]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Parse expressions for GDB. |
b6ba6518 KB |
2 | Copyright 1986, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, |
3 | 1998, 1999, 2000, 2001 Free Software Foundation, Inc. | |
c906108c SS |
4 | Modified from expread.y by the Department of Computer Science at the |
5 | State University of New York at Buffalo, 1991. | |
6 | ||
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
11 | the Free Software Foundation; either version 2 of the License, or | |
12 | (at your option) any later version. | |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b JM |
19 | You should have received a copy of the GNU General Public License |
20 | along with this program; if not, write to the Free Software | |
21 | Foundation, Inc., 59 Temple Place - Suite 330, | |
22 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
23 | |
24 | /* Parse an expression from text in a string, | |
25 | and return the result as a struct expression pointer. | |
26 | That structure contains arithmetic operations in reverse polish, | |
27 | with constants represented by operations that are followed by special data. | |
28 | See expression.h for the details of the format. | |
29 | What is important here is that it can be built up sequentially | |
30 | during the process of parsing; the lower levels of the tree always | |
31 | come first in the result. */ | |
c5aa993b | 32 | |
cce74817 JM |
33 | #include <ctype.h> |
34 | ||
c906108c SS |
35 | #include "defs.h" |
36 | #include "gdb_string.h" | |
c906108c SS |
37 | #include "symtab.h" |
38 | #include "gdbtypes.h" | |
39 | #include "frame.h" | |
40 | #include "expression.h" | |
41 | #include "value.h" | |
42 | #include "command.h" | |
43 | #include "language.h" | |
44 | #include "parser-defs.h" | |
45 | #include "gdbcmd.h" | |
c5aa993b | 46 | #include "symfile.h" /* for overlay functions */ |
e2305d34 MS |
47 | #include "inferior.h" /* for NUM_PSEUDO_REGS. NOTE: replace |
48 | with "gdbarch.h" when appropriate. */ | |
d16aafd8 | 49 | #include "doublest.h" |
0406ec40 AC |
50 | #include "builtin-regs.h" |
51 | #include "gdb_assert.h" | |
e2305d34 | 52 | |
2df3850c JM |
53 | \f |
54 | /* Symbols which architectures can redefine. */ | |
55 | ||
56 | /* Some systems have routines whose names start with `$'. Giving this | |
57 | macro a non-zero value tells GDB's expression parser to check for | |
58 | such routines when parsing tokens that begin with `$'. | |
59 | ||
60 | On HP-UX, certain system routines (millicode) have names beginning | |
61 | with `$' or `$$'. For example, `$$dyncall' is a millicode routine | |
62 | that handles inter-space procedure calls on PA-RISC. */ | |
63 | #ifndef SYMBOLS_CAN_START_WITH_DOLLAR | |
64 | #define SYMBOLS_CAN_START_WITH_DOLLAR (0) | |
65 | #endif | |
66 | ||
67 | ||
c906108c SS |
68 | \f |
69 | /* Global variables declared in parser-defs.h (and commented there). */ | |
70 | struct expression *expout; | |
71 | int expout_size; | |
72 | int expout_ptr; | |
73 | struct block *expression_context_block; | |
84f0252a | 74 | CORE_ADDR expression_context_pc; |
c906108c SS |
75 | struct block *innermost_block; |
76 | int arglist_len; | |
77 | union type_stack_elt *type_stack; | |
78 | int type_stack_depth, type_stack_size; | |
79 | char *lexptr; | |
665132f9 | 80 | char *prev_lexptr; |
c906108c SS |
81 | char *namecopy; |
82 | int paren_depth; | |
83 | int comma_terminates; | |
84 | \f | |
c906108c | 85 | static int expressiondebug = 0; |
c906108c SS |
86 | |
87 | extern int hp_som_som_object_present; | |
88 | ||
74b7792f | 89 | static void free_funcalls (void *ignore); |
c906108c | 90 | |
a14ed312 | 91 | static void prefixify_expression (struct expression *); |
c906108c SS |
92 | |
93 | static void | |
a14ed312 | 94 | prefixify_subexp (struct expression *, struct expression *, int, int); |
c906108c | 95 | |
a14ed312 | 96 | void _initialize_parse (void); |
392a587b | 97 | |
c906108c SS |
98 | /* Data structure for saving values of arglist_len for function calls whose |
99 | arguments contain other function calls. */ | |
100 | ||
101 | struct funcall | |
102 | { | |
103 | struct funcall *next; | |
104 | int arglist_len; | |
105 | }; | |
106 | ||
107 | static struct funcall *funcall_chain; | |
108 | ||
c906108c | 109 | /* The generic method for targets to specify how their registers are |
96cb11df AC |
110 | named. The mapping can be derived from two sources: REGISTER_NAME; |
111 | or builtin regs. */ | |
c906108c SS |
112 | |
113 | int | |
fba45db2 | 114 | target_map_name_to_register (char *str, int len) |
c906108c SS |
115 | { |
116 | int i; | |
117 | ||
d1c7e53b AC |
118 | /* Search register name space. */ |
119 | for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++) | |
1a1404f1 MS |
120 | if (REGISTER_NAME (i) && len == strlen (REGISTER_NAME (i)) |
121 | && STREQN (str, REGISTER_NAME (i), len)) | |
122 | { | |
123 | return i; | |
124 | } | |
125 | ||
96cb11df AC |
126 | /* Try builtin registers. */ |
127 | i = builtin_reg_map_name_to_regnum (str, len); | |
128 | if (i >= 0) | |
129 | { | |
130 | gdb_assert (i >= NUM_REGS + NUM_PSEUDO_REGS); | |
131 | return i; | |
132 | } | |
c906108c | 133 | |
0406ec40 AC |
134 | /* Try builtin registers. */ |
135 | i = builtin_reg_map_name_to_regnum (str, len); | |
136 | if (i >= 0) | |
137 | { | |
138 | gdb_assert (i >= NUM_REGS + NUM_PSEUDO_REGS); | |
139 | return i; | |
140 | } | |
141 | ||
c906108c SS |
142 | return -1; |
143 | } | |
144 | ||
145 | /* Begin counting arguments for a function call, | |
146 | saving the data about any containing call. */ | |
147 | ||
148 | void | |
fba45db2 | 149 | start_arglist (void) |
c906108c SS |
150 | { |
151 | register struct funcall *new; | |
152 | ||
153 | new = (struct funcall *) xmalloc (sizeof (struct funcall)); | |
154 | new->next = funcall_chain; | |
155 | new->arglist_len = arglist_len; | |
156 | arglist_len = 0; | |
157 | funcall_chain = new; | |
158 | } | |
159 | ||
160 | /* Return the number of arguments in a function call just terminated, | |
161 | and restore the data for the containing function call. */ | |
162 | ||
163 | int | |
fba45db2 | 164 | end_arglist (void) |
c906108c SS |
165 | { |
166 | register int val = arglist_len; | |
167 | register struct funcall *call = funcall_chain; | |
168 | funcall_chain = call->next; | |
169 | arglist_len = call->arglist_len; | |
b8c9b27d | 170 | xfree (call); |
c906108c SS |
171 | return val; |
172 | } | |
173 | ||
174 | /* Free everything in the funcall chain. | |
175 | Used when there is an error inside parsing. */ | |
176 | ||
177 | static void | |
74b7792f | 178 | free_funcalls (void *ignore) |
c906108c SS |
179 | { |
180 | register struct funcall *call, *next; | |
181 | ||
182 | for (call = funcall_chain; call; call = next) | |
183 | { | |
184 | next = call->next; | |
b8c9b27d | 185 | xfree (call); |
c906108c SS |
186 | } |
187 | } | |
188 | \f | |
189 | /* This page contains the functions for adding data to the struct expression | |
190 | being constructed. */ | |
191 | ||
192 | /* Add one element to the end of the expression. */ | |
193 | ||
194 | /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into | |
195 | a register through here */ | |
196 | ||
197 | void | |
fba45db2 | 198 | write_exp_elt (union exp_element expelt) |
c906108c SS |
199 | { |
200 | if (expout_ptr >= expout_size) | |
201 | { | |
202 | expout_size *= 2; | |
203 | expout = (struct expression *) | |
204 | xrealloc ((char *) expout, sizeof (struct expression) | |
205 | + EXP_ELEM_TO_BYTES (expout_size)); | |
206 | } | |
207 | expout->elts[expout_ptr++] = expelt; | |
208 | } | |
209 | ||
210 | void | |
fba45db2 | 211 | write_exp_elt_opcode (enum exp_opcode expelt) |
c906108c SS |
212 | { |
213 | union exp_element tmp; | |
214 | ||
215 | tmp.opcode = expelt; | |
216 | ||
217 | write_exp_elt (tmp); | |
218 | } | |
219 | ||
220 | void | |
fba45db2 | 221 | write_exp_elt_sym (struct symbol *expelt) |
c906108c SS |
222 | { |
223 | union exp_element tmp; | |
224 | ||
225 | tmp.symbol = expelt; | |
226 | ||
227 | write_exp_elt (tmp); | |
228 | } | |
229 | ||
230 | void | |
fba45db2 | 231 | write_exp_elt_block (struct block *b) |
c906108c SS |
232 | { |
233 | union exp_element tmp; | |
234 | tmp.block = b; | |
235 | write_exp_elt (tmp); | |
236 | } | |
237 | ||
238 | void | |
fba45db2 | 239 | write_exp_elt_longcst (LONGEST expelt) |
c906108c SS |
240 | { |
241 | union exp_element tmp; | |
242 | ||
243 | tmp.longconst = expelt; | |
244 | ||
245 | write_exp_elt (tmp); | |
246 | } | |
247 | ||
248 | void | |
fba45db2 | 249 | write_exp_elt_dblcst (DOUBLEST expelt) |
c906108c SS |
250 | { |
251 | union exp_element tmp; | |
252 | ||
253 | tmp.doubleconst = expelt; | |
254 | ||
255 | write_exp_elt (tmp); | |
256 | } | |
257 | ||
258 | void | |
fba45db2 | 259 | write_exp_elt_type (struct type *expelt) |
c906108c SS |
260 | { |
261 | union exp_element tmp; | |
262 | ||
263 | tmp.type = expelt; | |
264 | ||
265 | write_exp_elt (tmp); | |
266 | } | |
267 | ||
268 | void | |
fba45db2 | 269 | write_exp_elt_intern (struct internalvar *expelt) |
c906108c SS |
270 | { |
271 | union exp_element tmp; | |
272 | ||
273 | tmp.internalvar = expelt; | |
274 | ||
275 | write_exp_elt (tmp); | |
276 | } | |
277 | ||
278 | /* Add a string constant to the end of the expression. | |
279 | ||
280 | String constants are stored by first writing an expression element | |
281 | that contains the length of the string, then stuffing the string | |
282 | constant itself into however many expression elements are needed | |
283 | to hold it, and then writing another expression element that contains | |
284 | the length of the string. I.E. an expression element at each end of | |
285 | the string records the string length, so you can skip over the | |
286 | expression elements containing the actual string bytes from either | |
287 | end of the string. Note that this also allows gdb to handle | |
288 | strings with embedded null bytes, as is required for some languages. | |
289 | ||
290 | Don't be fooled by the fact that the string is null byte terminated, | |
291 | this is strictly for the convenience of debugging gdb itself. Gdb | |
292 | Gdb does not depend up the string being null terminated, since the | |
293 | actual length is recorded in expression elements at each end of the | |
294 | string. The null byte is taken into consideration when computing how | |
295 | many expression elements are required to hold the string constant, of | |
296 | course. */ | |
297 | ||
298 | ||
299 | void | |
fba45db2 | 300 | write_exp_string (struct stoken str) |
c906108c SS |
301 | { |
302 | register int len = str.length; | |
303 | register int lenelt; | |
304 | register char *strdata; | |
305 | ||
306 | /* Compute the number of expression elements required to hold the string | |
307 | (including a null byte terminator), along with one expression element | |
308 | at each end to record the actual string length (not including the | |
309 | null byte terminator). */ | |
310 | ||
311 | lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1); | |
312 | ||
313 | /* Ensure that we have enough available expression elements to store | |
314 | everything. */ | |
315 | ||
316 | if ((expout_ptr + lenelt) >= expout_size) | |
317 | { | |
318 | expout_size = max (expout_size * 2, expout_ptr + lenelt + 10); | |
319 | expout = (struct expression *) | |
320 | xrealloc ((char *) expout, (sizeof (struct expression) | |
321 | + EXP_ELEM_TO_BYTES (expout_size))); | |
322 | } | |
323 | ||
324 | /* Write the leading length expression element (which advances the current | |
325 | expression element index), then write the string constant followed by a | |
326 | terminating null byte, and then write the trailing length expression | |
327 | element. */ | |
328 | ||
329 | write_exp_elt_longcst ((LONGEST) len); | |
330 | strdata = (char *) &expout->elts[expout_ptr]; | |
331 | memcpy (strdata, str.ptr, len); | |
332 | *(strdata + len) = '\0'; | |
333 | expout_ptr += lenelt - 2; | |
334 | write_exp_elt_longcst ((LONGEST) len); | |
335 | } | |
336 | ||
337 | /* Add a bitstring constant to the end of the expression. | |
338 | ||
339 | Bitstring constants are stored by first writing an expression element | |
340 | that contains the length of the bitstring (in bits), then stuffing the | |
341 | bitstring constant itself into however many expression elements are | |
342 | needed to hold it, and then writing another expression element that | |
343 | contains the length of the bitstring. I.E. an expression element at | |
344 | each end of the bitstring records the bitstring length, so you can skip | |
345 | over the expression elements containing the actual bitstring bytes from | |
346 | either end of the bitstring. */ | |
347 | ||
348 | void | |
fba45db2 | 349 | write_exp_bitstring (struct stoken str) |
c906108c SS |
350 | { |
351 | register int bits = str.length; /* length in bits */ | |
352 | register int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
353 | register int lenelt; | |
354 | register char *strdata; | |
355 | ||
356 | /* Compute the number of expression elements required to hold the bitstring, | |
357 | along with one expression element at each end to record the actual | |
358 | bitstring length in bits. */ | |
359 | ||
360 | lenelt = 2 + BYTES_TO_EXP_ELEM (len); | |
361 | ||
362 | /* Ensure that we have enough available expression elements to store | |
363 | everything. */ | |
364 | ||
365 | if ((expout_ptr + lenelt) >= expout_size) | |
366 | { | |
367 | expout_size = max (expout_size * 2, expout_ptr + lenelt + 10); | |
368 | expout = (struct expression *) | |
369 | xrealloc ((char *) expout, (sizeof (struct expression) | |
370 | + EXP_ELEM_TO_BYTES (expout_size))); | |
371 | } | |
372 | ||
373 | /* Write the leading length expression element (which advances the current | |
374 | expression element index), then write the bitstring constant, and then | |
375 | write the trailing length expression element. */ | |
376 | ||
377 | write_exp_elt_longcst ((LONGEST) bits); | |
378 | strdata = (char *) &expout->elts[expout_ptr]; | |
379 | memcpy (strdata, str.ptr, len); | |
380 | expout_ptr += lenelt - 2; | |
381 | write_exp_elt_longcst ((LONGEST) bits); | |
382 | } | |
383 | ||
384 | /* Add the appropriate elements for a minimal symbol to the end of | |
385 | the expression. The rationale behind passing in text_symbol_type and | |
386 | data_symbol_type was so that Modula-2 could pass in WORD for | |
387 | data_symbol_type. Perhaps it still is useful to have those types vary | |
388 | based on the language, but they no longer have names like "int", so | |
389 | the initial rationale is gone. */ | |
390 | ||
391 | static struct type *msym_text_symbol_type; | |
392 | static struct type *msym_data_symbol_type; | |
393 | static struct type *msym_unknown_symbol_type; | |
394 | ||
395 | void | |
a858089e MS |
396 | write_exp_msymbol (struct minimal_symbol *msymbol, |
397 | struct type *text_symbol_type, | |
398 | struct type *data_symbol_type) | |
c906108c SS |
399 | { |
400 | CORE_ADDR addr; | |
401 | ||
402 | write_exp_elt_opcode (OP_LONG); | |
a858089e MS |
403 | /* Let's make the type big enough to hold a 64-bit address. */ |
404 | write_exp_elt_type (builtin_type_CORE_ADDR); | |
c906108c SS |
405 | |
406 | addr = SYMBOL_VALUE_ADDRESS (msymbol); | |
407 | if (overlay_debugging) | |
408 | addr = symbol_overlayed_address (addr, SYMBOL_BFD_SECTION (msymbol)); | |
409 | write_exp_elt_longcst ((LONGEST) addr); | |
c5aa993b | 410 | |
c906108c SS |
411 | write_exp_elt_opcode (OP_LONG); |
412 | ||
413 | write_exp_elt_opcode (UNOP_MEMVAL); | |
c5aa993b | 414 | switch (msymbol->type) |
c906108c SS |
415 | { |
416 | case mst_text: | |
417 | case mst_file_text: | |
418 | case mst_solib_trampoline: | |
419 | write_exp_elt_type (msym_text_symbol_type); | |
420 | break; | |
421 | ||
422 | case mst_data: | |
423 | case mst_file_data: | |
424 | case mst_bss: | |
425 | case mst_file_bss: | |
426 | write_exp_elt_type (msym_data_symbol_type); | |
427 | break; | |
428 | ||
429 | default: | |
430 | write_exp_elt_type (msym_unknown_symbol_type); | |
431 | break; | |
432 | } | |
433 | write_exp_elt_opcode (UNOP_MEMVAL); | |
434 | } | |
435 | \f | |
436 | /* Recognize tokens that start with '$'. These include: | |
437 | ||
c5aa993b JM |
438 | $regname A native register name or a "standard |
439 | register name". | |
c906108c | 440 | |
c5aa993b JM |
441 | $variable A convenience variable with a name chosen |
442 | by the user. | |
c906108c | 443 | |
c5aa993b JM |
444 | $digits Value history with index <digits>, starting |
445 | from the first value which has index 1. | |
c906108c | 446 | |
c5aa993b JM |
447 | $$digits Value history with index <digits> relative |
448 | to the last value. I.E. $$0 is the last | |
449 | value, $$1 is the one previous to that, $$2 | |
450 | is the one previous to $$1, etc. | |
c906108c | 451 | |
c5aa993b | 452 | $ | $0 | $$0 The last value in the value history. |
c906108c | 453 | |
c5aa993b JM |
454 | $$ An abbreviation for the second to the last |
455 | value in the value history, I.E. $$1 | |
c906108c | 456 | |
c5aa993b | 457 | */ |
c906108c SS |
458 | |
459 | void | |
fba45db2 | 460 | write_dollar_variable (struct stoken str) |
c906108c SS |
461 | { |
462 | /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1) | |
463 | and $$digits (equivalent to $<-digits> if you could type that). */ | |
464 | ||
c906108c SS |
465 | int negate = 0; |
466 | int i = 1; | |
467 | /* Double dollar means negate the number and add -1 as well. | |
468 | Thus $$ alone means -1. */ | |
469 | if (str.length >= 2 && str.ptr[1] == '$') | |
470 | { | |
471 | negate = 1; | |
472 | i = 2; | |
473 | } | |
474 | if (i == str.length) | |
475 | { | |
476 | /* Just dollars (one or two) */ | |
c5aa993b | 477 | i = -negate; |
c906108c SS |
478 | goto handle_last; |
479 | } | |
480 | /* Is the rest of the token digits? */ | |
481 | for (; i < str.length; i++) | |
482 | if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9')) | |
483 | break; | |
484 | if (i == str.length) | |
485 | { | |
486 | i = atoi (str.ptr + 1 + negate); | |
487 | if (negate) | |
c5aa993b | 488 | i = -i; |
c906108c SS |
489 | goto handle_last; |
490 | } | |
c5aa993b | 491 | |
c906108c SS |
492 | /* Handle tokens that refer to machine registers: |
493 | $ followed by a register name. */ | |
c5aa993b JM |
494 | i = target_map_name_to_register (str.ptr + 1, str.length - 1); |
495 | if (i >= 0) | |
c906108c SS |
496 | goto handle_register; |
497 | ||
2df3850c | 498 | if (SYMBOLS_CAN_START_WITH_DOLLAR) |
c906108c | 499 | { |
2df3850c JM |
500 | struct symbol *sym = NULL; |
501 | struct minimal_symbol *msym = NULL; | |
502 | ||
503 | /* On HP-UX, certain system routines (millicode) have names beginning | |
504 | with $ or $$, e.g. $$dyncall, which handles inter-space procedure | |
505 | calls on PA-RISC. Check for those, first. */ | |
506 | ||
507 | /* This code is not enabled on non HP-UX systems, since worst case | |
508 | symbol table lookup performance is awful, to put it mildly. */ | |
509 | ||
510 | sym = lookup_symbol (copy_name (str), (struct block *) NULL, | |
511 | VAR_NAMESPACE, (int *) NULL, (struct symtab **) NULL); | |
512 | if (sym) | |
513 | { | |
514 | write_exp_elt_opcode (OP_VAR_VALUE); | |
515 | write_exp_elt_block (block_found); /* set by lookup_symbol */ | |
516 | write_exp_elt_sym (sym); | |
517 | write_exp_elt_opcode (OP_VAR_VALUE); | |
518 | return; | |
519 | } | |
520 | msym = lookup_minimal_symbol (copy_name (str), NULL, NULL); | |
521 | if (msym) | |
522 | { | |
523 | write_exp_msymbol (msym, | |
524 | lookup_function_type (builtin_type_int), | |
525 | builtin_type_int); | |
526 | return; | |
527 | } | |
c906108c | 528 | } |
c5aa993b | 529 | |
c906108c SS |
530 | /* Any other names starting in $ are debugger internal variables. */ |
531 | ||
532 | write_exp_elt_opcode (OP_INTERNALVAR); | |
533 | write_exp_elt_intern (lookup_internalvar (copy_name (str) + 1)); | |
c5aa993b | 534 | write_exp_elt_opcode (OP_INTERNALVAR); |
c906108c | 535 | return; |
c5aa993b | 536 | handle_last: |
c906108c SS |
537 | write_exp_elt_opcode (OP_LAST); |
538 | write_exp_elt_longcst ((LONGEST) i); | |
539 | write_exp_elt_opcode (OP_LAST); | |
540 | return; | |
c5aa993b | 541 | handle_register: |
c906108c SS |
542 | write_exp_elt_opcode (OP_REGISTER); |
543 | write_exp_elt_longcst (i); | |
c5aa993b | 544 | write_exp_elt_opcode (OP_REGISTER); |
c906108c SS |
545 | return; |
546 | } | |
547 | ||
548 | ||
549 | /* Parse a string that is possibly a namespace / nested class | |
550 | specification, i.e., something of the form A::B::C::x. Input | |
551 | (NAME) is the entire string; LEN is the current valid length; the | |
552 | output is a string, TOKEN, which points to the largest recognized | |
553 | prefix which is a series of namespaces or classes. CLASS_PREFIX is | |
554 | another output, which records whether a nested class spec was | |
555 | recognized (= 1) or a fully qualified variable name was found (= | |
556 | 0). ARGPTR is side-effected (if non-NULL) to point to beyond the | |
557 | string recognized and consumed by this routine. | |
558 | ||
559 | The return value is a pointer to the symbol for the base class or | |
560 | variable if found, or NULL if not found. Callers must check this | |
561 | first -- if NULL, the outputs may not be correct. | |
562 | ||
563 | This function is used c-exp.y. This is used specifically to get | |
564 | around HP aCC (and possibly other compilers), which insists on | |
565 | generating names with embedded colons for namespace or nested class | |
566 | members. | |
567 | ||
568 | (Argument LEN is currently unused. 1997-08-27) | |
569 | ||
570 | Callers must free memory allocated for the output string TOKEN. */ | |
571 | ||
c5aa993b JM |
572 | static const char coloncolon[2] = |
573 | {':', ':'}; | |
c906108c SS |
574 | |
575 | struct symbol * | |
fba45db2 KB |
576 | parse_nested_classes_for_hpacc (char *name, int len, char **token, |
577 | int *class_prefix, char **argptr) | |
c906108c | 578 | { |
c5aa993b JM |
579 | /* Comment below comes from decode_line_1 which has very similar |
580 | code, which is called for "break" command parsing. */ | |
581 | ||
582 | /* We have what looks like a class or namespace | |
c906108c SS |
583 | scope specification (A::B), possibly with many |
584 | levels of namespaces or classes (A::B::C::D). | |
585 | ||
586 | Some versions of the HP ANSI C++ compiler (as also possibly | |
587 | other compilers) generate class/function/member names with | |
588 | embedded double-colons if they are inside namespaces. To | |
589 | handle this, we loop a few times, considering larger and | |
590 | larger prefixes of the string as though they were single | |
591 | symbols. So, if the initially supplied string is | |
592 | A::B::C::D::foo, we have to look up "A", then "A::B", | |
593 | then "A::B::C", then "A::B::C::D", and finally | |
594 | "A::B::C::D::foo" as single, monolithic symbols, because | |
595 | A, B, C or D may be namespaces. | |
596 | ||
597 | Note that namespaces can nest only inside other | |
598 | namespaces, and not inside classes. So we need only | |
599 | consider *prefixes* of the string; there is no need to look up | |
600 | "B::C" separately as a symbol in the previous example. */ | |
601 | ||
c5aa993b JM |
602 | register char *p; |
603 | char *start, *end; | |
604 | char *prefix = NULL; | |
605 | char *tmp; | |
606 | struct symbol *sym_class = NULL; | |
607 | struct symbol *sym_var = NULL; | |
608 | struct type *t; | |
c906108c SS |
609 | int prefix_len = 0; |
610 | int done = 0; | |
c5aa993b | 611 | char *q; |
c906108c SS |
612 | |
613 | /* Check for HP-compiled executable -- in other cases | |
614 | return NULL, and caller must default to standard GDB | |
615 | behaviour. */ | |
616 | ||
617 | if (!hp_som_som_object_present) | |
618 | return (struct symbol *) NULL; | |
619 | ||
620 | p = name; | |
621 | ||
c5aa993b JM |
622 | /* Skip over whitespace and possible global "::" */ |
623 | while (*p && (*p == ' ' || *p == '\t')) | |
624 | p++; | |
c906108c SS |
625 | if (p[0] == ':' && p[1] == ':') |
626 | p += 2; | |
c5aa993b JM |
627 | while (*p && (*p == ' ' || *p == '\t')) |
628 | p++; | |
629 | ||
c906108c SS |
630 | while (1) |
631 | { | |
632 | /* Get to the end of the next namespace or class spec. */ | |
633 | /* If we're looking at some non-token, fail immediately */ | |
634 | start = p; | |
635 | if (!(isalpha (*p) || *p == '$' || *p == '_')) | |
c5aa993b | 636 | return (struct symbol *) NULL; |
c906108c | 637 | p++; |
c5aa993b JM |
638 | while (*p && (isalnum (*p) || *p == '$' || *p == '_')) |
639 | p++; | |
640 | ||
641 | if (*p == '<') | |
642 | { | |
643 | /* If we have the start of a template specification, | |
644 | scan right ahead to its end */ | |
645 | q = find_template_name_end (p); | |
646 | if (q) | |
647 | p = q; | |
648 | } | |
649 | ||
c906108c SS |
650 | end = p; |
651 | ||
c5aa993b JM |
652 | /* Skip over "::" and whitespace for next time around */ |
653 | while (*p && (*p == ' ' || *p == '\t')) | |
654 | p++; | |
c906108c | 655 | if (p[0] == ':' && p[1] == ':') |
c5aa993b JM |
656 | p += 2; |
657 | while (*p && (*p == ' ' || *p == '\t')) | |
658 | p++; | |
c906108c | 659 | |
c5aa993b | 660 | /* Done with tokens? */ |
c906108c | 661 | if (!*p || !(isalpha (*p) || *p == '$' || *p == '_')) |
c5aa993b | 662 | done = 1; |
c906108c SS |
663 | |
664 | tmp = (char *) alloca (prefix_len + end - start + 3); | |
665 | if (prefix) | |
c5aa993b JM |
666 | { |
667 | memcpy (tmp, prefix, prefix_len); | |
668 | memcpy (tmp + prefix_len, coloncolon, 2); | |
669 | memcpy (tmp + prefix_len + 2, start, end - start); | |
670 | tmp[prefix_len + 2 + end - start] = '\000'; | |
671 | } | |
c906108c | 672 | else |
c5aa993b JM |
673 | { |
674 | memcpy (tmp, start, end - start); | |
675 | tmp[end - start] = '\000'; | |
676 | } | |
677 | ||
c906108c SS |
678 | prefix = tmp; |
679 | prefix_len = strlen (prefix); | |
c5aa993b | 680 | |
c906108c SS |
681 | /* See if the prefix we have now is something we know about */ |
682 | ||
c5aa993b JM |
683 | if (!done) |
684 | { | |
685 | /* More tokens to process, so this must be a class/namespace */ | |
686 | sym_class = lookup_symbol (prefix, 0, STRUCT_NAMESPACE, | |
687 | 0, (struct symtab **) NULL); | |
688 | } | |
c906108c | 689 | else |
c5aa993b JM |
690 | { |
691 | /* No more tokens, so try as a variable first */ | |
692 | sym_var = lookup_symbol (prefix, 0, VAR_NAMESPACE, | |
693 | 0, (struct symtab **) NULL); | |
694 | /* If failed, try as class/namespace */ | |
695 | if (!sym_var) | |
696 | sym_class = lookup_symbol (prefix, 0, STRUCT_NAMESPACE, | |
697 | 0, (struct symtab **) NULL); | |
698 | } | |
c906108c SS |
699 | |
700 | if (sym_var || | |
c5aa993b JM |
701 | (sym_class && |
702 | (t = check_typedef (SYMBOL_TYPE (sym_class)), | |
703 | (TYPE_CODE (t) == TYPE_CODE_STRUCT | |
704 | || TYPE_CODE (t) == TYPE_CODE_UNION)))) | |
705 | { | |
706 | /* We found a valid token */ | |
707 | *token = (char *) xmalloc (prefix_len + 1); | |
708 | memcpy (*token, prefix, prefix_len); | |
709 | (*token)[prefix_len] = '\000'; | |
710 | break; | |
711 | } | |
712 | ||
713 | /* No variable or class/namespace found, no more tokens */ | |
c906108c | 714 | if (done) |
c5aa993b | 715 | return (struct symbol *) NULL; |
c906108c SS |
716 | } |
717 | ||
718 | /* Out of loop, so we must have found a valid token */ | |
719 | if (sym_var) | |
720 | *class_prefix = 0; | |
721 | else | |
722 | *class_prefix = 1; | |
723 | ||
724 | if (argptr) | |
725 | *argptr = done ? p : end; | |
726 | ||
c5aa993b | 727 | return sym_var ? sym_var : sym_class; /* found */ |
c906108c SS |
728 | } |
729 | ||
730 | char * | |
fba45db2 | 731 | find_template_name_end (char *p) |
c906108c SS |
732 | { |
733 | int depth = 1; | |
734 | int just_seen_right = 0; | |
735 | int just_seen_colon = 0; | |
736 | int just_seen_space = 0; | |
c5aa993b | 737 | |
c906108c SS |
738 | if (!p || (*p != '<')) |
739 | return 0; | |
740 | ||
741 | while (*++p) | |
742 | { | |
743 | switch (*p) | |
c5aa993b JM |
744 | { |
745 | case '\'': | |
746 | case '\"': | |
747 | case '{': | |
748 | case '}': | |
749 | /* In future, may want to allow these?? */ | |
750 | return 0; | |
751 | case '<': | |
752 | depth++; /* start nested template */ | |
753 | if (just_seen_colon || just_seen_right || just_seen_space) | |
754 | return 0; /* but not after : or :: or > or space */ | |
755 | break; | |
756 | case '>': | |
757 | if (just_seen_colon || just_seen_right) | |
758 | return 0; /* end a (nested?) template */ | |
759 | just_seen_right = 1; /* but not after : or :: */ | |
760 | if (--depth == 0) /* also disallow >>, insist on > > */ | |
761 | return ++p; /* if outermost ended, return */ | |
762 | break; | |
763 | case ':': | |
764 | if (just_seen_space || (just_seen_colon > 1)) | |
765 | return 0; /* nested class spec coming up */ | |
766 | just_seen_colon++; /* we allow :: but not :::: */ | |
767 | break; | |
768 | case ' ': | |
769 | break; | |
770 | default: | |
771 | if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */ | |
772 | (*p >= 'A' && *p <= 'Z') || | |
773 | (*p >= '0' && *p <= '9') || | |
774 | (*p == '_') || (*p == ',') || /* commas for template args */ | |
775 | (*p == '&') || (*p == '*') || /* pointer and ref types */ | |
776 | (*p == '(') || (*p == ')') || /* function types */ | |
777 | (*p == '[') || (*p == ']'))) /* array types */ | |
778 | return 0; | |
779 | } | |
c906108c | 780 | if (*p != ' ') |
c5aa993b | 781 | just_seen_space = 0; |
c906108c | 782 | if (*p != ':') |
c5aa993b | 783 | just_seen_colon = 0; |
c906108c | 784 | if (*p != '>') |
c5aa993b | 785 | just_seen_right = 0; |
c906108c SS |
786 | } |
787 | return 0; | |
788 | } | |
c5aa993b | 789 | \f |
c906108c SS |
790 | |
791 | ||
c906108c SS |
792 | /* Return a null-terminated temporary copy of the name |
793 | of a string token. */ | |
794 | ||
795 | char * | |
fba45db2 | 796 | copy_name (struct stoken token) |
c906108c SS |
797 | { |
798 | memcpy (namecopy, token.ptr, token.length); | |
799 | namecopy[token.length] = 0; | |
800 | return namecopy; | |
801 | } | |
802 | \f | |
803 | /* Reverse an expression from suffix form (in which it is constructed) | |
804 | to prefix form (in which we can conveniently print or execute it). */ | |
805 | ||
806 | static void | |
fba45db2 | 807 | prefixify_expression (register struct expression *expr) |
c906108c SS |
808 | { |
809 | register int len = | |
c5aa993b | 810 | sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts); |
c906108c SS |
811 | register struct expression *temp; |
812 | register int inpos = expr->nelts, outpos = 0; | |
813 | ||
814 | temp = (struct expression *) alloca (len); | |
815 | ||
816 | /* Copy the original expression into temp. */ | |
817 | memcpy (temp, expr, len); | |
818 | ||
819 | prefixify_subexp (temp, expr, inpos, outpos); | |
820 | } | |
821 | ||
822 | /* Return the number of exp_elements in the subexpression of EXPR | |
823 | whose last exp_element is at index ENDPOS - 1 in EXPR. */ | |
824 | ||
825 | int | |
fba45db2 | 826 | length_of_subexp (register struct expression *expr, register int endpos) |
c906108c SS |
827 | { |
828 | register int oplen = 1; | |
829 | register int args = 0; | |
830 | register int i; | |
831 | ||
832 | if (endpos < 1) | |
833 | error ("?error in length_of_subexp"); | |
834 | ||
835 | i = (int) expr->elts[endpos - 1].opcode; | |
836 | ||
837 | switch (i) | |
838 | { | |
839 | /* C++ */ | |
840 | case OP_SCOPE: | |
841 | oplen = longest_to_int (expr->elts[endpos - 2].longconst); | |
842 | oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1); | |
843 | break; | |
844 | ||
845 | case OP_LONG: | |
846 | case OP_DOUBLE: | |
847 | case OP_VAR_VALUE: | |
848 | oplen = 4; | |
849 | break; | |
850 | ||
851 | case OP_TYPE: | |
852 | case OP_BOOL: | |
853 | case OP_LAST: | |
854 | case OP_REGISTER: | |
855 | case OP_INTERNALVAR: | |
856 | oplen = 3; | |
857 | break; | |
858 | ||
859 | case OP_COMPLEX: | |
c5aa993b | 860 | oplen = 1; |
c906108c | 861 | args = 2; |
c5aa993b | 862 | break; |
c906108c SS |
863 | |
864 | case OP_FUNCALL: | |
865 | case OP_F77_UNDETERMINED_ARGLIST: | |
866 | oplen = 3; | |
867 | args = 1 + longest_to_int (expr->elts[endpos - 2].longconst); | |
868 | break; | |
869 | ||
870 | case UNOP_MAX: | |
871 | case UNOP_MIN: | |
872 | oplen = 3; | |
873 | break; | |
874 | ||
c5aa993b JM |
875 | case BINOP_VAL: |
876 | case UNOP_CAST: | |
877 | case UNOP_MEMVAL: | |
c906108c SS |
878 | oplen = 3; |
879 | args = 1; | |
880 | break; | |
881 | ||
882 | case UNOP_ABS: | |
883 | case UNOP_CAP: | |
884 | case UNOP_CHR: | |
885 | case UNOP_FLOAT: | |
886 | case UNOP_HIGH: | |
887 | case UNOP_ODD: | |
888 | case UNOP_ORD: | |
889 | case UNOP_TRUNC: | |
890 | oplen = 1; | |
891 | args = 1; | |
892 | break; | |
893 | ||
894 | case OP_LABELED: | |
895 | case STRUCTOP_STRUCT: | |
896 | case STRUCTOP_PTR: | |
897 | args = 1; | |
898 | /* fall through */ | |
899 | case OP_M2_STRING: | |
900 | case OP_STRING: | |
901 | case OP_NAME: | |
902 | case OP_EXPRSTRING: | |
903 | oplen = longest_to_int (expr->elts[endpos - 2].longconst); | |
904 | oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1); | |
905 | break; | |
906 | ||
907 | case OP_BITSTRING: | |
908 | oplen = longest_to_int (expr->elts[endpos - 2].longconst); | |
909 | oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
910 | oplen = 4 + BYTES_TO_EXP_ELEM (oplen); | |
911 | break; | |
912 | ||
913 | case OP_ARRAY: | |
914 | oplen = 4; | |
915 | args = longest_to_int (expr->elts[endpos - 2].longconst); | |
916 | args -= longest_to_int (expr->elts[endpos - 3].longconst); | |
917 | args += 1; | |
918 | break; | |
919 | ||
920 | case TERNOP_COND: | |
921 | case TERNOP_SLICE: | |
922 | case TERNOP_SLICE_COUNT: | |
923 | args = 3; | |
924 | break; | |
925 | ||
926 | /* Modula-2 */ | |
c5aa993b | 927 | case MULTI_SUBSCRIPT: |
c906108c | 928 | oplen = 3; |
c5aa993b | 929 | args = 1 + longest_to_int (expr->elts[endpos - 2].longconst); |
c906108c SS |
930 | break; |
931 | ||
932 | case BINOP_ASSIGN_MODIFY: | |
933 | oplen = 3; | |
934 | args = 2; | |
935 | break; | |
936 | ||
937 | /* C++ */ | |
938 | case OP_THIS: | |
939 | oplen = 2; | |
940 | break; | |
941 | ||
942 | default: | |
943 | args = 1 + (i < (int) BINOP_END); | |
944 | } | |
945 | ||
946 | while (args > 0) | |
947 | { | |
948 | oplen += length_of_subexp (expr, endpos - oplen); | |
949 | args--; | |
950 | } | |
951 | ||
952 | return oplen; | |
953 | } | |
954 | ||
955 | /* Copy the subexpression ending just before index INEND in INEXPR | |
956 | into OUTEXPR, starting at index OUTBEG. | |
957 | In the process, convert it from suffix to prefix form. */ | |
958 | ||
959 | static void | |
fba45db2 KB |
960 | prefixify_subexp (register struct expression *inexpr, |
961 | struct expression *outexpr, register int inend, int outbeg) | |
c906108c SS |
962 | { |
963 | register int oplen = 1; | |
964 | register int args = 0; | |
965 | register int i; | |
966 | int *arglens; | |
967 | enum exp_opcode opcode; | |
968 | ||
969 | /* Compute how long the last operation is (in OPLEN), | |
970 | and also how many preceding subexpressions serve as | |
971 | arguments for it (in ARGS). */ | |
972 | ||
973 | opcode = inexpr->elts[inend - 1].opcode; | |
974 | switch (opcode) | |
975 | { | |
976 | /* C++ */ | |
977 | case OP_SCOPE: | |
978 | oplen = longest_to_int (inexpr->elts[inend - 2].longconst); | |
979 | oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1); | |
980 | break; | |
981 | ||
982 | case OP_LONG: | |
983 | case OP_DOUBLE: | |
984 | case OP_VAR_VALUE: | |
985 | oplen = 4; | |
986 | break; | |
987 | ||
988 | case OP_TYPE: | |
989 | case OP_BOOL: | |
990 | case OP_LAST: | |
991 | case OP_REGISTER: | |
992 | case OP_INTERNALVAR: | |
993 | oplen = 3; | |
994 | break; | |
995 | ||
996 | case OP_COMPLEX: | |
c5aa993b JM |
997 | oplen = 1; |
998 | args = 2; | |
999 | break; | |
c906108c SS |
1000 | |
1001 | case OP_FUNCALL: | |
1002 | case OP_F77_UNDETERMINED_ARGLIST: | |
1003 | oplen = 3; | |
1004 | args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst); | |
1005 | break; | |
1006 | ||
1007 | case UNOP_MIN: | |
1008 | case UNOP_MAX: | |
1009 | oplen = 3; | |
1010 | break; | |
1011 | ||
1012 | case UNOP_CAST: | |
1013 | case UNOP_MEMVAL: | |
1014 | oplen = 3; | |
1015 | args = 1; | |
1016 | break; | |
1017 | ||
1018 | case UNOP_ABS: | |
1019 | case UNOP_CAP: | |
1020 | case UNOP_CHR: | |
1021 | case UNOP_FLOAT: | |
1022 | case UNOP_HIGH: | |
1023 | case UNOP_ODD: | |
1024 | case UNOP_ORD: | |
1025 | case UNOP_TRUNC: | |
c5aa993b JM |
1026 | oplen = 1; |
1027 | args = 1; | |
c906108c SS |
1028 | break; |
1029 | ||
1030 | case STRUCTOP_STRUCT: | |
1031 | case STRUCTOP_PTR: | |
1032 | case OP_LABELED: | |
1033 | args = 1; | |
1034 | /* fall through */ | |
1035 | case OP_M2_STRING: | |
1036 | case OP_STRING: | |
1037 | case OP_NAME: | |
1038 | case OP_EXPRSTRING: | |
1039 | oplen = longest_to_int (inexpr->elts[inend - 2].longconst); | |
1040 | oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1); | |
1041 | break; | |
1042 | ||
1043 | case OP_BITSTRING: | |
1044 | oplen = longest_to_int (inexpr->elts[inend - 2].longconst); | |
1045 | oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
1046 | oplen = 4 + BYTES_TO_EXP_ELEM (oplen); | |
1047 | break; | |
1048 | ||
1049 | case OP_ARRAY: | |
1050 | oplen = 4; | |
1051 | args = longest_to_int (inexpr->elts[inend - 2].longconst); | |
1052 | args -= longest_to_int (inexpr->elts[inend - 3].longconst); | |
1053 | args += 1; | |
1054 | break; | |
1055 | ||
1056 | case TERNOP_COND: | |
1057 | case TERNOP_SLICE: | |
1058 | case TERNOP_SLICE_COUNT: | |
1059 | args = 3; | |
1060 | break; | |
1061 | ||
1062 | case BINOP_ASSIGN_MODIFY: | |
1063 | oplen = 3; | |
1064 | args = 2; | |
1065 | break; | |
1066 | ||
1067 | /* Modula-2 */ | |
c5aa993b | 1068 | case MULTI_SUBSCRIPT: |
c906108c SS |
1069 | oplen = 3; |
1070 | args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst); | |
1071 | break; | |
1072 | ||
1073 | /* C++ */ | |
1074 | case OP_THIS: | |
1075 | oplen = 2; | |
1076 | break; | |
1077 | ||
1078 | default: | |
1079 | args = 1 + ((int) opcode < (int) BINOP_END); | |
1080 | } | |
1081 | ||
1082 | /* Copy the final operator itself, from the end of the input | |
1083 | to the beginning of the output. */ | |
1084 | inend -= oplen; | |
1085 | memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend], | |
1086 | EXP_ELEM_TO_BYTES (oplen)); | |
1087 | outbeg += oplen; | |
1088 | ||
1089 | /* Find the lengths of the arg subexpressions. */ | |
1090 | arglens = (int *) alloca (args * sizeof (int)); | |
1091 | for (i = args - 1; i >= 0; i--) | |
1092 | { | |
1093 | oplen = length_of_subexp (inexpr, inend); | |
1094 | arglens[i] = oplen; | |
1095 | inend -= oplen; | |
1096 | } | |
1097 | ||
1098 | /* Now copy each subexpression, preserving the order of | |
1099 | the subexpressions, but prefixifying each one. | |
1100 | In this loop, inend starts at the beginning of | |
1101 | the expression this level is working on | |
1102 | and marches forward over the arguments. | |
1103 | outbeg does similarly in the output. */ | |
1104 | for (i = 0; i < args; i++) | |
1105 | { | |
1106 | oplen = arglens[i]; | |
1107 | inend += oplen; | |
1108 | prefixify_subexp (inexpr, outexpr, inend, outbeg); | |
1109 | outbeg += oplen; | |
1110 | } | |
1111 | } | |
1112 | \f | |
1113 | /* This page contains the two entry points to this file. */ | |
1114 | ||
1115 | /* Read an expression from the string *STRINGPTR points to, | |
1116 | parse it, and return a pointer to a struct expression that we malloc. | |
1117 | Use block BLOCK as the lexical context for variable names; | |
1118 | if BLOCK is zero, use the block of the selected stack frame. | |
1119 | Meanwhile, advance *STRINGPTR to point after the expression, | |
1120 | at the first nonwhite character that is not part of the expression | |
1121 | (possibly a null character). | |
1122 | ||
1123 | If COMMA is nonzero, stop if a comma is reached. */ | |
1124 | ||
1125 | struct expression * | |
fba45db2 | 1126 | parse_exp_1 (char **stringptr, struct block *block, int comma) |
c906108c SS |
1127 | { |
1128 | struct cleanup *old_chain; | |
1129 | ||
1130 | lexptr = *stringptr; | |
665132f9 | 1131 | prev_lexptr = NULL; |
c906108c SS |
1132 | |
1133 | paren_depth = 0; | |
1134 | type_stack_depth = 0; | |
1135 | ||
1136 | comma_terminates = comma; | |
1137 | ||
1138 | if (lexptr == 0 || *lexptr == 0) | |
1139 | error_no_arg ("expression to compute"); | |
1140 | ||
74b7792f | 1141 | old_chain = make_cleanup (free_funcalls, 0 /*ignore*/); |
c906108c SS |
1142 | funcall_chain = 0; |
1143 | ||
84f0252a JB |
1144 | if (block) |
1145 | { | |
1146 | expression_context_block = block; | |
1147 | expression_context_pc = block->startaddr; | |
1148 | } | |
1149 | else | |
1150 | expression_context_block = get_selected_block (&expression_context_pc); | |
c906108c SS |
1151 | |
1152 | namecopy = (char *) alloca (strlen (lexptr) + 1); | |
1153 | expout_size = 10; | |
1154 | expout_ptr = 0; | |
1155 | expout = (struct expression *) | |
1156 | xmalloc (sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_size)); | |
1157 | expout->language_defn = current_language; | |
c13c43fd | 1158 | make_cleanup (free_current_contents, &expout); |
c906108c SS |
1159 | |
1160 | if (current_language->la_parser ()) | |
1161 | current_language->la_error (NULL); | |
1162 | ||
1163 | discard_cleanups (old_chain); | |
1164 | ||
1165 | /* Record the actual number of expression elements, and then | |
1166 | reallocate the expression memory so that we free up any | |
1167 | excess elements. */ | |
1168 | ||
1169 | expout->nelts = expout_ptr; | |
1170 | expout = (struct expression *) | |
1171 | xrealloc ((char *) expout, | |
1172 | sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_ptr));; | |
1173 | ||
1174 | /* Convert expression from postfix form as generated by yacc | |
1175 | parser, to a prefix form. */ | |
1176 | ||
c906108c | 1177 | if (expressiondebug) |
9846de1b | 1178 | dump_prefix_expression (expout, gdb_stdlog, |
c906108c | 1179 | "before conversion to prefix form"); |
c906108c SS |
1180 | |
1181 | prefixify_expression (expout); | |
1182 | ||
c906108c | 1183 | if (expressiondebug) |
9846de1b | 1184 | dump_postfix_expression (expout, gdb_stdlog, |
c906108c | 1185 | "after conversion to prefix form"); |
c906108c SS |
1186 | |
1187 | *stringptr = lexptr; | |
1188 | return expout; | |
1189 | } | |
1190 | ||
1191 | /* Parse STRING as an expression, and complain if this fails | |
1192 | to use up all of the contents of STRING. */ | |
1193 | ||
1194 | struct expression * | |
fba45db2 | 1195 | parse_expression (char *string) |
c906108c SS |
1196 | { |
1197 | register struct expression *exp; | |
1198 | exp = parse_exp_1 (&string, 0, 0); | |
1199 | if (*string) | |
1200 | error ("Junk after end of expression."); | |
1201 | return exp; | |
1202 | } | |
1203 | \f | |
1204 | /* Stuff for maintaining a stack of types. Currently just used by C, but | |
1205 | probably useful for any language which declares its types "backwards". */ | |
1206 | ||
47663de5 MS |
1207 | static void |
1208 | check_type_stack_depth (void) | |
c906108c SS |
1209 | { |
1210 | if (type_stack_depth == type_stack_size) | |
1211 | { | |
1212 | type_stack_size *= 2; | |
1213 | type_stack = (union type_stack_elt *) | |
1214 | xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack)); | |
1215 | } | |
47663de5 MS |
1216 | } |
1217 | ||
1218 | void | |
1219 | push_type (enum type_pieces tp) | |
1220 | { | |
1221 | check_type_stack_depth (); | |
c906108c SS |
1222 | type_stack[type_stack_depth++].piece = tp; |
1223 | } | |
1224 | ||
1225 | void | |
fba45db2 | 1226 | push_type_int (int n) |
c906108c | 1227 | { |
47663de5 | 1228 | check_type_stack_depth (); |
c906108c SS |
1229 | type_stack[type_stack_depth++].int_val = n; |
1230 | } | |
1231 | ||
47663de5 MS |
1232 | void |
1233 | push_type_address_space (char *string) | |
1234 | { | |
1235 | push_type_int (address_space_name_to_int (string)); | |
1236 | } | |
1237 | ||
c5aa993b | 1238 | enum type_pieces |
fba45db2 | 1239 | pop_type (void) |
c906108c SS |
1240 | { |
1241 | if (type_stack_depth) | |
1242 | return type_stack[--type_stack_depth].piece; | |
1243 | return tp_end; | |
1244 | } | |
1245 | ||
1246 | int | |
fba45db2 | 1247 | pop_type_int (void) |
c906108c SS |
1248 | { |
1249 | if (type_stack_depth) | |
1250 | return type_stack[--type_stack_depth].int_val; | |
1251 | /* "Can't happen". */ | |
1252 | return 0; | |
1253 | } | |
1254 | ||
1255 | /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE | |
1256 | as modified by all the stuff on the stack. */ | |
1257 | struct type * | |
fba45db2 | 1258 | follow_types (struct type *follow_type) |
c906108c SS |
1259 | { |
1260 | int done = 0; | |
2e2394a0 MS |
1261 | int make_const = 0; |
1262 | int make_volatile = 0; | |
47663de5 | 1263 | int make_addr_space = 0; |
c906108c SS |
1264 | int array_size; |
1265 | struct type *range_type; | |
1266 | ||
1267 | while (!done) | |
1268 | switch (pop_type ()) | |
1269 | { | |
1270 | case tp_end: | |
1271 | done = 1; | |
2e2394a0 MS |
1272 | if (make_const) |
1273 | follow_type = make_cv_type (make_const, | |
1274 | TYPE_VOLATILE (follow_type), | |
1275 | follow_type, 0); | |
1276 | if (make_volatile) | |
1277 | follow_type = make_cv_type (TYPE_CONST (follow_type), | |
1278 | make_volatile, | |
1279 | follow_type, 0); | |
47663de5 MS |
1280 | if (make_addr_space) |
1281 | follow_type = make_type_with_address_space (follow_type, | |
1282 | make_addr_space); | |
1283 | make_const = make_volatile = 0; | |
1284 | make_addr_space = 0; | |
2e2394a0 MS |
1285 | break; |
1286 | case tp_const: | |
1287 | make_const = 1; | |
1288 | break; | |
1289 | case tp_volatile: | |
1290 | make_volatile = 1; | |
c906108c | 1291 | break; |
47663de5 MS |
1292 | case tp_space_identifier: |
1293 | make_addr_space = pop_type_int (); | |
1294 | break; | |
c906108c SS |
1295 | case tp_pointer: |
1296 | follow_type = lookup_pointer_type (follow_type); | |
2e2394a0 MS |
1297 | if (make_const) |
1298 | follow_type = make_cv_type (make_const, | |
1299 | TYPE_VOLATILE (follow_type), | |
1300 | follow_type, 0); | |
1301 | if (make_volatile) | |
1302 | follow_type = make_cv_type (TYPE_CONST (follow_type), | |
1303 | make_volatile, | |
1304 | follow_type, 0); | |
47663de5 MS |
1305 | if (make_addr_space) |
1306 | follow_type = make_type_with_address_space (follow_type, | |
1307 | make_addr_space); | |
2e2394a0 | 1308 | make_const = make_volatile = 0; |
47663de5 | 1309 | make_addr_space = 0; |
c906108c SS |
1310 | break; |
1311 | case tp_reference: | |
1312 | follow_type = lookup_reference_type (follow_type); | |
2e2394a0 | 1313 | if (make_const) |
47663de5 MS |
1314 | follow_type = make_cv_type (make_const, |
1315 | TYPE_VOLATILE (follow_type), | |
1316 | follow_type, 0); | |
2e2394a0 | 1317 | if (make_volatile) |
47663de5 MS |
1318 | follow_type = make_cv_type (TYPE_CONST (follow_type), |
1319 | make_volatile, | |
1320 | follow_type, 0); | |
1321 | if (make_addr_space) | |
1322 | follow_type = make_type_with_address_space (follow_type, | |
1323 | make_addr_space); | |
2e2394a0 | 1324 | make_const = make_volatile = 0; |
47663de5 | 1325 | make_addr_space = 0; |
c906108c SS |
1326 | break; |
1327 | case tp_array: | |
1328 | array_size = pop_type_int (); | |
1329 | /* FIXME-type-allocation: need a way to free this type when we are | |
1330 | done with it. */ | |
1331 | range_type = | |
1332 | create_range_type ((struct type *) NULL, | |
1333 | builtin_type_int, 0, | |
1334 | array_size >= 0 ? array_size - 1 : 0); | |
1335 | follow_type = | |
1336 | create_array_type ((struct type *) NULL, | |
1337 | follow_type, range_type); | |
1338 | if (array_size < 0) | |
c5aa993b | 1339 | TYPE_ARRAY_UPPER_BOUND_TYPE (follow_type) |
c906108c SS |
1340 | = BOUND_CANNOT_BE_DETERMINED; |
1341 | break; | |
1342 | case tp_function: | |
1343 | /* FIXME-type-allocation: need a way to free this type when we are | |
1344 | done with it. */ | |
1345 | follow_type = lookup_function_type (follow_type); | |
1346 | break; | |
1347 | } | |
1348 | return follow_type; | |
1349 | } | |
1350 | \f | |
a14ed312 | 1351 | static void build_parse (void); |
ac9a91a7 | 1352 | static void |
fba45db2 | 1353 | build_parse (void) |
c906108c | 1354 | { |
cce74817 JM |
1355 | int i; |
1356 | ||
c906108c SS |
1357 | msym_text_symbol_type = |
1358 | init_type (TYPE_CODE_FUNC, 1, 0, "<text variable, no debug info>", NULL); | |
1359 | TYPE_TARGET_TYPE (msym_text_symbol_type) = builtin_type_int; | |
1360 | msym_data_symbol_type = | |
1361 | init_type (TYPE_CODE_INT, TARGET_INT_BIT / HOST_CHAR_BIT, 0, | |
1362 | "<data variable, no debug info>", NULL); | |
1363 | msym_unknown_symbol_type = | |
1364 | init_type (TYPE_CODE_INT, 1, 0, | |
1365 | "<variable (not text or data), no debug info>", | |
1366 | NULL); | |
ac9a91a7 JM |
1367 | } |
1368 | ||
1369 | void | |
fba45db2 | 1370 | _initialize_parse (void) |
ac9a91a7 JM |
1371 | { |
1372 | type_stack_size = 80; | |
1373 | type_stack_depth = 0; | |
1374 | type_stack = (union type_stack_elt *) | |
1375 | xmalloc (type_stack_size * sizeof (*type_stack)); | |
1376 | ||
1377 | build_parse (); | |
c906108c | 1378 | |
0f71a2f6 JM |
1379 | /* FIXME - For the moment, handle types by swapping them in and out. |
1380 | Should be using the per-architecture data-pointer and a large | |
1381 | struct. */ | |
1382 | register_gdbarch_swap (&msym_text_symbol_type, sizeof (msym_text_symbol_type), NULL); | |
1383 | register_gdbarch_swap (&msym_data_symbol_type, sizeof (msym_data_symbol_type), NULL); | |
1384 | register_gdbarch_swap (&msym_unknown_symbol_type, sizeof (msym_unknown_symbol_type), NULL); | |
1385 | ||
0f71a2f6 JM |
1386 | register_gdbarch_swap (NULL, 0, build_parse); |
1387 | ||
c906108c | 1388 | add_show_from_set ( |
5d161b24 | 1389 | add_set_cmd ("expression", class_maintenance, var_zinteger, |
c5aa993b JM |
1390 | (char *) &expressiondebug, |
1391 | "Set expression debugging.\n\ | |
c906108c | 1392 | When non-zero, the internal representation of expressions will be printed.", |
5d161b24 DB |
1393 | &setdebuglist), |
1394 | &showdebuglist); | |
c906108c | 1395 | } |