]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Perform non-arithmetic operations on values, for GDB. |
990a07ab | 2 | |
9b254dd1 DJ |
3 | Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, |
4 | 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, | |
5 | 2008 Free Software Foundation, Inc. | |
c906108c | 6 | |
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 11 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 12 | (at your option) any later version. |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b | 19 | You should have received a copy of the GNU General Public License |
a9762ec7 | 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
21 | |
22 | #include "defs.h" | |
23 | #include "symtab.h" | |
24 | #include "gdbtypes.h" | |
25 | #include "value.h" | |
26 | #include "frame.h" | |
27 | #include "inferior.h" | |
28 | #include "gdbcore.h" | |
29 | #include "target.h" | |
30 | #include "demangle.h" | |
31 | #include "language.h" | |
32 | #include "gdbcmd.h" | |
4e052eda | 33 | #include "regcache.h" |
015a42b4 | 34 | #include "cp-abi.h" |
fe898f56 | 35 | #include "block.h" |
04714b91 | 36 | #include "infcall.h" |
de4f826b | 37 | #include "dictionary.h" |
b6429628 | 38 | #include "cp-support.h" |
4ef30785 | 39 | #include "dfp.h" |
c906108c SS |
40 | |
41 | #include <errno.h> | |
42 | #include "gdb_string.h" | |
4a1970e4 | 43 | #include "gdb_assert.h" |
79c2c32d | 44 | #include "cp-support.h" |
f4c5303c | 45 | #include "observer.h" |
c906108c | 46 | |
070ad9f0 | 47 | extern int overload_debug; |
c906108c SS |
48 | /* Local functions. */ |
49 | ||
ad2f7632 DJ |
50 | static int typecmp (int staticp, int varargs, int nargs, |
51 | struct field t1[], struct value *t2[]); | |
c906108c | 52 | |
ac3eeb49 MS |
53 | static struct value *search_struct_field (char *, struct value *, |
54 | int, struct type *, int); | |
c906108c | 55 | |
f23631e4 AC |
56 | static struct value *search_struct_method (char *, struct value **, |
57 | struct value **, | |
a14ed312 | 58 | int, int *, struct type *); |
c906108c | 59 | |
ac3eeb49 MS |
60 | static int find_oload_champ_namespace (struct type **, int, |
61 | const char *, const char *, | |
62 | struct symbol ***, | |
63 | struct badness_vector **); | |
8d577d32 DC |
64 | |
65 | static | |
ac3eeb49 MS |
66 | int find_oload_champ_namespace_loop (struct type **, int, |
67 | const char *, const char *, | |
68 | int, struct symbol ***, | |
69 | struct badness_vector **, int *); | |
70 | ||
71 | static int find_oload_champ (struct type **, int, int, int, | |
72 | struct fn_field *, struct symbol **, | |
73 | struct badness_vector **); | |
74 | ||
75 | static int oload_method_static (int, struct fn_field *, int); | |
8d577d32 DC |
76 | |
77 | enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE }; | |
78 | ||
79 | static enum | |
ac3eeb49 MS |
80 | oload_classification classify_oload_match (struct badness_vector *, |
81 | int, int); | |
8d577d32 | 82 | |
ac3eeb49 MS |
83 | static struct value *value_struct_elt_for_reference (struct type *, |
84 | int, struct type *, | |
85 | char *, | |
86 | struct type *, | |
87 | int, enum noside); | |
79c2c32d | 88 | |
ac3eeb49 MS |
89 | static struct value *value_namespace_elt (const struct type *, |
90 | char *, int , enum noside); | |
79c2c32d | 91 | |
ac3eeb49 MS |
92 | static struct value *value_maybe_namespace_elt (const struct type *, |
93 | char *, int, | |
94 | enum noside); | |
63d06c5c | 95 | |
a14ed312 | 96 | static CORE_ADDR allocate_space_in_inferior (int); |
c906108c | 97 | |
f23631e4 | 98 | static struct value *cast_into_complex (struct type *, struct value *); |
c906108c | 99 | |
ac3eeb49 MS |
100 | static struct fn_field *find_method_list (struct value **, char *, |
101 | int, struct type *, int *, | |
102 | struct type **, int *); | |
7a292a7a | 103 | |
a14ed312 | 104 | void _initialize_valops (void); |
c906108c | 105 | |
c906108c | 106 | #if 0 |
ac3eeb49 MS |
107 | /* Flag for whether we want to abandon failed expression evals by |
108 | default. */ | |
109 | ||
c906108c SS |
110 | static int auto_abandon = 0; |
111 | #endif | |
112 | ||
113 | int overload_resolution = 0; | |
920d2a44 AC |
114 | static void |
115 | show_overload_resolution (struct ui_file *file, int from_tty, | |
ac3eeb49 MS |
116 | struct cmd_list_element *c, |
117 | const char *value) | |
920d2a44 AC |
118 | { |
119 | fprintf_filtered (file, _("\ | |
120 | Overload resolution in evaluating C++ functions is %s.\n"), | |
121 | value); | |
122 | } | |
242bfc55 | 123 | |
c906108c SS |
124 | /* Find the address of function name NAME in the inferior. */ |
125 | ||
f23631e4 | 126 | struct value * |
3bada2a2 | 127 | find_function_in_inferior (const char *name) |
c906108c | 128 | { |
52f0bd74 | 129 | struct symbol *sym; |
176620f1 | 130 | sym = lookup_symbol (name, 0, VAR_DOMAIN, 0, NULL); |
c906108c SS |
131 | if (sym != NULL) |
132 | { | |
133 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
134 | { | |
8a3fe4f8 | 135 | error (_("\"%s\" exists in this program but is not a function."), |
c906108c SS |
136 | name); |
137 | } | |
138 | return value_of_variable (sym, NULL); | |
139 | } | |
140 | else | |
141 | { | |
ac3eeb49 MS |
142 | struct minimal_symbol *msymbol = |
143 | lookup_minimal_symbol (name, NULL, NULL); | |
c906108c SS |
144 | if (msymbol != NULL) |
145 | { | |
146 | struct type *type; | |
4478b372 | 147 | CORE_ADDR maddr; |
c906108c SS |
148 | type = lookup_pointer_type (builtin_type_char); |
149 | type = lookup_function_type (type); | |
150 | type = lookup_pointer_type (type); | |
4478b372 JB |
151 | maddr = SYMBOL_VALUE_ADDRESS (msymbol); |
152 | return value_from_pointer (type, maddr); | |
c906108c SS |
153 | } |
154 | else | |
155 | { | |
c5aa993b | 156 | if (!target_has_execution) |
8a3fe4f8 | 157 | error (_("evaluation of this expression requires the target program to be active")); |
c5aa993b | 158 | else |
8a3fe4f8 | 159 | error (_("evaluation of this expression requires the program to have a function \"%s\"."), name); |
c906108c SS |
160 | } |
161 | } | |
162 | } | |
163 | ||
ac3eeb49 MS |
164 | /* Allocate NBYTES of space in the inferior using the inferior's |
165 | malloc and return a value that is a pointer to the allocated | |
166 | space. */ | |
c906108c | 167 | |
f23631e4 | 168 | struct value * |
fba45db2 | 169 | value_allocate_space_in_inferior (int len) |
c906108c | 170 | { |
f23631e4 | 171 | struct value *blocklen; |
ac3eeb49 MS |
172 | struct value *val = |
173 | find_function_in_inferior (gdbarch_name_of_malloc (current_gdbarch)); | |
c906108c SS |
174 | |
175 | blocklen = value_from_longest (builtin_type_int, (LONGEST) len); | |
176 | val = call_function_by_hand (val, 1, &blocklen); | |
177 | if (value_logical_not (val)) | |
178 | { | |
179 | if (!target_has_execution) | |
8a3fe4f8 | 180 | error (_("No memory available to program now: you need to start the target first")); |
c5aa993b | 181 | else |
8a3fe4f8 | 182 | error (_("No memory available to program: call to malloc failed")); |
c906108c SS |
183 | } |
184 | return val; | |
185 | } | |
186 | ||
187 | static CORE_ADDR | |
fba45db2 | 188 | allocate_space_in_inferior (int len) |
c906108c SS |
189 | { |
190 | return value_as_long (value_allocate_space_in_inferior (len)); | |
191 | } | |
192 | ||
6af87b03 AR |
193 | /* Cast struct value VAL to type TYPE and return as a value. |
194 | Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION | |
195 | for this to work. Typedef to one of the codes is permitted. */ | |
196 | ||
197 | static struct value * | |
198 | value_cast_structs (struct type *type, struct value *v2) | |
199 | { | |
200 | struct type *t1; | |
201 | struct type *t2; | |
202 | struct value *v; | |
203 | ||
204 | gdb_assert (type != NULL && v2 != NULL); | |
205 | ||
206 | t1 = check_typedef (type); | |
207 | t2 = check_typedef (value_type (v2)); | |
208 | ||
209 | /* Check preconditions. */ | |
210 | gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT | |
211 | || TYPE_CODE (t1) == TYPE_CODE_UNION) | |
212 | && !!"Precondition is that type is of STRUCT or UNION kind."); | |
213 | gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT | |
214 | || TYPE_CODE (t2) == TYPE_CODE_UNION) | |
215 | && !!"Precondition is that value is of STRUCT or UNION kind"); | |
216 | ||
217 | /* Upcasting: look in the type of the source to see if it contains the | |
218 | type of the target as a superclass. If so, we'll need to | |
219 | offset the pointer rather than just change its type. */ | |
220 | if (TYPE_NAME (t1) != NULL) | |
221 | { | |
222 | v = search_struct_field (type_name_no_tag (t1), | |
223 | v2, 0, t2, 1); | |
224 | if (v) | |
225 | return v; | |
226 | } | |
227 | ||
228 | /* Downcasting: look in the type of the target to see if it contains the | |
229 | type of the source as a superclass. If so, we'll need to | |
230 | offset the pointer rather than just change its type. | |
231 | FIXME: This fails silently with virtual inheritance. */ | |
232 | if (TYPE_NAME (t2) != NULL) | |
233 | { | |
234 | v = search_struct_field (type_name_no_tag (t2), | |
235 | value_zero (t1, not_lval), 0, t1, 1); | |
236 | if (v) | |
237 | { | |
238 | /* Downcasting is possible (t1 is superclass of v2). */ | |
239 | CORE_ADDR addr2 = VALUE_ADDRESS (v2); | |
240 | addr2 -= (VALUE_ADDRESS (v) | |
241 | + value_offset (v) | |
242 | + value_embedded_offset (v)); | |
243 | return value_at (type, addr2); | |
244 | } | |
245 | } | |
246 | return v2; | |
247 | } | |
248 | ||
fb933624 DJ |
249 | /* Cast one pointer or reference type to another. Both TYPE and |
250 | the type of ARG2 should be pointer types, or else both should be | |
251 | reference types. Returns the new pointer or reference. */ | |
252 | ||
253 | struct value * | |
254 | value_cast_pointers (struct type *type, struct value *arg2) | |
255 | { | |
6af87b03 | 256 | struct type *type1 = check_typedef (type); |
fb933624 DJ |
257 | struct type *type2 = check_typedef (value_type (arg2)); |
258 | struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type)); | |
259 | struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2)); | |
260 | ||
261 | if (TYPE_CODE (t1) == TYPE_CODE_STRUCT | |
262 | && TYPE_CODE (t2) == TYPE_CODE_STRUCT | |
263 | && !value_logical_not (arg2)) | |
264 | { | |
6af87b03 | 265 | struct value *v2; |
fb933624 | 266 | |
6af87b03 AR |
267 | if (TYPE_CODE (type2) == TYPE_CODE_REF) |
268 | v2 = coerce_ref (arg2); | |
269 | else | |
270 | v2 = value_ind (arg2); | |
271 | gdb_assert (TYPE_CODE (value_type (v2)) == TYPE_CODE_STRUCT | |
272 | && !!"Why did coercion fail?"); | |
273 | v2 = value_cast_structs (t1, v2); | |
274 | /* At this point we have what we can have, un-dereference if needed. */ | |
275 | if (v2) | |
fb933624 | 276 | { |
6af87b03 AR |
277 | struct value *v = value_addr (v2); |
278 | deprecated_set_value_type (v, type); | |
279 | return v; | |
fb933624 | 280 | } |
6af87b03 | 281 | } |
fb933624 DJ |
282 | |
283 | /* No superclass found, just change the pointer type. */ | |
0d5de010 | 284 | arg2 = value_copy (arg2); |
fb933624 DJ |
285 | deprecated_set_value_type (arg2, type); |
286 | arg2 = value_change_enclosing_type (arg2, type); | |
287 | set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */ | |
288 | return arg2; | |
289 | } | |
290 | ||
c906108c SS |
291 | /* Cast value ARG2 to type TYPE and return as a value. |
292 | More general than a C cast: accepts any two types of the same length, | |
293 | and if ARG2 is an lvalue it can be cast into anything at all. */ | |
294 | /* In C++, casts may change pointer or object representations. */ | |
295 | ||
f23631e4 AC |
296 | struct value * |
297 | value_cast (struct type *type, struct value *arg2) | |
c906108c | 298 | { |
52f0bd74 AC |
299 | enum type_code code1; |
300 | enum type_code code2; | |
301 | int scalar; | |
c906108c SS |
302 | struct type *type2; |
303 | ||
304 | int convert_to_boolean = 0; | |
c5aa993b | 305 | |
df407dfe | 306 | if (value_type (arg2) == type) |
c906108c SS |
307 | return arg2; |
308 | ||
6af87b03 AR |
309 | code1 = TYPE_CODE (check_typedef (type)); |
310 | ||
311 | /* Check if we are casting struct reference to struct reference. */ | |
312 | if (code1 == TYPE_CODE_REF) | |
313 | { | |
314 | /* We dereference type; then we recurse and finally | |
315 | we generate value of the given reference. Nothing wrong with | |
316 | that. */ | |
317 | struct type *t1 = check_typedef (type); | |
318 | struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1)); | |
319 | struct value *val = value_cast (dereftype, arg2); | |
320 | return value_ref (val); | |
321 | } | |
322 | ||
323 | code2 = TYPE_CODE (check_typedef (value_type (arg2))); | |
324 | ||
325 | if (code2 == TYPE_CODE_REF) | |
326 | /* We deref the value and then do the cast. */ | |
327 | return value_cast (type, coerce_ref (arg2)); | |
328 | ||
c906108c SS |
329 | CHECK_TYPEDEF (type); |
330 | code1 = TYPE_CODE (type); | |
994b9211 | 331 | arg2 = coerce_ref (arg2); |
df407dfe | 332 | type2 = check_typedef (value_type (arg2)); |
c906108c | 333 | |
fb933624 DJ |
334 | /* You can't cast to a reference type. See value_cast_pointers |
335 | instead. */ | |
336 | gdb_assert (code1 != TYPE_CODE_REF); | |
337 | ||
ac3eeb49 MS |
338 | /* A cast to an undetermined-length array_type, such as |
339 | (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT, | |
340 | where N is sizeof(OBJECT)/sizeof(TYPE). */ | |
c906108c SS |
341 | if (code1 == TYPE_CODE_ARRAY) |
342 | { | |
343 | struct type *element_type = TYPE_TARGET_TYPE (type); | |
344 | unsigned element_length = TYPE_LENGTH (check_typedef (element_type)); | |
345 | if (element_length > 0 | |
c5aa993b | 346 | && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED) |
c906108c SS |
347 | { |
348 | struct type *range_type = TYPE_INDEX_TYPE (type); | |
349 | int val_length = TYPE_LENGTH (type2); | |
350 | LONGEST low_bound, high_bound, new_length; | |
351 | if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0) | |
352 | low_bound = 0, high_bound = 0; | |
353 | new_length = val_length / element_length; | |
354 | if (val_length % element_length != 0) | |
8a3fe4f8 | 355 | warning (_("array element type size does not divide object size in cast")); |
ac3eeb49 MS |
356 | /* FIXME-type-allocation: need a way to free this type when |
357 | we are done with it. */ | |
c906108c SS |
358 | range_type = create_range_type ((struct type *) NULL, |
359 | TYPE_TARGET_TYPE (range_type), | |
360 | low_bound, | |
361 | new_length + low_bound - 1); | |
ac3eeb49 MS |
362 | deprecated_set_value_type (arg2, |
363 | create_array_type ((struct type *) NULL, | |
364 | element_type, | |
365 | range_type)); | |
c906108c SS |
366 | return arg2; |
367 | } | |
368 | } | |
369 | ||
370 | if (current_language->c_style_arrays | |
371 | && TYPE_CODE (type2) == TYPE_CODE_ARRAY) | |
372 | arg2 = value_coerce_array (arg2); | |
373 | ||
374 | if (TYPE_CODE (type2) == TYPE_CODE_FUNC) | |
375 | arg2 = value_coerce_function (arg2); | |
376 | ||
df407dfe | 377 | type2 = check_typedef (value_type (arg2)); |
c906108c SS |
378 | code2 = TYPE_CODE (type2); |
379 | ||
380 | if (code1 == TYPE_CODE_COMPLEX) | |
381 | return cast_into_complex (type, arg2); | |
382 | if (code1 == TYPE_CODE_BOOL) | |
383 | { | |
384 | code1 = TYPE_CODE_INT; | |
385 | convert_to_boolean = 1; | |
386 | } | |
387 | if (code1 == TYPE_CODE_CHAR) | |
388 | code1 = TYPE_CODE_INT; | |
389 | if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR) | |
390 | code2 = TYPE_CODE_INT; | |
391 | ||
392 | scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT | |
4ef30785 TJB |
393 | || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM |
394 | || code2 == TYPE_CODE_RANGE); | |
c906108c | 395 | |
6af87b03 AR |
396 | if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION) |
397 | && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION) | |
c906108c | 398 | && TYPE_NAME (type) != 0) |
6af87b03 | 399 | return value_cast_structs (type, arg2); |
c906108c SS |
400 | if (code1 == TYPE_CODE_FLT && scalar) |
401 | return value_from_double (type, value_as_double (arg2)); | |
4ef30785 TJB |
402 | else if (code1 == TYPE_CODE_DECFLOAT && scalar) |
403 | { | |
404 | int dec_len = TYPE_LENGTH (type); | |
405 | gdb_byte dec[16]; | |
406 | ||
407 | if (code2 == TYPE_CODE_FLT) | |
408 | decimal_from_floating (arg2, dec, dec_len); | |
409 | else if (code2 == TYPE_CODE_DECFLOAT) | |
410 | decimal_convert (value_contents (arg2), TYPE_LENGTH (type2), | |
411 | dec, dec_len); | |
412 | else | |
413 | /* The only option left is an integral type. */ | |
414 | decimal_from_integral (arg2, dec, dec_len); | |
415 | ||
416 | return value_from_decfloat (type, dec); | |
417 | } | |
c906108c SS |
418 | else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM |
419 | || code1 == TYPE_CODE_RANGE) | |
0d5de010 DJ |
420 | && (scalar || code2 == TYPE_CODE_PTR |
421 | || code2 == TYPE_CODE_MEMBERPTR)) | |
c906108c SS |
422 | { |
423 | LONGEST longest; | |
c5aa993b | 424 | |
2bf1f4a1 | 425 | /* When we cast pointers to integers, we mustn't use |
76e71323 | 426 | gdbarch_pointer_to_address to find the address the pointer |
2bf1f4a1 JB |
427 | represents, as value_as_long would. GDB should evaluate |
428 | expressions just as the compiler would --- and the compiler | |
429 | sees a cast as a simple reinterpretation of the pointer's | |
430 | bits. */ | |
431 | if (code2 == TYPE_CODE_PTR) | |
0fd88904 | 432 | longest = extract_unsigned_integer (value_contents (arg2), |
2bf1f4a1 JB |
433 | TYPE_LENGTH (type2)); |
434 | else | |
435 | longest = value_as_long (arg2); | |
802db21b | 436 | return value_from_longest (type, convert_to_boolean ? |
716c501e | 437 | (LONGEST) (longest ? 1 : 0) : longest); |
c906108c | 438 | } |
ac3eeb49 MS |
439 | else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT |
440 | || code2 == TYPE_CODE_ENUM | |
441 | || code2 == TYPE_CODE_RANGE)) | |
634acd5f | 442 | { |
4603e466 DT |
443 | /* TYPE_LENGTH (type) is the length of a pointer, but we really |
444 | want the length of an address! -- we are really dealing with | |
445 | addresses (i.e., gdb representations) not pointers (i.e., | |
446 | target representations) here. | |
447 | ||
448 | This allows things like "print *(int *)0x01000234" to work | |
449 | without printing a misleading message -- which would | |
450 | otherwise occur when dealing with a target having two byte | |
451 | pointers and four byte addresses. */ | |
452 | ||
17a912b6 | 453 | int addr_bit = gdbarch_addr_bit (current_gdbarch); |
4603e466 | 454 | |
634acd5f | 455 | LONGEST longest = value_as_long (arg2); |
4603e466 | 456 | if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT) |
634acd5f | 457 | { |
4603e466 DT |
458 | if (longest >= ((LONGEST) 1 << addr_bit) |
459 | || longest <= -((LONGEST) 1 << addr_bit)) | |
8a3fe4f8 | 460 | warning (_("value truncated")); |
634acd5f AC |
461 | } |
462 | return value_from_longest (type, longest); | |
463 | } | |
0d5de010 DJ |
464 | else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT |
465 | && value_as_long (arg2) == 0) | |
466 | { | |
467 | struct value *result = allocate_value (type); | |
468 | cplus_make_method_ptr (value_contents_writeable (result), 0, 0); | |
469 | return result; | |
470 | } | |
471 | else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT | |
472 | && value_as_long (arg2) == 0) | |
473 | { | |
474 | /* The Itanium C++ ABI represents NULL pointers to members as | |
475 | minus one, instead of biasing the normal case. */ | |
476 | return value_from_longest (type, -1); | |
477 | } | |
c906108c SS |
478 | else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2)) |
479 | { | |
480 | if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR) | |
fb933624 DJ |
481 | return value_cast_pointers (type, arg2); |
482 | ||
0d5de010 | 483 | arg2 = value_copy (arg2); |
04624583 | 484 | deprecated_set_value_type (arg2, type); |
2b127877 | 485 | arg2 = value_change_enclosing_type (arg2, type); |
b44d461b | 486 | set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */ |
c906108c SS |
487 | return arg2; |
488 | } | |
c906108c | 489 | else if (VALUE_LVAL (arg2) == lval_memory) |
ac3eeb49 MS |
490 | return value_at_lazy (type, |
491 | VALUE_ADDRESS (arg2) + value_offset (arg2)); | |
c906108c SS |
492 | else if (code1 == TYPE_CODE_VOID) |
493 | { | |
494 | return value_zero (builtin_type_void, not_lval); | |
495 | } | |
496 | else | |
497 | { | |
8a3fe4f8 | 498 | error (_("Invalid cast.")); |
c906108c SS |
499 | return 0; |
500 | } | |
501 | } | |
502 | ||
503 | /* Create a value of type TYPE that is zero, and return it. */ | |
504 | ||
f23631e4 | 505 | struct value * |
fba45db2 | 506 | value_zero (struct type *type, enum lval_type lv) |
c906108c | 507 | { |
f23631e4 | 508 | struct value *val = allocate_value (type); |
c906108c SS |
509 | VALUE_LVAL (val) = lv; |
510 | ||
511 | return val; | |
512 | } | |
513 | ||
301f0ecf DE |
514 | /* Create a value of numeric type TYPE that is one, and return it. */ |
515 | ||
516 | struct value * | |
517 | value_one (struct type *type, enum lval_type lv) | |
518 | { | |
519 | struct type *type1 = check_typedef (type); | |
520 | struct value *val = NULL; /* avoid -Wall warning */ | |
521 | ||
522 | if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT) | |
523 | { | |
524 | struct value *int_one = value_from_longest (builtin_type_int, 1); | |
525 | struct value *val; | |
526 | gdb_byte v[16]; | |
527 | ||
528 | decimal_from_integral (int_one, v, TYPE_LENGTH (builtin_type_int)); | |
529 | val = value_from_decfloat (type, v); | |
530 | } | |
531 | else if (TYPE_CODE (type1) == TYPE_CODE_FLT) | |
532 | { | |
533 | val = value_from_double (type, (DOUBLEST) 1); | |
534 | } | |
535 | else if (is_integral_type (type1)) | |
536 | { | |
537 | val = value_from_longest (type, (LONGEST) 1); | |
538 | } | |
539 | else | |
540 | { | |
541 | error (_("Not a numeric type.")); | |
542 | } | |
543 | ||
544 | VALUE_LVAL (val) = lv; | |
545 | return val; | |
546 | } | |
547 | ||
070ad9f0 | 548 | /* Return a value with type TYPE located at ADDR. |
c906108c SS |
549 | |
550 | Call value_at only if the data needs to be fetched immediately; | |
551 | if we can be 'lazy' and defer the fetch, perhaps indefinately, call | |
552 | value_at_lazy instead. value_at_lazy simply records the address of | |
070ad9f0 | 553 | the data and sets the lazy-evaluation-required flag. The lazy flag |
0fd88904 | 554 | is tested in the value_contents macro, which is used if and when |
070ad9f0 | 555 | the contents are actually required. |
c906108c SS |
556 | |
557 | Note: value_at does *NOT* handle embedded offsets; perform such | |
ac3eeb49 | 558 | adjustments before or after calling it. */ |
c906108c | 559 | |
f23631e4 | 560 | struct value * |
00a4c844 | 561 | value_at (struct type *type, CORE_ADDR addr) |
c906108c | 562 | { |
f23631e4 | 563 | struct value *val; |
c906108c SS |
564 | |
565 | if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID) | |
8a3fe4f8 | 566 | error (_("Attempt to dereference a generic pointer.")); |
c906108c SS |
567 | |
568 | val = allocate_value (type); | |
569 | ||
990a07ab | 570 | read_memory (addr, value_contents_all_raw (val), TYPE_LENGTH (type)); |
c906108c SS |
571 | |
572 | VALUE_LVAL (val) = lval_memory; | |
573 | VALUE_ADDRESS (val) = addr; | |
c906108c SS |
574 | |
575 | return val; | |
576 | } | |
577 | ||
578 | /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */ | |
579 | ||
f23631e4 | 580 | struct value * |
00a4c844 | 581 | value_at_lazy (struct type *type, CORE_ADDR addr) |
c906108c | 582 | { |
f23631e4 | 583 | struct value *val; |
c906108c SS |
584 | |
585 | if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID) | |
8a3fe4f8 | 586 | error (_("Attempt to dereference a generic pointer.")); |
c906108c SS |
587 | |
588 | val = allocate_value (type); | |
589 | ||
590 | VALUE_LVAL (val) = lval_memory; | |
591 | VALUE_ADDRESS (val) = addr; | |
dfa52d88 | 592 | set_value_lazy (val, 1); |
c906108c SS |
593 | |
594 | return val; | |
595 | } | |
596 | ||
0fd88904 | 597 | /* Called only from the value_contents and value_contents_all() |
46615f07 | 598 | macros, if the current data for a variable needs to be loaded into |
0fd88904 | 599 | value_contents(VAL). Fetches the data from the user's process, and |
46615f07 AC |
600 | clears the lazy flag to indicate that the data in the buffer is |
601 | valid. | |
c906108c | 602 | |
ac3eeb49 MS |
603 | If the value is zero-length, we avoid calling read_memory, which |
604 | would abort. We mark the value as fetched anyway -- all 0 bytes of | |
605 | it. | |
c906108c | 606 | |
ac3eeb49 MS |
607 | This function returns a value because it is used in the |
608 | value_contents macro as part of an expression, where a void would | |
609 | not work. The value is ignored. */ | |
c906108c SS |
610 | |
611 | int | |
f23631e4 | 612 | value_fetch_lazy (struct value *val) |
c906108c | 613 | { |
9214ee5f DJ |
614 | if (VALUE_LVAL (val) == lval_memory) |
615 | { | |
616 | CORE_ADDR addr = VALUE_ADDRESS (val) + value_offset (val); | |
617 | int length = TYPE_LENGTH (value_enclosing_type (val)); | |
618 | ||
619 | struct type *type = value_type (val); | |
620 | if (length) | |
621 | read_memory (addr, value_contents_all_raw (val), length); | |
622 | } | |
623 | else if (VALUE_LVAL (val) == lval_register) | |
624 | { | |
669fac23 DJ |
625 | struct frame_info *frame; |
626 | int regnum; | |
9214ee5f | 627 | struct type *type = check_typedef (value_type (val)); |
669fac23 | 628 | struct value *new_val = val, *mark = value_mark (); |
c906108c | 629 | |
669fac23 DJ |
630 | /* Offsets are not supported here; lazy register values must |
631 | refer to the entire register. */ | |
632 | gdb_assert (value_offset (val) == 0); | |
9214ee5f | 633 | |
669fac23 DJ |
634 | while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val)) |
635 | { | |
636 | frame = frame_find_by_id (VALUE_FRAME_ID (new_val)); | |
637 | regnum = VALUE_REGNUM (new_val); | |
638 | ||
639 | gdb_assert (frame != NULL); | |
9214ee5f | 640 | |
669fac23 DJ |
641 | /* Convertible register routines are used for multi-register |
642 | values and for interpretation in different types | |
643 | (e.g. float or int from a double register). Lazy | |
644 | register values should have the register's natural type, | |
645 | so they do not apply. */ | |
646 | gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame), | |
647 | regnum, type)); | |
648 | ||
649 | new_val = get_frame_register_value (frame, regnum); | |
650 | } | |
651 | ||
652 | /* If it's still lazy (for instance, a saved register on the | |
653 | stack), fetch it. */ | |
654 | if (value_lazy (new_val)) | |
655 | value_fetch_lazy (new_val); | |
656 | ||
657 | /* If the register was not saved, mark it unavailable. */ | |
658 | if (value_optimized_out (new_val)) | |
9214ee5f | 659 | set_value_optimized_out (val, 1); |
669fac23 DJ |
660 | else |
661 | memcpy (value_contents_raw (val), value_contents (new_val), | |
662 | TYPE_LENGTH (type)); | |
663 | ||
664 | if (frame_debug) | |
665 | { | |
666 | frame = frame_find_by_id (VALUE_FRAME_ID (val)); | |
667 | regnum = VALUE_REGNUM (val); | |
668 | ||
669 | fprintf_unfiltered (gdb_stdlog, "\ | |
670 | { value_fetch_lazy (frame=%d,regnum=%d(%s),...) ", | |
671 | frame_relative_level (frame), regnum, | |
672 | frame_map_regnum_to_name (frame, regnum)); | |
673 | ||
674 | fprintf_unfiltered (gdb_stdlog, "->"); | |
675 | if (value_optimized_out (new_val)) | |
676 | fprintf_unfiltered (gdb_stdlog, " optimized out"); | |
677 | else | |
678 | { | |
679 | int i; | |
680 | const gdb_byte *buf = value_contents (new_val); | |
681 | ||
682 | if (VALUE_LVAL (new_val) == lval_register) | |
683 | fprintf_unfiltered (gdb_stdlog, " register=%d", | |
684 | VALUE_REGNUM (new_val)); | |
685 | else if (VALUE_LVAL (new_val) == lval_memory) | |
686 | fprintf_unfiltered (gdb_stdlog, " address=0x%s", | |
687 | paddr_nz (VALUE_ADDRESS (new_val))); | |
688 | else | |
689 | fprintf_unfiltered (gdb_stdlog, " computed"); | |
690 | ||
691 | fprintf_unfiltered (gdb_stdlog, " bytes="); | |
692 | fprintf_unfiltered (gdb_stdlog, "["); | |
693 | for (i = 0; | |
694 | i < register_size (get_frame_arch (frame), regnum); | |
695 | i++) | |
696 | fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]); | |
697 | fprintf_unfiltered (gdb_stdlog, "]"); | |
698 | } | |
699 | ||
700 | fprintf_unfiltered (gdb_stdlog, " }\n"); | |
701 | } | |
702 | ||
703 | /* Dispose of the intermediate values. This prevents | |
704 | watchpoints from trying to watch the saved frame pointer. */ | |
705 | value_free_to_mark (mark); | |
9214ee5f DJ |
706 | } |
707 | else | |
708 | internal_error (__FILE__, __LINE__, "Unexpected lazy value type."); | |
802db21b | 709 | |
dfa52d88 | 710 | set_value_lazy (val, 0); |
c906108c SS |
711 | return 0; |
712 | } | |
713 | ||
714 | ||
715 | /* Store the contents of FROMVAL into the location of TOVAL. | |
716 | Return a new value with the location of TOVAL and contents of FROMVAL. */ | |
717 | ||
f23631e4 AC |
718 | struct value * |
719 | value_assign (struct value *toval, struct value *fromval) | |
c906108c | 720 | { |
52f0bd74 | 721 | struct type *type; |
f23631e4 | 722 | struct value *val; |
cb741690 | 723 | struct frame_id old_frame; |
c906108c | 724 | |
88e3b34b | 725 | if (!deprecated_value_modifiable (toval)) |
8a3fe4f8 | 726 | error (_("Left operand of assignment is not a modifiable lvalue.")); |
c906108c | 727 | |
994b9211 | 728 | toval = coerce_ref (toval); |
c906108c | 729 | |
df407dfe | 730 | type = value_type (toval); |
c906108c | 731 | if (VALUE_LVAL (toval) != lval_internalvar) |
63092375 DJ |
732 | { |
733 | toval = value_coerce_to_target (toval); | |
734 | fromval = value_cast (type, fromval); | |
735 | } | |
c906108c | 736 | else |
63092375 DJ |
737 | { |
738 | /* Coerce arrays and functions to pointers, except for arrays | |
739 | which only live in GDB's storage. */ | |
740 | if (!value_must_coerce_to_target (fromval)) | |
741 | fromval = coerce_array (fromval); | |
742 | } | |
743 | ||
c906108c SS |
744 | CHECK_TYPEDEF (type); |
745 | ||
ac3eeb49 MS |
746 | /* Since modifying a register can trash the frame chain, and |
747 | modifying memory can trash the frame cache, we save the old frame | |
748 | and then restore the new frame afterwards. */ | |
206415a3 | 749 | old_frame = get_frame_id (deprecated_safe_get_selected_frame ()); |
cb741690 | 750 | |
c906108c SS |
751 | switch (VALUE_LVAL (toval)) |
752 | { | |
753 | case lval_internalvar: | |
754 | set_internalvar (VALUE_INTERNALVAR (toval), fromval); | |
755 | val = value_copy (VALUE_INTERNALVAR (toval)->value); | |
ac3eeb49 MS |
756 | val = value_change_enclosing_type (val, |
757 | value_enclosing_type (fromval)); | |
13c3b5f5 | 758 | set_value_embedded_offset (val, value_embedded_offset (fromval)); |
ac3eeb49 MS |
759 | set_value_pointed_to_offset (val, |
760 | value_pointed_to_offset (fromval)); | |
c906108c SS |
761 | return val; |
762 | ||
763 | case lval_internalvar_component: | |
764 | set_internalvar_component (VALUE_INTERNALVAR (toval), | |
df407dfe AC |
765 | value_offset (toval), |
766 | value_bitpos (toval), | |
767 | value_bitsize (toval), | |
c906108c SS |
768 | fromval); |
769 | break; | |
770 | ||
771 | case lval_memory: | |
772 | { | |
fc1a4b47 | 773 | const gdb_byte *dest_buffer; |
c5aa993b JM |
774 | CORE_ADDR changed_addr; |
775 | int changed_len; | |
10c42a71 | 776 | gdb_byte buffer[sizeof (LONGEST)]; |
c906108c | 777 | |
df407dfe | 778 | if (value_bitsize (toval)) |
c5aa993b | 779 | { |
ac3eeb49 MS |
780 | /* We assume that the argument to read_memory is in units |
781 | of host chars. FIXME: Is that correct? */ | |
df407dfe AC |
782 | changed_len = (value_bitpos (toval) |
783 | + value_bitsize (toval) | |
c5aa993b JM |
784 | + HOST_CHAR_BIT - 1) |
785 | / HOST_CHAR_BIT; | |
c906108c SS |
786 | |
787 | if (changed_len > (int) sizeof (LONGEST)) | |
8a3fe4f8 | 788 | error (_("Can't handle bitfields which don't fit in a %d bit word."), |
baa6f10b | 789 | (int) sizeof (LONGEST) * HOST_CHAR_BIT); |
c906108c | 790 | |
df407dfe | 791 | read_memory (VALUE_ADDRESS (toval) + value_offset (toval), |
c906108c SS |
792 | buffer, changed_len); |
793 | modify_field (buffer, value_as_long (fromval), | |
df407dfe AC |
794 | value_bitpos (toval), value_bitsize (toval)); |
795 | changed_addr = VALUE_ADDRESS (toval) + value_offset (toval); | |
c906108c SS |
796 | dest_buffer = buffer; |
797 | } | |
c906108c SS |
798 | else |
799 | { | |
df407dfe | 800 | changed_addr = VALUE_ADDRESS (toval) + value_offset (toval); |
c906108c | 801 | changed_len = TYPE_LENGTH (type); |
0fd88904 | 802 | dest_buffer = value_contents (fromval); |
c906108c SS |
803 | } |
804 | ||
805 | write_memory (changed_addr, dest_buffer, changed_len); | |
9a4105ab AC |
806 | if (deprecated_memory_changed_hook) |
807 | deprecated_memory_changed_hook (changed_addr, changed_len); | |
c906108c SS |
808 | } |
809 | break; | |
810 | ||
492254e9 | 811 | case lval_register: |
c906108c | 812 | { |
c906108c | 813 | struct frame_info *frame; |
ff2e87ac | 814 | int value_reg; |
c906108c SS |
815 | |
816 | /* Figure out which frame this is in currently. */ | |
0c16dd26 AC |
817 | frame = frame_find_by_id (VALUE_FRAME_ID (toval)); |
818 | value_reg = VALUE_REGNUM (toval); | |
c906108c SS |
819 | |
820 | if (!frame) | |
8a3fe4f8 | 821 | error (_("Value being assigned to is no longer active.")); |
492254e9 | 822 | |
c1afe53d UW |
823 | if (gdbarch_convert_register_p |
824 | (current_gdbarch, VALUE_REGNUM (toval), type)) | |
492254e9 | 825 | { |
ff2e87ac | 826 | /* If TOVAL is a special machine register requiring |
ac3eeb49 MS |
827 | conversion of program values to a special raw |
828 | format. */ | |
829 | gdbarch_value_to_register (current_gdbarch, frame, | |
830 | VALUE_REGNUM (toval), type, | |
831 | value_contents (fromval)); | |
492254e9 | 832 | } |
c906108c | 833 | else |
492254e9 | 834 | { |
df407dfe | 835 | if (value_bitsize (toval)) |
00fa51f6 UW |
836 | { |
837 | int changed_len; | |
838 | gdb_byte buffer[sizeof (LONGEST)]; | |
839 | ||
840 | changed_len = (value_bitpos (toval) | |
841 | + value_bitsize (toval) | |
842 | + HOST_CHAR_BIT - 1) | |
843 | / HOST_CHAR_BIT; | |
844 | ||
845 | if (changed_len > (int) sizeof (LONGEST)) | |
846 | error (_("Can't handle bitfields which don't fit in a %d bit word."), | |
847 | (int) sizeof (LONGEST) * HOST_CHAR_BIT); | |
848 | ||
849 | get_frame_register_bytes (frame, value_reg, | |
850 | value_offset (toval), | |
851 | changed_len, buffer); | |
852 | ||
853 | modify_field (buffer, value_as_long (fromval), | |
ac3eeb49 MS |
854 | value_bitpos (toval), |
855 | value_bitsize (toval)); | |
00fa51f6 UW |
856 | |
857 | put_frame_register_bytes (frame, value_reg, | |
858 | value_offset (toval), | |
859 | changed_len, buffer); | |
860 | } | |
c906108c | 861 | else |
00fa51f6 UW |
862 | { |
863 | put_frame_register_bytes (frame, value_reg, | |
864 | value_offset (toval), | |
865 | TYPE_LENGTH (type), | |
866 | value_contents (fromval)); | |
867 | } | |
ff2e87ac | 868 | } |
00fa51f6 | 869 | |
9a4105ab AC |
870 | if (deprecated_register_changed_hook) |
871 | deprecated_register_changed_hook (-1); | |
f4c5303c | 872 | observer_notify_target_changed (¤t_target); |
ff2e87ac | 873 | break; |
c906108c | 874 | } |
492254e9 | 875 | |
c906108c | 876 | default: |
8a3fe4f8 | 877 | error (_("Left operand of assignment is not an lvalue.")); |
c906108c SS |
878 | } |
879 | ||
cb741690 DJ |
880 | /* Assigning to the stack pointer, frame pointer, and other |
881 | (architecture and calling convention specific) registers may | |
882 | cause the frame cache to be out of date. Assigning to memory | |
883 | also can. We just do this on all assignments to registers or | |
884 | memory, for simplicity's sake; I doubt the slowdown matters. */ | |
885 | switch (VALUE_LVAL (toval)) | |
886 | { | |
887 | case lval_memory: | |
888 | case lval_register: | |
cb741690 DJ |
889 | |
890 | reinit_frame_cache (); | |
891 | ||
ac3eeb49 MS |
892 | /* Having destroyed the frame cache, restore the selected |
893 | frame. */ | |
cb741690 DJ |
894 | |
895 | /* FIXME: cagney/2002-11-02: There has to be a better way of | |
896 | doing this. Instead of constantly saving/restoring the | |
897 | frame. Why not create a get_selected_frame() function that, | |
898 | having saved the selected frame's ID can automatically | |
899 | re-find the previously selected frame automatically. */ | |
900 | ||
901 | { | |
902 | struct frame_info *fi = frame_find_by_id (old_frame); | |
903 | if (fi != NULL) | |
904 | select_frame (fi); | |
905 | } | |
906 | ||
907 | break; | |
908 | default: | |
909 | break; | |
910 | } | |
911 | ||
ac3eeb49 MS |
912 | /* If the field does not entirely fill a LONGEST, then zero the sign |
913 | bits. If the field is signed, and is negative, then sign | |
914 | extend. */ | |
df407dfe AC |
915 | if ((value_bitsize (toval) > 0) |
916 | && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST))) | |
c906108c SS |
917 | { |
918 | LONGEST fieldval = value_as_long (fromval); | |
df407dfe | 919 | LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1; |
c906108c SS |
920 | |
921 | fieldval &= valmask; | |
ac3eeb49 MS |
922 | if (!TYPE_UNSIGNED (type) |
923 | && (fieldval & (valmask ^ (valmask >> 1)))) | |
c906108c SS |
924 | fieldval |= ~valmask; |
925 | ||
926 | fromval = value_from_longest (type, fieldval); | |
927 | } | |
928 | ||
929 | val = value_copy (toval); | |
0fd88904 | 930 | memcpy (value_contents_raw (val), value_contents (fromval), |
c906108c | 931 | TYPE_LENGTH (type)); |
04624583 | 932 | deprecated_set_value_type (val, type); |
ac3eeb49 MS |
933 | val = value_change_enclosing_type (val, |
934 | value_enclosing_type (fromval)); | |
13c3b5f5 | 935 | set_value_embedded_offset (val, value_embedded_offset (fromval)); |
b44d461b | 936 | set_value_pointed_to_offset (val, value_pointed_to_offset (fromval)); |
c5aa993b | 937 | |
c906108c SS |
938 | return val; |
939 | } | |
940 | ||
941 | /* Extend a value VAL to COUNT repetitions of its type. */ | |
942 | ||
f23631e4 AC |
943 | struct value * |
944 | value_repeat (struct value *arg1, int count) | |
c906108c | 945 | { |
f23631e4 | 946 | struct value *val; |
c906108c SS |
947 | |
948 | if (VALUE_LVAL (arg1) != lval_memory) | |
8a3fe4f8 | 949 | error (_("Only values in memory can be extended with '@'.")); |
c906108c | 950 | if (count < 1) |
8a3fe4f8 | 951 | error (_("Invalid number %d of repetitions."), count); |
c906108c | 952 | |
4754a64e | 953 | val = allocate_repeat_value (value_enclosing_type (arg1), count); |
c906108c | 954 | |
df407dfe | 955 | read_memory (VALUE_ADDRESS (arg1) + value_offset (arg1), |
990a07ab | 956 | value_contents_all_raw (val), |
4754a64e | 957 | TYPE_LENGTH (value_enclosing_type (val))); |
c906108c | 958 | VALUE_LVAL (val) = lval_memory; |
df407dfe | 959 | VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + value_offset (arg1); |
c906108c SS |
960 | |
961 | return val; | |
962 | } | |
963 | ||
f23631e4 | 964 | struct value * |
fba45db2 | 965 | value_of_variable (struct symbol *var, struct block *b) |
c906108c | 966 | { |
f23631e4 | 967 | struct value *val; |
c906108c SS |
968 | struct frame_info *frame = NULL; |
969 | ||
970 | if (!b) | |
971 | frame = NULL; /* Use selected frame. */ | |
972 | else if (symbol_read_needs_frame (var)) | |
973 | { | |
974 | frame = block_innermost_frame (b); | |
975 | if (!frame) | |
c5aa993b | 976 | { |
c906108c | 977 | if (BLOCK_FUNCTION (b) |
de5ad195 | 978 | && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b))) |
8a3fe4f8 | 979 | error (_("No frame is currently executing in block %s."), |
de5ad195 | 980 | SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b))); |
c906108c | 981 | else |
8a3fe4f8 | 982 | error (_("No frame is currently executing in specified block")); |
c5aa993b | 983 | } |
c906108c SS |
984 | } |
985 | ||
986 | val = read_var_value (var, frame); | |
987 | if (!val) | |
8a3fe4f8 | 988 | error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var)); |
c906108c SS |
989 | |
990 | return val; | |
991 | } | |
992 | ||
63092375 DJ |
993 | /* Return one if VAL does not live in target memory, but should in order |
994 | to operate on it. Otherwise return zero. */ | |
995 | ||
996 | int | |
997 | value_must_coerce_to_target (struct value *val) | |
998 | { | |
999 | struct type *valtype; | |
1000 | ||
1001 | /* The only lval kinds which do not live in target memory. */ | |
1002 | if (VALUE_LVAL (val) != not_lval | |
1003 | && VALUE_LVAL (val) != lval_internalvar) | |
1004 | return 0; | |
1005 | ||
1006 | valtype = check_typedef (value_type (val)); | |
1007 | ||
1008 | switch (TYPE_CODE (valtype)) | |
1009 | { | |
1010 | case TYPE_CODE_ARRAY: | |
1011 | case TYPE_CODE_STRING: | |
1012 | return 1; | |
1013 | default: | |
1014 | return 0; | |
1015 | } | |
1016 | } | |
1017 | ||
1018 | /* Make sure that VAL lives in target memory if it's supposed to. For instance, | |
1019 | strings are constructed as character arrays in GDB's storage, and this | |
1020 | function copies them to the target. */ | |
1021 | ||
1022 | struct value * | |
1023 | value_coerce_to_target (struct value *val) | |
1024 | { | |
1025 | LONGEST length; | |
1026 | CORE_ADDR addr; | |
1027 | ||
1028 | if (!value_must_coerce_to_target (val)) | |
1029 | return val; | |
1030 | ||
1031 | length = TYPE_LENGTH (check_typedef (value_type (val))); | |
1032 | addr = allocate_space_in_inferior (length); | |
1033 | write_memory (addr, value_contents (val), length); | |
1034 | return value_at_lazy (value_type (val), addr); | |
1035 | } | |
1036 | ||
ac3eeb49 MS |
1037 | /* Given a value which is an array, return a value which is a pointer |
1038 | to its first element, regardless of whether or not the array has a | |
1039 | nonzero lower bound. | |
c906108c | 1040 | |
ac3eeb49 MS |
1041 | FIXME: A previous comment here indicated that this routine should |
1042 | be substracting the array's lower bound. It's not clear to me that | |
1043 | this is correct. Given an array subscripting operation, it would | |
1044 | certainly work to do the adjustment here, essentially computing: | |
c906108c SS |
1045 | |
1046 | (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0]) | |
1047 | ||
ac3eeb49 MS |
1048 | However I believe a more appropriate and logical place to account |
1049 | for the lower bound is to do so in value_subscript, essentially | |
1050 | computing: | |
c906108c SS |
1051 | |
1052 | (&array[0] + ((index - lowerbound) * sizeof array[0])) | |
1053 | ||
ac3eeb49 MS |
1054 | As further evidence consider what would happen with operations |
1055 | other than array subscripting, where the caller would get back a | |
1056 | value that had an address somewhere before the actual first element | |
1057 | of the array, and the information about the lower bound would be | |
1058 | lost because of the coercion to pointer type. | |
c5aa993b | 1059 | */ |
c906108c | 1060 | |
f23631e4 AC |
1061 | struct value * |
1062 | value_coerce_array (struct value *arg1) | |
c906108c | 1063 | { |
df407dfe | 1064 | struct type *type = check_typedef (value_type (arg1)); |
c906108c | 1065 | |
63092375 DJ |
1066 | /* If the user tries to do something requiring a pointer with an |
1067 | array that has not yet been pushed to the target, then this would | |
1068 | be a good time to do so. */ | |
1069 | arg1 = value_coerce_to_target (arg1); | |
1070 | ||
c906108c | 1071 | if (VALUE_LVAL (arg1) != lval_memory) |
8a3fe4f8 | 1072 | error (_("Attempt to take address of value not located in memory.")); |
c906108c | 1073 | |
4478b372 | 1074 | return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
df407dfe | 1075 | (VALUE_ADDRESS (arg1) + value_offset (arg1))); |
c906108c SS |
1076 | } |
1077 | ||
1078 | /* Given a value which is a function, return a value which is a pointer | |
1079 | to it. */ | |
1080 | ||
f23631e4 AC |
1081 | struct value * |
1082 | value_coerce_function (struct value *arg1) | |
c906108c | 1083 | { |
f23631e4 | 1084 | struct value *retval; |
c906108c SS |
1085 | |
1086 | if (VALUE_LVAL (arg1) != lval_memory) | |
8a3fe4f8 | 1087 | error (_("Attempt to take address of value not located in memory.")); |
c906108c | 1088 | |
df407dfe AC |
1089 | retval = value_from_pointer (lookup_pointer_type (value_type (arg1)), |
1090 | (VALUE_ADDRESS (arg1) + value_offset (arg1))); | |
c906108c | 1091 | return retval; |
c5aa993b | 1092 | } |
c906108c | 1093 | |
ac3eeb49 MS |
1094 | /* Return a pointer value for the object for which ARG1 is the |
1095 | contents. */ | |
c906108c | 1096 | |
f23631e4 AC |
1097 | struct value * |
1098 | value_addr (struct value *arg1) | |
c906108c | 1099 | { |
f23631e4 | 1100 | struct value *arg2; |
c906108c | 1101 | |
df407dfe | 1102 | struct type *type = check_typedef (value_type (arg1)); |
c906108c SS |
1103 | if (TYPE_CODE (type) == TYPE_CODE_REF) |
1104 | { | |
ac3eeb49 MS |
1105 | /* Copy the value, but change the type from (T&) to (T*). We |
1106 | keep the same location information, which is efficient, and | |
1107 | allows &(&X) to get the location containing the reference. */ | |
c906108c | 1108 | arg2 = value_copy (arg1); |
ac3eeb49 MS |
1109 | deprecated_set_value_type (arg2, |
1110 | lookup_pointer_type (TYPE_TARGET_TYPE (type))); | |
c906108c SS |
1111 | return arg2; |
1112 | } | |
1113 | if (TYPE_CODE (type) == TYPE_CODE_FUNC) | |
1114 | return value_coerce_function (arg1); | |
1115 | ||
63092375 DJ |
1116 | /* If this is an array that has not yet been pushed to the target, |
1117 | then this would be a good time to force it to memory. */ | |
1118 | arg1 = value_coerce_to_target (arg1); | |
1119 | ||
c906108c | 1120 | if (VALUE_LVAL (arg1) != lval_memory) |
8a3fe4f8 | 1121 | error (_("Attempt to take address of value not located in memory.")); |
c906108c | 1122 | |
c5aa993b | 1123 | /* Get target memory address */ |
df407dfe | 1124 | arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)), |
4478b372 | 1125 | (VALUE_ADDRESS (arg1) |
df407dfe | 1126 | + value_offset (arg1) |
13c3b5f5 | 1127 | + value_embedded_offset (arg1))); |
c906108c SS |
1128 | |
1129 | /* This may be a pointer to a base subobject; so remember the | |
ac3eeb49 | 1130 | full derived object's type ... */ |
4754a64e | 1131 | arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (value_enclosing_type (arg1))); |
ac3eeb49 MS |
1132 | /* ... and also the relative position of the subobject in the full |
1133 | object. */ | |
b44d461b | 1134 | set_value_pointed_to_offset (arg2, value_embedded_offset (arg1)); |
c906108c SS |
1135 | return arg2; |
1136 | } | |
1137 | ||
ac3eeb49 MS |
1138 | /* Return a reference value for the object for which ARG1 is the |
1139 | contents. */ | |
fb933624 DJ |
1140 | |
1141 | struct value * | |
1142 | value_ref (struct value *arg1) | |
1143 | { | |
1144 | struct value *arg2; | |
1145 | ||
1146 | struct type *type = check_typedef (value_type (arg1)); | |
1147 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
1148 | return arg1; | |
1149 | ||
1150 | arg2 = value_addr (arg1); | |
1151 | deprecated_set_value_type (arg2, lookup_reference_type (type)); | |
1152 | return arg2; | |
1153 | } | |
1154 | ||
ac3eeb49 MS |
1155 | /* Given a value of a pointer type, apply the C unary * operator to |
1156 | it. */ | |
c906108c | 1157 | |
f23631e4 AC |
1158 | struct value * |
1159 | value_ind (struct value *arg1) | |
c906108c SS |
1160 | { |
1161 | struct type *base_type; | |
f23631e4 | 1162 | struct value *arg2; |
c906108c | 1163 | |
994b9211 | 1164 | arg1 = coerce_array (arg1); |
c906108c | 1165 | |
df407dfe | 1166 | base_type = check_typedef (value_type (arg1)); |
c906108c | 1167 | |
c906108c | 1168 | /* Allow * on an integer so we can cast it to whatever we want. |
ac3eeb49 MS |
1169 | This returns an int, which seems like the most C-like thing to |
1170 | do. "long long" variables are rare enough that | |
c906108c SS |
1171 | BUILTIN_TYPE_LONGEST would seem to be a mistake. */ |
1172 | if (TYPE_CODE (base_type) == TYPE_CODE_INT) | |
56468235 | 1173 | return value_at_lazy (builtin_type_int, |
fef862e5 | 1174 | (CORE_ADDR) value_as_address (arg1)); |
c906108c SS |
1175 | else if (TYPE_CODE (base_type) == TYPE_CODE_PTR) |
1176 | { | |
1177 | struct type *enc_type; | |
ac3eeb49 MS |
1178 | /* We may be pointing to something embedded in a larger object. |
1179 | Get the real type of the enclosing object. */ | |
4754a64e | 1180 | enc_type = check_typedef (value_enclosing_type (arg1)); |
c906108c | 1181 | enc_type = TYPE_TARGET_TYPE (enc_type); |
0d5de010 DJ |
1182 | |
1183 | if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC | |
1184 | || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD) | |
1185 | /* For functions, go through find_function_addr, which knows | |
1186 | how to handle function descriptors. */ | |
ac3eeb49 MS |
1187 | arg2 = value_at_lazy (enc_type, |
1188 | find_function_addr (arg1, NULL)); | |
0d5de010 DJ |
1189 | else |
1190 | /* Retrieve the enclosing object pointed to */ | |
ac3eeb49 MS |
1191 | arg2 = value_at_lazy (enc_type, |
1192 | (value_as_address (arg1) | |
1193 | - value_pointed_to_offset (arg1))); | |
0d5de010 | 1194 | |
ac3eeb49 | 1195 | /* Re-adjust type. */ |
04624583 | 1196 | deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type)); |
ac3eeb49 | 1197 | /* Add embedding info. */ |
2b127877 | 1198 | arg2 = value_change_enclosing_type (arg2, enc_type); |
b44d461b | 1199 | set_value_embedded_offset (arg2, value_pointed_to_offset (arg1)); |
c906108c | 1200 | |
ac3eeb49 | 1201 | /* We may be pointing to an object of some derived type. */ |
c906108c SS |
1202 | arg2 = value_full_object (arg2, NULL, 0, 0, 0); |
1203 | return arg2; | |
1204 | } | |
1205 | ||
8a3fe4f8 | 1206 | error (_("Attempt to take contents of a non-pointer value.")); |
ac3eeb49 | 1207 | return 0; /* For lint -- never reached. */ |
c906108c SS |
1208 | } |
1209 | \f | |
63092375 | 1210 | /* Create a value for an array by allocating space in GDB, copying |
ac3eeb49 MS |
1211 | copying the data into that space, and then setting up an array |
1212 | value. | |
c906108c | 1213 | |
ac3eeb49 MS |
1214 | The array bounds are set from LOWBOUND and HIGHBOUND, and the array |
1215 | is populated from the values passed in ELEMVEC. | |
c906108c SS |
1216 | |
1217 | The element type of the array is inherited from the type of the | |
1218 | first element, and all elements must have the same size (though we | |
ac3eeb49 | 1219 | don't currently enforce any restriction on their types). */ |
c906108c | 1220 | |
f23631e4 AC |
1221 | struct value * |
1222 | value_array (int lowbound, int highbound, struct value **elemvec) | |
c906108c SS |
1223 | { |
1224 | int nelem; | |
1225 | int idx; | |
1226 | unsigned int typelength; | |
f23631e4 | 1227 | struct value *val; |
c906108c SS |
1228 | struct type *rangetype; |
1229 | struct type *arraytype; | |
1230 | CORE_ADDR addr; | |
1231 | ||
ac3eeb49 MS |
1232 | /* Validate that the bounds are reasonable and that each of the |
1233 | elements have the same size. */ | |
c906108c SS |
1234 | |
1235 | nelem = highbound - lowbound + 1; | |
1236 | if (nelem <= 0) | |
1237 | { | |
8a3fe4f8 | 1238 | error (_("bad array bounds (%d, %d)"), lowbound, highbound); |
c906108c | 1239 | } |
4754a64e | 1240 | typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0])); |
c906108c SS |
1241 | for (idx = 1; idx < nelem; idx++) |
1242 | { | |
4754a64e | 1243 | if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength) |
c906108c | 1244 | { |
8a3fe4f8 | 1245 | error (_("array elements must all be the same size")); |
c906108c SS |
1246 | } |
1247 | } | |
1248 | ||
ac3eeb49 MS |
1249 | rangetype = create_range_type ((struct type *) NULL, |
1250 | builtin_type_int, | |
c906108c | 1251 | lowbound, highbound); |
c5aa993b | 1252 | arraytype = create_array_type ((struct type *) NULL, |
ac3eeb49 MS |
1253 | value_enclosing_type (elemvec[0]), |
1254 | rangetype); | |
c906108c SS |
1255 | |
1256 | if (!current_language->c_style_arrays) | |
1257 | { | |
1258 | val = allocate_value (arraytype); | |
1259 | for (idx = 0; idx < nelem; idx++) | |
1260 | { | |
990a07ab | 1261 | memcpy (value_contents_all_raw (val) + (idx * typelength), |
46615f07 | 1262 | value_contents_all (elemvec[idx]), |
c906108c SS |
1263 | typelength); |
1264 | } | |
c906108c SS |
1265 | return val; |
1266 | } | |
1267 | ||
63092375 DJ |
1268 | /* Allocate space to store the array, and then initialize it by |
1269 | copying in each element. */ | |
c906108c | 1270 | |
63092375 | 1271 | val = allocate_value (arraytype); |
c906108c | 1272 | for (idx = 0; idx < nelem; idx++) |
63092375 DJ |
1273 | memcpy (value_contents_writeable (val) + (idx * typelength), |
1274 | value_contents_all (elemvec[idx]), | |
1275 | typelength); | |
1276 | return val; | |
c906108c SS |
1277 | } |
1278 | ||
ac3eeb49 MS |
1279 | /* Create a value for a string constant by allocating space in the |
1280 | inferior, copying the data into that space, and returning the | |
1281 | address with type TYPE_CODE_STRING. PTR points to the string | |
1282 | constant data; LEN is number of characters. | |
1283 | ||
1284 | Note that string types are like array of char types with a lower | |
1285 | bound of zero and an upper bound of LEN - 1. Also note that the | |
1286 | string may contain embedded null bytes. */ | |
c906108c | 1287 | |
f23631e4 | 1288 | struct value * |
fba45db2 | 1289 | value_string (char *ptr, int len) |
c906108c | 1290 | { |
f23631e4 | 1291 | struct value *val; |
c906108c SS |
1292 | int lowbound = current_language->string_lower_bound; |
1293 | struct type *rangetype = create_range_type ((struct type *) NULL, | |
1294 | builtin_type_int, | |
ac3eeb49 MS |
1295 | lowbound, |
1296 | len + lowbound - 1); | |
c906108c | 1297 | struct type *stringtype |
ac3eeb49 | 1298 | = create_string_type ((struct type *) NULL, rangetype); |
c906108c SS |
1299 | CORE_ADDR addr; |
1300 | ||
1301 | if (current_language->c_style_arrays == 0) | |
1302 | { | |
1303 | val = allocate_value (stringtype); | |
990a07ab | 1304 | memcpy (value_contents_raw (val), ptr, len); |
c906108c SS |
1305 | return val; |
1306 | } | |
1307 | ||
1308 | ||
ac3eeb49 MS |
1309 | /* Allocate space to store the string in the inferior, and then copy |
1310 | LEN bytes from PTR in gdb to that address in the inferior. */ | |
c906108c SS |
1311 | |
1312 | addr = allocate_space_in_inferior (len); | |
47b667de | 1313 | write_memory (addr, (gdb_byte *) ptr, len); |
c906108c | 1314 | |
00a4c844 | 1315 | val = value_at_lazy (stringtype, addr); |
c906108c SS |
1316 | return (val); |
1317 | } | |
1318 | ||
f23631e4 | 1319 | struct value * |
fba45db2 | 1320 | value_bitstring (char *ptr, int len) |
c906108c | 1321 | { |
f23631e4 | 1322 | struct value *val; |
ac3eeb49 MS |
1323 | struct type *domain_type = create_range_type (NULL, |
1324 | builtin_type_int, | |
c906108c | 1325 | 0, len - 1); |
ac3eeb49 MS |
1326 | struct type *type = create_set_type ((struct type *) NULL, |
1327 | domain_type); | |
c906108c SS |
1328 | TYPE_CODE (type) = TYPE_CODE_BITSTRING; |
1329 | val = allocate_value (type); | |
990a07ab | 1330 | memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type)); |
c906108c SS |
1331 | return val; |
1332 | } | |
1333 | \f | |
ac3eeb49 MS |
1334 | /* See if we can pass arguments in T2 to a function which takes |
1335 | arguments of types T1. T1 is a list of NARGS arguments, and T2 is | |
1336 | a NULL-terminated vector. If some arguments need coercion of some | |
1337 | sort, then the coerced values are written into T2. Return value is | |
1338 | 0 if the arguments could be matched, or the position at which they | |
1339 | differ if not. | |
c906108c | 1340 | |
ac3eeb49 MS |
1341 | STATICP is nonzero if the T1 argument list came from a static |
1342 | member function. T2 will still include the ``this'' pointer, but | |
1343 | it will be skipped. | |
c906108c SS |
1344 | |
1345 | For non-static member functions, we ignore the first argument, | |
ac3eeb49 MS |
1346 | which is the type of the instance variable. This is because we |
1347 | want to handle calls with objects from derived classes. This is | |
1348 | not entirely correct: we should actually check to make sure that a | |
c906108c SS |
1349 | requested operation is type secure, shouldn't we? FIXME. */ |
1350 | ||
1351 | static int | |
ad2f7632 DJ |
1352 | typecmp (int staticp, int varargs, int nargs, |
1353 | struct field t1[], struct value *t2[]) | |
c906108c SS |
1354 | { |
1355 | int i; | |
1356 | ||
1357 | if (t2 == 0) | |
ac3eeb49 MS |
1358 | internal_error (__FILE__, __LINE__, |
1359 | _("typecmp: no argument list")); | |
ad2f7632 | 1360 | |
ac3eeb49 MS |
1361 | /* Skip ``this'' argument if applicable. T2 will always include |
1362 | THIS. */ | |
4a1970e4 | 1363 | if (staticp) |
ad2f7632 DJ |
1364 | t2 ++; |
1365 | ||
1366 | for (i = 0; | |
1367 | (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID; | |
1368 | i++) | |
c906108c | 1369 | { |
c5aa993b | 1370 | struct type *tt1, *tt2; |
ad2f7632 | 1371 | |
c5aa993b JM |
1372 | if (!t2[i]) |
1373 | return i + 1; | |
ad2f7632 DJ |
1374 | |
1375 | tt1 = check_typedef (t1[i].type); | |
df407dfe | 1376 | tt2 = check_typedef (value_type (t2[i])); |
ad2f7632 | 1377 | |
c906108c | 1378 | if (TYPE_CODE (tt1) == TYPE_CODE_REF |
c5aa993b | 1379 | /* We should be doing hairy argument matching, as below. */ |
c906108c SS |
1380 | && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2))) |
1381 | { | |
1382 | if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY) | |
1383 | t2[i] = value_coerce_array (t2[i]); | |
1384 | else | |
fb933624 | 1385 | t2[i] = value_ref (t2[i]); |
c906108c SS |
1386 | continue; |
1387 | } | |
1388 | ||
802db21b DB |
1389 | /* djb - 20000715 - Until the new type structure is in the |
1390 | place, and we can attempt things like implicit conversions, | |
1391 | we need to do this so you can take something like a map<const | |
1392 | char *>, and properly access map["hello"], because the | |
1393 | argument to [] will be a reference to a pointer to a char, | |
ac3eeb49 MS |
1394 | and the argument will be a pointer to a char. */ |
1395 | while (TYPE_CODE(tt1) == TYPE_CODE_REF | |
1396 | || TYPE_CODE (tt1) == TYPE_CODE_PTR) | |
802db21b DB |
1397 | { |
1398 | tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) ); | |
1399 | } | |
ac3eeb49 MS |
1400 | while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY |
1401 | || TYPE_CODE(tt2) == TYPE_CODE_PTR | |
1402 | || TYPE_CODE(tt2) == TYPE_CODE_REF) | |
c906108c | 1403 | { |
ac3eeb49 | 1404 | tt2 = check_typedef (TYPE_TARGET_TYPE(tt2)); |
c906108c | 1405 | } |
c5aa993b JM |
1406 | if (TYPE_CODE (tt1) == TYPE_CODE (tt2)) |
1407 | continue; | |
ac3eeb49 MS |
1408 | /* Array to pointer is a `trivial conversion' according to the |
1409 | ARM. */ | |
c906108c | 1410 | |
ac3eeb49 MS |
1411 | /* We should be doing much hairier argument matching (see |
1412 | section 13.2 of the ARM), but as a quick kludge, just check | |
1413 | for the same type code. */ | |
df407dfe | 1414 | if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i]))) |
c5aa993b | 1415 | return i + 1; |
c906108c | 1416 | } |
ad2f7632 | 1417 | if (varargs || t2[i] == NULL) |
c5aa993b | 1418 | return 0; |
ad2f7632 | 1419 | return i + 1; |
c906108c SS |
1420 | } |
1421 | ||
ac3eeb49 MS |
1422 | /* Helper function used by value_struct_elt to recurse through |
1423 | baseclasses. Look for a field NAME in ARG1. Adjust the address of | |
1424 | ARG1 by OFFSET bytes, and search in it assuming it has (class) type | |
1425 | TYPE. If found, return value, else return NULL. | |
c906108c | 1426 | |
ac3eeb49 MS |
1427 | If LOOKING_FOR_BASECLASS, then instead of looking for struct |
1428 | fields, look for a baseclass named NAME. */ | |
c906108c | 1429 | |
f23631e4 AC |
1430 | static struct value * |
1431 | search_struct_field (char *name, struct value *arg1, int offset, | |
aa1ee363 | 1432 | struct type *type, int looking_for_baseclass) |
c906108c SS |
1433 | { |
1434 | int i; | |
1435 | int nbases = TYPE_N_BASECLASSES (type); | |
1436 | ||
1437 | CHECK_TYPEDEF (type); | |
1438 | ||
c5aa993b | 1439 | if (!looking_for_baseclass) |
c906108c SS |
1440 | for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--) |
1441 | { | |
1442 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
1443 | ||
db577aea | 1444 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c | 1445 | { |
f23631e4 | 1446 | struct value *v; |
c906108c | 1447 | if (TYPE_FIELD_STATIC (type, i)) |
2c2738a0 DC |
1448 | { |
1449 | v = value_static_field (type, i); | |
1450 | if (v == 0) | |
8a3fe4f8 | 1451 | error (_("field %s is nonexistent or has been optimised out"), |
2c2738a0 DC |
1452 | name); |
1453 | } | |
c906108c | 1454 | else |
2c2738a0 DC |
1455 | { |
1456 | v = value_primitive_field (arg1, offset, i, type); | |
1457 | if (v == 0) | |
8a3fe4f8 | 1458 | error (_("there is no field named %s"), name); |
2c2738a0 | 1459 | } |
c906108c SS |
1460 | return v; |
1461 | } | |
1462 | ||
1463 | if (t_field_name | |
1464 | && (t_field_name[0] == '\0' | |
1465 | || (TYPE_CODE (type) == TYPE_CODE_UNION | |
db577aea | 1466 | && (strcmp_iw (t_field_name, "else") == 0)))) |
c906108c SS |
1467 | { |
1468 | struct type *field_type = TYPE_FIELD_TYPE (type, i); | |
1469 | if (TYPE_CODE (field_type) == TYPE_CODE_UNION | |
1470 | || TYPE_CODE (field_type) == TYPE_CODE_STRUCT) | |
1471 | { | |
ac3eeb49 MS |
1472 | /* Look for a match through the fields of an anonymous |
1473 | union, or anonymous struct. C++ provides anonymous | |
1474 | unions. | |
c906108c | 1475 | |
1b831c93 AC |
1476 | In the GNU Chill (now deleted from GDB) |
1477 | implementation of variant record types, each | |
1478 | <alternative field> has an (anonymous) union type, | |
1479 | each member of the union represents a <variant | |
1480 | alternative>. Each <variant alternative> is | |
1481 | represented as a struct, with a member for each | |
1482 | <variant field>. */ | |
c5aa993b | 1483 | |
f23631e4 | 1484 | struct value *v; |
c906108c SS |
1485 | int new_offset = offset; |
1486 | ||
db034ac5 AC |
1487 | /* This is pretty gross. In G++, the offset in an |
1488 | anonymous union is relative to the beginning of the | |
1b831c93 AC |
1489 | enclosing struct. In the GNU Chill (now deleted |
1490 | from GDB) implementation of variant records, the | |
1491 | bitpos is zero in an anonymous union field, so we | |
ac3eeb49 | 1492 | have to add the offset of the union here. */ |
c906108c SS |
1493 | if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT |
1494 | || (TYPE_NFIELDS (field_type) > 0 | |
1495 | && TYPE_FIELD_BITPOS (field_type, 0) == 0)) | |
1496 | new_offset += TYPE_FIELD_BITPOS (type, i) / 8; | |
1497 | ||
ac3eeb49 MS |
1498 | v = search_struct_field (name, arg1, new_offset, |
1499 | field_type, | |
c906108c SS |
1500 | looking_for_baseclass); |
1501 | if (v) | |
1502 | return v; | |
1503 | } | |
1504 | } | |
1505 | } | |
1506 | ||
c5aa993b | 1507 | for (i = 0; i < nbases; i++) |
c906108c | 1508 | { |
f23631e4 | 1509 | struct value *v; |
c906108c | 1510 | struct type *basetype = check_typedef (TYPE_BASECLASS (type, i)); |
ac3eeb49 MS |
1511 | /* If we are looking for baseclasses, this is what we get when |
1512 | we hit them. But it could happen that the base part's member | |
1513 | name is not yet filled in. */ | |
c906108c SS |
1514 | int found_baseclass = (looking_for_baseclass |
1515 | && TYPE_BASECLASS_NAME (type, i) != NULL | |
ac3eeb49 MS |
1516 | && (strcmp_iw (name, |
1517 | TYPE_BASECLASS_NAME (type, | |
1518 | i)) == 0)); | |
c906108c SS |
1519 | |
1520 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
1521 | { | |
1522 | int boffset; | |
f23631e4 | 1523 | struct value *v2 = allocate_value (basetype); |
c906108c SS |
1524 | |
1525 | boffset = baseclass_offset (type, i, | |
0fd88904 | 1526 | value_contents (arg1) + offset, |
c906108c | 1527 | VALUE_ADDRESS (arg1) |
df407dfe | 1528 | + value_offset (arg1) + offset); |
c906108c | 1529 | if (boffset == -1) |
8a3fe4f8 | 1530 | error (_("virtual baseclass botch")); |
c906108c | 1531 | |
ac3eeb49 MS |
1532 | /* The virtual base class pointer might have been clobbered |
1533 | by the user program. Make sure that it still points to a | |
1534 | valid memory location. */ | |
c906108c SS |
1535 | |
1536 | boffset += offset; | |
1537 | if (boffset < 0 || boffset >= TYPE_LENGTH (type)) | |
1538 | { | |
1539 | CORE_ADDR base_addr; | |
c5aa993b | 1540 | |
ac3eeb49 MS |
1541 | base_addr = |
1542 | VALUE_ADDRESS (arg1) + value_offset (arg1) + boffset; | |
1543 | if (target_read_memory (base_addr, | |
1544 | value_contents_raw (v2), | |
c906108c | 1545 | TYPE_LENGTH (basetype)) != 0) |
8a3fe4f8 | 1546 | error (_("virtual baseclass botch")); |
c906108c SS |
1547 | VALUE_LVAL (v2) = lval_memory; |
1548 | VALUE_ADDRESS (v2) = base_addr; | |
1549 | } | |
1550 | else | |
1551 | { | |
1552 | VALUE_LVAL (v2) = VALUE_LVAL (arg1); | |
1553 | VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1); | |
65d3800a | 1554 | VALUE_FRAME_ID (v2) = VALUE_FRAME_ID (arg1); |
f5cf64a7 | 1555 | set_value_offset (v2, value_offset (arg1) + boffset); |
9214ee5f | 1556 | if (VALUE_LVAL (arg1) == lval_memory && value_lazy (arg1)) |
dfa52d88 | 1557 | set_value_lazy (v2, 1); |
c906108c | 1558 | else |
990a07ab AC |
1559 | memcpy (value_contents_raw (v2), |
1560 | value_contents_raw (arg1) + boffset, | |
c906108c SS |
1561 | TYPE_LENGTH (basetype)); |
1562 | } | |
1563 | ||
1564 | if (found_baseclass) | |
1565 | return v2; | |
ac3eeb49 MS |
1566 | v = search_struct_field (name, v2, 0, |
1567 | TYPE_BASECLASS (type, i), | |
c906108c SS |
1568 | looking_for_baseclass); |
1569 | } | |
1570 | else if (found_baseclass) | |
1571 | v = value_primitive_field (arg1, offset, i, type); | |
1572 | else | |
1573 | v = search_struct_field (name, arg1, | |
ac3eeb49 MS |
1574 | offset + TYPE_BASECLASS_BITPOS (type, |
1575 | i) / 8, | |
c906108c | 1576 | basetype, looking_for_baseclass); |
c5aa993b JM |
1577 | if (v) |
1578 | return v; | |
c906108c SS |
1579 | } |
1580 | return NULL; | |
1581 | } | |
1582 | ||
ac3eeb49 MS |
1583 | /* Helper function used by value_struct_elt to recurse through |
1584 | baseclasses. Look for a field NAME in ARG1. Adjust the address of | |
1585 | ARG1 by OFFSET bytes, and search in it assuming it has (class) type | |
1586 | TYPE. | |
1587 | ||
1588 | If found, return value, else if name matched and args not return | |
1589 | (value) -1, else return NULL. */ | |
c906108c | 1590 | |
f23631e4 AC |
1591 | static struct value * |
1592 | search_struct_method (char *name, struct value **arg1p, | |
1593 | struct value **args, int offset, | |
aa1ee363 | 1594 | int *static_memfuncp, struct type *type) |
c906108c SS |
1595 | { |
1596 | int i; | |
f23631e4 | 1597 | struct value *v; |
c906108c SS |
1598 | int name_matched = 0; |
1599 | char dem_opname[64]; | |
1600 | ||
1601 | CHECK_TYPEDEF (type); | |
1602 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) | |
1603 | { | |
1604 | char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i); | |
1605 | /* FIXME! May need to check for ARM demangling here */ | |
c5aa993b JM |
1606 | if (strncmp (t_field_name, "__", 2) == 0 || |
1607 | strncmp (t_field_name, "op", 2) == 0 || | |
1608 | strncmp (t_field_name, "type", 4) == 0) | |
c906108c | 1609 | { |
c5aa993b JM |
1610 | if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI)) |
1611 | t_field_name = dem_opname; | |
1612 | else if (cplus_demangle_opname (t_field_name, dem_opname, 0)) | |
c906108c | 1613 | t_field_name = dem_opname; |
c906108c | 1614 | } |
db577aea | 1615 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c SS |
1616 | { |
1617 | int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1; | |
1618 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); | |
c5aa993b | 1619 | name_matched = 1; |
c906108c | 1620 | |
de17c821 | 1621 | check_stub_method_group (type, i); |
c906108c | 1622 | if (j > 0 && args == 0) |
8a3fe4f8 | 1623 | error (_("cannot resolve overloaded method `%s': no arguments supplied"), name); |
acf5ed49 | 1624 | else if (j == 0 && args == 0) |
c906108c | 1625 | { |
acf5ed49 DJ |
1626 | v = value_fn_field (arg1p, f, j, type, offset); |
1627 | if (v != NULL) | |
1628 | return v; | |
c906108c | 1629 | } |
acf5ed49 DJ |
1630 | else |
1631 | while (j >= 0) | |
1632 | { | |
acf5ed49 | 1633 | if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j), |
ad2f7632 DJ |
1634 | TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)), |
1635 | TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)), | |
acf5ed49 DJ |
1636 | TYPE_FN_FIELD_ARGS (f, j), args)) |
1637 | { | |
1638 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) | |
ac3eeb49 MS |
1639 | return value_virtual_fn_field (arg1p, f, j, |
1640 | type, offset); | |
1641 | if (TYPE_FN_FIELD_STATIC_P (f, j) | |
1642 | && static_memfuncp) | |
acf5ed49 DJ |
1643 | *static_memfuncp = 1; |
1644 | v = value_fn_field (arg1p, f, j, type, offset); | |
1645 | if (v != NULL) | |
1646 | return v; | |
1647 | } | |
1648 | j--; | |
1649 | } | |
c906108c SS |
1650 | } |
1651 | } | |
1652 | ||
1653 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
1654 | { | |
1655 | int base_offset; | |
1656 | ||
1657 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
1658 | { | |
086280be UW |
1659 | struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i)); |
1660 | const gdb_byte *base_valaddr; | |
1661 | ||
1662 | /* The virtual base class pointer might have been | |
1663 | clobbered by the user program. Make sure that it | |
1664 | still points to a valid memory location. */ | |
1665 | ||
1666 | if (offset < 0 || offset >= TYPE_LENGTH (type)) | |
c5aa993b | 1667 | { |
086280be UW |
1668 | gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass)); |
1669 | if (target_read_memory (VALUE_ADDRESS (*arg1p) | |
1670 | + value_offset (*arg1p) + offset, | |
1671 | tmp, TYPE_LENGTH (baseclass)) != 0) | |
1672 | error (_("virtual baseclass botch")); | |
1673 | base_valaddr = tmp; | |
c5aa993b JM |
1674 | } |
1675 | else | |
086280be | 1676 | base_valaddr = value_contents (*arg1p) + offset; |
c5aa993b | 1677 | |
086280be UW |
1678 | base_offset = baseclass_offset (type, i, base_valaddr, |
1679 | VALUE_ADDRESS (*arg1p) | |
1680 | + value_offset (*arg1p) + offset); | |
1681 | if (base_offset == -1) | |
1682 | error (_("virtual baseclass botch")); | |
c5aa993b | 1683 | } |
c906108c SS |
1684 | else |
1685 | { | |
1686 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | |
c5aa993b | 1687 | } |
c906108c SS |
1688 | v = search_struct_method (name, arg1p, args, base_offset + offset, |
1689 | static_memfuncp, TYPE_BASECLASS (type, i)); | |
f23631e4 | 1690 | if (v == (struct value *) - 1) |
c906108c SS |
1691 | { |
1692 | name_matched = 1; | |
1693 | } | |
1694 | else if (v) | |
1695 | { | |
ac3eeb49 MS |
1696 | /* FIXME-bothner: Why is this commented out? Why is it here? */ |
1697 | /* *arg1p = arg1_tmp; */ | |
c906108c | 1698 | return v; |
c5aa993b | 1699 | } |
c906108c | 1700 | } |
c5aa993b | 1701 | if (name_matched) |
f23631e4 | 1702 | return (struct value *) - 1; |
c5aa993b JM |
1703 | else |
1704 | return NULL; | |
c906108c SS |
1705 | } |
1706 | ||
1707 | /* Given *ARGP, a value of type (pointer to a)* structure/union, | |
ac3eeb49 MS |
1708 | extract the component named NAME from the ultimate target |
1709 | structure/union and return it as a value with its appropriate type. | |
c906108c SS |
1710 | ERR is used in the error message if *ARGP's type is wrong. |
1711 | ||
1712 | C++: ARGS is a list of argument types to aid in the selection of | |
1713 | an appropriate method. Also, handle derived types. | |
1714 | ||
1715 | STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location | |
1716 | where the truthvalue of whether the function that was resolved was | |
1717 | a static member function or not is stored. | |
1718 | ||
ac3eeb49 MS |
1719 | ERR is an error message to be printed in case the field is not |
1720 | found. */ | |
c906108c | 1721 | |
f23631e4 AC |
1722 | struct value * |
1723 | value_struct_elt (struct value **argp, struct value **args, | |
fba45db2 | 1724 | char *name, int *static_memfuncp, char *err) |
c906108c | 1725 | { |
52f0bd74 | 1726 | struct type *t; |
f23631e4 | 1727 | struct value *v; |
c906108c | 1728 | |
994b9211 | 1729 | *argp = coerce_array (*argp); |
c906108c | 1730 | |
df407dfe | 1731 | t = check_typedef (value_type (*argp)); |
c906108c SS |
1732 | |
1733 | /* Follow pointers until we get to a non-pointer. */ | |
1734 | ||
1735 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) | |
1736 | { | |
1737 | *argp = value_ind (*argp); | |
1738 | /* Don't coerce fn pointer to fn and then back again! */ | |
df407dfe | 1739 | if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC) |
994b9211 | 1740 | *argp = coerce_array (*argp); |
df407dfe | 1741 | t = check_typedef (value_type (*argp)); |
c906108c SS |
1742 | } |
1743 | ||
c5aa993b | 1744 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c | 1745 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
8a3fe4f8 | 1746 | error (_("Attempt to extract a component of a value that is not a %s."), err); |
c906108c SS |
1747 | |
1748 | /* Assume it's not, unless we see that it is. */ | |
1749 | if (static_memfuncp) | |
c5aa993b | 1750 | *static_memfuncp = 0; |
c906108c SS |
1751 | |
1752 | if (!args) | |
1753 | { | |
1754 | /* if there are no arguments ...do this... */ | |
1755 | ||
ac3eeb49 MS |
1756 | /* Try as a field first, because if we succeed, there is less |
1757 | work to be done. */ | |
c906108c SS |
1758 | v = search_struct_field (name, *argp, 0, t, 0); |
1759 | if (v) | |
1760 | return v; | |
1761 | ||
1762 | /* C++: If it was not found as a data field, then try to | |
7b83ea04 | 1763 | return it as a pointer to a method. */ |
c906108c SS |
1764 | |
1765 | if (destructor_name_p (name, t)) | |
8a3fe4f8 | 1766 | error (_("Cannot get value of destructor")); |
c906108c | 1767 | |
ac3eeb49 MS |
1768 | v = search_struct_method (name, argp, args, 0, |
1769 | static_memfuncp, t); | |
c906108c | 1770 | |
f23631e4 | 1771 | if (v == (struct value *) - 1) |
55b39184 | 1772 | error (_("Cannot take address of method %s."), name); |
c906108c SS |
1773 | else if (v == 0) |
1774 | { | |
1775 | if (TYPE_NFN_FIELDS (t)) | |
8a3fe4f8 | 1776 | error (_("There is no member or method named %s."), name); |
c906108c | 1777 | else |
8a3fe4f8 | 1778 | error (_("There is no member named %s."), name); |
c906108c SS |
1779 | } |
1780 | return v; | |
1781 | } | |
1782 | ||
1783 | if (destructor_name_p (name, t)) | |
1784 | { | |
1785 | if (!args[1]) | |
1786 | { | |
1787 | /* Destructors are a special case. */ | |
1788 | int m_index, f_index; | |
1789 | ||
1790 | v = NULL; | |
1791 | if (get_destructor_fn_field (t, &m_index, &f_index)) | |
1792 | { | |
ac3eeb49 MS |
1793 | v = value_fn_field (NULL, |
1794 | TYPE_FN_FIELDLIST1 (t, m_index), | |
c906108c SS |
1795 | f_index, NULL, 0); |
1796 | } | |
1797 | if (v == NULL) | |
ac3eeb49 MS |
1798 | error (_("could not find destructor function named %s."), |
1799 | name); | |
c906108c SS |
1800 | else |
1801 | return v; | |
1802 | } | |
1803 | else | |
1804 | { | |
8a3fe4f8 | 1805 | error (_("destructor should not have any argument")); |
c906108c SS |
1806 | } |
1807 | } | |
1808 | else | |
ac3eeb49 MS |
1809 | v = search_struct_method (name, argp, args, 0, |
1810 | static_memfuncp, t); | |
7168a814 | 1811 | |
f23631e4 | 1812 | if (v == (struct value *) - 1) |
c906108c | 1813 | { |
8a3fe4f8 | 1814 | error (_("One of the arguments you tried to pass to %s could not be converted to what the function wants."), name); |
c906108c SS |
1815 | } |
1816 | else if (v == 0) | |
1817 | { | |
ac3eeb49 MS |
1818 | /* See if user tried to invoke data as function. If so, hand it |
1819 | back. If it's not callable (i.e., a pointer to function), | |
7b83ea04 | 1820 | gdb should give an error. */ |
c906108c SS |
1821 | v = search_struct_field (name, *argp, 0, t, 0); |
1822 | } | |
1823 | ||
1824 | if (!v) | |
8a3fe4f8 | 1825 | error (_("Structure has no component named %s."), name); |
c906108c SS |
1826 | return v; |
1827 | } | |
1828 | ||
ac3eeb49 MS |
1829 | /* Search through the methods of an object (and its bases) to find a |
1830 | specified method. Return the pointer to the fn_field list of | |
1831 | overloaded instances. | |
1832 | ||
1833 | Helper function for value_find_oload_list. | |
1834 | ARGP is a pointer to a pointer to a value (the object). | |
1835 | METHOD is a string containing the method name. | |
1836 | OFFSET is the offset within the value. | |
1837 | TYPE is the assumed type of the object. | |
1838 | NUM_FNS is the number of overloaded instances. | |
1839 | BASETYPE is set to the actual type of the subobject where the | |
1840 | method is found. | |
1841 | BOFFSET is the offset of the base subobject where the method is found. | |
1842 | */ | |
c906108c | 1843 | |
7a292a7a | 1844 | static struct fn_field * |
ac3eeb49 MS |
1845 | find_method_list (struct value **argp, char *method, |
1846 | int offset, struct type *type, int *num_fns, | |
fba45db2 | 1847 | struct type **basetype, int *boffset) |
c906108c SS |
1848 | { |
1849 | int i; | |
c5aa993b | 1850 | struct fn_field *f; |
c906108c SS |
1851 | CHECK_TYPEDEF (type); |
1852 | ||
1853 | *num_fns = 0; | |
1854 | ||
ac3eeb49 | 1855 | /* First check in object itself. */ |
c5aa993b | 1856 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) |
c906108c | 1857 | { |
ac3eeb49 | 1858 | /* pai: FIXME What about operators and type conversions? */ |
c5aa993b | 1859 | char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i); |
db577aea | 1860 | if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0)) |
c5aa993b | 1861 | { |
4a1970e4 DJ |
1862 | int len = TYPE_FN_FIELDLIST_LENGTH (type, i); |
1863 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); | |
4a1970e4 DJ |
1864 | |
1865 | *num_fns = len; | |
c5aa993b JM |
1866 | *basetype = type; |
1867 | *boffset = offset; | |
4a1970e4 | 1868 | |
de17c821 DJ |
1869 | /* Resolve any stub methods. */ |
1870 | check_stub_method_group (type, i); | |
4a1970e4 DJ |
1871 | |
1872 | return f; | |
c5aa993b JM |
1873 | } |
1874 | } | |
1875 | ||
ac3eeb49 | 1876 | /* Not found in object, check in base subobjects. */ |
c906108c SS |
1877 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) |
1878 | { | |
1879 | int base_offset; | |
1880 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
1881 | { | |
086280be UW |
1882 | base_offset = value_offset (*argp) + offset; |
1883 | base_offset = baseclass_offset (type, i, | |
1884 | value_contents (*argp) + base_offset, | |
1885 | VALUE_ADDRESS (*argp) + base_offset); | |
1886 | if (base_offset == -1) | |
1887 | error (_("virtual baseclass botch")); | |
c5aa993b | 1888 | } |
ac3eeb49 MS |
1889 | else /* Non-virtual base, simply use bit position from debug |
1890 | info. */ | |
c906108c SS |
1891 | { |
1892 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | |
c5aa993b | 1893 | } |
c906108c | 1894 | f = find_method_list (argp, method, base_offset + offset, |
ac3eeb49 MS |
1895 | TYPE_BASECLASS (type, i), num_fns, |
1896 | basetype, boffset); | |
c906108c | 1897 | if (f) |
c5aa993b | 1898 | return f; |
c906108c | 1899 | } |
c5aa993b | 1900 | return NULL; |
c906108c SS |
1901 | } |
1902 | ||
1903 | /* Return the list of overloaded methods of a specified name. | |
ac3eeb49 MS |
1904 | |
1905 | ARGP is a pointer to a pointer to a value (the object). | |
1906 | METHOD is the method name. | |
1907 | OFFSET is the offset within the value contents. | |
1908 | NUM_FNS is the number of overloaded instances. | |
1909 | BASETYPE is set to the type of the base subobject that defines the | |
1910 | method. | |
1911 | BOFFSET is the offset of the base subobject which defines the method. | |
1912 | */ | |
c906108c SS |
1913 | |
1914 | struct fn_field * | |
ac3eeb49 MS |
1915 | value_find_oload_method_list (struct value **argp, char *method, |
1916 | int offset, int *num_fns, | |
1917 | struct type **basetype, int *boffset) | |
c906108c | 1918 | { |
c5aa993b | 1919 | struct type *t; |
c906108c | 1920 | |
df407dfe | 1921 | t = check_typedef (value_type (*argp)); |
c906108c | 1922 | |
ac3eeb49 | 1923 | /* Code snarfed from value_struct_elt. */ |
c906108c SS |
1924 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) |
1925 | { | |
1926 | *argp = value_ind (*argp); | |
1927 | /* Don't coerce fn pointer to fn and then back again! */ | |
df407dfe | 1928 | if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC) |
994b9211 | 1929 | *argp = coerce_array (*argp); |
df407dfe | 1930 | t = check_typedef (value_type (*argp)); |
c906108c | 1931 | } |
c5aa993b | 1932 | |
c5aa993b JM |
1933 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
1934 | && TYPE_CODE (t) != TYPE_CODE_UNION) | |
8a3fe4f8 | 1935 | error (_("Attempt to extract a component of a value that is not a struct or union")); |
c5aa993b | 1936 | |
ac3eeb49 MS |
1937 | return find_method_list (argp, method, 0, t, num_fns, |
1938 | basetype, boffset); | |
c906108c SS |
1939 | } |
1940 | ||
1941 | /* Given an array of argument types (ARGTYPES) (which includes an | |
1942 | entry for "this" in the case of C++ methods), the number of | |
1943 | arguments NARGS, the NAME of a function whether it's a method or | |
1944 | not (METHOD), and the degree of laxness (LAX) in conforming to | |
1945 | overload resolution rules in ANSI C++, find the best function that | |
1946 | matches on the argument types according to the overload resolution | |
1947 | rules. | |
1948 | ||
1949 | In the case of class methods, the parameter OBJ is an object value | |
1950 | in which to search for overloaded methods. | |
1951 | ||
1952 | In the case of non-method functions, the parameter FSYM is a symbol | |
1953 | corresponding to one of the overloaded functions. | |
1954 | ||
1955 | Return value is an integer: 0 -> good match, 10 -> debugger applied | |
1956 | non-standard coercions, 100 -> incompatible. | |
1957 | ||
1958 | If a method is being searched for, VALP will hold the value. | |
ac3eeb49 MS |
1959 | If a non-method is being searched for, SYMP will hold the symbol |
1960 | for it. | |
c906108c SS |
1961 | |
1962 | If a method is being searched for, and it is a static method, | |
1963 | then STATICP will point to a non-zero value. | |
1964 | ||
1965 | Note: This function does *not* check the value of | |
1966 | overload_resolution. Caller must check it to see whether overload | |
1967 | resolution is permitted. | |
ac3eeb49 | 1968 | */ |
c906108c SS |
1969 | |
1970 | int | |
ac3eeb49 MS |
1971 | find_overload_match (struct type **arg_types, int nargs, |
1972 | char *name, int method, int lax, | |
1973 | struct value **objp, struct symbol *fsym, | |
1974 | struct value **valp, struct symbol **symp, | |
1975 | int *staticp) | |
c906108c | 1976 | { |
7f8c9282 | 1977 | struct value *obj = (objp ? *objp : NULL); |
ac3eeb49 MS |
1978 | /* Index of best overloaded function. */ |
1979 | int oload_champ; | |
1980 | /* The measure for the current best match. */ | |
1981 | struct badness_vector *oload_champ_bv = NULL; | |
f23631e4 | 1982 | struct value *temp = obj; |
ac3eeb49 MS |
1983 | /* For methods, the list of overloaded methods. */ |
1984 | struct fn_field *fns_ptr = NULL; | |
1985 | /* For non-methods, the list of overloaded function symbols. */ | |
1986 | struct symbol **oload_syms = NULL; | |
1987 | /* Number of overloaded instances being considered. */ | |
1988 | int num_fns = 0; | |
c5aa993b | 1989 | struct type *basetype = NULL; |
c906108c | 1990 | int boffset; |
52f0bd74 | 1991 | int ix; |
4a1970e4 | 1992 | int static_offset; |
8d577d32 | 1993 | struct cleanup *old_cleanups = NULL; |
c906108c | 1994 | |
8d577d32 | 1995 | const char *obj_type_name = NULL; |
c5aa993b | 1996 | char *func_name = NULL; |
8d577d32 | 1997 | enum oload_classification match_quality; |
c906108c | 1998 | |
ac3eeb49 | 1999 | /* Get the list of overloaded methods or functions. */ |
c906108c SS |
2000 | if (method) |
2001 | { | |
a2ca50ae | 2002 | gdb_assert (obj); |
df407dfe | 2003 | obj_type_name = TYPE_NAME (value_type (obj)); |
c906108c | 2004 | /* Hack: evaluate_subexp_standard often passes in a pointer |
ac3eeb49 MS |
2005 | value rather than the object itself, so try again. */ |
2006 | if ((!obj_type_name || !*obj_type_name) | |
2007 | && (TYPE_CODE (value_type (obj)) == TYPE_CODE_PTR)) | |
df407dfe | 2008 | obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (value_type (obj))); |
c906108c | 2009 | |
ac3eeb49 MS |
2010 | fns_ptr = value_find_oload_method_list (&temp, name, |
2011 | 0, &num_fns, | |
c5aa993b | 2012 | &basetype, &boffset); |
c906108c | 2013 | if (!fns_ptr || !num_fns) |
8a3fe4f8 | 2014 | error (_("Couldn't find method %s%s%s"), |
c5aa993b JM |
2015 | obj_type_name, |
2016 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2017 | name); | |
4a1970e4 | 2018 | /* If we are dealing with stub method types, they should have |
ac3eeb49 MS |
2019 | been resolved by find_method_list via |
2020 | value_find_oload_method_list above. */ | |
4a1970e4 | 2021 | gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL); |
ac3eeb49 MS |
2022 | oload_champ = find_oload_champ (arg_types, nargs, method, |
2023 | num_fns, fns_ptr, | |
2024 | oload_syms, &oload_champ_bv); | |
c906108c SS |
2025 | } |
2026 | else | |
2027 | { | |
8d577d32 | 2028 | const char *qualified_name = SYMBOL_CPLUS_DEMANGLED_NAME (fsym); |
c906108c | 2029 | |
d9639e13 DJ |
2030 | /* If we have a C++ name, try to extract just the function |
2031 | part. */ | |
2032 | if (qualified_name) | |
2033 | func_name = cp_func_name (qualified_name); | |
2034 | ||
2035 | /* If there was no C++ name, this must be a C-style function. | |
2036 | Just return the same symbol. Do the same if cp_func_name | |
2037 | fails for some reason. */ | |
8d577d32 | 2038 | if (func_name == NULL) |
7b83ea04 | 2039 | { |
917317f4 | 2040 | *symp = fsym; |
7b83ea04 AC |
2041 | return 0; |
2042 | } | |
917317f4 | 2043 | |
8d577d32 DC |
2044 | old_cleanups = make_cleanup (xfree, func_name); |
2045 | make_cleanup (xfree, oload_syms); | |
2046 | make_cleanup (xfree, oload_champ_bv); | |
2047 | ||
2048 | oload_champ = find_oload_champ_namespace (arg_types, nargs, | |
2049 | func_name, | |
2050 | qualified_name, | |
2051 | &oload_syms, | |
2052 | &oload_champ_bv); | |
2053 | } | |
2054 | ||
2055 | /* Check how bad the best match is. */ | |
2056 | ||
ac3eeb49 MS |
2057 | match_quality = |
2058 | classify_oload_match (oload_champ_bv, nargs, | |
2059 | oload_method_static (method, fns_ptr, | |
2060 | oload_champ)); | |
8d577d32 DC |
2061 | |
2062 | if (match_quality == INCOMPATIBLE) | |
2063 | { | |
2064 | if (method) | |
8a3fe4f8 | 2065 | error (_("Cannot resolve method %s%s%s to any overloaded instance"), |
8d577d32 DC |
2066 | obj_type_name, |
2067 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2068 | name); | |
2069 | else | |
8a3fe4f8 | 2070 | error (_("Cannot resolve function %s to any overloaded instance"), |
8d577d32 DC |
2071 | func_name); |
2072 | } | |
2073 | else if (match_quality == NON_STANDARD) | |
2074 | { | |
2075 | if (method) | |
8a3fe4f8 | 2076 | warning (_("Using non-standard conversion to match method %s%s%s to supplied arguments"), |
8d577d32 DC |
2077 | obj_type_name, |
2078 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2079 | name); | |
2080 | else | |
8a3fe4f8 | 2081 | warning (_("Using non-standard conversion to match function %s to supplied arguments"), |
8d577d32 DC |
2082 | func_name); |
2083 | } | |
2084 | ||
2085 | if (method) | |
2086 | { | |
2087 | if (staticp != NULL) | |
2088 | *staticp = oload_method_static (method, fns_ptr, oload_champ); | |
2089 | if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ)) | |
ac3eeb49 MS |
2090 | *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, |
2091 | basetype, boffset); | |
8d577d32 | 2092 | else |
ac3eeb49 MS |
2093 | *valp = value_fn_field (&temp, fns_ptr, oload_champ, |
2094 | basetype, boffset); | |
8d577d32 DC |
2095 | } |
2096 | else | |
2097 | { | |
2098 | *symp = oload_syms[oload_champ]; | |
2099 | } | |
2100 | ||
2101 | if (objp) | |
2102 | { | |
df407dfe AC |
2103 | if (TYPE_CODE (value_type (temp)) != TYPE_CODE_PTR |
2104 | && TYPE_CODE (value_type (*objp)) == TYPE_CODE_PTR) | |
8d577d32 DC |
2105 | { |
2106 | temp = value_addr (temp); | |
2107 | } | |
2108 | *objp = temp; | |
2109 | } | |
2110 | if (old_cleanups != NULL) | |
2111 | do_cleanups (old_cleanups); | |
2112 | ||
2113 | switch (match_quality) | |
2114 | { | |
2115 | case INCOMPATIBLE: | |
2116 | return 100; | |
2117 | case NON_STANDARD: | |
2118 | return 10; | |
2119 | default: /* STANDARD */ | |
2120 | return 0; | |
2121 | } | |
2122 | } | |
2123 | ||
2124 | /* Find the best overload match, searching for FUNC_NAME in namespaces | |
2125 | contained in QUALIFIED_NAME until it either finds a good match or | |
2126 | runs out of namespaces. It stores the overloaded functions in | |
2127 | *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The | |
2128 | calling function is responsible for freeing *OLOAD_SYMS and | |
2129 | *OLOAD_CHAMP_BV. */ | |
2130 | ||
2131 | static int | |
2132 | find_oload_champ_namespace (struct type **arg_types, int nargs, | |
2133 | const char *func_name, | |
2134 | const char *qualified_name, | |
2135 | struct symbol ***oload_syms, | |
2136 | struct badness_vector **oload_champ_bv) | |
2137 | { | |
2138 | int oload_champ; | |
2139 | ||
2140 | find_oload_champ_namespace_loop (arg_types, nargs, | |
2141 | func_name, | |
2142 | qualified_name, 0, | |
2143 | oload_syms, oload_champ_bv, | |
2144 | &oload_champ); | |
2145 | ||
2146 | return oload_champ; | |
2147 | } | |
2148 | ||
2149 | /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is | |
2150 | how deep we've looked for namespaces, and the champ is stored in | |
2151 | OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0 | |
2152 | if it isn't. | |
2153 | ||
2154 | It is the caller's responsibility to free *OLOAD_SYMS and | |
2155 | *OLOAD_CHAMP_BV. */ | |
2156 | ||
2157 | static int | |
2158 | find_oload_champ_namespace_loop (struct type **arg_types, int nargs, | |
2159 | const char *func_name, | |
2160 | const char *qualified_name, | |
2161 | int namespace_len, | |
2162 | struct symbol ***oload_syms, | |
2163 | struct badness_vector **oload_champ_bv, | |
2164 | int *oload_champ) | |
2165 | { | |
2166 | int next_namespace_len = namespace_len; | |
2167 | int searched_deeper = 0; | |
2168 | int num_fns = 0; | |
2169 | struct cleanup *old_cleanups; | |
2170 | int new_oload_champ; | |
2171 | struct symbol **new_oload_syms; | |
2172 | struct badness_vector *new_oload_champ_bv; | |
2173 | char *new_namespace; | |
2174 | ||
2175 | if (next_namespace_len != 0) | |
2176 | { | |
2177 | gdb_assert (qualified_name[next_namespace_len] == ':'); | |
2178 | next_namespace_len += 2; | |
c906108c | 2179 | } |
ac3eeb49 MS |
2180 | next_namespace_len += |
2181 | cp_find_first_component (qualified_name + next_namespace_len); | |
8d577d32 DC |
2182 | |
2183 | /* Initialize these to values that can safely be xfree'd. */ | |
2184 | *oload_syms = NULL; | |
2185 | *oload_champ_bv = NULL; | |
c5aa993b | 2186 | |
ac3eeb49 MS |
2187 | /* First, see if we have a deeper namespace we can search in. |
2188 | If we get a good match there, use it. */ | |
8d577d32 DC |
2189 | |
2190 | if (qualified_name[next_namespace_len] == ':') | |
2191 | { | |
2192 | searched_deeper = 1; | |
2193 | ||
2194 | if (find_oload_champ_namespace_loop (arg_types, nargs, | |
2195 | func_name, qualified_name, | |
2196 | next_namespace_len, | |
2197 | oload_syms, oload_champ_bv, | |
2198 | oload_champ)) | |
2199 | { | |
2200 | return 1; | |
2201 | } | |
2202 | }; | |
2203 | ||
2204 | /* If we reach here, either we're in the deepest namespace or we | |
2205 | didn't find a good match in a deeper namespace. But, in the | |
2206 | latter case, we still have a bad match in a deeper namespace; | |
2207 | note that we might not find any match at all in the current | |
2208 | namespace. (There's always a match in the deepest namespace, | |
2209 | because this overload mechanism only gets called if there's a | |
2210 | function symbol to start off with.) */ | |
2211 | ||
2212 | old_cleanups = make_cleanup (xfree, *oload_syms); | |
2213 | old_cleanups = make_cleanup (xfree, *oload_champ_bv); | |
2214 | new_namespace = alloca (namespace_len + 1); | |
2215 | strncpy (new_namespace, qualified_name, namespace_len); | |
2216 | new_namespace[namespace_len] = '\0'; | |
2217 | new_oload_syms = make_symbol_overload_list (func_name, | |
2218 | new_namespace); | |
2219 | while (new_oload_syms[num_fns]) | |
2220 | ++num_fns; | |
2221 | ||
2222 | new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns, | |
2223 | NULL, new_oload_syms, | |
2224 | &new_oload_champ_bv); | |
2225 | ||
2226 | /* Case 1: We found a good match. Free earlier matches (if any), | |
2227 | and return it. Case 2: We didn't find a good match, but we're | |
2228 | not the deepest function. Then go with the bad match that the | |
2229 | deeper function found. Case 3: We found a bad match, and we're | |
2230 | the deepest function. Then return what we found, even though | |
2231 | it's a bad match. */ | |
2232 | ||
2233 | if (new_oload_champ != -1 | |
2234 | && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD) | |
2235 | { | |
2236 | *oload_syms = new_oload_syms; | |
2237 | *oload_champ = new_oload_champ; | |
2238 | *oload_champ_bv = new_oload_champ_bv; | |
2239 | do_cleanups (old_cleanups); | |
2240 | return 1; | |
2241 | } | |
2242 | else if (searched_deeper) | |
2243 | { | |
2244 | xfree (new_oload_syms); | |
2245 | xfree (new_oload_champ_bv); | |
2246 | discard_cleanups (old_cleanups); | |
2247 | return 0; | |
2248 | } | |
2249 | else | |
2250 | { | |
2251 | gdb_assert (new_oload_champ != -1); | |
2252 | *oload_syms = new_oload_syms; | |
2253 | *oload_champ = new_oload_champ; | |
2254 | *oload_champ_bv = new_oload_champ_bv; | |
2255 | discard_cleanups (old_cleanups); | |
2256 | return 0; | |
2257 | } | |
2258 | } | |
2259 | ||
2260 | /* Look for a function to take NARGS args of types ARG_TYPES. Find | |
2261 | the best match from among the overloaded methods or functions | |
2262 | (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively. | |
2263 | The number of methods/functions in the list is given by NUM_FNS. | |
2264 | Return the index of the best match; store an indication of the | |
2265 | quality of the match in OLOAD_CHAMP_BV. | |
2266 | ||
2267 | It is the caller's responsibility to free *OLOAD_CHAMP_BV. */ | |
2268 | ||
2269 | static int | |
2270 | find_oload_champ (struct type **arg_types, int nargs, int method, | |
2271 | int num_fns, struct fn_field *fns_ptr, | |
2272 | struct symbol **oload_syms, | |
2273 | struct badness_vector **oload_champ_bv) | |
2274 | { | |
2275 | int ix; | |
ac3eeb49 MS |
2276 | /* A measure of how good an overloaded instance is. */ |
2277 | struct badness_vector *bv; | |
2278 | /* Index of best overloaded function. */ | |
2279 | int oload_champ = -1; | |
2280 | /* Current ambiguity state for overload resolution. */ | |
2281 | int oload_ambiguous = 0; | |
2282 | /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */ | |
8d577d32 DC |
2283 | |
2284 | *oload_champ_bv = NULL; | |
c906108c | 2285 | |
ac3eeb49 | 2286 | /* Consider each candidate in turn. */ |
c906108c SS |
2287 | for (ix = 0; ix < num_fns; ix++) |
2288 | { | |
8d577d32 DC |
2289 | int jj; |
2290 | int static_offset = oload_method_static (method, fns_ptr, ix); | |
2291 | int nparms; | |
2292 | struct type **parm_types; | |
2293 | ||
db577aea AC |
2294 | if (method) |
2295 | { | |
ad2f7632 | 2296 | nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix)); |
db577aea AC |
2297 | } |
2298 | else | |
2299 | { | |
ac3eeb49 MS |
2300 | /* If it's not a method, this is the proper place. */ |
2301 | nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix])); | |
db577aea | 2302 | } |
c906108c | 2303 | |
ac3eeb49 MS |
2304 | /* Prepare array of parameter types. */ |
2305 | parm_types = (struct type **) | |
2306 | xmalloc (nparms * (sizeof (struct type *))); | |
c906108c | 2307 | for (jj = 0; jj < nparms; jj++) |
db577aea | 2308 | parm_types[jj] = (method |
ad2f7632 | 2309 | ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type) |
ac3eeb49 MS |
2310 | : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), |
2311 | jj)); | |
c906108c | 2312 | |
ac3eeb49 MS |
2313 | /* Compare parameter types to supplied argument types. Skip |
2314 | THIS for static methods. */ | |
2315 | bv = rank_function (parm_types, nparms, | |
2316 | arg_types + static_offset, | |
4a1970e4 | 2317 | nargs - static_offset); |
c5aa993b | 2318 | |
8d577d32 | 2319 | if (!*oload_champ_bv) |
c5aa993b | 2320 | { |
8d577d32 | 2321 | *oload_champ_bv = bv; |
c5aa993b | 2322 | oload_champ = 0; |
c5aa993b | 2323 | } |
ac3eeb49 MS |
2324 | else /* See whether current candidate is better or worse than |
2325 | previous best. */ | |
8d577d32 | 2326 | switch (compare_badness (bv, *oload_champ_bv)) |
c5aa993b | 2327 | { |
ac3eeb49 MS |
2328 | case 0: /* Top two contenders are equally good. */ |
2329 | oload_ambiguous = 1; | |
c5aa993b | 2330 | break; |
ac3eeb49 MS |
2331 | case 1: /* Incomparable top contenders. */ |
2332 | oload_ambiguous = 2; | |
c5aa993b | 2333 | break; |
ac3eeb49 MS |
2334 | case 2: /* New champion, record details. */ |
2335 | *oload_champ_bv = bv; | |
c5aa993b JM |
2336 | oload_ambiguous = 0; |
2337 | oload_champ = ix; | |
c5aa993b JM |
2338 | break; |
2339 | case 3: | |
2340 | default: | |
2341 | break; | |
2342 | } | |
b8c9b27d | 2343 | xfree (parm_types); |
6b1ba9a0 ND |
2344 | if (overload_debug) |
2345 | { | |
2346 | if (method) | |
ac3eeb49 MS |
2347 | fprintf_filtered (gdb_stderr, |
2348 | "Overloaded method instance %s, # of parms %d\n", | |
2349 | fns_ptr[ix].physname, nparms); | |
6b1ba9a0 | 2350 | else |
ac3eeb49 MS |
2351 | fprintf_filtered (gdb_stderr, |
2352 | "Overloaded function instance %s # of parms %d\n", | |
2353 | SYMBOL_DEMANGLED_NAME (oload_syms[ix]), | |
2354 | nparms); | |
4a1970e4 | 2355 | for (jj = 0; jj < nargs - static_offset; jj++) |
ac3eeb49 MS |
2356 | fprintf_filtered (gdb_stderr, |
2357 | "...Badness @ %d : %d\n", | |
2358 | jj, bv->rank[jj]); | |
2359 | fprintf_filtered (gdb_stderr, | |
2360 | "Overload resolution champion is %d, ambiguous? %d\n", | |
2361 | oload_champ, oload_ambiguous); | |
6b1ba9a0 | 2362 | } |
c906108c SS |
2363 | } |
2364 | ||
8d577d32 DC |
2365 | return oload_champ; |
2366 | } | |
6b1ba9a0 | 2367 | |
8d577d32 DC |
2368 | /* Return 1 if we're looking at a static method, 0 if we're looking at |
2369 | a non-static method or a function that isn't a method. */ | |
c906108c | 2370 | |
8d577d32 DC |
2371 | static int |
2372 | oload_method_static (int method, struct fn_field *fns_ptr, int index) | |
2373 | { | |
2374 | if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, index)) | |
2375 | return 1; | |
c906108c | 2376 | else |
8d577d32 DC |
2377 | return 0; |
2378 | } | |
c906108c | 2379 | |
8d577d32 DC |
2380 | /* Check how good an overload match OLOAD_CHAMP_BV represents. */ |
2381 | ||
2382 | static enum oload_classification | |
2383 | classify_oload_match (struct badness_vector *oload_champ_bv, | |
2384 | int nargs, | |
2385 | int static_offset) | |
2386 | { | |
2387 | int ix; | |
2388 | ||
2389 | for (ix = 1; ix <= nargs - static_offset; ix++) | |
7f8c9282 | 2390 | { |
8d577d32 | 2391 | if (oload_champ_bv->rank[ix] >= 100) |
ac3eeb49 | 2392 | return INCOMPATIBLE; /* Truly mismatched types. */ |
8d577d32 | 2393 | else if (oload_champ_bv->rank[ix] >= 10) |
ac3eeb49 MS |
2394 | return NON_STANDARD; /* Non-standard type conversions |
2395 | needed. */ | |
7f8c9282 | 2396 | } |
02f0d45d | 2397 | |
8d577d32 | 2398 | return STANDARD; /* Only standard conversions needed. */ |
c906108c SS |
2399 | } |
2400 | ||
ac3eeb49 MS |
2401 | /* C++: return 1 is NAME is a legitimate name for the destructor of |
2402 | type TYPE. If TYPE does not have a destructor, or if NAME is | |
2403 | inappropriate for TYPE, an error is signaled. */ | |
c906108c | 2404 | int |
fba45db2 | 2405 | destructor_name_p (const char *name, const struct type *type) |
c906108c | 2406 | { |
ac3eeb49 | 2407 | /* Destructors are a special case. */ |
c906108c SS |
2408 | |
2409 | if (name[0] == '~') | |
2410 | { | |
2411 | char *dname = type_name_no_tag (type); | |
2412 | char *cp = strchr (dname, '<'); | |
2413 | unsigned int len; | |
2414 | ||
2415 | /* Do not compare the template part for template classes. */ | |
2416 | if (cp == NULL) | |
2417 | len = strlen (dname); | |
2418 | else | |
2419 | len = cp - dname; | |
bf896cb0 | 2420 | if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0) |
8a3fe4f8 | 2421 | error (_("name of destructor must equal name of class")); |
c906108c SS |
2422 | else |
2423 | return 1; | |
2424 | } | |
2425 | return 0; | |
2426 | } | |
2427 | ||
2b2d9e11 | 2428 | /* Given TYPE, a structure/union, |
ac3eeb49 MS |
2429 | return 1 if the component named NAME from the ultimate target |
2430 | structure/union is defined, otherwise, return 0. */ | |
c906108c | 2431 | |
2b2d9e11 VP |
2432 | int |
2433 | check_field (struct type *type, const char *name) | |
c906108c | 2434 | { |
52f0bd74 | 2435 | int i; |
c906108c SS |
2436 | |
2437 | for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--) | |
2438 | { | |
2439 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
db577aea | 2440 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c SS |
2441 | return 1; |
2442 | } | |
2443 | ||
ac3eeb49 MS |
2444 | /* C++: If it was not found as a data field, then try to return it |
2445 | as a pointer to a method. */ | |
c906108c SS |
2446 | |
2447 | /* Destructors are a special case. */ | |
2448 | if (destructor_name_p (name, type)) | |
2449 | { | |
2450 | int m_index, f_index; | |
2451 | ||
2452 | return get_destructor_fn_field (type, &m_index, &f_index); | |
2453 | } | |
2454 | ||
2455 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i) | |
2456 | { | |
db577aea | 2457 | if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0) |
c906108c SS |
2458 | return 1; |
2459 | } | |
2460 | ||
2461 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
2b2d9e11 | 2462 | if (check_field (TYPE_BASECLASS (type, i), name)) |
c906108c | 2463 | return 1; |
c5aa993b | 2464 | |
c906108c SS |
2465 | return 0; |
2466 | } | |
2467 | ||
79c2c32d | 2468 | /* C++: Given an aggregate type CURTYPE, and a member name NAME, |
0d5de010 DJ |
2469 | return the appropriate member (or the address of the member, if |
2470 | WANT_ADDRESS). This function is used to resolve user expressions | |
2471 | of the form "DOMAIN::NAME". For more details on what happens, see | |
2472 | the comment before value_struct_elt_for_reference. */ | |
79c2c32d DC |
2473 | |
2474 | struct value * | |
2475 | value_aggregate_elt (struct type *curtype, | |
0d5de010 | 2476 | char *name, int want_address, |
79c2c32d DC |
2477 | enum noside noside) |
2478 | { | |
2479 | switch (TYPE_CODE (curtype)) | |
2480 | { | |
2481 | case TYPE_CODE_STRUCT: | |
2482 | case TYPE_CODE_UNION: | |
ac3eeb49 MS |
2483 | return value_struct_elt_for_reference (curtype, 0, curtype, |
2484 | name, NULL, | |
0d5de010 | 2485 | want_address, noside); |
79c2c32d | 2486 | case TYPE_CODE_NAMESPACE: |
ac3eeb49 MS |
2487 | return value_namespace_elt (curtype, name, |
2488 | want_address, noside); | |
79c2c32d DC |
2489 | default: |
2490 | internal_error (__FILE__, __LINE__, | |
e2e0b3e5 | 2491 | _("non-aggregate type in value_aggregate_elt")); |
79c2c32d DC |
2492 | } |
2493 | } | |
2494 | ||
c906108c | 2495 | /* C++: Given an aggregate type CURTYPE, and a member name NAME, |
ac3eeb49 MS |
2496 | return the address of this member as a "pointer to member" type. |
2497 | If INTYPE is non-null, then it will be the type of the member we | |
2498 | are looking for. This will help us resolve "pointers to member | |
2499 | functions". This function is used to resolve user expressions of | |
2500 | the form "DOMAIN::NAME". */ | |
c906108c | 2501 | |
63d06c5c | 2502 | static struct value * |
fba45db2 KB |
2503 | value_struct_elt_for_reference (struct type *domain, int offset, |
2504 | struct type *curtype, char *name, | |
ac3eeb49 MS |
2505 | struct type *intype, |
2506 | int want_address, | |
63d06c5c | 2507 | enum noside noside) |
c906108c | 2508 | { |
52f0bd74 AC |
2509 | struct type *t = curtype; |
2510 | int i; | |
0d5de010 | 2511 | struct value *v, *result; |
c906108c | 2512 | |
c5aa993b | 2513 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c | 2514 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
8a3fe4f8 | 2515 | error (_("Internal error: non-aggregate type to value_struct_elt_for_reference")); |
c906108c SS |
2516 | |
2517 | for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--) | |
2518 | { | |
2519 | char *t_field_name = TYPE_FIELD_NAME (t, i); | |
c5aa993b | 2520 | |
6314a349 | 2521 | if (t_field_name && strcmp (t_field_name, name) == 0) |
c906108c SS |
2522 | { |
2523 | if (TYPE_FIELD_STATIC (t, i)) | |
2524 | { | |
2525 | v = value_static_field (t, i); | |
2526 | if (v == NULL) | |
8a3fe4f8 | 2527 | error (_("static field %s has been optimized out"), |
c906108c | 2528 | name); |
0d5de010 DJ |
2529 | if (want_address) |
2530 | v = value_addr (v); | |
c906108c SS |
2531 | return v; |
2532 | } | |
2533 | if (TYPE_FIELD_PACKED (t, i)) | |
8a3fe4f8 | 2534 | error (_("pointers to bitfield members not allowed")); |
c5aa993b | 2535 | |
0d5de010 DJ |
2536 | if (want_address) |
2537 | return value_from_longest | |
2538 | (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain), | |
2539 | offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3)); | |
2540 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
2541 | return allocate_value (TYPE_FIELD_TYPE (t, i)); | |
2542 | else | |
2543 | error (_("Cannot reference non-static field \"%s\""), name); | |
c906108c SS |
2544 | } |
2545 | } | |
2546 | ||
ac3eeb49 MS |
2547 | /* C++: If it was not found as a data field, then try to return it |
2548 | as a pointer to a method. */ | |
c906108c SS |
2549 | |
2550 | /* Destructors are a special case. */ | |
2551 | if (destructor_name_p (name, t)) | |
2552 | { | |
8a3fe4f8 | 2553 | error (_("member pointers to destructors not implemented yet")); |
c906108c SS |
2554 | } |
2555 | ||
2556 | /* Perform all necessary dereferencing. */ | |
2557 | while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR) | |
2558 | intype = TYPE_TARGET_TYPE (intype); | |
2559 | ||
2560 | for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i) | |
2561 | { | |
2562 | char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i); | |
2563 | char dem_opname[64]; | |
2564 | ||
ac3eeb49 MS |
2565 | if (strncmp (t_field_name, "__", 2) == 0 |
2566 | || strncmp (t_field_name, "op", 2) == 0 | |
2567 | || strncmp (t_field_name, "type", 4) == 0) | |
c906108c | 2568 | { |
ac3eeb49 MS |
2569 | if (cplus_demangle_opname (t_field_name, |
2570 | dem_opname, DMGL_ANSI)) | |
c5aa993b | 2571 | t_field_name = dem_opname; |
ac3eeb49 MS |
2572 | else if (cplus_demangle_opname (t_field_name, |
2573 | dem_opname, 0)) | |
c906108c | 2574 | t_field_name = dem_opname; |
c906108c | 2575 | } |
6314a349 | 2576 | if (t_field_name && strcmp (t_field_name, name) == 0) |
c906108c SS |
2577 | { |
2578 | int j = TYPE_FN_FIELDLIST_LENGTH (t, i); | |
2579 | struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i); | |
c5aa993b | 2580 | |
de17c821 DJ |
2581 | check_stub_method_group (t, i); |
2582 | ||
c906108c | 2583 | if (intype == 0 && j > 1) |
8a3fe4f8 | 2584 | error (_("non-unique member `%s' requires type instantiation"), name); |
c906108c SS |
2585 | if (intype) |
2586 | { | |
2587 | while (j--) | |
2588 | if (TYPE_FN_FIELD_TYPE (f, j) == intype) | |
2589 | break; | |
2590 | if (j < 0) | |
8a3fe4f8 | 2591 | error (_("no member function matches that type instantiation")); |
c906108c SS |
2592 | } |
2593 | else | |
2594 | j = 0; | |
c5aa993b | 2595 | |
0d5de010 DJ |
2596 | if (TYPE_FN_FIELD_STATIC_P (f, j)) |
2597 | { | |
ac3eeb49 MS |
2598 | struct symbol *s = |
2599 | lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), | |
2600 | 0, VAR_DOMAIN, 0, NULL); | |
0d5de010 DJ |
2601 | if (s == NULL) |
2602 | return NULL; | |
2603 | ||
2604 | if (want_address) | |
2605 | return value_addr (read_var_value (s, 0)); | |
2606 | else | |
2607 | return read_var_value (s, 0); | |
2608 | } | |
2609 | ||
c906108c SS |
2610 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) |
2611 | { | |
0d5de010 DJ |
2612 | if (want_address) |
2613 | { | |
2614 | result = allocate_value | |
2615 | (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j))); | |
2616 | cplus_make_method_ptr (value_contents_writeable (result), | |
2617 | TYPE_FN_FIELD_VOFFSET (f, j), 1); | |
2618 | } | |
2619 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
2620 | return allocate_value (TYPE_FN_FIELD_TYPE (f, j)); | |
2621 | else | |
2622 | error (_("Cannot reference virtual member function \"%s\""), | |
2623 | name); | |
c906108c SS |
2624 | } |
2625 | else | |
2626 | { | |
ac3eeb49 MS |
2627 | struct symbol *s = |
2628 | lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), | |
2629 | 0, VAR_DOMAIN, 0, NULL); | |
c906108c | 2630 | if (s == NULL) |
0d5de010 DJ |
2631 | return NULL; |
2632 | ||
2633 | v = read_var_value (s, 0); | |
2634 | if (!want_address) | |
2635 | result = v; | |
c906108c SS |
2636 | else |
2637 | { | |
0d5de010 DJ |
2638 | result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j))); |
2639 | cplus_make_method_ptr (value_contents_writeable (result), | |
2640 | VALUE_ADDRESS (v), 0); | |
c906108c | 2641 | } |
c906108c | 2642 | } |
0d5de010 | 2643 | return result; |
c906108c SS |
2644 | } |
2645 | } | |
2646 | for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--) | |
2647 | { | |
f23631e4 | 2648 | struct value *v; |
c906108c SS |
2649 | int base_offset; |
2650 | ||
2651 | if (BASETYPE_VIA_VIRTUAL (t, i)) | |
2652 | base_offset = 0; | |
2653 | else | |
2654 | base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8; | |
2655 | v = value_struct_elt_for_reference (domain, | |
2656 | offset + base_offset, | |
2657 | TYPE_BASECLASS (t, i), | |
ac3eeb49 MS |
2658 | name, intype, |
2659 | want_address, noside); | |
c906108c SS |
2660 | if (v) |
2661 | return v; | |
2662 | } | |
63d06c5c DC |
2663 | |
2664 | /* As a last chance, pretend that CURTYPE is a namespace, and look | |
2665 | it up that way; this (frequently) works for types nested inside | |
2666 | classes. */ | |
2667 | ||
ac3eeb49 MS |
2668 | return value_maybe_namespace_elt (curtype, name, |
2669 | want_address, noside); | |
c906108c SS |
2670 | } |
2671 | ||
79c2c32d DC |
2672 | /* C++: Return the member NAME of the namespace given by the type |
2673 | CURTYPE. */ | |
2674 | ||
2675 | static struct value * | |
2676 | value_namespace_elt (const struct type *curtype, | |
0d5de010 | 2677 | char *name, int want_address, |
79c2c32d | 2678 | enum noside noside) |
63d06c5c DC |
2679 | { |
2680 | struct value *retval = value_maybe_namespace_elt (curtype, name, | |
ac3eeb49 MS |
2681 | want_address, |
2682 | noside); | |
63d06c5c DC |
2683 | |
2684 | if (retval == NULL) | |
ac3eeb49 MS |
2685 | error (_("No symbol \"%s\" in namespace \"%s\"."), |
2686 | name, TYPE_TAG_NAME (curtype)); | |
63d06c5c DC |
2687 | |
2688 | return retval; | |
2689 | } | |
2690 | ||
2691 | /* A helper function used by value_namespace_elt and | |
2692 | value_struct_elt_for_reference. It looks up NAME inside the | |
2693 | context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE | |
2694 | is a class and NAME refers to a type in CURTYPE itself (as opposed | |
2695 | to, say, some base class of CURTYPE). */ | |
2696 | ||
2697 | static struct value * | |
2698 | value_maybe_namespace_elt (const struct type *curtype, | |
0d5de010 | 2699 | char *name, int want_address, |
63d06c5c | 2700 | enum noside noside) |
79c2c32d DC |
2701 | { |
2702 | const char *namespace_name = TYPE_TAG_NAME (curtype); | |
2703 | struct symbol *sym; | |
0d5de010 | 2704 | struct value *result; |
79c2c32d DC |
2705 | |
2706 | sym = cp_lookup_symbol_namespace (namespace_name, name, NULL, | |
ac3eeb49 | 2707 | get_selected_block (0), |
21b556f4 | 2708 | VAR_DOMAIN); |
79c2c32d DC |
2709 | |
2710 | if (sym == NULL) | |
63d06c5c | 2711 | return NULL; |
79c2c32d DC |
2712 | else if ((noside == EVAL_AVOID_SIDE_EFFECTS) |
2713 | && (SYMBOL_CLASS (sym) == LOC_TYPEDEF)) | |
0d5de010 | 2714 | result = allocate_value (SYMBOL_TYPE (sym)); |
79c2c32d | 2715 | else |
0d5de010 DJ |
2716 | result = value_of_variable (sym, get_selected_block (0)); |
2717 | ||
2718 | if (result && want_address) | |
2719 | result = value_addr (result); | |
2720 | ||
2721 | return result; | |
79c2c32d DC |
2722 | } |
2723 | ||
ac3eeb49 MS |
2724 | /* Given a pointer value V, find the real (RTTI) type of the object it |
2725 | points to. | |
2726 | ||
c906108c | 2727 | Other parameters FULL, TOP, USING_ENC as with value_rtti_type() |
ac3eeb49 | 2728 | and refer to the values computed for the object pointed to. */ |
c906108c SS |
2729 | |
2730 | struct type * | |
ac3eeb49 MS |
2731 | value_rtti_target_type (struct value *v, int *full, |
2732 | int *top, int *using_enc) | |
c906108c | 2733 | { |
f23631e4 | 2734 | struct value *target; |
c906108c SS |
2735 | |
2736 | target = value_ind (v); | |
2737 | ||
2738 | return value_rtti_type (target, full, top, using_enc); | |
2739 | } | |
2740 | ||
2741 | /* Given a value pointed to by ARGP, check its real run-time type, and | |
2742 | if that is different from the enclosing type, create a new value | |
2743 | using the real run-time type as the enclosing type (and of the same | |
2744 | type as ARGP) and return it, with the embedded offset adjusted to | |
ac3eeb49 MS |
2745 | be the correct offset to the enclosed object. RTYPE is the type, |
2746 | and XFULL, XTOP, and XUSING_ENC are the other parameters, computed | |
2747 | by value_rtti_type(). If these are available, they can be supplied | |
2748 | and a second call to value_rtti_type() is avoided. (Pass RTYPE == | |
2749 | NULL if they're not available. */ | |
c906108c | 2750 | |
f23631e4 | 2751 | struct value * |
ac3eeb49 MS |
2752 | value_full_object (struct value *argp, |
2753 | struct type *rtype, | |
2754 | int xfull, int xtop, | |
fba45db2 | 2755 | int xusing_enc) |
c906108c | 2756 | { |
c5aa993b | 2757 | struct type *real_type; |
c906108c SS |
2758 | int full = 0; |
2759 | int top = -1; | |
2760 | int using_enc = 0; | |
f23631e4 | 2761 | struct value *new_val; |
c906108c SS |
2762 | |
2763 | if (rtype) | |
2764 | { | |
2765 | real_type = rtype; | |
2766 | full = xfull; | |
2767 | top = xtop; | |
2768 | using_enc = xusing_enc; | |
2769 | } | |
2770 | else | |
2771 | real_type = value_rtti_type (argp, &full, &top, &using_enc); | |
2772 | ||
ac3eeb49 | 2773 | /* If no RTTI data, or if object is already complete, do nothing. */ |
4754a64e | 2774 | if (!real_type || real_type == value_enclosing_type (argp)) |
c906108c SS |
2775 | return argp; |
2776 | ||
2777 | /* If we have the full object, but for some reason the enclosing | |
ac3eeb49 MS |
2778 | type is wrong, set it. */ |
2779 | /* pai: FIXME -- sounds iffy */ | |
c906108c SS |
2780 | if (full) |
2781 | { | |
2b127877 | 2782 | argp = value_change_enclosing_type (argp, real_type); |
c906108c SS |
2783 | return argp; |
2784 | } | |
2785 | ||
2786 | /* Check if object is in memory */ | |
2787 | if (VALUE_LVAL (argp) != lval_memory) | |
2788 | { | |
ac3eeb49 MS |
2789 | warning (_("Couldn't retrieve complete object of RTTI type %s; object may be in register(s)."), |
2790 | TYPE_NAME (real_type)); | |
c5aa993b | 2791 | |
c906108c SS |
2792 | return argp; |
2793 | } | |
c5aa993b | 2794 | |
ac3eeb49 MS |
2795 | /* All other cases -- retrieve the complete object. */ |
2796 | /* Go back by the computed top_offset from the beginning of the | |
2797 | object, adjusting for the embedded offset of argp if that's what | |
2798 | value_rtti_type used for its computation. */ | |
c906108c | 2799 | new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top + |
13c3b5f5 | 2800 | (using_enc ? 0 : value_embedded_offset (argp))); |
04624583 | 2801 | deprecated_set_value_type (new_val, value_type (argp)); |
13c3b5f5 AC |
2802 | set_value_embedded_offset (new_val, (using_enc |
2803 | ? top + value_embedded_offset (argp) | |
2804 | : top)); | |
c906108c SS |
2805 | return new_val; |
2806 | } | |
2807 | ||
389e51db | 2808 | |
d069f99d | 2809 | /* Return the value of the local variable, if one exists. |
c906108c SS |
2810 | Flag COMPLAIN signals an error if the request is made in an |
2811 | inappropriate context. */ | |
2812 | ||
f23631e4 | 2813 | struct value * |
d069f99d | 2814 | value_of_local (const char *name, int complain) |
c906108c SS |
2815 | { |
2816 | struct symbol *func, *sym; | |
2817 | struct block *b; | |
d069f99d | 2818 | struct value * ret; |
206415a3 | 2819 | struct frame_info *frame; |
c906108c | 2820 | |
206415a3 DJ |
2821 | if (complain) |
2822 | frame = get_selected_frame (_("no frame selected")); | |
2823 | else | |
c906108c | 2824 | { |
206415a3 DJ |
2825 | frame = deprecated_safe_get_selected_frame (); |
2826 | if (frame == 0) | |
c5aa993b | 2827 | return 0; |
c906108c SS |
2828 | } |
2829 | ||
206415a3 | 2830 | func = get_frame_function (frame); |
c906108c SS |
2831 | if (!func) |
2832 | { | |
2833 | if (complain) | |
8a3fe4f8 | 2834 | error (_("no `%s' in nameless context"), name); |
c5aa993b JM |
2835 | else |
2836 | return 0; | |
c906108c SS |
2837 | } |
2838 | ||
2839 | b = SYMBOL_BLOCK_VALUE (func); | |
de4f826b | 2840 | if (dict_empty (BLOCK_DICT (b))) |
c906108c SS |
2841 | { |
2842 | if (complain) | |
8a3fe4f8 | 2843 | error (_("no args, no `%s'"), name); |
c5aa993b JM |
2844 | else |
2845 | return 0; | |
c906108c SS |
2846 | } |
2847 | ||
2848 | /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER | |
2849 | symbol instead of the LOC_ARG one (if both exist). */ | |
176620f1 | 2850 | sym = lookup_block_symbol (b, name, NULL, VAR_DOMAIN); |
c906108c SS |
2851 | if (sym == NULL) |
2852 | { | |
2853 | if (complain) | |
ac3eeb49 MS |
2854 | error (_("current stack frame does not contain a variable named `%s'"), |
2855 | name); | |
c906108c SS |
2856 | else |
2857 | return NULL; | |
2858 | } | |
2859 | ||
206415a3 | 2860 | ret = read_var_value (sym, frame); |
d069f99d | 2861 | if (ret == 0 && complain) |
8a3fe4f8 | 2862 | error (_("`%s' argument unreadable"), name); |
d069f99d AF |
2863 | return ret; |
2864 | } | |
2865 | ||
2866 | /* C++/Objective-C: return the value of the class instance variable, | |
2867 | if one exists. Flag COMPLAIN signals an error if the request is | |
2868 | made in an inappropriate context. */ | |
2869 | ||
2870 | struct value * | |
2871 | value_of_this (int complain) | |
2872 | { | |
2b2d9e11 VP |
2873 | if (!current_language->la_name_of_this) |
2874 | return 0; | |
2875 | return value_of_local (current_language->la_name_of_this, complain); | |
c906108c SS |
2876 | } |
2877 | ||
ac3eeb49 MS |
2878 | /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH |
2879 | elements long, starting at LOWBOUND. The result has the same lower | |
2880 | bound as the original ARRAY. */ | |
c906108c | 2881 | |
f23631e4 AC |
2882 | struct value * |
2883 | value_slice (struct value *array, int lowbound, int length) | |
c906108c SS |
2884 | { |
2885 | struct type *slice_range_type, *slice_type, *range_type; | |
7a67d0fe | 2886 | LONGEST lowerbound, upperbound; |
f23631e4 | 2887 | struct value *slice; |
c906108c | 2888 | struct type *array_type; |
ac3eeb49 | 2889 | |
df407dfe | 2890 | array_type = check_typedef (value_type (array)); |
c906108c SS |
2891 | if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY |
2892 | && TYPE_CODE (array_type) != TYPE_CODE_STRING | |
2893 | && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING) | |
8a3fe4f8 | 2894 | error (_("cannot take slice of non-array")); |
ac3eeb49 | 2895 | |
c906108c SS |
2896 | range_type = TYPE_INDEX_TYPE (array_type); |
2897 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
8a3fe4f8 | 2898 | error (_("slice from bad array or bitstring")); |
ac3eeb49 | 2899 | |
c906108c | 2900 | if (lowbound < lowerbound || length < 0 |
db034ac5 | 2901 | || lowbound + length - 1 > upperbound) |
8a3fe4f8 | 2902 | error (_("slice out of range")); |
ac3eeb49 | 2903 | |
c906108c SS |
2904 | /* FIXME-type-allocation: need a way to free this type when we are |
2905 | done with it. */ | |
c5aa993b | 2906 | slice_range_type = create_range_type ((struct type *) NULL, |
c906108c | 2907 | TYPE_TARGET_TYPE (range_type), |
ac3eeb49 MS |
2908 | lowbound, |
2909 | lowbound + length - 1); | |
c906108c SS |
2910 | if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING) |
2911 | { | |
2912 | int i; | |
ac3eeb49 MS |
2913 | |
2914 | slice_type = create_set_type ((struct type *) NULL, | |
2915 | slice_range_type); | |
c906108c SS |
2916 | TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING; |
2917 | slice = value_zero (slice_type, not_lval); | |
ac3eeb49 | 2918 | |
c906108c SS |
2919 | for (i = 0; i < length; i++) |
2920 | { | |
2921 | int element = value_bit_index (array_type, | |
0fd88904 | 2922 | value_contents (array), |
c906108c SS |
2923 | lowbound + i); |
2924 | if (element < 0) | |
8a3fe4f8 | 2925 | error (_("internal error accessing bitstring")); |
c906108c SS |
2926 | else if (element > 0) |
2927 | { | |
2928 | int j = i % TARGET_CHAR_BIT; | |
32c9a795 | 2929 | if (gdbarch_bits_big_endian (current_gdbarch)) |
c906108c | 2930 | j = TARGET_CHAR_BIT - 1 - j; |
990a07ab | 2931 | value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j); |
c906108c SS |
2932 | } |
2933 | } | |
ac3eeb49 MS |
2934 | /* We should set the address, bitssize, and bitspos, so the |
2935 | slice can be used on the LHS, but that may require extensions | |
2936 | to value_assign. For now, just leave as a non_lval. | |
2937 | FIXME. */ | |
c906108c SS |
2938 | } |
2939 | else | |
2940 | { | |
2941 | struct type *element_type = TYPE_TARGET_TYPE (array_type); | |
ac3eeb49 MS |
2942 | LONGEST offset = |
2943 | (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type)); | |
2944 | ||
2945 | slice_type = create_array_type ((struct type *) NULL, | |
2946 | element_type, | |
c906108c SS |
2947 | slice_range_type); |
2948 | TYPE_CODE (slice_type) = TYPE_CODE (array_type); | |
ac3eeb49 | 2949 | |
c906108c | 2950 | slice = allocate_value (slice_type); |
9214ee5f | 2951 | if (VALUE_LVAL (array) == lval_memory && value_lazy (array)) |
dfa52d88 | 2952 | set_value_lazy (slice, 1); |
c906108c | 2953 | else |
0fd88904 AC |
2954 | memcpy (value_contents_writeable (slice), |
2955 | value_contents (array) + offset, | |
c906108c | 2956 | TYPE_LENGTH (slice_type)); |
ac3eeb49 | 2957 | |
c906108c SS |
2958 | if (VALUE_LVAL (array) == lval_internalvar) |
2959 | VALUE_LVAL (slice) = lval_internalvar_component; | |
2960 | else | |
2961 | VALUE_LVAL (slice) = VALUE_LVAL (array); | |
ac3eeb49 | 2962 | |
c906108c | 2963 | VALUE_ADDRESS (slice) = VALUE_ADDRESS (array); |
65d3800a | 2964 | VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array); |
f5cf64a7 | 2965 | set_value_offset (slice, value_offset (array) + offset); |
c906108c SS |
2966 | } |
2967 | return slice; | |
2968 | } | |
2969 | ||
ac3eeb49 MS |
2970 | /* Create a value for a FORTRAN complex number. Currently most of the |
2971 | time values are coerced to COMPLEX*16 (i.e. a complex number | |
070ad9f0 DB |
2972 | composed of 2 doubles. This really should be a smarter routine |
2973 | that figures out precision inteligently as opposed to assuming | |
ac3eeb49 | 2974 | doubles. FIXME: fmb */ |
c906108c | 2975 | |
f23631e4 | 2976 | struct value * |
ac3eeb49 MS |
2977 | value_literal_complex (struct value *arg1, |
2978 | struct value *arg2, | |
2979 | struct type *type) | |
c906108c | 2980 | { |
f23631e4 | 2981 | struct value *val; |
c906108c SS |
2982 | struct type *real_type = TYPE_TARGET_TYPE (type); |
2983 | ||
2984 | val = allocate_value (type); | |
2985 | arg1 = value_cast (real_type, arg1); | |
2986 | arg2 = value_cast (real_type, arg2); | |
2987 | ||
990a07ab | 2988 | memcpy (value_contents_raw (val), |
0fd88904 | 2989 | value_contents (arg1), TYPE_LENGTH (real_type)); |
990a07ab | 2990 | memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type), |
0fd88904 | 2991 | value_contents (arg2), TYPE_LENGTH (real_type)); |
c906108c SS |
2992 | return val; |
2993 | } | |
2994 | ||
ac3eeb49 | 2995 | /* Cast a value into the appropriate complex data type. */ |
c906108c | 2996 | |
f23631e4 AC |
2997 | static struct value * |
2998 | cast_into_complex (struct type *type, struct value *val) | |
c906108c SS |
2999 | { |
3000 | struct type *real_type = TYPE_TARGET_TYPE (type); | |
ac3eeb49 | 3001 | |
df407dfe | 3002 | if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX) |
c906108c | 3003 | { |
df407dfe | 3004 | struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val)); |
f23631e4 AC |
3005 | struct value *re_val = allocate_value (val_real_type); |
3006 | struct value *im_val = allocate_value (val_real_type); | |
c906108c | 3007 | |
990a07ab | 3008 | memcpy (value_contents_raw (re_val), |
0fd88904 | 3009 | value_contents (val), TYPE_LENGTH (val_real_type)); |
990a07ab | 3010 | memcpy (value_contents_raw (im_val), |
0fd88904 | 3011 | value_contents (val) + TYPE_LENGTH (val_real_type), |
c5aa993b | 3012 | TYPE_LENGTH (val_real_type)); |
c906108c SS |
3013 | |
3014 | return value_literal_complex (re_val, im_val, type); | |
3015 | } | |
df407dfe AC |
3016 | else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT |
3017 | || TYPE_CODE (value_type (val)) == TYPE_CODE_INT) | |
ac3eeb49 MS |
3018 | return value_literal_complex (val, |
3019 | value_zero (real_type, not_lval), | |
3020 | type); | |
c906108c | 3021 | else |
8a3fe4f8 | 3022 | error (_("cannot cast non-number to complex")); |
c906108c SS |
3023 | } |
3024 | ||
3025 | void | |
fba45db2 | 3026 | _initialize_valops (void) |
c906108c | 3027 | { |
5bf193a2 AC |
3028 | add_setshow_boolean_cmd ("overload-resolution", class_support, |
3029 | &overload_resolution, _("\ | |
3030 | Set overload resolution in evaluating C++ functions."), _("\ | |
ac3eeb49 MS |
3031 | Show overload resolution in evaluating C++ functions."), |
3032 | NULL, NULL, | |
920d2a44 | 3033 | show_overload_resolution, |
5bf193a2 | 3034 | &setlist, &showlist); |
c906108c | 3035 | overload_resolution = 1; |
c906108c | 3036 | } |