]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Perform non-arithmetic operations on values, for GDB. |
f23631e4 | 2 | Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, |
63d06c5c | 3 | 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 |
f23631e4 | 4 | Free Software Foundation, Inc. |
c906108c | 5 | |
c5aa993b | 6 | This file is part of GDB. |
c906108c | 7 | |
c5aa993b JM |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
c906108c | 12 | |
c5aa993b JM |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
c906108c | 17 | |
c5aa993b JM |
18 | You should have received a copy of the GNU General Public License |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, | |
21 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
22 | |
23 | #include "defs.h" | |
24 | #include "symtab.h" | |
25 | #include "gdbtypes.h" | |
26 | #include "value.h" | |
27 | #include "frame.h" | |
28 | #include "inferior.h" | |
29 | #include "gdbcore.h" | |
30 | #include "target.h" | |
31 | #include "demangle.h" | |
32 | #include "language.h" | |
33 | #include "gdbcmd.h" | |
4e052eda | 34 | #include "regcache.h" |
015a42b4 | 35 | #include "cp-abi.h" |
fe898f56 | 36 | #include "block.h" |
04714b91 | 37 | #include "infcall.h" |
de4f826b | 38 | #include "dictionary.h" |
b6429628 | 39 | #include "cp-support.h" |
c906108c SS |
40 | |
41 | #include <errno.h> | |
42 | #include "gdb_string.h" | |
4a1970e4 | 43 | #include "gdb_assert.h" |
79c2c32d | 44 | #include "cp-support.h" |
c906108c | 45 | |
070ad9f0 | 46 | extern int overload_debug; |
c906108c SS |
47 | /* Local functions. */ |
48 | ||
ad2f7632 DJ |
49 | static int typecmp (int staticp, int varargs, int nargs, |
50 | struct field t1[], struct value *t2[]); | |
c906108c | 51 | |
f23631e4 | 52 | static CORE_ADDR value_push (CORE_ADDR, struct value *); |
c906108c | 53 | |
f23631e4 | 54 | static struct value *search_struct_field (char *, struct value *, int, |
a14ed312 | 55 | struct type *, int); |
c906108c | 56 | |
f23631e4 AC |
57 | static struct value *search_struct_method (char *, struct value **, |
58 | struct value **, | |
a14ed312 | 59 | int, int *, struct type *); |
c906108c | 60 | |
8d577d32 DC |
61 | static int find_oload_champ_namespace (struct type **arg_types, int nargs, |
62 | const char *func_name, | |
63 | const char *qualified_name, | |
64 | struct symbol ***oload_syms, | |
65 | struct badness_vector **oload_champ_bv); | |
66 | ||
67 | static | |
68 | int find_oload_champ_namespace_loop (struct type **arg_types, int nargs, | |
69 | const char *func_name, | |
70 | const char *qualified_name, | |
71 | int namespace_len, | |
72 | struct symbol ***oload_syms, | |
73 | struct badness_vector **oload_champ_bv, | |
74 | int *oload_champ); | |
75 | ||
76 | static int find_oload_champ (struct type **arg_types, int nargs, int method, | |
77 | int num_fns, | |
78 | struct fn_field *fns_ptr, | |
79 | struct symbol **oload_syms, | |
80 | struct badness_vector **oload_champ_bv); | |
81 | ||
82 | static int oload_method_static (int method, struct fn_field *fns_ptr, | |
83 | int index); | |
84 | ||
85 | enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE }; | |
86 | ||
87 | static enum | |
88 | oload_classification classify_oload_match (struct badness_vector | |
89 | * oload_champ_bv, | |
90 | int nargs, | |
91 | int static_offset); | |
92 | ||
a14ed312 | 93 | static int check_field_in (struct type *, const char *); |
c906108c | 94 | |
79c2c32d DC |
95 | static struct value *value_struct_elt_for_reference (struct type *domain, |
96 | int offset, | |
97 | struct type *curtype, | |
98 | char *name, | |
63d06c5c DC |
99 | struct type *intype, |
100 | enum noside noside); | |
79c2c32d DC |
101 | |
102 | static struct value *value_namespace_elt (const struct type *curtype, | |
63d06c5c | 103 | char *name, |
79c2c32d DC |
104 | enum noside noside); |
105 | ||
63d06c5c DC |
106 | static struct value *value_maybe_namespace_elt (const struct type *curtype, |
107 | char *name, | |
108 | enum noside noside); | |
109 | ||
a14ed312 | 110 | static CORE_ADDR allocate_space_in_inferior (int); |
c906108c | 111 | |
f23631e4 | 112 | static struct value *cast_into_complex (struct type *, struct value *); |
c906108c | 113 | |
f23631e4 | 114 | static struct fn_field *find_method_list (struct value ** argp, char *method, |
4a1970e4 | 115 | int offset, |
a14ed312 KB |
116 | struct type *type, int *num_fns, |
117 | struct type **basetype, | |
118 | int *boffset); | |
7a292a7a | 119 | |
a14ed312 | 120 | void _initialize_valops (void); |
c906108c | 121 | |
c906108c SS |
122 | /* Flag for whether we want to abandon failed expression evals by default. */ |
123 | ||
124 | #if 0 | |
125 | static int auto_abandon = 0; | |
126 | #endif | |
127 | ||
128 | int overload_resolution = 0; | |
242bfc55 | 129 | |
c906108c SS |
130 | /* Find the address of function name NAME in the inferior. */ |
131 | ||
f23631e4 | 132 | struct value * |
3bada2a2 | 133 | find_function_in_inferior (const char *name) |
c906108c | 134 | { |
52f0bd74 | 135 | struct symbol *sym; |
176620f1 | 136 | sym = lookup_symbol (name, 0, VAR_DOMAIN, 0, NULL); |
c906108c SS |
137 | if (sym != NULL) |
138 | { | |
139 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
140 | { | |
141 | error ("\"%s\" exists in this program but is not a function.", | |
142 | name); | |
143 | } | |
144 | return value_of_variable (sym, NULL); | |
145 | } | |
146 | else | |
147 | { | |
c5aa993b | 148 | struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL); |
c906108c SS |
149 | if (msymbol != NULL) |
150 | { | |
151 | struct type *type; | |
4478b372 | 152 | CORE_ADDR maddr; |
c906108c SS |
153 | type = lookup_pointer_type (builtin_type_char); |
154 | type = lookup_function_type (type); | |
155 | type = lookup_pointer_type (type); | |
4478b372 JB |
156 | maddr = SYMBOL_VALUE_ADDRESS (msymbol); |
157 | return value_from_pointer (type, maddr); | |
c906108c SS |
158 | } |
159 | else | |
160 | { | |
c5aa993b | 161 | if (!target_has_execution) |
c906108c | 162 | error ("evaluation of this expression requires the target program to be active"); |
c5aa993b | 163 | else |
c906108c SS |
164 | error ("evaluation of this expression requires the program to have a function \"%s\".", name); |
165 | } | |
166 | } | |
167 | } | |
168 | ||
169 | /* Allocate NBYTES of space in the inferior using the inferior's malloc | |
170 | and return a value that is a pointer to the allocated space. */ | |
171 | ||
f23631e4 | 172 | struct value * |
fba45db2 | 173 | value_allocate_space_in_inferior (int len) |
c906108c | 174 | { |
f23631e4 | 175 | struct value *blocklen; |
5720643c | 176 | struct value *val = find_function_in_inferior (NAME_OF_MALLOC); |
c906108c SS |
177 | |
178 | blocklen = value_from_longest (builtin_type_int, (LONGEST) len); | |
179 | val = call_function_by_hand (val, 1, &blocklen); | |
180 | if (value_logical_not (val)) | |
181 | { | |
182 | if (!target_has_execution) | |
c5aa993b JM |
183 | error ("No memory available to program now: you need to start the target first"); |
184 | else | |
185 | error ("No memory available to program: call to malloc failed"); | |
c906108c SS |
186 | } |
187 | return val; | |
188 | } | |
189 | ||
190 | static CORE_ADDR | |
fba45db2 | 191 | allocate_space_in_inferior (int len) |
c906108c SS |
192 | { |
193 | return value_as_long (value_allocate_space_in_inferior (len)); | |
194 | } | |
195 | ||
196 | /* Cast value ARG2 to type TYPE and return as a value. | |
197 | More general than a C cast: accepts any two types of the same length, | |
198 | and if ARG2 is an lvalue it can be cast into anything at all. */ | |
199 | /* In C++, casts may change pointer or object representations. */ | |
200 | ||
f23631e4 AC |
201 | struct value * |
202 | value_cast (struct type *type, struct value *arg2) | |
c906108c | 203 | { |
52f0bd74 AC |
204 | enum type_code code1; |
205 | enum type_code code2; | |
206 | int scalar; | |
c906108c SS |
207 | struct type *type2; |
208 | ||
209 | int convert_to_boolean = 0; | |
c5aa993b | 210 | |
c906108c SS |
211 | if (VALUE_TYPE (arg2) == type) |
212 | return arg2; | |
213 | ||
214 | CHECK_TYPEDEF (type); | |
215 | code1 = TYPE_CODE (type); | |
c5aa993b | 216 | COERCE_REF (arg2); |
c906108c SS |
217 | type2 = check_typedef (VALUE_TYPE (arg2)); |
218 | ||
219 | /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT, | |
220 | is treated like a cast to (TYPE [N])OBJECT, | |
221 | where N is sizeof(OBJECT)/sizeof(TYPE). */ | |
222 | if (code1 == TYPE_CODE_ARRAY) | |
223 | { | |
224 | struct type *element_type = TYPE_TARGET_TYPE (type); | |
225 | unsigned element_length = TYPE_LENGTH (check_typedef (element_type)); | |
226 | if (element_length > 0 | |
c5aa993b | 227 | && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED) |
c906108c SS |
228 | { |
229 | struct type *range_type = TYPE_INDEX_TYPE (type); | |
230 | int val_length = TYPE_LENGTH (type2); | |
231 | LONGEST low_bound, high_bound, new_length; | |
232 | if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0) | |
233 | low_bound = 0, high_bound = 0; | |
234 | new_length = val_length / element_length; | |
235 | if (val_length % element_length != 0) | |
c5aa993b | 236 | warning ("array element type size does not divide object size in cast"); |
c906108c SS |
237 | /* FIXME-type-allocation: need a way to free this type when we are |
238 | done with it. */ | |
239 | range_type = create_range_type ((struct type *) NULL, | |
240 | TYPE_TARGET_TYPE (range_type), | |
241 | low_bound, | |
242 | new_length + low_bound - 1); | |
243 | VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL, | |
244 | element_type, range_type); | |
245 | return arg2; | |
246 | } | |
247 | } | |
248 | ||
249 | if (current_language->c_style_arrays | |
250 | && TYPE_CODE (type2) == TYPE_CODE_ARRAY) | |
251 | arg2 = value_coerce_array (arg2); | |
252 | ||
253 | if (TYPE_CODE (type2) == TYPE_CODE_FUNC) | |
254 | arg2 = value_coerce_function (arg2); | |
255 | ||
256 | type2 = check_typedef (VALUE_TYPE (arg2)); | |
257 | COERCE_VARYING_ARRAY (arg2, type2); | |
258 | code2 = TYPE_CODE (type2); | |
259 | ||
260 | if (code1 == TYPE_CODE_COMPLEX) | |
261 | return cast_into_complex (type, arg2); | |
262 | if (code1 == TYPE_CODE_BOOL) | |
263 | { | |
264 | code1 = TYPE_CODE_INT; | |
265 | convert_to_boolean = 1; | |
266 | } | |
267 | if (code1 == TYPE_CODE_CHAR) | |
268 | code1 = TYPE_CODE_INT; | |
269 | if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR) | |
270 | code2 = TYPE_CODE_INT; | |
271 | ||
272 | scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT | |
273 | || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE); | |
274 | ||
c5aa993b | 275 | if (code1 == TYPE_CODE_STRUCT |
c906108c SS |
276 | && code2 == TYPE_CODE_STRUCT |
277 | && TYPE_NAME (type) != 0) | |
278 | { | |
279 | /* Look in the type of the source to see if it contains the | |
7b83ea04 AC |
280 | type of the target as a superclass. If so, we'll need to |
281 | offset the object in addition to changing its type. */ | |
f23631e4 | 282 | struct value *v = search_struct_field (type_name_no_tag (type), |
c906108c SS |
283 | arg2, 0, type2, 1); |
284 | if (v) | |
285 | { | |
286 | VALUE_TYPE (v) = type; | |
287 | return v; | |
288 | } | |
289 | } | |
290 | if (code1 == TYPE_CODE_FLT && scalar) | |
291 | return value_from_double (type, value_as_double (arg2)); | |
292 | else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM | |
293 | || code1 == TYPE_CODE_RANGE) | |
294 | && (scalar || code2 == TYPE_CODE_PTR)) | |
295 | { | |
296 | LONGEST longest; | |
c5aa993b | 297 | |
f83f82bc AC |
298 | if (deprecated_hp_som_som_object_present /* if target compiled by HP aCC */ |
299 | && (code2 == TYPE_CODE_PTR)) | |
c5aa993b JM |
300 | { |
301 | unsigned int *ptr; | |
f23631e4 | 302 | struct value *retvalp; |
c5aa993b JM |
303 | |
304 | switch (TYPE_CODE (TYPE_TARGET_TYPE (type2))) | |
305 | { | |
306 | /* With HP aCC, pointers to data members have a bias */ | |
307 | case TYPE_CODE_MEMBER: | |
308 | retvalp = value_from_longest (type, value_as_long (arg2)); | |
716c501e | 309 | /* force evaluation */ |
802db21b | 310 | ptr = (unsigned int *) VALUE_CONTENTS (retvalp); |
c5aa993b JM |
311 | *ptr &= ~0x20000000; /* zap 29th bit to remove bias */ |
312 | return retvalp; | |
313 | ||
314 | /* While pointers to methods don't really point to a function */ | |
315 | case TYPE_CODE_METHOD: | |
316 | error ("Pointers to methods not supported with HP aCC"); | |
317 | ||
318 | default: | |
319 | break; /* fall out and go to normal handling */ | |
320 | } | |
321 | } | |
2bf1f4a1 JB |
322 | |
323 | /* When we cast pointers to integers, we mustn't use | |
324 | POINTER_TO_ADDRESS to find the address the pointer | |
325 | represents, as value_as_long would. GDB should evaluate | |
326 | expressions just as the compiler would --- and the compiler | |
327 | sees a cast as a simple reinterpretation of the pointer's | |
328 | bits. */ | |
329 | if (code2 == TYPE_CODE_PTR) | |
330 | longest = extract_unsigned_integer (VALUE_CONTENTS (arg2), | |
331 | TYPE_LENGTH (type2)); | |
332 | else | |
333 | longest = value_as_long (arg2); | |
802db21b | 334 | return value_from_longest (type, convert_to_boolean ? |
716c501e | 335 | (LONGEST) (longest ? 1 : 0) : longest); |
c906108c | 336 | } |
802db21b | 337 | else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT || |
23e04971 MS |
338 | code2 == TYPE_CODE_ENUM || |
339 | code2 == TYPE_CODE_RANGE)) | |
634acd5f | 340 | { |
4603e466 DT |
341 | /* TYPE_LENGTH (type) is the length of a pointer, but we really |
342 | want the length of an address! -- we are really dealing with | |
343 | addresses (i.e., gdb representations) not pointers (i.e., | |
344 | target representations) here. | |
345 | ||
346 | This allows things like "print *(int *)0x01000234" to work | |
347 | without printing a misleading message -- which would | |
348 | otherwise occur when dealing with a target having two byte | |
349 | pointers and four byte addresses. */ | |
350 | ||
351 | int addr_bit = TARGET_ADDR_BIT; | |
352 | ||
634acd5f | 353 | LONGEST longest = value_as_long (arg2); |
4603e466 | 354 | if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT) |
634acd5f | 355 | { |
4603e466 DT |
356 | if (longest >= ((LONGEST) 1 << addr_bit) |
357 | || longest <= -((LONGEST) 1 << addr_bit)) | |
634acd5f AC |
358 | warning ("value truncated"); |
359 | } | |
360 | return value_from_longest (type, longest); | |
361 | } | |
c906108c SS |
362 | else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2)) |
363 | { | |
364 | if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR) | |
365 | { | |
366 | struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type)); | |
367 | struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2)); | |
c5aa993b | 368 | if (TYPE_CODE (t1) == TYPE_CODE_STRUCT |
c906108c SS |
369 | && TYPE_CODE (t2) == TYPE_CODE_STRUCT |
370 | && !value_logical_not (arg2)) | |
371 | { | |
f23631e4 | 372 | struct value *v; |
c906108c SS |
373 | |
374 | /* Look in the type of the source to see if it contains the | |
7b83ea04 AC |
375 | type of the target as a superclass. If so, we'll need to |
376 | offset the pointer rather than just change its type. */ | |
c906108c SS |
377 | if (TYPE_NAME (t1) != NULL) |
378 | { | |
379 | v = search_struct_field (type_name_no_tag (t1), | |
380 | value_ind (arg2), 0, t2, 1); | |
381 | if (v) | |
382 | { | |
383 | v = value_addr (v); | |
384 | VALUE_TYPE (v) = type; | |
385 | return v; | |
386 | } | |
387 | } | |
388 | ||
389 | /* Look in the type of the target to see if it contains the | |
7b83ea04 AC |
390 | type of the source as a superclass. If so, we'll need to |
391 | offset the pointer rather than just change its type. | |
392 | FIXME: This fails silently with virtual inheritance. */ | |
c906108c SS |
393 | if (TYPE_NAME (t2) != NULL) |
394 | { | |
395 | v = search_struct_field (type_name_no_tag (t2), | |
c5aa993b | 396 | value_zero (t1, not_lval), 0, t1, 1); |
c906108c SS |
397 | if (v) |
398 | { | |
d174216d JB |
399 | CORE_ADDR addr2 = value_as_address (arg2); |
400 | addr2 -= (VALUE_ADDRESS (v) | |
401 | + VALUE_OFFSET (v) | |
402 | + VALUE_EMBEDDED_OFFSET (v)); | |
403 | return value_from_pointer (type, addr2); | |
c906108c SS |
404 | } |
405 | } | |
406 | } | |
407 | /* No superclass found, just fall through to change ptr type. */ | |
408 | } | |
409 | VALUE_TYPE (arg2) = type; | |
2b127877 | 410 | arg2 = value_change_enclosing_type (arg2, type); |
c5aa993b | 411 | VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */ |
c906108c SS |
412 | return arg2; |
413 | } | |
c906108c SS |
414 | else if (VALUE_LVAL (arg2) == lval_memory) |
415 | { | |
416 | return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2), | |
417 | VALUE_BFD_SECTION (arg2)); | |
418 | } | |
419 | else if (code1 == TYPE_CODE_VOID) | |
420 | { | |
421 | return value_zero (builtin_type_void, not_lval); | |
422 | } | |
423 | else | |
424 | { | |
425 | error ("Invalid cast."); | |
426 | return 0; | |
427 | } | |
428 | } | |
429 | ||
430 | /* Create a value of type TYPE that is zero, and return it. */ | |
431 | ||
f23631e4 | 432 | struct value * |
fba45db2 | 433 | value_zero (struct type *type, enum lval_type lv) |
c906108c | 434 | { |
f23631e4 | 435 | struct value *val = allocate_value (type); |
c906108c SS |
436 | |
437 | memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type))); | |
438 | VALUE_LVAL (val) = lv; | |
439 | ||
440 | return val; | |
441 | } | |
442 | ||
070ad9f0 | 443 | /* Return a value with type TYPE located at ADDR. |
c906108c SS |
444 | |
445 | Call value_at only if the data needs to be fetched immediately; | |
446 | if we can be 'lazy' and defer the fetch, perhaps indefinately, call | |
447 | value_at_lazy instead. value_at_lazy simply records the address of | |
070ad9f0 DB |
448 | the data and sets the lazy-evaluation-required flag. The lazy flag |
449 | is tested in the VALUE_CONTENTS macro, which is used if and when | |
450 | the contents are actually required. | |
c906108c SS |
451 | |
452 | Note: value_at does *NOT* handle embedded offsets; perform such | |
453 | adjustments before or after calling it. */ | |
454 | ||
f23631e4 | 455 | struct value * |
fba45db2 | 456 | value_at (struct type *type, CORE_ADDR addr, asection *sect) |
c906108c | 457 | { |
f23631e4 | 458 | struct value *val; |
c906108c SS |
459 | |
460 | if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID) | |
461 | error ("Attempt to dereference a generic pointer."); | |
462 | ||
463 | val = allocate_value (type); | |
464 | ||
75af7f68 | 465 | read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type)); |
c906108c SS |
466 | |
467 | VALUE_LVAL (val) = lval_memory; | |
468 | VALUE_ADDRESS (val) = addr; | |
469 | VALUE_BFD_SECTION (val) = sect; | |
470 | ||
471 | return val; | |
472 | } | |
473 | ||
474 | /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */ | |
475 | ||
f23631e4 | 476 | struct value * |
fba45db2 | 477 | value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect) |
c906108c | 478 | { |
f23631e4 | 479 | struct value *val; |
c906108c SS |
480 | |
481 | if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID) | |
482 | error ("Attempt to dereference a generic pointer."); | |
483 | ||
484 | val = allocate_value (type); | |
485 | ||
486 | VALUE_LVAL (val) = lval_memory; | |
487 | VALUE_ADDRESS (val) = addr; | |
488 | VALUE_LAZY (val) = 1; | |
489 | VALUE_BFD_SECTION (val) = sect; | |
490 | ||
491 | return val; | |
492 | } | |
493 | ||
070ad9f0 DB |
494 | /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros, |
495 | if the current data for a variable needs to be loaded into | |
496 | VALUE_CONTENTS(VAL). Fetches the data from the user's process, and | |
c906108c SS |
497 | clears the lazy flag to indicate that the data in the buffer is valid. |
498 | ||
499 | If the value is zero-length, we avoid calling read_memory, which would | |
500 | abort. We mark the value as fetched anyway -- all 0 bytes of it. | |
501 | ||
502 | This function returns a value because it is used in the VALUE_CONTENTS | |
503 | macro as part of an expression, where a void would not work. The | |
504 | value is ignored. */ | |
505 | ||
506 | int | |
f23631e4 | 507 | value_fetch_lazy (struct value *val) |
c906108c SS |
508 | { |
509 | CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val); | |
510 | int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)); | |
511 | ||
c5aa993b | 512 | struct type *type = VALUE_TYPE (val); |
75af7f68 | 513 | if (length) |
d4b2399a | 514 | read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length); |
802db21b | 515 | |
c906108c SS |
516 | VALUE_LAZY (val) = 0; |
517 | return 0; | |
518 | } | |
519 | ||
520 | ||
521 | /* Store the contents of FROMVAL into the location of TOVAL. | |
522 | Return a new value with the location of TOVAL and contents of FROMVAL. */ | |
523 | ||
f23631e4 AC |
524 | struct value * |
525 | value_assign (struct value *toval, struct value *fromval) | |
c906108c | 526 | { |
52f0bd74 | 527 | struct type *type; |
f23631e4 | 528 | struct value *val; |
d9d9c31f | 529 | char raw_buffer[MAX_REGISTER_SIZE]; |
c906108c | 530 | int use_buffer = 0; |
cb741690 | 531 | struct frame_id old_frame; |
c906108c SS |
532 | |
533 | if (!toval->modifiable) | |
534 | error ("Left operand of assignment is not a modifiable lvalue."); | |
535 | ||
536 | COERCE_REF (toval); | |
537 | ||
538 | type = VALUE_TYPE (toval); | |
539 | if (VALUE_LVAL (toval) != lval_internalvar) | |
540 | fromval = value_cast (type, fromval); | |
541 | else | |
542 | COERCE_ARRAY (fromval); | |
543 | CHECK_TYPEDEF (type); | |
544 | ||
cb741690 DJ |
545 | /* Since modifying a register can trash the frame chain, and modifying memory |
546 | can trash the frame cache, we save the old frame and then restore the new | |
547 | frame afterwards. */ | |
548 | old_frame = get_frame_id (deprecated_selected_frame); | |
549 | ||
c906108c SS |
550 | switch (VALUE_LVAL (toval)) |
551 | { | |
552 | case lval_internalvar: | |
553 | set_internalvar (VALUE_INTERNALVAR (toval), fromval); | |
554 | val = value_copy (VALUE_INTERNALVAR (toval)->value); | |
2b127877 | 555 | val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval)); |
c906108c SS |
556 | VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval); |
557 | VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval); | |
558 | return val; | |
559 | ||
560 | case lval_internalvar_component: | |
561 | set_internalvar_component (VALUE_INTERNALVAR (toval), | |
562 | VALUE_OFFSET (toval), | |
563 | VALUE_BITPOS (toval), | |
564 | VALUE_BITSIZE (toval), | |
565 | fromval); | |
566 | break; | |
567 | ||
568 | case lval_memory: | |
569 | { | |
570 | char *dest_buffer; | |
c5aa993b JM |
571 | CORE_ADDR changed_addr; |
572 | int changed_len; | |
c906108c | 573 | |
c5aa993b JM |
574 | if (VALUE_BITSIZE (toval)) |
575 | { | |
c906108c SS |
576 | char buffer[sizeof (LONGEST)]; |
577 | /* We assume that the argument to read_memory is in units of | |
578 | host chars. FIXME: Is that correct? */ | |
579 | changed_len = (VALUE_BITPOS (toval) | |
c5aa993b JM |
580 | + VALUE_BITSIZE (toval) |
581 | + HOST_CHAR_BIT - 1) | |
582 | / HOST_CHAR_BIT; | |
c906108c SS |
583 | |
584 | if (changed_len > (int) sizeof (LONGEST)) | |
585 | error ("Can't handle bitfields which don't fit in a %d bit word.", | |
baa6f10b | 586 | (int) sizeof (LONGEST) * HOST_CHAR_BIT); |
c906108c SS |
587 | |
588 | read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
589 | buffer, changed_len); | |
590 | modify_field (buffer, value_as_long (fromval), | |
591 | VALUE_BITPOS (toval), VALUE_BITSIZE (toval)); | |
592 | changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval); | |
593 | dest_buffer = buffer; | |
594 | } | |
595 | else if (use_buffer) | |
596 | { | |
597 | changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval); | |
598 | changed_len = use_buffer; | |
599 | dest_buffer = raw_buffer; | |
600 | } | |
601 | else | |
602 | { | |
603 | changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval); | |
604 | changed_len = TYPE_LENGTH (type); | |
605 | dest_buffer = VALUE_CONTENTS (fromval); | |
606 | } | |
607 | ||
608 | write_memory (changed_addr, dest_buffer, changed_len); | |
9a4105ab AC |
609 | if (deprecated_memory_changed_hook) |
610 | deprecated_memory_changed_hook (changed_addr, changed_len); | |
e23792cc | 611 | target_changed_event (); |
c906108c SS |
612 | } |
613 | break; | |
614 | ||
c906108c | 615 | case lval_reg_frame_relative: |
492254e9 | 616 | case lval_register: |
c906108c | 617 | { |
c906108c | 618 | struct frame_info *frame; |
ff2e87ac | 619 | int value_reg; |
c906108c SS |
620 | |
621 | /* Figure out which frame this is in currently. */ | |
492254e9 AC |
622 | if (VALUE_LVAL (toval) == lval_register) |
623 | { | |
624 | frame = get_current_frame (); | |
625 | value_reg = VALUE_REGNO (toval); | |
626 | } | |
627 | else | |
628 | { | |
1df6926e | 629 | frame = frame_find_by_id (VALUE_FRAME_ID (toval)); |
492254e9 AC |
630 | value_reg = VALUE_FRAME_REGNUM (toval); |
631 | } | |
c906108c SS |
632 | |
633 | if (!frame) | |
634 | error ("Value being assigned to is no longer active."); | |
492254e9 | 635 | |
ff2e87ac AC |
636 | if (VALUE_LVAL (toval) == lval_reg_frame_relative |
637 | && CONVERT_REGISTER_P (VALUE_FRAME_REGNUM (toval), type)) | |
492254e9 | 638 | { |
ff2e87ac AC |
639 | /* If TOVAL is a special machine register requiring |
640 | conversion of program values to a special raw format. */ | |
641 | VALUE_TO_REGISTER (frame, VALUE_FRAME_REGNUM (toval), | |
642 | type, VALUE_CONTENTS (fromval)); | |
492254e9 | 643 | } |
c906108c | 644 | else |
492254e9 | 645 | { |
ff2e87ac AC |
646 | /* TOVAL is stored in a series of registers in the frame |
647 | specified by the structure. Copy that value out, | |
648 | modify it, and copy it back in. */ | |
649 | int amount_copied; | |
650 | int amount_to_copy; | |
651 | char *buffer; | |
652 | int reg_offset; | |
653 | int byte_offset; | |
654 | int regno; | |
655 | ||
656 | /* Locate the first register that falls in the value that | |
657 | needs to be transfered. Compute the offset of the | |
658 | value in that register. */ | |
659 | { | |
660 | int offset; | |
661 | for (reg_offset = value_reg, offset = 0; | |
12c266ea | 662 | offset + DEPRECATED_REGISTER_RAW_SIZE (reg_offset) <= VALUE_OFFSET (toval); |
ff2e87ac AC |
663 | reg_offset++); |
664 | byte_offset = VALUE_OFFSET (toval) - offset; | |
665 | } | |
c906108c | 666 | |
ff2e87ac AC |
667 | /* Compute the number of register aligned values that need |
668 | to be copied. */ | |
669 | if (VALUE_BITSIZE (toval)) | |
670 | amount_to_copy = byte_offset + 1; | |
671 | else | |
672 | amount_to_copy = byte_offset + TYPE_LENGTH (type); | |
492254e9 | 673 | |
ff2e87ac AC |
674 | /* And a bounce buffer. Be slightly over generous. */ |
675 | buffer = (char *) alloca (amount_to_copy + MAX_REGISTER_SIZE); | |
676 | ||
677 | /* Copy it in. */ | |
678 | for (regno = reg_offset, amount_copied = 0; | |
679 | amount_copied < amount_to_copy; | |
12c266ea | 680 | amount_copied += DEPRECATED_REGISTER_RAW_SIZE (regno), regno++) |
ff2e87ac | 681 | frame_register_read (frame, regno, buffer + amount_copied); |
492254e9 | 682 | |
ff2e87ac AC |
683 | /* Modify what needs to be modified. */ |
684 | if (VALUE_BITSIZE (toval)) | |
685 | modify_field (buffer + byte_offset, | |
686 | value_as_long (fromval), | |
687 | VALUE_BITPOS (toval), VALUE_BITSIZE (toval)); | |
688 | else if (use_buffer) | |
689 | memcpy (buffer + VALUE_OFFSET (toval), raw_buffer, use_buffer); | |
c906108c | 690 | else |
ff2e87ac AC |
691 | memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval), |
692 | TYPE_LENGTH (type)); | |
693 | ||
694 | /* Copy it out. */ | |
695 | for (regno = reg_offset, amount_copied = 0; | |
696 | amount_copied < amount_to_copy; | |
12c266ea | 697 | amount_copied += DEPRECATED_REGISTER_RAW_SIZE (regno), regno++) |
ff2e87ac | 698 | put_frame_register (frame, regno, buffer + amount_copied); |
c906108c | 699 | |
ff2e87ac | 700 | } |
9a4105ab AC |
701 | if (deprecated_register_changed_hook) |
702 | deprecated_register_changed_hook (-1); | |
e23792cc | 703 | target_changed_event (); |
ff2e87ac | 704 | break; |
c906108c | 705 | } |
492254e9 | 706 | |
c906108c SS |
707 | default: |
708 | error ("Left operand of assignment is not an lvalue."); | |
709 | } | |
710 | ||
cb741690 DJ |
711 | /* Assigning to the stack pointer, frame pointer, and other |
712 | (architecture and calling convention specific) registers may | |
713 | cause the frame cache to be out of date. Assigning to memory | |
714 | also can. We just do this on all assignments to registers or | |
715 | memory, for simplicity's sake; I doubt the slowdown matters. */ | |
716 | switch (VALUE_LVAL (toval)) | |
717 | { | |
718 | case lval_memory: | |
719 | case lval_register: | |
720 | case lval_reg_frame_relative: | |
721 | ||
722 | reinit_frame_cache (); | |
723 | ||
724 | /* Having destoroyed the frame cache, restore the selected frame. */ | |
725 | ||
726 | /* FIXME: cagney/2002-11-02: There has to be a better way of | |
727 | doing this. Instead of constantly saving/restoring the | |
728 | frame. Why not create a get_selected_frame() function that, | |
729 | having saved the selected frame's ID can automatically | |
730 | re-find the previously selected frame automatically. */ | |
731 | ||
732 | { | |
733 | struct frame_info *fi = frame_find_by_id (old_frame); | |
734 | if (fi != NULL) | |
735 | select_frame (fi); | |
736 | } | |
737 | ||
738 | break; | |
739 | default: | |
740 | break; | |
741 | } | |
742 | ||
c906108c SS |
743 | /* If the field does not entirely fill a LONGEST, then zero the sign bits. |
744 | If the field is signed, and is negative, then sign extend. */ | |
745 | if ((VALUE_BITSIZE (toval) > 0) | |
746 | && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST))) | |
747 | { | |
748 | LONGEST fieldval = value_as_long (fromval); | |
749 | LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1; | |
750 | ||
751 | fieldval &= valmask; | |
752 | if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1)))) | |
753 | fieldval |= ~valmask; | |
754 | ||
755 | fromval = value_from_longest (type, fieldval); | |
756 | } | |
757 | ||
758 | val = value_copy (toval); | |
759 | memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval), | |
760 | TYPE_LENGTH (type)); | |
761 | VALUE_TYPE (val) = type; | |
2b127877 | 762 | val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval)); |
c906108c SS |
763 | VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval); |
764 | VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval); | |
c5aa993b | 765 | |
c906108c SS |
766 | return val; |
767 | } | |
768 | ||
769 | /* Extend a value VAL to COUNT repetitions of its type. */ | |
770 | ||
f23631e4 AC |
771 | struct value * |
772 | value_repeat (struct value *arg1, int count) | |
c906108c | 773 | { |
f23631e4 | 774 | struct value *val; |
c906108c SS |
775 | |
776 | if (VALUE_LVAL (arg1) != lval_memory) | |
777 | error ("Only values in memory can be extended with '@'."); | |
778 | if (count < 1) | |
779 | error ("Invalid number %d of repetitions.", count); | |
780 | ||
781 | val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count); | |
782 | ||
783 | read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1), | |
784 | VALUE_CONTENTS_ALL_RAW (val), | |
785 | TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val))); | |
786 | VALUE_LVAL (val) = lval_memory; | |
787 | VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1); | |
788 | ||
789 | return val; | |
790 | } | |
791 | ||
f23631e4 | 792 | struct value * |
fba45db2 | 793 | value_of_variable (struct symbol *var, struct block *b) |
c906108c | 794 | { |
f23631e4 | 795 | struct value *val; |
c906108c SS |
796 | struct frame_info *frame = NULL; |
797 | ||
798 | if (!b) | |
799 | frame = NULL; /* Use selected frame. */ | |
800 | else if (symbol_read_needs_frame (var)) | |
801 | { | |
802 | frame = block_innermost_frame (b); | |
803 | if (!frame) | |
c5aa993b | 804 | { |
c906108c | 805 | if (BLOCK_FUNCTION (b) |
de5ad195 | 806 | && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b))) |
c906108c | 807 | error ("No frame is currently executing in block %s.", |
de5ad195 | 808 | SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b))); |
c906108c SS |
809 | else |
810 | error ("No frame is currently executing in specified block"); | |
c5aa993b | 811 | } |
c906108c SS |
812 | } |
813 | ||
814 | val = read_var_value (var, frame); | |
815 | if (!val) | |
de5ad195 | 816 | error ("Address of symbol \"%s\" is unknown.", SYMBOL_PRINT_NAME (var)); |
c906108c SS |
817 | |
818 | return val; | |
819 | } | |
820 | ||
821 | /* Given a value which is an array, return a value which is a pointer to its | |
822 | first element, regardless of whether or not the array has a nonzero lower | |
823 | bound. | |
824 | ||
825 | FIXME: A previous comment here indicated that this routine should be | |
826 | substracting the array's lower bound. It's not clear to me that this | |
827 | is correct. Given an array subscripting operation, it would certainly | |
828 | work to do the adjustment here, essentially computing: | |
829 | ||
830 | (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0]) | |
831 | ||
832 | However I believe a more appropriate and logical place to account for | |
833 | the lower bound is to do so in value_subscript, essentially computing: | |
834 | ||
835 | (&array[0] + ((index - lowerbound) * sizeof array[0])) | |
836 | ||
837 | As further evidence consider what would happen with operations other | |
838 | than array subscripting, where the caller would get back a value that | |
839 | had an address somewhere before the actual first element of the array, | |
840 | and the information about the lower bound would be lost because of | |
841 | the coercion to pointer type. | |
c5aa993b | 842 | */ |
c906108c | 843 | |
f23631e4 AC |
844 | struct value * |
845 | value_coerce_array (struct value *arg1) | |
c906108c | 846 | { |
52f0bd74 | 847 | struct type *type = check_typedef (VALUE_TYPE (arg1)); |
c906108c SS |
848 | |
849 | if (VALUE_LVAL (arg1) != lval_memory) | |
850 | error ("Attempt to take address of value not located in memory."); | |
851 | ||
4478b372 JB |
852 | return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
853 | (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1))); | |
c906108c SS |
854 | } |
855 | ||
856 | /* Given a value which is a function, return a value which is a pointer | |
857 | to it. */ | |
858 | ||
f23631e4 AC |
859 | struct value * |
860 | value_coerce_function (struct value *arg1) | |
c906108c | 861 | { |
f23631e4 | 862 | struct value *retval; |
c906108c SS |
863 | |
864 | if (VALUE_LVAL (arg1) != lval_memory) | |
865 | error ("Attempt to take address of value not located in memory."); | |
866 | ||
4478b372 JB |
867 | retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)), |
868 | (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1))); | |
c906108c SS |
869 | VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1); |
870 | return retval; | |
c5aa993b | 871 | } |
c906108c SS |
872 | |
873 | /* Return a pointer value for the object for which ARG1 is the contents. */ | |
874 | ||
f23631e4 AC |
875 | struct value * |
876 | value_addr (struct value *arg1) | |
c906108c | 877 | { |
f23631e4 | 878 | struct value *arg2; |
c906108c SS |
879 | |
880 | struct type *type = check_typedef (VALUE_TYPE (arg1)); | |
881 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
882 | { | |
883 | /* Copy the value, but change the type from (T&) to (T*). | |
7b83ea04 AC |
884 | We keep the same location information, which is efficient, |
885 | and allows &(&X) to get the location containing the reference. */ | |
c906108c SS |
886 | arg2 = value_copy (arg1); |
887 | VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type)); | |
888 | return arg2; | |
889 | } | |
890 | if (TYPE_CODE (type) == TYPE_CODE_FUNC) | |
891 | return value_coerce_function (arg1); | |
892 | ||
893 | if (VALUE_LVAL (arg1) != lval_memory) | |
894 | error ("Attempt to take address of value not located in memory."); | |
895 | ||
c5aa993b | 896 | /* Get target memory address */ |
4478b372 JB |
897 | arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)), |
898 | (VALUE_ADDRESS (arg1) | |
899 | + VALUE_OFFSET (arg1) | |
900 | + VALUE_EMBEDDED_OFFSET (arg1))); | |
c906108c SS |
901 | |
902 | /* This may be a pointer to a base subobject; so remember the | |
c5aa993b | 903 | full derived object's type ... */ |
2b127877 | 904 | arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1))); |
c5aa993b JM |
905 | /* ... and also the relative position of the subobject in the full object */ |
906 | VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1); | |
c906108c SS |
907 | VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1); |
908 | return arg2; | |
909 | } | |
910 | ||
911 | /* Given a value of a pointer type, apply the C unary * operator to it. */ | |
912 | ||
f23631e4 AC |
913 | struct value * |
914 | value_ind (struct value *arg1) | |
c906108c SS |
915 | { |
916 | struct type *base_type; | |
f23631e4 | 917 | struct value *arg2; |
c906108c SS |
918 | |
919 | COERCE_ARRAY (arg1); | |
920 | ||
921 | base_type = check_typedef (VALUE_TYPE (arg1)); | |
922 | ||
923 | if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER) | |
924 | error ("not implemented: member types in value_ind"); | |
925 | ||
926 | /* Allow * on an integer so we can cast it to whatever we want. | |
927 | This returns an int, which seems like the most C-like thing | |
928 | to do. "long long" variables are rare enough that | |
929 | BUILTIN_TYPE_LONGEST would seem to be a mistake. */ | |
930 | if (TYPE_CODE (base_type) == TYPE_CODE_INT) | |
56468235 DH |
931 | return value_at_lazy (builtin_type_int, |
932 | (CORE_ADDR) value_as_long (arg1), | |
933 | VALUE_BFD_SECTION (arg1)); | |
c906108c SS |
934 | else if (TYPE_CODE (base_type) == TYPE_CODE_PTR) |
935 | { | |
936 | struct type *enc_type; | |
937 | /* We may be pointing to something embedded in a larger object */ | |
c5aa993b | 938 | /* Get the real type of the enclosing object */ |
c906108c SS |
939 | enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1)); |
940 | enc_type = TYPE_TARGET_TYPE (enc_type); | |
c5aa993b JM |
941 | /* Retrieve the enclosing object pointed to */ |
942 | arg2 = value_at_lazy (enc_type, | |
1aa20aa8 | 943 | value_as_address (arg1) - VALUE_POINTED_TO_OFFSET (arg1), |
c5aa993b JM |
944 | VALUE_BFD_SECTION (arg1)); |
945 | /* Re-adjust type */ | |
c906108c SS |
946 | VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type); |
947 | /* Add embedding info */ | |
2b127877 | 948 | arg2 = value_change_enclosing_type (arg2, enc_type); |
c906108c SS |
949 | VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1); |
950 | ||
951 | /* We may be pointing to an object of some derived type */ | |
952 | arg2 = value_full_object (arg2, NULL, 0, 0, 0); | |
953 | return arg2; | |
954 | } | |
955 | ||
956 | error ("Attempt to take contents of a non-pointer value."); | |
c5aa993b | 957 | return 0; /* For lint -- never reached */ |
c906108c SS |
958 | } |
959 | \f | |
960 | /* Pushing small parts of stack frames. */ | |
961 | ||
962 | /* Push one word (the size of object that a register holds). */ | |
963 | ||
964 | CORE_ADDR | |
fba45db2 | 965 | push_word (CORE_ADDR sp, ULONGEST word) |
c906108c | 966 | { |
52f0bd74 | 967 | int len = DEPRECATED_REGISTER_SIZE; |
eb294659 | 968 | char buffer[MAX_REGISTER_SIZE]; |
c906108c SS |
969 | |
970 | store_unsigned_integer (buffer, len, word); | |
971 | if (INNER_THAN (1, 2)) | |
972 | { | |
973 | /* stack grows downward */ | |
974 | sp -= len; | |
975 | write_memory (sp, buffer, len); | |
976 | } | |
977 | else | |
978 | { | |
979 | /* stack grows upward */ | |
980 | write_memory (sp, buffer, len); | |
981 | sp += len; | |
982 | } | |
983 | ||
984 | return sp; | |
985 | } | |
986 | ||
987 | /* Push LEN bytes with data at BUFFER. */ | |
988 | ||
989 | CORE_ADDR | |
fba45db2 | 990 | push_bytes (CORE_ADDR sp, char *buffer, int len) |
c906108c SS |
991 | { |
992 | if (INNER_THAN (1, 2)) | |
993 | { | |
994 | /* stack grows downward */ | |
995 | sp -= len; | |
996 | write_memory (sp, buffer, len); | |
997 | } | |
998 | else | |
999 | { | |
1000 | /* stack grows upward */ | |
1001 | write_memory (sp, buffer, len); | |
1002 | sp += len; | |
1003 | } | |
1004 | ||
1005 | return sp; | |
1006 | } | |
1007 | ||
2df3850c JM |
1008 | #ifndef PARM_BOUNDARY |
1009 | #define PARM_BOUNDARY (0) | |
1010 | #endif | |
1011 | ||
1012 | /* Push onto the stack the specified value VALUE. Pad it correctly for | |
1013 | it to be an argument to a function. */ | |
c906108c | 1014 | |
c906108c | 1015 | static CORE_ADDR |
aa1ee363 | 1016 | value_push (CORE_ADDR sp, struct value *arg) |
c906108c | 1017 | { |
52f0bd74 AC |
1018 | int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)); |
1019 | int container_len = len; | |
1020 | int offset; | |
2df3850c JM |
1021 | |
1022 | /* How big is the container we're going to put this value in? */ | |
1023 | if (PARM_BOUNDARY) | |
1024 | container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1) | |
1025 | & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1)); | |
1026 | ||
1027 | /* Are we going to put it at the high or low end of the container? */ | |
d7449b42 | 1028 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
2df3850c JM |
1029 | offset = container_len - len; |
1030 | else | |
1031 | offset = 0; | |
c906108c SS |
1032 | |
1033 | if (INNER_THAN (1, 2)) | |
1034 | { | |
1035 | /* stack grows downward */ | |
2df3850c JM |
1036 | sp -= container_len; |
1037 | write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len); | |
c906108c SS |
1038 | } |
1039 | else | |
1040 | { | |
1041 | /* stack grows upward */ | |
2df3850c JM |
1042 | write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len); |
1043 | sp += container_len; | |
c906108c SS |
1044 | } |
1045 | ||
1046 | return sp; | |
1047 | } | |
1048 | ||
392a587b | 1049 | CORE_ADDR |
b81774d8 AC |
1050 | legacy_push_arguments (int nargs, struct value **args, CORE_ADDR sp, |
1051 | int struct_return, CORE_ADDR struct_addr) | |
392a587b JM |
1052 | { |
1053 | /* ASSERT ( !struct_return); */ | |
1054 | int i; | |
1055 | for (i = nargs - 1; i >= 0; i--) | |
1056 | sp = value_push (sp, args[i]); | |
1057 | return sp; | |
1058 | } | |
1059 | ||
c906108c SS |
1060 | /* Create a value for an array by allocating space in the inferior, copying |
1061 | the data into that space, and then setting up an array value. | |
1062 | ||
1063 | The array bounds are set from LOWBOUND and HIGHBOUND, and the array is | |
1064 | populated from the values passed in ELEMVEC. | |
1065 | ||
1066 | The element type of the array is inherited from the type of the | |
1067 | first element, and all elements must have the same size (though we | |
1068 | don't currently enforce any restriction on their types). */ | |
1069 | ||
f23631e4 AC |
1070 | struct value * |
1071 | value_array (int lowbound, int highbound, struct value **elemvec) | |
c906108c SS |
1072 | { |
1073 | int nelem; | |
1074 | int idx; | |
1075 | unsigned int typelength; | |
f23631e4 | 1076 | struct value *val; |
c906108c SS |
1077 | struct type *rangetype; |
1078 | struct type *arraytype; | |
1079 | CORE_ADDR addr; | |
1080 | ||
1081 | /* Validate that the bounds are reasonable and that each of the elements | |
1082 | have the same size. */ | |
1083 | ||
1084 | nelem = highbound - lowbound + 1; | |
1085 | if (nelem <= 0) | |
1086 | { | |
1087 | error ("bad array bounds (%d, %d)", lowbound, highbound); | |
1088 | } | |
1089 | typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0])); | |
1090 | for (idx = 1; idx < nelem; idx++) | |
1091 | { | |
1092 | if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength) | |
1093 | { | |
1094 | error ("array elements must all be the same size"); | |
1095 | } | |
1096 | } | |
1097 | ||
1098 | rangetype = create_range_type ((struct type *) NULL, builtin_type_int, | |
1099 | lowbound, highbound); | |
c5aa993b JM |
1100 | arraytype = create_array_type ((struct type *) NULL, |
1101 | VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype); | |
c906108c SS |
1102 | |
1103 | if (!current_language->c_style_arrays) | |
1104 | { | |
1105 | val = allocate_value (arraytype); | |
1106 | for (idx = 0; idx < nelem; idx++) | |
1107 | { | |
1108 | memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength), | |
1109 | VALUE_CONTENTS_ALL (elemvec[idx]), | |
1110 | typelength); | |
1111 | } | |
1112 | VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]); | |
1113 | return val; | |
1114 | } | |
1115 | ||
1116 | /* Allocate space to store the array in the inferior, and then initialize | |
1117 | it by copying in each element. FIXME: Is it worth it to create a | |
1118 | local buffer in which to collect each value and then write all the | |
1119 | bytes in one operation? */ | |
1120 | ||
1121 | addr = allocate_space_in_inferior (nelem * typelength); | |
1122 | for (idx = 0; idx < nelem; idx++) | |
1123 | { | |
1124 | write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]), | |
1125 | typelength); | |
1126 | } | |
1127 | ||
1128 | /* Create the array type and set up an array value to be evaluated lazily. */ | |
1129 | ||
1130 | val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0])); | |
1131 | return (val); | |
1132 | } | |
1133 | ||
1134 | /* Create a value for a string constant by allocating space in the inferior, | |
1135 | copying the data into that space, and returning the address with type | |
1136 | TYPE_CODE_STRING. PTR points to the string constant data; LEN is number | |
1137 | of characters. | |
1138 | Note that string types are like array of char types with a lower bound of | |
1139 | zero and an upper bound of LEN - 1. Also note that the string may contain | |
1140 | embedded null bytes. */ | |
1141 | ||
f23631e4 | 1142 | struct value * |
fba45db2 | 1143 | value_string (char *ptr, int len) |
c906108c | 1144 | { |
f23631e4 | 1145 | struct value *val; |
c906108c SS |
1146 | int lowbound = current_language->string_lower_bound; |
1147 | struct type *rangetype = create_range_type ((struct type *) NULL, | |
1148 | builtin_type_int, | |
1149 | lowbound, len + lowbound - 1); | |
1150 | struct type *stringtype | |
c5aa993b | 1151 | = create_string_type ((struct type *) NULL, rangetype); |
c906108c SS |
1152 | CORE_ADDR addr; |
1153 | ||
1154 | if (current_language->c_style_arrays == 0) | |
1155 | { | |
1156 | val = allocate_value (stringtype); | |
1157 | memcpy (VALUE_CONTENTS_RAW (val), ptr, len); | |
1158 | return val; | |
1159 | } | |
1160 | ||
1161 | ||
1162 | /* Allocate space to store the string in the inferior, and then | |
1163 | copy LEN bytes from PTR in gdb to that address in the inferior. */ | |
1164 | ||
1165 | addr = allocate_space_in_inferior (len); | |
1166 | write_memory (addr, ptr, len); | |
1167 | ||
1168 | val = value_at_lazy (stringtype, addr, NULL); | |
1169 | return (val); | |
1170 | } | |
1171 | ||
f23631e4 | 1172 | struct value * |
fba45db2 | 1173 | value_bitstring (char *ptr, int len) |
c906108c | 1174 | { |
f23631e4 | 1175 | struct value *val; |
c906108c SS |
1176 | struct type *domain_type = create_range_type (NULL, builtin_type_int, |
1177 | 0, len - 1); | |
c5aa993b | 1178 | struct type *type = create_set_type ((struct type *) NULL, domain_type); |
c906108c SS |
1179 | TYPE_CODE (type) = TYPE_CODE_BITSTRING; |
1180 | val = allocate_value (type); | |
1181 | memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type)); | |
1182 | return val; | |
1183 | } | |
1184 | \f | |
1185 | /* See if we can pass arguments in T2 to a function which takes arguments | |
ad2f7632 DJ |
1186 | of types T1. T1 is a list of NARGS arguments, and T2 is a NULL-terminated |
1187 | vector. If some arguments need coercion of some sort, then the coerced | |
1188 | values are written into T2. Return value is 0 if the arguments could be | |
1189 | matched, or the position at which they differ if not. | |
c906108c SS |
1190 | |
1191 | STATICP is nonzero if the T1 argument list came from a | |
ad2f7632 DJ |
1192 | static member function. T2 will still include the ``this'' pointer, |
1193 | but it will be skipped. | |
c906108c SS |
1194 | |
1195 | For non-static member functions, we ignore the first argument, | |
1196 | which is the type of the instance variable. This is because we want | |
1197 | to handle calls with objects from derived classes. This is not | |
1198 | entirely correct: we should actually check to make sure that a | |
1199 | requested operation is type secure, shouldn't we? FIXME. */ | |
1200 | ||
1201 | static int | |
ad2f7632 DJ |
1202 | typecmp (int staticp, int varargs, int nargs, |
1203 | struct field t1[], struct value *t2[]) | |
c906108c SS |
1204 | { |
1205 | int i; | |
1206 | ||
1207 | if (t2 == 0) | |
ad2f7632 DJ |
1208 | internal_error (__FILE__, __LINE__, "typecmp: no argument list"); |
1209 | ||
4a1970e4 DJ |
1210 | /* Skip ``this'' argument if applicable. T2 will always include THIS. */ |
1211 | if (staticp) | |
ad2f7632 DJ |
1212 | t2 ++; |
1213 | ||
1214 | for (i = 0; | |
1215 | (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID; | |
1216 | i++) | |
c906108c | 1217 | { |
c5aa993b | 1218 | struct type *tt1, *tt2; |
ad2f7632 | 1219 | |
c5aa993b JM |
1220 | if (!t2[i]) |
1221 | return i + 1; | |
ad2f7632 DJ |
1222 | |
1223 | tt1 = check_typedef (t1[i].type); | |
c5aa993b | 1224 | tt2 = check_typedef (VALUE_TYPE (t2[i])); |
ad2f7632 | 1225 | |
c906108c | 1226 | if (TYPE_CODE (tt1) == TYPE_CODE_REF |
c5aa993b | 1227 | /* We should be doing hairy argument matching, as below. */ |
c906108c SS |
1228 | && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2))) |
1229 | { | |
1230 | if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY) | |
1231 | t2[i] = value_coerce_array (t2[i]); | |
1232 | else | |
1233 | t2[i] = value_addr (t2[i]); | |
1234 | continue; | |
1235 | } | |
1236 | ||
802db21b DB |
1237 | /* djb - 20000715 - Until the new type structure is in the |
1238 | place, and we can attempt things like implicit conversions, | |
1239 | we need to do this so you can take something like a map<const | |
1240 | char *>, and properly access map["hello"], because the | |
1241 | argument to [] will be a reference to a pointer to a char, | |
7168a814 | 1242 | and the argument will be a pointer to a char. */ |
802db21b DB |
1243 | while ( TYPE_CODE(tt1) == TYPE_CODE_REF || |
1244 | TYPE_CODE (tt1) == TYPE_CODE_PTR) | |
1245 | { | |
1246 | tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) ); | |
1247 | } | |
1248 | while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY || | |
1249 | TYPE_CODE(tt2) == TYPE_CODE_PTR || | |
1250 | TYPE_CODE(tt2) == TYPE_CODE_REF) | |
c906108c | 1251 | { |
802db21b | 1252 | tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) ); |
c906108c | 1253 | } |
c5aa993b JM |
1254 | if (TYPE_CODE (tt1) == TYPE_CODE (tt2)) |
1255 | continue; | |
c906108c SS |
1256 | /* Array to pointer is a `trivial conversion' according to the ARM. */ |
1257 | ||
1258 | /* We should be doing much hairier argument matching (see section 13.2 | |
7b83ea04 AC |
1259 | of the ARM), but as a quick kludge, just check for the same type |
1260 | code. */ | |
ad2f7632 | 1261 | if (TYPE_CODE (t1[i].type) != TYPE_CODE (VALUE_TYPE (t2[i]))) |
c5aa993b | 1262 | return i + 1; |
c906108c | 1263 | } |
ad2f7632 | 1264 | if (varargs || t2[i] == NULL) |
c5aa993b | 1265 | return 0; |
ad2f7632 | 1266 | return i + 1; |
c906108c SS |
1267 | } |
1268 | ||
1269 | /* Helper function used by value_struct_elt to recurse through baseclasses. | |
1270 | Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes, | |
1271 | and search in it assuming it has (class) type TYPE. | |
1272 | If found, return value, else return NULL. | |
1273 | ||
1274 | If LOOKING_FOR_BASECLASS, then instead of looking for struct fields, | |
1275 | look for a baseclass named NAME. */ | |
1276 | ||
f23631e4 AC |
1277 | static struct value * |
1278 | search_struct_field (char *name, struct value *arg1, int offset, | |
aa1ee363 | 1279 | struct type *type, int looking_for_baseclass) |
c906108c SS |
1280 | { |
1281 | int i; | |
1282 | int nbases = TYPE_N_BASECLASSES (type); | |
1283 | ||
1284 | CHECK_TYPEDEF (type); | |
1285 | ||
c5aa993b | 1286 | if (!looking_for_baseclass) |
c906108c SS |
1287 | for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--) |
1288 | { | |
1289 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
1290 | ||
db577aea | 1291 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c | 1292 | { |
f23631e4 | 1293 | struct value *v; |
c906108c | 1294 | if (TYPE_FIELD_STATIC (type, i)) |
2c2738a0 DC |
1295 | { |
1296 | v = value_static_field (type, i); | |
1297 | if (v == 0) | |
1298 | error ("field %s is nonexistent or has been optimised out", | |
1299 | name); | |
1300 | } | |
c906108c | 1301 | else |
2c2738a0 DC |
1302 | { |
1303 | v = value_primitive_field (arg1, offset, i, type); | |
1304 | if (v == 0) | |
1305 | error ("there is no field named %s", name); | |
1306 | } | |
c906108c SS |
1307 | return v; |
1308 | } | |
1309 | ||
1310 | if (t_field_name | |
1311 | && (t_field_name[0] == '\0' | |
1312 | || (TYPE_CODE (type) == TYPE_CODE_UNION | |
db577aea | 1313 | && (strcmp_iw (t_field_name, "else") == 0)))) |
c906108c SS |
1314 | { |
1315 | struct type *field_type = TYPE_FIELD_TYPE (type, i); | |
1316 | if (TYPE_CODE (field_type) == TYPE_CODE_UNION | |
1317 | || TYPE_CODE (field_type) == TYPE_CODE_STRUCT) | |
1318 | { | |
1319 | /* Look for a match through the fields of an anonymous union, | |
1320 | or anonymous struct. C++ provides anonymous unions. | |
1321 | ||
1b831c93 AC |
1322 | In the GNU Chill (now deleted from GDB) |
1323 | implementation of variant record types, each | |
1324 | <alternative field> has an (anonymous) union type, | |
1325 | each member of the union represents a <variant | |
1326 | alternative>. Each <variant alternative> is | |
1327 | represented as a struct, with a member for each | |
1328 | <variant field>. */ | |
c5aa993b | 1329 | |
f23631e4 | 1330 | struct value *v; |
c906108c SS |
1331 | int new_offset = offset; |
1332 | ||
db034ac5 AC |
1333 | /* This is pretty gross. In G++, the offset in an |
1334 | anonymous union is relative to the beginning of the | |
1b831c93 AC |
1335 | enclosing struct. In the GNU Chill (now deleted |
1336 | from GDB) implementation of variant records, the | |
1337 | bitpos is zero in an anonymous union field, so we | |
1338 | have to add the offset of the union here. */ | |
c906108c SS |
1339 | if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT |
1340 | || (TYPE_NFIELDS (field_type) > 0 | |
1341 | && TYPE_FIELD_BITPOS (field_type, 0) == 0)) | |
1342 | new_offset += TYPE_FIELD_BITPOS (type, i) / 8; | |
1343 | ||
1344 | v = search_struct_field (name, arg1, new_offset, field_type, | |
1345 | looking_for_baseclass); | |
1346 | if (v) | |
1347 | return v; | |
1348 | } | |
1349 | } | |
1350 | } | |
1351 | ||
c5aa993b | 1352 | for (i = 0; i < nbases; i++) |
c906108c | 1353 | { |
f23631e4 | 1354 | struct value *v; |
c906108c SS |
1355 | struct type *basetype = check_typedef (TYPE_BASECLASS (type, i)); |
1356 | /* If we are looking for baseclasses, this is what we get when we | |
7b83ea04 AC |
1357 | hit them. But it could happen that the base part's member name |
1358 | is not yet filled in. */ | |
c906108c SS |
1359 | int found_baseclass = (looking_for_baseclass |
1360 | && TYPE_BASECLASS_NAME (type, i) != NULL | |
db577aea | 1361 | && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0)); |
c906108c SS |
1362 | |
1363 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
1364 | { | |
1365 | int boffset; | |
f23631e4 | 1366 | struct value *v2 = allocate_value (basetype); |
c906108c SS |
1367 | |
1368 | boffset = baseclass_offset (type, i, | |
1369 | VALUE_CONTENTS (arg1) + offset, | |
1370 | VALUE_ADDRESS (arg1) | |
c5aa993b | 1371 | + VALUE_OFFSET (arg1) + offset); |
c906108c SS |
1372 | if (boffset == -1) |
1373 | error ("virtual baseclass botch"); | |
1374 | ||
1375 | /* The virtual base class pointer might have been clobbered by the | |
1376 | user program. Make sure that it still points to a valid memory | |
1377 | location. */ | |
1378 | ||
1379 | boffset += offset; | |
1380 | if (boffset < 0 || boffset >= TYPE_LENGTH (type)) | |
1381 | { | |
1382 | CORE_ADDR base_addr; | |
c5aa993b | 1383 | |
c906108c SS |
1384 | base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset; |
1385 | if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2), | |
1386 | TYPE_LENGTH (basetype)) != 0) | |
1387 | error ("virtual baseclass botch"); | |
1388 | VALUE_LVAL (v2) = lval_memory; | |
1389 | VALUE_ADDRESS (v2) = base_addr; | |
1390 | } | |
1391 | else | |
1392 | { | |
1393 | VALUE_LVAL (v2) = VALUE_LVAL (arg1); | |
1394 | VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1); | |
1395 | VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset; | |
1396 | if (VALUE_LAZY (arg1)) | |
1397 | VALUE_LAZY (v2) = 1; | |
1398 | else | |
1399 | memcpy (VALUE_CONTENTS_RAW (v2), | |
1400 | VALUE_CONTENTS_RAW (arg1) + boffset, | |
1401 | TYPE_LENGTH (basetype)); | |
1402 | } | |
1403 | ||
1404 | if (found_baseclass) | |
1405 | return v2; | |
1406 | v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i), | |
1407 | looking_for_baseclass); | |
1408 | } | |
1409 | else if (found_baseclass) | |
1410 | v = value_primitive_field (arg1, offset, i, type); | |
1411 | else | |
1412 | v = search_struct_field (name, arg1, | |
c5aa993b | 1413 | offset + TYPE_BASECLASS_BITPOS (type, i) / 8, |
c906108c | 1414 | basetype, looking_for_baseclass); |
c5aa993b JM |
1415 | if (v) |
1416 | return v; | |
c906108c SS |
1417 | } |
1418 | return NULL; | |
1419 | } | |
1420 | ||
1421 | ||
1422 | /* Return the offset (in bytes) of the virtual base of type BASETYPE | |
1423 | * in an object pointed to by VALADDR (on the host), assumed to be of | |
1424 | * type TYPE. OFFSET is number of bytes beyond start of ARG to start | |
1425 | * looking (in case VALADDR is the contents of an enclosing object). | |
1426 | * | |
1427 | * This routine recurses on the primary base of the derived class because | |
1428 | * the virtual base entries of the primary base appear before the other | |
1429 | * virtual base entries. | |
1430 | * | |
1431 | * If the virtual base is not found, a negative integer is returned. | |
1432 | * The magnitude of the negative integer is the number of entries in | |
1433 | * the virtual table to skip over (entries corresponding to various | |
1434 | * ancestral classes in the chain of primary bases). | |
1435 | * | |
1436 | * Important: This assumes the HP / Taligent C++ runtime | |
1437 | * conventions. Use baseclass_offset() instead to deal with g++ | |
1438 | * conventions. */ | |
1439 | ||
1440 | void | |
fba45db2 KB |
1441 | find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr, |
1442 | int offset, int *boffset_p, int *skip_p) | |
c906108c | 1443 | { |
c5aa993b JM |
1444 | int boffset; /* offset of virtual base */ |
1445 | int index; /* displacement to use in virtual table */ | |
c906108c | 1446 | int skip; |
c5aa993b | 1447 | |
f23631e4 | 1448 | struct value *vp; |
c5aa993b JM |
1449 | CORE_ADDR vtbl; /* the virtual table pointer */ |
1450 | struct type *pbc; /* the primary base class */ | |
c906108c SS |
1451 | |
1452 | /* Look for the virtual base recursively in the primary base, first. | |
1453 | * This is because the derived class object and its primary base | |
1454 | * subobject share the primary virtual table. */ | |
c5aa993b | 1455 | |
c906108c | 1456 | boffset = 0; |
c5aa993b | 1457 | pbc = TYPE_PRIMARY_BASE (type); |
c906108c SS |
1458 | if (pbc) |
1459 | { | |
1460 | find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip); | |
1461 | if (skip < 0) | |
c5aa993b JM |
1462 | { |
1463 | *boffset_p = boffset; | |
1464 | *skip_p = -1; | |
1465 | return; | |
1466 | } | |
c906108c SS |
1467 | } |
1468 | else | |
1469 | skip = 0; | |
1470 | ||
1471 | ||
1472 | /* Find the index of the virtual base according to HP/Taligent | |
1473 | runtime spec. (Depth-first, left-to-right.) */ | |
1474 | index = virtual_base_index_skip_primaries (basetype, type); | |
1475 | ||
c5aa993b JM |
1476 | if (index < 0) |
1477 | { | |
1478 | *skip_p = skip + virtual_base_list_length_skip_primaries (type); | |
1479 | *boffset_p = 0; | |
1480 | return; | |
1481 | } | |
c906108c | 1482 | |
c5aa993b | 1483 | /* pai: FIXME -- 32x64 possible problem */ |
c906108c | 1484 | /* First word (4 bytes) in object layout is the vtable pointer */ |
c5aa993b | 1485 | vtbl = *(CORE_ADDR *) (valaddr + offset); |
c906108c | 1486 | |
c5aa993b | 1487 | /* Before the constructor is invoked, things are usually zero'd out. */ |
c906108c SS |
1488 | if (vtbl == 0) |
1489 | error ("Couldn't find virtual table -- object may not be constructed yet."); | |
1490 | ||
1491 | ||
1492 | /* Find virtual base's offset -- jump over entries for primary base | |
1493 | * ancestors, then use the index computed above. But also adjust by | |
1494 | * HP_ACC_VBASE_START for the vtable slots before the start of the | |
1495 | * virtual base entries. Offset is negative -- virtual base entries | |
1496 | * appear _before_ the address point of the virtual table. */ | |
c5aa993b | 1497 | |
070ad9f0 | 1498 | /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier |
c5aa993b | 1499 | & use long type */ |
c906108c SS |
1500 | |
1501 | /* epstein : FIXME -- added param for overlay section. May not be correct */ | |
c5aa993b | 1502 | vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL); |
c906108c SS |
1503 | boffset = value_as_long (vp); |
1504 | *skip_p = -1; | |
1505 | *boffset_p = boffset; | |
1506 | return; | |
1507 | } | |
1508 | ||
1509 | ||
1510 | /* Helper function used by value_struct_elt to recurse through baseclasses. | |
1511 | Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes, | |
1512 | and search in it assuming it has (class) type TYPE. | |
1513 | If found, return value, else if name matched and args not return (value)-1, | |
1514 | else return NULL. */ | |
1515 | ||
f23631e4 AC |
1516 | static struct value * |
1517 | search_struct_method (char *name, struct value **arg1p, | |
1518 | struct value **args, int offset, | |
aa1ee363 | 1519 | int *static_memfuncp, struct type *type) |
c906108c SS |
1520 | { |
1521 | int i; | |
f23631e4 | 1522 | struct value *v; |
c906108c SS |
1523 | int name_matched = 0; |
1524 | char dem_opname[64]; | |
1525 | ||
1526 | CHECK_TYPEDEF (type); | |
1527 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) | |
1528 | { | |
1529 | char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i); | |
1530 | /* FIXME! May need to check for ARM demangling here */ | |
c5aa993b JM |
1531 | if (strncmp (t_field_name, "__", 2) == 0 || |
1532 | strncmp (t_field_name, "op", 2) == 0 || | |
1533 | strncmp (t_field_name, "type", 4) == 0) | |
c906108c | 1534 | { |
c5aa993b JM |
1535 | if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI)) |
1536 | t_field_name = dem_opname; | |
1537 | else if (cplus_demangle_opname (t_field_name, dem_opname, 0)) | |
c906108c | 1538 | t_field_name = dem_opname; |
c906108c | 1539 | } |
db577aea | 1540 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c SS |
1541 | { |
1542 | int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1; | |
1543 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); | |
c5aa993b | 1544 | name_matched = 1; |
c906108c | 1545 | |
de17c821 | 1546 | check_stub_method_group (type, i); |
c906108c SS |
1547 | if (j > 0 && args == 0) |
1548 | error ("cannot resolve overloaded method `%s': no arguments supplied", name); | |
acf5ed49 | 1549 | else if (j == 0 && args == 0) |
c906108c | 1550 | { |
acf5ed49 DJ |
1551 | v = value_fn_field (arg1p, f, j, type, offset); |
1552 | if (v != NULL) | |
1553 | return v; | |
c906108c | 1554 | } |
acf5ed49 DJ |
1555 | else |
1556 | while (j >= 0) | |
1557 | { | |
acf5ed49 | 1558 | if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j), |
ad2f7632 DJ |
1559 | TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)), |
1560 | TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)), | |
acf5ed49 DJ |
1561 | TYPE_FN_FIELD_ARGS (f, j), args)) |
1562 | { | |
1563 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) | |
1564 | return value_virtual_fn_field (arg1p, f, j, type, offset); | |
1565 | if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp) | |
1566 | *static_memfuncp = 1; | |
1567 | v = value_fn_field (arg1p, f, j, type, offset); | |
1568 | if (v != NULL) | |
1569 | return v; | |
1570 | } | |
1571 | j--; | |
1572 | } | |
c906108c SS |
1573 | } |
1574 | } | |
1575 | ||
1576 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
1577 | { | |
1578 | int base_offset; | |
1579 | ||
1580 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
1581 | { | |
c5aa993b JM |
1582 | if (TYPE_HAS_VTABLE (type)) |
1583 | { | |
1584 | /* HP aCC compiled type, search for virtual base offset | |
7b83ea04 | 1585 | according to HP/Taligent runtime spec. */ |
c5aa993b JM |
1586 | int skip; |
1587 | find_rt_vbase_offset (type, TYPE_BASECLASS (type, i), | |
1588 | VALUE_CONTENTS_ALL (*arg1p), | |
1589 | offset + VALUE_EMBEDDED_OFFSET (*arg1p), | |
1590 | &base_offset, &skip); | |
1591 | if (skip >= 0) | |
1592 | error ("Virtual base class offset not found in vtable"); | |
1593 | } | |
1594 | else | |
1595 | { | |
1596 | struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i)); | |
1597 | char *base_valaddr; | |
1598 | ||
1599 | /* The virtual base class pointer might have been clobbered by the | |
7b83ea04 AC |
1600 | user program. Make sure that it still points to a valid memory |
1601 | location. */ | |
c5aa993b JM |
1602 | |
1603 | if (offset < 0 || offset >= TYPE_LENGTH (type)) | |
1604 | { | |
1605 | base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass)); | |
1606 | if (target_read_memory (VALUE_ADDRESS (*arg1p) | |
1607 | + VALUE_OFFSET (*arg1p) + offset, | |
1608 | base_valaddr, | |
1609 | TYPE_LENGTH (baseclass)) != 0) | |
1610 | error ("virtual baseclass botch"); | |
1611 | } | |
1612 | else | |
1613 | base_valaddr = VALUE_CONTENTS (*arg1p) + offset; | |
1614 | ||
1615 | base_offset = | |
1616 | baseclass_offset (type, i, base_valaddr, | |
1617 | VALUE_ADDRESS (*arg1p) | |
1618 | + VALUE_OFFSET (*arg1p) + offset); | |
1619 | if (base_offset == -1) | |
1620 | error ("virtual baseclass botch"); | |
1621 | } | |
1622 | } | |
c906108c SS |
1623 | else |
1624 | { | |
1625 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | |
c5aa993b | 1626 | } |
c906108c SS |
1627 | v = search_struct_method (name, arg1p, args, base_offset + offset, |
1628 | static_memfuncp, TYPE_BASECLASS (type, i)); | |
f23631e4 | 1629 | if (v == (struct value *) - 1) |
c906108c SS |
1630 | { |
1631 | name_matched = 1; | |
1632 | } | |
1633 | else if (v) | |
1634 | { | |
1635 | /* FIXME-bothner: Why is this commented out? Why is it here? */ | |
c5aa993b | 1636 | /* *arg1p = arg1_tmp; */ |
c906108c | 1637 | return v; |
c5aa993b | 1638 | } |
c906108c | 1639 | } |
c5aa993b | 1640 | if (name_matched) |
f23631e4 | 1641 | return (struct value *) - 1; |
c5aa993b JM |
1642 | else |
1643 | return NULL; | |
c906108c SS |
1644 | } |
1645 | ||
1646 | /* Given *ARGP, a value of type (pointer to a)* structure/union, | |
1647 | extract the component named NAME from the ultimate target structure/union | |
1648 | and return it as a value with its appropriate type. | |
1649 | ERR is used in the error message if *ARGP's type is wrong. | |
1650 | ||
1651 | C++: ARGS is a list of argument types to aid in the selection of | |
1652 | an appropriate method. Also, handle derived types. | |
1653 | ||
1654 | STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location | |
1655 | where the truthvalue of whether the function that was resolved was | |
1656 | a static member function or not is stored. | |
1657 | ||
1658 | ERR is an error message to be printed in case the field is not found. */ | |
1659 | ||
f23631e4 AC |
1660 | struct value * |
1661 | value_struct_elt (struct value **argp, struct value **args, | |
fba45db2 | 1662 | char *name, int *static_memfuncp, char *err) |
c906108c | 1663 | { |
52f0bd74 | 1664 | struct type *t; |
f23631e4 | 1665 | struct value *v; |
c906108c SS |
1666 | |
1667 | COERCE_ARRAY (*argp); | |
1668 | ||
1669 | t = check_typedef (VALUE_TYPE (*argp)); | |
1670 | ||
1671 | /* Follow pointers until we get to a non-pointer. */ | |
1672 | ||
1673 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) | |
1674 | { | |
1675 | *argp = value_ind (*argp); | |
1676 | /* Don't coerce fn pointer to fn and then back again! */ | |
1677 | if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC) | |
1678 | COERCE_ARRAY (*argp); | |
1679 | t = check_typedef (VALUE_TYPE (*argp)); | |
1680 | } | |
1681 | ||
1682 | if (TYPE_CODE (t) == TYPE_CODE_MEMBER) | |
1683 | error ("not implemented: member type in value_struct_elt"); | |
1684 | ||
c5aa993b | 1685 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c SS |
1686 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
1687 | error ("Attempt to extract a component of a value that is not a %s.", err); | |
1688 | ||
1689 | /* Assume it's not, unless we see that it is. */ | |
1690 | if (static_memfuncp) | |
c5aa993b | 1691 | *static_memfuncp = 0; |
c906108c SS |
1692 | |
1693 | if (!args) | |
1694 | { | |
1695 | /* if there are no arguments ...do this... */ | |
1696 | ||
1697 | /* Try as a field first, because if we succeed, there | |
7b83ea04 | 1698 | is less work to be done. */ |
c906108c SS |
1699 | v = search_struct_field (name, *argp, 0, t, 0); |
1700 | if (v) | |
1701 | return v; | |
1702 | ||
1703 | /* C++: If it was not found as a data field, then try to | |
7b83ea04 | 1704 | return it as a pointer to a method. */ |
c906108c SS |
1705 | |
1706 | if (destructor_name_p (name, t)) | |
1707 | error ("Cannot get value of destructor"); | |
1708 | ||
1709 | v = search_struct_method (name, argp, args, 0, static_memfuncp, t); | |
1710 | ||
f23631e4 | 1711 | if (v == (struct value *) - 1) |
c906108c SS |
1712 | error ("Cannot take address of a method"); |
1713 | else if (v == 0) | |
1714 | { | |
1715 | if (TYPE_NFN_FIELDS (t)) | |
1716 | error ("There is no member or method named %s.", name); | |
1717 | else | |
1718 | error ("There is no member named %s.", name); | |
1719 | } | |
1720 | return v; | |
1721 | } | |
1722 | ||
1723 | if (destructor_name_p (name, t)) | |
1724 | { | |
1725 | if (!args[1]) | |
1726 | { | |
1727 | /* Destructors are a special case. */ | |
1728 | int m_index, f_index; | |
1729 | ||
1730 | v = NULL; | |
1731 | if (get_destructor_fn_field (t, &m_index, &f_index)) | |
1732 | { | |
1733 | v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index), | |
1734 | f_index, NULL, 0); | |
1735 | } | |
1736 | if (v == NULL) | |
1737 | error ("could not find destructor function named %s.", name); | |
1738 | else | |
1739 | return v; | |
1740 | } | |
1741 | else | |
1742 | { | |
1743 | error ("destructor should not have any argument"); | |
1744 | } | |
1745 | } | |
1746 | else | |
1747 | v = search_struct_method (name, argp, args, 0, static_memfuncp, t); | |
7168a814 | 1748 | |
f23631e4 | 1749 | if (v == (struct value *) - 1) |
c906108c | 1750 | { |
7168a814 | 1751 | error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name); |
c906108c SS |
1752 | } |
1753 | else if (v == 0) | |
1754 | { | |
1755 | /* See if user tried to invoke data as function. If so, | |
7b83ea04 AC |
1756 | hand it back. If it's not callable (i.e., a pointer to function), |
1757 | gdb should give an error. */ | |
c906108c SS |
1758 | v = search_struct_field (name, *argp, 0, t, 0); |
1759 | } | |
1760 | ||
1761 | if (!v) | |
1762 | error ("Structure has no component named %s.", name); | |
1763 | return v; | |
1764 | } | |
1765 | ||
1766 | /* Search through the methods of an object (and its bases) | |
1767 | * to find a specified method. Return the pointer to the | |
1768 | * fn_field list of overloaded instances. | |
1769 | * Helper function for value_find_oload_list. | |
1770 | * ARGP is a pointer to a pointer to a value (the object) | |
1771 | * METHOD is a string containing the method name | |
1772 | * OFFSET is the offset within the value | |
c906108c SS |
1773 | * TYPE is the assumed type of the object |
1774 | * NUM_FNS is the number of overloaded instances | |
1775 | * BASETYPE is set to the actual type of the subobject where the method is found | |
1776 | * BOFFSET is the offset of the base subobject where the method is found */ | |
1777 | ||
7a292a7a | 1778 | static struct fn_field * |
f23631e4 | 1779 | find_method_list (struct value **argp, char *method, int offset, |
4a1970e4 | 1780 | struct type *type, int *num_fns, |
fba45db2 | 1781 | struct type **basetype, int *boffset) |
c906108c SS |
1782 | { |
1783 | int i; | |
c5aa993b | 1784 | struct fn_field *f; |
c906108c SS |
1785 | CHECK_TYPEDEF (type); |
1786 | ||
1787 | *num_fns = 0; | |
1788 | ||
c5aa993b JM |
1789 | /* First check in object itself */ |
1790 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) | |
c906108c SS |
1791 | { |
1792 | /* pai: FIXME What about operators and type conversions? */ | |
c5aa993b | 1793 | char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i); |
db577aea | 1794 | if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0)) |
c5aa993b | 1795 | { |
4a1970e4 DJ |
1796 | int len = TYPE_FN_FIELDLIST_LENGTH (type, i); |
1797 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); | |
4a1970e4 DJ |
1798 | |
1799 | *num_fns = len; | |
c5aa993b JM |
1800 | *basetype = type; |
1801 | *boffset = offset; | |
4a1970e4 | 1802 | |
de17c821 DJ |
1803 | /* Resolve any stub methods. */ |
1804 | check_stub_method_group (type, i); | |
4a1970e4 DJ |
1805 | |
1806 | return f; | |
c5aa993b JM |
1807 | } |
1808 | } | |
1809 | ||
c906108c SS |
1810 | /* Not found in object, check in base subobjects */ |
1811 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
1812 | { | |
1813 | int base_offset; | |
1814 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
1815 | { | |
c5aa993b JM |
1816 | if (TYPE_HAS_VTABLE (type)) |
1817 | { | |
1818 | /* HP aCC compiled type, search for virtual base offset | |
1819 | * according to HP/Taligent runtime spec. */ | |
1820 | int skip; | |
1821 | find_rt_vbase_offset (type, TYPE_BASECLASS (type, i), | |
1822 | VALUE_CONTENTS_ALL (*argp), | |
1823 | offset + VALUE_EMBEDDED_OFFSET (*argp), | |
1824 | &base_offset, &skip); | |
1825 | if (skip >= 0) | |
1826 | error ("Virtual base class offset not found in vtable"); | |
1827 | } | |
1828 | else | |
1829 | { | |
1830 | /* probably g++ runtime model */ | |
1831 | base_offset = VALUE_OFFSET (*argp) + offset; | |
1832 | base_offset = | |
1833 | baseclass_offset (type, i, | |
1834 | VALUE_CONTENTS (*argp) + base_offset, | |
1835 | VALUE_ADDRESS (*argp) + base_offset); | |
1836 | if (base_offset == -1) | |
1837 | error ("virtual baseclass botch"); | |
1838 | } | |
1839 | } | |
1840 | else | |
1841 | /* non-virtual base, simply use bit position from debug info */ | |
c906108c SS |
1842 | { |
1843 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | |
c5aa993b | 1844 | } |
c906108c | 1845 | f = find_method_list (argp, method, base_offset + offset, |
4a1970e4 DJ |
1846 | TYPE_BASECLASS (type, i), num_fns, basetype, |
1847 | boffset); | |
c906108c | 1848 | if (f) |
c5aa993b | 1849 | return f; |
c906108c | 1850 | } |
c5aa993b | 1851 | return NULL; |
c906108c SS |
1852 | } |
1853 | ||
1854 | /* Return the list of overloaded methods of a specified name. | |
1855 | * ARGP is a pointer to a pointer to a value (the object) | |
1856 | * METHOD is the method name | |
1857 | * OFFSET is the offset within the value contents | |
c906108c SS |
1858 | * NUM_FNS is the number of overloaded instances |
1859 | * BASETYPE is set to the type of the base subobject that defines the method | |
1860 | * BOFFSET is the offset of the base subobject which defines the method */ | |
1861 | ||
1862 | struct fn_field * | |
f23631e4 | 1863 | value_find_oload_method_list (struct value **argp, char *method, int offset, |
4a1970e4 DJ |
1864 | int *num_fns, struct type **basetype, |
1865 | int *boffset) | |
c906108c | 1866 | { |
c5aa993b | 1867 | struct type *t; |
c906108c SS |
1868 | |
1869 | t = check_typedef (VALUE_TYPE (*argp)); | |
1870 | ||
c5aa993b | 1871 | /* code snarfed from value_struct_elt */ |
c906108c SS |
1872 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) |
1873 | { | |
1874 | *argp = value_ind (*argp); | |
1875 | /* Don't coerce fn pointer to fn and then back again! */ | |
1876 | if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC) | |
1877 | COERCE_ARRAY (*argp); | |
1878 | t = check_typedef (VALUE_TYPE (*argp)); | |
1879 | } | |
c5aa993b | 1880 | |
c906108c SS |
1881 | if (TYPE_CODE (t) == TYPE_CODE_MEMBER) |
1882 | error ("Not implemented: member type in value_find_oload_lis"); | |
c5aa993b JM |
1883 | |
1884 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT | |
1885 | && TYPE_CODE (t) != TYPE_CODE_UNION) | |
c906108c | 1886 | error ("Attempt to extract a component of a value that is not a struct or union"); |
c5aa993b | 1887 | |
4a1970e4 | 1888 | return find_method_list (argp, method, 0, t, num_fns, basetype, boffset); |
c906108c SS |
1889 | } |
1890 | ||
1891 | /* Given an array of argument types (ARGTYPES) (which includes an | |
1892 | entry for "this" in the case of C++ methods), the number of | |
1893 | arguments NARGS, the NAME of a function whether it's a method or | |
1894 | not (METHOD), and the degree of laxness (LAX) in conforming to | |
1895 | overload resolution rules in ANSI C++, find the best function that | |
1896 | matches on the argument types according to the overload resolution | |
1897 | rules. | |
1898 | ||
1899 | In the case of class methods, the parameter OBJ is an object value | |
1900 | in which to search for overloaded methods. | |
1901 | ||
1902 | In the case of non-method functions, the parameter FSYM is a symbol | |
1903 | corresponding to one of the overloaded functions. | |
1904 | ||
1905 | Return value is an integer: 0 -> good match, 10 -> debugger applied | |
1906 | non-standard coercions, 100 -> incompatible. | |
1907 | ||
1908 | If a method is being searched for, VALP will hold the value. | |
1909 | If a non-method is being searched for, SYMP will hold the symbol for it. | |
1910 | ||
1911 | If a method is being searched for, and it is a static method, | |
1912 | then STATICP will point to a non-zero value. | |
1913 | ||
1914 | Note: This function does *not* check the value of | |
1915 | overload_resolution. Caller must check it to see whether overload | |
1916 | resolution is permitted. | |
c5aa993b | 1917 | */ |
c906108c SS |
1918 | |
1919 | int | |
fba45db2 | 1920 | find_overload_match (struct type **arg_types, int nargs, char *name, int method, |
7f8c9282 | 1921 | int lax, struct value **objp, struct symbol *fsym, |
f23631e4 | 1922 | struct value **valp, struct symbol **symp, int *staticp) |
c906108c | 1923 | { |
7f8c9282 | 1924 | struct value *obj = (objp ? *objp : NULL); |
c5aa993b | 1925 | |
8d577d32 | 1926 | int oload_champ; /* Index of best overloaded function */ |
c5aa993b | 1927 | |
c5aa993b JM |
1928 | struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */ |
1929 | ||
f23631e4 | 1930 | struct value *temp = obj; |
c5aa993b JM |
1931 | struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */ |
1932 | struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */ | |
1933 | int num_fns = 0; /* Number of overloaded instances being considered */ | |
1934 | struct type *basetype = NULL; | |
c906108c | 1935 | int boffset; |
52f0bd74 | 1936 | int ix; |
4a1970e4 | 1937 | int static_offset; |
8d577d32 | 1938 | struct cleanup *old_cleanups = NULL; |
c906108c | 1939 | |
8d577d32 | 1940 | const char *obj_type_name = NULL; |
c5aa993b | 1941 | char *func_name = NULL; |
8d577d32 | 1942 | enum oload_classification match_quality; |
c906108c SS |
1943 | |
1944 | /* Get the list of overloaded methods or functions */ | |
1945 | if (method) | |
1946 | { | |
1947 | obj_type_name = TYPE_NAME (VALUE_TYPE (obj)); | |
1948 | /* Hack: evaluate_subexp_standard often passes in a pointer | |
7b83ea04 | 1949 | value rather than the object itself, so try again */ |
c906108c | 1950 | if ((!obj_type_name || !*obj_type_name) && |
c5aa993b JM |
1951 | (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR)) |
1952 | obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj))); | |
c906108c SS |
1953 | |
1954 | fns_ptr = value_find_oload_method_list (&temp, name, 0, | |
c5aa993b JM |
1955 | &num_fns, |
1956 | &basetype, &boffset); | |
c906108c | 1957 | if (!fns_ptr || !num_fns) |
c5aa993b JM |
1958 | error ("Couldn't find method %s%s%s", |
1959 | obj_type_name, | |
1960 | (obj_type_name && *obj_type_name) ? "::" : "", | |
1961 | name); | |
4a1970e4 DJ |
1962 | /* If we are dealing with stub method types, they should have |
1963 | been resolved by find_method_list via value_find_oload_method_list | |
1964 | above. */ | |
1965 | gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL); | |
8d577d32 DC |
1966 | oload_champ = find_oload_champ (arg_types, nargs, method, num_fns, |
1967 | fns_ptr, oload_syms, &oload_champ_bv); | |
c906108c SS |
1968 | } |
1969 | else | |
1970 | { | |
8d577d32 DC |
1971 | const char *qualified_name = SYMBOL_CPLUS_DEMANGLED_NAME (fsym); |
1972 | func_name = cp_func_name (qualified_name); | |
c906108c | 1973 | |
917317f4 | 1974 | /* If the name is NULL this must be a C-style function. |
7b83ea04 | 1975 | Just return the same symbol. */ |
8d577d32 | 1976 | if (func_name == NULL) |
7b83ea04 | 1977 | { |
917317f4 | 1978 | *symp = fsym; |
7b83ea04 AC |
1979 | return 0; |
1980 | } | |
917317f4 | 1981 | |
8d577d32 DC |
1982 | old_cleanups = make_cleanup (xfree, func_name); |
1983 | make_cleanup (xfree, oload_syms); | |
1984 | make_cleanup (xfree, oload_champ_bv); | |
1985 | ||
1986 | oload_champ = find_oload_champ_namespace (arg_types, nargs, | |
1987 | func_name, | |
1988 | qualified_name, | |
1989 | &oload_syms, | |
1990 | &oload_champ_bv); | |
1991 | } | |
1992 | ||
1993 | /* Check how bad the best match is. */ | |
1994 | ||
1995 | match_quality | |
1996 | = classify_oload_match (oload_champ_bv, nargs, | |
1997 | oload_method_static (method, fns_ptr, | |
1998 | oload_champ)); | |
1999 | ||
2000 | if (match_quality == INCOMPATIBLE) | |
2001 | { | |
2002 | if (method) | |
2003 | error ("Cannot resolve method %s%s%s to any overloaded instance", | |
2004 | obj_type_name, | |
2005 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2006 | name); | |
2007 | else | |
2008 | error ("Cannot resolve function %s to any overloaded instance", | |
2009 | func_name); | |
2010 | } | |
2011 | else if (match_quality == NON_STANDARD) | |
2012 | { | |
2013 | if (method) | |
2014 | warning ("Using non-standard conversion to match method %s%s%s to supplied arguments", | |
2015 | obj_type_name, | |
2016 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2017 | name); | |
2018 | else | |
2019 | warning ("Using non-standard conversion to match function %s to supplied arguments", | |
2020 | func_name); | |
2021 | } | |
2022 | ||
2023 | if (method) | |
2024 | { | |
2025 | if (staticp != NULL) | |
2026 | *staticp = oload_method_static (method, fns_ptr, oload_champ); | |
2027 | if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ)) | |
2028 | *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset); | |
2029 | else | |
2030 | *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset); | |
2031 | } | |
2032 | else | |
2033 | { | |
2034 | *symp = oload_syms[oload_champ]; | |
2035 | } | |
2036 | ||
2037 | if (objp) | |
2038 | { | |
2039 | if (TYPE_CODE (VALUE_TYPE (temp)) != TYPE_CODE_PTR | |
2040 | && TYPE_CODE (VALUE_TYPE (*objp)) == TYPE_CODE_PTR) | |
2041 | { | |
2042 | temp = value_addr (temp); | |
2043 | } | |
2044 | *objp = temp; | |
2045 | } | |
2046 | if (old_cleanups != NULL) | |
2047 | do_cleanups (old_cleanups); | |
2048 | ||
2049 | switch (match_quality) | |
2050 | { | |
2051 | case INCOMPATIBLE: | |
2052 | return 100; | |
2053 | case NON_STANDARD: | |
2054 | return 10; | |
2055 | default: /* STANDARD */ | |
2056 | return 0; | |
2057 | } | |
2058 | } | |
2059 | ||
2060 | /* Find the best overload match, searching for FUNC_NAME in namespaces | |
2061 | contained in QUALIFIED_NAME until it either finds a good match or | |
2062 | runs out of namespaces. It stores the overloaded functions in | |
2063 | *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The | |
2064 | calling function is responsible for freeing *OLOAD_SYMS and | |
2065 | *OLOAD_CHAMP_BV. */ | |
2066 | ||
2067 | static int | |
2068 | find_oload_champ_namespace (struct type **arg_types, int nargs, | |
2069 | const char *func_name, | |
2070 | const char *qualified_name, | |
2071 | struct symbol ***oload_syms, | |
2072 | struct badness_vector **oload_champ_bv) | |
2073 | { | |
2074 | int oload_champ; | |
2075 | ||
2076 | find_oload_champ_namespace_loop (arg_types, nargs, | |
2077 | func_name, | |
2078 | qualified_name, 0, | |
2079 | oload_syms, oload_champ_bv, | |
2080 | &oload_champ); | |
2081 | ||
2082 | return oload_champ; | |
2083 | } | |
2084 | ||
2085 | /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is | |
2086 | how deep we've looked for namespaces, and the champ is stored in | |
2087 | OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0 | |
2088 | if it isn't. | |
2089 | ||
2090 | It is the caller's responsibility to free *OLOAD_SYMS and | |
2091 | *OLOAD_CHAMP_BV. */ | |
2092 | ||
2093 | static int | |
2094 | find_oload_champ_namespace_loop (struct type **arg_types, int nargs, | |
2095 | const char *func_name, | |
2096 | const char *qualified_name, | |
2097 | int namespace_len, | |
2098 | struct symbol ***oload_syms, | |
2099 | struct badness_vector **oload_champ_bv, | |
2100 | int *oload_champ) | |
2101 | { | |
2102 | int next_namespace_len = namespace_len; | |
2103 | int searched_deeper = 0; | |
2104 | int num_fns = 0; | |
2105 | struct cleanup *old_cleanups; | |
2106 | int new_oload_champ; | |
2107 | struct symbol **new_oload_syms; | |
2108 | struct badness_vector *new_oload_champ_bv; | |
2109 | char *new_namespace; | |
2110 | ||
2111 | if (next_namespace_len != 0) | |
2112 | { | |
2113 | gdb_assert (qualified_name[next_namespace_len] == ':'); | |
2114 | next_namespace_len += 2; | |
c906108c | 2115 | } |
8d577d32 DC |
2116 | next_namespace_len |
2117 | += cp_find_first_component (qualified_name + next_namespace_len); | |
2118 | ||
2119 | /* Initialize these to values that can safely be xfree'd. */ | |
2120 | *oload_syms = NULL; | |
2121 | *oload_champ_bv = NULL; | |
c5aa993b | 2122 | |
8d577d32 DC |
2123 | /* First, see if we have a deeper namespace we can search in. If we |
2124 | get a good match there, use it. */ | |
2125 | ||
2126 | if (qualified_name[next_namespace_len] == ':') | |
2127 | { | |
2128 | searched_deeper = 1; | |
2129 | ||
2130 | if (find_oload_champ_namespace_loop (arg_types, nargs, | |
2131 | func_name, qualified_name, | |
2132 | next_namespace_len, | |
2133 | oload_syms, oload_champ_bv, | |
2134 | oload_champ)) | |
2135 | { | |
2136 | return 1; | |
2137 | } | |
2138 | }; | |
2139 | ||
2140 | /* If we reach here, either we're in the deepest namespace or we | |
2141 | didn't find a good match in a deeper namespace. But, in the | |
2142 | latter case, we still have a bad match in a deeper namespace; | |
2143 | note that we might not find any match at all in the current | |
2144 | namespace. (There's always a match in the deepest namespace, | |
2145 | because this overload mechanism only gets called if there's a | |
2146 | function symbol to start off with.) */ | |
2147 | ||
2148 | old_cleanups = make_cleanup (xfree, *oload_syms); | |
2149 | old_cleanups = make_cleanup (xfree, *oload_champ_bv); | |
2150 | new_namespace = alloca (namespace_len + 1); | |
2151 | strncpy (new_namespace, qualified_name, namespace_len); | |
2152 | new_namespace[namespace_len] = '\0'; | |
2153 | new_oload_syms = make_symbol_overload_list (func_name, | |
2154 | new_namespace); | |
2155 | while (new_oload_syms[num_fns]) | |
2156 | ++num_fns; | |
2157 | ||
2158 | new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns, | |
2159 | NULL, new_oload_syms, | |
2160 | &new_oload_champ_bv); | |
2161 | ||
2162 | /* Case 1: We found a good match. Free earlier matches (if any), | |
2163 | and return it. Case 2: We didn't find a good match, but we're | |
2164 | not the deepest function. Then go with the bad match that the | |
2165 | deeper function found. Case 3: We found a bad match, and we're | |
2166 | the deepest function. Then return what we found, even though | |
2167 | it's a bad match. */ | |
2168 | ||
2169 | if (new_oload_champ != -1 | |
2170 | && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD) | |
2171 | { | |
2172 | *oload_syms = new_oload_syms; | |
2173 | *oload_champ = new_oload_champ; | |
2174 | *oload_champ_bv = new_oload_champ_bv; | |
2175 | do_cleanups (old_cleanups); | |
2176 | return 1; | |
2177 | } | |
2178 | else if (searched_deeper) | |
2179 | { | |
2180 | xfree (new_oload_syms); | |
2181 | xfree (new_oload_champ_bv); | |
2182 | discard_cleanups (old_cleanups); | |
2183 | return 0; | |
2184 | } | |
2185 | else | |
2186 | { | |
2187 | gdb_assert (new_oload_champ != -1); | |
2188 | *oload_syms = new_oload_syms; | |
2189 | *oload_champ = new_oload_champ; | |
2190 | *oload_champ_bv = new_oload_champ_bv; | |
2191 | discard_cleanups (old_cleanups); | |
2192 | return 0; | |
2193 | } | |
2194 | } | |
2195 | ||
2196 | /* Look for a function to take NARGS args of types ARG_TYPES. Find | |
2197 | the best match from among the overloaded methods or functions | |
2198 | (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively. | |
2199 | The number of methods/functions in the list is given by NUM_FNS. | |
2200 | Return the index of the best match; store an indication of the | |
2201 | quality of the match in OLOAD_CHAMP_BV. | |
2202 | ||
2203 | It is the caller's responsibility to free *OLOAD_CHAMP_BV. */ | |
2204 | ||
2205 | static int | |
2206 | find_oload_champ (struct type **arg_types, int nargs, int method, | |
2207 | int num_fns, struct fn_field *fns_ptr, | |
2208 | struct symbol **oload_syms, | |
2209 | struct badness_vector **oload_champ_bv) | |
2210 | { | |
2211 | int ix; | |
2212 | struct badness_vector *bv; /* A measure of how good an overloaded instance is */ | |
2213 | int oload_champ = -1; /* Index of best overloaded function */ | |
2214 | int oload_ambiguous = 0; /* Current ambiguity state for overload resolution */ | |
2215 | /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */ | |
2216 | ||
2217 | *oload_champ_bv = NULL; | |
c906108c | 2218 | |
c5aa993b | 2219 | /* Consider each candidate in turn */ |
c906108c SS |
2220 | for (ix = 0; ix < num_fns; ix++) |
2221 | { | |
8d577d32 DC |
2222 | int jj; |
2223 | int static_offset = oload_method_static (method, fns_ptr, ix); | |
2224 | int nparms; | |
2225 | struct type **parm_types; | |
2226 | ||
db577aea AC |
2227 | if (method) |
2228 | { | |
ad2f7632 | 2229 | nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix)); |
db577aea AC |
2230 | } |
2231 | else | |
2232 | { | |
2233 | /* If it's not a method, this is the proper place */ | |
2234 | nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix])); | |
2235 | } | |
c906108c | 2236 | |
c5aa993b | 2237 | /* Prepare array of parameter types */ |
c906108c SS |
2238 | parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *))); |
2239 | for (jj = 0; jj < nparms; jj++) | |
db577aea | 2240 | parm_types[jj] = (method |
ad2f7632 | 2241 | ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type) |
db577aea | 2242 | : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj)); |
c906108c | 2243 | |
4a1970e4 DJ |
2244 | /* Compare parameter types to supplied argument types. Skip THIS for |
2245 | static methods. */ | |
2246 | bv = rank_function (parm_types, nparms, arg_types + static_offset, | |
2247 | nargs - static_offset); | |
c5aa993b | 2248 | |
8d577d32 | 2249 | if (!*oload_champ_bv) |
c5aa993b | 2250 | { |
8d577d32 | 2251 | *oload_champ_bv = bv; |
c5aa993b | 2252 | oload_champ = 0; |
c5aa993b | 2253 | } |
c906108c | 2254 | else |
c5aa993b | 2255 | /* See whether current candidate is better or worse than previous best */ |
8d577d32 | 2256 | switch (compare_badness (bv, *oload_champ_bv)) |
c5aa993b JM |
2257 | { |
2258 | case 0: | |
2259 | oload_ambiguous = 1; /* top two contenders are equally good */ | |
c5aa993b JM |
2260 | break; |
2261 | case 1: | |
2262 | oload_ambiguous = 2; /* incomparable top contenders */ | |
c5aa993b JM |
2263 | break; |
2264 | case 2: | |
8d577d32 | 2265 | *oload_champ_bv = bv; /* new champion, record details */ |
c5aa993b JM |
2266 | oload_ambiguous = 0; |
2267 | oload_champ = ix; | |
c5aa993b JM |
2268 | break; |
2269 | case 3: | |
2270 | default: | |
2271 | break; | |
2272 | } | |
b8c9b27d | 2273 | xfree (parm_types); |
6b1ba9a0 ND |
2274 | if (overload_debug) |
2275 | { | |
2276 | if (method) | |
2277 | fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms); | |
2278 | else | |
2279 | fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms); | |
4a1970e4 | 2280 | for (jj = 0; jj < nargs - static_offset; jj++) |
6b1ba9a0 ND |
2281 | fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]); |
2282 | fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous); | |
2283 | } | |
c906108c SS |
2284 | } |
2285 | ||
8d577d32 DC |
2286 | return oload_champ; |
2287 | } | |
6b1ba9a0 | 2288 | |
8d577d32 DC |
2289 | /* Return 1 if we're looking at a static method, 0 if we're looking at |
2290 | a non-static method or a function that isn't a method. */ | |
c906108c | 2291 | |
8d577d32 DC |
2292 | static int |
2293 | oload_method_static (int method, struct fn_field *fns_ptr, int index) | |
2294 | { | |
2295 | if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, index)) | |
2296 | return 1; | |
c906108c | 2297 | else |
8d577d32 DC |
2298 | return 0; |
2299 | } | |
c906108c | 2300 | |
8d577d32 DC |
2301 | /* Check how good an overload match OLOAD_CHAMP_BV represents. */ |
2302 | ||
2303 | static enum oload_classification | |
2304 | classify_oload_match (struct badness_vector *oload_champ_bv, | |
2305 | int nargs, | |
2306 | int static_offset) | |
2307 | { | |
2308 | int ix; | |
2309 | ||
2310 | for (ix = 1; ix <= nargs - static_offset; ix++) | |
7f8c9282 | 2311 | { |
8d577d32 DC |
2312 | if (oload_champ_bv->rank[ix] >= 100) |
2313 | return INCOMPATIBLE; /* truly mismatched types */ | |
2314 | else if (oload_champ_bv->rank[ix] >= 10) | |
2315 | return NON_STANDARD; /* non-standard type conversions needed */ | |
7f8c9282 | 2316 | } |
02f0d45d | 2317 | |
8d577d32 | 2318 | return STANDARD; /* Only standard conversions needed. */ |
c906108c SS |
2319 | } |
2320 | ||
2321 | /* C++: return 1 is NAME is a legitimate name for the destructor | |
2322 | of type TYPE. If TYPE does not have a destructor, or | |
2323 | if NAME is inappropriate for TYPE, an error is signaled. */ | |
2324 | int | |
fba45db2 | 2325 | destructor_name_p (const char *name, const struct type *type) |
c906108c SS |
2326 | { |
2327 | /* destructors are a special case. */ | |
2328 | ||
2329 | if (name[0] == '~') | |
2330 | { | |
2331 | char *dname = type_name_no_tag (type); | |
2332 | char *cp = strchr (dname, '<'); | |
2333 | unsigned int len; | |
2334 | ||
2335 | /* Do not compare the template part for template classes. */ | |
2336 | if (cp == NULL) | |
2337 | len = strlen (dname); | |
2338 | else | |
2339 | len = cp - dname; | |
bf896cb0 | 2340 | if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0) |
c906108c SS |
2341 | error ("name of destructor must equal name of class"); |
2342 | else | |
2343 | return 1; | |
2344 | } | |
2345 | return 0; | |
2346 | } | |
2347 | ||
2348 | /* Helper function for check_field: Given TYPE, a structure/union, | |
2349 | return 1 if the component named NAME from the ultimate | |
2350 | target structure/union is defined, otherwise, return 0. */ | |
2351 | ||
2352 | static int | |
aa1ee363 | 2353 | check_field_in (struct type *type, const char *name) |
c906108c | 2354 | { |
52f0bd74 | 2355 | int i; |
c906108c SS |
2356 | |
2357 | for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--) | |
2358 | { | |
2359 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
db577aea | 2360 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c SS |
2361 | return 1; |
2362 | } | |
2363 | ||
2364 | /* C++: If it was not found as a data field, then try to | |
2365 | return it as a pointer to a method. */ | |
2366 | ||
2367 | /* Destructors are a special case. */ | |
2368 | if (destructor_name_p (name, type)) | |
2369 | { | |
2370 | int m_index, f_index; | |
2371 | ||
2372 | return get_destructor_fn_field (type, &m_index, &f_index); | |
2373 | } | |
2374 | ||
2375 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i) | |
2376 | { | |
db577aea | 2377 | if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0) |
c906108c SS |
2378 | return 1; |
2379 | } | |
2380 | ||
2381 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
2382 | if (check_field_in (TYPE_BASECLASS (type, i), name)) | |
2383 | return 1; | |
c5aa993b | 2384 | |
c906108c SS |
2385 | return 0; |
2386 | } | |
2387 | ||
2388 | ||
2389 | /* C++: Given ARG1, a value of type (pointer to a)* structure/union, | |
2390 | return 1 if the component named NAME from the ultimate | |
2391 | target structure/union is defined, otherwise, return 0. */ | |
2392 | ||
2393 | int | |
f23631e4 | 2394 | check_field (struct value *arg1, const char *name) |
c906108c | 2395 | { |
52f0bd74 | 2396 | struct type *t; |
c906108c SS |
2397 | |
2398 | COERCE_ARRAY (arg1); | |
2399 | ||
2400 | t = VALUE_TYPE (arg1); | |
2401 | ||
2402 | /* Follow pointers until we get to a non-pointer. */ | |
2403 | ||
2404 | for (;;) | |
2405 | { | |
2406 | CHECK_TYPEDEF (t); | |
2407 | if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF) | |
2408 | break; | |
2409 | t = TYPE_TARGET_TYPE (t); | |
2410 | } | |
2411 | ||
2412 | if (TYPE_CODE (t) == TYPE_CODE_MEMBER) | |
2413 | error ("not implemented: member type in check_field"); | |
2414 | ||
c5aa993b | 2415 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c SS |
2416 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
2417 | error ("Internal error: `this' is not an aggregate"); | |
2418 | ||
2419 | return check_field_in (t, name); | |
2420 | } | |
2421 | ||
79c2c32d DC |
2422 | /* C++: Given an aggregate type CURTYPE, and a member name NAME, |
2423 | return the appropriate member. This function is used to resolve | |
2424 | user expressions of the form "DOMAIN::NAME". For more details on | |
2425 | what happens, see the comment before | |
2426 | value_struct_elt_for_reference. */ | |
2427 | ||
2428 | struct value * | |
2429 | value_aggregate_elt (struct type *curtype, | |
2430 | char *name, | |
2431 | enum noside noside) | |
2432 | { | |
2433 | switch (TYPE_CODE (curtype)) | |
2434 | { | |
2435 | case TYPE_CODE_STRUCT: | |
2436 | case TYPE_CODE_UNION: | |
63d06c5c DC |
2437 | return value_struct_elt_for_reference (curtype, 0, curtype, name, NULL, |
2438 | noside); | |
79c2c32d DC |
2439 | case TYPE_CODE_NAMESPACE: |
2440 | return value_namespace_elt (curtype, name, noside); | |
2441 | default: | |
2442 | internal_error (__FILE__, __LINE__, | |
2443 | "non-aggregate type in value_aggregate_elt"); | |
2444 | } | |
2445 | } | |
2446 | ||
c906108c SS |
2447 | /* C++: Given an aggregate type CURTYPE, and a member name NAME, |
2448 | return the address of this member as a "pointer to member" | |
2449 | type. If INTYPE is non-null, then it will be the type | |
2450 | of the member we are looking for. This will help us resolve | |
2451 | "pointers to member functions". This function is used | |
2452 | to resolve user expressions of the form "DOMAIN::NAME". */ | |
2453 | ||
63d06c5c | 2454 | static struct value * |
fba45db2 KB |
2455 | value_struct_elt_for_reference (struct type *domain, int offset, |
2456 | struct type *curtype, char *name, | |
63d06c5c DC |
2457 | struct type *intype, |
2458 | enum noside noside) | |
c906108c | 2459 | { |
52f0bd74 AC |
2460 | struct type *t = curtype; |
2461 | int i; | |
f23631e4 | 2462 | struct value *v; |
c906108c | 2463 | |
c5aa993b | 2464 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c SS |
2465 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
2466 | error ("Internal error: non-aggregate type to value_struct_elt_for_reference"); | |
2467 | ||
2468 | for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--) | |
2469 | { | |
2470 | char *t_field_name = TYPE_FIELD_NAME (t, i); | |
c5aa993b | 2471 | |
6314a349 | 2472 | if (t_field_name && strcmp (t_field_name, name) == 0) |
c906108c SS |
2473 | { |
2474 | if (TYPE_FIELD_STATIC (t, i)) | |
2475 | { | |
2476 | v = value_static_field (t, i); | |
2477 | if (v == NULL) | |
2c2738a0 | 2478 | error ("static field %s has been optimized out", |
c906108c SS |
2479 | name); |
2480 | return v; | |
2481 | } | |
2482 | if (TYPE_FIELD_PACKED (t, i)) | |
2483 | error ("pointers to bitfield members not allowed"); | |
c5aa993b | 2484 | |
c906108c SS |
2485 | return value_from_longest |
2486 | (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i), | |
2487 | domain)), | |
2488 | offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3)); | |
2489 | } | |
2490 | } | |
2491 | ||
2492 | /* C++: If it was not found as a data field, then try to | |
2493 | return it as a pointer to a method. */ | |
2494 | ||
2495 | /* Destructors are a special case. */ | |
2496 | if (destructor_name_p (name, t)) | |
2497 | { | |
2498 | error ("member pointers to destructors not implemented yet"); | |
2499 | } | |
2500 | ||
2501 | /* Perform all necessary dereferencing. */ | |
2502 | while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR) | |
2503 | intype = TYPE_TARGET_TYPE (intype); | |
2504 | ||
2505 | for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i) | |
2506 | { | |
2507 | char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i); | |
2508 | char dem_opname[64]; | |
2509 | ||
c5aa993b JM |
2510 | if (strncmp (t_field_name, "__", 2) == 0 || |
2511 | strncmp (t_field_name, "op", 2) == 0 || | |
2512 | strncmp (t_field_name, "type", 4) == 0) | |
c906108c | 2513 | { |
c5aa993b JM |
2514 | if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI)) |
2515 | t_field_name = dem_opname; | |
2516 | else if (cplus_demangle_opname (t_field_name, dem_opname, 0)) | |
c906108c | 2517 | t_field_name = dem_opname; |
c906108c | 2518 | } |
6314a349 | 2519 | if (t_field_name && strcmp (t_field_name, name) == 0) |
c906108c SS |
2520 | { |
2521 | int j = TYPE_FN_FIELDLIST_LENGTH (t, i); | |
2522 | struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i); | |
c5aa993b | 2523 | |
de17c821 DJ |
2524 | check_stub_method_group (t, i); |
2525 | ||
c906108c SS |
2526 | if (intype == 0 && j > 1) |
2527 | error ("non-unique member `%s' requires type instantiation", name); | |
2528 | if (intype) | |
2529 | { | |
2530 | while (j--) | |
2531 | if (TYPE_FN_FIELD_TYPE (f, j) == intype) | |
2532 | break; | |
2533 | if (j < 0) | |
2534 | error ("no member function matches that type instantiation"); | |
2535 | } | |
2536 | else | |
2537 | j = 0; | |
c5aa993b | 2538 | |
c906108c SS |
2539 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) |
2540 | { | |
2541 | return value_from_longest | |
2542 | (lookup_reference_type | |
2543 | (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j), | |
2544 | domain)), | |
2545 | (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j))); | |
2546 | } | |
2547 | else | |
2548 | { | |
2549 | struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), | |
176620f1 | 2550 | 0, VAR_DOMAIN, 0, NULL); |
c906108c SS |
2551 | if (s == NULL) |
2552 | { | |
2553 | v = 0; | |
2554 | } | |
2555 | else | |
2556 | { | |
2557 | v = read_var_value (s, 0); | |
2558 | #if 0 | |
2559 | VALUE_TYPE (v) = lookup_reference_type | |
2560 | (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j), | |
2561 | domain)); | |
2562 | #endif | |
2563 | } | |
2564 | return v; | |
2565 | } | |
2566 | } | |
2567 | } | |
2568 | for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--) | |
2569 | { | |
f23631e4 | 2570 | struct value *v; |
c906108c SS |
2571 | int base_offset; |
2572 | ||
2573 | if (BASETYPE_VIA_VIRTUAL (t, i)) | |
2574 | base_offset = 0; | |
2575 | else | |
2576 | base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8; | |
2577 | v = value_struct_elt_for_reference (domain, | |
2578 | offset + base_offset, | |
2579 | TYPE_BASECLASS (t, i), | |
2580 | name, | |
63d06c5c DC |
2581 | intype, |
2582 | noside); | |
c906108c SS |
2583 | if (v) |
2584 | return v; | |
2585 | } | |
63d06c5c DC |
2586 | |
2587 | /* As a last chance, pretend that CURTYPE is a namespace, and look | |
2588 | it up that way; this (frequently) works for types nested inside | |
2589 | classes. */ | |
2590 | ||
2591 | return value_maybe_namespace_elt (curtype, name, noside); | |
c906108c SS |
2592 | } |
2593 | ||
79c2c32d DC |
2594 | /* C++: Return the member NAME of the namespace given by the type |
2595 | CURTYPE. */ | |
2596 | ||
2597 | static struct value * | |
2598 | value_namespace_elt (const struct type *curtype, | |
63d06c5c | 2599 | char *name, |
79c2c32d | 2600 | enum noside noside) |
63d06c5c DC |
2601 | { |
2602 | struct value *retval = value_maybe_namespace_elt (curtype, name, | |
2603 | noside); | |
2604 | ||
2605 | if (retval == NULL) | |
2606 | error ("No symbol \"%s\" in namespace \"%s\".", name, | |
2607 | TYPE_TAG_NAME (curtype)); | |
2608 | ||
2609 | return retval; | |
2610 | } | |
2611 | ||
2612 | /* A helper function used by value_namespace_elt and | |
2613 | value_struct_elt_for_reference. It looks up NAME inside the | |
2614 | context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE | |
2615 | is a class and NAME refers to a type in CURTYPE itself (as opposed | |
2616 | to, say, some base class of CURTYPE). */ | |
2617 | ||
2618 | static struct value * | |
2619 | value_maybe_namespace_elt (const struct type *curtype, | |
2620 | char *name, | |
2621 | enum noside noside) | |
79c2c32d DC |
2622 | { |
2623 | const char *namespace_name = TYPE_TAG_NAME (curtype); | |
2624 | struct symbol *sym; | |
79c2c32d DC |
2625 | |
2626 | sym = cp_lookup_symbol_namespace (namespace_name, name, NULL, | |
2627 | get_selected_block (0), VAR_DOMAIN, | |
2628 | NULL); | |
2629 | ||
2630 | if (sym == NULL) | |
63d06c5c | 2631 | return NULL; |
79c2c32d DC |
2632 | else if ((noside == EVAL_AVOID_SIDE_EFFECTS) |
2633 | && (SYMBOL_CLASS (sym) == LOC_TYPEDEF)) | |
63d06c5c | 2634 | return allocate_value (SYMBOL_TYPE (sym)); |
79c2c32d | 2635 | else |
63d06c5c | 2636 | return value_of_variable (sym, get_selected_block (0)); |
79c2c32d DC |
2637 | } |
2638 | ||
c906108c SS |
2639 | /* Given a pointer value V, find the real (RTTI) type |
2640 | of the object it points to. | |
2641 | Other parameters FULL, TOP, USING_ENC as with value_rtti_type() | |
2642 | and refer to the values computed for the object pointed to. */ | |
2643 | ||
2644 | struct type * | |
f23631e4 | 2645 | value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc) |
c906108c | 2646 | { |
f23631e4 | 2647 | struct value *target; |
c906108c SS |
2648 | |
2649 | target = value_ind (v); | |
2650 | ||
2651 | return value_rtti_type (target, full, top, using_enc); | |
2652 | } | |
2653 | ||
2654 | /* Given a value pointed to by ARGP, check its real run-time type, and | |
2655 | if that is different from the enclosing type, create a new value | |
2656 | using the real run-time type as the enclosing type (and of the same | |
2657 | type as ARGP) and return it, with the embedded offset adjusted to | |
2658 | be the correct offset to the enclosed object | |
2659 | RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other | |
2660 | parameters, computed by value_rtti_type(). If these are available, | |
2661 | they can be supplied and a second call to value_rtti_type() is avoided. | |
2662 | (Pass RTYPE == NULL if they're not available */ | |
2663 | ||
f23631e4 AC |
2664 | struct value * |
2665 | value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop, | |
fba45db2 | 2666 | int xusing_enc) |
c906108c | 2667 | { |
c5aa993b | 2668 | struct type *real_type; |
c906108c SS |
2669 | int full = 0; |
2670 | int top = -1; | |
2671 | int using_enc = 0; | |
f23631e4 | 2672 | struct value *new_val; |
c906108c SS |
2673 | |
2674 | if (rtype) | |
2675 | { | |
2676 | real_type = rtype; | |
2677 | full = xfull; | |
2678 | top = xtop; | |
2679 | using_enc = xusing_enc; | |
2680 | } | |
2681 | else | |
2682 | real_type = value_rtti_type (argp, &full, &top, &using_enc); | |
2683 | ||
2684 | /* If no RTTI data, or if object is already complete, do nothing */ | |
2685 | if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp)) | |
2686 | return argp; | |
2687 | ||
2688 | /* If we have the full object, but for some reason the enclosing | |
c5aa993b | 2689 | type is wrong, set it *//* pai: FIXME -- sounds iffy */ |
c906108c SS |
2690 | if (full) |
2691 | { | |
2b127877 | 2692 | argp = value_change_enclosing_type (argp, real_type); |
c906108c SS |
2693 | return argp; |
2694 | } | |
2695 | ||
2696 | /* Check if object is in memory */ | |
2697 | if (VALUE_LVAL (argp) != lval_memory) | |
2698 | { | |
2699 | warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type)); | |
c5aa993b | 2700 | |
c906108c SS |
2701 | return argp; |
2702 | } | |
c5aa993b | 2703 | |
c906108c SS |
2704 | /* All other cases -- retrieve the complete object */ |
2705 | /* Go back by the computed top_offset from the beginning of the object, | |
2706 | adjusting for the embedded offset of argp if that's what value_rtti_type | |
2707 | used for its computation. */ | |
2708 | new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top + | |
c5aa993b JM |
2709 | (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)), |
2710 | VALUE_BFD_SECTION (argp)); | |
c906108c SS |
2711 | VALUE_TYPE (new_val) = VALUE_TYPE (argp); |
2712 | VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top; | |
2713 | return new_val; | |
2714 | } | |
2715 | ||
389e51db AC |
2716 | |
2717 | ||
2718 | ||
d069f99d | 2719 | /* Return the value of the local variable, if one exists. |
c906108c SS |
2720 | Flag COMPLAIN signals an error if the request is made in an |
2721 | inappropriate context. */ | |
2722 | ||
f23631e4 | 2723 | struct value * |
d069f99d | 2724 | value_of_local (const char *name, int complain) |
c906108c SS |
2725 | { |
2726 | struct symbol *func, *sym; | |
2727 | struct block *b; | |
d069f99d | 2728 | struct value * ret; |
c906108c | 2729 | |
6e7f8b9c | 2730 | if (deprecated_selected_frame == 0) |
c906108c SS |
2731 | { |
2732 | if (complain) | |
c5aa993b JM |
2733 | error ("no frame selected"); |
2734 | else | |
2735 | return 0; | |
c906108c SS |
2736 | } |
2737 | ||
6e7f8b9c | 2738 | func = get_frame_function (deprecated_selected_frame); |
c906108c SS |
2739 | if (!func) |
2740 | { | |
2741 | if (complain) | |
2625d86c | 2742 | error ("no `%s' in nameless context", name); |
c5aa993b JM |
2743 | else |
2744 | return 0; | |
c906108c SS |
2745 | } |
2746 | ||
2747 | b = SYMBOL_BLOCK_VALUE (func); | |
de4f826b | 2748 | if (dict_empty (BLOCK_DICT (b))) |
c906108c SS |
2749 | { |
2750 | if (complain) | |
2625d86c | 2751 | error ("no args, no `%s'", name); |
c5aa993b JM |
2752 | else |
2753 | return 0; | |
c906108c SS |
2754 | } |
2755 | ||
2756 | /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER | |
2757 | symbol instead of the LOC_ARG one (if both exist). */ | |
176620f1 | 2758 | sym = lookup_block_symbol (b, name, NULL, VAR_DOMAIN); |
c906108c SS |
2759 | if (sym == NULL) |
2760 | { | |
2761 | if (complain) | |
2625d86c | 2762 | error ("current stack frame does not contain a variable named `%s'", name); |
c906108c SS |
2763 | else |
2764 | return NULL; | |
2765 | } | |
2766 | ||
6e7f8b9c | 2767 | ret = read_var_value (sym, deprecated_selected_frame); |
d069f99d | 2768 | if (ret == 0 && complain) |
2625d86c | 2769 | error ("`%s' argument unreadable", name); |
d069f99d AF |
2770 | return ret; |
2771 | } | |
2772 | ||
2773 | /* C++/Objective-C: return the value of the class instance variable, | |
2774 | if one exists. Flag COMPLAIN signals an error if the request is | |
2775 | made in an inappropriate context. */ | |
2776 | ||
2777 | struct value * | |
2778 | value_of_this (int complain) | |
2779 | { | |
2780 | if (current_language->la_language == language_objc) | |
2781 | return value_of_local ("self", complain); | |
2782 | else | |
2783 | return value_of_local ("this", complain); | |
c906108c SS |
2784 | } |
2785 | ||
2786 | /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements | |
2787 | long, starting at LOWBOUND. The result has the same lower bound as | |
2788 | the original ARRAY. */ | |
2789 | ||
f23631e4 AC |
2790 | struct value * |
2791 | value_slice (struct value *array, int lowbound, int length) | |
c906108c SS |
2792 | { |
2793 | struct type *slice_range_type, *slice_type, *range_type; | |
7a67d0fe | 2794 | LONGEST lowerbound, upperbound; |
f23631e4 | 2795 | struct value *slice; |
c906108c SS |
2796 | struct type *array_type; |
2797 | array_type = check_typedef (VALUE_TYPE (array)); | |
2798 | COERCE_VARYING_ARRAY (array, array_type); | |
2799 | if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY | |
2800 | && TYPE_CODE (array_type) != TYPE_CODE_STRING | |
2801 | && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING) | |
2802 | error ("cannot take slice of non-array"); | |
2803 | range_type = TYPE_INDEX_TYPE (array_type); | |
2804 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
2805 | error ("slice from bad array or bitstring"); | |
2806 | if (lowbound < lowerbound || length < 0 | |
db034ac5 | 2807 | || lowbound + length - 1 > upperbound) |
c906108c SS |
2808 | error ("slice out of range"); |
2809 | /* FIXME-type-allocation: need a way to free this type when we are | |
2810 | done with it. */ | |
c5aa993b | 2811 | slice_range_type = create_range_type ((struct type *) NULL, |
c906108c SS |
2812 | TYPE_TARGET_TYPE (range_type), |
2813 | lowbound, lowbound + length - 1); | |
2814 | if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING) | |
2815 | { | |
2816 | int i; | |
c5aa993b | 2817 | slice_type = create_set_type ((struct type *) NULL, slice_range_type); |
c906108c SS |
2818 | TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING; |
2819 | slice = value_zero (slice_type, not_lval); | |
2820 | for (i = 0; i < length; i++) | |
2821 | { | |
2822 | int element = value_bit_index (array_type, | |
2823 | VALUE_CONTENTS (array), | |
2824 | lowbound + i); | |
2825 | if (element < 0) | |
2826 | error ("internal error accessing bitstring"); | |
2827 | else if (element > 0) | |
2828 | { | |
2829 | int j = i % TARGET_CHAR_BIT; | |
2830 | if (BITS_BIG_ENDIAN) | |
2831 | j = TARGET_CHAR_BIT - 1 - j; | |
2832 | VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j); | |
2833 | } | |
2834 | } | |
2835 | /* We should set the address, bitssize, and bitspos, so the clice | |
7b83ea04 AC |
2836 | can be used on the LHS, but that may require extensions to |
2837 | value_assign. For now, just leave as a non_lval. FIXME. */ | |
c906108c SS |
2838 | } |
2839 | else | |
2840 | { | |
2841 | struct type *element_type = TYPE_TARGET_TYPE (array_type); | |
7a67d0fe | 2842 | LONGEST offset |
c906108c | 2843 | = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type)); |
c5aa993b | 2844 | slice_type = create_array_type ((struct type *) NULL, element_type, |
c906108c SS |
2845 | slice_range_type); |
2846 | TYPE_CODE (slice_type) = TYPE_CODE (array_type); | |
2847 | slice = allocate_value (slice_type); | |
2848 | if (VALUE_LAZY (array)) | |
2849 | VALUE_LAZY (slice) = 1; | |
2850 | else | |
2851 | memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset, | |
2852 | TYPE_LENGTH (slice_type)); | |
2853 | if (VALUE_LVAL (array) == lval_internalvar) | |
2854 | VALUE_LVAL (slice) = lval_internalvar_component; | |
2855 | else | |
2856 | VALUE_LVAL (slice) = VALUE_LVAL (array); | |
2857 | VALUE_ADDRESS (slice) = VALUE_ADDRESS (array); | |
2858 | VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset; | |
2859 | } | |
2860 | return slice; | |
2861 | } | |
2862 | ||
070ad9f0 DB |
2863 | /* Create a value for a FORTRAN complex number. Currently most of |
2864 | the time values are coerced to COMPLEX*16 (i.e. a complex number | |
2865 | composed of 2 doubles. This really should be a smarter routine | |
2866 | that figures out precision inteligently as opposed to assuming | |
c5aa993b | 2867 | doubles. FIXME: fmb */ |
c906108c | 2868 | |
f23631e4 AC |
2869 | struct value * |
2870 | value_literal_complex (struct value *arg1, struct value *arg2, struct type *type) | |
c906108c | 2871 | { |
f23631e4 | 2872 | struct value *val; |
c906108c SS |
2873 | struct type *real_type = TYPE_TARGET_TYPE (type); |
2874 | ||
2875 | val = allocate_value (type); | |
2876 | arg1 = value_cast (real_type, arg1); | |
2877 | arg2 = value_cast (real_type, arg2); | |
2878 | ||
2879 | memcpy (VALUE_CONTENTS_RAW (val), | |
2880 | VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type)); | |
2881 | memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type), | |
2882 | VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type)); | |
2883 | return val; | |
2884 | } | |
2885 | ||
2886 | /* Cast a value into the appropriate complex data type. */ | |
2887 | ||
f23631e4 AC |
2888 | static struct value * |
2889 | cast_into_complex (struct type *type, struct value *val) | |
c906108c SS |
2890 | { |
2891 | struct type *real_type = TYPE_TARGET_TYPE (type); | |
2892 | if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX) | |
2893 | { | |
2894 | struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val)); | |
f23631e4 AC |
2895 | struct value *re_val = allocate_value (val_real_type); |
2896 | struct value *im_val = allocate_value (val_real_type); | |
c906108c SS |
2897 | |
2898 | memcpy (VALUE_CONTENTS_RAW (re_val), | |
2899 | VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type)); | |
2900 | memcpy (VALUE_CONTENTS_RAW (im_val), | |
2901 | VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type), | |
c5aa993b | 2902 | TYPE_LENGTH (val_real_type)); |
c906108c SS |
2903 | |
2904 | return value_literal_complex (re_val, im_val, type); | |
2905 | } | |
2906 | else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT | |
2907 | || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT) | |
2908 | return value_literal_complex (val, value_zero (real_type, not_lval), type); | |
2909 | else | |
2910 | error ("cannot cast non-number to complex"); | |
2911 | } | |
2912 | ||
2913 | void | |
fba45db2 | 2914 | _initialize_valops (void) |
c906108c SS |
2915 | { |
2916 | #if 0 | |
2917 | add_show_from_set | |
c5aa993b | 2918 | (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon, |
c906108c SS |
2919 | "Set automatic abandonment of expressions upon failure.", |
2920 | &setlist), | |
2921 | &showlist); | |
2922 | #endif | |
2923 | ||
2924 | add_show_from_set | |
c5aa993b | 2925 | (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution, |
c906108c SS |
2926 | "Set overload resolution in evaluating C++ functions.", |
2927 | &setlist), | |
2928 | &showlist); | |
2929 | overload_resolution = 1; | |
c906108c | 2930 | } |