]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Parse expressions for GDB. |
cce74817 | 2 | Copyright (C) 1986, 89, 90, 91, 94, 98, 1999 Free Software Foundation, Inc. |
c906108c SS |
3 | Modified from expread.y by the Department of Computer Science at the |
4 | State University of New York at Buffalo, 1991. | |
5 | ||
c5aa993b | 6 | This file is part of GDB. |
c906108c | 7 | |
c5aa993b JM |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
c906108c | 12 | |
c5aa993b JM |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
c906108c | 17 | |
c5aa993b JM |
18 | You should have received a copy of the GNU General Public License |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, | |
21 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
22 | |
23 | /* Parse an expression from text in a string, | |
24 | and return the result as a struct expression pointer. | |
25 | That structure contains arithmetic operations in reverse polish, | |
26 | with constants represented by operations that are followed by special data. | |
27 | See expression.h for the details of the format. | |
28 | What is important here is that it can be built up sequentially | |
29 | during the process of parsing; the lower levels of the tree always | |
30 | come first in the result. */ | |
c5aa993b | 31 | |
cce74817 JM |
32 | #include <ctype.h> |
33 | ||
c906108c SS |
34 | #include "defs.h" |
35 | #include "gdb_string.h" | |
c906108c SS |
36 | #include "symtab.h" |
37 | #include "gdbtypes.h" | |
38 | #include "frame.h" | |
39 | #include "expression.h" | |
40 | #include "value.h" | |
41 | #include "command.h" | |
42 | #include "language.h" | |
43 | #include "parser-defs.h" | |
44 | #include "gdbcmd.h" | |
c5aa993b | 45 | #include "symfile.h" /* for overlay functions */ |
2df3850c JM |
46 | \f |
47 | /* Symbols which architectures can redefine. */ | |
48 | ||
49 | /* Some systems have routines whose names start with `$'. Giving this | |
50 | macro a non-zero value tells GDB's expression parser to check for | |
51 | such routines when parsing tokens that begin with `$'. | |
52 | ||
53 | On HP-UX, certain system routines (millicode) have names beginning | |
54 | with `$' or `$$'. For example, `$$dyncall' is a millicode routine | |
55 | that handles inter-space procedure calls on PA-RISC. */ | |
56 | #ifndef SYMBOLS_CAN_START_WITH_DOLLAR | |
57 | #define SYMBOLS_CAN_START_WITH_DOLLAR (0) | |
58 | #endif | |
59 | ||
60 | ||
c906108c SS |
61 | \f |
62 | /* Global variables declared in parser-defs.h (and commented there). */ | |
63 | struct expression *expout; | |
64 | int expout_size; | |
65 | int expout_ptr; | |
66 | struct block *expression_context_block; | |
67 | struct block *innermost_block; | |
68 | int arglist_len; | |
69 | union type_stack_elt *type_stack; | |
70 | int type_stack_depth, type_stack_size; | |
71 | char *lexptr; | |
72 | char *namecopy; | |
73 | int paren_depth; | |
74 | int comma_terminates; | |
75 | \f | |
c906108c | 76 | static int expressiondebug = 0; |
c906108c SS |
77 | |
78 | extern int hp_som_som_object_present; | |
79 | ||
74b7792f | 80 | static void free_funcalls (void *ignore); |
c906108c SS |
81 | |
82 | static void | |
83 | prefixify_expression PARAMS ((struct expression *)); | |
84 | ||
85 | static void | |
86 | prefixify_subexp PARAMS ((struct expression *, struct expression *, int, int)); | |
87 | ||
392a587b JM |
88 | void _initialize_parse PARAMS ((void)); |
89 | ||
c906108c SS |
90 | /* Data structure for saving values of arglist_len for function calls whose |
91 | arguments contain other function calls. */ | |
92 | ||
93 | struct funcall | |
94 | { | |
95 | struct funcall *next; | |
96 | int arglist_len; | |
97 | }; | |
98 | ||
99 | static struct funcall *funcall_chain; | |
100 | ||
101 | /* Assign machine-independent names to certain registers | |
102 | (unless overridden by the REGISTER_NAMES table) */ | |
103 | ||
c906108c | 104 | unsigned num_std_regs = 0; |
cce74817 | 105 | struct std_regs *std_regs; |
c906108c SS |
106 | |
107 | /* The generic method for targets to specify how their registers are | |
108 | named. The mapping can be derived from three sources: | |
109 | REGISTER_NAME; std_regs; or a target specific alias hook. */ | |
110 | ||
111 | int | |
112 | target_map_name_to_register (str, len) | |
113 | char *str; | |
114 | int len; | |
115 | { | |
116 | int i; | |
117 | ||
118 | /* First try target specific aliases. We try these first because on some | |
119 | systems standard names can be context dependent (eg. $pc on a | |
120 | multiprocessor can be could be any of several PCs). */ | |
121 | #ifdef REGISTER_NAME_ALIAS_HOOK | |
c5aa993b | 122 | i = REGISTER_NAME_ALIAS_HOOK (str, len); |
c906108c SS |
123 | if (i >= 0) |
124 | return i; | |
125 | #endif | |
126 | ||
127 | /* Search architectural register name space. */ | |
128 | for (i = 0; i < NUM_REGS; i++) | |
129 | if (REGISTER_NAME (i) && len == strlen (REGISTER_NAME (i)) | |
130 | && STREQN (str, REGISTER_NAME (i), len)) | |
131 | { | |
132 | return i; | |
133 | } | |
134 | ||
135 | /* Try standard aliases */ | |
136 | for (i = 0; i < num_std_regs; i++) | |
137 | if (std_regs[i].name && len == strlen (std_regs[i].name) | |
138 | && STREQN (str, std_regs[i].name, len)) | |
139 | { | |
140 | return std_regs[i].regnum; | |
141 | } | |
142 | ||
143 | return -1; | |
144 | } | |
145 | ||
146 | /* Begin counting arguments for a function call, | |
147 | saving the data about any containing call. */ | |
148 | ||
149 | void | |
150 | start_arglist () | |
151 | { | |
152 | register struct funcall *new; | |
153 | ||
154 | new = (struct funcall *) xmalloc (sizeof (struct funcall)); | |
155 | new->next = funcall_chain; | |
156 | new->arglist_len = arglist_len; | |
157 | arglist_len = 0; | |
158 | funcall_chain = new; | |
159 | } | |
160 | ||
161 | /* Return the number of arguments in a function call just terminated, | |
162 | and restore the data for the containing function call. */ | |
163 | ||
164 | int | |
165 | end_arglist () | |
166 | { | |
167 | register int val = arglist_len; | |
168 | register struct funcall *call = funcall_chain; | |
169 | funcall_chain = call->next; | |
170 | arglist_len = call->arglist_len; | |
c5aa993b | 171 | free ((PTR) call); |
c906108c SS |
172 | return val; |
173 | } | |
174 | ||
175 | /* Free everything in the funcall chain. | |
176 | Used when there is an error inside parsing. */ | |
177 | ||
178 | static void | |
74b7792f | 179 | free_funcalls (void *ignore) |
c906108c SS |
180 | { |
181 | register struct funcall *call, *next; | |
182 | ||
183 | for (call = funcall_chain; call; call = next) | |
184 | { | |
185 | next = call->next; | |
c5aa993b | 186 | free ((PTR) call); |
c906108c SS |
187 | } |
188 | } | |
189 | \f | |
190 | /* This page contains the functions for adding data to the struct expression | |
191 | being constructed. */ | |
192 | ||
193 | /* Add one element to the end of the expression. */ | |
194 | ||
195 | /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into | |
196 | a register through here */ | |
197 | ||
198 | void | |
199 | write_exp_elt (expelt) | |
200 | union exp_element expelt; | |
201 | { | |
202 | if (expout_ptr >= expout_size) | |
203 | { | |
204 | expout_size *= 2; | |
205 | expout = (struct expression *) | |
206 | xrealloc ((char *) expout, sizeof (struct expression) | |
207 | + EXP_ELEM_TO_BYTES (expout_size)); | |
208 | } | |
209 | expout->elts[expout_ptr++] = expelt; | |
210 | } | |
211 | ||
212 | void | |
213 | write_exp_elt_opcode (expelt) | |
214 | enum exp_opcode expelt; | |
215 | { | |
216 | union exp_element tmp; | |
217 | ||
218 | tmp.opcode = expelt; | |
219 | ||
220 | write_exp_elt (tmp); | |
221 | } | |
222 | ||
223 | void | |
224 | write_exp_elt_sym (expelt) | |
225 | struct symbol *expelt; | |
226 | { | |
227 | union exp_element tmp; | |
228 | ||
229 | tmp.symbol = expelt; | |
230 | ||
231 | write_exp_elt (tmp); | |
232 | } | |
233 | ||
234 | void | |
235 | write_exp_elt_block (b) | |
236 | struct block *b; | |
237 | { | |
238 | union exp_element tmp; | |
239 | tmp.block = b; | |
240 | write_exp_elt (tmp); | |
241 | } | |
242 | ||
243 | void | |
244 | write_exp_elt_longcst (expelt) | |
245 | LONGEST expelt; | |
246 | { | |
247 | union exp_element tmp; | |
248 | ||
249 | tmp.longconst = expelt; | |
250 | ||
251 | write_exp_elt (tmp); | |
252 | } | |
253 | ||
254 | void | |
255 | write_exp_elt_dblcst (expelt) | |
256 | DOUBLEST expelt; | |
257 | { | |
258 | union exp_element tmp; | |
259 | ||
260 | tmp.doubleconst = expelt; | |
261 | ||
262 | write_exp_elt (tmp); | |
263 | } | |
264 | ||
265 | void | |
266 | write_exp_elt_type (expelt) | |
267 | struct type *expelt; | |
268 | { | |
269 | union exp_element tmp; | |
270 | ||
271 | tmp.type = expelt; | |
272 | ||
273 | write_exp_elt (tmp); | |
274 | } | |
275 | ||
276 | void | |
277 | write_exp_elt_intern (expelt) | |
278 | struct internalvar *expelt; | |
279 | { | |
280 | union exp_element tmp; | |
281 | ||
282 | tmp.internalvar = expelt; | |
283 | ||
284 | write_exp_elt (tmp); | |
285 | } | |
286 | ||
287 | /* Add a string constant to the end of the expression. | |
288 | ||
289 | String constants are stored by first writing an expression element | |
290 | that contains the length of the string, then stuffing the string | |
291 | constant itself into however many expression elements are needed | |
292 | to hold it, and then writing another expression element that contains | |
293 | the length of the string. I.E. an expression element at each end of | |
294 | the string records the string length, so you can skip over the | |
295 | expression elements containing the actual string bytes from either | |
296 | end of the string. Note that this also allows gdb to handle | |
297 | strings with embedded null bytes, as is required for some languages. | |
298 | ||
299 | Don't be fooled by the fact that the string is null byte terminated, | |
300 | this is strictly for the convenience of debugging gdb itself. Gdb | |
301 | Gdb does not depend up the string being null terminated, since the | |
302 | actual length is recorded in expression elements at each end of the | |
303 | string. The null byte is taken into consideration when computing how | |
304 | many expression elements are required to hold the string constant, of | |
305 | course. */ | |
306 | ||
307 | ||
308 | void | |
309 | write_exp_string (str) | |
310 | struct stoken str; | |
311 | { | |
312 | register int len = str.length; | |
313 | register int lenelt; | |
314 | register char *strdata; | |
315 | ||
316 | /* Compute the number of expression elements required to hold the string | |
317 | (including a null byte terminator), along with one expression element | |
318 | at each end to record the actual string length (not including the | |
319 | null byte terminator). */ | |
320 | ||
321 | lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1); | |
322 | ||
323 | /* Ensure that we have enough available expression elements to store | |
324 | everything. */ | |
325 | ||
326 | if ((expout_ptr + lenelt) >= expout_size) | |
327 | { | |
328 | expout_size = max (expout_size * 2, expout_ptr + lenelt + 10); | |
329 | expout = (struct expression *) | |
330 | xrealloc ((char *) expout, (sizeof (struct expression) | |
331 | + EXP_ELEM_TO_BYTES (expout_size))); | |
332 | } | |
333 | ||
334 | /* Write the leading length expression element (which advances the current | |
335 | expression element index), then write the string constant followed by a | |
336 | terminating null byte, and then write the trailing length expression | |
337 | element. */ | |
338 | ||
339 | write_exp_elt_longcst ((LONGEST) len); | |
340 | strdata = (char *) &expout->elts[expout_ptr]; | |
341 | memcpy (strdata, str.ptr, len); | |
342 | *(strdata + len) = '\0'; | |
343 | expout_ptr += lenelt - 2; | |
344 | write_exp_elt_longcst ((LONGEST) len); | |
345 | } | |
346 | ||
347 | /* Add a bitstring constant to the end of the expression. | |
348 | ||
349 | Bitstring constants are stored by first writing an expression element | |
350 | that contains the length of the bitstring (in bits), then stuffing the | |
351 | bitstring constant itself into however many expression elements are | |
352 | needed to hold it, and then writing another expression element that | |
353 | contains the length of the bitstring. I.E. an expression element at | |
354 | each end of the bitstring records the bitstring length, so you can skip | |
355 | over the expression elements containing the actual bitstring bytes from | |
356 | either end of the bitstring. */ | |
357 | ||
358 | void | |
359 | write_exp_bitstring (str) | |
360 | struct stoken str; | |
361 | { | |
362 | register int bits = str.length; /* length in bits */ | |
363 | register int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
364 | register int lenelt; | |
365 | register char *strdata; | |
366 | ||
367 | /* Compute the number of expression elements required to hold the bitstring, | |
368 | along with one expression element at each end to record the actual | |
369 | bitstring length in bits. */ | |
370 | ||
371 | lenelt = 2 + BYTES_TO_EXP_ELEM (len); | |
372 | ||
373 | /* Ensure that we have enough available expression elements to store | |
374 | everything. */ | |
375 | ||
376 | if ((expout_ptr + lenelt) >= expout_size) | |
377 | { | |
378 | expout_size = max (expout_size * 2, expout_ptr + lenelt + 10); | |
379 | expout = (struct expression *) | |
380 | xrealloc ((char *) expout, (sizeof (struct expression) | |
381 | + EXP_ELEM_TO_BYTES (expout_size))); | |
382 | } | |
383 | ||
384 | /* Write the leading length expression element (which advances the current | |
385 | expression element index), then write the bitstring constant, and then | |
386 | write the trailing length expression element. */ | |
387 | ||
388 | write_exp_elt_longcst ((LONGEST) bits); | |
389 | strdata = (char *) &expout->elts[expout_ptr]; | |
390 | memcpy (strdata, str.ptr, len); | |
391 | expout_ptr += lenelt - 2; | |
392 | write_exp_elt_longcst ((LONGEST) bits); | |
393 | } | |
394 | ||
395 | /* Add the appropriate elements for a minimal symbol to the end of | |
396 | the expression. The rationale behind passing in text_symbol_type and | |
397 | data_symbol_type was so that Modula-2 could pass in WORD for | |
398 | data_symbol_type. Perhaps it still is useful to have those types vary | |
399 | based on the language, but they no longer have names like "int", so | |
400 | the initial rationale is gone. */ | |
401 | ||
402 | static struct type *msym_text_symbol_type; | |
403 | static struct type *msym_data_symbol_type; | |
404 | static struct type *msym_unknown_symbol_type; | |
405 | ||
406 | void | |
407 | write_exp_msymbol (msymbol, text_symbol_type, data_symbol_type) | |
408 | struct minimal_symbol *msymbol; | |
409 | struct type *text_symbol_type; | |
410 | struct type *data_symbol_type; | |
411 | { | |
412 | CORE_ADDR addr; | |
413 | ||
414 | write_exp_elt_opcode (OP_LONG); | |
415 | write_exp_elt_type (lookup_pointer_type (builtin_type_void)); | |
416 | ||
417 | addr = SYMBOL_VALUE_ADDRESS (msymbol); | |
418 | if (overlay_debugging) | |
419 | addr = symbol_overlayed_address (addr, SYMBOL_BFD_SECTION (msymbol)); | |
420 | write_exp_elt_longcst ((LONGEST) addr); | |
c5aa993b | 421 | |
c906108c SS |
422 | write_exp_elt_opcode (OP_LONG); |
423 | ||
424 | write_exp_elt_opcode (UNOP_MEMVAL); | |
c5aa993b | 425 | switch (msymbol->type) |
c906108c SS |
426 | { |
427 | case mst_text: | |
428 | case mst_file_text: | |
429 | case mst_solib_trampoline: | |
430 | write_exp_elt_type (msym_text_symbol_type); | |
431 | break; | |
432 | ||
433 | case mst_data: | |
434 | case mst_file_data: | |
435 | case mst_bss: | |
436 | case mst_file_bss: | |
437 | write_exp_elt_type (msym_data_symbol_type); | |
438 | break; | |
439 | ||
440 | default: | |
441 | write_exp_elt_type (msym_unknown_symbol_type); | |
442 | break; | |
443 | } | |
444 | write_exp_elt_opcode (UNOP_MEMVAL); | |
445 | } | |
446 | \f | |
447 | /* Recognize tokens that start with '$'. These include: | |
448 | ||
c5aa993b JM |
449 | $regname A native register name or a "standard |
450 | register name". | |
c906108c | 451 | |
c5aa993b JM |
452 | $variable A convenience variable with a name chosen |
453 | by the user. | |
c906108c | 454 | |
c5aa993b JM |
455 | $digits Value history with index <digits>, starting |
456 | from the first value which has index 1. | |
c906108c | 457 | |
c5aa993b JM |
458 | $$digits Value history with index <digits> relative |
459 | to the last value. I.E. $$0 is the last | |
460 | value, $$1 is the one previous to that, $$2 | |
461 | is the one previous to $$1, etc. | |
c906108c | 462 | |
c5aa993b | 463 | $ | $0 | $$0 The last value in the value history. |
c906108c | 464 | |
c5aa993b JM |
465 | $$ An abbreviation for the second to the last |
466 | value in the value history, I.E. $$1 | |
c906108c | 467 | |
c5aa993b | 468 | */ |
c906108c SS |
469 | |
470 | void | |
471 | write_dollar_variable (str) | |
472 | struct stoken str; | |
473 | { | |
474 | /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1) | |
475 | and $$digits (equivalent to $<-digits> if you could type that). */ | |
476 | ||
c906108c SS |
477 | int negate = 0; |
478 | int i = 1; | |
479 | /* Double dollar means negate the number and add -1 as well. | |
480 | Thus $$ alone means -1. */ | |
481 | if (str.length >= 2 && str.ptr[1] == '$') | |
482 | { | |
483 | negate = 1; | |
484 | i = 2; | |
485 | } | |
486 | if (i == str.length) | |
487 | { | |
488 | /* Just dollars (one or two) */ | |
c5aa993b | 489 | i = -negate; |
c906108c SS |
490 | goto handle_last; |
491 | } | |
492 | /* Is the rest of the token digits? */ | |
493 | for (; i < str.length; i++) | |
494 | if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9')) | |
495 | break; | |
496 | if (i == str.length) | |
497 | { | |
498 | i = atoi (str.ptr + 1 + negate); | |
499 | if (negate) | |
c5aa993b | 500 | i = -i; |
c906108c SS |
501 | goto handle_last; |
502 | } | |
c5aa993b | 503 | |
c906108c SS |
504 | /* Handle tokens that refer to machine registers: |
505 | $ followed by a register name. */ | |
c5aa993b JM |
506 | i = target_map_name_to_register (str.ptr + 1, str.length - 1); |
507 | if (i >= 0) | |
c906108c SS |
508 | goto handle_register; |
509 | ||
2df3850c | 510 | if (SYMBOLS_CAN_START_WITH_DOLLAR) |
c906108c | 511 | { |
2df3850c JM |
512 | struct symbol *sym = NULL; |
513 | struct minimal_symbol *msym = NULL; | |
514 | ||
515 | /* On HP-UX, certain system routines (millicode) have names beginning | |
516 | with $ or $$, e.g. $$dyncall, which handles inter-space procedure | |
517 | calls on PA-RISC. Check for those, first. */ | |
518 | ||
519 | /* This code is not enabled on non HP-UX systems, since worst case | |
520 | symbol table lookup performance is awful, to put it mildly. */ | |
521 | ||
522 | sym = lookup_symbol (copy_name (str), (struct block *) NULL, | |
523 | VAR_NAMESPACE, (int *) NULL, (struct symtab **) NULL); | |
524 | if (sym) | |
525 | { | |
526 | write_exp_elt_opcode (OP_VAR_VALUE); | |
527 | write_exp_elt_block (block_found); /* set by lookup_symbol */ | |
528 | write_exp_elt_sym (sym); | |
529 | write_exp_elt_opcode (OP_VAR_VALUE); | |
530 | return; | |
531 | } | |
532 | msym = lookup_minimal_symbol (copy_name (str), NULL, NULL); | |
533 | if (msym) | |
534 | { | |
535 | write_exp_msymbol (msym, | |
536 | lookup_function_type (builtin_type_int), | |
537 | builtin_type_int); | |
538 | return; | |
539 | } | |
c906108c | 540 | } |
c5aa993b | 541 | |
c906108c SS |
542 | /* Any other names starting in $ are debugger internal variables. */ |
543 | ||
544 | write_exp_elt_opcode (OP_INTERNALVAR); | |
545 | write_exp_elt_intern (lookup_internalvar (copy_name (str) + 1)); | |
c5aa993b | 546 | write_exp_elt_opcode (OP_INTERNALVAR); |
c906108c | 547 | return; |
c5aa993b | 548 | handle_last: |
c906108c SS |
549 | write_exp_elt_opcode (OP_LAST); |
550 | write_exp_elt_longcst ((LONGEST) i); | |
551 | write_exp_elt_opcode (OP_LAST); | |
552 | return; | |
c5aa993b | 553 | handle_register: |
c906108c SS |
554 | write_exp_elt_opcode (OP_REGISTER); |
555 | write_exp_elt_longcst (i); | |
c5aa993b | 556 | write_exp_elt_opcode (OP_REGISTER); |
c906108c SS |
557 | return; |
558 | } | |
559 | ||
560 | ||
561 | /* Parse a string that is possibly a namespace / nested class | |
562 | specification, i.e., something of the form A::B::C::x. Input | |
563 | (NAME) is the entire string; LEN is the current valid length; the | |
564 | output is a string, TOKEN, which points to the largest recognized | |
565 | prefix which is a series of namespaces or classes. CLASS_PREFIX is | |
566 | another output, which records whether a nested class spec was | |
567 | recognized (= 1) or a fully qualified variable name was found (= | |
568 | 0). ARGPTR is side-effected (if non-NULL) to point to beyond the | |
569 | string recognized and consumed by this routine. | |
570 | ||
571 | The return value is a pointer to the symbol for the base class or | |
572 | variable if found, or NULL if not found. Callers must check this | |
573 | first -- if NULL, the outputs may not be correct. | |
574 | ||
575 | This function is used c-exp.y. This is used specifically to get | |
576 | around HP aCC (and possibly other compilers), which insists on | |
577 | generating names with embedded colons for namespace or nested class | |
578 | members. | |
579 | ||
580 | (Argument LEN is currently unused. 1997-08-27) | |
581 | ||
582 | Callers must free memory allocated for the output string TOKEN. */ | |
583 | ||
c5aa993b JM |
584 | static const char coloncolon[2] = |
585 | {':', ':'}; | |
c906108c SS |
586 | |
587 | struct symbol * | |
588 | parse_nested_classes_for_hpacc (name, len, token, class_prefix, argptr) | |
c5aa993b JM |
589 | char *name; |
590 | int len; | |
591 | char **token; | |
592 | int *class_prefix; | |
593 | char **argptr; | |
c906108c | 594 | { |
c5aa993b JM |
595 | /* Comment below comes from decode_line_1 which has very similar |
596 | code, which is called for "break" command parsing. */ | |
597 | ||
598 | /* We have what looks like a class or namespace | |
c906108c SS |
599 | scope specification (A::B), possibly with many |
600 | levels of namespaces or classes (A::B::C::D). | |
601 | ||
602 | Some versions of the HP ANSI C++ compiler (as also possibly | |
603 | other compilers) generate class/function/member names with | |
604 | embedded double-colons if they are inside namespaces. To | |
605 | handle this, we loop a few times, considering larger and | |
606 | larger prefixes of the string as though they were single | |
607 | symbols. So, if the initially supplied string is | |
608 | A::B::C::D::foo, we have to look up "A", then "A::B", | |
609 | then "A::B::C", then "A::B::C::D", and finally | |
610 | "A::B::C::D::foo" as single, monolithic symbols, because | |
611 | A, B, C or D may be namespaces. | |
612 | ||
613 | Note that namespaces can nest only inside other | |
614 | namespaces, and not inside classes. So we need only | |
615 | consider *prefixes* of the string; there is no need to look up | |
616 | "B::C" separately as a symbol in the previous example. */ | |
617 | ||
c5aa993b JM |
618 | register char *p; |
619 | char *start, *end; | |
620 | char *prefix = NULL; | |
621 | char *tmp; | |
622 | struct symbol *sym_class = NULL; | |
623 | struct symbol *sym_var = NULL; | |
624 | struct type *t; | |
c906108c SS |
625 | int prefix_len = 0; |
626 | int done = 0; | |
c5aa993b | 627 | char *q; |
c906108c SS |
628 | |
629 | /* Check for HP-compiled executable -- in other cases | |
630 | return NULL, and caller must default to standard GDB | |
631 | behaviour. */ | |
632 | ||
633 | if (!hp_som_som_object_present) | |
634 | return (struct symbol *) NULL; | |
635 | ||
636 | p = name; | |
637 | ||
c5aa993b JM |
638 | /* Skip over whitespace and possible global "::" */ |
639 | while (*p && (*p == ' ' || *p == '\t')) | |
640 | p++; | |
c906108c SS |
641 | if (p[0] == ':' && p[1] == ':') |
642 | p += 2; | |
c5aa993b JM |
643 | while (*p && (*p == ' ' || *p == '\t')) |
644 | p++; | |
645 | ||
c906108c SS |
646 | while (1) |
647 | { | |
648 | /* Get to the end of the next namespace or class spec. */ | |
649 | /* If we're looking at some non-token, fail immediately */ | |
650 | start = p; | |
651 | if (!(isalpha (*p) || *p == '$' || *p == '_')) | |
c5aa993b | 652 | return (struct symbol *) NULL; |
c906108c | 653 | p++; |
c5aa993b JM |
654 | while (*p && (isalnum (*p) || *p == '$' || *p == '_')) |
655 | p++; | |
656 | ||
657 | if (*p == '<') | |
658 | { | |
659 | /* If we have the start of a template specification, | |
660 | scan right ahead to its end */ | |
661 | q = find_template_name_end (p); | |
662 | if (q) | |
663 | p = q; | |
664 | } | |
665 | ||
c906108c SS |
666 | end = p; |
667 | ||
c5aa993b JM |
668 | /* Skip over "::" and whitespace for next time around */ |
669 | while (*p && (*p == ' ' || *p == '\t')) | |
670 | p++; | |
c906108c | 671 | if (p[0] == ':' && p[1] == ':') |
c5aa993b JM |
672 | p += 2; |
673 | while (*p && (*p == ' ' || *p == '\t')) | |
674 | p++; | |
c906108c | 675 | |
c5aa993b | 676 | /* Done with tokens? */ |
c906108c | 677 | if (!*p || !(isalpha (*p) || *p == '$' || *p == '_')) |
c5aa993b | 678 | done = 1; |
c906108c SS |
679 | |
680 | tmp = (char *) alloca (prefix_len + end - start + 3); | |
681 | if (prefix) | |
c5aa993b JM |
682 | { |
683 | memcpy (tmp, prefix, prefix_len); | |
684 | memcpy (tmp + prefix_len, coloncolon, 2); | |
685 | memcpy (tmp + prefix_len + 2, start, end - start); | |
686 | tmp[prefix_len + 2 + end - start] = '\000'; | |
687 | } | |
c906108c | 688 | else |
c5aa993b JM |
689 | { |
690 | memcpy (tmp, start, end - start); | |
691 | tmp[end - start] = '\000'; | |
692 | } | |
693 | ||
c906108c SS |
694 | prefix = tmp; |
695 | prefix_len = strlen (prefix); | |
c5aa993b | 696 | |
c906108c SS |
697 | /* See if the prefix we have now is something we know about */ |
698 | ||
c5aa993b JM |
699 | if (!done) |
700 | { | |
701 | /* More tokens to process, so this must be a class/namespace */ | |
702 | sym_class = lookup_symbol (prefix, 0, STRUCT_NAMESPACE, | |
703 | 0, (struct symtab **) NULL); | |
704 | } | |
c906108c | 705 | else |
c5aa993b JM |
706 | { |
707 | /* No more tokens, so try as a variable first */ | |
708 | sym_var = lookup_symbol (prefix, 0, VAR_NAMESPACE, | |
709 | 0, (struct symtab **) NULL); | |
710 | /* If failed, try as class/namespace */ | |
711 | if (!sym_var) | |
712 | sym_class = lookup_symbol (prefix, 0, STRUCT_NAMESPACE, | |
713 | 0, (struct symtab **) NULL); | |
714 | } | |
c906108c SS |
715 | |
716 | if (sym_var || | |
c5aa993b JM |
717 | (sym_class && |
718 | (t = check_typedef (SYMBOL_TYPE (sym_class)), | |
719 | (TYPE_CODE (t) == TYPE_CODE_STRUCT | |
720 | || TYPE_CODE (t) == TYPE_CODE_UNION)))) | |
721 | { | |
722 | /* We found a valid token */ | |
723 | *token = (char *) xmalloc (prefix_len + 1); | |
724 | memcpy (*token, prefix, prefix_len); | |
725 | (*token)[prefix_len] = '\000'; | |
726 | break; | |
727 | } | |
728 | ||
729 | /* No variable or class/namespace found, no more tokens */ | |
c906108c | 730 | if (done) |
c5aa993b | 731 | return (struct symbol *) NULL; |
c906108c SS |
732 | } |
733 | ||
734 | /* Out of loop, so we must have found a valid token */ | |
735 | if (sym_var) | |
736 | *class_prefix = 0; | |
737 | else | |
738 | *class_prefix = 1; | |
739 | ||
740 | if (argptr) | |
741 | *argptr = done ? p : end; | |
742 | ||
c5aa993b | 743 | return sym_var ? sym_var : sym_class; /* found */ |
c906108c SS |
744 | } |
745 | ||
746 | char * | |
747 | find_template_name_end (p) | |
c5aa993b | 748 | char *p; |
c906108c SS |
749 | { |
750 | int depth = 1; | |
751 | int just_seen_right = 0; | |
752 | int just_seen_colon = 0; | |
753 | int just_seen_space = 0; | |
c5aa993b | 754 | |
c906108c SS |
755 | if (!p || (*p != '<')) |
756 | return 0; | |
757 | ||
758 | while (*++p) | |
759 | { | |
760 | switch (*p) | |
c5aa993b JM |
761 | { |
762 | case '\'': | |
763 | case '\"': | |
764 | case '{': | |
765 | case '}': | |
766 | /* In future, may want to allow these?? */ | |
767 | return 0; | |
768 | case '<': | |
769 | depth++; /* start nested template */ | |
770 | if (just_seen_colon || just_seen_right || just_seen_space) | |
771 | return 0; /* but not after : or :: or > or space */ | |
772 | break; | |
773 | case '>': | |
774 | if (just_seen_colon || just_seen_right) | |
775 | return 0; /* end a (nested?) template */ | |
776 | just_seen_right = 1; /* but not after : or :: */ | |
777 | if (--depth == 0) /* also disallow >>, insist on > > */ | |
778 | return ++p; /* if outermost ended, return */ | |
779 | break; | |
780 | case ':': | |
781 | if (just_seen_space || (just_seen_colon > 1)) | |
782 | return 0; /* nested class spec coming up */ | |
783 | just_seen_colon++; /* we allow :: but not :::: */ | |
784 | break; | |
785 | case ' ': | |
786 | break; | |
787 | default: | |
788 | if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */ | |
789 | (*p >= 'A' && *p <= 'Z') || | |
790 | (*p >= '0' && *p <= '9') || | |
791 | (*p == '_') || (*p == ',') || /* commas for template args */ | |
792 | (*p == '&') || (*p == '*') || /* pointer and ref types */ | |
793 | (*p == '(') || (*p == ')') || /* function types */ | |
794 | (*p == '[') || (*p == ']'))) /* array types */ | |
795 | return 0; | |
796 | } | |
c906108c | 797 | if (*p != ' ') |
c5aa993b | 798 | just_seen_space = 0; |
c906108c | 799 | if (*p != ':') |
c5aa993b | 800 | just_seen_colon = 0; |
c906108c | 801 | if (*p != '>') |
c5aa993b | 802 | just_seen_right = 0; |
c906108c SS |
803 | } |
804 | return 0; | |
805 | } | |
c5aa993b | 806 | \f |
c906108c SS |
807 | |
808 | ||
c906108c SS |
809 | /* Return a null-terminated temporary copy of the name |
810 | of a string token. */ | |
811 | ||
812 | char * | |
813 | copy_name (token) | |
814 | struct stoken token; | |
815 | { | |
816 | memcpy (namecopy, token.ptr, token.length); | |
817 | namecopy[token.length] = 0; | |
818 | return namecopy; | |
819 | } | |
820 | \f | |
821 | /* Reverse an expression from suffix form (in which it is constructed) | |
822 | to prefix form (in which we can conveniently print or execute it). */ | |
823 | ||
824 | static void | |
825 | prefixify_expression (expr) | |
826 | register struct expression *expr; | |
827 | { | |
828 | register int len = | |
c5aa993b | 829 | sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts); |
c906108c SS |
830 | register struct expression *temp; |
831 | register int inpos = expr->nelts, outpos = 0; | |
832 | ||
833 | temp = (struct expression *) alloca (len); | |
834 | ||
835 | /* Copy the original expression into temp. */ | |
836 | memcpy (temp, expr, len); | |
837 | ||
838 | prefixify_subexp (temp, expr, inpos, outpos); | |
839 | } | |
840 | ||
841 | /* Return the number of exp_elements in the subexpression of EXPR | |
842 | whose last exp_element is at index ENDPOS - 1 in EXPR. */ | |
843 | ||
844 | int | |
845 | length_of_subexp (expr, endpos) | |
846 | register struct expression *expr; | |
847 | register int endpos; | |
848 | { | |
849 | register int oplen = 1; | |
850 | register int args = 0; | |
851 | register int i; | |
852 | ||
853 | if (endpos < 1) | |
854 | error ("?error in length_of_subexp"); | |
855 | ||
856 | i = (int) expr->elts[endpos - 1].opcode; | |
857 | ||
858 | switch (i) | |
859 | { | |
860 | /* C++ */ | |
861 | case OP_SCOPE: | |
862 | oplen = longest_to_int (expr->elts[endpos - 2].longconst); | |
863 | oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1); | |
864 | break; | |
865 | ||
866 | case OP_LONG: | |
867 | case OP_DOUBLE: | |
868 | case OP_VAR_VALUE: | |
869 | oplen = 4; | |
870 | break; | |
871 | ||
872 | case OP_TYPE: | |
873 | case OP_BOOL: | |
874 | case OP_LAST: | |
875 | case OP_REGISTER: | |
876 | case OP_INTERNALVAR: | |
877 | oplen = 3; | |
878 | break; | |
879 | ||
880 | case OP_COMPLEX: | |
c5aa993b | 881 | oplen = 1; |
c906108c | 882 | args = 2; |
c5aa993b | 883 | break; |
c906108c SS |
884 | |
885 | case OP_FUNCALL: | |
886 | case OP_F77_UNDETERMINED_ARGLIST: | |
887 | oplen = 3; | |
888 | args = 1 + longest_to_int (expr->elts[endpos - 2].longconst); | |
889 | break; | |
890 | ||
891 | case UNOP_MAX: | |
892 | case UNOP_MIN: | |
893 | oplen = 3; | |
894 | break; | |
895 | ||
c5aa993b JM |
896 | case BINOP_VAL: |
897 | case UNOP_CAST: | |
898 | case UNOP_MEMVAL: | |
c906108c SS |
899 | oplen = 3; |
900 | args = 1; | |
901 | break; | |
902 | ||
903 | case UNOP_ABS: | |
904 | case UNOP_CAP: | |
905 | case UNOP_CHR: | |
906 | case UNOP_FLOAT: | |
907 | case UNOP_HIGH: | |
908 | case UNOP_ODD: | |
909 | case UNOP_ORD: | |
910 | case UNOP_TRUNC: | |
911 | oplen = 1; | |
912 | args = 1; | |
913 | break; | |
914 | ||
915 | case OP_LABELED: | |
916 | case STRUCTOP_STRUCT: | |
917 | case STRUCTOP_PTR: | |
918 | args = 1; | |
919 | /* fall through */ | |
920 | case OP_M2_STRING: | |
921 | case OP_STRING: | |
922 | case OP_NAME: | |
923 | case OP_EXPRSTRING: | |
924 | oplen = longest_to_int (expr->elts[endpos - 2].longconst); | |
925 | oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1); | |
926 | break; | |
927 | ||
928 | case OP_BITSTRING: | |
929 | oplen = longest_to_int (expr->elts[endpos - 2].longconst); | |
930 | oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
931 | oplen = 4 + BYTES_TO_EXP_ELEM (oplen); | |
932 | break; | |
933 | ||
934 | case OP_ARRAY: | |
935 | oplen = 4; | |
936 | args = longest_to_int (expr->elts[endpos - 2].longconst); | |
937 | args -= longest_to_int (expr->elts[endpos - 3].longconst); | |
938 | args += 1; | |
939 | break; | |
940 | ||
941 | case TERNOP_COND: | |
942 | case TERNOP_SLICE: | |
943 | case TERNOP_SLICE_COUNT: | |
944 | args = 3; | |
945 | break; | |
946 | ||
947 | /* Modula-2 */ | |
c5aa993b | 948 | case MULTI_SUBSCRIPT: |
c906108c | 949 | oplen = 3; |
c5aa993b | 950 | args = 1 + longest_to_int (expr->elts[endpos - 2].longconst); |
c906108c SS |
951 | break; |
952 | ||
953 | case BINOP_ASSIGN_MODIFY: | |
954 | oplen = 3; | |
955 | args = 2; | |
956 | break; | |
957 | ||
958 | /* C++ */ | |
959 | case OP_THIS: | |
960 | oplen = 2; | |
961 | break; | |
962 | ||
963 | default: | |
964 | args = 1 + (i < (int) BINOP_END); | |
965 | } | |
966 | ||
967 | while (args > 0) | |
968 | { | |
969 | oplen += length_of_subexp (expr, endpos - oplen); | |
970 | args--; | |
971 | } | |
972 | ||
973 | return oplen; | |
974 | } | |
975 | ||
976 | /* Copy the subexpression ending just before index INEND in INEXPR | |
977 | into OUTEXPR, starting at index OUTBEG. | |
978 | In the process, convert it from suffix to prefix form. */ | |
979 | ||
980 | static void | |
981 | prefixify_subexp (inexpr, outexpr, inend, outbeg) | |
982 | register struct expression *inexpr; | |
983 | struct expression *outexpr; | |
984 | register int inend; | |
985 | int outbeg; | |
986 | { | |
987 | register int oplen = 1; | |
988 | register int args = 0; | |
989 | register int i; | |
990 | int *arglens; | |
991 | enum exp_opcode opcode; | |
992 | ||
993 | /* Compute how long the last operation is (in OPLEN), | |
994 | and also how many preceding subexpressions serve as | |
995 | arguments for it (in ARGS). */ | |
996 | ||
997 | opcode = inexpr->elts[inend - 1].opcode; | |
998 | switch (opcode) | |
999 | { | |
1000 | /* C++ */ | |
1001 | case OP_SCOPE: | |
1002 | oplen = longest_to_int (inexpr->elts[inend - 2].longconst); | |
1003 | oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1); | |
1004 | break; | |
1005 | ||
1006 | case OP_LONG: | |
1007 | case OP_DOUBLE: | |
1008 | case OP_VAR_VALUE: | |
1009 | oplen = 4; | |
1010 | break; | |
1011 | ||
1012 | case OP_TYPE: | |
1013 | case OP_BOOL: | |
1014 | case OP_LAST: | |
1015 | case OP_REGISTER: | |
1016 | case OP_INTERNALVAR: | |
1017 | oplen = 3; | |
1018 | break; | |
1019 | ||
1020 | case OP_COMPLEX: | |
c5aa993b JM |
1021 | oplen = 1; |
1022 | args = 2; | |
1023 | break; | |
c906108c SS |
1024 | |
1025 | case OP_FUNCALL: | |
1026 | case OP_F77_UNDETERMINED_ARGLIST: | |
1027 | oplen = 3; | |
1028 | args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst); | |
1029 | break; | |
1030 | ||
1031 | case UNOP_MIN: | |
1032 | case UNOP_MAX: | |
1033 | oplen = 3; | |
1034 | break; | |
1035 | ||
1036 | case UNOP_CAST: | |
1037 | case UNOP_MEMVAL: | |
1038 | oplen = 3; | |
1039 | args = 1; | |
1040 | break; | |
1041 | ||
1042 | case UNOP_ABS: | |
1043 | case UNOP_CAP: | |
1044 | case UNOP_CHR: | |
1045 | case UNOP_FLOAT: | |
1046 | case UNOP_HIGH: | |
1047 | case UNOP_ODD: | |
1048 | case UNOP_ORD: | |
1049 | case UNOP_TRUNC: | |
c5aa993b JM |
1050 | oplen = 1; |
1051 | args = 1; | |
c906108c SS |
1052 | break; |
1053 | ||
1054 | case STRUCTOP_STRUCT: | |
1055 | case STRUCTOP_PTR: | |
1056 | case OP_LABELED: | |
1057 | args = 1; | |
1058 | /* fall through */ | |
1059 | case OP_M2_STRING: | |
1060 | case OP_STRING: | |
1061 | case OP_NAME: | |
1062 | case OP_EXPRSTRING: | |
1063 | oplen = longest_to_int (inexpr->elts[inend - 2].longconst); | |
1064 | oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1); | |
1065 | break; | |
1066 | ||
1067 | case OP_BITSTRING: | |
1068 | oplen = longest_to_int (inexpr->elts[inend - 2].longconst); | |
1069 | oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
1070 | oplen = 4 + BYTES_TO_EXP_ELEM (oplen); | |
1071 | break; | |
1072 | ||
1073 | case OP_ARRAY: | |
1074 | oplen = 4; | |
1075 | args = longest_to_int (inexpr->elts[inend - 2].longconst); | |
1076 | args -= longest_to_int (inexpr->elts[inend - 3].longconst); | |
1077 | args += 1; | |
1078 | break; | |
1079 | ||
1080 | case TERNOP_COND: | |
1081 | case TERNOP_SLICE: | |
1082 | case TERNOP_SLICE_COUNT: | |
1083 | args = 3; | |
1084 | break; | |
1085 | ||
1086 | case BINOP_ASSIGN_MODIFY: | |
1087 | oplen = 3; | |
1088 | args = 2; | |
1089 | break; | |
1090 | ||
1091 | /* Modula-2 */ | |
c5aa993b | 1092 | case MULTI_SUBSCRIPT: |
c906108c SS |
1093 | oplen = 3; |
1094 | args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst); | |
1095 | break; | |
1096 | ||
1097 | /* C++ */ | |
1098 | case OP_THIS: | |
1099 | oplen = 2; | |
1100 | break; | |
1101 | ||
1102 | default: | |
1103 | args = 1 + ((int) opcode < (int) BINOP_END); | |
1104 | } | |
1105 | ||
1106 | /* Copy the final operator itself, from the end of the input | |
1107 | to the beginning of the output. */ | |
1108 | inend -= oplen; | |
1109 | memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend], | |
1110 | EXP_ELEM_TO_BYTES (oplen)); | |
1111 | outbeg += oplen; | |
1112 | ||
1113 | /* Find the lengths of the arg subexpressions. */ | |
1114 | arglens = (int *) alloca (args * sizeof (int)); | |
1115 | for (i = args - 1; i >= 0; i--) | |
1116 | { | |
1117 | oplen = length_of_subexp (inexpr, inend); | |
1118 | arglens[i] = oplen; | |
1119 | inend -= oplen; | |
1120 | } | |
1121 | ||
1122 | /* Now copy each subexpression, preserving the order of | |
1123 | the subexpressions, but prefixifying each one. | |
1124 | In this loop, inend starts at the beginning of | |
1125 | the expression this level is working on | |
1126 | and marches forward over the arguments. | |
1127 | outbeg does similarly in the output. */ | |
1128 | for (i = 0; i < args; i++) | |
1129 | { | |
1130 | oplen = arglens[i]; | |
1131 | inend += oplen; | |
1132 | prefixify_subexp (inexpr, outexpr, inend, outbeg); | |
1133 | outbeg += oplen; | |
1134 | } | |
1135 | } | |
1136 | \f | |
1137 | /* This page contains the two entry points to this file. */ | |
1138 | ||
1139 | /* Read an expression from the string *STRINGPTR points to, | |
1140 | parse it, and return a pointer to a struct expression that we malloc. | |
1141 | Use block BLOCK as the lexical context for variable names; | |
1142 | if BLOCK is zero, use the block of the selected stack frame. | |
1143 | Meanwhile, advance *STRINGPTR to point after the expression, | |
1144 | at the first nonwhite character that is not part of the expression | |
1145 | (possibly a null character). | |
1146 | ||
1147 | If COMMA is nonzero, stop if a comma is reached. */ | |
1148 | ||
1149 | struct expression * | |
1150 | parse_exp_1 (stringptr, block, comma) | |
1151 | char **stringptr; | |
1152 | struct block *block; | |
1153 | int comma; | |
1154 | { | |
1155 | struct cleanup *old_chain; | |
1156 | ||
1157 | lexptr = *stringptr; | |
1158 | ||
1159 | paren_depth = 0; | |
1160 | type_stack_depth = 0; | |
1161 | ||
1162 | comma_terminates = comma; | |
1163 | ||
1164 | if (lexptr == 0 || *lexptr == 0) | |
1165 | error_no_arg ("expression to compute"); | |
1166 | ||
74b7792f | 1167 | old_chain = make_cleanup (free_funcalls, 0 /*ignore*/); |
c906108c SS |
1168 | funcall_chain = 0; |
1169 | ||
1170 | expression_context_block = block ? block : get_selected_block (); | |
1171 | ||
1172 | namecopy = (char *) alloca (strlen (lexptr) + 1); | |
1173 | expout_size = 10; | |
1174 | expout_ptr = 0; | |
1175 | expout = (struct expression *) | |
1176 | xmalloc (sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_size)); | |
1177 | expout->language_defn = current_language; | |
c13c43fd | 1178 | make_cleanup (free_current_contents, &expout); |
c906108c SS |
1179 | |
1180 | if (current_language->la_parser ()) | |
1181 | current_language->la_error (NULL); | |
1182 | ||
1183 | discard_cleanups (old_chain); | |
1184 | ||
1185 | /* Record the actual number of expression elements, and then | |
1186 | reallocate the expression memory so that we free up any | |
1187 | excess elements. */ | |
1188 | ||
1189 | expout->nelts = expout_ptr; | |
1190 | expout = (struct expression *) | |
1191 | xrealloc ((char *) expout, | |
1192 | sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_ptr));; | |
1193 | ||
1194 | /* Convert expression from postfix form as generated by yacc | |
1195 | parser, to a prefix form. */ | |
1196 | ||
c906108c | 1197 | if (expressiondebug) |
9846de1b | 1198 | dump_prefix_expression (expout, gdb_stdlog, |
c906108c | 1199 | "before conversion to prefix form"); |
c906108c SS |
1200 | |
1201 | prefixify_expression (expout); | |
1202 | ||
c906108c | 1203 | if (expressiondebug) |
9846de1b | 1204 | dump_postfix_expression (expout, gdb_stdlog, |
c906108c | 1205 | "after conversion to prefix form"); |
c906108c SS |
1206 | |
1207 | *stringptr = lexptr; | |
1208 | return expout; | |
1209 | } | |
1210 | ||
1211 | /* Parse STRING as an expression, and complain if this fails | |
1212 | to use up all of the contents of STRING. */ | |
1213 | ||
1214 | struct expression * | |
1215 | parse_expression (string) | |
1216 | char *string; | |
1217 | { | |
1218 | register struct expression *exp; | |
1219 | exp = parse_exp_1 (&string, 0, 0); | |
1220 | if (*string) | |
1221 | error ("Junk after end of expression."); | |
1222 | return exp; | |
1223 | } | |
1224 | \f | |
1225 | /* Stuff for maintaining a stack of types. Currently just used by C, but | |
1226 | probably useful for any language which declares its types "backwards". */ | |
1227 | ||
c5aa993b | 1228 | void |
c906108c SS |
1229 | push_type (tp) |
1230 | enum type_pieces tp; | |
1231 | { | |
1232 | if (type_stack_depth == type_stack_size) | |
1233 | { | |
1234 | type_stack_size *= 2; | |
1235 | type_stack = (union type_stack_elt *) | |
1236 | xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack)); | |
1237 | } | |
1238 | type_stack[type_stack_depth++].piece = tp; | |
1239 | } | |
1240 | ||
1241 | void | |
1242 | push_type_int (n) | |
1243 | int n; | |
1244 | { | |
1245 | if (type_stack_depth == type_stack_size) | |
1246 | { | |
1247 | type_stack_size *= 2; | |
1248 | type_stack = (union type_stack_elt *) | |
1249 | xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack)); | |
1250 | } | |
1251 | type_stack[type_stack_depth++].int_val = n; | |
1252 | } | |
1253 | ||
c5aa993b | 1254 | enum type_pieces |
c906108c SS |
1255 | pop_type () |
1256 | { | |
1257 | if (type_stack_depth) | |
1258 | return type_stack[--type_stack_depth].piece; | |
1259 | return tp_end; | |
1260 | } | |
1261 | ||
1262 | int | |
1263 | pop_type_int () | |
1264 | { | |
1265 | if (type_stack_depth) | |
1266 | return type_stack[--type_stack_depth].int_val; | |
1267 | /* "Can't happen". */ | |
1268 | return 0; | |
1269 | } | |
1270 | ||
1271 | /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE | |
1272 | as modified by all the stuff on the stack. */ | |
1273 | struct type * | |
1274 | follow_types (follow_type) | |
1275 | struct type *follow_type; | |
1276 | { | |
1277 | int done = 0; | |
1278 | int array_size; | |
1279 | struct type *range_type; | |
1280 | ||
1281 | while (!done) | |
1282 | switch (pop_type ()) | |
1283 | { | |
1284 | case tp_end: | |
1285 | done = 1; | |
1286 | break; | |
1287 | case tp_pointer: | |
1288 | follow_type = lookup_pointer_type (follow_type); | |
1289 | break; | |
1290 | case tp_reference: | |
1291 | follow_type = lookup_reference_type (follow_type); | |
1292 | break; | |
1293 | case tp_array: | |
1294 | array_size = pop_type_int (); | |
1295 | /* FIXME-type-allocation: need a way to free this type when we are | |
1296 | done with it. */ | |
1297 | range_type = | |
1298 | create_range_type ((struct type *) NULL, | |
1299 | builtin_type_int, 0, | |
1300 | array_size >= 0 ? array_size - 1 : 0); | |
1301 | follow_type = | |
1302 | create_array_type ((struct type *) NULL, | |
1303 | follow_type, range_type); | |
1304 | if (array_size < 0) | |
c5aa993b | 1305 | TYPE_ARRAY_UPPER_BOUND_TYPE (follow_type) |
c906108c SS |
1306 | = BOUND_CANNOT_BE_DETERMINED; |
1307 | break; | |
1308 | case tp_function: | |
1309 | /* FIXME-type-allocation: need a way to free this type when we are | |
1310 | done with it. */ | |
1311 | follow_type = lookup_function_type (follow_type); | |
1312 | break; | |
1313 | } | |
1314 | return follow_type; | |
1315 | } | |
1316 | \f | |
ac9a91a7 JM |
1317 | static void build_parse PARAMS ((void)); |
1318 | static void | |
1319 | build_parse () | |
c906108c | 1320 | { |
cce74817 JM |
1321 | int i; |
1322 | ||
c906108c SS |
1323 | msym_text_symbol_type = |
1324 | init_type (TYPE_CODE_FUNC, 1, 0, "<text variable, no debug info>", NULL); | |
1325 | TYPE_TARGET_TYPE (msym_text_symbol_type) = builtin_type_int; | |
1326 | msym_data_symbol_type = | |
1327 | init_type (TYPE_CODE_INT, TARGET_INT_BIT / HOST_CHAR_BIT, 0, | |
1328 | "<data variable, no debug info>", NULL); | |
1329 | msym_unknown_symbol_type = | |
1330 | init_type (TYPE_CODE_INT, 1, 0, | |
1331 | "<variable (not text or data), no debug info>", | |
1332 | NULL); | |
cce74817 JM |
1333 | |
1334 | /* create the std_regs table */ | |
1335 | ||
1336 | num_std_regs = 0; | |
1337 | #ifdef PC_REGNUM | |
1338 | if (PC_REGNUM >= 0) | |
1339 | num_std_regs++; | |
1340 | #endif | |
1341 | #ifdef FP_REGNUM | |
1342 | if (FP_REGNUM >= 0) | |
1343 | num_std_regs++; | |
1344 | #endif | |
adf40b2e | 1345 | #ifdef SP_REGNUM |
cce74817 JM |
1346 | if (SP_REGNUM >= 0) |
1347 | num_std_regs++; | |
1348 | #endif | |
1349 | #ifdef PS_REGNUM | |
1350 | if (PS_REGNUM >= 0) | |
1351 | num_std_regs++; | |
1352 | #endif | |
1353 | /* create an empty table */ | |
1354 | std_regs = xmalloc ((num_std_regs + 1) * sizeof *std_regs); | |
1355 | i = 0; | |
1356 | /* fill it in */ | |
1357 | #ifdef PC_REGNUM | |
1358 | std_regs[i].name = "pc"; | |
1359 | std_regs[i].regnum = PC_REGNUM; | |
1360 | i++; | |
1361 | #endif | |
1362 | #ifdef FP_REGNUM | |
1363 | std_regs[i].name = "fp"; | |
1364 | std_regs[i].regnum = FP_REGNUM; | |
1365 | i++; | |
1366 | #endif | |
1367 | #ifdef SP_REGNUM | |
1368 | std_regs[i].name = "sp"; | |
1369 | std_regs[i].regnum = SP_REGNUM; | |
1370 | i++; | |
1371 | #endif | |
1372 | #ifdef PS_REGNUM | |
1373 | std_regs[i].name = "ps"; | |
1374 | std_regs[i].regnum = PS_REGNUM; | |
1375 | i++; | |
1376 | #endif | |
1377 | memset (&std_regs[i], 0, sizeof (std_regs[i])); | |
ac9a91a7 JM |
1378 | } |
1379 | ||
1380 | void | |
1381 | _initialize_parse () | |
1382 | { | |
1383 | type_stack_size = 80; | |
1384 | type_stack_depth = 0; | |
1385 | type_stack = (union type_stack_elt *) | |
1386 | xmalloc (type_stack_size * sizeof (*type_stack)); | |
1387 | ||
1388 | build_parse (); | |
c906108c | 1389 | |
0f71a2f6 JM |
1390 | /* FIXME - For the moment, handle types by swapping them in and out. |
1391 | Should be using the per-architecture data-pointer and a large | |
1392 | struct. */ | |
1393 | register_gdbarch_swap (&msym_text_symbol_type, sizeof (msym_text_symbol_type), NULL); | |
1394 | register_gdbarch_swap (&msym_data_symbol_type, sizeof (msym_data_symbol_type), NULL); | |
1395 | register_gdbarch_swap (&msym_unknown_symbol_type, sizeof (msym_unknown_symbol_type), NULL); | |
1396 | ||
1397 | register_gdbarch_swap (&num_std_regs, sizeof (std_regs), NULL); | |
1398 | register_gdbarch_swap (&std_regs, sizeof (std_regs), NULL); | |
1399 | register_gdbarch_swap (NULL, 0, build_parse); | |
1400 | ||
c906108c | 1401 | add_show_from_set ( |
5d161b24 | 1402 | add_set_cmd ("expression", class_maintenance, var_zinteger, |
c5aa993b JM |
1403 | (char *) &expressiondebug, |
1404 | "Set expression debugging.\n\ | |
c906108c | 1405 | When non-zero, the internal representation of expressions will be printed.", |
5d161b24 DB |
1406 | &setdebuglist), |
1407 | &showdebuglist); | |
c906108c | 1408 | } |