]> Git Repo - qemu.git/blame - target-arm/cpu.h
target-arm: Add SPSR entries for EL2/HYP and EL3/MON
[qemu.git] / target-arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af
FB
18 */
19#ifndef CPU_ARM_H
20#define CPU_ARM_H
21
3926cc84 22#include "config.h"
3cf1e035 23
72b0cd35
PM
24#include "kvm-consts.h"
25
3926cc84
AG
26#if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28# define TARGET_LONG_BITS 64
29# define ELF_MACHINE EM_AARCH64
30#else
31# define TARGET_LONG_BITS 32
32# define ELF_MACHINE EM_ARM
33#endif
9042c0e2 34
9349b4f9 35#define CPUArchState struct CPUARMState
c2764719 36
9a78eead 37#include "qemu-common.h"
022c62cb 38#include "exec/cpu-defs.h"
2c0262af 39
6b4c305c 40#include "fpu/softfloat.h"
53cd6637 41
1fddef4b
FB
42#define TARGET_HAS_ICE 1
43
b8a9e8f1
FB
44#define EXCP_UDEF 1 /* undefined instruction */
45#define EXCP_SWI 2 /* software interrupt */
46#define EXCP_PREFETCH_ABORT 3
47#define EXCP_DATA_ABORT 4
b5ff1b31
FB
48#define EXCP_IRQ 5
49#define EXCP_FIQ 6
06c949e6 50#define EXCP_BKPT 7
9ee6e8bb 51#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 52#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
426f5abc 53#define EXCP_STREX 10
9ee6e8bb
PB
54
55#define ARMV7M_EXCP_RESET 1
56#define ARMV7M_EXCP_NMI 2
57#define ARMV7M_EXCP_HARD 3
58#define ARMV7M_EXCP_MEM 4
59#define ARMV7M_EXCP_BUS 5
60#define ARMV7M_EXCP_USAGE 6
61#define ARMV7M_EXCP_SVC 11
62#define ARMV7M_EXCP_DEBUG 12
63#define ARMV7M_EXCP_PENDSV 14
64#define ARMV7M_EXCP_SYSTICK 15
2c0262af 65
403946c0
RH
66/* ARM-specific interrupt pending bits. */
67#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
68
e4fe830b
PM
69/* The usual mapping for an AArch64 system register to its AArch32
70 * counterpart is for the 32 bit world to have access to the lower
71 * half only (with writes leaving the upper half untouched). It's
72 * therefore useful to be able to pass TCG the offset of the least
73 * significant half of a uint64_t struct member.
74 */
75#ifdef HOST_WORDS_BIGENDIAN
5cd8a118 76#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 77#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
78#else
79#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 80#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
81#endif
82
7c1840b6
PM
83/* Meanings of the ARMCPU object's two inbound GPIO lines */
84#define ARM_CPU_IRQ 0
85#define ARM_CPU_FIQ 1
403946c0 86
c1713132
AZ
87typedef void ARMWriteCPFunc(void *opaque, int cp_info,
88 int srcreg, int operand, uint32_t value);
89typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
90 int dstreg, int operand);
91
f93eb9ff
AZ
92struct arm_boot_info;
93
6ebbf390
JM
94#define NB_MMU_MODES 2
95
b7bcbe95
FB
96/* We currently assume float and double are IEEE single and double
97 precision respectively.
98 Doing runtime conversions is tricky because VFP registers may contain
99 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
100 s<2n> maps to the least significant half of d<n>
101 s<2n+1> maps to the most significant half of d<n>
102 */
b7bcbe95 103
55d284af
PM
104/* CPU state for each instance of a generic timer (in cp15 c14) */
105typedef struct ARMGenericTimer {
106 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 107 uint64_t ctl; /* Timer Control register */
55d284af
PM
108} ARMGenericTimer;
109
110#define GTIMER_PHYS 0
111#define GTIMER_VIRT 1
112#define NUM_GTIMERS 2
113
2c0262af 114typedef struct CPUARMState {
b5ff1b31 115 /* Regs for current mode. */
2c0262af 116 uint32_t regs[16];
3926cc84
AG
117
118 /* 32/64 switch only happens when taking and returning from
119 * exceptions so the overlap semantics are taken care of then
120 * instead of having a complicated union.
121 */
122 /* Regs for A64 mode. */
123 uint64_t xregs[32];
124 uint64_t pc;
d356312f
PM
125 /* PSTATE isn't an architectural register for ARMv8. However, it is
126 * convenient for us to assemble the underlying state into a 32 bit format
127 * identical to the architectural format used for the SPSR. (This is also
128 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
129 * 'pstate' register are.) Of the PSTATE bits:
130 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
131 * semantics as for AArch32, as described in the comments on each field)
132 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 133 * DAIF (exception masks) are kept in env->daif
d356312f 134 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
135 */
136 uint32_t pstate;
137 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
138
b90372ad 139 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 140 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
141 the whole CPSR. */
142 uint32_t uncached_cpsr;
143 uint32_t spsr;
144
145 /* Banked registers. */
28c9457d 146 uint64_t banked_spsr[8];
b5ff1b31
FB
147 uint32_t banked_r13[6];
148 uint32_t banked_r14[6];
3b46e624 149
b5ff1b31
FB
150 /* These hold r8-r12. */
151 uint32_t usr_regs[5];
152 uint32_t fiq_regs[5];
3b46e624 153
2c0262af
FB
154 /* cpsr flag cache for faster execution */
155 uint32_t CF; /* 0 or 1 */
156 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
157 uint32_t NF; /* N is bit 31. All other bits are undefined. */
158 uint32_t ZF; /* Z set if zero. */
99c475ab 159 uint32_t QF; /* 0 or 1 */
9ee6e8bb 160 uint32_t GE; /* cpsr[19:16] */
b26eefb6 161 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 162 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
c2b820fe 163 uint64_t daif; /* exception masks, in the bits they are in in PSTATE */
2c0262af 164
1b174238 165 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 166 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 167
b5ff1b31
FB
168 /* System control coprocessor (cp15) */
169 struct {
40f137e1 170 uint32_t c0_cpuid;
7da845b0 171 uint64_t c0_cssel; /* Cache size selection. */
5ebafdf3 172 uint64_t c1_sys; /* System control register. */
34222fb8 173 uint64_t c1_coproc; /* Coprocessor access register. */
610c3c8a 174 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
2be27624 175 uint32_t c1_scr; /* secure config register. */
327ed10f
PM
176 uint64_t ttbr0_el1; /* MMU translation table base 0. */
177 uint64_t ttbr1_el1; /* MMU translation table base 1. */
cb2e37df 178 uint64_t c2_control; /* MMU translation table base control. */
b2fa1797
PB
179 uint32_t c2_mask; /* MMU translation table base selection mask. */
180 uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
ce819861
PB
181 uint32_t c2_data; /* MPU data cachable bits. */
182 uint32_t c2_insn; /* MPU instruction cachable bits. */
183 uint32_t c3; /* MMU domain access control register
184 MPU write buffer control. */
7e09797c
PM
185 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
186 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
6cd8a264 187 uint32_t ifsr_el2; /* Fault status registers. */
d81c519c 188 uint64_t esr_el[2];
ce819861 189 uint32_t c6_region[8]; /* MPU base/size registers. */
6cd8a264 190 uint64_t far_el1; /* Fault address registers. */
19525524 191 uint64_t par_el1; /* Translation result. */
b5ff1b31
FB
192 uint32_t c9_insn; /* Cache lockdown registers. */
193 uint32_t c9_data;
74594c9d
PM
194 uint32_t c9_pmcr; /* performance monitor control register */
195 uint32_t c9_pmcnten; /* perf monitor counter enables */
196 uint32_t c9_pmovsr; /* perf monitor overflow status */
197 uint32_t c9_pmxevtyper; /* perf monitor event type */
198 uint32_t c9_pmuserenr; /* perf monitor user enable */
199 uint32_t c9_pminten; /* perf monitor interrupt enables */
b0fe2427 200 uint64_t mair_el1;
68fdb6c5 201 uint64_t vbar_el[2]; /* vector base address register */
b5ff1b31 202 uint32_t c13_fcse; /* FCSE PID. */
014406b5 203 uint64_t contextidr_el1; /* Context ID. */
e4fe830b
PM
204 uint64_t tpidr_el0; /* User RW Thread register. */
205 uint64_t tpidrro_el0; /* User RO Thread register. */
206 uint64_t tpidr_el1; /* Privileged Thread register. */
a7adc4b7
PM
207 uint64_t c14_cntfrq; /* Counter Frequency register */
208 uint64_t c14_cntkctl; /* Timer Control register */
55d284af 209 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 210 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
211 uint32_t c15_ticonfig; /* TI925T configuration byte. */
212 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
213 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
214 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
215 uint32_t c15_config_base_address; /* SCU base address. */
216 uint32_t c15_diagnostic; /* diagnostic register */
217 uint32_t c15_power_diagnostic;
218 uint32_t c15_power_control; /* power control */
0b45451e
PM
219 uint64_t dbgbvr[16]; /* breakpoint value registers */
220 uint64_t dbgbcr[16]; /* breakpoint control registers */
221 uint64_t dbgwvr[16]; /* watchpoint value registers */
222 uint64_t dbgwcr[16]; /* watchpoint control registers */
7c2cb42b
AF
223 /* If the counter is enabled, this stores the last time the counter
224 * was reset. Otherwise it stores the counter value
225 */
226 uint32_t c15_ccnt;
b5ff1b31 227 } cp15;
40f137e1 228
9ee6e8bb
PB
229 struct {
230 uint32_t other_sp;
231 uint32_t vecbase;
232 uint32_t basepri;
233 uint32_t control;
234 int current_sp;
235 int exception;
236 int pending_exception;
9ee6e8bb
PB
237 } v7m;
238
abf1172f
PM
239 /* Information associated with an exception about to be taken:
240 * code which raises an exception must set cs->exception_index and
241 * the relevant parts of this structure; the cpu_do_interrupt function
242 * will then set the guest-visible registers as part of the exception
243 * entry process.
244 */
245 struct {
246 uint32_t syndrome; /* AArch64 format syndrome register */
247 uint32_t fsr; /* AArch32 format fault status register info */
248 uint64_t vaddress; /* virtual addr associated with exception, if any */
249 /* If we implement EL2 we will also need to store information
250 * about the intermediate physical address for stage 2 faults.
251 */
252 } exception;
253
fe1479c3
PB
254 /* Thumb-2 EE state. */
255 uint32_t teecr;
256 uint32_t teehbr;
257
b7bcbe95
FB
258 /* VFP coprocessor state. */
259 struct {
3926cc84
AG
260 /* VFP/Neon register state. Note that the mapping between S, D and Q
261 * views of the register bank differs between AArch64 and AArch32:
262 * In AArch32:
263 * Qn = regs[2n+1]:regs[2n]
264 * Dn = regs[n]
265 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
266 * (and regs[32] to regs[63] are inaccessible)
267 * In AArch64:
268 * Qn = regs[2n+1]:regs[2n]
269 * Dn = regs[2n]
270 * Sn = regs[2n] bits 31..0
271 * This corresponds to the architecturally defined mapping between
272 * the two execution states, and means we do not need to explicitly
273 * map these registers when changing states.
274 */
275 float64 regs[64];
b7bcbe95 276
40f137e1 277 uint32_t xregs[16];
b7bcbe95
FB
278 /* We store these fpcsr fields separately for convenience. */
279 int vec_len;
280 int vec_stride;
281
9ee6e8bb
PB
282 /* scratch space when Tn are not sufficient. */
283 uint32_t scratch[8];
3b46e624 284
3a492f3a
PM
285 /* fp_status is the "normal" fp status. standard_fp_status retains
286 * values corresponding to the ARM "Standard FPSCR Value", ie
287 * default-NaN, flush-to-zero, round-to-nearest and is used by
288 * any operations (generally Neon) which the architecture defines
289 * as controlled by the standard FPSCR value rather than the FPSCR.
290 *
291 * To avoid having to transfer exception bits around, we simply
292 * say that the FPSCR cumulative exception flags are the logical
293 * OR of the flags in the two fp statuses. This relies on the
294 * only thing which needs to read the exception flags being
295 * an explicit FPSCR read.
296 */
53cd6637 297 float_status fp_status;
3a492f3a 298 float_status standard_fp_status;
b7bcbe95 299 } vfp;
03d05e2d
PM
300 uint64_t exclusive_addr;
301 uint64_t exclusive_val;
302 uint64_t exclusive_high;
9ee6e8bb 303#if defined(CONFIG_USER_ONLY)
03d05e2d 304 uint64_t exclusive_test;
426f5abc 305 uint32_t exclusive_info;
9ee6e8bb 306#endif
b7bcbe95 307
18c9b560
AZ
308 /* iwMMXt coprocessor state. */
309 struct {
310 uint64_t regs[16];
311 uint64_t val;
312
313 uint32_t cregs[16];
314 } iwmmxt;
315
d8fd2954
PB
316 /* For mixed endian mode. */
317 bool bswap_code;
318
ce4defa0
PB
319#if defined(CONFIG_USER_ONLY)
320 /* For usermode syscall translation. */
321 int eabi;
322#endif
323
a316d335
FB
324 CPU_COMMON
325
9d551997 326 /* These fields after the common ones so they are preserved on reset. */
9ba8c3f4 327
581be094 328 /* Internal CPU feature flags. */
918f5dca 329 uint64_t features;
581be094 330
983fe826 331 void *nvic;
462a8bc6 332 const struct arm_boot_info *boot_info;
2c0262af
FB
333} CPUARMState;
334
778c3a06
AF
335#include "cpu-qom.h"
336
337ARMCPU *cpu_arm_init(const char *cpu_model);
2c0262af 338int cpu_arm_exec(CPUARMState *s);
9ee6e8bb 339uint32_t do_arm_semihosting(CPUARMState *env);
b5ff1b31 340
3926cc84
AG
341static inline bool is_a64(CPUARMState *env)
342{
343 return env->aarch64;
344}
345
2c0262af
FB
346/* you can call this signal handler from your SIGBUS and SIGSEGV
347 signal handlers to inform the virtual CPU of exceptions. non zero
348 is returned if the signal was handled by the virtual CPU. */
5fafdf24 349int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af 350 void *puc);
7510454e
AF
351int arm_cpu_handle_mmu_fault(CPUState *cpu, vaddr address, int rw,
352 int mmu_idx);
2c0262af 353
76e3e1bc
PM
354/* SCTLR bit meanings. Several bits have been reused in newer
355 * versions of the architecture; in that case we define constants
356 * for both old and new bit meanings. Code which tests against those
357 * bits should probably check or otherwise arrange that the CPU
358 * is the architectural version it expects.
359 */
360#define SCTLR_M (1U << 0)
361#define SCTLR_A (1U << 1)
362#define SCTLR_C (1U << 2)
363#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
364#define SCTLR_SA (1U << 3)
365#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
366#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
367#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
368#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
369#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
370#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
371#define SCTLR_ITD (1U << 7) /* v8 onward */
372#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
373#define SCTLR_SED (1U << 8) /* v8 onward */
374#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
375#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
376#define SCTLR_F (1U << 10) /* up to v6 */
377#define SCTLR_SW (1U << 10) /* v7 onward */
378#define SCTLR_Z (1U << 11)
379#define SCTLR_I (1U << 12)
380#define SCTLR_V (1U << 13)
381#define SCTLR_RR (1U << 14) /* up to v7 */
382#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
383#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
384#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
385#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
386#define SCTLR_nTWI (1U << 16) /* v8 onward */
387#define SCTLR_HA (1U << 17)
388#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
389#define SCTLR_nTWE (1U << 18) /* v8 onward */
390#define SCTLR_WXN (1U << 19)
391#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
392#define SCTLR_UWXN (1U << 20) /* v7 onward */
393#define SCTLR_FI (1U << 21)
394#define SCTLR_U (1U << 22)
395#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
396#define SCTLR_VE (1U << 24) /* up to v7 */
397#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
398#define SCTLR_EE (1U << 25)
399#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
400#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
401#define SCTLR_NMFI (1U << 27)
402#define SCTLR_TRE (1U << 28)
403#define SCTLR_AFE (1U << 29)
404#define SCTLR_TE (1U << 30)
405
78dbbbe4
PM
406#define CPSR_M (0x1fU)
407#define CPSR_T (1U << 5)
408#define CPSR_F (1U << 6)
409#define CPSR_I (1U << 7)
410#define CPSR_A (1U << 8)
411#define CPSR_E (1U << 9)
412#define CPSR_IT_2_7 (0xfc00U)
413#define CPSR_GE (0xfU << 16)
414#define CPSR_RESERVED (0xfU << 20)
415#define CPSR_J (1U << 24)
416#define CPSR_IT_0_1 (3U << 25)
417#define CPSR_Q (1U << 27)
418#define CPSR_V (1U << 28)
419#define CPSR_C (1U << 29)
420#define CPSR_Z (1U << 30)
421#define CPSR_N (1U << 31)
9ee6e8bb 422#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 423#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
424
425#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
426#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
427 | CPSR_NZCV)
9ee6e8bb
PB
428/* Bits writable in user mode. */
429#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
430/* Execution state bits. MRS read as zero, MSR writes ignored. */
431#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
b5ff1b31 432
d356312f
PM
433/* Bit definitions for ARMv8 SPSR (PSTATE) format.
434 * Only these are valid when in AArch64 mode; in
435 * AArch32 mode SPSRs are basically CPSR-format.
436 */
f502cfc2 437#define PSTATE_SP (1U)
d356312f
PM
438#define PSTATE_M (0xFU)
439#define PSTATE_nRW (1U << 4)
440#define PSTATE_F (1U << 6)
441#define PSTATE_I (1U << 7)
442#define PSTATE_A (1U << 8)
443#define PSTATE_D (1U << 9)
444#define PSTATE_IL (1U << 20)
445#define PSTATE_SS (1U << 21)
446#define PSTATE_V (1U << 28)
447#define PSTATE_C (1U << 29)
448#define PSTATE_Z (1U << 30)
449#define PSTATE_N (1U << 31)
450#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614
PM
451#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
452#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
d356312f
PM
453/* Mode values for AArch64 */
454#define PSTATE_MODE_EL3h 13
455#define PSTATE_MODE_EL3t 12
456#define PSTATE_MODE_EL2h 9
457#define PSTATE_MODE_EL2t 8
458#define PSTATE_MODE_EL1h 5
459#define PSTATE_MODE_EL1t 4
460#define PSTATE_MODE_EL0t 0
461
462/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
463 * interprocessing, so we don't attempt to sync with the cpsr state used by
464 * the 32 bit decoder.
465 */
466static inline uint32_t pstate_read(CPUARMState *env)
467{
468 int ZF;
469
470 ZF = (env->ZF == 0);
471 return (env->NF & 0x80000000) | (ZF << 30)
472 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
4cc35614 473 | env->pstate | env->daif;
d356312f
PM
474}
475
476static inline void pstate_write(CPUARMState *env, uint32_t val)
477{
478 env->ZF = (~val) & PSTATE_Z;
479 env->NF = val;
480 env->CF = (val >> 29) & 1;
481 env->VF = (val << 3) & 0x80000000;
4cc35614 482 env->daif = val & PSTATE_DAIF;
d356312f
PM
483 env->pstate = val & ~CACHED_PSTATE_BITS;
484}
485
b5ff1b31 486/* Return the current CPSR value. */
2f4a40e5
AZ
487uint32_t cpsr_read(CPUARMState *env);
488/* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
489void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
9ee6e8bb
PB
490
491/* Return the current xPSR value. */
492static inline uint32_t xpsr_read(CPUARMState *env)
493{
494 int ZF;
6fbe23d5
PB
495 ZF = (env->ZF == 0);
496 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
497 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
498 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
499 | ((env->condexec_bits & 0xfc) << 8)
500 | env->v7m.exception;
b5ff1b31
FB
501}
502
9ee6e8bb
PB
503/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
504static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
505{
9ee6e8bb 506 if (mask & CPSR_NZCV) {
6fbe23d5
PB
507 env->ZF = (~val) & CPSR_Z;
508 env->NF = val;
9ee6e8bb
PB
509 env->CF = (val >> 29) & 1;
510 env->VF = (val << 3) & 0x80000000;
511 }
512 if (mask & CPSR_Q)
513 env->QF = ((val & CPSR_Q) != 0);
514 if (mask & (1 << 24))
515 env->thumb = ((val & (1 << 24)) != 0);
516 if (mask & CPSR_IT_0_1) {
517 env->condexec_bits &= ~3;
518 env->condexec_bits |= (val >> 25) & 3;
519 }
520 if (mask & CPSR_IT_2_7) {
521 env->condexec_bits &= 3;
522 env->condexec_bits |= (val >> 8) & 0xfc;
523 }
524 if (mask & 0x1ff) {
525 env->v7m.exception = val & 0x1ff;
526 }
527}
528
01653295
PM
529/* Return the current FPSCR value. */
530uint32_t vfp_get_fpscr(CPUARMState *env);
531void vfp_set_fpscr(CPUARMState *env, uint32_t val);
532
f903fa22
PM
533/* For A64 the FPSCR is split into two logically distinct registers,
534 * FPCR and FPSR. However since they still use non-overlapping bits
535 * we store the underlying state in fpscr and just mask on read/write.
536 */
537#define FPSR_MASK 0xf800009f
538#define FPCR_MASK 0x07f79f00
539static inline uint32_t vfp_get_fpsr(CPUARMState *env)
540{
541 return vfp_get_fpscr(env) & FPSR_MASK;
542}
543
544static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
545{
546 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
547 vfp_set_fpscr(env, new_fpscr);
548}
549
550static inline uint32_t vfp_get_fpcr(CPUARMState *env)
551{
552 return vfp_get_fpscr(env) & FPCR_MASK;
553}
554
555static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
556{
557 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
558 vfp_set_fpscr(env, new_fpscr);
559}
560
b5ff1b31
FB
561enum arm_cpu_mode {
562 ARM_CPU_MODE_USR = 0x10,
563 ARM_CPU_MODE_FIQ = 0x11,
564 ARM_CPU_MODE_IRQ = 0x12,
565 ARM_CPU_MODE_SVC = 0x13,
28c9457d 566 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 567 ARM_CPU_MODE_ABT = 0x17,
28c9457d 568 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
569 ARM_CPU_MODE_UND = 0x1b,
570 ARM_CPU_MODE_SYS = 0x1f
571};
572
40f137e1
PB
573/* VFP system registers. */
574#define ARM_VFP_FPSID 0
575#define ARM_VFP_FPSCR 1
a50c0f51 576#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
577#define ARM_VFP_MVFR1 6
578#define ARM_VFP_MVFR0 7
40f137e1
PB
579#define ARM_VFP_FPEXC 8
580#define ARM_VFP_FPINST 9
581#define ARM_VFP_FPINST2 10
582
18c9b560
AZ
583/* iwMMXt coprocessor control registers. */
584#define ARM_IWMMXT_wCID 0
585#define ARM_IWMMXT_wCon 1
586#define ARM_IWMMXT_wCSSF 2
587#define ARM_IWMMXT_wCASF 3
588#define ARM_IWMMXT_wCGR0 8
589#define ARM_IWMMXT_wCGR1 9
590#define ARM_IWMMXT_wCGR2 10
591#define ARM_IWMMXT_wCGR3 11
592
ce854d7c
BC
593/* If adding a feature bit which corresponds to a Linux ELF
594 * HWCAP bit, remember to update the feature-bit-to-hwcap
595 * mapping in linux-user/elfload.c:get_elf_hwcap().
596 */
40f137e1
PB
597enum arm_features {
598 ARM_FEATURE_VFP,
c1713132
AZ
599 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
600 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 601 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
602 ARM_FEATURE_V6,
603 ARM_FEATURE_V6K,
604 ARM_FEATURE_V7,
605 ARM_FEATURE_THUMB2,
c3d2689d 606 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
9ee6e8bb 607 ARM_FEATURE_VFP3,
60011498 608 ARM_FEATURE_VFP_FP16,
9ee6e8bb 609 ARM_FEATURE_NEON,
47789990 610 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
9ee6e8bb 611 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 612 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 613 ARM_FEATURE_THUMB2EE,
be5e7a76
DES
614 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
615 ARM_FEATURE_V4T,
616 ARM_FEATURE_V5,
5bc95aa2 617 ARM_FEATURE_STRONGARM,
906879a9 618 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
b8b8ea05 619 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
da97f52c 620 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
0383ac00 621 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 622 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 623 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
624 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
625 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
626 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 627 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
628 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
629 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 630 ARM_FEATURE_V8,
3926cc84 631 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
9d935509 632 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
d8ba780b 633 ARM_FEATURE_CBAR, /* has cp15 CBAR */
eb0ecd5a 634 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
f318cec6 635 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
40f137e1
PB
636};
637
638static inline int arm_feature(CPUARMState *env, int feature)
639{
918f5dca 640 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
641}
642
1f79ee32
PM
643/* Return true if the specified exception level is running in AArch64 state. */
644static inline bool arm_el_is_aa64(CPUARMState *env, int el)
645{
646 /* We don't currently support EL2 or EL3, and this isn't valid for EL0
647 * (if we're in EL0, is_a64() is what you want, and if we're not in EL0
648 * then the state of EL0 isn't well defined.)
649 */
650 assert(el == 1);
651 /* AArch64-capable CPUs always run with EL1 in AArch64 mode. This
652 * is a QEMU-imposed simplification which we may wish to change later.
653 * If we in future support EL2 and/or EL3, then the state of lower
654 * exception levels is controlled by the HCR.RW and SCR.RW bits.
655 */
656 return arm_feature(env, ARM_FEATURE_AARCH64);
657}
658
9a78eead 659void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
40f137e1 660
9ee6e8bb
PB
661/* Interface between CPU and Interrupt controller. */
662void armv7m_nvic_set_pending(void *opaque, int irq);
663int armv7m_nvic_acknowledge_irq(void *opaque);
664void armv7m_nvic_complete_irq(void *opaque, int irq);
665
4b6a83fb
PM
666/* Interface for defining coprocessor registers.
667 * Registers are defined in tables of arm_cp_reginfo structs
668 * which are passed to define_arm_cp_regs().
669 */
670
671/* When looking up a coprocessor register we look for it
672 * via an integer which encodes all of:
673 * coprocessor number
674 * Crn, Crm, opc1, opc2 fields
675 * 32 or 64 bit register (ie is it accessed via MRC/MCR
676 * or via MRRC/MCRR?)
677 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
678 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
679 * For AArch64, there is no 32/64 bit size distinction;
680 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
681 * and 4 bit CRn and CRm. The encoding patterns are chosen
682 * to be easy to convert to and from the KVM encodings, and also
683 * so that the hashtable can contain both AArch32 and AArch64
684 * registers (to allow for interprocessing where we might run
685 * 32 bit code on a 64 bit core).
4b6a83fb 686 */
f5a0a5a5
PM
687/* This bit is private to our hashtable cpreg; in KVM register
688 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
689 * in the upper bits of the 64 bit ID.
690 */
691#define CP_REG_AA64_SHIFT 28
692#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
693
4b6a83fb
PM
694#define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2) \
695 (((cp) << 16) | ((is64) << 15) | ((crn) << 11) | \
696 ((crm) << 7) | ((opc1) << 3) | (opc2))
697
f5a0a5a5
PM
698#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
699 (CP_REG_AA64_MASK | \
700 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
701 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
702 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
703 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
704 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
705 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
706
721fae12
PM
707/* Convert a full 64 bit KVM register ID to the truncated 32 bit
708 * version used as a key for the coprocessor register hashtable
709 */
710static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
711{
712 uint32_t cpregid = kvmid;
f5a0a5a5
PM
713 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
714 cpregid |= CP_REG_AA64_MASK;
715 } else if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
721fae12
PM
716 cpregid |= (1 << 15);
717 }
718 return cpregid;
719}
720
721/* Convert a truncated 32 bit hashtable key into the full
722 * 64 bit KVM register ID.
723 */
724static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
725{
f5a0a5a5
PM
726 uint64_t kvmid;
727
728 if (cpregid & CP_REG_AA64_MASK) {
729 kvmid = cpregid & ~CP_REG_AA64_MASK;
730 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 731 } else {
f5a0a5a5
PM
732 kvmid = cpregid & ~(1 << 15);
733 if (cpregid & (1 << 15)) {
734 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
735 } else {
736 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
737 }
721fae12
PM
738 }
739 return kvmid;
740}
741
4b6a83fb
PM
742/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
743 * special-behaviour cp reg and bits [15..8] indicate what behaviour
744 * it has. Otherwise it is a simple cp reg, where CONST indicates that
745 * TCG can assume the value to be constant (ie load at translate time)
746 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
747 * indicates that the TB should not be ended after a write to this register
748 * (the default is that the TB ends after cp writes). OVERRIDE permits
749 * a register definition to override a previous definition for the
750 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
751 * old must have the OVERRIDE bit set.
7023ec7e
PM
752 * NO_MIGRATE indicates that this register should be ignored for migration;
753 * (eg because any state is accessed via some other coprocessor register).
2452731c
PM
754 * IO indicates that this register does I/O and therefore its accesses
755 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
756 * registers which implement clocks or timers require this.
4b6a83fb
PM
757 */
758#define ARM_CP_SPECIAL 1
759#define ARM_CP_CONST 2
760#define ARM_CP_64BIT 4
761#define ARM_CP_SUPPRESS_TB_END 8
762#define ARM_CP_OVERRIDE 16
7023ec7e 763#define ARM_CP_NO_MIGRATE 32
2452731c 764#define ARM_CP_IO 64
4b6a83fb
PM
765#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
766#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
b0d2b7d0 767#define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
0eef9d98 768#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
aca3f40b
PM
769#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
770#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
4b6a83fb
PM
771/* Used only as a terminator for ARMCPRegInfo lists */
772#define ARM_CP_SENTINEL 0xffff
773/* Mask of only the flag bits in a type field */
2452731c 774#define ARM_CP_FLAG_MASK 0x7f
4b6a83fb 775
f5a0a5a5
PM
776/* Valid values for ARMCPRegInfo state field, indicating which of
777 * the AArch32 and AArch64 execution states this register is visible in.
778 * If the reginfo doesn't explicitly specify then it is AArch32 only.
779 * If the reginfo is declared to be visible in both states then a second
780 * reginfo is synthesised for the AArch32 view of the AArch64 register,
781 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
782 * Note that we rely on the values of these enums as we iterate through
783 * the various states in some places.
784 */
785enum {
786 ARM_CP_STATE_AA32 = 0,
787 ARM_CP_STATE_AA64 = 1,
788 ARM_CP_STATE_BOTH = 2,
789};
790
4b6a83fb
PM
791/* Return true if cptype is a valid type field. This is used to try to
792 * catch errors where the sentinel has been accidentally left off the end
793 * of a list of registers.
794 */
795static inline bool cptype_valid(int cptype)
796{
797 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
798 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 799 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
800}
801
802/* Access rights:
803 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
804 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
805 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
806 * (ie any of the privileged modes in Secure state, or Monitor mode).
807 * If a register is accessible in one privilege level it's always accessible
808 * in higher privilege levels too. Since "Secure PL1" also follows this rule
809 * (ie anything visible in PL2 is visible in S-PL1, some things are only
810 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
811 * terminology a little and call this PL3.
f5a0a5a5
PM
812 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
813 * with the ELx exception levels.
4b6a83fb
PM
814 *
815 * If access permissions for a register are more complex than can be
816 * described with these bits, then use a laxer set of restrictions, and
817 * do the more restrictive/complex check inside a helper function.
818 */
819#define PL3_R 0x80
820#define PL3_W 0x40
821#define PL2_R (0x20 | PL3_R)
822#define PL2_W (0x10 | PL3_W)
823#define PL1_R (0x08 | PL2_R)
824#define PL1_W (0x04 | PL2_W)
825#define PL0_R (0x02 | PL1_R)
826#define PL0_W (0x01 | PL1_W)
827
828#define PL3_RW (PL3_R | PL3_W)
829#define PL2_RW (PL2_R | PL2_W)
830#define PL1_RW (PL1_R | PL1_W)
831#define PL0_RW (PL0_R | PL0_W)
832
833static inline int arm_current_pl(CPUARMState *env)
834{
f5a0a5a5
PM
835 if (env->aarch64) {
836 return extract32(env->pstate, 2, 2);
837 }
838
4b6a83fb
PM
839 if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR) {
840 return 0;
841 }
842 /* We don't currently implement the Virtualization or TrustZone
843 * extensions, so PL2 and PL3 don't exist for us.
844 */
845 return 1;
846}
847
848typedef struct ARMCPRegInfo ARMCPRegInfo;
849
f59df3f2
PM
850typedef enum CPAccessResult {
851 /* Access is permitted */
852 CP_ACCESS_OK = 0,
853 /* Access fails due to a configurable trap or enable which would
854 * result in a categorized exception syndrome giving information about
855 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
856 * 0xc or 0x18).
857 */
858 CP_ACCESS_TRAP = 1,
859 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
860 * Note that this is not a catch-all case -- the set of cases which may
861 * result in this failure is specifically defined by the architecture.
862 */
863 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
864} CPAccessResult;
865
c4241c7d
PM
866/* Access functions for coprocessor registers. These cannot fail and
867 * may not raise exceptions.
868 */
869typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
870typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
871 uint64_t value);
f59df3f2
PM
872/* Access permission check functions for coprocessor registers. */
873typedef CPAccessResult CPAccessFn(CPUARMState *env, const ARMCPRegInfo *opaque);
4b6a83fb
PM
874/* Hook function for register reset */
875typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
876
877#define CP_ANY 0xff
878
879/* Definition of an ARM coprocessor register */
880struct ARMCPRegInfo {
881 /* Name of register (useful mainly for debugging, need not be unique) */
882 const char *name;
883 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
884 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
885 * 'wildcard' field -- any value of that field in the MRC/MCR insn
886 * will be decoded to this register. The register read and write
887 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
888 * used by the program, so it is possible to register a wildcard and
889 * then behave differently on read/write if necessary.
890 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
891 * must both be zero.
f5a0a5a5
PM
892 * For AArch64-visible registers, opc0 is also used.
893 * Since there are no "coprocessors" in AArch64, cp is purely used as a
894 * way to distinguish (for KVM's benefit) guest-visible system registers
895 * from demuxed ones provided to preserve the "no side effects on
896 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
897 * visible (to match KVM's encoding); cp==0 will be converted to
898 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
4b6a83fb
PM
899 */
900 uint8_t cp;
901 uint8_t crn;
902 uint8_t crm;
f5a0a5a5 903 uint8_t opc0;
4b6a83fb
PM
904 uint8_t opc1;
905 uint8_t opc2;
f5a0a5a5
PM
906 /* Execution state in which this register is visible: ARM_CP_STATE_* */
907 int state;
4b6a83fb
PM
908 /* Register type: ARM_CP_* bits/values */
909 int type;
910 /* Access rights: PL*_[RW] */
911 int access;
912 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
913 * this register was defined: can be used to hand data through to the
914 * register read/write functions, since they are passed the ARMCPRegInfo*.
915 */
916 void *opaque;
917 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
918 * fieldoffset is non-zero, the reset value of the register.
919 */
920 uint64_t resetvalue;
921 /* Offset of the field in CPUARMState for this register. This is not
922 * needed if either:
923 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
924 * 2. both readfn and writefn are specified
925 */
926 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
f59df3f2
PM
927 /* Function for making any access checks for this register in addition to
928 * those specified by the 'access' permissions bits. If NULL, no extra
929 * checks required. The access check is performed at runtime, not at
930 * translate time.
931 */
932 CPAccessFn *accessfn;
4b6a83fb
PM
933 /* Function for handling reads of this register. If NULL, then reads
934 * will be done by loading from the offset into CPUARMState specified
935 * by fieldoffset.
936 */
937 CPReadFn *readfn;
938 /* Function for handling writes of this register. If NULL, then writes
939 * will be done by writing to the offset into CPUARMState specified
940 * by fieldoffset.
941 */
942 CPWriteFn *writefn;
7023ec7e
PM
943 /* Function for doing a "raw" read; used when we need to copy
944 * coprocessor state to the kernel for KVM or out for
945 * migration. This only needs to be provided if there is also a
c4241c7d 946 * readfn and it has side effects (for instance clear-on-read bits).
7023ec7e
PM
947 */
948 CPReadFn *raw_readfn;
949 /* Function for doing a "raw" write; used when we need to copy KVM
950 * kernel coprocessor state into userspace, or for inbound
951 * migration. This only needs to be provided if there is also a
c4241c7d
PM
952 * writefn and it masks out "unwritable" bits or has write-one-to-clear
953 * or similar behaviour.
7023ec7e
PM
954 */
955 CPWriteFn *raw_writefn;
4b6a83fb
PM
956 /* Function for resetting the register. If NULL, then reset will be done
957 * by writing resetvalue to the field specified in fieldoffset. If
958 * fieldoffset is 0 then no reset will be done.
959 */
960 CPResetFn *resetfn;
961};
962
963/* Macros which are lvalues for the field in CPUARMState for the
964 * ARMCPRegInfo *ri.
965 */
966#define CPREG_FIELD32(env, ri) \
967 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
968#define CPREG_FIELD64(env, ri) \
969 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
970
971#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
972
973void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
974 const ARMCPRegInfo *regs, void *opaque);
975void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
976 const ARMCPRegInfo *regs, void *opaque);
977static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
978{
979 define_arm_cp_regs_with_opaque(cpu, regs, 0);
980}
981static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
982{
983 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
984}
60322b39 985const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
4b6a83fb
PM
986
987/* CPWriteFn that can be used to implement writes-ignored behaviour */
c4241c7d
PM
988void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
989 uint64_t value);
4b6a83fb 990/* CPReadFn that can be used for read-as-zero behaviour */
c4241c7d 991uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
4b6a83fb 992
f5a0a5a5
PM
993/* CPResetFn that does nothing, for use if no reset is required even
994 * if fieldoffset is non zero.
995 */
996void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
997
67ed771d
PM
998/* Return true if this reginfo struct's field in the cpu state struct
999 * is 64 bits wide.
1000 */
1001static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1002{
1003 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1004}
1005
60322b39 1006static inline bool cp_access_ok(int current_pl,
4b6a83fb
PM
1007 const ARMCPRegInfo *ri, int isread)
1008{
60322b39 1009 return (ri->access >> ((current_pl * 2) + isread)) & 1;
4b6a83fb
PM
1010}
1011
721fae12
PM
1012/**
1013 * write_list_to_cpustate
1014 * @cpu: ARMCPU
1015 *
1016 * For each register listed in the ARMCPU cpreg_indexes list, write
1017 * its value from the cpreg_values list into the ARMCPUState structure.
1018 * This updates TCG's working data structures from KVM data or
1019 * from incoming migration state.
1020 *
1021 * Returns: true if all register values were updated correctly,
1022 * false if some register was unknown or could not be written.
1023 * Note that we do not stop early on failure -- we will attempt
1024 * writing all registers in the list.
1025 */
1026bool write_list_to_cpustate(ARMCPU *cpu);
1027
1028/**
1029 * write_cpustate_to_list:
1030 * @cpu: ARMCPU
1031 *
1032 * For each register listed in the ARMCPU cpreg_indexes list, write
1033 * its value from the ARMCPUState structure into the cpreg_values list.
1034 * This is used to copy info from TCG's working data structures into
1035 * KVM or for outbound migration.
1036 *
1037 * Returns: true if all register values were read correctly,
1038 * false if some register was unknown or could not be read.
1039 * Note that we do not stop early on failure -- we will attempt
1040 * reading all registers in the list.
1041 */
1042bool write_cpustate_to_list(ARMCPU *cpu);
1043
9ee6e8bb
PB
1044/* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
1045 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
1046 conventional cores (ie. Application or Realtime profile). */
1047
1048#define IS_M(env) arm_feature(env, ARM_FEATURE_M)
9ee6e8bb 1049
9ee6e8bb
PB
1050#define ARM_CPUID_TI915T 0x54029152
1051#define ARM_CPUID_TI925T 0x54029252
40f137e1 1052
b5ff1b31 1053#if defined(CONFIG_USER_ONLY)
2c0262af 1054#define TARGET_PAGE_BITS 12
b5ff1b31
FB
1055#else
1056/* The ARM MMU allows 1k pages. */
1057/* ??? Linux doesn't actually use these, and they're deprecated in recent
82d17978 1058 architecture revisions. Maybe a configure option to disable them. */
b5ff1b31
FB
1059#define TARGET_PAGE_BITS 10
1060#endif
9467d44c 1061
3926cc84
AG
1062#if defined(TARGET_AARCH64)
1063# define TARGET_PHYS_ADDR_SPACE_BITS 48
1064# define TARGET_VIRT_ADDR_SPACE_BITS 64
1065#else
1066# define TARGET_PHYS_ADDR_SPACE_BITS 40
1067# define TARGET_VIRT_ADDR_SPACE_BITS 32
1068#endif
52705890 1069
ad37ad5b
PM
1070static inline CPUARMState *cpu_init(const char *cpu_model)
1071{
1072 ARMCPU *cpu = cpu_arm_init(cpu_model);
1073 if (cpu) {
1074 return &cpu->env;
1075 }
1076 return NULL;
1077}
1078
9467d44c
TS
1079#define cpu_exec cpu_arm_exec
1080#define cpu_gen_code cpu_arm_gen_code
1081#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 1082#define cpu_list arm_cpu_list
9467d44c 1083
6ebbf390 1084/* MMU modes definitions */
f79fbf39
EI
1085#define MMU_MODE0_SUFFIX _user
1086#define MMU_MODE1_SUFFIX _kernel
1087#define MMU_USER_IDX 0
0ecb72a5 1088static inline int cpu_mmu_index (CPUARMState *env)
6ebbf390 1089{
f79fbf39 1090 return arm_current_pl(env);
6ebbf390
JM
1091}
1092
022c62cb 1093#include "exec/cpu-all.h"
622ed360 1094
3926cc84
AG
1095/* Bit usage in the TB flags field: bit 31 indicates whether we are
1096 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
1097 */
1098#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
1099#define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
1100
1101/* Bit usage when in AArch32 state: */
a1705768
PM
1102#define ARM_TBFLAG_THUMB_SHIFT 0
1103#define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
1104#define ARM_TBFLAG_VECLEN_SHIFT 1
1105#define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
1106#define ARM_TBFLAG_VECSTRIDE_SHIFT 4
1107#define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
1108#define ARM_TBFLAG_PRIV_SHIFT 6
1109#define ARM_TBFLAG_PRIV_MASK (1 << ARM_TBFLAG_PRIV_SHIFT)
1110#define ARM_TBFLAG_VFPEN_SHIFT 7
1111#define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
1112#define ARM_TBFLAG_CONDEXEC_SHIFT 8
1113#define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
d8fd2954
PB
1114#define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
1115#define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
2c7ffc41
PM
1116#define ARM_TBFLAG_CPACR_FPEN_SHIFT 17
1117#define ARM_TBFLAG_CPACR_FPEN_MASK (1 << ARM_TBFLAG_CPACR_FPEN_SHIFT)
3926cc84 1118
d9ea7d29
PM
1119/* Bit usage when in AArch64 state */
1120#define ARM_TBFLAG_AA64_EL_SHIFT 0
1121#define ARM_TBFLAG_AA64_EL_MASK (0x3 << ARM_TBFLAG_AA64_EL_SHIFT)
8c6afa6a
PM
1122#define ARM_TBFLAG_AA64_FPEN_SHIFT 2
1123#define ARM_TBFLAG_AA64_FPEN_MASK (1 << ARM_TBFLAG_AA64_FPEN_SHIFT)
a1705768
PM
1124
1125/* some convenience accessor macros */
3926cc84
AG
1126#define ARM_TBFLAG_AARCH64_STATE(F) \
1127 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
a1705768
PM
1128#define ARM_TBFLAG_THUMB(F) \
1129 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
1130#define ARM_TBFLAG_VECLEN(F) \
1131 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
1132#define ARM_TBFLAG_VECSTRIDE(F) \
1133 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
1134#define ARM_TBFLAG_PRIV(F) \
1135 (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
1136#define ARM_TBFLAG_VFPEN(F) \
1137 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
1138#define ARM_TBFLAG_CONDEXEC(F) \
1139 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
d8fd2954
PB
1140#define ARM_TBFLAG_BSWAP_CODE(F) \
1141 (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
2c7ffc41
PM
1142#define ARM_TBFLAG_CPACR_FPEN(F) \
1143 (((F) & ARM_TBFLAG_CPACR_FPEN_MASK) >> ARM_TBFLAG_CPACR_FPEN_SHIFT)
d9ea7d29
PM
1144#define ARM_TBFLAG_AA64_EL(F) \
1145 (((F) & ARM_TBFLAG_AA64_EL_MASK) >> ARM_TBFLAG_AA64_EL_SHIFT)
8c6afa6a
PM
1146#define ARM_TBFLAG_AA64_FPEN(F) \
1147 (((F) & ARM_TBFLAG_AA64_FPEN_MASK) >> ARM_TBFLAG_AA64_FPEN_SHIFT)
a1705768 1148
0ecb72a5 1149static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
6b917547
AL
1150 target_ulong *cs_base, int *flags)
1151{
8c6afa6a
PM
1152 int fpen = extract32(env->cp15.c1_coproc, 20, 2);
1153
3926cc84
AG
1154 if (is_a64(env)) {
1155 *pc = env->pc;
d9ea7d29
PM
1156 *flags = ARM_TBFLAG_AARCH64_STATE_MASK
1157 | (arm_current_pl(env) << ARM_TBFLAG_AA64_EL_SHIFT);
8c6afa6a
PM
1158 if (fpen == 3 || (fpen == 1 && arm_current_pl(env) != 0)) {
1159 *flags |= ARM_TBFLAG_AA64_FPEN_MASK;
1160 }
05ed9a99 1161 } else {
3926cc84
AG
1162 int privmode;
1163 *pc = env->regs[15];
1164 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
1165 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
1166 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
1167 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
1168 | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
1169 if (arm_feature(env, ARM_FEATURE_M)) {
1170 privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
1171 } else {
1172 privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
1173 }
1174 if (privmode) {
1175 *flags |= ARM_TBFLAG_PRIV_MASK;
1176 }
2c7ffc41
PM
1177 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
1178 || arm_el_is_aa64(env, 1)) {
3926cc84
AG
1179 *flags |= ARM_TBFLAG_VFPEN_MASK;
1180 }
2c7ffc41
PM
1181 if (fpen == 3 || (fpen == 1 && arm_current_pl(env) != 0)) {
1182 *flags |= ARM_TBFLAG_CPACR_FPEN_MASK;
1183 }
a1705768 1184 }
3926cc84
AG
1185
1186 *cs_base = 0;
6b917547
AL
1187}
1188
022c62cb 1189#include "exec/exec-all.h"
f081c76c 1190
3926cc84
AG
1191static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
1192{
1193 if (ARM_TBFLAG_AARCH64_STATE(tb->flags)) {
1194 env->pc = tb->pc;
1195 } else {
1196 env->regs[15] = tb->pc;
1197 }
1198}
1199
d8fd2954 1200/* Load an instruction and return it in the standard little-endian order */
0a2461fa 1201static inline uint32_t arm_ldl_code(CPUARMState *env, target_ulong addr,
d31dd73e 1202 bool do_swap)
d8fd2954 1203{
d31dd73e 1204 uint32_t insn = cpu_ldl_code(env, addr);
d8fd2954
PB
1205 if (do_swap) {
1206 return bswap32(insn);
1207 }
1208 return insn;
1209}
1210
1211/* Ditto, for a halfword (Thumb) instruction */
0a2461fa 1212static inline uint16_t arm_lduw_code(CPUARMState *env, target_ulong addr,
d31dd73e 1213 bool do_swap)
d8fd2954 1214{
d31dd73e 1215 uint16_t insn = cpu_lduw_code(env, addr);
d8fd2954
PB
1216 if (do_swap) {
1217 return bswap16(insn);
1218 }
1219 return insn;
1220}
1221
2c0262af 1222#endif
This page took 1.007065 seconds and 4 git commands to generate.