]>
Commit | Line | Data |
---|---|---|
c906108c SS |
1 | /* Parse expressions for GDB. |
2 | Copyright (C) 1986, 89, 90, 91, 94, 1998 Free Software Foundation, Inc. | |
3 | Modified from expread.y by the Department of Computer Science at the | |
4 | State University of New York at Buffalo, 1991. | |
5 | ||
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ | |
21 | ||
22 | /* Parse an expression from text in a string, | |
23 | and return the result as a struct expression pointer. | |
24 | That structure contains arithmetic operations in reverse polish, | |
25 | with constants represented by operations that are followed by special data. | |
26 | See expression.h for the details of the format. | |
27 | What is important here is that it can be built up sequentially | |
28 | during the process of parsing; the lower levels of the tree always | |
29 | come first in the result. */ | |
30 | ||
31 | #include "defs.h" | |
32 | #include "gdb_string.h" | |
33 | #include <ctype.h> | |
34 | #include "symtab.h" | |
35 | #include "gdbtypes.h" | |
36 | #include "frame.h" | |
37 | #include "expression.h" | |
38 | #include "value.h" | |
39 | #include "command.h" | |
40 | #include "language.h" | |
41 | #include "parser-defs.h" | |
42 | #include "gdbcmd.h" | |
43 | #include "symfile.h" /* for overlay functions */ | |
7a292a7a | 44 | #include <ctype.h> |
c906108c SS |
45 | \f |
46 | /* Global variables declared in parser-defs.h (and commented there). */ | |
47 | struct expression *expout; | |
48 | int expout_size; | |
49 | int expout_ptr; | |
50 | struct block *expression_context_block; | |
51 | struct block *innermost_block; | |
52 | int arglist_len; | |
53 | union type_stack_elt *type_stack; | |
54 | int type_stack_depth, type_stack_size; | |
55 | char *lexptr; | |
56 | char *namecopy; | |
57 | int paren_depth; | |
58 | int comma_terminates; | |
59 | \f | |
c906108c | 60 | static int expressiondebug = 0; |
c906108c SS |
61 | |
62 | extern int hp_som_som_object_present; | |
63 | ||
64 | static void | |
65 | free_funcalls PARAMS ((void)); | |
66 | ||
67 | static void | |
68 | prefixify_expression PARAMS ((struct expression *)); | |
69 | ||
70 | static void | |
71 | prefixify_subexp PARAMS ((struct expression *, struct expression *, int, int)); | |
72 | ||
392a587b JM |
73 | void _initialize_parse PARAMS ((void)); |
74 | ||
c906108c SS |
75 | /* Data structure for saving values of arglist_len for function calls whose |
76 | arguments contain other function calls. */ | |
77 | ||
78 | struct funcall | |
79 | { | |
80 | struct funcall *next; | |
81 | int arglist_len; | |
82 | }; | |
83 | ||
84 | static struct funcall *funcall_chain; | |
85 | ||
86 | /* Assign machine-independent names to certain registers | |
87 | (unless overridden by the REGISTER_NAMES table) */ | |
88 | ||
89 | #ifdef NO_STD_REGS | |
90 | unsigned num_std_regs = 0; | |
91 | struct std_regs std_regs[1]; | |
92 | #else | |
93 | struct std_regs std_regs[] = { | |
94 | ||
95 | #ifdef PC_REGNUM | |
96 | { "pc", PC_REGNUM }, | |
97 | #endif | |
98 | #ifdef FP_REGNUM | |
99 | { "fp", FP_REGNUM }, | |
100 | #endif | |
101 | #ifdef SP_REGNUM | |
102 | { "sp", SP_REGNUM }, | |
103 | #endif | |
104 | #ifdef PS_REGNUM | |
105 | { "ps", PS_REGNUM }, | |
106 | #endif | |
107 | ||
108 | }; | |
109 | ||
110 | unsigned num_std_regs = (sizeof std_regs / sizeof std_regs[0]); | |
111 | ||
112 | #endif | |
113 | ||
114 | /* The generic method for targets to specify how their registers are | |
115 | named. The mapping can be derived from three sources: | |
116 | REGISTER_NAME; std_regs; or a target specific alias hook. */ | |
117 | ||
118 | int | |
119 | target_map_name_to_register (str, len) | |
120 | char *str; | |
121 | int len; | |
122 | { | |
123 | int i; | |
124 | ||
125 | /* First try target specific aliases. We try these first because on some | |
126 | systems standard names can be context dependent (eg. $pc on a | |
127 | multiprocessor can be could be any of several PCs). */ | |
128 | #ifdef REGISTER_NAME_ALIAS_HOOK | |
129 | i = REGISTER_NAME_ALIAS_HOOK (str, len); | |
130 | if (i >= 0) | |
131 | return i; | |
132 | #endif | |
133 | ||
134 | /* Search architectural register name space. */ | |
135 | for (i = 0; i < NUM_REGS; i++) | |
136 | if (REGISTER_NAME (i) && len == strlen (REGISTER_NAME (i)) | |
137 | && STREQN (str, REGISTER_NAME (i), len)) | |
138 | { | |
139 | return i; | |
140 | } | |
141 | ||
142 | /* Try standard aliases */ | |
143 | for (i = 0; i < num_std_regs; i++) | |
144 | if (std_regs[i].name && len == strlen (std_regs[i].name) | |
145 | && STREQN (str, std_regs[i].name, len)) | |
146 | { | |
147 | return std_regs[i].regnum; | |
148 | } | |
149 | ||
150 | return -1; | |
151 | } | |
152 | ||
153 | /* Begin counting arguments for a function call, | |
154 | saving the data about any containing call. */ | |
155 | ||
156 | void | |
157 | start_arglist () | |
158 | { | |
159 | register struct funcall *new; | |
160 | ||
161 | new = (struct funcall *) xmalloc (sizeof (struct funcall)); | |
162 | new->next = funcall_chain; | |
163 | new->arglist_len = arglist_len; | |
164 | arglist_len = 0; | |
165 | funcall_chain = new; | |
166 | } | |
167 | ||
168 | /* Return the number of arguments in a function call just terminated, | |
169 | and restore the data for the containing function call. */ | |
170 | ||
171 | int | |
172 | end_arglist () | |
173 | { | |
174 | register int val = arglist_len; | |
175 | register struct funcall *call = funcall_chain; | |
176 | funcall_chain = call->next; | |
177 | arglist_len = call->arglist_len; | |
178 | free ((PTR)call); | |
179 | return val; | |
180 | } | |
181 | ||
182 | /* Free everything in the funcall chain. | |
183 | Used when there is an error inside parsing. */ | |
184 | ||
185 | static void | |
186 | free_funcalls () | |
187 | { | |
188 | register struct funcall *call, *next; | |
189 | ||
190 | for (call = funcall_chain; call; call = next) | |
191 | { | |
192 | next = call->next; | |
193 | free ((PTR)call); | |
194 | } | |
195 | } | |
196 | \f | |
197 | /* This page contains the functions for adding data to the struct expression | |
198 | being constructed. */ | |
199 | ||
200 | /* Add one element to the end of the expression. */ | |
201 | ||
202 | /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into | |
203 | a register through here */ | |
204 | ||
205 | void | |
206 | write_exp_elt (expelt) | |
207 | union exp_element expelt; | |
208 | { | |
209 | if (expout_ptr >= expout_size) | |
210 | { | |
211 | expout_size *= 2; | |
212 | expout = (struct expression *) | |
213 | xrealloc ((char *) expout, sizeof (struct expression) | |
214 | + EXP_ELEM_TO_BYTES (expout_size)); | |
215 | } | |
216 | expout->elts[expout_ptr++] = expelt; | |
217 | } | |
218 | ||
219 | void | |
220 | write_exp_elt_opcode (expelt) | |
221 | enum exp_opcode expelt; | |
222 | { | |
223 | union exp_element tmp; | |
224 | ||
225 | tmp.opcode = expelt; | |
226 | ||
227 | write_exp_elt (tmp); | |
228 | } | |
229 | ||
230 | void | |
231 | write_exp_elt_sym (expelt) | |
232 | struct symbol *expelt; | |
233 | { | |
234 | union exp_element tmp; | |
235 | ||
236 | tmp.symbol = expelt; | |
237 | ||
238 | write_exp_elt (tmp); | |
239 | } | |
240 | ||
241 | void | |
242 | write_exp_elt_block (b) | |
243 | struct block *b; | |
244 | { | |
245 | union exp_element tmp; | |
246 | tmp.block = b; | |
247 | write_exp_elt (tmp); | |
248 | } | |
249 | ||
250 | void | |
251 | write_exp_elt_longcst (expelt) | |
252 | LONGEST expelt; | |
253 | { | |
254 | union exp_element tmp; | |
255 | ||
256 | tmp.longconst = expelt; | |
257 | ||
258 | write_exp_elt (tmp); | |
259 | } | |
260 | ||
261 | void | |
262 | write_exp_elt_dblcst (expelt) | |
263 | DOUBLEST expelt; | |
264 | { | |
265 | union exp_element tmp; | |
266 | ||
267 | tmp.doubleconst = expelt; | |
268 | ||
269 | write_exp_elt (tmp); | |
270 | } | |
271 | ||
272 | void | |
273 | write_exp_elt_type (expelt) | |
274 | struct type *expelt; | |
275 | { | |
276 | union exp_element tmp; | |
277 | ||
278 | tmp.type = expelt; | |
279 | ||
280 | write_exp_elt (tmp); | |
281 | } | |
282 | ||
283 | void | |
284 | write_exp_elt_intern (expelt) | |
285 | struct internalvar *expelt; | |
286 | { | |
287 | union exp_element tmp; | |
288 | ||
289 | tmp.internalvar = expelt; | |
290 | ||
291 | write_exp_elt (tmp); | |
292 | } | |
293 | ||
294 | /* Add a string constant to the end of the expression. | |
295 | ||
296 | String constants are stored by first writing an expression element | |
297 | that contains the length of the string, then stuffing the string | |
298 | constant itself into however many expression elements are needed | |
299 | to hold it, and then writing another expression element that contains | |
300 | the length of the string. I.E. an expression element at each end of | |
301 | the string records the string length, so you can skip over the | |
302 | expression elements containing the actual string bytes from either | |
303 | end of the string. Note that this also allows gdb to handle | |
304 | strings with embedded null bytes, as is required for some languages. | |
305 | ||
306 | Don't be fooled by the fact that the string is null byte terminated, | |
307 | this is strictly for the convenience of debugging gdb itself. Gdb | |
308 | Gdb does not depend up the string being null terminated, since the | |
309 | actual length is recorded in expression elements at each end of the | |
310 | string. The null byte is taken into consideration when computing how | |
311 | many expression elements are required to hold the string constant, of | |
312 | course. */ | |
313 | ||
314 | ||
315 | void | |
316 | write_exp_string (str) | |
317 | struct stoken str; | |
318 | { | |
319 | register int len = str.length; | |
320 | register int lenelt; | |
321 | register char *strdata; | |
322 | ||
323 | /* Compute the number of expression elements required to hold the string | |
324 | (including a null byte terminator), along with one expression element | |
325 | at each end to record the actual string length (not including the | |
326 | null byte terminator). */ | |
327 | ||
328 | lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1); | |
329 | ||
330 | /* Ensure that we have enough available expression elements to store | |
331 | everything. */ | |
332 | ||
333 | if ((expout_ptr + lenelt) >= expout_size) | |
334 | { | |
335 | expout_size = max (expout_size * 2, expout_ptr + lenelt + 10); | |
336 | expout = (struct expression *) | |
337 | xrealloc ((char *) expout, (sizeof (struct expression) | |
338 | + EXP_ELEM_TO_BYTES (expout_size))); | |
339 | } | |
340 | ||
341 | /* Write the leading length expression element (which advances the current | |
342 | expression element index), then write the string constant followed by a | |
343 | terminating null byte, and then write the trailing length expression | |
344 | element. */ | |
345 | ||
346 | write_exp_elt_longcst ((LONGEST) len); | |
347 | strdata = (char *) &expout->elts[expout_ptr]; | |
348 | memcpy (strdata, str.ptr, len); | |
349 | *(strdata + len) = '\0'; | |
350 | expout_ptr += lenelt - 2; | |
351 | write_exp_elt_longcst ((LONGEST) len); | |
352 | } | |
353 | ||
354 | /* Add a bitstring constant to the end of the expression. | |
355 | ||
356 | Bitstring constants are stored by first writing an expression element | |
357 | that contains the length of the bitstring (in bits), then stuffing the | |
358 | bitstring constant itself into however many expression elements are | |
359 | needed to hold it, and then writing another expression element that | |
360 | contains the length of the bitstring. I.E. an expression element at | |
361 | each end of the bitstring records the bitstring length, so you can skip | |
362 | over the expression elements containing the actual bitstring bytes from | |
363 | either end of the bitstring. */ | |
364 | ||
365 | void | |
366 | write_exp_bitstring (str) | |
367 | struct stoken str; | |
368 | { | |
369 | register int bits = str.length; /* length in bits */ | |
370 | register int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
371 | register int lenelt; | |
372 | register char *strdata; | |
373 | ||
374 | /* Compute the number of expression elements required to hold the bitstring, | |
375 | along with one expression element at each end to record the actual | |
376 | bitstring length in bits. */ | |
377 | ||
378 | lenelt = 2 + BYTES_TO_EXP_ELEM (len); | |
379 | ||
380 | /* Ensure that we have enough available expression elements to store | |
381 | everything. */ | |
382 | ||
383 | if ((expout_ptr + lenelt) >= expout_size) | |
384 | { | |
385 | expout_size = max (expout_size * 2, expout_ptr + lenelt + 10); | |
386 | expout = (struct expression *) | |
387 | xrealloc ((char *) expout, (sizeof (struct expression) | |
388 | + EXP_ELEM_TO_BYTES (expout_size))); | |
389 | } | |
390 | ||
391 | /* Write the leading length expression element (which advances the current | |
392 | expression element index), then write the bitstring constant, and then | |
393 | write the trailing length expression element. */ | |
394 | ||
395 | write_exp_elt_longcst ((LONGEST) bits); | |
396 | strdata = (char *) &expout->elts[expout_ptr]; | |
397 | memcpy (strdata, str.ptr, len); | |
398 | expout_ptr += lenelt - 2; | |
399 | write_exp_elt_longcst ((LONGEST) bits); | |
400 | } | |
401 | ||
402 | /* Add the appropriate elements for a minimal symbol to the end of | |
403 | the expression. The rationale behind passing in text_symbol_type and | |
404 | data_symbol_type was so that Modula-2 could pass in WORD for | |
405 | data_symbol_type. Perhaps it still is useful to have those types vary | |
406 | based on the language, but they no longer have names like "int", so | |
407 | the initial rationale is gone. */ | |
408 | ||
409 | static struct type *msym_text_symbol_type; | |
410 | static struct type *msym_data_symbol_type; | |
411 | static struct type *msym_unknown_symbol_type; | |
412 | ||
413 | void | |
414 | write_exp_msymbol (msymbol, text_symbol_type, data_symbol_type) | |
415 | struct minimal_symbol *msymbol; | |
416 | struct type *text_symbol_type; | |
417 | struct type *data_symbol_type; | |
418 | { | |
419 | CORE_ADDR addr; | |
420 | ||
421 | write_exp_elt_opcode (OP_LONG); | |
422 | write_exp_elt_type (lookup_pointer_type (builtin_type_void)); | |
423 | ||
424 | addr = SYMBOL_VALUE_ADDRESS (msymbol); | |
425 | if (overlay_debugging) | |
426 | addr = symbol_overlayed_address (addr, SYMBOL_BFD_SECTION (msymbol)); | |
427 | write_exp_elt_longcst ((LONGEST) addr); | |
428 | ||
429 | write_exp_elt_opcode (OP_LONG); | |
430 | ||
431 | write_exp_elt_opcode (UNOP_MEMVAL); | |
432 | switch (msymbol -> type) | |
433 | { | |
434 | case mst_text: | |
435 | case mst_file_text: | |
436 | case mst_solib_trampoline: | |
437 | write_exp_elt_type (msym_text_symbol_type); | |
438 | break; | |
439 | ||
440 | case mst_data: | |
441 | case mst_file_data: | |
442 | case mst_bss: | |
443 | case mst_file_bss: | |
444 | write_exp_elt_type (msym_data_symbol_type); | |
445 | break; | |
446 | ||
447 | default: | |
448 | write_exp_elt_type (msym_unknown_symbol_type); | |
449 | break; | |
450 | } | |
451 | write_exp_elt_opcode (UNOP_MEMVAL); | |
452 | } | |
453 | \f | |
454 | /* Recognize tokens that start with '$'. These include: | |
455 | ||
456 | $regname A native register name or a "standard | |
457 | register name". | |
458 | ||
459 | $variable A convenience variable with a name chosen | |
460 | by the user. | |
461 | ||
462 | $digits Value history with index <digits>, starting | |
463 | from the first value which has index 1. | |
464 | ||
465 | $$digits Value history with index <digits> relative | |
466 | to the last value. I.E. $$0 is the last | |
467 | value, $$1 is the one previous to that, $$2 | |
468 | is the one previous to $$1, etc. | |
469 | ||
470 | $ | $0 | $$0 The last value in the value history. | |
471 | ||
472 | $$ An abbreviation for the second to the last | |
473 | value in the value history, I.E. $$1 | |
474 | ||
475 | */ | |
476 | ||
477 | void | |
478 | write_dollar_variable (str) | |
479 | struct stoken str; | |
480 | { | |
481 | /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1) | |
482 | and $$digits (equivalent to $<-digits> if you could type that). */ | |
483 | ||
484 | struct symbol * sym = NULL; | |
485 | struct minimal_symbol * msym = NULL; | |
486 | ||
487 | int negate = 0; | |
488 | int i = 1; | |
489 | /* Double dollar means negate the number and add -1 as well. | |
490 | Thus $$ alone means -1. */ | |
491 | if (str.length >= 2 && str.ptr[1] == '$') | |
492 | { | |
493 | negate = 1; | |
494 | i = 2; | |
495 | } | |
496 | if (i == str.length) | |
497 | { | |
498 | /* Just dollars (one or two) */ | |
499 | i = - negate; | |
500 | goto handle_last; | |
501 | } | |
502 | /* Is the rest of the token digits? */ | |
503 | for (; i < str.length; i++) | |
504 | if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9')) | |
505 | break; | |
506 | if (i == str.length) | |
507 | { | |
508 | i = atoi (str.ptr + 1 + negate); | |
509 | if (negate) | |
510 | i = - i; | |
511 | goto handle_last; | |
512 | } | |
513 | ||
514 | /* Handle tokens that refer to machine registers: | |
515 | $ followed by a register name. */ | |
516 | i = target_map_name_to_register( str.ptr + 1, str.length - 1 ); | |
517 | if( i >= 0 ) | |
518 | goto handle_register; | |
519 | ||
520 | /* On HP-UX, certain system routines (millicode) have names beginning | |
521 | with $ or $$, e.g. $$dyncall, which handles inter-space procedure | |
522 | calls on PA-RISC. Check for those, first. */ | |
523 | ||
524 | sym = lookup_symbol (copy_name (str), (struct block *) NULL, | |
525 | VAR_NAMESPACE, (int *) NULL, (struct symtab **) NULL); | |
526 | if (sym) | |
527 | { | |
528 | write_exp_elt_opcode (OP_VAR_VALUE); | |
529 | write_exp_elt_block (block_found); /* set by lookup_symbol */ | |
530 | write_exp_elt_sym (sym); | |
531 | write_exp_elt_opcode (OP_VAR_VALUE); | |
532 | return; | |
533 | } | |
534 | msym = lookup_minimal_symbol (copy_name (str), NULL, NULL); | |
535 | if (msym) | |
536 | { | |
537 | write_exp_msymbol (msym, | |
538 | lookup_function_type (builtin_type_int), | |
539 | builtin_type_int); | |
540 | return; | |
541 | } | |
542 | ||
543 | /* Any other names starting in $ are debugger internal variables. */ | |
544 | ||
545 | write_exp_elt_opcode (OP_INTERNALVAR); | |
546 | write_exp_elt_intern (lookup_internalvar (copy_name (str) + 1)); | |
547 | write_exp_elt_opcode (OP_INTERNALVAR); | |
548 | return; | |
549 | handle_last: | |
550 | write_exp_elt_opcode (OP_LAST); | |
551 | write_exp_elt_longcst ((LONGEST) i); | |
552 | write_exp_elt_opcode (OP_LAST); | |
553 | return; | |
554 | handle_register: | |
555 | write_exp_elt_opcode (OP_REGISTER); | |
556 | write_exp_elt_longcst (i); | |
557 | write_exp_elt_opcode (OP_REGISTER); | |
558 | return; | |
559 | } | |
560 | ||
561 | ||
562 | /* Parse a string that is possibly a namespace / nested class | |
563 | specification, i.e., something of the form A::B::C::x. Input | |
564 | (NAME) is the entire string; LEN is the current valid length; the | |
565 | output is a string, TOKEN, which points to the largest recognized | |
566 | prefix which is a series of namespaces or classes. CLASS_PREFIX is | |
567 | another output, which records whether a nested class spec was | |
568 | recognized (= 1) or a fully qualified variable name was found (= | |
569 | 0). ARGPTR is side-effected (if non-NULL) to point to beyond the | |
570 | string recognized and consumed by this routine. | |
571 | ||
572 | The return value is a pointer to the symbol for the base class or | |
573 | variable if found, or NULL if not found. Callers must check this | |
574 | first -- if NULL, the outputs may not be correct. | |
575 | ||
576 | This function is used c-exp.y. This is used specifically to get | |
577 | around HP aCC (and possibly other compilers), which insists on | |
578 | generating names with embedded colons for namespace or nested class | |
579 | members. | |
580 | ||
581 | (Argument LEN is currently unused. 1997-08-27) | |
582 | ||
583 | Callers must free memory allocated for the output string TOKEN. */ | |
584 | ||
585 | static const char coloncolon[2] = {':',':'}; | |
586 | ||
587 | struct symbol * | |
588 | parse_nested_classes_for_hpacc (name, len, token, class_prefix, argptr) | |
589 | char * name; | |
590 | int len; | |
591 | char ** token; | |
592 | int * class_prefix; | |
593 | char ** argptr; | |
594 | { | |
595 | /* Comment below comes from decode_line_1 which has very similar | |
596 | code, which is called for "break" command parsing. */ | |
597 | ||
598 | /* We have what looks like a class or namespace | |
599 | scope specification (A::B), possibly with many | |
600 | levels of namespaces or classes (A::B::C::D). | |
601 | ||
602 | Some versions of the HP ANSI C++ compiler (as also possibly | |
603 | other compilers) generate class/function/member names with | |
604 | embedded double-colons if they are inside namespaces. To | |
605 | handle this, we loop a few times, considering larger and | |
606 | larger prefixes of the string as though they were single | |
607 | symbols. So, if the initially supplied string is | |
608 | A::B::C::D::foo, we have to look up "A", then "A::B", | |
609 | then "A::B::C", then "A::B::C::D", and finally | |
610 | "A::B::C::D::foo" as single, monolithic symbols, because | |
611 | A, B, C or D may be namespaces. | |
612 | ||
613 | Note that namespaces can nest only inside other | |
614 | namespaces, and not inside classes. So we need only | |
615 | consider *prefixes* of the string; there is no need to look up | |
616 | "B::C" separately as a symbol in the previous example. */ | |
617 | ||
618 | register char * p; | |
619 | char * start, * end; | |
620 | char * prefix = NULL; | |
621 | char * tmp; | |
622 | struct symbol * sym_class = NULL; | |
623 | struct symbol * sym_var = NULL; | |
624 | struct type * t; | |
625 | register int i; | |
626 | int colons_found = 0; | |
627 | int prefix_len = 0; | |
628 | int done = 0; | |
629 | char * q; | |
630 | ||
631 | /* Check for HP-compiled executable -- in other cases | |
632 | return NULL, and caller must default to standard GDB | |
633 | behaviour. */ | |
634 | ||
635 | if (!hp_som_som_object_present) | |
636 | return (struct symbol *) NULL; | |
637 | ||
638 | p = name; | |
639 | ||
640 | /* Skip over whitespace and possible global "::" */ | |
641 | while (*p && (*p == ' ' || *p == '\t')) p++; | |
642 | if (p[0] == ':' && p[1] == ':') | |
643 | p += 2; | |
644 | while (*p && (*p == ' ' || *p == '\t')) p++; | |
645 | ||
646 | while (1) | |
647 | { | |
648 | /* Get to the end of the next namespace or class spec. */ | |
649 | /* If we're looking at some non-token, fail immediately */ | |
650 | start = p; | |
651 | if (!(isalpha (*p) || *p == '$' || *p == '_')) | |
652 | return (struct symbol *) NULL; | |
653 | p++; | |
654 | while (*p && (isalnum (*p) || *p == '$' || *p == '_')) p++; | |
655 | ||
656 | if (*p == '<') | |
657 | { | |
658 | /* If we have the start of a template specification, | |
659 | scan right ahead to its end */ | |
660 | q = find_template_name_end (p); | |
661 | if (q) | |
662 | p = q; | |
663 | } | |
664 | ||
665 | end = p; | |
666 | ||
667 | /* Skip over "::" and whitespace for next time around */ | |
668 | while (*p && (*p == ' ' || *p == '\t')) p++; | |
669 | if (p[0] == ':' && p[1] == ':') | |
670 | p += 2; | |
671 | while (*p && (*p == ' ' || *p == '\t')) p++; | |
672 | ||
673 | /* Done with tokens? */ | |
674 | if (!*p || !(isalpha (*p) || *p == '$' || *p == '_')) | |
675 | done = 1; | |
676 | ||
677 | tmp = (char *) alloca (prefix_len + end - start + 3); | |
678 | if (prefix) | |
679 | { | |
680 | memcpy (tmp, prefix, prefix_len); | |
681 | memcpy (tmp + prefix_len, coloncolon, 2); | |
682 | memcpy (tmp + prefix_len + 2, start, end - start); | |
683 | tmp[prefix_len + 2 + end - start] = '\000'; | |
684 | } | |
685 | else | |
686 | { | |
687 | memcpy (tmp, start, end - start); | |
688 | tmp[end - start] = '\000'; | |
689 | } | |
690 | ||
691 | prefix = tmp; | |
692 | prefix_len = strlen (prefix); | |
693 | ||
694 | #if 0 /* DEBUGGING */ | |
695 | printf ("Searching for nested class spec: Prefix is %s\n", prefix); | |
696 | #endif | |
697 | ||
698 | /* See if the prefix we have now is something we know about */ | |
699 | ||
700 | if (!done) | |
701 | { | |
702 | /* More tokens to process, so this must be a class/namespace */ | |
703 | sym_class = lookup_symbol (prefix, 0, STRUCT_NAMESPACE, | |
704 | 0, (struct symtab **) NULL); | |
705 | } | |
706 | else | |
707 | { | |
708 | /* No more tokens, so try as a variable first */ | |
709 | sym_var = lookup_symbol (prefix, 0, VAR_NAMESPACE, | |
710 | 0, (struct symtab **) NULL); | |
711 | /* If failed, try as class/namespace */ | |
712 | if (!sym_var) | |
713 | sym_class = lookup_symbol (prefix, 0, STRUCT_NAMESPACE, | |
714 | 0, (struct symtab **) NULL); | |
715 | } | |
716 | ||
717 | if (sym_var || | |
718 | (sym_class && | |
719 | (t = check_typedef (SYMBOL_TYPE (sym_class)), | |
720 | (TYPE_CODE (t) == TYPE_CODE_STRUCT | |
721 | || TYPE_CODE (t) == TYPE_CODE_UNION)))) | |
722 | { | |
723 | /* We found a valid token */ | |
724 | *token = (char *) xmalloc (prefix_len + 1 ); | |
725 | memcpy (*token, prefix, prefix_len); | |
726 | (*token)[prefix_len] = '\000'; | |
727 | break; | |
728 | } | |
729 | ||
730 | /* No variable or class/namespace found, no more tokens */ | |
731 | if (done) | |
732 | return (struct symbol *) NULL; | |
733 | } | |
734 | ||
735 | /* Out of loop, so we must have found a valid token */ | |
736 | if (sym_var) | |
737 | *class_prefix = 0; | |
738 | else | |
739 | *class_prefix = 1; | |
740 | ||
741 | if (argptr) | |
742 | *argptr = done ? p : end; | |
743 | ||
744 | #if 0 /* DEBUGGING */ | |
745 | printf ("Searching for nested class spec: Token is %s, class_prefix %d\n", *token, *class_prefix); | |
746 | #endif | |
747 | ||
748 | return sym_var ? sym_var : sym_class; /* found */ | |
749 | } | |
750 | ||
751 | char * | |
752 | find_template_name_end (p) | |
753 | char * p; | |
754 | { | |
755 | int depth = 1; | |
756 | int just_seen_right = 0; | |
757 | int just_seen_colon = 0; | |
758 | int just_seen_space = 0; | |
759 | ||
760 | if (!p || (*p != '<')) | |
761 | return 0; | |
762 | ||
763 | while (*++p) | |
764 | { | |
765 | switch (*p) | |
766 | { | |
767 | case '\'': case '\"': | |
768 | case '{': case '}': | |
769 | /* In future, may want to allow these?? */ | |
770 | return 0; | |
771 | case '<': | |
772 | depth++; /* start nested template */ | |
773 | if (just_seen_colon || just_seen_right || just_seen_space) | |
774 | return 0; /* but not after : or :: or > or space */ | |
775 | break; | |
776 | case '>': | |
777 | if (just_seen_colon || just_seen_right) | |
778 | return 0; /* end a (nested?) template */ | |
779 | just_seen_right = 1; /* but not after : or :: */ | |
780 | if (--depth == 0) /* also disallow >>, insist on > > */ | |
781 | return ++p; /* if outermost ended, return */ | |
782 | break; | |
783 | case ':': | |
784 | if (just_seen_space || (just_seen_colon > 1)) | |
785 | return 0; /* nested class spec coming up */ | |
786 | just_seen_colon++; /* we allow :: but not :::: */ | |
787 | break; | |
788 | case ' ': | |
789 | break; | |
790 | default: | |
791 | if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */ | |
792 | (*p >= 'A' && *p <= 'Z') || | |
793 | (*p >= '0' && *p <= '9') || | |
794 | (*p == '_') || (*p == ',') || /* commas for template args */ | |
795 | (*p == '&') || (*p == '*') || /* pointer and ref types */ | |
796 | (*p == '(') || (*p == ')') || /* function types */ | |
797 | (*p == '[') || (*p == ']') )) /* array types */ | |
798 | return 0; | |
799 | } | |
800 | if (*p != ' ') | |
801 | just_seen_space = 0; | |
802 | if (*p != ':') | |
803 | just_seen_colon = 0; | |
804 | if (*p != '>') | |
805 | just_seen_right = 0; | |
806 | } | |
807 | return 0; | |
808 | } | |
809 | ||
810 | ||
811 | \f | |
812 | /* Return a null-terminated temporary copy of the name | |
813 | of a string token. */ | |
814 | ||
815 | char * | |
816 | copy_name (token) | |
817 | struct stoken token; | |
818 | { | |
819 | memcpy (namecopy, token.ptr, token.length); | |
820 | namecopy[token.length] = 0; | |
821 | return namecopy; | |
822 | } | |
823 | \f | |
824 | /* Reverse an expression from suffix form (in which it is constructed) | |
825 | to prefix form (in which we can conveniently print or execute it). */ | |
826 | ||
827 | static void | |
828 | prefixify_expression (expr) | |
829 | register struct expression *expr; | |
830 | { | |
831 | register int len = | |
832 | sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts); | |
833 | register struct expression *temp; | |
834 | register int inpos = expr->nelts, outpos = 0; | |
835 | ||
836 | temp = (struct expression *) alloca (len); | |
837 | ||
838 | /* Copy the original expression into temp. */ | |
839 | memcpy (temp, expr, len); | |
840 | ||
841 | prefixify_subexp (temp, expr, inpos, outpos); | |
842 | } | |
843 | ||
844 | /* Return the number of exp_elements in the subexpression of EXPR | |
845 | whose last exp_element is at index ENDPOS - 1 in EXPR. */ | |
846 | ||
847 | int | |
848 | length_of_subexp (expr, endpos) | |
849 | register struct expression *expr; | |
850 | register int endpos; | |
851 | { | |
852 | register int oplen = 1; | |
853 | register int args = 0; | |
854 | register int i; | |
855 | ||
856 | if (endpos < 1) | |
857 | error ("?error in length_of_subexp"); | |
858 | ||
859 | i = (int) expr->elts[endpos - 1].opcode; | |
860 | ||
861 | switch (i) | |
862 | { | |
863 | /* C++ */ | |
864 | case OP_SCOPE: | |
865 | oplen = longest_to_int (expr->elts[endpos - 2].longconst); | |
866 | oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1); | |
867 | break; | |
868 | ||
869 | case OP_LONG: | |
870 | case OP_DOUBLE: | |
871 | case OP_VAR_VALUE: | |
872 | oplen = 4; | |
873 | break; | |
874 | ||
875 | case OP_TYPE: | |
876 | case OP_BOOL: | |
877 | case OP_LAST: | |
878 | case OP_REGISTER: | |
879 | case OP_INTERNALVAR: | |
880 | oplen = 3; | |
881 | break; | |
882 | ||
883 | case OP_COMPLEX: | |
884 | oplen = 1; | |
885 | args = 2; | |
886 | break; | |
887 | ||
888 | case OP_FUNCALL: | |
889 | case OP_F77_UNDETERMINED_ARGLIST: | |
890 | oplen = 3; | |
891 | args = 1 + longest_to_int (expr->elts[endpos - 2].longconst); | |
892 | break; | |
893 | ||
894 | case UNOP_MAX: | |
895 | case UNOP_MIN: | |
896 | oplen = 3; | |
897 | break; | |
898 | ||
899 | case BINOP_VAL: | |
900 | case UNOP_CAST: | |
901 | case UNOP_MEMVAL: | |
902 | oplen = 3; | |
903 | args = 1; | |
904 | break; | |
905 | ||
906 | case UNOP_ABS: | |
907 | case UNOP_CAP: | |
908 | case UNOP_CHR: | |
909 | case UNOP_FLOAT: | |
910 | case UNOP_HIGH: | |
911 | case UNOP_ODD: | |
912 | case UNOP_ORD: | |
913 | case UNOP_TRUNC: | |
914 | oplen = 1; | |
915 | args = 1; | |
916 | break; | |
917 | ||
918 | case OP_LABELED: | |
919 | case STRUCTOP_STRUCT: | |
920 | case STRUCTOP_PTR: | |
921 | args = 1; | |
922 | /* fall through */ | |
923 | case OP_M2_STRING: | |
924 | case OP_STRING: | |
925 | case OP_NAME: | |
926 | case OP_EXPRSTRING: | |
927 | oplen = longest_to_int (expr->elts[endpos - 2].longconst); | |
928 | oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1); | |
929 | break; | |
930 | ||
931 | case OP_BITSTRING: | |
932 | oplen = longest_to_int (expr->elts[endpos - 2].longconst); | |
933 | oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
934 | oplen = 4 + BYTES_TO_EXP_ELEM (oplen); | |
935 | break; | |
936 | ||
937 | case OP_ARRAY: | |
938 | oplen = 4; | |
939 | args = longest_to_int (expr->elts[endpos - 2].longconst); | |
940 | args -= longest_to_int (expr->elts[endpos - 3].longconst); | |
941 | args += 1; | |
942 | break; | |
943 | ||
944 | case TERNOP_COND: | |
945 | case TERNOP_SLICE: | |
946 | case TERNOP_SLICE_COUNT: | |
947 | args = 3; | |
948 | break; | |
949 | ||
950 | /* Modula-2 */ | |
951 | case MULTI_SUBSCRIPT: | |
952 | oplen = 3; | |
953 | args = 1 + longest_to_int (expr->elts[endpos- 2].longconst); | |
954 | break; | |
955 | ||
956 | case BINOP_ASSIGN_MODIFY: | |
957 | oplen = 3; | |
958 | args = 2; | |
959 | break; | |
960 | ||
961 | /* C++ */ | |
962 | case OP_THIS: | |
963 | oplen = 2; | |
964 | break; | |
965 | ||
966 | default: | |
967 | args = 1 + (i < (int) BINOP_END); | |
968 | } | |
969 | ||
970 | while (args > 0) | |
971 | { | |
972 | oplen += length_of_subexp (expr, endpos - oplen); | |
973 | args--; | |
974 | } | |
975 | ||
976 | return oplen; | |
977 | } | |
978 | ||
979 | /* Copy the subexpression ending just before index INEND in INEXPR | |
980 | into OUTEXPR, starting at index OUTBEG. | |
981 | In the process, convert it from suffix to prefix form. */ | |
982 | ||
983 | static void | |
984 | prefixify_subexp (inexpr, outexpr, inend, outbeg) | |
985 | register struct expression *inexpr; | |
986 | struct expression *outexpr; | |
987 | register int inend; | |
988 | int outbeg; | |
989 | { | |
990 | register int oplen = 1; | |
991 | register int args = 0; | |
992 | register int i; | |
993 | int *arglens; | |
994 | enum exp_opcode opcode; | |
995 | ||
996 | /* Compute how long the last operation is (in OPLEN), | |
997 | and also how many preceding subexpressions serve as | |
998 | arguments for it (in ARGS). */ | |
999 | ||
1000 | opcode = inexpr->elts[inend - 1].opcode; | |
1001 | switch (opcode) | |
1002 | { | |
1003 | /* C++ */ | |
1004 | case OP_SCOPE: | |
1005 | oplen = longest_to_int (inexpr->elts[inend - 2].longconst); | |
1006 | oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1); | |
1007 | break; | |
1008 | ||
1009 | case OP_LONG: | |
1010 | case OP_DOUBLE: | |
1011 | case OP_VAR_VALUE: | |
1012 | oplen = 4; | |
1013 | break; | |
1014 | ||
1015 | case OP_TYPE: | |
1016 | case OP_BOOL: | |
1017 | case OP_LAST: | |
1018 | case OP_REGISTER: | |
1019 | case OP_INTERNALVAR: | |
1020 | oplen = 3; | |
1021 | break; | |
1022 | ||
1023 | case OP_COMPLEX: | |
1024 | oplen = 1; | |
1025 | args = 2; | |
1026 | break; | |
1027 | ||
1028 | case OP_FUNCALL: | |
1029 | case OP_F77_UNDETERMINED_ARGLIST: | |
1030 | oplen = 3; | |
1031 | args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst); | |
1032 | break; | |
1033 | ||
1034 | case UNOP_MIN: | |
1035 | case UNOP_MAX: | |
1036 | oplen = 3; | |
1037 | break; | |
1038 | ||
1039 | case UNOP_CAST: | |
1040 | case UNOP_MEMVAL: | |
1041 | oplen = 3; | |
1042 | args = 1; | |
1043 | break; | |
1044 | ||
1045 | case UNOP_ABS: | |
1046 | case UNOP_CAP: | |
1047 | case UNOP_CHR: | |
1048 | case UNOP_FLOAT: | |
1049 | case UNOP_HIGH: | |
1050 | case UNOP_ODD: | |
1051 | case UNOP_ORD: | |
1052 | case UNOP_TRUNC: | |
1053 | oplen=1; | |
1054 | args=1; | |
1055 | break; | |
1056 | ||
1057 | case STRUCTOP_STRUCT: | |
1058 | case STRUCTOP_PTR: | |
1059 | case OP_LABELED: | |
1060 | args = 1; | |
1061 | /* fall through */ | |
1062 | case OP_M2_STRING: | |
1063 | case OP_STRING: | |
1064 | case OP_NAME: | |
1065 | case OP_EXPRSTRING: | |
1066 | oplen = longest_to_int (inexpr->elts[inend - 2].longconst); | |
1067 | oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1); | |
1068 | break; | |
1069 | ||
1070 | case OP_BITSTRING: | |
1071 | oplen = longest_to_int (inexpr->elts[inend - 2].longconst); | |
1072 | oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
1073 | oplen = 4 + BYTES_TO_EXP_ELEM (oplen); | |
1074 | break; | |
1075 | ||
1076 | case OP_ARRAY: | |
1077 | oplen = 4; | |
1078 | args = longest_to_int (inexpr->elts[inend - 2].longconst); | |
1079 | args -= longest_to_int (inexpr->elts[inend - 3].longconst); | |
1080 | args += 1; | |
1081 | break; | |
1082 | ||
1083 | case TERNOP_COND: | |
1084 | case TERNOP_SLICE: | |
1085 | case TERNOP_SLICE_COUNT: | |
1086 | args = 3; | |
1087 | break; | |
1088 | ||
1089 | case BINOP_ASSIGN_MODIFY: | |
1090 | oplen = 3; | |
1091 | args = 2; | |
1092 | break; | |
1093 | ||
1094 | /* Modula-2 */ | |
1095 | case MULTI_SUBSCRIPT: | |
1096 | oplen = 3; | |
1097 | args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst); | |
1098 | break; | |
1099 | ||
1100 | /* C++ */ | |
1101 | case OP_THIS: | |
1102 | oplen = 2; | |
1103 | break; | |
1104 | ||
1105 | default: | |
1106 | args = 1 + ((int) opcode < (int) BINOP_END); | |
1107 | } | |
1108 | ||
1109 | /* Copy the final operator itself, from the end of the input | |
1110 | to the beginning of the output. */ | |
1111 | inend -= oplen; | |
1112 | memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend], | |
1113 | EXP_ELEM_TO_BYTES (oplen)); | |
1114 | outbeg += oplen; | |
1115 | ||
1116 | /* Find the lengths of the arg subexpressions. */ | |
1117 | arglens = (int *) alloca (args * sizeof (int)); | |
1118 | for (i = args - 1; i >= 0; i--) | |
1119 | { | |
1120 | oplen = length_of_subexp (inexpr, inend); | |
1121 | arglens[i] = oplen; | |
1122 | inend -= oplen; | |
1123 | } | |
1124 | ||
1125 | /* Now copy each subexpression, preserving the order of | |
1126 | the subexpressions, but prefixifying each one. | |
1127 | In this loop, inend starts at the beginning of | |
1128 | the expression this level is working on | |
1129 | and marches forward over the arguments. | |
1130 | outbeg does similarly in the output. */ | |
1131 | for (i = 0; i < args; i++) | |
1132 | { | |
1133 | oplen = arglens[i]; | |
1134 | inend += oplen; | |
1135 | prefixify_subexp (inexpr, outexpr, inend, outbeg); | |
1136 | outbeg += oplen; | |
1137 | } | |
1138 | } | |
1139 | \f | |
1140 | /* This page contains the two entry points to this file. */ | |
1141 | ||
1142 | /* Read an expression from the string *STRINGPTR points to, | |
1143 | parse it, and return a pointer to a struct expression that we malloc. | |
1144 | Use block BLOCK as the lexical context for variable names; | |
1145 | if BLOCK is zero, use the block of the selected stack frame. | |
1146 | Meanwhile, advance *STRINGPTR to point after the expression, | |
1147 | at the first nonwhite character that is not part of the expression | |
1148 | (possibly a null character). | |
1149 | ||
1150 | If COMMA is nonzero, stop if a comma is reached. */ | |
1151 | ||
1152 | struct expression * | |
1153 | parse_exp_1 (stringptr, block, comma) | |
1154 | char **stringptr; | |
1155 | struct block *block; | |
1156 | int comma; | |
1157 | { | |
1158 | struct cleanup *old_chain; | |
1159 | ||
1160 | lexptr = *stringptr; | |
1161 | ||
1162 | paren_depth = 0; | |
1163 | type_stack_depth = 0; | |
1164 | ||
1165 | comma_terminates = comma; | |
1166 | ||
1167 | if (lexptr == 0 || *lexptr == 0) | |
1168 | error_no_arg ("expression to compute"); | |
1169 | ||
1170 | old_chain = make_cleanup ((make_cleanup_func) free_funcalls, 0); | |
1171 | funcall_chain = 0; | |
1172 | ||
1173 | expression_context_block = block ? block : get_selected_block (); | |
1174 | ||
1175 | namecopy = (char *) alloca (strlen (lexptr) + 1); | |
1176 | expout_size = 10; | |
1177 | expout_ptr = 0; | |
1178 | expout = (struct expression *) | |
1179 | xmalloc (sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_size)); | |
1180 | expout->language_defn = current_language; | |
1181 | make_cleanup ((make_cleanup_func) free_current_contents, &expout); | |
1182 | ||
1183 | if (current_language->la_parser ()) | |
1184 | current_language->la_error (NULL); | |
1185 | ||
1186 | discard_cleanups (old_chain); | |
1187 | ||
1188 | /* Record the actual number of expression elements, and then | |
1189 | reallocate the expression memory so that we free up any | |
1190 | excess elements. */ | |
1191 | ||
1192 | expout->nelts = expout_ptr; | |
1193 | expout = (struct expression *) | |
1194 | xrealloc ((char *) expout, | |
1195 | sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_ptr));; | |
1196 | ||
1197 | /* Convert expression from postfix form as generated by yacc | |
1198 | parser, to a prefix form. */ | |
1199 | ||
c906108c SS |
1200 | if (expressiondebug) |
1201 | dump_prefix_expression (expout, gdb_stdout, | |
1202 | "before conversion to prefix form"); | |
c906108c SS |
1203 | |
1204 | prefixify_expression (expout); | |
1205 | ||
c906108c SS |
1206 | if (expressiondebug) |
1207 | dump_postfix_expression (expout, gdb_stdout, | |
1208 | "after conversion to prefix form"); | |
c906108c SS |
1209 | |
1210 | *stringptr = lexptr; | |
1211 | return expout; | |
1212 | } | |
1213 | ||
1214 | /* Parse STRING as an expression, and complain if this fails | |
1215 | to use up all of the contents of STRING. */ | |
1216 | ||
1217 | struct expression * | |
1218 | parse_expression (string) | |
1219 | char *string; | |
1220 | { | |
1221 | register struct expression *exp; | |
1222 | exp = parse_exp_1 (&string, 0, 0); | |
1223 | if (*string) | |
1224 | error ("Junk after end of expression."); | |
1225 | return exp; | |
1226 | } | |
1227 | \f | |
1228 | /* Stuff for maintaining a stack of types. Currently just used by C, but | |
1229 | probably useful for any language which declares its types "backwards". */ | |
1230 | ||
1231 | void | |
1232 | push_type (tp) | |
1233 | enum type_pieces tp; | |
1234 | { | |
1235 | if (type_stack_depth == type_stack_size) | |
1236 | { | |
1237 | type_stack_size *= 2; | |
1238 | type_stack = (union type_stack_elt *) | |
1239 | xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack)); | |
1240 | } | |
1241 | type_stack[type_stack_depth++].piece = tp; | |
1242 | } | |
1243 | ||
1244 | void | |
1245 | push_type_int (n) | |
1246 | int n; | |
1247 | { | |
1248 | if (type_stack_depth == type_stack_size) | |
1249 | { | |
1250 | type_stack_size *= 2; | |
1251 | type_stack = (union type_stack_elt *) | |
1252 | xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack)); | |
1253 | } | |
1254 | type_stack[type_stack_depth++].int_val = n; | |
1255 | } | |
1256 | ||
1257 | enum type_pieces | |
1258 | pop_type () | |
1259 | { | |
1260 | if (type_stack_depth) | |
1261 | return type_stack[--type_stack_depth].piece; | |
1262 | return tp_end; | |
1263 | } | |
1264 | ||
1265 | int | |
1266 | pop_type_int () | |
1267 | { | |
1268 | if (type_stack_depth) | |
1269 | return type_stack[--type_stack_depth].int_val; | |
1270 | /* "Can't happen". */ | |
1271 | return 0; | |
1272 | } | |
1273 | ||
1274 | /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE | |
1275 | as modified by all the stuff on the stack. */ | |
1276 | struct type * | |
1277 | follow_types (follow_type) | |
1278 | struct type *follow_type; | |
1279 | { | |
1280 | int done = 0; | |
1281 | int array_size; | |
1282 | struct type *range_type; | |
1283 | ||
1284 | while (!done) | |
1285 | switch (pop_type ()) | |
1286 | { | |
1287 | case tp_end: | |
1288 | done = 1; | |
1289 | break; | |
1290 | case tp_pointer: | |
1291 | follow_type = lookup_pointer_type (follow_type); | |
1292 | break; | |
1293 | case tp_reference: | |
1294 | follow_type = lookup_reference_type (follow_type); | |
1295 | break; | |
1296 | case tp_array: | |
1297 | array_size = pop_type_int (); | |
1298 | /* FIXME-type-allocation: need a way to free this type when we are | |
1299 | done with it. */ | |
1300 | range_type = | |
1301 | create_range_type ((struct type *) NULL, | |
1302 | builtin_type_int, 0, | |
1303 | array_size >= 0 ? array_size - 1 : 0); | |
1304 | follow_type = | |
1305 | create_array_type ((struct type *) NULL, | |
1306 | follow_type, range_type); | |
1307 | if (array_size < 0) | |
1308 | TYPE_ARRAY_UPPER_BOUND_TYPE(follow_type) | |
1309 | = BOUND_CANNOT_BE_DETERMINED; | |
1310 | break; | |
1311 | case tp_function: | |
1312 | /* FIXME-type-allocation: need a way to free this type when we are | |
1313 | done with it. */ | |
1314 | follow_type = lookup_function_type (follow_type); | |
1315 | break; | |
1316 | } | |
1317 | return follow_type; | |
1318 | } | |
1319 | \f | |
ac9a91a7 JM |
1320 | static void build_parse PARAMS ((void)); |
1321 | static void | |
1322 | build_parse () | |
c906108c | 1323 | { |
c906108c SS |
1324 | msym_text_symbol_type = |
1325 | init_type (TYPE_CODE_FUNC, 1, 0, "<text variable, no debug info>", NULL); | |
1326 | TYPE_TARGET_TYPE (msym_text_symbol_type) = builtin_type_int; | |
1327 | msym_data_symbol_type = | |
1328 | init_type (TYPE_CODE_INT, TARGET_INT_BIT / HOST_CHAR_BIT, 0, | |
1329 | "<data variable, no debug info>", NULL); | |
1330 | msym_unknown_symbol_type = | |
1331 | init_type (TYPE_CODE_INT, 1, 0, | |
1332 | "<variable (not text or data), no debug info>", | |
1333 | NULL); | |
ac9a91a7 JM |
1334 | } |
1335 | ||
1336 | void | |
1337 | _initialize_parse () | |
1338 | { | |
1339 | type_stack_size = 80; | |
1340 | type_stack_depth = 0; | |
1341 | type_stack = (union type_stack_elt *) | |
1342 | xmalloc (type_stack_size * sizeof (*type_stack)); | |
1343 | ||
1344 | build_parse (); | |
c906108c | 1345 | |
c906108c SS |
1346 | add_show_from_set ( |
1347 | add_set_cmd ("expressiondebug", class_maintenance, var_zinteger, | |
1348 | (char *)&expressiondebug, | |
1349 | "Set expression debugging.\n\ | |
1350 | When non-zero, the internal representation of expressions will be printed.", | |
1351 | &setlist), | |
1352 | &showlist); | |
c906108c | 1353 | } |