]> Git Repo - qemu.git/blame - target-arm/cpu.h
target-arm: A64: Avoid duplicate exit_tb(0) in non-linked goto_tb
[qemu.git] / target-arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af
FB
18 */
19#ifndef CPU_ARM_H
20#define CPU_ARM_H
21
3926cc84 22#include "config.h"
3cf1e035 23
72b0cd35
PM
24#include "kvm-consts.h"
25
3926cc84
AG
26#if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28# define TARGET_LONG_BITS 64
29# define ELF_MACHINE EM_AARCH64
30#else
31# define TARGET_LONG_BITS 32
32# define ELF_MACHINE EM_ARM
33#endif
9042c0e2 34
9349b4f9 35#define CPUArchState struct CPUARMState
c2764719 36
9a78eead 37#include "qemu-common.h"
022c62cb 38#include "exec/cpu-defs.h"
2c0262af 39
6b4c305c 40#include "fpu/softfloat.h"
53cd6637 41
1fddef4b
FB
42#define TARGET_HAS_ICE 1
43
b8a9e8f1
FB
44#define EXCP_UDEF 1 /* undefined instruction */
45#define EXCP_SWI 2 /* software interrupt */
46#define EXCP_PREFETCH_ABORT 3
47#define EXCP_DATA_ABORT 4
b5ff1b31
FB
48#define EXCP_IRQ 5
49#define EXCP_FIQ 6
06c949e6 50#define EXCP_BKPT 7
9ee6e8bb 51#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 52#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
426f5abc 53#define EXCP_STREX 10
9ee6e8bb
PB
54
55#define ARMV7M_EXCP_RESET 1
56#define ARMV7M_EXCP_NMI 2
57#define ARMV7M_EXCP_HARD 3
58#define ARMV7M_EXCP_MEM 4
59#define ARMV7M_EXCP_BUS 5
60#define ARMV7M_EXCP_USAGE 6
61#define ARMV7M_EXCP_SVC 11
62#define ARMV7M_EXCP_DEBUG 12
63#define ARMV7M_EXCP_PENDSV 14
64#define ARMV7M_EXCP_SYSTICK 15
2c0262af 65
403946c0
RH
66/* ARM-specific interrupt pending bits. */
67#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
68
e4fe830b
PM
69/* The usual mapping for an AArch64 system register to its AArch32
70 * counterpart is for the 32 bit world to have access to the lower
71 * half only (with writes leaving the upper half untouched). It's
72 * therefore useful to be able to pass TCG the offset of the least
73 * significant half of a uint64_t struct member.
74 */
75#ifdef HOST_WORDS_BIGENDIAN
5cd8a118 76#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 77#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
78#else
79#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 80#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
81#endif
82
7c1840b6
PM
83/* Meanings of the ARMCPU object's two inbound GPIO lines */
84#define ARM_CPU_IRQ 0
85#define ARM_CPU_FIQ 1
403946c0 86
c1713132
AZ
87typedef void ARMWriteCPFunc(void *opaque, int cp_info,
88 int srcreg, int operand, uint32_t value);
89typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
90 int dstreg, int operand);
91
f93eb9ff
AZ
92struct arm_boot_info;
93
6ebbf390
JM
94#define NB_MMU_MODES 2
95
b7bcbe95
FB
96/* We currently assume float and double are IEEE single and double
97 precision respectively.
98 Doing runtime conversions is tricky because VFP registers may contain
99 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
100 s<2n> maps to the least significant half of d<n>
101 s<2n+1> maps to the most significant half of d<n>
102 */
b7bcbe95 103
55d284af
PM
104/* CPU state for each instance of a generic timer (in cp15 c14) */
105typedef struct ARMGenericTimer {
106 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 107 uint64_t ctl; /* Timer Control register */
55d284af
PM
108} ARMGenericTimer;
109
110#define GTIMER_PHYS 0
111#define GTIMER_VIRT 1
112#define NUM_GTIMERS 2
113
2c0262af 114typedef struct CPUARMState {
b5ff1b31 115 /* Regs for current mode. */
2c0262af 116 uint32_t regs[16];
3926cc84
AG
117
118 /* 32/64 switch only happens when taking and returning from
119 * exceptions so the overlap semantics are taken care of then
120 * instead of having a complicated union.
121 */
122 /* Regs for A64 mode. */
123 uint64_t xregs[32];
124 uint64_t pc;
d356312f
PM
125 /* PSTATE isn't an architectural register for ARMv8. However, it is
126 * convenient for us to assemble the underlying state into a 32 bit format
127 * identical to the architectural format used for the SPSR. (This is also
128 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
129 * 'pstate' register are.) Of the PSTATE bits:
130 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
131 * semantics as for AArch32, as described in the comments on each field)
132 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 133 * DAIF (exception masks) are kept in env->daif
d356312f 134 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
135 */
136 uint32_t pstate;
137 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
138
b90372ad 139 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 140 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
141 the whole CPSR. */
142 uint32_t uncached_cpsr;
143 uint32_t spsr;
144
145 /* Banked registers. */
28c9457d 146 uint64_t banked_spsr[8];
b5ff1b31
FB
147 uint32_t banked_r13[6];
148 uint32_t banked_r14[6];
3b46e624 149
b5ff1b31
FB
150 /* These hold r8-r12. */
151 uint32_t usr_regs[5];
152 uint32_t fiq_regs[5];
3b46e624 153
2c0262af
FB
154 /* cpsr flag cache for faster execution */
155 uint32_t CF; /* 0 or 1 */
156 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
157 uint32_t NF; /* N is bit 31. All other bits are undefined. */
158 uint32_t ZF; /* Z set if zero. */
99c475ab 159 uint32_t QF; /* 0 or 1 */
9ee6e8bb 160 uint32_t GE; /* cpsr[19:16] */
b26eefb6 161 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 162 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
c2b820fe 163 uint64_t daif; /* exception masks, in the bits they are in in PSTATE */
2c0262af 164
1b174238 165 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 166 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 167
b5ff1b31
FB
168 /* System control coprocessor (cp15) */
169 struct {
40f137e1 170 uint32_t c0_cpuid;
7da845b0 171 uint64_t c0_cssel; /* Cache size selection. */
5ebafdf3 172 uint64_t c1_sys; /* System control register. */
34222fb8 173 uint64_t c1_coproc; /* Coprocessor access register. */
610c3c8a 174 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
2be27624 175 uint32_t c1_scr; /* secure config register. */
327ed10f
PM
176 uint64_t ttbr0_el1; /* MMU translation table base 0. */
177 uint64_t ttbr1_el1; /* MMU translation table base 1. */
cb2e37df 178 uint64_t c2_control; /* MMU translation table base control. */
b2fa1797
PB
179 uint32_t c2_mask; /* MMU translation table base selection mask. */
180 uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
ce819861
PB
181 uint32_t c2_data; /* MPU data cachable bits. */
182 uint32_t c2_insn; /* MPU instruction cachable bits. */
183 uint32_t c3; /* MMU domain access control register
184 MPU write buffer control. */
7e09797c
PM
185 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
186 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
6cd8a264 187 uint32_t ifsr_el2; /* Fault status registers. */
f2c30f42 188 uint64_t esr_el[4];
ce819861 189 uint32_t c6_region[8]; /* MPU base/size registers. */
63b60551 190 uint64_t far_el[4]; /* Fault address registers. */
19525524 191 uint64_t par_el1; /* Translation result. */
b5ff1b31
FB
192 uint32_t c9_insn; /* Cache lockdown registers. */
193 uint32_t c9_data;
74594c9d
PM
194 uint32_t c9_pmcr; /* performance monitor control register */
195 uint32_t c9_pmcnten; /* perf monitor counter enables */
196 uint32_t c9_pmovsr; /* perf monitor overflow status */
197 uint32_t c9_pmxevtyper; /* perf monitor event type */
198 uint32_t c9_pmuserenr; /* perf monitor user enable */
199 uint32_t c9_pminten; /* perf monitor interrupt enables */
b0fe2427 200 uint64_t mair_el1;
a1ba125c 201 uint64_t vbar_el[4]; /* vector base address register */
b5ff1b31 202 uint32_t c13_fcse; /* FCSE PID. */
014406b5 203 uint64_t contextidr_el1; /* Context ID. */
e4fe830b
PM
204 uint64_t tpidr_el0; /* User RW Thread register. */
205 uint64_t tpidrro_el0; /* User RO Thread register. */
206 uint64_t tpidr_el1; /* Privileged Thread register. */
a7adc4b7
PM
207 uint64_t c14_cntfrq; /* Counter Frequency register */
208 uint64_t c14_cntkctl; /* Timer Control register */
55d284af 209 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 210 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
211 uint32_t c15_ticonfig; /* TI925T configuration byte. */
212 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
213 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
214 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
215 uint32_t c15_config_base_address; /* SCU base address. */
216 uint32_t c15_diagnostic; /* diagnostic register */
217 uint32_t c15_power_diagnostic;
218 uint32_t c15_power_control; /* power control */
0b45451e
PM
219 uint64_t dbgbvr[16]; /* breakpoint value registers */
220 uint64_t dbgbcr[16]; /* breakpoint control registers */
221 uint64_t dbgwvr[16]; /* watchpoint value registers */
222 uint64_t dbgwcr[16]; /* watchpoint control registers */
3a298203 223 uint64_t mdscr_el1;
7c2cb42b
AF
224 /* If the counter is enabled, this stores the last time the counter
225 * was reset. Otherwise it stores the counter value
226 */
227 uint32_t c15_ccnt;
b5ff1b31 228 } cp15;
40f137e1 229
9ee6e8bb
PB
230 struct {
231 uint32_t other_sp;
232 uint32_t vecbase;
233 uint32_t basepri;
234 uint32_t control;
235 int current_sp;
236 int exception;
237 int pending_exception;
9ee6e8bb
PB
238 } v7m;
239
abf1172f
PM
240 /* Information associated with an exception about to be taken:
241 * code which raises an exception must set cs->exception_index and
242 * the relevant parts of this structure; the cpu_do_interrupt function
243 * will then set the guest-visible registers as part of the exception
244 * entry process.
245 */
246 struct {
247 uint32_t syndrome; /* AArch64 format syndrome register */
248 uint32_t fsr; /* AArch32 format fault status register info */
249 uint64_t vaddress; /* virtual addr associated with exception, if any */
250 /* If we implement EL2 we will also need to store information
251 * about the intermediate physical address for stage 2 faults.
252 */
253 } exception;
254
fe1479c3
PB
255 /* Thumb-2 EE state. */
256 uint32_t teecr;
257 uint32_t teehbr;
258
b7bcbe95
FB
259 /* VFP coprocessor state. */
260 struct {
3926cc84
AG
261 /* VFP/Neon register state. Note that the mapping between S, D and Q
262 * views of the register bank differs between AArch64 and AArch32:
263 * In AArch32:
264 * Qn = regs[2n+1]:regs[2n]
265 * Dn = regs[n]
266 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
267 * (and regs[32] to regs[63] are inaccessible)
268 * In AArch64:
269 * Qn = regs[2n+1]:regs[2n]
270 * Dn = regs[2n]
271 * Sn = regs[2n] bits 31..0
272 * This corresponds to the architecturally defined mapping between
273 * the two execution states, and means we do not need to explicitly
274 * map these registers when changing states.
275 */
276 float64 regs[64];
b7bcbe95 277
40f137e1 278 uint32_t xregs[16];
b7bcbe95
FB
279 /* We store these fpcsr fields separately for convenience. */
280 int vec_len;
281 int vec_stride;
282
9ee6e8bb
PB
283 /* scratch space when Tn are not sufficient. */
284 uint32_t scratch[8];
3b46e624 285
3a492f3a
PM
286 /* fp_status is the "normal" fp status. standard_fp_status retains
287 * values corresponding to the ARM "Standard FPSCR Value", ie
288 * default-NaN, flush-to-zero, round-to-nearest and is used by
289 * any operations (generally Neon) which the architecture defines
290 * as controlled by the standard FPSCR value rather than the FPSCR.
291 *
292 * To avoid having to transfer exception bits around, we simply
293 * say that the FPSCR cumulative exception flags are the logical
294 * OR of the flags in the two fp statuses. This relies on the
295 * only thing which needs to read the exception flags being
296 * an explicit FPSCR read.
297 */
53cd6637 298 float_status fp_status;
3a492f3a 299 float_status standard_fp_status;
b7bcbe95 300 } vfp;
03d05e2d
PM
301 uint64_t exclusive_addr;
302 uint64_t exclusive_val;
303 uint64_t exclusive_high;
9ee6e8bb 304#if defined(CONFIG_USER_ONLY)
03d05e2d 305 uint64_t exclusive_test;
426f5abc 306 uint32_t exclusive_info;
9ee6e8bb 307#endif
b7bcbe95 308
18c9b560
AZ
309 /* iwMMXt coprocessor state. */
310 struct {
311 uint64_t regs[16];
312 uint64_t val;
313
314 uint32_t cregs[16];
315 } iwmmxt;
316
d8fd2954
PB
317 /* For mixed endian mode. */
318 bool bswap_code;
319
ce4defa0
PB
320#if defined(CONFIG_USER_ONLY)
321 /* For usermode syscall translation. */
322 int eabi;
323#endif
324
a316d335
FB
325 CPU_COMMON
326
9d551997 327 /* These fields after the common ones so they are preserved on reset. */
9ba8c3f4 328
581be094 329 /* Internal CPU feature flags. */
918f5dca 330 uint64_t features;
581be094 331
983fe826 332 void *nvic;
462a8bc6 333 const struct arm_boot_info *boot_info;
2c0262af
FB
334} CPUARMState;
335
778c3a06
AF
336#include "cpu-qom.h"
337
338ARMCPU *cpu_arm_init(const char *cpu_model);
2c0262af 339int cpu_arm_exec(CPUARMState *s);
9ee6e8bb 340uint32_t do_arm_semihosting(CPUARMState *env);
b5ff1b31 341
3926cc84
AG
342static inline bool is_a64(CPUARMState *env)
343{
344 return env->aarch64;
345}
346
2c0262af
FB
347/* you can call this signal handler from your SIGBUS and SIGSEGV
348 signal handlers to inform the virtual CPU of exceptions. non zero
349 is returned if the signal was handled by the virtual CPU. */
5fafdf24 350int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af 351 void *puc);
7510454e
AF
352int arm_cpu_handle_mmu_fault(CPUState *cpu, vaddr address, int rw,
353 int mmu_idx);
2c0262af 354
76e3e1bc
PM
355/* SCTLR bit meanings. Several bits have been reused in newer
356 * versions of the architecture; in that case we define constants
357 * for both old and new bit meanings. Code which tests against those
358 * bits should probably check or otherwise arrange that the CPU
359 * is the architectural version it expects.
360 */
361#define SCTLR_M (1U << 0)
362#define SCTLR_A (1U << 1)
363#define SCTLR_C (1U << 2)
364#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
365#define SCTLR_SA (1U << 3)
366#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
367#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
368#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
369#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
370#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
371#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
372#define SCTLR_ITD (1U << 7) /* v8 onward */
373#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
374#define SCTLR_SED (1U << 8) /* v8 onward */
375#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
376#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
377#define SCTLR_F (1U << 10) /* up to v6 */
378#define SCTLR_SW (1U << 10) /* v7 onward */
379#define SCTLR_Z (1U << 11)
380#define SCTLR_I (1U << 12)
381#define SCTLR_V (1U << 13)
382#define SCTLR_RR (1U << 14) /* up to v7 */
383#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
384#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
385#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
386#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
387#define SCTLR_nTWI (1U << 16) /* v8 onward */
388#define SCTLR_HA (1U << 17)
389#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
390#define SCTLR_nTWE (1U << 18) /* v8 onward */
391#define SCTLR_WXN (1U << 19)
392#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
393#define SCTLR_UWXN (1U << 20) /* v7 onward */
394#define SCTLR_FI (1U << 21)
395#define SCTLR_U (1U << 22)
396#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
397#define SCTLR_VE (1U << 24) /* up to v7 */
398#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
399#define SCTLR_EE (1U << 25)
400#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
401#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
402#define SCTLR_NMFI (1U << 27)
403#define SCTLR_TRE (1U << 28)
404#define SCTLR_AFE (1U << 29)
405#define SCTLR_TE (1U << 30)
406
78dbbbe4
PM
407#define CPSR_M (0x1fU)
408#define CPSR_T (1U << 5)
409#define CPSR_F (1U << 6)
410#define CPSR_I (1U << 7)
411#define CPSR_A (1U << 8)
412#define CPSR_E (1U << 9)
413#define CPSR_IT_2_7 (0xfc00U)
414#define CPSR_GE (0xfU << 16)
4051e12c
PM
415#define CPSR_IL (1U << 20)
416/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
417 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
418 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
419 * where it is live state but not accessible to the AArch32 code.
420 */
421#define CPSR_RESERVED (0x7U << 21)
78dbbbe4
PM
422#define CPSR_J (1U << 24)
423#define CPSR_IT_0_1 (3U << 25)
424#define CPSR_Q (1U << 27)
425#define CPSR_V (1U << 28)
426#define CPSR_C (1U << 29)
427#define CPSR_Z (1U << 30)
428#define CPSR_N (1U << 31)
9ee6e8bb 429#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 430#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
431
432#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
433#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
434 | CPSR_NZCV)
9ee6e8bb
PB
435/* Bits writable in user mode. */
436#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
437/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c
PM
438#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
439/* Mask of bits which may be set by exception return copying them from SPSR */
440#define CPSR_ERET_MASK (~CPSR_RESERVED)
b5ff1b31 441
e389be16
FA
442#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
443#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
444#define TTBCR_PD0 (1U << 4)
445#define TTBCR_PD1 (1U << 5)
446#define TTBCR_EPD0 (1U << 7)
447#define TTBCR_IRGN0 (3U << 8)
448#define TTBCR_ORGN0 (3U << 10)
449#define TTBCR_SH0 (3U << 12)
450#define TTBCR_T1SZ (3U << 16)
451#define TTBCR_A1 (1U << 22)
452#define TTBCR_EPD1 (1U << 23)
453#define TTBCR_IRGN1 (3U << 24)
454#define TTBCR_ORGN1 (3U << 26)
455#define TTBCR_SH1 (1U << 28)
456#define TTBCR_EAE (1U << 31)
457
d356312f
PM
458/* Bit definitions for ARMv8 SPSR (PSTATE) format.
459 * Only these are valid when in AArch64 mode; in
460 * AArch32 mode SPSRs are basically CPSR-format.
461 */
f502cfc2 462#define PSTATE_SP (1U)
d356312f
PM
463#define PSTATE_M (0xFU)
464#define PSTATE_nRW (1U << 4)
465#define PSTATE_F (1U << 6)
466#define PSTATE_I (1U << 7)
467#define PSTATE_A (1U << 8)
468#define PSTATE_D (1U << 9)
469#define PSTATE_IL (1U << 20)
470#define PSTATE_SS (1U << 21)
471#define PSTATE_V (1U << 28)
472#define PSTATE_C (1U << 29)
473#define PSTATE_Z (1U << 30)
474#define PSTATE_N (1U << 31)
475#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614
PM
476#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
477#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
d356312f
PM
478/* Mode values for AArch64 */
479#define PSTATE_MODE_EL3h 13
480#define PSTATE_MODE_EL3t 12
481#define PSTATE_MODE_EL2h 9
482#define PSTATE_MODE_EL2t 8
483#define PSTATE_MODE_EL1h 5
484#define PSTATE_MODE_EL1t 4
485#define PSTATE_MODE_EL0t 0
486
487/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
488 * interprocessing, so we don't attempt to sync with the cpsr state used by
489 * the 32 bit decoder.
490 */
491static inline uint32_t pstate_read(CPUARMState *env)
492{
493 int ZF;
494
495 ZF = (env->ZF == 0);
496 return (env->NF & 0x80000000) | (ZF << 30)
497 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
4cc35614 498 | env->pstate | env->daif;
d356312f
PM
499}
500
501static inline void pstate_write(CPUARMState *env, uint32_t val)
502{
503 env->ZF = (~val) & PSTATE_Z;
504 env->NF = val;
505 env->CF = (val >> 29) & 1;
506 env->VF = (val << 3) & 0x80000000;
4cc35614 507 env->daif = val & PSTATE_DAIF;
d356312f
PM
508 env->pstate = val & ~CACHED_PSTATE_BITS;
509}
510
b5ff1b31 511/* Return the current CPSR value. */
2f4a40e5
AZ
512uint32_t cpsr_read(CPUARMState *env);
513/* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
514void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
9ee6e8bb
PB
515
516/* Return the current xPSR value. */
517static inline uint32_t xpsr_read(CPUARMState *env)
518{
519 int ZF;
6fbe23d5
PB
520 ZF = (env->ZF == 0);
521 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
522 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
523 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
524 | ((env->condexec_bits & 0xfc) << 8)
525 | env->v7m.exception;
b5ff1b31
FB
526}
527
9ee6e8bb
PB
528/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
529static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
530{
9ee6e8bb 531 if (mask & CPSR_NZCV) {
6fbe23d5
PB
532 env->ZF = (~val) & CPSR_Z;
533 env->NF = val;
9ee6e8bb
PB
534 env->CF = (val >> 29) & 1;
535 env->VF = (val << 3) & 0x80000000;
536 }
537 if (mask & CPSR_Q)
538 env->QF = ((val & CPSR_Q) != 0);
539 if (mask & (1 << 24))
540 env->thumb = ((val & (1 << 24)) != 0);
541 if (mask & CPSR_IT_0_1) {
542 env->condexec_bits &= ~3;
543 env->condexec_bits |= (val >> 25) & 3;
544 }
545 if (mask & CPSR_IT_2_7) {
546 env->condexec_bits &= 3;
547 env->condexec_bits |= (val >> 8) & 0xfc;
548 }
549 if (mask & 0x1ff) {
550 env->v7m.exception = val & 0x1ff;
551 }
552}
553
01653295
PM
554/* Return the current FPSCR value. */
555uint32_t vfp_get_fpscr(CPUARMState *env);
556void vfp_set_fpscr(CPUARMState *env, uint32_t val);
557
f903fa22
PM
558/* For A64 the FPSCR is split into two logically distinct registers,
559 * FPCR and FPSR. However since they still use non-overlapping bits
560 * we store the underlying state in fpscr and just mask on read/write.
561 */
562#define FPSR_MASK 0xf800009f
563#define FPCR_MASK 0x07f79f00
564static inline uint32_t vfp_get_fpsr(CPUARMState *env)
565{
566 return vfp_get_fpscr(env) & FPSR_MASK;
567}
568
569static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
570{
571 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
572 vfp_set_fpscr(env, new_fpscr);
573}
574
575static inline uint32_t vfp_get_fpcr(CPUARMState *env)
576{
577 return vfp_get_fpscr(env) & FPCR_MASK;
578}
579
580static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
581{
582 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
583 vfp_set_fpscr(env, new_fpscr);
584}
585
b5ff1b31
FB
586enum arm_cpu_mode {
587 ARM_CPU_MODE_USR = 0x10,
588 ARM_CPU_MODE_FIQ = 0x11,
589 ARM_CPU_MODE_IRQ = 0x12,
590 ARM_CPU_MODE_SVC = 0x13,
28c9457d 591 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 592 ARM_CPU_MODE_ABT = 0x17,
28c9457d 593 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
594 ARM_CPU_MODE_UND = 0x1b,
595 ARM_CPU_MODE_SYS = 0x1f
596};
597
40f137e1
PB
598/* VFP system registers. */
599#define ARM_VFP_FPSID 0
600#define ARM_VFP_FPSCR 1
a50c0f51 601#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
602#define ARM_VFP_MVFR1 6
603#define ARM_VFP_MVFR0 7
40f137e1
PB
604#define ARM_VFP_FPEXC 8
605#define ARM_VFP_FPINST 9
606#define ARM_VFP_FPINST2 10
607
18c9b560
AZ
608/* iwMMXt coprocessor control registers. */
609#define ARM_IWMMXT_wCID 0
610#define ARM_IWMMXT_wCon 1
611#define ARM_IWMMXT_wCSSF 2
612#define ARM_IWMMXT_wCASF 3
613#define ARM_IWMMXT_wCGR0 8
614#define ARM_IWMMXT_wCGR1 9
615#define ARM_IWMMXT_wCGR2 10
616#define ARM_IWMMXT_wCGR3 11
617
ce854d7c
BC
618/* If adding a feature bit which corresponds to a Linux ELF
619 * HWCAP bit, remember to update the feature-bit-to-hwcap
620 * mapping in linux-user/elfload.c:get_elf_hwcap().
621 */
40f137e1
PB
622enum arm_features {
623 ARM_FEATURE_VFP,
c1713132
AZ
624 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
625 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 626 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
627 ARM_FEATURE_V6,
628 ARM_FEATURE_V6K,
629 ARM_FEATURE_V7,
630 ARM_FEATURE_THUMB2,
c3d2689d 631 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
9ee6e8bb 632 ARM_FEATURE_VFP3,
60011498 633 ARM_FEATURE_VFP_FP16,
9ee6e8bb 634 ARM_FEATURE_NEON,
47789990 635 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
9ee6e8bb 636 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 637 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 638 ARM_FEATURE_THUMB2EE,
be5e7a76
DES
639 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
640 ARM_FEATURE_V4T,
641 ARM_FEATURE_V5,
5bc95aa2 642 ARM_FEATURE_STRONGARM,
906879a9 643 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
b8b8ea05 644 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
da97f52c 645 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
0383ac00 646 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 647 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 648 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
649 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
650 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
651 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 652 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
653 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
654 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 655 ARM_FEATURE_V8,
3926cc84 656 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
9d935509 657 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
d8ba780b 658 ARM_FEATURE_CBAR, /* has cp15 CBAR */
eb0ecd5a 659 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
f318cec6 660 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 661 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 662 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
f1ecb913
AB
663 ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
664 ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
4e624eda 665 ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
40f137e1
PB
666};
667
668static inline int arm_feature(CPUARMState *env, int feature)
669{
918f5dca 670 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
671}
672
1f79ee32
PM
673/* Return true if the specified exception level is running in AArch64 state. */
674static inline bool arm_el_is_aa64(CPUARMState *env, int el)
675{
676 /* We don't currently support EL2 or EL3, and this isn't valid for EL0
677 * (if we're in EL0, is_a64() is what you want, and if we're not in EL0
678 * then the state of EL0 isn't well defined.)
679 */
680 assert(el == 1);
681 /* AArch64-capable CPUs always run with EL1 in AArch64 mode. This
682 * is a QEMU-imposed simplification which we may wish to change later.
683 * If we in future support EL2 and/or EL3, then the state of lower
684 * exception levels is controlled by the HCR.RW and SCR.RW bits.
685 */
686 return arm_feature(env, ARM_FEATURE_AARCH64);
687}
688
9a78eead 689void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
40f137e1 690
9ee6e8bb
PB
691/* Interface between CPU and Interrupt controller. */
692void armv7m_nvic_set_pending(void *opaque, int irq);
693int armv7m_nvic_acknowledge_irq(void *opaque);
694void armv7m_nvic_complete_irq(void *opaque, int irq);
695
4b6a83fb
PM
696/* Interface for defining coprocessor registers.
697 * Registers are defined in tables of arm_cp_reginfo structs
698 * which are passed to define_arm_cp_regs().
699 */
700
701/* When looking up a coprocessor register we look for it
702 * via an integer which encodes all of:
703 * coprocessor number
704 * Crn, Crm, opc1, opc2 fields
705 * 32 or 64 bit register (ie is it accessed via MRC/MCR
706 * or via MRRC/MCRR?)
707 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
708 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
709 * For AArch64, there is no 32/64 bit size distinction;
710 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
711 * and 4 bit CRn and CRm. The encoding patterns are chosen
712 * to be easy to convert to and from the KVM encodings, and also
713 * so that the hashtable can contain both AArch32 and AArch64
714 * registers (to allow for interprocessing where we might run
715 * 32 bit code on a 64 bit core).
4b6a83fb 716 */
f5a0a5a5
PM
717/* This bit is private to our hashtable cpreg; in KVM register
718 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
719 * in the upper bits of the 64 bit ID.
720 */
721#define CP_REG_AA64_SHIFT 28
722#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
723
4b6a83fb
PM
724#define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2) \
725 (((cp) << 16) | ((is64) << 15) | ((crn) << 11) | \
726 ((crm) << 7) | ((opc1) << 3) | (opc2))
727
f5a0a5a5
PM
728#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
729 (CP_REG_AA64_MASK | \
730 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
731 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
732 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
733 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
734 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
735 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
736
721fae12
PM
737/* Convert a full 64 bit KVM register ID to the truncated 32 bit
738 * version used as a key for the coprocessor register hashtable
739 */
740static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
741{
742 uint32_t cpregid = kvmid;
f5a0a5a5
PM
743 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
744 cpregid |= CP_REG_AA64_MASK;
745 } else if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
721fae12
PM
746 cpregid |= (1 << 15);
747 }
748 return cpregid;
749}
750
751/* Convert a truncated 32 bit hashtable key into the full
752 * 64 bit KVM register ID.
753 */
754static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
755{
f5a0a5a5
PM
756 uint64_t kvmid;
757
758 if (cpregid & CP_REG_AA64_MASK) {
759 kvmid = cpregid & ~CP_REG_AA64_MASK;
760 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 761 } else {
f5a0a5a5
PM
762 kvmid = cpregid & ~(1 << 15);
763 if (cpregid & (1 << 15)) {
764 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
765 } else {
766 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
767 }
721fae12
PM
768 }
769 return kvmid;
770}
771
4b6a83fb
PM
772/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
773 * special-behaviour cp reg and bits [15..8] indicate what behaviour
774 * it has. Otherwise it is a simple cp reg, where CONST indicates that
775 * TCG can assume the value to be constant (ie load at translate time)
776 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
777 * indicates that the TB should not be ended after a write to this register
778 * (the default is that the TB ends after cp writes). OVERRIDE permits
779 * a register definition to override a previous definition for the
780 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
781 * old must have the OVERRIDE bit set.
7023ec7e
PM
782 * NO_MIGRATE indicates that this register should be ignored for migration;
783 * (eg because any state is accessed via some other coprocessor register).
2452731c
PM
784 * IO indicates that this register does I/O and therefore its accesses
785 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
786 * registers which implement clocks or timers require this.
4b6a83fb
PM
787 */
788#define ARM_CP_SPECIAL 1
789#define ARM_CP_CONST 2
790#define ARM_CP_64BIT 4
791#define ARM_CP_SUPPRESS_TB_END 8
792#define ARM_CP_OVERRIDE 16
7023ec7e 793#define ARM_CP_NO_MIGRATE 32
2452731c 794#define ARM_CP_IO 64
4b6a83fb
PM
795#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
796#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
b0d2b7d0 797#define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
0eef9d98 798#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
aca3f40b
PM
799#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
800#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
4b6a83fb
PM
801/* Used only as a terminator for ARMCPRegInfo lists */
802#define ARM_CP_SENTINEL 0xffff
803/* Mask of only the flag bits in a type field */
2452731c 804#define ARM_CP_FLAG_MASK 0x7f
4b6a83fb 805
f5a0a5a5
PM
806/* Valid values for ARMCPRegInfo state field, indicating which of
807 * the AArch32 and AArch64 execution states this register is visible in.
808 * If the reginfo doesn't explicitly specify then it is AArch32 only.
809 * If the reginfo is declared to be visible in both states then a second
810 * reginfo is synthesised for the AArch32 view of the AArch64 register,
811 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
812 * Note that we rely on the values of these enums as we iterate through
813 * the various states in some places.
814 */
815enum {
816 ARM_CP_STATE_AA32 = 0,
817 ARM_CP_STATE_AA64 = 1,
818 ARM_CP_STATE_BOTH = 2,
819};
820
4b6a83fb
PM
821/* Return true if cptype is a valid type field. This is used to try to
822 * catch errors where the sentinel has been accidentally left off the end
823 * of a list of registers.
824 */
825static inline bool cptype_valid(int cptype)
826{
827 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
828 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 829 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
830}
831
832/* Access rights:
833 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
834 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
835 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
836 * (ie any of the privileged modes in Secure state, or Monitor mode).
837 * If a register is accessible in one privilege level it's always accessible
838 * in higher privilege levels too. Since "Secure PL1" also follows this rule
839 * (ie anything visible in PL2 is visible in S-PL1, some things are only
840 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
841 * terminology a little and call this PL3.
f5a0a5a5
PM
842 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
843 * with the ELx exception levels.
4b6a83fb
PM
844 *
845 * If access permissions for a register are more complex than can be
846 * described with these bits, then use a laxer set of restrictions, and
847 * do the more restrictive/complex check inside a helper function.
848 */
849#define PL3_R 0x80
850#define PL3_W 0x40
851#define PL2_R (0x20 | PL3_R)
852#define PL2_W (0x10 | PL3_W)
853#define PL1_R (0x08 | PL2_R)
854#define PL1_W (0x04 | PL2_W)
855#define PL0_R (0x02 | PL1_R)
856#define PL0_W (0x01 | PL1_W)
857
858#define PL3_RW (PL3_R | PL3_W)
859#define PL2_RW (PL2_R | PL2_W)
860#define PL1_RW (PL1_R | PL1_W)
861#define PL0_RW (PL0_R | PL0_W)
862
863static inline int arm_current_pl(CPUARMState *env)
864{
f5a0a5a5
PM
865 if (env->aarch64) {
866 return extract32(env->pstate, 2, 2);
867 }
868
4b6a83fb
PM
869 if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR) {
870 return 0;
871 }
872 /* We don't currently implement the Virtualization or TrustZone
873 * extensions, so PL2 and PL3 don't exist for us.
874 */
875 return 1;
876}
877
878typedef struct ARMCPRegInfo ARMCPRegInfo;
879
f59df3f2
PM
880typedef enum CPAccessResult {
881 /* Access is permitted */
882 CP_ACCESS_OK = 0,
883 /* Access fails due to a configurable trap or enable which would
884 * result in a categorized exception syndrome giving information about
885 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
886 * 0xc or 0x18).
887 */
888 CP_ACCESS_TRAP = 1,
889 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
890 * Note that this is not a catch-all case -- the set of cases which may
891 * result in this failure is specifically defined by the architecture.
892 */
893 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
894} CPAccessResult;
895
c4241c7d
PM
896/* Access functions for coprocessor registers. These cannot fail and
897 * may not raise exceptions.
898 */
899typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
900typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
901 uint64_t value);
f59df3f2
PM
902/* Access permission check functions for coprocessor registers. */
903typedef CPAccessResult CPAccessFn(CPUARMState *env, const ARMCPRegInfo *opaque);
4b6a83fb
PM
904/* Hook function for register reset */
905typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
906
907#define CP_ANY 0xff
908
909/* Definition of an ARM coprocessor register */
910struct ARMCPRegInfo {
911 /* Name of register (useful mainly for debugging, need not be unique) */
912 const char *name;
913 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
914 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
915 * 'wildcard' field -- any value of that field in the MRC/MCR insn
916 * will be decoded to this register. The register read and write
917 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
918 * used by the program, so it is possible to register a wildcard and
919 * then behave differently on read/write if necessary.
920 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
921 * must both be zero.
f5a0a5a5
PM
922 * For AArch64-visible registers, opc0 is also used.
923 * Since there are no "coprocessors" in AArch64, cp is purely used as a
924 * way to distinguish (for KVM's benefit) guest-visible system registers
925 * from demuxed ones provided to preserve the "no side effects on
926 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
927 * visible (to match KVM's encoding); cp==0 will be converted to
928 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
4b6a83fb
PM
929 */
930 uint8_t cp;
931 uint8_t crn;
932 uint8_t crm;
f5a0a5a5 933 uint8_t opc0;
4b6a83fb
PM
934 uint8_t opc1;
935 uint8_t opc2;
f5a0a5a5
PM
936 /* Execution state in which this register is visible: ARM_CP_STATE_* */
937 int state;
4b6a83fb
PM
938 /* Register type: ARM_CP_* bits/values */
939 int type;
940 /* Access rights: PL*_[RW] */
941 int access;
942 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
943 * this register was defined: can be used to hand data through to the
944 * register read/write functions, since they are passed the ARMCPRegInfo*.
945 */
946 void *opaque;
947 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
948 * fieldoffset is non-zero, the reset value of the register.
949 */
950 uint64_t resetvalue;
951 /* Offset of the field in CPUARMState for this register. This is not
952 * needed if either:
953 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
954 * 2. both readfn and writefn are specified
955 */
956 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
f59df3f2
PM
957 /* Function for making any access checks for this register in addition to
958 * those specified by the 'access' permissions bits. If NULL, no extra
959 * checks required. The access check is performed at runtime, not at
960 * translate time.
961 */
962 CPAccessFn *accessfn;
4b6a83fb
PM
963 /* Function for handling reads of this register. If NULL, then reads
964 * will be done by loading from the offset into CPUARMState specified
965 * by fieldoffset.
966 */
967 CPReadFn *readfn;
968 /* Function for handling writes of this register. If NULL, then writes
969 * will be done by writing to the offset into CPUARMState specified
970 * by fieldoffset.
971 */
972 CPWriteFn *writefn;
7023ec7e
PM
973 /* Function for doing a "raw" read; used when we need to copy
974 * coprocessor state to the kernel for KVM or out for
975 * migration. This only needs to be provided if there is also a
c4241c7d 976 * readfn and it has side effects (for instance clear-on-read bits).
7023ec7e
PM
977 */
978 CPReadFn *raw_readfn;
979 /* Function for doing a "raw" write; used when we need to copy KVM
980 * kernel coprocessor state into userspace, or for inbound
981 * migration. This only needs to be provided if there is also a
c4241c7d
PM
982 * writefn and it masks out "unwritable" bits or has write-one-to-clear
983 * or similar behaviour.
7023ec7e
PM
984 */
985 CPWriteFn *raw_writefn;
4b6a83fb
PM
986 /* Function for resetting the register. If NULL, then reset will be done
987 * by writing resetvalue to the field specified in fieldoffset. If
988 * fieldoffset is 0 then no reset will be done.
989 */
990 CPResetFn *resetfn;
991};
992
993/* Macros which are lvalues for the field in CPUARMState for the
994 * ARMCPRegInfo *ri.
995 */
996#define CPREG_FIELD32(env, ri) \
997 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
998#define CPREG_FIELD64(env, ri) \
999 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1000
1001#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
1002
1003void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1004 const ARMCPRegInfo *regs, void *opaque);
1005void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1006 const ARMCPRegInfo *regs, void *opaque);
1007static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1008{
1009 define_arm_cp_regs_with_opaque(cpu, regs, 0);
1010}
1011static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1012{
1013 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
1014}
60322b39 1015const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
4b6a83fb
PM
1016
1017/* CPWriteFn that can be used to implement writes-ignored behaviour */
c4241c7d
PM
1018void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1019 uint64_t value);
4b6a83fb 1020/* CPReadFn that can be used for read-as-zero behaviour */
c4241c7d 1021uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
4b6a83fb 1022
f5a0a5a5
PM
1023/* CPResetFn that does nothing, for use if no reset is required even
1024 * if fieldoffset is non zero.
1025 */
1026void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1027
67ed771d
PM
1028/* Return true if this reginfo struct's field in the cpu state struct
1029 * is 64 bits wide.
1030 */
1031static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1032{
1033 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1034}
1035
60322b39 1036static inline bool cp_access_ok(int current_pl,
4b6a83fb
PM
1037 const ARMCPRegInfo *ri, int isread)
1038{
60322b39 1039 return (ri->access >> ((current_pl * 2) + isread)) & 1;
4b6a83fb
PM
1040}
1041
721fae12
PM
1042/**
1043 * write_list_to_cpustate
1044 * @cpu: ARMCPU
1045 *
1046 * For each register listed in the ARMCPU cpreg_indexes list, write
1047 * its value from the cpreg_values list into the ARMCPUState structure.
1048 * This updates TCG's working data structures from KVM data or
1049 * from incoming migration state.
1050 *
1051 * Returns: true if all register values were updated correctly,
1052 * false if some register was unknown or could not be written.
1053 * Note that we do not stop early on failure -- we will attempt
1054 * writing all registers in the list.
1055 */
1056bool write_list_to_cpustate(ARMCPU *cpu);
1057
1058/**
1059 * write_cpustate_to_list:
1060 * @cpu: ARMCPU
1061 *
1062 * For each register listed in the ARMCPU cpreg_indexes list, write
1063 * its value from the ARMCPUState structure into the cpreg_values list.
1064 * This is used to copy info from TCG's working data structures into
1065 * KVM or for outbound migration.
1066 *
1067 * Returns: true if all register values were read correctly,
1068 * false if some register was unknown or could not be read.
1069 * Note that we do not stop early on failure -- we will attempt
1070 * reading all registers in the list.
1071 */
1072bool write_cpustate_to_list(ARMCPU *cpu);
1073
9ee6e8bb
PB
1074/* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
1075 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
1076 conventional cores (ie. Application or Realtime profile). */
1077
1078#define IS_M(env) arm_feature(env, ARM_FEATURE_M)
9ee6e8bb 1079
9ee6e8bb
PB
1080#define ARM_CPUID_TI915T 0x54029152
1081#define ARM_CPUID_TI925T 0x54029252
40f137e1 1082
b5ff1b31 1083#if defined(CONFIG_USER_ONLY)
2c0262af 1084#define TARGET_PAGE_BITS 12
b5ff1b31
FB
1085#else
1086/* The ARM MMU allows 1k pages. */
1087/* ??? Linux doesn't actually use these, and they're deprecated in recent
82d17978 1088 architecture revisions. Maybe a configure option to disable them. */
b5ff1b31
FB
1089#define TARGET_PAGE_BITS 10
1090#endif
9467d44c 1091
3926cc84
AG
1092#if defined(TARGET_AARCH64)
1093# define TARGET_PHYS_ADDR_SPACE_BITS 48
1094# define TARGET_VIRT_ADDR_SPACE_BITS 64
1095#else
1096# define TARGET_PHYS_ADDR_SPACE_BITS 40
1097# define TARGET_VIRT_ADDR_SPACE_BITS 32
1098#endif
52705890 1099
ad37ad5b
PM
1100static inline CPUARMState *cpu_init(const char *cpu_model)
1101{
1102 ARMCPU *cpu = cpu_arm_init(cpu_model);
1103 if (cpu) {
1104 return &cpu->env;
1105 }
1106 return NULL;
1107}
1108
9467d44c
TS
1109#define cpu_exec cpu_arm_exec
1110#define cpu_gen_code cpu_arm_gen_code
1111#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 1112#define cpu_list arm_cpu_list
9467d44c 1113
6ebbf390 1114/* MMU modes definitions */
f79fbf39
EI
1115#define MMU_MODE0_SUFFIX _user
1116#define MMU_MODE1_SUFFIX _kernel
1117#define MMU_USER_IDX 0
0ecb72a5 1118static inline int cpu_mmu_index (CPUARMState *env)
6ebbf390 1119{
f79fbf39 1120 return arm_current_pl(env);
6ebbf390
JM
1121}
1122
3a298203
PM
1123/* Return the Exception Level targeted by debug exceptions;
1124 * currently always EL1 since we don't implement EL2 or EL3.
1125 */
1126static inline int arm_debug_target_el(CPUARMState *env)
1127{
1128 return 1;
1129}
1130
1131static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
1132{
1133 if (arm_current_pl(env) == arm_debug_target_el(env)) {
1134 if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
1135 || (env->daif & PSTATE_D)) {
1136 return false;
1137 }
1138 }
1139 return true;
1140}
1141
1142static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
1143{
1144 if (arm_current_pl(env) == 0 && arm_el_is_aa64(env, 1)) {
1145 return aa64_generate_debug_exceptions(env);
1146 }
1147 return arm_current_pl(env) != 2;
1148}
1149
1150/* Return true if debugging exceptions are currently enabled.
1151 * This corresponds to what in ARM ARM pseudocode would be
1152 * if UsingAArch32() then
1153 * return AArch32.GenerateDebugExceptions()
1154 * else
1155 * return AArch64.GenerateDebugExceptions()
1156 * We choose to push the if() down into this function for clarity,
1157 * since the pseudocode has it at all callsites except for the one in
1158 * CheckSoftwareStep(), where it is elided because both branches would
1159 * always return the same value.
1160 *
1161 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
1162 * don't yet implement those exception levels or their associated trap bits.
1163 */
1164static inline bool arm_generate_debug_exceptions(CPUARMState *env)
1165{
1166 if (env->aarch64) {
1167 return aa64_generate_debug_exceptions(env);
1168 } else {
1169 return aa32_generate_debug_exceptions(env);
1170 }
1171}
1172
1173/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
1174 * implicitly means this always returns false in pre-v8 CPUs.)
1175 */
1176static inline bool arm_singlestep_active(CPUARMState *env)
1177{
1178 return extract32(env->cp15.mdscr_el1, 0, 1)
1179 && arm_el_is_aa64(env, arm_debug_target_el(env))
1180 && arm_generate_debug_exceptions(env);
1181}
1182
022c62cb 1183#include "exec/cpu-all.h"
622ed360 1184
3926cc84
AG
1185/* Bit usage in the TB flags field: bit 31 indicates whether we are
1186 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
1187 */
1188#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
1189#define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
1190
1191/* Bit usage when in AArch32 state: */
a1705768
PM
1192#define ARM_TBFLAG_THUMB_SHIFT 0
1193#define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
1194#define ARM_TBFLAG_VECLEN_SHIFT 1
1195#define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
1196#define ARM_TBFLAG_VECSTRIDE_SHIFT 4
1197#define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
1198#define ARM_TBFLAG_PRIV_SHIFT 6
1199#define ARM_TBFLAG_PRIV_MASK (1 << ARM_TBFLAG_PRIV_SHIFT)
1200#define ARM_TBFLAG_VFPEN_SHIFT 7
1201#define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
1202#define ARM_TBFLAG_CONDEXEC_SHIFT 8
1203#define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
d8fd2954
PB
1204#define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
1205#define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
2c7ffc41
PM
1206#define ARM_TBFLAG_CPACR_FPEN_SHIFT 17
1207#define ARM_TBFLAG_CPACR_FPEN_MASK (1 << ARM_TBFLAG_CPACR_FPEN_SHIFT)
3926cc84 1208
d9ea7d29
PM
1209/* Bit usage when in AArch64 state */
1210#define ARM_TBFLAG_AA64_EL_SHIFT 0
1211#define ARM_TBFLAG_AA64_EL_MASK (0x3 << ARM_TBFLAG_AA64_EL_SHIFT)
8c6afa6a
PM
1212#define ARM_TBFLAG_AA64_FPEN_SHIFT 2
1213#define ARM_TBFLAG_AA64_FPEN_MASK (1 << ARM_TBFLAG_AA64_FPEN_SHIFT)
a1705768
PM
1214
1215/* some convenience accessor macros */
3926cc84
AG
1216#define ARM_TBFLAG_AARCH64_STATE(F) \
1217 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
a1705768
PM
1218#define ARM_TBFLAG_THUMB(F) \
1219 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
1220#define ARM_TBFLAG_VECLEN(F) \
1221 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
1222#define ARM_TBFLAG_VECSTRIDE(F) \
1223 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
1224#define ARM_TBFLAG_PRIV(F) \
1225 (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
1226#define ARM_TBFLAG_VFPEN(F) \
1227 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
1228#define ARM_TBFLAG_CONDEXEC(F) \
1229 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
d8fd2954
PB
1230#define ARM_TBFLAG_BSWAP_CODE(F) \
1231 (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
2c7ffc41
PM
1232#define ARM_TBFLAG_CPACR_FPEN(F) \
1233 (((F) & ARM_TBFLAG_CPACR_FPEN_MASK) >> ARM_TBFLAG_CPACR_FPEN_SHIFT)
d9ea7d29
PM
1234#define ARM_TBFLAG_AA64_EL(F) \
1235 (((F) & ARM_TBFLAG_AA64_EL_MASK) >> ARM_TBFLAG_AA64_EL_SHIFT)
8c6afa6a
PM
1236#define ARM_TBFLAG_AA64_FPEN(F) \
1237 (((F) & ARM_TBFLAG_AA64_FPEN_MASK) >> ARM_TBFLAG_AA64_FPEN_SHIFT)
a1705768 1238
0ecb72a5 1239static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
6b917547
AL
1240 target_ulong *cs_base, int *flags)
1241{
8c6afa6a
PM
1242 int fpen = extract32(env->cp15.c1_coproc, 20, 2);
1243
3926cc84
AG
1244 if (is_a64(env)) {
1245 *pc = env->pc;
d9ea7d29
PM
1246 *flags = ARM_TBFLAG_AARCH64_STATE_MASK
1247 | (arm_current_pl(env) << ARM_TBFLAG_AA64_EL_SHIFT);
8c6afa6a
PM
1248 if (fpen == 3 || (fpen == 1 && arm_current_pl(env) != 0)) {
1249 *flags |= ARM_TBFLAG_AA64_FPEN_MASK;
1250 }
05ed9a99 1251 } else {
3926cc84
AG
1252 int privmode;
1253 *pc = env->regs[15];
1254 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
1255 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
1256 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
1257 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
1258 | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
1259 if (arm_feature(env, ARM_FEATURE_M)) {
1260 privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
1261 } else {
1262 privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
1263 }
1264 if (privmode) {
1265 *flags |= ARM_TBFLAG_PRIV_MASK;
1266 }
2c7ffc41
PM
1267 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
1268 || arm_el_is_aa64(env, 1)) {
3926cc84
AG
1269 *flags |= ARM_TBFLAG_VFPEN_MASK;
1270 }
2c7ffc41
PM
1271 if (fpen == 3 || (fpen == 1 && arm_current_pl(env) != 0)) {
1272 *flags |= ARM_TBFLAG_CPACR_FPEN_MASK;
1273 }
a1705768 1274 }
3926cc84
AG
1275
1276 *cs_base = 0;
6b917547
AL
1277}
1278
022c62cb 1279#include "exec/exec-all.h"
f081c76c 1280
3926cc84
AG
1281static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
1282{
1283 if (ARM_TBFLAG_AARCH64_STATE(tb->flags)) {
1284 env->pc = tb->pc;
1285 } else {
1286 env->regs[15] = tb->pc;
1287 }
1288}
1289
2c0262af 1290#endif
This page took 0.983836 seconds and 4 git commands to generate.