]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Parse expressions for GDB. |
cce74817 | 2 | Copyright (C) 1986, 89, 90, 91, 94, 98, 1999 Free Software Foundation, Inc. |
c906108c SS |
3 | Modified from expread.y by the Department of Computer Science at the |
4 | State University of New York at Buffalo, 1991. | |
5 | ||
c5aa993b | 6 | This file is part of GDB. |
c906108c | 7 | |
c5aa993b JM |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
c906108c | 12 | |
c5aa993b JM |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
c906108c | 17 | |
c5aa993b JM |
18 | You should have received a copy of the GNU General Public License |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, | |
21 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
22 | |
23 | /* Parse an expression from text in a string, | |
24 | and return the result as a struct expression pointer. | |
25 | That structure contains arithmetic operations in reverse polish, | |
26 | with constants represented by operations that are followed by special data. | |
27 | See expression.h for the details of the format. | |
28 | What is important here is that it can be built up sequentially | |
29 | during the process of parsing; the lower levels of the tree always | |
30 | come first in the result. */ | |
c5aa993b | 31 | |
cce74817 JM |
32 | #include <ctype.h> |
33 | ||
c906108c SS |
34 | #include "defs.h" |
35 | #include "gdb_string.h" | |
c906108c SS |
36 | #include "symtab.h" |
37 | #include "gdbtypes.h" | |
38 | #include "frame.h" | |
39 | #include "expression.h" | |
40 | #include "value.h" | |
41 | #include "command.h" | |
42 | #include "language.h" | |
43 | #include "parser-defs.h" | |
44 | #include "gdbcmd.h" | |
c5aa993b | 45 | #include "symfile.h" /* for overlay functions */ |
e2305d34 MS |
46 | #include "inferior.h" /* for NUM_PSEUDO_REGS. NOTE: replace |
47 | with "gdbarch.h" when appropriate. */ | |
48 | ||
2df3850c JM |
49 | \f |
50 | /* Symbols which architectures can redefine. */ | |
51 | ||
52 | /* Some systems have routines whose names start with `$'. Giving this | |
53 | macro a non-zero value tells GDB's expression parser to check for | |
54 | such routines when parsing tokens that begin with `$'. | |
55 | ||
56 | On HP-UX, certain system routines (millicode) have names beginning | |
57 | with `$' or `$$'. For example, `$$dyncall' is a millicode routine | |
58 | that handles inter-space procedure calls on PA-RISC. */ | |
59 | #ifndef SYMBOLS_CAN_START_WITH_DOLLAR | |
60 | #define SYMBOLS_CAN_START_WITH_DOLLAR (0) | |
61 | #endif | |
62 | ||
63 | ||
c906108c SS |
64 | \f |
65 | /* Global variables declared in parser-defs.h (and commented there). */ | |
66 | struct expression *expout; | |
67 | int expout_size; | |
68 | int expout_ptr; | |
69 | struct block *expression_context_block; | |
70 | struct block *innermost_block; | |
71 | int arglist_len; | |
72 | union type_stack_elt *type_stack; | |
73 | int type_stack_depth, type_stack_size; | |
74 | char *lexptr; | |
75 | char *namecopy; | |
76 | int paren_depth; | |
77 | int comma_terminates; | |
78 | \f | |
c906108c | 79 | static int expressiondebug = 0; |
c906108c SS |
80 | |
81 | extern int hp_som_som_object_present; | |
82 | ||
74b7792f | 83 | static void free_funcalls (void *ignore); |
c906108c | 84 | |
a14ed312 | 85 | static void prefixify_expression (struct expression *); |
c906108c SS |
86 | |
87 | static void | |
a14ed312 | 88 | prefixify_subexp (struct expression *, struct expression *, int, int); |
c906108c | 89 | |
a14ed312 | 90 | void _initialize_parse (void); |
392a587b | 91 | |
c906108c SS |
92 | /* Data structure for saving values of arglist_len for function calls whose |
93 | arguments contain other function calls. */ | |
94 | ||
95 | struct funcall | |
96 | { | |
97 | struct funcall *next; | |
98 | int arglist_len; | |
99 | }; | |
100 | ||
101 | static struct funcall *funcall_chain; | |
102 | ||
103 | /* Assign machine-independent names to certain registers | |
104 | (unless overridden by the REGISTER_NAMES table) */ | |
105 | ||
c906108c | 106 | unsigned num_std_regs = 0; |
cce74817 | 107 | struct std_regs *std_regs; |
c906108c SS |
108 | |
109 | /* The generic method for targets to specify how their registers are | |
110 | named. The mapping can be derived from three sources: | |
111 | REGISTER_NAME; std_regs; or a target specific alias hook. */ | |
112 | ||
113 | int | |
114 | target_map_name_to_register (str, len) | |
115 | char *str; | |
116 | int len; | |
117 | { | |
118 | int i; | |
119 | ||
120 | /* First try target specific aliases. We try these first because on some | |
121 | systems standard names can be context dependent (eg. $pc on a | |
122 | multiprocessor can be could be any of several PCs). */ | |
123 | #ifdef REGISTER_NAME_ALIAS_HOOK | |
c5aa993b | 124 | i = REGISTER_NAME_ALIAS_HOOK (str, len); |
c906108c SS |
125 | if (i >= 0) |
126 | return i; | |
127 | #endif | |
128 | ||
129 | /* Search architectural register name space. */ | |
130 | for (i = 0; i < NUM_REGS; i++) | |
131 | if (REGISTER_NAME (i) && len == strlen (REGISTER_NAME (i)) | |
132 | && STREQN (str, REGISTER_NAME (i), len)) | |
133 | { | |
134 | return i; | |
135 | } | |
136 | ||
1a1404f1 MS |
137 | /* Try pseudo-registers, if any. */ |
138 | for (i = NUM_REGS; i < NUM_REGS + NUM_PSEUDO_REGS; i++) | |
139 | if (REGISTER_NAME (i) && len == strlen (REGISTER_NAME (i)) | |
140 | && STREQN (str, REGISTER_NAME (i), len)) | |
141 | { | |
142 | return i; | |
143 | } | |
144 | ||
145 | /* Try standard aliases. */ | |
c906108c SS |
146 | for (i = 0; i < num_std_regs; i++) |
147 | if (std_regs[i].name && len == strlen (std_regs[i].name) | |
148 | && STREQN (str, std_regs[i].name, len)) | |
149 | { | |
150 | return std_regs[i].regnum; | |
151 | } | |
152 | ||
153 | return -1; | |
154 | } | |
155 | ||
156 | /* Begin counting arguments for a function call, | |
157 | saving the data about any containing call. */ | |
158 | ||
159 | void | |
160 | start_arglist () | |
161 | { | |
162 | register struct funcall *new; | |
163 | ||
164 | new = (struct funcall *) xmalloc (sizeof (struct funcall)); | |
165 | new->next = funcall_chain; | |
166 | new->arglist_len = arglist_len; | |
167 | arglist_len = 0; | |
168 | funcall_chain = new; | |
169 | } | |
170 | ||
171 | /* Return the number of arguments in a function call just terminated, | |
172 | and restore the data for the containing function call. */ | |
173 | ||
174 | int | |
175 | end_arglist () | |
176 | { | |
177 | register int val = arglist_len; | |
178 | register struct funcall *call = funcall_chain; | |
179 | funcall_chain = call->next; | |
180 | arglist_len = call->arglist_len; | |
c5aa993b | 181 | free ((PTR) call); |
c906108c SS |
182 | return val; |
183 | } | |
184 | ||
185 | /* Free everything in the funcall chain. | |
186 | Used when there is an error inside parsing. */ | |
187 | ||
188 | static void | |
74b7792f | 189 | free_funcalls (void *ignore) |
c906108c SS |
190 | { |
191 | register struct funcall *call, *next; | |
192 | ||
193 | for (call = funcall_chain; call; call = next) | |
194 | { | |
195 | next = call->next; | |
c5aa993b | 196 | free ((PTR) call); |
c906108c SS |
197 | } |
198 | } | |
199 | \f | |
200 | /* This page contains the functions for adding data to the struct expression | |
201 | being constructed. */ | |
202 | ||
203 | /* Add one element to the end of the expression. */ | |
204 | ||
205 | /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into | |
206 | a register through here */ | |
207 | ||
208 | void | |
209 | write_exp_elt (expelt) | |
210 | union exp_element expelt; | |
211 | { | |
212 | if (expout_ptr >= expout_size) | |
213 | { | |
214 | expout_size *= 2; | |
215 | expout = (struct expression *) | |
216 | xrealloc ((char *) expout, sizeof (struct expression) | |
217 | + EXP_ELEM_TO_BYTES (expout_size)); | |
218 | } | |
219 | expout->elts[expout_ptr++] = expelt; | |
220 | } | |
221 | ||
222 | void | |
223 | write_exp_elt_opcode (expelt) | |
224 | enum exp_opcode expelt; | |
225 | { | |
226 | union exp_element tmp; | |
227 | ||
228 | tmp.opcode = expelt; | |
229 | ||
230 | write_exp_elt (tmp); | |
231 | } | |
232 | ||
233 | void | |
234 | write_exp_elt_sym (expelt) | |
235 | struct symbol *expelt; | |
236 | { | |
237 | union exp_element tmp; | |
238 | ||
239 | tmp.symbol = expelt; | |
240 | ||
241 | write_exp_elt (tmp); | |
242 | } | |
243 | ||
244 | void | |
245 | write_exp_elt_block (b) | |
246 | struct block *b; | |
247 | { | |
248 | union exp_element tmp; | |
249 | tmp.block = b; | |
250 | write_exp_elt (tmp); | |
251 | } | |
252 | ||
253 | void | |
254 | write_exp_elt_longcst (expelt) | |
255 | LONGEST expelt; | |
256 | { | |
257 | union exp_element tmp; | |
258 | ||
259 | tmp.longconst = expelt; | |
260 | ||
261 | write_exp_elt (tmp); | |
262 | } | |
263 | ||
264 | void | |
265 | write_exp_elt_dblcst (expelt) | |
266 | DOUBLEST expelt; | |
267 | { | |
268 | union exp_element tmp; | |
269 | ||
270 | tmp.doubleconst = expelt; | |
271 | ||
272 | write_exp_elt (tmp); | |
273 | } | |
274 | ||
275 | void | |
276 | write_exp_elt_type (expelt) | |
277 | struct type *expelt; | |
278 | { | |
279 | union exp_element tmp; | |
280 | ||
281 | tmp.type = expelt; | |
282 | ||
283 | write_exp_elt (tmp); | |
284 | } | |
285 | ||
286 | void | |
287 | write_exp_elt_intern (expelt) | |
288 | struct internalvar *expelt; | |
289 | { | |
290 | union exp_element tmp; | |
291 | ||
292 | tmp.internalvar = expelt; | |
293 | ||
294 | write_exp_elt (tmp); | |
295 | } | |
296 | ||
297 | /* Add a string constant to the end of the expression. | |
298 | ||
299 | String constants are stored by first writing an expression element | |
300 | that contains the length of the string, then stuffing the string | |
301 | constant itself into however many expression elements are needed | |
302 | to hold it, and then writing another expression element that contains | |
303 | the length of the string. I.E. an expression element at each end of | |
304 | the string records the string length, so you can skip over the | |
305 | expression elements containing the actual string bytes from either | |
306 | end of the string. Note that this also allows gdb to handle | |
307 | strings with embedded null bytes, as is required for some languages. | |
308 | ||
309 | Don't be fooled by the fact that the string is null byte terminated, | |
310 | this is strictly for the convenience of debugging gdb itself. Gdb | |
311 | Gdb does not depend up the string being null terminated, since the | |
312 | actual length is recorded in expression elements at each end of the | |
313 | string. The null byte is taken into consideration when computing how | |
314 | many expression elements are required to hold the string constant, of | |
315 | course. */ | |
316 | ||
317 | ||
318 | void | |
319 | write_exp_string (str) | |
320 | struct stoken str; | |
321 | { | |
322 | register int len = str.length; | |
323 | register int lenelt; | |
324 | register char *strdata; | |
325 | ||
326 | /* Compute the number of expression elements required to hold the string | |
327 | (including a null byte terminator), along with one expression element | |
328 | at each end to record the actual string length (not including the | |
329 | null byte terminator). */ | |
330 | ||
331 | lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1); | |
332 | ||
333 | /* Ensure that we have enough available expression elements to store | |
334 | everything. */ | |
335 | ||
336 | if ((expout_ptr + lenelt) >= expout_size) | |
337 | { | |
338 | expout_size = max (expout_size * 2, expout_ptr + lenelt + 10); | |
339 | expout = (struct expression *) | |
340 | xrealloc ((char *) expout, (sizeof (struct expression) | |
341 | + EXP_ELEM_TO_BYTES (expout_size))); | |
342 | } | |
343 | ||
344 | /* Write the leading length expression element (which advances the current | |
345 | expression element index), then write the string constant followed by a | |
346 | terminating null byte, and then write the trailing length expression | |
347 | element. */ | |
348 | ||
349 | write_exp_elt_longcst ((LONGEST) len); | |
350 | strdata = (char *) &expout->elts[expout_ptr]; | |
351 | memcpy (strdata, str.ptr, len); | |
352 | *(strdata + len) = '\0'; | |
353 | expout_ptr += lenelt - 2; | |
354 | write_exp_elt_longcst ((LONGEST) len); | |
355 | } | |
356 | ||
357 | /* Add a bitstring constant to the end of the expression. | |
358 | ||
359 | Bitstring constants are stored by first writing an expression element | |
360 | that contains the length of the bitstring (in bits), then stuffing the | |
361 | bitstring constant itself into however many expression elements are | |
362 | needed to hold it, and then writing another expression element that | |
363 | contains the length of the bitstring. I.E. an expression element at | |
364 | each end of the bitstring records the bitstring length, so you can skip | |
365 | over the expression elements containing the actual bitstring bytes from | |
366 | either end of the bitstring. */ | |
367 | ||
368 | void | |
369 | write_exp_bitstring (str) | |
370 | struct stoken str; | |
371 | { | |
372 | register int bits = str.length; /* length in bits */ | |
373 | register int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
374 | register int lenelt; | |
375 | register char *strdata; | |
376 | ||
377 | /* Compute the number of expression elements required to hold the bitstring, | |
378 | along with one expression element at each end to record the actual | |
379 | bitstring length in bits. */ | |
380 | ||
381 | lenelt = 2 + BYTES_TO_EXP_ELEM (len); | |
382 | ||
383 | /* Ensure that we have enough available expression elements to store | |
384 | everything. */ | |
385 | ||
386 | if ((expout_ptr + lenelt) >= expout_size) | |
387 | { | |
388 | expout_size = max (expout_size * 2, expout_ptr + lenelt + 10); | |
389 | expout = (struct expression *) | |
390 | xrealloc ((char *) expout, (sizeof (struct expression) | |
391 | + EXP_ELEM_TO_BYTES (expout_size))); | |
392 | } | |
393 | ||
394 | /* Write the leading length expression element (which advances the current | |
395 | expression element index), then write the bitstring constant, and then | |
396 | write the trailing length expression element. */ | |
397 | ||
398 | write_exp_elt_longcst ((LONGEST) bits); | |
399 | strdata = (char *) &expout->elts[expout_ptr]; | |
400 | memcpy (strdata, str.ptr, len); | |
401 | expout_ptr += lenelt - 2; | |
402 | write_exp_elt_longcst ((LONGEST) bits); | |
403 | } | |
404 | ||
405 | /* Add the appropriate elements for a minimal symbol to the end of | |
406 | the expression. The rationale behind passing in text_symbol_type and | |
407 | data_symbol_type was so that Modula-2 could pass in WORD for | |
408 | data_symbol_type. Perhaps it still is useful to have those types vary | |
409 | based on the language, but they no longer have names like "int", so | |
410 | the initial rationale is gone. */ | |
411 | ||
412 | static struct type *msym_text_symbol_type; | |
413 | static struct type *msym_data_symbol_type; | |
414 | static struct type *msym_unknown_symbol_type; | |
415 | ||
416 | void | |
417 | write_exp_msymbol (msymbol, text_symbol_type, data_symbol_type) | |
418 | struct minimal_symbol *msymbol; | |
419 | struct type *text_symbol_type; | |
420 | struct type *data_symbol_type; | |
421 | { | |
422 | CORE_ADDR addr; | |
423 | ||
424 | write_exp_elt_opcode (OP_LONG); | |
425 | write_exp_elt_type (lookup_pointer_type (builtin_type_void)); | |
426 | ||
427 | addr = SYMBOL_VALUE_ADDRESS (msymbol); | |
428 | if (overlay_debugging) | |
429 | addr = symbol_overlayed_address (addr, SYMBOL_BFD_SECTION (msymbol)); | |
430 | write_exp_elt_longcst ((LONGEST) addr); | |
c5aa993b | 431 | |
c906108c SS |
432 | write_exp_elt_opcode (OP_LONG); |
433 | ||
434 | write_exp_elt_opcode (UNOP_MEMVAL); | |
c5aa993b | 435 | switch (msymbol->type) |
c906108c SS |
436 | { |
437 | case mst_text: | |
438 | case mst_file_text: | |
439 | case mst_solib_trampoline: | |
440 | write_exp_elt_type (msym_text_symbol_type); | |
441 | break; | |
442 | ||
443 | case mst_data: | |
444 | case mst_file_data: | |
445 | case mst_bss: | |
446 | case mst_file_bss: | |
447 | write_exp_elt_type (msym_data_symbol_type); | |
448 | break; | |
449 | ||
450 | default: | |
451 | write_exp_elt_type (msym_unknown_symbol_type); | |
452 | break; | |
453 | } | |
454 | write_exp_elt_opcode (UNOP_MEMVAL); | |
455 | } | |
456 | \f | |
457 | /* Recognize tokens that start with '$'. These include: | |
458 | ||
c5aa993b JM |
459 | $regname A native register name or a "standard |
460 | register name". | |
c906108c | 461 | |
c5aa993b JM |
462 | $variable A convenience variable with a name chosen |
463 | by the user. | |
c906108c | 464 | |
c5aa993b JM |
465 | $digits Value history with index <digits>, starting |
466 | from the first value which has index 1. | |
c906108c | 467 | |
c5aa993b JM |
468 | $$digits Value history with index <digits> relative |
469 | to the last value. I.E. $$0 is the last | |
470 | value, $$1 is the one previous to that, $$2 | |
471 | is the one previous to $$1, etc. | |
c906108c | 472 | |
c5aa993b | 473 | $ | $0 | $$0 The last value in the value history. |
c906108c | 474 | |
c5aa993b JM |
475 | $$ An abbreviation for the second to the last |
476 | value in the value history, I.E. $$1 | |
c906108c | 477 | |
c5aa993b | 478 | */ |
c906108c SS |
479 | |
480 | void | |
481 | write_dollar_variable (str) | |
482 | struct stoken str; | |
483 | { | |
484 | /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1) | |
485 | and $$digits (equivalent to $<-digits> if you could type that). */ | |
486 | ||
c906108c SS |
487 | int negate = 0; |
488 | int i = 1; | |
489 | /* Double dollar means negate the number and add -1 as well. | |
490 | Thus $$ alone means -1. */ | |
491 | if (str.length >= 2 && str.ptr[1] == '$') | |
492 | { | |
493 | negate = 1; | |
494 | i = 2; | |
495 | } | |
496 | if (i == str.length) | |
497 | { | |
498 | /* Just dollars (one or two) */ | |
c5aa993b | 499 | i = -negate; |
c906108c SS |
500 | goto handle_last; |
501 | } | |
502 | /* Is the rest of the token digits? */ | |
503 | for (; i < str.length; i++) | |
504 | if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9')) | |
505 | break; | |
506 | if (i == str.length) | |
507 | { | |
508 | i = atoi (str.ptr + 1 + negate); | |
509 | if (negate) | |
c5aa993b | 510 | i = -i; |
c906108c SS |
511 | goto handle_last; |
512 | } | |
c5aa993b | 513 | |
c906108c SS |
514 | /* Handle tokens that refer to machine registers: |
515 | $ followed by a register name. */ | |
c5aa993b JM |
516 | i = target_map_name_to_register (str.ptr + 1, str.length - 1); |
517 | if (i >= 0) | |
c906108c SS |
518 | goto handle_register; |
519 | ||
2df3850c | 520 | if (SYMBOLS_CAN_START_WITH_DOLLAR) |
c906108c | 521 | { |
2df3850c JM |
522 | struct symbol *sym = NULL; |
523 | struct minimal_symbol *msym = NULL; | |
524 | ||
525 | /* On HP-UX, certain system routines (millicode) have names beginning | |
526 | with $ or $$, e.g. $$dyncall, which handles inter-space procedure | |
527 | calls on PA-RISC. Check for those, first. */ | |
528 | ||
529 | /* This code is not enabled on non HP-UX systems, since worst case | |
530 | symbol table lookup performance is awful, to put it mildly. */ | |
531 | ||
532 | sym = lookup_symbol (copy_name (str), (struct block *) NULL, | |
533 | VAR_NAMESPACE, (int *) NULL, (struct symtab **) NULL); | |
534 | if (sym) | |
535 | { | |
536 | write_exp_elt_opcode (OP_VAR_VALUE); | |
537 | write_exp_elt_block (block_found); /* set by lookup_symbol */ | |
538 | write_exp_elt_sym (sym); | |
539 | write_exp_elt_opcode (OP_VAR_VALUE); | |
540 | return; | |
541 | } | |
542 | msym = lookup_minimal_symbol (copy_name (str), NULL, NULL); | |
543 | if (msym) | |
544 | { | |
545 | write_exp_msymbol (msym, | |
546 | lookup_function_type (builtin_type_int), | |
547 | builtin_type_int); | |
548 | return; | |
549 | } | |
c906108c | 550 | } |
c5aa993b | 551 | |
c906108c SS |
552 | /* Any other names starting in $ are debugger internal variables. */ |
553 | ||
554 | write_exp_elt_opcode (OP_INTERNALVAR); | |
555 | write_exp_elt_intern (lookup_internalvar (copy_name (str) + 1)); | |
c5aa993b | 556 | write_exp_elt_opcode (OP_INTERNALVAR); |
c906108c | 557 | return; |
c5aa993b | 558 | handle_last: |
c906108c SS |
559 | write_exp_elt_opcode (OP_LAST); |
560 | write_exp_elt_longcst ((LONGEST) i); | |
561 | write_exp_elt_opcode (OP_LAST); | |
562 | return; | |
c5aa993b | 563 | handle_register: |
c906108c SS |
564 | write_exp_elt_opcode (OP_REGISTER); |
565 | write_exp_elt_longcst (i); | |
c5aa993b | 566 | write_exp_elt_opcode (OP_REGISTER); |
c906108c SS |
567 | return; |
568 | } | |
569 | ||
570 | ||
571 | /* Parse a string that is possibly a namespace / nested class | |
572 | specification, i.e., something of the form A::B::C::x. Input | |
573 | (NAME) is the entire string; LEN is the current valid length; the | |
574 | output is a string, TOKEN, which points to the largest recognized | |
575 | prefix which is a series of namespaces or classes. CLASS_PREFIX is | |
576 | another output, which records whether a nested class spec was | |
577 | recognized (= 1) or a fully qualified variable name was found (= | |
578 | 0). ARGPTR is side-effected (if non-NULL) to point to beyond the | |
579 | string recognized and consumed by this routine. | |
580 | ||
581 | The return value is a pointer to the symbol for the base class or | |
582 | variable if found, or NULL if not found. Callers must check this | |
583 | first -- if NULL, the outputs may not be correct. | |
584 | ||
585 | This function is used c-exp.y. This is used specifically to get | |
586 | around HP aCC (and possibly other compilers), which insists on | |
587 | generating names with embedded colons for namespace or nested class | |
588 | members. | |
589 | ||
590 | (Argument LEN is currently unused. 1997-08-27) | |
591 | ||
592 | Callers must free memory allocated for the output string TOKEN. */ | |
593 | ||
c5aa993b JM |
594 | static const char coloncolon[2] = |
595 | {':', ':'}; | |
c906108c SS |
596 | |
597 | struct symbol * | |
598 | parse_nested_classes_for_hpacc (name, len, token, class_prefix, argptr) | |
c5aa993b JM |
599 | char *name; |
600 | int len; | |
601 | char **token; | |
602 | int *class_prefix; | |
603 | char **argptr; | |
c906108c | 604 | { |
c5aa993b JM |
605 | /* Comment below comes from decode_line_1 which has very similar |
606 | code, which is called for "break" command parsing. */ | |
607 | ||
608 | /* We have what looks like a class or namespace | |
c906108c SS |
609 | scope specification (A::B), possibly with many |
610 | levels of namespaces or classes (A::B::C::D). | |
611 | ||
612 | Some versions of the HP ANSI C++ compiler (as also possibly | |
613 | other compilers) generate class/function/member names with | |
614 | embedded double-colons if they are inside namespaces. To | |
615 | handle this, we loop a few times, considering larger and | |
616 | larger prefixes of the string as though they were single | |
617 | symbols. So, if the initially supplied string is | |
618 | A::B::C::D::foo, we have to look up "A", then "A::B", | |
619 | then "A::B::C", then "A::B::C::D", and finally | |
620 | "A::B::C::D::foo" as single, monolithic symbols, because | |
621 | A, B, C or D may be namespaces. | |
622 | ||
623 | Note that namespaces can nest only inside other | |
624 | namespaces, and not inside classes. So we need only | |
625 | consider *prefixes* of the string; there is no need to look up | |
626 | "B::C" separately as a symbol in the previous example. */ | |
627 | ||
c5aa993b JM |
628 | register char *p; |
629 | char *start, *end; | |
630 | char *prefix = NULL; | |
631 | char *tmp; | |
632 | struct symbol *sym_class = NULL; | |
633 | struct symbol *sym_var = NULL; | |
634 | struct type *t; | |
c906108c SS |
635 | int prefix_len = 0; |
636 | int done = 0; | |
c5aa993b | 637 | char *q; |
c906108c SS |
638 | |
639 | /* Check for HP-compiled executable -- in other cases | |
640 | return NULL, and caller must default to standard GDB | |
641 | behaviour. */ | |
642 | ||
643 | if (!hp_som_som_object_present) | |
644 | return (struct symbol *) NULL; | |
645 | ||
646 | p = name; | |
647 | ||
c5aa993b JM |
648 | /* Skip over whitespace and possible global "::" */ |
649 | while (*p && (*p == ' ' || *p == '\t')) | |
650 | p++; | |
c906108c SS |
651 | if (p[0] == ':' && p[1] == ':') |
652 | p += 2; | |
c5aa993b JM |
653 | while (*p && (*p == ' ' || *p == '\t')) |
654 | p++; | |
655 | ||
c906108c SS |
656 | while (1) |
657 | { | |
658 | /* Get to the end of the next namespace or class spec. */ | |
659 | /* If we're looking at some non-token, fail immediately */ | |
660 | start = p; | |
661 | if (!(isalpha (*p) || *p == '$' || *p == '_')) | |
c5aa993b | 662 | return (struct symbol *) NULL; |
c906108c | 663 | p++; |
c5aa993b JM |
664 | while (*p && (isalnum (*p) || *p == '$' || *p == '_')) |
665 | p++; | |
666 | ||
667 | if (*p == '<') | |
668 | { | |
669 | /* If we have the start of a template specification, | |
670 | scan right ahead to its end */ | |
671 | q = find_template_name_end (p); | |
672 | if (q) | |
673 | p = q; | |
674 | } | |
675 | ||
c906108c SS |
676 | end = p; |
677 | ||
c5aa993b JM |
678 | /* Skip over "::" and whitespace for next time around */ |
679 | while (*p && (*p == ' ' || *p == '\t')) | |
680 | p++; | |
c906108c | 681 | if (p[0] == ':' && p[1] == ':') |
c5aa993b JM |
682 | p += 2; |
683 | while (*p && (*p == ' ' || *p == '\t')) | |
684 | p++; | |
c906108c | 685 | |
c5aa993b | 686 | /* Done with tokens? */ |
c906108c | 687 | if (!*p || !(isalpha (*p) || *p == '$' || *p == '_')) |
c5aa993b | 688 | done = 1; |
c906108c SS |
689 | |
690 | tmp = (char *) alloca (prefix_len + end - start + 3); | |
691 | if (prefix) | |
c5aa993b JM |
692 | { |
693 | memcpy (tmp, prefix, prefix_len); | |
694 | memcpy (tmp + prefix_len, coloncolon, 2); | |
695 | memcpy (tmp + prefix_len + 2, start, end - start); | |
696 | tmp[prefix_len + 2 + end - start] = '\000'; | |
697 | } | |
c906108c | 698 | else |
c5aa993b JM |
699 | { |
700 | memcpy (tmp, start, end - start); | |
701 | tmp[end - start] = '\000'; | |
702 | } | |
703 | ||
c906108c SS |
704 | prefix = tmp; |
705 | prefix_len = strlen (prefix); | |
c5aa993b | 706 | |
c906108c SS |
707 | /* See if the prefix we have now is something we know about */ |
708 | ||
c5aa993b JM |
709 | if (!done) |
710 | { | |
711 | /* More tokens to process, so this must be a class/namespace */ | |
712 | sym_class = lookup_symbol (prefix, 0, STRUCT_NAMESPACE, | |
713 | 0, (struct symtab **) NULL); | |
714 | } | |
c906108c | 715 | else |
c5aa993b JM |
716 | { |
717 | /* No more tokens, so try as a variable first */ | |
718 | sym_var = lookup_symbol (prefix, 0, VAR_NAMESPACE, | |
719 | 0, (struct symtab **) NULL); | |
720 | /* If failed, try as class/namespace */ | |
721 | if (!sym_var) | |
722 | sym_class = lookup_symbol (prefix, 0, STRUCT_NAMESPACE, | |
723 | 0, (struct symtab **) NULL); | |
724 | } | |
c906108c SS |
725 | |
726 | if (sym_var || | |
c5aa993b JM |
727 | (sym_class && |
728 | (t = check_typedef (SYMBOL_TYPE (sym_class)), | |
729 | (TYPE_CODE (t) == TYPE_CODE_STRUCT | |
730 | || TYPE_CODE (t) == TYPE_CODE_UNION)))) | |
731 | { | |
732 | /* We found a valid token */ | |
733 | *token = (char *) xmalloc (prefix_len + 1); | |
734 | memcpy (*token, prefix, prefix_len); | |
735 | (*token)[prefix_len] = '\000'; | |
736 | break; | |
737 | } | |
738 | ||
739 | /* No variable or class/namespace found, no more tokens */ | |
c906108c | 740 | if (done) |
c5aa993b | 741 | return (struct symbol *) NULL; |
c906108c SS |
742 | } |
743 | ||
744 | /* Out of loop, so we must have found a valid token */ | |
745 | if (sym_var) | |
746 | *class_prefix = 0; | |
747 | else | |
748 | *class_prefix = 1; | |
749 | ||
750 | if (argptr) | |
751 | *argptr = done ? p : end; | |
752 | ||
c5aa993b | 753 | return sym_var ? sym_var : sym_class; /* found */ |
c906108c SS |
754 | } |
755 | ||
756 | char * | |
757 | find_template_name_end (p) | |
c5aa993b | 758 | char *p; |
c906108c SS |
759 | { |
760 | int depth = 1; | |
761 | int just_seen_right = 0; | |
762 | int just_seen_colon = 0; | |
763 | int just_seen_space = 0; | |
c5aa993b | 764 | |
c906108c SS |
765 | if (!p || (*p != '<')) |
766 | return 0; | |
767 | ||
768 | while (*++p) | |
769 | { | |
770 | switch (*p) | |
c5aa993b JM |
771 | { |
772 | case '\'': | |
773 | case '\"': | |
774 | case '{': | |
775 | case '}': | |
776 | /* In future, may want to allow these?? */ | |
777 | return 0; | |
778 | case '<': | |
779 | depth++; /* start nested template */ | |
780 | if (just_seen_colon || just_seen_right || just_seen_space) | |
781 | return 0; /* but not after : or :: or > or space */ | |
782 | break; | |
783 | case '>': | |
784 | if (just_seen_colon || just_seen_right) | |
785 | return 0; /* end a (nested?) template */ | |
786 | just_seen_right = 1; /* but not after : or :: */ | |
787 | if (--depth == 0) /* also disallow >>, insist on > > */ | |
788 | return ++p; /* if outermost ended, return */ | |
789 | break; | |
790 | case ':': | |
791 | if (just_seen_space || (just_seen_colon > 1)) | |
792 | return 0; /* nested class spec coming up */ | |
793 | just_seen_colon++; /* we allow :: but not :::: */ | |
794 | break; | |
795 | case ' ': | |
796 | break; | |
797 | default: | |
798 | if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */ | |
799 | (*p >= 'A' && *p <= 'Z') || | |
800 | (*p >= '0' && *p <= '9') || | |
801 | (*p == '_') || (*p == ',') || /* commas for template args */ | |
802 | (*p == '&') || (*p == '*') || /* pointer and ref types */ | |
803 | (*p == '(') || (*p == ')') || /* function types */ | |
804 | (*p == '[') || (*p == ']'))) /* array types */ | |
805 | return 0; | |
806 | } | |
c906108c | 807 | if (*p != ' ') |
c5aa993b | 808 | just_seen_space = 0; |
c906108c | 809 | if (*p != ':') |
c5aa993b | 810 | just_seen_colon = 0; |
c906108c | 811 | if (*p != '>') |
c5aa993b | 812 | just_seen_right = 0; |
c906108c SS |
813 | } |
814 | return 0; | |
815 | } | |
c5aa993b | 816 | \f |
c906108c SS |
817 | |
818 | ||
c906108c SS |
819 | /* Return a null-terminated temporary copy of the name |
820 | of a string token. */ | |
821 | ||
822 | char * | |
823 | copy_name (token) | |
824 | struct stoken token; | |
825 | { | |
826 | memcpy (namecopy, token.ptr, token.length); | |
827 | namecopy[token.length] = 0; | |
828 | return namecopy; | |
829 | } | |
830 | \f | |
831 | /* Reverse an expression from suffix form (in which it is constructed) | |
832 | to prefix form (in which we can conveniently print or execute it). */ | |
833 | ||
834 | static void | |
835 | prefixify_expression (expr) | |
836 | register struct expression *expr; | |
837 | { | |
838 | register int len = | |
c5aa993b | 839 | sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts); |
c906108c SS |
840 | register struct expression *temp; |
841 | register int inpos = expr->nelts, outpos = 0; | |
842 | ||
843 | temp = (struct expression *) alloca (len); | |
844 | ||
845 | /* Copy the original expression into temp. */ | |
846 | memcpy (temp, expr, len); | |
847 | ||
848 | prefixify_subexp (temp, expr, inpos, outpos); | |
849 | } | |
850 | ||
851 | /* Return the number of exp_elements in the subexpression of EXPR | |
852 | whose last exp_element is at index ENDPOS - 1 in EXPR. */ | |
853 | ||
854 | int | |
855 | length_of_subexp (expr, endpos) | |
856 | register struct expression *expr; | |
857 | register int endpos; | |
858 | { | |
859 | register int oplen = 1; | |
860 | register int args = 0; | |
861 | register int i; | |
862 | ||
863 | if (endpos < 1) | |
864 | error ("?error in length_of_subexp"); | |
865 | ||
866 | i = (int) expr->elts[endpos - 1].opcode; | |
867 | ||
868 | switch (i) | |
869 | { | |
870 | /* C++ */ | |
871 | case OP_SCOPE: | |
872 | oplen = longest_to_int (expr->elts[endpos - 2].longconst); | |
873 | oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1); | |
874 | break; | |
875 | ||
876 | case OP_LONG: | |
877 | case OP_DOUBLE: | |
878 | case OP_VAR_VALUE: | |
879 | oplen = 4; | |
880 | break; | |
881 | ||
882 | case OP_TYPE: | |
883 | case OP_BOOL: | |
884 | case OP_LAST: | |
885 | case OP_REGISTER: | |
886 | case OP_INTERNALVAR: | |
887 | oplen = 3; | |
888 | break; | |
889 | ||
890 | case OP_COMPLEX: | |
c5aa993b | 891 | oplen = 1; |
c906108c | 892 | args = 2; |
c5aa993b | 893 | break; |
c906108c SS |
894 | |
895 | case OP_FUNCALL: | |
896 | case OP_F77_UNDETERMINED_ARGLIST: | |
897 | oplen = 3; | |
898 | args = 1 + longest_to_int (expr->elts[endpos - 2].longconst); | |
899 | break; | |
900 | ||
901 | case UNOP_MAX: | |
902 | case UNOP_MIN: | |
903 | oplen = 3; | |
904 | break; | |
905 | ||
c5aa993b JM |
906 | case BINOP_VAL: |
907 | case UNOP_CAST: | |
908 | case UNOP_MEMVAL: | |
c906108c SS |
909 | oplen = 3; |
910 | args = 1; | |
911 | break; | |
912 | ||
913 | case UNOP_ABS: | |
914 | case UNOP_CAP: | |
915 | case UNOP_CHR: | |
916 | case UNOP_FLOAT: | |
917 | case UNOP_HIGH: | |
918 | case UNOP_ODD: | |
919 | case UNOP_ORD: | |
920 | case UNOP_TRUNC: | |
921 | oplen = 1; | |
922 | args = 1; | |
923 | break; | |
924 | ||
925 | case OP_LABELED: | |
926 | case STRUCTOP_STRUCT: | |
927 | case STRUCTOP_PTR: | |
928 | args = 1; | |
929 | /* fall through */ | |
930 | case OP_M2_STRING: | |
931 | case OP_STRING: | |
932 | case OP_NAME: | |
933 | case OP_EXPRSTRING: | |
934 | oplen = longest_to_int (expr->elts[endpos - 2].longconst); | |
935 | oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1); | |
936 | break; | |
937 | ||
938 | case OP_BITSTRING: | |
939 | oplen = longest_to_int (expr->elts[endpos - 2].longconst); | |
940 | oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
941 | oplen = 4 + BYTES_TO_EXP_ELEM (oplen); | |
942 | break; | |
943 | ||
944 | case OP_ARRAY: | |
945 | oplen = 4; | |
946 | args = longest_to_int (expr->elts[endpos - 2].longconst); | |
947 | args -= longest_to_int (expr->elts[endpos - 3].longconst); | |
948 | args += 1; | |
949 | break; | |
950 | ||
951 | case TERNOP_COND: | |
952 | case TERNOP_SLICE: | |
953 | case TERNOP_SLICE_COUNT: | |
954 | args = 3; | |
955 | break; | |
956 | ||
957 | /* Modula-2 */ | |
c5aa993b | 958 | case MULTI_SUBSCRIPT: |
c906108c | 959 | oplen = 3; |
c5aa993b | 960 | args = 1 + longest_to_int (expr->elts[endpos - 2].longconst); |
c906108c SS |
961 | break; |
962 | ||
963 | case BINOP_ASSIGN_MODIFY: | |
964 | oplen = 3; | |
965 | args = 2; | |
966 | break; | |
967 | ||
968 | /* C++ */ | |
969 | case OP_THIS: | |
970 | oplen = 2; | |
971 | break; | |
972 | ||
973 | default: | |
974 | args = 1 + (i < (int) BINOP_END); | |
975 | } | |
976 | ||
977 | while (args > 0) | |
978 | { | |
979 | oplen += length_of_subexp (expr, endpos - oplen); | |
980 | args--; | |
981 | } | |
982 | ||
983 | return oplen; | |
984 | } | |
985 | ||
986 | /* Copy the subexpression ending just before index INEND in INEXPR | |
987 | into OUTEXPR, starting at index OUTBEG. | |
988 | In the process, convert it from suffix to prefix form. */ | |
989 | ||
990 | static void | |
991 | prefixify_subexp (inexpr, outexpr, inend, outbeg) | |
992 | register struct expression *inexpr; | |
993 | struct expression *outexpr; | |
994 | register int inend; | |
995 | int outbeg; | |
996 | { | |
997 | register int oplen = 1; | |
998 | register int args = 0; | |
999 | register int i; | |
1000 | int *arglens; | |
1001 | enum exp_opcode opcode; | |
1002 | ||
1003 | /* Compute how long the last operation is (in OPLEN), | |
1004 | and also how many preceding subexpressions serve as | |
1005 | arguments for it (in ARGS). */ | |
1006 | ||
1007 | opcode = inexpr->elts[inend - 1].opcode; | |
1008 | switch (opcode) | |
1009 | { | |
1010 | /* C++ */ | |
1011 | case OP_SCOPE: | |
1012 | oplen = longest_to_int (inexpr->elts[inend - 2].longconst); | |
1013 | oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1); | |
1014 | break; | |
1015 | ||
1016 | case OP_LONG: | |
1017 | case OP_DOUBLE: | |
1018 | case OP_VAR_VALUE: | |
1019 | oplen = 4; | |
1020 | break; | |
1021 | ||
1022 | case OP_TYPE: | |
1023 | case OP_BOOL: | |
1024 | case OP_LAST: | |
1025 | case OP_REGISTER: | |
1026 | case OP_INTERNALVAR: | |
1027 | oplen = 3; | |
1028 | break; | |
1029 | ||
1030 | case OP_COMPLEX: | |
c5aa993b JM |
1031 | oplen = 1; |
1032 | args = 2; | |
1033 | break; | |
c906108c SS |
1034 | |
1035 | case OP_FUNCALL: | |
1036 | case OP_F77_UNDETERMINED_ARGLIST: | |
1037 | oplen = 3; | |
1038 | args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst); | |
1039 | break; | |
1040 | ||
1041 | case UNOP_MIN: | |
1042 | case UNOP_MAX: | |
1043 | oplen = 3; | |
1044 | break; | |
1045 | ||
1046 | case UNOP_CAST: | |
1047 | case UNOP_MEMVAL: | |
1048 | oplen = 3; | |
1049 | args = 1; | |
1050 | break; | |
1051 | ||
1052 | case UNOP_ABS: | |
1053 | case UNOP_CAP: | |
1054 | case UNOP_CHR: | |
1055 | case UNOP_FLOAT: | |
1056 | case UNOP_HIGH: | |
1057 | case UNOP_ODD: | |
1058 | case UNOP_ORD: | |
1059 | case UNOP_TRUNC: | |
c5aa993b JM |
1060 | oplen = 1; |
1061 | args = 1; | |
c906108c SS |
1062 | break; |
1063 | ||
1064 | case STRUCTOP_STRUCT: | |
1065 | case STRUCTOP_PTR: | |
1066 | case OP_LABELED: | |
1067 | args = 1; | |
1068 | /* fall through */ | |
1069 | case OP_M2_STRING: | |
1070 | case OP_STRING: | |
1071 | case OP_NAME: | |
1072 | case OP_EXPRSTRING: | |
1073 | oplen = longest_to_int (inexpr->elts[inend - 2].longconst); | |
1074 | oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1); | |
1075 | break; | |
1076 | ||
1077 | case OP_BITSTRING: | |
1078 | oplen = longest_to_int (inexpr->elts[inend - 2].longconst); | |
1079 | oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
1080 | oplen = 4 + BYTES_TO_EXP_ELEM (oplen); | |
1081 | break; | |
1082 | ||
1083 | case OP_ARRAY: | |
1084 | oplen = 4; | |
1085 | args = longest_to_int (inexpr->elts[inend - 2].longconst); | |
1086 | args -= longest_to_int (inexpr->elts[inend - 3].longconst); | |
1087 | args += 1; | |
1088 | break; | |
1089 | ||
1090 | case TERNOP_COND: | |
1091 | case TERNOP_SLICE: | |
1092 | case TERNOP_SLICE_COUNT: | |
1093 | args = 3; | |
1094 | break; | |
1095 | ||
1096 | case BINOP_ASSIGN_MODIFY: | |
1097 | oplen = 3; | |
1098 | args = 2; | |
1099 | break; | |
1100 | ||
1101 | /* Modula-2 */ | |
c5aa993b | 1102 | case MULTI_SUBSCRIPT: |
c906108c SS |
1103 | oplen = 3; |
1104 | args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst); | |
1105 | break; | |
1106 | ||
1107 | /* C++ */ | |
1108 | case OP_THIS: | |
1109 | oplen = 2; | |
1110 | break; | |
1111 | ||
1112 | default: | |
1113 | args = 1 + ((int) opcode < (int) BINOP_END); | |
1114 | } | |
1115 | ||
1116 | /* Copy the final operator itself, from the end of the input | |
1117 | to the beginning of the output. */ | |
1118 | inend -= oplen; | |
1119 | memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend], | |
1120 | EXP_ELEM_TO_BYTES (oplen)); | |
1121 | outbeg += oplen; | |
1122 | ||
1123 | /* Find the lengths of the arg subexpressions. */ | |
1124 | arglens = (int *) alloca (args * sizeof (int)); | |
1125 | for (i = args - 1; i >= 0; i--) | |
1126 | { | |
1127 | oplen = length_of_subexp (inexpr, inend); | |
1128 | arglens[i] = oplen; | |
1129 | inend -= oplen; | |
1130 | } | |
1131 | ||
1132 | /* Now copy each subexpression, preserving the order of | |
1133 | the subexpressions, but prefixifying each one. | |
1134 | In this loop, inend starts at the beginning of | |
1135 | the expression this level is working on | |
1136 | and marches forward over the arguments. | |
1137 | outbeg does similarly in the output. */ | |
1138 | for (i = 0; i < args; i++) | |
1139 | { | |
1140 | oplen = arglens[i]; | |
1141 | inend += oplen; | |
1142 | prefixify_subexp (inexpr, outexpr, inend, outbeg); | |
1143 | outbeg += oplen; | |
1144 | } | |
1145 | } | |
1146 | \f | |
1147 | /* This page contains the two entry points to this file. */ | |
1148 | ||
1149 | /* Read an expression from the string *STRINGPTR points to, | |
1150 | parse it, and return a pointer to a struct expression that we malloc. | |
1151 | Use block BLOCK as the lexical context for variable names; | |
1152 | if BLOCK is zero, use the block of the selected stack frame. | |
1153 | Meanwhile, advance *STRINGPTR to point after the expression, | |
1154 | at the first nonwhite character that is not part of the expression | |
1155 | (possibly a null character). | |
1156 | ||
1157 | If COMMA is nonzero, stop if a comma is reached. */ | |
1158 | ||
1159 | struct expression * | |
1160 | parse_exp_1 (stringptr, block, comma) | |
1161 | char **stringptr; | |
1162 | struct block *block; | |
1163 | int comma; | |
1164 | { | |
1165 | struct cleanup *old_chain; | |
1166 | ||
1167 | lexptr = *stringptr; | |
1168 | ||
1169 | paren_depth = 0; | |
1170 | type_stack_depth = 0; | |
1171 | ||
1172 | comma_terminates = comma; | |
1173 | ||
1174 | if (lexptr == 0 || *lexptr == 0) | |
1175 | error_no_arg ("expression to compute"); | |
1176 | ||
74b7792f | 1177 | old_chain = make_cleanup (free_funcalls, 0 /*ignore*/); |
c906108c SS |
1178 | funcall_chain = 0; |
1179 | ||
1180 | expression_context_block = block ? block : get_selected_block (); | |
1181 | ||
1182 | namecopy = (char *) alloca (strlen (lexptr) + 1); | |
1183 | expout_size = 10; | |
1184 | expout_ptr = 0; | |
1185 | expout = (struct expression *) | |
1186 | xmalloc (sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_size)); | |
1187 | expout->language_defn = current_language; | |
c13c43fd | 1188 | make_cleanup (free_current_contents, &expout); |
c906108c SS |
1189 | |
1190 | if (current_language->la_parser ()) | |
1191 | current_language->la_error (NULL); | |
1192 | ||
1193 | discard_cleanups (old_chain); | |
1194 | ||
1195 | /* Record the actual number of expression elements, and then | |
1196 | reallocate the expression memory so that we free up any | |
1197 | excess elements. */ | |
1198 | ||
1199 | expout->nelts = expout_ptr; | |
1200 | expout = (struct expression *) | |
1201 | xrealloc ((char *) expout, | |
1202 | sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_ptr));; | |
1203 | ||
1204 | /* Convert expression from postfix form as generated by yacc | |
1205 | parser, to a prefix form. */ | |
1206 | ||
c906108c | 1207 | if (expressiondebug) |
9846de1b | 1208 | dump_prefix_expression (expout, gdb_stdlog, |
c906108c | 1209 | "before conversion to prefix form"); |
c906108c SS |
1210 | |
1211 | prefixify_expression (expout); | |
1212 | ||
c906108c | 1213 | if (expressiondebug) |
9846de1b | 1214 | dump_postfix_expression (expout, gdb_stdlog, |
c906108c | 1215 | "after conversion to prefix form"); |
c906108c SS |
1216 | |
1217 | *stringptr = lexptr; | |
1218 | return expout; | |
1219 | } | |
1220 | ||
1221 | /* Parse STRING as an expression, and complain if this fails | |
1222 | to use up all of the contents of STRING. */ | |
1223 | ||
1224 | struct expression * | |
1225 | parse_expression (string) | |
1226 | char *string; | |
1227 | { | |
1228 | register struct expression *exp; | |
1229 | exp = parse_exp_1 (&string, 0, 0); | |
1230 | if (*string) | |
1231 | error ("Junk after end of expression."); | |
1232 | return exp; | |
1233 | } | |
1234 | \f | |
1235 | /* Stuff for maintaining a stack of types. Currently just used by C, but | |
1236 | probably useful for any language which declares its types "backwards". */ | |
1237 | ||
c5aa993b | 1238 | void |
c906108c SS |
1239 | push_type (tp) |
1240 | enum type_pieces tp; | |
1241 | { | |
1242 | if (type_stack_depth == type_stack_size) | |
1243 | { | |
1244 | type_stack_size *= 2; | |
1245 | type_stack = (union type_stack_elt *) | |
1246 | xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack)); | |
1247 | } | |
1248 | type_stack[type_stack_depth++].piece = tp; | |
1249 | } | |
1250 | ||
1251 | void | |
1252 | push_type_int (n) | |
1253 | int n; | |
1254 | { | |
1255 | if (type_stack_depth == type_stack_size) | |
1256 | { | |
1257 | type_stack_size *= 2; | |
1258 | type_stack = (union type_stack_elt *) | |
1259 | xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack)); | |
1260 | } | |
1261 | type_stack[type_stack_depth++].int_val = n; | |
1262 | } | |
1263 | ||
c5aa993b | 1264 | enum type_pieces |
c906108c SS |
1265 | pop_type () |
1266 | { | |
1267 | if (type_stack_depth) | |
1268 | return type_stack[--type_stack_depth].piece; | |
1269 | return tp_end; | |
1270 | } | |
1271 | ||
1272 | int | |
1273 | pop_type_int () | |
1274 | { | |
1275 | if (type_stack_depth) | |
1276 | return type_stack[--type_stack_depth].int_val; | |
1277 | /* "Can't happen". */ | |
1278 | return 0; | |
1279 | } | |
1280 | ||
1281 | /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE | |
1282 | as modified by all the stuff on the stack. */ | |
1283 | struct type * | |
1284 | follow_types (follow_type) | |
1285 | struct type *follow_type; | |
1286 | { | |
1287 | int done = 0; | |
1288 | int array_size; | |
1289 | struct type *range_type; | |
1290 | ||
1291 | while (!done) | |
1292 | switch (pop_type ()) | |
1293 | { | |
1294 | case tp_end: | |
1295 | done = 1; | |
1296 | break; | |
1297 | case tp_pointer: | |
1298 | follow_type = lookup_pointer_type (follow_type); | |
1299 | break; | |
1300 | case tp_reference: | |
1301 | follow_type = lookup_reference_type (follow_type); | |
1302 | break; | |
1303 | case tp_array: | |
1304 | array_size = pop_type_int (); | |
1305 | /* FIXME-type-allocation: need a way to free this type when we are | |
1306 | done with it. */ | |
1307 | range_type = | |
1308 | create_range_type ((struct type *) NULL, | |
1309 | builtin_type_int, 0, | |
1310 | array_size >= 0 ? array_size - 1 : 0); | |
1311 | follow_type = | |
1312 | create_array_type ((struct type *) NULL, | |
1313 | follow_type, range_type); | |
1314 | if (array_size < 0) | |
c5aa993b | 1315 | TYPE_ARRAY_UPPER_BOUND_TYPE (follow_type) |
c906108c SS |
1316 | = BOUND_CANNOT_BE_DETERMINED; |
1317 | break; | |
1318 | case tp_function: | |
1319 | /* FIXME-type-allocation: need a way to free this type when we are | |
1320 | done with it. */ | |
1321 | follow_type = lookup_function_type (follow_type); | |
1322 | break; | |
1323 | } | |
1324 | return follow_type; | |
1325 | } | |
1326 | \f | |
a14ed312 | 1327 | static void build_parse (void); |
ac9a91a7 JM |
1328 | static void |
1329 | build_parse () | |
c906108c | 1330 | { |
cce74817 JM |
1331 | int i; |
1332 | ||
c906108c SS |
1333 | msym_text_symbol_type = |
1334 | init_type (TYPE_CODE_FUNC, 1, 0, "<text variable, no debug info>", NULL); | |
1335 | TYPE_TARGET_TYPE (msym_text_symbol_type) = builtin_type_int; | |
1336 | msym_data_symbol_type = | |
1337 | init_type (TYPE_CODE_INT, TARGET_INT_BIT / HOST_CHAR_BIT, 0, | |
1338 | "<data variable, no debug info>", NULL); | |
1339 | msym_unknown_symbol_type = | |
1340 | init_type (TYPE_CODE_INT, 1, 0, | |
1341 | "<variable (not text or data), no debug info>", | |
1342 | NULL); | |
cce74817 JM |
1343 | |
1344 | /* create the std_regs table */ | |
1345 | ||
1346 | num_std_regs = 0; | |
1347 | #ifdef PC_REGNUM | |
1348 | if (PC_REGNUM >= 0) | |
1349 | num_std_regs++; | |
1350 | #endif | |
1351 | #ifdef FP_REGNUM | |
1352 | if (FP_REGNUM >= 0) | |
1353 | num_std_regs++; | |
1354 | #endif | |
adf40b2e | 1355 | #ifdef SP_REGNUM |
cce74817 JM |
1356 | if (SP_REGNUM >= 0) |
1357 | num_std_regs++; | |
1358 | #endif | |
1359 | #ifdef PS_REGNUM | |
1360 | if (PS_REGNUM >= 0) | |
1361 | num_std_regs++; | |
1362 | #endif | |
1363 | /* create an empty table */ | |
1364 | std_regs = xmalloc ((num_std_regs + 1) * sizeof *std_regs); | |
1365 | i = 0; | |
1366 | /* fill it in */ | |
1367 | #ifdef PC_REGNUM | |
1368 | std_regs[i].name = "pc"; | |
1369 | std_regs[i].regnum = PC_REGNUM; | |
1370 | i++; | |
1371 | #endif | |
1372 | #ifdef FP_REGNUM | |
1373 | std_regs[i].name = "fp"; | |
1374 | std_regs[i].regnum = FP_REGNUM; | |
1375 | i++; | |
1376 | #endif | |
1377 | #ifdef SP_REGNUM | |
1378 | std_regs[i].name = "sp"; | |
1379 | std_regs[i].regnum = SP_REGNUM; | |
1380 | i++; | |
1381 | #endif | |
1382 | #ifdef PS_REGNUM | |
1383 | std_regs[i].name = "ps"; | |
1384 | std_regs[i].regnum = PS_REGNUM; | |
1385 | i++; | |
1386 | #endif | |
1387 | memset (&std_regs[i], 0, sizeof (std_regs[i])); | |
ac9a91a7 JM |
1388 | } |
1389 | ||
1390 | void | |
1391 | _initialize_parse () | |
1392 | { | |
1393 | type_stack_size = 80; | |
1394 | type_stack_depth = 0; | |
1395 | type_stack = (union type_stack_elt *) | |
1396 | xmalloc (type_stack_size * sizeof (*type_stack)); | |
1397 | ||
1398 | build_parse (); | |
c906108c | 1399 | |
0f71a2f6 JM |
1400 | /* FIXME - For the moment, handle types by swapping them in and out. |
1401 | Should be using the per-architecture data-pointer and a large | |
1402 | struct. */ | |
1403 | register_gdbarch_swap (&msym_text_symbol_type, sizeof (msym_text_symbol_type), NULL); | |
1404 | register_gdbarch_swap (&msym_data_symbol_type, sizeof (msym_data_symbol_type), NULL); | |
1405 | register_gdbarch_swap (&msym_unknown_symbol_type, sizeof (msym_unknown_symbol_type), NULL); | |
1406 | ||
1407 | register_gdbarch_swap (&num_std_regs, sizeof (std_regs), NULL); | |
1408 | register_gdbarch_swap (&std_regs, sizeof (std_regs), NULL); | |
1409 | register_gdbarch_swap (NULL, 0, build_parse); | |
1410 | ||
c906108c | 1411 | add_show_from_set ( |
5d161b24 | 1412 | add_set_cmd ("expression", class_maintenance, var_zinteger, |
c5aa993b JM |
1413 | (char *) &expressiondebug, |
1414 | "Set expression debugging.\n\ | |
c906108c | 1415 | When non-zero, the internal representation of expressions will be printed.", |
5d161b24 DB |
1416 | &setdebuglist), |
1417 | &showdebuglist); | |
c906108c | 1418 | } |