]>
Commit | Line | Data |
---|---|---|
c906108c SS |
1 | /* Parse expressions for GDB. |
2 | Copyright (C) 1986, 89, 90, 91, 94, 1998 Free Software Foundation, Inc. | |
3 | Modified from expread.y by the Department of Computer Science at the | |
4 | State University of New York at Buffalo, 1991. | |
5 | ||
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ | |
21 | ||
22 | /* Parse an expression from text in a string, | |
23 | and return the result as a struct expression pointer. | |
24 | That structure contains arithmetic operations in reverse polish, | |
25 | with constants represented by operations that are followed by special data. | |
26 | See expression.h for the details of the format. | |
27 | What is important here is that it can be built up sequentially | |
28 | during the process of parsing; the lower levels of the tree always | |
29 | come first in the result. */ | |
30 | ||
31 | #include "defs.h" | |
32 | #include "gdb_string.h" | |
33 | #include <ctype.h> | |
34 | #include "symtab.h" | |
35 | #include "gdbtypes.h" | |
36 | #include "frame.h" | |
37 | #include "expression.h" | |
38 | #include "value.h" | |
39 | #include "command.h" | |
40 | #include "language.h" | |
41 | #include "parser-defs.h" | |
42 | #include "gdbcmd.h" | |
43 | #include "symfile.h" /* for overlay functions */ | |
44 | \f | |
45 | /* Global variables declared in parser-defs.h (and commented there). */ | |
46 | struct expression *expout; | |
47 | int expout_size; | |
48 | int expout_ptr; | |
49 | struct block *expression_context_block; | |
50 | struct block *innermost_block; | |
51 | int arglist_len; | |
52 | union type_stack_elt *type_stack; | |
53 | int type_stack_depth, type_stack_size; | |
54 | char *lexptr; | |
55 | char *namecopy; | |
56 | int paren_depth; | |
57 | int comma_terminates; | |
58 | \f | |
59 | #ifdef MAINTENANCE_CMDS | |
60 | static int expressiondebug = 0; | |
61 | #endif | |
62 | ||
63 | extern int hp_som_som_object_present; | |
64 | ||
65 | static void | |
66 | free_funcalls PARAMS ((void)); | |
67 | ||
68 | static void | |
69 | prefixify_expression PARAMS ((struct expression *)); | |
70 | ||
71 | static void | |
72 | prefixify_subexp PARAMS ((struct expression *, struct expression *, int, int)); | |
73 | ||
74 | /* Data structure for saving values of arglist_len for function calls whose | |
75 | arguments contain other function calls. */ | |
76 | ||
77 | struct funcall | |
78 | { | |
79 | struct funcall *next; | |
80 | int arglist_len; | |
81 | }; | |
82 | ||
83 | static struct funcall *funcall_chain; | |
84 | ||
85 | /* Assign machine-independent names to certain registers | |
86 | (unless overridden by the REGISTER_NAMES table) */ | |
87 | ||
88 | #ifdef NO_STD_REGS | |
89 | unsigned num_std_regs = 0; | |
90 | struct std_regs std_regs[1]; | |
91 | #else | |
92 | struct std_regs std_regs[] = { | |
93 | ||
94 | #ifdef PC_REGNUM | |
95 | { "pc", PC_REGNUM }, | |
96 | #endif | |
97 | #ifdef FP_REGNUM | |
98 | { "fp", FP_REGNUM }, | |
99 | #endif | |
100 | #ifdef SP_REGNUM | |
101 | { "sp", SP_REGNUM }, | |
102 | #endif | |
103 | #ifdef PS_REGNUM | |
104 | { "ps", PS_REGNUM }, | |
105 | #endif | |
106 | ||
107 | }; | |
108 | ||
109 | unsigned num_std_regs = (sizeof std_regs / sizeof std_regs[0]); | |
110 | ||
111 | #endif | |
112 | ||
113 | /* The generic method for targets to specify how their registers are | |
114 | named. The mapping can be derived from three sources: | |
115 | REGISTER_NAME; std_regs; or a target specific alias hook. */ | |
116 | ||
117 | int | |
118 | target_map_name_to_register (str, len) | |
119 | char *str; | |
120 | int len; | |
121 | { | |
122 | int i; | |
123 | ||
124 | /* First try target specific aliases. We try these first because on some | |
125 | systems standard names can be context dependent (eg. $pc on a | |
126 | multiprocessor can be could be any of several PCs). */ | |
127 | #ifdef REGISTER_NAME_ALIAS_HOOK | |
128 | i = REGISTER_NAME_ALIAS_HOOK (str, len); | |
129 | if (i >= 0) | |
130 | return i; | |
131 | #endif | |
132 | ||
133 | /* Search architectural register name space. */ | |
134 | for (i = 0; i < NUM_REGS; i++) | |
135 | if (REGISTER_NAME (i) && len == strlen (REGISTER_NAME (i)) | |
136 | && STREQN (str, REGISTER_NAME (i), len)) | |
137 | { | |
138 | return i; | |
139 | } | |
140 | ||
141 | /* Try standard aliases */ | |
142 | for (i = 0; i < num_std_regs; i++) | |
143 | if (std_regs[i].name && len == strlen (std_regs[i].name) | |
144 | && STREQN (str, std_regs[i].name, len)) | |
145 | { | |
146 | return std_regs[i].regnum; | |
147 | } | |
148 | ||
149 | return -1; | |
150 | } | |
151 | ||
152 | /* Begin counting arguments for a function call, | |
153 | saving the data about any containing call. */ | |
154 | ||
155 | void | |
156 | start_arglist () | |
157 | { | |
158 | register struct funcall *new; | |
159 | ||
160 | new = (struct funcall *) xmalloc (sizeof (struct funcall)); | |
161 | new->next = funcall_chain; | |
162 | new->arglist_len = arglist_len; | |
163 | arglist_len = 0; | |
164 | funcall_chain = new; | |
165 | } | |
166 | ||
167 | /* Return the number of arguments in a function call just terminated, | |
168 | and restore the data for the containing function call. */ | |
169 | ||
170 | int | |
171 | end_arglist () | |
172 | { | |
173 | register int val = arglist_len; | |
174 | register struct funcall *call = funcall_chain; | |
175 | funcall_chain = call->next; | |
176 | arglist_len = call->arglist_len; | |
177 | free ((PTR)call); | |
178 | return val; | |
179 | } | |
180 | ||
181 | /* Free everything in the funcall chain. | |
182 | Used when there is an error inside parsing. */ | |
183 | ||
184 | static void | |
185 | free_funcalls () | |
186 | { | |
187 | register struct funcall *call, *next; | |
188 | ||
189 | for (call = funcall_chain; call; call = next) | |
190 | { | |
191 | next = call->next; | |
192 | free ((PTR)call); | |
193 | } | |
194 | } | |
195 | \f | |
196 | /* This page contains the functions for adding data to the struct expression | |
197 | being constructed. */ | |
198 | ||
199 | /* Add one element to the end of the expression. */ | |
200 | ||
201 | /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into | |
202 | a register through here */ | |
203 | ||
204 | void | |
205 | write_exp_elt (expelt) | |
206 | union exp_element expelt; | |
207 | { | |
208 | if (expout_ptr >= expout_size) | |
209 | { | |
210 | expout_size *= 2; | |
211 | expout = (struct expression *) | |
212 | xrealloc ((char *) expout, sizeof (struct expression) | |
213 | + EXP_ELEM_TO_BYTES (expout_size)); | |
214 | } | |
215 | expout->elts[expout_ptr++] = expelt; | |
216 | } | |
217 | ||
218 | void | |
219 | write_exp_elt_opcode (expelt) | |
220 | enum exp_opcode expelt; | |
221 | { | |
222 | union exp_element tmp; | |
223 | ||
224 | tmp.opcode = expelt; | |
225 | ||
226 | write_exp_elt (tmp); | |
227 | } | |
228 | ||
229 | void | |
230 | write_exp_elt_sym (expelt) | |
231 | struct symbol *expelt; | |
232 | { | |
233 | union exp_element tmp; | |
234 | ||
235 | tmp.symbol = expelt; | |
236 | ||
237 | write_exp_elt (tmp); | |
238 | } | |
239 | ||
240 | void | |
241 | write_exp_elt_block (b) | |
242 | struct block *b; | |
243 | { | |
244 | union exp_element tmp; | |
245 | tmp.block = b; | |
246 | write_exp_elt (tmp); | |
247 | } | |
248 | ||
249 | void | |
250 | write_exp_elt_longcst (expelt) | |
251 | LONGEST expelt; | |
252 | { | |
253 | union exp_element tmp; | |
254 | ||
255 | tmp.longconst = expelt; | |
256 | ||
257 | write_exp_elt (tmp); | |
258 | } | |
259 | ||
260 | void | |
261 | write_exp_elt_dblcst (expelt) | |
262 | DOUBLEST expelt; | |
263 | { | |
264 | union exp_element tmp; | |
265 | ||
266 | tmp.doubleconst = expelt; | |
267 | ||
268 | write_exp_elt (tmp); | |
269 | } | |
270 | ||
271 | void | |
272 | write_exp_elt_type (expelt) | |
273 | struct type *expelt; | |
274 | { | |
275 | union exp_element tmp; | |
276 | ||
277 | tmp.type = expelt; | |
278 | ||
279 | write_exp_elt (tmp); | |
280 | } | |
281 | ||
282 | void | |
283 | write_exp_elt_intern (expelt) | |
284 | struct internalvar *expelt; | |
285 | { | |
286 | union exp_element tmp; | |
287 | ||
288 | tmp.internalvar = expelt; | |
289 | ||
290 | write_exp_elt (tmp); | |
291 | } | |
292 | ||
293 | /* Add a string constant to the end of the expression. | |
294 | ||
295 | String constants are stored by first writing an expression element | |
296 | that contains the length of the string, then stuffing the string | |
297 | constant itself into however many expression elements are needed | |
298 | to hold it, and then writing another expression element that contains | |
299 | the length of the string. I.E. an expression element at each end of | |
300 | the string records the string length, so you can skip over the | |
301 | expression elements containing the actual string bytes from either | |
302 | end of the string. Note that this also allows gdb to handle | |
303 | strings with embedded null bytes, as is required for some languages. | |
304 | ||
305 | Don't be fooled by the fact that the string is null byte terminated, | |
306 | this is strictly for the convenience of debugging gdb itself. Gdb | |
307 | Gdb does not depend up the string being null terminated, since the | |
308 | actual length is recorded in expression elements at each end of the | |
309 | string. The null byte is taken into consideration when computing how | |
310 | many expression elements are required to hold the string constant, of | |
311 | course. */ | |
312 | ||
313 | ||
314 | void | |
315 | write_exp_string (str) | |
316 | struct stoken str; | |
317 | { | |
318 | register int len = str.length; | |
319 | register int lenelt; | |
320 | register char *strdata; | |
321 | ||
322 | /* Compute the number of expression elements required to hold the string | |
323 | (including a null byte terminator), along with one expression element | |
324 | at each end to record the actual string length (not including the | |
325 | null byte terminator). */ | |
326 | ||
327 | lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1); | |
328 | ||
329 | /* Ensure that we have enough available expression elements to store | |
330 | everything. */ | |
331 | ||
332 | if ((expout_ptr + lenelt) >= expout_size) | |
333 | { | |
334 | expout_size = max (expout_size * 2, expout_ptr + lenelt + 10); | |
335 | expout = (struct expression *) | |
336 | xrealloc ((char *) expout, (sizeof (struct expression) | |
337 | + EXP_ELEM_TO_BYTES (expout_size))); | |
338 | } | |
339 | ||
340 | /* Write the leading length expression element (which advances the current | |
341 | expression element index), then write the string constant followed by a | |
342 | terminating null byte, and then write the trailing length expression | |
343 | element. */ | |
344 | ||
345 | write_exp_elt_longcst ((LONGEST) len); | |
346 | strdata = (char *) &expout->elts[expout_ptr]; | |
347 | memcpy (strdata, str.ptr, len); | |
348 | *(strdata + len) = '\0'; | |
349 | expout_ptr += lenelt - 2; | |
350 | write_exp_elt_longcst ((LONGEST) len); | |
351 | } | |
352 | ||
353 | /* Add a bitstring constant to the end of the expression. | |
354 | ||
355 | Bitstring constants are stored by first writing an expression element | |
356 | that contains the length of the bitstring (in bits), then stuffing the | |
357 | bitstring constant itself into however many expression elements are | |
358 | needed to hold it, and then writing another expression element that | |
359 | contains the length of the bitstring. I.E. an expression element at | |
360 | each end of the bitstring records the bitstring length, so you can skip | |
361 | over the expression elements containing the actual bitstring bytes from | |
362 | either end of the bitstring. */ | |
363 | ||
364 | void | |
365 | write_exp_bitstring (str) | |
366 | struct stoken str; | |
367 | { | |
368 | register int bits = str.length; /* length in bits */ | |
369 | register int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
370 | register int lenelt; | |
371 | register char *strdata; | |
372 | ||
373 | /* Compute the number of expression elements required to hold the bitstring, | |
374 | along with one expression element at each end to record the actual | |
375 | bitstring length in bits. */ | |
376 | ||
377 | lenelt = 2 + BYTES_TO_EXP_ELEM (len); | |
378 | ||
379 | /* Ensure that we have enough available expression elements to store | |
380 | everything. */ | |
381 | ||
382 | if ((expout_ptr + lenelt) >= expout_size) | |
383 | { | |
384 | expout_size = max (expout_size * 2, expout_ptr + lenelt + 10); | |
385 | expout = (struct expression *) | |
386 | xrealloc ((char *) expout, (sizeof (struct expression) | |
387 | + EXP_ELEM_TO_BYTES (expout_size))); | |
388 | } | |
389 | ||
390 | /* Write the leading length expression element (which advances the current | |
391 | expression element index), then write the bitstring constant, and then | |
392 | write the trailing length expression element. */ | |
393 | ||
394 | write_exp_elt_longcst ((LONGEST) bits); | |
395 | strdata = (char *) &expout->elts[expout_ptr]; | |
396 | memcpy (strdata, str.ptr, len); | |
397 | expout_ptr += lenelt - 2; | |
398 | write_exp_elt_longcst ((LONGEST) bits); | |
399 | } | |
400 | ||
401 | /* Add the appropriate elements for a minimal symbol to the end of | |
402 | the expression. The rationale behind passing in text_symbol_type and | |
403 | data_symbol_type was so that Modula-2 could pass in WORD for | |
404 | data_symbol_type. Perhaps it still is useful to have those types vary | |
405 | based on the language, but they no longer have names like "int", so | |
406 | the initial rationale is gone. */ | |
407 | ||
408 | static struct type *msym_text_symbol_type; | |
409 | static struct type *msym_data_symbol_type; | |
410 | static struct type *msym_unknown_symbol_type; | |
411 | ||
412 | void | |
413 | write_exp_msymbol (msymbol, text_symbol_type, data_symbol_type) | |
414 | struct minimal_symbol *msymbol; | |
415 | struct type *text_symbol_type; | |
416 | struct type *data_symbol_type; | |
417 | { | |
418 | CORE_ADDR addr; | |
419 | ||
420 | write_exp_elt_opcode (OP_LONG); | |
421 | write_exp_elt_type (lookup_pointer_type (builtin_type_void)); | |
422 | ||
423 | addr = SYMBOL_VALUE_ADDRESS (msymbol); | |
424 | if (overlay_debugging) | |
425 | addr = symbol_overlayed_address (addr, SYMBOL_BFD_SECTION (msymbol)); | |
426 | write_exp_elt_longcst ((LONGEST) addr); | |
427 | ||
428 | write_exp_elt_opcode (OP_LONG); | |
429 | ||
430 | write_exp_elt_opcode (UNOP_MEMVAL); | |
431 | switch (msymbol -> type) | |
432 | { | |
433 | case mst_text: | |
434 | case mst_file_text: | |
435 | case mst_solib_trampoline: | |
436 | write_exp_elt_type (msym_text_symbol_type); | |
437 | break; | |
438 | ||
439 | case mst_data: | |
440 | case mst_file_data: | |
441 | case mst_bss: | |
442 | case mst_file_bss: | |
443 | write_exp_elt_type (msym_data_symbol_type); | |
444 | break; | |
445 | ||
446 | default: | |
447 | write_exp_elt_type (msym_unknown_symbol_type); | |
448 | break; | |
449 | } | |
450 | write_exp_elt_opcode (UNOP_MEMVAL); | |
451 | } | |
452 | \f | |
453 | /* Recognize tokens that start with '$'. These include: | |
454 | ||
455 | $regname A native register name or a "standard | |
456 | register name". | |
457 | ||
458 | $variable A convenience variable with a name chosen | |
459 | by the user. | |
460 | ||
461 | $digits Value history with index <digits>, starting | |
462 | from the first value which has index 1. | |
463 | ||
464 | $$digits Value history with index <digits> relative | |
465 | to the last value. I.E. $$0 is the last | |
466 | value, $$1 is the one previous to that, $$2 | |
467 | is the one previous to $$1, etc. | |
468 | ||
469 | $ | $0 | $$0 The last value in the value history. | |
470 | ||
471 | $$ An abbreviation for the second to the last | |
472 | value in the value history, I.E. $$1 | |
473 | ||
474 | */ | |
475 | ||
476 | void | |
477 | write_dollar_variable (str) | |
478 | struct stoken str; | |
479 | { | |
480 | /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1) | |
481 | and $$digits (equivalent to $<-digits> if you could type that). */ | |
482 | ||
483 | struct symbol * sym = NULL; | |
484 | struct minimal_symbol * msym = NULL; | |
485 | ||
486 | int negate = 0; | |
487 | int i = 1; | |
488 | /* Double dollar means negate the number and add -1 as well. | |
489 | Thus $$ alone means -1. */ | |
490 | if (str.length >= 2 && str.ptr[1] == '$') | |
491 | { | |
492 | negate = 1; | |
493 | i = 2; | |
494 | } | |
495 | if (i == str.length) | |
496 | { | |
497 | /* Just dollars (one or two) */ | |
498 | i = - negate; | |
499 | goto handle_last; | |
500 | } | |
501 | /* Is the rest of the token digits? */ | |
502 | for (; i < str.length; i++) | |
503 | if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9')) | |
504 | break; | |
505 | if (i == str.length) | |
506 | { | |
507 | i = atoi (str.ptr + 1 + negate); | |
508 | if (negate) | |
509 | i = - i; | |
510 | goto handle_last; | |
511 | } | |
512 | ||
513 | /* Handle tokens that refer to machine registers: | |
514 | $ followed by a register name. */ | |
515 | i = target_map_name_to_register( str.ptr + 1, str.length - 1 ); | |
516 | if( i >= 0 ) | |
517 | goto handle_register; | |
518 | ||
519 | /* On HP-UX, certain system routines (millicode) have names beginning | |
520 | with $ or $$, e.g. $$dyncall, which handles inter-space procedure | |
521 | calls on PA-RISC. Check for those, first. */ | |
522 | ||
523 | sym = lookup_symbol (copy_name (str), (struct block *) NULL, | |
524 | VAR_NAMESPACE, (int *) NULL, (struct symtab **) NULL); | |
525 | if (sym) | |
526 | { | |
527 | write_exp_elt_opcode (OP_VAR_VALUE); | |
528 | write_exp_elt_block (block_found); /* set by lookup_symbol */ | |
529 | write_exp_elt_sym (sym); | |
530 | write_exp_elt_opcode (OP_VAR_VALUE); | |
531 | return; | |
532 | } | |
533 | msym = lookup_minimal_symbol (copy_name (str), NULL, NULL); | |
534 | if (msym) | |
535 | { | |
536 | write_exp_msymbol (msym, | |
537 | lookup_function_type (builtin_type_int), | |
538 | builtin_type_int); | |
539 | return; | |
540 | } | |
541 | ||
542 | /* Any other names starting in $ are debugger internal variables. */ | |
543 | ||
544 | write_exp_elt_opcode (OP_INTERNALVAR); | |
545 | write_exp_elt_intern (lookup_internalvar (copy_name (str) + 1)); | |
546 | write_exp_elt_opcode (OP_INTERNALVAR); | |
547 | return; | |
548 | handle_last: | |
549 | write_exp_elt_opcode (OP_LAST); | |
550 | write_exp_elt_longcst ((LONGEST) i); | |
551 | write_exp_elt_opcode (OP_LAST); | |
552 | return; | |
553 | handle_register: | |
554 | write_exp_elt_opcode (OP_REGISTER); | |
555 | write_exp_elt_longcst (i); | |
556 | write_exp_elt_opcode (OP_REGISTER); | |
557 | return; | |
558 | } | |
559 | ||
560 | ||
561 | /* Parse a string that is possibly a namespace / nested class | |
562 | specification, i.e., something of the form A::B::C::x. Input | |
563 | (NAME) is the entire string; LEN is the current valid length; the | |
564 | output is a string, TOKEN, which points to the largest recognized | |
565 | prefix which is a series of namespaces or classes. CLASS_PREFIX is | |
566 | another output, which records whether a nested class spec was | |
567 | recognized (= 1) or a fully qualified variable name was found (= | |
568 | 0). ARGPTR is side-effected (if non-NULL) to point to beyond the | |
569 | string recognized and consumed by this routine. | |
570 | ||
571 | The return value is a pointer to the symbol for the base class or | |
572 | variable if found, or NULL if not found. Callers must check this | |
573 | first -- if NULL, the outputs may not be correct. | |
574 | ||
575 | This function is used c-exp.y. This is used specifically to get | |
576 | around HP aCC (and possibly other compilers), which insists on | |
577 | generating names with embedded colons for namespace or nested class | |
578 | members. | |
579 | ||
580 | (Argument LEN is currently unused. 1997-08-27) | |
581 | ||
582 | Callers must free memory allocated for the output string TOKEN. */ | |
583 | ||
584 | static const char coloncolon[2] = {':',':'}; | |
585 | ||
586 | struct symbol * | |
587 | parse_nested_classes_for_hpacc (name, len, token, class_prefix, argptr) | |
588 | char * name; | |
589 | int len; | |
590 | char ** token; | |
591 | int * class_prefix; | |
592 | char ** argptr; | |
593 | { | |
594 | /* Comment below comes from decode_line_1 which has very similar | |
595 | code, which is called for "break" command parsing. */ | |
596 | ||
597 | /* We have what looks like a class or namespace | |
598 | scope specification (A::B), possibly with many | |
599 | levels of namespaces or classes (A::B::C::D). | |
600 | ||
601 | Some versions of the HP ANSI C++ compiler (as also possibly | |
602 | other compilers) generate class/function/member names with | |
603 | embedded double-colons if they are inside namespaces. To | |
604 | handle this, we loop a few times, considering larger and | |
605 | larger prefixes of the string as though they were single | |
606 | symbols. So, if the initially supplied string is | |
607 | A::B::C::D::foo, we have to look up "A", then "A::B", | |
608 | then "A::B::C", then "A::B::C::D", and finally | |
609 | "A::B::C::D::foo" as single, monolithic symbols, because | |
610 | A, B, C or D may be namespaces. | |
611 | ||
612 | Note that namespaces can nest only inside other | |
613 | namespaces, and not inside classes. So we need only | |
614 | consider *prefixes* of the string; there is no need to look up | |
615 | "B::C" separately as a symbol in the previous example. */ | |
616 | ||
617 | register char * p; | |
618 | char * start, * end; | |
619 | char * prefix = NULL; | |
620 | char * tmp; | |
621 | struct symbol * sym_class = NULL; | |
622 | struct symbol * sym_var = NULL; | |
623 | struct type * t; | |
624 | register int i; | |
625 | int colons_found = 0; | |
626 | int prefix_len = 0; | |
627 | int done = 0; | |
628 | char * q; | |
629 | ||
630 | /* Check for HP-compiled executable -- in other cases | |
631 | return NULL, and caller must default to standard GDB | |
632 | behaviour. */ | |
633 | ||
634 | if (!hp_som_som_object_present) | |
635 | return (struct symbol *) NULL; | |
636 | ||
637 | p = name; | |
638 | ||
639 | /* Skip over whitespace and possible global "::" */ | |
640 | while (*p && (*p == ' ' || *p == '\t')) p++; | |
641 | if (p[0] == ':' && p[1] == ':') | |
642 | p += 2; | |
643 | while (*p && (*p == ' ' || *p == '\t')) p++; | |
644 | ||
645 | while (1) | |
646 | { | |
647 | /* Get to the end of the next namespace or class spec. */ | |
648 | /* If we're looking at some non-token, fail immediately */ | |
649 | start = p; | |
650 | if (!(isalpha (*p) || *p == '$' || *p == '_')) | |
651 | return (struct symbol *) NULL; | |
652 | p++; | |
653 | while (*p && (isalnum (*p) || *p == '$' || *p == '_')) p++; | |
654 | ||
655 | if (*p == '<') | |
656 | { | |
657 | /* If we have the start of a template specification, | |
658 | scan right ahead to its end */ | |
659 | q = find_template_name_end (p); | |
660 | if (q) | |
661 | p = q; | |
662 | } | |
663 | ||
664 | end = p; | |
665 | ||
666 | /* Skip over "::" and whitespace for next time around */ | |
667 | while (*p && (*p == ' ' || *p == '\t')) p++; | |
668 | if (p[0] == ':' && p[1] == ':') | |
669 | p += 2; | |
670 | while (*p && (*p == ' ' || *p == '\t')) p++; | |
671 | ||
672 | /* Done with tokens? */ | |
673 | if (!*p || !(isalpha (*p) || *p == '$' || *p == '_')) | |
674 | done = 1; | |
675 | ||
676 | tmp = (char *) alloca (prefix_len + end - start + 3); | |
677 | if (prefix) | |
678 | { | |
679 | memcpy (tmp, prefix, prefix_len); | |
680 | memcpy (tmp + prefix_len, coloncolon, 2); | |
681 | memcpy (tmp + prefix_len + 2, start, end - start); | |
682 | tmp[prefix_len + 2 + end - start] = '\000'; | |
683 | } | |
684 | else | |
685 | { | |
686 | memcpy (tmp, start, end - start); | |
687 | tmp[end - start] = '\000'; | |
688 | } | |
689 | ||
690 | prefix = tmp; | |
691 | prefix_len = strlen (prefix); | |
692 | ||
693 | #if 0 /* DEBUGGING */ | |
694 | printf ("Searching for nested class spec: Prefix is %s\n", prefix); | |
695 | #endif | |
696 | ||
697 | /* See if the prefix we have now is something we know about */ | |
698 | ||
699 | if (!done) | |
700 | { | |
701 | /* More tokens to process, so this must be a class/namespace */ | |
702 | sym_class = lookup_symbol (prefix, 0, STRUCT_NAMESPACE, | |
703 | 0, (struct symtab **) NULL); | |
704 | } | |
705 | else | |
706 | { | |
707 | /* No more tokens, so try as a variable first */ | |
708 | sym_var = lookup_symbol (prefix, 0, VAR_NAMESPACE, | |
709 | 0, (struct symtab **) NULL); | |
710 | /* If failed, try as class/namespace */ | |
711 | if (!sym_var) | |
712 | sym_class = lookup_symbol (prefix, 0, STRUCT_NAMESPACE, | |
713 | 0, (struct symtab **) NULL); | |
714 | } | |
715 | ||
716 | if (sym_var || | |
717 | (sym_class && | |
718 | (t = check_typedef (SYMBOL_TYPE (sym_class)), | |
719 | (TYPE_CODE (t) == TYPE_CODE_STRUCT | |
720 | || TYPE_CODE (t) == TYPE_CODE_UNION)))) | |
721 | { | |
722 | /* We found a valid token */ | |
723 | *token = (char *) xmalloc (prefix_len + 1 ); | |
724 | memcpy (*token, prefix, prefix_len); | |
725 | (*token)[prefix_len] = '\000'; | |
726 | break; | |
727 | } | |
728 | ||
729 | /* No variable or class/namespace found, no more tokens */ | |
730 | if (done) | |
731 | return (struct symbol *) NULL; | |
732 | } | |
733 | ||
734 | /* Out of loop, so we must have found a valid token */ | |
735 | if (sym_var) | |
736 | *class_prefix = 0; | |
737 | else | |
738 | *class_prefix = 1; | |
739 | ||
740 | if (argptr) | |
741 | *argptr = done ? p : end; | |
742 | ||
743 | #if 0 /* DEBUGGING */ | |
744 | printf ("Searching for nested class spec: Token is %s, class_prefix %d\n", *token, *class_prefix); | |
745 | #endif | |
746 | ||
747 | return sym_var ? sym_var : sym_class; /* found */ | |
748 | } | |
749 | ||
750 | char * | |
751 | find_template_name_end (p) | |
752 | char * p; | |
753 | { | |
754 | int depth = 1; | |
755 | int just_seen_right = 0; | |
756 | int just_seen_colon = 0; | |
757 | int just_seen_space = 0; | |
758 | ||
759 | if (!p || (*p != '<')) | |
760 | return 0; | |
761 | ||
762 | while (*++p) | |
763 | { | |
764 | switch (*p) | |
765 | { | |
766 | case '\'': case '\"': | |
767 | case '{': case '}': | |
768 | /* In future, may want to allow these?? */ | |
769 | return 0; | |
770 | case '<': | |
771 | depth++; /* start nested template */ | |
772 | if (just_seen_colon || just_seen_right || just_seen_space) | |
773 | return 0; /* but not after : or :: or > or space */ | |
774 | break; | |
775 | case '>': | |
776 | if (just_seen_colon || just_seen_right) | |
777 | return 0; /* end a (nested?) template */ | |
778 | just_seen_right = 1; /* but not after : or :: */ | |
779 | if (--depth == 0) /* also disallow >>, insist on > > */ | |
780 | return ++p; /* if outermost ended, return */ | |
781 | break; | |
782 | case ':': | |
783 | if (just_seen_space || (just_seen_colon > 1)) | |
784 | return 0; /* nested class spec coming up */ | |
785 | just_seen_colon++; /* we allow :: but not :::: */ | |
786 | break; | |
787 | case ' ': | |
788 | break; | |
789 | default: | |
790 | if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */ | |
791 | (*p >= 'A' && *p <= 'Z') || | |
792 | (*p >= '0' && *p <= '9') || | |
793 | (*p == '_') || (*p == ',') || /* commas for template args */ | |
794 | (*p == '&') || (*p == '*') || /* pointer and ref types */ | |
795 | (*p == '(') || (*p == ')') || /* function types */ | |
796 | (*p == '[') || (*p == ']') )) /* array types */ | |
797 | return 0; | |
798 | } | |
799 | if (*p != ' ') | |
800 | just_seen_space = 0; | |
801 | if (*p != ':') | |
802 | just_seen_colon = 0; | |
803 | if (*p != '>') | |
804 | just_seen_right = 0; | |
805 | } | |
806 | return 0; | |
807 | } | |
808 | ||
809 | ||
810 | \f | |
811 | /* Return a null-terminated temporary copy of the name | |
812 | of a string token. */ | |
813 | ||
814 | char * | |
815 | copy_name (token) | |
816 | struct stoken token; | |
817 | { | |
818 | memcpy (namecopy, token.ptr, token.length); | |
819 | namecopy[token.length] = 0; | |
820 | return namecopy; | |
821 | } | |
822 | \f | |
823 | /* Reverse an expression from suffix form (in which it is constructed) | |
824 | to prefix form (in which we can conveniently print or execute it). */ | |
825 | ||
826 | static void | |
827 | prefixify_expression (expr) | |
828 | register struct expression *expr; | |
829 | { | |
830 | register int len = | |
831 | sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts); | |
832 | register struct expression *temp; | |
833 | register int inpos = expr->nelts, outpos = 0; | |
834 | ||
835 | temp = (struct expression *) alloca (len); | |
836 | ||
837 | /* Copy the original expression into temp. */ | |
838 | memcpy (temp, expr, len); | |
839 | ||
840 | prefixify_subexp (temp, expr, inpos, outpos); | |
841 | } | |
842 | ||
843 | /* Return the number of exp_elements in the subexpression of EXPR | |
844 | whose last exp_element is at index ENDPOS - 1 in EXPR. */ | |
845 | ||
846 | int | |
847 | length_of_subexp (expr, endpos) | |
848 | register struct expression *expr; | |
849 | register int endpos; | |
850 | { | |
851 | register int oplen = 1; | |
852 | register int args = 0; | |
853 | register int i; | |
854 | ||
855 | if (endpos < 1) | |
856 | error ("?error in length_of_subexp"); | |
857 | ||
858 | i = (int) expr->elts[endpos - 1].opcode; | |
859 | ||
860 | switch (i) | |
861 | { | |
862 | /* C++ */ | |
863 | case OP_SCOPE: | |
864 | oplen = longest_to_int (expr->elts[endpos - 2].longconst); | |
865 | oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1); | |
866 | break; | |
867 | ||
868 | case OP_LONG: | |
869 | case OP_DOUBLE: | |
870 | case OP_VAR_VALUE: | |
871 | oplen = 4; | |
872 | break; | |
873 | ||
874 | case OP_TYPE: | |
875 | case OP_BOOL: | |
876 | case OP_LAST: | |
877 | case OP_REGISTER: | |
878 | case OP_INTERNALVAR: | |
879 | oplen = 3; | |
880 | break; | |
881 | ||
882 | case OP_COMPLEX: | |
883 | oplen = 1; | |
884 | args = 2; | |
885 | break; | |
886 | ||
887 | case OP_FUNCALL: | |
888 | case OP_F77_UNDETERMINED_ARGLIST: | |
889 | oplen = 3; | |
890 | args = 1 + longest_to_int (expr->elts[endpos - 2].longconst); | |
891 | break; | |
892 | ||
893 | case UNOP_MAX: | |
894 | case UNOP_MIN: | |
895 | oplen = 3; | |
896 | break; | |
897 | ||
898 | case BINOP_VAL: | |
899 | case UNOP_CAST: | |
900 | case UNOP_MEMVAL: | |
901 | oplen = 3; | |
902 | args = 1; | |
903 | break; | |
904 | ||
905 | case UNOP_ABS: | |
906 | case UNOP_CAP: | |
907 | case UNOP_CHR: | |
908 | case UNOP_FLOAT: | |
909 | case UNOP_HIGH: | |
910 | case UNOP_ODD: | |
911 | case UNOP_ORD: | |
912 | case UNOP_TRUNC: | |
913 | oplen = 1; | |
914 | args = 1; | |
915 | break; | |
916 | ||
917 | case OP_LABELED: | |
918 | case STRUCTOP_STRUCT: | |
919 | case STRUCTOP_PTR: | |
920 | args = 1; | |
921 | /* fall through */ | |
922 | case OP_M2_STRING: | |
923 | case OP_STRING: | |
924 | case OP_NAME: | |
925 | case OP_EXPRSTRING: | |
926 | oplen = longest_to_int (expr->elts[endpos - 2].longconst); | |
927 | oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1); | |
928 | break; | |
929 | ||
930 | case OP_BITSTRING: | |
931 | oplen = longest_to_int (expr->elts[endpos - 2].longconst); | |
932 | oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
933 | oplen = 4 + BYTES_TO_EXP_ELEM (oplen); | |
934 | break; | |
935 | ||
936 | case OP_ARRAY: | |
937 | oplen = 4; | |
938 | args = longest_to_int (expr->elts[endpos - 2].longconst); | |
939 | args -= longest_to_int (expr->elts[endpos - 3].longconst); | |
940 | args += 1; | |
941 | break; | |
942 | ||
943 | case TERNOP_COND: | |
944 | case TERNOP_SLICE: | |
945 | case TERNOP_SLICE_COUNT: | |
946 | args = 3; | |
947 | break; | |
948 | ||
949 | /* Modula-2 */ | |
950 | case MULTI_SUBSCRIPT: | |
951 | oplen = 3; | |
952 | args = 1 + longest_to_int (expr->elts[endpos- 2].longconst); | |
953 | break; | |
954 | ||
955 | case BINOP_ASSIGN_MODIFY: | |
956 | oplen = 3; | |
957 | args = 2; | |
958 | break; | |
959 | ||
960 | /* C++ */ | |
961 | case OP_THIS: | |
962 | oplen = 2; | |
963 | break; | |
964 | ||
965 | default: | |
966 | args = 1 + (i < (int) BINOP_END); | |
967 | } | |
968 | ||
969 | while (args > 0) | |
970 | { | |
971 | oplen += length_of_subexp (expr, endpos - oplen); | |
972 | args--; | |
973 | } | |
974 | ||
975 | return oplen; | |
976 | } | |
977 | ||
978 | /* Copy the subexpression ending just before index INEND in INEXPR | |
979 | into OUTEXPR, starting at index OUTBEG. | |
980 | In the process, convert it from suffix to prefix form. */ | |
981 | ||
982 | static void | |
983 | prefixify_subexp (inexpr, outexpr, inend, outbeg) | |
984 | register struct expression *inexpr; | |
985 | struct expression *outexpr; | |
986 | register int inend; | |
987 | int outbeg; | |
988 | { | |
989 | register int oplen = 1; | |
990 | register int args = 0; | |
991 | register int i; | |
992 | int *arglens; | |
993 | enum exp_opcode opcode; | |
994 | ||
995 | /* Compute how long the last operation is (in OPLEN), | |
996 | and also how many preceding subexpressions serve as | |
997 | arguments for it (in ARGS). */ | |
998 | ||
999 | opcode = inexpr->elts[inend - 1].opcode; | |
1000 | switch (opcode) | |
1001 | { | |
1002 | /* C++ */ | |
1003 | case OP_SCOPE: | |
1004 | oplen = longest_to_int (inexpr->elts[inend - 2].longconst); | |
1005 | oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1); | |
1006 | break; | |
1007 | ||
1008 | case OP_LONG: | |
1009 | case OP_DOUBLE: | |
1010 | case OP_VAR_VALUE: | |
1011 | oplen = 4; | |
1012 | break; | |
1013 | ||
1014 | case OP_TYPE: | |
1015 | case OP_BOOL: | |
1016 | case OP_LAST: | |
1017 | case OP_REGISTER: | |
1018 | case OP_INTERNALVAR: | |
1019 | oplen = 3; | |
1020 | break; | |
1021 | ||
1022 | case OP_COMPLEX: | |
1023 | oplen = 1; | |
1024 | args = 2; | |
1025 | break; | |
1026 | ||
1027 | case OP_FUNCALL: | |
1028 | case OP_F77_UNDETERMINED_ARGLIST: | |
1029 | oplen = 3; | |
1030 | args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst); | |
1031 | break; | |
1032 | ||
1033 | case UNOP_MIN: | |
1034 | case UNOP_MAX: | |
1035 | oplen = 3; | |
1036 | break; | |
1037 | ||
1038 | case UNOP_CAST: | |
1039 | case UNOP_MEMVAL: | |
1040 | oplen = 3; | |
1041 | args = 1; | |
1042 | break; | |
1043 | ||
1044 | case UNOP_ABS: | |
1045 | case UNOP_CAP: | |
1046 | case UNOP_CHR: | |
1047 | case UNOP_FLOAT: | |
1048 | case UNOP_HIGH: | |
1049 | case UNOP_ODD: | |
1050 | case UNOP_ORD: | |
1051 | case UNOP_TRUNC: | |
1052 | oplen=1; | |
1053 | args=1; | |
1054 | break; | |
1055 | ||
1056 | case STRUCTOP_STRUCT: | |
1057 | case STRUCTOP_PTR: | |
1058 | case OP_LABELED: | |
1059 | args = 1; | |
1060 | /* fall through */ | |
1061 | case OP_M2_STRING: | |
1062 | case OP_STRING: | |
1063 | case OP_NAME: | |
1064 | case OP_EXPRSTRING: | |
1065 | oplen = longest_to_int (inexpr->elts[inend - 2].longconst); | |
1066 | oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1); | |
1067 | break; | |
1068 | ||
1069 | case OP_BITSTRING: | |
1070 | oplen = longest_to_int (inexpr->elts[inend - 2].longconst); | |
1071 | oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
1072 | oplen = 4 + BYTES_TO_EXP_ELEM (oplen); | |
1073 | break; | |
1074 | ||
1075 | case OP_ARRAY: | |
1076 | oplen = 4; | |
1077 | args = longest_to_int (inexpr->elts[inend - 2].longconst); | |
1078 | args -= longest_to_int (inexpr->elts[inend - 3].longconst); | |
1079 | args += 1; | |
1080 | break; | |
1081 | ||
1082 | case TERNOP_COND: | |
1083 | case TERNOP_SLICE: | |
1084 | case TERNOP_SLICE_COUNT: | |
1085 | args = 3; | |
1086 | break; | |
1087 | ||
1088 | case BINOP_ASSIGN_MODIFY: | |
1089 | oplen = 3; | |
1090 | args = 2; | |
1091 | break; | |
1092 | ||
1093 | /* Modula-2 */ | |
1094 | case MULTI_SUBSCRIPT: | |
1095 | oplen = 3; | |
1096 | args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst); | |
1097 | break; | |
1098 | ||
1099 | /* C++ */ | |
1100 | case OP_THIS: | |
1101 | oplen = 2; | |
1102 | break; | |
1103 | ||
1104 | default: | |
1105 | args = 1 + ((int) opcode < (int) BINOP_END); | |
1106 | } | |
1107 | ||
1108 | /* Copy the final operator itself, from the end of the input | |
1109 | to the beginning of the output. */ | |
1110 | inend -= oplen; | |
1111 | memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend], | |
1112 | EXP_ELEM_TO_BYTES (oplen)); | |
1113 | outbeg += oplen; | |
1114 | ||
1115 | /* Find the lengths of the arg subexpressions. */ | |
1116 | arglens = (int *) alloca (args * sizeof (int)); | |
1117 | for (i = args - 1; i >= 0; i--) | |
1118 | { | |
1119 | oplen = length_of_subexp (inexpr, inend); | |
1120 | arglens[i] = oplen; | |
1121 | inend -= oplen; | |
1122 | } | |
1123 | ||
1124 | /* Now copy each subexpression, preserving the order of | |
1125 | the subexpressions, but prefixifying each one. | |
1126 | In this loop, inend starts at the beginning of | |
1127 | the expression this level is working on | |
1128 | and marches forward over the arguments. | |
1129 | outbeg does similarly in the output. */ | |
1130 | for (i = 0; i < args; i++) | |
1131 | { | |
1132 | oplen = arglens[i]; | |
1133 | inend += oplen; | |
1134 | prefixify_subexp (inexpr, outexpr, inend, outbeg); | |
1135 | outbeg += oplen; | |
1136 | } | |
1137 | } | |
1138 | \f | |
1139 | /* This page contains the two entry points to this file. */ | |
1140 | ||
1141 | /* Read an expression from the string *STRINGPTR points to, | |
1142 | parse it, and return a pointer to a struct expression that we malloc. | |
1143 | Use block BLOCK as the lexical context for variable names; | |
1144 | if BLOCK is zero, use the block of the selected stack frame. | |
1145 | Meanwhile, advance *STRINGPTR to point after the expression, | |
1146 | at the first nonwhite character that is not part of the expression | |
1147 | (possibly a null character). | |
1148 | ||
1149 | If COMMA is nonzero, stop if a comma is reached. */ | |
1150 | ||
1151 | struct expression * | |
1152 | parse_exp_1 (stringptr, block, comma) | |
1153 | char **stringptr; | |
1154 | struct block *block; | |
1155 | int comma; | |
1156 | { | |
1157 | struct cleanup *old_chain; | |
1158 | ||
1159 | lexptr = *stringptr; | |
1160 | ||
1161 | paren_depth = 0; | |
1162 | type_stack_depth = 0; | |
1163 | ||
1164 | comma_terminates = comma; | |
1165 | ||
1166 | if (lexptr == 0 || *lexptr == 0) | |
1167 | error_no_arg ("expression to compute"); | |
1168 | ||
1169 | old_chain = make_cleanup ((make_cleanup_func) free_funcalls, 0); | |
1170 | funcall_chain = 0; | |
1171 | ||
1172 | expression_context_block = block ? block : get_selected_block (); | |
1173 | ||
1174 | namecopy = (char *) alloca (strlen (lexptr) + 1); | |
1175 | expout_size = 10; | |
1176 | expout_ptr = 0; | |
1177 | expout = (struct expression *) | |
1178 | xmalloc (sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_size)); | |
1179 | expout->language_defn = current_language; | |
1180 | make_cleanup ((make_cleanup_func) free_current_contents, &expout); | |
1181 | ||
1182 | if (current_language->la_parser ()) | |
1183 | current_language->la_error (NULL); | |
1184 | ||
1185 | discard_cleanups (old_chain); | |
1186 | ||
1187 | /* Record the actual number of expression elements, and then | |
1188 | reallocate the expression memory so that we free up any | |
1189 | excess elements. */ | |
1190 | ||
1191 | expout->nelts = expout_ptr; | |
1192 | expout = (struct expression *) | |
1193 | xrealloc ((char *) expout, | |
1194 | sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_ptr));; | |
1195 | ||
1196 | /* Convert expression from postfix form as generated by yacc | |
1197 | parser, to a prefix form. */ | |
1198 | ||
1199 | #ifdef MAINTENANCE_CMDS | |
1200 | if (expressiondebug) | |
1201 | dump_prefix_expression (expout, gdb_stdout, | |
1202 | "before conversion to prefix form"); | |
1203 | #endif /* MAINTENANCE_CMDS */ | |
1204 | ||
1205 | prefixify_expression (expout); | |
1206 | ||
1207 | #ifdef MAINTENANCE_CMDS | |
1208 | if (expressiondebug) | |
1209 | dump_postfix_expression (expout, gdb_stdout, | |
1210 | "after conversion to prefix form"); | |
1211 | #endif /* MAINTENANCE_CMDS */ | |
1212 | ||
1213 | *stringptr = lexptr; | |
1214 | return expout; | |
1215 | } | |
1216 | ||
1217 | /* Parse STRING as an expression, and complain if this fails | |
1218 | to use up all of the contents of STRING. */ | |
1219 | ||
1220 | struct expression * | |
1221 | parse_expression (string) | |
1222 | char *string; | |
1223 | { | |
1224 | register struct expression *exp; | |
1225 | exp = parse_exp_1 (&string, 0, 0); | |
1226 | if (*string) | |
1227 | error ("Junk after end of expression."); | |
1228 | return exp; | |
1229 | } | |
1230 | \f | |
1231 | /* Stuff for maintaining a stack of types. Currently just used by C, but | |
1232 | probably useful for any language which declares its types "backwards". */ | |
1233 | ||
1234 | void | |
1235 | push_type (tp) | |
1236 | enum type_pieces tp; | |
1237 | { | |
1238 | if (type_stack_depth == type_stack_size) | |
1239 | { | |
1240 | type_stack_size *= 2; | |
1241 | type_stack = (union type_stack_elt *) | |
1242 | xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack)); | |
1243 | } | |
1244 | type_stack[type_stack_depth++].piece = tp; | |
1245 | } | |
1246 | ||
1247 | void | |
1248 | push_type_int (n) | |
1249 | int n; | |
1250 | { | |
1251 | if (type_stack_depth == type_stack_size) | |
1252 | { | |
1253 | type_stack_size *= 2; | |
1254 | type_stack = (union type_stack_elt *) | |
1255 | xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack)); | |
1256 | } | |
1257 | type_stack[type_stack_depth++].int_val = n; | |
1258 | } | |
1259 | ||
1260 | enum type_pieces | |
1261 | pop_type () | |
1262 | { | |
1263 | if (type_stack_depth) | |
1264 | return type_stack[--type_stack_depth].piece; | |
1265 | return tp_end; | |
1266 | } | |
1267 | ||
1268 | int | |
1269 | pop_type_int () | |
1270 | { | |
1271 | if (type_stack_depth) | |
1272 | return type_stack[--type_stack_depth].int_val; | |
1273 | /* "Can't happen". */ | |
1274 | return 0; | |
1275 | } | |
1276 | ||
1277 | /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE | |
1278 | as modified by all the stuff on the stack. */ | |
1279 | struct type * | |
1280 | follow_types (follow_type) | |
1281 | struct type *follow_type; | |
1282 | { | |
1283 | int done = 0; | |
1284 | int array_size; | |
1285 | struct type *range_type; | |
1286 | ||
1287 | while (!done) | |
1288 | switch (pop_type ()) | |
1289 | { | |
1290 | case tp_end: | |
1291 | done = 1; | |
1292 | break; | |
1293 | case tp_pointer: | |
1294 | follow_type = lookup_pointer_type (follow_type); | |
1295 | break; | |
1296 | case tp_reference: | |
1297 | follow_type = lookup_reference_type (follow_type); | |
1298 | break; | |
1299 | case tp_array: | |
1300 | array_size = pop_type_int (); | |
1301 | /* FIXME-type-allocation: need a way to free this type when we are | |
1302 | done with it. */ | |
1303 | range_type = | |
1304 | create_range_type ((struct type *) NULL, | |
1305 | builtin_type_int, 0, | |
1306 | array_size >= 0 ? array_size - 1 : 0); | |
1307 | follow_type = | |
1308 | create_array_type ((struct type *) NULL, | |
1309 | follow_type, range_type); | |
1310 | if (array_size < 0) | |
1311 | TYPE_ARRAY_UPPER_BOUND_TYPE(follow_type) | |
1312 | = BOUND_CANNOT_BE_DETERMINED; | |
1313 | break; | |
1314 | case tp_function: | |
1315 | /* FIXME-type-allocation: need a way to free this type when we are | |
1316 | done with it. */ | |
1317 | follow_type = lookup_function_type (follow_type); | |
1318 | break; | |
1319 | } | |
1320 | return follow_type; | |
1321 | } | |
1322 | \f | |
1323 | void | |
1324 | _initialize_parse () | |
1325 | { | |
1326 | type_stack_size = 80; | |
1327 | type_stack_depth = 0; | |
1328 | type_stack = (union type_stack_elt *) | |
1329 | xmalloc (type_stack_size * sizeof (*type_stack)); | |
1330 | ||
1331 | msym_text_symbol_type = | |
1332 | init_type (TYPE_CODE_FUNC, 1, 0, "<text variable, no debug info>", NULL); | |
1333 | TYPE_TARGET_TYPE (msym_text_symbol_type) = builtin_type_int; | |
1334 | msym_data_symbol_type = | |
1335 | init_type (TYPE_CODE_INT, TARGET_INT_BIT / HOST_CHAR_BIT, 0, | |
1336 | "<data variable, no debug info>", NULL); | |
1337 | msym_unknown_symbol_type = | |
1338 | init_type (TYPE_CODE_INT, 1, 0, | |
1339 | "<variable (not text or data), no debug info>", | |
1340 | NULL); | |
1341 | ||
1342 | #ifdef MAINTENANCE_CMDS | |
1343 | add_show_from_set ( | |
1344 | add_set_cmd ("expressiondebug", class_maintenance, var_zinteger, | |
1345 | (char *)&expressiondebug, | |
1346 | "Set expression debugging.\n\ | |
1347 | When non-zero, the internal representation of expressions will be printed.", | |
1348 | &setlist), | |
1349 | &showlist); | |
1350 | #endif | |
1351 | } |