]> Git Repo - qemu.git/blame - target-arm/cpu.h
qemu_opts_parse(): always check return value
[qemu.git] / target-arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af
FB
18 */
19#ifndef CPU_ARM_H
20#define CPU_ARM_H
21
3926cc84 22#include "config.h"
3cf1e035 23
72b0cd35
PM
24#include "kvm-consts.h"
25
3926cc84
AG
26#if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28# define TARGET_LONG_BITS 64
29# define ELF_MACHINE EM_AARCH64
30#else
31# define TARGET_LONG_BITS 32
32# define ELF_MACHINE EM_ARM
33#endif
9042c0e2 34
9349b4f9 35#define CPUArchState struct CPUARMState
c2764719 36
9a78eead 37#include "qemu-common.h"
022c62cb 38#include "exec/cpu-defs.h"
2c0262af 39
6b4c305c 40#include "fpu/softfloat.h"
53cd6637 41
1fddef4b
FB
42#define TARGET_HAS_ICE 1
43
b8a9e8f1
FB
44#define EXCP_UDEF 1 /* undefined instruction */
45#define EXCP_SWI 2 /* software interrupt */
46#define EXCP_PREFETCH_ABORT 3
47#define EXCP_DATA_ABORT 4
b5ff1b31
FB
48#define EXCP_IRQ 5
49#define EXCP_FIQ 6
06c949e6 50#define EXCP_BKPT 7
9ee6e8bb 51#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 52#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
426f5abc 53#define EXCP_STREX 10
9ee6e8bb
PB
54
55#define ARMV7M_EXCP_RESET 1
56#define ARMV7M_EXCP_NMI 2
57#define ARMV7M_EXCP_HARD 3
58#define ARMV7M_EXCP_MEM 4
59#define ARMV7M_EXCP_BUS 5
60#define ARMV7M_EXCP_USAGE 6
61#define ARMV7M_EXCP_SVC 11
62#define ARMV7M_EXCP_DEBUG 12
63#define ARMV7M_EXCP_PENDSV 14
64#define ARMV7M_EXCP_SYSTICK 15
2c0262af 65
403946c0
RH
66/* ARM-specific interrupt pending bits. */
67#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
68
7c1840b6
PM
69/* Meanings of the ARMCPU object's two inbound GPIO lines */
70#define ARM_CPU_IRQ 0
71#define ARM_CPU_FIQ 1
403946c0 72
c1713132
AZ
73typedef void ARMWriteCPFunc(void *opaque, int cp_info,
74 int srcreg, int operand, uint32_t value);
75typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
76 int dstreg, int operand);
77
f93eb9ff
AZ
78struct arm_boot_info;
79
6ebbf390
JM
80#define NB_MMU_MODES 2
81
b7bcbe95
FB
82/* We currently assume float and double are IEEE single and double
83 precision respectively.
84 Doing runtime conversions is tricky because VFP registers may contain
85 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
86 s<2n> maps to the least significant half of d<n>
87 s<2n+1> maps to the most significant half of d<n>
88 */
b7bcbe95 89
55d284af
PM
90/* CPU state for each instance of a generic timer (in cp15 c14) */
91typedef struct ARMGenericTimer {
92 uint64_t cval; /* Timer CompareValue register */
93 uint32_t ctl; /* Timer Control register */
94} ARMGenericTimer;
95
96#define GTIMER_PHYS 0
97#define GTIMER_VIRT 1
98#define NUM_GTIMERS 2
99
100/* Scale factor for generic timers, ie number of ns per tick.
101 * This gives a 62.5MHz timer.
102 */
103#define GTIMER_SCALE 16
104
2c0262af 105typedef struct CPUARMState {
b5ff1b31 106 /* Regs for current mode. */
2c0262af 107 uint32_t regs[16];
3926cc84
AG
108
109 /* 32/64 switch only happens when taking and returning from
110 * exceptions so the overlap semantics are taken care of then
111 * instead of having a complicated union.
112 */
113 /* Regs for A64 mode. */
114 uint64_t xregs[32];
115 uint64_t pc;
116 /* TODO: pstate doesn't correspond to an architectural register;
117 * it would be better modelled as the underlying fields.
118 */
119 uint32_t pstate;
120 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
121
b90372ad 122 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 123 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
124 the whole CPSR. */
125 uint32_t uncached_cpsr;
126 uint32_t spsr;
127
128 /* Banked registers. */
129 uint32_t banked_spsr[6];
130 uint32_t banked_r13[6];
131 uint32_t banked_r14[6];
3b46e624 132
b5ff1b31
FB
133 /* These hold r8-r12. */
134 uint32_t usr_regs[5];
135 uint32_t fiq_regs[5];
3b46e624 136
2c0262af
FB
137 /* cpsr flag cache for faster execution */
138 uint32_t CF; /* 0 or 1 */
139 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
140 uint32_t NF; /* N is bit 31. All other bits are undefined. */
141 uint32_t ZF; /* Z set if zero. */
99c475ab 142 uint32_t QF; /* 0 or 1 */
9ee6e8bb 143 uint32_t GE; /* cpsr[19:16] */
b26eefb6 144 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 145 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
2c0262af 146
b5ff1b31
FB
147 /* System control coprocessor (cp15) */
148 struct {
40f137e1 149 uint32_t c0_cpuid;
a49ea279 150 uint32_t c0_cssel; /* Cache size selection. */
b5ff1b31
FB
151 uint32_t c1_sys; /* System control register. */
152 uint32_t c1_coproc; /* Coprocessor access register. */
610c3c8a 153 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
2be27624 154 uint32_t c1_scr; /* secure config register. */
9ee6e8bb 155 uint32_t c2_base0; /* MMU translation table base 0. */
891a2fe7
PM
156 uint32_t c2_base0_hi; /* MMU translation table base 0, high 32 bits */
157 uint32_t c2_base1; /* MMU translation table base 0. */
158 uint32_t c2_base1_hi; /* MMU translation table base 1, high 32 bits */
b2fa1797
PB
159 uint32_t c2_control; /* MMU translation table base control. */
160 uint32_t c2_mask; /* MMU translation table base selection mask. */
161 uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
ce819861
PB
162 uint32_t c2_data; /* MPU data cachable bits. */
163 uint32_t c2_insn; /* MPU instruction cachable bits. */
164 uint32_t c3; /* MMU domain access control register
165 MPU write buffer control. */
b5ff1b31
FB
166 uint32_t c5_insn; /* Fault status registers. */
167 uint32_t c5_data;
ce819861 168 uint32_t c6_region[8]; /* MPU base/size registers. */
b5ff1b31
FB
169 uint32_t c6_insn; /* Fault address registers. */
170 uint32_t c6_data;
f8bf8606 171 uint32_t c7_par; /* Translation result. */
891a2fe7 172 uint32_t c7_par_hi; /* Translation result, high 32 bits */
b5ff1b31
FB
173 uint32_t c9_insn; /* Cache lockdown registers. */
174 uint32_t c9_data;
74594c9d
PM
175 uint32_t c9_pmcr; /* performance monitor control register */
176 uint32_t c9_pmcnten; /* perf monitor counter enables */
177 uint32_t c9_pmovsr; /* perf monitor overflow status */
178 uint32_t c9_pmxevtyper; /* perf monitor event type */
179 uint32_t c9_pmuserenr; /* perf monitor user enable */
180 uint32_t c9_pminten; /* perf monitor interrupt enables */
8641136c 181 uint32_t c12_vbar; /* vector base address register */
b5ff1b31
FB
182 uint32_t c13_fcse; /* FCSE PID. */
183 uint32_t c13_context; /* Context ID. */
9ee6e8bb
PB
184 uint32_t c13_tls1; /* User RW Thread register. */
185 uint32_t c13_tls2; /* User RO Thread register. */
186 uint32_t c13_tls3; /* Privileged Thread register. */
55d284af
PM
187 uint32_t c14_cntfrq; /* Counter Frequency register */
188 uint32_t c14_cntkctl; /* Timer Control register */
189 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 190 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
191 uint32_t c15_ticonfig; /* TI925T configuration byte. */
192 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
193 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
194 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
195 uint32_t c15_config_base_address; /* SCU base address. */
196 uint32_t c15_diagnostic; /* diagnostic register */
197 uint32_t c15_power_diagnostic;
198 uint32_t c15_power_control; /* power control */
b5ff1b31 199 } cp15;
40f137e1 200
3926cc84
AG
201 /* System registers (AArch64) */
202 struct {
203 uint64_t tpidr_el0;
204 } sr;
205
9ee6e8bb
PB
206 struct {
207 uint32_t other_sp;
208 uint32_t vecbase;
209 uint32_t basepri;
210 uint32_t control;
211 int current_sp;
212 int exception;
213 int pending_exception;
9ee6e8bb
PB
214 } v7m;
215
fe1479c3
PB
216 /* Thumb-2 EE state. */
217 uint32_t teecr;
218 uint32_t teehbr;
219
b7bcbe95
FB
220 /* VFP coprocessor state. */
221 struct {
3926cc84
AG
222 /* VFP/Neon register state. Note that the mapping between S, D and Q
223 * views of the register bank differs between AArch64 and AArch32:
224 * In AArch32:
225 * Qn = regs[2n+1]:regs[2n]
226 * Dn = regs[n]
227 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
228 * (and regs[32] to regs[63] are inaccessible)
229 * In AArch64:
230 * Qn = regs[2n+1]:regs[2n]
231 * Dn = regs[2n]
232 * Sn = regs[2n] bits 31..0
233 * This corresponds to the architecturally defined mapping between
234 * the two execution states, and means we do not need to explicitly
235 * map these registers when changing states.
236 */
237 float64 regs[64];
b7bcbe95 238
40f137e1 239 uint32_t xregs[16];
b7bcbe95
FB
240 /* We store these fpcsr fields separately for convenience. */
241 int vec_len;
242 int vec_stride;
243
9ee6e8bb
PB
244 /* scratch space when Tn are not sufficient. */
245 uint32_t scratch[8];
3b46e624 246
3a492f3a
PM
247 /* fp_status is the "normal" fp status. standard_fp_status retains
248 * values corresponding to the ARM "Standard FPSCR Value", ie
249 * default-NaN, flush-to-zero, round-to-nearest and is used by
250 * any operations (generally Neon) which the architecture defines
251 * as controlled by the standard FPSCR value rather than the FPSCR.
252 *
253 * To avoid having to transfer exception bits around, we simply
254 * say that the FPSCR cumulative exception flags are the logical
255 * OR of the flags in the two fp statuses. This relies on the
256 * only thing which needs to read the exception flags being
257 * an explicit FPSCR read.
258 */
53cd6637 259 float_status fp_status;
3a492f3a 260 float_status standard_fp_status;
b7bcbe95 261 } vfp;
426f5abc
PB
262 uint32_t exclusive_addr;
263 uint32_t exclusive_val;
264 uint32_t exclusive_high;
9ee6e8bb 265#if defined(CONFIG_USER_ONLY)
426f5abc
PB
266 uint32_t exclusive_test;
267 uint32_t exclusive_info;
9ee6e8bb 268#endif
b7bcbe95 269
18c9b560
AZ
270 /* iwMMXt coprocessor state. */
271 struct {
272 uint64_t regs[16];
273 uint64_t val;
274
275 uint32_t cregs[16];
276 } iwmmxt;
277
d8fd2954
PB
278 /* For mixed endian mode. */
279 bool bswap_code;
280
ce4defa0
PB
281#if defined(CONFIG_USER_ONLY)
282 /* For usermode syscall translation. */
283 int eabi;
284#endif
285
a316d335
FB
286 CPU_COMMON
287
9d551997 288 /* These fields after the common ones so they are preserved on reset. */
9ba8c3f4 289
581be094 290 /* Internal CPU feature flags. */
918f5dca 291 uint64_t features;
581be094 292
983fe826 293 void *nvic;
462a8bc6 294 const struct arm_boot_info *boot_info;
2c0262af
FB
295} CPUARMState;
296
778c3a06
AF
297#include "cpu-qom.h"
298
299ARMCPU *cpu_arm_init(const char *cpu_model);
b26eefb6 300void arm_translate_init(void);
14969266 301void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
2c0262af 302int cpu_arm_exec(CPUARMState *s);
494b00c7 303int bank_number(int mode);
b5ff1b31 304void switch_mode(CPUARMState *, int);
9ee6e8bb 305uint32_t do_arm_semihosting(CPUARMState *env);
b5ff1b31 306
3926cc84
AG
307static inline bool is_a64(CPUARMState *env)
308{
309 return env->aarch64;
310}
311
312#define PSTATE_N_SHIFT 3
313#define PSTATE_N (1 << PSTATE_N_SHIFT)
314#define PSTATE_Z_SHIFT 2
315#define PSTATE_Z (1 << PSTATE_Z_SHIFT)
316#define PSTATE_C_SHIFT 1
317#define PSTATE_C (1 << PSTATE_C_SHIFT)
318#define PSTATE_V_SHIFT 0
319#define PSTATE_V (1 << PSTATE_V_SHIFT)
320
2c0262af
FB
321/* you can call this signal handler from your SIGBUS and SIGSEGV
322 signal handlers to inform the virtual CPU of exceptions. non zero
323 is returned if the signal was handled by the virtual CPU. */
5fafdf24 324int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af 325 void *puc);
84a031c6 326int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
97b348e7 327 int mmu_idx);
0b5c1ce8 328#define cpu_handle_mmu_fault cpu_arm_handle_mmu_fault
2c0262af 329
78dbbbe4
PM
330#define CPSR_M (0x1fU)
331#define CPSR_T (1U << 5)
332#define CPSR_F (1U << 6)
333#define CPSR_I (1U << 7)
334#define CPSR_A (1U << 8)
335#define CPSR_E (1U << 9)
336#define CPSR_IT_2_7 (0xfc00U)
337#define CPSR_GE (0xfU << 16)
338#define CPSR_RESERVED (0xfU << 20)
339#define CPSR_J (1U << 24)
340#define CPSR_IT_0_1 (3U << 25)
341#define CPSR_Q (1U << 27)
342#define CPSR_V (1U << 28)
343#define CPSR_C (1U << 29)
344#define CPSR_Z (1U << 30)
345#define CPSR_N (1U << 31)
9ee6e8bb
PB
346#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
347
348#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
349#define CACHED_CPSR_BITS (CPSR_T | CPSR_GE | CPSR_IT | CPSR_Q | CPSR_NZCV)
350/* Bits writable in user mode. */
351#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
352/* Execution state bits. MRS read as zero, MSR writes ignored. */
353#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
b5ff1b31 354
b5ff1b31 355/* Return the current CPSR value. */
2f4a40e5
AZ
356uint32_t cpsr_read(CPUARMState *env);
357/* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
358void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
9ee6e8bb
PB
359
360/* Return the current xPSR value. */
361static inline uint32_t xpsr_read(CPUARMState *env)
362{
363 int ZF;
6fbe23d5
PB
364 ZF = (env->ZF == 0);
365 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
366 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
367 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
368 | ((env->condexec_bits & 0xfc) << 8)
369 | env->v7m.exception;
b5ff1b31
FB
370}
371
9ee6e8bb
PB
372/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
373static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
374{
9ee6e8bb 375 if (mask & CPSR_NZCV) {
6fbe23d5
PB
376 env->ZF = (~val) & CPSR_Z;
377 env->NF = val;
9ee6e8bb
PB
378 env->CF = (val >> 29) & 1;
379 env->VF = (val << 3) & 0x80000000;
380 }
381 if (mask & CPSR_Q)
382 env->QF = ((val & CPSR_Q) != 0);
383 if (mask & (1 << 24))
384 env->thumb = ((val & (1 << 24)) != 0);
385 if (mask & CPSR_IT_0_1) {
386 env->condexec_bits &= ~3;
387 env->condexec_bits |= (val >> 25) & 3;
388 }
389 if (mask & CPSR_IT_2_7) {
390 env->condexec_bits &= 3;
391 env->condexec_bits |= (val >> 8) & 0xfc;
392 }
393 if (mask & 0x1ff) {
394 env->v7m.exception = val & 0x1ff;
395 }
396}
397
01653295
PM
398/* Return the current FPSCR value. */
399uint32_t vfp_get_fpscr(CPUARMState *env);
400void vfp_set_fpscr(CPUARMState *env, uint32_t val);
401
b5ff1b31
FB
402enum arm_cpu_mode {
403 ARM_CPU_MODE_USR = 0x10,
404 ARM_CPU_MODE_FIQ = 0x11,
405 ARM_CPU_MODE_IRQ = 0x12,
406 ARM_CPU_MODE_SVC = 0x13,
407 ARM_CPU_MODE_ABT = 0x17,
408 ARM_CPU_MODE_UND = 0x1b,
409 ARM_CPU_MODE_SYS = 0x1f
410};
411
40f137e1
PB
412/* VFP system registers. */
413#define ARM_VFP_FPSID 0
414#define ARM_VFP_FPSCR 1
9ee6e8bb
PB
415#define ARM_VFP_MVFR1 6
416#define ARM_VFP_MVFR0 7
40f137e1
PB
417#define ARM_VFP_FPEXC 8
418#define ARM_VFP_FPINST 9
419#define ARM_VFP_FPINST2 10
420
18c9b560
AZ
421/* iwMMXt coprocessor control registers. */
422#define ARM_IWMMXT_wCID 0
423#define ARM_IWMMXT_wCon 1
424#define ARM_IWMMXT_wCSSF 2
425#define ARM_IWMMXT_wCASF 3
426#define ARM_IWMMXT_wCGR0 8
427#define ARM_IWMMXT_wCGR1 9
428#define ARM_IWMMXT_wCGR2 10
429#define ARM_IWMMXT_wCGR3 11
430
ce854d7c
BC
431/* If adding a feature bit which corresponds to a Linux ELF
432 * HWCAP bit, remember to update the feature-bit-to-hwcap
433 * mapping in linux-user/elfload.c:get_elf_hwcap().
434 */
40f137e1
PB
435enum arm_features {
436 ARM_FEATURE_VFP,
c1713132
AZ
437 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
438 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 439 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
440 ARM_FEATURE_V6,
441 ARM_FEATURE_V6K,
442 ARM_FEATURE_V7,
443 ARM_FEATURE_THUMB2,
c3d2689d 444 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
9ee6e8bb 445 ARM_FEATURE_VFP3,
60011498 446 ARM_FEATURE_VFP_FP16,
9ee6e8bb 447 ARM_FEATURE_NEON,
47789990 448 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
9ee6e8bb 449 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 450 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 451 ARM_FEATURE_THUMB2EE,
be5e7a76
DES
452 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
453 ARM_FEATURE_V4T,
454 ARM_FEATURE_V5,
5bc95aa2 455 ARM_FEATURE_STRONGARM,
906879a9 456 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
b8b8ea05 457 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
da97f52c 458 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
0383ac00 459 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 460 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 461 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
462 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
463 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
464 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 465 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
466 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
467 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 468 ARM_FEATURE_V8,
3926cc84 469 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
40f137e1
PB
470};
471
472static inline int arm_feature(CPUARMState *env, int feature)
473{
918f5dca 474 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
475}
476
9a78eead 477void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
40f137e1 478
9ee6e8bb
PB
479/* Interface between CPU and Interrupt controller. */
480void armv7m_nvic_set_pending(void *opaque, int irq);
481int armv7m_nvic_acknowledge_irq(void *opaque);
482void armv7m_nvic_complete_irq(void *opaque, int irq);
483
4b6a83fb
PM
484/* Interface for defining coprocessor registers.
485 * Registers are defined in tables of arm_cp_reginfo structs
486 * which are passed to define_arm_cp_regs().
487 */
488
489/* When looking up a coprocessor register we look for it
490 * via an integer which encodes all of:
491 * coprocessor number
492 * Crn, Crm, opc1, opc2 fields
493 * 32 or 64 bit register (ie is it accessed via MRC/MCR
494 * or via MRRC/MCRR?)
495 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
496 * (In this case crn and opc2 should be zero.)
497 */
498#define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2) \
499 (((cp) << 16) | ((is64) << 15) | ((crn) << 11) | \
500 ((crm) << 7) | ((opc1) << 3) | (opc2))
501
721fae12
PM
502/* Convert a full 64 bit KVM register ID to the truncated 32 bit
503 * version used as a key for the coprocessor register hashtable
504 */
505static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
506{
507 uint32_t cpregid = kvmid;
508 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
509 cpregid |= (1 << 15);
510 }
511 return cpregid;
512}
513
514/* Convert a truncated 32 bit hashtable key into the full
515 * 64 bit KVM register ID.
516 */
517static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
518{
519 uint64_t kvmid = cpregid & ~(1 << 15);
520 if (cpregid & (1 << 15)) {
521 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
522 } else {
523 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
524 }
525 return kvmid;
526}
527
4b6a83fb
PM
528/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
529 * special-behaviour cp reg and bits [15..8] indicate what behaviour
530 * it has. Otherwise it is a simple cp reg, where CONST indicates that
531 * TCG can assume the value to be constant (ie load at translate time)
532 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
533 * indicates that the TB should not be ended after a write to this register
534 * (the default is that the TB ends after cp writes). OVERRIDE permits
535 * a register definition to override a previous definition for the
536 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
537 * old must have the OVERRIDE bit set.
7023ec7e
PM
538 * NO_MIGRATE indicates that this register should be ignored for migration;
539 * (eg because any state is accessed via some other coprocessor register).
2452731c
PM
540 * IO indicates that this register does I/O and therefore its accesses
541 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
542 * registers which implement clocks or timers require this.
4b6a83fb
PM
543 */
544#define ARM_CP_SPECIAL 1
545#define ARM_CP_CONST 2
546#define ARM_CP_64BIT 4
547#define ARM_CP_SUPPRESS_TB_END 8
548#define ARM_CP_OVERRIDE 16
7023ec7e 549#define ARM_CP_NO_MIGRATE 32
2452731c 550#define ARM_CP_IO 64
4b6a83fb
PM
551#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
552#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
553#define ARM_LAST_SPECIAL ARM_CP_WFI
554/* Used only as a terminator for ARMCPRegInfo lists */
555#define ARM_CP_SENTINEL 0xffff
556/* Mask of only the flag bits in a type field */
2452731c 557#define ARM_CP_FLAG_MASK 0x7f
4b6a83fb
PM
558
559/* Return true if cptype is a valid type field. This is used to try to
560 * catch errors where the sentinel has been accidentally left off the end
561 * of a list of registers.
562 */
563static inline bool cptype_valid(int cptype)
564{
565 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
566 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 567 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
568}
569
570/* Access rights:
571 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
572 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
573 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
574 * (ie any of the privileged modes in Secure state, or Monitor mode).
575 * If a register is accessible in one privilege level it's always accessible
576 * in higher privilege levels too. Since "Secure PL1" also follows this rule
577 * (ie anything visible in PL2 is visible in S-PL1, some things are only
578 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
579 * terminology a little and call this PL3.
580 *
581 * If access permissions for a register are more complex than can be
582 * described with these bits, then use a laxer set of restrictions, and
583 * do the more restrictive/complex check inside a helper function.
584 */
585#define PL3_R 0x80
586#define PL3_W 0x40
587#define PL2_R (0x20 | PL3_R)
588#define PL2_W (0x10 | PL3_W)
589#define PL1_R (0x08 | PL2_R)
590#define PL1_W (0x04 | PL2_W)
591#define PL0_R (0x02 | PL1_R)
592#define PL0_W (0x01 | PL1_W)
593
594#define PL3_RW (PL3_R | PL3_W)
595#define PL2_RW (PL2_R | PL2_W)
596#define PL1_RW (PL1_R | PL1_W)
597#define PL0_RW (PL0_R | PL0_W)
598
599static inline int arm_current_pl(CPUARMState *env)
600{
601 if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR) {
602 return 0;
603 }
604 /* We don't currently implement the Virtualization or TrustZone
605 * extensions, so PL2 and PL3 don't exist for us.
606 */
607 return 1;
608}
609
610typedef struct ARMCPRegInfo ARMCPRegInfo;
611
612/* Access functions for coprocessor registers. These should return
613 * 0 on success, or one of the EXCP_* constants if access should cause
614 * an exception (in which case *value is not written).
615 */
616typedef int CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque,
617 uint64_t *value);
618typedef int CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
619 uint64_t value);
620/* Hook function for register reset */
621typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
622
623#define CP_ANY 0xff
624
625/* Definition of an ARM coprocessor register */
626struct ARMCPRegInfo {
627 /* Name of register (useful mainly for debugging, need not be unique) */
628 const char *name;
629 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
630 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
631 * 'wildcard' field -- any value of that field in the MRC/MCR insn
632 * will be decoded to this register. The register read and write
633 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
634 * used by the program, so it is possible to register a wildcard and
635 * then behave differently on read/write if necessary.
636 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
637 * must both be zero.
638 */
639 uint8_t cp;
640 uint8_t crn;
641 uint8_t crm;
642 uint8_t opc1;
643 uint8_t opc2;
644 /* Register type: ARM_CP_* bits/values */
645 int type;
646 /* Access rights: PL*_[RW] */
647 int access;
648 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
649 * this register was defined: can be used to hand data through to the
650 * register read/write functions, since they are passed the ARMCPRegInfo*.
651 */
652 void *opaque;
653 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
654 * fieldoffset is non-zero, the reset value of the register.
655 */
656 uint64_t resetvalue;
657 /* Offset of the field in CPUARMState for this register. This is not
658 * needed if either:
659 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
660 * 2. both readfn and writefn are specified
661 */
662 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
663 /* Function for handling reads of this register. If NULL, then reads
664 * will be done by loading from the offset into CPUARMState specified
665 * by fieldoffset.
666 */
667 CPReadFn *readfn;
668 /* Function for handling writes of this register. If NULL, then writes
669 * will be done by writing to the offset into CPUARMState specified
670 * by fieldoffset.
671 */
672 CPWriteFn *writefn;
7023ec7e
PM
673 /* Function for doing a "raw" read; used when we need to copy
674 * coprocessor state to the kernel for KVM or out for
675 * migration. This only needs to be provided if there is also a
676 * readfn and it makes an access permission check.
677 */
678 CPReadFn *raw_readfn;
679 /* Function for doing a "raw" write; used when we need to copy KVM
680 * kernel coprocessor state into userspace, or for inbound
681 * migration. This only needs to be provided if there is also a
682 * writefn and it makes an access permission check or masks out
683 * "unwritable" bits or has write-one-to-clear or similar behaviour.
684 */
685 CPWriteFn *raw_writefn;
4b6a83fb
PM
686 /* Function for resetting the register. If NULL, then reset will be done
687 * by writing resetvalue to the field specified in fieldoffset. If
688 * fieldoffset is 0 then no reset will be done.
689 */
690 CPResetFn *resetfn;
691};
692
693/* Macros which are lvalues for the field in CPUARMState for the
694 * ARMCPRegInfo *ri.
695 */
696#define CPREG_FIELD32(env, ri) \
697 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
698#define CPREG_FIELD64(env, ri) \
699 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
700
701#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
702
703void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
704 const ARMCPRegInfo *regs, void *opaque);
705void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
706 const ARMCPRegInfo *regs, void *opaque);
707static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
708{
709 define_arm_cp_regs_with_opaque(cpu, regs, 0);
710}
711static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
712{
713 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
714}
715const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp);
716
717/* CPWriteFn that can be used to implement writes-ignored behaviour */
718int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
719 uint64_t value);
720/* CPReadFn that can be used for read-as-zero behaviour */
721int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value);
722
723static inline bool cp_access_ok(CPUARMState *env,
724 const ARMCPRegInfo *ri, int isread)
725{
726 return (ri->access >> ((arm_current_pl(env) * 2) + isread)) & 1;
727}
728
721fae12
PM
729/**
730 * write_list_to_cpustate
731 * @cpu: ARMCPU
732 *
733 * For each register listed in the ARMCPU cpreg_indexes list, write
734 * its value from the cpreg_values list into the ARMCPUState structure.
735 * This updates TCG's working data structures from KVM data or
736 * from incoming migration state.
737 *
738 * Returns: true if all register values were updated correctly,
739 * false if some register was unknown or could not be written.
740 * Note that we do not stop early on failure -- we will attempt
741 * writing all registers in the list.
742 */
743bool write_list_to_cpustate(ARMCPU *cpu);
744
745/**
746 * write_cpustate_to_list:
747 * @cpu: ARMCPU
748 *
749 * For each register listed in the ARMCPU cpreg_indexes list, write
750 * its value from the ARMCPUState structure into the cpreg_values list.
751 * This is used to copy info from TCG's working data structures into
752 * KVM or for outbound migration.
753 *
754 * Returns: true if all register values were read correctly,
755 * false if some register was unknown or could not be read.
756 * Note that we do not stop early on failure -- we will attempt
757 * reading all registers in the list.
758 */
759bool write_cpustate_to_list(ARMCPU *cpu);
760
9ee6e8bb
PB
761/* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
762 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
763 conventional cores (ie. Application or Realtime profile). */
764
765#define IS_M(env) arm_feature(env, ARM_FEATURE_M)
9ee6e8bb 766
9ee6e8bb
PB
767#define ARM_CPUID_TI915T 0x54029152
768#define ARM_CPUID_TI925T 0x54029252
40f137e1 769
b5ff1b31 770#if defined(CONFIG_USER_ONLY)
2c0262af 771#define TARGET_PAGE_BITS 12
b5ff1b31
FB
772#else
773/* The ARM MMU allows 1k pages. */
774/* ??? Linux doesn't actually use these, and they're deprecated in recent
82d17978 775 architecture revisions. Maybe a configure option to disable them. */
b5ff1b31
FB
776#define TARGET_PAGE_BITS 10
777#endif
9467d44c 778
3926cc84
AG
779#if defined(TARGET_AARCH64)
780# define TARGET_PHYS_ADDR_SPACE_BITS 48
781# define TARGET_VIRT_ADDR_SPACE_BITS 64
782#else
783# define TARGET_PHYS_ADDR_SPACE_BITS 40
784# define TARGET_VIRT_ADDR_SPACE_BITS 32
785#endif
52705890 786
ad37ad5b
PM
787static inline CPUARMState *cpu_init(const char *cpu_model)
788{
789 ARMCPU *cpu = cpu_arm_init(cpu_model);
790 if (cpu) {
791 return &cpu->env;
792 }
793 return NULL;
794}
795
9467d44c
TS
796#define cpu_exec cpu_arm_exec
797#define cpu_gen_code cpu_arm_gen_code
798#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 799#define cpu_list arm_cpu_list
9467d44c 800
6ebbf390
JM
801/* MMU modes definitions */
802#define MMU_MODE0_SUFFIX _kernel
803#define MMU_MODE1_SUFFIX _user
804#define MMU_USER_IDX 1
0ecb72a5 805static inline int cpu_mmu_index (CPUARMState *env)
6ebbf390
JM
806{
807 return (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR ? 1 : 0;
808}
809
022c62cb 810#include "exec/cpu-all.h"
622ed360 811
3926cc84
AG
812/* Bit usage in the TB flags field: bit 31 indicates whether we are
813 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
814 */
815#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
816#define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
817
818/* Bit usage when in AArch32 state: */
a1705768
PM
819#define ARM_TBFLAG_THUMB_SHIFT 0
820#define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
821#define ARM_TBFLAG_VECLEN_SHIFT 1
822#define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
823#define ARM_TBFLAG_VECSTRIDE_SHIFT 4
824#define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
825#define ARM_TBFLAG_PRIV_SHIFT 6
826#define ARM_TBFLAG_PRIV_MASK (1 << ARM_TBFLAG_PRIV_SHIFT)
827#define ARM_TBFLAG_VFPEN_SHIFT 7
828#define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
829#define ARM_TBFLAG_CONDEXEC_SHIFT 8
830#define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
d8fd2954
PB
831#define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
832#define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
3926cc84
AG
833
834/* Bit usage when in AArch64 state: currently no bits defined */
a1705768
PM
835
836/* some convenience accessor macros */
3926cc84
AG
837#define ARM_TBFLAG_AARCH64_STATE(F) \
838 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
a1705768
PM
839#define ARM_TBFLAG_THUMB(F) \
840 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
841#define ARM_TBFLAG_VECLEN(F) \
842 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
843#define ARM_TBFLAG_VECSTRIDE(F) \
844 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
845#define ARM_TBFLAG_PRIV(F) \
846 (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
847#define ARM_TBFLAG_VFPEN(F) \
848 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
849#define ARM_TBFLAG_CONDEXEC(F) \
850 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
d8fd2954
PB
851#define ARM_TBFLAG_BSWAP_CODE(F) \
852 (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
a1705768 853
0ecb72a5 854static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
6b917547
AL
855 target_ulong *cs_base, int *flags)
856{
3926cc84
AG
857 if (is_a64(env)) {
858 *pc = env->pc;
859 *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
05ed9a99 860 } else {
3926cc84
AG
861 int privmode;
862 *pc = env->regs[15];
863 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
864 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
865 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
866 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
867 | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
868 if (arm_feature(env, ARM_FEATURE_M)) {
869 privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
870 } else {
871 privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
872 }
873 if (privmode) {
874 *flags |= ARM_TBFLAG_PRIV_MASK;
875 }
876 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
877 *flags |= ARM_TBFLAG_VFPEN_MASK;
878 }
a1705768 879 }
3926cc84
AG
880
881 *cs_base = 0;
6b917547
AL
882}
883
3993c6bd 884static inline bool cpu_has_work(CPUState *cpu)
f081c76c 885{
259186a7 886 return cpu->interrupt_request &
f081c76c
BS
887 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB);
888}
889
022c62cb 890#include "exec/exec-all.h"
f081c76c 891
3926cc84
AG
892static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
893{
894 if (ARM_TBFLAG_AARCH64_STATE(tb->flags)) {
895 env->pc = tb->pc;
896 } else {
897 env->regs[15] = tb->pc;
898 }
899}
900
d8fd2954 901/* Load an instruction and return it in the standard little-endian order */
0a2461fa 902static inline uint32_t arm_ldl_code(CPUARMState *env, target_ulong addr,
d31dd73e 903 bool do_swap)
d8fd2954 904{
d31dd73e 905 uint32_t insn = cpu_ldl_code(env, addr);
d8fd2954
PB
906 if (do_swap) {
907 return bswap32(insn);
908 }
909 return insn;
910}
911
912/* Ditto, for a halfword (Thumb) instruction */
0a2461fa 913static inline uint16_t arm_lduw_code(CPUARMState *env, target_ulong addr,
d31dd73e 914 bool do_swap)
d8fd2954 915{
d31dd73e 916 uint16_t insn = cpu_lduw_code(env, addr);
d8fd2954
PB
917 if (do_swap) {
918 return bswap16(insn);
919 }
920 return insn;
921}
922
2c0262af 923#endif
This page took 0.884104 seconds and 4 git commands to generate.