]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright IBM, Corp. 2008 | |
5832d1f2 | 5 | * Red Hat, Inc. 2008 |
05330448 AL |
6 | * |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
5832d1f2 | 9 | * Glauber Costa <[email protected]> |
05330448 AL |
10 | * |
11 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
12 | * See the COPYING file in the top-level directory. | |
13 | * | |
14 | */ | |
15 | ||
16 | #include <sys/types.h> | |
17 | #include <sys/ioctl.h> | |
18 | #include <sys/mman.h> | |
984b5181 | 19 | #include <stdarg.h> |
05330448 AL |
20 | |
21 | #include <linux/kvm.h> | |
22 | ||
23 | #include "qemu-common.h" | |
85199474 | 24 | #include "qemu-barrier.h" |
05330448 | 25 | #include "sysemu.h" |
d33a1810 | 26 | #include "hw/hw.h" |
e22a25c9 | 27 | #include "gdbstub.h" |
05330448 AL |
28 | #include "kvm.h" |
29 | ||
f65ed4c1 AL |
30 | /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */ |
31 | #define PAGE_SIZE TARGET_PAGE_SIZE | |
32 | ||
05330448 AL |
33 | //#define DEBUG_KVM |
34 | ||
35 | #ifdef DEBUG_KVM | |
8c0d577e | 36 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
37 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
38 | #else | |
8c0d577e | 39 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
40 | do { } while (0) |
41 | #endif | |
42 | ||
34fc643f AL |
43 | typedef struct KVMSlot |
44 | { | |
c227f099 AL |
45 | target_phys_addr_t start_addr; |
46 | ram_addr_t memory_size; | |
47 | ram_addr_t phys_offset; | |
34fc643f AL |
48 | int slot; |
49 | int flags; | |
50 | } KVMSlot; | |
05330448 | 51 | |
5832d1f2 AL |
52 | typedef struct kvm_dirty_log KVMDirtyLog; |
53 | ||
05330448 AL |
54 | struct KVMState |
55 | { | |
56 | KVMSlot slots[32]; | |
57 | int fd; | |
58 | int vmfd; | |
f65ed4c1 | 59 | int coalesced_mmio; |
62a2744c SY |
60 | #ifdef KVM_CAP_COALESCED_MMIO |
61 | struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; | |
62 | #endif | |
e69917e2 | 63 | int broken_set_mem_region; |
4495d6a7 | 64 | int migration_log; |
a0fb002c | 65 | int vcpu_events; |
b0b1d690 | 66 | int robust_singlestep; |
e22a25c9 AL |
67 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
68 | struct kvm_sw_breakpoint_head kvm_sw_breakpoints; | |
69 | #endif | |
6f725c13 GC |
70 | int irqchip_in_kernel; |
71 | int pit_in_kernel; | |
05330448 AL |
72 | }; |
73 | ||
74 | static KVMState *kvm_state; | |
75 | ||
76 | static KVMSlot *kvm_alloc_slot(KVMState *s) | |
77 | { | |
78 | int i; | |
79 | ||
80 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
62d60e8c AL |
81 | /* KVM private memory slots */ |
82 | if (i >= 8 && i < 12) | |
83 | continue; | |
05330448 AL |
84 | if (s->slots[i].memory_size == 0) |
85 | return &s->slots[i]; | |
86 | } | |
87 | ||
d3f8d37f AL |
88 | fprintf(stderr, "%s: no free slot available\n", __func__); |
89 | abort(); | |
90 | } | |
91 | ||
92 | static KVMSlot *kvm_lookup_matching_slot(KVMState *s, | |
c227f099 AL |
93 | target_phys_addr_t start_addr, |
94 | target_phys_addr_t end_addr) | |
d3f8d37f AL |
95 | { |
96 | int i; | |
97 | ||
98 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
99 | KVMSlot *mem = &s->slots[i]; | |
100 | ||
101 | if (start_addr == mem->start_addr && | |
102 | end_addr == mem->start_addr + mem->memory_size) { | |
103 | return mem; | |
104 | } | |
105 | } | |
106 | ||
05330448 AL |
107 | return NULL; |
108 | } | |
109 | ||
6152e2ae AL |
110 | /* |
111 | * Find overlapping slot with lowest start address | |
112 | */ | |
113 | static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s, | |
c227f099 AL |
114 | target_phys_addr_t start_addr, |
115 | target_phys_addr_t end_addr) | |
05330448 | 116 | { |
6152e2ae | 117 | KVMSlot *found = NULL; |
05330448 AL |
118 | int i; |
119 | ||
120 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
121 | KVMSlot *mem = &s->slots[i]; | |
122 | ||
6152e2ae AL |
123 | if (mem->memory_size == 0 || |
124 | (found && found->start_addr < mem->start_addr)) { | |
125 | continue; | |
126 | } | |
127 | ||
128 | if (end_addr > mem->start_addr && | |
129 | start_addr < mem->start_addr + mem->memory_size) { | |
130 | found = mem; | |
131 | } | |
05330448 AL |
132 | } |
133 | ||
6152e2ae | 134 | return found; |
05330448 AL |
135 | } |
136 | ||
5832d1f2 AL |
137 | static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot) |
138 | { | |
139 | struct kvm_userspace_memory_region mem; | |
140 | ||
141 | mem.slot = slot->slot; | |
142 | mem.guest_phys_addr = slot->start_addr; | |
143 | mem.memory_size = slot->memory_size; | |
5579c7f3 | 144 | mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset); |
5832d1f2 | 145 | mem.flags = slot->flags; |
4495d6a7 JK |
146 | if (s->migration_log) { |
147 | mem.flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
148 | } | |
5832d1f2 AL |
149 | return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); |
150 | } | |
151 | ||
8d2ba1fb JK |
152 | static void kvm_reset_vcpu(void *opaque) |
153 | { | |
154 | CPUState *env = opaque; | |
155 | ||
caa5af0f | 156 | kvm_arch_reset_vcpu(env); |
8d2ba1fb | 157 | } |
5832d1f2 | 158 | |
6f725c13 GC |
159 | int kvm_irqchip_in_kernel(void) |
160 | { | |
161 | return kvm_state->irqchip_in_kernel; | |
162 | } | |
163 | ||
164 | int kvm_pit_in_kernel(void) | |
165 | { | |
166 | return kvm_state->pit_in_kernel; | |
167 | } | |
168 | ||
169 | ||
05330448 AL |
170 | int kvm_init_vcpu(CPUState *env) |
171 | { | |
172 | KVMState *s = kvm_state; | |
173 | long mmap_size; | |
174 | int ret; | |
175 | ||
8c0d577e | 176 | DPRINTF("kvm_init_vcpu\n"); |
05330448 | 177 | |
984b5181 | 178 | ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index); |
05330448 | 179 | if (ret < 0) { |
8c0d577e | 180 | DPRINTF("kvm_create_vcpu failed\n"); |
05330448 AL |
181 | goto err; |
182 | } | |
183 | ||
184 | env->kvm_fd = ret; | |
185 | env->kvm_state = s; | |
186 | ||
187 | mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); | |
188 | if (mmap_size < 0) { | |
8c0d577e | 189 | DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); |
05330448 AL |
190 | goto err; |
191 | } | |
192 | ||
193 | env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, | |
194 | env->kvm_fd, 0); | |
195 | if (env->kvm_run == MAP_FAILED) { | |
196 | ret = -errno; | |
8c0d577e | 197 | DPRINTF("mmap'ing vcpu state failed\n"); |
05330448 AL |
198 | goto err; |
199 | } | |
200 | ||
62a2744c SY |
201 | #ifdef KVM_CAP_COALESCED_MMIO |
202 | if (s->coalesced_mmio && !s->coalesced_mmio_ring) | |
203 | s->coalesced_mmio_ring = (void *) env->kvm_run + | |
204 | s->coalesced_mmio * PAGE_SIZE; | |
205 | #endif | |
206 | ||
05330448 | 207 | ret = kvm_arch_init_vcpu(env); |
8d2ba1fb | 208 | if (ret == 0) { |
a08d4367 | 209 | qemu_register_reset(kvm_reset_vcpu, env); |
caa5af0f | 210 | kvm_arch_reset_vcpu(env); |
8d2ba1fb | 211 | } |
05330448 AL |
212 | err: |
213 | return ret; | |
214 | } | |
215 | ||
5832d1f2 AL |
216 | /* |
217 | * dirty pages logging control | |
218 | */ | |
c227f099 AL |
219 | static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr, |
220 | ram_addr_t size, int flags, int mask) | |
5832d1f2 AL |
221 | { |
222 | KVMState *s = kvm_state; | |
d3f8d37f | 223 | KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size); |
4495d6a7 JK |
224 | int old_flags; |
225 | ||
5832d1f2 | 226 | if (mem == NULL) { |
d3f8d37f AL |
227 | fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-" |
228 | TARGET_FMT_plx "\n", __func__, phys_addr, | |
c227f099 | 229 | (target_phys_addr_t)(phys_addr + size - 1)); |
5832d1f2 AL |
230 | return -EINVAL; |
231 | } | |
232 | ||
4495d6a7 | 233 | old_flags = mem->flags; |
5832d1f2 | 234 | |
4495d6a7 | 235 | flags = (mem->flags & ~mask) | flags; |
5832d1f2 AL |
236 | mem->flags = flags; |
237 | ||
4495d6a7 JK |
238 | /* If nothing changed effectively, no need to issue ioctl */ |
239 | if (s->migration_log) { | |
240 | flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
241 | } | |
242 | if (flags == old_flags) { | |
243 | return 0; | |
244 | } | |
245 | ||
5832d1f2 AL |
246 | return kvm_set_user_memory_region(s, mem); |
247 | } | |
248 | ||
c227f099 | 249 | int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size) |
5832d1f2 | 250 | { |
d3f8d37f | 251 | return kvm_dirty_pages_log_change(phys_addr, size, |
5832d1f2 AL |
252 | KVM_MEM_LOG_DIRTY_PAGES, |
253 | KVM_MEM_LOG_DIRTY_PAGES); | |
254 | } | |
255 | ||
c227f099 | 256 | int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size) |
5832d1f2 | 257 | { |
d3f8d37f | 258 | return kvm_dirty_pages_log_change(phys_addr, size, |
5832d1f2 AL |
259 | 0, |
260 | KVM_MEM_LOG_DIRTY_PAGES); | |
261 | } | |
262 | ||
7b8f3b78 | 263 | static int kvm_set_migration_log(int enable) |
4495d6a7 JK |
264 | { |
265 | KVMState *s = kvm_state; | |
266 | KVMSlot *mem; | |
267 | int i, err; | |
268 | ||
269 | s->migration_log = enable; | |
270 | ||
271 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
272 | mem = &s->slots[i]; | |
273 | ||
274 | if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) { | |
275 | continue; | |
276 | } | |
277 | err = kvm_set_user_memory_region(s, mem); | |
278 | if (err) { | |
279 | return err; | |
280 | } | |
281 | } | |
282 | return 0; | |
283 | } | |
284 | ||
96c1606b AG |
285 | static int test_le_bit(unsigned long nr, unsigned char *addr) |
286 | { | |
287 | return (addr[nr >> 3] >> (nr & 7)) & 1; | |
288 | } | |
289 | ||
5832d1f2 AL |
290 | /** |
291 | * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space | |
292 | * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty(). | |
293 | * This means all bits are set to dirty. | |
294 | * | |
d3f8d37f | 295 | * @start_add: start of logged region. |
5832d1f2 AL |
296 | * @end_addr: end of logged region. |
297 | */ | |
7b8f3b78 MT |
298 | static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, |
299 | target_phys_addr_t end_addr) | |
5832d1f2 AL |
300 | { |
301 | KVMState *s = kvm_state; | |
151f7749 | 302 | unsigned long size, allocated_size = 0; |
c227f099 AL |
303 | target_phys_addr_t phys_addr; |
304 | ram_addr_t addr; | |
151f7749 JK |
305 | KVMDirtyLog d; |
306 | KVMSlot *mem; | |
307 | int ret = 0; | |
5832d1f2 | 308 | |
151f7749 JK |
309 | d.dirty_bitmap = NULL; |
310 | while (start_addr < end_addr) { | |
311 | mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr); | |
312 | if (mem == NULL) { | |
313 | break; | |
314 | } | |
5832d1f2 | 315 | |
151f7749 JK |
316 | size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8; |
317 | if (!d.dirty_bitmap) { | |
318 | d.dirty_bitmap = qemu_malloc(size); | |
319 | } else if (size > allocated_size) { | |
320 | d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size); | |
321 | } | |
322 | allocated_size = size; | |
323 | memset(d.dirty_bitmap, 0, allocated_size); | |
5832d1f2 | 324 | |
151f7749 | 325 | d.slot = mem->slot; |
5832d1f2 | 326 | |
6e489f3f | 327 | if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { |
8c0d577e | 328 | DPRINTF("ioctl failed %d\n", errno); |
151f7749 JK |
329 | ret = -1; |
330 | break; | |
331 | } | |
5832d1f2 | 332 | |
151f7749 JK |
333 | for (phys_addr = mem->start_addr, addr = mem->phys_offset; |
334 | phys_addr < mem->start_addr + mem->memory_size; | |
335 | phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { | |
96c1606b | 336 | unsigned char *bitmap = (unsigned char *)d.dirty_bitmap; |
151f7749 | 337 | unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS; |
151f7749 | 338 | |
96c1606b | 339 | if (test_le_bit(nr, bitmap)) { |
151f7749 JK |
340 | cpu_physical_memory_set_dirty(addr); |
341 | } | |
342 | } | |
343 | start_addr = phys_addr; | |
5832d1f2 | 344 | } |
5832d1f2 | 345 | qemu_free(d.dirty_bitmap); |
151f7749 JK |
346 | |
347 | return ret; | |
5832d1f2 AL |
348 | } |
349 | ||
c227f099 | 350 | int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) |
f65ed4c1 AL |
351 | { |
352 | int ret = -ENOSYS; | |
353 | #ifdef KVM_CAP_COALESCED_MMIO | |
354 | KVMState *s = kvm_state; | |
355 | ||
356 | if (s->coalesced_mmio) { | |
357 | struct kvm_coalesced_mmio_zone zone; | |
358 | ||
359 | zone.addr = start; | |
360 | zone.size = size; | |
361 | ||
362 | ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); | |
363 | } | |
364 | #endif | |
365 | ||
366 | return ret; | |
367 | } | |
368 | ||
c227f099 | 369 | int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) |
f65ed4c1 AL |
370 | { |
371 | int ret = -ENOSYS; | |
372 | #ifdef KVM_CAP_COALESCED_MMIO | |
373 | KVMState *s = kvm_state; | |
374 | ||
375 | if (s->coalesced_mmio) { | |
376 | struct kvm_coalesced_mmio_zone zone; | |
377 | ||
378 | zone.addr = start; | |
379 | zone.size = size; | |
380 | ||
381 | ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); | |
382 | } | |
383 | #endif | |
384 | ||
385 | return ret; | |
386 | } | |
387 | ||
ad7b8b33 AL |
388 | int kvm_check_extension(KVMState *s, unsigned int extension) |
389 | { | |
390 | int ret; | |
391 | ||
392 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); | |
393 | if (ret < 0) { | |
394 | ret = 0; | |
395 | } | |
396 | ||
397 | return ret; | |
398 | } | |
399 | ||
7b8f3b78 MT |
400 | static void kvm_set_phys_mem(target_phys_addr_t start_addr, |
401 | ram_addr_t size, | |
402 | ram_addr_t phys_offset) | |
46dbef6a MT |
403 | { |
404 | KVMState *s = kvm_state; | |
405 | ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK; | |
406 | KVMSlot *mem, old; | |
407 | int err; | |
408 | ||
409 | if (start_addr & ~TARGET_PAGE_MASK) { | |
410 | if (flags >= IO_MEM_UNASSIGNED) { | |
411 | if (!kvm_lookup_overlapping_slot(s, start_addr, | |
412 | start_addr + size)) { | |
413 | return; | |
414 | } | |
415 | fprintf(stderr, "Unaligned split of a KVM memory slot\n"); | |
416 | } else { | |
417 | fprintf(stderr, "Only page-aligned memory slots supported\n"); | |
418 | } | |
419 | abort(); | |
420 | } | |
421 | ||
422 | /* KVM does not support read-only slots */ | |
423 | phys_offset &= ~IO_MEM_ROM; | |
424 | ||
425 | while (1) { | |
426 | mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size); | |
427 | if (!mem) { | |
428 | break; | |
429 | } | |
430 | ||
431 | if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr && | |
432 | (start_addr + size <= mem->start_addr + mem->memory_size) && | |
433 | (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) { | |
434 | /* The new slot fits into the existing one and comes with | |
435 | * identical parameters - nothing to be done. */ | |
436 | return; | |
437 | } | |
438 | ||
439 | old = *mem; | |
440 | ||
441 | /* unregister the overlapping slot */ | |
442 | mem->memory_size = 0; | |
443 | err = kvm_set_user_memory_region(s, mem); | |
444 | if (err) { | |
445 | fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", | |
446 | __func__, strerror(-err)); | |
447 | abort(); | |
448 | } | |
449 | ||
450 | /* Workaround for older KVM versions: we can't join slots, even not by | |
451 | * unregistering the previous ones and then registering the larger | |
452 | * slot. We have to maintain the existing fragmentation. Sigh. | |
453 | * | |
454 | * This workaround assumes that the new slot starts at the same | |
455 | * address as the first existing one. If not or if some overlapping | |
456 | * slot comes around later, we will fail (not seen in practice so far) | |
457 | * - and actually require a recent KVM version. */ | |
458 | if (s->broken_set_mem_region && | |
459 | old.start_addr == start_addr && old.memory_size < size && | |
460 | flags < IO_MEM_UNASSIGNED) { | |
461 | mem = kvm_alloc_slot(s); | |
462 | mem->memory_size = old.memory_size; | |
463 | mem->start_addr = old.start_addr; | |
464 | mem->phys_offset = old.phys_offset; | |
465 | mem->flags = 0; | |
466 | ||
467 | err = kvm_set_user_memory_region(s, mem); | |
468 | if (err) { | |
469 | fprintf(stderr, "%s: error updating slot: %s\n", __func__, | |
470 | strerror(-err)); | |
471 | abort(); | |
472 | } | |
473 | ||
474 | start_addr += old.memory_size; | |
475 | phys_offset += old.memory_size; | |
476 | size -= old.memory_size; | |
477 | continue; | |
478 | } | |
479 | ||
480 | /* register prefix slot */ | |
481 | if (old.start_addr < start_addr) { | |
482 | mem = kvm_alloc_slot(s); | |
483 | mem->memory_size = start_addr - old.start_addr; | |
484 | mem->start_addr = old.start_addr; | |
485 | mem->phys_offset = old.phys_offset; | |
486 | mem->flags = 0; | |
487 | ||
488 | err = kvm_set_user_memory_region(s, mem); | |
489 | if (err) { | |
490 | fprintf(stderr, "%s: error registering prefix slot: %s\n", | |
491 | __func__, strerror(-err)); | |
492 | abort(); | |
493 | } | |
494 | } | |
495 | ||
496 | /* register suffix slot */ | |
497 | if (old.start_addr + old.memory_size > start_addr + size) { | |
498 | ram_addr_t size_delta; | |
499 | ||
500 | mem = kvm_alloc_slot(s); | |
501 | mem->start_addr = start_addr + size; | |
502 | size_delta = mem->start_addr - old.start_addr; | |
503 | mem->memory_size = old.memory_size - size_delta; | |
504 | mem->phys_offset = old.phys_offset + size_delta; | |
505 | mem->flags = 0; | |
506 | ||
507 | err = kvm_set_user_memory_region(s, mem); | |
508 | if (err) { | |
509 | fprintf(stderr, "%s: error registering suffix slot: %s\n", | |
510 | __func__, strerror(-err)); | |
511 | abort(); | |
512 | } | |
513 | } | |
514 | } | |
515 | ||
516 | /* in case the KVM bug workaround already "consumed" the new slot */ | |
517 | if (!size) | |
518 | return; | |
519 | ||
520 | /* KVM does not need to know about this memory */ | |
521 | if (flags >= IO_MEM_UNASSIGNED) | |
522 | return; | |
523 | ||
524 | mem = kvm_alloc_slot(s); | |
525 | mem->memory_size = size; | |
526 | mem->start_addr = start_addr; | |
527 | mem->phys_offset = phys_offset; | |
528 | mem->flags = 0; | |
529 | ||
530 | err = kvm_set_user_memory_region(s, mem); | |
531 | if (err) { | |
532 | fprintf(stderr, "%s: error registering slot: %s\n", __func__, | |
533 | strerror(-err)); | |
534 | abort(); | |
535 | } | |
536 | } | |
537 | ||
7b8f3b78 MT |
538 | static void kvm_client_set_memory(struct CPUPhysMemoryClient *client, |
539 | target_phys_addr_t start_addr, | |
540 | ram_addr_t size, | |
541 | ram_addr_t phys_offset) | |
542 | { | |
543 | kvm_set_phys_mem(start_addr, size, phys_offset); | |
544 | } | |
545 | ||
546 | static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client, | |
547 | target_phys_addr_t start_addr, | |
548 | target_phys_addr_t end_addr) | |
549 | { | |
550 | return kvm_physical_sync_dirty_bitmap(start_addr, end_addr); | |
551 | } | |
552 | ||
553 | static int kvm_client_migration_log(struct CPUPhysMemoryClient *client, | |
554 | int enable) | |
555 | { | |
556 | return kvm_set_migration_log(enable); | |
557 | } | |
558 | ||
559 | static CPUPhysMemoryClient kvm_cpu_phys_memory_client = { | |
560 | .set_memory = kvm_client_set_memory, | |
561 | .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap, | |
562 | .migration_log = kvm_client_migration_log, | |
563 | }; | |
564 | ||
05330448 AL |
565 | int kvm_init(int smp_cpus) |
566 | { | |
168ccc11 JK |
567 | static const char upgrade_note[] = |
568 | "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" | |
569 | "(see http://sourceforge.net/projects/kvm).\n"; | |
05330448 AL |
570 | KVMState *s; |
571 | int ret; | |
572 | int i; | |
573 | ||
9f8fd694 MM |
574 | if (smp_cpus > 1) { |
575 | fprintf(stderr, "No SMP KVM support, use '-smp 1'\n"); | |
05330448 | 576 | return -EINVAL; |
9f8fd694 | 577 | } |
05330448 AL |
578 | |
579 | s = qemu_mallocz(sizeof(KVMState)); | |
05330448 | 580 | |
e22a25c9 | 581 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
72cf2d4f | 582 | QTAILQ_INIT(&s->kvm_sw_breakpoints); |
e22a25c9 | 583 | #endif |
05330448 AL |
584 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) |
585 | s->slots[i].slot = i; | |
586 | ||
587 | s->vmfd = -1; | |
40ff6d7e | 588 | s->fd = qemu_open("/dev/kvm", O_RDWR); |
05330448 AL |
589 | if (s->fd == -1) { |
590 | fprintf(stderr, "Could not access KVM kernel module: %m\n"); | |
591 | ret = -errno; | |
592 | goto err; | |
593 | } | |
594 | ||
595 | ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); | |
596 | if (ret < KVM_API_VERSION) { | |
597 | if (ret > 0) | |
598 | ret = -EINVAL; | |
599 | fprintf(stderr, "kvm version too old\n"); | |
600 | goto err; | |
601 | } | |
602 | ||
603 | if (ret > KVM_API_VERSION) { | |
604 | ret = -EINVAL; | |
605 | fprintf(stderr, "kvm version not supported\n"); | |
606 | goto err; | |
607 | } | |
608 | ||
609 | s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0); | |
0104dcac AG |
610 | if (s->vmfd < 0) { |
611 | #ifdef TARGET_S390X | |
612 | fprintf(stderr, "Please add the 'switch_amode' kernel parameter to " | |
613 | "your host kernel command line\n"); | |
614 | #endif | |
05330448 | 615 | goto err; |
0104dcac | 616 | } |
05330448 AL |
617 | |
618 | /* initially, KVM allocated its own memory and we had to jump through | |
619 | * hooks to make phys_ram_base point to this. Modern versions of KVM | |
5579c7f3 | 620 | * just use a user allocated buffer so we can use regular pages |
05330448 AL |
621 | * unmodified. Make sure we have a sufficiently modern version of KVM. |
622 | */ | |
ad7b8b33 AL |
623 | if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) { |
624 | ret = -EINVAL; | |
168ccc11 JK |
625 | fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s", |
626 | upgrade_note); | |
05330448 AL |
627 | goto err; |
628 | } | |
629 | ||
d85dc283 AL |
630 | /* There was a nasty bug in < kvm-80 that prevents memory slots from being |
631 | * destroyed properly. Since we rely on this capability, refuse to work | |
632 | * with any kernel without this capability. */ | |
ad7b8b33 AL |
633 | if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) { |
634 | ret = -EINVAL; | |
d85dc283 AL |
635 | |
636 | fprintf(stderr, | |
168ccc11 JK |
637 | "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s", |
638 | upgrade_note); | |
d85dc283 AL |
639 | goto err; |
640 | } | |
641 | ||
62a2744c | 642 | s->coalesced_mmio = 0; |
f65ed4c1 | 643 | #ifdef KVM_CAP_COALESCED_MMIO |
ad7b8b33 | 644 | s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); |
62a2744c | 645 | s->coalesced_mmio_ring = NULL; |
f65ed4c1 AL |
646 | #endif |
647 | ||
e69917e2 JK |
648 | s->broken_set_mem_region = 1; |
649 | #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS | |
650 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS); | |
651 | if (ret > 0) { | |
652 | s->broken_set_mem_region = 0; | |
653 | } | |
654 | #endif | |
655 | ||
a0fb002c JK |
656 | s->vcpu_events = 0; |
657 | #ifdef KVM_CAP_VCPU_EVENTS | |
658 | s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); | |
659 | #endif | |
660 | ||
b0b1d690 JK |
661 | s->robust_singlestep = 0; |
662 | #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP | |
663 | s->robust_singlestep = | |
664 | kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); | |
665 | #endif | |
666 | ||
05330448 AL |
667 | ret = kvm_arch_init(s, smp_cpus); |
668 | if (ret < 0) | |
669 | goto err; | |
670 | ||
671 | kvm_state = s; | |
7b8f3b78 | 672 | cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client); |
05330448 AL |
673 | |
674 | return 0; | |
675 | ||
676 | err: | |
677 | if (s) { | |
678 | if (s->vmfd != -1) | |
679 | close(s->vmfd); | |
680 | if (s->fd != -1) | |
681 | close(s->fd); | |
682 | } | |
683 | qemu_free(s); | |
684 | ||
685 | return ret; | |
686 | } | |
687 | ||
afcea8cb BS |
688 | static int kvm_handle_io(uint16_t port, void *data, int direction, int size, |
689 | uint32_t count) | |
05330448 AL |
690 | { |
691 | int i; | |
692 | uint8_t *ptr = data; | |
693 | ||
694 | for (i = 0; i < count; i++) { | |
695 | if (direction == KVM_EXIT_IO_IN) { | |
696 | switch (size) { | |
697 | case 1: | |
afcea8cb | 698 | stb_p(ptr, cpu_inb(port)); |
05330448 AL |
699 | break; |
700 | case 2: | |
afcea8cb | 701 | stw_p(ptr, cpu_inw(port)); |
05330448 AL |
702 | break; |
703 | case 4: | |
afcea8cb | 704 | stl_p(ptr, cpu_inl(port)); |
05330448 AL |
705 | break; |
706 | } | |
707 | } else { | |
708 | switch (size) { | |
709 | case 1: | |
afcea8cb | 710 | cpu_outb(port, ldub_p(ptr)); |
05330448 AL |
711 | break; |
712 | case 2: | |
afcea8cb | 713 | cpu_outw(port, lduw_p(ptr)); |
05330448 AL |
714 | break; |
715 | case 4: | |
afcea8cb | 716 | cpu_outl(port, ldl_p(ptr)); |
05330448 AL |
717 | break; |
718 | } | |
719 | } | |
720 | ||
721 | ptr += size; | |
722 | } | |
723 | ||
724 | return 1; | |
725 | } | |
726 | ||
62a2744c | 727 | void kvm_flush_coalesced_mmio_buffer(void) |
f65ed4c1 AL |
728 | { |
729 | #ifdef KVM_CAP_COALESCED_MMIO | |
730 | KVMState *s = kvm_state; | |
62a2744c SY |
731 | if (s->coalesced_mmio_ring) { |
732 | struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; | |
f65ed4c1 AL |
733 | while (ring->first != ring->last) { |
734 | struct kvm_coalesced_mmio *ent; | |
735 | ||
736 | ent = &ring->coalesced_mmio[ring->first]; | |
737 | ||
738 | cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); | |
85199474 | 739 | smp_wmb(); |
f65ed4c1 AL |
740 | ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; |
741 | } | |
742 | } | |
743 | #endif | |
744 | } | |
745 | ||
4c0960c0 AK |
746 | void kvm_cpu_synchronize_state(CPUState *env) |
747 | { | |
9ded2744 | 748 | if (!env->kvm_vcpu_dirty) { |
4c0960c0 | 749 | kvm_arch_get_registers(env); |
9ded2744 | 750 | env->kvm_vcpu_dirty = 1; |
4c0960c0 AK |
751 | } |
752 | } | |
753 | ||
ea375f9a JK |
754 | void kvm_cpu_synchronize_post_reset(CPUState *env) |
755 | { | |
756 | kvm_arch_put_registers(env, KVM_PUT_RESET_STATE); | |
757 | env->kvm_vcpu_dirty = 0; | |
758 | } | |
759 | ||
760 | void kvm_cpu_synchronize_post_init(CPUState *env) | |
761 | { | |
762 | kvm_arch_put_registers(env, KVM_PUT_FULL_STATE); | |
763 | env->kvm_vcpu_dirty = 0; | |
764 | } | |
765 | ||
05330448 AL |
766 | int kvm_cpu_exec(CPUState *env) |
767 | { | |
768 | struct kvm_run *run = env->kvm_run; | |
769 | int ret; | |
770 | ||
8c0d577e | 771 | DPRINTF("kvm_cpu_exec()\n"); |
05330448 AL |
772 | |
773 | do { | |
6312b928 | 774 | #ifndef CONFIG_IOTHREAD |
be214e6c | 775 | if (env->exit_request) { |
8c0d577e | 776 | DPRINTF("interrupt exit requested\n"); |
05330448 AL |
777 | ret = 0; |
778 | break; | |
779 | } | |
6312b928 | 780 | #endif |
05330448 | 781 | |
9ded2744 | 782 | if (env->kvm_vcpu_dirty) { |
ea375f9a | 783 | kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE); |
9ded2744 | 784 | env->kvm_vcpu_dirty = 0; |
4c0960c0 AK |
785 | } |
786 | ||
8c14c173 | 787 | kvm_arch_pre_run(env, run); |
d549db5a | 788 | qemu_mutex_unlock_iothread(); |
05330448 | 789 | ret = kvm_vcpu_ioctl(env, KVM_RUN, 0); |
d549db5a | 790 | qemu_mutex_lock_iothread(); |
05330448 AL |
791 | kvm_arch_post_run(env, run); |
792 | ||
793 | if (ret == -EINTR || ret == -EAGAIN) { | |
cc84de95 | 794 | cpu_exit(env); |
8c0d577e | 795 | DPRINTF("io window exit\n"); |
05330448 AL |
796 | ret = 0; |
797 | break; | |
798 | } | |
799 | ||
800 | if (ret < 0) { | |
8c0d577e | 801 | DPRINTF("kvm run failed %s\n", strerror(-ret)); |
05330448 AL |
802 | abort(); |
803 | } | |
804 | ||
62a2744c | 805 | kvm_flush_coalesced_mmio_buffer(); |
f65ed4c1 | 806 | |
05330448 AL |
807 | ret = 0; /* exit loop */ |
808 | switch (run->exit_reason) { | |
809 | case KVM_EXIT_IO: | |
8c0d577e | 810 | DPRINTF("handle_io\n"); |
afcea8cb | 811 | ret = kvm_handle_io(run->io.port, |
05330448 AL |
812 | (uint8_t *)run + run->io.data_offset, |
813 | run->io.direction, | |
814 | run->io.size, | |
815 | run->io.count); | |
816 | break; | |
817 | case KVM_EXIT_MMIO: | |
8c0d577e | 818 | DPRINTF("handle_mmio\n"); |
05330448 AL |
819 | cpu_physical_memory_rw(run->mmio.phys_addr, |
820 | run->mmio.data, | |
821 | run->mmio.len, | |
822 | run->mmio.is_write); | |
823 | ret = 1; | |
824 | break; | |
825 | case KVM_EXIT_IRQ_WINDOW_OPEN: | |
8c0d577e | 826 | DPRINTF("irq_window_open\n"); |
05330448 AL |
827 | break; |
828 | case KVM_EXIT_SHUTDOWN: | |
8c0d577e | 829 | DPRINTF("shutdown\n"); |
05330448 AL |
830 | qemu_system_reset_request(); |
831 | ret = 1; | |
832 | break; | |
833 | case KVM_EXIT_UNKNOWN: | |
8c0d577e | 834 | DPRINTF("kvm_exit_unknown\n"); |
05330448 AL |
835 | break; |
836 | case KVM_EXIT_FAIL_ENTRY: | |
8c0d577e | 837 | DPRINTF("kvm_exit_fail_entry\n"); |
05330448 AL |
838 | break; |
839 | case KVM_EXIT_EXCEPTION: | |
8c0d577e | 840 | DPRINTF("kvm_exit_exception\n"); |
05330448 AL |
841 | break; |
842 | case KVM_EXIT_DEBUG: | |
8c0d577e | 843 | DPRINTF("kvm_exit_debug\n"); |
e22a25c9 AL |
844 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
845 | if (kvm_arch_debug(&run->debug.arch)) { | |
846 | gdb_set_stop_cpu(env); | |
847 | vm_stop(EXCP_DEBUG); | |
848 | env->exception_index = EXCP_DEBUG; | |
849 | return 0; | |
850 | } | |
851 | /* re-enter, this exception was guest-internal */ | |
852 | ret = 1; | |
853 | #endif /* KVM_CAP_SET_GUEST_DEBUG */ | |
05330448 AL |
854 | break; |
855 | default: | |
8c0d577e | 856 | DPRINTF("kvm_arch_handle_exit\n"); |
05330448 AL |
857 | ret = kvm_arch_handle_exit(env, run); |
858 | break; | |
859 | } | |
860 | } while (ret > 0); | |
861 | ||
be214e6c AJ |
862 | if (env->exit_request) { |
863 | env->exit_request = 0; | |
becfc390 AL |
864 | env->exception_index = EXCP_INTERRUPT; |
865 | } | |
866 | ||
05330448 AL |
867 | return ret; |
868 | } | |
869 | ||
984b5181 | 870 | int kvm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
871 | { |
872 | int ret; | |
984b5181 AL |
873 | void *arg; |
874 | va_list ap; | |
05330448 | 875 | |
984b5181 AL |
876 | va_start(ap, type); |
877 | arg = va_arg(ap, void *); | |
878 | va_end(ap); | |
879 | ||
880 | ret = ioctl(s->fd, type, arg); | |
05330448 AL |
881 | if (ret == -1) |
882 | ret = -errno; | |
883 | ||
884 | return ret; | |
885 | } | |
886 | ||
984b5181 | 887 | int kvm_vm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
888 | { |
889 | int ret; | |
984b5181 AL |
890 | void *arg; |
891 | va_list ap; | |
892 | ||
893 | va_start(ap, type); | |
894 | arg = va_arg(ap, void *); | |
895 | va_end(ap); | |
05330448 | 896 | |
984b5181 | 897 | ret = ioctl(s->vmfd, type, arg); |
05330448 AL |
898 | if (ret == -1) |
899 | ret = -errno; | |
900 | ||
901 | return ret; | |
902 | } | |
903 | ||
984b5181 | 904 | int kvm_vcpu_ioctl(CPUState *env, int type, ...) |
05330448 AL |
905 | { |
906 | int ret; | |
984b5181 AL |
907 | void *arg; |
908 | va_list ap; | |
909 | ||
910 | va_start(ap, type); | |
911 | arg = va_arg(ap, void *); | |
912 | va_end(ap); | |
05330448 | 913 | |
984b5181 | 914 | ret = ioctl(env->kvm_fd, type, arg); |
05330448 AL |
915 | if (ret == -1) |
916 | ret = -errno; | |
917 | ||
918 | return ret; | |
919 | } | |
bd322087 AL |
920 | |
921 | int kvm_has_sync_mmu(void) | |
922 | { | |
a9c11522 | 923 | #ifdef KVM_CAP_SYNC_MMU |
bd322087 AL |
924 | KVMState *s = kvm_state; |
925 | ||
ad7b8b33 AL |
926 | return kvm_check_extension(s, KVM_CAP_SYNC_MMU); |
927 | #else | |
bd322087 | 928 | return 0; |
ad7b8b33 | 929 | #endif |
bd322087 | 930 | } |
e22a25c9 | 931 | |
a0fb002c JK |
932 | int kvm_has_vcpu_events(void) |
933 | { | |
934 | return kvm_state->vcpu_events; | |
935 | } | |
936 | ||
b0b1d690 JK |
937 | int kvm_has_robust_singlestep(void) |
938 | { | |
939 | return kvm_state->robust_singlestep; | |
940 | } | |
941 | ||
6f0437e8 JK |
942 | void kvm_setup_guest_memory(void *start, size_t size) |
943 | { | |
944 | if (!kvm_has_sync_mmu()) { | |
945 | #ifdef MADV_DONTFORK | |
946 | int ret = madvise(start, size, MADV_DONTFORK); | |
947 | ||
948 | if (ret) { | |
949 | perror("madvice"); | |
950 | exit(1); | |
951 | } | |
952 | #else | |
953 | fprintf(stderr, | |
954 | "Need MADV_DONTFORK in absence of synchronous KVM MMU\n"); | |
955 | exit(1); | |
956 | #endif | |
957 | } | |
958 | } | |
959 | ||
e22a25c9 | 960 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
fc5d642f LC |
961 | static void on_vcpu(CPUState *env, void (*func)(void *data), void *data) |
962 | { | |
828566bc | 963 | #ifdef CONFIG_IOTHREAD |
a2eebe88 AS |
964 | if (env != cpu_single_env) { |
965 | abort(); | |
fc5d642f | 966 | } |
828566bc | 967 | #endif |
a2eebe88 | 968 | func(data); |
fc5d642f LC |
969 | } |
970 | ||
e22a25c9 AL |
971 | struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env, |
972 | target_ulong pc) | |
973 | { | |
974 | struct kvm_sw_breakpoint *bp; | |
975 | ||
72cf2d4f | 976 | QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) { |
e22a25c9 AL |
977 | if (bp->pc == pc) |
978 | return bp; | |
979 | } | |
980 | return NULL; | |
981 | } | |
982 | ||
983 | int kvm_sw_breakpoints_active(CPUState *env) | |
984 | { | |
72cf2d4f | 985 | return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints); |
e22a25c9 AL |
986 | } |
987 | ||
452e4751 GC |
988 | struct kvm_set_guest_debug_data { |
989 | struct kvm_guest_debug dbg; | |
990 | CPUState *env; | |
991 | int err; | |
992 | }; | |
993 | ||
994 | static void kvm_invoke_set_guest_debug(void *data) | |
995 | { | |
996 | struct kvm_set_guest_debug_data *dbg_data = data; | |
b3807725 JK |
997 | CPUState *env = dbg_data->env; |
998 | ||
b3807725 | 999 | dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg); |
452e4751 GC |
1000 | } |
1001 | ||
e22a25c9 AL |
1002 | int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap) |
1003 | { | |
452e4751 | 1004 | struct kvm_set_guest_debug_data data; |
e22a25c9 | 1005 | |
b0b1d690 | 1006 | data.dbg.control = reinject_trap; |
e22a25c9 | 1007 | |
b0b1d690 JK |
1008 | if (env->singlestep_enabled) { |
1009 | data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; | |
1010 | } | |
452e4751 | 1011 | kvm_arch_update_guest_debug(env, &data.dbg); |
452e4751 | 1012 | data.env = env; |
e22a25c9 | 1013 | |
452e4751 GC |
1014 | on_vcpu(env, kvm_invoke_set_guest_debug, &data); |
1015 | return data.err; | |
e22a25c9 AL |
1016 | } |
1017 | ||
1018 | int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr, | |
1019 | target_ulong len, int type) | |
1020 | { | |
1021 | struct kvm_sw_breakpoint *bp; | |
1022 | CPUState *env; | |
1023 | int err; | |
1024 | ||
1025 | if (type == GDB_BREAKPOINT_SW) { | |
1026 | bp = kvm_find_sw_breakpoint(current_env, addr); | |
1027 | if (bp) { | |
1028 | bp->use_count++; | |
1029 | return 0; | |
1030 | } | |
1031 | ||
1032 | bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint)); | |
1033 | if (!bp) | |
1034 | return -ENOMEM; | |
1035 | ||
1036 | bp->pc = addr; | |
1037 | bp->use_count = 1; | |
1038 | err = kvm_arch_insert_sw_breakpoint(current_env, bp); | |
1039 | if (err) { | |
1040 | free(bp); | |
1041 | return err; | |
1042 | } | |
1043 | ||
72cf2d4f | 1044 | QTAILQ_INSERT_HEAD(¤t_env->kvm_state->kvm_sw_breakpoints, |
e22a25c9 AL |
1045 | bp, entry); |
1046 | } else { | |
1047 | err = kvm_arch_insert_hw_breakpoint(addr, len, type); | |
1048 | if (err) | |
1049 | return err; | |
1050 | } | |
1051 | ||
1052 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1053 | err = kvm_update_guest_debug(env, 0); | |
1054 | if (err) | |
1055 | return err; | |
1056 | } | |
1057 | return 0; | |
1058 | } | |
1059 | ||
1060 | int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr, | |
1061 | target_ulong len, int type) | |
1062 | { | |
1063 | struct kvm_sw_breakpoint *bp; | |
1064 | CPUState *env; | |
1065 | int err; | |
1066 | ||
1067 | if (type == GDB_BREAKPOINT_SW) { | |
1068 | bp = kvm_find_sw_breakpoint(current_env, addr); | |
1069 | if (!bp) | |
1070 | return -ENOENT; | |
1071 | ||
1072 | if (bp->use_count > 1) { | |
1073 | bp->use_count--; | |
1074 | return 0; | |
1075 | } | |
1076 | ||
1077 | err = kvm_arch_remove_sw_breakpoint(current_env, bp); | |
1078 | if (err) | |
1079 | return err; | |
1080 | ||
72cf2d4f | 1081 | QTAILQ_REMOVE(¤t_env->kvm_state->kvm_sw_breakpoints, bp, entry); |
e22a25c9 AL |
1082 | qemu_free(bp); |
1083 | } else { | |
1084 | err = kvm_arch_remove_hw_breakpoint(addr, len, type); | |
1085 | if (err) | |
1086 | return err; | |
1087 | } | |
1088 | ||
1089 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1090 | err = kvm_update_guest_debug(env, 0); | |
1091 | if (err) | |
1092 | return err; | |
1093 | } | |
1094 | return 0; | |
1095 | } | |
1096 | ||
1097 | void kvm_remove_all_breakpoints(CPUState *current_env) | |
1098 | { | |
1099 | struct kvm_sw_breakpoint *bp, *next; | |
1100 | KVMState *s = current_env->kvm_state; | |
1101 | CPUState *env; | |
1102 | ||
72cf2d4f | 1103 | QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { |
e22a25c9 AL |
1104 | if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) { |
1105 | /* Try harder to find a CPU that currently sees the breakpoint. */ | |
1106 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1107 | if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) | |
1108 | break; | |
1109 | } | |
1110 | } | |
1111 | } | |
1112 | kvm_arch_remove_all_hw_breakpoints(); | |
1113 | ||
1114 | for (env = first_cpu; env != NULL; env = env->next_cpu) | |
1115 | kvm_update_guest_debug(env, 0); | |
1116 | } | |
1117 | ||
1118 | #else /* !KVM_CAP_SET_GUEST_DEBUG */ | |
1119 | ||
1120 | int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap) | |
1121 | { | |
1122 | return -EINVAL; | |
1123 | } | |
1124 | ||
1125 | int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr, | |
1126 | target_ulong len, int type) | |
1127 | { | |
1128 | return -EINVAL; | |
1129 | } | |
1130 | ||
1131 | int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr, | |
1132 | target_ulong len, int type) | |
1133 | { | |
1134 | return -EINVAL; | |
1135 | } | |
1136 | ||
1137 | void kvm_remove_all_breakpoints(CPUState *current_env) | |
1138 | { | |
1139 | } | |
1140 | #endif /* !KVM_CAP_SET_GUEST_DEBUG */ | |
cc84de95 MT |
1141 | |
1142 | int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset) | |
1143 | { | |
1144 | struct kvm_signal_mask *sigmask; | |
1145 | int r; | |
1146 | ||
1147 | if (!sigset) | |
1148 | return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL); | |
1149 | ||
1150 | sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset)); | |
1151 | ||
1152 | sigmask->len = 8; | |
1153 | memcpy(sigmask->sigset, sigset, sizeof(*sigset)); | |
1154 | r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask); | |
1155 | free(sigmask); | |
1156 | ||
1157 | return r; | |
1158 | } | |
ca821806 | 1159 | |
ca821806 MT |
1160 | int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign) |
1161 | { | |
98c8573e | 1162 | #ifdef KVM_IOEVENTFD |
ca821806 MT |
1163 | struct kvm_ioeventfd kick = { |
1164 | .datamatch = val, | |
1165 | .addr = addr, | |
1166 | .len = 2, | |
1167 | .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO, | |
1168 | .fd = fd, | |
1169 | }; | |
1170 | int r; | |
1171 | if (!kvm_enabled()) | |
1172 | return -ENOSYS; | |
1173 | if (!assign) | |
1174 | kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | |
1175 | r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); | |
1176 | if (r < 0) | |
1177 | return r; | |
1178 | return 0; | |
98c8573e PB |
1179 | #else |
1180 | return -ENOSYS; | |
ca821806 | 1181 | #endif |
98c8573e | 1182 | } |