]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Parse expressions for GDB. |
b6ba6518 KB |
2 | Copyright 1986, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, |
3 | 1998, 1999, 2000, 2001 Free Software Foundation, Inc. | |
c906108c SS |
4 | Modified from expread.y by the Department of Computer Science at the |
5 | State University of New York at Buffalo, 1991. | |
6 | ||
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
11 | the Free Software Foundation; either version 2 of the License, or | |
12 | (at your option) any later version. | |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b JM |
19 | You should have received a copy of the GNU General Public License |
20 | along with this program; if not, write to the Free Software | |
21 | Foundation, Inc., 59 Temple Place - Suite 330, | |
22 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
23 | |
24 | /* Parse an expression from text in a string, | |
25 | and return the result as a struct expression pointer. | |
26 | That structure contains arithmetic operations in reverse polish, | |
27 | with constants represented by operations that are followed by special data. | |
28 | See expression.h for the details of the format. | |
29 | What is important here is that it can be built up sequentially | |
30 | during the process of parsing; the lower levels of the tree always | |
31 | come first in the result. */ | |
c5aa993b | 32 | |
cce74817 JM |
33 | #include <ctype.h> |
34 | ||
c906108c SS |
35 | #include "defs.h" |
36 | #include "gdb_string.h" | |
c906108c SS |
37 | #include "symtab.h" |
38 | #include "gdbtypes.h" | |
39 | #include "frame.h" | |
40 | #include "expression.h" | |
41 | #include "value.h" | |
42 | #include "command.h" | |
43 | #include "language.h" | |
44 | #include "parser-defs.h" | |
45 | #include "gdbcmd.h" | |
c5aa993b | 46 | #include "symfile.h" /* for overlay functions */ |
e2305d34 MS |
47 | #include "inferior.h" /* for NUM_PSEUDO_REGS. NOTE: replace |
48 | with "gdbarch.h" when appropriate. */ | |
d16aafd8 | 49 | #include "doublest.h" |
0406ec40 AC |
50 | #include "builtin-regs.h" |
51 | #include "gdb_assert.h" | |
e2305d34 | 52 | |
2df3850c JM |
53 | \f |
54 | /* Symbols which architectures can redefine. */ | |
55 | ||
56 | /* Some systems have routines whose names start with `$'. Giving this | |
57 | macro a non-zero value tells GDB's expression parser to check for | |
58 | such routines when parsing tokens that begin with `$'. | |
59 | ||
60 | On HP-UX, certain system routines (millicode) have names beginning | |
61 | with `$' or `$$'. For example, `$$dyncall' is a millicode routine | |
62 | that handles inter-space procedure calls on PA-RISC. */ | |
63 | #ifndef SYMBOLS_CAN_START_WITH_DOLLAR | |
64 | #define SYMBOLS_CAN_START_WITH_DOLLAR (0) | |
65 | #endif | |
66 | ||
67 | ||
c906108c SS |
68 | \f |
69 | /* Global variables declared in parser-defs.h (and commented there). */ | |
70 | struct expression *expout; | |
71 | int expout_size; | |
72 | int expout_ptr; | |
73 | struct block *expression_context_block; | |
74 | struct block *innermost_block; | |
75 | int arglist_len; | |
76 | union type_stack_elt *type_stack; | |
77 | int type_stack_depth, type_stack_size; | |
78 | char *lexptr; | |
79 | char *namecopy; | |
80 | int paren_depth; | |
81 | int comma_terminates; | |
82 | \f | |
c906108c | 83 | static int expressiondebug = 0; |
c906108c SS |
84 | |
85 | extern int hp_som_som_object_present; | |
86 | ||
74b7792f | 87 | static void free_funcalls (void *ignore); |
c906108c | 88 | |
a14ed312 | 89 | static void prefixify_expression (struct expression *); |
c906108c SS |
90 | |
91 | static void | |
a14ed312 | 92 | prefixify_subexp (struct expression *, struct expression *, int, int); |
c906108c | 93 | |
a14ed312 | 94 | void _initialize_parse (void); |
392a587b | 95 | |
c906108c SS |
96 | /* Data structure for saving values of arglist_len for function calls whose |
97 | arguments contain other function calls. */ | |
98 | ||
99 | struct funcall | |
100 | { | |
101 | struct funcall *next; | |
102 | int arglist_len; | |
103 | }; | |
104 | ||
105 | static struct funcall *funcall_chain; | |
106 | ||
c906108c | 107 | /* The generic method for targets to specify how their registers are |
96cb11df AC |
108 | named. The mapping can be derived from two sources: REGISTER_NAME; |
109 | or builtin regs. */ | |
c906108c SS |
110 | |
111 | int | |
fba45db2 | 112 | target_map_name_to_register (char *str, int len) |
c906108c SS |
113 | { |
114 | int i; | |
115 | ||
d1c7e53b AC |
116 | /* Search register name space. */ |
117 | for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++) | |
1a1404f1 MS |
118 | if (REGISTER_NAME (i) && len == strlen (REGISTER_NAME (i)) |
119 | && STREQN (str, REGISTER_NAME (i), len)) | |
120 | { | |
121 | return i; | |
122 | } | |
123 | ||
96cb11df AC |
124 | /* Try builtin registers. */ |
125 | i = builtin_reg_map_name_to_regnum (str, len); | |
126 | if (i >= 0) | |
127 | { | |
128 | gdb_assert (i >= NUM_REGS + NUM_PSEUDO_REGS); | |
129 | return i; | |
130 | } | |
c906108c | 131 | |
0406ec40 AC |
132 | /* Try builtin registers. */ |
133 | i = builtin_reg_map_name_to_regnum (str, len); | |
134 | if (i >= 0) | |
135 | { | |
136 | gdb_assert (i >= NUM_REGS + NUM_PSEUDO_REGS); | |
137 | return i; | |
138 | } | |
139 | ||
c906108c SS |
140 | return -1; |
141 | } | |
142 | ||
143 | /* Begin counting arguments for a function call, | |
144 | saving the data about any containing call. */ | |
145 | ||
146 | void | |
fba45db2 | 147 | start_arglist (void) |
c906108c SS |
148 | { |
149 | register struct funcall *new; | |
150 | ||
151 | new = (struct funcall *) xmalloc (sizeof (struct funcall)); | |
152 | new->next = funcall_chain; | |
153 | new->arglist_len = arglist_len; | |
154 | arglist_len = 0; | |
155 | funcall_chain = new; | |
156 | } | |
157 | ||
158 | /* Return the number of arguments in a function call just terminated, | |
159 | and restore the data for the containing function call. */ | |
160 | ||
161 | int | |
fba45db2 | 162 | end_arglist (void) |
c906108c SS |
163 | { |
164 | register int val = arglist_len; | |
165 | register struct funcall *call = funcall_chain; | |
166 | funcall_chain = call->next; | |
167 | arglist_len = call->arglist_len; | |
b8c9b27d | 168 | xfree (call); |
c906108c SS |
169 | return val; |
170 | } | |
171 | ||
172 | /* Free everything in the funcall chain. | |
173 | Used when there is an error inside parsing. */ | |
174 | ||
175 | static void | |
74b7792f | 176 | free_funcalls (void *ignore) |
c906108c SS |
177 | { |
178 | register struct funcall *call, *next; | |
179 | ||
180 | for (call = funcall_chain; call; call = next) | |
181 | { | |
182 | next = call->next; | |
b8c9b27d | 183 | xfree (call); |
c906108c SS |
184 | } |
185 | } | |
186 | \f | |
187 | /* This page contains the functions for adding data to the struct expression | |
188 | being constructed. */ | |
189 | ||
190 | /* Add one element to the end of the expression. */ | |
191 | ||
192 | /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into | |
193 | a register through here */ | |
194 | ||
195 | void | |
fba45db2 | 196 | write_exp_elt (union exp_element expelt) |
c906108c SS |
197 | { |
198 | if (expout_ptr >= expout_size) | |
199 | { | |
200 | expout_size *= 2; | |
201 | expout = (struct expression *) | |
202 | xrealloc ((char *) expout, sizeof (struct expression) | |
203 | + EXP_ELEM_TO_BYTES (expout_size)); | |
204 | } | |
205 | expout->elts[expout_ptr++] = expelt; | |
206 | } | |
207 | ||
208 | void | |
fba45db2 | 209 | write_exp_elt_opcode (enum exp_opcode expelt) |
c906108c SS |
210 | { |
211 | union exp_element tmp; | |
212 | ||
213 | tmp.opcode = expelt; | |
214 | ||
215 | write_exp_elt (tmp); | |
216 | } | |
217 | ||
218 | void | |
fba45db2 | 219 | write_exp_elt_sym (struct symbol *expelt) |
c906108c SS |
220 | { |
221 | union exp_element tmp; | |
222 | ||
223 | tmp.symbol = expelt; | |
224 | ||
225 | write_exp_elt (tmp); | |
226 | } | |
227 | ||
228 | void | |
fba45db2 | 229 | write_exp_elt_block (struct block *b) |
c906108c SS |
230 | { |
231 | union exp_element tmp; | |
232 | tmp.block = b; | |
233 | write_exp_elt (tmp); | |
234 | } | |
235 | ||
236 | void | |
fba45db2 | 237 | write_exp_elt_longcst (LONGEST expelt) |
c906108c SS |
238 | { |
239 | union exp_element tmp; | |
240 | ||
241 | tmp.longconst = expelt; | |
242 | ||
243 | write_exp_elt (tmp); | |
244 | } | |
245 | ||
246 | void | |
fba45db2 | 247 | write_exp_elt_dblcst (DOUBLEST expelt) |
c906108c SS |
248 | { |
249 | union exp_element tmp; | |
250 | ||
251 | tmp.doubleconst = expelt; | |
252 | ||
253 | write_exp_elt (tmp); | |
254 | } | |
255 | ||
256 | void | |
fba45db2 | 257 | write_exp_elt_type (struct type *expelt) |
c906108c SS |
258 | { |
259 | union exp_element tmp; | |
260 | ||
261 | tmp.type = expelt; | |
262 | ||
263 | write_exp_elt (tmp); | |
264 | } | |
265 | ||
266 | void | |
fba45db2 | 267 | write_exp_elt_intern (struct internalvar *expelt) |
c906108c SS |
268 | { |
269 | union exp_element tmp; | |
270 | ||
271 | tmp.internalvar = expelt; | |
272 | ||
273 | write_exp_elt (tmp); | |
274 | } | |
275 | ||
276 | /* Add a string constant to the end of the expression. | |
277 | ||
278 | String constants are stored by first writing an expression element | |
279 | that contains the length of the string, then stuffing the string | |
280 | constant itself into however many expression elements are needed | |
281 | to hold it, and then writing another expression element that contains | |
282 | the length of the string. I.E. an expression element at each end of | |
283 | the string records the string length, so you can skip over the | |
284 | expression elements containing the actual string bytes from either | |
285 | end of the string. Note that this also allows gdb to handle | |
286 | strings with embedded null bytes, as is required for some languages. | |
287 | ||
288 | Don't be fooled by the fact that the string is null byte terminated, | |
289 | this is strictly for the convenience of debugging gdb itself. Gdb | |
290 | Gdb does not depend up the string being null terminated, since the | |
291 | actual length is recorded in expression elements at each end of the | |
292 | string. The null byte is taken into consideration when computing how | |
293 | many expression elements are required to hold the string constant, of | |
294 | course. */ | |
295 | ||
296 | ||
297 | void | |
fba45db2 | 298 | write_exp_string (struct stoken str) |
c906108c SS |
299 | { |
300 | register int len = str.length; | |
301 | register int lenelt; | |
302 | register char *strdata; | |
303 | ||
304 | /* Compute the number of expression elements required to hold the string | |
305 | (including a null byte terminator), along with one expression element | |
306 | at each end to record the actual string length (not including the | |
307 | null byte terminator). */ | |
308 | ||
309 | lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1); | |
310 | ||
311 | /* Ensure that we have enough available expression elements to store | |
312 | everything. */ | |
313 | ||
314 | if ((expout_ptr + lenelt) >= expout_size) | |
315 | { | |
316 | expout_size = max (expout_size * 2, expout_ptr + lenelt + 10); | |
317 | expout = (struct expression *) | |
318 | xrealloc ((char *) expout, (sizeof (struct expression) | |
319 | + EXP_ELEM_TO_BYTES (expout_size))); | |
320 | } | |
321 | ||
322 | /* Write the leading length expression element (which advances the current | |
323 | expression element index), then write the string constant followed by a | |
324 | terminating null byte, and then write the trailing length expression | |
325 | element. */ | |
326 | ||
327 | write_exp_elt_longcst ((LONGEST) len); | |
328 | strdata = (char *) &expout->elts[expout_ptr]; | |
329 | memcpy (strdata, str.ptr, len); | |
330 | *(strdata + len) = '\0'; | |
331 | expout_ptr += lenelt - 2; | |
332 | write_exp_elt_longcst ((LONGEST) len); | |
333 | } | |
334 | ||
335 | /* Add a bitstring constant to the end of the expression. | |
336 | ||
337 | Bitstring constants are stored by first writing an expression element | |
338 | that contains the length of the bitstring (in bits), then stuffing the | |
339 | bitstring constant itself into however many expression elements are | |
340 | needed to hold it, and then writing another expression element that | |
341 | contains the length of the bitstring. I.E. an expression element at | |
342 | each end of the bitstring records the bitstring length, so you can skip | |
343 | over the expression elements containing the actual bitstring bytes from | |
344 | either end of the bitstring. */ | |
345 | ||
346 | void | |
fba45db2 | 347 | write_exp_bitstring (struct stoken str) |
c906108c SS |
348 | { |
349 | register int bits = str.length; /* length in bits */ | |
350 | register int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
351 | register int lenelt; | |
352 | register char *strdata; | |
353 | ||
354 | /* Compute the number of expression elements required to hold the bitstring, | |
355 | along with one expression element at each end to record the actual | |
356 | bitstring length in bits. */ | |
357 | ||
358 | lenelt = 2 + BYTES_TO_EXP_ELEM (len); | |
359 | ||
360 | /* Ensure that we have enough available expression elements to store | |
361 | everything. */ | |
362 | ||
363 | if ((expout_ptr + lenelt) >= expout_size) | |
364 | { | |
365 | expout_size = max (expout_size * 2, expout_ptr + lenelt + 10); | |
366 | expout = (struct expression *) | |
367 | xrealloc ((char *) expout, (sizeof (struct expression) | |
368 | + EXP_ELEM_TO_BYTES (expout_size))); | |
369 | } | |
370 | ||
371 | /* Write the leading length expression element (which advances the current | |
372 | expression element index), then write the bitstring constant, and then | |
373 | write the trailing length expression element. */ | |
374 | ||
375 | write_exp_elt_longcst ((LONGEST) bits); | |
376 | strdata = (char *) &expout->elts[expout_ptr]; | |
377 | memcpy (strdata, str.ptr, len); | |
378 | expout_ptr += lenelt - 2; | |
379 | write_exp_elt_longcst ((LONGEST) bits); | |
380 | } | |
381 | ||
382 | /* Add the appropriate elements for a minimal symbol to the end of | |
383 | the expression. The rationale behind passing in text_symbol_type and | |
384 | data_symbol_type was so that Modula-2 could pass in WORD for | |
385 | data_symbol_type. Perhaps it still is useful to have those types vary | |
386 | based on the language, but they no longer have names like "int", so | |
387 | the initial rationale is gone. */ | |
388 | ||
389 | static struct type *msym_text_symbol_type; | |
390 | static struct type *msym_data_symbol_type; | |
391 | static struct type *msym_unknown_symbol_type; | |
392 | ||
393 | void | |
a858089e MS |
394 | write_exp_msymbol (struct minimal_symbol *msymbol, |
395 | struct type *text_symbol_type, | |
396 | struct type *data_symbol_type) | |
c906108c SS |
397 | { |
398 | CORE_ADDR addr; | |
399 | ||
400 | write_exp_elt_opcode (OP_LONG); | |
a858089e MS |
401 | /* Let's make the type big enough to hold a 64-bit address. */ |
402 | write_exp_elt_type (builtin_type_CORE_ADDR); | |
c906108c SS |
403 | |
404 | addr = SYMBOL_VALUE_ADDRESS (msymbol); | |
405 | if (overlay_debugging) | |
406 | addr = symbol_overlayed_address (addr, SYMBOL_BFD_SECTION (msymbol)); | |
407 | write_exp_elt_longcst ((LONGEST) addr); | |
c5aa993b | 408 | |
c906108c SS |
409 | write_exp_elt_opcode (OP_LONG); |
410 | ||
411 | write_exp_elt_opcode (UNOP_MEMVAL); | |
c5aa993b | 412 | switch (msymbol->type) |
c906108c SS |
413 | { |
414 | case mst_text: | |
415 | case mst_file_text: | |
416 | case mst_solib_trampoline: | |
417 | write_exp_elt_type (msym_text_symbol_type); | |
418 | break; | |
419 | ||
420 | case mst_data: | |
421 | case mst_file_data: | |
422 | case mst_bss: | |
423 | case mst_file_bss: | |
424 | write_exp_elt_type (msym_data_symbol_type); | |
425 | break; | |
426 | ||
427 | default: | |
428 | write_exp_elt_type (msym_unknown_symbol_type); | |
429 | break; | |
430 | } | |
431 | write_exp_elt_opcode (UNOP_MEMVAL); | |
432 | } | |
433 | \f | |
434 | /* Recognize tokens that start with '$'. These include: | |
435 | ||
c5aa993b JM |
436 | $regname A native register name or a "standard |
437 | register name". | |
c906108c | 438 | |
c5aa993b JM |
439 | $variable A convenience variable with a name chosen |
440 | by the user. | |
c906108c | 441 | |
c5aa993b JM |
442 | $digits Value history with index <digits>, starting |
443 | from the first value which has index 1. | |
c906108c | 444 | |
c5aa993b JM |
445 | $$digits Value history with index <digits> relative |
446 | to the last value. I.E. $$0 is the last | |
447 | value, $$1 is the one previous to that, $$2 | |
448 | is the one previous to $$1, etc. | |
c906108c | 449 | |
c5aa993b | 450 | $ | $0 | $$0 The last value in the value history. |
c906108c | 451 | |
c5aa993b JM |
452 | $$ An abbreviation for the second to the last |
453 | value in the value history, I.E. $$1 | |
c906108c | 454 | |
c5aa993b | 455 | */ |
c906108c SS |
456 | |
457 | void | |
fba45db2 | 458 | write_dollar_variable (struct stoken str) |
c906108c SS |
459 | { |
460 | /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1) | |
461 | and $$digits (equivalent to $<-digits> if you could type that). */ | |
462 | ||
c906108c SS |
463 | int negate = 0; |
464 | int i = 1; | |
465 | /* Double dollar means negate the number and add -1 as well. | |
466 | Thus $$ alone means -1. */ | |
467 | if (str.length >= 2 && str.ptr[1] == '$') | |
468 | { | |
469 | negate = 1; | |
470 | i = 2; | |
471 | } | |
472 | if (i == str.length) | |
473 | { | |
474 | /* Just dollars (one or two) */ | |
c5aa993b | 475 | i = -negate; |
c906108c SS |
476 | goto handle_last; |
477 | } | |
478 | /* Is the rest of the token digits? */ | |
479 | for (; i < str.length; i++) | |
480 | if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9')) | |
481 | break; | |
482 | if (i == str.length) | |
483 | { | |
484 | i = atoi (str.ptr + 1 + negate); | |
485 | if (negate) | |
c5aa993b | 486 | i = -i; |
c906108c SS |
487 | goto handle_last; |
488 | } | |
c5aa993b | 489 | |
c906108c SS |
490 | /* Handle tokens that refer to machine registers: |
491 | $ followed by a register name. */ | |
c5aa993b JM |
492 | i = target_map_name_to_register (str.ptr + 1, str.length - 1); |
493 | if (i >= 0) | |
c906108c SS |
494 | goto handle_register; |
495 | ||
2df3850c | 496 | if (SYMBOLS_CAN_START_WITH_DOLLAR) |
c906108c | 497 | { |
2df3850c JM |
498 | struct symbol *sym = NULL; |
499 | struct minimal_symbol *msym = NULL; | |
500 | ||
501 | /* On HP-UX, certain system routines (millicode) have names beginning | |
502 | with $ or $$, e.g. $$dyncall, which handles inter-space procedure | |
503 | calls on PA-RISC. Check for those, first. */ | |
504 | ||
505 | /* This code is not enabled on non HP-UX systems, since worst case | |
506 | symbol table lookup performance is awful, to put it mildly. */ | |
507 | ||
508 | sym = lookup_symbol (copy_name (str), (struct block *) NULL, | |
509 | VAR_NAMESPACE, (int *) NULL, (struct symtab **) NULL); | |
510 | if (sym) | |
511 | { | |
512 | write_exp_elt_opcode (OP_VAR_VALUE); | |
513 | write_exp_elt_block (block_found); /* set by lookup_symbol */ | |
514 | write_exp_elt_sym (sym); | |
515 | write_exp_elt_opcode (OP_VAR_VALUE); | |
516 | return; | |
517 | } | |
518 | msym = lookup_minimal_symbol (copy_name (str), NULL, NULL); | |
519 | if (msym) | |
520 | { | |
521 | write_exp_msymbol (msym, | |
522 | lookup_function_type (builtin_type_int), | |
523 | builtin_type_int); | |
524 | return; | |
525 | } | |
c906108c | 526 | } |
c5aa993b | 527 | |
c906108c SS |
528 | /* Any other names starting in $ are debugger internal variables. */ |
529 | ||
530 | write_exp_elt_opcode (OP_INTERNALVAR); | |
531 | write_exp_elt_intern (lookup_internalvar (copy_name (str) + 1)); | |
c5aa993b | 532 | write_exp_elt_opcode (OP_INTERNALVAR); |
c906108c | 533 | return; |
c5aa993b | 534 | handle_last: |
c906108c SS |
535 | write_exp_elt_opcode (OP_LAST); |
536 | write_exp_elt_longcst ((LONGEST) i); | |
537 | write_exp_elt_opcode (OP_LAST); | |
538 | return; | |
c5aa993b | 539 | handle_register: |
c906108c SS |
540 | write_exp_elt_opcode (OP_REGISTER); |
541 | write_exp_elt_longcst (i); | |
c5aa993b | 542 | write_exp_elt_opcode (OP_REGISTER); |
c906108c SS |
543 | return; |
544 | } | |
545 | ||
546 | ||
547 | /* Parse a string that is possibly a namespace / nested class | |
548 | specification, i.e., something of the form A::B::C::x. Input | |
549 | (NAME) is the entire string; LEN is the current valid length; the | |
550 | output is a string, TOKEN, which points to the largest recognized | |
551 | prefix which is a series of namespaces or classes. CLASS_PREFIX is | |
552 | another output, which records whether a nested class spec was | |
553 | recognized (= 1) or a fully qualified variable name was found (= | |
554 | 0). ARGPTR is side-effected (if non-NULL) to point to beyond the | |
555 | string recognized and consumed by this routine. | |
556 | ||
557 | The return value is a pointer to the symbol for the base class or | |
558 | variable if found, or NULL if not found. Callers must check this | |
559 | first -- if NULL, the outputs may not be correct. | |
560 | ||
561 | This function is used c-exp.y. This is used specifically to get | |
562 | around HP aCC (and possibly other compilers), which insists on | |
563 | generating names with embedded colons for namespace or nested class | |
564 | members. | |
565 | ||
566 | (Argument LEN is currently unused. 1997-08-27) | |
567 | ||
568 | Callers must free memory allocated for the output string TOKEN. */ | |
569 | ||
c5aa993b JM |
570 | static const char coloncolon[2] = |
571 | {':', ':'}; | |
c906108c SS |
572 | |
573 | struct symbol * | |
fba45db2 KB |
574 | parse_nested_classes_for_hpacc (char *name, int len, char **token, |
575 | int *class_prefix, char **argptr) | |
c906108c | 576 | { |
c5aa993b JM |
577 | /* Comment below comes from decode_line_1 which has very similar |
578 | code, which is called for "break" command parsing. */ | |
579 | ||
580 | /* We have what looks like a class or namespace | |
c906108c SS |
581 | scope specification (A::B), possibly with many |
582 | levels of namespaces or classes (A::B::C::D). | |
583 | ||
584 | Some versions of the HP ANSI C++ compiler (as also possibly | |
585 | other compilers) generate class/function/member names with | |
586 | embedded double-colons if they are inside namespaces. To | |
587 | handle this, we loop a few times, considering larger and | |
588 | larger prefixes of the string as though they were single | |
589 | symbols. So, if the initially supplied string is | |
590 | A::B::C::D::foo, we have to look up "A", then "A::B", | |
591 | then "A::B::C", then "A::B::C::D", and finally | |
592 | "A::B::C::D::foo" as single, monolithic symbols, because | |
593 | A, B, C or D may be namespaces. | |
594 | ||
595 | Note that namespaces can nest only inside other | |
596 | namespaces, and not inside classes. So we need only | |
597 | consider *prefixes* of the string; there is no need to look up | |
598 | "B::C" separately as a symbol in the previous example. */ | |
599 | ||
c5aa993b JM |
600 | register char *p; |
601 | char *start, *end; | |
602 | char *prefix = NULL; | |
603 | char *tmp; | |
604 | struct symbol *sym_class = NULL; | |
605 | struct symbol *sym_var = NULL; | |
606 | struct type *t; | |
c906108c SS |
607 | int prefix_len = 0; |
608 | int done = 0; | |
c5aa993b | 609 | char *q; |
c906108c SS |
610 | |
611 | /* Check for HP-compiled executable -- in other cases | |
612 | return NULL, and caller must default to standard GDB | |
613 | behaviour. */ | |
614 | ||
615 | if (!hp_som_som_object_present) | |
616 | return (struct symbol *) NULL; | |
617 | ||
618 | p = name; | |
619 | ||
c5aa993b JM |
620 | /* Skip over whitespace and possible global "::" */ |
621 | while (*p && (*p == ' ' || *p == '\t')) | |
622 | p++; | |
c906108c SS |
623 | if (p[0] == ':' && p[1] == ':') |
624 | p += 2; | |
c5aa993b JM |
625 | while (*p && (*p == ' ' || *p == '\t')) |
626 | p++; | |
627 | ||
c906108c SS |
628 | while (1) |
629 | { | |
630 | /* Get to the end of the next namespace or class spec. */ | |
631 | /* If we're looking at some non-token, fail immediately */ | |
632 | start = p; | |
633 | if (!(isalpha (*p) || *p == '$' || *p == '_')) | |
c5aa993b | 634 | return (struct symbol *) NULL; |
c906108c | 635 | p++; |
c5aa993b JM |
636 | while (*p && (isalnum (*p) || *p == '$' || *p == '_')) |
637 | p++; | |
638 | ||
639 | if (*p == '<') | |
640 | { | |
641 | /* If we have the start of a template specification, | |
642 | scan right ahead to its end */ | |
643 | q = find_template_name_end (p); | |
644 | if (q) | |
645 | p = q; | |
646 | } | |
647 | ||
c906108c SS |
648 | end = p; |
649 | ||
c5aa993b JM |
650 | /* Skip over "::" and whitespace for next time around */ |
651 | while (*p && (*p == ' ' || *p == '\t')) | |
652 | p++; | |
c906108c | 653 | if (p[0] == ':' && p[1] == ':') |
c5aa993b JM |
654 | p += 2; |
655 | while (*p && (*p == ' ' || *p == '\t')) | |
656 | p++; | |
c906108c | 657 | |
c5aa993b | 658 | /* Done with tokens? */ |
c906108c | 659 | if (!*p || !(isalpha (*p) || *p == '$' || *p == '_')) |
c5aa993b | 660 | done = 1; |
c906108c SS |
661 | |
662 | tmp = (char *) alloca (prefix_len + end - start + 3); | |
663 | if (prefix) | |
c5aa993b JM |
664 | { |
665 | memcpy (tmp, prefix, prefix_len); | |
666 | memcpy (tmp + prefix_len, coloncolon, 2); | |
667 | memcpy (tmp + prefix_len + 2, start, end - start); | |
668 | tmp[prefix_len + 2 + end - start] = '\000'; | |
669 | } | |
c906108c | 670 | else |
c5aa993b JM |
671 | { |
672 | memcpy (tmp, start, end - start); | |
673 | tmp[end - start] = '\000'; | |
674 | } | |
675 | ||
c906108c SS |
676 | prefix = tmp; |
677 | prefix_len = strlen (prefix); | |
c5aa993b | 678 | |
c906108c SS |
679 | /* See if the prefix we have now is something we know about */ |
680 | ||
c5aa993b JM |
681 | if (!done) |
682 | { | |
683 | /* More tokens to process, so this must be a class/namespace */ | |
684 | sym_class = lookup_symbol (prefix, 0, STRUCT_NAMESPACE, | |
685 | 0, (struct symtab **) NULL); | |
686 | } | |
c906108c | 687 | else |
c5aa993b JM |
688 | { |
689 | /* No more tokens, so try as a variable first */ | |
690 | sym_var = lookup_symbol (prefix, 0, VAR_NAMESPACE, | |
691 | 0, (struct symtab **) NULL); | |
692 | /* If failed, try as class/namespace */ | |
693 | if (!sym_var) | |
694 | sym_class = lookup_symbol (prefix, 0, STRUCT_NAMESPACE, | |
695 | 0, (struct symtab **) NULL); | |
696 | } | |
c906108c SS |
697 | |
698 | if (sym_var || | |
c5aa993b JM |
699 | (sym_class && |
700 | (t = check_typedef (SYMBOL_TYPE (sym_class)), | |
701 | (TYPE_CODE (t) == TYPE_CODE_STRUCT | |
702 | || TYPE_CODE (t) == TYPE_CODE_UNION)))) | |
703 | { | |
704 | /* We found a valid token */ | |
705 | *token = (char *) xmalloc (prefix_len + 1); | |
706 | memcpy (*token, prefix, prefix_len); | |
707 | (*token)[prefix_len] = '\000'; | |
708 | break; | |
709 | } | |
710 | ||
711 | /* No variable or class/namespace found, no more tokens */ | |
c906108c | 712 | if (done) |
c5aa993b | 713 | return (struct symbol *) NULL; |
c906108c SS |
714 | } |
715 | ||
716 | /* Out of loop, so we must have found a valid token */ | |
717 | if (sym_var) | |
718 | *class_prefix = 0; | |
719 | else | |
720 | *class_prefix = 1; | |
721 | ||
722 | if (argptr) | |
723 | *argptr = done ? p : end; | |
724 | ||
c5aa993b | 725 | return sym_var ? sym_var : sym_class; /* found */ |
c906108c SS |
726 | } |
727 | ||
728 | char * | |
fba45db2 | 729 | find_template_name_end (char *p) |
c906108c SS |
730 | { |
731 | int depth = 1; | |
732 | int just_seen_right = 0; | |
733 | int just_seen_colon = 0; | |
734 | int just_seen_space = 0; | |
c5aa993b | 735 | |
c906108c SS |
736 | if (!p || (*p != '<')) |
737 | return 0; | |
738 | ||
739 | while (*++p) | |
740 | { | |
741 | switch (*p) | |
c5aa993b JM |
742 | { |
743 | case '\'': | |
744 | case '\"': | |
745 | case '{': | |
746 | case '}': | |
747 | /* In future, may want to allow these?? */ | |
748 | return 0; | |
749 | case '<': | |
750 | depth++; /* start nested template */ | |
751 | if (just_seen_colon || just_seen_right || just_seen_space) | |
752 | return 0; /* but not after : or :: or > or space */ | |
753 | break; | |
754 | case '>': | |
755 | if (just_seen_colon || just_seen_right) | |
756 | return 0; /* end a (nested?) template */ | |
757 | just_seen_right = 1; /* but not after : or :: */ | |
758 | if (--depth == 0) /* also disallow >>, insist on > > */ | |
759 | return ++p; /* if outermost ended, return */ | |
760 | break; | |
761 | case ':': | |
762 | if (just_seen_space || (just_seen_colon > 1)) | |
763 | return 0; /* nested class spec coming up */ | |
764 | just_seen_colon++; /* we allow :: but not :::: */ | |
765 | break; | |
766 | case ' ': | |
767 | break; | |
768 | default: | |
769 | if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */ | |
770 | (*p >= 'A' && *p <= 'Z') || | |
771 | (*p >= '0' && *p <= '9') || | |
772 | (*p == '_') || (*p == ',') || /* commas for template args */ | |
773 | (*p == '&') || (*p == '*') || /* pointer and ref types */ | |
774 | (*p == '(') || (*p == ')') || /* function types */ | |
775 | (*p == '[') || (*p == ']'))) /* array types */ | |
776 | return 0; | |
777 | } | |
c906108c | 778 | if (*p != ' ') |
c5aa993b | 779 | just_seen_space = 0; |
c906108c | 780 | if (*p != ':') |
c5aa993b | 781 | just_seen_colon = 0; |
c906108c | 782 | if (*p != '>') |
c5aa993b | 783 | just_seen_right = 0; |
c906108c SS |
784 | } |
785 | return 0; | |
786 | } | |
c5aa993b | 787 | \f |
c906108c SS |
788 | |
789 | ||
c906108c SS |
790 | /* Return a null-terminated temporary copy of the name |
791 | of a string token. */ | |
792 | ||
793 | char * | |
fba45db2 | 794 | copy_name (struct stoken token) |
c906108c SS |
795 | { |
796 | memcpy (namecopy, token.ptr, token.length); | |
797 | namecopy[token.length] = 0; | |
798 | return namecopy; | |
799 | } | |
800 | \f | |
801 | /* Reverse an expression from suffix form (in which it is constructed) | |
802 | to prefix form (in which we can conveniently print or execute it). */ | |
803 | ||
804 | static void | |
fba45db2 | 805 | prefixify_expression (register struct expression *expr) |
c906108c SS |
806 | { |
807 | register int len = | |
c5aa993b | 808 | sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts); |
c906108c SS |
809 | register struct expression *temp; |
810 | register int inpos = expr->nelts, outpos = 0; | |
811 | ||
812 | temp = (struct expression *) alloca (len); | |
813 | ||
814 | /* Copy the original expression into temp. */ | |
815 | memcpy (temp, expr, len); | |
816 | ||
817 | prefixify_subexp (temp, expr, inpos, outpos); | |
818 | } | |
819 | ||
820 | /* Return the number of exp_elements in the subexpression of EXPR | |
821 | whose last exp_element is at index ENDPOS - 1 in EXPR. */ | |
822 | ||
823 | int | |
fba45db2 | 824 | length_of_subexp (register struct expression *expr, register int endpos) |
c906108c SS |
825 | { |
826 | register int oplen = 1; | |
827 | register int args = 0; | |
828 | register int i; | |
829 | ||
830 | if (endpos < 1) | |
831 | error ("?error in length_of_subexp"); | |
832 | ||
833 | i = (int) expr->elts[endpos - 1].opcode; | |
834 | ||
835 | switch (i) | |
836 | { | |
837 | /* C++ */ | |
838 | case OP_SCOPE: | |
839 | oplen = longest_to_int (expr->elts[endpos - 2].longconst); | |
840 | oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1); | |
841 | break; | |
842 | ||
843 | case OP_LONG: | |
844 | case OP_DOUBLE: | |
845 | case OP_VAR_VALUE: | |
846 | oplen = 4; | |
847 | break; | |
848 | ||
849 | case OP_TYPE: | |
850 | case OP_BOOL: | |
851 | case OP_LAST: | |
852 | case OP_REGISTER: | |
853 | case OP_INTERNALVAR: | |
854 | oplen = 3; | |
855 | break; | |
856 | ||
857 | case OP_COMPLEX: | |
c5aa993b | 858 | oplen = 1; |
c906108c | 859 | args = 2; |
c5aa993b | 860 | break; |
c906108c SS |
861 | |
862 | case OP_FUNCALL: | |
863 | case OP_F77_UNDETERMINED_ARGLIST: | |
864 | oplen = 3; | |
865 | args = 1 + longest_to_int (expr->elts[endpos - 2].longconst); | |
866 | break; | |
867 | ||
868 | case UNOP_MAX: | |
869 | case UNOP_MIN: | |
870 | oplen = 3; | |
871 | break; | |
872 | ||
c5aa993b JM |
873 | case BINOP_VAL: |
874 | case UNOP_CAST: | |
875 | case UNOP_MEMVAL: | |
c906108c SS |
876 | oplen = 3; |
877 | args = 1; | |
878 | break; | |
879 | ||
880 | case UNOP_ABS: | |
881 | case UNOP_CAP: | |
882 | case UNOP_CHR: | |
883 | case UNOP_FLOAT: | |
884 | case UNOP_HIGH: | |
885 | case UNOP_ODD: | |
886 | case UNOP_ORD: | |
887 | case UNOP_TRUNC: | |
888 | oplen = 1; | |
889 | args = 1; | |
890 | break; | |
891 | ||
892 | case OP_LABELED: | |
893 | case STRUCTOP_STRUCT: | |
894 | case STRUCTOP_PTR: | |
895 | args = 1; | |
896 | /* fall through */ | |
897 | case OP_M2_STRING: | |
898 | case OP_STRING: | |
899 | case OP_NAME: | |
900 | case OP_EXPRSTRING: | |
901 | oplen = longest_to_int (expr->elts[endpos - 2].longconst); | |
902 | oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1); | |
903 | break; | |
904 | ||
905 | case OP_BITSTRING: | |
906 | oplen = longest_to_int (expr->elts[endpos - 2].longconst); | |
907 | oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
908 | oplen = 4 + BYTES_TO_EXP_ELEM (oplen); | |
909 | break; | |
910 | ||
911 | case OP_ARRAY: | |
912 | oplen = 4; | |
913 | args = longest_to_int (expr->elts[endpos - 2].longconst); | |
914 | args -= longest_to_int (expr->elts[endpos - 3].longconst); | |
915 | args += 1; | |
916 | break; | |
917 | ||
918 | case TERNOP_COND: | |
919 | case TERNOP_SLICE: | |
920 | case TERNOP_SLICE_COUNT: | |
921 | args = 3; | |
922 | break; | |
923 | ||
924 | /* Modula-2 */ | |
c5aa993b | 925 | case MULTI_SUBSCRIPT: |
c906108c | 926 | oplen = 3; |
c5aa993b | 927 | args = 1 + longest_to_int (expr->elts[endpos - 2].longconst); |
c906108c SS |
928 | break; |
929 | ||
930 | case BINOP_ASSIGN_MODIFY: | |
931 | oplen = 3; | |
932 | args = 2; | |
933 | break; | |
934 | ||
935 | /* C++ */ | |
936 | case OP_THIS: | |
937 | oplen = 2; | |
938 | break; | |
939 | ||
940 | default: | |
941 | args = 1 + (i < (int) BINOP_END); | |
942 | } | |
943 | ||
944 | while (args > 0) | |
945 | { | |
946 | oplen += length_of_subexp (expr, endpos - oplen); | |
947 | args--; | |
948 | } | |
949 | ||
950 | return oplen; | |
951 | } | |
952 | ||
953 | /* Copy the subexpression ending just before index INEND in INEXPR | |
954 | into OUTEXPR, starting at index OUTBEG. | |
955 | In the process, convert it from suffix to prefix form. */ | |
956 | ||
957 | static void | |
fba45db2 KB |
958 | prefixify_subexp (register struct expression *inexpr, |
959 | struct expression *outexpr, register int inend, int outbeg) | |
c906108c SS |
960 | { |
961 | register int oplen = 1; | |
962 | register int args = 0; | |
963 | register int i; | |
964 | int *arglens; | |
965 | enum exp_opcode opcode; | |
966 | ||
967 | /* Compute how long the last operation is (in OPLEN), | |
968 | and also how many preceding subexpressions serve as | |
969 | arguments for it (in ARGS). */ | |
970 | ||
971 | opcode = inexpr->elts[inend - 1].opcode; | |
972 | switch (opcode) | |
973 | { | |
974 | /* C++ */ | |
975 | case OP_SCOPE: | |
976 | oplen = longest_to_int (inexpr->elts[inend - 2].longconst); | |
977 | oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1); | |
978 | break; | |
979 | ||
980 | case OP_LONG: | |
981 | case OP_DOUBLE: | |
982 | case OP_VAR_VALUE: | |
983 | oplen = 4; | |
984 | break; | |
985 | ||
986 | case OP_TYPE: | |
987 | case OP_BOOL: | |
988 | case OP_LAST: | |
989 | case OP_REGISTER: | |
990 | case OP_INTERNALVAR: | |
991 | oplen = 3; | |
992 | break; | |
993 | ||
994 | case OP_COMPLEX: | |
c5aa993b JM |
995 | oplen = 1; |
996 | args = 2; | |
997 | break; | |
c906108c SS |
998 | |
999 | case OP_FUNCALL: | |
1000 | case OP_F77_UNDETERMINED_ARGLIST: | |
1001 | oplen = 3; | |
1002 | args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst); | |
1003 | break; | |
1004 | ||
1005 | case UNOP_MIN: | |
1006 | case UNOP_MAX: | |
1007 | oplen = 3; | |
1008 | break; | |
1009 | ||
1010 | case UNOP_CAST: | |
1011 | case UNOP_MEMVAL: | |
1012 | oplen = 3; | |
1013 | args = 1; | |
1014 | break; | |
1015 | ||
1016 | case UNOP_ABS: | |
1017 | case UNOP_CAP: | |
1018 | case UNOP_CHR: | |
1019 | case UNOP_FLOAT: | |
1020 | case UNOP_HIGH: | |
1021 | case UNOP_ODD: | |
1022 | case UNOP_ORD: | |
1023 | case UNOP_TRUNC: | |
c5aa993b JM |
1024 | oplen = 1; |
1025 | args = 1; | |
c906108c SS |
1026 | break; |
1027 | ||
1028 | case STRUCTOP_STRUCT: | |
1029 | case STRUCTOP_PTR: | |
1030 | case OP_LABELED: | |
1031 | args = 1; | |
1032 | /* fall through */ | |
1033 | case OP_M2_STRING: | |
1034 | case OP_STRING: | |
1035 | case OP_NAME: | |
1036 | case OP_EXPRSTRING: | |
1037 | oplen = longest_to_int (inexpr->elts[inend - 2].longconst); | |
1038 | oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1); | |
1039 | break; | |
1040 | ||
1041 | case OP_BITSTRING: | |
1042 | oplen = longest_to_int (inexpr->elts[inend - 2].longconst); | |
1043 | oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
1044 | oplen = 4 + BYTES_TO_EXP_ELEM (oplen); | |
1045 | break; | |
1046 | ||
1047 | case OP_ARRAY: | |
1048 | oplen = 4; | |
1049 | args = longest_to_int (inexpr->elts[inend - 2].longconst); | |
1050 | args -= longest_to_int (inexpr->elts[inend - 3].longconst); | |
1051 | args += 1; | |
1052 | break; | |
1053 | ||
1054 | case TERNOP_COND: | |
1055 | case TERNOP_SLICE: | |
1056 | case TERNOP_SLICE_COUNT: | |
1057 | args = 3; | |
1058 | break; | |
1059 | ||
1060 | case BINOP_ASSIGN_MODIFY: | |
1061 | oplen = 3; | |
1062 | args = 2; | |
1063 | break; | |
1064 | ||
1065 | /* Modula-2 */ | |
c5aa993b | 1066 | case MULTI_SUBSCRIPT: |
c906108c SS |
1067 | oplen = 3; |
1068 | args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst); | |
1069 | break; | |
1070 | ||
1071 | /* C++ */ | |
1072 | case OP_THIS: | |
1073 | oplen = 2; | |
1074 | break; | |
1075 | ||
1076 | default: | |
1077 | args = 1 + ((int) opcode < (int) BINOP_END); | |
1078 | } | |
1079 | ||
1080 | /* Copy the final operator itself, from the end of the input | |
1081 | to the beginning of the output. */ | |
1082 | inend -= oplen; | |
1083 | memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend], | |
1084 | EXP_ELEM_TO_BYTES (oplen)); | |
1085 | outbeg += oplen; | |
1086 | ||
1087 | /* Find the lengths of the arg subexpressions. */ | |
1088 | arglens = (int *) alloca (args * sizeof (int)); | |
1089 | for (i = args - 1; i >= 0; i--) | |
1090 | { | |
1091 | oplen = length_of_subexp (inexpr, inend); | |
1092 | arglens[i] = oplen; | |
1093 | inend -= oplen; | |
1094 | } | |
1095 | ||
1096 | /* Now copy each subexpression, preserving the order of | |
1097 | the subexpressions, but prefixifying each one. | |
1098 | In this loop, inend starts at the beginning of | |
1099 | the expression this level is working on | |
1100 | and marches forward over the arguments. | |
1101 | outbeg does similarly in the output. */ | |
1102 | for (i = 0; i < args; i++) | |
1103 | { | |
1104 | oplen = arglens[i]; | |
1105 | inend += oplen; | |
1106 | prefixify_subexp (inexpr, outexpr, inend, outbeg); | |
1107 | outbeg += oplen; | |
1108 | } | |
1109 | } | |
1110 | \f | |
1111 | /* This page contains the two entry points to this file. */ | |
1112 | ||
1113 | /* Read an expression from the string *STRINGPTR points to, | |
1114 | parse it, and return a pointer to a struct expression that we malloc. | |
1115 | Use block BLOCK as the lexical context for variable names; | |
1116 | if BLOCK is zero, use the block of the selected stack frame. | |
1117 | Meanwhile, advance *STRINGPTR to point after the expression, | |
1118 | at the first nonwhite character that is not part of the expression | |
1119 | (possibly a null character). | |
1120 | ||
1121 | If COMMA is nonzero, stop if a comma is reached. */ | |
1122 | ||
1123 | struct expression * | |
fba45db2 | 1124 | parse_exp_1 (char **stringptr, struct block *block, int comma) |
c906108c SS |
1125 | { |
1126 | struct cleanup *old_chain; | |
1127 | ||
1128 | lexptr = *stringptr; | |
1129 | ||
1130 | paren_depth = 0; | |
1131 | type_stack_depth = 0; | |
1132 | ||
1133 | comma_terminates = comma; | |
1134 | ||
1135 | if (lexptr == 0 || *lexptr == 0) | |
1136 | error_no_arg ("expression to compute"); | |
1137 | ||
74b7792f | 1138 | old_chain = make_cleanup (free_funcalls, 0 /*ignore*/); |
c906108c SS |
1139 | funcall_chain = 0; |
1140 | ||
ae767bfb | 1141 | expression_context_block = block ? block : get_selected_block (0); |
c906108c SS |
1142 | |
1143 | namecopy = (char *) alloca (strlen (lexptr) + 1); | |
1144 | expout_size = 10; | |
1145 | expout_ptr = 0; | |
1146 | expout = (struct expression *) | |
1147 | xmalloc (sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_size)); | |
1148 | expout->language_defn = current_language; | |
c13c43fd | 1149 | make_cleanup (free_current_contents, &expout); |
c906108c SS |
1150 | |
1151 | if (current_language->la_parser ()) | |
1152 | current_language->la_error (NULL); | |
1153 | ||
1154 | discard_cleanups (old_chain); | |
1155 | ||
1156 | /* Record the actual number of expression elements, and then | |
1157 | reallocate the expression memory so that we free up any | |
1158 | excess elements. */ | |
1159 | ||
1160 | expout->nelts = expout_ptr; | |
1161 | expout = (struct expression *) | |
1162 | xrealloc ((char *) expout, | |
1163 | sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_ptr));; | |
1164 | ||
1165 | /* Convert expression from postfix form as generated by yacc | |
1166 | parser, to a prefix form. */ | |
1167 | ||
c906108c | 1168 | if (expressiondebug) |
9846de1b | 1169 | dump_prefix_expression (expout, gdb_stdlog, |
c906108c | 1170 | "before conversion to prefix form"); |
c906108c SS |
1171 | |
1172 | prefixify_expression (expout); | |
1173 | ||
c906108c | 1174 | if (expressiondebug) |
9846de1b | 1175 | dump_postfix_expression (expout, gdb_stdlog, |
c906108c | 1176 | "after conversion to prefix form"); |
c906108c SS |
1177 | |
1178 | *stringptr = lexptr; | |
1179 | return expout; | |
1180 | } | |
1181 | ||
1182 | /* Parse STRING as an expression, and complain if this fails | |
1183 | to use up all of the contents of STRING. */ | |
1184 | ||
1185 | struct expression * | |
fba45db2 | 1186 | parse_expression (char *string) |
c906108c SS |
1187 | { |
1188 | register struct expression *exp; | |
1189 | exp = parse_exp_1 (&string, 0, 0); | |
1190 | if (*string) | |
1191 | error ("Junk after end of expression."); | |
1192 | return exp; | |
1193 | } | |
1194 | \f | |
1195 | /* Stuff for maintaining a stack of types. Currently just used by C, but | |
1196 | probably useful for any language which declares its types "backwards". */ | |
1197 | ||
47663de5 MS |
1198 | static void |
1199 | check_type_stack_depth (void) | |
c906108c SS |
1200 | { |
1201 | if (type_stack_depth == type_stack_size) | |
1202 | { | |
1203 | type_stack_size *= 2; | |
1204 | type_stack = (union type_stack_elt *) | |
1205 | xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack)); | |
1206 | } | |
47663de5 MS |
1207 | } |
1208 | ||
1209 | void | |
1210 | push_type (enum type_pieces tp) | |
1211 | { | |
1212 | check_type_stack_depth (); | |
c906108c SS |
1213 | type_stack[type_stack_depth++].piece = tp; |
1214 | } | |
1215 | ||
1216 | void | |
fba45db2 | 1217 | push_type_int (int n) |
c906108c | 1218 | { |
47663de5 | 1219 | check_type_stack_depth (); |
c906108c SS |
1220 | type_stack[type_stack_depth++].int_val = n; |
1221 | } | |
1222 | ||
47663de5 MS |
1223 | void |
1224 | push_type_address_space (char *string) | |
1225 | { | |
1226 | push_type_int (address_space_name_to_int (string)); | |
1227 | } | |
1228 | ||
c5aa993b | 1229 | enum type_pieces |
fba45db2 | 1230 | pop_type (void) |
c906108c SS |
1231 | { |
1232 | if (type_stack_depth) | |
1233 | return type_stack[--type_stack_depth].piece; | |
1234 | return tp_end; | |
1235 | } | |
1236 | ||
1237 | int | |
fba45db2 | 1238 | pop_type_int (void) |
c906108c SS |
1239 | { |
1240 | if (type_stack_depth) | |
1241 | return type_stack[--type_stack_depth].int_val; | |
1242 | /* "Can't happen". */ | |
1243 | return 0; | |
1244 | } | |
1245 | ||
1246 | /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE | |
1247 | as modified by all the stuff on the stack. */ | |
1248 | struct type * | |
fba45db2 | 1249 | follow_types (struct type *follow_type) |
c906108c SS |
1250 | { |
1251 | int done = 0; | |
2e2394a0 MS |
1252 | int make_const = 0; |
1253 | int make_volatile = 0; | |
47663de5 | 1254 | int make_addr_space = 0; |
c906108c SS |
1255 | int array_size; |
1256 | struct type *range_type; | |
1257 | ||
1258 | while (!done) | |
1259 | switch (pop_type ()) | |
1260 | { | |
1261 | case tp_end: | |
1262 | done = 1; | |
2e2394a0 MS |
1263 | if (make_const) |
1264 | follow_type = make_cv_type (make_const, | |
1265 | TYPE_VOLATILE (follow_type), | |
1266 | follow_type, 0); | |
1267 | if (make_volatile) | |
1268 | follow_type = make_cv_type (TYPE_CONST (follow_type), | |
1269 | make_volatile, | |
1270 | follow_type, 0); | |
47663de5 MS |
1271 | if (make_addr_space) |
1272 | follow_type = make_type_with_address_space (follow_type, | |
1273 | make_addr_space); | |
1274 | make_const = make_volatile = 0; | |
1275 | make_addr_space = 0; | |
2e2394a0 MS |
1276 | break; |
1277 | case tp_const: | |
1278 | make_const = 1; | |
1279 | break; | |
1280 | case tp_volatile: | |
1281 | make_volatile = 1; | |
c906108c | 1282 | break; |
47663de5 MS |
1283 | case tp_space_identifier: |
1284 | make_addr_space = pop_type_int (); | |
1285 | break; | |
c906108c SS |
1286 | case tp_pointer: |
1287 | follow_type = lookup_pointer_type (follow_type); | |
2e2394a0 MS |
1288 | if (make_const) |
1289 | follow_type = make_cv_type (make_const, | |
1290 | TYPE_VOLATILE (follow_type), | |
1291 | follow_type, 0); | |
1292 | if (make_volatile) | |
1293 | follow_type = make_cv_type (TYPE_CONST (follow_type), | |
1294 | make_volatile, | |
1295 | follow_type, 0); | |
47663de5 MS |
1296 | if (make_addr_space) |
1297 | follow_type = make_type_with_address_space (follow_type, | |
1298 | make_addr_space); | |
2e2394a0 | 1299 | make_const = make_volatile = 0; |
47663de5 | 1300 | make_addr_space = 0; |
c906108c SS |
1301 | break; |
1302 | case tp_reference: | |
1303 | follow_type = lookup_reference_type (follow_type); | |
2e2394a0 | 1304 | if (make_const) |
47663de5 MS |
1305 | follow_type = make_cv_type (make_const, |
1306 | TYPE_VOLATILE (follow_type), | |
1307 | follow_type, 0); | |
2e2394a0 | 1308 | if (make_volatile) |
47663de5 MS |
1309 | follow_type = make_cv_type (TYPE_CONST (follow_type), |
1310 | make_volatile, | |
1311 | follow_type, 0); | |
1312 | if (make_addr_space) | |
1313 | follow_type = make_type_with_address_space (follow_type, | |
1314 | make_addr_space); | |
2e2394a0 | 1315 | make_const = make_volatile = 0; |
47663de5 | 1316 | make_addr_space = 0; |
c906108c SS |
1317 | break; |
1318 | case tp_array: | |
1319 | array_size = pop_type_int (); | |
1320 | /* FIXME-type-allocation: need a way to free this type when we are | |
1321 | done with it. */ | |
1322 | range_type = | |
1323 | create_range_type ((struct type *) NULL, | |
1324 | builtin_type_int, 0, | |
1325 | array_size >= 0 ? array_size - 1 : 0); | |
1326 | follow_type = | |
1327 | create_array_type ((struct type *) NULL, | |
1328 | follow_type, range_type); | |
1329 | if (array_size < 0) | |
c5aa993b | 1330 | TYPE_ARRAY_UPPER_BOUND_TYPE (follow_type) |
c906108c SS |
1331 | = BOUND_CANNOT_BE_DETERMINED; |
1332 | break; | |
1333 | case tp_function: | |
1334 | /* FIXME-type-allocation: need a way to free this type when we are | |
1335 | done with it. */ | |
1336 | follow_type = lookup_function_type (follow_type); | |
1337 | break; | |
1338 | } | |
1339 | return follow_type; | |
1340 | } | |
1341 | \f | |
a14ed312 | 1342 | static void build_parse (void); |
ac9a91a7 | 1343 | static void |
fba45db2 | 1344 | build_parse (void) |
c906108c | 1345 | { |
cce74817 JM |
1346 | int i; |
1347 | ||
c906108c SS |
1348 | msym_text_symbol_type = |
1349 | init_type (TYPE_CODE_FUNC, 1, 0, "<text variable, no debug info>", NULL); | |
1350 | TYPE_TARGET_TYPE (msym_text_symbol_type) = builtin_type_int; | |
1351 | msym_data_symbol_type = | |
1352 | init_type (TYPE_CODE_INT, TARGET_INT_BIT / HOST_CHAR_BIT, 0, | |
1353 | "<data variable, no debug info>", NULL); | |
1354 | msym_unknown_symbol_type = | |
1355 | init_type (TYPE_CODE_INT, 1, 0, | |
1356 | "<variable (not text or data), no debug info>", | |
1357 | NULL); | |
ac9a91a7 JM |
1358 | } |
1359 | ||
1360 | void | |
fba45db2 | 1361 | _initialize_parse (void) |
ac9a91a7 JM |
1362 | { |
1363 | type_stack_size = 80; | |
1364 | type_stack_depth = 0; | |
1365 | type_stack = (union type_stack_elt *) | |
1366 | xmalloc (type_stack_size * sizeof (*type_stack)); | |
1367 | ||
1368 | build_parse (); | |
c906108c | 1369 | |
0f71a2f6 JM |
1370 | /* FIXME - For the moment, handle types by swapping them in and out. |
1371 | Should be using the per-architecture data-pointer and a large | |
1372 | struct. */ | |
1373 | register_gdbarch_swap (&msym_text_symbol_type, sizeof (msym_text_symbol_type), NULL); | |
1374 | register_gdbarch_swap (&msym_data_symbol_type, sizeof (msym_data_symbol_type), NULL); | |
1375 | register_gdbarch_swap (&msym_unknown_symbol_type, sizeof (msym_unknown_symbol_type), NULL); | |
1376 | ||
0f71a2f6 JM |
1377 | register_gdbarch_swap (NULL, 0, build_parse); |
1378 | ||
c906108c | 1379 | add_show_from_set ( |
5d161b24 | 1380 | add_set_cmd ("expression", class_maintenance, var_zinteger, |
c5aa993b JM |
1381 | (char *) &expressiondebug, |
1382 | "Set expression debugging.\n\ | |
c906108c | 1383 | When non-zero, the internal representation of expressions will be printed.", |
5d161b24 DB |
1384 | &setdebuglist), |
1385 | &showdebuglist); | |
c906108c | 1386 | } |