]> Git Repo - qemu.git/blame - linux-user/elfload.c
Hexagon (linux-user/hexagon) Linux user emulation
[qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
d39594e9 2#include "qemu/osdep.h"
edf8e2af 3#include <sys/param.h>
31e31b8a 4
edf8e2af 5#include <sys/resource.h>
30ab9ef2 6#include <sys/shm.h>
31e31b8a 7
3ef693a0 8#include "qemu.h"
76cad711 9#include "disas/disas.h"
ce543844 10#include "qemu/bitops.h"
f348b6d1 11#include "qemu/path.h"
dc5e9ac7 12#include "qemu/queue.h"
c6a2377f 13#include "qemu/guest-random.h"
6fd59449 14#include "qemu/units.h"
ee947430 15#include "qemu/selfmap.h"
c7f17e7b 16#include "qapi/error.h"
31e31b8a 17
e58ffeb3 18#ifdef _ARCH_PPC64
a6cc84f4 19#undef ARCH_DLINFO
20#undef ELF_PLATFORM
21#undef ELF_HWCAP
ad6919dc 22#undef ELF_HWCAP2
a6cc84f4 23#undef ELF_CLASS
24#undef ELF_DATA
25#undef ELF_ARCH
26#endif
27
edf8e2af
MW
28#define ELF_OSABI ELFOSABI_SYSV
29
cb33da57
BS
30/* from personality.h */
31
32/*
33 * Flags for bug emulation.
34 *
35 * These occupy the top three bytes.
36 */
37enum {
d97ef72e
RH
38 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
39 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
40 descriptors (signal handling) */
41 MMAP_PAGE_ZERO = 0x0100000,
42 ADDR_COMPAT_LAYOUT = 0x0200000,
43 READ_IMPLIES_EXEC = 0x0400000,
44 ADDR_LIMIT_32BIT = 0x0800000,
45 SHORT_INODE = 0x1000000,
46 WHOLE_SECONDS = 0x2000000,
47 STICKY_TIMEOUTS = 0x4000000,
48 ADDR_LIMIT_3GB = 0x8000000,
cb33da57
BS
49};
50
51/*
52 * Personality types.
53 *
54 * These go in the low byte. Avoid using the top bit, it will
55 * conflict with error returns.
56 */
57enum {
d97ef72e
RH
58 PER_LINUX = 0x0000,
59 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
60 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
61 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
62 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
64 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
65 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
66 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
67 PER_BSD = 0x0006,
68 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
69 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
70 PER_LINUX32 = 0x0008,
71 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
72 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
73 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
74 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
75 PER_RISCOS = 0x000c,
76 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
77 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
78 PER_OSF4 = 0x000f, /* OSF/1 v4 */
79 PER_HPUX = 0x0010,
80 PER_MASK = 0x00ff,
cb33da57
BS
81};
82
83/*
84 * Return the base personality without flags.
85 */
d97ef72e 86#define personality(pers) (pers & PER_MASK)
cb33da57 87
3cb10cfa
CL
88int info_is_fdpic(struct image_info *info)
89{
90 return info->personality == PER_LINUX_FDPIC;
91}
92
83fb7adf
FB
93/* this flag is uneffective under linux too, should be deleted */
94#ifndef MAP_DENYWRITE
95#define MAP_DENYWRITE 0
96#endif
97
98/* should probably go in elf.h */
99#ifndef ELIBBAD
100#define ELIBBAD 80
101#endif
102
28490231
RH
103#ifdef TARGET_WORDS_BIGENDIAN
104#define ELF_DATA ELFDATA2MSB
105#else
106#define ELF_DATA ELFDATA2LSB
107#endif
108
a29f998d 109#ifdef TARGET_ABI_MIPSN32
918fc54c
PB
110typedef abi_ullong target_elf_greg_t;
111#define tswapreg(ptr) tswap64(ptr)
a29f998d
PB
112#else
113typedef abi_ulong target_elf_greg_t;
114#define tswapreg(ptr) tswapal(ptr)
115#endif
116
21e807fa 117#ifdef USE_UID16
1ddd592f
PB
118typedef abi_ushort target_uid_t;
119typedef abi_ushort target_gid_t;
21e807fa 120#else
f8fd4fc4
PB
121typedef abi_uint target_uid_t;
122typedef abi_uint target_gid_t;
21e807fa 123#endif
f8fd4fc4 124typedef abi_int target_pid_t;
21e807fa 125
30ac07d4
FB
126#ifdef TARGET_I386
127
15338fd7
FB
128#define ELF_PLATFORM get_elf_platform()
129
130static const char *get_elf_platform(void)
131{
132 static char elf_platform[] = "i386";
a2247f8e 133 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
15338fd7
FB
134 if (family > 6)
135 family = 6;
136 if (family >= 3)
137 elf_platform[1] = '0' + family;
138 return elf_platform;
139}
140
141#define ELF_HWCAP get_elf_hwcap()
142
143static uint32_t get_elf_hwcap(void)
144{
a2247f8e
AF
145 X86CPU *cpu = X86_CPU(thread_cpu);
146
147 return cpu->env.features[FEAT_1_EDX];
15338fd7
FB
148}
149
84409ddb
JM
150#ifdef TARGET_X86_64
151#define ELF_START_MMAP 0x2aaaaab000ULL
84409ddb
JM
152
153#define ELF_CLASS ELFCLASS64
84409ddb
JM
154#define ELF_ARCH EM_X86_64
155
156static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
157{
158 regs->rax = 0;
159 regs->rsp = infop->start_stack;
160 regs->rip = infop->entry;
161}
162
9edc5d79 163#define ELF_NREG 27
c227f099 164typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
165
166/*
167 * Note that ELF_NREG should be 29 as there should be place for
168 * TRAPNO and ERR "registers" as well but linux doesn't dump
169 * those.
170 *
171 * See linux kernel: arch/x86/include/asm/elf.h
172 */
05390248 173static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
174{
175 (*regs)[0] = env->regs[15];
176 (*regs)[1] = env->regs[14];
177 (*regs)[2] = env->regs[13];
178 (*regs)[3] = env->regs[12];
179 (*regs)[4] = env->regs[R_EBP];
180 (*regs)[5] = env->regs[R_EBX];
181 (*regs)[6] = env->regs[11];
182 (*regs)[7] = env->regs[10];
183 (*regs)[8] = env->regs[9];
184 (*regs)[9] = env->regs[8];
185 (*regs)[10] = env->regs[R_EAX];
186 (*regs)[11] = env->regs[R_ECX];
187 (*regs)[12] = env->regs[R_EDX];
188 (*regs)[13] = env->regs[R_ESI];
189 (*regs)[14] = env->regs[R_EDI];
190 (*regs)[15] = env->regs[R_EAX]; /* XXX */
191 (*regs)[16] = env->eip;
192 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
193 (*regs)[18] = env->eflags;
194 (*regs)[19] = env->regs[R_ESP];
195 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
196 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
197 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
198 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
199 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
200 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
201 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
202}
203
84409ddb
JM
204#else
205
30ac07d4
FB
206#define ELF_START_MMAP 0x80000000
207
30ac07d4
FB
208/*
209 * This is used to ensure we don't load something for the wrong architecture.
210 */
211#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
212
213/*
214 * These are used to set parameters in the core dumps.
215 */
d97ef72e 216#define ELF_CLASS ELFCLASS32
d97ef72e 217#define ELF_ARCH EM_386
30ac07d4 218
d97ef72e
RH
219static inline void init_thread(struct target_pt_regs *regs,
220 struct image_info *infop)
b346ff46
FB
221{
222 regs->esp = infop->start_stack;
223 regs->eip = infop->entry;
e5fe0c52
PB
224
225 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
226 starts %edx contains a pointer to a function which might be
227 registered using `atexit'. This provides a mean for the
228 dynamic linker to call DT_FINI functions for shared libraries
229 that have been loaded before the code runs.
230
231 A value of 0 tells we have no such handler. */
232 regs->edx = 0;
b346ff46 233}
9edc5d79 234
9edc5d79 235#define ELF_NREG 17
c227f099 236typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
237
238/*
239 * Note that ELF_NREG should be 19 as there should be place for
240 * TRAPNO and ERR "registers" as well but linux doesn't dump
241 * those.
242 *
243 * See linux kernel: arch/x86/include/asm/elf.h
244 */
05390248 245static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
246{
247 (*regs)[0] = env->regs[R_EBX];
248 (*regs)[1] = env->regs[R_ECX];
249 (*regs)[2] = env->regs[R_EDX];
250 (*regs)[3] = env->regs[R_ESI];
251 (*regs)[4] = env->regs[R_EDI];
252 (*regs)[5] = env->regs[R_EBP];
253 (*regs)[6] = env->regs[R_EAX];
254 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
255 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
256 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
257 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
258 (*regs)[11] = env->regs[R_EAX]; /* XXX */
259 (*regs)[12] = env->eip;
260 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
261 (*regs)[14] = env->eflags;
262 (*regs)[15] = env->regs[R_ESP];
263 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
264}
84409ddb 265#endif
b346ff46 266
9edc5d79 267#define USE_ELF_CORE_DUMP
d97ef72e 268#define ELF_EXEC_PAGESIZE 4096
b346ff46
FB
269
270#endif
271
272#ifdef TARGET_ARM
273
24e76ff0
PM
274#ifndef TARGET_AARCH64
275/* 32 bit ARM definitions */
276
b346ff46
FB
277#define ELF_START_MMAP 0x80000000
278
b597c3f7 279#define ELF_ARCH EM_ARM
d97ef72e 280#define ELF_CLASS ELFCLASS32
b346ff46 281
d97ef72e
RH
282static inline void init_thread(struct target_pt_regs *regs,
283 struct image_info *infop)
b346ff46 284{
992f48a0 285 abi_long stack = infop->start_stack;
b346ff46 286 memset(regs, 0, sizeof(*regs));
99033cae 287
167e4cdc
PM
288 regs->uregs[16] = ARM_CPU_MODE_USR;
289 if (infop->entry & 1) {
290 regs->uregs[16] |= CPSR_T;
291 }
292 regs->uregs[15] = infop->entry & 0xfffffffe;
293 regs->uregs[13] = infop->start_stack;
2f619698 294 /* FIXME - what to for failure of get_user()? */
167e4cdc
PM
295 get_user_ual(regs->uregs[2], stack + 8); /* envp */
296 get_user_ual(regs->uregs[1], stack + 4); /* envp */
a1516e92 297 /* XXX: it seems that r0 is zeroed after ! */
167e4cdc 298 regs->uregs[0] = 0;
e5fe0c52 299 /* For uClinux PIC binaries. */
863cf0b7 300 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
167e4cdc 301 regs->uregs[10] = infop->start_data;
3cb10cfa
CL
302
303 /* Support ARM FDPIC. */
304 if (info_is_fdpic(infop)) {
305 /* As described in the ABI document, r7 points to the loadmap info
306 * prepared by the kernel. If an interpreter is needed, r8 points
307 * to the interpreter loadmap and r9 points to the interpreter
308 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
309 * r9 points to the main program PT_DYNAMIC info.
310 */
311 regs->uregs[7] = infop->loadmap_addr;
312 if (infop->interpreter_loadmap_addr) {
313 /* Executable is dynamically loaded. */
314 regs->uregs[8] = infop->interpreter_loadmap_addr;
315 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
316 } else {
317 regs->uregs[8] = 0;
318 regs->uregs[9] = infop->pt_dynamic_addr;
319 }
320 }
b346ff46
FB
321}
322
edf8e2af 323#define ELF_NREG 18
c227f099 324typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 325
05390248 326static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
edf8e2af 327{
86cd7b2d
PB
328 (*regs)[0] = tswapreg(env->regs[0]);
329 (*regs)[1] = tswapreg(env->regs[1]);
330 (*regs)[2] = tswapreg(env->regs[2]);
331 (*regs)[3] = tswapreg(env->regs[3]);
332 (*regs)[4] = tswapreg(env->regs[4]);
333 (*regs)[5] = tswapreg(env->regs[5]);
334 (*regs)[6] = tswapreg(env->regs[6]);
335 (*regs)[7] = tswapreg(env->regs[7]);
336 (*regs)[8] = tswapreg(env->regs[8]);
337 (*regs)[9] = tswapreg(env->regs[9]);
338 (*regs)[10] = tswapreg(env->regs[10]);
339 (*regs)[11] = tswapreg(env->regs[11]);
340 (*regs)[12] = tswapreg(env->regs[12]);
341 (*regs)[13] = tswapreg(env->regs[13]);
342 (*regs)[14] = tswapreg(env->regs[14]);
343 (*regs)[15] = tswapreg(env->regs[15]);
344
345 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
346 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
edf8e2af
MW
347}
348
30ac07d4 349#define USE_ELF_CORE_DUMP
d97ef72e 350#define ELF_EXEC_PAGESIZE 4096
30ac07d4 351
afce2927
FB
352enum
353{
d97ef72e
RH
354 ARM_HWCAP_ARM_SWP = 1 << 0,
355 ARM_HWCAP_ARM_HALF = 1 << 1,
356 ARM_HWCAP_ARM_THUMB = 1 << 2,
357 ARM_HWCAP_ARM_26BIT = 1 << 3,
358 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
359 ARM_HWCAP_ARM_FPA = 1 << 5,
360 ARM_HWCAP_ARM_VFP = 1 << 6,
361 ARM_HWCAP_ARM_EDSP = 1 << 7,
362 ARM_HWCAP_ARM_JAVA = 1 << 8,
363 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
43ce393e
PM
364 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
365 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
366 ARM_HWCAP_ARM_NEON = 1 << 12,
367 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
368 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
24682654
PM
369 ARM_HWCAP_ARM_TLS = 1 << 15,
370 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
371 ARM_HWCAP_ARM_IDIVA = 1 << 17,
372 ARM_HWCAP_ARM_IDIVT = 1 << 18,
373 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
374 ARM_HWCAP_ARM_LPAE = 1 << 20,
375 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
afce2927
FB
376};
377
ad6919dc
PM
378enum {
379 ARM_HWCAP2_ARM_AES = 1 << 0,
380 ARM_HWCAP2_ARM_PMULL = 1 << 1,
381 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
382 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
383 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
384};
385
6b1275ff
PM
386/* The commpage only exists for 32 bit kernels */
387
ee947430 388#define ARM_COMMPAGE (intptr_t)0xffff0f00u
806d1021 389
ee947430
AB
390static bool init_guest_commpage(void)
391{
3e8f1628 392 void *want = g2h_untagged(ARM_COMMPAGE & -qemu_host_page_size);
ee947430 393 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
5c3e87f3 394 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
97cc7560 395
ee947430
AB
396 if (addr == MAP_FAILED) {
397 perror("Allocating guest commpage");
398 exit(EXIT_FAILURE);
97cc7560 399 }
ee947430
AB
400 if (addr != want) {
401 return false;
97cc7560
DDAG
402 }
403
ee947430 404 /* Set kernel helper versions; rest of page is 0. */
3e8f1628 405 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
97cc7560 406
ee947430 407 if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
97cc7560 408 perror("Protecting guest commpage");
ee947430 409 exit(EXIT_FAILURE);
97cc7560 410 }
ee947430 411 return true;
97cc7560 412}
adf050b1
BC
413
414#define ELF_HWCAP get_elf_hwcap()
ad6919dc 415#define ELF_HWCAP2 get_elf_hwcap2()
adf050b1
BC
416
417static uint32_t get_elf_hwcap(void)
418{
a2247f8e 419 ARMCPU *cpu = ARM_CPU(thread_cpu);
adf050b1
BC
420 uint32_t hwcaps = 0;
421
422 hwcaps |= ARM_HWCAP_ARM_SWP;
423 hwcaps |= ARM_HWCAP_ARM_HALF;
424 hwcaps |= ARM_HWCAP_ARM_THUMB;
425 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
adf050b1
BC
426
427 /* probe for the extra features */
428#define GET_FEATURE(feat, hwcap) \
a2247f8e 429 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
962fcbf2
RH
430
431#define GET_FEATURE_ID(feat, hwcap) \
432 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
433
24682654
PM
434 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
435 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
adf050b1
BC
436 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
437 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
438 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
24682654 439 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
bfa8a370 440 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
873b73c0
PM
441 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
442 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
bfa8a370
RH
443 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
444
445 if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
446 cpu_isar_feature(aa32_fpdp_v3, cpu)) {
447 hwcaps |= ARM_HWCAP_ARM_VFPv3;
448 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
449 hwcaps |= ARM_HWCAP_ARM_VFPD32;
450 } else {
451 hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
452 }
453 }
454 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
adf050b1
BC
455
456 return hwcaps;
457}
afce2927 458
ad6919dc
PM
459static uint32_t get_elf_hwcap2(void)
460{
461 ARMCPU *cpu = ARM_CPU(thread_cpu);
462 uint32_t hwcaps = 0;
463
962fcbf2
RH
464 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
465 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
466 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
467 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
468 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
ad6919dc
PM
469 return hwcaps;
470}
471
472#undef GET_FEATURE
962fcbf2 473#undef GET_FEATURE_ID
ad6919dc 474
13ec4ec3
RH
475#define ELF_PLATFORM get_elf_platform()
476
477static const char *get_elf_platform(void)
478{
479 CPUARMState *env = thread_cpu->env_ptr;
480
481#ifdef TARGET_WORDS_BIGENDIAN
482# define END "b"
483#else
484# define END "l"
485#endif
486
487 if (arm_feature(env, ARM_FEATURE_V8)) {
488 return "v8" END;
489 } else if (arm_feature(env, ARM_FEATURE_V7)) {
490 if (arm_feature(env, ARM_FEATURE_M)) {
491 return "v7m" END;
492 } else {
493 return "v7" END;
494 }
495 } else if (arm_feature(env, ARM_FEATURE_V6)) {
496 return "v6" END;
497 } else if (arm_feature(env, ARM_FEATURE_V5)) {
498 return "v5" END;
499 } else {
500 return "v4" END;
501 }
502
503#undef END
504}
505
24e76ff0
PM
506#else
507/* 64 bit ARM definitions */
508#define ELF_START_MMAP 0x80000000
509
b597c3f7 510#define ELF_ARCH EM_AARCH64
24e76ff0 511#define ELF_CLASS ELFCLASS64
e20e3ec9
RH
512#ifdef TARGET_WORDS_BIGENDIAN
513# define ELF_PLATFORM "aarch64_be"
514#else
515# define ELF_PLATFORM "aarch64"
516#endif
24e76ff0
PM
517
518static inline void init_thread(struct target_pt_regs *regs,
519 struct image_info *infop)
520{
521 abi_long stack = infop->start_stack;
522 memset(regs, 0, sizeof(*regs));
523
524 regs->pc = infop->entry & ~0x3ULL;
525 regs->sp = stack;
526}
527
528#define ELF_NREG 34
529typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
530
531static void elf_core_copy_regs(target_elf_gregset_t *regs,
532 const CPUARMState *env)
533{
534 int i;
535
536 for (i = 0; i < 32; i++) {
537 (*regs)[i] = tswapreg(env->xregs[i]);
538 }
539 (*regs)[32] = tswapreg(env->pc);
540 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
541}
542
543#define USE_ELF_CORE_DUMP
544#define ELF_EXEC_PAGESIZE 4096
545
546enum {
547 ARM_HWCAP_A64_FP = 1 << 0,
548 ARM_HWCAP_A64_ASIMD = 1 << 1,
549 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
550 ARM_HWCAP_A64_AES = 1 << 3,
551 ARM_HWCAP_A64_PMULL = 1 << 4,
552 ARM_HWCAP_A64_SHA1 = 1 << 5,
553 ARM_HWCAP_A64_SHA2 = 1 << 6,
554 ARM_HWCAP_A64_CRC32 = 1 << 7,
955f56d4
AB
555 ARM_HWCAP_A64_ATOMICS = 1 << 8,
556 ARM_HWCAP_A64_FPHP = 1 << 9,
557 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
558 ARM_HWCAP_A64_CPUID = 1 << 11,
559 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
560 ARM_HWCAP_A64_JSCVT = 1 << 13,
561 ARM_HWCAP_A64_FCMA = 1 << 14,
562 ARM_HWCAP_A64_LRCPC = 1 << 15,
563 ARM_HWCAP_A64_DCPOP = 1 << 16,
564 ARM_HWCAP_A64_SHA3 = 1 << 17,
565 ARM_HWCAP_A64_SM3 = 1 << 18,
566 ARM_HWCAP_A64_SM4 = 1 << 19,
567 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
568 ARM_HWCAP_A64_SHA512 = 1 << 21,
569 ARM_HWCAP_A64_SVE = 1 << 22,
0083a1fa
RH
570 ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
571 ARM_HWCAP_A64_DIT = 1 << 24,
572 ARM_HWCAP_A64_USCAT = 1 << 25,
573 ARM_HWCAP_A64_ILRCPC = 1 << 26,
574 ARM_HWCAP_A64_FLAGM = 1 << 27,
575 ARM_HWCAP_A64_SSBS = 1 << 28,
576 ARM_HWCAP_A64_SB = 1 << 29,
577 ARM_HWCAP_A64_PACA = 1 << 30,
578 ARM_HWCAP_A64_PACG = 1UL << 31,
2041df4a
RH
579
580 ARM_HWCAP2_A64_DCPODP = 1 << 0,
581 ARM_HWCAP2_A64_SVE2 = 1 << 1,
582 ARM_HWCAP2_A64_SVEAES = 1 << 2,
583 ARM_HWCAP2_A64_SVEPMULL = 1 << 3,
584 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4,
585 ARM_HWCAP2_A64_SVESHA3 = 1 << 5,
586 ARM_HWCAP2_A64_SVESM4 = 1 << 6,
587 ARM_HWCAP2_A64_FLAGM2 = 1 << 7,
588 ARM_HWCAP2_A64_FRINT = 1 << 8,
24e76ff0
PM
589};
590
2041df4a
RH
591#define ELF_HWCAP get_elf_hwcap()
592#define ELF_HWCAP2 get_elf_hwcap2()
593
594#define GET_FEATURE_ID(feat, hwcap) \
595 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
24e76ff0
PM
596
597static uint32_t get_elf_hwcap(void)
598{
599 ARMCPU *cpu = ARM_CPU(thread_cpu);
600 uint32_t hwcaps = 0;
601
602 hwcaps |= ARM_HWCAP_A64_FP;
603 hwcaps |= ARM_HWCAP_A64_ASIMD;
37020ff1 604 hwcaps |= ARM_HWCAP_A64_CPUID;
24e76ff0
PM
605
606 /* probe for the extra features */
962fcbf2
RH
607
608 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
609 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
610 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
611 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
612 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
613 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
614 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
615 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
616 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
5763190f 617 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
962fcbf2
RH
618 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
619 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
620 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
621 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
cd208a1c 622 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
29d26ab2 623 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
1c9af3a9
RH
624 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
625 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
9888bd1e 626 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
b89d9c98 627 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
0d57b499 628 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
2677cf9f 629 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
a1229109 630 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
962fcbf2 631
2041df4a
RH
632 return hwcaps;
633}
634
635static uint32_t get_elf_hwcap2(void)
636{
637 ARMCPU *cpu = ARM_CPU(thread_cpu);
638 uint32_t hwcaps = 0;
639
0d57b499 640 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
2041df4a
RH
641 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
642 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
24e76ff0
PM
643
644 return hwcaps;
645}
646
2041df4a
RH
647#undef GET_FEATURE_ID
648
24e76ff0
PM
649#endif /* not TARGET_AARCH64 */
650#endif /* TARGET_ARM */
30ac07d4 651
853d6f7a 652#ifdef TARGET_SPARC
a315a145 653#ifdef TARGET_SPARC64
853d6f7a
FB
654
655#define ELF_START_MMAP 0x80000000
cf973e46
AT
656#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
657 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
992f48a0 658#ifndef TARGET_ABI32
cb33da57 659#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
660#else
661#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
662#endif
853d6f7a 663
a315a145 664#define ELF_CLASS ELFCLASS64
5ef54116
FB
665#define ELF_ARCH EM_SPARCV9
666
d97ef72e 667#define STACK_BIAS 2047
a315a145 668
d97ef72e
RH
669static inline void init_thread(struct target_pt_regs *regs,
670 struct image_info *infop)
a315a145 671{
992f48a0 672#ifndef TARGET_ABI32
a315a145 673 regs->tstate = 0;
992f48a0 674#endif
a315a145
FB
675 regs->pc = infop->entry;
676 regs->npc = regs->pc + 4;
677 regs->y = 0;
992f48a0
BS
678#ifdef TARGET_ABI32
679 regs->u_regs[14] = infop->start_stack - 16 * 4;
680#else
cb33da57
BS
681 if (personality(infop->personality) == PER_LINUX32)
682 regs->u_regs[14] = infop->start_stack - 16 * 4;
683 else
684 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
992f48a0 685#endif
a315a145
FB
686}
687
688#else
689#define ELF_START_MMAP 0x80000000
cf973e46
AT
690#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
691 | HWCAP_SPARC_MULDIV)
a315a145 692
853d6f7a 693#define ELF_CLASS ELFCLASS32
853d6f7a
FB
694#define ELF_ARCH EM_SPARC
695
d97ef72e
RH
696static inline void init_thread(struct target_pt_regs *regs,
697 struct image_info *infop)
853d6f7a 698{
f5155289
FB
699 regs->psr = 0;
700 regs->pc = infop->entry;
701 regs->npc = regs->pc + 4;
702 regs->y = 0;
703 regs->u_regs[14] = infop->start_stack - 16 * 4;
853d6f7a
FB
704}
705
a315a145 706#endif
853d6f7a
FB
707#endif
708
67867308
FB
709#ifdef TARGET_PPC
710
4ecd4d16 711#define ELF_MACHINE PPC_ELF_MACHINE
67867308
FB
712#define ELF_START_MMAP 0x80000000
713
e85e7c6e 714#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
84409ddb
JM
715
716#define elf_check_arch(x) ( (x) == EM_PPC64 )
717
d97ef72e 718#define ELF_CLASS ELFCLASS64
84409ddb
JM
719
720#else
721
d97ef72e 722#define ELF_CLASS ELFCLASS32
84409ddb
JM
723
724#endif
725
d97ef72e 726#define ELF_ARCH EM_PPC
67867308 727
df84e4f3
NF
728/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
729 See arch/powerpc/include/asm/cputable.h. */
730enum {
3efa9a67 731 QEMU_PPC_FEATURE_32 = 0x80000000,
732 QEMU_PPC_FEATURE_64 = 0x40000000,
733 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
734 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
735 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
736 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
737 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
738 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
739 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
740 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
741 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
742 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
743 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
744 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
745 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
746 QEMU_PPC_FEATURE_CELL = 0x00010000,
747 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
748 QEMU_PPC_FEATURE_SMT = 0x00004000,
749 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
750 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
751 QEMU_PPC_FEATURE_PA6T = 0x00000800,
752 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
753 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
754 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
755 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
756 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
757
758 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
759 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
a60438dd
TM
760
761 /* Feature definitions in AT_HWCAP2. */
762 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
763 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
764 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
765 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
766 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
767 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
24c373ec
LV
768 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
769 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
be0c46d4 770 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
24c373ec
LV
771 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
772 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
773 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
774 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
df84e4f3
NF
775};
776
777#define ELF_HWCAP get_elf_hwcap()
778
779static uint32_t get_elf_hwcap(void)
780{
a2247f8e 781 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
df84e4f3
NF
782 uint32_t features = 0;
783
784 /* We don't have to be terribly complete here; the high points are
785 Altivec/FP/SPE support. Anything else is just a bonus. */
d97ef72e 786#define GET_FEATURE(flag, feature) \
a2247f8e 787 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
58eb5308
MW
788#define GET_FEATURE2(flags, feature) \
789 do { \
790 if ((cpu->env.insns_flags2 & flags) == flags) { \
791 features |= feature; \
792 } \
793 } while (0)
3efa9a67 794 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
795 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
796 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
797 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
798 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
799 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
800 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
801 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
0e019746
TM
802 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
803 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
804 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
805 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
806 QEMU_PPC_FEATURE_ARCH_2_06);
df84e4f3 807#undef GET_FEATURE
0e019746 808#undef GET_FEATURE2
df84e4f3
NF
809
810 return features;
811}
812
a60438dd
TM
813#define ELF_HWCAP2 get_elf_hwcap2()
814
815static uint32_t get_elf_hwcap2(void)
816{
817 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
818 uint32_t features = 0;
819
820#define GET_FEATURE(flag, feature) \
821 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
822#define GET_FEATURE2(flag, feature) \
823 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
824
825 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
826 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
827 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
24c373ec
LV
828 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
829 QEMU_PPC_FEATURE2_VEC_CRYPTO);
830 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
831 QEMU_PPC_FEATURE2_DARN);
a60438dd
TM
832
833#undef GET_FEATURE
834#undef GET_FEATURE2
835
836 return features;
837}
838
f5155289
FB
839/*
840 * The requirements here are:
841 * - keep the final alignment of sp (sp & 0xf)
842 * - make sure the 32-bit value at the first 16 byte aligned position of
843 * AUXV is greater than 16 for glibc compatibility.
844 * AT_IGNOREPPC is used for that.
845 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
846 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
847 */
0bccf03d 848#define DLINFO_ARCH_ITEMS 5
d97ef72e
RH
849#define ARCH_DLINFO \
850 do { \
623e250a 851 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
d97ef72e 852 /* \
82991bed
PM
853 * Handle glibc compatibility: these magic entries must \
854 * be at the lowest addresses in the final auxv. \
d97ef72e
RH
855 */ \
856 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
857 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
82991bed
PM
858 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
859 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
860 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
d97ef72e 861 } while (0)
f5155289 862
67867308
FB
863static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
864{
67867308 865 _regs->gpr[1] = infop->start_stack;
e85e7c6e 866#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
d90b94cd 867 if (get_ppc64_abi(infop) < 2) {
2ccf97ec
PM
868 uint64_t val;
869 get_user_u64(val, infop->entry + 8);
870 _regs->gpr[2] = val + infop->load_bias;
871 get_user_u64(val, infop->entry);
872 infop->entry = val + infop->load_bias;
d90b94cd
DK
873 } else {
874 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
875 }
84409ddb 876#endif
67867308
FB
877 _regs->nip = infop->entry;
878}
879
e2f3e741
NF
880/* See linux kernel: arch/powerpc/include/asm/elf.h. */
881#define ELF_NREG 48
882typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
883
05390248 884static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
e2f3e741
NF
885{
886 int i;
887 target_ulong ccr = 0;
888
889 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
86cd7b2d 890 (*regs)[i] = tswapreg(env->gpr[i]);
e2f3e741
NF
891 }
892
86cd7b2d
PB
893 (*regs)[32] = tswapreg(env->nip);
894 (*regs)[33] = tswapreg(env->msr);
895 (*regs)[35] = tswapreg(env->ctr);
896 (*regs)[36] = tswapreg(env->lr);
897 (*regs)[37] = tswapreg(env->xer);
e2f3e741
NF
898
899 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
900 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
901 }
86cd7b2d 902 (*regs)[38] = tswapreg(ccr);
e2f3e741
NF
903}
904
905#define USE_ELF_CORE_DUMP
d97ef72e 906#define ELF_EXEC_PAGESIZE 4096
67867308
FB
907
908#endif
909
048f6b4d
FB
910#ifdef TARGET_MIPS
911
912#define ELF_START_MMAP 0x80000000
913
388bb21a
TS
914#ifdef TARGET_MIPS64
915#define ELF_CLASS ELFCLASS64
916#else
048f6b4d 917#define ELF_CLASS ELFCLASS32
388bb21a 918#endif
048f6b4d
FB
919#define ELF_ARCH EM_MIPS
920
f72541f3
AM
921#define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
922
ace3d654
CMAB
923#ifdef TARGET_ABI_MIPSN32
924#define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
925#else
926#define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
927#endif
928
d97ef72e
RH
929static inline void init_thread(struct target_pt_regs *regs,
930 struct image_info *infop)
048f6b4d 931{
623a930e 932 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
933 regs->cp0_epc = infop->entry;
934 regs->regs[29] = infop->start_stack;
935}
936
51e52606
NF
937/* See linux kernel: arch/mips/include/asm/elf.h. */
938#define ELF_NREG 45
939typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
940
941/* See linux kernel: arch/mips/include/asm/reg.h. */
942enum {
943#ifdef TARGET_MIPS64
944 TARGET_EF_R0 = 0,
945#else
946 TARGET_EF_R0 = 6,
947#endif
948 TARGET_EF_R26 = TARGET_EF_R0 + 26,
949 TARGET_EF_R27 = TARGET_EF_R0 + 27,
950 TARGET_EF_LO = TARGET_EF_R0 + 32,
951 TARGET_EF_HI = TARGET_EF_R0 + 33,
952 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
953 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
954 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
955 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
956};
957
958/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 959static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
51e52606
NF
960{
961 int i;
962
963 for (i = 0; i < TARGET_EF_R0; i++) {
964 (*regs)[i] = 0;
965 }
966 (*regs)[TARGET_EF_R0] = 0;
967
968 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
a29f998d 969 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
51e52606
NF
970 }
971
972 (*regs)[TARGET_EF_R26] = 0;
973 (*regs)[TARGET_EF_R27] = 0;
a29f998d
PB
974 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
975 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
976 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
977 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
978 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
979 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
51e52606
NF
980}
981
982#define USE_ELF_CORE_DUMP
388bb21a
TS
983#define ELF_EXEC_PAGESIZE 4096
984
46a1ee4f
JC
985/* See arch/mips/include/uapi/asm/hwcap.h. */
986enum {
987 HWCAP_MIPS_R6 = (1 << 0),
988 HWCAP_MIPS_MSA = (1 << 1),
9ea313ba
PMD
989 HWCAP_MIPS_CRC32 = (1 << 2),
990 HWCAP_MIPS_MIPS16 = (1 << 3),
991 HWCAP_MIPS_MDMX = (1 << 4),
992 HWCAP_MIPS_MIPS3D = (1 << 5),
993 HWCAP_MIPS_SMARTMIPS = (1 << 6),
994 HWCAP_MIPS_DSP = (1 << 7),
995 HWCAP_MIPS_DSP2 = (1 << 8),
996 HWCAP_MIPS_DSP3 = (1 << 9),
997 HWCAP_MIPS_MIPS16E2 = (1 << 10),
998 HWCAP_LOONGSON_MMI = (1 << 11),
999 HWCAP_LOONGSON_EXT = (1 << 12),
1000 HWCAP_LOONGSON_EXT2 = (1 << 13),
1001 HWCAP_LOONGSON_CPUCFG = (1 << 14),
46a1ee4f
JC
1002};
1003
1004#define ELF_HWCAP get_elf_hwcap()
1005
7d9a3d96 1006#define GET_FEATURE_INSN(_flag, _hwcap) \
6dd97bfc
PMD
1007 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1008
388765a0
PMD
1009#define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1010 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1011
ce543844
PMD
1012#define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1013 do { \
1014 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1015 hwcaps |= _hwcap; \
1016 } \
1017 } while (0)
1018
46a1ee4f
JC
1019static uint32_t get_elf_hwcap(void)
1020{
1021 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1022 uint32_t hwcaps = 0;
1023
ce543844
PMD
1024 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1025 2, HWCAP_MIPS_R6);
388765a0 1026 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
53673d0f
PMD
1027 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1028 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
46a1ee4f 1029
46a1ee4f
JC
1030 return hwcaps;
1031}
1032
ce543844 1033#undef GET_FEATURE_REG_EQU
388765a0 1034#undef GET_FEATURE_REG_SET
7d9a3d96 1035#undef GET_FEATURE_INSN
6dd97bfc 1036
048f6b4d
FB
1037#endif /* TARGET_MIPS */
1038
b779e29e
EI
1039#ifdef TARGET_MICROBLAZE
1040
1041#define ELF_START_MMAP 0x80000000
1042
0d5d4699 1043#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
b779e29e
EI
1044
1045#define ELF_CLASS ELFCLASS32
0d5d4699 1046#define ELF_ARCH EM_MICROBLAZE
b779e29e 1047
d97ef72e
RH
1048static inline void init_thread(struct target_pt_regs *regs,
1049 struct image_info *infop)
b779e29e
EI
1050{
1051 regs->pc = infop->entry;
1052 regs->r1 = infop->start_stack;
1053
1054}
1055
b779e29e
EI
1056#define ELF_EXEC_PAGESIZE 4096
1057
e4cbd44d
EI
1058#define USE_ELF_CORE_DUMP
1059#define ELF_NREG 38
1060typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1061
1062/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 1063static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
e4cbd44d
EI
1064{
1065 int i, pos = 0;
1066
1067 for (i = 0; i < 32; i++) {
86cd7b2d 1068 (*regs)[pos++] = tswapreg(env->regs[i]);
e4cbd44d
EI
1069 }
1070
af20a93a 1071 (*regs)[pos++] = tswapreg(env->pc);
1074c0fb 1072 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
af20a93a
RH
1073 (*regs)[pos++] = 0;
1074 (*regs)[pos++] = tswapreg(env->ear);
1075 (*regs)[pos++] = 0;
1076 (*regs)[pos++] = tswapreg(env->esr);
e4cbd44d
EI
1077}
1078
b779e29e
EI
1079#endif /* TARGET_MICROBLAZE */
1080
a0a839b6
MV
1081#ifdef TARGET_NIOS2
1082
1083#define ELF_START_MMAP 0x80000000
1084
1085#define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1086
1087#define ELF_CLASS ELFCLASS32
1088#define ELF_ARCH EM_ALTERA_NIOS2
1089
1090static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1091{
1092 regs->ea = infop->entry;
1093 regs->sp = infop->start_stack;
1094 regs->estatus = 0x3;
1095}
1096
1097#define ELF_EXEC_PAGESIZE 4096
1098
1099#define USE_ELF_CORE_DUMP
1100#define ELF_NREG 49
1101typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1102
1103/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1104static void elf_core_copy_regs(target_elf_gregset_t *regs,
1105 const CPUNios2State *env)
1106{
1107 int i;
1108
1109 (*regs)[0] = -1;
1110 for (i = 1; i < 8; i++) /* r0-r7 */
1111 (*regs)[i] = tswapreg(env->regs[i + 7]);
1112
1113 for (i = 8; i < 16; i++) /* r8-r15 */
1114 (*regs)[i] = tswapreg(env->regs[i - 8]);
1115
1116 for (i = 16; i < 24; i++) /* r16-r23 */
1117 (*regs)[i] = tswapreg(env->regs[i + 7]);
1118 (*regs)[24] = -1; /* R_ET */
1119 (*regs)[25] = -1; /* R_BT */
1120 (*regs)[26] = tswapreg(env->regs[R_GP]);
1121 (*regs)[27] = tswapreg(env->regs[R_SP]);
1122 (*regs)[28] = tswapreg(env->regs[R_FP]);
1123 (*regs)[29] = tswapreg(env->regs[R_EA]);
1124 (*regs)[30] = -1; /* R_SSTATUS */
1125 (*regs)[31] = tswapreg(env->regs[R_RA]);
1126
1127 (*regs)[32] = tswapreg(env->regs[R_PC]);
1128
1129 (*regs)[33] = -1; /* R_STATUS */
1130 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1131
1132 for (i = 35; i < 49; i++) /* ... */
1133 (*regs)[i] = -1;
1134}
1135
1136#endif /* TARGET_NIOS2 */
1137
d962783e
JL
1138#ifdef TARGET_OPENRISC
1139
1140#define ELF_START_MMAP 0x08000000
1141
d962783e
JL
1142#define ELF_ARCH EM_OPENRISC
1143#define ELF_CLASS ELFCLASS32
1144#define ELF_DATA ELFDATA2MSB
1145
1146static inline void init_thread(struct target_pt_regs *regs,
1147 struct image_info *infop)
1148{
1149 regs->pc = infop->entry;
1150 regs->gpr[1] = infop->start_stack;
1151}
1152
1153#define USE_ELF_CORE_DUMP
1154#define ELF_EXEC_PAGESIZE 8192
1155
1156/* See linux kernel arch/openrisc/include/asm/elf.h. */
1157#define ELF_NREG 34 /* gprs and pc, sr */
1158typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1159
1160static void elf_core_copy_regs(target_elf_gregset_t *regs,
1161 const CPUOpenRISCState *env)
1162{
1163 int i;
1164
1165 for (i = 0; i < 32; i++) {
d89e71e8 1166 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
d962783e 1167 }
86cd7b2d 1168 (*regs)[32] = tswapreg(env->pc);
84775c43 1169 (*regs)[33] = tswapreg(cpu_get_sr(env));
d962783e
JL
1170}
1171#define ELF_HWCAP 0
1172#define ELF_PLATFORM NULL
1173
1174#endif /* TARGET_OPENRISC */
1175
fdf9b3e8
FB
1176#ifdef TARGET_SH4
1177
1178#define ELF_START_MMAP 0x80000000
1179
fdf9b3e8 1180#define ELF_CLASS ELFCLASS32
fdf9b3e8
FB
1181#define ELF_ARCH EM_SH
1182
d97ef72e
RH
1183static inline void init_thread(struct target_pt_regs *regs,
1184 struct image_info *infop)
fdf9b3e8 1185{
d97ef72e
RH
1186 /* Check other registers XXXXX */
1187 regs->pc = infop->entry;
1188 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
1189}
1190
7631c97e
NF
1191/* See linux kernel: arch/sh/include/asm/elf.h. */
1192#define ELF_NREG 23
1193typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1194
1195/* See linux kernel: arch/sh/include/asm/ptrace.h. */
1196enum {
1197 TARGET_REG_PC = 16,
1198 TARGET_REG_PR = 17,
1199 TARGET_REG_SR = 18,
1200 TARGET_REG_GBR = 19,
1201 TARGET_REG_MACH = 20,
1202 TARGET_REG_MACL = 21,
1203 TARGET_REG_SYSCALL = 22
1204};
1205
d97ef72e 1206static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
05390248 1207 const CPUSH4State *env)
7631c97e
NF
1208{
1209 int i;
1210
1211 for (i = 0; i < 16; i++) {
72cd500b 1212 (*regs)[i] = tswapreg(env->gregs[i]);
7631c97e
NF
1213 }
1214
86cd7b2d
PB
1215 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1216 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1217 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1218 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1219 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1220 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
7631c97e
NF
1221 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1222}
1223
1224#define USE_ELF_CORE_DUMP
fdf9b3e8
FB
1225#define ELF_EXEC_PAGESIZE 4096
1226
e42fd944
RH
1227enum {
1228 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1229 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1230 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1231 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1232 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1233 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1234 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1235 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1236 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1237 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1238};
1239
1240#define ELF_HWCAP get_elf_hwcap()
1241
1242static uint32_t get_elf_hwcap(void)
1243{
1244 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1245 uint32_t hwcap = 0;
1246
1247 hwcap |= SH_CPU_HAS_FPU;
1248
1249 if (cpu->env.features & SH_FEATURE_SH4A) {
1250 hwcap |= SH_CPU_HAS_LLSC;
1251 }
1252
1253 return hwcap;
1254}
1255
fdf9b3e8
FB
1256#endif
1257
48733d19
TS
1258#ifdef TARGET_CRIS
1259
1260#define ELF_START_MMAP 0x80000000
1261
48733d19 1262#define ELF_CLASS ELFCLASS32
48733d19
TS
1263#define ELF_ARCH EM_CRIS
1264
d97ef72e
RH
1265static inline void init_thread(struct target_pt_regs *regs,
1266 struct image_info *infop)
48733d19 1267{
d97ef72e 1268 regs->erp = infop->entry;
48733d19
TS
1269}
1270
48733d19
TS
1271#define ELF_EXEC_PAGESIZE 8192
1272
1273#endif
1274
e6e5906b
PB
1275#ifdef TARGET_M68K
1276
1277#define ELF_START_MMAP 0x80000000
1278
d97ef72e 1279#define ELF_CLASS ELFCLASS32
d97ef72e 1280#define ELF_ARCH EM_68K
e6e5906b
PB
1281
1282/* ??? Does this need to do anything?
d97ef72e 1283 #define ELF_PLAT_INIT(_r) */
e6e5906b 1284
d97ef72e
RH
1285static inline void init_thread(struct target_pt_regs *regs,
1286 struct image_info *infop)
e6e5906b
PB
1287{
1288 regs->usp = infop->start_stack;
1289 regs->sr = 0;
1290 regs->pc = infop->entry;
1291}
1292
7a93cc55
NF
1293/* See linux kernel: arch/m68k/include/asm/elf.h. */
1294#define ELF_NREG 20
1295typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1296
05390248 1297static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
7a93cc55 1298{
86cd7b2d
PB
1299 (*regs)[0] = tswapreg(env->dregs[1]);
1300 (*regs)[1] = tswapreg(env->dregs[2]);
1301 (*regs)[2] = tswapreg(env->dregs[3]);
1302 (*regs)[3] = tswapreg(env->dregs[4]);
1303 (*regs)[4] = tswapreg(env->dregs[5]);
1304 (*regs)[5] = tswapreg(env->dregs[6]);
1305 (*regs)[6] = tswapreg(env->dregs[7]);
1306 (*regs)[7] = tswapreg(env->aregs[0]);
1307 (*regs)[8] = tswapreg(env->aregs[1]);
1308 (*regs)[9] = tswapreg(env->aregs[2]);
1309 (*regs)[10] = tswapreg(env->aregs[3]);
1310 (*regs)[11] = tswapreg(env->aregs[4]);
1311 (*regs)[12] = tswapreg(env->aregs[5]);
1312 (*regs)[13] = tswapreg(env->aregs[6]);
1313 (*regs)[14] = tswapreg(env->dregs[0]);
1314 (*regs)[15] = tswapreg(env->aregs[7]);
1315 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1316 (*regs)[17] = tswapreg(env->sr);
1317 (*regs)[18] = tswapreg(env->pc);
7a93cc55
NF
1318 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1319}
1320
1321#define USE_ELF_CORE_DUMP
d97ef72e 1322#define ELF_EXEC_PAGESIZE 8192
e6e5906b
PB
1323
1324#endif
1325
7a3148a9
JM
1326#ifdef TARGET_ALPHA
1327
1328#define ELF_START_MMAP (0x30000000000ULL)
1329
7a3148a9 1330#define ELF_CLASS ELFCLASS64
7a3148a9
JM
1331#define ELF_ARCH EM_ALPHA
1332
d97ef72e
RH
1333static inline void init_thread(struct target_pt_regs *regs,
1334 struct image_info *infop)
7a3148a9
JM
1335{
1336 regs->pc = infop->entry;
1337 regs->ps = 8;
1338 regs->usp = infop->start_stack;
7a3148a9
JM
1339}
1340
7a3148a9
JM
1341#define ELF_EXEC_PAGESIZE 8192
1342
1343#endif /* TARGET_ALPHA */
1344
a4c075f1
UH
1345#ifdef TARGET_S390X
1346
1347#define ELF_START_MMAP (0x20000000000ULL)
1348
a4c075f1
UH
1349#define ELF_CLASS ELFCLASS64
1350#define ELF_DATA ELFDATA2MSB
1351#define ELF_ARCH EM_S390
1352
6d88baf1
DH
1353#include "elf.h"
1354
1355#define ELF_HWCAP get_elf_hwcap()
1356
1357#define GET_FEATURE(_feat, _hwcap) \
1358 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1359
1360static uint32_t get_elf_hwcap(void)
1361{
1362 /*
1363 * Let's assume we always have esan3 and zarch.
1364 * 31-bit processes can use 64-bit registers (high gprs).
1365 */
1366 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1367
1368 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1369 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1370 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1371 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1372 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1373 s390_has_feat(S390_FEAT_ETF3_ENH)) {
1374 hwcap |= HWCAP_S390_ETF3EH;
1375 }
1376 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1377
1378 return hwcap;
1379}
1380
a4c075f1
UH
1381static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1382{
1383 regs->psw.addr = infop->entry;
1384 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1385 regs->gprs[15] = infop->start_stack;
1386}
1387
1388#endif /* TARGET_S390X */
1389
b16189b2
CG
1390#ifdef TARGET_TILEGX
1391
1392/* 42 bits real used address, a half for user mode */
1393#define ELF_START_MMAP (0x00000020000000000ULL)
1394
1395#define elf_check_arch(x) ((x) == EM_TILEGX)
1396
1397#define ELF_CLASS ELFCLASS64
1398#define ELF_DATA ELFDATA2LSB
1399#define ELF_ARCH EM_TILEGX
1400
1401static inline void init_thread(struct target_pt_regs *regs,
1402 struct image_info *infop)
1403{
1404 regs->pc = infop->entry;
1405 regs->sp = infop->start_stack;
1406
1407}
1408
1409#define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1410
1411#endif /* TARGET_TILEGX */
1412
47ae93cd
MC
1413#ifdef TARGET_RISCV
1414
1415#define ELF_START_MMAP 0x80000000
1416#define ELF_ARCH EM_RISCV
1417
1418#ifdef TARGET_RISCV32
1419#define ELF_CLASS ELFCLASS32
1420#else
1421#define ELF_CLASS ELFCLASS64
1422#endif
1423
1424static inline void init_thread(struct target_pt_regs *regs,
1425 struct image_info *infop)
1426{
1427 regs->sepc = infop->entry;
1428 regs->sp = infop->start_stack;
1429}
1430
1431#define ELF_EXEC_PAGESIZE 4096
1432
1433#endif /* TARGET_RISCV */
1434
7c248bcd
RH
1435#ifdef TARGET_HPPA
1436
1437#define ELF_START_MMAP 0x80000000
1438#define ELF_CLASS ELFCLASS32
1439#define ELF_ARCH EM_PARISC
1440#define ELF_PLATFORM "PARISC"
1441#define STACK_GROWS_DOWN 0
1442#define STACK_ALIGNMENT 64
1443
1444static inline void init_thread(struct target_pt_regs *regs,
1445 struct image_info *infop)
1446{
1447 regs->iaoq[0] = infop->entry;
1448 regs->iaoq[1] = infop->entry + 4;
1449 regs->gr[23] = 0;
1450 regs->gr[24] = infop->arg_start;
1451 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1452 /* The top-of-stack contains a linkage buffer. */
1453 regs->gr[30] = infop->start_stack + 64;
1454 regs->gr[31] = infop->entry;
1455}
1456
1457#endif /* TARGET_HPPA */
1458
ba7651fb
MF
1459#ifdef TARGET_XTENSA
1460
1461#define ELF_START_MMAP 0x20000000
1462
1463#define ELF_CLASS ELFCLASS32
1464#define ELF_ARCH EM_XTENSA
1465
1466static inline void init_thread(struct target_pt_regs *regs,
1467 struct image_info *infop)
1468{
1469 regs->windowbase = 0;
1470 regs->windowstart = 1;
1471 regs->areg[1] = infop->start_stack;
1472 regs->pc = infop->entry;
1473}
1474
1475/* See linux kernel: arch/xtensa/include/asm/elf.h. */
1476#define ELF_NREG 128
1477typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1478
1479enum {
1480 TARGET_REG_PC,
1481 TARGET_REG_PS,
1482 TARGET_REG_LBEG,
1483 TARGET_REG_LEND,
1484 TARGET_REG_LCOUNT,
1485 TARGET_REG_SAR,
1486 TARGET_REG_WINDOWSTART,
1487 TARGET_REG_WINDOWBASE,
1488 TARGET_REG_THREADPTR,
1489 TARGET_REG_AR0 = 64,
1490};
1491
1492static void elf_core_copy_regs(target_elf_gregset_t *regs,
1493 const CPUXtensaState *env)
1494{
1495 unsigned i;
1496
1497 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1498 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1499 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1500 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1501 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1502 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1503 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1504 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1505 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1506 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1507 for (i = 0; i < env->config->nareg; ++i) {
1508 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1509 }
1510}
1511
1512#define USE_ELF_CORE_DUMP
1513#define ELF_EXEC_PAGESIZE 4096
1514
1515#endif /* TARGET_XTENSA */
1516
d2a56bd2
TS
1517#ifdef TARGET_HEXAGON
1518
1519#define ELF_START_MMAP 0x20000000
1520
1521#define ELF_CLASS ELFCLASS32
1522#define ELF_ARCH EM_HEXAGON
1523
1524static inline void init_thread(struct target_pt_regs *regs,
1525 struct image_info *infop)
1526{
1527 regs->sepc = infop->entry;
1528 regs->sp = infop->start_stack;
1529}
1530
1531#endif /* TARGET_HEXAGON */
1532
15338fd7
FB
1533#ifndef ELF_PLATFORM
1534#define ELF_PLATFORM (NULL)
1535#endif
1536
75be901c
PC
1537#ifndef ELF_MACHINE
1538#define ELF_MACHINE ELF_ARCH
1539#endif
1540
d276a604
PC
1541#ifndef elf_check_arch
1542#define elf_check_arch(x) ((x) == ELF_ARCH)
1543#endif
1544
ace3d654
CMAB
1545#ifndef elf_check_abi
1546#define elf_check_abi(x) (1)
1547#endif
1548
15338fd7
FB
1549#ifndef ELF_HWCAP
1550#define ELF_HWCAP 0
1551#endif
1552
7c4ee5bc
RH
1553#ifndef STACK_GROWS_DOWN
1554#define STACK_GROWS_DOWN 1
1555#endif
1556
1557#ifndef STACK_ALIGNMENT
1558#define STACK_ALIGNMENT 16
1559#endif
1560
992f48a0 1561#ifdef TARGET_ABI32
cb33da57 1562#undef ELF_CLASS
992f48a0 1563#define ELF_CLASS ELFCLASS32
cb33da57
BS
1564#undef bswaptls
1565#define bswaptls(ptr) bswap32s(ptr)
1566#endif
1567
31e31b8a 1568#include "elf.h"
09bfb054 1569
e8384b37
RH
1570/* We must delay the following stanzas until after "elf.h". */
1571#if defined(TARGET_AARCH64)
1572
1573static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1574 const uint32_t *data,
1575 struct image_info *info,
1576 Error **errp)
1577{
1578 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1579 if (pr_datasz != sizeof(uint32_t)) {
1580 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1581 return false;
1582 }
1583 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1584 info->note_flags = *data;
1585 }
1586 return true;
1587}
1588#define ARCH_USE_GNU_PROPERTY 1
1589
1590#else
1591
83f990eb
RH
1592static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1593 const uint32_t *data,
1594 struct image_info *info,
1595 Error **errp)
1596{
1597 g_assert_not_reached();
1598}
1599#define ARCH_USE_GNU_PROPERTY 0
1600
e8384b37
RH
1601#endif
1602
09bfb054
FB
1603struct exec
1604{
d97ef72e
RH
1605 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1606 unsigned int a_text; /* length of text, in bytes */
1607 unsigned int a_data; /* length of data, in bytes */
1608 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1609 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1610 unsigned int a_entry; /* start address */
1611 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1612 unsigned int a_drsize; /* length of relocation info for data, in bytes */
09bfb054
FB
1613};
1614
1615
1616#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1617#define OMAGIC 0407
1618#define NMAGIC 0410
1619#define ZMAGIC 0413
1620#define QMAGIC 0314
1621
31e31b8a 1622/* Necessary parameters */
94894ff2
SB
1623#define TARGET_ELF_EXEC_PAGESIZE \
1624 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1625 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1626#define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
79cb1f1d
YK
1627#define TARGET_ELF_PAGESTART(_v) ((_v) & \
1628 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
54936004 1629#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a 1630
e0d1673d 1631#define DLINFO_ITEMS 16
31e31b8a 1632
09bfb054
FB
1633static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1634{
d97ef72e 1635 memcpy(to, from, n);
09bfb054 1636}
d691f669 1637
31e31b8a 1638#ifdef BSWAP_NEEDED
92a31b1f 1639static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a 1640{
d97ef72e
RH
1641 bswap16s(&ehdr->e_type); /* Object file type */
1642 bswap16s(&ehdr->e_machine); /* Architecture */
1643 bswap32s(&ehdr->e_version); /* Object file version */
1644 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1645 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1646 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1647 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1648 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1649 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1650 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1651 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1652 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1653 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
31e31b8a
FB
1654}
1655
991f8f0c 1656static void bswap_phdr(struct elf_phdr *phdr, int phnum)
31e31b8a 1657{
991f8f0c
RH
1658 int i;
1659 for (i = 0; i < phnum; ++i, ++phdr) {
1660 bswap32s(&phdr->p_type); /* Segment type */
1661 bswap32s(&phdr->p_flags); /* Segment flags */
1662 bswaptls(&phdr->p_offset); /* Segment file offset */
1663 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1664 bswaptls(&phdr->p_paddr); /* Segment physical address */
1665 bswaptls(&phdr->p_filesz); /* Segment size in file */
1666 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1667 bswaptls(&phdr->p_align); /* Segment alignment */
1668 }
31e31b8a 1669}
689f936f 1670
991f8f0c 1671static void bswap_shdr(struct elf_shdr *shdr, int shnum)
689f936f 1672{
991f8f0c
RH
1673 int i;
1674 for (i = 0; i < shnum; ++i, ++shdr) {
1675 bswap32s(&shdr->sh_name);
1676 bswap32s(&shdr->sh_type);
1677 bswaptls(&shdr->sh_flags);
1678 bswaptls(&shdr->sh_addr);
1679 bswaptls(&shdr->sh_offset);
1680 bswaptls(&shdr->sh_size);
1681 bswap32s(&shdr->sh_link);
1682 bswap32s(&shdr->sh_info);
1683 bswaptls(&shdr->sh_addralign);
1684 bswaptls(&shdr->sh_entsize);
1685 }
689f936f
FB
1686}
1687
7a3148a9 1688static void bswap_sym(struct elf_sym *sym)
689f936f
FB
1689{
1690 bswap32s(&sym->st_name);
7a3148a9
JM
1691 bswaptls(&sym->st_value);
1692 bswaptls(&sym->st_size);
689f936f
FB
1693 bswap16s(&sym->st_shndx);
1694}
5dd0db52
SM
1695
1696#ifdef TARGET_MIPS
1697static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1698{
1699 bswap16s(&abiflags->version);
1700 bswap32s(&abiflags->ases);
1701 bswap32s(&abiflags->isa_ext);
1702 bswap32s(&abiflags->flags1);
1703 bswap32s(&abiflags->flags2);
1704}
1705#endif
991f8f0c
RH
1706#else
1707static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1708static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1709static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1710static inline void bswap_sym(struct elf_sym *sym) { }
5dd0db52
SM
1711#ifdef TARGET_MIPS
1712static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1713#endif
31e31b8a
FB
1714#endif
1715
edf8e2af 1716#ifdef USE_ELF_CORE_DUMP
9349b4f9 1717static int elf_core_dump(int, const CPUArchState *);
edf8e2af 1718#endif /* USE_ELF_CORE_DUMP */
682674b8 1719static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
edf8e2af 1720
9058abdd
RH
1721/* Verify the portions of EHDR within E_IDENT for the target.
1722 This can be performed before bswapping the entire header. */
1723static bool elf_check_ident(struct elfhdr *ehdr)
1724{
1725 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1726 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1727 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1728 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1729 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1730 && ehdr->e_ident[EI_DATA] == ELF_DATA
1731 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1732}
1733
1734/* Verify the portions of EHDR outside of E_IDENT for the target.
1735 This has to wait until after bswapping the header. */
1736static bool elf_check_ehdr(struct elfhdr *ehdr)
1737{
1738 return (elf_check_arch(ehdr->e_machine)
ace3d654 1739 && elf_check_abi(ehdr->e_flags)
9058abdd
RH
1740 && ehdr->e_ehsize == sizeof(struct elfhdr)
1741 && ehdr->e_phentsize == sizeof(struct elf_phdr)
9058abdd
RH
1742 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1743}
1744
31e31b8a 1745/*
e5fe0c52 1746 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
1747 * memory to free pages in kernel mem. These are in a format ready
1748 * to be put directly into the top of new user memory.
1749 *
1750 */
59baae9a
SB
1751static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1752 abi_ulong p, abi_ulong stack_limit)
31e31b8a 1753{
59baae9a 1754 char *tmp;
7c4ee5bc 1755 int len, i;
59baae9a 1756 abi_ulong top = p;
31e31b8a
FB
1757
1758 if (!p) {
d97ef72e 1759 return 0; /* bullet-proofing */
31e31b8a 1760 }
59baae9a 1761
7c4ee5bc
RH
1762 if (STACK_GROWS_DOWN) {
1763 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1764 for (i = argc - 1; i >= 0; --i) {
1765 tmp = argv[i];
1766 if (!tmp) {
1767 fprintf(stderr, "VFS: argc is wrong");
1768 exit(-1);
1769 }
1770 len = strlen(tmp) + 1;
1771 tmp += len;
59baae9a 1772
7c4ee5bc
RH
1773 if (len > (p - stack_limit)) {
1774 return 0;
1775 }
1776 while (len) {
1777 int bytes_to_copy = (len > offset) ? offset : len;
1778 tmp -= bytes_to_copy;
1779 p -= bytes_to_copy;
1780 offset -= bytes_to_copy;
1781 len -= bytes_to_copy;
1782
1783 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1784
1785 if (offset == 0) {
1786 memcpy_to_target(p, scratch, top - p);
1787 top = p;
1788 offset = TARGET_PAGE_SIZE;
1789 }
1790 }
d97ef72e 1791 }
7c4ee5bc
RH
1792 if (p != top) {
1793 memcpy_to_target(p, scratch + offset, top - p);
d97ef72e 1794 }
7c4ee5bc
RH
1795 } else {
1796 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1797 for (i = 0; i < argc; ++i) {
1798 tmp = argv[i];
1799 if (!tmp) {
1800 fprintf(stderr, "VFS: argc is wrong");
1801 exit(-1);
1802 }
1803 len = strlen(tmp) + 1;
1804 if (len > (stack_limit - p)) {
1805 return 0;
1806 }
1807 while (len) {
1808 int bytes_to_copy = (len > remaining) ? remaining : len;
1809
1810 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1811
1812 tmp += bytes_to_copy;
1813 remaining -= bytes_to_copy;
1814 p += bytes_to_copy;
1815 len -= bytes_to_copy;
1816
1817 if (remaining == 0) {
1818 memcpy_to_target(top, scratch, p - top);
1819 top = p;
1820 remaining = TARGET_PAGE_SIZE;
1821 }
d97ef72e
RH
1822 }
1823 }
7c4ee5bc
RH
1824 if (p != top) {
1825 memcpy_to_target(top, scratch, p - top);
1826 }
59baae9a
SB
1827 }
1828
31e31b8a
FB
1829 return p;
1830}
1831
59baae9a
SB
1832/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1833 * argument/environment space. Newer kernels (>2.6.33) allow more,
1834 * dependent on stack size, but guarantee at least 32 pages for
1835 * backwards compatibility.
1836 */
1837#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1838
1839static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
992f48a0 1840 struct image_info *info)
53a5960a 1841{
59baae9a 1842 abi_ulong size, error, guard;
31e31b8a 1843
703e0e89 1844 size = guest_stack_size;
59baae9a
SB
1845 if (size < STACK_LOWER_LIMIT) {
1846 size = STACK_LOWER_LIMIT;
60dcbcb5
RH
1847 }
1848 guard = TARGET_PAGE_SIZE;
1849 if (guard < qemu_real_host_page_size) {
1850 guard = qemu_real_host_page_size;
1851 }
1852
1853 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1854 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
09bfb054 1855 if (error == -1) {
60dcbcb5 1856 perror("mmap stack");
09bfb054
FB
1857 exit(-1);
1858 }
31e31b8a 1859
60dcbcb5 1860 /* We reserve one extra page at the top of the stack as guard. */
7c4ee5bc
RH
1861 if (STACK_GROWS_DOWN) {
1862 target_mprotect(error, guard, PROT_NONE);
1863 info->stack_limit = error + guard;
1864 return info->stack_limit + size - sizeof(void *);
1865 } else {
1866 target_mprotect(error + size, guard, PROT_NONE);
1867 info->stack_limit = error + size;
1868 return error;
1869 }
31e31b8a
FB
1870}
1871
cf129f3a
RH
1872/* Map and zero the bss. We need to explicitly zero any fractional pages
1873 after the data section (i.e. bss). */
1874static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
31e31b8a 1875{
cf129f3a
RH
1876 uintptr_t host_start, host_map_start, host_end;
1877
1878 last_bss = TARGET_PAGE_ALIGN(last_bss);
1879
1880 /* ??? There is confusion between qemu_real_host_page_size and
1881 qemu_host_page_size here and elsewhere in target_mmap, which
1882 may lead to the end of the data section mapping from the file
1883 not being mapped. At least there was an explicit test and
1884 comment for that here, suggesting that "the file size must
1885 be known". The comment probably pre-dates the introduction
1886 of the fstat system call in target_mmap which does in fact
1887 find out the size. What isn't clear is if the workaround
1888 here is still actually needed. For now, continue with it,
1889 but merge it with the "normal" mmap that would allocate the bss. */
1890
3e8f1628
RH
1891 host_start = (uintptr_t) g2h_untagged(elf_bss);
1892 host_end = (uintptr_t) g2h_untagged(last_bss);
0c2d70c4 1893 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
cf129f3a
RH
1894
1895 if (host_map_start < host_end) {
1896 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1897 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1898 if (p == MAP_FAILED) {
1899 perror("cannot mmap brk");
1900 exit(-1);
853d6f7a 1901 }
f46e9a0b 1902 }
853d6f7a 1903
f46e9a0b
TM
1904 /* Ensure that the bss page(s) are valid */
1905 if ((page_get_flags(last_bss-1) & prot) != prot) {
1906 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
cf129f3a 1907 }
31e31b8a 1908
cf129f3a
RH
1909 if (host_start < host_map_start) {
1910 memset((void *)host_start, 0, host_map_start - host_start);
1911 }
1912}
53a5960a 1913
cf58affe
CL
1914#ifdef TARGET_ARM
1915static int elf_is_fdpic(struct elfhdr *exec)
1916{
1917 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1918}
1919#else
a99856cd
CL
1920/* Default implementation, always false. */
1921static int elf_is_fdpic(struct elfhdr *exec)
1922{
1923 return 0;
1924}
cf58affe 1925#endif
a99856cd 1926
1af02e83
MF
1927static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1928{
1929 uint16_t n;
1930 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1931
1932 /* elf32_fdpic_loadseg */
1933 n = info->nsegs;
1934 while (n--) {
1935 sp -= 12;
1936 put_user_u32(loadsegs[n].addr, sp+0);
1937 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1938 put_user_u32(loadsegs[n].p_memsz, sp+8);
1939 }
1940
1941 /* elf32_fdpic_loadmap */
1942 sp -= 4;
1943 put_user_u16(0, sp+0); /* version */
1944 put_user_u16(info->nsegs, sp+2); /* nsegs */
1945
1946 info->personality = PER_LINUX_FDPIC;
1947 info->loadmap_addr = sp;
1948
1949 return sp;
1950}
1af02e83 1951
992f48a0 1952static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
8e62a717
RH
1953 struct elfhdr *exec,
1954 struct image_info *info,
1955 struct image_info *interp_info)
31e31b8a 1956{
d97ef72e 1957 abi_ulong sp;
7c4ee5bc 1958 abi_ulong u_argc, u_argv, u_envp, u_auxv;
d97ef72e 1959 int size;
14322bad
LA
1960 int i;
1961 abi_ulong u_rand_bytes;
1962 uint8_t k_rand_bytes[16];
d97ef72e
RH
1963 abi_ulong u_platform;
1964 const char *k_platform;
1965 const int n = sizeof(elf_addr_t);
1966
1967 sp = p;
1af02e83 1968
1af02e83
MF
1969 /* Needs to be before we load the env/argc/... */
1970 if (elf_is_fdpic(exec)) {
1971 /* Need 4 byte alignment for these structs */
1972 sp &= ~3;
1973 sp = loader_build_fdpic_loadmap(info, sp);
1974 info->other_info = interp_info;
1975 if (interp_info) {
1976 interp_info->other_info = info;
1977 sp = loader_build_fdpic_loadmap(interp_info, sp);
3cb10cfa
CL
1978 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1979 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1980 } else {
1981 info->interpreter_loadmap_addr = 0;
1982 info->interpreter_pt_dynamic_addr = 0;
1af02e83
MF
1983 }
1984 }
1af02e83 1985
d97ef72e
RH
1986 u_platform = 0;
1987 k_platform = ELF_PLATFORM;
1988 if (k_platform) {
1989 size_t len = strlen(k_platform) + 1;
7c4ee5bc
RH
1990 if (STACK_GROWS_DOWN) {
1991 sp -= (len + n - 1) & ~(n - 1);
1992 u_platform = sp;
1993 /* FIXME - check return value of memcpy_to_target() for failure */
1994 memcpy_to_target(sp, k_platform, len);
1995 } else {
1996 memcpy_to_target(sp, k_platform, len);
1997 u_platform = sp;
1998 sp += len + 1;
1999 }
2000 }
2001
2002 /* Provide 16 byte alignment for the PRNG, and basic alignment for
2003 * the argv and envp pointers.
2004 */
2005 if (STACK_GROWS_DOWN) {
2006 sp = QEMU_ALIGN_DOWN(sp, 16);
2007 } else {
2008 sp = QEMU_ALIGN_UP(sp, 16);
d97ef72e 2009 }
14322bad
LA
2010
2011 /*
c6a2377f 2012 * Generate 16 random bytes for userspace PRNG seeding.
14322bad 2013 */
c6a2377f 2014 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
7c4ee5bc
RH
2015 if (STACK_GROWS_DOWN) {
2016 sp -= 16;
2017 u_rand_bytes = sp;
2018 /* FIXME - check return value of memcpy_to_target() for failure */
2019 memcpy_to_target(sp, k_rand_bytes, 16);
2020 } else {
2021 memcpy_to_target(sp, k_rand_bytes, 16);
2022 u_rand_bytes = sp;
2023 sp += 16;
2024 }
14322bad 2025
d97ef72e
RH
2026 size = (DLINFO_ITEMS + 1) * 2;
2027 if (k_platform)
2028 size += 2;
f5155289 2029#ifdef DLINFO_ARCH_ITEMS
d97ef72e 2030 size += DLINFO_ARCH_ITEMS * 2;
ad6919dc
PM
2031#endif
2032#ifdef ELF_HWCAP2
2033 size += 2;
f5155289 2034#endif
f516511e
PM
2035 info->auxv_len = size * n;
2036
d97ef72e 2037 size += envc + argc + 2;
b9329d4b 2038 size += 1; /* argc itself */
d97ef72e 2039 size *= n;
7c4ee5bc
RH
2040
2041 /* Allocate space and finalize stack alignment for entry now. */
2042 if (STACK_GROWS_DOWN) {
2043 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2044 sp = u_argc;
2045 } else {
2046 u_argc = sp;
2047 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2048 }
2049
2050 u_argv = u_argc + n;
2051 u_envp = u_argv + (argc + 1) * n;
2052 u_auxv = u_envp + (envc + 1) * n;
2053 info->saved_auxv = u_auxv;
2054 info->arg_start = u_argv;
2055 info->arg_end = u_argv + argc * n;
d97ef72e
RH
2056
2057 /* This is correct because Linux defines
2058 * elf_addr_t as Elf32_Off / Elf64_Off
2059 */
2060#define NEW_AUX_ENT(id, val) do { \
7c4ee5bc
RH
2061 put_user_ual(id, u_auxv); u_auxv += n; \
2062 put_user_ual(val, u_auxv); u_auxv += n; \
d97ef72e
RH
2063 } while(0)
2064
82991bed
PM
2065#ifdef ARCH_DLINFO
2066 /*
2067 * ARCH_DLINFO must come first so platform specific code can enforce
2068 * special alignment requirements on the AUXV if necessary (eg. PPC).
2069 */
2070 ARCH_DLINFO;
2071#endif
f516511e
PM
2072 /* There must be exactly DLINFO_ITEMS entries here, or the assert
2073 * on info->auxv_len will trigger.
2074 */
8e62a717 2075 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
d97ef72e
RH
2076 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2077 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
33143c44
LV
2078 if ((info->alignment & ~qemu_host_page_mask) != 0) {
2079 /* Target doesn't support host page size alignment */
2080 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2081 } else {
2082 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2083 qemu_host_page_size)));
2084 }
8e62a717 2085 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
d97ef72e 2086 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
8e62a717 2087 NEW_AUX_ENT(AT_ENTRY, info->entry);
d97ef72e
RH
2088 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2089 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2090 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2091 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2092 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2093 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
14322bad 2094 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
444cd5c3 2095 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
e0d1673d 2096 NEW_AUX_ENT(AT_EXECFN, info->file_string);
14322bad 2097
ad6919dc
PM
2098#ifdef ELF_HWCAP2
2099 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2100#endif
2101
7c4ee5bc 2102 if (u_platform) {
d97ef72e 2103 NEW_AUX_ENT(AT_PLATFORM, u_platform);
7c4ee5bc 2104 }
7c4ee5bc 2105 NEW_AUX_ENT (AT_NULL, 0);
f5155289
FB
2106#undef NEW_AUX_ENT
2107
f516511e
PM
2108 /* Check that our initial calculation of the auxv length matches how much
2109 * we actually put into it.
2110 */
2111 assert(info->auxv_len == u_auxv - info->saved_auxv);
7c4ee5bc
RH
2112
2113 put_user_ual(argc, u_argc);
2114
2115 p = info->arg_strings;
2116 for (i = 0; i < argc; ++i) {
2117 put_user_ual(p, u_argv);
2118 u_argv += n;
2119 p += target_strlen(p) + 1;
2120 }
2121 put_user_ual(0, u_argv);
2122
2123 p = info->env_strings;
2124 for (i = 0; i < envc; ++i) {
2125 put_user_ual(p, u_envp);
2126 u_envp += n;
2127 p += target_strlen(p) + 1;
2128 }
2129 put_user_ual(0, u_envp);
edf8e2af 2130
d97ef72e 2131 return sp;
31e31b8a
FB
2132}
2133
ee947430
AB
2134#ifndef ARM_COMMPAGE
2135#define ARM_COMMPAGE 0
2136#define init_guest_commpage() true
8756e136 2137#endif
dce10401 2138
ee947430
AB
2139static void pgb_fail_in_use(const char *image_name)
2140{
2141 error_report("%s: requires virtual address space that is in use "
2142 "(omit the -B option or choose a different value)",
2143 image_name);
2144 exit(EXIT_FAILURE);
2145}
dce10401 2146
ee947430
AB
2147static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2148 abi_ulong guest_hiaddr, long align)
2149{
2150 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2151 void *addr, *test;
2a53535a 2152
ee947430 2153 if (!QEMU_IS_ALIGNED(guest_base, align)) {
5ca870b9 2154 fprintf(stderr, "Requested guest base %p does not satisfy "
ee947430 2155 "host minimum alignment (0x%lx)\n",
5ca870b9 2156 (void *)guest_base, align);
ee947430
AB
2157 exit(EXIT_FAILURE);
2158 }
2159
2160 /* Sanity check the guest binary. */
2161 if (reserved_va) {
2162 if (guest_hiaddr > reserved_va) {
2163 error_report("%s: requires more than reserved virtual "
2164 "address space (0x%" PRIx64 " > 0x%lx)",
2165 image_name, (uint64_t)guest_hiaddr, reserved_va);
2166 exit(EXIT_FAILURE);
2a53535a 2167 }
ee947430 2168 } else {
a932eec4 2169#if HOST_LONG_BITS < TARGET_ABI_BITS
ee947430
AB
2170 if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2171 error_report("%s: requires more virtual address space "
2172 "than the host can provide (0x%" PRIx64 ")",
2173 image_name, (uint64_t)guest_hiaddr - guest_base);
2174 exit(EXIT_FAILURE);
2a53535a 2175 }
a932eec4 2176#endif
2a53535a 2177 }
2a53535a 2178
ee947430
AB
2179 /*
2180 * Expand the allocation to the entire reserved_va.
2181 * Exclude the mmap_min_addr hole.
2182 */
2183 if (reserved_va) {
2184 guest_loaddr = (guest_base >= mmap_min_addr ? 0
2185 : mmap_min_addr - guest_base);
2186 guest_hiaddr = reserved_va;
2187 }
806d1021 2188
ee947430 2189 /* Reserve the address space for the binary, or reserved_va. */
3e8f1628 2190 test = g2h_untagged(guest_loaddr);
ee947430
AB
2191 addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0);
2192 if (test != addr) {
2193 pgb_fail_in_use(image_name);
2194 }
2195}
2196
ad592e37
AB
2197/**
2198 * pgd_find_hole_fallback: potential mmap address
2199 * @guest_size: size of available space
2200 * @brk: location of break
2201 * @align: memory alignment
2202 *
2203 * This is a fallback method for finding a hole in the host address
2204 * space if we don't have the benefit of being able to access
2205 * /proc/self/map. It can potentially take a very long time as we can
2206 * only dumbly iterate up the host address space seeing if the
2207 * allocation would work.
2208 */
5c3e87f3
AB
2209static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2210 long align, uintptr_t offset)
ad592e37
AB
2211{
2212 uintptr_t base;
2213
2214 /* Start (aligned) at the bottom and work our way up */
2215 base = ROUND_UP(mmap_min_addr, align);
2216
2217 while (true) {
2218 uintptr_t align_start, end;
2219 align_start = ROUND_UP(base, align);
5c3e87f3 2220 end = align_start + guest_size + offset;
ad592e37
AB
2221
2222 /* if brk is anywhere in the range give ourselves some room to grow. */
2223 if (align_start <= brk && brk < end) {
2224 base = brk + (16 * MiB);
2225 continue;
2226 } else if (align_start + guest_size < align_start) {
2227 /* we have run out of space */
2228 return -1;
2229 } else {
2667e069
AB
2230 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2231 MAP_FIXED_NOREPLACE;
ad592e37
AB
2232 void * mmap_start = mmap((void *) align_start, guest_size,
2233 PROT_NONE, flags, -1, 0);
2234 if (mmap_start != MAP_FAILED) {
2235 munmap((void *) align_start, guest_size);
36d2dbc7
PM
2236 if (MAP_FIXED_NOREPLACE != 0 ||
2237 mmap_start == (void *) align_start) {
2667e069
AB
2238 return (uintptr_t) mmap_start + offset;
2239 }
ad592e37
AB
2240 }
2241 base += qemu_host_page_size;
2242 }
2243 }
2244}
2245
ee947430
AB
2246/* Return value for guest_base, or -1 if no hole found. */
2247static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
5c3e87f3 2248 long align, uintptr_t offset)
ee947430
AB
2249{
2250 GSList *maps, *iter;
2251 uintptr_t this_start, this_end, next_start, brk;
2252 intptr_t ret = -1;
2253
2254 assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2255
2256 maps = read_self_maps();
dce10401 2257
ee947430
AB
2258 /* Read brk after we've read the maps, which will malloc. */
2259 brk = (uintptr_t)sbrk(0);
2260
ad592e37 2261 if (!maps) {
5c3e87f3 2262 return pgd_find_hole_fallback(guest_size, brk, align, offset);
ad592e37
AB
2263 }
2264
ee947430
AB
2265 /* The first hole is before the first map entry. */
2266 this_start = mmap_min_addr;
2267
2268 for (iter = maps; iter;
2269 this_start = next_start, iter = g_slist_next(iter)) {
2270 uintptr_t align_start, hole_size;
2271
2272 this_end = ((MapInfo *)iter->data)->start;
2273 next_start = ((MapInfo *)iter->data)->end;
5c3e87f3 2274 align_start = ROUND_UP(this_start + offset, align);
ee947430
AB
2275
2276 /* Skip holes that are too small. */
2277 if (align_start >= this_end) {
2278 continue;
2279 }
2280 hole_size = this_end - align_start;
2281 if (hole_size < guest_size) {
2282 continue;
aac362e4
LS
2283 }
2284
ee947430
AB
2285 /* If this hole contains brk, give ourselves some room to grow. */
2286 if (this_start <= brk && brk < this_end) {
2287 hole_size -= guest_size;
2288 if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2289 align_start += 1 * GiB;
2290 } else if (hole_size >= 16 * MiB) {
2291 align_start += 16 * MiB;
2292 } else {
2293 align_start = (this_end - guest_size) & -align;
2294 if (align_start < this_start) {
2295 continue;
2296 }
806d1021 2297 }
806d1021
MI
2298 }
2299
ee947430
AB
2300 /* Record the lowest successful match. */
2301 if (ret < 0) {
2302 ret = align_start - guest_loaddr;
dce10401 2303 }
ee947430
AB
2304 /* If this hole contains the identity map, select it. */
2305 if (align_start <= guest_loaddr &&
2306 guest_loaddr + guest_size <= this_end) {
2307 ret = 0;
b859040d 2308 }
ee947430
AB
2309 /* If this hole ends above the identity map, stop looking. */
2310 if (this_end >= guest_loaddr) {
2311 break;
dce10401
MI
2312 }
2313 }
ee947430 2314 free_self_maps(maps);
dce10401 2315
ee947430 2316 return ret;
dce10401
MI
2317}
2318
ee947430
AB
2319static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2320 abi_ulong orig_hiaddr, long align)
f3ed1f5d 2321{
ee947430
AB
2322 uintptr_t loaddr = orig_loaddr;
2323 uintptr_t hiaddr = orig_hiaddr;
5c3e87f3 2324 uintptr_t offset = 0;
ee947430 2325 uintptr_t addr;
f3ed1f5d 2326
ee947430
AB
2327 if (hiaddr != orig_hiaddr) {
2328 error_report("%s: requires virtual address space that the "
2329 "host cannot provide (0x%" PRIx64 ")",
2330 image_name, (uint64_t)orig_hiaddr);
2331 exit(EXIT_FAILURE);
2332 }
f3ed1f5d 2333
ee947430
AB
2334 loaddr &= -align;
2335 if (ARM_COMMPAGE) {
2336 /*
2337 * Extend the allocation to include the commpage.
5c3e87f3
AB
2338 * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2339 * need to ensure there is space bellow the guest_base so we
2340 * can map the commpage in the place needed when the address
2341 * arithmetic wraps around.
ee947430
AB
2342 */
2343 if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
5c3e87f3 2344 hiaddr = (uintptr_t) 4 << 30;
f3ed1f5d 2345 } else {
5c3e87f3 2346 offset = -(ARM_COMMPAGE & -align);
f3ed1f5d 2347 }
ee947430 2348 }
dce10401 2349
5c3e87f3 2350 addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset);
ee947430
AB
2351 if (addr == -1) {
2352 /*
2353 * If ARM_COMMPAGE, there *might* be a non-consecutive allocation
2354 * that can satisfy both. But as the normal arm32 link base address
2355 * is ~32k, and we extend down to include the commpage, making the
2356 * overhead only ~96k, this is unlikely.
dce10401 2357 */
ee947430
AB
2358 error_report("%s: Unable to allocate %#zx bytes of "
2359 "virtual address space", image_name,
2360 (size_t)(hiaddr - loaddr));
2361 exit(EXIT_FAILURE);
2362 }
2363
2364 guest_base = addr;
2365}
dce10401 2366
ee947430
AB
2367static void pgb_dynamic(const char *image_name, long align)
2368{
2369 /*
2370 * The executable is dynamic and does not require a fixed address.
2371 * All we need is a commpage that satisfies align.
2372 * If we do not need a commpage, leave guest_base == 0.
2373 */
2374 if (ARM_COMMPAGE) {
2375 uintptr_t addr, commpage;
2376
2377 /* 64-bit hosts should have used reserved_va. */
2378 assert(sizeof(uintptr_t) == 4);
2379
2380 /*
2381 * By putting the commpage at the first hole, that puts guest_base
2382 * just above that, and maximises the positive guest addresses.
2383 */
2384 commpage = ARM_COMMPAGE & -align;
5c3e87f3 2385 addr = pgb_find_hole(commpage, -commpage, align, 0);
ee947430
AB
2386 assert(addr != -1);
2387 guest_base = addr;
2388 }
2389}
2390
2391static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2392 abi_ulong guest_hiaddr, long align)
2393{
c1f6ad79 2394 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
ee947430
AB
2395 void *addr, *test;
2396
2397 if (guest_hiaddr > reserved_va) {
2398 error_report("%s: requires more than reserved virtual "
2399 "address space (0x%" PRIx64 " > 0x%lx)",
2400 image_name, (uint64_t)guest_hiaddr, reserved_va);
2401 exit(EXIT_FAILURE);
f3ed1f5d 2402 }
f3ed1f5d 2403
ee947430
AB
2404 /* Widen the "image" to the entire reserved address space. */
2405 pgb_static(image_name, 0, reserved_va, align);
2406
2667e069 2407 /* osdep.h defines this as 0 if it's missing */
c1f6ad79 2408 flags |= MAP_FIXED_NOREPLACE;
c1f6ad79 2409
ee947430
AB
2410 /* Reserve the memory on the host. */
2411 assert(guest_base != 0);
3e8f1628 2412 test = g2h_untagged(0);
ee947430 2413 addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0);
fb730c86 2414 if (addr == MAP_FAILED || addr != test) {
ee947430 2415 error_report("Unable to reserve 0x%lx bytes of virtual address "
fb730c86
AB
2416 "space at %p (%s) for use as guest address space (check your"
2417 "virtual memory ulimit setting, min_mmap_addr or reserve less "
2418 "using -R option)", reserved_va, test, strerror(errno));
ee947430
AB
2419 exit(EXIT_FAILURE);
2420 }
f3ed1f5d
PM
2421}
2422
ee947430
AB
2423void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2424 abi_ulong guest_hiaddr)
2425{
2426 /* In order to use host shmat, we must be able to honor SHMLBA. */
2427 uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2428
2429 if (have_guest_base) {
2430 pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2431 } else if (reserved_va) {
2432 pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2433 } else if (guest_loaddr) {
2434 pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2435 } else {
2436 pgb_dynamic(image_name, align);
2437 }
2438
2439 /* Reserve and initialize the commpage. */
2440 if (!init_guest_commpage()) {
2441 /*
2442 * With have_guest_base, the user has selected the address and
2443 * we are trying to work with that. Otherwise, we have selected
2444 * free space and init_guest_commpage must succeeded.
2445 */
2446 assert(have_guest_base);
2447 pgb_fail_in_use(image_name);
2448 }
2449
2450 assert(QEMU_IS_ALIGNED(guest_base, align));
2451 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2452 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2453}
f3ed1f5d 2454
83f990eb
RH
2455enum {
2456 /* The string "GNU\0" as a magic number. */
2457 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2458 NOTE_DATA_SZ = 1 * KiB,
2459 NOTE_NAME_SZ = 4,
2460 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2461};
2462
2463/*
2464 * Process a single gnu_property entry.
2465 * Return false for error.
2466 */
2467static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2468 struct image_info *info, bool have_prev_type,
2469 uint32_t *prev_type, Error **errp)
2470{
2471 uint32_t pr_type, pr_datasz, step;
2472
2473 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2474 goto error_data;
2475 }
2476 datasz -= *off;
2477 data += *off / sizeof(uint32_t);
2478
2479 if (datasz < 2 * sizeof(uint32_t)) {
2480 goto error_data;
2481 }
2482 pr_type = data[0];
2483 pr_datasz = data[1];
2484 data += 2;
2485 datasz -= 2 * sizeof(uint32_t);
2486 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2487 if (step > datasz) {
2488 goto error_data;
2489 }
2490
2491 /* Properties are supposed to be unique and sorted on pr_type. */
2492 if (have_prev_type && pr_type <= *prev_type) {
2493 if (pr_type == *prev_type) {
2494 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2495 } else {
2496 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2497 }
2498 return false;
2499 }
2500 *prev_type = pr_type;
2501
2502 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2503 return false;
2504 }
2505
2506 *off += 2 * sizeof(uint32_t) + step;
2507 return true;
2508
2509 error_data:
2510 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2511 return false;
2512}
2513
2514/* Process NT_GNU_PROPERTY_TYPE_0. */
2515static bool parse_elf_properties(int image_fd,
2516 struct image_info *info,
2517 const struct elf_phdr *phdr,
2518 char bprm_buf[BPRM_BUF_SIZE],
2519 Error **errp)
2520{
2521 union {
2522 struct elf_note nhdr;
2523 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2524 } note;
2525
2526 int n, off, datasz;
2527 bool have_prev_type;
2528 uint32_t prev_type;
2529
2530 /* Unless the arch requires properties, ignore them. */
2531 if (!ARCH_USE_GNU_PROPERTY) {
2532 return true;
2533 }
2534
2535 /* If the properties are crazy large, that's too bad. */
2536 n = phdr->p_filesz;
2537 if (n > sizeof(note)) {
2538 error_setg(errp, "PT_GNU_PROPERTY too large");
2539 return false;
2540 }
2541 if (n < sizeof(note.nhdr)) {
2542 error_setg(errp, "PT_GNU_PROPERTY too small");
2543 return false;
2544 }
2545
2546 if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2547 memcpy(&note, bprm_buf + phdr->p_offset, n);
2548 } else {
2549 ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2550 if (len != n) {
2551 error_setg_errno(errp, errno, "Error reading file header");
2552 return false;
2553 }
2554 }
2555
2556 /*
2557 * The contents of a valid PT_GNU_PROPERTY is a sequence
2558 * of uint32_t -- swap them all now.
2559 */
2560#ifdef BSWAP_NEEDED
2561 for (int i = 0; i < n / 4; i++) {
2562 bswap32s(note.data + i);
2563 }
2564#endif
2565
2566 /*
2567 * Note that nhdr is 3 words, and that the "name" described by namesz
2568 * immediately follows nhdr and is thus at the 4th word. Further, all
2569 * of the inputs to the kernel's round_up are multiples of 4.
2570 */
2571 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2572 note.nhdr.n_namesz != NOTE_NAME_SZ ||
2573 note.data[3] != GNU0_MAGIC) {
2574 error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2575 return false;
2576 }
2577 off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2578
2579 datasz = note.nhdr.n_descsz + off;
2580 if (datasz > n) {
2581 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2582 return false;
2583 }
2584
2585 have_prev_type = false;
2586 prev_type = 0;
2587 while (1) {
2588 if (off == datasz) {
2589 return true; /* end, exit ok */
2590 }
2591 if (!parse_elf_property(note.data, &off, datasz, info,
2592 have_prev_type, &prev_type, errp)) {
2593 return false;
2594 }
2595 have_prev_type = true;
2596 }
2597}
2598
8e62a717 2599/* Load an ELF image into the address space.
31e31b8a 2600
8e62a717
RH
2601 IMAGE_NAME is the filename of the image, to use in error messages.
2602 IMAGE_FD is the open file descriptor for the image.
2603
2604 BPRM_BUF is a copy of the beginning of the file; this of course
2605 contains the elf file header at offset 0. It is assumed that this
2606 buffer is sufficiently aligned to present no problems to the host
2607 in accessing data at aligned offsets within the buffer.
2608
2609 On return: INFO values will be filled in, as necessary or available. */
2610
2611static void load_elf_image(const char *image_name, int image_fd,
bf858897 2612 struct image_info *info, char **pinterp_name,
8e62a717 2613 char bprm_buf[BPRM_BUF_SIZE])
31e31b8a 2614{
8e62a717
RH
2615 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2616 struct elf_phdr *phdr;
2617 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
e8384b37 2618 int i, retval, prot_exec;
c7f17e7b 2619 Error *err = NULL;
5fafdf24 2620
8e62a717 2621 /* First of all, some simple consistency checks */
8e62a717 2622 if (!elf_check_ident(ehdr)) {
c7f17e7b 2623 error_setg(&err, "Invalid ELF image for this architecture");
8e62a717
RH
2624 goto exit_errmsg;
2625 }
2626 bswap_ehdr(ehdr);
2627 if (!elf_check_ehdr(ehdr)) {
c7f17e7b 2628 error_setg(&err, "Invalid ELF image for this architecture");
8e62a717 2629 goto exit_errmsg;
d97ef72e 2630 }
5fafdf24 2631
8e62a717
RH
2632 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2633 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2634 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
9955ffac 2635 } else {
8e62a717
RH
2636 phdr = (struct elf_phdr *) alloca(i);
2637 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
9955ffac 2638 if (retval != i) {
8e62a717 2639 goto exit_read;
9955ffac 2640 }
d97ef72e 2641 }
8e62a717 2642 bswap_phdr(phdr, ehdr->e_phnum);
09bfb054 2643
1af02e83
MF
2644 info->nsegs = 0;
2645 info->pt_dynamic_addr = 0;
1af02e83 2646
98c1076c
AB
2647 mmap_lock();
2648
8a1a5274
RH
2649 /*
2650 * Find the maximum size of the image and allocate an appropriate
2651 * amount of memory to handle that. Locate the interpreter, if any.
2652 */
682674b8 2653 loaddr = -1, hiaddr = 0;
33143c44 2654 info->alignment = 0;
8e62a717 2655 for (i = 0; i < ehdr->e_phnum; ++i) {
4d9d535a
RH
2656 struct elf_phdr *eppnt = phdr + i;
2657 if (eppnt->p_type == PT_LOAD) {
2658 abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
682674b8
RH
2659 if (a < loaddr) {
2660 loaddr = a;
2661 }
4d9d535a 2662 a = eppnt->p_vaddr + eppnt->p_memsz;
682674b8
RH
2663 if (a > hiaddr) {
2664 hiaddr = a;
2665 }
1af02e83 2666 ++info->nsegs;
4d9d535a 2667 info->alignment |= eppnt->p_align;
8a1a5274
RH
2668 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2669 g_autofree char *interp_name = NULL;
2670
2671 if (*pinterp_name) {
c7f17e7b 2672 error_setg(&err, "Multiple PT_INTERP entries");
8a1a5274
RH
2673 goto exit_errmsg;
2674 }
c7f17e7b 2675
8a1a5274 2676 interp_name = g_malloc(eppnt->p_filesz);
8a1a5274
RH
2677
2678 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2679 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2680 eppnt->p_filesz);
2681 } else {
2682 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2683 eppnt->p_offset);
2684 if (retval != eppnt->p_filesz) {
c7f17e7b 2685 goto exit_read;
8a1a5274
RH
2686 }
2687 }
2688 if (interp_name[eppnt->p_filesz - 1] != 0) {
c7f17e7b 2689 error_setg(&err, "Invalid PT_INTERP entry");
8a1a5274
RH
2690 goto exit_errmsg;
2691 }
2692 *pinterp_name = g_steal_pointer(&interp_name);
83f990eb
RH
2693 } else if (eppnt->p_type == PT_GNU_PROPERTY) {
2694 if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
2695 goto exit_errmsg;
2696 }
682674b8
RH
2697 }
2698 }
2699
6fd59449
RH
2700 if (pinterp_name != NULL) {
2701 /*
2702 * This is the main executable.
2703 *
2704 * Reserve extra space for brk.
2705 * We hold on to this space while placing the interpreter
2706 * and the stack, lest they be placed immediately after
2707 * the data segment and block allocation from the brk.
2708 *
2709 * 16MB is chosen as "large enough" without being so large
2710 * as to allow the result to not fit with a 32-bit guest on
2711 * a 32-bit host.
2712 */
2713 info->reserve_brk = 16 * MiB;
2714 hiaddr += info->reserve_brk;
2715
2716 if (ehdr->e_type == ET_EXEC) {
2717 /*
2718 * Make sure that the low address does not conflict with
2719 * MMAP_MIN_ADDR or the QEMU application itself.
2720 */
2721 probe_guest_base(image_name, loaddr, hiaddr);
ee947430
AB
2722 } else {
2723 /*
2724 * The binary is dynamic, but we still need to
2725 * select guest_base. In this case we pass a size.
2726 */
2727 probe_guest_base(image_name, 0, hiaddr - loaddr);
d97ef72e 2728 }
6fd59449
RH
2729 }
2730
2731 /*
2732 * Reserve address space for all of this.
2733 *
2734 * In the case of ET_EXEC, we supply MAP_FIXED so that we get
2735 * exactly the address range that is required.
2736 *
2737 * Otherwise this is ET_DYN, and we are searching for a location
2738 * that can hold the memory space required. If the image is
2739 * pre-linked, LOADDR will be non-zero, and the kernel should
2740 * honor that address if it happens to be free.
2741 *
2742 * In both cases, we will overwrite pages in this range with mappings
2743 * from the executable.
2744 */
2745 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2746 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
2747 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
2748 -1, 0);
2749 if (load_addr == -1) {
c7f17e7b 2750 goto exit_mmap;
d97ef72e 2751 }
682674b8 2752 load_bias = load_addr - loaddr;
d97ef72e 2753
a99856cd 2754 if (elf_is_fdpic(ehdr)) {
1af02e83 2755 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
7267c094 2756 g_malloc(sizeof(*loadsegs) * info->nsegs);
1af02e83
MF
2757
2758 for (i = 0; i < ehdr->e_phnum; ++i) {
2759 switch (phdr[i].p_type) {
2760 case PT_DYNAMIC:
2761 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2762 break;
2763 case PT_LOAD:
2764 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2765 loadsegs->p_vaddr = phdr[i].p_vaddr;
2766 loadsegs->p_memsz = phdr[i].p_memsz;
2767 ++loadsegs;
2768 break;
2769 }
2770 }
2771 }
1af02e83 2772
8e62a717 2773 info->load_bias = load_bias;
dc12567a
JK
2774 info->code_offset = load_bias;
2775 info->data_offset = load_bias;
8e62a717
RH
2776 info->load_addr = load_addr;
2777 info->entry = ehdr->e_entry + load_bias;
2778 info->start_code = -1;
2779 info->end_code = 0;
2780 info->start_data = -1;
2781 info->end_data = 0;
2782 info->brk = 0;
d8fd2954 2783 info->elf_flags = ehdr->e_flags;
8e62a717 2784
e8384b37
RH
2785 prot_exec = PROT_EXEC;
2786#ifdef TARGET_AARCH64
2787 /*
2788 * If the BTI feature is present, this indicates that the executable
2789 * pages of the startup binary should be mapped with PROT_BTI, so that
2790 * branch targets are enforced.
2791 *
2792 * The startup binary is either the interpreter or the static executable.
2793 * The interpreter is responsible for all pages of a dynamic executable.
2794 *
2795 * Elf notes are backward compatible to older cpus.
2796 * Do not enable BTI unless it is supported.
2797 */
2798 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
2799 && (pinterp_name == NULL || *pinterp_name == 0)
2800 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
2801 prot_exec |= TARGET_PROT_BTI;
2802 }
2803#endif
2804
8e62a717
RH
2805 for (i = 0; i < ehdr->e_phnum; i++) {
2806 struct elf_phdr *eppnt = phdr + i;
d97ef72e 2807 if (eppnt->p_type == PT_LOAD) {
94894ff2 2808 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
d97ef72e 2809 int elf_prot = 0;
d97ef72e 2810
e5eaf570
RH
2811 if (eppnt->p_flags & PF_R) {
2812 elf_prot |= PROT_READ;
2813 }
2814 if (eppnt->p_flags & PF_W) {
2815 elf_prot |= PROT_WRITE;
2816 }
2817 if (eppnt->p_flags & PF_X) {
e8384b37 2818 elf_prot |= prot_exec;
e5eaf570 2819 }
d97ef72e 2820
682674b8
RH
2821 vaddr = load_bias + eppnt->p_vaddr;
2822 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2823 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
22d113b5
GM
2824
2825 vaddr_ef = vaddr + eppnt->p_filesz;
2826 vaddr_em = vaddr + eppnt->p_memsz;
682674b8 2827
d87146bc 2828 /*
22d113b5
GM
2829 * Some segments may be completely empty, with a non-zero p_memsz
2830 * but no backing file segment.
d87146bc
GM
2831 */
2832 if (eppnt->p_filesz != 0) {
22d113b5 2833 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
d87146bc
GM
2834 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2835 MAP_PRIVATE | MAP_FIXED,
2836 image_fd, eppnt->p_offset - vaddr_po);
2837
2838 if (error == -1) {
c7f17e7b 2839 goto exit_mmap;
d87146bc 2840 }
09bfb054 2841
22d113b5
GM
2842 /*
2843 * If the load segment requests extra zeros (e.g. bss), map it.
2844 */
2845 if (eppnt->p_filesz < eppnt->p_memsz) {
2846 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2847 }
2848 } else if (eppnt->p_memsz != 0) {
2849 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
2850 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2851 MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
2852 -1, 0);
31e31b8a 2853
22d113b5
GM
2854 if (error == -1) {
2855 goto exit_mmap;
2856 }
cf129f3a 2857 }
8e62a717
RH
2858
2859 /* Find the full program boundaries. */
2860 if (elf_prot & PROT_EXEC) {
2861 if (vaddr < info->start_code) {
2862 info->start_code = vaddr;
2863 }
2864 if (vaddr_ef > info->end_code) {
2865 info->end_code = vaddr_ef;
2866 }
2867 }
2868 if (elf_prot & PROT_WRITE) {
2869 if (vaddr < info->start_data) {
2870 info->start_data = vaddr;
2871 }
2872 if (vaddr_ef > info->end_data) {
2873 info->end_data = vaddr_ef;
2874 }
8a045188
TB
2875 }
2876 if (vaddr_em > info->brk) {
2877 info->brk = vaddr_em;
8e62a717 2878 }
5dd0db52
SM
2879#ifdef TARGET_MIPS
2880 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2881 Mips_elf_abiflags_v0 abiflags;
2882 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
c7f17e7b 2883 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
5dd0db52
SM
2884 goto exit_errmsg;
2885 }
2886 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2887 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2888 sizeof(Mips_elf_abiflags_v0));
2889 } else {
2890 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2891 eppnt->p_offset);
2892 if (retval != sizeof(Mips_elf_abiflags_v0)) {
c7f17e7b 2893 goto exit_read;
5dd0db52
SM
2894 }
2895 }
2896 bswap_mips_abiflags(&abiflags);
c94cb6c9 2897 info->fp_abi = abiflags.fp_abi;
5dd0db52 2898#endif
d97ef72e 2899 }
682674b8 2900 }
5fafdf24 2901
8e62a717
RH
2902 if (info->end_data == 0) {
2903 info->start_data = info->end_code;
2904 info->end_data = info->end_code;
8e62a717
RH
2905 }
2906
682674b8 2907 if (qemu_log_enabled()) {
8e62a717 2908 load_symbols(ehdr, image_fd, load_bias);
682674b8 2909 }
31e31b8a 2910
98c1076c
AB
2911 mmap_unlock();
2912
8e62a717
RH
2913 close(image_fd);
2914 return;
2915
2916 exit_read:
2917 if (retval >= 0) {
c7f17e7b
RH
2918 error_setg(&err, "Incomplete read of file header");
2919 } else {
2920 error_setg_errno(&err, errno, "Error reading file header");
8e62a717 2921 }
c7f17e7b
RH
2922 goto exit_errmsg;
2923 exit_mmap:
2924 error_setg_errno(&err, errno, "Error mapping file");
2925 goto exit_errmsg;
8e62a717 2926 exit_errmsg:
c7f17e7b 2927 error_reportf_err(err, "%s: ", image_name);
8e62a717
RH
2928 exit(-1);
2929}
2930
2931static void load_elf_interp(const char *filename, struct image_info *info,
2932 char bprm_buf[BPRM_BUF_SIZE])
2933{
2934 int fd, retval;
808f6563 2935 Error *err = NULL;
8e62a717
RH
2936
2937 fd = open(path(filename), O_RDONLY);
2938 if (fd < 0) {
808f6563
RH
2939 error_setg_file_open(&err, errno, filename);
2940 error_report_err(err);
2941 exit(-1);
8e62a717 2942 }
31e31b8a 2943
8e62a717
RH
2944 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2945 if (retval < 0) {
808f6563
RH
2946 error_setg_errno(&err, errno, "Error reading file header");
2947 error_reportf_err(err, "%s: ", filename);
2948 exit(-1);
8e62a717 2949 }
808f6563 2950
8e62a717
RH
2951 if (retval < BPRM_BUF_SIZE) {
2952 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2953 }
2954
bf858897 2955 load_elf_image(filename, fd, info, NULL, bprm_buf);
31e31b8a
FB
2956}
2957
49918a75
PB
2958static int symfind(const void *s0, const void *s1)
2959{
c7c530cd 2960 target_ulong addr = *(target_ulong *)s0;
49918a75
PB
2961 struct elf_sym *sym = (struct elf_sym *)s1;
2962 int result = 0;
c7c530cd 2963 if (addr < sym->st_value) {
49918a75 2964 result = -1;
c7c530cd 2965 } else if (addr >= sym->st_value + sym->st_size) {
49918a75
PB
2966 result = 1;
2967 }
2968 return result;
2969}
2970
2971static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2972{
2973#if ELF_CLASS == ELFCLASS32
2974 struct elf_sym *syms = s->disas_symtab.elf32;
2975#else
2976 struct elf_sym *syms = s->disas_symtab.elf64;
2977#endif
2978
2979 // binary search
49918a75
PB
2980 struct elf_sym *sym;
2981
c7c530cd 2982 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 2983 if (sym != NULL) {
49918a75
PB
2984 return s->disas_strtab + sym->st_name;
2985 }
2986
2987 return "";
2988}
2989
2990/* FIXME: This should use elf_ops.h */
2991static int symcmp(const void *s0, const void *s1)
2992{
2993 struct elf_sym *sym0 = (struct elf_sym *)s0;
2994 struct elf_sym *sym1 = (struct elf_sym *)s1;
2995 return (sym0->st_value < sym1->st_value)
2996 ? -1
2997 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2998}
2999
689f936f 3000/* Best attempt to load symbols from this ELF object. */
682674b8 3001static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
689f936f 3002{
682674b8 3003 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
1e06262d 3004 uint64_t segsz;
682674b8 3005 struct elf_shdr *shdr;
b9475279
CV
3006 char *strings = NULL;
3007 struct syminfo *s = NULL;
3008 struct elf_sym *new_syms, *syms = NULL;
689f936f 3009
682674b8
RH
3010 shnum = hdr->e_shnum;
3011 i = shnum * sizeof(struct elf_shdr);
3012 shdr = (struct elf_shdr *)alloca(i);
3013 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3014 return;
3015 }
3016
3017 bswap_shdr(shdr, shnum);
3018 for (i = 0; i < shnum; ++i) {
3019 if (shdr[i].sh_type == SHT_SYMTAB) {
3020 sym_idx = i;
3021 str_idx = shdr[i].sh_link;
49918a75
PB
3022 goto found;
3023 }
689f936f 3024 }
682674b8
RH
3025
3026 /* There will be no symbol table if the file was stripped. */
3027 return;
689f936f
FB
3028
3029 found:
682674b8 3030 /* Now know where the strtab and symtab are. Snarf them. */
0ef9ea29 3031 s = g_try_new(struct syminfo, 1);
682674b8 3032 if (!s) {
b9475279 3033 goto give_up;
682674b8 3034 }
5fafdf24 3035
1e06262d
PM
3036 segsz = shdr[str_idx].sh_size;
3037 s->disas_strtab = strings = g_try_malloc(segsz);
3038 if (!strings ||
3039 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
b9475279 3040 goto give_up;
682674b8 3041 }
49918a75 3042
1e06262d
PM
3043 segsz = shdr[sym_idx].sh_size;
3044 syms = g_try_malloc(segsz);
3045 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
b9475279 3046 goto give_up;
682674b8 3047 }
31e31b8a 3048
1e06262d
PM
3049 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3050 /* Implausibly large symbol table: give up rather than ploughing
3051 * on with the number of symbols calculation overflowing
3052 */
3053 goto give_up;
3054 }
3055 nsyms = segsz / sizeof(struct elf_sym);
682674b8 3056 for (i = 0; i < nsyms; ) {
49918a75 3057 bswap_sym(syms + i);
682674b8
RH
3058 /* Throw away entries which we do not need. */
3059 if (syms[i].st_shndx == SHN_UNDEF
3060 || syms[i].st_shndx >= SHN_LORESERVE
3061 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3062 if (i < --nsyms) {
49918a75
PB
3063 syms[i] = syms[nsyms];
3064 }
682674b8 3065 } else {
49918a75 3066#if defined(TARGET_ARM) || defined (TARGET_MIPS)
682674b8
RH
3067 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
3068 syms[i].st_value &= ~(target_ulong)1;
0774bed1 3069#endif
682674b8
RH
3070 syms[i].st_value += load_bias;
3071 i++;
3072 }
0774bed1 3073 }
49918a75 3074
b9475279
CV
3075 /* No "useful" symbol. */
3076 if (nsyms == 0) {
3077 goto give_up;
3078 }
3079
5d5c9930
RH
3080 /* Attempt to free the storage associated with the local symbols
3081 that we threw away. Whether or not this has any effect on the
3082 memory allocation depends on the malloc implementation and how
3083 many symbols we managed to discard. */
0ef9ea29 3084 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
8d79de6e 3085 if (new_syms == NULL) {
b9475279 3086 goto give_up;
5d5c9930 3087 }
8d79de6e 3088 syms = new_syms;
5d5c9930 3089
49918a75 3090 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f 3091
49918a75
PB
3092 s->disas_num_syms = nsyms;
3093#if ELF_CLASS == ELFCLASS32
3094 s->disas_symtab.elf32 = syms;
49918a75
PB
3095#else
3096 s->disas_symtab.elf64 = syms;
49918a75 3097#endif
682674b8 3098 s->lookup_symbol = lookup_symbolxx;
e80cfcfc
FB
3099 s->next = syminfos;
3100 syminfos = s;
b9475279
CV
3101
3102 return;
3103
3104give_up:
0ef9ea29
PM
3105 g_free(s);
3106 g_free(strings);
3107 g_free(syms);
689f936f 3108}
31e31b8a 3109
768fe76e
YS
3110uint32_t get_elf_eflags(int fd)
3111{
3112 struct elfhdr ehdr;
3113 off_t offset;
3114 int ret;
3115
3116 /* Read ELF header */
3117 offset = lseek(fd, 0, SEEK_SET);
3118 if (offset == (off_t) -1) {
3119 return 0;
3120 }
3121 ret = read(fd, &ehdr, sizeof(ehdr));
3122 if (ret < sizeof(ehdr)) {
3123 return 0;
3124 }
3125 offset = lseek(fd, offset, SEEK_SET);
3126 if (offset == (off_t) -1) {
3127 return 0;
3128 }
3129
3130 /* Check ELF signature */
3131 if (!elf_check_ident(&ehdr)) {
3132 return 0;
3133 }
3134
3135 /* check header */
3136 bswap_ehdr(&ehdr);
3137 if (!elf_check_ehdr(&ehdr)) {
3138 return 0;
3139 }
3140
3141 /* return architecture id */
3142 return ehdr.e_flags;
3143}
3144
f0116c54 3145int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
31e31b8a 3146{
8e62a717 3147 struct image_info interp_info;
31e31b8a 3148 struct elfhdr elf_ex;
8e62a717 3149 char *elf_interpreter = NULL;
59baae9a 3150 char *scratch;
31e31b8a 3151
abcac736
DS
3152 memset(&interp_info, 0, sizeof(interp_info));
3153#ifdef TARGET_MIPS
3154 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3155#endif
3156
bf858897 3157 info->start_mmap = (abi_ulong)ELF_START_MMAP;
bf858897
RH
3158
3159 load_elf_image(bprm->filename, bprm->fd, info,
3160 &elf_interpreter, bprm->buf);
31e31b8a 3161
bf858897
RH
3162 /* ??? We need a copy of the elf header for passing to create_elf_tables.
3163 If we do nothing, we'll have overwritten this when we re-use bprm->buf
3164 when we load the interpreter. */
3165 elf_ex = *(struct elfhdr *)bprm->buf;
31e31b8a 3166
59baae9a
SB
3167 /* Do this so that we can load the interpreter, if need be. We will
3168 change some of these later */
3169 bprm->p = setup_arg_pages(bprm, info);
3170
3171 scratch = g_new0(char, TARGET_PAGE_SIZE);
7c4ee5bc
RH
3172 if (STACK_GROWS_DOWN) {
3173 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3174 bprm->p, info->stack_limit);
3175 info->file_string = bprm->p;
3176 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3177 bprm->p, info->stack_limit);
3178 info->env_strings = bprm->p;
3179 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3180 bprm->p, info->stack_limit);
3181 info->arg_strings = bprm->p;
3182 } else {
3183 info->arg_strings = bprm->p;
3184 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3185 bprm->p, info->stack_limit);
3186 info->env_strings = bprm->p;
3187 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3188 bprm->p, info->stack_limit);
3189 info->file_string = bprm->p;
3190 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3191 bprm->p, info->stack_limit);
3192 }
3193
59baae9a
SB
3194 g_free(scratch);
3195
e5fe0c52 3196 if (!bprm->p) {
bf858897
RH
3197 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3198 exit(-1);
379f6698 3199 }
379f6698 3200
8e62a717
RH
3201 if (elf_interpreter) {
3202 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
31e31b8a 3203
8e62a717
RH
3204 /* If the program interpreter is one of these two, then assume
3205 an iBCS2 image. Otherwise assume a native linux image. */
3206
3207 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3208 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3209 info->personality = PER_SVR4;
31e31b8a 3210
8e62a717
RH
3211 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
3212 and some applications "depend" upon this behavior. Since
3213 we do not have the power to recompile these, we emulate
3214 the SVr4 behavior. Sigh. */
3215 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
68754b44 3216 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
8e62a717 3217 }
c94cb6c9
SM
3218#ifdef TARGET_MIPS
3219 info->interp_fp_abi = interp_info.fp_abi;
3220#endif
31e31b8a
FB
3221 }
3222
8e62a717
RH
3223 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3224 info, (elf_interpreter ? &interp_info : NULL));
3225 info->start_stack = bprm->p;
3226
3227 /* If we have an interpreter, set that as the program's entry point.
8e78064e 3228 Copy the load_bias as well, to help PPC64 interpret the entry
8e62a717
RH
3229 point as a function descriptor. Do this after creating elf tables
3230 so that we copy the original program entry point into the AUXV. */
3231 if (elf_interpreter) {
8e78064e 3232 info->load_bias = interp_info.load_bias;
8e62a717 3233 info->entry = interp_info.entry;
2b323087 3234 g_free(elf_interpreter);
8e62a717 3235 }
31e31b8a 3236
edf8e2af
MW
3237#ifdef USE_ELF_CORE_DUMP
3238 bprm->core_dump = &elf_core_dump;
3239#endif
3240
6fd59449
RH
3241 /*
3242 * If we reserved extra space for brk, release it now.
3243 * The implementation of do_brk in syscalls.c expects to be able
3244 * to mmap pages in this space.
3245 */
3246 if (info->reserve_brk) {
3247 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
3248 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
3249 target_munmap(start_brk, end_brk - start_brk);
3250 }
3251
31e31b8a
FB
3252 return 0;
3253}
3254
edf8e2af 3255#ifdef USE_ELF_CORE_DUMP
edf8e2af
MW
3256/*
3257 * Definitions to generate Intel SVR4-like core files.
a2547a13 3258 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
3259 * tacked on the front to prevent clashes with linux definitions,
3260 * and the typedef forms have been avoided. This is mostly like
3261 * the SVR4 structure, but more Linuxy, with things that Linux does
3262 * not support and which gdb doesn't really use excluded.
3263 *
3264 * Fields we don't dump (their contents is zero) in linux-user qemu
3265 * are marked with XXX.
3266 *
3267 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3268 *
3269 * Porting ELF coredump for target is (quite) simple process. First you
dd0a3651 3270 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
edf8e2af
MW
3271 * the target resides):
3272 *
3273 * #define USE_ELF_CORE_DUMP
3274 *
3275 * Next you define type of register set used for dumping. ELF specification
3276 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3277 *
c227f099 3278 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 3279 * #define ELF_NREG <number of registers>
c227f099 3280 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 3281 *
edf8e2af
MW
3282 * Last step is to implement target specific function that copies registers
3283 * from given cpu into just specified register set. Prototype is:
3284 *
c227f099 3285 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
9349b4f9 3286 * const CPUArchState *env);
edf8e2af
MW
3287 *
3288 * Parameters:
3289 * regs - copy register values into here (allocated and zeroed by caller)
3290 * env - copy registers from here
3291 *
3292 * Example for ARM target is provided in this file.
3293 */
3294
3295/* An ELF note in memory */
3296struct memelfnote {
3297 const char *name;
3298 size_t namesz;
3299 size_t namesz_rounded;
3300 int type;
3301 size_t datasz;
80f5ce75 3302 size_t datasz_rounded;
edf8e2af
MW
3303 void *data;
3304 size_t notesz;
3305};
3306
a2547a13 3307struct target_elf_siginfo {
f8fd4fc4
PB
3308 abi_int si_signo; /* signal number */
3309 abi_int si_code; /* extra code */
3310 abi_int si_errno; /* errno */
edf8e2af
MW
3311};
3312
a2547a13
LD
3313struct target_elf_prstatus {
3314 struct target_elf_siginfo pr_info; /* Info associated with signal */
1ddd592f 3315 abi_short pr_cursig; /* Current signal */
ca98ac83
PB
3316 abi_ulong pr_sigpend; /* XXX */
3317 abi_ulong pr_sighold; /* XXX */
c227f099
AL
3318 target_pid_t pr_pid;
3319 target_pid_t pr_ppid;
3320 target_pid_t pr_pgrp;
3321 target_pid_t pr_sid;
edf8e2af
MW
3322 struct target_timeval pr_utime; /* XXX User time */
3323 struct target_timeval pr_stime; /* XXX System time */
3324 struct target_timeval pr_cutime; /* XXX Cumulative user time */
3325 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 3326 target_elf_gregset_t pr_reg; /* GP registers */
f8fd4fc4 3327 abi_int pr_fpvalid; /* XXX */
edf8e2af
MW
3328};
3329
3330#define ELF_PRARGSZ (80) /* Number of chars for args */
3331
a2547a13 3332struct target_elf_prpsinfo {
edf8e2af
MW
3333 char pr_state; /* numeric process state */
3334 char pr_sname; /* char for pr_state */
3335 char pr_zomb; /* zombie */
3336 char pr_nice; /* nice val */
ca98ac83 3337 abi_ulong pr_flag; /* flags */
c227f099
AL
3338 target_uid_t pr_uid;
3339 target_gid_t pr_gid;
3340 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af 3341 /* Lots missing */
d7eb2b92 3342 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */
edf8e2af
MW
3343 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3344};
3345
3346/* Here is the structure in which status of each thread is captured. */
3347struct elf_thread_status {
72cf2d4f 3348 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 3349 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
3350#if 0
3351 elf_fpregset_t fpu; /* NT_PRFPREG */
3352 struct task_struct *thread;
3353 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
3354#endif
3355 struct memelfnote notes[1];
3356 int num_notes;
3357};
3358
3359struct elf_note_info {
3360 struct memelfnote *notes;
a2547a13
LD
3361 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
3362 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 3363
b58deb34 3364 QTAILQ_HEAD(, elf_thread_status) thread_list;
edf8e2af
MW
3365#if 0
3366 /*
3367 * Current version of ELF coredump doesn't support
3368 * dumping fp regs etc.
3369 */
3370 elf_fpregset_t *fpu;
3371 elf_fpxregset_t *xfpu;
3372 int thread_status_size;
3373#endif
3374 int notes_size;
3375 int numnote;
3376};
3377
3378struct vm_area_struct {
1a1c4db9
MI
3379 target_ulong vma_start; /* start vaddr of memory region */
3380 target_ulong vma_end; /* end vaddr of memory region */
3381 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 3382 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
3383};
3384
3385struct mm_struct {
72cf2d4f 3386 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
3387 int mm_count; /* number of mappings */
3388};
3389
3390static struct mm_struct *vma_init(void);
3391static void vma_delete(struct mm_struct *);
1a1c4db9
MI
3392static int vma_add_mapping(struct mm_struct *, target_ulong,
3393 target_ulong, abi_ulong);
edf8e2af
MW
3394static int vma_get_mapping_count(const struct mm_struct *);
3395static struct vm_area_struct *vma_first(const struct mm_struct *);
3396static struct vm_area_struct *vma_next(struct vm_area_struct *);
3397static abi_ulong vma_dump_size(const struct vm_area_struct *);
1a1c4db9 3398static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 3399 unsigned long flags);
edf8e2af
MW
3400
3401static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3402static void fill_note(struct memelfnote *, const char *, int,
d97ef72e 3403 unsigned int, void *);
a2547a13
LD
3404static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3405static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
3406static void fill_auxv_note(struct memelfnote *, const TaskState *);
3407static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3408static size_t note_size(const struct memelfnote *);
3409static void free_note_info(struct elf_note_info *);
9349b4f9
AF
3410static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3411static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
edf8e2af
MW
3412static int core_dump_filename(const TaskState *, char *, size_t);
3413
3414static int dump_write(int, const void *, size_t);
3415static int write_note(struct memelfnote *, int);
3416static int write_note_info(struct elf_note_info *, int);
3417
3418#ifdef BSWAP_NEEDED
a2547a13 3419static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af 3420{
ca98ac83
PB
3421 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3422 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3423 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
edf8e2af 3424 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
ca98ac83
PB
3425 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3426 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
edf8e2af
MW
3427 prstatus->pr_pid = tswap32(prstatus->pr_pid);
3428 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3429 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3430 prstatus->pr_sid = tswap32(prstatus->pr_sid);
3431 /* cpu times are not filled, so we skip them */
3432 /* regs should be in correct format already */
3433 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3434}
3435
a2547a13 3436static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af 3437{
ca98ac83 3438 psinfo->pr_flag = tswapal(psinfo->pr_flag);
edf8e2af
MW
3439 psinfo->pr_uid = tswap16(psinfo->pr_uid);
3440 psinfo->pr_gid = tswap16(psinfo->pr_gid);
3441 psinfo->pr_pid = tswap32(psinfo->pr_pid);
3442 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3443 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3444 psinfo->pr_sid = tswap32(psinfo->pr_sid);
3445}
991f8f0c
RH
3446
3447static void bswap_note(struct elf_note *en)
3448{
3449 bswap32s(&en->n_namesz);
3450 bswap32s(&en->n_descsz);
3451 bswap32s(&en->n_type);
3452}
3453#else
3454static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3455static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3456static inline void bswap_note(struct elf_note *en) { }
edf8e2af
MW
3457#endif /* BSWAP_NEEDED */
3458
3459/*
3460 * Minimal support for linux memory regions. These are needed
3461 * when we are finding out what memory exactly belongs to
3462 * emulated process. No locks needed here, as long as
3463 * thread that received the signal is stopped.
3464 */
3465
3466static struct mm_struct *vma_init(void)
3467{
3468 struct mm_struct *mm;
3469
7267c094 3470 if ((mm = g_malloc(sizeof (*mm))) == NULL)
edf8e2af
MW
3471 return (NULL);
3472
3473 mm->mm_count = 0;
72cf2d4f 3474 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
3475
3476 return (mm);
3477}
3478
3479static void vma_delete(struct mm_struct *mm)
3480{
3481 struct vm_area_struct *vma;
3482
3483 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 3484 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
7267c094 3485 g_free(vma);
edf8e2af 3486 }
7267c094 3487 g_free(mm);
edf8e2af
MW
3488}
3489
1a1c4db9
MI
3490static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3491 target_ulong end, abi_ulong flags)
edf8e2af
MW
3492{
3493 struct vm_area_struct *vma;
3494
7267c094 3495 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
edf8e2af
MW
3496 return (-1);
3497
3498 vma->vma_start = start;
3499 vma->vma_end = end;
3500 vma->vma_flags = flags;
3501
72cf2d4f 3502 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
3503 mm->mm_count++;
3504
3505 return (0);
3506}
3507
3508static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3509{
72cf2d4f 3510 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
3511}
3512
3513static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3514{
72cf2d4f 3515 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
3516}
3517
3518static int vma_get_mapping_count(const struct mm_struct *mm)
3519{
3520 return (mm->mm_count);
3521}
3522
3523/*
3524 * Calculate file (dump) size of given memory region.
3525 */
3526static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3527{
3528 /* if we cannot even read the first page, skip it */
c7169b02 3529 if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
edf8e2af
MW
3530 return (0);
3531
3532 /*
3533 * Usually we don't dump executable pages as they contain
3534 * non-writable code that debugger can read directly from
3535 * target library etc. However, thread stacks are marked
3536 * also executable so we read in first page of given region
3537 * and check whether it contains elf header. If there is
3538 * no elf header, we dump it.
3539 */
3540 if (vma->vma_flags & PROT_EXEC) {
3541 char page[TARGET_PAGE_SIZE];
3542
022625a8
PM
3543 if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3544 return 0;
3545 }
edf8e2af
MW
3546 if ((page[EI_MAG0] == ELFMAG0) &&
3547 (page[EI_MAG1] == ELFMAG1) &&
3548 (page[EI_MAG2] == ELFMAG2) &&
3549 (page[EI_MAG3] == ELFMAG3)) {
3550 /*
3551 * Mappings are possibly from ELF binary. Don't dump
3552 * them.
3553 */
3554 return (0);
3555 }
3556 }
3557
3558 return (vma->vma_end - vma->vma_start);
3559}
3560
1a1c4db9 3561static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 3562 unsigned long flags)
edf8e2af
MW
3563{
3564 struct mm_struct *mm = (struct mm_struct *)priv;
3565
edf8e2af
MW
3566 vma_add_mapping(mm, start, end, flags);
3567 return (0);
3568}
3569
3570static void fill_note(struct memelfnote *note, const char *name, int type,
d97ef72e 3571 unsigned int sz, void *data)
edf8e2af
MW
3572{
3573 unsigned int namesz;
3574
3575 namesz = strlen(name) + 1;
3576 note->name = name;
3577 note->namesz = namesz;
3578 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3579 note->type = type;
80f5ce75
LV
3580 note->datasz = sz;
3581 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3582
edf8e2af
MW
3583 note->data = data;
3584
3585 /*
3586 * We calculate rounded up note size here as specified by
3587 * ELF document.
3588 */
3589 note->notesz = sizeof (struct elf_note) +
80f5ce75 3590 note->namesz_rounded + note->datasz_rounded;
edf8e2af
MW
3591}
3592
3593static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
d97ef72e 3594 uint32_t flags)
edf8e2af
MW
3595{
3596 (void) memset(elf, 0, sizeof(*elf));
3597
3598 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3599 elf->e_ident[EI_CLASS] = ELF_CLASS;
3600 elf->e_ident[EI_DATA] = ELF_DATA;
3601 elf->e_ident[EI_VERSION] = EV_CURRENT;
3602 elf->e_ident[EI_OSABI] = ELF_OSABI;
3603
3604 elf->e_type = ET_CORE;
3605 elf->e_machine = machine;
3606 elf->e_version = EV_CURRENT;
3607 elf->e_phoff = sizeof(struct elfhdr);
3608 elf->e_flags = flags;
3609 elf->e_ehsize = sizeof(struct elfhdr);
3610 elf->e_phentsize = sizeof(struct elf_phdr);
3611 elf->e_phnum = segs;
3612
edf8e2af 3613 bswap_ehdr(elf);
edf8e2af
MW
3614}
3615
3616static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3617{
3618 phdr->p_type = PT_NOTE;
3619 phdr->p_offset = offset;
3620 phdr->p_vaddr = 0;
3621 phdr->p_paddr = 0;
3622 phdr->p_filesz = sz;
3623 phdr->p_memsz = 0;
3624 phdr->p_flags = 0;
3625 phdr->p_align = 0;
3626
991f8f0c 3627 bswap_phdr(phdr, 1);
edf8e2af
MW
3628}
3629
3630static size_t note_size(const struct memelfnote *note)
3631{
3632 return (note->notesz);
3633}
3634
a2547a13 3635static void fill_prstatus(struct target_elf_prstatus *prstatus,
d97ef72e 3636 const TaskState *ts, int signr)
edf8e2af
MW
3637{
3638 (void) memset(prstatus, 0, sizeof (*prstatus));
3639 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3640 prstatus->pr_pid = ts->ts_tid;
3641 prstatus->pr_ppid = getppid();
3642 prstatus->pr_pgrp = getpgrp();
3643 prstatus->pr_sid = getsid(0);
3644
edf8e2af 3645 bswap_prstatus(prstatus);
edf8e2af
MW
3646}
3647
a2547a13 3648static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af 3649{
900cfbca 3650 char *base_filename;
edf8e2af
MW
3651 unsigned int i, len;
3652
3653 (void) memset(psinfo, 0, sizeof (*psinfo));
3654
3655 len = ts->info->arg_end - ts->info->arg_start;
3656 if (len >= ELF_PRARGSZ)
3657 len = ELF_PRARGSZ - 1;
3658 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3659 return -EFAULT;
3660 for (i = 0; i < len; i++)
3661 if (psinfo->pr_psargs[i] == 0)
3662 psinfo->pr_psargs[i] = ' ';
3663 psinfo->pr_psargs[len] = 0;
3664
3665 psinfo->pr_pid = getpid();
3666 psinfo->pr_ppid = getppid();
3667 psinfo->pr_pgrp = getpgrp();
3668 psinfo->pr_sid = getsid(0);
3669 psinfo->pr_uid = getuid();
3670 psinfo->pr_gid = getgid();
3671
900cfbca
JM
3672 base_filename = g_path_get_basename(ts->bprm->filename);
3673 /*
3674 * Using strncpy here is fine: at max-length,
3675 * this field is not NUL-terminated.
3676 */
edf8e2af 3677 (void) strncpy(psinfo->pr_fname, base_filename,
d97ef72e 3678 sizeof(psinfo->pr_fname));
edf8e2af 3679
900cfbca 3680 g_free(base_filename);
edf8e2af 3681 bswap_psinfo(psinfo);
edf8e2af
MW
3682 return (0);
3683}
3684
3685static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3686{
3687 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3688 elf_addr_t orig_auxv = auxv;
edf8e2af 3689 void *ptr;
125b0f55 3690 int len = ts->info->auxv_len;
edf8e2af
MW
3691
3692 /*
3693 * Auxiliary vector is stored in target process stack. It contains
3694 * {type, value} pairs that we need to dump into note. This is not
3695 * strictly necessary but we do it here for sake of completeness.
3696 */
3697
edf8e2af
MW
3698 /* read in whole auxv vector and copy it to memelfnote */
3699 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3700 if (ptr != NULL) {
3701 fill_note(note, "CORE", NT_AUXV, len, ptr);
3702 unlock_user(ptr, auxv, len);
3703 }
3704}
3705
3706/*
3707 * Constructs name of coredump file. We have following convention
3708 * for the name:
3709 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3710 *
3711 * Returns 0 in case of success, -1 otherwise (errno is set).
3712 */
3713static int core_dump_filename(const TaskState *ts, char *buf,
d97ef72e 3714 size_t bufsize)
edf8e2af
MW
3715{
3716 char timestamp[64];
edf8e2af
MW
3717 char *base_filename = NULL;
3718 struct timeval tv;
3719 struct tm tm;
3720
3721 assert(bufsize >= PATH_MAX);
3722
3723 if (gettimeofday(&tv, NULL) < 0) {
3724 (void) fprintf(stderr, "unable to get current timestamp: %s",
d97ef72e 3725 strerror(errno));
edf8e2af
MW
3726 return (-1);
3727 }
3728
b8da57fa 3729 base_filename = g_path_get_basename(ts->bprm->filename);
edf8e2af 3730 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
d97ef72e 3731 localtime_r(&tv.tv_sec, &tm));
edf8e2af 3732 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
d97ef72e 3733 base_filename, timestamp, (int)getpid());
b8da57fa 3734 g_free(base_filename);
edf8e2af
MW
3735
3736 return (0);
3737}
3738
3739static int dump_write(int fd, const void *ptr, size_t size)
3740{
3741 const char *bufp = (const char *)ptr;
3742 ssize_t bytes_written, bytes_left;
3743 struct rlimit dumpsize;
3744 off_t pos;
3745
3746 bytes_written = 0;
3747 getrlimit(RLIMIT_CORE, &dumpsize);
3748 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3749 if (errno == ESPIPE) { /* not a seekable stream */
3750 bytes_left = size;
3751 } else {
3752 return pos;
3753 }
3754 } else {
3755 if (dumpsize.rlim_cur <= pos) {
3756 return -1;
3757 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3758 bytes_left = size;
3759 } else {
3760 size_t limit_left=dumpsize.rlim_cur - pos;
3761 bytes_left = limit_left >= size ? size : limit_left ;
3762 }
3763 }
3764
3765 /*
3766 * In normal conditions, single write(2) should do but
3767 * in case of socket etc. this mechanism is more portable.
3768 */
3769 do {
3770 bytes_written = write(fd, bufp, bytes_left);
3771 if (bytes_written < 0) {
3772 if (errno == EINTR)
3773 continue;
3774 return (-1);
3775 } else if (bytes_written == 0) { /* eof */
3776 return (-1);
3777 }
3778 bufp += bytes_written;
3779 bytes_left -= bytes_written;
3780 } while (bytes_left > 0);
3781
3782 return (0);
3783}
3784
3785static int write_note(struct memelfnote *men, int fd)
3786{
3787 struct elf_note en;
3788
3789 en.n_namesz = men->namesz;
3790 en.n_type = men->type;
3791 en.n_descsz = men->datasz;
3792
edf8e2af 3793 bswap_note(&en);
edf8e2af
MW
3794
3795 if (dump_write(fd, &en, sizeof(en)) != 0)
3796 return (-1);
3797 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3798 return (-1);
80f5ce75 3799 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
edf8e2af
MW
3800 return (-1);
3801
3802 return (0);
3803}
3804
9349b4f9 3805static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
edf8e2af 3806{
29a0af61 3807 CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 3808 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3809 struct elf_thread_status *ets;
3810
7267c094 3811 ets = g_malloc0(sizeof (*ets));
edf8e2af
MW
3812 ets->num_notes = 1; /* only prstatus is dumped */
3813 fill_prstatus(&ets->prstatus, ts, 0);
3814 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3815 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
d97ef72e 3816 &ets->prstatus);
edf8e2af 3817
72cf2d4f 3818 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
3819
3820 info->notes_size += note_size(&ets->notes[0]);
3821}
3822
6afafa86
PM
3823static void init_note_info(struct elf_note_info *info)
3824{
3825 /* Initialize the elf_note_info structure so that it is at
3826 * least safe to call free_note_info() on it. Must be
3827 * called before calling fill_note_info().
3828 */
3829 memset(info, 0, sizeof (*info));
3830 QTAILQ_INIT(&info->thread_list);
3831}
3832
edf8e2af 3833static int fill_note_info(struct elf_note_info *info,
9349b4f9 3834 long signr, const CPUArchState *env)
edf8e2af
MW
3835{
3836#define NUMNOTES 3
29a0af61 3837 CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 3838 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3839 int i;
3840
c78d65e8 3841 info->notes = g_new0(struct memelfnote, NUMNOTES);
edf8e2af
MW
3842 if (info->notes == NULL)
3843 return (-ENOMEM);
7267c094 3844 info->prstatus = g_malloc0(sizeof (*info->prstatus));
edf8e2af
MW
3845 if (info->prstatus == NULL)
3846 return (-ENOMEM);
7267c094 3847 info->psinfo = g_malloc0(sizeof (*info->psinfo));
edf8e2af
MW
3848 if (info->prstatus == NULL)
3849 return (-ENOMEM);
3850
3851 /*
3852 * First fill in status (and registers) of current thread
3853 * including process info & aux vector.
3854 */
3855 fill_prstatus(info->prstatus, ts, signr);
3856 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3857 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
d97ef72e 3858 sizeof (*info->prstatus), info->prstatus);
edf8e2af
MW
3859 fill_psinfo(info->psinfo, ts);
3860 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
d97ef72e 3861 sizeof (*info->psinfo), info->psinfo);
edf8e2af
MW
3862 fill_auxv_note(&info->notes[2], ts);
3863 info->numnote = 3;
3864
3865 info->notes_size = 0;
3866 for (i = 0; i < info->numnote; i++)
3867 info->notes_size += note_size(&info->notes[i]);
3868
3869 /* read and fill status of all threads */
3870 cpu_list_lock();
bdc44640 3871 CPU_FOREACH(cpu) {
a2247f8e 3872 if (cpu == thread_cpu) {
edf8e2af 3873 continue;
182735ef
AF
3874 }
3875 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
edf8e2af
MW
3876 }
3877 cpu_list_unlock();
3878
3879 return (0);
3880}
3881
3882static void free_note_info(struct elf_note_info *info)
3883{
3884 struct elf_thread_status *ets;
3885
72cf2d4f
BS
3886 while (!QTAILQ_EMPTY(&info->thread_list)) {
3887 ets = QTAILQ_FIRST(&info->thread_list);
3888 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
7267c094 3889 g_free(ets);
edf8e2af
MW
3890 }
3891
7267c094
AL
3892 g_free(info->prstatus);
3893 g_free(info->psinfo);
3894 g_free(info->notes);
edf8e2af
MW
3895}
3896
3897static int write_note_info(struct elf_note_info *info, int fd)
3898{
3899 struct elf_thread_status *ets;
3900 int i, error = 0;
3901
3902 /* write prstatus, psinfo and auxv for current thread */
3903 for (i = 0; i < info->numnote; i++)
3904 if ((error = write_note(&info->notes[i], fd)) != 0)
3905 return (error);
3906
3907 /* write prstatus for each thread */
52a53afe 3908 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
edf8e2af
MW
3909 if ((error = write_note(&ets->notes[0], fd)) != 0)
3910 return (error);
3911 }
3912
3913 return (0);
3914}
3915
3916/*
3917 * Write out ELF coredump.
3918 *
3919 * See documentation of ELF object file format in:
3920 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3921 *
3922 * Coredump format in linux is following:
3923 *
3924 * 0 +----------------------+ \
3925 * | ELF header | ET_CORE |
3926 * +----------------------+ |
3927 * | ELF program headers | |--- headers
3928 * | - NOTE section | |
3929 * | - PT_LOAD sections | |
3930 * +----------------------+ /
3931 * | NOTEs: |
3932 * | - NT_PRSTATUS |
3933 * | - NT_PRSINFO |
3934 * | - NT_AUXV |
3935 * +----------------------+ <-- aligned to target page
3936 * | Process memory dump |
3937 * : :
3938 * . .
3939 * : :
3940 * | |
3941 * +----------------------+
3942 *
3943 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3944 * NT_PRSINFO -> struct elf_prpsinfo
3945 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3946 *
3947 * Format follows System V format as close as possible. Current
3948 * version limitations are as follows:
3949 * - no floating point registers are dumped
3950 *
3951 * Function returns 0 in case of success, negative errno otherwise.
3952 *
3953 * TODO: make this work also during runtime: it should be
3954 * possible to force coredump from running process and then
3955 * continue processing. For example qemu could set up SIGUSR2
3956 * handler (provided that target process haven't registered
3957 * handler for that) that does the dump when signal is received.
3958 */
9349b4f9 3959static int elf_core_dump(int signr, const CPUArchState *env)
edf8e2af 3960{
29a0af61 3961 const CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 3962 const TaskState *ts = (const TaskState *)cpu->opaque;
edf8e2af
MW
3963 struct vm_area_struct *vma = NULL;
3964 char corefile[PATH_MAX];
3965 struct elf_note_info info;
3966 struct elfhdr elf;
3967 struct elf_phdr phdr;
3968 struct rlimit dumpsize;
3969 struct mm_struct *mm = NULL;
3970 off_t offset = 0, data_offset = 0;
3971 int segs = 0;
3972 int fd = -1;
3973
6afafa86
PM
3974 init_note_info(&info);
3975
edf8e2af
MW
3976 errno = 0;
3977 getrlimit(RLIMIT_CORE, &dumpsize);
3978 if (dumpsize.rlim_cur == 0)
d97ef72e 3979 return 0;
edf8e2af
MW
3980
3981 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3982 return (-errno);
3983
3984 if ((fd = open(corefile, O_WRONLY | O_CREAT,
d97ef72e 3985 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
edf8e2af
MW
3986 return (-errno);
3987
3988 /*
3989 * Walk through target process memory mappings and
3990 * set up structure containing this information. After
3991 * this point vma_xxx functions can be used.
3992 */
3993 if ((mm = vma_init()) == NULL)
3994 goto out;
3995
3996 walk_memory_regions(mm, vma_walker);
3997 segs = vma_get_mapping_count(mm);
3998
3999 /*
4000 * Construct valid coredump ELF header. We also
4001 * add one more segment for notes.
4002 */
4003 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
4004 if (dump_write(fd, &elf, sizeof (elf)) != 0)
4005 goto out;
4006
b6af0975 4007 /* fill in the in-memory version of notes */
edf8e2af
MW
4008 if (fill_note_info(&info, signr, env) < 0)
4009 goto out;
4010
4011 offset += sizeof (elf); /* elf header */
4012 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
4013
4014 /* write out notes program header */
4015 fill_elf_note_phdr(&phdr, info.notes_size, offset);
4016
4017 offset += info.notes_size;
4018 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4019 goto out;
4020
4021 /*
4022 * ELF specification wants data to start at page boundary so
4023 * we align it here.
4024 */
80f5ce75 4025 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
edf8e2af
MW
4026
4027 /*
4028 * Write program headers for memory regions mapped in
4029 * the target process.
4030 */
4031 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4032 (void) memset(&phdr, 0, sizeof (phdr));
4033
4034 phdr.p_type = PT_LOAD;
4035 phdr.p_offset = offset;
4036 phdr.p_vaddr = vma->vma_start;
4037 phdr.p_paddr = 0;
4038 phdr.p_filesz = vma_dump_size(vma);
4039 offset += phdr.p_filesz;
4040 phdr.p_memsz = vma->vma_end - vma->vma_start;
4041 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4042 if (vma->vma_flags & PROT_WRITE)
4043 phdr.p_flags |= PF_W;
4044 if (vma->vma_flags & PROT_EXEC)
4045 phdr.p_flags |= PF_X;
4046 phdr.p_align = ELF_EXEC_PAGESIZE;
4047
80f5ce75 4048 bswap_phdr(&phdr, 1);
772034b6
PM
4049 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4050 goto out;
4051 }
edf8e2af
MW
4052 }
4053
4054 /*
4055 * Next we write notes just after program headers. No
4056 * alignment needed here.
4057 */
4058 if (write_note_info(&info, fd) < 0)
4059 goto out;
4060
4061 /* align data to page boundary */
edf8e2af
MW
4062 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4063 goto out;
4064
4065 /*
4066 * Finally we can dump process memory into corefile as well.
4067 */
4068 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4069 abi_ulong addr;
4070 abi_ulong end;
4071
4072 end = vma->vma_start + vma_dump_size(vma);
4073
4074 for (addr = vma->vma_start; addr < end;
d97ef72e 4075 addr += TARGET_PAGE_SIZE) {
edf8e2af
MW
4076 char page[TARGET_PAGE_SIZE];
4077 int error;
4078
4079 /*
4080 * Read in page from target process memory and
4081 * write it to coredump file.
4082 */
4083 error = copy_from_user(page, addr, sizeof (page));
4084 if (error != 0) {
49995e17 4085 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
d97ef72e 4086 addr);
edf8e2af
MW
4087 errno = -error;
4088 goto out;
4089 }
4090 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4091 goto out;
4092 }
4093 }
4094
d97ef72e 4095 out:
edf8e2af
MW
4096 free_note_info(&info);
4097 if (mm != NULL)
4098 vma_delete(mm);
4099 (void) close(fd);
4100
4101 if (errno != 0)
4102 return (-errno);
4103 return (0);
4104}
edf8e2af
MW
4105#endif /* USE_ELF_CORE_DUMP */
4106
e5fe0c52
PB
4107void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4108{
4109 init_thread(regs, infop);
4110}
This page took 1.475426 seconds and 4 git commands to generate.