]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Perform non-arithmetic operations on values, for GDB. |
990a07ab | 2 | |
9b254dd1 DJ |
3 | Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, |
4 | 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, | |
4c38e0a4 | 5 | 2008, 2009, 2010 Free Software Foundation, Inc. |
c906108c | 6 | |
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 11 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 12 | (at your option) any later version. |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b | 19 | You should have received a copy of the GNU General Public License |
a9762ec7 | 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
21 | |
22 | #include "defs.h" | |
23 | #include "symtab.h" | |
24 | #include "gdbtypes.h" | |
25 | #include "value.h" | |
26 | #include "frame.h" | |
27 | #include "inferior.h" | |
28 | #include "gdbcore.h" | |
29 | #include "target.h" | |
30 | #include "demangle.h" | |
31 | #include "language.h" | |
32 | #include "gdbcmd.h" | |
4e052eda | 33 | #include "regcache.h" |
015a42b4 | 34 | #include "cp-abi.h" |
fe898f56 | 35 | #include "block.h" |
04714b91 | 36 | #include "infcall.h" |
de4f826b | 37 | #include "dictionary.h" |
b6429628 | 38 | #include "cp-support.h" |
4ef30785 | 39 | #include "dfp.h" |
029a67e4 | 40 | #include "user-regs.h" |
c906108c SS |
41 | |
42 | #include <errno.h> | |
43 | #include "gdb_string.h" | |
4a1970e4 | 44 | #include "gdb_assert.h" |
79c2c32d | 45 | #include "cp-support.h" |
f4c5303c | 46 | #include "observer.h" |
3e3b026f UW |
47 | #include "objfiles.h" |
48 | #include "symtab.h" | |
c906108c | 49 | |
070ad9f0 | 50 | extern int overload_debug; |
c906108c SS |
51 | /* Local functions. */ |
52 | ||
ad2f7632 DJ |
53 | static int typecmp (int staticp, int varargs, int nargs, |
54 | struct field t1[], struct value *t2[]); | |
c906108c | 55 | |
ac3eeb49 MS |
56 | static struct value *search_struct_field (char *, struct value *, |
57 | int, struct type *, int); | |
c906108c | 58 | |
f23631e4 AC |
59 | static struct value *search_struct_method (char *, struct value **, |
60 | struct value **, | |
a14ed312 | 61 | int, int *, struct type *); |
c906108c | 62 | |
ac3eeb49 MS |
63 | static int find_oload_champ_namespace (struct type **, int, |
64 | const char *, const char *, | |
65 | struct symbol ***, | |
66 | struct badness_vector **); | |
8d577d32 DC |
67 | |
68 | static | |
ac3eeb49 MS |
69 | int find_oload_champ_namespace_loop (struct type **, int, |
70 | const char *, const char *, | |
71 | int, struct symbol ***, | |
72 | struct badness_vector **, int *); | |
73 | ||
74 | static int find_oload_champ (struct type **, int, int, int, | |
75 | struct fn_field *, struct symbol **, | |
76 | struct badness_vector **); | |
77 | ||
78 | static int oload_method_static (int, struct fn_field *, int); | |
8d577d32 DC |
79 | |
80 | enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE }; | |
81 | ||
82 | static enum | |
ac3eeb49 MS |
83 | oload_classification classify_oload_match (struct badness_vector *, |
84 | int, int); | |
8d577d32 | 85 | |
ac3eeb49 MS |
86 | static struct value *value_struct_elt_for_reference (struct type *, |
87 | int, struct type *, | |
88 | char *, | |
89 | struct type *, | |
90 | int, enum noside); | |
79c2c32d | 91 | |
ac3eeb49 MS |
92 | static struct value *value_namespace_elt (const struct type *, |
93 | char *, int , enum noside); | |
79c2c32d | 94 | |
ac3eeb49 MS |
95 | static struct value *value_maybe_namespace_elt (const struct type *, |
96 | char *, int, | |
97 | enum noside); | |
63d06c5c | 98 | |
a14ed312 | 99 | static CORE_ADDR allocate_space_in_inferior (int); |
c906108c | 100 | |
f23631e4 | 101 | static struct value *cast_into_complex (struct type *, struct value *); |
c906108c | 102 | |
ac3eeb49 MS |
103 | static struct fn_field *find_method_list (struct value **, char *, |
104 | int, struct type *, int *, | |
105 | struct type **, int *); | |
7a292a7a | 106 | |
a14ed312 | 107 | void _initialize_valops (void); |
c906108c | 108 | |
c906108c | 109 | #if 0 |
ac3eeb49 MS |
110 | /* Flag for whether we want to abandon failed expression evals by |
111 | default. */ | |
112 | ||
c906108c SS |
113 | static int auto_abandon = 0; |
114 | #endif | |
115 | ||
116 | int overload_resolution = 0; | |
920d2a44 AC |
117 | static void |
118 | show_overload_resolution (struct ui_file *file, int from_tty, | |
ac3eeb49 MS |
119 | struct cmd_list_element *c, |
120 | const char *value) | |
920d2a44 AC |
121 | { |
122 | fprintf_filtered (file, _("\ | |
123 | Overload resolution in evaluating C++ functions is %s.\n"), | |
124 | value); | |
125 | } | |
242bfc55 | 126 | |
3e3b026f UW |
127 | /* Find the address of function name NAME in the inferior. If OBJF_P |
128 | is non-NULL, *OBJF_P will be set to the OBJFILE where the function | |
129 | is defined. */ | |
c906108c | 130 | |
f23631e4 | 131 | struct value * |
3e3b026f | 132 | find_function_in_inferior (const char *name, struct objfile **objf_p) |
c906108c | 133 | { |
52f0bd74 | 134 | struct symbol *sym; |
2570f2b7 | 135 | sym = lookup_symbol (name, 0, VAR_DOMAIN, 0); |
c906108c SS |
136 | if (sym != NULL) |
137 | { | |
138 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
139 | { | |
8a3fe4f8 | 140 | error (_("\"%s\" exists in this program but is not a function."), |
c906108c SS |
141 | name); |
142 | } | |
3e3b026f UW |
143 | |
144 | if (objf_p) | |
145 | *objf_p = SYMBOL_SYMTAB (sym)->objfile; | |
146 | ||
c906108c SS |
147 | return value_of_variable (sym, NULL); |
148 | } | |
149 | else | |
150 | { | |
ac3eeb49 MS |
151 | struct minimal_symbol *msymbol = |
152 | lookup_minimal_symbol (name, NULL, NULL); | |
c906108c SS |
153 | if (msymbol != NULL) |
154 | { | |
3e3b026f UW |
155 | struct objfile *objfile = msymbol_objfile (msymbol); |
156 | struct gdbarch *gdbarch = get_objfile_arch (objfile); | |
157 | ||
c906108c | 158 | struct type *type; |
4478b372 | 159 | CORE_ADDR maddr; |
3e3b026f | 160 | type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char); |
c906108c SS |
161 | type = lookup_function_type (type); |
162 | type = lookup_pointer_type (type); | |
4478b372 | 163 | maddr = SYMBOL_VALUE_ADDRESS (msymbol); |
3e3b026f UW |
164 | |
165 | if (objf_p) | |
166 | *objf_p = objfile; | |
167 | ||
4478b372 | 168 | return value_from_pointer (type, maddr); |
c906108c SS |
169 | } |
170 | else | |
171 | { | |
c5aa993b | 172 | if (!target_has_execution) |
8a3fe4f8 | 173 | error (_("evaluation of this expression requires the target program to be active")); |
c5aa993b | 174 | else |
8a3fe4f8 | 175 | error (_("evaluation of this expression requires the program to have a function \"%s\"."), name); |
c906108c SS |
176 | } |
177 | } | |
178 | } | |
179 | ||
ac3eeb49 MS |
180 | /* Allocate NBYTES of space in the inferior using the inferior's |
181 | malloc and return a value that is a pointer to the allocated | |
182 | space. */ | |
c906108c | 183 | |
f23631e4 | 184 | struct value * |
fba45db2 | 185 | value_allocate_space_in_inferior (int len) |
c906108c | 186 | { |
3e3b026f UW |
187 | struct objfile *objf; |
188 | struct value *val = find_function_in_inferior ("malloc", &objf); | |
189 | struct gdbarch *gdbarch = get_objfile_arch (objf); | |
f23631e4 | 190 | struct value *blocklen; |
c906108c | 191 | |
3e3b026f | 192 | blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len); |
c906108c SS |
193 | val = call_function_by_hand (val, 1, &blocklen); |
194 | if (value_logical_not (val)) | |
195 | { | |
196 | if (!target_has_execution) | |
8a3fe4f8 | 197 | error (_("No memory available to program now: you need to start the target first")); |
c5aa993b | 198 | else |
8a3fe4f8 | 199 | error (_("No memory available to program: call to malloc failed")); |
c906108c SS |
200 | } |
201 | return val; | |
202 | } | |
203 | ||
204 | static CORE_ADDR | |
fba45db2 | 205 | allocate_space_in_inferior (int len) |
c906108c SS |
206 | { |
207 | return value_as_long (value_allocate_space_in_inferior (len)); | |
208 | } | |
209 | ||
6af87b03 AR |
210 | /* Cast struct value VAL to type TYPE and return as a value. |
211 | Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION | |
694182d2 DJ |
212 | for this to work. Typedef to one of the codes is permitted. |
213 | Returns NULL if the cast is neither an upcast nor a downcast. */ | |
6af87b03 AR |
214 | |
215 | static struct value * | |
216 | value_cast_structs (struct type *type, struct value *v2) | |
217 | { | |
218 | struct type *t1; | |
219 | struct type *t2; | |
220 | struct value *v; | |
221 | ||
222 | gdb_assert (type != NULL && v2 != NULL); | |
223 | ||
224 | t1 = check_typedef (type); | |
225 | t2 = check_typedef (value_type (v2)); | |
226 | ||
227 | /* Check preconditions. */ | |
228 | gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT | |
229 | || TYPE_CODE (t1) == TYPE_CODE_UNION) | |
230 | && !!"Precondition is that type is of STRUCT or UNION kind."); | |
231 | gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT | |
232 | || TYPE_CODE (t2) == TYPE_CODE_UNION) | |
233 | && !!"Precondition is that value is of STRUCT or UNION kind"); | |
234 | ||
191ca0a1 CM |
235 | if (TYPE_NAME (t1) != NULL |
236 | && TYPE_NAME (t2) != NULL | |
237 | && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2))) | |
238 | return NULL; | |
239 | ||
6af87b03 AR |
240 | /* Upcasting: look in the type of the source to see if it contains the |
241 | type of the target as a superclass. If so, we'll need to | |
242 | offset the pointer rather than just change its type. */ | |
243 | if (TYPE_NAME (t1) != NULL) | |
244 | { | |
245 | v = search_struct_field (type_name_no_tag (t1), | |
246 | v2, 0, t2, 1); | |
247 | if (v) | |
248 | return v; | |
249 | } | |
250 | ||
251 | /* Downcasting: look in the type of the target to see if it contains the | |
252 | type of the source as a superclass. If so, we'll need to | |
253 | offset the pointer rather than just change its type. | |
254 | FIXME: This fails silently with virtual inheritance. */ | |
255 | if (TYPE_NAME (t2) != NULL) | |
256 | { | |
257 | v = search_struct_field (type_name_no_tag (t2), | |
258 | value_zero (t1, not_lval), 0, t1, 1); | |
259 | if (v) | |
260 | { | |
261 | /* Downcasting is possible (t1 is superclass of v2). */ | |
42ae5230 TT |
262 | CORE_ADDR addr2 = value_address (v2); |
263 | addr2 -= value_address (v) + value_embedded_offset (v); | |
6af87b03 AR |
264 | return value_at (type, addr2); |
265 | } | |
266 | } | |
694182d2 DJ |
267 | |
268 | return NULL; | |
6af87b03 AR |
269 | } |
270 | ||
fb933624 DJ |
271 | /* Cast one pointer or reference type to another. Both TYPE and |
272 | the type of ARG2 should be pointer types, or else both should be | |
273 | reference types. Returns the new pointer or reference. */ | |
274 | ||
275 | struct value * | |
276 | value_cast_pointers (struct type *type, struct value *arg2) | |
277 | { | |
6af87b03 | 278 | struct type *type1 = check_typedef (type); |
fb933624 DJ |
279 | struct type *type2 = check_typedef (value_type (arg2)); |
280 | struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type)); | |
281 | struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2)); | |
282 | ||
283 | if (TYPE_CODE (t1) == TYPE_CODE_STRUCT | |
284 | && TYPE_CODE (t2) == TYPE_CODE_STRUCT | |
285 | && !value_logical_not (arg2)) | |
286 | { | |
6af87b03 | 287 | struct value *v2; |
fb933624 | 288 | |
6af87b03 AR |
289 | if (TYPE_CODE (type2) == TYPE_CODE_REF) |
290 | v2 = coerce_ref (arg2); | |
291 | else | |
292 | v2 = value_ind (arg2); | |
680b56ce | 293 | gdb_assert (TYPE_CODE (check_typedef (value_type (v2))) == TYPE_CODE_STRUCT |
6af87b03 AR |
294 | && !!"Why did coercion fail?"); |
295 | v2 = value_cast_structs (t1, v2); | |
296 | /* At this point we have what we can have, un-dereference if needed. */ | |
297 | if (v2) | |
fb933624 | 298 | { |
6af87b03 AR |
299 | struct value *v = value_addr (v2); |
300 | deprecated_set_value_type (v, type); | |
301 | return v; | |
fb933624 | 302 | } |
6af87b03 | 303 | } |
fb933624 DJ |
304 | |
305 | /* No superclass found, just change the pointer type. */ | |
0d5de010 | 306 | arg2 = value_copy (arg2); |
fb933624 DJ |
307 | deprecated_set_value_type (arg2, type); |
308 | arg2 = value_change_enclosing_type (arg2, type); | |
309 | set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */ | |
310 | return arg2; | |
311 | } | |
312 | ||
c906108c SS |
313 | /* Cast value ARG2 to type TYPE and return as a value. |
314 | More general than a C cast: accepts any two types of the same length, | |
315 | and if ARG2 is an lvalue it can be cast into anything at all. */ | |
316 | /* In C++, casts may change pointer or object representations. */ | |
317 | ||
f23631e4 AC |
318 | struct value * |
319 | value_cast (struct type *type, struct value *arg2) | |
c906108c | 320 | { |
52f0bd74 AC |
321 | enum type_code code1; |
322 | enum type_code code2; | |
323 | int scalar; | |
c906108c SS |
324 | struct type *type2; |
325 | ||
326 | int convert_to_boolean = 0; | |
c5aa993b | 327 | |
df407dfe | 328 | if (value_type (arg2) == type) |
c906108c SS |
329 | return arg2; |
330 | ||
6af87b03 AR |
331 | code1 = TYPE_CODE (check_typedef (type)); |
332 | ||
333 | /* Check if we are casting struct reference to struct reference. */ | |
334 | if (code1 == TYPE_CODE_REF) | |
335 | { | |
336 | /* We dereference type; then we recurse and finally | |
337 | we generate value of the given reference. Nothing wrong with | |
338 | that. */ | |
339 | struct type *t1 = check_typedef (type); | |
340 | struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1)); | |
341 | struct value *val = value_cast (dereftype, arg2); | |
342 | return value_ref (val); | |
343 | } | |
344 | ||
345 | code2 = TYPE_CODE (check_typedef (value_type (arg2))); | |
346 | ||
347 | if (code2 == TYPE_CODE_REF) | |
348 | /* We deref the value and then do the cast. */ | |
349 | return value_cast (type, coerce_ref (arg2)); | |
350 | ||
c906108c SS |
351 | CHECK_TYPEDEF (type); |
352 | code1 = TYPE_CODE (type); | |
994b9211 | 353 | arg2 = coerce_ref (arg2); |
df407dfe | 354 | type2 = check_typedef (value_type (arg2)); |
c906108c | 355 | |
fb933624 DJ |
356 | /* You can't cast to a reference type. See value_cast_pointers |
357 | instead. */ | |
358 | gdb_assert (code1 != TYPE_CODE_REF); | |
359 | ||
ac3eeb49 MS |
360 | /* A cast to an undetermined-length array_type, such as |
361 | (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT, | |
362 | where N is sizeof(OBJECT)/sizeof(TYPE). */ | |
c906108c SS |
363 | if (code1 == TYPE_CODE_ARRAY) |
364 | { | |
365 | struct type *element_type = TYPE_TARGET_TYPE (type); | |
366 | unsigned element_length = TYPE_LENGTH (check_typedef (element_type)); | |
d78df370 | 367 | if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type)) |
c906108c SS |
368 | { |
369 | struct type *range_type = TYPE_INDEX_TYPE (type); | |
370 | int val_length = TYPE_LENGTH (type2); | |
371 | LONGEST low_bound, high_bound, new_length; | |
372 | if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0) | |
373 | low_bound = 0, high_bound = 0; | |
374 | new_length = val_length / element_length; | |
375 | if (val_length % element_length != 0) | |
8a3fe4f8 | 376 | warning (_("array element type size does not divide object size in cast")); |
ac3eeb49 MS |
377 | /* FIXME-type-allocation: need a way to free this type when |
378 | we are done with it. */ | |
c906108c SS |
379 | range_type = create_range_type ((struct type *) NULL, |
380 | TYPE_TARGET_TYPE (range_type), | |
381 | low_bound, | |
382 | new_length + low_bound - 1); | |
ac3eeb49 MS |
383 | deprecated_set_value_type (arg2, |
384 | create_array_type ((struct type *) NULL, | |
385 | element_type, | |
386 | range_type)); | |
c906108c SS |
387 | return arg2; |
388 | } | |
389 | } | |
390 | ||
391 | if (current_language->c_style_arrays | |
392 | && TYPE_CODE (type2) == TYPE_CODE_ARRAY) | |
393 | arg2 = value_coerce_array (arg2); | |
394 | ||
395 | if (TYPE_CODE (type2) == TYPE_CODE_FUNC) | |
396 | arg2 = value_coerce_function (arg2); | |
397 | ||
df407dfe | 398 | type2 = check_typedef (value_type (arg2)); |
c906108c SS |
399 | code2 = TYPE_CODE (type2); |
400 | ||
401 | if (code1 == TYPE_CODE_COMPLEX) | |
402 | return cast_into_complex (type, arg2); | |
403 | if (code1 == TYPE_CODE_BOOL) | |
404 | { | |
405 | code1 = TYPE_CODE_INT; | |
406 | convert_to_boolean = 1; | |
407 | } | |
408 | if (code1 == TYPE_CODE_CHAR) | |
409 | code1 = TYPE_CODE_INT; | |
410 | if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR) | |
411 | code2 = TYPE_CODE_INT; | |
412 | ||
413 | scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT | |
4ef30785 TJB |
414 | || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM |
415 | || code2 == TYPE_CODE_RANGE); | |
c906108c | 416 | |
6af87b03 AR |
417 | if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION) |
418 | && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION) | |
c906108c | 419 | && TYPE_NAME (type) != 0) |
694182d2 DJ |
420 | { |
421 | struct value *v = value_cast_structs (type, arg2); | |
422 | if (v) | |
423 | return v; | |
424 | } | |
425 | ||
c906108c SS |
426 | if (code1 == TYPE_CODE_FLT && scalar) |
427 | return value_from_double (type, value_as_double (arg2)); | |
4ef30785 TJB |
428 | else if (code1 == TYPE_CODE_DECFLOAT && scalar) |
429 | { | |
e17a4113 | 430 | enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); |
4ef30785 TJB |
431 | int dec_len = TYPE_LENGTH (type); |
432 | gdb_byte dec[16]; | |
433 | ||
434 | if (code2 == TYPE_CODE_FLT) | |
e17a4113 | 435 | decimal_from_floating (arg2, dec, dec_len, byte_order); |
4ef30785 TJB |
436 | else if (code2 == TYPE_CODE_DECFLOAT) |
437 | decimal_convert (value_contents (arg2), TYPE_LENGTH (type2), | |
e17a4113 | 438 | byte_order, dec, dec_len, byte_order); |
4ef30785 TJB |
439 | else |
440 | /* The only option left is an integral type. */ | |
e17a4113 | 441 | decimal_from_integral (arg2, dec, dec_len, byte_order); |
4ef30785 TJB |
442 | |
443 | return value_from_decfloat (type, dec); | |
444 | } | |
c906108c SS |
445 | else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM |
446 | || code1 == TYPE_CODE_RANGE) | |
0d5de010 DJ |
447 | && (scalar || code2 == TYPE_CODE_PTR |
448 | || code2 == TYPE_CODE_MEMBERPTR)) | |
c906108c SS |
449 | { |
450 | LONGEST longest; | |
c5aa993b | 451 | |
2bf1f4a1 | 452 | /* When we cast pointers to integers, we mustn't use |
76e71323 | 453 | gdbarch_pointer_to_address to find the address the pointer |
2bf1f4a1 JB |
454 | represents, as value_as_long would. GDB should evaluate |
455 | expressions just as the compiler would --- and the compiler | |
456 | sees a cast as a simple reinterpretation of the pointer's | |
457 | bits. */ | |
458 | if (code2 == TYPE_CODE_PTR) | |
e17a4113 UW |
459 | longest = extract_unsigned_integer |
460 | (value_contents (arg2), TYPE_LENGTH (type2), | |
461 | gdbarch_byte_order (get_type_arch (type2))); | |
2bf1f4a1 JB |
462 | else |
463 | longest = value_as_long (arg2); | |
802db21b | 464 | return value_from_longest (type, convert_to_boolean ? |
716c501e | 465 | (LONGEST) (longest ? 1 : 0) : longest); |
c906108c | 466 | } |
ac3eeb49 MS |
467 | else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT |
468 | || code2 == TYPE_CODE_ENUM | |
469 | || code2 == TYPE_CODE_RANGE)) | |
634acd5f | 470 | { |
4603e466 DT |
471 | /* TYPE_LENGTH (type) is the length of a pointer, but we really |
472 | want the length of an address! -- we are really dealing with | |
473 | addresses (i.e., gdb representations) not pointers (i.e., | |
474 | target representations) here. | |
475 | ||
476 | This allows things like "print *(int *)0x01000234" to work | |
477 | without printing a misleading message -- which would | |
478 | otherwise occur when dealing with a target having two byte | |
479 | pointers and four byte addresses. */ | |
480 | ||
50810684 | 481 | int addr_bit = gdbarch_addr_bit (get_type_arch (type2)); |
4603e466 | 482 | |
634acd5f | 483 | LONGEST longest = value_as_long (arg2); |
4603e466 | 484 | if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT) |
634acd5f | 485 | { |
4603e466 DT |
486 | if (longest >= ((LONGEST) 1 << addr_bit) |
487 | || longest <= -((LONGEST) 1 << addr_bit)) | |
8a3fe4f8 | 488 | warning (_("value truncated")); |
634acd5f AC |
489 | } |
490 | return value_from_longest (type, longest); | |
491 | } | |
0d5de010 DJ |
492 | else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT |
493 | && value_as_long (arg2) == 0) | |
494 | { | |
495 | struct value *result = allocate_value (type); | |
ad4820ab | 496 | cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0); |
0d5de010 DJ |
497 | return result; |
498 | } | |
499 | else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT | |
500 | && value_as_long (arg2) == 0) | |
501 | { | |
502 | /* The Itanium C++ ABI represents NULL pointers to members as | |
503 | minus one, instead of biasing the normal case. */ | |
504 | return value_from_longest (type, -1); | |
505 | } | |
c906108c SS |
506 | else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2)) |
507 | { | |
508 | if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR) | |
fb933624 DJ |
509 | return value_cast_pointers (type, arg2); |
510 | ||
0d5de010 | 511 | arg2 = value_copy (arg2); |
04624583 | 512 | deprecated_set_value_type (arg2, type); |
2b127877 | 513 | arg2 = value_change_enclosing_type (arg2, type); |
b44d461b | 514 | set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */ |
c906108c SS |
515 | return arg2; |
516 | } | |
c906108c | 517 | else if (VALUE_LVAL (arg2) == lval_memory) |
42ae5230 | 518 | return value_at_lazy (type, value_address (arg2)); |
c906108c SS |
519 | else if (code1 == TYPE_CODE_VOID) |
520 | { | |
48319d1f | 521 | return value_zero (type, not_lval); |
c906108c SS |
522 | } |
523 | else | |
524 | { | |
8a3fe4f8 | 525 | error (_("Invalid cast.")); |
c906108c SS |
526 | return 0; |
527 | } | |
528 | } | |
529 | ||
4e8f195d TT |
530 | /* The C++ reinterpret_cast operator. */ |
531 | ||
532 | struct value * | |
533 | value_reinterpret_cast (struct type *type, struct value *arg) | |
534 | { | |
535 | struct value *result; | |
536 | struct type *real_type = check_typedef (type); | |
537 | struct type *arg_type, *dest_type; | |
538 | int is_ref = 0; | |
539 | enum type_code dest_code, arg_code; | |
540 | ||
541 | /* Do reference, function, and array conversion. */ | |
542 | arg = coerce_array (arg); | |
543 | ||
544 | /* Attempt to preserve the type the user asked for. */ | |
545 | dest_type = type; | |
546 | ||
547 | /* If we are casting to a reference type, transform | |
548 | reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */ | |
549 | if (TYPE_CODE (real_type) == TYPE_CODE_REF) | |
550 | { | |
551 | is_ref = 1; | |
552 | arg = value_addr (arg); | |
553 | dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type)); | |
554 | real_type = lookup_pointer_type (real_type); | |
555 | } | |
556 | ||
557 | arg_type = value_type (arg); | |
558 | ||
559 | dest_code = TYPE_CODE (real_type); | |
560 | arg_code = TYPE_CODE (arg_type); | |
561 | ||
562 | /* We can convert pointer types, or any pointer type to int, or int | |
563 | type to pointer. */ | |
564 | if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT) | |
565 | || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR) | |
566 | || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT) | |
567 | || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR) | |
568 | || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT) | |
569 | || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR) | |
570 | || (dest_code == arg_code | |
571 | && (dest_code == TYPE_CODE_PTR | |
572 | || dest_code == TYPE_CODE_METHODPTR | |
573 | || dest_code == TYPE_CODE_MEMBERPTR))) | |
574 | result = value_cast (dest_type, arg); | |
575 | else | |
576 | error (_("Invalid reinterpret_cast")); | |
577 | ||
578 | if (is_ref) | |
579 | result = value_cast (type, value_ref (value_ind (result))); | |
580 | ||
581 | return result; | |
582 | } | |
583 | ||
584 | /* A helper for value_dynamic_cast. This implements the first of two | |
585 | runtime checks: we iterate over all the base classes of the value's | |
586 | class which are equal to the desired class; if only one of these | |
587 | holds the value, then it is the answer. */ | |
588 | ||
589 | static int | |
590 | dynamic_cast_check_1 (struct type *desired_type, | |
591 | const bfd_byte *contents, | |
592 | CORE_ADDR address, | |
593 | struct type *search_type, | |
594 | CORE_ADDR arg_addr, | |
595 | struct type *arg_type, | |
596 | struct value **result) | |
597 | { | |
598 | int i, result_count = 0; | |
599 | ||
600 | for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i) | |
601 | { | |
602 | int offset = baseclass_offset (search_type, i, contents, address); | |
603 | if (offset == -1) | |
604 | error (_("virtual baseclass botch")); | |
605 | if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i))) | |
606 | { | |
607 | if (address + offset >= arg_addr | |
608 | && address + offset < arg_addr + TYPE_LENGTH (arg_type)) | |
609 | { | |
610 | ++result_count; | |
611 | if (!*result) | |
612 | *result = value_at_lazy (TYPE_BASECLASS (search_type, i), | |
613 | address + offset); | |
614 | } | |
615 | } | |
616 | else | |
617 | result_count += dynamic_cast_check_1 (desired_type, | |
618 | contents + offset, | |
619 | address + offset, | |
620 | TYPE_BASECLASS (search_type, i), | |
621 | arg_addr, | |
622 | arg_type, | |
623 | result); | |
624 | } | |
625 | ||
626 | return result_count; | |
627 | } | |
628 | ||
629 | /* A helper for value_dynamic_cast. This implements the second of two | |
630 | runtime checks: we look for a unique public sibling class of the | |
631 | argument's declared class. */ | |
632 | ||
633 | static int | |
634 | dynamic_cast_check_2 (struct type *desired_type, | |
635 | const bfd_byte *contents, | |
636 | CORE_ADDR address, | |
637 | struct type *search_type, | |
638 | struct value **result) | |
639 | { | |
640 | int i, result_count = 0; | |
641 | ||
642 | for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i) | |
643 | { | |
644 | int offset; | |
645 | ||
646 | if (! BASETYPE_VIA_PUBLIC (search_type, i)) | |
647 | continue; | |
648 | ||
649 | offset = baseclass_offset (search_type, i, contents, address); | |
650 | if (offset == -1) | |
651 | error (_("virtual baseclass botch")); | |
652 | if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i))) | |
653 | { | |
654 | ++result_count; | |
655 | if (*result == NULL) | |
656 | *result = value_at_lazy (TYPE_BASECLASS (search_type, i), | |
657 | address + offset); | |
658 | } | |
659 | else | |
660 | result_count += dynamic_cast_check_2 (desired_type, | |
661 | contents + offset, | |
662 | address + offset, | |
663 | TYPE_BASECLASS (search_type, i), | |
664 | result); | |
665 | } | |
666 | ||
667 | return result_count; | |
668 | } | |
669 | ||
670 | /* The C++ dynamic_cast operator. */ | |
671 | ||
672 | struct value * | |
673 | value_dynamic_cast (struct type *type, struct value *arg) | |
674 | { | |
675 | int unambiguous = 0, full, top, using_enc; | |
676 | struct type *resolved_type = check_typedef (type); | |
677 | struct type *arg_type = check_typedef (value_type (arg)); | |
678 | struct type *class_type, *rtti_type; | |
679 | struct value *result, *tem, *original_arg = arg; | |
680 | CORE_ADDR addr; | |
681 | int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF; | |
682 | ||
683 | if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR | |
684 | && TYPE_CODE (resolved_type) != TYPE_CODE_REF) | |
685 | error (_("Argument to dynamic_cast must be a pointer or reference type")); | |
686 | if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID | |
687 | && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS) | |
688 | error (_("Argument to dynamic_cast must be pointer to class or `void *'")); | |
689 | ||
690 | class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type)); | |
691 | if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR) | |
692 | { | |
693 | if (TYPE_CODE (arg_type) != TYPE_CODE_PTR | |
694 | && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT | |
695 | && value_as_long (arg) == 0)) | |
696 | error (_("Argument to dynamic_cast does not have pointer type")); | |
697 | if (TYPE_CODE (arg_type) == TYPE_CODE_PTR) | |
698 | { | |
699 | arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type)); | |
700 | if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS) | |
701 | error (_("Argument to dynamic_cast does not have pointer to class type")); | |
702 | } | |
703 | ||
704 | /* Handle NULL pointers. */ | |
705 | if (value_as_long (arg) == 0) | |
706 | return value_zero (type, not_lval); | |
707 | ||
708 | arg = value_ind (arg); | |
709 | } | |
710 | else | |
711 | { | |
712 | if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS) | |
713 | error (_("Argument to dynamic_cast does not have class type")); | |
714 | } | |
715 | ||
716 | /* If the classes are the same, just return the argument. */ | |
717 | if (class_types_same_p (class_type, arg_type)) | |
718 | return value_cast (type, arg); | |
719 | ||
720 | /* If the target type is a unique base class of the argument's | |
721 | declared type, just cast it. */ | |
722 | if (is_ancestor (class_type, arg_type)) | |
723 | { | |
724 | if (is_unique_ancestor (class_type, arg)) | |
725 | return value_cast (type, original_arg); | |
726 | error (_("Ambiguous dynamic_cast")); | |
727 | } | |
728 | ||
729 | rtti_type = value_rtti_type (arg, &full, &top, &using_enc); | |
730 | if (! rtti_type) | |
731 | error (_("Couldn't determine value's most derived type for dynamic_cast")); | |
732 | ||
733 | /* Compute the most derived object's address. */ | |
734 | addr = value_address (arg); | |
735 | if (full) | |
736 | { | |
737 | /* Done. */ | |
738 | } | |
739 | else if (using_enc) | |
740 | addr += top; | |
741 | else | |
742 | addr += top + value_embedded_offset (arg); | |
743 | ||
744 | /* dynamic_cast<void *> means to return a pointer to the | |
745 | most-derived object. */ | |
746 | if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR | |
747 | && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID) | |
748 | return value_at_lazy (type, addr); | |
749 | ||
750 | tem = value_at (type, addr); | |
751 | ||
752 | /* The first dynamic check specified in 5.2.7. */ | |
753 | if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type))) | |
754 | { | |
755 | if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type))) | |
756 | return tem; | |
757 | result = NULL; | |
758 | if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type), | |
759 | value_contents (tem), value_address (tem), | |
760 | rtti_type, addr, | |
761 | arg_type, | |
762 | &result) == 1) | |
763 | return value_cast (type, | |
764 | is_ref ? value_ref (result) : value_addr (result)); | |
765 | } | |
766 | ||
767 | /* The second dynamic check specified in 5.2.7. */ | |
768 | result = NULL; | |
769 | if (is_public_ancestor (arg_type, rtti_type) | |
770 | && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type), | |
771 | value_contents (tem), value_address (tem), | |
772 | rtti_type, &result) == 1) | |
773 | return value_cast (type, | |
774 | is_ref ? value_ref (result) : value_addr (result)); | |
775 | ||
776 | if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR) | |
777 | return value_zero (type, not_lval); | |
778 | ||
779 | error (_("dynamic_cast failed")); | |
780 | } | |
781 | ||
c906108c SS |
782 | /* Create a value of type TYPE that is zero, and return it. */ |
783 | ||
f23631e4 | 784 | struct value * |
fba45db2 | 785 | value_zero (struct type *type, enum lval_type lv) |
c906108c | 786 | { |
f23631e4 | 787 | struct value *val = allocate_value (type); |
c906108c SS |
788 | VALUE_LVAL (val) = lv; |
789 | ||
790 | return val; | |
791 | } | |
792 | ||
301f0ecf DE |
793 | /* Create a value of numeric type TYPE that is one, and return it. */ |
794 | ||
795 | struct value * | |
796 | value_one (struct type *type, enum lval_type lv) | |
797 | { | |
798 | struct type *type1 = check_typedef (type); | |
4e608b4f | 799 | struct value *val; |
301f0ecf DE |
800 | |
801 | if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT) | |
802 | { | |
e17a4113 | 803 | enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); |
301f0ecf | 804 | gdb_byte v[16]; |
e17a4113 | 805 | decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1"); |
301f0ecf DE |
806 | val = value_from_decfloat (type, v); |
807 | } | |
808 | else if (TYPE_CODE (type1) == TYPE_CODE_FLT) | |
809 | { | |
810 | val = value_from_double (type, (DOUBLEST) 1); | |
811 | } | |
812 | else if (is_integral_type (type1)) | |
813 | { | |
814 | val = value_from_longest (type, (LONGEST) 1); | |
815 | } | |
816 | else | |
817 | { | |
818 | error (_("Not a numeric type.")); | |
819 | } | |
820 | ||
821 | VALUE_LVAL (val) = lv; | |
822 | return val; | |
823 | } | |
824 | ||
4e5d721f DE |
825 | /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. */ |
826 | ||
827 | static struct value * | |
828 | get_value_at (struct type *type, CORE_ADDR addr, int lazy) | |
829 | { | |
830 | struct value *val; | |
831 | ||
832 | if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID) | |
833 | error (_("Attempt to dereference a generic pointer.")); | |
834 | ||
835 | if (lazy) | |
836 | { | |
837 | val = allocate_value_lazy (type); | |
838 | } | |
839 | else | |
840 | { | |
841 | val = allocate_value (type); | |
842 | read_memory (addr, value_contents_all_raw (val), TYPE_LENGTH (type)); | |
843 | } | |
844 | ||
845 | VALUE_LVAL (val) = lval_memory; | |
846 | set_value_address (val, addr); | |
847 | ||
848 | return val; | |
849 | } | |
850 | ||
070ad9f0 | 851 | /* Return a value with type TYPE located at ADDR. |
c906108c SS |
852 | |
853 | Call value_at only if the data needs to be fetched immediately; | |
854 | if we can be 'lazy' and defer the fetch, perhaps indefinately, call | |
855 | value_at_lazy instead. value_at_lazy simply records the address of | |
070ad9f0 | 856 | the data and sets the lazy-evaluation-required flag. The lazy flag |
0fd88904 | 857 | is tested in the value_contents macro, which is used if and when |
070ad9f0 | 858 | the contents are actually required. |
c906108c SS |
859 | |
860 | Note: value_at does *NOT* handle embedded offsets; perform such | |
ac3eeb49 | 861 | adjustments before or after calling it. */ |
c906108c | 862 | |
f23631e4 | 863 | struct value * |
00a4c844 | 864 | value_at (struct type *type, CORE_ADDR addr) |
c906108c | 865 | { |
4e5d721f | 866 | return get_value_at (type, addr, 0); |
c906108c SS |
867 | } |
868 | ||
869 | /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */ | |
870 | ||
f23631e4 | 871 | struct value * |
00a4c844 | 872 | value_at_lazy (struct type *type, CORE_ADDR addr) |
c906108c | 873 | { |
4e5d721f | 874 | return get_value_at (type, addr, 1); |
c906108c SS |
875 | } |
876 | ||
0fd88904 | 877 | /* Called only from the value_contents and value_contents_all() |
46615f07 | 878 | macros, if the current data for a variable needs to be loaded into |
0fd88904 | 879 | value_contents(VAL). Fetches the data from the user's process, and |
46615f07 AC |
880 | clears the lazy flag to indicate that the data in the buffer is |
881 | valid. | |
c906108c | 882 | |
ac3eeb49 MS |
883 | If the value is zero-length, we avoid calling read_memory, which |
884 | would abort. We mark the value as fetched anyway -- all 0 bytes of | |
885 | it. | |
c906108c | 886 | |
ac3eeb49 MS |
887 | This function returns a value because it is used in the |
888 | value_contents macro as part of an expression, where a void would | |
889 | not work. The value is ignored. */ | |
c906108c SS |
890 | |
891 | int | |
f23631e4 | 892 | value_fetch_lazy (struct value *val) |
c906108c | 893 | { |
3e3d7139 JG |
894 | gdb_assert (value_lazy (val)); |
895 | allocate_value_contents (val); | |
4ea48cc1 DJ |
896 | if (value_bitsize (val)) |
897 | { | |
898 | /* To read a lazy bitfield, read the entire enclosing value. This | |
899 | prevents reading the same block of (possibly volatile) memory once | |
900 | per bitfield. It would be even better to read only the containing | |
901 | word, but we have no way to record that just specific bits of a | |
902 | value have been fetched. */ | |
903 | struct type *type = check_typedef (value_type (val)); | |
904 | enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); | |
905 | struct value *parent = value_parent (val); | |
906 | LONGEST offset = value_offset (val); | |
907 | LONGEST num = unpack_bits_as_long (value_type (val), | |
908 | value_contents (parent) + offset, | |
909 | value_bitpos (val), | |
910 | value_bitsize (val)); | |
911 | int length = TYPE_LENGTH (type); | |
912 | store_signed_integer (value_contents_raw (val), length, byte_order, num); | |
913 | } | |
914 | else if (VALUE_LVAL (val) == lval_memory) | |
9214ee5f | 915 | { |
42ae5230 | 916 | CORE_ADDR addr = value_address (val); |
694182d2 | 917 | int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val))); |
9214ee5f | 918 | |
9214ee5f | 919 | if (length) |
4e5d721f DE |
920 | { |
921 | if (value_stack (val)) | |
922 | read_stack (addr, value_contents_all_raw (val), length); | |
923 | else | |
924 | read_memory (addr, value_contents_all_raw (val), length); | |
925 | } | |
9214ee5f DJ |
926 | } |
927 | else if (VALUE_LVAL (val) == lval_register) | |
928 | { | |
669fac23 DJ |
929 | struct frame_info *frame; |
930 | int regnum; | |
9214ee5f | 931 | struct type *type = check_typedef (value_type (val)); |
669fac23 | 932 | struct value *new_val = val, *mark = value_mark (); |
c906108c | 933 | |
669fac23 DJ |
934 | /* Offsets are not supported here; lazy register values must |
935 | refer to the entire register. */ | |
936 | gdb_assert (value_offset (val) == 0); | |
9214ee5f | 937 | |
669fac23 DJ |
938 | while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val)) |
939 | { | |
940 | frame = frame_find_by_id (VALUE_FRAME_ID (new_val)); | |
941 | regnum = VALUE_REGNUM (new_val); | |
942 | ||
943 | gdb_assert (frame != NULL); | |
9214ee5f | 944 | |
669fac23 DJ |
945 | /* Convertible register routines are used for multi-register |
946 | values and for interpretation in different types | |
947 | (e.g. float or int from a double register). Lazy | |
948 | register values should have the register's natural type, | |
949 | so they do not apply. */ | |
950 | gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame), | |
951 | regnum, type)); | |
952 | ||
953 | new_val = get_frame_register_value (frame, regnum); | |
954 | } | |
955 | ||
956 | /* If it's still lazy (for instance, a saved register on the | |
957 | stack), fetch it. */ | |
958 | if (value_lazy (new_val)) | |
959 | value_fetch_lazy (new_val); | |
960 | ||
961 | /* If the register was not saved, mark it unavailable. */ | |
962 | if (value_optimized_out (new_val)) | |
9214ee5f | 963 | set_value_optimized_out (val, 1); |
669fac23 DJ |
964 | else |
965 | memcpy (value_contents_raw (val), value_contents (new_val), | |
966 | TYPE_LENGTH (type)); | |
967 | ||
968 | if (frame_debug) | |
969 | { | |
029a67e4 | 970 | struct gdbarch *gdbarch; |
669fac23 DJ |
971 | frame = frame_find_by_id (VALUE_FRAME_ID (val)); |
972 | regnum = VALUE_REGNUM (val); | |
029a67e4 | 973 | gdbarch = get_frame_arch (frame); |
669fac23 DJ |
974 | |
975 | fprintf_unfiltered (gdb_stdlog, "\ | |
976 | { value_fetch_lazy (frame=%d,regnum=%d(%s),...) ", | |
977 | frame_relative_level (frame), regnum, | |
029a67e4 | 978 | user_reg_map_regnum_to_name (gdbarch, regnum)); |
669fac23 DJ |
979 | |
980 | fprintf_unfiltered (gdb_stdlog, "->"); | |
981 | if (value_optimized_out (new_val)) | |
982 | fprintf_unfiltered (gdb_stdlog, " optimized out"); | |
983 | else | |
984 | { | |
985 | int i; | |
986 | const gdb_byte *buf = value_contents (new_val); | |
987 | ||
988 | if (VALUE_LVAL (new_val) == lval_register) | |
989 | fprintf_unfiltered (gdb_stdlog, " register=%d", | |
990 | VALUE_REGNUM (new_val)); | |
991 | else if (VALUE_LVAL (new_val) == lval_memory) | |
5af949e3 UW |
992 | fprintf_unfiltered (gdb_stdlog, " address=%s", |
993 | paddress (gdbarch, | |
994 | value_address (new_val))); | |
669fac23 DJ |
995 | else |
996 | fprintf_unfiltered (gdb_stdlog, " computed"); | |
997 | ||
998 | fprintf_unfiltered (gdb_stdlog, " bytes="); | |
999 | fprintf_unfiltered (gdb_stdlog, "["); | |
029a67e4 | 1000 | for (i = 0; i < register_size (gdbarch, regnum); i++) |
669fac23 DJ |
1001 | fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]); |
1002 | fprintf_unfiltered (gdb_stdlog, "]"); | |
1003 | } | |
1004 | ||
1005 | fprintf_unfiltered (gdb_stdlog, " }\n"); | |
1006 | } | |
1007 | ||
1008 | /* Dispose of the intermediate values. This prevents | |
1009 | watchpoints from trying to watch the saved frame pointer. */ | |
1010 | value_free_to_mark (mark); | |
9214ee5f | 1011 | } |
5f5233d4 PA |
1012 | else if (VALUE_LVAL (val) == lval_computed) |
1013 | value_computed_funcs (val)->read (val); | |
9214ee5f DJ |
1014 | else |
1015 | internal_error (__FILE__, __LINE__, "Unexpected lazy value type."); | |
802db21b | 1016 | |
dfa52d88 | 1017 | set_value_lazy (val, 0); |
c906108c SS |
1018 | return 0; |
1019 | } | |
1020 | ||
1021 | ||
1022 | /* Store the contents of FROMVAL into the location of TOVAL. | |
1023 | Return a new value with the location of TOVAL and contents of FROMVAL. */ | |
1024 | ||
f23631e4 AC |
1025 | struct value * |
1026 | value_assign (struct value *toval, struct value *fromval) | |
c906108c | 1027 | { |
52f0bd74 | 1028 | struct type *type; |
f23631e4 | 1029 | struct value *val; |
cb741690 | 1030 | struct frame_id old_frame; |
c906108c | 1031 | |
88e3b34b | 1032 | if (!deprecated_value_modifiable (toval)) |
8a3fe4f8 | 1033 | error (_("Left operand of assignment is not a modifiable lvalue.")); |
c906108c | 1034 | |
994b9211 | 1035 | toval = coerce_ref (toval); |
c906108c | 1036 | |
df407dfe | 1037 | type = value_type (toval); |
c906108c | 1038 | if (VALUE_LVAL (toval) != lval_internalvar) |
63092375 DJ |
1039 | { |
1040 | toval = value_coerce_to_target (toval); | |
1041 | fromval = value_cast (type, fromval); | |
1042 | } | |
c906108c | 1043 | else |
63092375 DJ |
1044 | { |
1045 | /* Coerce arrays and functions to pointers, except for arrays | |
1046 | which only live in GDB's storage. */ | |
1047 | if (!value_must_coerce_to_target (fromval)) | |
1048 | fromval = coerce_array (fromval); | |
1049 | } | |
1050 | ||
c906108c SS |
1051 | CHECK_TYPEDEF (type); |
1052 | ||
ac3eeb49 MS |
1053 | /* Since modifying a register can trash the frame chain, and |
1054 | modifying memory can trash the frame cache, we save the old frame | |
1055 | and then restore the new frame afterwards. */ | |
206415a3 | 1056 | old_frame = get_frame_id (deprecated_safe_get_selected_frame ()); |
cb741690 | 1057 | |
c906108c SS |
1058 | switch (VALUE_LVAL (toval)) |
1059 | { | |
1060 | case lval_internalvar: | |
1061 | set_internalvar (VALUE_INTERNALVAR (toval), fromval); | |
4fa62494 | 1062 | val = value_copy (fromval); |
ac3eeb49 MS |
1063 | val = value_change_enclosing_type (val, |
1064 | value_enclosing_type (fromval)); | |
13c3b5f5 | 1065 | set_value_embedded_offset (val, value_embedded_offset (fromval)); |
ac3eeb49 MS |
1066 | set_value_pointed_to_offset (val, |
1067 | value_pointed_to_offset (fromval)); | |
c906108c SS |
1068 | return val; |
1069 | ||
1070 | case lval_internalvar_component: | |
1071 | set_internalvar_component (VALUE_INTERNALVAR (toval), | |
df407dfe AC |
1072 | value_offset (toval), |
1073 | value_bitpos (toval), | |
1074 | value_bitsize (toval), | |
c906108c SS |
1075 | fromval); |
1076 | break; | |
1077 | ||
1078 | case lval_memory: | |
1079 | { | |
fc1a4b47 | 1080 | const gdb_byte *dest_buffer; |
c5aa993b JM |
1081 | CORE_ADDR changed_addr; |
1082 | int changed_len; | |
10c42a71 | 1083 | gdb_byte buffer[sizeof (LONGEST)]; |
c906108c | 1084 | |
df407dfe | 1085 | if (value_bitsize (toval)) |
c5aa993b | 1086 | { |
2d88202a UW |
1087 | struct value *parent = value_parent (toval); |
1088 | changed_addr = value_address (parent) + value_offset (toval); | |
1089 | ||
df407dfe AC |
1090 | changed_len = (value_bitpos (toval) |
1091 | + value_bitsize (toval) | |
c5aa993b JM |
1092 | + HOST_CHAR_BIT - 1) |
1093 | / HOST_CHAR_BIT; | |
c906108c | 1094 | |
4ea48cc1 DJ |
1095 | /* If we can read-modify-write exactly the size of the |
1096 | containing type (e.g. short or int) then do so. This | |
1097 | is safer for volatile bitfields mapped to hardware | |
1098 | registers. */ | |
1099 | if (changed_len < TYPE_LENGTH (type) | |
1100 | && TYPE_LENGTH (type) <= (int) sizeof (LONGEST) | |
2d88202a | 1101 | && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0) |
4ea48cc1 DJ |
1102 | changed_len = TYPE_LENGTH (type); |
1103 | ||
c906108c | 1104 | if (changed_len > (int) sizeof (LONGEST)) |
8a3fe4f8 | 1105 | error (_("Can't handle bitfields which don't fit in a %d bit word."), |
baa6f10b | 1106 | (int) sizeof (LONGEST) * HOST_CHAR_BIT); |
c906108c | 1107 | |
2d88202a | 1108 | read_memory (changed_addr, buffer, changed_len); |
50810684 | 1109 | modify_field (type, buffer, value_as_long (fromval), |
df407dfe | 1110 | value_bitpos (toval), value_bitsize (toval)); |
c906108c SS |
1111 | dest_buffer = buffer; |
1112 | } | |
c906108c SS |
1113 | else |
1114 | { | |
42ae5230 | 1115 | changed_addr = value_address (toval); |
c906108c | 1116 | changed_len = TYPE_LENGTH (type); |
0fd88904 | 1117 | dest_buffer = value_contents (fromval); |
c906108c SS |
1118 | } |
1119 | ||
1120 | write_memory (changed_addr, dest_buffer, changed_len); | |
8cebebb9 PP |
1121 | observer_notify_memory_changed (changed_addr, changed_len, |
1122 | dest_buffer); | |
c906108c SS |
1123 | } |
1124 | break; | |
1125 | ||
492254e9 | 1126 | case lval_register: |
c906108c | 1127 | { |
c906108c | 1128 | struct frame_info *frame; |
d80b854b | 1129 | struct gdbarch *gdbarch; |
ff2e87ac | 1130 | int value_reg; |
c906108c SS |
1131 | |
1132 | /* Figure out which frame this is in currently. */ | |
0c16dd26 AC |
1133 | frame = frame_find_by_id (VALUE_FRAME_ID (toval)); |
1134 | value_reg = VALUE_REGNUM (toval); | |
c906108c SS |
1135 | |
1136 | if (!frame) | |
8a3fe4f8 | 1137 | error (_("Value being assigned to is no longer active.")); |
d80b854b UW |
1138 | |
1139 | gdbarch = get_frame_arch (frame); | |
1140 | if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type)) | |
492254e9 | 1141 | { |
ff2e87ac | 1142 | /* If TOVAL is a special machine register requiring |
ac3eeb49 MS |
1143 | conversion of program values to a special raw |
1144 | format. */ | |
d80b854b | 1145 | gdbarch_value_to_register (gdbarch, frame, |
ac3eeb49 MS |
1146 | VALUE_REGNUM (toval), type, |
1147 | value_contents (fromval)); | |
492254e9 | 1148 | } |
c906108c | 1149 | else |
492254e9 | 1150 | { |
df407dfe | 1151 | if (value_bitsize (toval)) |
00fa51f6 | 1152 | { |
2d88202a UW |
1153 | struct value *parent = value_parent (toval); |
1154 | int offset = value_offset (parent) + value_offset (toval); | |
00fa51f6 UW |
1155 | int changed_len; |
1156 | gdb_byte buffer[sizeof (LONGEST)]; | |
1157 | ||
1158 | changed_len = (value_bitpos (toval) | |
1159 | + value_bitsize (toval) | |
1160 | + HOST_CHAR_BIT - 1) | |
1161 | / HOST_CHAR_BIT; | |
1162 | ||
1163 | if (changed_len > (int) sizeof (LONGEST)) | |
1164 | error (_("Can't handle bitfields which don't fit in a %d bit word."), | |
1165 | (int) sizeof (LONGEST) * HOST_CHAR_BIT); | |
1166 | ||
2d88202a | 1167 | get_frame_register_bytes (frame, value_reg, offset, |
00fa51f6 UW |
1168 | changed_len, buffer); |
1169 | ||
50810684 UW |
1170 | modify_field (type, buffer, value_as_long (fromval), |
1171 | value_bitpos (toval), value_bitsize (toval)); | |
00fa51f6 | 1172 | |
2d88202a | 1173 | put_frame_register_bytes (frame, value_reg, offset, |
00fa51f6 UW |
1174 | changed_len, buffer); |
1175 | } | |
c906108c | 1176 | else |
00fa51f6 UW |
1177 | { |
1178 | put_frame_register_bytes (frame, value_reg, | |
1179 | value_offset (toval), | |
1180 | TYPE_LENGTH (type), | |
1181 | value_contents (fromval)); | |
1182 | } | |
ff2e87ac | 1183 | } |
00fa51f6 | 1184 | |
9a4105ab AC |
1185 | if (deprecated_register_changed_hook) |
1186 | deprecated_register_changed_hook (-1); | |
f4c5303c | 1187 | observer_notify_target_changed (¤t_target); |
ff2e87ac | 1188 | break; |
c906108c | 1189 | } |
5f5233d4 PA |
1190 | |
1191 | case lval_computed: | |
1192 | { | |
1193 | struct lval_funcs *funcs = value_computed_funcs (toval); | |
1194 | ||
1195 | funcs->write (toval, fromval); | |
1196 | } | |
1197 | break; | |
1198 | ||
c906108c | 1199 | default: |
8a3fe4f8 | 1200 | error (_("Left operand of assignment is not an lvalue.")); |
c906108c SS |
1201 | } |
1202 | ||
cb741690 DJ |
1203 | /* Assigning to the stack pointer, frame pointer, and other |
1204 | (architecture and calling convention specific) registers may | |
1205 | cause the frame cache to be out of date. Assigning to memory | |
1206 | also can. We just do this on all assignments to registers or | |
1207 | memory, for simplicity's sake; I doubt the slowdown matters. */ | |
1208 | switch (VALUE_LVAL (toval)) | |
1209 | { | |
1210 | case lval_memory: | |
1211 | case lval_register: | |
cb741690 DJ |
1212 | |
1213 | reinit_frame_cache (); | |
1214 | ||
ac3eeb49 MS |
1215 | /* Having destroyed the frame cache, restore the selected |
1216 | frame. */ | |
cb741690 DJ |
1217 | |
1218 | /* FIXME: cagney/2002-11-02: There has to be a better way of | |
1219 | doing this. Instead of constantly saving/restoring the | |
1220 | frame. Why not create a get_selected_frame() function that, | |
1221 | having saved the selected frame's ID can automatically | |
1222 | re-find the previously selected frame automatically. */ | |
1223 | ||
1224 | { | |
1225 | struct frame_info *fi = frame_find_by_id (old_frame); | |
1226 | if (fi != NULL) | |
1227 | select_frame (fi); | |
1228 | } | |
1229 | ||
1230 | break; | |
1231 | default: | |
1232 | break; | |
1233 | } | |
1234 | ||
ac3eeb49 MS |
1235 | /* If the field does not entirely fill a LONGEST, then zero the sign |
1236 | bits. If the field is signed, and is negative, then sign | |
1237 | extend. */ | |
df407dfe AC |
1238 | if ((value_bitsize (toval) > 0) |
1239 | && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST))) | |
c906108c SS |
1240 | { |
1241 | LONGEST fieldval = value_as_long (fromval); | |
df407dfe | 1242 | LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1; |
c906108c SS |
1243 | |
1244 | fieldval &= valmask; | |
ac3eeb49 MS |
1245 | if (!TYPE_UNSIGNED (type) |
1246 | && (fieldval & (valmask ^ (valmask >> 1)))) | |
c906108c SS |
1247 | fieldval |= ~valmask; |
1248 | ||
1249 | fromval = value_from_longest (type, fieldval); | |
1250 | } | |
1251 | ||
1252 | val = value_copy (toval); | |
0fd88904 | 1253 | memcpy (value_contents_raw (val), value_contents (fromval), |
c906108c | 1254 | TYPE_LENGTH (type)); |
04624583 | 1255 | deprecated_set_value_type (val, type); |
ac3eeb49 MS |
1256 | val = value_change_enclosing_type (val, |
1257 | value_enclosing_type (fromval)); | |
13c3b5f5 | 1258 | set_value_embedded_offset (val, value_embedded_offset (fromval)); |
b44d461b | 1259 | set_value_pointed_to_offset (val, value_pointed_to_offset (fromval)); |
c5aa993b | 1260 | |
c906108c SS |
1261 | return val; |
1262 | } | |
1263 | ||
1264 | /* Extend a value VAL to COUNT repetitions of its type. */ | |
1265 | ||
f23631e4 AC |
1266 | struct value * |
1267 | value_repeat (struct value *arg1, int count) | |
c906108c | 1268 | { |
f23631e4 | 1269 | struct value *val; |
c906108c SS |
1270 | |
1271 | if (VALUE_LVAL (arg1) != lval_memory) | |
8a3fe4f8 | 1272 | error (_("Only values in memory can be extended with '@'.")); |
c906108c | 1273 | if (count < 1) |
8a3fe4f8 | 1274 | error (_("Invalid number %d of repetitions."), count); |
c906108c | 1275 | |
4754a64e | 1276 | val = allocate_repeat_value (value_enclosing_type (arg1), count); |
c906108c | 1277 | |
42ae5230 | 1278 | read_memory (value_address (arg1), |
990a07ab | 1279 | value_contents_all_raw (val), |
4754a64e | 1280 | TYPE_LENGTH (value_enclosing_type (val))); |
c906108c | 1281 | VALUE_LVAL (val) = lval_memory; |
42ae5230 | 1282 | set_value_address (val, value_address (arg1)); |
c906108c SS |
1283 | |
1284 | return val; | |
1285 | } | |
1286 | ||
f23631e4 | 1287 | struct value * |
fba45db2 | 1288 | value_of_variable (struct symbol *var, struct block *b) |
c906108c | 1289 | { |
f23631e4 | 1290 | struct value *val; |
61212c0f | 1291 | struct frame_info *frame; |
c906108c | 1292 | |
61212c0f UW |
1293 | if (!symbol_read_needs_frame (var)) |
1294 | frame = NULL; | |
1295 | else if (!b) | |
1296 | frame = get_selected_frame (_("No frame selected.")); | |
1297 | else | |
c906108c SS |
1298 | { |
1299 | frame = block_innermost_frame (b); | |
1300 | if (!frame) | |
c5aa993b | 1301 | { |
edb3359d | 1302 | if (BLOCK_FUNCTION (b) && !block_inlined_p (b) |
de5ad195 | 1303 | && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b))) |
8a3fe4f8 | 1304 | error (_("No frame is currently executing in block %s."), |
de5ad195 | 1305 | SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b))); |
c906108c | 1306 | else |
8a3fe4f8 | 1307 | error (_("No frame is currently executing in specified block")); |
c5aa993b | 1308 | } |
c906108c SS |
1309 | } |
1310 | ||
1311 | val = read_var_value (var, frame); | |
1312 | if (!val) | |
8a3fe4f8 | 1313 | error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var)); |
c906108c SS |
1314 | |
1315 | return val; | |
1316 | } | |
1317 | ||
61212c0f UW |
1318 | struct value * |
1319 | address_of_variable (struct symbol *var, struct block *b) | |
1320 | { | |
1321 | struct type *type = SYMBOL_TYPE (var); | |
1322 | struct value *val; | |
1323 | ||
1324 | /* Evaluate it first; if the result is a memory address, we're fine. | |
1325 | Lazy evaluation pays off here. */ | |
1326 | ||
1327 | val = value_of_variable (var, b); | |
1328 | ||
1329 | if ((VALUE_LVAL (val) == lval_memory && value_lazy (val)) | |
1330 | || TYPE_CODE (type) == TYPE_CODE_FUNC) | |
1331 | { | |
42ae5230 | 1332 | CORE_ADDR addr = value_address (val); |
61212c0f UW |
1333 | return value_from_pointer (lookup_pointer_type (type), addr); |
1334 | } | |
1335 | ||
1336 | /* Not a memory address; check what the problem was. */ | |
1337 | switch (VALUE_LVAL (val)) | |
1338 | { | |
1339 | case lval_register: | |
1340 | { | |
1341 | struct frame_info *frame; | |
1342 | const char *regname; | |
1343 | ||
1344 | frame = frame_find_by_id (VALUE_FRAME_ID (val)); | |
1345 | gdb_assert (frame); | |
1346 | ||
1347 | regname = gdbarch_register_name (get_frame_arch (frame), | |
1348 | VALUE_REGNUM (val)); | |
1349 | gdb_assert (regname && *regname); | |
1350 | ||
1351 | error (_("Address requested for identifier " | |
1352 | "\"%s\" which is in register $%s"), | |
1353 | SYMBOL_PRINT_NAME (var), regname); | |
1354 | break; | |
1355 | } | |
1356 | ||
1357 | default: | |
1358 | error (_("Can't take address of \"%s\" which isn't an lvalue."), | |
1359 | SYMBOL_PRINT_NAME (var)); | |
1360 | break; | |
1361 | } | |
1362 | ||
1363 | return val; | |
1364 | } | |
1365 | ||
63092375 DJ |
1366 | /* Return one if VAL does not live in target memory, but should in order |
1367 | to operate on it. Otherwise return zero. */ | |
1368 | ||
1369 | int | |
1370 | value_must_coerce_to_target (struct value *val) | |
1371 | { | |
1372 | struct type *valtype; | |
1373 | ||
1374 | /* The only lval kinds which do not live in target memory. */ | |
1375 | if (VALUE_LVAL (val) != not_lval | |
1376 | && VALUE_LVAL (val) != lval_internalvar) | |
1377 | return 0; | |
1378 | ||
1379 | valtype = check_typedef (value_type (val)); | |
1380 | ||
1381 | switch (TYPE_CODE (valtype)) | |
1382 | { | |
1383 | case TYPE_CODE_ARRAY: | |
1384 | case TYPE_CODE_STRING: | |
1385 | return 1; | |
1386 | default: | |
1387 | return 0; | |
1388 | } | |
1389 | } | |
1390 | ||
1391 | /* Make sure that VAL lives in target memory if it's supposed to. For instance, | |
1392 | strings are constructed as character arrays in GDB's storage, and this | |
1393 | function copies them to the target. */ | |
1394 | ||
1395 | struct value * | |
1396 | value_coerce_to_target (struct value *val) | |
1397 | { | |
1398 | LONGEST length; | |
1399 | CORE_ADDR addr; | |
1400 | ||
1401 | if (!value_must_coerce_to_target (val)) | |
1402 | return val; | |
1403 | ||
1404 | length = TYPE_LENGTH (check_typedef (value_type (val))); | |
1405 | addr = allocate_space_in_inferior (length); | |
1406 | write_memory (addr, value_contents (val), length); | |
1407 | return value_at_lazy (value_type (val), addr); | |
1408 | } | |
1409 | ||
ac3eeb49 MS |
1410 | /* Given a value which is an array, return a value which is a pointer |
1411 | to its first element, regardless of whether or not the array has a | |
1412 | nonzero lower bound. | |
c906108c | 1413 | |
ac3eeb49 MS |
1414 | FIXME: A previous comment here indicated that this routine should |
1415 | be substracting the array's lower bound. It's not clear to me that | |
1416 | this is correct. Given an array subscripting operation, it would | |
1417 | certainly work to do the adjustment here, essentially computing: | |
c906108c SS |
1418 | |
1419 | (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0]) | |
1420 | ||
ac3eeb49 MS |
1421 | However I believe a more appropriate and logical place to account |
1422 | for the lower bound is to do so in value_subscript, essentially | |
1423 | computing: | |
c906108c SS |
1424 | |
1425 | (&array[0] + ((index - lowerbound) * sizeof array[0])) | |
1426 | ||
ac3eeb49 MS |
1427 | As further evidence consider what would happen with operations |
1428 | other than array subscripting, where the caller would get back a | |
1429 | value that had an address somewhere before the actual first element | |
1430 | of the array, and the information about the lower bound would be | |
1431 | lost because of the coercion to pointer type. | |
c5aa993b | 1432 | */ |
c906108c | 1433 | |
f23631e4 AC |
1434 | struct value * |
1435 | value_coerce_array (struct value *arg1) | |
c906108c | 1436 | { |
df407dfe | 1437 | struct type *type = check_typedef (value_type (arg1)); |
c906108c | 1438 | |
63092375 DJ |
1439 | /* If the user tries to do something requiring a pointer with an |
1440 | array that has not yet been pushed to the target, then this would | |
1441 | be a good time to do so. */ | |
1442 | arg1 = value_coerce_to_target (arg1); | |
1443 | ||
c906108c | 1444 | if (VALUE_LVAL (arg1) != lval_memory) |
8a3fe4f8 | 1445 | error (_("Attempt to take address of value not located in memory.")); |
c906108c | 1446 | |
4478b372 | 1447 | return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
42ae5230 | 1448 | value_address (arg1)); |
c906108c SS |
1449 | } |
1450 | ||
1451 | /* Given a value which is a function, return a value which is a pointer | |
1452 | to it. */ | |
1453 | ||
f23631e4 AC |
1454 | struct value * |
1455 | value_coerce_function (struct value *arg1) | |
c906108c | 1456 | { |
f23631e4 | 1457 | struct value *retval; |
c906108c SS |
1458 | |
1459 | if (VALUE_LVAL (arg1) != lval_memory) | |
8a3fe4f8 | 1460 | error (_("Attempt to take address of value not located in memory.")); |
c906108c | 1461 | |
df407dfe | 1462 | retval = value_from_pointer (lookup_pointer_type (value_type (arg1)), |
42ae5230 | 1463 | value_address (arg1)); |
c906108c | 1464 | return retval; |
c5aa993b | 1465 | } |
c906108c | 1466 | |
ac3eeb49 MS |
1467 | /* Return a pointer value for the object for which ARG1 is the |
1468 | contents. */ | |
c906108c | 1469 | |
f23631e4 AC |
1470 | struct value * |
1471 | value_addr (struct value *arg1) | |
c906108c | 1472 | { |
f23631e4 | 1473 | struct value *arg2; |
c906108c | 1474 | |
df407dfe | 1475 | struct type *type = check_typedef (value_type (arg1)); |
c906108c SS |
1476 | if (TYPE_CODE (type) == TYPE_CODE_REF) |
1477 | { | |
ac3eeb49 MS |
1478 | /* Copy the value, but change the type from (T&) to (T*). We |
1479 | keep the same location information, which is efficient, and | |
1480 | allows &(&X) to get the location containing the reference. */ | |
c906108c | 1481 | arg2 = value_copy (arg1); |
ac3eeb49 MS |
1482 | deprecated_set_value_type (arg2, |
1483 | lookup_pointer_type (TYPE_TARGET_TYPE (type))); | |
c906108c SS |
1484 | return arg2; |
1485 | } | |
1486 | if (TYPE_CODE (type) == TYPE_CODE_FUNC) | |
1487 | return value_coerce_function (arg1); | |
1488 | ||
63092375 DJ |
1489 | /* If this is an array that has not yet been pushed to the target, |
1490 | then this would be a good time to force it to memory. */ | |
1491 | arg1 = value_coerce_to_target (arg1); | |
1492 | ||
c906108c | 1493 | if (VALUE_LVAL (arg1) != lval_memory) |
8a3fe4f8 | 1494 | error (_("Attempt to take address of value not located in memory.")); |
c906108c | 1495 | |
c5aa993b | 1496 | /* Get target memory address */ |
df407dfe | 1497 | arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)), |
42ae5230 | 1498 | (value_address (arg1) |
13c3b5f5 | 1499 | + value_embedded_offset (arg1))); |
c906108c SS |
1500 | |
1501 | /* This may be a pointer to a base subobject; so remember the | |
ac3eeb49 | 1502 | full derived object's type ... */ |
4754a64e | 1503 | arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (value_enclosing_type (arg1))); |
ac3eeb49 MS |
1504 | /* ... and also the relative position of the subobject in the full |
1505 | object. */ | |
b44d461b | 1506 | set_value_pointed_to_offset (arg2, value_embedded_offset (arg1)); |
c906108c SS |
1507 | return arg2; |
1508 | } | |
1509 | ||
ac3eeb49 MS |
1510 | /* Return a reference value for the object for which ARG1 is the |
1511 | contents. */ | |
fb933624 DJ |
1512 | |
1513 | struct value * | |
1514 | value_ref (struct value *arg1) | |
1515 | { | |
1516 | struct value *arg2; | |
1517 | ||
1518 | struct type *type = check_typedef (value_type (arg1)); | |
1519 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
1520 | return arg1; | |
1521 | ||
1522 | arg2 = value_addr (arg1); | |
1523 | deprecated_set_value_type (arg2, lookup_reference_type (type)); | |
1524 | return arg2; | |
1525 | } | |
1526 | ||
ac3eeb49 MS |
1527 | /* Given a value of a pointer type, apply the C unary * operator to |
1528 | it. */ | |
c906108c | 1529 | |
f23631e4 AC |
1530 | struct value * |
1531 | value_ind (struct value *arg1) | |
c906108c SS |
1532 | { |
1533 | struct type *base_type; | |
f23631e4 | 1534 | struct value *arg2; |
c906108c | 1535 | |
994b9211 | 1536 | arg1 = coerce_array (arg1); |
c906108c | 1537 | |
df407dfe | 1538 | base_type = check_typedef (value_type (arg1)); |
c906108c | 1539 | |
22fe0fbb | 1540 | if (TYPE_CODE (base_type) == TYPE_CODE_PTR) |
c906108c SS |
1541 | { |
1542 | struct type *enc_type; | |
ac3eeb49 MS |
1543 | /* We may be pointing to something embedded in a larger object. |
1544 | Get the real type of the enclosing object. */ | |
4754a64e | 1545 | enc_type = check_typedef (value_enclosing_type (arg1)); |
c906108c | 1546 | enc_type = TYPE_TARGET_TYPE (enc_type); |
0d5de010 DJ |
1547 | |
1548 | if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC | |
1549 | || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD) | |
1550 | /* For functions, go through find_function_addr, which knows | |
1551 | how to handle function descriptors. */ | |
ac3eeb49 MS |
1552 | arg2 = value_at_lazy (enc_type, |
1553 | find_function_addr (arg1, NULL)); | |
0d5de010 DJ |
1554 | else |
1555 | /* Retrieve the enclosing object pointed to */ | |
ac3eeb49 MS |
1556 | arg2 = value_at_lazy (enc_type, |
1557 | (value_as_address (arg1) | |
1558 | - value_pointed_to_offset (arg1))); | |
0d5de010 | 1559 | |
ac3eeb49 | 1560 | /* Re-adjust type. */ |
04624583 | 1561 | deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type)); |
ac3eeb49 | 1562 | /* Add embedding info. */ |
2b127877 | 1563 | arg2 = value_change_enclosing_type (arg2, enc_type); |
b44d461b | 1564 | set_value_embedded_offset (arg2, value_pointed_to_offset (arg1)); |
c906108c | 1565 | |
ac3eeb49 | 1566 | /* We may be pointing to an object of some derived type. */ |
c906108c SS |
1567 | arg2 = value_full_object (arg2, NULL, 0, 0, 0); |
1568 | return arg2; | |
1569 | } | |
1570 | ||
8a3fe4f8 | 1571 | error (_("Attempt to take contents of a non-pointer value.")); |
ac3eeb49 | 1572 | return 0; /* For lint -- never reached. */ |
c906108c SS |
1573 | } |
1574 | \f | |
63092375 | 1575 | /* Create a value for an array by allocating space in GDB, copying |
ac3eeb49 MS |
1576 | copying the data into that space, and then setting up an array |
1577 | value. | |
c906108c | 1578 | |
ac3eeb49 MS |
1579 | The array bounds are set from LOWBOUND and HIGHBOUND, and the array |
1580 | is populated from the values passed in ELEMVEC. | |
c906108c SS |
1581 | |
1582 | The element type of the array is inherited from the type of the | |
1583 | first element, and all elements must have the same size (though we | |
ac3eeb49 | 1584 | don't currently enforce any restriction on their types). */ |
c906108c | 1585 | |
f23631e4 AC |
1586 | struct value * |
1587 | value_array (int lowbound, int highbound, struct value **elemvec) | |
c906108c SS |
1588 | { |
1589 | int nelem; | |
1590 | int idx; | |
1591 | unsigned int typelength; | |
f23631e4 | 1592 | struct value *val; |
c906108c SS |
1593 | struct type *arraytype; |
1594 | CORE_ADDR addr; | |
1595 | ||
ac3eeb49 MS |
1596 | /* Validate that the bounds are reasonable and that each of the |
1597 | elements have the same size. */ | |
c906108c SS |
1598 | |
1599 | nelem = highbound - lowbound + 1; | |
1600 | if (nelem <= 0) | |
1601 | { | |
8a3fe4f8 | 1602 | error (_("bad array bounds (%d, %d)"), lowbound, highbound); |
c906108c | 1603 | } |
4754a64e | 1604 | typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0])); |
c906108c SS |
1605 | for (idx = 1; idx < nelem; idx++) |
1606 | { | |
4754a64e | 1607 | if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength) |
c906108c | 1608 | { |
8a3fe4f8 | 1609 | error (_("array elements must all be the same size")); |
c906108c SS |
1610 | } |
1611 | } | |
1612 | ||
e3506a9f UW |
1613 | arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]), |
1614 | lowbound, highbound); | |
c906108c SS |
1615 | |
1616 | if (!current_language->c_style_arrays) | |
1617 | { | |
1618 | val = allocate_value (arraytype); | |
1619 | for (idx = 0; idx < nelem; idx++) | |
1620 | { | |
990a07ab | 1621 | memcpy (value_contents_all_raw (val) + (idx * typelength), |
46615f07 | 1622 | value_contents_all (elemvec[idx]), |
c906108c SS |
1623 | typelength); |
1624 | } | |
c906108c SS |
1625 | return val; |
1626 | } | |
1627 | ||
63092375 DJ |
1628 | /* Allocate space to store the array, and then initialize it by |
1629 | copying in each element. */ | |
c906108c | 1630 | |
63092375 | 1631 | val = allocate_value (arraytype); |
c906108c | 1632 | for (idx = 0; idx < nelem; idx++) |
63092375 DJ |
1633 | memcpy (value_contents_writeable (val) + (idx * typelength), |
1634 | value_contents_all (elemvec[idx]), | |
1635 | typelength); | |
1636 | return val; | |
c906108c SS |
1637 | } |
1638 | ||
6c7a06a3 | 1639 | struct value * |
3b7538c0 | 1640 | value_cstring (char *ptr, int len, struct type *char_type) |
6c7a06a3 TT |
1641 | { |
1642 | struct value *val; | |
1643 | int lowbound = current_language->string_lower_bound; | |
1644 | int highbound = len / TYPE_LENGTH (char_type); | |
6c7a06a3 | 1645 | struct type *stringtype |
e3506a9f | 1646 | = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1); |
6c7a06a3 TT |
1647 | |
1648 | val = allocate_value (stringtype); | |
1649 | memcpy (value_contents_raw (val), ptr, len); | |
1650 | return val; | |
1651 | } | |
1652 | ||
ac3eeb49 MS |
1653 | /* Create a value for a string constant by allocating space in the |
1654 | inferior, copying the data into that space, and returning the | |
1655 | address with type TYPE_CODE_STRING. PTR points to the string | |
1656 | constant data; LEN is number of characters. | |
1657 | ||
1658 | Note that string types are like array of char types with a lower | |
1659 | bound of zero and an upper bound of LEN - 1. Also note that the | |
1660 | string may contain embedded null bytes. */ | |
c906108c | 1661 | |
f23631e4 | 1662 | struct value * |
3b7538c0 | 1663 | value_string (char *ptr, int len, struct type *char_type) |
c906108c | 1664 | { |
f23631e4 | 1665 | struct value *val; |
c906108c | 1666 | int lowbound = current_language->string_lower_bound; |
3b7538c0 | 1667 | int highbound = len / TYPE_LENGTH (char_type); |
c906108c | 1668 | struct type *stringtype |
e3506a9f | 1669 | = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1); |
c906108c | 1670 | |
3b7538c0 UW |
1671 | val = allocate_value (stringtype); |
1672 | memcpy (value_contents_raw (val), ptr, len); | |
1673 | return val; | |
c906108c SS |
1674 | } |
1675 | ||
f23631e4 | 1676 | struct value * |
22601c15 | 1677 | value_bitstring (char *ptr, int len, struct type *index_type) |
c906108c | 1678 | { |
f23631e4 | 1679 | struct value *val; |
22601c15 UW |
1680 | struct type *domain_type |
1681 | = create_range_type (NULL, index_type, 0, len - 1); | |
1682 | struct type *type = create_set_type (NULL, domain_type); | |
c906108c SS |
1683 | TYPE_CODE (type) = TYPE_CODE_BITSTRING; |
1684 | val = allocate_value (type); | |
990a07ab | 1685 | memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type)); |
c906108c SS |
1686 | return val; |
1687 | } | |
1688 | \f | |
ac3eeb49 MS |
1689 | /* See if we can pass arguments in T2 to a function which takes |
1690 | arguments of types T1. T1 is a list of NARGS arguments, and T2 is | |
1691 | a NULL-terminated vector. If some arguments need coercion of some | |
1692 | sort, then the coerced values are written into T2. Return value is | |
1693 | 0 if the arguments could be matched, or the position at which they | |
1694 | differ if not. | |
c906108c | 1695 | |
ac3eeb49 MS |
1696 | STATICP is nonzero if the T1 argument list came from a static |
1697 | member function. T2 will still include the ``this'' pointer, but | |
1698 | it will be skipped. | |
c906108c SS |
1699 | |
1700 | For non-static member functions, we ignore the first argument, | |
ac3eeb49 MS |
1701 | which is the type of the instance variable. This is because we |
1702 | want to handle calls with objects from derived classes. This is | |
1703 | not entirely correct: we should actually check to make sure that a | |
c906108c SS |
1704 | requested operation is type secure, shouldn't we? FIXME. */ |
1705 | ||
1706 | static int | |
ad2f7632 DJ |
1707 | typecmp (int staticp, int varargs, int nargs, |
1708 | struct field t1[], struct value *t2[]) | |
c906108c SS |
1709 | { |
1710 | int i; | |
1711 | ||
1712 | if (t2 == 0) | |
ac3eeb49 MS |
1713 | internal_error (__FILE__, __LINE__, |
1714 | _("typecmp: no argument list")); | |
ad2f7632 | 1715 | |
ac3eeb49 MS |
1716 | /* Skip ``this'' argument if applicable. T2 will always include |
1717 | THIS. */ | |
4a1970e4 | 1718 | if (staticp) |
ad2f7632 DJ |
1719 | t2 ++; |
1720 | ||
1721 | for (i = 0; | |
1722 | (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID; | |
1723 | i++) | |
c906108c | 1724 | { |
c5aa993b | 1725 | struct type *tt1, *tt2; |
ad2f7632 | 1726 | |
c5aa993b JM |
1727 | if (!t2[i]) |
1728 | return i + 1; | |
ad2f7632 DJ |
1729 | |
1730 | tt1 = check_typedef (t1[i].type); | |
df407dfe | 1731 | tt2 = check_typedef (value_type (t2[i])); |
ad2f7632 | 1732 | |
c906108c | 1733 | if (TYPE_CODE (tt1) == TYPE_CODE_REF |
c5aa993b | 1734 | /* We should be doing hairy argument matching, as below. */ |
c906108c SS |
1735 | && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2))) |
1736 | { | |
1737 | if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY) | |
1738 | t2[i] = value_coerce_array (t2[i]); | |
1739 | else | |
fb933624 | 1740 | t2[i] = value_ref (t2[i]); |
c906108c SS |
1741 | continue; |
1742 | } | |
1743 | ||
802db21b DB |
1744 | /* djb - 20000715 - Until the new type structure is in the |
1745 | place, and we can attempt things like implicit conversions, | |
1746 | we need to do this so you can take something like a map<const | |
1747 | char *>, and properly access map["hello"], because the | |
1748 | argument to [] will be a reference to a pointer to a char, | |
ac3eeb49 MS |
1749 | and the argument will be a pointer to a char. */ |
1750 | while (TYPE_CODE(tt1) == TYPE_CODE_REF | |
1751 | || TYPE_CODE (tt1) == TYPE_CODE_PTR) | |
802db21b DB |
1752 | { |
1753 | tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) ); | |
1754 | } | |
ac3eeb49 MS |
1755 | while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY |
1756 | || TYPE_CODE(tt2) == TYPE_CODE_PTR | |
1757 | || TYPE_CODE(tt2) == TYPE_CODE_REF) | |
c906108c | 1758 | { |
ac3eeb49 | 1759 | tt2 = check_typedef (TYPE_TARGET_TYPE(tt2)); |
c906108c | 1760 | } |
c5aa993b JM |
1761 | if (TYPE_CODE (tt1) == TYPE_CODE (tt2)) |
1762 | continue; | |
ac3eeb49 MS |
1763 | /* Array to pointer is a `trivial conversion' according to the |
1764 | ARM. */ | |
c906108c | 1765 | |
ac3eeb49 MS |
1766 | /* We should be doing much hairier argument matching (see |
1767 | section 13.2 of the ARM), but as a quick kludge, just check | |
1768 | for the same type code. */ | |
df407dfe | 1769 | if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i]))) |
c5aa993b | 1770 | return i + 1; |
c906108c | 1771 | } |
ad2f7632 | 1772 | if (varargs || t2[i] == NULL) |
c5aa993b | 1773 | return 0; |
ad2f7632 | 1774 | return i + 1; |
c906108c SS |
1775 | } |
1776 | ||
ac3eeb49 MS |
1777 | /* Helper function used by value_struct_elt to recurse through |
1778 | baseclasses. Look for a field NAME in ARG1. Adjust the address of | |
1779 | ARG1 by OFFSET bytes, and search in it assuming it has (class) type | |
1780 | TYPE. If found, return value, else return NULL. | |
c906108c | 1781 | |
ac3eeb49 MS |
1782 | If LOOKING_FOR_BASECLASS, then instead of looking for struct |
1783 | fields, look for a baseclass named NAME. */ | |
c906108c | 1784 | |
f23631e4 AC |
1785 | static struct value * |
1786 | search_struct_field (char *name, struct value *arg1, int offset, | |
aa1ee363 | 1787 | struct type *type, int looking_for_baseclass) |
c906108c SS |
1788 | { |
1789 | int i; | |
1790 | int nbases = TYPE_N_BASECLASSES (type); | |
1791 | ||
1792 | CHECK_TYPEDEF (type); | |
1793 | ||
c5aa993b | 1794 | if (!looking_for_baseclass) |
c906108c SS |
1795 | for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--) |
1796 | { | |
1797 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
1798 | ||
db577aea | 1799 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c | 1800 | { |
f23631e4 | 1801 | struct value *v; |
d6a843b5 | 1802 | if (field_is_static (&TYPE_FIELD (type, i))) |
2c2738a0 DC |
1803 | { |
1804 | v = value_static_field (type, i); | |
1805 | if (v == 0) | |
8a3fe4f8 | 1806 | error (_("field %s is nonexistent or has been optimised out"), |
2c2738a0 DC |
1807 | name); |
1808 | } | |
c906108c | 1809 | else |
2c2738a0 DC |
1810 | { |
1811 | v = value_primitive_field (arg1, offset, i, type); | |
1812 | if (v == 0) | |
8a3fe4f8 | 1813 | error (_("there is no field named %s"), name); |
2c2738a0 | 1814 | } |
c906108c SS |
1815 | return v; |
1816 | } | |
1817 | ||
1818 | if (t_field_name | |
1819 | && (t_field_name[0] == '\0' | |
1820 | || (TYPE_CODE (type) == TYPE_CODE_UNION | |
db577aea | 1821 | && (strcmp_iw (t_field_name, "else") == 0)))) |
c906108c SS |
1822 | { |
1823 | struct type *field_type = TYPE_FIELD_TYPE (type, i); | |
1824 | if (TYPE_CODE (field_type) == TYPE_CODE_UNION | |
1825 | || TYPE_CODE (field_type) == TYPE_CODE_STRUCT) | |
1826 | { | |
ac3eeb49 MS |
1827 | /* Look for a match through the fields of an anonymous |
1828 | union, or anonymous struct. C++ provides anonymous | |
1829 | unions. | |
c906108c | 1830 | |
1b831c93 AC |
1831 | In the GNU Chill (now deleted from GDB) |
1832 | implementation of variant record types, each | |
1833 | <alternative field> has an (anonymous) union type, | |
1834 | each member of the union represents a <variant | |
1835 | alternative>. Each <variant alternative> is | |
1836 | represented as a struct, with a member for each | |
1837 | <variant field>. */ | |
c5aa993b | 1838 | |
f23631e4 | 1839 | struct value *v; |
c906108c SS |
1840 | int new_offset = offset; |
1841 | ||
db034ac5 AC |
1842 | /* This is pretty gross. In G++, the offset in an |
1843 | anonymous union is relative to the beginning of the | |
1b831c93 AC |
1844 | enclosing struct. In the GNU Chill (now deleted |
1845 | from GDB) implementation of variant records, the | |
1846 | bitpos is zero in an anonymous union field, so we | |
ac3eeb49 | 1847 | have to add the offset of the union here. */ |
c906108c SS |
1848 | if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT |
1849 | || (TYPE_NFIELDS (field_type) > 0 | |
1850 | && TYPE_FIELD_BITPOS (field_type, 0) == 0)) | |
1851 | new_offset += TYPE_FIELD_BITPOS (type, i) / 8; | |
1852 | ||
ac3eeb49 MS |
1853 | v = search_struct_field (name, arg1, new_offset, |
1854 | field_type, | |
c906108c SS |
1855 | looking_for_baseclass); |
1856 | if (v) | |
1857 | return v; | |
1858 | } | |
1859 | } | |
1860 | } | |
1861 | ||
c5aa993b | 1862 | for (i = 0; i < nbases; i++) |
c906108c | 1863 | { |
f23631e4 | 1864 | struct value *v; |
c906108c | 1865 | struct type *basetype = check_typedef (TYPE_BASECLASS (type, i)); |
ac3eeb49 MS |
1866 | /* If we are looking for baseclasses, this is what we get when |
1867 | we hit them. But it could happen that the base part's member | |
1868 | name is not yet filled in. */ | |
c906108c SS |
1869 | int found_baseclass = (looking_for_baseclass |
1870 | && TYPE_BASECLASS_NAME (type, i) != NULL | |
ac3eeb49 MS |
1871 | && (strcmp_iw (name, |
1872 | TYPE_BASECLASS_NAME (type, | |
1873 | i)) == 0)); | |
c906108c SS |
1874 | |
1875 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
1876 | { | |
1877 | int boffset; | |
3e3d7139 | 1878 | struct value *v2; |
c906108c SS |
1879 | |
1880 | boffset = baseclass_offset (type, i, | |
0fd88904 | 1881 | value_contents (arg1) + offset, |
42ae5230 | 1882 | value_address (arg1) + offset); |
c906108c | 1883 | if (boffset == -1) |
8a3fe4f8 | 1884 | error (_("virtual baseclass botch")); |
c906108c | 1885 | |
ac3eeb49 MS |
1886 | /* The virtual base class pointer might have been clobbered |
1887 | by the user program. Make sure that it still points to a | |
1888 | valid memory location. */ | |
c906108c SS |
1889 | |
1890 | boffset += offset; | |
1891 | if (boffset < 0 || boffset >= TYPE_LENGTH (type)) | |
1892 | { | |
1893 | CORE_ADDR base_addr; | |
c5aa993b | 1894 | |
3e3d7139 | 1895 | v2 = allocate_value (basetype); |
42ae5230 | 1896 | base_addr = value_address (arg1) + boffset; |
ac3eeb49 MS |
1897 | if (target_read_memory (base_addr, |
1898 | value_contents_raw (v2), | |
c906108c | 1899 | TYPE_LENGTH (basetype)) != 0) |
8a3fe4f8 | 1900 | error (_("virtual baseclass botch")); |
c906108c | 1901 | VALUE_LVAL (v2) = lval_memory; |
42ae5230 | 1902 | set_value_address (v2, base_addr); |
c906108c SS |
1903 | } |
1904 | else | |
1905 | { | |
3e3d7139 JG |
1906 | if (VALUE_LVAL (arg1) == lval_memory && value_lazy (arg1)) |
1907 | v2 = allocate_value_lazy (basetype); | |
1908 | else | |
1909 | { | |
1910 | v2 = allocate_value (basetype); | |
1911 | memcpy (value_contents_raw (v2), | |
1912 | value_contents_raw (arg1) + boffset, | |
1913 | TYPE_LENGTH (basetype)); | |
1914 | } | |
74bcbdf3 | 1915 | set_value_component_location (v2, arg1); |
65d3800a | 1916 | VALUE_FRAME_ID (v2) = VALUE_FRAME_ID (arg1); |
f5cf64a7 | 1917 | set_value_offset (v2, value_offset (arg1) + boffset); |
c906108c SS |
1918 | } |
1919 | ||
1920 | if (found_baseclass) | |
1921 | return v2; | |
ac3eeb49 MS |
1922 | v = search_struct_field (name, v2, 0, |
1923 | TYPE_BASECLASS (type, i), | |
c906108c SS |
1924 | looking_for_baseclass); |
1925 | } | |
1926 | else if (found_baseclass) | |
1927 | v = value_primitive_field (arg1, offset, i, type); | |
1928 | else | |
1929 | v = search_struct_field (name, arg1, | |
ac3eeb49 MS |
1930 | offset + TYPE_BASECLASS_BITPOS (type, |
1931 | i) / 8, | |
c906108c | 1932 | basetype, looking_for_baseclass); |
c5aa993b JM |
1933 | if (v) |
1934 | return v; | |
c906108c SS |
1935 | } |
1936 | return NULL; | |
1937 | } | |
1938 | ||
ac3eeb49 MS |
1939 | /* Helper function used by value_struct_elt to recurse through |
1940 | baseclasses. Look for a field NAME in ARG1. Adjust the address of | |
1941 | ARG1 by OFFSET bytes, and search in it assuming it has (class) type | |
1942 | TYPE. | |
1943 | ||
1944 | If found, return value, else if name matched and args not return | |
1945 | (value) -1, else return NULL. */ | |
c906108c | 1946 | |
f23631e4 AC |
1947 | static struct value * |
1948 | search_struct_method (char *name, struct value **arg1p, | |
1949 | struct value **args, int offset, | |
aa1ee363 | 1950 | int *static_memfuncp, struct type *type) |
c906108c SS |
1951 | { |
1952 | int i; | |
f23631e4 | 1953 | struct value *v; |
c906108c SS |
1954 | int name_matched = 0; |
1955 | char dem_opname[64]; | |
1956 | ||
1957 | CHECK_TYPEDEF (type); | |
1958 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) | |
1959 | { | |
1960 | char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i); | |
1961 | /* FIXME! May need to check for ARM demangling here */ | |
c5aa993b JM |
1962 | if (strncmp (t_field_name, "__", 2) == 0 || |
1963 | strncmp (t_field_name, "op", 2) == 0 || | |
1964 | strncmp (t_field_name, "type", 4) == 0) | |
c906108c | 1965 | { |
c5aa993b JM |
1966 | if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI)) |
1967 | t_field_name = dem_opname; | |
1968 | else if (cplus_demangle_opname (t_field_name, dem_opname, 0)) | |
c906108c | 1969 | t_field_name = dem_opname; |
c906108c | 1970 | } |
db577aea | 1971 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c SS |
1972 | { |
1973 | int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1; | |
1974 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); | |
c5aa993b | 1975 | name_matched = 1; |
c906108c | 1976 | |
de17c821 | 1977 | check_stub_method_group (type, i); |
c906108c | 1978 | if (j > 0 && args == 0) |
8a3fe4f8 | 1979 | error (_("cannot resolve overloaded method `%s': no arguments supplied"), name); |
acf5ed49 | 1980 | else if (j == 0 && args == 0) |
c906108c | 1981 | { |
acf5ed49 DJ |
1982 | v = value_fn_field (arg1p, f, j, type, offset); |
1983 | if (v != NULL) | |
1984 | return v; | |
c906108c | 1985 | } |
acf5ed49 DJ |
1986 | else |
1987 | while (j >= 0) | |
1988 | { | |
acf5ed49 | 1989 | if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j), |
ad2f7632 DJ |
1990 | TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)), |
1991 | TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)), | |
acf5ed49 DJ |
1992 | TYPE_FN_FIELD_ARGS (f, j), args)) |
1993 | { | |
1994 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) | |
ac3eeb49 MS |
1995 | return value_virtual_fn_field (arg1p, f, j, |
1996 | type, offset); | |
1997 | if (TYPE_FN_FIELD_STATIC_P (f, j) | |
1998 | && static_memfuncp) | |
acf5ed49 DJ |
1999 | *static_memfuncp = 1; |
2000 | v = value_fn_field (arg1p, f, j, type, offset); | |
2001 | if (v != NULL) | |
2002 | return v; | |
2003 | } | |
2004 | j--; | |
2005 | } | |
c906108c SS |
2006 | } |
2007 | } | |
2008 | ||
2009 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
2010 | { | |
2011 | int base_offset; | |
2012 | ||
2013 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
2014 | { | |
086280be UW |
2015 | struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i)); |
2016 | const gdb_byte *base_valaddr; | |
2017 | ||
2018 | /* The virtual base class pointer might have been | |
2019 | clobbered by the user program. Make sure that it | |
2020 | still points to a valid memory location. */ | |
2021 | ||
2022 | if (offset < 0 || offset >= TYPE_LENGTH (type)) | |
c5aa993b | 2023 | { |
086280be | 2024 | gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass)); |
42ae5230 | 2025 | if (target_read_memory (value_address (*arg1p) + offset, |
086280be UW |
2026 | tmp, TYPE_LENGTH (baseclass)) != 0) |
2027 | error (_("virtual baseclass botch")); | |
2028 | base_valaddr = tmp; | |
c5aa993b JM |
2029 | } |
2030 | else | |
086280be | 2031 | base_valaddr = value_contents (*arg1p) + offset; |
c5aa993b | 2032 | |
086280be | 2033 | base_offset = baseclass_offset (type, i, base_valaddr, |
42ae5230 | 2034 | value_address (*arg1p) + offset); |
086280be UW |
2035 | if (base_offset == -1) |
2036 | error (_("virtual baseclass botch")); | |
c5aa993b | 2037 | } |
c906108c SS |
2038 | else |
2039 | { | |
2040 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | |
c5aa993b | 2041 | } |
c906108c SS |
2042 | v = search_struct_method (name, arg1p, args, base_offset + offset, |
2043 | static_memfuncp, TYPE_BASECLASS (type, i)); | |
f23631e4 | 2044 | if (v == (struct value *) - 1) |
c906108c SS |
2045 | { |
2046 | name_matched = 1; | |
2047 | } | |
2048 | else if (v) | |
2049 | { | |
ac3eeb49 MS |
2050 | /* FIXME-bothner: Why is this commented out? Why is it here? */ |
2051 | /* *arg1p = arg1_tmp; */ | |
c906108c | 2052 | return v; |
c5aa993b | 2053 | } |
c906108c | 2054 | } |
c5aa993b | 2055 | if (name_matched) |
f23631e4 | 2056 | return (struct value *) - 1; |
c5aa993b JM |
2057 | else |
2058 | return NULL; | |
c906108c SS |
2059 | } |
2060 | ||
2061 | /* Given *ARGP, a value of type (pointer to a)* structure/union, | |
ac3eeb49 MS |
2062 | extract the component named NAME from the ultimate target |
2063 | structure/union and return it as a value with its appropriate type. | |
c906108c SS |
2064 | ERR is used in the error message if *ARGP's type is wrong. |
2065 | ||
2066 | C++: ARGS is a list of argument types to aid in the selection of | |
2067 | an appropriate method. Also, handle derived types. | |
2068 | ||
2069 | STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location | |
2070 | where the truthvalue of whether the function that was resolved was | |
2071 | a static member function or not is stored. | |
2072 | ||
ac3eeb49 MS |
2073 | ERR is an error message to be printed in case the field is not |
2074 | found. */ | |
c906108c | 2075 | |
f23631e4 AC |
2076 | struct value * |
2077 | value_struct_elt (struct value **argp, struct value **args, | |
fba45db2 | 2078 | char *name, int *static_memfuncp, char *err) |
c906108c | 2079 | { |
52f0bd74 | 2080 | struct type *t; |
f23631e4 | 2081 | struct value *v; |
c906108c | 2082 | |
994b9211 | 2083 | *argp = coerce_array (*argp); |
c906108c | 2084 | |
df407dfe | 2085 | t = check_typedef (value_type (*argp)); |
c906108c SS |
2086 | |
2087 | /* Follow pointers until we get to a non-pointer. */ | |
2088 | ||
2089 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) | |
2090 | { | |
2091 | *argp = value_ind (*argp); | |
2092 | /* Don't coerce fn pointer to fn and then back again! */ | |
df407dfe | 2093 | if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC) |
994b9211 | 2094 | *argp = coerce_array (*argp); |
df407dfe | 2095 | t = check_typedef (value_type (*argp)); |
c906108c SS |
2096 | } |
2097 | ||
c5aa993b | 2098 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c | 2099 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
8a3fe4f8 | 2100 | error (_("Attempt to extract a component of a value that is not a %s."), err); |
c906108c SS |
2101 | |
2102 | /* Assume it's not, unless we see that it is. */ | |
2103 | if (static_memfuncp) | |
c5aa993b | 2104 | *static_memfuncp = 0; |
c906108c SS |
2105 | |
2106 | if (!args) | |
2107 | { | |
2108 | /* if there are no arguments ...do this... */ | |
2109 | ||
ac3eeb49 MS |
2110 | /* Try as a field first, because if we succeed, there is less |
2111 | work to be done. */ | |
c906108c SS |
2112 | v = search_struct_field (name, *argp, 0, t, 0); |
2113 | if (v) | |
2114 | return v; | |
2115 | ||
2116 | /* C++: If it was not found as a data field, then try to | |
7b83ea04 | 2117 | return it as a pointer to a method. */ |
ac3eeb49 MS |
2118 | v = search_struct_method (name, argp, args, 0, |
2119 | static_memfuncp, t); | |
c906108c | 2120 | |
f23631e4 | 2121 | if (v == (struct value *) - 1) |
55b39184 | 2122 | error (_("Cannot take address of method %s."), name); |
c906108c SS |
2123 | else if (v == 0) |
2124 | { | |
2125 | if (TYPE_NFN_FIELDS (t)) | |
8a3fe4f8 | 2126 | error (_("There is no member or method named %s."), name); |
c906108c | 2127 | else |
8a3fe4f8 | 2128 | error (_("There is no member named %s."), name); |
c906108c SS |
2129 | } |
2130 | return v; | |
2131 | } | |
2132 | ||
ac3eeb49 MS |
2133 | v = search_struct_method (name, argp, args, 0, |
2134 | static_memfuncp, t); | |
7168a814 | 2135 | |
f23631e4 | 2136 | if (v == (struct value *) - 1) |
c906108c | 2137 | { |
8a3fe4f8 | 2138 | error (_("One of the arguments you tried to pass to %s could not be converted to what the function wants."), name); |
c906108c SS |
2139 | } |
2140 | else if (v == 0) | |
2141 | { | |
ac3eeb49 MS |
2142 | /* See if user tried to invoke data as function. If so, hand it |
2143 | back. If it's not callable (i.e., a pointer to function), | |
7b83ea04 | 2144 | gdb should give an error. */ |
c906108c | 2145 | v = search_struct_field (name, *argp, 0, t, 0); |
fa8de41e TT |
2146 | /* If we found an ordinary field, then it is not a method call. |
2147 | So, treat it as if it were a static member function. */ | |
2148 | if (v && static_memfuncp) | |
2149 | *static_memfuncp = 1; | |
c906108c SS |
2150 | } |
2151 | ||
2152 | if (!v) | |
8a3fe4f8 | 2153 | error (_("Structure has no component named %s."), name); |
c906108c SS |
2154 | return v; |
2155 | } | |
2156 | ||
ac3eeb49 | 2157 | /* Search through the methods of an object (and its bases) to find a |
cfe9eade | 2158 | specified method. Return the pointer to the fn_field list of |
ac3eeb49 MS |
2159 | overloaded instances. |
2160 | ||
2161 | Helper function for value_find_oload_list. | |
2162 | ARGP is a pointer to a pointer to a value (the object). | |
2163 | METHOD is a string containing the method name. | |
2164 | OFFSET is the offset within the value. | |
2165 | TYPE is the assumed type of the object. | |
2166 | NUM_FNS is the number of overloaded instances. | |
2167 | BASETYPE is set to the actual type of the subobject where the | |
2168 | method is found. | |
2169 | BOFFSET is the offset of the base subobject where the method is found. | |
2170 | */ | |
c906108c | 2171 | |
7a292a7a | 2172 | static struct fn_field * |
ac3eeb49 MS |
2173 | find_method_list (struct value **argp, char *method, |
2174 | int offset, struct type *type, int *num_fns, | |
fba45db2 | 2175 | struct type **basetype, int *boffset) |
c906108c SS |
2176 | { |
2177 | int i; | |
c5aa993b | 2178 | struct fn_field *f; |
c906108c SS |
2179 | CHECK_TYPEDEF (type); |
2180 | ||
2181 | *num_fns = 0; | |
2182 | ||
ac3eeb49 | 2183 | /* First check in object itself. */ |
c5aa993b | 2184 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) |
c906108c | 2185 | { |
ac3eeb49 | 2186 | /* pai: FIXME What about operators and type conversions? */ |
c5aa993b | 2187 | char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i); |
db577aea | 2188 | if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0)) |
c5aa993b | 2189 | { |
4a1970e4 DJ |
2190 | int len = TYPE_FN_FIELDLIST_LENGTH (type, i); |
2191 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); | |
4a1970e4 DJ |
2192 | |
2193 | *num_fns = len; | |
c5aa993b JM |
2194 | *basetype = type; |
2195 | *boffset = offset; | |
4a1970e4 | 2196 | |
de17c821 DJ |
2197 | /* Resolve any stub methods. */ |
2198 | check_stub_method_group (type, i); | |
4a1970e4 DJ |
2199 | |
2200 | return f; | |
c5aa993b JM |
2201 | } |
2202 | } | |
2203 | ||
ac3eeb49 | 2204 | /* Not found in object, check in base subobjects. */ |
c906108c SS |
2205 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) |
2206 | { | |
2207 | int base_offset; | |
2208 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
2209 | { | |
086280be UW |
2210 | base_offset = value_offset (*argp) + offset; |
2211 | base_offset = baseclass_offset (type, i, | |
2212 | value_contents (*argp) + base_offset, | |
42ae5230 | 2213 | value_address (*argp) + base_offset); |
086280be UW |
2214 | if (base_offset == -1) |
2215 | error (_("virtual baseclass botch")); | |
c5aa993b | 2216 | } |
ac3eeb49 MS |
2217 | else /* Non-virtual base, simply use bit position from debug |
2218 | info. */ | |
c906108c SS |
2219 | { |
2220 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | |
c5aa993b | 2221 | } |
c906108c | 2222 | f = find_method_list (argp, method, base_offset + offset, |
ac3eeb49 MS |
2223 | TYPE_BASECLASS (type, i), num_fns, |
2224 | basetype, boffset); | |
c906108c | 2225 | if (f) |
c5aa993b | 2226 | return f; |
c906108c | 2227 | } |
c5aa993b | 2228 | return NULL; |
c906108c SS |
2229 | } |
2230 | ||
2231 | /* Return the list of overloaded methods of a specified name. | |
ac3eeb49 MS |
2232 | |
2233 | ARGP is a pointer to a pointer to a value (the object). | |
2234 | METHOD is the method name. | |
2235 | OFFSET is the offset within the value contents. | |
2236 | NUM_FNS is the number of overloaded instances. | |
2237 | BASETYPE is set to the type of the base subobject that defines the | |
2238 | method. | |
2239 | BOFFSET is the offset of the base subobject which defines the method. | |
2240 | */ | |
c906108c SS |
2241 | |
2242 | struct fn_field * | |
ac3eeb49 MS |
2243 | value_find_oload_method_list (struct value **argp, char *method, |
2244 | int offset, int *num_fns, | |
2245 | struct type **basetype, int *boffset) | |
c906108c | 2246 | { |
c5aa993b | 2247 | struct type *t; |
c906108c | 2248 | |
df407dfe | 2249 | t = check_typedef (value_type (*argp)); |
c906108c | 2250 | |
ac3eeb49 | 2251 | /* Code snarfed from value_struct_elt. */ |
c906108c SS |
2252 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) |
2253 | { | |
2254 | *argp = value_ind (*argp); | |
2255 | /* Don't coerce fn pointer to fn and then back again! */ | |
df407dfe | 2256 | if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC) |
994b9211 | 2257 | *argp = coerce_array (*argp); |
df407dfe | 2258 | t = check_typedef (value_type (*argp)); |
c906108c | 2259 | } |
c5aa993b | 2260 | |
c5aa993b JM |
2261 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
2262 | && TYPE_CODE (t) != TYPE_CODE_UNION) | |
8a3fe4f8 | 2263 | error (_("Attempt to extract a component of a value that is not a struct or union")); |
c5aa993b | 2264 | |
ac3eeb49 MS |
2265 | return find_method_list (argp, method, 0, t, num_fns, |
2266 | basetype, boffset); | |
c906108c SS |
2267 | } |
2268 | ||
2269 | /* Given an array of argument types (ARGTYPES) (which includes an | |
2270 | entry for "this" in the case of C++ methods), the number of | |
2271 | arguments NARGS, the NAME of a function whether it's a method or | |
2272 | not (METHOD), and the degree of laxness (LAX) in conforming to | |
2273 | overload resolution rules in ANSI C++, find the best function that | |
2274 | matches on the argument types according to the overload resolution | |
2275 | rules. | |
2276 | ||
2277 | In the case of class methods, the parameter OBJ is an object value | |
2278 | in which to search for overloaded methods. | |
2279 | ||
2280 | In the case of non-method functions, the parameter FSYM is a symbol | |
2281 | corresponding to one of the overloaded functions. | |
2282 | ||
2283 | Return value is an integer: 0 -> good match, 10 -> debugger applied | |
2284 | non-standard coercions, 100 -> incompatible. | |
2285 | ||
2286 | If a method is being searched for, VALP will hold the value. | |
ac3eeb49 MS |
2287 | If a non-method is being searched for, SYMP will hold the symbol |
2288 | for it. | |
c906108c SS |
2289 | |
2290 | If a method is being searched for, and it is a static method, | |
2291 | then STATICP will point to a non-zero value. | |
2292 | ||
2293 | Note: This function does *not* check the value of | |
2294 | overload_resolution. Caller must check it to see whether overload | |
2295 | resolution is permitted. | |
ac3eeb49 | 2296 | */ |
c906108c SS |
2297 | |
2298 | int | |
ac3eeb49 MS |
2299 | find_overload_match (struct type **arg_types, int nargs, |
2300 | char *name, int method, int lax, | |
2301 | struct value **objp, struct symbol *fsym, | |
2302 | struct value **valp, struct symbol **symp, | |
2303 | int *staticp) | |
c906108c | 2304 | { |
7f8c9282 | 2305 | struct value *obj = (objp ? *objp : NULL); |
ac3eeb49 MS |
2306 | /* Index of best overloaded function. */ |
2307 | int oload_champ; | |
2308 | /* The measure for the current best match. */ | |
2309 | struct badness_vector *oload_champ_bv = NULL; | |
f23631e4 | 2310 | struct value *temp = obj; |
ac3eeb49 MS |
2311 | /* For methods, the list of overloaded methods. */ |
2312 | struct fn_field *fns_ptr = NULL; | |
2313 | /* For non-methods, the list of overloaded function symbols. */ | |
2314 | struct symbol **oload_syms = NULL; | |
2315 | /* Number of overloaded instances being considered. */ | |
2316 | int num_fns = 0; | |
c5aa993b | 2317 | struct type *basetype = NULL; |
c906108c | 2318 | int boffset; |
52f0bd74 | 2319 | int ix; |
4a1970e4 | 2320 | int static_offset; |
8d577d32 | 2321 | struct cleanup *old_cleanups = NULL; |
c906108c | 2322 | |
8d577d32 | 2323 | const char *obj_type_name = NULL; |
c5aa993b | 2324 | char *func_name = NULL; |
8d577d32 | 2325 | enum oload_classification match_quality; |
c906108c | 2326 | |
ac3eeb49 | 2327 | /* Get the list of overloaded methods or functions. */ |
c906108c SS |
2328 | if (method) |
2329 | { | |
a2ca50ae | 2330 | gdb_assert (obj); |
df407dfe | 2331 | obj_type_name = TYPE_NAME (value_type (obj)); |
c906108c | 2332 | /* Hack: evaluate_subexp_standard often passes in a pointer |
ac3eeb49 MS |
2333 | value rather than the object itself, so try again. */ |
2334 | if ((!obj_type_name || !*obj_type_name) | |
2335 | && (TYPE_CODE (value_type (obj)) == TYPE_CODE_PTR)) | |
df407dfe | 2336 | obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (value_type (obj))); |
c906108c | 2337 | |
ac3eeb49 MS |
2338 | fns_ptr = value_find_oload_method_list (&temp, name, |
2339 | 0, &num_fns, | |
c5aa993b | 2340 | &basetype, &boffset); |
c906108c | 2341 | if (!fns_ptr || !num_fns) |
8a3fe4f8 | 2342 | error (_("Couldn't find method %s%s%s"), |
c5aa993b JM |
2343 | obj_type_name, |
2344 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2345 | name); | |
4a1970e4 | 2346 | /* If we are dealing with stub method types, they should have |
ac3eeb49 MS |
2347 | been resolved by find_method_list via |
2348 | value_find_oload_method_list above. */ | |
4a1970e4 | 2349 | gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL); |
ac3eeb49 MS |
2350 | oload_champ = find_oload_champ (arg_types, nargs, method, |
2351 | num_fns, fns_ptr, | |
2352 | oload_syms, &oload_champ_bv); | |
c906108c SS |
2353 | } |
2354 | else | |
2355 | { | |
8d577d32 | 2356 | const char *qualified_name = SYMBOL_CPLUS_DEMANGLED_NAME (fsym); |
c906108c | 2357 | |
d9639e13 DJ |
2358 | /* If we have a C++ name, try to extract just the function |
2359 | part. */ | |
2360 | if (qualified_name) | |
2361 | func_name = cp_func_name (qualified_name); | |
2362 | ||
2363 | /* If there was no C++ name, this must be a C-style function. | |
2364 | Just return the same symbol. Do the same if cp_func_name | |
2365 | fails for some reason. */ | |
8d577d32 | 2366 | if (func_name == NULL) |
7b83ea04 | 2367 | { |
917317f4 | 2368 | *symp = fsym; |
7b83ea04 AC |
2369 | return 0; |
2370 | } | |
917317f4 | 2371 | |
8d577d32 DC |
2372 | old_cleanups = make_cleanup (xfree, func_name); |
2373 | make_cleanup (xfree, oload_syms); | |
2374 | make_cleanup (xfree, oload_champ_bv); | |
2375 | ||
2376 | oload_champ = find_oload_champ_namespace (arg_types, nargs, | |
2377 | func_name, | |
2378 | qualified_name, | |
2379 | &oload_syms, | |
2380 | &oload_champ_bv); | |
2381 | } | |
2382 | ||
2383 | /* Check how bad the best match is. */ | |
2384 | ||
ac3eeb49 MS |
2385 | match_quality = |
2386 | classify_oload_match (oload_champ_bv, nargs, | |
2387 | oload_method_static (method, fns_ptr, | |
2388 | oload_champ)); | |
8d577d32 DC |
2389 | |
2390 | if (match_quality == INCOMPATIBLE) | |
2391 | { | |
2392 | if (method) | |
8a3fe4f8 | 2393 | error (_("Cannot resolve method %s%s%s to any overloaded instance"), |
8d577d32 DC |
2394 | obj_type_name, |
2395 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2396 | name); | |
2397 | else | |
8a3fe4f8 | 2398 | error (_("Cannot resolve function %s to any overloaded instance"), |
8d577d32 DC |
2399 | func_name); |
2400 | } | |
2401 | else if (match_quality == NON_STANDARD) | |
2402 | { | |
2403 | if (method) | |
8a3fe4f8 | 2404 | warning (_("Using non-standard conversion to match method %s%s%s to supplied arguments"), |
8d577d32 DC |
2405 | obj_type_name, |
2406 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2407 | name); | |
2408 | else | |
8a3fe4f8 | 2409 | warning (_("Using non-standard conversion to match function %s to supplied arguments"), |
8d577d32 DC |
2410 | func_name); |
2411 | } | |
2412 | ||
2413 | if (method) | |
2414 | { | |
2415 | if (staticp != NULL) | |
2416 | *staticp = oload_method_static (method, fns_ptr, oload_champ); | |
2417 | if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ)) | |
ac3eeb49 MS |
2418 | *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, |
2419 | basetype, boffset); | |
8d577d32 | 2420 | else |
ac3eeb49 MS |
2421 | *valp = value_fn_field (&temp, fns_ptr, oload_champ, |
2422 | basetype, boffset); | |
8d577d32 DC |
2423 | } |
2424 | else | |
2425 | { | |
2426 | *symp = oload_syms[oload_champ]; | |
2427 | } | |
2428 | ||
2429 | if (objp) | |
2430 | { | |
a4295225 TT |
2431 | struct type *temp_type = check_typedef (value_type (temp)); |
2432 | struct type *obj_type = check_typedef (value_type (*objp)); | |
2433 | if (TYPE_CODE (temp_type) != TYPE_CODE_PTR | |
2434 | && (TYPE_CODE (obj_type) == TYPE_CODE_PTR | |
2435 | || TYPE_CODE (obj_type) == TYPE_CODE_REF)) | |
8d577d32 DC |
2436 | { |
2437 | temp = value_addr (temp); | |
2438 | } | |
2439 | *objp = temp; | |
2440 | } | |
2441 | if (old_cleanups != NULL) | |
2442 | do_cleanups (old_cleanups); | |
2443 | ||
2444 | switch (match_quality) | |
2445 | { | |
2446 | case INCOMPATIBLE: | |
2447 | return 100; | |
2448 | case NON_STANDARD: | |
2449 | return 10; | |
2450 | default: /* STANDARD */ | |
2451 | return 0; | |
2452 | } | |
2453 | } | |
2454 | ||
2455 | /* Find the best overload match, searching for FUNC_NAME in namespaces | |
2456 | contained in QUALIFIED_NAME until it either finds a good match or | |
2457 | runs out of namespaces. It stores the overloaded functions in | |
2458 | *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The | |
2459 | calling function is responsible for freeing *OLOAD_SYMS and | |
2460 | *OLOAD_CHAMP_BV. */ | |
2461 | ||
2462 | static int | |
2463 | find_oload_champ_namespace (struct type **arg_types, int nargs, | |
2464 | const char *func_name, | |
2465 | const char *qualified_name, | |
2466 | struct symbol ***oload_syms, | |
2467 | struct badness_vector **oload_champ_bv) | |
2468 | { | |
2469 | int oload_champ; | |
2470 | ||
2471 | find_oload_champ_namespace_loop (arg_types, nargs, | |
2472 | func_name, | |
2473 | qualified_name, 0, | |
2474 | oload_syms, oload_champ_bv, | |
2475 | &oload_champ); | |
2476 | ||
2477 | return oload_champ; | |
2478 | } | |
2479 | ||
2480 | /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is | |
2481 | how deep we've looked for namespaces, and the champ is stored in | |
2482 | OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0 | |
2483 | if it isn't. | |
2484 | ||
2485 | It is the caller's responsibility to free *OLOAD_SYMS and | |
2486 | *OLOAD_CHAMP_BV. */ | |
2487 | ||
2488 | static int | |
2489 | find_oload_champ_namespace_loop (struct type **arg_types, int nargs, | |
2490 | const char *func_name, | |
2491 | const char *qualified_name, | |
2492 | int namespace_len, | |
2493 | struct symbol ***oload_syms, | |
2494 | struct badness_vector **oload_champ_bv, | |
2495 | int *oload_champ) | |
2496 | { | |
2497 | int next_namespace_len = namespace_len; | |
2498 | int searched_deeper = 0; | |
2499 | int num_fns = 0; | |
2500 | struct cleanup *old_cleanups; | |
2501 | int new_oload_champ; | |
2502 | struct symbol **new_oload_syms; | |
2503 | struct badness_vector *new_oload_champ_bv; | |
2504 | char *new_namespace; | |
2505 | ||
2506 | if (next_namespace_len != 0) | |
2507 | { | |
2508 | gdb_assert (qualified_name[next_namespace_len] == ':'); | |
2509 | next_namespace_len += 2; | |
c906108c | 2510 | } |
ac3eeb49 MS |
2511 | next_namespace_len += |
2512 | cp_find_first_component (qualified_name + next_namespace_len); | |
8d577d32 DC |
2513 | |
2514 | /* Initialize these to values that can safely be xfree'd. */ | |
2515 | *oload_syms = NULL; | |
2516 | *oload_champ_bv = NULL; | |
c5aa993b | 2517 | |
ac3eeb49 MS |
2518 | /* First, see if we have a deeper namespace we can search in. |
2519 | If we get a good match there, use it. */ | |
8d577d32 DC |
2520 | |
2521 | if (qualified_name[next_namespace_len] == ':') | |
2522 | { | |
2523 | searched_deeper = 1; | |
2524 | ||
2525 | if (find_oload_champ_namespace_loop (arg_types, nargs, | |
2526 | func_name, qualified_name, | |
2527 | next_namespace_len, | |
2528 | oload_syms, oload_champ_bv, | |
2529 | oload_champ)) | |
2530 | { | |
2531 | return 1; | |
2532 | } | |
2533 | }; | |
2534 | ||
2535 | /* If we reach here, either we're in the deepest namespace or we | |
2536 | didn't find a good match in a deeper namespace. But, in the | |
2537 | latter case, we still have a bad match in a deeper namespace; | |
2538 | note that we might not find any match at all in the current | |
2539 | namespace. (There's always a match in the deepest namespace, | |
2540 | because this overload mechanism only gets called if there's a | |
2541 | function symbol to start off with.) */ | |
2542 | ||
2543 | old_cleanups = make_cleanup (xfree, *oload_syms); | |
2544 | old_cleanups = make_cleanup (xfree, *oload_champ_bv); | |
2545 | new_namespace = alloca (namespace_len + 1); | |
2546 | strncpy (new_namespace, qualified_name, namespace_len); | |
2547 | new_namespace[namespace_len] = '\0'; | |
2548 | new_oload_syms = make_symbol_overload_list (func_name, | |
2549 | new_namespace); | |
2550 | while (new_oload_syms[num_fns]) | |
2551 | ++num_fns; | |
2552 | ||
2553 | new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns, | |
2554 | NULL, new_oload_syms, | |
2555 | &new_oload_champ_bv); | |
2556 | ||
2557 | /* Case 1: We found a good match. Free earlier matches (if any), | |
2558 | and return it. Case 2: We didn't find a good match, but we're | |
2559 | not the deepest function. Then go with the bad match that the | |
2560 | deeper function found. Case 3: We found a bad match, and we're | |
2561 | the deepest function. Then return what we found, even though | |
2562 | it's a bad match. */ | |
2563 | ||
2564 | if (new_oload_champ != -1 | |
2565 | && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD) | |
2566 | { | |
2567 | *oload_syms = new_oload_syms; | |
2568 | *oload_champ = new_oload_champ; | |
2569 | *oload_champ_bv = new_oload_champ_bv; | |
2570 | do_cleanups (old_cleanups); | |
2571 | return 1; | |
2572 | } | |
2573 | else if (searched_deeper) | |
2574 | { | |
2575 | xfree (new_oload_syms); | |
2576 | xfree (new_oload_champ_bv); | |
2577 | discard_cleanups (old_cleanups); | |
2578 | return 0; | |
2579 | } | |
2580 | else | |
2581 | { | |
2582 | gdb_assert (new_oload_champ != -1); | |
2583 | *oload_syms = new_oload_syms; | |
2584 | *oload_champ = new_oload_champ; | |
2585 | *oload_champ_bv = new_oload_champ_bv; | |
2586 | discard_cleanups (old_cleanups); | |
2587 | return 0; | |
2588 | } | |
2589 | } | |
2590 | ||
2591 | /* Look for a function to take NARGS args of types ARG_TYPES. Find | |
2592 | the best match from among the overloaded methods or functions | |
2593 | (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively. | |
2594 | The number of methods/functions in the list is given by NUM_FNS. | |
2595 | Return the index of the best match; store an indication of the | |
2596 | quality of the match in OLOAD_CHAMP_BV. | |
2597 | ||
2598 | It is the caller's responsibility to free *OLOAD_CHAMP_BV. */ | |
2599 | ||
2600 | static int | |
2601 | find_oload_champ (struct type **arg_types, int nargs, int method, | |
2602 | int num_fns, struct fn_field *fns_ptr, | |
2603 | struct symbol **oload_syms, | |
2604 | struct badness_vector **oload_champ_bv) | |
2605 | { | |
2606 | int ix; | |
ac3eeb49 MS |
2607 | /* A measure of how good an overloaded instance is. */ |
2608 | struct badness_vector *bv; | |
2609 | /* Index of best overloaded function. */ | |
2610 | int oload_champ = -1; | |
2611 | /* Current ambiguity state for overload resolution. */ | |
2612 | int oload_ambiguous = 0; | |
2613 | /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */ | |
8d577d32 DC |
2614 | |
2615 | *oload_champ_bv = NULL; | |
c906108c | 2616 | |
ac3eeb49 | 2617 | /* Consider each candidate in turn. */ |
c906108c SS |
2618 | for (ix = 0; ix < num_fns; ix++) |
2619 | { | |
8d577d32 DC |
2620 | int jj; |
2621 | int static_offset = oload_method_static (method, fns_ptr, ix); | |
2622 | int nparms; | |
2623 | struct type **parm_types; | |
2624 | ||
db577aea AC |
2625 | if (method) |
2626 | { | |
ad2f7632 | 2627 | nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix)); |
db577aea AC |
2628 | } |
2629 | else | |
2630 | { | |
ac3eeb49 MS |
2631 | /* If it's not a method, this is the proper place. */ |
2632 | nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix])); | |
db577aea | 2633 | } |
c906108c | 2634 | |
ac3eeb49 MS |
2635 | /* Prepare array of parameter types. */ |
2636 | parm_types = (struct type **) | |
2637 | xmalloc (nparms * (sizeof (struct type *))); | |
c906108c | 2638 | for (jj = 0; jj < nparms; jj++) |
db577aea | 2639 | parm_types[jj] = (method |
ad2f7632 | 2640 | ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type) |
ac3eeb49 MS |
2641 | : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), |
2642 | jj)); | |
c906108c | 2643 | |
ac3eeb49 MS |
2644 | /* Compare parameter types to supplied argument types. Skip |
2645 | THIS for static methods. */ | |
2646 | bv = rank_function (parm_types, nparms, | |
2647 | arg_types + static_offset, | |
4a1970e4 | 2648 | nargs - static_offset); |
c5aa993b | 2649 | |
8d577d32 | 2650 | if (!*oload_champ_bv) |
c5aa993b | 2651 | { |
8d577d32 | 2652 | *oload_champ_bv = bv; |
c5aa993b | 2653 | oload_champ = 0; |
c5aa993b | 2654 | } |
ac3eeb49 MS |
2655 | else /* See whether current candidate is better or worse than |
2656 | previous best. */ | |
8d577d32 | 2657 | switch (compare_badness (bv, *oload_champ_bv)) |
c5aa993b | 2658 | { |
ac3eeb49 MS |
2659 | case 0: /* Top two contenders are equally good. */ |
2660 | oload_ambiguous = 1; | |
c5aa993b | 2661 | break; |
ac3eeb49 MS |
2662 | case 1: /* Incomparable top contenders. */ |
2663 | oload_ambiguous = 2; | |
c5aa993b | 2664 | break; |
ac3eeb49 MS |
2665 | case 2: /* New champion, record details. */ |
2666 | *oload_champ_bv = bv; | |
c5aa993b JM |
2667 | oload_ambiguous = 0; |
2668 | oload_champ = ix; | |
c5aa993b JM |
2669 | break; |
2670 | case 3: | |
2671 | default: | |
2672 | break; | |
2673 | } | |
b8c9b27d | 2674 | xfree (parm_types); |
6b1ba9a0 ND |
2675 | if (overload_debug) |
2676 | { | |
2677 | if (method) | |
ac3eeb49 MS |
2678 | fprintf_filtered (gdb_stderr, |
2679 | "Overloaded method instance %s, # of parms %d\n", | |
2680 | fns_ptr[ix].physname, nparms); | |
6b1ba9a0 | 2681 | else |
ac3eeb49 MS |
2682 | fprintf_filtered (gdb_stderr, |
2683 | "Overloaded function instance %s # of parms %d\n", | |
2684 | SYMBOL_DEMANGLED_NAME (oload_syms[ix]), | |
2685 | nparms); | |
4a1970e4 | 2686 | for (jj = 0; jj < nargs - static_offset; jj++) |
ac3eeb49 MS |
2687 | fprintf_filtered (gdb_stderr, |
2688 | "...Badness @ %d : %d\n", | |
2689 | jj, bv->rank[jj]); | |
2690 | fprintf_filtered (gdb_stderr, | |
2691 | "Overload resolution champion is %d, ambiguous? %d\n", | |
2692 | oload_champ, oload_ambiguous); | |
6b1ba9a0 | 2693 | } |
c906108c SS |
2694 | } |
2695 | ||
8d577d32 DC |
2696 | return oload_champ; |
2697 | } | |
6b1ba9a0 | 2698 | |
8d577d32 DC |
2699 | /* Return 1 if we're looking at a static method, 0 if we're looking at |
2700 | a non-static method or a function that isn't a method. */ | |
c906108c | 2701 | |
8d577d32 DC |
2702 | static int |
2703 | oload_method_static (int method, struct fn_field *fns_ptr, int index) | |
2704 | { | |
2705 | if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, index)) | |
2706 | return 1; | |
c906108c | 2707 | else |
8d577d32 DC |
2708 | return 0; |
2709 | } | |
c906108c | 2710 | |
8d577d32 DC |
2711 | /* Check how good an overload match OLOAD_CHAMP_BV represents. */ |
2712 | ||
2713 | static enum oload_classification | |
2714 | classify_oload_match (struct badness_vector *oload_champ_bv, | |
2715 | int nargs, | |
2716 | int static_offset) | |
2717 | { | |
2718 | int ix; | |
2719 | ||
2720 | for (ix = 1; ix <= nargs - static_offset; ix++) | |
7f8c9282 | 2721 | { |
8d577d32 | 2722 | if (oload_champ_bv->rank[ix] >= 100) |
ac3eeb49 | 2723 | return INCOMPATIBLE; /* Truly mismatched types. */ |
8d577d32 | 2724 | else if (oload_champ_bv->rank[ix] >= 10) |
ac3eeb49 MS |
2725 | return NON_STANDARD; /* Non-standard type conversions |
2726 | needed. */ | |
7f8c9282 | 2727 | } |
02f0d45d | 2728 | |
8d577d32 | 2729 | return STANDARD; /* Only standard conversions needed. */ |
c906108c SS |
2730 | } |
2731 | ||
ac3eeb49 MS |
2732 | /* C++: return 1 is NAME is a legitimate name for the destructor of |
2733 | type TYPE. If TYPE does not have a destructor, or if NAME is | |
2734 | inappropriate for TYPE, an error is signaled. */ | |
c906108c | 2735 | int |
fba45db2 | 2736 | destructor_name_p (const char *name, const struct type *type) |
c906108c | 2737 | { |
c906108c SS |
2738 | if (name[0] == '~') |
2739 | { | |
2740 | char *dname = type_name_no_tag (type); | |
2741 | char *cp = strchr (dname, '<'); | |
2742 | unsigned int len; | |
2743 | ||
2744 | /* Do not compare the template part for template classes. */ | |
2745 | if (cp == NULL) | |
2746 | len = strlen (dname); | |
2747 | else | |
2748 | len = cp - dname; | |
bf896cb0 | 2749 | if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0) |
8a3fe4f8 | 2750 | error (_("name of destructor must equal name of class")); |
c906108c SS |
2751 | else |
2752 | return 1; | |
2753 | } | |
2754 | return 0; | |
2755 | } | |
2756 | ||
2b2d9e11 | 2757 | /* Given TYPE, a structure/union, |
ac3eeb49 MS |
2758 | return 1 if the component named NAME from the ultimate target |
2759 | structure/union is defined, otherwise, return 0. */ | |
c906108c | 2760 | |
2b2d9e11 VP |
2761 | int |
2762 | check_field (struct type *type, const char *name) | |
c906108c | 2763 | { |
52f0bd74 | 2764 | int i; |
c906108c SS |
2765 | |
2766 | for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--) | |
2767 | { | |
2768 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
db577aea | 2769 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c SS |
2770 | return 1; |
2771 | } | |
2772 | ||
ac3eeb49 MS |
2773 | /* C++: If it was not found as a data field, then try to return it |
2774 | as a pointer to a method. */ | |
c906108c | 2775 | |
c906108c SS |
2776 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i) |
2777 | { | |
db577aea | 2778 | if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0) |
c906108c SS |
2779 | return 1; |
2780 | } | |
2781 | ||
2782 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
2b2d9e11 | 2783 | if (check_field (TYPE_BASECLASS (type, i), name)) |
c906108c | 2784 | return 1; |
c5aa993b | 2785 | |
c906108c SS |
2786 | return 0; |
2787 | } | |
2788 | ||
79c2c32d | 2789 | /* C++: Given an aggregate type CURTYPE, and a member name NAME, |
0d5de010 DJ |
2790 | return the appropriate member (or the address of the member, if |
2791 | WANT_ADDRESS). This function is used to resolve user expressions | |
2792 | of the form "DOMAIN::NAME". For more details on what happens, see | |
2793 | the comment before value_struct_elt_for_reference. */ | |
79c2c32d DC |
2794 | |
2795 | struct value * | |
072bba3b KS |
2796 | value_aggregate_elt (struct type *curtype, char *name, |
2797 | struct type *expect_type, int want_address, | |
79c2c32d DC |
2798 | enum noside noside) |
2799 | { | |
2800 | switch (TYPE_CODE (curtype)) | |
2801 | { | |
2802 | case TYPE_CODE_STRUCT: | |
2803 | case TYPE_CODE_UNION: | |
ac3eeb49 | 2804 | return value_struct_elt_for_reference (curtype, 0, curtype, |
072bba3b | 2805 | name, expect_type, |
0d5de010 | 2806 | want_address, noside); |
79c2c32d | 2807 | case TYPE_CODE_NAMESPACE: |
ac3eeb49 MS |
2808 | return value_namespace_elt (curtype, name, |
2809 | want_address, noside); | |
79c2c32d DC |
2810 | default: |
2811 | internal_error (__FILE__, __LINE__, | |
e2e0b3e5 | 2812 | _("non-aggregate type in value_aggregate_elt")); |
79c2c32d DC |
2813 | } |
2814 | } | |
2815 | ||
072bba3b KS |
2816 | /* Compares the two method/function types T1 and T2 for "equality" |
2817 | with respect to the the methods' parameters. If the types of the | |
2818 | two parameter lists are the same, returns 1; 0 otherwise. This | |
2819 | comparison may ignore any artificial parameters in T1 if | |
2820 | SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip | |
2821 | the first artificial parameter in T1, assumed to be a 'this' pointer. | |
2822 | ||
2823 | The type T2 is expected to have come from make_params (in eval.c). */ | |
2824 | ||
2825 | static int | |
2826 | compare_parameters (struct type *t1, struct type *t2, int skip_artificial) | |
2827 | { | |
2828 | int start = 0; | |
2829 | ||
2830 | if (TYPE_FIELD_ARTIFICIAL (t1, 0)) | |
2831 | ++start; | |
2832 | ||
2833 | /* If skipping artificial fields, find the first real field | |
2834 | in T1. */ | |
2835 | if (skip_artificial) | |
2836 | { | |
2837 | while (start < TYPE_NFIELDS (t1) | |
2838 | && TYPE_FIELD_ARTIFICIAL (t1, start)) | |
2839 | ++start; | |
2840 | } | |
2841 | ||
2842 | /* Now compare parameters */ | |
2843 | ||
2844 | /* Special case: a method taking void. T1 will contain no | |
2845 | non-artificial fields, and T2 will contain TYPE_CODE_VOID. */ | |
2846 | if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1 | |
2847 | && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID) | |
2848 | return 1; | |
2849 | ||
2850 | if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2)) | |
2851 | { | |
2852 | int i; | |
2853 | for (i = 0; i < TYPE_NFIELDS (t2); ++i) | |
2854 | { | |
2855 | if (rank_one_type (TYPE_FIELD_TYPE (t1, start + i), | |
2856 | TYPE_FIELD_TYPE (t2, i)) | |
2857 | != 0) | |
2858 | return 0; | |
2859 | } | |
2860 | ||
2861 | return 1; | |
2862 | } | |
2863 | ||
2864 | return 0; | |
2865 | } | |
2866 | ||
c906108c | 2867 | /* C++: Given an aggregate type CURTYPE, and a member name NAME, |
ac3eeb49 MS |
2868 | return the address of this member as a "pointer to member" type. |
2869 | If INTYPE is non-null, then it will be the type of the member we | |
2870 | are looking for. This will help us resolve "pointers to member | |
2871 | functions". This function is used to resolve user expressions of | |
2872 | the form "DOMAIN::NAME". */ | |
c906108c | 2873 | |
63d06c5c | 2874 | static struct value * |
fba45db2 KB |
2875 | value_struct_elt_for_reference (struct type *domain, int offset, |
2876 | struct type *curtype, char *name, | |
ac3eeb49 MS |
2877 | struct type *intype, |
2878 | int want_address, | |
63d06c5c | 2879 | enum noside noside) |
c906108c | 2880 | { |
52f0bd74 AC |
2881 | struct type *t = curtype; |
2882 | int i; | |
0d5de010 | 2883 | struct value *v, *result; |
c906108c | 2884 | |
c5aa993b | 2885 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c | 2886 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
8a3fe4f8 | 2887 | error (_("Internal error: non-aggregate type to value_struct_elt_for_reference")); |
c906108c SS |
2888 | |
2889 | for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--) | |
2890 | { | |
2891 | char *t_field_name = TYPE_FIELD_NAME (t, i); | |
c5aa993b | 2892 | |
6314a349 | 2893 | if (t_field_name && strcmp (t_field_name, name) == 0) |
c906108c | 2894 | { |
d6a843b5 | 2895 | if (field_is_static (&TYPE_FIELD (t, i))) |
c906108c SS |
2896 | { |
2897 | v = value_static_field (t, i); | |
2898 | if (v == NULL) | |
8a3fe4f8 | 2899 | error (_("static field %s has been optimized out"), |
c906108c | 2900 | name); |
0d5de010 DJ |
2901 | if (want_address) |
2902 | v = value_addr (v); | |
c906108c SS |
2903 | return v; |
2904 | } | |
2905 | if (TYPE_FIELD_PACKED (t, i)) | |
8a3fe4f8 | 2906 | error (_("pointers to bitfield members not allowed")); |
c5aa993b | 2907 | |
0d5de010 DJ |
2908 | if (want_address) |
2909 | return value_from_longest | |
2910 | (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain), | |
2911 | offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3)); | |
2912 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
2913 | return allocate_value (TYPE_FIELD_TYPE (t, i)); | |
2914 | else | |
2915 | error (_("Cannot reference non-static field \"%s\""), name); | |
c906108c SS |
2916 | } |
2917 | } | |
2918 | ||
ac3eeb49 MS |
2919 | /* C++: If it was not found as a data field, then try to return it |
2920 | as a pointer to a method. */ | |
c906108c | 2921 | |
c906108c SS |
2922 | /* Perform all necessary dereferencing. */ |
2923 | while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR) | |
2924 | intype = TYPE_TARGET_TYPE (intype); | |
2925 | ||
2926 | for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i) | |
2927 | { | |
2928 | char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i); | |
2929 | char dem_opname[64]; | |
2930 | ||
ac3eeb49 MS |
2931 | if (strncmp (t_field_name, "__", 2) == 0 |
2932 | || strncmp (t_field_name, "op", 2) == 0 | |
2933 | || strncmp (t_field_name, "type", 4) == 0) | |
c906108c | 2934 | { |
ac3eeb49 MS |
2935 | if (cplus_demangle_opname (t_field_name, |
2936 | dem_opname, DMGL_ANSI)) | |
c5aa993b | 2937 | t_field_name = dem_opname; |
ac3eeb49 MS |
2938 | else if (cplus_demangle_opname (t_field_name, |
2939 | dem_opname, 0)) | |
c906108c | 2940 | t_field_name = dem_opname; |
c906108c | 2941 | } |
6314a349 | 2942 | if (t_field_name && strcmp (t_field_name, name) == 0) |
c906108c | 2943 | { |
072bba3b KS |
2944 | int j; |
2945 | int len = TYPE_FN_FIELDLIST_LENGTH (t, i); | |
c906108c | 2946 | struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i); |
c5aa993b | 2947 | |
de17c821 DJ |
2948 | check_stub_method_group (t, i); |
2949 | ||
c906108c SS |
2950 | if (intype) |
2951 | { | |
072bba3b KS |
2952 | for (j = 0; j < len; ++j) |
2953 | { | |
2954 | if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0) | |
2955 | || compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 1)) | |
2956 | break; | |
2957 | } | |
2958 | ||
2959 | if (j == len) | |
7f79b1c5 DJ |
2960 | error (_("no member function matches that type instantiation")); |
2961 | } | |
c906108c | 2962 | else |
072bba3b KS |
2963 | { |
2964 | int ii; | |
7f79b1c5 DJ |
2965 | |
2966 | j = -1; | |
072bba3b KS |
2967 | for (ii = 0; ii < TYPE_FN_FIELDLIST_LENGTH (t, i); |
2968 | ++ii) | |
2969 | { | |
7f79b1c5 DJ |
2970 | /* Skip artificial methods. This is necessary if, |
2971 | for example, the user wants to "print | |
2972 | subclass::subclass" with only one user-defined | |
2973 | constructor. There is no ambiguity in this | |
2974 | case. */ | |
072bba3b | 2975 | if (TYPE_FN_FIELD_ARTIFICIAL (f, ii)) |
7f79b1c5 | 2976 | continue; |
072bba3b | 2977 | |
7f79b1c5 DJ |
2978 | /* Desired method is ambiguous if more than one |
2979 | method is defined. */ | |
2980 | if (j != -1) | |
2981 | error (_("non-unique member `%s' requires type instantiation"), name); | |
072bba3b | 2982 | |
7f79b1c5 DJ |
2983 | j = ii; |
2984 | } | |
072bba3b | 2985 | } |
c5aa993b | 2986 | |
0d5de010 DJ |
2987 | if (TYPE_FN_FIELD_STATIC_P (f, j)) |
2988 | { | |
ac3eeb49 MS |
2989 | struct symbol *s = |
2990 | lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), | |
2570f2b7 | 2991 | 0, VAR_DOMAIN, 0); |
0d5de010 DJ |
2992 | if (s == NULL) |
2993 | return NULL; | |
2994 | ||
2995 | if (want_address) | |
2996 | return value_addr (read_var_value (s, 0)); | |
2997 | else | |
2998 | return read_var_value (s, 0); | |
2999 | } | |
3000 | ||
c906108c SS |
3001 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) |
3002 | { | |
0d5de010 DJ |
3003 | if (want_address) |
3004 | { | |
3005 | result = allocate_value | |
3006 | (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j))); | |
ad4820ab UW |
3007 | cplus_make_method_ptr (value_type (result), |
3008 | value_contents_writeable (result), | |
0d5de010 DJ |
3009 | TYPE_FN_FIELD_VOFFSET (f, j), 1); |
3010 | } | |
3011 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
3012 | return allocate_value (TYPE_FN_FIELD_TYPE (f, j)); | |
3013 | else | |
3014 | error (_("Cannot reference virtual member function \"%s\""), | |
3015 | name); | |
c906108c SS |
3016 | } |
3017 | else | |
3018 | { | |
ac3eeb49 MS |
3019 | struct symbol *s = |
3020 | lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), | |
2570f2b7 | 3021 | 0, VAR_DOMAIN, 0); |
c906108c | 3022 | if (s == NULL) |
0d5de010 DJ |
3023 | return NULL; |
3024 | ||
3025 | v = read_var_value (s, 0); | |
3026 | if (!want_address) | |
3027 | result = v; | |
c906108c SS |
3028 | else |
3029 | { | |
0d5de010 | 3030 | result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j))); |
ad4820ab UW |
3031 | cplus_make_method_ptr (value_type (result), |
3032 | value_contents_writeable (result), | |
42ae5230 | 3033 | value_address (v), 0); |
c906108c | 3034 | } |
c906108c | 3035 | } |
0d5de010 | 3036 | return result; |
c906108c SS |
3037 | } |
3038 | } | |
3039 | for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--) | |
3040 | { | |
f23631e4 | 3041 | struct value *v; |
c906108c SS |
3042 | int base_offset; |
3043 | ||
3044 | if (BASETYPE_VIA_VIRTUAL (t, i)) | |
3045 | base_offset = 0; | |
3046 | else | |
3047 | base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8; | |
3048 | v = value_struct_elt_for_reference (domain, | |
3049 | offset + base_offset, | |
3050 | TYPE_BASECLASS (t, i), | |
ac3eeb49 MS |
3051 | name, intype, |
3052 | want_address, noside); | |
c906108c SS |
3053 | if (v) |
3054 | return v; | |
3055 | } | |
63d06c5c DC |
3056 | |
3057 | /* As a last chance, pretend that CURTYPE is a namespace, and look | |
3058 | it up that way; this (frequently) works for types nested inside | |
3059 | classes. */ | |
3060 | ||
ac3eeb49 MS |
3061 | return value_maybe_namespace_elt (curtype, name, |
3062 | want_address, noside); | |
c906108c SS |
3063 | } |
3064 | ||
79c2c32d DC |
3065 | /* C++: Return the member NAME of the namespace given by the type |
3066 | CURTYPE. */ | |
3067 | ||
3068 | static struct value * | |
3069 | value_namespace_elt (const struct type *curtype, | |
0d5de010 | 3070 | char *name, int want_address, |
79c2c32d | 3071 | enum noside noside) |
63d06c5c DC |
3072 | { |
3073 | struct value *retval = value_maybe_namespace_elt (curtype, name, | |
ac3eeb49 MS |
3074 | want_address, |
3075 | noside); | |
63d06c5c DC |
3076 | |
3077 | if (retval == NULL) | |
ac3eeb49 MS |
3078 | error (_("No symbol \"%s\" in namespace \"%s\"."), |
3079 | name, TYPE_TAG_NAME (curtype)); | |
63d06c5c DC |
3080 | |
3081 | return retval; | |
3082 | } | |
3083 | ||
3084 | /* A helper function used by value_namespace_elt and | |
3085 | value_struct_elt_for_reference. It looks up NAME inside the | |
3086 | context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE | |
3087 | is a class and NAME refers to a type in CURTYPE itself (as opposed | |
3088 | to, say, some base class of CURTYPE). */ | |
3089 | ||
3090 | static struct value * | |
3091 | value_maybe_namespace_elt (const struct type *curtype, | |
0d5de010 | 3092 | char *name, int want_address, |
63d06c5c | 3093 | enum noside noside) |
79c2c32d DC |
3094 | { |
3095 | const char *namespace_name = TYPE_TAG_NAME (curtype); | |
3096 | struct symbol *sym; | |
0d5de010 | 3097 | struct value *result; |
79c2c32d DC |
3098 | |
3099 | sym = cp_lookup_symbol_namespace (namespace_name, name, NULL, | |
ac3eeb49 | 3100 | get_selected_block (0), |
b14e635e | 3101 | VAR_DOMAIN, 1); |
79c2c32d DC |
3102 | |
3103 | if (sym == NULL) | |
63d06c5c | 3104 | return NULL; |
79c2c32d DC |
3105 | else if ((noside == EVAL_AVOID_SIDE_EFFECTS) |
3106 | && (SYMBOL_CLASS (sym) == LOC_TYPEDEF)) | |
0d5de010 | 3107 | result = allocate_value (SYMBOL_TYPE (sym)); |
79c2c32d | 3108 | else |
0d5de010 DJ |
3109 | result = value_of_variable (sym, get_selected_block (0)); |
3110 | ||
3111 | if (result && want_address) | |
3112 | result = value_addr (result); | |
3113 | ||
3114 | return result; | |
79c2c32d DC |
3115 | } |
3116 | ||
ac3eeb49 MS |
3117 | /* Given a pointer value V, find the real (RTTI) type of the object it |
3118 | points to. | |
3119 | ||
c906108c | 3120 | Other parameters FULL, TOP, USING_ENC as with value_rtti_type() |
ac3eeb49 | 3121 | and refer to the values computed for the object pointed to. */ |
c906108c SS |
3122 | |
3123 | struct type * | |
ac3eeb49 MS |
3124 | value_rtti_target_type (struct value *v, int *full, |
3125 | int *top, int *using_enc) | |
c906108c | 3126 | { |
f23631e4 | 3127 | struct value *target; |
c906108c SS |
3128 | |
3129 | target = value_ind (v); | |
3130 | ||
3131 | return value_rtti_type (target, full, top, using_enc); | |
3132 | } | |
3133 | ||
3134 | /* Given a value pointed to by ARGP, check its real run-time type, and | |
3135 | if that is different from the enclosing type, create a new value | |
3136 | using the real run-time type as the enclosing type (and of the same | |
3137 | type as ARGP) and return it, with the embedded offset adjusted to | |
ac3eeb49 MS |
3138 | be the correct offset to the enclosed object. RTYPE is the type, |
3139 | and XFULL, XTOP, and XUSING_ENC are the other parameters, computed | |
3140 | by value_rtti_type(). If these are available, they can be supplied | |
3141 | and a second call to value_rtti_type() is avoided. (Pass RTYPE == | |
3142 | NULL if they're not available. */ | |
c906108c | 3143 | |
f23631e4 | 3144 | struct value * |
ac3eeb49 MS |
3145 | value_full_object (struct value *argp, |
3146 | struct type *rtype, | |
3147 | int xfull, int xtop, | |
fba45db2 | 3148 | int xusing_enc) |
c906108c | 3149 | { |
c5aa993b | 3150 | struct type *real_type; |
c906108c SS |
3151 | int full = 0; |
3152 | int top = -1; | |
3153 | int using_enc = 0; | |
f23631e4 | 3154 | struct value *new_val; |
c906108c SS |
3155 | |
3156 | if (rtype) | |
3157 | { | |
3158 | real_type = rtype; | |
3159 | full = xfull; | |
3160 | top = xtop; | |
3161 | using_enc = xusing_enc; | |
3162 | } | |
3163 | else | |
3164 | real_type = value_rtti_type (argp, &full, &top, &using_enc); | |
3165 | ||
ac3eeb49 | 3166 | /* If no RTTI data, or if object is already complete, do nothing. */ |
4754a64e | 3167 | if (!real_type || real_type == value_enclosing_type (argp)) |
c906108c SS |
3168 | return argp; |
3169 | ||
3170 | /* If we have the full object, but for some reason the enclosing | |
ac3eeb49 MS |
3171 | type is wrong, set it. */ |
3172 | /* pai: FIXME -- sounds iffy */ | |
c906108c SS |
3173 | if (full) |
3174 | { | |
2b127877 | 3175 | argp = value_change_enclosing_type (argp, real_type); |
c906108c SS |
3176 | return argp; |
3177 | } | |
3178 | ||
3179 | /* Check if object is in memory */ | |
3180 | if (VALUE_LVAL (argp) != lval_memory) | |
3181 | { | |
ac3eeb49 MS |
3182 | warning (_("Couldn't retrieve complete object of RTTI type %s; object may be in register(s)."), |
3183 | TYPE_NAME (real_type)); | |
c5aa993b | 3184 | |
c906108c SS |
3185 | return argp; |
3186 | } | |
c5aa993b | 3187 | |
ac3eeb49 MS |
3188 | /* All other cases -- retrieve the complete object. */ |
3189 | /* Go back by the computed top_offset from the beginning of the | |
3190 | object, adjusting for the embedded offset of argp if that's what | |
3191 | value_rtti_type used for its computation. */ | |
42ae5230 | 3192 | new_val = value_at_lazy (real_type, value_address (argp) - top + |
13c3b5f5 | 3193 | (using_enc ? 0 : value_embedded_offset (argp))); |
04624583 | 3194 | deprecated_set_value_type (new_val, value_type (argp)); |
13c3b5f5 AC |
3195 | set_value_embedded_offset (new_val, (using_enc |
3196 | ? top + value_embedded_offset (argp) | |
3197 | : top)); | |
c906108c SS |
3198 | return new_val; |
3199 | } | |
3200 | ||
389e51db | 3201 | |
d069f99d | 3202 | /* Return the value of the local variable, if one exists. |
c906108c SS |
3203 | Flag COMPLAIN signals an error if the request is made in an |
3204 | inappropriate context. */ | |
3205 | ||
f23631e4 | 3206 | struct value * |
d069f99d | 3207 | value_of_local (const char *name, int complain) |
c906108c SS |
3208 | { |
3209 | struct symbol *func, *sym; | |
3210 | struct block *b; | |
d069f99d | 3211 | struct value * ret; |
206415a3 | 3212 | struct frame_info *frame; |
c906108c | 3213 | |
206415a3 DJ |
3214 | if (complain) |
3215 | frame = get_selected_frame (_("no frame selected")); | |
3216 | else | |
c906108c | 3217 | { |
206415a3 DJ |
3218 | frame = deprecated_safe_get_selected_frame (); |
3219 | if (frame == 0) | |
c5aa993b | 3220 | return 0; |
c906108c SS |
3221 | } |
3222 | ||
206415a3 | 3223 | func = get_frame_function (frame); |
c906108c SS |
3224 | if (!func) |
3225 | { | |
3226 | if (complain) | |
8a3fe4f8 | 3227 | error (_("no `%s' in nameless context"), name); |
c5aa993b JM |
3228 | else |
3229 | return 0; | |
c906108c SS |
3230 | } |
3231 | ||
3232 | b = SYMBOL_BLOCK_VALUE (func); | |
de4f826b | 3233 | if (dict_empty (BLOCK_DICT (b))) |
c906108c SS |
3234 | { |
3235 | if (complain) | |
8a3fe4f8 | 3236 | error (_("no args, no `%s'"), name); |
c5aa993b JM |
3237 | else |
3238 | return 0; | |
c906108c SS |
3239 | } |
3240 | ||
3241 | /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER | |
3242 | symbol instead of the LOC_ARG one (if both exist). */ | |
176620f1 | 3243 | sym = lookup_block_symbol (b, name, NULL, VAR_DOMAIN); |
c906108c SS |
3244 | if (sym == NULL) |
3245 | { | |
3246 | if (complain) | |
ac3eeb49 MS |
3247 | error (_("current stack frame does not contain a variable named `%s'"), |
3248 | name); | |
c906108c SS |
3249 | else |
3250 | return NULL; | |
3251 | } | |
3252 | ||
206415a3 | 3253 | ret = read_var_value (sym, frame); |
d069f99d | 3254 | if (ret == 0 && complain) |
8a3fe4f8 | 3255 | error (_("`%s' argument unreadable"), name); |
d069f99d AF |
3256 | return ret; |
3257 | } | |
3258 | ||
3259 | /* C++/Objective-C: return the value of the class instance variable, | |
3260 | if one exists. Flag COMPLAIN signals an error if the request is | |
3261 | made in an inappropriate context. */ | |
3262 | ||
3263 | struct value * | |
3264 | value_of_this (int complain) | |
3265 | { | |
2b2d9e11 VP |
3266 | if (!current_language->la_name_of_this) |
3267 | return 0; | |
3268 | return value_of_local (current_language->la_name_of_this, complain); | |
c906108c SS |
3269 | } |
3270 | ||
ac3eeb49 MS |
3271 | /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH |
3272 | elements long, starting at LOWBOUND. The result has the same lower | |
3273 | bound as the original ARRAY. */ | |
c906108c | 3274 | |
f23631e4 AC |
3275 | struct value * |
3276 | value_slice (struct value *array, int lowbound, int length) | |
c906108c SS |
3277 | { |
3278 | struct type *slice_range_type, *slice_type, *range_type; | |
7a67d0fe | 3279 | LONGEST lowerbound, upperbound; |
f23631e4 | 3280 | struct value *slice; |
c906108c | 3281 | struct type *array_type; |
ac3eeb49 | 3282 | |
df407dfe | 3283 | array_type = check_typedef (value_type (array)); |
c906108c SS |
3284 | if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY |
3285 | && TYPE_CODE (array_type) != TYPE_CODE_STRING | |
3286 | && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING) | |
8a3fe4f8 | 3287 | error (_("cannot take slice of non-array")); |
ac3eeb49 | 3288 | |
c906108c SS |
3289 | range_type = TYPE_INDEX_TYPE (array_type); |
3290 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
8a3fe4f8 | 3291 | error (_("slice from bad array or bitstring")); |
ac3eeb49 | 3292 | |
c906108c | 3293 | if (lowbound < lowerbound || length < 0 |
db034ac5 | 3294 | || lowbound + length - 1 > upperbound) |
8a3fe4f8 | 3295 | error (_("slice out of range")); |
ac3eeb49 | 3296 | |
c906108c SS |
3297 | /* FIXME-type-allocation: need a way to free this type when we are |
3298 | done with it. */ | |
c5aa993b | 3299 | slice_range_type = create_range_type ((struct type *) NULL, |
c906108c | 3300 | TYPE_TARGET_TYPE (range_type), |
ac3eeb49 MS |
3301 | lowbound, |
3302 | lowbound + length - 1); | |
c906108c SS |
3303 | if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING) |
3304 | { | |
3305 | int i; | |
ac3eeb49 MS |
3306 | |
3307 | slice_type = create_set_type ((struct type *) NULL, | |
3308 | slice_range_type); | |
c906108c SS |
3309 | TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING; |
3310 | slice = value_zero (slice_type, not_lval); | |
ac3eeb49 | 3311 | |
c906108c SS |
3312 | for (i = 0; i < length; i++) |
3313 | { | |
3314 | int element = value_bit_index (array_type, | |
0fd88904 | 3315 | value_contents (array), |
c906108c SS |
3316 | lowbound + i); |
3317 | if (element < 0) | |
8a3fe4f8 | 3318 | error (_("internal error accessing bitstring")); |
c906108c SS |
3319 | else if (element > 0) |
3320 | { | |
3321 | int j = i % TARGET_CHAR_BIT; | |
50810684 | 3322 | if (gdbarch_bits_big_endian (get_type_arch (array_type))) |
c906108c | 3323 | j = TARGET_CHAR_BIT - 1 - j; |
990a07ab | 3324 | value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j); |
c906108c SS |
3325 | } |
3326 | } | |
ac3eeb49 MS |
3327 | /* We should set the address, bitssize, and bitspos, so the |
3328 | slice can be used on the LHS, but that may require extensions | |
3329 | to value_assign. For now, just leave as a non_lval. | |
3330 | FIXME. */ | |
c906108c SS |
3331 | } |
3332 | else | |
3333 | { | |
3334 | struct type *element_type = TYPE_TARGET_TYPE (array_type); | |
ac3eeb49 MS |
3335 | LONGEST offset = |
3336 | (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type)); | |
3337 | ||
3338 | slice_type = create_array_type ((struct type *) NULL, | |
3339 | element_type, | |
c906108c SS |
3340 | slice_range_type); |
3341 | TYPE_CODE (slice_type) = TYPE_CODE (array_type); | |
ac3eeb49 | 3342 | |
9214ee5f | 3343 | if (VALUE_LVAL (array) == lval_memory && value_lazy (array)) |
3e3d7139 | 3344 | slice = allocate_value_lazy (slice_type); |
c906108c | 3345 | else |
3e3d7139 JG |
3346 | { |
3347 | slice = allocate_value (slice_type); | |
3348 | memcpy (value_contents_writeable (slice), | |
3349 | value_contents (array) + offset, | |
3350 | TYPE_LENGTH (slice_type)); | |
3351 | } | |
ac3eeb49 | 3352 | |
74bcbdf3 | 3353 | set_value_component_location (slice, array); |
65d3800a | 3354 | VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array); |
f5cf64a7 | 3355 | set_value_offset (slice, value_offset (array) + offset); |
c906108c SS |
3356 | } |
3357 | return slice; | |
3358 | } | |
3359 | ||
ac3eeb49 MS |
3360 | /* Create a value for a FORTRAN complex number. Currently most of the |
3361 | time values are coerced to COMPLEX*16 (i.e. a complex number | |
070ad9f0 DB |
3362 | composed of 2 doubles. This really should be a smarter routine |
3363 | that figures out precision inteligently as opposed to assuming | |
ac3eeb49 | 3364 | doubles. FIXME: fmb */ |
c906108c | 3365 | |
f23631e4 | 3366 | struct value * |
ac3eeb49 MS |
3367 | value_literal_complex (struct value *arg1, |
3368 | struct value *arg2, | |
3369 | struct type *type) | |
c906108c | 3370 | { |
f23631e4 | 3371 | struct value *val; |
c906108c SS |
3372 | struct type *real_type = TYPE_TARGET_TYPE (type); |
3373 | ||
3374 | val = allocate_value (type); | |
3375 | arg1 = value_cast (real_type, arg1); | |
3376 | arg2 = value_cast (real_type, arg2); | |
3377 | ||
990a07ab | 3378 | memcpy (value_contents_raw (val), |
0fd88904 | 3379 | value_contents (arg1), TYPE_LENGTH (real_type)); |
990a07ab | 3380 | memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type), |
0fd88904 | 3381 | value_contents (arg2), TYPE_LENGTH (real_type)); |
c906108c SS |
3382 | return val; |
3383 | } | |
3384 | ||
ac3eeb49 | 3385 | /* Cast a value into the appropriate complex data type. */ |
c906108c | 3386 | |
f23631e4 AC |
3387 | static struct value * |
3388 | cast_into_complex (struct type *type, struct value *val) | |
c906108c SS |
3389 | { |
3390 | struct type *real_type = TYPE_TARGET_TYPE (type); | |
ac3eeb49 | 3391 | |
df407dfe | 3392 | if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX) |
c906108c | 3393 | { |
df407dfe | 3394 | struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val)); |
f23631e4 AC |
3395 | struct value *re_val = allocate_value (val_real_type); |
3396 | struct value *im_val = allocate_value (val_real_type); | |
c906108c | 3397 | |
990a07ab | 3398 | memcpy (value_contents_raw (re_val), |
0fd88904 | 3399 | value_contents (val), TYPE_LENGTH (val_real_type)); |
990a07ab | 3400 | memcpy (value_contents_raw (im_val), |
0fd88904 | 3401 | value_contents (val) + TYPE_LENGTH (val_real_type), |
c5aa993b | 3402 | TYPE_LENGTH (val_real_type)); |
c906108c SS |
3403 | |
3404 | return value_literal_complex (re_val, im_val, type); | |
3405 | } | |
df407dfe AC |
3406 | else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT |
3407 | || TYPE_CODE (value_type (val)) == TYPE_CODE_INT) | |
ac3eeb49 MS |
3408 | return value_literal_complex (val, |
3409 | value_zero (real_type, not_lval), | |
3410 | type); | |
c906108c | 3411 | else |
8a3fe4f8 | 3412 | error (_("cannot cast non-number to complex")); |
c906108c SS |
3413 | } |
3414 | ||
3415 | void | |
fba45db2 | 3416 | _initialize_valops (void) |
c906108c | 3417 | { |
5bf193a2 AC |
3418 | add_setshow_boolean_cmd ("overload-resolution", class_support, |
3419 | &overload_resolution, _("\ | |
3420 | Set overload resolution in evaluating C++ functions."), _("\ | |
ac3eeb49 MS |
3421 | Show overload resolution in evaluating C++ functions."), |
3422 | NULL, NULL, | |
920d2a44 | 3423 | show_overload_resolution, |
5bf193a2 | 3424 | &setlist, &showlist); |
c906108c | 3425 | overload_resolution = 1; |
c906108c | 3426 | } |