]>
Commit | Line | Data |
---|---|---|
c906108c SS |
1 | /* Perform non-arithmetic operations on values, for GDB. |
2 | Copyright 1986, 87, 89, 91, 92, 93, 94, 95, 96, 97, 1998 | |
3 | Free Software Foundation, Inc. | |
4 | ||
c5aa993b | 5 | This file is part of GDB. |
c906108c | 6 | |
c5aa993b JM |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
c906108c | 11 | |
c5aa993b JM |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
c906108c | 16 | |
c5aa993b JM |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 59 Temple Place - Suite 330, | |
20 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
21 | |
22 | #include "defs.h" | |
23 | #include "symtab.h" | |
24 | #include "gdbtypes.h" | |
25 | #include "value.h" | |
26 | #include "frame.h" | |
27 | #include "inferior.h" | |
28 | #include "gdbcore.h" | |
29 | #include "target.h" | |
30 | #include "demangle.h" | |
31 | #include "language.h" | |
32 | #include "gdbcmd.h" | |
33 | ||
34 | #include <errno.h> | |
35 | #include "gdb_string.h" | |
36 | ||
c906108c SS |
37 | /* Flag indicating HP compilers were used; needed to correctly handle some |
38 | value operations with HP aCC code/runtime. */ | |
39 | extern int hp_som_som_object_present; | |
40 | ||
41 | ||
42 | /* Local functions. */ | |
43 | ||
c5aa993b | 44 | static int typecmp PARAMS ((int staticp, struct type * t1[], value_ptr t2[])); |
c906108c | 45 | |
c906108c SS |
46 | static CORE_ADDR find_function_addr PARAMS ((value_ptr, struct type **)); |
47 | static value_ptr value_arg_coerce PARAMS ((value_ptr, struct type *, int)); | |
c906108c SS |
48 | |
49 | ||
c906108c | 50 | static CORE_ADDR value_push PARAMS ((CORE_ADDR, value_ptr)); |
c906108c SS |
51 | |
52 | static value_ptr search_struct_field PARAMS ((char *, value_ptr, int, | |
53 | struct type *, int)); | |
54 | ||
c906108c SS |
55 | static value_ptr search_struct_method PARAMS ((char *, value_ptr *, |
56 | value_ptr *, | |
57 | int, int *, struct type *)); | |
58 | ||
59 | static int check_field_in PARAMS ((struct type *, const char *)); | |
60 | ||
61 | static CORE_ADDR allocate_space_in_inferior PARAMS ((int)); | |
62 | ||
63 | static value_ptr cast_into_complex PARAMS ((struct type *, value_ptr)); | |
64 | ||
c5aa993b | 65 | static struct fn_field *find_method_list PARAMS ((value_ptr * argp, char *method, int offset, int *static_memfuncp, struct type * type, int *num_fns, struct type ** basetype, int *boffset)); |
7a292a7a | 66 | |
c906108c SS |
67 | void _initialize_valops PARAMS ((void)); |
68 | ||
69 | #define VALUE_SUBSTRING_START(VAL) VALUE_FRAME(VAL) | |
70 | ||
71 | /* Flag for whether we want to abandon failed expression evals by default. */ | |
72 | ||
73 | #if 0 | |
74 | static int auto_abandon = 0; | |
75 | #endif | |
76 | ||
77 | int overload_resolution = 0; | |
242bfc55 FN |
78 | |
79 | /* This boolean tells what gdb should do if a signal is received while in | |
80 | a function called from gdb (call dummy). If set, gdb unwinds the stack | |
81 | and restore the context to what as it was before the call. | |
82 | The default is to stop in the frame where the signal was received. */ | |
83 | ||
84 | int unwind_on_signal_p = 0; | |
c5aa993b | 85 | \f |
c906108c SS |
86 | |
87 | ||
c906108c SS |
88 | /* Find the address of function name NAME in the inferior. */ |
89 | ||
90 | value_ptr | |
91 | find_function_in_inferior (name) | |
92 | char *name; | |
93 | { | |
94 | register struct symbol *sym; | |
95 | sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL); | |
96 | if (sym != NULL) | |
97 | { | |
98 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
99 | { | |
100 | error ("\"%s\" exists in this program but is not a function.", | |
101 | name); | |
102 | } | |
103 | return value_of_variable (sym, NULL); | |
104 | } | |
105 | else | |
106 | { | |
c5aa993b | 107 | struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL); |
c906108c SS |
108 | if (msymbol != NULL) |
109 | { | |
110 | struct type *type; | |
111 | LONGEST maddr; | |
112 | type = lookup_pointer_type (builtin_type_char); | |
113 | type = lookup_function_type (type); | |
114 | type = lookup_pointer_type (type); | |
115 | maddr = (LONGEST) SYMBOL_VALUE_ADDRESS (msymbol); | |
116 | return value_from_longest (type, maddr); | |
117 | } | |
118 | else | |
119 | { | |
c5aa993b | 120 | if (!target_has_execution) |
c906108c | 121 | error ("evaluation of this expression requires the target program to be active"); |
c5aa993b | 122 | else |
c906108c SS |
123 | error ("evaluation of this expression requires the program to have a function \"%s\".", name); |
124 | } | |
125 | } | |
126 | } | |
127 | ||
128 | /* Allocate NBYTES of space in the inferior using the inferior's malloc | |
129 | and return a value that is a pointer to the allocated space. */ | |
130 | ||
131 | value_ptr | |
132 | value_allocate_space_in_inferior (len) | |
133 | int len; | |
134 | { | |
135 | value_ptr blocklen; | |
136 | register value_ptr val = find_function_in_inferior ("malloc"); | |
137 | ||
138 | blocklen = value_from_longest (builtin_type_int, (LONGEST) len); | |
139 | val = call_function_by_hand (val, 1, &blocklen); | |
140 | if (value_logical_not (val)) | |
141 | { | |
142 | if (!target_has_execution) | |
c5aa993b JM |
143 | error ("No memory available to program now: you need to start the target first"); |
144 | else | |
145 | error ("No memory available to program: call to malloc failed"); | |
c906108c SS |
146 | } |
147 | return val; | |
148 | } | |
149 | ||
150 | static CORE_ADDR | |
151 | allocate_space_in_inferior (len) | |
152 | int len; | |
153 | { | |
154 | return value_as_long (value_allocate_space_in_inferior (len)); | |
155 | } | |
156 | ||
157 | /* Cast value ARG2 to type TYPE and return as a value. | |
158 | More general than a C cast: accepts any two types of the same length, | |
159 | and if ARG2 is an lvalue it can be cast into anything at all. */ | |
160 | /* In C++, casts may change pointer or object representations. */ | |
161 | ||
162 | value_ptr | |
163 | value_cast (type, arg2) | |
164 | struct type *type; | |
165 | register value_ptr arg2; | |
166 | { | |
167 | register enum type_code code1; | |
168 | register enum type_code code2; | |
169 | register int scalar; | |
170 | struct type *type2; | |
171 | ||
172 | int convert_to_boolean = 0; | |
c5aa993b | 173 | |
c906108c SS |
174 | if (VALUE_TYPE (arg2) == type) |
175 | return arg2; | |
176 | ||
177 | CHECK_TYPEDEF (type); | |
178 | code1 = TYPE_CODE (type); | |
c5aa993b | 179 | COERCE_REF (arg2); |
c906108c SS |
180 | type2 = check_typedef (VALUE_TYPE (arg2)); |
181 | ||
182 | /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT, | |
183 | is treated like a cast to (TYPE [N])OBJECT, | |
184 | where N is sizeof(OBJECT)/sizeof(TYPE). */ | |
185 | if (code1 == TYPE_CODE_ARRAY) | |
186 | { | |
187 | struct type *element_type = TYPE_TARGET_TYPE (type); | |
188 | unsigned element_length = TYPE_LENGTH (check_typedef (element_type)); | |
189 | if (element_length > 0 | |
c5aa993b | 190 | && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED) |
c906108c SS |
191 | { |
192 | struct type *range_type = TYPE_INDEX_TYPE (type); | |
193 | int val_length = TYPE_LENGTH (type2); | |
194 | LONGEST low_bound, high_bound, new_length; | |
195 | if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0) | |
196 | low_bound = 0, high_bound = 0; | |
197 | new_length = val_length / element_length; | |
198 | if (val_length % element_length != 0) | |
c5aa993b | 199 | warning ("array element type size does not divide object size in cast"); |
c906108c SS |
200 | /* FIXME-type-allocation: need a way to free this type when we are |
201 | done with it. */ | |
202 | range_type = create_range_type ((struct type *) NULL, | |
203 | TYPE_TARGET_TYPE (range_type), | |
204 | low_bound, | |
205 | new_length + low_bound - 1); | |
206 | VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL, | |
207 | element_type, range_type); | |
208 | return arg2; | |
209 | } | |
210 | } | |
211 | ||
212 | if (current_language->c_style_arrays | |
213 | && TYPE_CODE (type2) == TYPE_CODE_ARRAY) | |
214 | arg2 = value_coerce_array (arg2); | |
215 | ||
216 | if (TYPE_CODE (type2) == TYPE_CODE_FUNC) | |
217 | arg2 = value_coerce_function (arg2); | |
218 | ||
219 | type2 = check_typedef (VALUE_TYPE (arg2)); | |
220 | COERCE_VARYING_ARRAY (arg2, type2); | |
221 | code2 = TYPE_CODE (type2); | |
222 | ||
223 | if (code1 == TYPE_CODE_COMPLEX) | |
224 | return cast_into_complex (type, arg2); | |
225 | if (code1 == TYPE_CODE_BOOL) | |
226 | { | |
227 | code1 = TYPE_CODE_INT; | |
228 | convert_to_boolean = 1; | |
229 | } | |
230 | if (code1 == TYPE_CODE_CHAR) | |
231 | code1 = TYPE_CODE_INT; | |
232 | if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR) | |
233 | code2 = TYPE_CODE_INT; | |
234 | ||
235 | scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT | |
236 | || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE); | |
237 | ||
c5aa993b | 238 | if (code1 == TYPE_CODE_STRUCT |
c906108c SS |
239 | && code2 == TYPE_CODE_STRUCT |
240 | && TYPE_NAME (type) != 0) | |
241 | { | |
242 | /* Look in the type of the source to see if it contains the | |
09b59ee3 DB |
243 | type of the target as a superclass. If so, we'll need to |
244 | offset the object in addition to changing its type. */ | |
c906108c SS |
245 | value_ptr v = search_struct_field (type_name_no_tag (type), |
246 | arg2, 0, type2, 1); | |
247 | if (v) | |
248 | { | |
249 | VALUE_TYPE (v) = type; | |
250 | return v; | |
251 | } | |
252 | } | |
253 | if (code1 == TYPE_CODE_FLT && scalar) | |
254 | return value_from_double (type, value_as_double (arg2)); | |
255 | else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM | |
256 | || code1 == TYPE_CODE_RANGE) | |
257 | && (scalar || code2 == TYPE_CODE_PTR)) | |
258 | { | |
259 | LONGEST longest; | |
c5aa993b JM |
260 | |
261 | if (hp_som_som_object_present && /* if target compiled by HP aCC */ | |
262 | (code2 == TYPE_CODE_PTR)) | |
263 | { | |
264 | unsigned int *ptr; | |
265 | value_ptr retvalp; | |
266 | ||
267 | switch (TYPE_CODE (TYPE_TARGET_TYPE (type2))) | |
268 | { | |
269 | /* With HP aCC, pointers to data members have a bias */ | |
270 | case TYPE_CODE_MEMBER: | |
271 | retvalp = value_from_longest (type, value_as_long (arg2)); | |
272 | ptr = (unsigned int *) VALUE_CONTENTS (retvalp); /* force evaluation */ | |
273 | *ptr &= ~0x20000000; /* zap 29th bit to remove bias */ | |
274 | return retvalp; | |
275 | ||
276 | /* While pointers to methods don't really point to a function */ | |
277 | case TYPE_CODE_METHOD: | |
278 | error ("Pointers to methods not supported with HP aCC"); | |
279 | ||
280 | default: | |
281 | break; /* fall out and go to normal handling */ | |
282 | } | |
283 | } | |
c906108c SS |
284 | longest = value_as_long (arg2); |
285 | return value_from_longest (type, convert_to_boolean ? (LONGEST) (longest ? 1 : 0) : longest); | |
286 | } | |
287 | else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2)) | |
288 | { | |
289 | if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR) | |
290 | { | |
291 | struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type)); | |
292 | struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2)); | |
c5aa993b | 293 | if (TYPE_CODE (t1) == TYPE_CODE_STRUCT |
c906108c SS |
294 | && TYPE_CODE (t2) == TYPE_CODE_STRUCT |
295 | && !value_logical_not (arg2)) | |
296 | { | |
297 | value_ptr v; | |
298 | ||
299 | /* Look in the type of the source to see if it contains the | |
09b59ee3 DB |
300 | type of the target as a superclass. If so, we'll need to |
301 | offset the pointer rather than just change its type. */ | |
c906108c SS |
302 | if (TYPE_NAME (t1) != NULL) |
303 | { | |
304 | v = search_struct_field (type_name_no_tag (t1), | |
305 | value_ind (arg2), 0, t2, 1); | |
306 | if (v) | |
307 | { | |
308 | v = value_addr (v); | |
309 | VALUE_TYPE (v) = type; | |
310 | return v; | |
311 | } | |
312 | } | |
313 | ||
314 | /* Look in the type of the target to see if it contains the | |
09b59ee3 DB |
315 | type of the source as a superclass. If so, we'll need to |
316 | offset the pointer rather than just change its type. | |
317 | FIXME: This fails silently with virtual inheritance. */ | |
c906108c SS |
318 | if (TYPE_NAME (t2) != NULL) |
319 | { | |
320 | v = search_struct_field (type_name_no_tag (t2), | |
c5aa993b | 321 | value_zero (t1, not_lval), 0, t1, 1); |
c906108c SS |
322 | if (v) |
323 | { | |
324 | value_ptr v2 = value_ind (arg2); | |
325 | VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v) | |
c5aa993b | 326 | + VALUE_OFFSET (v); |
c906108c SS |
327 | v2 = value_addr (v2); |
328 | VALUE_TYPE (v2) = type; | |
329 | return v2; | |
330 | } | |
331 | } | |
332 | } | |
333 | /* No superclass found, just fall through to change ptr type. */ | |
334 | } | |
335 | VALUE_TYPE (arg2) = type; | |
c5aa993b JM |
336 | VALUE_ENCLOSING_TYPE (arg2) = type; /* pai: chk_val */ |
337 | VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */ | |
c906108c SS |
338 | return arg2; |
339 | } | |
340 | else if (chill_varying_type (type)) | |
341 | { | |
342 | struct type *range1, *range2, *eltype1, *eltype2; | |
343 | value_ptr val; | |
344 | int count1, count2; | |
345 | LONGEST low_bound, high_bound; | |
346 | char *valaddr, *valaddr_data; | |
347 | /* For lint warning about eltype2 possibly uninitialized: */ | |
348 | eltype2 = NULL; | |
349 | if (code2 == TYPE_CODE_BITSTRING) | |
350 | error ("not implemented: converting bitstring to varying type"); | |
351 | if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING) | |
352 | || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))), | |
353 | eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)), | |
354 | (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2) | |
c5aa993b | 355 | /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ ))) |
c906108c SS |
356 | error ("Invalid conversion to varying type"); |
357 | range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0); | |
358 | range2 = TYPE_FIELD_TYPE (type2, 0); | |
359 | if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0) | |
360 | count1 = -1; | |
361 | else | |
362 | count1 = high_bound - low_bound + 1; | |
363 | if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0) | |
c5aa993b | 364 | count1 = -1, count2 = 0; /* To force error before */ |
c906108c SS |
365 | else |
366 | count2 = high_bound - low_bound + 1; | |
367 | if (count2 > count1) | |
368 | error ("target varying type is too small"); | |
369 | val = allocate_value (type); | |
370 | valaddr = VALUE_CONTENTS_RAW (val); | |
371 | valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8; | |
372 | /* Set val's __var_length field to count2. */ | |
373 | store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)), | |
374 | count2); | |
375 | /* Set the __var_data field to count2 elements copied from arg2. */ | |
376 | memcpy (valaddr_data, VALUE_CONTENTS (arg2), | |
377 | count2 * TYPE_LENGTH (eltype2)); | |
378 | /* Zero the rest of the __var_data field of val. */ | |
379 | memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0', | |
380 | (count1 - count2) * TYPE_LENGTH (eltype2)); | |
381 | return val; | |
382 | } | |
383 | else if (VALUE_LVAL (arg2) == lval_memory) | |
384 | { | |
385 | return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2), | |
386 | VALUE_BFD_SECTION (arg2)); | |
387 | } | |
388 | else if (code1 == TYPE_CODE_VOID) | |
389 | { | |
390 | return value_zero (builtin_type_void, not_lval); | |
391 | } | |
392 | else | |
393 | { | |
394 | error ("Invalid cast."); | |
395 | return 0; | |
396 | } | |
397 | } | |
398 | ||
399 | /* Create a value of type TYPE that is zero, and return it. */ | |
400 | ||
401 | value_ptr | |
402 | value_zero (type, lv) | |
403 | struct type *type; | |
404 | enum lval_type lv; | |
405 | { | |
406 | register value_ptr val = allocate_value (type); | |
407 | ||
408 | memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type))); | |
409 | VALUE_LVAL (val) = lv; | |
410 | ||
411 | return val; | |
412 | } | |
413 | ||
09b59ee3 | 414 | /* Return a value with type TYPE located at ADDR. |
c906108c SS |
415 | |
416 | Call value_at only if the data needs to be fetched immediately; | |
417 | if we can be 'lazy' and defer the fetch, perhaps indefinately, call | |
418 | value_at_lazy instead. value_at_lazy simply records the address of | |
09b59ee3 DB |
419 | the data and sets the lazy-evaluation-required flag. The lazy flag |
420 | is tested in the VALUE_CONTENTS macro, which is used if and when | |
421 | the contents are actually required. | |
c906108c SS |
422 | |
423 | Note: value_at does *NOT* handle embedded offsets; perform such | |
424 | adjustments before or after calling it. */ | |
425 | ||
426 | value_ptr | |
427 | value_at (type, addr, sect) | |
428 | struct type *type; | |
429 | CORE_ADDR addr; | |
430 | asection *sect; | |
431 | { | |
432 | register value_ptr val; | |
433 | ||
434 | if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID) | |
435 | error ("Attempt to dereference a generic pointer."); | |
436 | ||
437 | val = allocate_value (type); | |
438 | ||
7a292a7a SS |
439 | if (GDB_TARGET_IS_D10V |
440 | && TYPE_CODE (type) == TYPE_CODE_PTR | |
c906108c SS |
441 | && TYPE_TARGET_TYPE (type) |
442 | && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)) | |
443 | { | |
444 | /* pointer to function */ | |
445 | unsigned long num; | |
446 | unsigned short snum; | |
447 | snum = read_memory_unsigned_integer (addr, 2); | |
7a292a7a SS |
448 | num = D10V_MAKE_IADDR (snum); |
449 | store_address (VALUE_CONTENTS_RAW (val), 4, num); | |
c906108c | 450 | } |
7a292a7a | 451 | else if (GDB_TARGET_IS_D10V |
c5aa993b | 452 | && TYPE_CODE (type) == TYPE_CODE_PTR) |
c906108c SS |
453 | { |
454 | /* pointer to data */ | |
455 | unsigned long num; | |
456 | unsigned short snum; | |
457 | snum = read_memory_unsigned_integer (addr, 2); | |
7a292a7a | 458 | num = D10V_MAKE_DADDR (snum); |
c5aa993b | 459 | store_address (VALUE_CONTENTS_RAW (val), 4, num); |
c906108c SS |
460 | } |
461 | else | |
c906108c SS |
462 | read_memory_section (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type), sect); |
463 | ||
464 | VALUE_LVAL (val) = lval_memory; | |
465 | VALUE_ADDRESS (val) = addr; | |
466 | VALUE_BFD_SECTION (val) = sect; | |
467 | ||
468 | return val; | |
469 | } | |
470 | ||
471 | /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */ | |
472 | ||
473 | value_ptr | |
474 | value_at_lazy (type, addr, sect) | |
475 | struct type *type; | |
476 | CORE_ADDR addr; | |
477 | asection *sect; | |
478 | { | |
479 | register value_ptr val; | |
480 | ||
481 | if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID) | |
482 | error ("Attempt to dereference a generic pointer."); | |
483 | ||
484 | val = allocate_value (type); | |
485 | ||
486 | VALUE_LVAL (val) = lval_memory; | |
487 | VALUE_ADDRESS (val) = addr; | |
488 | VALUE_LAZY (val) = 1; | |
489 | VALUE_BFD_SECTION (val) = sect; | |
490 | ||
491 | return val; | |
492 | } | |
493 | ||
09b59ee3 DB |
494 | /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros, |
495 | if the current data for a variable needs to be loaded into | |
496 | VALUE_CONTENTS(VAL). Fetches the data from the user's process, and | |
c906108c SS |
497 | clears the lazy flag to indicate that the data in the buffer is valid. |
498 | ||
499 | If the value is zero-length, we avoid calling read_memory, which would | |
500 | abort. We mark the value as fetched anyway -- all 0 bytes of it. | |
501 | ||
502 | This function returns a value because it is used in the VALUE_CONTENTS | |
503 | macro as part of an expression, where a void would not work. The | |
504 | value is ignored. */ | |
505 | ||
506 | int | |
507 | value_fetch_lazy (val) | |
508 | register value_ptr val; | |
509 | { | |
510 | CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val); | |
511 | int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)); | |
512 | ||
c5aa993b | 513 | struct type *type = VALUE_TYPE (val); |
7a292a7a SS |
514 | if (GDB_TARGET_IS_D10V |
515 | && TYPE_CODE (type) == TYPE_CODE_PTR | |
c906108c SS |
516 | && TYPE_TARGET_TYPE (type) |
517 | && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)) | |
518 | { | |
519 | /* pointer to function */ | |
520 | unsigned long num; | |
521 | unsigned short snum; | |
522 | snum = read_memory_unsigned_integer (addr, 2); | |
c5aa993b JM |
523 | num = D10V_MAKE_IADDR (snum); |
524 | store_address (VALUE_CONTENTS_RAW (val), 4, num); | |
c906108c | 525 | } |
7a292a7a | 526 | else if (GDB_TARGET_IS_D10V |
c5aa993b | 527 | && TYPE_CODE (type) == TYPE_CODE_PTR) |
c906108c SS |
528 | { |
529 | /* pointer to data */ | |
530 | unsigned long num; | |
531 | unsigned short snum; | |
532 | snum = read_memory_unsigned_integer (addr, 2); | |
c5aa993b JM |
533 | num = D10V_MAKE_DADDR (snum); |
534 | store_address (VALUE_CONTENTS_RAW (val), 4, num); | |
c906108c | 535 | } |
7a292a7a | 536 | else if (length) |
c906108c SS |
537 | read_memory_section (addr, VALUE_CONTENTS_ALL_RAW (val), length, |
538 | VALUE_BFD_SECTION (val)); | |
539 | VALUE_LAZY (val) = 0; | |
540 | return 0; | |
541 | } | |
542 | ||
543 | ||
544 | /* Store the contents of FROMVAL into the location of TOVAL. | |
545 | Return a new value with the location of TOVAL and contents of FROMVAL. */ | |
546 | ||
547 | value_ptr | |
548 | value_assign (toval, fromval) | |
549 | register value_ptr toval, fromval; | |
550 | { | |
551 | register struct type *type; | |
552 | register value_ptr val; | |
553 | char raw_buffer[MAX_REGISTER_RAW_SIZE]; | |
554 | int use_buffer = 0; | |
555 | ||
556 | if (!toval->modifiable) | |
557 | error ("Left operand of assignment is not a modifiable lvalue."); | |
558 | ||
559 | COERCE_REF (toval); | |
560 | ||
561 | type = VALUE_TYPE (toval); | |
562 | if (VALUE_LVAL (toval) != lval_internalvar) | |
563 | fromval = value_cast (type, fromval); | |
564 | else | |
565 | COERCE_ARRAY (fromval); | |
566 | CHECK_TYPEDEF (type); | |
567 | ||
568 | /* If TOVAL is a special machine register requiring conversion | |
569 | of program values to a special raw format, | |
570 | convert FROMVAL's contents now, with result in `raw_buffer', | |
571 | and set USE_BUFFER to the number of bytes to write. */ | |
572 | ||
ac9a91a7 | 573 | if (VALUE_REGNO (toval) >= 0) |
c906108c SS |
574 | { |
575 | int regno = VALUE_REGNO (toval); | |
576 | if (REGISTER_CONVERTIBLE (regno)) | |
577 | { | |
578 | struct type *fromtype = check_typedef (VALUE_TYPE (fromval)); | |
579 | REGISTER_CONVERT_TO_RAW (fromtype, regno, | |
580 | VALUE_CONTENTS (fromval), raw_buffer); | |
581 | use_buffer = REGISTER_RAW_SIZE (regno); | |
582 | } | |
583 | } | |
c906108c SS |
584 | |
585 | switch (VALUE_LVAL (toval)) | |
586 | { | |
587 | case lval_internalvar: | |
588 | set_internalvar (VALUE_INTERNALVAR (toval), fromval); | |
589 | val = value_copy (VALUE_INTERNALVAR (toval)->value); | |
590 | VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval); | |
591 | VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval); | |
592 | VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval); | |
593 | return val; | |
594 | ||
595 | case lval_internalvar_component: | |
596 | set_internalvar_component (VALUE_INTERNALVAR (toval), | |
597 | VALUE_OFFSET (toval), | |
598 | VALUE_BITPOS (toval), | |
599 | VALUE_BITSIZE (toval), | |
600 | fromval); | |
601 | break; | |
602 | ||
603 | case lval_memory: | |
604 | { | |
605 | char *dest_buffer; | |
c5aa993b JM |
606 | CORE_ADDR changed_addr; |
607 | int changed_len; | |
c906108c | 608 | |
c5aa993b JM |
609 | if (VALUE_BITSIZE (toval)) |
610 | { | |
c906108c SS |
611 | char buffer[sizeof (LONGEST)]; |
612 | /* We assume that the argument to read_memory is in units of | |
613 | host chars. FIXME: Is that correct? */ | |
614 | changed_len = (VALUE_BITPOS (toval) | |
c5aa993b JM |
615 | + VALUE_BITSIZE (toval) |
616 | + HOST_CHAR_BIT - 1) | |
617 | / HOST_CHAR_BIT; | |
c906108c SS |
618 | |
619 | if (changed_len > (int) sizeof (LONGEST)) | |
620 | error ("Can't handle bitfields which don't fit in a %d bit word.", | |
621 | sizeof (LONGEST) * HOST_CHAR_BIT); | |
622 | ||
623 | read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
624 | buffer, changed_len); | |
625 | modify_field (buffer, value_as_long (fromval), | |
626 | VALUE_BITPOS (toval), VALUE_BITSIZE (toval)); | |
627 | changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval); | |
628 | dest_buffer = buffer; | |
629 | } | |
630 | else if (use_buffer) | |
631 | { | |
632 | changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval); | |
633 | changed_len = use_buffer; | |
634 | dest_buffer = raw_buffer; | |
635 | } | |
636 | else | |
637 | { | |
638 | changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval); | |
639 | changed_len = TYPE_LENGTH (type); | |
640 | dest_buffer = VALUE_CONTENTS (fromval); | |
641 | } | |
642 | ||
643 | write_memory (changed_addr, dest_buffer, changed_len); | |
644 | if (memory_changed_hook) | |
645 | memory_changed_hook (changed_addr, changed_len); | |
646 | } | |
647 | break; | |
648 | ||
649 | case lval_register: | |
650 | if (VALUE_BITSIZE (toval)) | |
651 | { | |
652 | char buffer[sizeof (LONGEST)]; | |
c5aa993b | 653 | int len = REGISTER_RAW_SIZE (VALUE_REGNO (toval)); |
c906108c SS |
654 | |
655 | if (len > (int) sizeof (LONGEST)) | |
656 | error ("Can't handle bitfields in registers larger than %d bits.", | |
657 | sizeof (LONGEST) * HOST_CHAR_BIT); | |
658 | ||
659 | if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval) | |
660 | > len * HOST_CHAR_BIT) | |
661 | /* Getting this right would involve being very careful about | |
662 | byte order. */ | |
c2d11a7d JM |
663 | error ("Can't assign to bitfields that cross register " |
664 | "boundaries."); | |
c906108c | 665 | |
c5aa993b JM |
666 | read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), |
667 | buffer, len); | |
668 | modify_field (buffer, value_as_long (fromval), | |
669 | VALUE_BITPOS (toval), VALUE_BITSIZE (toval)); | |
670 | write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
671 | buffer, len); | |
c906108c SS |
672 | } |
673 | else if (use_buffer) | |
674 | write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
675 | raw_buffer, use_buffer); | |
676 | else | |
c5aa993b | 677 | { |
c906108c SS |
678 | /* Do any conversion necessary when storing this type to more |
679 | than one register. */ | |
680 | #ifdef REGISTER_CONVERT_FROM_TYPE | |
681 | memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type)); | |
c5aa993b | 682 | REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer); |
c906108c SS |
683 | write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), |
684 | raw_buffer, TYPE_LENGTH (type)); | |
685 | #else | |
686 | write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
c5aa993b | 687 | VALUE_CONTENTS (fromval), TYPE_LENGTH (type)); |
c906108c SS |
688 | #endif |
689 | } | |
690 | /* Assigning to the stack pointer, frame pointer, and other | |
09b59ee3 DB |
691 | (architecture and calling convention specific) registers may |
692 | cause the frame cache to be out of date. We just do this | |
693 | on all assignments to registers for simplicity; I doubt the slowdown | |
694 | matters. */ | |
c906108c SS |
695 | reinit_frame_cache (); |
696 | break; | |
697 | ||
698 | case lval_reg_frame_relative: | |
699 | { | |
700 | /* value is stored in a series of registers in the frame | |
701 | specified by the structure. Copy that value out, modify | |
702 | it, and copy it back in. */ | |
703 | int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type)); | |
704 | int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval)); | |
705 | int byte_offset = VALUE_OFFSET (toval) % reg_size; | |
706 | int reg_offset = VALUE_OFFSET (toval) / reg_size; | |
707 | int amount_copied; | |
708 | ||
709 | /* Make the buffer large enough in all cases. */ | |
710 | char *buffer = (char *) alloca (amount_to_copy | |
711 | + sizeof (LONGEST) | |
712 | + MAX_REGISTER_RAW_SIZE); | |
713 | ||
714 | int regno; | |
715 | struct frame_info *frame; | |
716 | ||
717 | /* Figure out which frame this is in currently. */ | |
718 | for (frame = get_current_frame (); | |
719 | frame && FRAME_FP (frame) != VALUE_FRAME (toval); | |
720 | frame = get_prev_frame (frame)) | |
721 | ; | |
722 | ||
723 | if (!frame) | |
724 | error ("Value being assigned to is no longer active."); | |
725 | ||
726 | amount_to_copy += (reg_size - amount_to_copy % reg_size); | |
727 | ||
728 | /* Copy it out. */ | |
729 | for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset, | |
730 | amount_copied = 0); | |
731 | amount_copied < amount_to_copy; | |
732 | amount_copied += reg_size, regno++) | |
733 | { | |
734 | get_saved_register (buffer + amount_copied, | |
c5aa993b JM |
735 | (int *) NULL, (CORE_ADDR *) NULL, |
736 | frame, regno, (enum lval_type *) NULL); | |
c906108c SS |
737 | } |
738 | ||
739 | /* Modify what needs to be modified. */ | |
740 | if (VALUE_BITSIZE (toval)) | |
741 | modify_field (buffer + byte_offset, | |
742 | value_as_long (fromval), | |
743 | VALUE_BITPOS (toval), VALUE_BITSIZE (toval)); | |
744 | else if (use_buffer) | |
745 | memcpy (buffer + byte_offset, raw_buffer, use_buffer); | |
746 | else | |
747 | memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval), | |
748 | TYPE_LENGTH (type)); | |
749 | ||
750 | /* Copy it back. */ | |
751 | for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset, | |
752 | amount_copied = 0); | |
753 | amount_copied < amount_to_copy; | |
754 | amount_copied += reg_size, regno++) | |
755 | { | |
756 | enum lval_type lval; | |
757 | CORE_ADDR addr; | |
758 | int optim; | |
759 | ||
760 | /* Just find out where to put it. */ | |
c5aa993b JM |
761 | get_saved_register ((char *) NULL, |
762 | &optim, &addr, frame, regno, &lval); | |
763 | ||
c906108c SS |
764 | if (optim) |
765 | error ("Attempt to assign to a value that was optimized out."); | |
766 | if (lval == lval_memory) | |
767 | write_memory (addr, buffer + amount_copied, reg_size); | |
768 | else if (lval == lval_register) | |
769 | write_register_bytes (addr, buffer + amount_copied, reg_size); | |
770 | else | |
771 | error ("Attempt to assign to an unmodifiable value."); | |
772 | } | |
773 | ||
774 | if (register_changed_hook) | |
775 | register_changed_hook (-1); | |
776 | } | |
777 | break; | |
c5aa993b | 778 | |
c906108c SS |
779 | |
780 | default: | |
781 | error ("Left operand of assignment is not an lvalue."); | |
782 | } | |
783 | ||
784 | /* If the field does not entirely fill a LONGEST, then zero the sign bits. | |
785 | If the field is signed, and is negative, then sign extend. */ | |
786 | if ((VALUE_BITSIZE (toval) > 0) | |
787 | && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST))) | |
788 | { | |
789 | LONGEST fieldval = value_as_long (fromval); | |
790 | LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1; | |
791 | ||
792 | fieldval &= valmask; | |
793 | if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1)))) | |
794 | fieldval |= ~valmask; | |
795 | ||
796 | fromval = value_from_longest (type, fieldval); | |
797 | } | |
798 | ||
799 | val = value_copy (toval); | |
800 | memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval), | |
801 | TYPE_LENGTH (type)); | |
802 | VALUE_TYPE (val) = type; | |
803 | VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval); | |
804 | VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval); | |
805 | VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval); | |
c5aa993b | 806 | |
c906108c SS |
807 | return val; |
808 | } | |
809 | ||
810 | /* Extend a value VAL to COUNT repetitions of its type. */ | |
811 | ||
812 | value_ptr | |
813 | value_repeat (arg1, count) | |
814 | value_ptr arg1; | |
815 | int count; | |
816 | { | |
817 | register value_ptr val; | |
818 | ||
819 | if (VALUE_LVAL (arg1) != lval_memory) | |
820 | error ("Only values in memory can be extended with '@'."); | |
821 | if (count < 1) | |
822 | error ("Invalid number %d of repetitions.", count); | |
823 | ||
824 | val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count); | |
825 | ||
826 | read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1), | |
827 | VALUE_CONTENTS_ALL_RAW (val), | |
828 | TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val))); | |
829 | VALUE_LVAL (val) = lval_memory; | |
830 | VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1); | |
831 | ||
832 | return val; | |
833 | } | |
834 | ||
835 | value_ptr | |
836 | value_of_variable (var, b) | |
837 | struct symbol *var; | |
838 | struct block *b; | |
839 | { | |
840 | value_ptr val; | |
841 | struct frame_info *frame = NULL; | |
842 | ||
843 | if (!b) | |
844 | frame = NULL; /* Use selected frame. */ | |
845 | else if (symbol_read_needs_frame (var)) | |
846 | { | |
847 | frame = block_innermost_frame (b); | |
848 | if (!frame) | |
c5aa993b | 849 | { |
c906108c SS |
850 | if (BLOCK_FUNCTION (b) |
851 | && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b))) | |
852 | error ("No frame is currently executing in block %s.", | |
853 | SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b))); | |
854 | else | |
855 | error ("No frame is currently executing in specified block"); | |
c5aa993b | 856 | } |
c906108c SS |
857 | } |
858 | ||
859 | val = read_var_value (var, frame); | |
860 | if (!val) | |
861 | error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var)); | |
862 | ||
863 | return val; | |
864 | } | |
865 | ||
866 | /* Given a value which is an array, return a value which is a pointer to its | |
867 | first element, regardless of whether or not the array has a nonzero lower | |
868 | bound. | |
869 | ||
870 | FIXME: A previous comment here indicated that this routine should be | |
871 | substracting the array's lower bound. It's not clear to me that this | |
872 | is correct. Given an array subscripting operation, it would certainly | |
873 | work to do the adjustment here, essentially computing: | |
874 | ||
875 | (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0]) | |
876 | ||
877 | However I believe a more appropriate and logical place to account for | |
878 | the lower bound is to do so in value_subscript, essentially computing: | |
879 | ||
880 | (&array[0] + ((index - lowerbound) * sizeof array[0])) | |
881 | ||
882 | As further evidence consider what would happen with operations other | |
883 | than array subscripting, where the caller would get back a value that | |
884 | had an address somewhere before the actual first element of the array, | |
885 | and the information about the lower bound would be lost because of | |
886 | the coercion to pointer type. | |
c5aa993b | 887 | */ |
c906108c SS |
888 | |
889 | value_ptr | |
890 | value_coerce_array (arg1) | |
891 | value_ptr arg1; | |
892 | { | |
893 | register struct type *type = check_typedef (VALUE_TYPE (arg1)); | |
894 | ||
895 | if (VALUE_LVAL (arg1) != lval_memory) | |
896 | error ("Attempt to take address of value not located in memory."); | |
897 | ||
898 | return value_from_longest (lookup_pointer_type (TYPE_TARGET_TYPE (type)), | |
c5aa993b | 899 | (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1))); |
c906108c SS |
900 | } |
901 | ||
902 | /* Given a value which is a function, return a value which is a pointer | |
903 | to it. */ | |
904 | ||
905 | value_ptr | |
906 | value_coerce_function (arg1) | |
907 | value_ptr arg1; | |
908 | { | |
909 | value_ptr retval; | |
910 | ||
911 | if (VALUE_LVAL (arg1) != lval_memory) | |
912 | error ("Attempt to take address of value not located in memory."); | |
913 | ||
914 | retval = value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)), | |
c5aa993b | 915 | (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1))); |
c906108c SS |
916 | VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1); |
917 | return retval; | |
c5aa993b | 918 | } |
c906108c SS |
919 | |
920 | /* Return a pointer value for the object for which ARG1 is the contents. */ | |
921 | ||
922 | value_ptr | |
923 | value_addr (arg1) | |
924 | value_ptr arg1; | |
925 | { | |
926 | value_ptr arg2; | |
927 | ||
928 | struct type *type = check_typedef (VALUE_TYPE (arg1)); | |
929 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
930 | { | |
931 | /* Copy the value, but change the type from (T&) to (T*). | |
09b59ee3 DB |
932 | We keep the same location information, which is efficient, |
933 | and allows &(&X) to get the location containing the reference. */ | |
c906108c SS |
934 | arg2 = value_copy (arg1); |
935 | VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type)); | |
936 | return arg2; | |
937 | } | |
938 | if (TYPE_CODE (type) == TYPE_CODE_FUNC) | |
939 | return value_coerce_function (arg1); | |
940 | ||
941 | if (VALUE_LVAL (arg1) != lval_memory) | |
942 | error ("Attempt to take address of value not located in memory."); | |
943 | ||
c5aa993b | 944 | /* Get target memory address */ |
c906108c | 945 | arg2 = value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)), |
c5aa993b JM |
946 | (LONGEST) (VALUE_ADDRESS (arg1) |
947 | + VALUE_OFFSET (arg1) | |
948 | + VALUE_EMBEDDED_OFFSET (arg1))); | |
c906108c SS |
949 | |
950 | /* This may be a pointer to a base subobject; so remember the | |
c5aa993b | 951 | full derived object's type ... */ |
c906108c | 952 | VALUE_ENCLOSING_TYPE (arg2) = lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)); |
c5aa993b JM |
953 | /* ... and also the relative position of the subobject in the full object */ |
954 | VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1); | |
c906108c SS |
955 | VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1); |
956 | return arg2; | |
957 | } | |
958 | ||
959 | /* Given a value of a pointer type, apply the C unary * operator to it. */ | |
960 | ||
961 | value_ptr | |
962 | value_ind (arg1) | |
963 | value_ptr arg1; | |
964 | { | |
965 | struct type *base_type; | |
966 | value_ptr arg2; | |
c906108c SS |
967 | |
968 | COERCE_ARRAY (arg1); | |
969 | ||
970 | base_type = check_typedef (VALUE_TYPE (arg1)); | |
971 | ||
972 | if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER) | |
973 | error ("not implemented: member types in value_ind"); | |
974 | ||
975 | /* Allow * on an integer so we can cast it to whatever we want. | |
976 | This returns an int, which seems like the most C-like thing | |
977 | to do. "long long" variables are rare enough that | |
978 | BUILTIN_TYPE_LONGEST would seem to be a mistake. */ | |
979 | if (TYPE_CODE (base_type) == TYPE_CODE_INT) | |
980 | return value_at (builtin_type_int, | |
981 | (CORE_ADDR) value_as_long (arg1), | |
982 | VALUE_BFD_SECTION (arg1)); | |
983 | else if (TYPE_CODE (base_type) == TYPE_CODE_PTR) | |
984 | { | |
985 | struct type *enc_type; | |
986 | /* We may be pointing to something embedded in a larger object */ | |
c5aa993b | 987 | /* Get the real type of the enclosing object */ |
c906108c SS |
988 | enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1)); |
989 | enc_type = TYPE_TARGET_TYPE (enc_type); | |
c5aa993b JM |
990 | /* Retrieve the enclosing object pointed to */ |
991 | arg2 = value_at_lazy (enc_type, | |
992 | value_as_pointer (arg1) - VALUE_POINTED_TO_OFFSET (arg1), | |
993 | VALUE_BFD_SECTION (arg1)); | |
994 | /* Re-adjust type */ | |
c906108c SS |
995 | VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type); |
996 | /* Add embedding info */ | |
997 | VALUE_ENCLOSING_TYPE (arg2) = enc_type; | |
998 | VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1); | |
999 | ||
1000 | /* We may be pointing to an object of some derived type */ | |
1001 | arg2 = value_full_object (arg2, NULL, 0, 0, 0); | |
1002 | return arg2; | |
1003 | } | |
1004 | ||
1005 | error ("Attempt to take contents of a non-pointer value."); | |
c5aa993b | 1006 | return 0; /* For lint -- never reached */ |
c906108c SS |
1007 | } |
1008 | \f | |
1009 | /* Pushing small parts of stack frames. */ | |
1010 | ||
1011 | /* Push one word (the size of object that a register holds). */ | |
1012 | ||
1013 | CORE_ADDR | |
1014 | push_word (sp, word) | |
1015 | CORE_ADDR sp; | |
1016 | ULONGEST word; | |
1017 | { | |
1018 | register int len = REGISTER_SIZE; | |
1019 | char buffer[MAX_REGISTER_RAW_SIZE]; | |
1020 | ||
1021 | store_unsigned_integer (buffer, len, word); | |
1022 | if (INNER_THAN (1, 2)) | |
1023 | { | |
1024 | /* stack grows downward */ | |
1025 | sp -= len; | |
1026 | write_memory (sp, buffer, len); | |
1027 | } | |
1028 | else | |
1029 | { | |
1030 | /* stack grows upward */ | |
1031 | write_memory (sp, buffer, len); | |
1032 | sp += len; | |
1033 | } | |
1034 | ||
1035 | return sp; | |
1036 | } | |
1037 | ||
1038 | /* Push LEN bytes with data at BUFFER. */ | |
1039 | ||
1040 | CORE_ADDR | |
1041 | push_bytes (sp, buffer, len) | |
1042 | CORE_ADDR sp; | |
1043 | char *buffer; | |
1044 | int len; | |
1045 | { | |
1046 | if (INNER_THAN (1, 2)) | |
1047 | { | |
1048 | /* stack grows downward */ | |
1049 | sp -= len; | |
1050 | write_memory (sp, buffer, len); | |
1051 | } | |
1052 | else | |
1053 | { | |
1054 | /* stack grows upward */ | |
1055 | write_memory (sp, buffer, len); | |
1056 | sp += len; | |
1057 | } | |
1058 | ||
1059 | return sp; | |
1060 | } | |
1061 | ||
2df3850c JM |
1062 | #ifndef PARM_BOUNDARY |
1063 | #define PARM_BOUNDARY (0) | |
1064 | #endif | |
1065 | ||
1066 | /* Push onto the stack the specified value VALUE. Pad it correctly for | |
1067 | it to be an argument to a function. */ | |
c906108c | 1068 | |
c906108c SS |
1069 | static CORE_ADDR |
1070 | value_push (sp, arg) | |
1071 | register CORE_ADDR sp; | |
1072 | value_ptr arg; | |
1073 | { | |
1074 | register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)); | |
917317f4 | 1075 | register int container_len = len; |
2df3850c JM |
1076 | register int offset; |
1077 | ||
1078 | /* How big is the container we're going to put this value in? */ | |
1079 | if (PARM_BOUNDARY) | |
1080 | container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1) | |
1081 | & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1)); | |
1082 | ||
1083 | /* Are we going to put it at the high or low end of the container? */ | |
1084 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) | |
1085 | offset = container_len - len; | |
1086 | else | |
1087 | offset = 0; | |
c906108c SS |
1088 | |
1089 | if (INNER_THAN (1, 2)) | |
1090 | { | |
1091 | /* stack grows downward */ | |
2df3850c JM |
1092 | sp -= container_len; |
1093 | write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len); | |
c906108c SS |
1094 | } |
1095 | else | |
1096 | { | |
1097 | /* stack grows upward */ | |
2df3850c JM |
1098 | write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len); |
1099 | sp += container_len; | |
c906108c SS |
1100 | } |
1101 | ||
1102 | return sp; | |
1103 | } | |
1104 | ||
392a587b JM |
1105 | #ifndef PUSH_ARGUMENTS |
1106 | #define PUSH_ARGUMENTS default_push_arguments | |
1107 | #endif | |
1108 | ||
1109 | CORE_ADDR | |
ac9a91a7 | 1110 | default_push_arguments (nargs, args, sp, struct_return, struct_addr) |
392a587b JM |
1111 | int nargs; |
1112 | value_ptr *args; | |
392a587b | 1113 | CORE_ADDR sp; |
ac9a91a7 | 1114 | int struct_return; |
392a587b JM |
1115 | CORE_ADDR struct_addr; |
1116 | { | |
1117 | /* ASSERT ( !struct_return); */ | |
1118 | int i; | |
1119 | for (i = nargs - 1; i >= 0; i--) | |
1120 | sp = value_push (sp, args[i]); | |
1121 | return sp; | |
1122 | } | |
1123 | ||
c906108c | 1124 | |
b9a8e3bf JB |
1125 | /* If we're calling a function declared without a prototype, should we |
1126 | promote floats to doubles? FORMAL and ACTUAL are the types of the | |
1127 | arguments; FORMAL may be NULL. | |
1128 | ||
1129 | If we have no definition for this macro, either from the target or | |
1130 | from gdbarch, provide a default. */ | |
1131 | #ifndef COERCE_FLOAT_TO_DOUBLE | |
1132 | #define COERCE_FLOAT_TO_DOUBLE(formal, actual) \ | |
1133 | (default_coerce_float_to_double ((formal), (actual))) | |
09b59ee3 | 1134 | #endif |
b9a8e3bf JB |
1135 | |
1136 | ||
1137 | /* A default function for COERCE_FLOAT_TO_DOUBLE: do the coercion only | |
1138 | when we don't have any type for the argument at hand. This occurs | |
1139 | when we have no debug info, or when passing varargs. | |
1140 | ||
1141 | This is an annoying default: the rule the compiler follows is to do | |
1142 | the standard promotions whenever there is no prototype in scope, | |
1143 | and almost all targets want this behavior. But there are some old | |
1144 | architectures which want this odd behavior. If you want to go | |
1145 | through them all and fix them, please do. Modern gdbarch-style | |
1146 | targets may find it convenient to use standard_coerce_float_to_double. */ | |
1147 | int | |
1148 | default_coerce_float_to_double (struct type *formal, struct type *actual) | |
1149 | { | |
1150 | return formal == NULL; | |
1151 | } | |
1152 | ||
1153 | ||
1154 | /* Always coerce floats to doubles when there is no prototype in scope. | |
1155 | If your architecture follows the standard type promotion rules for | |
1156 | calling unprototyped functions, your gdbarch init function can pass | |
1157 | this function to set_gdbarch_coerce_float_to_double to use its logic. */ | |
1158 | int | |
1159 | standard_coerce_float_to_double (struct type *formal, struct type *actual) | |
1160 | { | |
1161 | return 1; | |
1162 | } | |
1163 | ||
1164 | ||
c906108c SS |
1165 | /* Perform the standard coercions that are specified |
1166 | for arguments to be passed to C functions. | |
1167 | ||
1168 | If PARAM_TYPE is non-NULL, it is the expected parameter type. | |
1169 | IS_PROTOTYPED is non-zero if the function declaration is prototyped. */ | |
1170 | ||
1171 | static value_ptr | |
1172 | value_arg_coerce (arg, param_type, is_prototyped) | |
1173 | value_ptr arg; | |
1174 | struct type *param_type; | |
1175 | int is_prototyped; | |
1176 | { | |
1177 | register struct type *arg_type = check_typedef (VALUE_TYPE (arg)); | |
1178 | register struct type *type | |
c5aa993b | 1179 | = param_type ? check_typedef (param_type) : arg_type; |
c906108c SS |
1180 | |
1181 | switch (TYPE_CODE (type)) | |
1182 | { | |
1183 | case TYPE_CODE_REF: | |
1184 | if (TYPE_CODE (arg_type) != TYPE_CODE_REF) | |
1185 | { | |
1186 | arg = value_addr (arg); | |
1187 | VALUE_TYPE (arg) = param_type; | |
1188 | return arg; | |
1189 | } | |
1190 | break; | |
1191 | case TYPE_CODE_INT: | |
1192 | case TYPE_CODE_CHAR: | |
1193 | case TYPE_CODE_BOOL: | |
1194 | case TYPE_CODE_ENUM: | |
1195 | /* If we don't have a prototype, coerce to integer type if necessary. */ | |
1196 | if (!is_prototyped) | |
1197 | { | |
1198 | if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int)) | |
1199 | type = builtin_type_int; | |
1200 | } | |
1201 | /* Currently all target ABIs require at least the width of an integer | |
09b59ee3 DB |
1202 | type for an argument. We may have to conditionalize the following |
1203 | type coercion for future targets. */ | |
c906108c SS |
1204 | if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int)) |
1205 | type = builtin_type_int; | |
1206 | break; | |
1207 | case TYPE_CODE_FLT: | |
1208 | /* FIXME: We should always convert floats to doubles in the | |
09b59ee3 DB |
1209 | non-prototyped case. As many debugging formats include |
1210 | no information about prototyping, we have to live with | |
1211 | COERCE_FLOAT_TO_DOUBLE for now. */ | |
b9a8e3bf | 1212 | if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type)) |
c906108c SS |
1213 | { |
1214 | if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double)) | |
1215 | type = builtin_type_double; | |
1216 | else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double)) | |
1217 | type = builtin_type_long_double; | |
1218 | } | |
1219 | break; | |
1220 | case TYPE_CODE_FUNC: | |
1221 | type = lookup_pointer_type (type); | |
1222 | break; | |
1223 | case TYPE_CODE_ARRAY: | |
1224 | if (current_language->c_style_arrays) | |
1225 | type = lookup_pointer_type (TYPE_TARGET_TYPE (type)); | |
1226 | break; | |
1227 | case TYPE_CODE_UNDEF: | |
1228 | case TYPE_CODE_PTR: | |
1229 | case TYPE_CODE_STRUCT: | |
1230 | case TYPE_CODE_UNION: | |
1231 | case TYPE_CODE_VOID: | |
1232 | case TYPE_CODE_SET: | |
1233 | case TYPE_CODE_RANGE: | |
1234 | case TYPE_CODE_STRING: | |
1235 | case TYPE_CODE_BITSTRING: | |
1236 | case TYPE_CODE_ERROR: | |
1237 | case TYPE_CODE_MEMBER: | |
1238 | case TYPE_CODE_METHOD: | |
1239 | case TYPE_CODE_COMPLEX: | |
1240 | default: | |
1241 | break; | |
1242 | } | |
1243 | ||
1244 | return value_cast (type, arg); | |
1245 | } | |
1246 | ||
09b59ee3 | 1247 | /* Determine a function's address and its return type from its value. |
c906108c SS |
1248 | Calls error() if the function is not valid for calling. */ |
1249 | ||
1250 | static CORE_ADDR | |
1251 | find_function_addr (function, retval_type) | |
1252 | value_ptr function; | |
1253 | struct type **retval_type; | |
1254 | { | |
1255 | register struct type *ftype = check_typedef (VALUE_TYPE (function)); | |
1256 | register enum type_code code = TYPE_CODE (ftype); | |
1257 | struct type *value_type; | |
1258 | CORE_ADDR funaddr; | |
1259 | ||
1260 | /* If it's a member function, just look at the function | |
1261 | part of it. */ | |
1262 | ||
1263 | /* Determine address to call. */ | |
1264 | if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD) | |
1265 | { | |
1266 | funaddr = VALUE_ADDRESS (function); | |
1267 | value_type = TYPE_TARGET_TYPE (ftype); | |
1268 | } | |
1269 | else if (code == TYPE_CODE_PTR) | |
1270 | { | |
1271 | funaddr = value_as_pointer (function); | |
1272 | ftype = check_typedef (TYPE_TARGET_TYPE (ftype)); | |
1273 | if (TYPE_CODE (ftype) == TYPE_CODE_FUNC | |
1274 | || TYPE_CODE (ftype) == TYPE_CODE_METHOD) | |
1275 | { | |
1276 | #ifdef CONVERT_FROM_FUNC_PTR_ADDR | |
1277 | /* FIXME: This is a workaround for the unusual function | |
1278 | pointer representation on the RS/6000, see comment | |
1279 | in config/rs6000/tm-rs6000.h */ | |
1280 | funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr); | |
1281 | #endif | |
1282 | value_type = TYPE_TARGET_TYPE (ftype); | |
1283 | } | |
1284 | else | |
1285 | value_type = builtin_type_int; | |
1286 | } | |
1287 | else if (code == TYPE_CODE_INT) | |
1288 | { | |
1289 | /* Handle the case of functions lacking debugging info. | |
09b59ee3 | 1290 | Their values are characters since their addresses are char */ |
c906108c SS |
1291 | if (TYPE_LENGTH (ftype) == 1) |
1292 | funaddr = value_as_pointer (value_addr (function)); | |
1293 | else | |
1294 | /* Handle integer used as address of a function. */ | |
1295 | funaddr = (CORE_ADDR) value_as_long (function); | |
1296 | ||
1297 | value_type = builtin_type_int; | |
1298 | } | |
1299 | else | |
1300 | error ("Invalid data type for function to be called."); | |
1301 | ||
1302 | *retval_type = value_type; | |
1303 | return funaddr; | |
1304 | } | |
1305 | ||
1306 | /* All this stuff with a dummy frame may seem unnecessarily complicated | |
1307 | (why not just save registers in GDB?). The purpose of pushing a dummy | |
1308 | frame which looks just like a real frame is so that if you call a | |
1309 | function and then hit a breakpoint (get a signal, etc), "backtrace" | |
1310 | will look right. Whether the backtrace needs to actually show the | |
1311 | stack at the time the inferior function was called is debatable, but | |
1312 | it certainly needs to not display garbage. So if you are contemplating | |
1313 | making dummy frames be different from normal frames, consider that. */ | |
1314 | ||
1315 | /* Perform a function call in the inferior. | |
1316 | ARGS is a vector of values of arguments (NARGS of them). | |
1317 | FUNCTION is a value, the function to be called. | |
1318 | Returns a value representing what the function returned. | |
1319 | May fail to return, if a breakpoint or signal is hit | |
1320 | during the execution of the function. | |
1321 | ||
1322 | ARGS is modified to contain coerced values. */ | |
1323 | ||
c5aa993b | 1324 | static value_ptr hand_function_call PARAMS ((value_ptr function, int nargs, value_ptr * args)); |
7a292a7a SS |
1325 | static value_ptr |
1326 | hand_function_call (function, nargs, args) | |
c906108c SS |
1327 | value_ptr function; |
1328 | int nargs; | |
1329 | value_ptr *args; | |
1330 | { | |
1331 | register CORE_ADDR sp; | |
1332 | register int i; | |
da59e081 | 1333 | int rc; |
c906108c SS |
1334 | CORE_ADDR start_sp; |
1335 | /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word | |
1336 | is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it | |
1337 | and remove any extra bytes which might exist because ULONGEST is | |
09b59ee3 | 1338 | bigger than REGISTER_SIZE. |
c906108c SS |
1339 | |
1340 | NOTE: This is pretty wierd, as the call dummy is actually a | |
c5aa993b JM |
1341 | sequence of instructions. But CISC machines will have |
1342 | to pack the instructions into REGISTER_SIZE units (and | |
1343 | so will RISC machines for which INSTRUCTION_SIZE is not | |
1344 | REGISTER_SIZE). | |
7a292a7a SS |
1345 | |
1346 | NOTE: This is pretty stupid. CALL_DUMMY should be in strict | |
c5aa993b | 1347 | target byte order. */ |
c906108c | 1348 | |
7a292a7a SS |
1349 | static ULONGEST *dummy; |
1350 | int sizeof_dummy1; | |
1351 | char *dummy1; | |
c906108c SS |
1352 | CORE_ADDR old_sp; |
1353 | struct type *value_type; | |
1354 | unsigned char struct_return; | |
1355 | CORE_ADDR struct_addr = 0; | |
7a292a7a | 1356 | struct inferior_status *inf_status; |
c906108c SS |
1357 | struct cleanup *old_chain; |
1358 | CORE_ADDR funaddr; | |
c5aa993b | 1359 | int using_gcc; /* Set to version of gcc in use, or zero if not gcc */ |
c906108c SS |
1360 | CORE_ADDR real_pc; |
1361 | struct type *param_type = NULL; | |
1362 | struct type *ftype = check_typedef (SYMBOL_TYPE (function)); | |
1363 | ||
7a292a7a SS |
1364 | dummy = alloca (SIZEOF_CALL_DUMMY_WORDS); |
1365 | sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST); | |
1366 | dummy1 = alloca (sizeof_dummy1); | |
1367 | memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS); | |
1368 | ||
c906108c | 1369 | if (!target_has_execution) |
c5aa993b | 1370 | noprocess (); |
c906108c | 1371 | |
7a292a7a | 1372 | inf_status = save_inferior_status (1); |
c5aa993b JM |
1373 | old_chain = make_cleanup ((make_cleanup_func) restore_inferior_status, |
1374 | inf_status); | |
c906108c SS |
1375 | |
1376 | /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers | |
1377 | (and POP_FRAME for restoring them). (At least on most machines) | |
1378 | they are saved on the stack in the inferior. */ | |
1379 | PUSH_DUMMY_FRAME; | |
1380 | ||
1381 | old_sp = sp = read_sp (); | |
1382 | ||
1383 | if (INNER_THAN (1, 2)) | |
1384 | { | |
1385 | /* Stack grows down */ | |
7a292a7a | 1386 | sp -= sizeof_dummy1; |
c906108c SS |
1387 | start_sp = sp; |
1388 | } | |
1389 | else | |
1390 | { | |
1391 | /* Stack grows up */ | |
1392 | start_sp = sp; | |
7a292a7a | 1393 | sp += sizeof_dummy1; |
c906108c SS |
1394 | } |
1395 | ||
1396 | funaddr = find_function_addr (function, &value_type); | |
1397 | CHECK_TYPEDEF (value_type); | |
1398 | ||
1399 | { | |
1400 | struct block *b = block_for_pc (funaddr); | |
1401 | /* If compiled without -g, assume GCC 2. */ | |
1402 | using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b)); | |
1403 | } | |
1404 | ||
1405 | /* Are we returning a value using a structure return or a normal | |
1406 | value return? */ | |
1407 | ||
1408 | struct_return = using_struct_return (function, funaddr, value_type, | |
1409 | using_gcc); | |
1410 | ||
1411 | /* Create a call sequence customized for this function | |
1412 | and the number of arguments for it. */ | |
7a292a7a | 1413 | for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++) |
c906108c SS |
1414 | store_unsigned_integer (&dummy1[i * REGISTER_SIZE], |
1415 | REGISTER_SIZE, | |
c5aa993b | 1416 | (ULONGEST) dummy[i]); |
c906108c SS |
1417 | |
1418 | #ifdef GDB_TARGET_IS_HPPA | |
1419 | real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args, | |
1420 | value_type, using_gcc); | |
1421 | #else | |
1422 | FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args, | |
1423 | value_type, using_gcc); | |
1424 | real_pc = start_sp; | |
1425 | #endif | |
1426 | ||
7a292a7a SS |
1427 | if (CALL_DUMMY_LOCATION == ON_STACK) |
1428 | { | |
c5aa993b | 1429 | write_memory (start_sp, (char *) dummy1, sizeof_dummy1); |
7a292a7a | 1430 | } |
c906108c | 1431 | |
7a292a7a SS |
1432 | if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END) |
1433 | { | |
1434 | /* Convex Unix prohibits executing in the stack segment. */ | |
1435 | /* Hope there is empty room at the top of the text segment. */ | |
1436 | extern CORE_ADDR text_end; | |
392a587b | 1437 | static int checked = 0; |
7a292a7a SS |
1438 | if (!checked) |
1439 | for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp) | |
1440 | if (read_memory_integer (start_sp, 1) != 0) | |
1441 | error ("text segment full -- no place to put call"); | |
1442 | checked = 1; | |
1443 | sp = old_sp; | |
1444 | real_pc = text_end - sizeof_dummy1; | |
c5aa993b | 1445 | write_memory (real_pc, (char *) dummy1, sizeof_dummy1); |
7a292a7a | 1446 | } |
c5aa993b | 1447 | |
7a292a7a SS |
1448 | if (CALL_DUMMY_LOCATION == AFTER_TEXT_END) |
1449 | { | |
1450 | extern CORE_ADDR text_end; | |
1451 | int errcode; | |
1452 | sp = old_sp; | |
1453 | real_pc = text_end; | |
c5aa993b | 1454 | errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1); |
7a292a7a SS |
1455 | if (errcode != 0) |
1456 | error ("Cannot write text segment -- call_function failed"); | |
1457 | } | |
c906108c | 1458 | |
7a292a7a SS |
1459 | if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT) |
1460 | { | |
1461 | real_pc = funaddr; | |
1462 | } | |
c906108c SS |
1463 | |
1464 | #ifdef lint | |
c5aa993b | 1465 | sp = old_sp; /* It really is used, for some ifdef's... */ |
c906108c SS |
1466 | #endif |
1467 | ||
1468 | if (nargs < TYPE_NFIELDS (ftype)) | |
1469 | error ("too few arguments in function call"); | |
1470 | ||
1471 | for (i = nargs - 1; i >= 0; i--) | |
1472 | { | |
1473 | /* If we're off the end of the known arguments, do the standard | |
09b59ee3 DB |
1474 | promotions. FIXME: if we had a prototype, this should only |
1475 | be allowed if ... were present. */ | |
c906108c SS |
1476 | if (i >= TYPE_NFIELDS (ftype)) |
1477 | args[i] = value_arg_coerce (args[i], NULL, 0); | |
1478 | ||
c5aa993b | 1479 | else |
c906108c SS |
1480 | { |
1481 | int is_prototyped = TYPE_FLAGS (ftype) & TYPE_FLAG_PROTOTYPED; | |
1482 | param_type = TYPE_FIELD_TYPE (ftype, i); | |
1483 | ||
1484 | args[i] = value_arg_coerce (args[i], param_type, is_prototyped); | |
1485 | } | |
1486 | ||
09b59ee3 DB |
1487 | /*elz: this code is to handle the case in which the function to be called |
1488 | has a pointer to function as parameter and the corresponding actual argument | |
1489 | is the address of a function and not a pointer to function variable. | |
1490 | In aCC compiled code, the calls through pointers to functions (in the body | |
1491 | of the function called by hand) are made via $$dyncall_external which | |
1492 | requires some registers setting, this is taken care of if we call | |
1493 | via a function pointer variable, but not via a function address. | |
1494 | In cc this is not a problem. */ | |
c906108c SS |
1495 | |
1496 | if (using_gcc == 0) | |
1497 | if (param_type) | |
c5aa993b | 1498 | /* if this parameter is a pointer to function */ |
c906108c SS |
1499 | if (TYPE_CODE (param_type) == TYPE_CODE_PTR) |
1500 | if (TYPE_CODE (param_type->target_type) == TYPE_CODE_FUNC) | |
09b59ee3 DB |
1501 | /* elz: FIXME here should go the test about the compiler used |
1502 | to compile the target. We want to issue the error | |
1503 | message only if the compiler used was HP's aCC. | |
1504 | If we used HP's cc, then there is no problem and no need | |
1505 | to return at this point */ | |
c5aa993b | 1506 | if (using_gcc == 0) /* && compiler == aCC */ |
c906108c | 1507 | /* go see if the actual parameter is a variable of type |
c5aa993b | 1508 | pointer to function or just a function */ |
c906108c SS |
1509 | if (args[i]->lval == not_lval) |
1510 | { | |
1511 | char *arg_name; | |
c5aa993b JM |
1512 | if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL)) |
1513 | error ("\ | |
c906108c SS |
1514 | You cannot use function <%s> as argument. \n\ |
1515 | You must use a pointer to function type variable. Command ignored.", arg_name); | |
c5aa993b | 1516 | } |
c906108c SS |
1517 | } |
1518 | ||
1519 | #if defined (REG_STRUCT_HAS_ADDR) | |
1520 | { | |
1521 | /* This is a machine like the sparc, where we may need to pass a pointer | |
1522 | to the structure, not the structure itself. */ | |
1523 | for (i = nargs - 1; i >= 0; i--) | |
1524 | { | |
1525 | struct type *arg_type = check_typedef (VALUE_TYPE (args[i])); | |
1526 | if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT | |
1527 | || TYPE_CODE (arg_type) == TYPE_CODE_UNION | |
1528 | || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY | |
1529 | || TYPE_CODE (arg_type) == TYPE_CODE_STRING | |
1530 | || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING | |
1531 | || TYPE_CODE (arg_type) == TYPE_CODE_SET | |
1532 | || (TYPE_CODE (arg_type) == TYPE_CODE_FLT | |
1533 | && TYPE_LENGTH (arg_type) > 8) | |
c5aa993b JM |
1534 | ) |
1535 | && REG_STRUCT_HAS_ADDR (using_gcc, arg_type)) | |
c906108c SS |
1536 | { |
1537 | CORE_ADDR addr; | |
c5aa993b JM |
1538 | int len; /* = TYPE_LENGTH (arg_type); */ |
1539 | int aligned_len; | |
1540 | arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i])); | |
1541 | len = TYPE_LENGTH (arg_type); | |
c906108c SS |
1542 | |
1543 | #ifdef STACK_ALIGN | |
c5aa993b JM |
1544 | /* MVS 11/22/96: I think at least some of this stack_align code is |
1545 | really broken. Better to let PUSH_ARGUMENTS adjust the stack in | |
1546 | a target-defined manner. */ | |
c906108c SS |
1547 | aligned_len = STACK_ALIGN (len); |
1548 | #else | |
1549 | aligned_len = len; | |
1550 | #endif | |
1551 | if (INNER_THAN (1, 2)) | |
1552 | { | |
1553 | /* stack grows downward */ | |
1554 | sp -= aligned_len; | |
1555 | } | |
1556 | else | |
1557 | { | |
1558 | /* The stack grows up, so the address of the thing we push | |
1559 | is the stack pointer before we push it. */ | |
1560 | addr = sp; | |
1561 | } | |
1562 | /* Push the structure. */ | |
1563 | write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len); | |
1564 | if (INNER_THAN (1, 2)) | |
1565 | { | |
1566 | /* The stack grows down, so the address of the thing we push | |
1567 | is the stack pointer after we push it. */ | |
1568 | addr = sp; | |
1569 | } | |
1570 | else | |
1571 | { | |
1572 | /* stack grows upward */ | |
1573 | sp += aligned_len; | |
1574 | } | |
1575 | /* The value we're going to pass is the address of the thing | |
1576 | we just pushed. */ | |
1577 | /*args[i] = value_from_longest (lookup_pointer_type (value_type), | |
c5aa993b JM |
1578 | (LONGEST) addr); */ |
1579 | args[i] = value_from_longest (lookup_pointer_type (arg_type), | |
c906108c SS |
1580 | (LONGEST) addr); |
1581 | } | |
1582 | } | |
1583 | } | |
1584 | #endif /* REG_STRUCT_HAS_ADDR. */ | |
1585 | ||
1586 | /* Reserve space for the return structure to be written on the | |
1587 | stack, if necessary */ | |
1588 | ||
1589 | if (struct_return) | |
1590 | { | |
1591 | int len = TYPE_LENGTH (value_type); | |
1592 | #ifdef STACK_ALIGN | |
c5aa993b | 1593 | /* MVS 11/22/96: I think at least some of this stack_align code is |
09b59ee3 DB |
1594 | really broken. Better to let PUSH_ARGUMENTS adjust the stack in |
1595 | a target-defined manner. */ | |
c906108c SS |
1596 | len = STACK_ALIGN (len); |
1597 | #endif | |
1598 | if (INNER_THAN (1, 2)) | |
1599 | { | |
1600 | /* stack grows downward */ | |
1601 | sp -= len; | |
1602 | struct_addr = sp; | |
1603 | } | |
1604 | else | |
1605 | { | |
1606 | /* stack grows upward */ | |
1607 | struct_addr = sp; | |
1608 | sp += len; | |
1609 | } | |
1610 | } | |
1611 | ||
1612 | /* elz: on HPPA no need for this extra alignment, maybe it is needed | |
1613 | on other architectures. This is because all the alignment is taken care | |
09b59ee3 | 1614 | of in the above code (ifdef REG_STRUCT_HAS_ADDR) and in |
c5aa993b | 1615 | hppa_push_arguments */ |
c906108c SS |
1616 | #ifndef NO_EXTRA_ALIGNMENT_NEEDED |
1617 | ||
1618 | #if defined(STACK_ALIGN) | |
1619 | /* MVS 11/22/96: I think at least some of this stack_align code is | |
1620 | really broken. Better to let PUSH_ARGUMENTS adjust the stack in | |
1621 | a target-defined manner. */ | |
1622 | if (INNER_THAN (1, 2)) | |
1623 | { | |
1624 | /* If stack grows down, we must leave a hole at the top. */ | |
1625 | int len = 0; | |
1626 | ||
1627 | for (i = nargs - 1; i >= 0; i--) | |
1628 | len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i])); | |
7a292a7a SS |
1629 | if (CALL_DUMMY_STACK_ADJUST_P) |
1630 | len += CALL_DUMMY_STACK_ADJUST; | |
c906108c SS |
1631 | sp -= STACK_ALIGN (len) - len; |
1632 | } | |
1633 | #endif /* STACK_ALIGN */ | |
1634 | #endif /* NO_EXTRA_ALIGNMENT_NEEDED */ | |
1635 | ||
392a587b | 1636 | sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr); |
c906108c SS |
1637 | |
1638 | #ifdef PUSH_RETURN_ADDRESS /* for targets that use no CALL_DUMMY */ | |
1639 | /* There are a number of targets now which actually don't write any | |
1640 | CALL_DUMMY instructions into the target, but instead just save the | |
1641 | machine state, push the arguments, and jump directly to the callee | |
1642 | function. Since this doesn't actually involve executing a JSR/BSR | |
1643 | instruction, the return address must be set up by hand, either by | |
1644 | pushing onto the stack or copying into a return-address register | |
09b59ee3 | 1645 | as appropriate. Formerly this has been done in PUSH_ARGUMENTS, |
c906108c SS |
1646 | but that's overloading its functionality a bit, so I'm making it |
1647 | explicit to do it here. */ | |
c5aa993b JM |
1648 | sp = PUSH_RETURN_ADDRESS (real_pc, sp); |
1649 | #endif /* PUSH_RETURN_ADDRESS */ | |
c906108c SS |
1650 | |
1651 | #if defined(STACK_ALIGN) | |
c5aa993b | 1652 | if (!INNER_THAN (1, 2)) |
c906108c SS |
1653 | { |
1654 | /* If stack grows up, we must leave a hole at the bottom, note | |
09b59ee3 | 1655 | that sp already has been advanced for the arguments! */ |
7a292a7a SS |
1656 | if (CALL_DUMMY_STACK_ADJUST_P) |
1657 | sp += CALL_DUMMY_STACK_ADJUST; | |
c906108c SS |
1658 | sp = STACK_ALIGN (sp); |
1659 | } | |
1660 | #endif /* STACK_ALIGN */ | |
1661 | ||
1662 | /* XXX This seems wrong. For stacks that grow down we shouldn't do | |
1663 | anything here! */ | |
1664 | /* MVS 11/22/96: I think at least some of this stack_align code is | |
1665 | really broken. Better to let PUSH_ARGUMENTS adjust the stack in | |
1666 | a target-defined manner. */ | |
7a292a7a SS |
1667 | if (CALL_DUMMY_STACK_ADJUST_P) |
1668 | if (INNER_THAN (1, 2)) | |
1669 | { | |
1670 | /* stack grows downward */ | |
1671 | sp -= CALL_DUMMY_STACK_ADJUST; | |
1672 | } | |
c906108c SS |
1673 | |
1674 | /* Store the address at which the structure is supposed to be | |
1675 | written. Note that this (and the code which reserved the space | |
1676 | above) assumes that gcc was used to compile this function. Since | |
1677 | it doesn't cost us anything but space and if the function is pcc | |
1678 | it will ignore this value, we will make that assumption. | |
1679 | ||
09b59ee3 | 1680 | Also note that on some machines (like the sparc) pcc uses a |
c906108c SS |
1681 | convention like gcc's. */ |
1682 | ||
1683 | if (struct_return) | |
1684 | STORE_STRUCT_RETURN (struct_addr, sp); | |
1685 | ||
1686 | /* Write the stack pointer. This is here because the statements above | |
1687 | might fool with it. On SPARC, this write also stores the register | |
1688 | window into the right place in the new stack frame, which otherwise | |
1689 | wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */ | |
1690 | write_sp (sp); | |
1691 | ||
43ff13b4 JM |
1692 | #ifdef SAVE_DUMMY_FRAME_TOS |
1693 | SAVE_DUMMY_FRAME_TOS (sp); | |
1694 | #endif | |
1695 | ||
c906108c SS |
1696 | { |
1697 | char retbuf[REGISTER_BYTES]; | |
1698 | char *name; | |
1699 | struct symbol *symbol; | |
1700 | ||
1701 | name = NULL; | |
1702 | symbol = find_pc_function (funaddr); | |
1703 | if (symbol) | |
1704 | { | |
1705 | name = SYMBOL_SOURCE_NAME (symbol); | |
1706 | } | |
1707 | else | |
1708 | { | |
1709 | /* Try the minimal symbols. */ | |
1710 | struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr); | |
1711 | ||
1712 | if (msymbol) | |
1713 | { | |
1714 | name = SYMBOL_SOURCE_NAME (msymbol); | |
1715 | } | |
1716 | } | |
1717 | if (name == NULL) | |
1718 | { | |
1719 | char format[80]; | |
1720 | sprintf (format, "at %s", local_hex_format ()); | |
1721 | name = alloca (80); | |
1722 | /* FIXME-32x64: assumes funaddr fits in a long. */ | |
1723 | sprintf (name, format, (unsigned long) funaddr); | |
1724 | } | |
1725 | ||
1726 | /* Execute the stack dummy routine, calling FUNCTION. | |
1727 | When it is done, discard the empty frame | |
1728 | after storing the contents of all regs into retbuf. */ | |
da59e081 JM |
1729 | rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf); |
1730 | ||
1731 | if (rc == 1) | |
1732 | { | |
1733 | /* We stopped inside the FUNCTION because of a random signal. | |
1734 | Further execution of the FUNCTION is not allowed. */ | |
1735 | ||
09b59ee3 | 1736 | if (unwind_on_signal_p) |
242bfc55 FN |
1737 | { |
1738 | /* The user wants the context restored. */ | |
da59e081 | 1739 | |
09b59ee3 DB |
1740 | /* We must get back to the frame we were before the dummy call. */ |
1741 | POP_FRAME; | |
242bfc55 FN |
1742 | |
1743 | /* FIXME: Insert a bunch of wrap_here; name can be very long if it's | |
1744 | a C++ name with arguments and stuff. */ | |
1745 | error ("\ | |
1746 | The program being debugged was signaled while in a function called from GDB.\n\ | |
1747 | GDB has restored the context to what it was before the call.\n\ | |
1748 | To change this behavior use \"set unwindonsignal off\"\n\ | |
da59e081 | 1749 | Evaluation of the expression containing the function (%s) will be abandoned.", |
242bfc55 FN |
1750 | name); |
1751 | } | |
1752 | else | |
1753 | { | |
1754 | /* The user wants to stay in the frame where we stopped (default).*/ | |
1755 | ||
1756 | /* If we did the cleanups, we would print a spurious error | |
1757 | message (Unable to restore previously selected frame), | |
1758 | would write the registers from the inf_status (which is | |
1759 | wrong), and would do other wrong things. */ | |
1760 | discard_cleanups (old_chain); | |
1761 | discard_inferior_status (inf_status); | |
1762 | ||
1763 | /* FIXME: Insert a bunch of wrap_here; name can be very long if it's | |
1764 | a C++ name with arguments and stuff. */ | |
1765 | error ("\ | |
1766 | The program being debugged was signaled while in a function called from GDB.\n\ | |
1767 | GDB remains in the frame where the signal was received.\n\ | |
1768 | To change this behavior use \"set unwindonsignal on\"\n\ | |
1769 | Evaluation of the expression containing the function (%s) will be abandoned.", | |
1770 | name); | |
1771 | } | |
da59e081 JM |
1772 | } |
1773 | ||
1774 | if (rc == 2) | |
c906108c | 1775 | { |
da59e081 | 1776 | /* We hit a breakpoint inside the FUNCTION. */ |
c906108c | 1777 | |
7a292a7a SS |
1778 | /* If we did the cleanups, we would print a spurious error |
1779 | message (Unable to restore previously selected frame), | |
1780 | would write the registers from the inf_status (which is | |
1781 | wrong), and would do other wrong things. */ | |
c906108c | 1782 | discard_cleanups (old_chain); |
7a292a7a | 1783 | discard_inferior_status (inf_status); |
c906108c SS |
1784 | |
1785 | /* The following error message used to say "The expression | |
1786 | which contained the function call has been discarded." It | |
1787 | is a hard concept to explain in a few words. Ideally, GDB | |
1788 | would be able to resume evaluation of the expression when | |
1789 | the function finally is done executing. Perhaps someday | |
1790 | this will be implemented (it would not be easy). */ | |
1791 | ||
1792 | /* FIXME: Insert a bunch of wrap_here; name can be very long if it's | |
1793 | a C++ name with arguments and stuff. */ | |
1794 | error ("\ | |
1795 | The program being debugged stopped while in a function called from GDB.\n\ | |
1796 | When the function (%s) is done executing, GDB will silently\n\ | |
1797 | stop (instead of continuing to evaluate the expression containing\n\ | |
1798 | the function call).", name); | |
1799 | } | |
1800 | ||
da59e081 | 1801 | /* If we get here the called FUNCTION run to completion. */ |
c906108c SS |
1802 | do_cleanups (old_chain); |
1803 | ||
1804 | /* Figure out the value returned by the function. */ | |
1805 | /* elz: I defined this new macro for the hppa architecture only. | |
1806 | this gives us a way to get the value returned by the function from the stack, | |
1807 | at the same address we told the function to put it. | |
1808 | We cannot assume on the pa that r28 still contains the address of the returned | |
1809 | structure. Usually this will be overwritten by the callee. | |
1810 | I don't know about other architectures, so I defined this macro | |
c5aa993b | 1811 | */ |
c906108c SS |
1812 | |
1813 | #ifdef VALUE_RETURNED_FROM_STACK | |
1814 | if (struct_return) | |
1815 | return (value_ptr) VALUE_RETURNED_FROM_STACK (value_type, struct_addr); | |
1816 | #endif | |
1817 | ||
1818 | return value_being_returned (value_type, retbuf, struct_return); | |
1819 | } | |
1820 | } | |
7a292a7a | 1821 | |
c906108c SS |
1822 | value_ptr |
1823 | call_function_by_hand (function, nargs, args) | |
1824 | value_ptr function; | |
1825 | int nargs; | |
1826 | value_ptr *args; | |
1827 | { | |
7a292a7a SS |
1828 | if (CALL_DUMMY_P) |
1829 | { | |
1830 | return hand_function_call (function, nargs, args); | |
1831 | } | |
1832 | else | |
1833 | { | |
1834 | error ("Cannot invoke functions on this machine."); | |
1835 | } | |
c906108c | 1836 | } |
c5aa993b | 1837 | \f |
7a292a7a | 1838 | |
c906108c | 1839 | |
c906108c SS |
1840 | /* Create a value for an array by allocating space in the inferior, copying |
1841 | the data into that space, and then setting up an array value. | |
1842 | ||
1843 | The array bounds are set from LOWBOUND and HIGHBOUND, and the array is | |
1844 | populated from the values passed in ELEMVEC. | |
1845 | ||
1846 | The element type of the array is inherited from the type of the | |
1847 | first element, and all elements must have the same size (though we | |
1848 | don't currently enforce any restriction on their types). */ | |
1849 | ||
1850 | value_ptr | |
1851 | value_array (lowbound, highbound, elemvec) | |
1852 | int lowbound; | |
1853 | int highbound; | |
1854 | value_ptr *elemvec; | |
1855 | { | |
1856 | int nelem; | |
1857 | int idx; | |
1858 | unsigned int typelength; | |
1859 | value_ptr val; | |
1860 | struct type *rangetype; | |
1861 | struct type *arraytype; | |
1862 | CORE_ADDR addr; | |
1863 | ||
1864 | /* Validate that the bounds are reasonable and that each of the elements | |
1865 | have the same size. */ | |
1866 | ||
1867 | nelem = highbound - lowbound + 1; | |
1868 | if (nelem <= 0) | |
1869 | { | |
1870 | error ("bad array bounds (%d, %d)", lowbound, highbound); | |
1871 | } | |
1872 | typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0])); | |
1873 | for (idx = 1; idx < nelem; idx++) | |
1874 | { | |
1875 | if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength) | |
1876 | { | |
1877 | error ("array elements must all be the same size"); | |
1878 | } | |
1879 | } | |
1880 | ||
1881 | rangetype = create_range_type ((struct type *) NULL, builtin_type_int, | |
1882 | lowbound, highbound); | |
c5aa993b JM |
1883 | arraytype = create_array_type ((struct type *) NULL, |
1884 | VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype); | |
c906108c SS |
1885 | |
1886 | if (!current_language->c_style_arrays) | |
1887 | { | |
1888 | val = allocate_value (arraytype); | |
1889 | for (idx = 0; idx < nelem; idx++) | |
1890 | { | |
1891 | memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength), | |
1892 | VALUE_CONTENTS_ALL (elemvec[idx]), | |
1893 | typelength); | |
1894 | } | |
1895 | VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]); | |
1896 | return val; | |
1897 | } | |
1898 | ||
1899 | /* Allocate space to store the array in the inferior, and then initialize | |
1900 | it by copying in each element. FIXME: Is it worth it to create a | |
1901 | local buffer in which to collect each value and then write all the | |
1902 | bytes in one operation? */ | |
1903 | ||
1904 | addr = allocate_space_in_inferior (nelem * typelength); | |
1905 | for (idx = 0; idx < nelem; idx++) | |
1906 | { | |
1907 | write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]), | |
1908 | typelength); | |
1909 | } | |
1910 | ||
1911 | /* Create the array type and set up an array value to be evaluated lazily. */ | |
1912 | ||
1913 | val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0])); | |
1914 | return (val); | |
1915 | } | |
1916 | ||
1917 | /* Create a value for a string constant by allocating space in the inferior, | |
1918 | copying the data into that space, and returning the address with type | |
1919 | TYPE_CODE_STRING. PTR points to the string constant data; LEN is number | |
1920 | of characters. | |
1921 | Note that string types are like array of char types with a lower bound of | |
1922 | zero and an upper bound of LEN - 1. Also note that the string may contain | |
1923 | embedded null bytes. */ | |
1924 | ||
1925 | value_ptr | |
1926 | value_string (ptr, len) | |
1927 | char *ptr; | |
1928 | int len; | |
1929 | { | |
1930 | value_ptr val; | |
1931 | int lowbound = current_language->string_lower_bound; | |
1932 | struct type *rangetype = create_range_type ((struct type *) NULL, | |
1933 | builtin_type_int, | |
1934 | lowbound, len + lowbound - 1); | |
1935 | struct type *stringtype | |
c5aa993b | 1936 | = create_string_type ((struct type *) NULL, rangetype); |
c906108c SS |
1937 | CORE_ADDR addr; |
1938 | ||
1939 | if (current_language->c_style_arrays == 0) | |
1940 | { | |
1941 | val = allocate_value (stringtype); | |
1942 | memcpy (VALUE_CONTENTS_RAW (val), ptr, len); | |
1943 | return val; | |
1944 | } | |
1945 | ||
1946 | ||
1947 | /* Allocate space to store the string in the inferior, and then | |
1948 | copy LEN bytes from PTR in gdb to that address in the inferior. */ | |
1949 | ||
1950 | addr = allocate_space_in_inferior (len); | |
1951 | write_memory (addr, ptr, len); | |
1952 | ||
1953 | val = value_at_lazy (stringtype, addr, NULL); | |
1954 | return (val); | |
1955 | } | |
1956 | ||
1957 | value_ptr | |
1958 | value_bitstring (ptr, len) | |
1959 | char *ptr; | |
1960 | int len; | |
1961 | { | |
1962 | value_ptr val; | |
1963 | struct type *domain_type = create_range_type (NULL, builtin_type_int, | |
1964 | 0, len - 1); | |
c5aa993b | 1965 | struct type *type = create_set_type ((struct type *) NULL, domain_type); |
c906108c SS |
1966 | TYPE_CODE (type) = TYPE_CODE_BITSTRING; |
1967 | val = allocate_value (type); | |
1968 | memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type)); | |
1969 | return val; | |
1970 | } | |
1971 | \f | |
1972 | /* See if we can pass arguments in T2 to a function which takes arguments | |
1973 | of types T1. Both t1 and t2 are NULL-terminated vectors. If some | |
1974 | arguments need coercion of some sort, then the coerced values are written | |
1975 | into T2. Return value is 0 if the arguments could be matched, or the | |
1976 | position at which they differ if not. | |
1977 | ||
1978 | STATICP is nonzero if the T1 argument list came from a | |
1979 | static member function. | |
1980 | ||
1981 | For non-static member functions, we ignore the first argument, | |
1982 | which is the type of the instance variable. This is because we want | |
1983 | to handle calls with objects from derived classes. This is not | |
1984 | entirely correct: we should actually check to make sure that a | |
1985 | requested operation is type secure, shouldn't we? FIXME. */ | |
1986 | ||
1987 | static int | |
1988 | typecmp (staticp, t1, t2) | |
1989 | int staticp; | |
1990 | struct type *t1[]; | |
1991 | value_ptr t2[]; | |
1992 | { | |
1993 | int i; | |
1994 | ||
1995 | if (t2 == 0) | |
1996 | return 1; | |
1997 | if (staticp && t1 == 0) | |
1998 | return t2[1] != 0; | |
1999 | if (t1 == 0) | |
2000 | return 1; | |
c5aa993b JM |
2001 | if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID) |
2002 | return 0; | |
2003 | if (t1[!staticp] == 0) | |
2004 | return 0; | |
c906108c SS |
2005 | for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++) |
2006 | { | |
c5aa993b JM |
2007 | struct type *tt1, *tt2; |
2008 | if (!t2[i]) | |
2009 | return i + 1; | |
c906108c | 2010 | tt1 = check_typedef (t1[i]); |
c5aa993b | 2011 | tt2 = check_typedef (VALUE_TYPE (t2[i])); |
c906108c | 2012 | if (TYPE_CODE (tt1) == TYPE_CODE_REF |
c5aa993b | 2013 | /* We should be doing hairy argument matching, as below. */ |
c906108c SS |
2014 | && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2))) |
2015 | { | |
2016 | if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY) | |
2017 | t2[i] = value_coerce_array (t2[i]); | |
2018 | else | |
2019 | t2[i] = value_addr (t2[i]); | |
2020 | continue; | |
2021 | } | |
2022 | ||
2023 | while (TYPE_CODE (tt1) == TYPE_CODE_PTR | |
c5aa993b JM |
2024 | && (TYPE_CODE (tt2) == TYPE_CODE_ARRAY |
2025 | || TYPE_CODE (tt2) == TYPE_CODE_PTR)) | |
c906108c | 2026 | { |
c5aa993b JM |
2027 | tt1 = check_typedef (TYPE_TARGET_TYPE (tt1)); |
2028 | tt2 = check_typedef (TYPE_TARGET_TYPE (tt2)); | |
c906108c | 2029 | } |
c5aa993b JM |
2030 | if (TYPE_CODE (tt1) == TYPE_CODE (tt2)) |
2031 | continue; | |
c906108c SS |
2032 | /* Array to pointer is a `trivial conversion' according to the ARM. */ |
2033 | ||
2034 | /* We should be doing much hairier argument matching (see section 13.2 | |
09b59ee3 DB |
2035 | of the ARM), but as a quick kludge, just check for the same type |
2036 | code. */ | |
c906108c | 2037 | if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i]))) |
c5aa993b | 2038 | return i + 1; |
c906108c | 2039 | } |
c5aa993b JM |
2040 | if (!t1[i]) |
2041 | return 0; | |
2042 | return t2[i] ? i + 1 : 0; | |
c906108c SS |
2043 | } |
2044 | ||
2045 | /* Helper function used by value_struct_elt to recurse through baseclasses. | |
2046 | Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes, | |
2047 | and search in it assuming it has (class) type TYPE. | |
2048 | If found, return value, else return NULL. | |
2049 | ||
2050 | If LOOKING_FOR_BASECLASS, then instead of looking for struct fields, | |
2051 | look for a baseclass named NAME. */ | |
2052 | ||
2053 | static value_ptr | |
2054 | search_struct_field (name, arg1, offset, type, looking_for_baseclass) | |
2055 | char *name; | |
2056 | register value_ptr arg1; | |
2057 | int offset; | |
2058 | register struct type *type; | |
2059 | int looking_for_baseclass; | |
2060 | { | |
2061 | int i; | |
2062 | int nbases = TYPE_N_BASECLASSES (type); | |
2063 | ||
2064 | CHECK_TYPEDEF (type); | |
2065 | ||
c5aa993b | 2066 | if (!looking_for_baseclass) |
c906108c SS |
2067 | for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--) |
2068 | { | |
2069 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
2070 | ||
09b59ee3 | 2071 | if (t_field_name && STREQ_IW (t_field_name, name)) |
c906108c SS |
2072 | { |
2073 | value_ptr v; | |
2074 | if (TYPE_FIELD_STATIC (type, i)) | |
2075 | v = value_static_field (type, i); | |
2076 | else | |
2077 | v = value_primitive_field (arg1, offset, i, type); | |
2078 | if (v == 0) | |
c5aa993b | 2079 | error ("there is no field named %s", name); |
c906108c SS |
2080 | return v; |
2081 | } | |
2082 | ||
2083 | if (t_field_name | |
2084 | && (t_field_name[0] == '\0' | |
2085 | || (TYPE_CODE (type) == TYPE_CODE_UNION | |
09b59ee3 | 2086 | && STREQ_IW (t_field_name, "else")))) |
c906108c SS |
2087 | { |
2088 | struct type *field_type = TYPE_FIELD_TYPE (type, i); | |
2089 | if (TYPE_CODE (field_type) == TYPE_CODE_UNION | |
2090 | || TYPE_CODE (field_type) == TYPE_CODE_STRUCT) | |
2091 | { | |
2092 | /* Look for a match through the fields of an anonymous union, | |
2093 | or anonymous struct. C++ provides anonymous unions. | |
2094 | ||
2095 | In the GNU Chill implementation of variant record types, | |
2096 | each <alternative field> has an (anonymous) union type, | |
2097 | each member of the union represents a <variant alternative>. | |
2098 | Each <variant alternative> is represented as a struct, | |
2099 | with a member for each <variant field>. */ | |
c5aa993b | 2100 | |
c906108c SS |
2101 | value_ptr v; |
2102 | int new_offset = offset; | |
2103 | ||
2104 | /* This is pretty gross. In G++, the offset in an anonymous | |
2105 | union is relative to the beginning of the enclosing struct. | |
2106 | In the GNU Chill implementation of variant records, | |
2107 | the bitpos is zero in an anonymous union field, so we | |
2108 | have to add the offset of the union here. */ | |
2109 | if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT | |
2110 | || (TYPE_NFIELDS (field_type) > 0 | |
2111 | && TYPE_FIELD_BITPOS (field_type, 0) == 0)) | |
2112 | new_offset += TYPE_FIELD_BITPOS (type, i) / 8; | |
2113 | ||
2114 | v = search_struct_field (name, arg1, new_offset, field_type, | |
2115 | looking_for_baseclass); | |
2116 | if (v) | |
2117 | return v; | |
2118 | } | |
2119 | } | |
2120 | } | |
2121 | ||
c5aa993b | 2122 | for (i = 0; i < nbases; i++) |
c906108c SS |
2123 | { |
2124 | value_ptr v; | |
2125 | struct type *basetype = check_typedef (TYPE_BASECLASS (type, i)); | |
2126 | /* If we are looking for baseclasses, this is what we get when we | |
09b59ee3 DB |
2127 | hit them. But it could happen that the base part's member name |
2128 | is not yet filled in. */ | |
c906108c SS |
2129 | int found_baseclass = (looking_for_baseclass |
2130 | && TYPE_BASECLASS_NAME (type, i) != NULL | |
09b59ee3 | 2131 | && STREQ_IW (name, TYPE_BASECLASS_NAME (type, i))); |
c906108c SS |
2132 | |
2133 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
2134 | { | |
2135 | int boffset; | |
2136 | value_ptr v2 = allocate_value (basetype); | |
2137 | ||
2138 | boffset = baseclass_offset (type, i, | |
2139 | VALUE_CONTENTS (arg1) + offset, | |
2140 | VALUE_ADDRESS (arg1) | |
c5aa993b | 2141 | + VALUE_OFFSET (arg1) + offset); |
c906108c SS |
2142 | if (boffset == -1) |
2143 | error ("virtual baseclass botch"); | |
2144 | ||
2145 | /* The virtual base class pointer might have been clobbered by the | |
2146 | user program. Make sure that it still points to a valid memory | |
2147 | location. */ | |
2148 | ||
2149 | boffset += offset; | |
2150 | if (boffset < 0 || boffset >= TYPE_LENGTH (type)) | |
2151 | { | |
2152 | CORE_ADDR base_addr; | |
c5aa993b | 2153 | |
c906108c SS |
2154 | base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset; |
2155 | if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2), | |
2156 | TYPE_LENGTH (basetype)) != 0) | |
2157 | error ("virtual baseclass botch"); | |
2158 | VALUE_LVAL (v2) = lval_memory; | |
2159 | VALUE_ADDRESS (v2) = base_addr; | |
2160 | } | |
2161 | else | |
2162 | { | |
2163 | VALUE_LVAL (v2) = VALUE_LVAL (arg1); | |
2164 | VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1); | |
2165 | VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset; | |
2166 | if (VALUE_LAZY (arg1)) | |
2167 | VALUE_LAZY (v2) = 1; | |
2168 | else | |
2169 | memcpy (VALUE_CONTENTS_RAW (v2), | |
2170 | VALUE_CONTENTS_RAW (arg1) + boffset, | |
2171 | TYPE_LENGTH (basetype)); | |
2172 | } | |
2173 | ||
2174 | if (found_baseclass) | |
2175 | return v2; | |
2176 | v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i), | |
2177 | looking_for_baseclass); | |
2178 | } | |
2179 | else if (found_baseclass) | |
2180 | v = value_primitive_field (arg1, offset, i, type); | |
2181 | else | |
2182 | v = search_struct_field (name, arg1, | |
c5aa993b | 2183 | offset + TYPE_BASECLASS_BITPOS (type, i) / 8, |
c906108c | 2184 | basetype, looking_for_baseclass); |
c5aa993b JM |
2185 | if (v) |
2186 | return v; | |
c906108c SS |
2187 | } |
2188 | return NULL; | |
2189 | } | |
2190 | ||
2191 | ||
2192 | /* Return the offset (in bytes) of the virtual base of type BASETYPE | |
2193 | * in an object pointed to by VALADDR (on the host), assumed to be of | |
2194 | * type TYPE. OFFSET is number of bytes beyond start of ARG to start | |
2195 | * looking (in case VALADDR is the contents of an enclosing object). | |
2196 | * | |
2197 | * This routine recurses on the primary base of the derived class because | |
2198 | * the virtual base entries of the primary base appear before the other | |
2199 | * virtual base entries. | |
2200 | * | |
2201 | * If the virtual base is not found, a negative integer is returned. | |
2202 | * The magnitude of the negative integer is the number of entries in | |
2203 | * the virtual table to skip over (entries corresponding to various | |
2204 | * ancestral classes in the chain of primary bases). | |
2205 | * | |
2206 | * Important: This assumes the HP / Taligent C++ runtime | |
2207 | * conventions. Use baseclass_offset() instead to deal with g++ | |
2208 | * conventions. */ | |
2209 | ||
2210 | void | |
c5aa993b JM |
2211 | find_rt_vbase_offset (type, basetype, valaddr, offset, boffset_p, skip_p) |
2212 | struct type *type; | |
2213 | struct type *basetype; | |
2214 | char *valaddr; | |
2215 | int offset; | |
2216 | int *boffset_p; | |
2217 | int *skip_p; | |
c906108c | 2218 | { |
c5aa993b JM |
2219 | int boffset; /* offset of virtual base */ |
2220 | int index; /* displacement to use in virtual table */ | |
c906108c | 2221 | int skip; |
c5aa993b JM |
2222 | |
2223 | value_ptr vp; | |
2224 | CORE_ADDR vtbl; /* the virtual table pointer */ | |
2225 | struct type *pbc; /* the primary base class */ | |
c906108c SS |
2226 | |
2227 | /* Look for the virtual base recursively in the primary base, first. | |
2228 | * This is because the derived class object and its primary base | |
2229 | * subobject share the primary virtual table. */ | |
c5aa993b | 2230 | |
c906108c | 2231 | boffset = 0; |
c5aa993b | 2232 | pbc = TYPE_PRIMARY_BASE (type); |
c906108c SS |
2233 | if (pbc) |
2234 | { | |
2235 | find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip); | |
2236 | if (skip < 0) | |
c5aa993b JM |
2237 | { |
2238 | *boffset_p = boffset; | |
2239 | *skip_p = -1; | |
2240 | return; | |
2241 | } | |
c906108c SS |
2242 | } |
2243 | else | |
2244 | skip = 0; | |
2245 | ||
2246 | ||
2247 | /* Find the index of the virtual base according to HP/Taligent | |
2248 | runtime spec. (Depth-first, left-to-right.) */ | |
2249 | index = virtual_base_index_skip_primaries (basetype, type); | |
2250 | ||
c5aa993b JM |
2251 | if (index < 0) |
2252 | { | |
2253 | *skip_p = skip + virtual_base_list_length_skip_primaries (type); | |
2254 | *boffset_p = 0; | |
2255 | return; | |
2256 | } | |
c906108c | 2257 | |
c5aa993b | 2258 | /* pai: FIXME -- 32x64 possible problem */ |
c906108c | 2259 | /* First word (4 bytes) in object layout is the vtable pointer */ |
c5aa993b | 2260 | vtbl = *(CORE_ADDR *) (valaddr + offset); |
c906108c | 2261 | |
c5aa993b | 2262 | /* Before the constructor is invoked, things are usually zero'd out. */ |
c906108c SS |
2263 | if (vtbl == 0) |
2264 | error ("Couldn't find virtual table -- object may not be constructed yet."); | |
2265 | ||
2266 | ||
2267 | /* Find virtual base's offset -- jump over entries for primary base | |
2268 | * ancestors, then use the index computed above. But also adjust by | |
2269 | * HP_ACC_VBASE_START for the vtable slots before the start of the | |
2270 | * virtual base entries. Offset is negative -- virtual base entries | |
2271 | * appear _before_ the address point of the virtual table. */ | |
c5aa993b | 2272 | |
09b59ee3 | 2273 | /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier |
c5aa993b | 2274 | & use long type */ |
c906108c SS |
2275 | |
2276 | /* epstein : FIXME -- added param for overlay section. May not be correct */ | |
c5aa993b | 2277 | vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL); |
c906108c SS |
2278 | boffset = value_as_long (vp); |
2279 | *skip_p = -1; | |
2280 | *boffset_p = boffset; | |
2281 | return; | |
2282 | } | |
2283 | ||
2284 | ||
2285 | /* Helper function used by value_struct_elt to recurse through baseclasses. | |
2286 | Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes, | |
2287 | and search in it assuming it has (class) type TYPE. | |
2288 | If found, return value, else if name matched and args not return (value)-1, | |
2289 | else return NULL. */ | |
2290 | ||
2291 | static value_ptr | |
2292 | search_struct_method (name, arg1p, args, offset, static_memfuncp, type) | |
2293 | char *name; | |
2294 | register value_ptr *arg1p, *args; | |
2295 | int offset, *static_memfuncp; | |
2296 | register struct type *type; | |
2297 | { | |
2298 | int i; | |
2299 | value_ptr v; | |
2300 | int name_matched = 0; | |
2301 | char dem_opname[64]; | |
2302 | ||
2303 | CHECK_TYPEDEF (type); | |
2304 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) | |
2305 | { | |
2306 | char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i); | |
2307 | /* FIXME! May need to check for ARM demangling here */ | |
c5aa993b JM |
2308 | if (strncmp (t_field_name, "__", 2) == 0 || |
2309 | strncmp (t_field_name, "op", 2) == 0 || | |
2310 | strncmp (t_field_name, "type", 4) == 0) | |
c906108c | 2311 | { |
c5aa993b JM |
2312 | if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI)) |
2313 | t_field_name = dem_opname; | |
2314 | else if (cplus_demangle_opname (t_field_name, dem_opname, 0)) | |
c906108c | 2315 | t_field_name = dem_opname; |
c906108c | 2316 | } |
09b59ee3 | 2317 | if (t_field_name && !strcmp_iw (t_field_name, name)) |
c906108c SS |
2318 | { |
2319 | int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1; | |
2320 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); | |
c5aa993b | 2321 | name_matched = 1; |
c906108c SS |
2322 | |
2323 | if (j > 0 && args == 0) | |
2324 | error ("cannot resolve overloaded method `%s': no arguments supplied", name); | |
2325 | while (j >= 0) | |
2326 | { | |
2327 | if (TYPE_FN_FIELD_STUB (f, j)) | |
2328 | check_stub_method (type, i, j); | |
2329 | if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j), | |
2330 | TYPE_FN_FIELD_ARGS (f, j), args)) | |
2331 | { | |
2332 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) | |
2333 | return value_virtual_fn_field (arg1p, f, j, type, offset); | |
2334 | if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp) | |
2335 | *static_memfuncp = 1; | |
2336 | v = value_fn_field (arg1p, f, j, type, offset); | |
c5aa993b JM |
2337 | if (v != NULL) |
2338 | return v; | |
c906108c SS |
2339 | } |
2340 | j--; | |
2341 | } | |
2342 | } | |
2343 | } | |
2344 | ||
2345 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
2346 | { | |
2347 | int base_offset; | |
2348 | ||
2349 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
2350 | { | |
c5aa993b JM |
2351 | if (TYPE_HAS_VTABLE (type)) |
2352 | { | |
2353 | /* HP aCC compiled type, search for virtual base offset | |
09b59ee3 | 2354 | according to HP/Taligent runtime spec. */ |
c5aa993b JM |
2355 | int skip; |
2356 | find_rt_vbase_offset (type, TYPE_BASECLASS (type, i), | |
2357 | VALUE_CONTENTS_ALL (*arg1p), | |
2358 | offset + VALUE_EMBEDDED_OFFSET (*arg1p), | |
2359 | &base_offset, &skip); | |
2360 | if (skip >= 0) | |
2361 | error ("Virtual base class offset not found in vtable"); | |
2362 | } | |
2363 | else | |
2364 | { | |
2365 | struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i)); | |
2366 | char *base_valaddr; | |
2367 | ||
2368 | /* The virtual base class pointer might have been clobbered by the | |
09b59ee3 DB |
2369 | user program. Make sure that it still points to a valid memory |
2370 | location. */ | |
c5aa993b JM |
2371 | |
2372 | if (offset < 0 || offset >= TYPE_LENGTH (type)) | |
2373 | { | |
2374 | base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass)); | |
2375 | if (target_read_memory (VALUE_ADDRESS (*arg1p) | |
2376 | + VALUE_OFFSET (*arg1p) + offset, | |
2377 | base_valaddr, | |
2378 | TYPE_LENGTH (baseclass)) != 0) | |
2379 | error ("virtual baseclass botch"); | |
2380 | } | |
2381 | else | |
2382 | base_valaddr = VALUE_CONTENTS (*arg1p) + offset; | |
2383 | ||
2384 | base_offset = | |
2385 | baseclass_offset (type, i, base_valaddr, | |
2386 | VALUE_ADDRESS (*arg1p) | |
2387 | + VALUE_OFFSET (*arg1p) + offset); | |
2388 | if (base_offset == -1) | |
2389 | error ("virtual baseclass botch"); | |
2390 | } | |
2391 | } | |
c906108c SS |
2392 | else |
2393 | { | |
2394 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | |
c5aa993b | 2395 | } |
c906108c SS |
2396 | v = search_struct_method (name, arg1p, args, base_offset + offset, |
2397 | static_memfuncp, TYPE_BASECLASS (type, i)); | |
c5aa993b | 2398 | if (v == (value_ptr) - 1) |
c906108c SS |
2399 | { |
2400 | name_matched = 1; | |
2401 | } | |
2402 | else if (v) | |
2403 | { | |
2404 | /* FIXME-bothner: Why is this commented out? Why is it here? */ | |
c5aa993b | 2405 | /* *arg1p = arg1_tmp; */ |
c906108c | 2406 | return v; |
c5aa993b | 2407 | } |
c906108c | 2408 | } |
c5aa993b JM |
2409 | if (name_matched) |
2410 | return (value_ptr) - 1; | |
2411 | else | |
2412 | return NULL; | |
c906108c SS |
2413 | } |
2414 | ||
2415 | /* Given *ARGP, a value of type (pointer to a)* structure/union, | |
2416 | extract the component named NAME from the ultimate target structure/union | |
2417 | and return it as a value with its appropriate type. | |
2418 | ERR is used in the error message if *ARGP's type is wrong. | |
2419 | ||
2420 | C++: ARGS is a list of argument types to aid in the selection of | |
2421 | an appropriate method. Also, handle derived types. | |
2422 | ||
2423 | STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location | |
2424 | where the truthvalue of whether the function that was resolved was | |
2425 | a static member function or not is stored. | |
2426 | ||
2427 | ERR is an error message to be printed in case the field is not found. */ | |
2428 | ||
2429 | value_ptr | |
2430 | value_struct_elt (argp, args, name, static_memfuncp, err) | |
2431 | register value_ptr *argp, *args; | |
2432 | char *name; | |
2433 | int *static_memfuncp; | |
2434 | char *err; | |
2435 | { | |
2436 | register struct type *t; | |
2437 | value_ptr v; | |
2438 | ||
2439 | COERCE_ARRAY (*argp); | |
2440 | ||
2441 | t = check_typedef (VALUE_TYPE (*argp)); | |
2442 | ||
2443 | /* Follow pointers until we get to a non-pointer. */ | |
2444 | ||
2445 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) | |
2446 | { | |
2447 | *argp = value_ind (*argp); | |
2448 | /* Don't coerce fn pointer to fn and then back again! */ | |
2449 | if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC) | |
2450 | COERCE_ARRAY (*argp); | |
2451 | t = check_typedef (VALUE_TYPE (*argp)); | |
2452 | } | |
2453 | ||
2454 | if (TYPE_CODE (t) == TYPE_CODE_MEMBER) | |
2455 | error ("not implemented: member type in value_struct_elt"); | |
2456 | ||
c5aa993b | 2457 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c SS |
2458 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
2459 | error ("Attempt to extract a component of a value that is not a %s.", err); | |
2460 | ||
2461 | /* Assume it's not, unless we see that it is. */ | |
2462 | if (static_memfuncp) | |
c5aa993b | 2463 | *static_memfuncp = 0; |
c906108c SS |
2464 | |
2465 | if (!args) | |
2466 | { | |
2467 | /* if there are no arguments ...do this... */ | |
2468 | ||
2469 | /* Try as a field first, because if we succeed, there | |
09b59ee3 | 2470 | is less work to be done. */ |
c906108c SS |
2471 | v = search_struct_field (name, *argp, 0, t, 0); |
2472 | if (v) | |
2473 | return v; | |
2474 | ||
2475 | /* C++: If it was not found as a data field, then try to | |
09b59ee3 | 2476 | return it as a pointer to a method. */ |
c906108c SS |
2477 | |
2478 | if (destructor_name_p (name, t)) | |
2479 | error ("Cannot get value of destructor"); | |
2480 | ||
2481 | v = search_struct_method (name, argp, args, 0, static_memfuncp, t); | |
2482 | ||
c5aa993b | 2483 | if (v == (value_ptr) - 1) |
c906108c SS |
2484 | error ("Cannot take address of a method"); |
2485 | else if (v == 0) | |
2486 | { | |
2487 | if (TYPE_NFN_FIELDS (t)) | |
2488 | error ("There is no member or method named %s.", name); | |
2489 | else | |
2490 | error ("There is no member named %s.", name); | |
2491 | } | |
2492 | return v; | |
2493 | } | |
2494 | ||
2495 | if (destructor_name_p (name, t)) | |
2496 | { | |
2497 | if (!args[1]) | |
2498 | { | |
2499 | /* Destructors are a special case. */ | |
2500 | int m_index, f_index; | |
2501 | ||
2502 | v = NULL; | |
2503 | if (get_destructor_fn_field (t, &m_index, &f_index)) | |
2504 | { | |
2505 | v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index), | |
2506 | f_index, NULL, 0); | |
2507 | } | |
2508 | if (v == NULL) | |
2509 | error ("could not find destructor function named %s.", name); | |
2510 | else | |
2511 | return v; | |
2512 | } | |
2513 | else | |
2514 | { | |
2515 | error ("destructor should not have any argument"); | |
2516 | } | |
2517 | } | |
2518 | else | |
2519 | v = search_struct_method (name, argp, args, 0, static_memfuncp, t); | |
2520 | ||
c5aa993b | 2521 | if (v == (value_ptr) - 1) |
c906108c | 2522 | { |
c5aa993b | 2523 | error ("Argument list of %s mismatch with component in the structure.", name); |
c906108c SS |
2524 | } |
2525 | else if (v == 0) | |
2526 | { | |
2527 | /* See if user tried to invoke data as function. If so, | |
09b59ee3 DB |
2528 | hand it back. If it's not callable (i.e., a pointer to function), |
2529 | gdb should give an error. */ | |
c906108c SS |
2530 | v = search_struct_field (name, *argp, 0, t, 0); |
2531 | } | |
2532 | ||
2533 | if (!v) | |
2534 | error ("Structure has no component named %s.", name); | |
2535 | return v; | |
2536 | } | |
2537 | ||
2538 | /* Search through the methods of an object (and its bases) | |
2539 | * to find a specified method. Return the pointer to the | |
2540 | * fn_field list of overloaded instances. | |
2541 | * Helper function for value_find_oload_list. | |
2542 | * ARGP is a pointer to a pointer to a value (the object) | |
2543 | * METHOD is a string containing the method name | |
2544 | * OFFSET is the offset within the value | |
2545 | * STATIC_MEMFUNCP is set if the method is static | |
2546 | * TYPE is the assumed type of the object | |
2547 | * NUM_FNS is the number of overloaded instances | |
2548 | * BASETYPE is set to the actual type of the subobject where the method is found | |
2549 | * BOFFSET is the offset of the base subobject where the method is found */ | |
2550 | ||
7a292a7a | 2551 | static struct fn_field * |
c906108c | 2552 | find_method_list (argp, method, offset, static_memfuncp, type, num_fns, basetype, boffset) |
7a292a7a | 2553 | value_ptr *argp; |
c5aa993b | 2554 | char *method; |
7a292a7a | 2555 | int offset; |
c5aa993b JM |
2556 | int *static_memfuncp; |
2557 | struct type *type; | |
2558 | int *num_fns; | |
2559 | struct type **basetype; | |
2560 | int *boffset; | |
c906108c SS |
2561 | { |
2562 | int i; | |
c5aa993b | 2563 | struct fn_field *f; |
c906108c SS |
2564 | CHECK_TYPEDEF (type); |
2565 | ||
2566 | *num_fns = 0; | |
2567 | ||
c5aa993b JM |
2568 | /* First check in object itself */ |
2569 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) | |
c906108c SS |
2570 | { |
2571 | /* pai: FIXME What about operators and type conversions? */ | |
c5aa993b | 2572 | char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i); |
09b59ee3 | 2573 | if (fn_field_name && STREQ_IW (fn_field_name, method)) |
c5aa993b JM |
2574 | { |
2575 | *num_fns = TYPE_FN_FIELDLIST_LENGTH (type, i); | |
2576 | *basetype = type; | |
2577 | *boffset = offset; | |
2578 | return TYPE_FN_FIELDLIST1 (type, i); | |
2579 | } | |
2580 | } | |
2581 | ||
c906108c SS |
2582 | /* Not found in object, check in base subobjects */ |
2583 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
2584 | { | |
2585 | int base_offset; | |
2586 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
2587 | { | |
c5aa993b JM |
2588 | if (TYPE_HAS_VTABLE (type)) |
2589 | { | |
2590 | /* HP aCC compiled type, search for virtual base offset | |
2591 | * according to HP/Taligent runtime spec. */ | |
2592 | int skip; | |
2593 | find_rt_vbase_offset (type, TYPE_BASECLASS (type, i), | |
2594 | VALUE_CONTENTS_ALL (*argp), | |
2595 | offset + VALUE_EMBEDDED_OFFSET (*argp), | |
2596 | &base_offset, &skip); | |
2597 | if (skip >= 0) | |
2598 | error ("Virtual base class offset not found in vtable"); | |
2599 | } | |
2600 | else | |
2601 | { | |
2602 | /* probably g++ runtime model */ | |
2603 | base_offset = VALUE_OFFSET (*argp) + offset; | |
2604 | base_offset = | |
2605 | baseclass_offset (type, i, | |
2606 | VALUE_CONTENTS (*argp) + base_offset, | |
2607 | VALUE_ADDRESS (*argp) + base_offset); | |
2608 | if (base_offset == -1) | |
2609 | error ("virtual baseclass botch"); | |
2610 | } | |
2611 | } | |
2612 | else | |
2613 | /* non-virtual base, simply use bit position from debug info */ | |
c906108c SS |
2614 | { |
2615 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | |
c5aa993b | 2616 | } |
c906108c | 2617 | f = find_method_list (argp, method, base_offset + offset, |
c5aa993b | 2618 | static_memfuncp, TYPE_BASECLASS (type, i), num_fns, basetype, boffset); |
c906108c | 2619 | if (f) |
c5aa993b | 2620 | return f; |
c906108c | 2621 | } |
c5aa993b | 2622 | return NULL; |
c906108c SS |
2623 | } |
2624 | ||
2625 | /* Return the list of overloaded methods of a specified name. | |
2626 | * ARGP is a pointer to a pointer to a value (the object) | |
2627 | * METHOD is the method name | |
2628 | * OFFSET is the offset within the value contents | |
2629 | * STATIC_MEMFUNCP is set if the method is static | |
2630 | * NUM_FNS is the number of overloaded instances | |
2631 | * BASETYPE is set to the type of the base subobject that defines the method | |
2632 | * BOFFSET is the offset of the base subobject which defines the method */ | |
2633 | ||
2634 | struct fn_field * | |
2635 | value_find_oload_method_list (argp, method, offset, static_memfuncp, num_fns, basetype, boffset) | |
c5aa993b JM |
2636 | value_ptr *argp; |
2637 | char *method; | |
2638 | int offset; | |
2639 | int *static_memfuncp; | |
2640 | int *num_fns; | |
2641 | struct type **basetype; | |
2642 | int *boffset; | |
c906108c | 2643 | { |
c5aa993b | 2644 | struct type *t; |
c906108c SS |
2645 | |
2646 | t = check_typedef (VALUE_TYPE (*argp)); | |
2647 | ||
c5aa993b | 2648 | /* code snarfed from value_struct_elt */ |
c906108c SS |
2649 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) |
2650 | { | |
2651 | *argp = value_ind (*argp); | |
2652 | /* Don't coerce fn pointer to fn and then back again! */ | |
2653 | if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC) | |
2654 | COERCE_ARRAY (*argp); | |
2655 | t = check_typedef (VALUE_TYPE (*argp)); | |
2656 | } | |
c5aa993b | 2657 | |
c906108c SS |
2658 | if (TYPE_CODE (t) == TYPE_CODE_MEMBER) |
2659 | error ("Not implemented: member type in value_find_oload_lis"); | |
c5aa993b JM |
2660 | |
2661 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT | |
2662 | && TYPE_CODE (t) != TYPE_CODE_UNION) | |
c906108c | 2663 | error ("Attempt to extract a component of a value that is not a struct or union"); |
c5aa993b | 2664 | |
c906108c SS |
2665 | /* Assume it's not static, unless we see that it is. */ |
2666 | if (static_memfuncp) | |
c5aa993b | 2667 | *static_memfuncp = 0; |
c906108c SS |
2668 | |
2669 | return find_method_list (argp, method, 0, static_memfuncp, t, num_fns, basetype, boffset); | |
c5aa993b | 2670 | |
c906108c SS |
2671 | } |
2672 | ||
2673 | /* Given an array of argument types (ARGTYPES) (which includes an | |
2674 | entry for "this" in the case of C++ methods), the number of | |
2675 | arguments NARGS, the NAME of a function whether it's a method or | |
2676 | not (METHOD), and the degree of laxness (LAX) in conforming to | |
2677 | overload resolution rules in ANSI C++, find the best function that | |
2678 | matches on the argument types according to the overload resolution | |
2679 | rules. | |
2680 | ||
2681 | In the case of class methods, the parameter OBJ is an object value | |
2682 | in which to search for overloaded methods. | |
2683 | ||
2684 | In the case of non-method functions, the parameter FSYM is a symbol | |
2685 | corresponding to one of the overloaded functions. | |
2686 | ||
2687 | Return value is an integer: 0 -> good match, 10 -> debugger applied | |
2688 | non-standard coercions, 100 -> incompatible. | |
2689 | ||
2690 | If a method is being searched for, VALP will hold the value. | |
2691 | If a non-method is being searched for, SYMP will hold the symbol for it. | |
2692 | ||
2693 | If a method is being searched for, and it is a static method, | |
2694 | then STATICP will point to a non-zero value. | |
2695 | ||
2696 | Note: This function does *not* check the value of | |
2697 | overload_resolution. Caller must check it to see whether overload | |
2698 | resolution is permitted. | |
c5aa993b | 2699 | */ |
c906108c SS |
2700 | |
2701 | int | |
2702 | find_overload_match (arg_types, nargs, name, method, lax, obj, fsym, valp, symp, staticp) | |
c5aa993b JM |
2703 | struct type **arg_types; |
2704 | int nargs; | |
2705 | char *name; | |
2706 | int method; | |
2707 | int lax; | |
2708 | value_ptr obj; | |
2709 | struct symbol *fsym; | |
2710 | value_ptr *valp; | |
2711 | struct symbol **symp; | |
2712 | int *staticp; | |
c906108c SS |
2713 | { |
2714 | int nparms; | |
c5aa993b | 2715 | struct type **parm_types; |
c906108c | 2716 | int champ_nparms = 0; |
c5aa993b JM |
2717 | |
2718 | short oload_champ = -1; /* Index of best overloaded function */ | |
2719 | short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */ | |
2720 | /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */ | |
2721 | short oload_ambig_champ = -1; /* 2nd contender for best match */ | |
2722 | short oload_non_standard = 0; /* did we have to use non-standard conversions? */ | |
2723 | short oload_incompatible = 0; /* are args supplied incompatible with any function? */ | |
2724 | ||
2725 | struct badness_vector *bv; /* A measure of how good an overloaded instance is */ | |
2726 | struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */ | |
2727 | ||
c906108c | 2728 | value_ptr temp = obj; |
c5aa993b JM |
2729 | struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */ |
2730 | struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */ | |
2731 | int num_fns = 0; /* Number of overloaded instances being considered */ | |
2732 | struct type *basetype = NULL; | |
c906108c SS |
2733 | int boffset; |
2734 | register int jj; | |
2735 | register int ix; | |
2736 | ||
c5aa993b JM |
2737 | char *obj_type_name = NULL; |
2738 | char *func_name = NULL; | |
09b59ee3 DB |
2739 | int i,j,len,len2; |
2740 | struct type *domain; | |
2741 | struct fn_field *f; | |
c906108c SS |
2742 | |
2743 | /* Get the list of overloaded methods or functions */ | |
2744 | if (method) | |
2745 | { | |
2746 | obj_type_name = TYPE_NAME (VALUE_TYPE (obj)); | |
2747 | /* Hack: evaluate_subexp_standard often passes in a pointer | |
09b59ee3 | 2748 | value rather than the object itself, so try again */ |
c906108c | 2749 | if ((!obj_type_name || !*obj_type_name) && |
c5aa993b JM |
2750 | (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR)) |
2751 | obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj))); | |
c906108c SS |
2752 | |
2753 | fns_ptr = value_find_oload_method_list (&temp, name, 0, | |
c5aa993b JM |
2754 | staticp, |
2755 | &num_fns, | |
2756 | &basetype, &boffset); | |
c906108c | 2757 | if (!fns_ptr || !num_fns) |
c5aa993b JM |
2758 | error ("Couldn't find method %s%s%s", |
2759 | obj_type_name, | |
2760 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2761 | name); | |
09b59ee3 DB |
2762 | domain=TYPE_DOMAIN_TYPE(fns_ptr[0].type); |
2763 | len = TYPE_NFN_FIELDS (domain); | |
2764 | /*This stuff is for STABS, which won't give us the info we need directly in the types. | |
2765 | * We have to use the method stub conversion to get it. | |
2766 | * Be aware that this is by no means perfect, and if you use | |
2767 | * STABS, please move to DWARF-2, or something like it, because | |
2768 | * trying to improve overloading using STABS is really a waste | |
2769 | * of time. | |
2770 | */ | |
2771 | for (i = 0; i < len; i++) | |
2772 | { | |
2773 | f = TYPE_FN_FIELDLIST1 (domain, i); | |
2774 | len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i); | |
2775 | ||
2776 | for (j = 0; j < len2; j++) | |
2777 | { | |
2778 | if (TYPE_FN_FIELD_STUB (f, j)) | |
2779 | check_stub_method (domain, i, j); | |
2780 | } | |
2781 | } | |
c906108c SS |
2782 | } |
2783 | else | |
2784 | { | |
2785 | int i = -1; | |
2786 | func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS); | |
2787 | ||
917317f4 | 2788 | /* If the name is NULL this must be a C-style function. |
09b59ee3 | 2789 | Just return the same symbol. */ |
917317f4 | 2790 | if (!func_name) |
09b59ee3 | 2791 | { |
917317f4 | 2792 | *symp = fsym; |
09b59ee3 DB |
2793 | return 0; |
2794 | } | |
917317f4 | 2795 | |
c906108c SS |
2796 | oload_syms = make_symbol_overload_list (fsym); |
2797 | while (oload_syms[++i]) | |
c5aa993b | 2798 | num_fns++; |
c906108c | 2799 | if (!num_fns) |
c5aa993b | 2800 | error ("Couldn't find function %s", func_name); |
c906108c | 2801 | } |
c5aa993b | 2802 | |
c906108c SS |
2803 | oload_champ_bv = NULL; |
2804 | ||
c5aa993b | 2805 | /* Consider each candidate in turn */ |
c906108c SS |
2806 | for (ix = 0; ix < num_fns; ix++) |
2807 | { | |
09b59ee3 DB |
2808 | if (method) |
2809 | { | |
2810 | /* For static member functions, we won't have a this pointer, but nothing | |
2811 | else seems to handle them right now, so we just pretend ourselves */ | |
2812 | nparms=0; | |
2813 | ||
2814 | if (TYPE_FN_FIELD_ARGS(fns_ptr,ix)) | |
2815 | { | |
2816 | while (TYPE_CODE(TYPE_FN_FIELD_ARGS(fns_ptr,ix)[nparms]) != TYPE_CODE_VOID) | |
2817 | nparms++; | |
2818 | } | |
2819 | } | |
2820 | else | |
2821 | { | |
2822 | /* If it's not a method, this is the proper place */ | |
2823 | nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix])); | |
2824 | } | |
c906108c | 2825 | |
c5aa993b | 2826 | /* Prepare array of parameter types */ |
c906108c SS |
2827 | parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *))); |
2828 | for (jj = 0; jj < nparms; jj++) | |
09b59ee3 | 2829 | parm_types[jj] = method ? (TYPE_FN_FIELD_ARGS(fns_ptr,ix)[jj]) |
c5aa993b | 2830 | : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj); |
c906108c SS |
2831 | |
2832 | /* Compare parameter types to supplied argument types */ | |
2833 | bv = rank_function (parm_types, nparms, arg_types, nargs); | |
c5aa993b | 2834 | |
c906108c | 2835 | if (!oload_champ_bv) |
c5aa993b JM |
2836 | { |
2837 | oload_champ_bv = bv; | |
2838 | oload_champ = 0; | |
2839 | champ_nparms = nparms; | |
2840 | } | |
c906108c | 2841 | else |
c5aa993b JM |
2842 | /* See whether current candidate is better or worse than previous best */ |
2843 | switch (compare_badness (bv, oload_champ_bv)) | |
2844 | { | |
2845 | case 0: | |
2846 | oload_ambiguous = 1; /* top two contenders are equally good */ | |
2847 | oload_ambig_champ = ix; | |
2848 | break; | |
2849 | case 1: | |
2850 | oload_ambiguous = 2; /* incomparable top contenders */ | |
2851 | oload_ambig_champ = ix; | |
2852 | break; | |
2853 | case 2: | |
2854 | oload_champ_bv = bv; /* new champion, record details */ | |
2855 | oload_ambiguous = 0; | |
2856 | oload_champ = ix; | |
2857 | oload_ambig_champ = -1; | |
2858 | champ_nparms = nparms; | |
2859 | break; | |
2860 | case 3: | |
2861 | default: | |
2862 | break; | |
2863 | } | |
c906108c SS |
2864 | free (parm_types); |
2865 | #ifdef DEBUG_OLOAD | |
2866 | if (method) | |
c5aa993b | 2867 | printf ("Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms); |
c906108c | 2868 | else |
c5aa993b | 2869 | printf ("Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms); |
09b59ee3 | 2870 | for (jj = 0; jj < nargs; jj++) |
c5aa993b JM |
2871 | printf ("...Badness @ %d : %d\n", jj, bv->rank[jj]); |
2872 | printf ("Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous); | |
c906108c | 2873 | #endif |
c5aa993b | 2874 | } /* end loop over all candidates */ |
c906108c | 2875 | |
09b59ee3 DB |
2876 | /* Seems to be a better idea to just pick one if they have the exact same goodness. |
2877 | * This is because there is no way to differentiate based on return type, which we need | |
2878 | * to in cases like overloads of .begin() <It's both const and non-const> */ | |
2879 | #if 0 | |
c906108c SS |
2880 | if (oload_ambiguous) |
2881 | { | |
2882 | if (method) | |
c5aa993b JM |
2883 | error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature", |
2884 | obj_type_name, | |
2885 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2886 | name); | |
c906108c | 2887 | else |
c5aa993b JM |
2888 | error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature", |
2889 | func_name); | |
c906108c | 2890 | } |
09b59ee3 | 2891 | #endif |
c906108c | 2892 | |
c5aa993b | 2893 | /* Check how bad the best match is */ |
c906108c SS |
2894 | for (ix = 1; ix <= nargs; ix++) |
2895 | { | |
2896 | switch (oload_champ_bv->rank[ix]) | |
c5aa993b JM |
2897 | { |
2898 | case 10: | |
2899 | oload_non_standard = 1; /* non-standard type conversions needed */ | |
2900 | break; | |
2901 | case 100: | |
2902 | oload_incompatible = 1; /* truly mismatched types */ | |
2903 | break; | |
2904 | } | |
c906108c SS |
2905 | } |
2906 | if (oload_incompatible) | |
2907 | { | |
2908 | if (method) | |
c5aa993b JM |
2909 | error ("Cannot resolve method %s%s%s to any overloaded instance", |
2910 | obj_type_name, | |
2911 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2912 | name); | |
c906108c | 2913 | else |
c5aa993b JM |
2914 | error ("Cannot resolve function %s to any overloaded instance", |
2915 | func_name); | |
c906108c SS |
2916 | } |
2917 | else if (oload_non_standard) | |
2918 | { | |
2919 | if (method) | |
c5aa993b JM |
2920 | warning ("Using non-standard conversion to match method %s%s%s to supplied arguments", |
2921 | obj_type_name, | |
2922 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2923 | name); | |
c906108c | 2924 | else |
c5aa993b JM |
2925 | warning ("Using non-standard conversion to match function %s to supplied arguments", |
2926 | func_name); | |
c906108c SS |
2927 | } |
2928 | ||
2929 | if (method) | |
2930 | { | |
2931 | if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ)) | |
c5aa993b | 2932 | *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset); |
c906108c | 2933 | else |
c5aa993b | 2934 | *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset); |
c906108c SS |
2935 | } |
2936 | else | |
2937 | { | |
2938 | *symp = oload_syms[oload_champ]; | |
2939 | free (func_name); | |
2940 | } | |
2941 | ||
2942 | return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0); | |
2943 | } | |
2944 | ||
2945 | /* C++: return 1 is NAME is a legitimate name for the destructor | |
2946 | of type TYPE. If TYPE does not have a destructor, or | |
2947 | if NAME is inappropriate for TYPE, an error is signaled. */ | |
2948 | int | |
2949 | destructor_name_p (name, type) | |
2950 | const char *name; | |
2951 | const struct type *type; | |
2952 | { | |
2953 | /* destructors are a special case. */ | |
2954 | ||
2955 | if (name[0] == '~') | |
2956 | { | |
2957 | char *dname = type_name_no_tag (type); | |
2958 | char *cp = strchr (dname, '<'); | |
2959 | unsigned int len; | |
2960 | ||
2961 | /* Do not compare the template part for template classes. */ | |
2962 | if (cp == NULL) | |
2963 | len = strlen (dname); | |
2964 | else | |
2965 | len = cp - dname; | |
2966 | if (strlen (name + 1) != len || !STREQN (dname, name + 1, len)) | |
2967 | error ("name of destructor must equal name of class"); | |
2968 | else | |
2969 | return 1; | |
2970 | } | |
2971 | return 0; | |
2972 | } | |
2973 | ||
2974 | /* Helper function for check_field: Given TYPE, a structure/union, | |
2975 | return 1 if the component named NAME from the ultimate | |
2976 | target structure/union is defined, otherwise, return 0. */ | |
2977 | ||
2978 | static int | |
2979 | check_field_in (type, name) | |
2980 | register struct type *type; | |
2981 | const char *name; | |
2982 | { | |
2983 | register int i; | |
2984 | ||
2985 | for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--) | |
2986 | { | |
2987 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
09b59ee3 | 2988 | if (t_field_name && STREQ_IW (t_field_name, name)) |
c906108c SS |
2989 | return 1; |
2990 | } | |
2991 | ||
2992 | /* C++: If it was not found as a data field, then try to | |
2993 | return it as a pointer to a method. */ | |
2994 | ||
2995 | /* Destructors are a special case. */ | |
2996 | if (destructor_name_p (name, type)) | |
2997 | { | |
2998 | int m_index, f_index; | |
2999 | ||
3000 | return get_destructor_fn_field (type, &m_index, &f_index); | |
3001 | } | |
3002 | ||
3003 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i) | |
3004 | { | |
09b59ee3 | 3005 | if (STREQ_IW (TYPE_FN_FIELDLIST_NAME (type, i), name)) |
c906108c SS |
3006 | return 1; |
3007 | } | |
3008 | ||
3009 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
3010 | if (check_field_in (TYPE_BASECLASS (type, i), name)) | |
3011 | return 1; | |
c5aa993b | 3012 | |
c906108c SS |
3013 | return 0; |
3014 | } | |
3015 | ||
3016 | ||
3017 | /* C++: Given ARG1, a value of type (pointer to a)* structure/union, | |
3018 | return 1 if the component named NAME from the ultimate | |
3019 | target structure/union is defined, otherwise, return 0. */ | |
3020 | ||
3021 | int | |
3022 | check_field (arg1, name) | |
3023 | register value_ptr arg1; | |
3024 | const char *name; | |
3025 | { | |
3026 | register struct type *t; | |
3027 | ||
3028 | COERCE_ARRAY (arg1); | |
3029 | ||
3030 | t = VALUE_TYPE (arg1); | |
3031 | ||
3032 | /* Follow pointers until we get to a non-pointer. */ | |
3033 | ||
3034 | for (;;) | |
3035 | { | |
3036 | CHECK_TYPEDEF (t); | |
3037 | if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF) | |
3038 | break; | |
3039 | t = TYPE_TARGET_TYPE (t); | |
3040 | } | |
3041 | ||
3042 | if (TYPE_CODE (t) == TYPE_CODE_MEMBER) | |
3043 | error ("not implemented: member type in check_field"); | |
3044 | ||
c5aa993b | 3045 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c SS |
3046 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
3047 | error ("Internal error: `this' is not an aggregate"); | |
3048 | ||
3049 | return check_field_in (t, name); | |
3050 | } | |
3051 | ||
3052 | /* C++: Given an aggregate type CURTYPE, and a member name NAME, | |
3053 | return the address of this member as a "pointer to member" | |
3054 | type. If INTYPE is non-null, then it will be the type | |
3055 | of the member we are looking for. This will help us resolve | |
3056 | "pointers to member functions". This function is used | |
3057 | to resolve user expressions of the form "DOMAIN::NAME". */ | |
3058 | ||
3059 | value_ptr | |
3060 | value_struct_elt_for_reference (domain, offset, curtype, name, intype) | |
3061 | struct type *domain, *curtype, *intype; | |
3062 | int offset; | |
3063 | char *name; | |
3064 | { | |
3065 | register struct type *t = curtype; | |
3066 | register int i; | |
3067 | value_ptr v; | |
3068 | ||
c5aa993b | 3069 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c SS |
3070 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
3071 | error ("Internal error: non-aggregate type to value_struct_elt_for_reference"); | |
3072 | ||
3073 | for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--) | |
3074 | { | |
3075 | char *t_field_name = TYPE_FIELD_NAME (t, i); | |
c5aa993b | 3076 | |
c906108c SS |
3077 | if (t_field_name && STREQ (t_field_name, name)) |
3078 | { | |
3079 | if (TYPE_FIELD_STATIC (t, i)) | |
3080 | { | |
3081 | v = value_static_field (t, i); | |
3082 | if (v == NULL) | |
3083 | error ("Internal error: could not find static variable %s", | |
3084 | name); | |
3085 | return v; | |
3086 | } | |
3087 | if (TYPE_FIELD_PACKED (t, i)) | |
3088 | error ("pointers to bitfield members not allowed"); | |
c5aa993b | 3089 | |
c906108c SS |
3090 | return value_from_longest |
3091 | (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i), | |
3092 | domain)), | |
3093 | offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3)); | |
3094 | } | |
3095 | } | |
3096 | ||
3097 | /* C++: If it was not found as a data field, then try to | |
3098 | return it as a pointer to a method. */ | |
3099 | ||
3100 | /* Destructors are a special case. */ | |
3101 | if (destructor_name_p (name, t)) | |
3102 | { | |
3103 | error ("member pointers to destructors not implemented yet"); | |
3104 | } | |
3105 | ||
3106 | /* Perform all necessary dereferencing. */ | |
3107 | while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR) | |
3108 | intype = TYPE_TARGET_TYPE (intype); | |
3109 | ||
3110 | for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i) | |
3111 | { | |
3112 | char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i); | |
3113 | char dem_opname[64]; | |
3114 | ||
c5aa993b JM |
3115 | if (strncmp (t_field_name, "__", 2) == 0 || |
3116 | strncmp (t_field_name, "op", 2) == 0 || | |
3117 | strncmp (t_field_name, "type", 4) == 0) | |
c906108c | 3118 | { |
c5aa993b JM |
3119 | if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI)) |
3120 | t_field_name = dem_opname; | |
3121 | else if (cplus_demangle_opname (t_field_name, dem_opname, 0)) | |
c906108c | 3122 | t_field_name = dem_opname; |
c906108c SS |
3123 | } |
3124 | if (t_field_name && STREQ (t_field_name, name)) | |
3125 | { | |
3126 | int j = TYPE_FN_FIELDLIST_LENGTH (t, i); | |
3127 | struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i); | |
c5aa993b | 3128 | |
c906108c SS |
3129 | if (intype == 0 && j > 1) |
3130 | error ("non-unique member `%s' requires type instantiation", name); | |
3131 | if (intype) | |
3132 | { | |
3133 | while (j--) | |
3134 | if (TYPE_FN_FIELD_TYPE (f, j) == intype) | |
3135 | break; | |
3136 | if (j < 0) | |
3137 | error ("no member function matches that type instantiation"); | |
3138 | } | |
3139 | else | |
3140 | j = 0; | |
c5aa993b | 3141 | |
c906108c SS |
3142 | if (TYPE_FN_FIELD_STUB (f, j)) |
3143 | check_stub_method (t, i, j); | |
3144 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) | |
3145 | { | |
3146 | return value_from_longest | |
3147 | (lookup_reference_type | |
3148 | (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j), | |
3149 | domain)), | |
3150 | (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j))); | |
3151 | } | |
3152 | else | |
3153 | { | |
3154 | struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), | |
3155 | 0, VAR_NAMESPACE, 0, NULL); | |
3156 | if (s == NULL) | |
3157 | { | |
3158 | v = 0; | |
3159 | } | |
3160 | else | |
3161 | { | |
3162 | v = read_var_value (s, 0); | |
3163 | #if 0 | |
3164 | VALUE_TYPE (v) = lookup_reference_type | |
3165 | (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j), | |
3166 | domain)); | |
3167 | #endif | |
3168 | } | |
3169 | return v; | |
3170 | } | |
3171 | } | |
3172 | } | |
3173 | for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--) | |
3174 | { | |
3175 | value_ptr v; | |
3176 | int base_offset; | |
3177 | ||
3178 | if (BASETYPE_VIA_VIRTUAL (t, i)) | |
3179 | base_offset = 0; | |
3180 | else | |
3181 | base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8; | |
3182 | v = value_struct_elt_for_reference (domain, | |
3183 | offset + base_offset, | |
3184 | TYPE_BASECLASS (t, i), | |
3185 | name, | |
3186 | intype); | |
3187 | if (v) | |
3188 | return v; | |
3189 | } | |
3190 | return 0; | |
3191 | } | |
3192 | ||
3193 | ||
3194 | /* Find the real run-time type of a value using RTTI. | |
3195 | * V is a pointer to the value. | |
3196 | * A pointer to the struct type entry of the run-time type | |
3197 | * is returneed. | |
3198 | * FULL is a flag that is set only if the value V includes | |
3199 | * the entire contents of an object of the RTTI type. | |
3200 | * TOP is the offset to the top of the enclosing object of | |
3201 | * the real run-time type. This offset may be for the embedded | |
3202 | * object, or for the enclosing object of V. | |
3203 | * USING_ENC is the flag that distinguishes the two cases. | |
3204 | * If it is 1, then the offset is for the enclosing object, | |
3205 | * otherwise for the embedded object. | |
09b59ee3 | 3206 | * |
c906108c SS |
3207 | * This currently works only for RTTI information generated |
3208 | * by the HP ANSI C++ compiler (aCC). g++ today (1997-06-10) | |
3209 | * does not appear to support RTTI. This function returns a | |
3210 | * NULL value for objects in the g++ runtime model. */ | |
3211 | ||
3212 | struct type * | |
3213 | value_rtti_type (v, full, top, using_enc) | |
c5aa993b JM |
3214 | value_ptr v; |
3215 | int *full; | |
3216 | int *top; | |
3217 | int *using_enc; | |
c906108c | 3218 | { |
c5aa993b JM |
3219 | struct type *known_type; |
3220 | struct type *rtti_type; | |
c906108c SS |
3221 | CORE_ADDR coreptr; |
3222 | value_ptr vp; | |
3223 | int using_enclosing = 0; | |
3224 | long top_offset = 0; | |
3225 | char rtti_type_name[256]; | |
3226 | ||
3227 | if (full) | |
3228 | *full = 0; | |
3229 | if (top) | |
3230 | *top = -1; | |
3231 | if (using_enc) | |
3232 | *using_enc = 0; | |
3233 | ||
c5aa993b | 3234 | /* Get declared type */ |
c906108c SS |
3235 | known_type = VALUE_TYPE (v); |
3236 | CHECK_TYPEDEF (known_type); | |
c5aa993b | 3237 | /* RTTI works only or class objects */ |
c906108c SS |
3238 | if (TYPE_CODE (known_type) != TYPE_CODE_CLASS) |
3239 | return NULL; | |
3240 | ||
3241 | /* If neither the declared type nor the enclosing type of the | |
3242 | * value structure has a HP ANSI C++ style virtual table, | |
3243 | * we can't do anything. */ | |
3244 | if (!TYPE_HAS_VTABLE (known_type)) | |
3245 | { | |
3246 | known_type = VALUE_ENCLOSING_TYPE (v); | |
3247 | CHECK_TYPEDEF (known_type); | |
3248 | if ((TYPE_CODE (known_type) != TYPE_CODE_CLASS) || | |
c5aa993b JM |
3249 | !TYPE_HAS_VTABLE (known_type)) |
3250 | return NULL; /* No RTTI, or not HP-compiled types */ | |
c906108c SS |
3251 | CHECK_TYPEDEF (known_type); |
3252 | using_enclosing = 1; | |
3253 | } | |
3254 | ||
3255 | if (using_enclosing && using_enc) | |
3256 | *using_enc = 1; | |
3257 | ||
3258 | /* First get the virtual table address */ | |
c5aa993b JM |
3259 | coreptr = *(CORE_ADDR *) ((VALUE_CONTENTS_ALL (v)) |
3260 | + VALUE_OFFSET (v) | |
3261 | + (using_enclosing ? 0 : VALUE_EMBEDDED_OFFSET (v))); | |
c906108c | 3262 | if (coreptr == 0) |
c5aa993b | 3263 | return NULL; /* return silently -- maybe called on gdb-generated value */ |
c906108c | 3264 | |
c5aa993b | 3265 | /* Fetch the top offset of the object */ |
c906108c | 3266 | /* FIXME possible 32x64 problem with pointer size & arithmetic */ |
c5aa993b JM |
3267 | vp = value_at (builtin_type_int, |
3268 | coreptr + 4 * HP_ACC_TOP_OFFSET_OFFSET, | |
3269 | VALUE_BFD_SECTION (v)); | |
c906108c SS |
3270 | top_offset = value_as_long (vp); |
3271 | if (top) | |
3272 | *top = top_offset; | |
3273 | ||
3274 | /* Fetch the typeinfo pointer */ | |
3275 | /* FIXME possible 32x64 problem with pointer size & arithmetic */ | |
3276 | vp = value_at (builtin_type_int, coreptr + 4 * HP_ACC_TYPEINFO_OFFSET, VALUE_BFD_SECTION (v)); | |
3277 | /* Indirect through the typeinfo pointer and retrieve the pointer | |
3278 | * to the string name */ | |
c5aa993b | 3279 | coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp)); |
c906108c SS |
3280 | if (!coreptr) |
3281 | error ("Retrieved null typeinfo pointer in trying to determine run-time type"); | |
c5aa993b JM |
3282 | vp = value_at (builtin_type_int, coreptr + 4, VALUE_BFD_SECTION (v)); /* 4 -> offset of name field */ |
3283 | /* FIXME possible 32x64 problem */ | |
c906108c | 3284 | |
c5aa993b | 3285 | coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp)); |
c906108c SS |
3286 | |
3287 | read_memory_string (coreptr, rtti_type_name, 256); | |
3288 | ||
3289 | if (strlen (rtti_type_name) == 0) | |
3290 | error ("Retrieved null type name from typeinfo"); | |
c5aa993b | 3291 | |
c906108c SS |
3292 | /* search for type */ |
3293 | rtti_type = lookup_typename (rtti_type_name, (struct block *) 0, 1); | |
c5aa993b | 3294 | |
c906108c SS |
3295 | if (!rtti_type) |
3296 | error ("Could not find run-time type: invalid type name %s in typeinfo??", rtti_type_name); | |
3297 | CHECK_TYPEDEF (rtti_type); | |
3298 | ||
c5aa993b JM |
3299 | #if 0 /* debugging */ |
3300 | printf ("RTTI type name %s, tag %s, full? %d\n", TYPE_NAME (rtti_type), TYPE_TAG_NAME (rtti_type), full ? *full : -1); | |
c906108c SS |
3301 | #endif |
3302 | ||
3303 | /* Check whether we have the entire object */ | |
c5aa993b | 3304 | if (full /* Non-null pointer passed */ |
c906108c SS |
3305 | |
3306 | && | |
c5aa993b JM |
3307 | /* Either we checked on the whole object in hand and found the |
3308 | top offset to be zero */ | |
3309 | (((top_offset == 0) && | |
3310 | using_enclosing && | |
3311 | TYPE_LENGTH (known_type) == TYPE_LENGTH (rtti_type)) | |
3312 | || | |
3313 | /* Or we checked on the embedded object and top offset was the | |
3314 | same as the embedded offset */ | |
3315 | ((top_offset == VALUE_EMBEDDED_OFFSET (v)) && | |
3316 | !using_enclosing && | |
3317 | TYPE_LENGTH (VALUE_ENCLOSING_TYPE (v)) == TYPE_LENGTH (rtti_type)))) | |
3318 | ||
c906108c | 3319 | *full = 1; |
c5aa993b | 3320 | |
c906108c SS |
3321 | return rtti_type; |
3322 | } | |
3323 | ||
3324 | /* Given a pointer value V, find the real (RTTI) type | |
3325 | of the object it points to. | |
3326 | Other parameters FULL, TOP, USING_ENC as with value_rtti_type() | |
3327 | and refer to the values computed for the object pointed to. */ | |
3328 | ||
3329 | struct type * | |
3330 | value_rtti_target_type (v, full, top, using_enc) | |
c5aa993b JM |
3331 | value_ptr v; |
3332 | int *full; | |
3333 | int *top; | |
3334 | int *using_enc; | |
c906108c SS |
3335 | { |
3336 | value_ptr target; | |
3337 | ||
3338 | target = value_ind (v); | |
3339 | ||
3340 | return value_rtti_type (target, full, top, using_enc); | |
3341 | } | |
3342 | ||
3343 | /* Given a value pointed to by ARGP, check its real run-time type, and | |
3344 | if that is different from the enclosing type, create a new value | |
3345 | using the real run-time type as the enclosing type (and of the same | |
3346 | type as ARGP) and return it, with the embedded offset adjusted to | |
3347 | be the correct offset to the enclosed object | |
3348 | RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other | |
3349 | parameters, computed by value_rtti_type(). If these are available, | |
3350 | they can be supplied and a second call to value_rtti_type() is avoided. | |
3351 | (Pass RTYPE == NULL if they're not available */ | |
3352 | ||
3353 | value_ptr | |
3354 | value_full_object (argp, rtype, xfull, xtop, xusing_enc) | |
c5aa993b JM |
3355 | value_ptr argp; |
3356 | struct type *rtype; | |
3357 | int xfull; | |
3358 | int xtop; | |
3359 | int xusing_enc; | |
3360 | ||
c906108c | 3361 | { |
c5aa993b | 3362 | struct type *real_type; |
c906108c SS |
3363 | int full = 0; |
3364 | int top = -1; | |
3365 | int using_enc = 0; | |
3366 | value_ptr new_val; | |
3367 | ||
3368 | if (rtype) | |
3369 | { | |
3370 | real_type = rtype; | |
3371 | full = xfull; | |
3372 | top = xtop; | |
3373 | using_enc = xusing_enc; | |
3374 | } | |
3375 | else | |
3376 | real_type = value_rtti_type (argp, &full, &top, &using_enc); | |
3377 | ||
3378 | /* If no RTTI data, or if object is already complete, do nothing */ | |
3379 | if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp)) | |
3380 | return argp; | |
3381 | ||
3382 | /* If we have the full object, but for some reason the enclosing | |
c5aa993b | 3383 | type is wrong, set it *//* pai: FIXME -- sounds iffy */ |
c906108c SS |
3384 | if (full) |
3385 | { | |
3386 | VALUE_ENCLOSING_TYPE (argp) = real_type; | |
3387 | return argp; | |
3388 | } | |
3389 | ||
3390 | /* Check if object is in memory */ | |
3391 | if (VALUE_LVAL (argp) != lval_memory) | |
3392 | { | |
3393 | warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type)); | |
c5aa993b | 3394 | |
c906108c SS |
3395 | return argp; |
3396 | } | |
c5aa993b | 3397 | |
c906108c SS |
3398 | /* All other cases -- retrieve the complete object */ |
3399 | /* Go back by the computed top_offset from the beginning of the object, | |
3400 | adjusting for the embedded offset of argp if that's what value_rtti_type | |
3401 | used for its computation. */ | |
3402 | new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top + | |
c5aa993b JM |
3403 | (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)), |
3404 | VALUE_BFD_SECTION (argp)); | |
c906108c SS |
3405 | VALUE_TYPE (new_val) = VALUE_TYPE (argp); |
3406 | VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top; | |
3407 | return new_val; | |
3408 | } | |
3409 | ||
3410 | ||
3411 | ||
3412 | ||
3413 | /* C++: return the value of the class instance variable, if one exists. | |
3414 | Flag COMPLAIN signals an error if the request is made in an | |
3415 | inappropriate context. */ | |
3416 | ||
3417 | value_ptr | |
3418 | value_of_this (complain) | |
3419 | int complain; | |
3420 | { | |
3421 | struct symbol *func, *sym; | |
3422 | struct block *b; | |
3423 | int i; | |
3424 | static const char funny_this[] = "this"; | |
3425 | value_ptr this; | |
3426 | ||
3427 | if (selected_frame == 0) | |
3428 | { | |
3429 | if (complain) | |
c5aa993b JM |
3430 | error ("no frame selected"); |
3431 | else | |
3432 | return 0; | |
c906108c SS |
3433 | } |
3434 | ||
3435 | func = get_frame_function (selected_frame); | |
3436 | if (!func) | |
3437 | { | |
3438 | if (complain) | |
3439 | error ("no `this' in nameless context"); | |
c5aa993b JM |
3440 | else |
3441 | return 0; | |
c906108c SS |
3442 | } |
3443 | ||
3444 | b = SYMBOL_BLOCK_VALUE (func); | |
3445 | i = BLOCK_NSYMS (b); | |
3446 | if (i <= 0) | |
3447 | { | |
3448 | if (complain) | |
c5aa993b JM |
3449 | error ("no args, no `this'"); |
3450 | else | |
3451 | return 0; | |
c906108c SS |
3452 | } |
3453 | ||
3454 | /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER | |
3455 | symbol instead of the LOC_ARG one (if both exist). */ | |
3456 | sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE); | |
3457 | if (sym == NULL) | |
3458 | { | |
3459 | if (complain) | |
3460 | error ("current stack frame not in method"); | |
3461 | else | |
3462 | return NULL; | |
3463 | } | |
3464 | ||
3465 | this = read_var_value (sym, selected_frame); | |
3466 | if (this == 0 && complain) | |
3467 | error ("`this' argument at unknown address"); | |
3468 | return this; | |
3469 | } | |
3470 | ||
3471 | /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements | |
3472 | long, starting at LOWBOUND. The result has the same lower bound as | |
3473 | the original ARRAY. */ | |
3474 | ||
3475 | value_ptr | |
3476 | value_slice (array, lowbound, length) | |
3477 | value_ptr array; | |
3478 | int lowbound, length; | |
3479 | { | |
3480 | struct type *slice_range_type, *slice_type, *range_type; | |
3481 | LONGEST lowerbound, upperbound, offset; | |
3482 | value_ptr slice; | |
3483 | struct type *array_type; | |
3484 | array_type = check_typedef (VALUE_TYPE (array)); | |
3485 | COERCE_VARYING_ARRAY (array, array_type); | |
3486 | if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY | |
3487 | && TYPE_CODE (array_type) != TYPE_CODE_STRING | |
3488 | && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING) | |
3489 | error ("cannot take slice of non-array"); | |
3490 | range_type = TYPE_INDEX_TYPE (array_type); | |
3491 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
3492 | error ("slice from bad array or bitstring"); | |
3493 | if (lowbound < lowerbound || length < 0 | |
3494 | || lowbound + length - 1 > upperbound | |
c5aa993b | 3495 | /* Chill allows zero-length strings but not arrays. */ |
c906108c SS |
3496 | || (current_language->la_language == language_chill |
3497 | && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY)) | |
3498 | error ("slice out of range"); | |
3499 | /* FIXME-type-allocation: need a way to free this type when we are | |
3500 | done with it. */ | |
c5aa993b | 3501 | slice_range_type = create_range_type ((struct type *) NULL, |
c906108c SS |
3502 | TYPE_TARGET_TYPE (range_type), |
3503 | lowbound, lowbound + length - 1); | |
3504 | if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING) | |
3505 | { | |
3506 | int i; | |
c5aa993b | 3507 | slice_type = create_set_type ((struct type *) NULL, slice_range_type); |
c906108c SS |
3508 | TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING; |
3509 | slice = value_zero (slice_type, not_lval); | |
3510 | for (i = 0; i < length; i++) | |
3511 | { | |
3512 | int element = value_bit_index (array_type, | |
3513 | VALUE_CONTENTS (array), | |
3514 | lowbound + i); | |
3515 | if (element < 0) | |
3516 | error ("internal error accessing bitstring"); | |
3517 | else if (element > 0) | |
3518 | { | |
3519 | int j = i % TARGET_CHAR_BIT; | |
3520 | if (BITS_BIG_ENDIAN) | |
3521 | j = TARGET_CHAR_BIT - 1 - j; | |
3522 | VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j); | |
3523 | } | |
3524 | } | |
3525 | /* We should set the address, bitssize, and bitspos, so the clice | |
09b59ee3 DB |
3526 | can be used on the LHS, but that may require extensions to |
3527 | value_assign. For now, just leave as a non_lval. FIXME. */ | |
c906108c SS |
3528 | } |
3529 | else | |
3530 | { | |
3531 | struct type *element_type = TYPE_TARGET_TYPE (array_type); | |
3532 | offset | |
3533 | = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type)); | |
c5aa993b | 3534 | slice_type = create_array_type ((struct type *) NULL, element_type, |
c906108c SS |
3535 | slice_range_type); |
3536 | TYPE_CODE (slice_type) = TYPE_CODE (array_type); | |
3537 | slice = allocate_value (slice_type); | |
3538 | if (VALUE_LAZY (array)) | |
3539 | VALUE_LAZY (slice) = 1; | |
3540 | else | |
3541 | memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset, | |
3542 | TYPE_LENGTH (slice_type)); | |
3543 | if (VALUE_LVAL (array) == lval_internalvar) | |
3544 | VALUE_LVAL (slice) = lval_internalvar_component; | |
3545 | else | |
3546 | VALUE_LVAL (slice) = VALUE_LVAL (array); | |
3547 | VALUE_ADDRESS (slice) = VALUE_ADDRESS (array); | |
3548 | VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset; | |
3549 | } | |
3550 | return slice; | |
3551 | } | |
3552 | ||
3553 | /* Assuming chill_varying_type (VARRAY) is true, return an equivalent | |
3554 | value as a fixed-length array. */ | |
3555 | ||
3556 | value_ptr | |
3557 | varying_to_slice (varray) | |
3558 | value_ptr varray; | |
3559 | { | |
3560 | struct type *vtype = check_typedef (VALUE_TYPE (varray)); | |
3561 | LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0), | |
3562 | VALUE_CONTENTS (varray) | |
3563 | + TYPE_FIELD_BITPOS (vtype, 0) / 8); | |
3564 | return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length); | |
3565 | } | |
3566 | ||
09b59ee3 DB |
3567 | /* Create a value for a FORTRAN complex number. Currently most of |
3568 | the time values are coerced to COMPLEX*16 (i.e. a complex number | |
3569 | composed of 2 doubles. This really should be a smarter routine | |
3570 | that figures out precision inteligently as opposed to assuming | |
c5aa993b | 3571 | doubles. FIXME: fmb */ |
c906108c SS |
3572 | |
3573 | value_ptr | |
3574 | value_literal_complex (arg1, arg2, type) | |
3575 | value_ptr arg1; | |
3576 | value_ptr arg2; | |
3577 | struct type *type; | |
3578 | { | |
3579 | register value_ptr val; | |
3580 | struct type *real_type = TYPE_TARGET_TYPE (type); | |
3581 | ||
3582 | val = allocate_value (type); | |
3583 | arg1 = value_cast (real_type, arg1); | |
3584 | arg2 = value_cast (real_type, arg2); | |
3585 | ||
3586 | memcpy (VALUE_CONTENTS_RAW (val), | |
3587 | VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type)); | |
3588 | memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type), | |
3589 | VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type)); | |
3590 | return val; | |
3591 | } | |
3592 | ||
3593 | /* Cast a value into the appropriate complex data type. */ | |
3594 | ||
3595 | static value_ptr | |
3596 | cast_into_complex (type, val) | |
3597 | struct type *type; | |
3598 | register value_ptr val; | |
3599 | { | |
3600 | struct type *real_type = TYPE_TARGET_TYPE (type); | |
3601 | if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX) | |
3602 | { | |
3603 | struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val)); | |
3604 | value_ptr re_val = allocate_value (val_real_type); | |
3605 | value_ptr im_val = allocate_value (val_real_type); | |
3606 | ||
3607 | memcpy (VALUE_CONTENTS_RAW (re_val), | |
3608 | VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type)); | |
3609 | memcpy (VALUE_CONTENTS_RAW (im_val), | |
3610 | VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type), | |
c5aa993b | 3611 | TYPE_LENGTH (val_real_type)); |
c906108c SS |
3612 | |
3613 | return value_literal_complex (re_val, im_val, type); | |
3614 | } | |
3615 | else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT | |
3616 | || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT) | |
3617 | return value_literal_complex (val, value_zero (real_type, not_lval), type); | |
3618 | else | |
3619 | error ("cannot cast non-number to complex"); | |
3620 | } | |
3621 | ||
3622 | void | |
3623 | _initialize_valops () | |
3624 | { | |
3625 | #if 0 | |
3626 | add_show_from_set | |
c5aa993b | 3627 | (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon, |
c906108c SS |
3628 | "Set automatic abandonment of expressions upon failure.", |
3629 | &setlist), | |
3630 | &showlist); | |
3631 | #endif | |
3632 | ||
3633 | add_show_from_set | |
c5aa993b | 3634 | (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution, |
c906108c SS |
3635 | "Set overload resolution in evaluating C++ functions.", |
3636 | &setlist), | |
3637 | &showlist); | |
3638 | overload_resolution = 1; | |
3639 | ||
242bfc55 FN |
3640 | add_show_from_set ( |
3641 | add_set_cmd ("unwindonsignal", no_class, var_boolean, | |
3642 | (char *) &unwind_on_signal_p, | |
3643 | "Set unwinding of stack if a signal is received while in a call dummy.\n\ | |
3644 | The unwindonsignal lets the user determine what gdb should do if a signal\n\ | |
3645 | is received while in a function called from gdb (call dummy). If set, gdb\n\ | |
3646 | unwinds the stack and restore the context to what as it was before the call.\n\ | |
3647 | The default is to stop in the frame where the signal was received.", &setlist), | |
3648 | &showlist); | |
c906108c | 3649 | } |