]> Git Repo - qemu.git/blame - target-arm/cpu.h
target-arm: Fix "no 64-bit EL2" assumption in arm_excp_unmasked()
[qemu.git] / target-arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af
FB
18 */
19#ifndef CPU_ARM_H
20#define CPU_ARM_H
21
3926cc84 22#include "config.h"
3cf1e035 23
72b0cd35
PM
24#include "kvm-consts.h"
25
3926cc84
AG
26#if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28# define TARGET_LONG_BITS 64
3926cc84
AG
29#else
30# define TARGET_LONG_BITS 32
3926cc84 31#endif
9042c0e2 32
84f2bed3
PS
33#define TARGET_IS_BIENDIAN 1
34
9349b4f9 35#define CPUArchState struct CPUARMState
c2764719 36
9a78eead 37#include "qemu-common.h"
022c62cb 38#include "exec/cpu-defs.h"
2c0262af 39
6b4c305c 40#include "fpu/softfloat.h"
53cd6637 41
b8a9e8f1
FB
42#define EXCP_UDEF 1 /* undefined instruction */
43#define EXCP_SWI 2 /* software interrupt */
44#define EXCP_PREFETCH_ABORT 3
45#define EXCP_DATA_ABORT 4
b5ff1b31
FB
46#define EXCP_IRQ 5
47#define EXCP_FIQ 6
06c949e6 48#define EXCP_BKPT 7
9ee6e8bb 49#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 50#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
426f5abc 51#define EXCP_STREX 10
35979d71 52#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 53#define EXCP_HYP_TRAP 12
e0d6e6a5 54#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
55#define EXCP_VIRQ 14
56#define EXCP_VFIQ 15
8012c84f 57#define EXCP_SEMIHOST 16 /* semihosting call (A64 only) */
9ee6e8bb
PB
58
59#define ARMV7M_EXCP_RESET 1
60#define ARMV7M_EXCP_NMI 2
61#define ARMV7M_EXCP_HARD 3
62#define ARMV7M_EXCP_MEM 4
63#define ARMV7M_EXCP_BUS 5
64#define ARMV7M_EXCP_USAGE 6
65#define ARMV7M_EXCP_SVC 11
66#define ARMV7M_EXCP_DEBUG 12
67#define ARMV7M_EXCP_PENDSV 14
68#define ARMV7M_EXCP_SYSTICK 15
2c0262af 69
403946c0
RH
70/* ARM-specific interrupt pending bits. */
71#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
72#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
73#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
403946c0 74
e4fe830b
PM
75/* The usual mapping for an AArch64 system register to its AArch32
76 * counterpart is for the 32 bit world to have access to the lower
77 * half only (with writes leaving the upper half untouched). It's
78 * therefore useful to be able to pass TCG the offset of the least
79 * significant half of a uint64_t struct member.
80 */
81#ifdef HOST_WORDS_BIGENDIAN
5cd8a118 82#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 83#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
84#else
85#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 86#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
87#endif
88
136e67e9 89/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
90#define ARM_CPU_IRQ 0
91#define ARM_CPU_FIQ 1
136e67e9
EI
92#define ARM_CPU_VIRQ 2
93#define ARM_CPU_VFIQ 3
403946c0 94
f93eb9ff
AZ
95struct arm_boot_info;
96
c1e37810 97#define NB_MMU_MODES 7
52e971d9 98#define TARGET_INSN_START_EXTRA_WORDS 1
6ebbf390 99
b7bcbe95
FB
100/* We currently assume float and double are IEEE single and double
101 precision respectively.
102 Doing runtime conversions is tricky because VFP registers may contain
103 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
104 s<2n> maps to the least significant half of d<n>
105 s<2n+1> maps to the most significant half of d<n>
106 */
b7bcbe95 107
55d284af
PM
108/* CPU state for each instance of a generic timer (in cp15 c14) */
109typedef struct ARMGenericTimer {
110 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 111 uint64_t ctl; /* Timer Control register */
55d284af
PM
112} ARMGenericTimer;
113
114#define GTIMER_PHYS 0
115#define GTIMER_VIRT 1
b0e66d95 116#define GTIMER_HYP 2
b4d3978c
PM
117#define GTIMER_SEC 3
118#define NUM_GTIMERS 4
55d284af 119
11f136ee
FA
120typedef struct {
121 uint64_t raw_tcr;
122 uint32_t mask;
123 uint32_t base_mask;
124} TCR;
125
2c0262af 126typedef struct CPUARMState {
b5ff1b31 127 /* Regs for current mode. */
2c0262af 128 uint32_t regs[16];
3926cc84
AG
129
130 /* 32/64 switch only happens when taking and returning from
131 * exceptions so the overlap semantics are taken care of then
132 * instead of having a complicated union.
133 */
134 /* Regs for A64 mode. */
135 uint64_t xregs[32];
136 uint64_t pc;
d356312f
PM
137 /* PSTATE isn't an architectural register for ARMv8. However, it is
138 * convenient for us to assemble the underlying state into a 32 bit format
139 * identical to the architectural format used for the SPSR. (This is also
140 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
141 * 'pstate' register are.) Of the PSTATE bits:
142 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
143 * semantics as for AArch32, as described in the comments on each field)
144 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 145 * DAIF (exception masks) are kept in env->daif
d356312f 146 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
147 */
148 uint32_t pstate;
149 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
150
b90372ad 151 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 152 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
153 the whole CPSR. */
154 uint32_t uncached_cpsr;
155 uint32_t spsr;
156
157 /* Banked registers. */
28c9457d 158 uint64_t banked_spsr[8];
0b7d409d
FA
159 uint32_t banked_r13[8];
160 uint32_t banked_r14[8];
3b46e624 161
b5ff1b31
FB
162 /* These hold r8-r12. */
163 uint32_t usr_regs[5];
164 uint32_t fiq_regs[5];
3b46e624 165
2c0262af
FB
166 /* cpsr flag cache for faster execution */
167 uint32_t CF; /* 0 or 1 */
168 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
169 uint32_t NF; /* N is bit 31. All other bits are undefined. */
170 uint32_t ZF; /* Z set if zero. */
99c475ab 171 uint32_t QF; /* 0 or 1 */
9ee6e8bb 172 uint32_t GE; /* cpsr[19:16] */
b26eefb6 173 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 174 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
b6af0975 175 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
2c0262af 176
1b174238 177 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 178 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 179
b5ff1b31
FB
180 /* System control coprocessor (cp15) */
181 struct {
40f137e1 182 uint32_t c0_cpuid;
b85a1fd6
FA
183 union { /* Cache size selection */
184 struct {
185 uint64_t _unused_csselr0;
186 uint64_t csselr_ns;
187 uint64_t _unused_csselr1;
188 uint64_t csselr_s;
189 };
190 uint64_t csselr_el[4];
191 };
137feaa9
FA
192 union { /* System control register. */
193 struct {
194 uint64_t _unused_sctlr;
195 uint64_t sctlr_ns;
196 uint64_t hsctlr;
197 uint64_t sctlr_s;
198 };
199 uint64_t sctlr_el[4];
200 };
7ebd5f2e 201 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 202 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 203 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 204 uint64_t sder; /* Secure debug enable register. */
77022576 205 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
206 union { /* MMU translation table base 0. */
207 struct {
208 uint64_t _unused_ttbr0_0;
209 uint64_t ttbr0_ns;
210 uint64_t _unused_ttbr0_1;
211 uint64_t ttbr0_s;
212 };
213 uint64_t ttbr0_el[4];
214 };
215 union { /* MMU translation table base 1. */
216 struct {
217 uint64_t _unused_ttbr1_0;
218 uint64_t ttbr1_ns;
219 uint64_t _unused_ttbr1_1;
220 uint64_t ttbr1_s;
221 };
222 uint64_t ttbr1_el[4];
223 };
b698e9cf 224 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
11f136ee
FA
225 /* MMU translation table base control. */
226 TCR tcr_el[4];
68e9c2fe 227 TCR vtcr_el2; /* Virtualization Translation Control. */
67cc32eb
VL
228 uint32_t c2_data; /* MPU data cacheable bits. */
229 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
230 union { /* MMU domain access control register
231 * MPU write buffer control.
232 */
233 struct {
234 uint64_t dacr_ns;
235 uint64_t dacr_s;
236 };
237 struct {
238 uint64_t dacr32_el2;
239 };
240 };
7e09797c
PM
241 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
242 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 243 uint64_t hcr_el2; /* Hypervisor configuration register */
64e0e2de 244 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
245 union { /* Fault status registers. */
246 struct {
247 uint64_t ifsr_ns;
248 uint64_t ifsr_s;
249 };
250 struct {
251 uint64_t ifsr32_el2;
252 };
253 };
4a7e2d73
FA
254 union {
255 struct {
256 uint64_t _unused_dfsr;
257 uint64_t dfsr_ns;
258 uint64_t hsr;
259 uint64_t dfsr_s;
260 };
261 uint64_t esr_el[4];
262 };
ce819861 263 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
264 union { /* Fault address registers. */
265 struct {
266 uint64_t _unused_far0;
267#ifdef HOST_WORDS_BIGENDIAN
268 uint32_t ifar_ns;
269 uint32_t dfar_ns;
270 uint32_t ifar_s;
271 uint32_t dfar_s;
272#else
273 uint32_t dfar_ns;
274 uint32_t ifar_ns;
275 uint32_t dfar_s;
276 uint32_t ifar_s;
277#endif
278 uint64_t _unused_far3;
279 };
280 uint64_t far_el[4];
281 };
01c097f7
FA
282 union { /* Translation result. */
283 struct {
284 uint64_t _unused_par_0;
285 uint64_t par_ns;
286 uint64_t _unused_par_1;
287 uint64_t par_s;
288 };
289 uint64_t par_el[4];
290 };
6cb0b013
PC
291
292 uint32_t c6_rgnr;
293
b5ff1b31
FB
294 uint32_t c9_insn; /* Cache lockdown registers. */
295 uint32_t c9_data;
8521466b
AF
296 uint64_t c9_pmcr; /* performance monitor control register */
297 uint64_t c9_pmcnten; /* perf monitor counter enables */
74594c9d
PM
298 uint32_t c9_pmovsr; /* perf monitor overflow status */
299 uint32_t c9_pmxevtyper; /* perf monitor event type */
300 uint32_t c9_pmuserenr; /* perf monitor user enable */
301 uint32_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
302 union { /* Memory attribute redirection */
303 struct {
304#ifdef HOST_WORDS_BIGENDIAN
305 uint64_t _unused_mair_0;
306 uint32_t mair1_ns;
307 uint32_t mair0_ns;
308 uint64_t _unused_mair_1;
309 uint32_t mair1_s;
310 uint32_t mair0_s;
311#else
312 uint64_t _unused_mair_0;
313 uint32_t mair0_ns;
314 uint32_t mair1_ns;
315 uint64_t _unused_mair_1;
316 uint32_t mair0_s;
317 uint32_t mair1_s;
318#endif
319 };
320 uint64_t mair_el[4];
321 };
fb6c91ba
GB
322 union { /* vector base address register */
323 struct {
324 uint64_t _unused_vbar;
325 uint64_t vbar_ns;
326 uint64_t hvbar;
327 uint64_t vbar_s;
328 };
329 uint64_t vbar_el[4];
330 };
e89e51a1 331 uint32_t mvbar; /* (monitor) vector base address register */
54bf36ed
FA
332 struct { /* FCSE PID. */
333 uint32_t fcseidr_ns;
334 uint32_t fcseidr_s;
335 };
336 union { /* Context ID. */
337 struct {
338 uint64_t _unused_contextidr_0;
339 uint64_t contextidr_ns;
340 uint64_t _unused_contextidr_1;
341 uint64_t contextidr_s;
342 };
343 uint64_t contextidr_el[4];
344 };
345 union { /* User RW Thread register. */
346 struct {
347 uint64_t tpidrurw_ns;
348 uint64_t tpidrprw_ns;
349 uint64_t htpidr;
350 uint64_t _tpidr_el3;
351 };
352 uint64_t tpidr_el[4];
353 };
354 /* The secure banks of these registers don't map anywhere */
355 uint64_t tpidrurw_s;
356 uint64_t tpidrprw_s;
357 uint64_t tpidruro_s;
358
359 union { /* User RO Thread register. */
360 uint64_t tpidruro_ns;
361 uint64_t tpidrro_el[1];
362 };
a7adc4b7
PM
363 uint64_t c14_cntfrq; /* Counter Frequency register */
364 uint64_t c14_cntkctl; /* Timer Control register */
0b6440af 365 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 366 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 367 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 368 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
369 uint32_t c15_ticonfig; /* TI925T configuration byte. */
370 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
371 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
372 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
373 uint32_t c15_config_base_address; /* SCU base address. */
374 uint32_t c15_diagnostic; /* diagnostic register */
375 uint32_t c15_power_diagnostic;
376 uint32_t c15_power_control; /* power control */
0b45451e
PM
377 uint64_t dbgbvr[16]; /* breakpoint value registers */
378 uint64_t dbgbcr[16]; /* breakpoint control registers */
379 uint64_t dbgwvr[16]; /* watchpoint value registers */
380 uint64_t dbgwcr[16]; /* watchpoint control registers */
3a298203 381 uint64_t mdscr_el1;
1424ca8d 382 uint64_t oslsr_el1; /* OS Lock Status */
14cc7b54 383 uint64_t mdcr_el2;
7c2cb42b
AF
384 /* If the counter is enabled, this stores the last time the counter
385 * was reset. Otherwise it stores the counter value
386 */
c92c0687 387 uint64_t c15_ccnt;
8521466b 388 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 389 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 390 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
b5ff1b31 391 } cp15;
40f137e1 392
9ee6e8bb
PB
393 struct {
394 uint32_t other_sp;
395 uint32_t vecbase;
396 uint32_t basepri;
397 uint32_t control;
398 int current_sp;
399 int exception;
9ee6e8bb
PB
400 } v7m;
401
abf1172f
PM
402 /* Information associated with an exception about to be taken:
403 * code which raises an exception must set cs->exception_index and
404 * the relevant parts of this structure; the cpu_do_interrupt function
405 * will then set the guest-visible registers as part of the exception
406 * entry process.
407 */
408 struct {
409 uint32_t syndrome; /* AArch64 format syndrome register */
410 uint32_t fsr; /* AArch32 format fault status register info */
411 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 412 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
413 /* If we implement EL2 we will also need to store information
414 * about the intermediate physical address for stage 2 faults.
415 */
416 } exception;
417
fe1479c3
PB
418 /* Thumb-2 EE state. */
419 uint32_t teecr;
420 uint32_t teehbr;
421
b7bcbe95
FB
422 /* VFP coprocessor state. */
423 struct {
3926cc84
AG
424 /* VFP/Neon register state. Note that the mapping between S, D and Q
425 * views of the register bank differs between AArch64 and AArch32:
426 * In AArch32:
427 * Qn = regs[2n+1]:regs[2n]
428 * Dn = regs[n]
429 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
430 * (and regs[32] to regs[63] are inaccessible)
431 * In AArch64:
432 * Qn = regs[2n+1]:regs[2n]
433 * Dn = regs[2n]
434 * Sn = regs[2n] bits 31..0
435 * This corresponds to the architecturally defined mapping between
436 * the two execution states, and means we do not need to explicitly
437 * map these registers when changing states.
438 */
439 float64 regs[64];
b7bcbe95 440
40f137e1 441 uint32_t xregs[16];
b7bcbe95
FB
442 /* We store these fpcsr fields separately for convenience. */
443 int vec_len;
444 int vec_stride;
445
9ee6e8bb
PB
446 /* scratch space when Tn are not sufficient. */
447 uint32_t scratch[8];
3b46e624 448
3a492f3a
PM
449 /* fp_status is the "normal" fp status. standard_fp_status retains
450 * values corresponding to the ARM "Standard FPSCR Value", ie
451 * default-NaN, flush-to-zero, round-to-nearest and is used by
452 * any operations (generally Neon) which the architecture defines
453 * as controlled by the standard FPSCR value rather than the FPSCR.
454 *
455 * To avoid having to transfer exception bits around, we simply
456 * say that the FPSCR cumulative exception flags are the logical
457 * OR of the flags in the two fp statuses. This relies on the
458 * only thing which needs to read the exception flags being
459 * an explicit FPSCR read.
460 */
53cd6637 461 float_status fp_status;
3a492f3a 462 float_status standard_fp_status;
b7bcbe95 463 } vfp;
03d05e2d
PM
464 uint64_t exclusive_addr;
465 uint64_t exclusive_val;
466 uint64_t exclusive_high;
9ee6e8bb 467#if defined(CONFIG_USER_ONLY)
03d05e2d 468 uint64_t exclusive_test;
426f5abc 469 uint32_t exclusive_info;
9ee6e8bb 470#endif
b7bcbe95 471
18c9b560
AZ
472 /* iwMMXt coprocessor state. */
473 struct {
474 uint64_t regs[16];
475 uint64_t val;
476
477 uint32_t cregs[16];
478 } iwmmxt;
479
d8fd2954
PB
480 /* For mixed endian mode. */
481 bool bswap_code;
482
ce4defa0
PB
483#if defined(CONFIG_USER_ONLY)
484 /* For usermode syscall translation. */
485 int eabi;
486#endif
487
46747d15 488 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
489 struct CPUWatchpoint *cpu_watchpoint[16];
490
a316d335
FB
491 CPU_COMMON
492
9d551997 493 /* These fields after the common ones so they are preserved on reset. */
9ba8c3f4 494
581be094 495 /* Internal CPU feature flags. */
918f5dca 496 uint64_t features;
581be094 497
6cb0b013
PC
498 /* PMSAv7 MPU */
499 struct {
500 uint32_t *drbar;
501 uint32_t *drsr;
502 uint32_t *dracr;
503 } pmsav7;
504
983fe826 505 void *nvic;
462a8bc6 506 const struct arm_boot_info *boot_info;
2c0262af
FB
507} CPUARMState;
508
778c3a06
AF
509#include "cpu-qom.h"
510
511ARMCPU *cpu_arm_init(const char *cpu_model);
ea3e9847 512int cpu_arm_exec(CPUState *cpu);
faacc041 513target_ulong do_arm_semihosting(CPUARMState *env);
ce02049d
GB
514void aarch64_sync_32_to_64(CPUARMState *env);
515void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 516
3926cc84
AG
517static inline bool is_a64(CPUARMState *env)
518{
519 return env->aarch64;
520}
521
2c0262af
FB
522/* you can call this signal handler from your SIGBUS and SIGSEGV
523 signal handlers to inform the virtual CPU of exceptions. non zero
524 is returned if the signal was handled by the virtual CPU. */
5fafdf24 525int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af
FB
526 void *puc);
527
ec7b4ce4
AF
528/**
529 * pmccntr_sync
530 * @env: CPUARMState
531 *
532 * Synchronises the counter in the PMCCNTR. This must always be called twice,
533 * once before any action that might affect the timer and again afterwards.
534 * The function is used to swap the state of the register if required.
535 * This only happens when not in user mode (!CONFIG_USER_ONLY)
536 */
537void pmccntr_sync(CPUARMState *env);
538
76e3e1bc
PM
539/* SCTLR bit meanings. Several bits have been reused in newer
540 * versions of the architecture; in that case we define constants
541 * for both old and new bit meanings. Code which tests against those
542 * bits should probably check or otherwise arrange that the CPU
543 * is the architectural version it expects.
544 */
545#define SCTLR_M (1U << 0)
546#define SCTLR_A (1U << 1)
547#define SCTLR_C (1U << 2)
548#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
549#define SCTLR_SA (1U << 3)
550#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
551#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
552#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
553#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
554#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
555#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
556#define SCTLR_ITD (1U << 7) /* v8 onward */
557#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
558#define SCTLR_SED (1U << 8) /* v8 onward */
559#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
560#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
561#define SCTLR_F (1U << 10) /* up to v6 */
562#define SCTLR_SW (1U << 10) /* v7 onward */
563#define SCTLR_Z (1U << 11)
564#define SCTLR_I (1U << 12)
565#define SCTLR_V (1U << 13)
566#define SCTLR_RR (1U << 14) /* up to v7 */
567#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
568#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
569#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
570#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
571#define SCTLR_nTWI (1U << 16) /* v8 onward */
572#define SCTLR_HA (1U << 17)
f6bda88f 573#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
574#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
575#define SCTLR_nTWE (1U << 18) /* v8 onward */
576#define SCTLR_WXN (1U << 19)
577#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
578#define SCTLR_UWXN (1U << 20) /* v7 onward */
579#define SCTLR_FI (1U << 21)
580#define SCTLR_U (1U << 22)
581#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
582#define SCTLR_VE (1U << 24) /* up to v7 */
583#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
584#define SCTLR_EE (1U << 25)
585#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
586#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
587#define SCTLR_NMFI (1U << 27)
588#define SCTLR_TRE (1U << 28)
589#define SCTLR_AFE (1U << 29)
590#define SCTLR_TE (1U << 30)
591
c6f19164
GB
592#define CPTR_TCPAC (1U << 31)
593#define CPTR_TTA (1U << 20)
594#define CPTR_TFP (1U << 10)
595
78dbbbe4
PM
596#define CPSR_M (0x1fU)
597#define CPSR_T (1U << 5)
598#define CPSR_F (1U << 6)
599#define CPSR_I (1U << 7)
600#define CPSR_A (1U << 8)
601#define CPSR_E (1U << 9)
602#define CPSR_IT_2_7 (0xfc00U)
603#define CPSR_GE (0xfU << 16)
4051e12c
PM
604#define CPSR_IL (1U << 20)
605/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
606 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
607 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
608 * where it is live state but not accessible to the AArch32 code.
609 */
610#define CPSR_RESERVED (0x7U << 21)
78dbbbe4
PM
611#define CPSR_J (1U << 24)
612#define CPSR_IT_0_1 (3U << 25)
613#define CPSR_Q (1U << 27)
614#define CPSR_V (1U << 28)
615#define CPSR_C (1U << 29)
616#define CPSR_Z (1U << 30)
617#define CPSR_N (1U << 31)
9ee6e8bb 618#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 619#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
620
621#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
622#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
623 | CPSR_NZCV)
9ee6e8bb
PB
624/* Bits writable in user mode. */
625#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
626/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c
PM
627#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
628/* Mask of bits which may be set by exception return copying them from SPSR */
629#define CPSR_ERET_MASK (~CPSR_RESERVED)
b5ff1b31 630
e389be16
FA
631#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
632#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
633#define TTBCR_PD0 (1U << 4)
634#define TTBCR_PD1 (1U << 5)
635#define TTBCR_EPD0 (1U << 7)
636#define TTBCR_IRGN0 (3U << 8)
637#define TTBCR_ORGN0 (3U << 10)
638#define TTBCR_SH0 (3U << 12)
639#define TTBCR_T1SZ (3U << 16)
640#define TTBCR_A1 (1U << 22)
641#define TTBCR_EPD1 (1U << 23)
642#define TTBCR_IRGN1 (3U << 24)
643#define TTBCR_ORGN1 (3U << 26)
644#define TTBCR_SH1 (1U << 28)
645#define TTBCR_EAE (1U << 31)
646
d356312f
PM
647/* Bit definitions for ARMv8 SPSR (PSTATE) format.
648 * Only these are valid when in AArch64 mode; in
649 * AArch32 mode SPSRs are basically CPSR-format.
650 */
f502cfc2 651#define PSTATE_SP (1U)
d356312f
PM
652#define PSTATE_M (0xFU)
653#define PSTATE_nRW (1U << 4)
654#define PSTATE_F (1U << 6)
655#define PSTATE_I (1U << 7)
656#define PSTATE_A (1U << 8)
657#define PSTATE_D (1U << 9)
658#define PSTATE_IL (1U << 20)
659#define PSTATE_SS (1U << 21)
660#define PSTATE_V (1U << 28)
661#define PSTATE_C (1U << 29)
662#define PSTATE_Z (1U << 30)
663#define PSTATE_N (1U << 31)
664#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614
PM
665#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
666#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
d356312f
PM
667/* Mode values for AArch64 */
668#define PSTATE_MODE_EL3h 13
669#define PSTATE_MODE_EL3t 12
670#define PSTATE_MODE_EL2h 9
671#define PSTATE_MODE_EL2t 8
672#define PSTATE_MODE_EL1h 5
673#define PSTATE_MODE_EL1t 4
674#define PSTATE_MODE_EL0t 0
675
9e729b57
EI
676/* Map EL and handler into a PSTATE_MODE. */
677static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
678{
679 return (el << 2) | handler;
680}
681
d356312f
PM
682/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
683 * interprocessing, so we don't attempt to sync with the cpsr state used by
684 * the 32 bit decoder.
685 */
686static inline uint32_t pstate_read(CPUARMState *env)
687{
688 int ZF;
689
690 ZF = (env->ZF == 0);
691 return (env->NF & 0x80000000) | (ZF << 30)
692 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
4cc35614 693 | env->pstate | env->daif;
d356312f
PM
694}
695
696static inline void pstate_write(CPUARMState *env, uint32_t val)
697{
698 env->ZF = (~val) & PSTATE_Z;
699 env->NF = val;
700 env->CF = (val >> 29) & 1;
701 env->VF = (val << 3) & 0x80000000;
4cc35614 702 env->daif = val & PSTATE_DAIF;
d356312f
PM
703 env->pstate = val & ~CACHED_PSTATE_BITS;
704}
705
b5ff1b31 706/* Return the current CPSR value. */
2f4a40e5
AZ
707uint32_t cpsr_read(CPUARMState *env);
708/* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
709void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
9ee6e8bb
PB
710
711/* Return the current xPSR value. */
712static inline uint32_t xpsr_read(CPUARMState *env)
713{
714 int ZF;
6fbe23d5
PB
715 ZF = (env->ZF == 0);
716 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
717 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
718 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
719 | ((env->condexec_bits & 0xfc) << 8)
720 | env->v7m.exception;
b5ff1b31
FB
721}
722
9ee6e8bb
PB
723/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
724static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
725{
9ee6e8bb 726 if (mask & CPSR_NZCV) {
6fbe23d5
PB
727 env->ZF = (~val) & CPSR_Z;
728 env->NF = val;
9ee6e8bb
PB
729 env->CF = (val >> 29) & 1;
730 env->VF = (val << 3) & 0x80000000;
731 }
732 if (mask & CPSR_Q)
733 env->QF = ((val & CPSR_Q) != 0);
734 if (mask & (1 << 24))
735 env->thumb = ((val & (1 << 24)) != 0);
736 if (mask & CPSR_IT_0_1) {
737 env->condexec_bits &= ~3;
738 env->condexec_bits |= (val >> 25) & 3;
739 }
740 if (mask & CPSR_IT_2_7) {
741 env->condexec_bits &= 3;
742 env->condexec_bits |= (val >> 8) & 0xfc;
743 }
744 if (mask & 0x1ff) {
745 env->v7m.exception = val & 0x1ff;
746 }
747}
748
f149e3e8
EI
749#define HCR_VM (1ULL << 0)
750#define HCR_SWIO (1ULL << 1)
751#define HCR_PTW (1ULL << 2)
752#define HCR_FMO (1ULL << 3)
753#define HCR_IMO (1ULL << 4)
754#define HCR_AMO (1ULL << 5)
755#define HCR_VF (1ULL << 6)
756#define HCR_VI (1ULL << 7)
757#define HCR_VSE (1ULL << 8)
758#define HCR_FB (1ULL << 9)
759#define HCR_BSU_MASK (3ULL << 10)
760#define HCR_DC (1ULL << 12)
761#define HCR_TWI (1ULL << 13)
762#define HCR_TWE (1ULL << 14)
763#define HCR_TID0 (1ULL << 15)
764#define HCR_TID1 (1ULL << 16)
765#define HCR_TID2 (1ULL << 17)
766#define HCR_TID3 (1ULL << 18)
767#define HCR_TSC (1ULL << 19)
768#define HCR_TIDCP (1ULL << 20)
769#define HCR_TACR (1ULL << 21)
770#define HCR_TSW (1ULL << 22)
771#define HCR_TPC (1ULL << 23)
772#define HCR_TPU (1ULL << 24)
773#define HCR_TTLB (1ULL << 25)
774#define HCR_TVM (1ULL << 26)
775#define HCR_TGE (1ULL << 27)
776#define HCR_TDZ (1ULL << 28)
777#define HCR_HCD (1ULL << 29)
778#define HCR_TRVM (1ULL << 30)
779#define HCR_RW (1ULL << 31)
780#define HCR_CD (1ULL << 32)
781#define HCR_ID (1ULL << 33)
782#define HCR_MASK ((1ULL << 34) - 1)
783
64e0e2de
EI
784#define SCR_NS (1U << 0)
785#define SCR_IRQ (1U << 1)
786#define SCR_FIQ (1U << 2)
787#define SCR_EA (1U << 3)
788#define SCR_FW (1U << 4)
789#define SCR_AW (1U << 5)
790#define SCR_NET (1U << 6)
791#define SCR_SMD (1U << 7)
792#define SCR_HCE (1U << 8)
793#define SCR_SIF (1U << 9)
794#define SCR_RW (1U << 10)
795#define SCR_ST (1U << 11)
796#define SCR_TWI (1U << 12)
797#define SCR_TWE (1U << 13)
798#define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST))
799#define SCR_AARCH64_MASK (0x3fff & ~SCR_NET)
800
01653295
PM
801/* Return the current FPSCR value. */
802uint32_t vfp_get_fpscr(CPUARMState *env);
803void vfp_set_fpscr(CPUARMState *env, uint32_t val);
804
f903fa22
PM
805/* For A64 the FPSCR is split into two logically distinct registers,
806 * FPCR and FPSR. However since they still use non-overlapping bits
807 * we store the underlying state in fpscr and just mask on read/write.
808 */
809#define FPSR_MASK 0xf800009f
810#define FPCR_MASK 0x07f79f00
811static inline uint32_t vfp_get_fpsr(CPUARMState *env)
812{
813 return vfp_get_fpscr(env) & FPSR_MASK;
814}
815
816static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
817{
818 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
819 vfp_set_fpscr(env, new_fpscr);
820}
821
822static inline uint32_t vfp_get_fpcr(CPUARMState *env)
823{
824 return vfp_get_fpscr(env) & FPCR_MASK;
825}
826
827static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
828{
829 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
830 vfp_set_fpscr(env, new_fpscr);
831}
832
b5ff1b31
FB
833enum arm_cpu_mode {
834 ARM_CPU_MODE_USR = 0x10,
835 ARM_CPU_MODE_FIQ = 0x11,
836 ARM_CPU_MODE_IRQ = 0x12,
837 ARM_CPU_MODE_SVC = 0x13,
28c9457d 838 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 839 ARM_CPU_MODE_ABT = 0x17,
28c9457d 840 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
841 ARM_CPU_MODE_UND = 0x1b,
842 ARM_CPU_MODE_SYS = 0x1f
843};
844
40f137e1
PB
845/* VFP system registers. */
846#define ARM_VFP_FPSID 0
847#define ARM_VFP_FPSCR 1
a50c0f51 848#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
849#define ARM_VFP_MVFR1 6
850#define ARM_VFP_MVFR0 7
40f137e1
PB
851#define ARM_VFP_FPEXC 8
852#define ARM_VFP_FPINST 9
853#define ARM_VFP_FPINST2 10
854
18c9b560
AZ
855/* iwMMXt coprocessor control registers. */
856#define ARM_IWMMXT_wCID 0
857#define ARM_IWMMXT_wCon 1
858#define ARM_IWMMXT_wCSSF 2
859#define ARM_IWMMXT_wCASF 3
860#define ARM_IWMMXT_wCGR0 8
861#define ARM_IWMMXT_wCGR1 9
862#define ARM_IWMMXT_wCGR2 10
863#define ARM_IWMMXT_wCGR3 11
864
ce854d7c
BC
865/* If adding a feature bit which corresponds to a Linux ELF
866 * HWCAP bit, remember to update the feature-bit-to-hwcap
867 * mapping in linux-user/elfload.c:get_elf_hwcap().
868 */
40f137e1
PB
869enum arm_features {
870 ARM_FEATURE_VFP,
c1713132
AZ
871 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
872 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 873 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
874 ARM_FEATURE_V6,
875 ARM_FEATURE_V6K,
876 ARM_FEATURE_V7,
877 ARM_FEATURE_THUMB2,
c3d2689d 878 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
9ee6e8bb 879 ARM_FEATURE_VFP3,
60011498 880 ARM_FEATURE_VFP_FP16,
9ee6e8bb 881 ARM_FEATURE_NEON,
47789990 882 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
9ee6e8bb 883 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 884 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 885 ARM_FEATURE_THUMB2EE,
be5e7a76
DES
886 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
887 ARM_FEATURE_V4T,
888 ARM_FEATURE_V5,
5bc95aa2 889 ARM_FEATURE_STRONGARM,
906879a9 890 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
b8b8ea05 891 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
da97f52c 892 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
0383ac00 893 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 894 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 895 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
896 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
897 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
898 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 899 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
900 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
901 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 902 ARM_FEATURE_V8,
3926cc84 903 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
9d935509 904 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
d8ba780b 905 ARM_FEATURE_CBAR, /* has cp15 CBAR */
eb0ecd5a 906 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
f318cec6 907 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 908 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 909 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
f1ecb913
AB
910 ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
911 ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
4e624eda 912 ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
62b44f05 913 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
40f137e1
PB
914};
915
916static inline int arm_feature(CPUARMState *env, int feature)
917{
918f5dca 918 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
919}
920
19e0fefa
FA
921#if !defined(CONFIG_USER_ONLY)
922/* Return true if exception levels below EL3 are in secure state,
923 * or would be following an exception return to that level.
924 * Unlike arm_is_secure() (which is always a question about the
925 * _current_ state of the CPU) this doesn't care about the current
926 * EL or mode.
927 */
928static inline bool arm_is_secure_below_el3(CPUARMState *env)
929{
930 if (arm_feature(env, ARM_FEATURE_EL3)) {
931 return !(env->cp15.scr_el3 & SCR_NS);
932 } else {
933 /* If EL2 is not supported then the secure state is implementation
934 * defined, in which case QEMU defaults to non-secure.
935 */
936 return false;
937 }
938}
939
940/* Return true if the processor is in secure state */
941static inline bool arm_is_secure(CPUARMState *env)
942{
943 if (arm_feature(env, ARM_FEATURE_EL3)) {
944 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
945 /* CPU currently in AArch64 state and EL3 */
946 return true;
947 } else if (!is_a64(env) &&
948 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
949 /* CPU currently in AArch32 state and monitor mode */
950 return true;
951 }
952 }
953 return arm_is_secure_below_el3(env);
954}
955
956#else
957static inline bool arm_is_secure_below_el3(CPUARMState *env)
958{
959 return false;
960}
961
962static inline bool arm_is_secure(CPUARMState *env)
963{
964 return false;
965}
966#endif
967
1f79ee32
PM
968/* Return true if the specified exception level is running in AArch64 state. */
969static inline bool arm_el_is_aa64(CPUARMState *env, int el)
970{
592125f8 971 /* We don't currently support EL2, and this isn't valid for EL0
1f79ee32
PM
972 * (if we're in EL0, is_a64() is what you want, and if we're not in EL0
973 * then the state of EL0 isn't well defined.)
974 */
592125f8
FA
975 assert(el == 1 || el == 3);
976
1f79ee32
PM
977 /* AArch64-capable CPUs always run with EL1 in AArch64 mode. This
978 * is a QEMU-imposed simplification which we may wish to change later.
979 * If we in future support EL2 and/or EL3, then the state of lower
980 * exception levels is controlled by the HCR.RW and SCR.RW bits.
981 */
982 return arm_feature(env, ARM_FEATURE_AARCH64);
983}
984
3f342b9e
SF
985/* Function for determing whether guest cp register reads and writes should
986 * access the secure or non-secure bank of a cp register. When EL3 is
987 * operating in AArch32 state, the NS-bit determines whether the secure
988 * instance of a cp register should be used. When EL3 is AArch64 (or if
989 * it doesn't exist at all) then there is no register banking, and all
990 * accesses are to the non-secure version.
991 */
992static inline bool access_secure_reg(CPUARMState *env)
993{
994 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
995 !arm_el_is_aa64(env, 3) &&
996 !(env->cp15.scr_el3 & SCR_NS));
997
998 return ret;
999}
1000
ea30a4b8
FA
1001/* Macros for accessing a specified CP register bank */
1002#define A32_BANKED_REG_GET(_env, _regname, _secure) \
1003 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1004
1005#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1006 do { \
1007 if (_secure) { \
1008 (_env)->cp15._regname##_s = (_val); \
1009 } else { \
1010 (_env)->cp15._regname##_ns = (_val); \
1011 } \
1012 } while (0)
1013
1014/* Macros for automatically accessing a specific CP register bank depending on
1015 * the current secure state of the system. These macros are not intended for
1016 * supporting instruction translation reads/writes as these are dependent
1017 * solely on the SCR.NS bit and not the mode.
1018 */
1019#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1020 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 1021 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
1022
1023#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1024 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 1025 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
1026 (_val))
1027
9a78eead 1028void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
012a906b
GB
1029uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1030 uint32_t cur_el, bool secure);
40f137e1 1031
9ee6e8bb
PB
1032/* Interface between CPU and Interrupt controller. */
1033void armv7m_nvic_set_pending(void *opaque, int irq);
1034int armv7m_nvic_acknowledge_irq(void *opaque);
1035void armv7m_nvic_complete_irq(void *opaque, int irq);
1036
4b6a83fb
PM
1037/* Interface for defining coprocessor registers.
1038 * Registers are defined in tables of arm_cp_reginfo structs
1039 * which are passed to define_arm_cp_regs().
1040 */
1041
1042/* When looking up a coprocessor register we look for it
1043 * via an integer which encodes all of:
1044 * coprocessor number
1045 * Crn, Crm, opc1, opc2 fields
1046 * 32 or 64 bit register (ie is it accessed via MRC/MCR
1047 * or via MRRC/MCRR?)
51a79b03 1048 * non-secure/secure bank (AArch32 only)
4b6a83fb
PM
1049 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1050 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
1051 * For AArch64, there is no 32/64 bit size distinction;
1052 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1053 * and 4 bit CRn and CRm. The encoding patterns are chosen
1054 * to be easy to convert to and from the KVM encodings, and also
1055 * so that the hashtable can contain both AArch32 and AArch64
1056 * registers (to allow for interprocessing where we might run
1057 * 32 bit code on a 64 bit core).
4b6a83fb 1058 */
f5a0a5a5
PM
1059/* This bit is private to our hashtable cpreg; in KVM register
1060 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1061 * in the upper bits of the 64 bit ID.
1062 */
1063#define CP_REG_AA64_SHIFT 28
1064#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1065
51a79b03
PM
1066/* To enable banking of coprocessor registers depending on ns-bit we
1067 * add a bit to distinguish between secure and non-secure cpregs in the
1068 * hashtable.
1069 */
1070#define CP_REG_NS_SHIFT 29
1071#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1072
1073#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
1074 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
1075 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
4b6a83fb 1076
f5a0a5a5
PM
1077#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1078 (CP_REG_AA64_MASK | \
1079 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
1080 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
1081 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
1082 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
1083 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
1084 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1085
721fae12
PM
1086/* Convert a full 64 bit KVM register ID to the truncated 32 bit
1087 * version used as a key for the coprocessor register hashtable
1088 */
1089static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1090{
1091 uint32_t cpregid = kvmid;
f5a0a5a5
PM
1092 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1093 cpregid |= CP_REG_AA64_MASK;
51a79b03
PM
1094 } else {
1095 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1096 cpregid |= (1 << 15);
1097 }
1098
1099 /* KVM is always non-secure so add the NS flag on AArch32 register
1100 * entries.
1101 */
1102 cpregid |= 1 << CP_REG_NS_SHIFT;
721fae12
PM
1103 }
1104 return cpregid;
1105}
1106
1107/* Convert a truncated 32 bit hashtable key into the full
1108 * 64 bit KVM register ID.
1109 */
1110static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1111{
f5a0a5a5
PM
1112 uint64_t kvmid;
1113
1114 if (cpregid & CP_REG_AA64_MASK) {
1115 kvmid = cpregid & ~CP_REG_AA64_MASK;
1116 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 1117 } else {
f5a0a5a5
PM
1118 kvmid = cpregid & ~(1 << 15);
1119 if (cpregid & (1 << 15)) {
1120 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1121 } else {
1122 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1123 }
721fae12
PM
1124 }
1125 return kvmid;
1126}
1127
4b6a83fb
PM
1128/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1129 * special-behaviour cp reg and bits [15..8] indicate what behaviour
1130 * it has. Otherwise it is a simple cp reg, where CONST indicates that
1131 * TCG can assume the value to be constant (ie load at translate time)
1132 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1133 * indicates that the TB should not be ended after a write to this register
1134 * (the default is that the TB ends after cp writes). OVERRIDE permits
1135 * a register definition to override a previous definition for the
1136 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1137 * old must have the OVERRIDE bit set.
7a0e58fa
PM
1138 * ALIAS indicates that this register is an alias view of some underlying
1139 * state which is also visible via another register, and that the other
b061a82b
SF
1140 * register is handling migration and reset; registers marked ALIAS will not be
1141 * migrated but may have their state set by syncing of register state from KVM.
7a0e58fa
PM
1142 * NO_RAW indicates that this register has no underlying state and does not
1143 * support raw access for state saving/loading; it will not be used for either
1144 * migration or KVM state synchronization. (Typically this is for "registers"
1145 * which are actually used as instructions for cache maintenance and so on.)
2452731c
PM
1146 * IO indicates that this register does I/O and therefore its accesses
1147 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1148 * registers which implement clocks or timers require this.
4b6a83fb
PM
1149 */
1150#define ARM_CP_SPECIAL 1
1151#define ARM_CP_CONST 2
1152#define ARM_CP_64BIT 4
1153#define ARM_CP_SUPPRESS_TB_END 8
1154#define ARM_CP_OVERRIDE 16
7a0e58fa 1155#define ARM_CP_ALIAS 32
2452731c 1156#define ARM_CP_IO 64
7a0e58fa 1157#define ARM_CP_NO_RAW 128
4b6a83fb
PM
1158#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
1159#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
b0d2b7d0 1160#define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
0eef9d98 1161#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
aca3f40b
PM
1162#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
1163#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
4b6a83fb
PM
1164/* Used only as a terminator for ARMCPRegInfo lists */
1165#define ARM_CP_SENTINEL 0xffff
1166/* Mask of only the flag bits in a type field */
7a0e58fa 1167#define ARM_CP_FLAG_MASK 0xff
4b6a83fb 1168
f5a0a5a5
PM
1169/* Valid values for ARMCPRegInfo state field, indicating which of
1170 * the AArch32 and AArch64 execution states this register is visible in.
1171 * If the reginfo doesn't explicitly specify then it is AArch32 only.
1172 * If the reginfo is declared to be visible in both states then a second
1173 * reginfo is synthesised for the AArch32 view of the AArch64 register,
1174 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1175 * Note that we rely on the values of these enums as we iterate through
1176 * the various states in some places.
1177 */
1178enum {
1179 ARM_CP_STATE_AA32 = 0,
1180 ARM_CP_STATE_AA64 = 1,
1181 ARM_CP_STATE_BOTH = 2,
1182};
1183
c3e30260
FA
1184/* ARM CP register secure state flags. These flags identify security state
1185 * attributes for a given CP register entry.
1186 * The existence of both or neither secure and non-secure flags indicates that
1187 * the register has both a secure and non-secure hash entry. A single one of
1188 * these flags causes the register to only be hashed for the specified
1189 * security state.
1190 * Although definitions may have any combination of the S/NS bits, each
1191 * registered entry will only have one to identify whether the entry is secure
1192 * or non-secure.
1193 */
1194enum {
1195 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
1196 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
1197};
1198
4b6a83fb
PM
1199/* Return true if cptype is a valid type field. This is used to try to
1200 * catch errors where the sentinel has been accidentally left off the end
1201 * of a list of registers.
1202 */
1203static inline bool cptype_valid(int cptype)
1204{
1205 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1206 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 1207 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
1208}
1209
1210/* Access rights:
1211 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1212 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1213 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1214 * (ie any of the privileged modes in Secure state, or Monitor mode).
1215 * If a register is accessible in one privilege level it's always accessible
1216 * in higher privilege levels too. Since "Secure PL1" also follows this rule
1217 * (ie anything visible in PL2 is visible in S-PL1, some things are only
1218 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1219 * terminology a little and call this PL3.
f5a0a5a5
PM
1220 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1221 * with the ELx exception levels.
4b6a83fb
PM
1222 *
1223 * If access permissions for a register are more complex than can be
1224 * described with these bits, then use a laxer set of restrictions, and
1225 * do the more restrictive/complex check inside a helper function.
1226 */
1227#define PL3_R 0x80
1228#define PL3_W 0x40
1229#define PL2_R (0x20 | PL3_R)
1230#define PL2_W (0x10 | PL3_W)
1231#define PL1_R (0x08 | PL2_R)
1232#define PL1_W (0x04 | PL2_W)
1233#define PL0_R (0x02 | PL1_R)
1234#define PL0_W (0x01 | PL1_W)
1235
1236#define PL3_RW (PL3_R | PL3_W)
1237#define PL2_RW (PL2_R | PL2_W)
1238#define PL1_RW (PL1_R | PL1_W)
1239#define PL0_RW (PL0_R | PL0_W)
1240
dcbff19b
GB
1241/* Return the current Exception Level (as per ARMv8; note that this differs
1242 * from the ARMv7 Privilege Level).
1243 */
1244static inline int arm_current_el(CPUARMState *env)
4b6a83fb 1245{
6d54ed3c
PM
1246 if (arm_feature(env, ARM_FEATURE_M)) {
1247 return !((env->v7m.exception == 0) && (env->v7m.control & 1));
1248 }
1249
592125f8 1250 if (is_a64(env)) {
f5a0a5a5
PM
1251 return extract32(env->pstate, 2, 2);
1252 }
1253
592125f8
FA
1254 switch (env->uncached_cpsr & 0x1f) {
1255 case ARM_CPU_MODE_USR:
4b6a83fb 1256 return 0;
592125f8
FA
1257 case ARM_CPU_MODE_HYP:
1258 return 2;
1259 case ARM_CPU_MODE_MON:
1260 return 3;
1261 default:
1262 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1263 /* If EL3 is 32-bit then all secure privileged modes run in
1264 * EL3
1265 */
1266 return 3;
1267 }
1268
1269 return 1;
4b6a83fb 1270 }
4b6a83fb
PM
1271}
1272
1273typedef struct ARMCPRegInfo ARMCPRegInfo;
1274
f59df3f2
PM
1275typedef enum CPAccessResult {
1276 /* Access is permitted */
1277 CP_ACCESS_OK = 0,
1278 /* Access fails due to a configurable trap or enable which would
1279 * result in a categorized exception syndrome giving information about
1280 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
38836a2c
PM
1281 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1282 * PL1 if in EL0, otherwise to the current EL).
f59df3f2
PM
1283 */
1284 CP_ACCESS_TRAP = 1,
1285 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1286 * Note that this is not a catch-all case -- the set of cases which may
1287 * result in this failure is specifically defined by the architecture.
1288 */
1289 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
38836a2c
PM
1290 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
1291 CP_ACCESS_TRAP_EL2 = 3,
1292 CP_ACCESS_TRAP_EL3 = 4,
e7615726
PM
1293 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
1294 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
1295 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
f59df3f2
PM
1296} CPAccessResult;
1297
c4241c7d
PM
1298/* Access functions for coprocessor registers. These cannot fail and
1299 * may not raise exceptions.
1300 */
1301typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1302typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1303 uint64_t value);
f59df3f2
PM
1304/* Access permission check functions for coprocessor registers. */
1305typedef CPAccessResult CPAccessFn(CPUARMState *env, const ARMCPRegInfo *opaque);
4b6a83fb
PM
1306/* Hook function for register reset */
1307typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1308
1309#define CP_ANY 0xff
1310
1311/* Definition of an ARM coprocessor register */
1312struct ARMCPRegInfo {
1313 /* Name of register (useful mainly for debugging, need not be unique) */
1314 const char *name;
1315 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1316 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1317 * 'wildcard' field -- any value of that field in the MRC/MCR insn
1318 * will be decoded to this register. The register read and write
1319 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1320 * used by the program, so it is possible to register a wildcard and
1321 * then behave differently on read/write if necessary.
1322 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1323 * must both be zero.
f5a0a5a5
PM
1324 * For AArch64-visible registers, opc0 is also used.
1325 * Since there are no "coprocessors" in AArch64, cp is purely used as a
1326 * way to distinguish (for KVM's benefit) guest-visible system registers
1327 * from demuxed ones provided to preserve the "no side effects on
1328 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1329 * visible (to match KVM's encoding); cp==0 will be converted to
1330 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
4b6a83fb
PM
1331 */
1332 uint8_t cp;
1333 uint8_t crn;
1334 uint8_t crm;
f5a0a5a5 1335 uint8_t opc0;
4b6a83fb
PM
1336 uint8_t opc1;
1337 uint8_t opc2;
f5a0a5a5
PM
1338 /* Execution state in which this register is visible: ARM_CP_STATE_* */
1339 int state;
4b6a83fb
PM
1340 /* Register type: ARM_CP_* bits/values */
1341 int type;
1342 /* Access rights: PL*_[RW] */
1343 int access;
c3e30260
FA
1344 /* Security state: ARM_CP_SECSTATE_* bits/values */
1345 int secure;
4b6a83fb
PM
1346 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1347 * this register was defined: can be used to hand data through to the
1348 * register read/write functions, since they are passed the ARMCPRegInfo*.
1349 */
1350 void *opaque;
1351 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1352 * fieldoffset is non-zero, the reset value of the register.
1353 */
1354 uint64_t resetvalue;
c3e30260
FA
1355 /* Offset of the field in CPUARMState for this register.
1356 *
1357 * This is not needed if either:
4b6a83fb
PM
1358 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
1359 * 2. both readfn and writefn are specified
1360 */
1361 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
c3e30260
FA
1362
1363 /* Offsets of the secure and non-secure fields in CPUARMState for the
1364 * register if it is banked. These fields are only used during the static
1365 * registration of a register. During hashing the bank associated
1366 * with a given security state is copied to fieldoffset which is used from
1367 * there on out.
1368 *
1369 * It is expected that register definitions use either fieldoffset or
1370 * bank_fieldoffsets in the definition but not both. It is also expected
1371 * that both bank offsets are set when defining a banked register. This
1372 * use indicates that a register is banked.
1373 */
1374 ptrdiff_t bank_fieldoffsets[2];
1375
f59df3f2
PM
1376 /* Function for making any access checks for this register in addition to
1377 * those specified by the 'access' permissions bits. If NULL, no extra
1378 * checks required. The access check is performed at runtime, not at
1379 * translate time.
1380 */
1381 CPAccessFn *accessfn;
4b6a83fb
PM
1382 /* Function for handling reads of this register. If NULL, then reads
1383 * will be done by loading from the offset into CPUARMState specified
1384 * by fieldoffset.
1385 */
1386 CPReadFn *readfn;
1387 /* Function for handling writes of this register. If NULL, then writes
1388 * will be done by writing to the offset into CPUARMState specified
1389 * by fieldoffset.
1390 */
1391 CPWriteFn *writefn;
7023ec7e
PM
1392 /* Function for doing a "raw" read; used when we need to copy
1393 * coprocessor state to the kernel for KVM or out for
1394 * migration. This only needs to be provided if there is also a
c4241c7d 1395 * readfn and it has side effects (for instance clear-on-read bits).
7023ec7e
PM
1396 */
1397 CPReadFn *raw_readfn;
1398 /* Function for doing a "raw" write; used when we need to copy KVM
1399 * kernel coprocessor state into userspace, or for inbound
1400 * migration. This only needs to be provided if there is also a
c4241c7d
PM
1401 * writefn and it masks out "unwritable" bits or has write-one-to-clear
1402 * or similar behaviour.
7023ec7e
PM
1403 */
1404 CPWriteFn *raw_writefn;
4b6a83fb
PM
1405 /* Function for resetting the register. If NULL, then reset will be done
1406 * by writing resetvalue to the field specified in fieldoffset. If
1407 * fieldoffset is 0 then no reset will be done.
1408 */
1409 CPResetFn *resetfn;
1410};
1411
1412/* Macros which are lvalues for the field in CPUARMState for the
1413 * ARMCPRegInfo *ri.
1414 */
1415#define CPREG_FIELD32(env, ri) \
1416 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
1417#define CPREG_FIELD64(env, ri) \
1418 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1419
1420#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
1421
1422void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1423 const ARMCPRegInfo *regs, void *opaque);
1424void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1425 const ARMCPRegInfo *regs, void *opaque);
1426static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1427{
1428 define_arm_cp_regs_with_opaque(cpu, regs, 0);
1429}
1430static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1431{
1432 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
1433}
60322b39 1434const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
4b6a83fb
PM
1435
1436/* CPWriteFn that can be used to implement writes-ignored behaviour */
c4241c7d
PM
1437void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1438 uint64_t value);
4b6a83fb 1439/* CPReadFn that can be used for read-as-zero behaviour */
c4241c7d 1440uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
4b6a83fb 1441
f5a0a5a5
PM
1442/* CPResetFn that does nothing, for use if no reset is required even
1443 * if fieldoffset is non zero.
1444 */
1445void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1446
67ed771d
PM
1447/* Return true if this reginfo struct's field in the cpu state struct
1448 * is 64 bits wide.
1449 */
1450static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1451{
1452 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1453}
1454
dcbff19b 1455static inline bool cp_access_ok(int current_el,
4b6a83fb
PM
1456 const ARMCPRegInfo *ri, int isread)
1457{
dcbff19b 1458 return (ri->access >> ((current_el * 2) + isread)) & 1;
4b6a83fb
PM
1459}
1460
49a66191
PM
1461/* Raw read of a coprocessor register (as needed for migration, etc) */
1462uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
1463
721fae12
PM
1464/**
1465 * write_list_to_cpustate
1466 * @cpu: ARMCPU
1467 *
1468 * For each register listed in the ARMCPU cpreg_indexes list, write
1469 * its value from the cpreg_values list into the ARMCPUState structure.
1470 * This updates TCG's working data structures from KVM data or
1471 * from incoming migration state.
1472 *
1473 * Returns: true if all register values were updated correctly,
1474 * false if some register was unknown or could not be written.
1475 * Note that we do not stop early on failure -- we will attempt
1476 * writing all registers in the list.
1477 */
1478bool write_list_to_cpustate(ARMCPU *cpu);
1479
1480/**
1481 * write_cpustate_to_list:
1482 * @cpu: ARMCPU
1483 *
1484 * For each register listed in the ARMCPU cpreg_indexes list, write
1485 * its value from the ARMCPUState structure into the cpreg_values list.
1486 * This is used to copy info from TCG's working data structures into
1487 * KVM or for outbound migration.
1488 *
1489 * Returns: true if all register values were read correctly,
1490 * false if some register was unknown or could not be read.
1491 * Note that we do not stop early on failure -- we will attempt
1492 * reading all registers in the list.
1493 */
1494bool write_cpustate_to_list(ARMCPU *cpu);
1495
b6af0975 1496/* Does the core conform to the "MicroController" profile. e.g. Cortex-M3.
9ee6e8bb
PB
1497 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
1498 conventional cores (ie. Application or Realtime profile). */
1499
1500#define IS_M(env) arm_feature(env, ARM_FEATURE_M)
9ee6e8bb 1501
9ee6e8bb
PB
1502#define ARM_CPUID_TI915T 0x54029152
1503#define ARM_CPUID_TI925T 0x54029252
40f137e1 1504
b5ff1b31 1505#if defined(CONFIG_USER_ONLY)
2c0262af 1506#define TARGET_PAGE_BITS 12
b5ff1b31
FB
1507#else
1508/* The ARM MMU allows 1k pages. */
1509/* ??? Linux doesn't actually use these, and they're deprecated in recent
82d17978 1510 architecture revisions. Maybe a configure option to disable them. */
b5ff1b31
FB
1511#define TARGET_PAGE_BITS 10
1512#endif
9467d44c 1513
3926cc84
AG
1514#if defined(TARGET_AARCH64)
1515# define TARGET_PHYS_ADDR_SPACE_BITS 48
1516# define TARGET_VIRT_ADDR_SPACE_BITS 64
1517#else
1518# define TARGET_PHYS_ADDR_SPACE_BITS 40
1519# define TARGET_VIRT_ADDR_SPACE_BITS 32
1520#endif
52705890 1521
012a906b
GB
1522static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
1523 unsigned int target_el)
043b7f8d
EI
1524{
1525 CPUARMState *env = cs->env_ptr;
dcbff19b 1526 unsigned int cur_el = arm_current_el(env);
57e3a0c7 1527 bool secure = arm_is_secure(env);
57e3a0c7
GB
1528 bool pstate_unmasked;
1529 int8_t unmasked = 0;
1530
1531 /* Don't take exceptions if they target a lower EL.
1532 * This check should catch any exceptions that would not be taken but left
1533 * pending.
1534 */
dfafd090
EI
1535 if (cur_el > target_el) {
1536 return false;
1537 }
043b7f8d
EI
1538
1539 switch (excp_idx) {
1540 case EXCP_FIQ:
57e3a0c7
GB
1541 pstate_unmasked = !(env->daif & PSTATE_F);
1542 break;
1543
043b7f8d 1544 case EXCP_IRQ:
57e3a0c7
GB
1545 pstate_unmasked = !(env->daif & PSTATE_I);
1546 break;
1547
136e67e9 1548 case EXCP_VFIQ:
9fae24f5 1549 if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
136e67e9
EI
1550 /* VFIQs are only taken when hypervized and non-secure. */
1551 return false;
1552 }
1553 return !(env->daif & PSTATE_F);
1554 case EXCP_VIRQ:
9fae24f5 1555 if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
136e67e9
EI
1556 /* VIRQs are only taken when hypervized and non-secure. */
1557 return false;
1558 }
b5c633c5 1559 return !(env->daif & PSTATE_I);
043b7f8d
EI
1560 default:
1561 g_assert_not_reached();
1562 }
57e3a0c7
GB
1563
1564 /* Use the target EL, current execution state and SCR/HCR settings to
1565 * determine whether the corresponding CPSR bit is used to mask the
1566 * interrupt.
1567 */
1568 if ((target_el > cur_el) && (target_el != 1)) {
7cd6de3b
PM
1569 /* Exceptions targeting a higher EL may not be maskable */
1570 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
1571 /* 64-bit masking rules are simple: exceptions to EL3
1572 * can't be masked, and exceptions to EL2 can only be
1573 * masked from Secure state. The HCR and SCR settings
1574 * don't affect the masking logic, only the interrupt routing.
1575 */
1576 if (target_el == 3 || !secure) {
1577 unmasked = 1;
1578 }
1579 } else {
1580 /* The old 32-bit-only environment has a more complicated
1581 * masking setup. HCR and SCR bits not only affect interrupt
1582 * routing but also change the behaviour of masking.
1583 */
1584 bool hcr, scr;
1585
1586 switch (excp_idx) {
1587 case EXCP_FIQ:
1588 /* If FIQs are routed to EL3 or EL2 then there are cases where
1589 * we override the CPSR.F in determining if the exception is
1590 * masked or not. If neither of these are set then we fall back
1591 * to the CPSR.F setting otherwise we further assess the state
1592 * below.
1593 */
1594 hcr = (env->cp15.hcr_el2 & HCR_FMO);
1595 scr = (env->cp15.scr_el3 & SCR_FIQ);
1596
1597 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
1598 * CPSR.F bit masks FIQ interrupts when taken in non-secure
1599 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
1600 * when non-secure but only when FIQs are only routed to EL3.
1601 */
1602 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
1603 break;
1604 case EXCP_IRQ:
1605 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
1606 * we may override the CPSR.I masking when in non-secure state.
1607 * The SCR.IRQ setting has already been taken into consideration
1608 * when setting the target EL, so it does not have a further
1609 * affect here.
1610 */
1611 hcr = (env->cp15.hcr_el2 & HCR_IMO);
1612 scr = false;
1613 break;
1614 default:
1615 g_assert_not_reached();
1616 }
1617
1618 if ((scr || hcr) && !secure) {
1619 unmasked = 1;
1620 }
57e3a0c7
GB
1621 }
1622 }
1623
1624 /* The PSTATE bits only mask the interrupt if we have not overriden the
1625 * ability above.
1626 */
1627 return unmasked || pstate_unmasked;
043b7f8d
EI
1628}
1629
2994fd96 1630#define cpu_init(cpu_model) CPU(cpu_arm_init(cpu_model))
ad37ad5b 1631
9467d44c 1632#define cpu_exec cpu_arm_exec
9467d44c 1633#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 1634#define cpu_list arm_cpu_list
9467d44c 1635
c1e37810
PM
1636/* ARM has the following "translation regimes" (as the ARM ARM calls them):
1637 *
1638 * If EL3 is 64-bit:
1639 * + NonSecure EL1 & 0 stage 1
1640 * + NonSecure EL1 & 0 stage 2
1641 * + NonSecure EL2
1642 * + Secure EL1 & EL0
1643 * + Secure EL3
1644 * If EL3 is 32-bit:
1645 * + NonSecure PL1 & 0 stage 1
1646 * + NonSecure PL1 & 0 stage 2
1647 * + NonSecure PL2
1648 * + Secure PL0 & PL1
1649 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
1650 *
1651 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
1652 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
1653 * may differ in access permissions even if the VA->PA map is the same
1654 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
1655 * translation, which means that we have one mmu_idx that deals with two
1656 * concatenated translation regimes [this sort of combined s1+2 TLB is
1657 * architecturally permitted]
1658 * 3. we don't need to allocate an mmu_idx to translations that we won't be
1659 * handling via the TLB. The only way to do a stage 1 translation without
1660 * the immediate stage 2 translation is via the ATS or AT system insns,
1661 * which can be slow-pathed and always do a page table walk.
1662 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
1663 * translation regimes, because they map reasonably well to each other
1664 * and they can't both be active at the same time.
1665 * This gives us the following list of mmu_idx values:
1666 *
1667 * NS EL0 (aka NS PL0) stage 1+2
1668 * NS EL1 (aka NS PL1) stage 1+2
1669 * NS EL2 (aka NS PL2)
1670 * S EL3 (aka S PL1)
1671 * S EL0 (aka S PL0)
1672 * S EL1 (not used if EL3 is 32 bit)
1673 * NS EL0+1 stage 2
1674 *
1675 * (The last of these is an mmu_idx because we want to be able to use the TLB
1676 * for the accesses done as part of a stage 1 page table walk, rather than
1677 * having to walk the stage 2 page table over and over.)
1678 *
1679 * Our enumeration includes at the end some entries which are not "true"
1680 * mmu_idx values in that they don't have corresponding TLBs and are only
1681 * valid for doing slow path page table walks.
1682 *
1683 * The constant names here are patterned after the general style of the names
1684 * of the AT/ATS operations.
1685 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
1686 */
1687typedef enum ARMMMUIdx {
1688 ARMMMUIdx_S12NSE0 = 0,
1689 ARMMMUIdx_S12NSE1 = 1,
1690 ARMMMUIdx_S1E2 = 2,
1691 ARMMMUIdx_S1E3 = 3,
1692 ARMMMUIdx_S1SE0 = 4,
1693 ARMMMUIdx_S1SE1 = 5,
1694 ARMMMUIdx_S2NS = 6,
1695 /* Indexes below here don't have TLBs and are used only for AT system
1696 * instructions or for the first stage of an S12 page table walk.
1697 */
1698 ARMMMUIdx_S1NSE0 = 7,
1699 ARMMMUIdx_S1NSE1 = 8,
1700} ARMMMUIdx;
1701
f79fbf39 1702#define MMU_USER_IDX 0
c1e37810
PM
1703
1704/* Return the exception level we're running at if this is our mmu_idx */
1705static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
6ebbf390 1706{
c1e37810
PM
1707 assert(mmu_idx < ARMMMUIdx_S2NS);
1708 return mmu_idx & 3;
1709}
1710
1711/* Determine the current mmu_idx to use for normal loads/stores */
97ed5ccd 1712static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
c1e37810
PM
1713{
1714 int el = arm_current_el(env);
1715
1716 if (el < 2 && arm_is_secure_below_el3(env)) {
1717 return ARMMMUIdx_S1SE0 + el;
1718 }
1719 return el;
6ebbf390
JM
1720}
1721
3a298203
PM
1722/* Return the Exception Level targeted by debug exceptions;
1723 * currently always EL1 since we don't implement EL2 or EL3.
1724 */
1725static inline int arm_debug_target_el(CPUARMState *env)
1726{
81669b8b
SF
1727 bool secure = arm_is_secure(env);
1728 bool route_to_el2 = false;
1729
1730 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
1731 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
1732 env->cp15.mdcr_el2 & (1 << 8);
1733 }
1734
1735 if (route_to_el2) {
1736 return 2;
1737 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
1738 !arm_el_is_aa64(env, 3) && secure) {
1739 return 3;
1740 } else {
1741 return 1;
1742 }
3a298203
PM
1743}
1744
1745static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
1746{
dcbff19b 1747 if (arm_current_el(env) == arm_debug_target_el(env)) {
3a298203
PM
1748 if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
1749 || (env->daif & PSTATE_D)) {
1750 return false;
1751 }
1752 }
1753 return true;
1754}
1755
1756static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
1757{
dcbff19b 1758 if (arm_current_el(env) == 0 && arm_el_is_aa64(env, 1)) {
3a298203
PM
1759 return aa64_generate_debug_exceptions(env);
1760 }
dcbff19b 1761 return arm_current_el(env) != 2;
3a298203
PM
1762}
1763
1764/* Return true if debugging exceptions are currently enabled.
1765 * This corresponds to what in ARM ARM pseudocode would be
1766 * if UsingAArch32() then
1767 * return AArch32.GenerateDebugExceptions()
1768 * else
1769 * return AArch64.GenerateDebugExceptions()
1770 * We choose to push the if() down into this function for clarity,
1771 * since the pseudocode has it at all callsites except for the one in
1772 * CheckSoftwareStep(), where it is elided because both branches would
1773 * always return the same value.
1774 *
1775 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
1776 * don't yet implement those exception levels or their associated trap bits.
1777 */
1778static inline bool arm_generate_debug_exceptions(CPUARMState *env)
1779{
1780 if (env->aarch64) {
1781 return aa64_generate_debug_exceptions(env);
1782 } else {
1783 return aa32_generate_debug_exceptions(env);
1784 }
1785}
1786
1787/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
1788 * implicitly means this always returns false in pre-v8 CPUs.)
1789 */
1790static inline bool arm_singlestep_active(CPUARMState *env)
1791{
1792 return extract32(env->cp15.mdscr_el1, 0, 1)
1793 && arm_el_is_aa64(env, arm_debug_target_el(env))
1794 && arm_generate_debug_exceptions(env);
1795}
1796
022c62cb 1797#include "exec/cpu-all.h"
622ed360 1798
3926cc84
AG
1799/* Bit usage in the TB flags field: bit 31 indicates whether we are
1800 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
c1e37810
PM
1801 * We put flags which are shared between 32 and 64 bit mode at the top
1802 * of the word, and flags which apply to only one mode at the bottom.
3926cc84
AG
1803 */
1804#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
1805#define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
c1e37810
PM
1806#define ARM_TBFLAG_MMUIDX_SHIFT 28
1807#define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
3cf6a0fc
PM
1808#define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
1809#define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
1810#define ARM_TBFLAG_PSTATE_SS_SHIFT 26
1811#define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
9dbbc748
GB
1812/* Target EL if we take a floating-point-disabled exception */
1813#define ARM_TBFLAG_FPEXC_EL_SHIFT 24
1814#define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
3926cc84
AG
1815
1816/* Bit usage when in AArch32 state: */
a1705768
PM
1817#define ARM_TBFLAG_THUMB_SHIFT 0
1818#define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
1819#define ARM_TBFLAG_VECLEN_SHIFT 1
1820#define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
1821#define ARM_TBFLAG_VECSTRIDE_SHIFT 4
1822#define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
a1705768
PM
1823#define ARM_TBFLAG_VFPEN_SHIFT 7
1824#define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
1825#define ARM_TBFLAG_CONDEXEC_SHIFT 8
1826#define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
d8fd2954
PB
1827#define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
1828#define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
c0f4af17
PM
1829/* We store the bottom two bits of the CPAR as TB flags and handle
1830 * checks on the other bits at runtime
1831 */
647f767b 1832#define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
c0f4af17 1833#define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
3f342b9e
SF
1834/* Indicates whether cp register reads and writes by guest code should access
1835 * the secure or nonsecure bank of banked registers; note that this is not
1836 * the same thing as the current security state of the processor!
1837 */
647f767b 1838#define ARM_TBFLAG_NS_SHIFT 19
3f342b9e 1839#define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT)
3926cc84 1840
9dbbc748 1841/* Bit usage when in AArch64 state: currently we have no A64 specific bits */
a1705768
PM
1842
1843/* some convenience accessor macros */
3926cc84
AG
1844#define ARM_TBFLAG_AARCH64_STATE(F) \
1845 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
c1e37810
PM
1846#define ARM_TBFLAG_MMUIDX(F) \
1847 (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
3cf6a0fc
PM
1848#define ARM_TBFLAG_SS_ACTIVE(F) \
1849 (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
1850#define ARM_TBFLAG_PSTATE_SS(F) \
1851 (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
9dbbc748
GB
1852#define ARM_TBFLAG_FPEXC_EL(F) \
1853 (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
a1705768
PM
1854#define ARM_TBFLAG_THUMB(F) \
1855 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
1856#define ARM_TBFLAG_VECLEN(F) \
1857 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
1858#define ARM_TBFLAG_VECSTRIDE(F) \
1859 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
a1705768
PM
1860#define ARM_TBFLAG_VFPEN(F) \
1861 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
1862#define ARM_TBFLAG_CONDEXEC(F) \
1863 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
d8fd2954
PB
1864#define ARM_TBFLAG_BSWAP_CODE(F) \
1865 (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
c0f4af17
PM
1866#define ARM_TBFLAG_XSCALE_CPAR(F) \
1867 (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
3f342b9e
SF
1868#define ARM_TBFLAG_NS(F) \
1869 (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
a1705768 1870
9dbbc748
GB
1871/* Return the exception level to which FP-disabled exceptions should
1872 * be taken, or 0 if FP is enabled.
1873 */
1874static inline int fp_exception_el(CPUARMState *env)
6b917547 1875{
ed1f13d6 1876 int fpen;
9dbbc748 1877 int cur_el = arm_current_el(env);
ed1f13d6 1878
9dbbc748
GB
1879 /* CPACR and the CPTR registers don't exist before v6, so FP is
1880 * always accessible
1881 */
1882 if (!arm_feature(env, ARM_FEATURE_V6)) {
1883 return 0;
1884 }
1885
1886 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
1887 * 0, 2 : trap EL0 and EL1/PL1 accesses
1888 * 1 : trap only EL0 accesses
1889 * 3 : trap no accesses
1890 */
1891 fpen = extract32(env->cp15.cpacr_el1, 20, 2);
1892 switch (fpen) {
1893 case 0:
1894 case 2:
1895 if (cur_el == 0 || cur_el == 1) {
1896 /* Trap to PL1, which might be EL1 or EL3 */
1897 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1898 return 3;
1899 }
1900 return 1;
1901 }
1902 if (cur_el == 3 && !is_a64(env)) {
1903 /* Secure PL1 running at EL3 */
1904 return 3;
1905 }
1906 break;
1907 case 1:
1908 if (cur_el == 0) {
1909 return 1;
1910 }
1911 break;
1912 case 3:
1913 break;
1914 }
1915
1916 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
1917 * check because zero bits in the registers mean "don't trap".
1918 */
1919
1920 /* CPTR_EL2 : present in v7VE or v8 */
1921 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
1922 && !arm_is_secure_below_el3(env)) {
1923 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
1924 return 2;
1925 }
1926
1927 /* CPTR_EL3 : present in v8 */
1928 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
1929 /* Trap all FP ops to EL3 */
1930 return 3;
ed1f13d6 1931 }
8c6afa6a 1932
9dbbc748
GB
1933 return 0;
1934}
1935
1936static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
1937 target_ulong *cs_base, int *flags)
1938{
3926cc84
AG
1939 if (is_a64(env)) {
1940 *pc = env->pc;
c1e37810 1941 *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
05ed9a99 1942 } else {
3926cc84
AG
1943 *pc = env->regs[15];
1944 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
1945 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
1946 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
1947 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
1948 | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
3f342b9e
SF
1949 if (!(access_secure_reg(env))) {
1950 *flags |= ARM_TBFLAG_NS_MASK;
1951 }
2c7ffc41
PM
1952 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
1953 || arm_el_is_aa64(env, 1)) {
3926cc84
AG
1954 *flags |= ARM_TBFLAG_VFPEN_MASK;
1955 }
c0f4af17
PM
1956 *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
1957 << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
a1705768 1958 }
3926cc84 1959
97ed5ccd 1960 *flags |= (cpu_mmu_index(env, false) << ARM_TBFLAG_MMUIDX_SHIFT);
3cf6a0fc
PM
1961 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
1962 * states defined in the ARM ARM for software singlestep:
1963 * SS_ACTIVE PSTATE.SS State
1964 * 0 x Inactive (the TB flag for SS is always 0)
1965 * 1 0 Active-pending
1966 * 1 1 Active-not-pending
1967 */
1968 if (arm_singlestep_active(env)) {
1969 *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
1970 if (is_a64(env)) {
1971 if (env->pstate & PSTATE_SS) {
1972 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
1973 }
1974 } else {
1975 if (env->uncached_cpsr & PSTATE_SS) {
1976 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
1977 }
1978 }
1979 }
9dbbc748 1980 *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT;
c1e37810 1981
3926cc84 1982 *cs_base = 0;
6b917547
AL
1983}
1984
022c62cb 1985#include "exec/exec-all.h"
f081c76c 1986
98128601
RH
1987enum {
1988 QEMU_PSCI_CONDUIT_DISABLED = 0,
1989 QEMU_PSCI_CONDUIT_SMC = 1,
1990 QEMU_PSCI_CONDUIT_HVC = 2,
1991};
1992
2c0262af 1993#endif
This page took 1.140958 seconds and 4 git commands to generate.