereferencing. */ |
3193 | while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR) | |
3194 | intype = TYPE_TARGET_TYPE (intype); | |
3195 | ||
3196 | for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i) | |
3197 | { | |
3198 | char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i); | |
3199 | char dem_opname[64]; | |
3200 | ||
ac3eeb49 MS |
3201 | if (strncmp (t_field_name, "__", 2) == 0 |
3202 | || strncmp (t_field_name, "op", 2) == 0 | |
3203 | || strncmp (t_field_name, "type", 4) == 0) | |
c906108c | 3204 | { |
ac3eeb49 MS |
3205 | if (cplus_demangle_opname (t_field_name, |
3206 | dem_opname, DMGL_ANSI)) | |
c5aa993b | 3207 | t_field_name = dem_opname; |
ac3eeb49 MS |
3208 | else if (cplus_demangle_opname (t_field_name, |
3209 | dem_opname, 0)) | |
c906108c | 3210 | t_field_name = dem_opname; |
c906108c | 3211 | } |
6314a349 | 3212 | if (t_field_name && strcmp (t_field_name, name) == 0) |
c906108c | 3213 | { |
072bba3b KS |
3214 | int j; |
3215 | int len = TYPE_FN_FIELDLIST_LENGTH (t, i); | |
c906108c | 3216 | struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i); |
c5aa993b | 3217 | |
de17c821 DJ |
3218 | check_stub_method_group (t, i); |
3219 | ||
c906108c SS |
3220 | if (intype) |
3221 | { | |
072bba3b KS |
3222 | for (j = 0; j < len; ++j) |
3223 | { | |
3224 | if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0) | |
3e43a32a MS |
3225 | || compare_parameters (TYPE_FN_FIELD_TYPE (f, j), |
3226 | intype, 1)) | |
072bba3b KS |
3227 | break; |
3228 | } | |
3229 | ||
3230 | if (j == len) | |
3e43a32a MS |
3231 | error (_("no member function matches " |
3232 | "that type instantiation")); | |
7f79b1c5 | 3233 | } |
c906108c | 3234 | else |
072bba3b KS |
3235 | { |
3236 | int ii; | |
7f79b1c5 DJ |
3237 | |
3238 | j = -1; | |
072bba3b KS |
3239 | for (ii = 0; ii < TYPE_FN_FIELDLIST_LENGTH (t, i); |
3240 | ++ii) | |
3241 | { | |
7f79b1c5 DJ |
3242 | /* Skip artificial methods. This is necessary if, |
3243 | for example, the user wants to "print | |
3244 | subclass::subclass" with only one user-defined | |
3245 | constructor. There is no ambiguity in this | |
3246 | case. */ | |
072bba3b | 3247 | if (TYPE_FN_FIELD_ARTIFICIAL (f, ii)) |
7f79b1c5 | 3248 | continue; |
072bba3b | 3249 | |
7f79b1c5 DJ |
3250 | /* Desired method is ambiguous if more than one |
3251 | method is defined. */ | |
3252 | if (j != -1) | |
3e43a32a MS |
3253 | error (_("non-unique member `%s' requires " |
3254 | "type instantiation"), name); | |
072bba3b | 3255 | |
7f79b1c5 DJ |
3256 | j = ii; |
3257 | } | |
072bba3b | 3258 | } |
c5aa993b | 3259 | |
0d5de010 DJ |
3260 | if (TYPE_FN_FIELD_STATIC_P (f, j)) |
3261 | { | |
ac3eeb49 MS |
3262 | struct symbol *s = |
3263 | lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), | |
2570f2b7 | 3264 | 0, VAR_DOMAIN, 0); |
a109c7c1 | 3265 | |
0d5de010 DJ |
3266 | if (s == NULL) |
3267 | return NULL; | |
3268 | ||
3269 | if (want_address) | |
3270 | return value_addr (read_var_value (s, 0)); | |
3271 | else | |
3272 | return read_var_value (s, 0); | |
3273 | } | |
3274 | ||
c906108c SS |
3275 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) |
3276 | { | |
0d5de010 DJ |
3277 | if (want_address) |
3278 | { | |
3279 | result = allocate_value | |
3280 | (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j))); | |
ad4820ab UW |
3281 | cplus_make_method_ptr (value_type (result), |
3282 | value_contents_writeable (result), | |
0d5de010 DJ |
3283 | TYPE_FN_FIELD_VOFFSET (f, j), 1); |
3284 | } | |
3285 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
3286 | return allocate_value (TYPE_FN_FIELD_TYPE (f, j)); | |
3287 | else | |
3288 | error (_("Cannot reference virtual member function \"%s\""), | |
3289 | name); | |
c906108c SS |
3290 | } |
3291 | else | |
3292 | { | |
ac3eeb49 MS |
3293 | struct symbol *s = |
3294 | lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), | |
2570f2b7 | 3295 | 0, VAR_DOMAIN, 0); |
a109c7c1 | 3296 | |
c906108c | 3297 | if (s == NULL) |
0d5de010 DJ |
3298 | return NULL; |
3299 | ||
3300 | v = read_var_value (s, 0); | |
3301 | if (!want_address) | |
3302 | result = v; | |
c906108c SS |
3303 | else |
3304 | { | |
0d5de010 | 3305 | result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j))); |
ad4820ab UW |
3306 | cplus_make_method_ptr (value_type (result), |
3307 | value_contents_writeable (result), | |
42ae5230 | 3308 | value_address (v), 0); |
c906108c | 3309 | } |
c906108c | 3310 | } |
0d5de010 | 3311 | return result; |
c906108c SS |
3312 | } |
3313 | } | |
3314 | for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--) | |
3315 | { | |
f23631e4 | 3316 | struct value *v; |
c906108c SS |
3317 | int base_offset; |
3318 | ||
3319 | if (BASETYPE_VIA_VIRTUAL (t, i)) | |
3320 | base_offset = 0; | |
3321 | else | |
3322 | base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8; | |
3323 | v = value_struct_elt_for_reference (domain, | |
3324 | offset + base_offset, | |
3325 | TYPE_BASECLASS (t, i), | |
ac3eeb49 MS |
3326 | name, intype, |
3327 | want_address, noside); | |
c906108c SS |
3328 | if (v) |
3329 | return v; | |
3330 | } | |
63d06c5c DC |
3331 | |
3332 | /* As a last chance, pretend that CURTYPE is a namespace, and look | |
3333 | it up that way; this (frequently) works for types nested inside | |
3334 | classes. */ | |
3335 | ||
ac3eeb49 MS |
3336 | return value_maybe_namespace_elt (curtype, name, |
3337 | want_address, noside); | |
c906108c SS |
3338 | } |
3339 | ||
79c2c32d DC |
3340 | /* C++: Return the member NAME of the namespace given by the type |
3341 | CURTYPE. */ | |
3342 | ||
3343 | static struct value * | |
3344 | value_namespace_elt (const struct type *curtype, | |
0d5de010 | 3345 | char *name, int want_address, |
79c2c32d | 3346 | enum noside noside) |
63d06c5c DC |
3347 | { |
3348 | struct value *retval = value_maybe_namespace_elt (curtype, name, | |
ac3eeb49 MS |
3349 | want_address, |
3350 | noside); | |
63d06c5c DC |
3351 | |
3352 | if (retval == NULL) | |
ac3eeb49 MS |
3353 | error (_("No symbol \"%s\" in namespace \"%s\"."), |
3354 | name, TYPE_TAG_NAME (curtype)); | |
63d06c5c DC |
3355 | |
3356 | return retval; | |
3357 | } | |
3358 | ||
3359 | /* A helper function used by value_namespace_elt and | |
3360 | value_struct_elt_for_reference. It looks up NAME inside the | |
3361 | context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE | |
3362 | is a class and NAME refers to a type in CURTYPE itself (as opposed | |
3363 | to, say, some base class of CURTYPE). */ | |
3364 | ||
3365 | static struct value * | |
3366 | value_maybe_namespace_elt (const struct type *curtype, | |
0d5de010 | 3367 | char *name, int want_address, |
63d06c5c | 3368 | enum noside noside) |
79c2c32d DC |
3369 | { |
3370 | const char *namespace_name = TYPE_TAG_NAME (curtype); | |
3371 | struct symbol *sym; | |
0d5de010 | 3372 | struct value *result; |
79c2c32d | 3373 | |
13387711 | 3374 | sym = cp_lookup_symbol_namespace (namespace_name, name, |
41f62f39 JK |
3375 | get_selected_block (0), VAR_DOMAIN); |
3376 | ||
3377 | if (sym == NULL) | |
3378 | { | |
3379 | char *concatenated_name = alloca (strlen (namespace_name) + 2 | |
3380 | + strlen (name) + 1); | |
3381 | ||
3382 | sprintf (concatenated_name, "%s::%s", namespace_name, name); | |
3383 | sym = lookup_static_symbol_aux (concatenated_name, VAR_DOMAIN); | |
3384 | } | |
79c2c32d DC |
3385 | |
3386 | if (sym == NULL) | |
63d06c5c | 3387 | return NULL; |
79c2c32d DC |
3388 | else if ((noside == EVAL_AVOID_SIDE_EFFECTS) |
3389 | && (SYMBOL_CLASS (sym) == LOC_TYPEDEF)) | |
0d5de010 | 3390 | result = allocate_value (SYMBOL_TYPE (sym)); |
79c2c32d | 3391 | else |
0d5de010 DJ |
3392 | result = value_of_variable (sym, get_selected_block (0)); |
3393 | ||
3394 | if (result && want_address) | |
3395 | result = value_addr (result); | |
3396 | ||
3397 | return result; | |
79c2c32d DC |
3398 | } |
3399 | ||
ac3eeb49 MS |
3400 | /* Given a pointer value V, find the real (RTTI) type of the object it |
3401 | points to. | |
3402 | ||
c906108c | 3403 | Other parameters FULL, TOP, USING_ENC as with value_rtti_type() |
ac3eeb49 | 3404 | and refer to the values computed for the object pointed to. */ |
c906108c SS |
3405 | |
3406 | struct type * | |
ac3eeb49 MS |
3407 | value_rtti_target_type (struct value *v, int *full, |
3408 | int *top, int *using_enc) | |
c906108c | 3409 | { |
f23631e4 | 3410 | struct value *target; |
c906108c SS |
3411 | |
3412 | target = value_ind (v); | |
3413 | ||
3414 | return value_rtti_type (target, full, top, using_enc); | |
3415 | } | |
3416 | ||
3417 | /* Given a value pointed to by ARGP, check its real run-time type, and | |
3418 | if that is different from the enclosing type, create a new value | |
3419 | using the real run-time type as the enclosing type (and of the same | |
3420 | type as ARGP) and return it, with the embedded offset adjusted to | |
ac3eeb49 MS |
3421 | be the correct offset to the enclosed object. RTYPE is the type, |
3422 | and XFULL, XTOP, and XUSING_ENC are the other parameters, computed | |
3423 | by value_rtti_type(). If these are available, they can be supplied | |
3424 | and a second call to value_rtti_type() is avoided. (Pass RTYPE == | |
3425 | NULL if they're not available. */ | |
c906108c | 3426 | |
f23631e4 | 3427 | struct value * |
ac3eeb49 MS |
3428 | value_full_object (struct value *argp, |
3429 | struct type *rtype, | |
3430 | int xfull, int xtop, | |
fba45db2 | 3431 | int xusing_enc) |
c906108c | 3432 | { |
c5aa993b | 3433 | struct type *real_type; |
c906108c SS |
3434 | int full = 0; |
3435 | int top = -1; | |
3436 | int using_enc = 0; | |
f23631e4 | 3437 | struct value *new_val; |
c906108c SS |
3438 | |
3439 | if (rtype) | |
3440 | { | |
3441 | real_type = rtype; | |
3442 | full = xfull; | |
3443 | top = xtop; | |
3444 | using_enc = xusing_enc; | |
3445 | } | |
3446 | else | |
3447 | real_type = value_rtti_type (argp, &full, &top, &using_enc); | |
3448 | ||
ac3eeb49 | 3449 | /* If no RTTI data, or if object is already complete, do nothing. */ |
4754a64e | 3450 | if (!real_type || real_type == value_enclosing_type (argp)) |
c906108c SS |
3451 | return argp; |
3452 | ||
3453 | /* If we have the full object, but for some reason the enclosing | |
ac3eeb49 MS |
3454 | type is wrong, set it. */ |
3455 | /* pai: FIXME -- sounds iffy */ | |
c906108c SS |
3456 | if (full) |
3457 | { | |
4dfea560 DE |
3458 | argp = value_copy (argp); |
3459 | set_value_enclosing_type (argp, real_type); | |
c906108c SS |
3460 | return argp; |
3461 | } | |
3462 | ||
581e13c1 | 3463 | /* Check if object is in memory. */ |
c906108c SS |
3464 | if (VALUE_LVAL (argp) != lval_memory) |
3465 | { | |
3e43a32a MS |
3466 | warning (_("Couldn't retrieve complete object of RTTI " |
3467 | "type %s; object may be in register(s)."), | |
ac3eeb49 | 3468 | TYPE_NAME (real_type)); |
c5aa993b | 3469 | |
c906108c SS |
3470 | return argp; |
3471 | } | |
c5aa993b | 3472 | |
ac3eeb49 MS |
3473 | /* All other cases -- retrieve the complete object. */ |
3474 | /* Go back by the computed top_offset from the beginning of the | |
3475 | object, adjusting for the embedded offset of argp if that's what | |
3476 | value_rtti_type used for its computation. */ | |
42ae5230 | 3477 | new_val = value_at_lazy (real_type, value_address (argp) - top + |
13c3b5f5 | 3478 | (using_enc ? 0 : value_embedded_offset (argp))); |
04624583 | 3479 | deprecated_set_value_type (new_val, value_type (argp)); |
13c3b5f5 AC |
3480 | set_value_embedded_offset (new_val, (using_enc |
3481 | ? top + value_embedded_offset (argp) | |
3482 | : top)); | |
c906108c SS |
3483 | return new_val; |
3484 | } | |
3485 | ||
389e51db | 3486 | |
d069f99d | 3487 | /* Return the value of the local variable, if one exists. |
c906108c SS |
3488 | Flag COMPLAIN signals an error if the request is made in an |
3489 | inappropriate context. */ | |
3490 | ||
f23631e4 | 3491 | struct value * |
d069f99d | 3492 | value_of_local (const char *name, int complain) |
c906108c SS |
3493 | { |
3494 | struct symbol *func, *sym; | |
3495 | struct block *b; | |
d069f99d | 3496 | struct value * ret; |
206415a3 | 3497 | struct frame_info *frame; |
c906108c | 3498 | |
206415a3 DJ |
3499 | if (complain) |
3500 | frame = get_selected_frame (_("no frame selected")); | |
3501 | else | |
c906108c | 3502 | { |
206415a3 DJ |
3503 | frame = deprecated_safe_get_selected_frame (); |
3504 | if (frame == 0) | |
c5aa993b | 3505 | return 0; |
c906108c SS |
3506 | } |
3507 | ||
206415a3 | 3508 | func = get_frame_function (frame); |
c906108c SS |
3509 | if (!func) |
3510 | { | |
3511 | if (complain) | |
8a3fe4f8 | 3512 | error (_("no `%s' in nameless context"), name); |
c5aa993b JM |
3513 | else |
3514 | return 0; | |
c906108c SS |
3515 | } |
3516 | ||
3517 | b = SYMBOL_BLOCK_VALUE (func); | |
de4f826b | 3518 | if (dict_empty (BLOCK_DICT (b))) |
c906108c SS |
3519 | { |
3520 | if (complain) | |
8a3fe4f8 | 3521 | error (_("no args, no `%s'"), name); |
c5aa993b JM |
3522 | else |
3523 | return 0; | |
c906108c SS |
3524 | } |
3525 | ||
3526 | /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER | |
3527 | symbol instead of the LOC_ARG one (if both exist). */ | |
94af9270 | 3528 | sym = lookup_block_symbol (b, name, VAR_DOMAIN); |
c906108c SS |
3529 | if (sym == NULL) |
3530 | { | |
3531 | if (complain) | |
3e43a32a | 3532 | error (_("current stack frame does not contain a variable named `%s'"), |
ac3eeb49 | 3533 | name); |
c906108c SS |
3534 | else |
3535 | return NULL; | |
3536 | } | |
3537 | ||
206415a3 | 3538 | ret = read_var_value (sym, frame); |
d069f99d | 3539 | if (ret == 0 && complain) |
8a3fe4f8 | 3540 | error (_("`%s' argument unreadable"), name); |
d069f99d AF |
3541 | return ret; |
3542 | } | |
3543 | ||
3544 | /* C++/Objective-C: return the value of the class instance variable, | |
3545 | if one exists. Flag COMPLAIN signals an error if the request is | |
3546 | made in an inappropriate context. */ | |
3547 | ||
3548 | struct value * | |
3549 | value_of_this (int complain) | |
3550 | { | |
2b2d9e11 VP |
3551 | if (!current_language->la_name_of_this) |
3552 | return 0; | |
3553 | return value_of_local (current_language->la_name_of_this, complain); | |
c906108c SS |
3554 | } |
3555 | ||
ac3eeb49 MS |
3556 | /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH |
3557 | elements long, starting at LOWBOUND. The result has the same lower | |
3558 | bound as the original ARRAY. */ | |
c906108c | 3559 | |
f23631e4 AC |
3560 | struct value * |
3561 | value_slice (struct value *array, int lowbound, int length) | |
c906108c SS |
3562 | { |
3563 | struct type *slice_range_type, *slice_type, *range_type; | |
7a67d0fe | 3564 | LONGEST lowerbound, upperbound; |
f23631e4 | 3565 | struct value *slice; |
c906108c | 3566 | struct type *array_type; |
ac3eeb49 | 3567 | |
df407dfe | 3568 | array_type = check_typedef (value_type (array)); |
c906108c SS |
3569 | if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY |
3570 | && TYPE_CODE (array_type) != TYPE_CODE_STRING | |
3571 | && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING) | |
8a3fe4f8 | 3572 | error (_("cannot take slice of non-array")); |
ac3eeb49 | 3573 | |
c906108c SS |
3574 | range_type = TYPE_INDEX_TYPE (array_type); |
3575 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
8a3fe4f8 | 3576 | error (_("slice from bad array or bitstring")); |
ac3eeb49 | 3577 | |
c906108c | 3578 | if (lowbound < lowerbound || length < 0 |
db034ac5 | 3579 | || lowbound + length - 1 > upperbound) |
8a3fe4f8 | 3580 | error (_("slice out of range")); |
ac3eeb49 | 3581 | |
c906108c SS |
3582 | /* FIXME-type-allocation: need a way to free this type when we are |
3583 | done with it. */ | |
c5aa993b | 3584 | slice_range_type = create_range_type ((struct type *) NULL, |
c906108c | 3585 | TYPE_TARGET_TYPE (range_type), |
ac3eeb49 MS |
3586 | lowbound, |
3587 | lowbound + length - 1); | |
c906108c SS |
3588 | if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING) |
3589 | { | |
3590 | int i; | |
ac3eeb49 MS |
3591 | |
3592 | slice_type = create_set_type ((struct type *) NULL, | |
3593 | slice_range_type); | |
c906108c SS |
3594 | TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING; |
3595 | slice = value_zero (slice_type, not_lval); | |
ac3eeb49 | 3596 | |
c906108c SS |
3597 | for (i = 0; i < length; i++) |
3598 | { | |
3599 | int element = value_bit_index (array_type, | |
0fd88904 | 3600 | value_contents (array), |
c906108c | 3601 | lowbound + i); |
a109c7c1 | 3602 | |
c906108c | 3603 | if (element < 0) |
8a3fe4f8 | 3604 | error (_("internal error accessing bitstring")); |
c906108c SS |
3605 | else if (element > 0) |
3606 | { | |
3607 | int j = i % TARGET_CHAR_BIT; | |
a109c7c1 | 3608 | |
50810684 | 3609 | if (gdbarch_bits_big_endian (get_type_arch (array_type))) |
c906108c | 3610 | j = TARGET_CHAR_BIT - 1 - j; |
990a07ab | 3611 | value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j); |
c906108c SS |
3612 | } |
3613 | } | |
ac3eeb49 MS |
3614 | /* We should set the address, bitssize, and bitspos, so the |
3615 | slice can be used on the LHS, but that may require extensions | |
3616 | to value_assign. For now, just leave as a non_lval. | |
3617 | FIXME. */ | |
c906108c SS |
3618 | } |
3619 | else | |
3620 | { | |
3621 | struct type *element_type = TYPE_TARGET_TYPE (array_type); | |
ac3eeb49 MS |
3622 | LONGEST offset = |
3623 | (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type)); | |
3624 | ||
3625 | slice_type = create_array_type ((struct type *) NULL, | |
3626 | element_type, | |
c906108c SS |
3627 | slice_range_type); |
3628 | TYPE_CODE (slice_type) = TYPE_CODE (array_type); | |
ac3eeb49 | 3629 | |
9214ee5f | 3630 | if (VALUE_LVAL (array) == lval_memory && value_lazy (array)) |
3e3d7139 | 3631 | slice = allocate_value_lazy (slice_type); |
c906108c | 3632 | else |
3e3d7139 JG |
3633 | { |
3634 | slice = allocate_value (slice_type); | |
3635 | memcpy (value_contents_writeable (slice), | |
3636 | value_contents (array) + offset, | |
3637 | TYPE_LENGTH (slice_type)); | |
3638 | } | |
ac3eeb49 | 3639 | |
74bcbdf3 | 3640 | set_value_component_location (slice, array); |
65d3800a | 3641 | VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array); |
f5cf64a7 | 3642 | set_value_offset (slice, value_offset (array) + offset); |
c906108c SS |
3643 | } |
3644 | return slice; | |
3645 | } | |
3646 | ||
ac3eeb49 MS |
3647 | /* Create a value for a FORTRAN complex number. Currently most of the |
3648 | time values are coerced to COMPLEX*16 (i.e. a complex number | |
070ad9f0 DB |
3649 | composed of 2 doubles. This really should be a smarter routine |
3650 | that figures out precision inteligently as opposed to assuming | |
ac3eeb49 | 3651 | doubles. FIXME: fmb */ |
c906108c | 3652 | |
f23631e4 | 3653 | struct value * |
ac3eeb49 MS |
3654 | value_literal_complex (struct value *arg1, |
3655 | struct value *arg2, | |
3656 | struct type *type) | |
c906108c | 3657 | { |
f23631e4 | 3658 | struct value *val; |
c906108c SS |
3659 | struct type *real_type = TYPE_TARGET_TYPE (type); |
3660 | ||
3661 | val = allocate_value (type); | |
3662 | arg1 = value_cast (real_type, arg1); | |
3663 | arg2 = value_cast (real_type, arg2); | |
3664 | ||
990a07ab | 3665 | memcpy (value_contents_raw (val), |
0fd88904 | 3666 | value_contents (arg1), TYPE_LENGTH (real_type)); |
990a07ab | 3667 | memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type), |
0fd88904 | 3668 | value_contents (arg2), TYPE_LENGTH (real_type)); |
c906108c SS |
3669 | return val; |
3670 | } | |
3671 | ||
ac3eeb49 | 3672 | /* Cast a value into the appropriate complex data type. */ |
c906108c | 3673 | |
f23631e4 AC |
3674 | static struct value * |
3675 | cast_into_complex (struct type *type, struct value *val) | |
c906108c SS |
3676 | { |
3677 | struct type *real_type = TYPE_TARGET_TYPE (type); | |
ac3eeb49 | 3678 | |
df407dfe | 3679 | if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX) |
c906108c | 3680 | { |
df407dfe | 3681 | struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val)); |
f23631e4 AC |
3682 | struct value *re_val = allocate_value (val_real_type); |
3683 | struct value *im_val = allocate_value (val_real_type); | |
c906108c | 3684 | |
990a07ab | 3685 | memcpy (value_contents_raw (re_val), |
0fd88904 | 3686 | value_contents (val), TYPE_LENGTH (val_real_type)); |
990a07ab | 3687 | memcpy (value_contents_raw (im_val), |
0fd88904 | 3688 | value_contents (val) + TYPE_LENGTH (val_real_type), |
c5aa993b | 3689 | TYPE_LENGTH (val_real_type)); |
c906108c SS |
3690 | |
3691 | return value_literal_complex (re_val, im_val, type); | |
3692 | } | |
df407dfe AC |
3693 | else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT |
3694 | || TYPE_CODE (value_type (val)) == TYPE_CODE_INT) | |
ac3eeb49 MS |
3695 | return value_literal_complex (val, |
3696 | value_zero (real_type, not_lval), | |
3697 | type); | |
c906108c | 3698 | else |
8a3fe4f8 | 3699 | error (_("cannot cast non-number to complex")); |
c906108c SS |
3700 | } |
3701 | ||
3702 | void | |
fba45db2 | 3703 | _initialize_valops (void) |
c906108c | 3704 | { |
5bf193a2 AC |
3705 | add_setshow_boolean_cmd ("overload-resolution", class_support, |
3706 | &overload_resolution, _("\ | |
3707 | Set overload resolution in evaluating C++ functions."), _("\ | |
ac3eeb49 MS |
3708 | Show overload resolution in evaluating C++ functions."), |
3709 | NULL, NULL, | |
920d2a44 | 3710 | show_overload_resolution, |
5bf193a2 | 3711 | &setlist, &showlist); |
c906108c | 3712 | overload_resolution = 1; |
c906108c | 3713 | } |