]>
Commit | Line | Data |
---|---|---|
2c0262af FB |
1 | /* |
2 | * ARM virtual CPU header | |
5fafdf24 | 3 | * |
2c0262af FB |
4 | * Copyright (c) 2003 Fabrice Bellard |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
8167ee88 | 17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
2c0262af | 18 | */ |
2c0262af | 19 | |
07f5a258 MA |
20 | #ifndef ARM_CPU_H |
21 | #define ARM_CPU_H | |
3cf1e035 | 22 | |
72b0cd35 PM |
23 | #include "kvm-consts.h" |
24 | ||
3926cc84 AG |
25 | #if defined(TARGET_AARCH64) |
26 | /* AArch64 definitions */ | |
27 | # define TARGET_LONG_BITS 64 | |
3926cc84 AG |
28 | #else |
29 | # define TARGET_LONG_BITS 32 | |
3926cc84 | 30 | #endif |
9042c0e2 | 31 | |
9349b4f9 | 32 | #define CPUArchState struct CPUARMState |
c2764719 | 33 | |
9a78eead | 34 | #include "qemu-common.h" |
74e75564 | 35 | #include "cpu-qom.h" |
022c62cb | 36 | #include "exec/cpu-defs.h" |
2c0262af | 37 | |
6b4c305c | 38 | #include "fpu/softfloat.h" |
53cd6637 | 39 | |
b8a9e8f1 FB |
40 | #define EXCP_UDEF 1 /* undefined instruction */ |
41 | #define EXCP_SWI 2 /* software interrupt */ | |
42 | #define EXCP_PREFETCH_ABORT 3 | |
43 | #define EXCP_DATA_ABORT 4 | |
b5ff1b31 FB |
44 | #define EXCP_IRQ 5 |
45 | #define EXCP_FIQ 6 | |
06c949e6 | 46 | #define EXCP_BKPT 7 |
9ee6e8bb | 47 | #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */ |
fbb4a2e3 | 48 | #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */ |
426f5abc | 49 | #define EXCP_STREX 10 |
35979d71 | 50 | #define EXCP_HVC 11 /* HyperVisor Call */ |
607d98b8 | 51 | #define EXCP_HYP_TRAP 12 |
e0d6e6a5 | 52 | #define EXCP_SMC 13 /* Secure Monitor Call */ |
136e67e9 EI |
53 | #define EXCP_VIRQ 14 |
54 | #define EXCP_VFIQ 15 | |
8012c84f | 55 | #define EXCP_SEMIHOST 16 /* semihosting call (A64 only) */ |
9ee6e8bb PB |
56 | |
57 | #define ARMV7M_EXCP_RESET 1 | |
58 | #define ARMV7M_EXCP_NMI 2 | |
59 | #define ARMV7M_EXCP_HARD 3 | |
60 | #define ARMV7M_EXCP_MEM 4 | |
61 | #define ARMV7M_EXCP_BUS 5 | |
62 | #define ARMV7M_EXCP_USAGE 6 | |
63 | #define ARMV7M_EXCP_SVC 11 | |
64 | #define ARMV7M_EXCP_DEBUG 12 | |
65 | #define ARMV7M_EXCP_PENDSV 14 | |
66 | #define ARMV7M_EXCP_SYSTICK 15 | |
2c0262af | 67 | |
403946c0 RH |
68 | /* ARM-specific interrupt pending bits. */ |
69 | #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1 | |
136e67e9 EI |
70 | #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2 |
71 | #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3 | |
403946c0 | 72 | |
e4fe830b PM |
73 | /* The usual mapping for an AArch64 system register to its AArch32 |
74 | * counterpart is for the 32 bit world to have access to the lower | |
75 | * half only (with writes leaving the upper half untouched). It's | |
76 | * therefore useful to be able to pass TCG the offset of the least | |
77 | * significant half of a uint64_t struct member. | |
78 | */ | |
79 | #ifdef HOST_WORDS_BIGENDIAN | |
5cd8a118 | 80 | #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t)) |
b0fe2427 | 81 | #define offsetofhigh32(S, M) offsetof(S, M) |
e4fe830b PM |
82 | #else |
83 | #define offsetoflow32(S, M) offsetof(S, M) | |
b0fe2427 | 84 | #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t)) |
e4fe830b PM |
85 | #endif |
86 | ||
136e67e9 | 87 | /* Meanings of the ARMCPU object's four inbound GPIO lines */ |
7c1840b6 PM |
88 | #define ARM_CPU_IRQ 0 |
89 | #define ARM_CPU_FIQ 1 | |
136e67e9 EI |
90 | #define ARM_CPU_VIRQ 2 |
91 | #define ARM_CPU_VFIQ 3 | |
403946c0 | 92 | |
c1e37810 | 93 | #define NB_MMU_MODES 7 |
aaa1f954 EI |
94 | /* ARM-specific extra insn start words: |
95 | * 1: Conditional execution bits | |
96 | * 2: Partial exception syndrome for data aborts | |
97 | */ | |
98 | #define TARGET_INSN_START_EXTRA_WORDS 2 | |
99 | ||
100 | /* The 2nd extra word holding syndrome info for data aborts does not use | |
101 | * the upper 6 bits nor the lower 14 bits. We mask and shift it down to | |
102 | * help the sleb128 encoder do a better job. | |
103 | * When restoring the CPU state, we shift it back up. | |
104 | */ | |
105 | #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1) | |
106 | #define ARM_INSN_START_WORD2_SHIFT 14 | |
6ebbf390 | 107 | |
b7bcbe95 FB |
108 | /* We currently assume float and double are IEEE single and double |
109 | precision respectively. | |
110 | Doing runtime conversions is tricky because VFP registers may contain | |
111 | integer values (eg. as the result of a FTOSI instruction). | |
8e96005d FB |
112 | s<2n> maps to the least significant half of d<n> |
113 | s<2n+1> maps to the most significant half of d<n> | |
114 | */ | |
b7bcbe95 | 115 | |
55d284af PM |
116 | /* CPU state for each instance of a generic timer (in cp15 c14) */ |
117 | typedef struct ARMGenericTimer { | |
118 | uint64_t cval; /* Timer CompareValue register */ | |
a7adc4b7 | 119 | uint64_t ctl; /* Timer Control register */ |
55d284af PM |
120 | } ARMGenericTimer; |
121 | ||
122 | #define GTIMER_PHYS 0 | |
123 | #define GTIMER_VIRT 1 | |
b0e66d95 | 124 | #define GTIMER_HYP 2 |
b4d3978c PM |
125 | #define GTIMER_SEC 3 |
126 | #define NUM_GTIMERS 4 | |
55d284af | 127 | |
11f136ee FA |
128 | typedef struct { |
129 | uint64_t raw_tcr; | |
130 | uint32_t mask; | |
131 | uint32_t base_mask; | |
132 | } TCR; | |
133 | ||
2c0262af | 134 | typedef struct CPUARMState { |
b5ff1b31 | 135 | /* Regs for current mode. */ |
2c0262af | 136 | uint32_t regs[16]; |
3926cc84 AG |
137 | |
138 | /* 32/64 switch only happens when taking and returning from | |
139 | * exceptions so the overlap semantics are taken care of then | |
140 | * instead of having a complicated union. | |
141 | */ | |
142 | /* Regs for A64 mode. */ | |
143 | uint64_t xregs[32]; | |
144 | uint64_t pc; | |
d356312f PM |
145 | /* PSTATE isn't an architectural register for ARMv8. However, it is |
146 | * convenient for us to assemble the underlying state into a 32 bit format | |
147 | * identical to the architectural format used for the SPSR. (This is also | |
148 | * what the Linux kernel's 'pstate' field in signal handlers and KVM's | |
149 | * 'pstate' register are.) Of the PSTATE bits: | |
150 | * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same | |
151 | * semantics as for AArch32, as described in the comments on each field) | |
152 | * nRW (also known as M[4]) is kept, inverted, in env->aarch64 | |
4cc35614 | 153 | * DAIF (exception masks) are kept in env->daif |
d356312f | 154 | * all other bits are stored in their correct places in env->pstate |
3926cc84 AG |
155 | */ |
156 | uint32_t pstate; | |
157 | uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */ | |
158 | ||
b90372ad | 159 | /* Frequently accessed CPSR bits are stored separately for efficiency. |
d37aca66 | 160 | This contains all the other bits. Use cpsr_{read,write} to access |
b5ff1b31 FB |
161 | the whole CPSR. */ |
162 | uint32_t uncached_cpsr; | |
163 | uint32_t spsr; | |
164 | ||
165 | /* Banked registers. */ | |
28c9457d | 166 | uint64_t banked_spsr[8]; |
0b7d409d FA |
167 | uint32_t banked_r13[8]; |
168 | uint32_t banked_r14[8]; | |
3b46e624 | 169 | |
b5ff1b31 FB |
170 | /* These hold r8-r12. */ |
171 | uint32_t usr_regs[5]; | |
172 | uint32_t fiq_regs[5]; | |
3b46e624 | 173 | |
2c0262af FB |
174 | /* cpsr flag cache for faster execution */ |
175 | uint32_t CF; /* 0 or 1 */ | |
176 | uint32_t VF; /* V is the bit 31. All other bits are undefined */ | |
6fbe23d5 PB |
177 | uint32_t NF; /* N is bit 31. All other bits are undefined. */ |
178 | uint32_t ZF; /* Z set if zero. */ | |
99c475ab | 179 | uint32_t QF; /* 0 or 1 */ |
9ee6e8bb | 180 | uint32_t GE; /* cpsr[19:16] */ |
b26eefb6 | 181 | uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */ |
9ee6e8bb | 182 | uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */ |
b6af0975 | 183 | uint64_t daif; /* exception masks, in the bits they are in PSTATE */ |
2c0262af | 184 | |
1b174238 | 185 | uint64_t elr_el[4]; /* AArch64 exception link regs */ |
73fb3b76 | 186 | uint64_t sp_el[4]; /* AArch64 banked stack pointers */ |
a0618a19 | 187 | |
b5ff1b31 FB |
188 | /* System control coprocessor (cp15) */ |
189 | struct { | |
40f137e1 | 190 | uint32_t c0_cpuid; |
b85a1fd6 FA |
191 | union { /* Cache size selection */ |
192 | struct { | |
193 | uint64_t _unused_csselr0; | |
194 | uint64_t csselr_ns; | |
195 | uint64_t _unused_csselr1; | |
196 | uint64_t csselr_s; | |
197 | }; | |
198 | uint64_t csselr_el[4]; | |
199 | }; | |
137feaa9 FA |
200 | union { /* System control register. */ |
201 | struct { | |
202 | uint64_t _unused_sctlr; | |
203 | uint64_t sctlr_ns; | |
204 | uint64_t hsctlr; | |
205 | uint64_t sctlr_s; | |
206 | }; | |
207 | uint64_t sctlr_el[4]; | |
208 | }; | |
7ebd5f2e | 209 | uint64_t cpacr_el1; /* Architectural feature access control register */ |
c6f19164 | 210 | uint64_t cptr_el[4]; /* ARMv8 feature trap registers */ |
610c3c8a | 211 | uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */ |
144634ae | 212 | uint64_t sder; /* Secure debug enable register. */ |
77022576 | 213 | uint32_t nsacr; /* Non-secure access control register. */ |
7dd8c9af FA |
214 | union { /* MMU translation table base 0. */ |
215 | struct { | |
216 | uint64_t _unused_ttbr0_0; | |
217 | uint64_t ttbr0_ns; | |
218 | uint64_t _unused_ttbr0_1; | |
219 | uint64_t ttbr0_s; | |
220 | }; | |
221 | uint64_t ttbr0_el[4]; | |
222 | }; | |
223 | union { /* MMU translation table base 1. */ | |
224 | struct { | |
225 | uint64_t _unused_ttbr1_0; | |
226 | uint64_t ttbr1_ns; | |
227 | uint64_t _unused_ttbr1_1; | |
228 | uint64_t ttbr1_s; | |
229 | }; | |
230 | uint64_t ttbr1_el[4]; | |
231 | }; | |
b698e9cf | 232 | uint64_t vttbr_el2; /* Virtualization Translation Table Base. */ |
11f136ee FA |
233 | /* MMU translation table base control. */ |
234 | TCR tcr_el[4]; | |
68e9c2fe | 235 | TCR vtcr_el2; /* Virtualization Translation Control. */ |
67cc32eb VL |
236 | uint32_t c2_data; /* MPU data cacheable bits. */ |
237 | uint32_t c2_insn; /* MPU instruction cacheable bits. */ | |
0c17d68c FA |
238 | union { /* MMU domain access control register |
239 | * MPU write buffer control. | |
240 | */ | |
241 | struct { | |
242 | uint64_t dacr_ns; | |
243 | uint64_t dacr_s; | |
244 | }; | |
245 | struct { | |
246 | uint64_t dacr32_el2; | |
247 | }; | |
248 | }; | |
7e09797c PM |
249 | uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */ |
250 | uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */ | |
f149e3e8 | 251 | uint64_t hcr_el2; /* Hypervisor configuration register */ |
64e0e2de | 252 | uint64_t scr_el3; /* Secure configuration register. */ |
88ca1c2d FA |
253 | union { /* Fault status registers. */ |
254 | struct { | |
255 | uint64_t ifsr_ns; | |
256 | uint64_t ifsr_s; | |
257 | }; | |
258 | struct { | |
259 | uint64_t ifsr32_el2; | |
260 | }; | |
261 | }; | |
4a7e2d73 FA |
262 | union { |
263 | struct { | |
264 | uint64_t _unused_dfsr; | |
265 | uint64_t dfsr_ns; | |
266 | uint64_t hsr; | |
267 | uint64_t dfsr_s; | |
268 | }; | |
269 | uint64_t esr_el[4]; | |
270 | }; | |
ce819861 | 271 | uint32_t c6_region[8]; /* MPU base/size registers. */ |
b848ce2b FA |
272 | union { /* Fault address registers. */ |
273 | struct { | |
274 | uint64_t _unused_far0; | |
275 | #ifdef HOST_WORDS_BIGENDIAN | |
276 | uint32_t ifar_ns; | |
277 | uint32_t dfar_ns; | |
278 | uint32_t ifar_s; | |
279 | uint32_t dfar_s; | |
280 | #else | |
281 | uint32_t dfar_ns; | |
282 | uint32_t ifar_ns; | |
283 | uint32_t dfar_s; | |
284 | uint32_t ifar_s; | |
285 | #endif | |
286 | uint64_t _unused_far3; | |
287 | }; | |
288 | uint64_t far_el[4]; | |
289 | }; | |
59e05530 | 290 | uint64_t hpfar_el2; |
2a5a9abd | 291 | uint64_t hstr_el2; |
01c097f7 FA |
292 | union { /* Translation result. */ |
293 | struct { | |
294 | uint64_t _unused_par_0; | |
295 | uint64_t par_ns; | |
296 | uint64_t _unused_par_1; | |
297 | uint64_t par_s; | |
298 | }; | |
299 | uint64_t par_el[4]; | |
300 | }; | |
6cb0b013 PC |
301 | |
302 | uint32_t c6_rgnr; | |
303 | ||
b5ff1b31 FB |
304 | uint32_t c9_insn; /* Cache lockdown registers. */ |
305 | uint32_t c9_data; | |
8521466b AF |
306 | uint64_t c9_pmcr; /* performance monitor control register */ |
307 | uint64_t c9_pmcnten; /* perf monitor counter enables */ | |
74594c9d PM |
308 | uint32_t c9_pmovsr; /* perf monitor overflow status */ |
309 | uint32_t c9_pmxevtyper; /* perf monitor event type */ | |
310 | uint32_t c9_pmuserenr; /* perf monitor user enable */ | |
311 | uint32_t c9_pminten; /* perf monitor interrupt enables */ | |
be693c87 GB |
312 | union { /* Memory attribute redirection */ |
313 | struct { | |
314 | #ifdef HOST_WORDS_BIGENDIAN | |
315 | uint64_t _unused_mair_0; | |
316 | uint32_t mair1_ns; | |
317 | uint32_t mair0_ns; | |
318 | uint64_t _unused_mair_1; | |
319 | uint32_t mair1_s; | |
320 | uint32_t mair0_s; | |
321 | #else | |
322 | uint64_t _unused_mair_0; | |
323 | uint32_t mair0_ns; | |
324 | uint32_t mair1_ns; | |
325 | uint64_t _unused_mair_1; | |
326 | uint32_t mair0_s; | |
327 | uint32_t mair1_s; | |
328 | #endif | |
329 | }; | |
330 | uint64_t mair_el[4]; | |
331 | }; | |
fb6c91ba GB |
332 | union { /* vector base address register */ |
333 | struct { | |
334 | uint64_t _unused_vbar; | |
335 | uint64_t vbar_ns; | |
336 | uint64_t hvbar; | |
337 | uint64_t vbar_s; | |
338 | }; | |
339 | uint64_t vbar_el[4]; | |
340 | }; | |
e89e51a1 | 341 | uint32_t mvbar; /* (monitor) vector base address register */ |
54bf36ed FA |
342 | struct { /* FCSE PID. */ |
343 | uint32_t fcseidr_ns; | |
344 | uint32_t fcseidr_s; | |
345 | }; | |
346 | union { /* Context ID. */ | |
347 | struct { | |
348 | uint64_t _unused_contextidr_0; | |
349 | uint64_t contextidr_ns; | |
350 | uint64_t _unused_contextidr_1; | |
351 | uint64_t contextidr_s; | |
352 | }; | |
353 | uint64_t contextidr_el[4]; | |
354 | }; | |
355 | union { /* User RW Thread register. */ | |
356 | struct { | |
357 | uint64_t tpidrurw_ns; | |
358 | uint64_t tpidrprw_ns; | |
359 | uint64_t htpidr; | |
360 | uint64_t _tpidr_el3; | |
361 | }; | |
362 | uint64_t tpidr_el[4]; | |
363 | }; | |
364 | /* The secure banks of these registers don't map anywhere */ | |
365 | uint64_t tpidrurw_s; | |
366 | uint64_t tpidrprw_s; | |
367 | uint64_t tpidruro_s; | |
368 | ||
369 | union { /* User RO Thread register. */ | |
370 | uint64_t tpidruro_ns; | |
371 | uint64_t tpidrro_el[1]; | |
372 | }; | |
a7adc4b7 PM |
373 | uint64_t c14_cntfrq; /* Counter Frequency register */ |
374 | uint64_t c14_cntkctl; /* Timer Control register */ | |
0b6440af | 375 | uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */ |
edac4d8a | 376 | uint64_t cntvoff_el2; /* Counter Virtual Offset register */ |
55d284af | 377 | ARMGenericTimer c14_timer[NUM_GTIMERS]; |
c1713132 | 378 | uint32_t c15_cpar; /* XScale Coprocessor Access Register */ |
c3d2689d AZ |
379 | uint32_t c15_ticonfig; /* TI925T configuration byte. */ |
380 | uint32_t c15_i_max; /* Maximum D-cache dirty line index. */ | |
381 | uint32_t c15_i_min; /* Minimum D-cache dirty line index. */ | |
382 | uint32_t c15_threadid; /* TI debugger thread-ID. */ | |
7da362d0 ML |
383 | uint32_t c15_config_base_address; /* SCU base address. */ |
384 | uint32_t c15_diagnostic; /* diagnostic register */ | |
385 | uint32_t c15_power_diagnostic; | |
386 | uint32_t c15_power_control; /* power control */ | |
0b45451e PM |
387 | uint64_t dbgbvr[16]; /* breakpoint value registers */ |
388 | uint64_t dbgbcr[16]; /* breakpoint control registers */ | |
389 | uint64_t dbgwvr[16]; /* watchpoint value registers */ | |
390 | uint64_t dbgwcr[16]; /* watchpoint control registers */ | |
3a298203 | 391 | uint64_t mdscr_el1; |
1424ca8d | 392 | uint64_t oslsr_el1; /* OS Lock Status */ |
14cc7b54 | 393 | uint64_t mdcr_el2; |
5513c3ab | 394 | uint64_t mdcr_el3; |
7c2cb42b AF |
395 | /* If the counter is enabled, this stores the last time the counter |
396 | * was reset. Otherwise it stores the counter value | |
397 | */ | |
c92c0687 | 398 | uint64_t c15_ccnt; |
8521466b | 399 | uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */ |
731de9e6 | 400 | uint64_t vpidr_el2; /* Virtualization Processor ID Register */ |
f0d574d6 | 401 | uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */ |
b5ff1b31 | 402 | } cp15; |
40f137e1 | 403 | |
9ee6e8bb PB |
404 | struct { |
405 | uint32_t other_sp; | |
406 | uint32_t vecbase; | |
407 | uint32_t basepri; | |
408 | uint32_t control; | |
409 | int current_sp; | |
410 | int exception; | |
9ee6e8bb PB |
411 | } v7m; |
412 | ||
abf1172f PM |
413 | /* Information associated with an exception about to be taken: |
414 | * code which raises an exception must set cs->exception_index and | |
415 | * the relevant parts of this structure; the cpu_do_interrupt function | |
416 | * will then set the guest-visible registers as part of the exception | |
417 | * entry process. | |
418 | */ | |
419 | struct { | |
420 | uint32_t syndrome; /* AArch64 format syndrome register */ | |
421 | uint32_t fsr; /* AArch32 format fault status register info */ | |
422 | uint64_t vaddress; /* virtual addr associated with exception, if any */ | |
73710361 | 423 | uint32_t target_el; /* EL the exception should be targeted for */ |
abf1172f PM |
424 | /* If we implement EL2 we will also need to store information |
425 | * about the intermediate physical address for stage 2 faults. | |
426 | */ | |
427 | } exception; | |
428 | ||
fe1479c3 PB |
429 | /* Thumb-2 EE state. */ |
430 | uint32_t teecr; | |
431 | uint32_t teehbr; | |
432 | ||
b7bcbe95 FB |
433 | /* VFP coprocessor state. */ |
434 | struct { | |
3926cc84 AG |
435 | /* VFP/Neon register state. Note that the mapping between S, D and Q |
436 | * views of the register bank differs between AArch64 and AArch32: | |
437 | * In AArch32: | |
438 | * Qn = regs[2n+1]:regs[2n] | |
439 | * Dn = regs[n] | |
440 | * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n | |
441 | * (and regs[32] to regs[63] are inaccessible) | |
442 | * In AArch64: | |
443 | * Qn = regs[2n+1]:regs[2n] | |
444 | * Dn = regs[2n] | |
445 | * Sn = regs[2n] bits 31..0 | |
446 | * This corresponds to the architecturally defined mapping between | |
447 | * the two execution states, and means we do not need to explicitly | |
448 | * map these registers when changing states. | |
449 | */ | |
450 | float64 regs[64]; | |
b7bcbe95 | 451 | |
40f137e1 | 452 | uint32_t xregs[16]; |
b7bcbe95 FB |
453 | /* We store these fpcsr fields separately for convenience. */ |
454 | int vec_len; | |
455 | int vec_stride; | |
456 | ||
9ee6e8bb PB |
457 | /* scratch space when Tn are not sufficient. */ |
458 | uint32_t scratch[8]; | |
3b46e624 | 459 | |
3a492f3a PM |
460 | /* fp_status is the "normal" fp status. standard_fp_status retains |
461 | * values corresponding to the ARM "Standard FPSCR Value", ie | |
462 | * default-NaN, flush-to-zero, round-to-nearest and is used by | |
463 | * any operations (generally Neon) which the architecture defines | |
464 | * as controlled by the standard FPSCR value rather than the FPSCR. | |
465 | * | |
466 | * To avoid having to transfer exception bits around, we simply | |
467 | * say that the FPSCR cumulative exception flags are the logical | |
468 | * OR of the flags in the two fp statuses. This relies on the | |
469 | * only thing which needs to read the exception flags being | |
470 | * an explicit FPSCR read. | |
471 | */ | |
53cd6637 | 472 | float_status fp_status; |
3a492f3a | 473 | float_status standard_fp_status; |
b7bcbe95 | 474 | } vfp; |
03d05e2d PM |
475 | uint64_t exclusive_addr; |
476 | uint64_t exclusive_val; | |
477 | uint64_t exclusive_high; | |
9ee6e8bb | 478 | #if defined(CONFIG_USER_ONLY) |
03d05e2d | 479 | uint64_t exclusive_test; |
426f5abc | 480 | uint32_t exclusive_info; |
9ee6e8bb | 481 | #endif |
b7bcbe95 | 482 | |
18c9b560 AZ |
483 | /* iwMMXt coprocessor state. */ |
484 | struct { | |
485 | uint64_t regs[16]; | |
486 | uint64_t val; | |
487 | ||
488 | uint32_t cregs[16]; | |
489 | } iwmmxt; | |
490 | ||
ce4defa0 PB |
491 | #if defined(CONFIG_USER_ONLY) |
492 | /* For usermode syscall translation. */ | |
493 | int eabi; | |
494 | #endif | |
495 | ||
46747d15 | 496 | struct CPUBreakpoint *cpu_breakpoint[16]; |
9ee98ce8 PM |
497 | struct CPUWatchpoint *cpu_watchpoint[16]; |
498 | ||
a316d335 FB |
499 | CPU_COMMON |
500 | ||
9d551997 | 501 | /* These fields after the common ones so they are preserved on reset. */ |
9ba8c3f4 | 502 | |
581be094 | 503 | /* Internal CPU feature flags. */ |
918f5dca | 504 | uint64_t features; |
581be094 | 505 | |
6cb0b013 PC |
506 | /* PMSAv7 MPU */ |
507 | struct { | |
508 | uint32_t *drbar; | |
509 | uint32_t *drsr; | |
510 | uint32_t *dracr; | |
511 | } pmsav7; | |
512 | ||
983fe826 | 513 | void *nvic; |
462a8bc6 | 514 | const struct arm_boot_info *boot_info; |
2c0262af FB |
515 | } CPUARMState; |
516 | ||
bd7d00fc PM |
517 | /** |
518 | * ARMELChangeHook: | |
519 | * type of a function which can be registered via arm_register_el_change_hook() | |
520 | * to get callbacks when the CPU changes its exception level or mode. | |
521 | */ | |
522 | typedef void ARMELChangeHook(ARMCPU *cpu, void *opaque); | |
523 | ||
74e75564 PB |
524 | /** |
525 | * ARMCPU: | |
526 | * @env: #CPUARMState | |
527 | * | |
528 | * An ARM CPU core. | |
529 | */ | |
530 | struct ARMCPU { | |
531 | /*< private >*/ | |
532 | CPUState parent_obj; | |
533 | /*< public >*/ | |
534 | ||
535 | CPUARMState env; | |
536 | ||
537 | /* Coprocessor information */ | |
538 | GHashTable *cp_regs; | |
539 | /* For marshalling (mostly coprocessor) register state between the | |
540 | * kernel and QEMU (for KVM) and between two QEMUs (for migration), | |
541 | * we use these arrays. | |
542 | */ | |
543 | /* List of register indexes managed via these arrays; (full KVM style | |
544 | * 64 bit indexes, not CPRegInfo 32 bit indexes) | |
545 | */ | |
546 | uint64_t *cpreg_indexes; | |
547 | /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */ | |
548 | uint64_t *cpreg_values; | |
549 | /* Length of the indexes, values, reset_values arrays */ | |
550 | int32_t cpreg_array_len; | |
551 | /* These are used only for migration: incoming data arrives in | |
552 | * these fields and is sanity checked in post_load before copying | |
553 | * to the working data structures above. | |
554 | */ | |
555 | uint64_t *cpreg_vmstate_indexes; | |
556 | uint64_t *cpreg_vmstate_values; | |
557 | int32_t cpreg_vmstate_array_len; | |
558 | ||
559 | /* Timers used by the generic (architected) timer */ | |
560 | QEMUTimer *gt_timer[NUM_GTIMERS]; | |
561 | /* GPIO outputs for generic timer */ | |
562 | qemu_irq gt_timer_outputs[NUM_GTIMERS]; | |
563 | ||
564 | /* MemoryRegion to use for secure physical accesses */ | |
565 | MemoryRegion *secure_memory; | |
566 | ||
567 | /* 'compatible' string for this CPU for Linux device trees */ | |
568 | const char *dtb_compatible; | |
569 | ||
570 | /* PSCI version for this CPU | |
571 | * Bits[31:16] = Major Version | |
572 | * Bits[15:0] = Minor Version | |
573 | */ | |
574 | uint32_t psci_version; | |
575 | ||
576 | /* Should CPU start in PSCI powered-off state? */ | |
577 | bool start_powered_off; | |
578 | /* CPU currently in PSCI powered-off state */ | |
579 | bool powered_off; | |
580 | /* CPU has security extension */ | |
581 | bool has_el3; | |
5c0a3819 SZ |
582 | /* CPU has PMU (Performance Monitor Unit) */ |
583 | bool has_pmu; | |
74e75564 PB |
584 | |
585 | /* CPU has memory protection unit */ | |
586 | bool has_mpu; | |
587 | /* PMSAv7 MPU number of supported regions */ | |
588 | uint32_t pmsav7_dregion; | |
589 | ||
590 | /* PSCI conduit used to invoke PSCI methods | |
591 | * 0 - disabled, 1 - smc, 2 - hvc | |
592 | */ | |
593 | uint32_t psci_conduit; | |
594 | ||
595 | /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or | |
596 | * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type. | |
597 | */ | |
598 | uint32_t kvm_target; | |
599 | ||
600 | /* KVM init features for this CPU */ | |
601 | uint32_t kvm_init_features[7]; | |
602 | ||
603 | /* Uniprocessor system with MP extensions */ | |
604 | bool mp_is_up; | |
605 | ||
606 | /* The instance init functions for implementation-specific subclasses | |
607 | * set these fields to specify the implementation-dependent values of | |
608 | * various constant registers and reset values of non-constant | |
609 | * registers. | |
610 | * Some of these might become QOM properties eventually. | |
611 | * Field names match the official register names as defined in the | |
612 | * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix | |
613 | * is used for reset values of non-constant registers; no reset_ | |
614 | * prefix means a constant register. | |
615 | */ | |
616 | uint32_t midr; | |
617 | uint32_t revidr; | |
618 | uint32_t reset_fpsid; | |
619 | uint32_t mvfr0; | |
620 | uint32_t mvfr1; | |
621 | uint32_t mvfr2; | |
622 | uint32_t ctr; | |
623 | uint32_t reset_sctlr; | |
624 | uint32_t id_pfr0; | |
625 | uint32_t id_pfr1; | |
626 | uint32_t id_dfr0; | |
627 | uint32_t pmceid0; | |
628 | uint32_t pmceid1; | |
629 | uint32_t id_afr0; | |
630 | uint32_t id_mmfr0; | |
631 | uint32_t id_mmfr1; | |
632 | uint32_t id_mmfr2; | |
633 | uint32_t id_mmfr3; | |
634 | uint32_t id_mmfr4; | |
635 | uint32_t id_isar0; | |
636 | uint32_t id_isar1; | |
637 | uint32_t id_isar2; | |
638 | uint32_t id_isar3; | |
639 | uint32_t id_isar4; | |
640 | uint32_t id_isar5; | |
641 | uint64_t id_aa64pfr0; | |
642 | uint64_t id_aa64pfr1; | |
643 | uint64_t id_aa64dfr0; | |
644 | uint64_t id_aa64dfr1; | |
645 | uint64_t id_aa64afr0; | |
646 | uint64_t id_aa64afr1; | |
647 | uint64_t id_aa64isar0; | |
648 | uint64_t id_aa64isar1; | |
649 | uint64_t id_aa64mmfr0; | |
650 | uint64_t id_aa64mmfr1; | |
651 | uint32_t dbgdidr; | |
652 | uint32_t clidr; | |
653 | uint64_t mp_affinity; /* MP ID without feature bits */ | |
654 | /* The elements of this array are the CCSIDR values for each cache, | |
655 | * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc. | |
656 | */ | |
657 | uint32_t ccsidr[16]; | |
658 | uint64_t reset_cbar; | |
659 | uint32_t reset_auxcr; | |
660 | bool reset_hivecs; | |
661 | /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */ | |
662 | uint32_t dcz_blocksize; | |
663 | uint64_t rvbar; | |
bd7d00fc PM |
664 | |
665 | ARMELChangeHook *el_change_hook; | |
666 | void *el_change_hook_opaque; | |
74e75564 PB |
667 | }; |
668 | ||
669 | static inline ARMCPU *arm_env_get_cpu(CPUARMState *env) | |
670 | { | |
671 | return container_of(env, ARMCPU, env); | |
672 | } | |
673 | ||
674 | #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e)) | |
675 | ||
676 | #define ENV_OFFSET offsetof(ARMCPU, env) | |
677 | ||
678 | #ifndef CONFIG_USER_ONLY | |
679 | extern const struct VMStateDescription vmstate_arm_cpu; | |
680 | #endif | |
681 | ||
682 | void arm_cpu_do_interrupt(CPUState *cpu); | |
683 | void arm_v7m_cpu_do_interrupt(CPUState *cpu); | |
684 | bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req); | |
685 | ||
686 | void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf, | |
687 | int flags); | |
688 | ||
689 | hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, | |
690 | MemTxAttrs *attrs); | |
691 | ||
692 | int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg); | |
693 | int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); | |
694 | ||
695 | int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs, | |
696 | int cpuid, void *opaque); | |
697 | int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs, | |
698 | int cpuid, void *opaque); | |
699 | ||
700 | #ifdef TARGET_AARCH64 | |
701 | int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg); | |
702 | int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); | |
703 | #endif | |
778c3a06 AF |
704 | |
705 | ARMCPU *cpu_arm_init(const char *cpu_model); | |
faacc041 | 706 | target_ulong do_arm_semihosting(CPUARMState *env); |
ce02049d GB |
707 | void aarch64_sync_32_to_64(CPUARMState *env); |
708 | void aarch64_sync_64_to_32(CPUARMState *env); | |
b5ff1b31 | 709 | |
3926cc84 AG |
710 | static inline bool is_a64(CPUARMState *env) |
711 | { | |
712 | return env->aarch64; | |
713 | } | |
714 | ||
2c0262af FB |
715 | /* you can call this signal handler from your SIGBUS and SIGSEGV |
716 | signal handlers to inform the virtual CPU of exceptions. non zero | |
717 | is returned if the signal was handled by the virtual CPU. */ | |
5fafdf24 | 718 | int cpu_arm_signal_handler(int host_signum, void *pinfo, |
2c0262af FB |
719 | void *puc); |
720 | ||
ec7b4ce4 AF |
721 | /** |
722 | * pmccntr_sync | |
723 | * @env: CPUARMState | |
724 | * | |
725 | * Synchronises the counter in the PMCCNTR. This must always be called twice, | |
726 | * once before any action that might affect the timer and again afterwards. | |
727 | * The function is used to swap the state of the register if required. | |
728 | * This only happens when not in user mode (!CONFIG_USER_ONLY) | |
729 | */ | |
730 | void pmccntr_sync(CPUARMState *env); | |
731 | ||
76e3e1bc PM |
732 | /* SCTLR bit meanings. Several bits have been reused in newer |
733 | * versions of the architecture; in that case we define constants | |
734 | * for both old and new bit meanings. Code which tests against those | |
735 | * bits should probably check or otherwise arrange that the CPU | |
736 | * is the architectural version it expects. | |
737 | */ | |
738 | #define SCTLR_M (1U << 0) | |
739 | #define SCTLR_A (1U << 1) | |
740 | #define SCTLR_C (1U << 2) | |
741 | #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */ | |
742 | #define SCTLR_SA (1U << 3) | |
743 | #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */ | |
744 | #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */ | |
745 | #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */ | |
746 | #define SCTLR_CP15BEN (1U << 5) /* v7 onward */ | |
747 | #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */ | |
748 | #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */ | |
749 | #define SCTLR_ITD (1U << 7) /* v8 onward */ | |
750 | #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */ | |
751 | #define SCTLR_SED (1U << 8) /* v8 onward */ | |
752 | #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */ | |
753 | #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */ | |
754 | #define SCTLR_F (1U << 10) /* up to v6 */ | |
755 | #define SCTLR_SW (1U << 10) /* v7 onward */ | |
756 | #define SCTLR_Z (1U << 11) | |
757 | #define SCTLR_I (1U << 12) | |
758 | #define SCTLR_V (1U << 13) | |
759 | #define SCTLR_RR (1U << 14) /* up to v7 */ | |
760 | #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */ | |
761 | #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */ | |
762 | #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */ | |
763 | #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */ | |
764 | #define SCTLR_nTWI (1U << 16) /* v8 onward */ | |
765 | #define SCTLR_HA (1U << 17) | |
f6bda88f | 766 | #define SCTLR_BR (1U << 17) /* PMSA only */ |
76e3e1bc PM |
767 | #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */ |
768 | #define SCTLR_nTWE (1U << 18) /* v8 onward */ | |
769 | #define SCTLR_WXN (1U << 19) | |
770 | #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */ | |
771 | #define SCTLR_UWXN (1U << 20) /* v7 onward */ | |
772 | #define SCTLR_FI (1U << 21) | |
773 | #define SCTLR_U (1U << 22) | |
774 | #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */ | |
775 | #define SCTLR_VE (1U << 24) /* up to v7 */ | |
776 | #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */ | |
777 | #define SCTLR_EE (1U << 25) | |
778 | #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */ | |
779 | #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */ | |
780 | #define SCTLR_NMFI (1U << 27) | |
781 | #define SCTLR_TRE (1U << 28) | |
782 | #define SCTLR_AFE (1U << 29) | |
783 | #define SCTLR_TE (1U << 30) | |
784 | ||
c6f19164 GB |
785 | #define CPTR_TCPAC (1U << 31) |
786 | #define CPTR_TTA (1U << 20) | |
787 | #define CPTR_TFP (1U << 10) | |
788 | ||
187f678d PM |
789 | #define MDCR_EPMAD (1U << 21) |
790 | #define MDCR_EDAD (1U << 20) | |
791 | #define MDCR_SPME (1U << 17) | |
792 | #define MDCR_SDD (1U << 16) | |
a8d64e73 | 793 | #define MDCR_SPD (3U << 14) |
187f678d PM |
794 | #define MDCR_TDRA (1U << 11) |
795 | #define MDCR_TDOSA (1U << 10) | |
796 | #define MDCR_TDA (1U << 9) | |
797 | #define MDCR_TDE (1U << 8) | |
798 | #define MDCR_HPME (1U << 7) | |
799 | #define MDCR_TPM (1U << 6) | |
800 | #define MDCR_TPMCR (1U << 5) | |
801 | ||
a8d64e73 PM |
802 | /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */ |
803 | #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD) | |
804 | ||
78dbbbe4 PM |
805 | #define CPSR_M (0x1fU) |
806 | #define CPSR_T (1U << 5) | |
807 | #define CPSR_F (1U << 6) | |
808 | #define CPSR_I (1U << 7) | |
809 | #define CPSR_A (1U << 8) | |
810 | #define CPSR_E (1U << 9) | |
811 | #define CPSR_IT_2_7 (0xfc00U) | |
812 | #define CPSR_GE (0xfU << 16) | |
4051e12c PM |
813 | #define CPSR_IL (1U << 20) |
814 | /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in | |
815 | * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use | |
816 | * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32, | |
817 | * where it is live state but not accessible to the AArch32 code. | |
818 | */ | |
819 | #define CPSR_RESERVED (0x7U << 21) | |
78dbbbe4 PM |
820 | #define CPSR_J (1U << 24) |
821 | #define CPSR_IT_0_1 (3U << 25) | |
822 | #define CPSR_Q (1U << 27) | |
823 | #define CPSR_V (1U << 28) | |
824 | #define CPSR_C (1U << 29) | |
825 | #define CPSR_Z (1U << 30) | |
826 | #define CPSR_N (1U << 31) | |
9ee6e8bb | 827 | #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V) |
4cc35614 | 828 | #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F) |
9ee6e8bb PB |
829 | |
830 | #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7) | |
4cc35614 PM |
831 | #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \ |
832 | | CPSR_NZCV) | |
9ee6e8bb PB |
833 | /* Bits writable in user mode. */ |
834 | #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE) | |
835 | /* Execution state bits. MRS read as zero, MSR writes ignored. */ | |
4051e12c PM |
836 | #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL) |
837 | /* Mask of bits which may be set by exception return copying them from SPSR */ | |
838 | #define CPSR_ERET_MASK (~CPSR_RESERVED) | |
b5ff1b31 | 839 | |
e389be16 FA |
840 | #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */ |
841 | #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */ | |
842 | #define TTBCR_PD0 (1U << 4) | |
843 | #define TTBCR_PD1 (1U << 5) | |
844 | #define TTBCR_EPD0 (1U << 7) | |
845 | #define TTBCR_IRGN0 (3U << 8) | |
846 | #define TTBCR_ORGN0 (3U << 10) | |
847 | #define TTBCR_SH0 (3U << 12) | |
848 | #define TTBCR_T1SZ (3U << 16) | |
849 | #define TTBCR_A1 (1U << 22) | |
850 | #define TTBCR_EPD1 (1U << 23) | |
851 | #define TTBCR_IRGN1 (3U << 24) | |
852 | #define TTBCR_ORGN1 (3U << 26) | |
853 | #define TTBCR_SH1 (1U << 28) | |
854 | #define TTBCR_EAE (1U << 31) | |
855 | ||
d356312f PM |
856 | /* Bit definitions for ARMv8 SPSR (PSTATE) format. |
857 | * Only these are valid when in AArch64 mode; in | |
858 | * AArch32 mode SPSRs are basically CPSR-format. | |
859 | */ | |
f502cfc2 | 860 | #define PSTATE_SP (1U) |
d356312f PM |
861 | #define PSTATE_M (0xFU) |
862 | #define PSTATE_nRW (1U << 4) | |
863 | #define PSTATE_F (1U << 6) | |
864 | #define PSTATE_I (1U << 7) | |
865 | #define PSTATE_A (1U << 8) | |
866 | #define PSTATE_D (1U << 9) | |
867 | #define PSTATE_IL (1U << 20) | |
868 | #define PSTATE_SS (1U << 21) | |
869 | #define PSTATE_V (1U << 28) | |
870 | #define PSTATE_C (1U << 29) | |
871 | #define PSTATE_Z (1U << 30) | |
872 | #define PSTATE_N (1U << 31) | |
873 | #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V) | |
4cc35614 PM |
874 | #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F) |
875 | #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF) | |
d356312f PM |
876 | /* Mode values for AArch64 */ |
877 | #define PSTATE_MODE_EL3h 13 | |
878 | #define PSTATE_MODE_EL3t 12 | |
879 | #define PSTATE_MODE_EL2h 9 | |
880 | #define PSTATE_MODE_EL2t 8 | |
881 | #define PSTATE_MODE_EL1h 5 | |
882 | #define PSTATE_MODE_EL1t 4 | |
883 | #define PSTATE_MODE_EL0t 0 | |
884 | ||
9e729b57 EI |
885 | /* Map EL and handler into a PSTATE_MODE. */ |
886 | static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler) | |
887 | { | |
888 | return (el << 2) | handler; | |
889 | } | |
890 | ||
d356312f PM |
891 | /* Return the current PSTATE value. For the moment we don't support 32<->64 bit |
892 | * interprocessing, so we don't attempt to sync with the cpsr state used by | |
893 | * the 32 bit decoder. | |
894 | */ | |
895 | static inline uint32_t pstate_read(CPUARMState *env) | |
896 | { | |
897 | int ZF; | |
898 | ||
899 | ZF = (env->ZF == 0); | |
900 | return (env->NF & 0x80000000) | (ZF << 30) | |
901 | | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | |
4cc35614 | 902 | | env->pstate | env->daif; |
d356312f PM |
903 | } |
904 | ||
905 | static inline void pstate_write(CPUARMState *env, uint32_t val) | |
906 | { | |
907 | env->ZF = (~val) & PSTATE_Z; | |
908 | env->NF = val; | |
909 | env->CF = (val >> 29) & 1; | |
910 | env->VF = (val << 3) & 0x80000000; | |
4cc35614 | 911 | env->daif = val & PSTATE_DAIF; |
d356312f PM |
912 | env->pstate = val & ~CACHED_PSTATE_BITS; |
913 | } | |
914 | ||
b5ff1b31 | 915 | /* Return the current CPSR value. */ |
2f4a40e5 | 916 | uint32_t cpsr_read(CPUARMState *env); |
50866ba5 PM |
917 | |
918 | typedef enum CPSRWriteType { | |
919 | CPSRWriteByInstr = 0, /* from guest MSR or CPS */ | |
920 | CPSRWriteExceptionReturn = 1, /* from guest exception return insn */ | |
921 | CPSRWriteRaw = 2, /* trust values, do not switch reg banks */ | |
922 | CPSRWriteByGDBStub = 3, /* from the GDB stub */ | |
923 | } CPSRWriteType; | |
924 | ||
925 | /* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/ | |
926 | void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, | |
927 | CPSRWriteType write_type); | |
9ee6e8bb PB |
928 | |
929 | /* Return the current xPSR value. */ | |
930 | static inline uint32_t xpsr_read(CPUARMState *env) | |
931 | { | |
932 | int ZF; | |
6fbe23d5 PB |
933 | ZF = (env->ZF == 0); |
934 | return (env->NF & 0x80000000) | (ZF << 30) | |
9ee6e8bb PB |
935 | | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) |
936 | | (env->thumb << 24) | ((env->condexec_bits & 3) << 25) | |
937 | | ((env->condexec_bits & 0xfc) << 8) | |
938 | | env->v7m.exception; | |
b5ff1b31 FB |
939 | } |
940 | ||
9ee6e8bb PB |
941 | /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */ |
942 | static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) | |
943 | { | |
9ee6e8bb | 944 | if (mask & CPSR_NZCV) { |
6fbe23d5 PB |
945 | env->ZF = (~val) & CPSR_Z; |
946 | env->NF = val; | |
9ee6e8bb PB |
947 | env->CF = (val >> 29) & 1; |
948 | env->VF = (val << 3) & 0x80000000; | |
949 | } | |
950 | if (mask & CPSR_Q) | |
951 | env->QF = ((val & CPSR_Q) != 0); | |
952 | if (mask & (1 << 24)) | |
953 | env->thumb = ((val & (1 << 24)) != 0); | |
954 | if (mask & CPSR_IT_0_1) { | |
955 | env->condexec_bits &= ~3; | |
956 | env->condexec_bits |= (val >> 25) & 3; | |
957 | } | |
958 | if (mask & CPSR_IT_2_7) { | |
959 | env->condexec_bits &= 3; | |
960 | env->condexec_bits |= (val >> 8) & 0xfc; | |
961 | } | |
962 | if (mask & 0x1ff) { | |
963 | env->v7m.exception = val & 0x1ff; | |
964 | } | |
965 | } | |
966 | ||
f149e3e8 EI |
967 | #define HCR_VM (1ULL << 0) |
968 | #define HCR_SWIO (1ULL << 1) | |
969 | #define HCR_PTW (1ULL << 2) | |
970 | #define HCR_FMO (1ULL << 3) | |
971 | #define HCR_IMO (1ULL << 4) | |
972 | #define HCR_AMO (1ULL << 5) | |
973 | #define HCR_VF (1ULL << 6) | |
974 | #define HCR_VI (1ULL << 7) | |
975 | #define HCR_VSE (1ULL << 8) | |
976 | #define HCR_FB (1ULL << 9) | |
977 | #define HCR_BSU_MASK (3ULL << 10) | |
978 | #define HCR_DC (1ULL << 12) | |
979 | #define HCR_TWI (1ULL << 13) | |
980 | #define HCR_TWE (1ULL << 14) | |
981 | #define HCR_TID0 (1ULL << 15) | |
982 | #define HCR_TID1 (1ULL << 16) | |
983 | #define HCR_TID2 (1ULL << 17) | |
984 | #define HCR_TID3 (1ULL << 18) | |
985 | #define HCR_TSC (1ULL << 19) | |
986 | #define HCR_TIDCP (1ULL << 20) | |
987 | #define HCR_TACR (1ULL << 21) | |
988 | #define HCR_TSW (1ULL << 22) | |
989 | #define HCR_TPC (1ULL << 23) | |
990 | #define HCR_TPU (1ULL << 24) | |
991 | #define HCR_TTLB (1ULL << 25) | |
992 | #define HCR_TVM (1ULL << 26) | |
993 | #define HCR_TGE (1ULL << 27) | |
994 | #define HCR_TDZ (1ULL << 28) | |
995 | #define HCR_HCD (1ULL << 29) | |
996 | #define HCR_TRVM (1ULL << 30) | |
997 | #define HCR_RW (1ULL << 31) | |
998 | #define HCR_CD (1ULL << 32) | |
999 | #define HCR_ID (1ULL << 33) | |
1000 | #define HCR_MASK ((1ULL << 34) - 1) | |
1001 | ||
64e0e2de EI |
1002 | #define SCR_NS (1U << 0) |
1003 | #define SCR_IRQ (1U << 1) | |
1004 | #define SCR_FIQ (1U << 2) | |
1005 | #define SCR_EA (1U << 3) | |
1006 | #define SCR_FW (1U << 4) | |
1007 | #define SCR_AW (1U << 5) | |
1008 | #define SCR_NET (1U << 6) | |
1009 | #define SCR_SMD (1U << 7) | |
1010 | #define SCR_HCE (1U << 8) | |
1011 | #define SCR_SIF (1U << 9) | |
1012 | #define SCR_RW (1U << 10) | |
1013 | #define SCR_ST (1U << 11) | |
1014 | #define SCR_TWI (1U << 12) | |
1015 | #define SCR_TWE (1U << 13) | |
1016 | #define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST)) | |
1017 | #define SCR_AARCH64_MASK (0x3fff & ~SCR_NET) | |
1018 | ||
01653295 PM |
1019 | /* Return the current FPSCR value. */ |
1020 | uint32_t vfp_get_fpscr(CPUARMState *env); | |
1021 | void vfp_set_fpscr(CPUARMState *env, uint32_t val); | |
1022 | ||
f903fa22 PM |
1023 | /* For A64 the FPSCR is split into two logically distinct registers, |
1024 | * FPCR and FPSR. However since they still use non-overlapping bits | |
1025 | * we store the underlying state in fpscr and just mask on read/write. | |
1026 | */ | |
1027 | #define FPSR_MASK 0xf800009f | |
1028 | #define FPCR_MASK 0x07f79f00 | |
1029 | static inline uint32_t vfp_get_fpsr(CPUARMState *env) | |
1030 | { | |
1031 | return vfp_get_fpscr(env) & FPSR_MASK; | |
1032 | } | |
1033 | ||
1034 | static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val) | |
1035 | { | |
1036 | uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK); | |
1037 | vfp_set_fpscr(env, new_fpscr); | |
1038 | } | |
1039 | ||
1040 | static inline uint32_t vfp_get_fpcr(CPUARMState *env) | |
1041 | { | |
1042 | return vfp_get_fpscr(env) & FPCR_MASK; | |
1043 | } | |
1044 | ||
1045 | static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val) | |
1046 | { | |
1047 | uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK); | |
1048 | vfp_set_fpscr(env, new_fpscr); | |
1049 | } | |
1050 | ||
b5ff1b31 FB |
1051 | enum arm_cpu_mode { |
1052 | ARM_CPU_MODE_USR = 0x10, | |
1053 | ARM_CPU_MODE_FIQ = 0x11, | |
1054 | ARM_CPU_MODE_IRQ = 0x12, | |
1055 | ARM_CPU_MODE_SVC = 0x13, | |
28c9457d | 1056 | ARM_CPU_MODE_MON = 0x16, |
b5ff1b31 | 1057 | ARM_CPU_MODE_ABT = 0x17, |
28c9457d | 1058 | ARM_CPU_MODE_HYP = 0x1a, |
b5ff1b31 FB |
1059 | ARM_CPU_MODE_UND = 0x1b, |
1060 | ARM_CPU_MODE_SYS = 0x1f | |
1061 | }; | |
1062 | ||
40f137e1 PB |
1063 | /* VFP system registers. */ |
1064 | #define ARM_VFP_FPSID 0 | |
1065 | #define ARM_VFP_FPSCR 1 | |
a50c0f51 | 1066 | #define ARM_VFP_MVFR2 5 |
9ee6e8bb PB |
1067 | #define ARM_VFP_MVFR1 6 |
1068 | #define ARM_VFP_MVFR0 7 | |
40f137e1 PB |
1069 | #define ARM_VFP_FPEXC 8 |
1070 | #define ARM_VFP_FPINST 9 | |
1071 | #define ARM_VFP_FPINST2 10 | |
1072 | ||
18c9b560 AZ |
1073 | /* iwMMXt coprocessor control registers. */ |
1074 | #define ARM_IWMMXT_wCID 0 | |
1075 | #define ARM_IWMMXT_wCon 1 | |
1076 | #define ARM_IWMMXT_wCSSF 2 | |
1077 | #define ARM_IWMMXT_wCASF 3 | |
1078 | #define ARM_IWMMXT_wCGR0 8 | |
1079 | #define ARM_IWMMXT_wCGR1 9 | |
1080 | #define ARM_IWMMXT_wCGR2 10 | |
1081 | #define ARM_IWMMXT_wCGR3 11 | |
1082 | ||
ce854d7c BC |
1083 | /* If adding a feature bit which corresponds to a Linux ELF |
1084 | * HWCAP bit, remember to update the feature-bit-to-hwcap | |
1085 | * mapping in linux-user/elfload.c:get_elf_hwcap(). | |
1086 | */ | |
40f137e1 PB |
1087 | enum arm_features { |
1088 | ARM_FEATURE_VFP, | |
c1713132 AZ |
1089 | ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */ |
1090 | ARM_FEATURE_XSCALE, /* Intel XScale extensions. */ | |
ce819861 | 1091 | ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */ |
9ee6e8bb PB |
1092 | ARM_FEATURE_V6, |
1093 | ARM_FEATURE_V6K, | |
1094 | ARM_FEATURE_V7, | |
1095 | ARM_FEATURE_THUMB2, | |
c3d2689d | 1096 | ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */ |
9ee6e8bb | 1097 | ARM_FEATURE_VFP3, |
60011498 | 1098 | ARM_FEATURE_VFP_FP16, |
9ee6e8bb | 1099 | ARM_FEATURE_NEON, |
47789990 | 1100 | ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */ |
9ee6e8bb | 1101 | ARM_FEATURE_M, /* Microcontroller profile. */ |
fe1479c3 | 1102 | ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */ |
e1bbf446 | 1103 | ARM_FEATURE_THUMB2EE, |
be5e7a76 DES |
1104 | ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */ |
1105 | ARM_FEATURE_V4T, | |
1106 | ARM_FEATURE_V5, | |
5bc95aa2 | 1107 | ARM_FEATURE_STRONGARM, |
906879a9 | 1108 | ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */ |
b8b8ea05 | 1109 | ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */ |
da97f52c | 1110 | ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */ |
0383ac00 | 1111 | ARM_FEATURE_GENERIC_TIMER, |
06ed5d66 | 1112 | ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */ |
1047b9d7 | 1113 | ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */ |
c4804214 PM |
1114 | ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */ |
1115 | ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */ | |
1116 | ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */ | |
81bdde9d | 1117 | ARM_FEATURE_MPIDR, /* has cp15 MPIDR */ |
de9b05b8 PM |
1118 | ARM_FEATURE_PXN, /* has Privileged Execute Never bit */ |
1119 | ARM_FEATURE_LPAE, /* has Large Physical Address Extension */ | |
81e69fb0 | 1120 | ARM_FEATURE_V8, |
3926cc84 | 1121 | ARM_FEATURE_AARCH64, /* supports 64 bit mode */ |
9d935509 | 1122 | ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */ |
d8ba780b | 1123 | ARM_FEATURE_CBAR, /* has cp15 CBAR */ |
eb0ecd5a | 1124 | ARM_FEATURE_CRC, /* ARMv8 CRC instructions */ |
f318cec6 | 1125 | ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */ |
cca7c2f5 | 1126 | ARM_FEATURE_EL2, /* has EL2 Virtualization support */ |
1fe8141e | 1127 | ARM_FEATURE_EL3, /* has EL3 Secure monitor support */ |
f1ecb913 AB |
1128 | ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */ |
1129 | ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */ | |
4e624eda | 1130 | ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */ |
62b44f05 | 1131 | ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */ |
40f137e1 PB |
1132 | }; |
1133 | ||
1134 | static inline int arm_feature(CPUARMState *env, int feature) | |
1135 | { | |
918f5dca | 1136 | return (env->features & (1ULL << feature)) != 0; |
40f137e1 PB |
1137 | } |
1138 | ||
19e0fefa FA |
1139 | #if !defined(CONFIG_USER_ONLY) |
1140 | /* Return true if exception levels below EL3 are in secure state, | |
1141 | * or would be following an exception return to that level. | |
1142 | * Unlike arm_is_secure() (which is always a question about the | |
1143 | * _current_ state of the CPU) this doesn't care about the current | |
1144 | * EL or mode. | |
1145 | */ | |
1146 | static inline bool arm_is_secure_below_el3(CPUARMState *env) | |
1147 | { | |
1148 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
1149 | return !(env->cp15.scr_el3 & SCR_NS); | |
1150 | } else { | |
6b7f0b61 | 1151 | /* If EL3 is not supported then the secure state is implementation |
19e0fefa FA |
1152 | * defined, in which case QEMU defaults to non-secure. |
1153 | */ | |
1154 | return false; | |
1155 | } | |
1156 | } | |
1157 | ||
71205876 PM |
1158 | /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */ |
1159 | static inline bool arm_is_el3_or_mon(CPUARMState *env) | |
19e0fefa FA |
1160 | { |
1161 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
1162 | if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) { | |
1163 | /* CPU currently in AArch64 state and EL3 */ | |
1164 | return true; | |
1165 | } else if (!is_a64(env) && | |
1166 | (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { | |
1167 | /* CPU currently in AArch32 state and monitor mode */ | |
1168 | return true; | |
1169 | } | |
1170 | } | |
71205876 PM |
1171 | return false; |
1172 | } | |
1173 | ||
1174 | /* Return true if the processor is in secure state */ | |
1175 | static inline bool arm_is_secure(CPUARMState *env) | |
1176 | { | |
1177 | if (arm_is_el3_or_mon(env)) { | |
1178 | return true; | |
1179 | } | |
19e0fefa FA |
1180 | return arm_is_secure_below_el3(env); |
1181 | } | |
1182 | ||
1183 | #else | |
1184 | static inline bool arm_is_secure_below_el3(CPUARMState *env) | |
1185 | { | |
1186 | return false; | |
1187 | } | |
1188 | ||
1189 | static inline bool arm_is_secure(CPUARMState *env) | |
1190 | { | |
1191 | return false; | |
1192 | } | |
1193 | #endif | |
1194 | ||
1f79ee32 PM |
1195 | /* Return true if the specified exception level is running in AArch64 state. */ |
1196 | static inline bool arm_el_is_aa64(CPUARMState *env, int el) | |
1197 | { | |
446c81ab PM |
1198 | /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want, |
1199 | * and if we're not in EL0 then the state of EL0 isn't well defined.) | |
1f79ee32 | 1200 | */ |
446c81ab PM |
1201 | assert(el >= 1 && el <= 3); |
1202 | bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64); | |
592125f8 | 1203 | |
446c81ab PM |
1204 | /* The highest exception level is always at the maximum supported |
1205 | * register width, and then lower levels have a register width controlled | |
1206 | * by bits in the SCR or HCR registers. | |
1f79ee32 | 1207 | */ |
446c81ab PM |
1208 | if (el == 3) { |
1209 | return aa64; | |
1210 | } | |
1211 | ||
1212 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
1213 | aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW); | |
1214 | } | |
1215 | ||
1216 | if (el == 2) { | |
1217 | return aa64; | |
1218 | } | |
1219 | ||
1220 | if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) { | |
1221 | aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW); | |
1222 | } | |
1223 | ||
1224 | return aa64; | |
1f79ee32 PM |
1225 | } |
1226 | ||
3f342b9e SF |
1227 | /* Function for determing whether guest cp register reads and writes should |
1228 | * access the secure or non-secure bank of a cp register. When EL3 is | |
1229 | * operating in AArch32 state, the NS-bit determines whether the secure | |
1230 | * instance of a cp register should be used. When EL3 is AArch64 (or if | |
1231 | * it doesn't exist at all) then there is no register banking, and all | |
1232 | * accesses are to the non-secure version. | |
1233 | */ | |
1234 | static inline bool access_secure_reg(CPUARMState *env) | |
1235 | { | |
1236 | bool ret = (arm_feature(env, ARM_FEATURE_EL3) && | |
1237 | !arm_el_is_aa64(env, 3) && | |
1238 | !(env->cp15.scr_el3 & SCR_NS)); | |
1239 | ||
1240 | return ret; | |
1241 | } | |
1242 | ||
ea30a4b8 FA |
1243 | /* Macros for accessing a specified CP register bank */ |
1244 | #define A32_BANKED_REG_GET(_env, _regname, _secure) \ | |
1245 | ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns) | |
1246 | ||
1247 | #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \ | |
1248 | do { \ | |
1249 | if (_secure) { \ | |
1250 | (_env)->cp15._regname##_s = (_val); \ | |
1251 | } else { \ | |
1252 | (_env)->cp15._regname##_ns = (_val); \ | |
1253 | } \ | |
1254 | } while (0) | |
1255 | ||
1256 | /* Macros for automatically accessing a specific CP register bank depending on | |
1257 | * the current secure state of the system. These macros are not intended for | |
1258 | * supporting instruction translation reads/writes as these are dependent | |
1259 | * solely on the SCR.NS bit and not the mode. | |
1260 | */ | |
1261 | #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \ | |
1262 | A32_BANKED_REG_GET((_env), _regname, \ | |
2cde031f | 1263 | (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3))) |
ea30a4b8 FA |
1264 | |
1265 | #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \ | |
1266 | A32_BANKED_REG_SET((_env), _regname, \ | |
2cde031f | 1267 | (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \ |
ea30a4b8 FA |
1268 | (_val)) |
1269 | ||
9a78eead | 1270 | void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf); |
012a906b GB |
1271 | uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, |
1272 | uint32_t cur_el, bool secure); | |
40f137e1 | 1273 | |
9ee6e8bb PB |
1274 | /* Interface between CPU and Interrupt controller. */ |
1275 | void armv7m_nvic_set_pending(void *opaque, int irq); | |
1276 | int armv7m_nvic_acknowledge_irq(void *opaque); | |
1277 | void armv7m_nvic_complete_irq(void *opaque, int irq); | |
1278 | ||
4b6a83fb PM |
1279 | /* Interface for defining coprocessor registers. |
1280 | * Registers are defined in tables of arm_cp_reginfo structs | |
1281 | * which are passed to define_arm_cp_regs(). | |
1282 | */ | |
1283 | ||
1284 | /* When looking up a coprocessor register we look for it | |
1285 | * via an integer which encodes all of: | |
1286 | * coprocessor number | |
1287 | * Crn, Crm, opc1, opc2 fields | |
1288 | * 32 or 64 bit register (ie is it accessed via MRC/MCR | |
1289 | * or via MRRC/MCRR?) | |
51a79b03 | 1290 | * non-secure/secure bank (AArch32 only) |
4b6a83fb PM |
1291 | * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field. |
1292 | * (In this case crn and opc2 should be zero.) | |
f5a0a5a5 PM |
1293 | * For AArch64, there is no 32/64 bit size distinction; |
1294 | * instead all registers have a 2 bit op0, 3 bit op1 and op2, | |
1295 | * and 4 bit CRn and CRm. The encoding patterns are chosen | |
1296 | * to be easy to convert to and from the KVM encodings, and also | |
1297 | * so that the hashtable can contain both AArch32 and AArch64 | |
1298 | * registers (to allow for interprocessing where we might run | |
1299 | * 32 bit code on a 64 bit core). | |
4b6a83fb | 1300 | */ |
f5a0a5a5 PM |
1301 | /* This bit is private to our hashtable cpreg; in KVM register |
1302 | * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64 | |
1303 | * in the upper bits of the 64 bit ID. | |
1304 | */ | |
1305 | #define CP_REG_AA64_SHIFT 28 | |
1306 | #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT) | |
1307 | ||
51a79b03 PM |
1308 | /* To enable banking of coprocessor registers depending on ns-bit we |
1309 | * add a bit to distinguish between secure and non-secure cpregs in the | |
1310 | * hashtable. | |
1311 | */ | |
1312 | #define CP_REG_NS_SHIFT 29 | |
1313 | #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT) | |
1314 | ||
1315 | #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \ | |
1316 | ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \ | |
1317 | ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2)) | |
4b6a83fb | 1318 | |
f5a0a5a5 PM |
1319 | #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \ |
1320 | (CP_REG_AA64_MASK | \ | |
1321 | ((cp) << CP_REG_ARM_COPROC_SHIFT) | \ | |
1322 | ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \ | |
1323 | ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \ | |
1324 | ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \ | |
1325 | ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \ | |
1326 | ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT)) | |
1327 | ||
721fae12 PM |
1328 | /* Convert a full 64 bit KVM register ID to the truncated 32 bit |
1329 | * version used as a key for the coprocessor register hashtable | |
1330 | */ | |
1331 | static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid) | |
1332 | { | |
1333 | uint32_t cpregid = kvmid; | |
f5a0a5a5 PM |
1334 | if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) { |
1335 | cpregid |= CP_REG_AA64_MASK; | |
51a79b03 PM |
1336 | } else { |
1337 | if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) { | |
1338 | cpregid |= (1 << 15); | |
1339 | } | |
1340 | ||
1341 | /* KVM is always non-secure so add the NS flag on AArch32 register | |
1342 | * entries. | |
1343 | */ | |
1344 | cpregid |= 1 << CP_REG_NS_SHIFT; | |
721fae12 PM |
1345 | } |
1346 | return cpregid; | |
1347 | } | |
1348 | ||
1349 | /* Convert a truncated 32 bit hashtable key into the full | |
1350 | * 64 bit KVM register ID. | |
1351 | */ | |
1352 | static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid) | |
1353 | { | |
f5a0a5a5 PM |
1354 | uint64_t kvmid; |
1355 | ||
1356 | if (cpregid & CP_REG_AA64_MASK) { | |
1357 | kvmid = cpregid & ~CP_REG_AA64_MASK; | |
1358 | kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64; | |
721fae12 | 1359 | } else { |
f5a0a5a5 PM |
1360 | kvmid = cpregid & ~(1 << 15); |
1361 | if (cpregid & (1 << 15)) { | |
1362 | kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM; | |
1363 | } else { | |
1364 | kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM; | |
1365 | } | |
721fae12 PM |
1366 | } |
1367 | return kvmid; | |
1368 | } | |
1369 | ||
4b6a83fb PM |
1370 | /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a |
1371 | * special-behaviour cp reg and bits [15..8] indicate what behaviour | |
1372 | * it has. Otherwise it is a simple cp reg, where CONST indicates that | |
1373 | * TCG can assume the value to be constant (ie load at translate time) | |
1374 | * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END | |
1375 | * indicates that the TB should not be ended after a write to this register | |
1376 | * (the default is that the TB ends after cp writes). OVERRIDE permits | |
1377 | * a register definition to override a previous definition for the | |
1378 | * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the | |
1379 | * old must have the OVERRIDE bit set. | |
7a0e58fa PM |
1380 | * ALIAS indicates that this register is an alias view of some underlying |
1381 | * state which is also visible via another register, and that the other | |
b061a82b SF |
1382 | * register is handling migration and reset; registers marked ALIAS will not be |
1383 | * migrated but may have their state set by syncing of register state from KVM. | |
7a0e58fa PM |
1384 | * NO_RAW indicates that this register has no underlying state and does not |
1385 | * support raw access for state saving/loading; it will not be used for either | |
1386 | * migration or KVM state synchronization. (Typically this is for "registers" | |
1387 | * which are actually used as instructions for cache maintenance and so on.) | |
2452731c PM |
1388 | * IO indicates that this register does I/O and therefore its accesses |
1389 | * need to be surrounded by gen_io_start()/gen_io_end(). In particular, | |
1390 | * registers which implement clocks or timers require this. | |
4b6a83fb PM |
1391 | */ |
1392 | #define ARM_CP_SPECIAL 1 | |
1393 | #define ARM_CP_CONST 2 | |
1394 | #define ARM_CP_64BIT 4 | |
1395 | #define ARM_CP_SUPPRESS_TB_END 8 | |
1396 | #define ARM_CP_OVERRIDE 16 | |
7a0e58fa | 1397 | #define ARM_CP_ALIAS 32 |
2452731c | 1398 | #define ARM_CP_IO 64 |
7a0e58fa | 1399 | #define ARM_CP_NO_RAW 128 |
4b6a83fb PM |
1400 | #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8)) |
1401 | #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8)) | |
b0d2b7d0 | 1402 | #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8)) |
0eef9d98 | 1403 | #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8)) |
aca3f40b PM |
1404 | #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8)) |
1405 | #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA | |
4b6a83fb PM |
1406 | /* Used only as a terminator for ARMCPRegInfo lists */ |
1407 | #define ARM_CP_SENTINEL 0xffff | |
1408 | /* Mask of only the flag bits in a type field */ | |
7a0e58fa | 1409 | #define ARM_CP_FLAG_MASK 0xff |
4b6a83fb | 1410 | |
f5a0a5a5 PM |
1411 | /* Valid values for ARMCPRegInfo state field, indicating which of |
1412 | * the AArch32 and AArch64 execution states this register is visible in. | |
1413 | * If the reginfo doesn't explicitly specify then it is AArch32 only. | |
1414 | * If the reginfo is declared to be visible in both states then a second | |
1415 | * reginfo is synthesised for the AArch32 view of the AArch64 register, | |
1416 | * such that the AArch32 view is the lower 32 bits of the AArch64 one. | |
1417 | * Note that we rely on the values of these enums as we iterate through | |
1418 | * the various states in some places. | |
1419 | */ | |
1420 | enum { | |
1421 | ARM_CP_STATE_AA32 = 0, | |
1422 | ARM_CP_STATE_AA64 = 1, | |
1423 | ARM_CP_STATE_BOTH = 2, | |
1424 | }; | |
1425 | ||
c3e30260 FA |
1426 | /* ARM CP register secure state flags. These flags identify security state |
1427 | * attributes for a given CP register entry. | |
1428 | * The existence of both or neither secure and non-secure flags indicates that | |
1429 | * the register has both a secure and non-secure hash entry. A single one of | |
1430 | * these flags causes the register to only be hashed for the specified | |
1431 | * security state. | |
1432 | * Although definitions may have any combination of the S/NS bits, each | |
1433 | * registered entry will only have one to identify whether the entry is secure | |
1434 | * or non-secure. | |
1435 | */ | |
1436 | enum { | |
1437 | ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */ | |
1438 | ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */ | |
1439 | }; | |
1440 | ||
4b6a83fb PM |
1441 | /* Return true if cptype is a valid type field. This is used to try to |
1442 | * catch errors where the sentinel has been accidentally left off the end | |
1443 | * of a list of registers. | |
1444 | */ | |
1445 | static inline bool cptype_valid(int cptype) | |
1446 | { | |
1447 | return ((cptype & ~ARM_CP_FLAG_MASK) == 0) | |
1448 | || ((cptype & ARM_CP_SPECIAL) && | |
34affeef | 1449 | ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL)); |
4b6a83fb PM |
1450 | } |
1451 | ||
1452 | /* Access rights: | |
1453 | * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM | |
1454 | * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and | |
1455 | * PL2 (hyp). The other level which has Read and Write bits is Secure PL1 | |
1456 | * (ie any of the privileged modes in Secure state, or Monitor mode). | |
1457 | * If a register is accessible in one privilege level it's always accessible | |
1458 | * in higher privilege levels too. Since "Secure PL1" also follows this rule | |
1459 | * (ie anything visible in PL2 is visible in S-PL1, some things are only | |
1460 | * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the | |
1461 | * terminology a little and call this PL3. | |
f5a0a5a5 PM |
1462 | * In AArch64 things are somewhat simpler as the PLx bits line up exactly |
1463 | * with the ELx exception levels. | |
4b6a83fb PM |
1464 | * |
1465 | * If access permissions for a register are more complex than can be | |
1466 | * described with these bits, then use a laxer set of restrictions, and | |
1467 | * do the more restrictive/complex check inside a helper function. | |
1468 | */ | |
1469 | #define PL3_R 0x80 | |
1470 | #define PL3_W 0x40 | |
1471 | #define PL2_R (0x20 | PL3_R) | |
1472 | #define PL2_W (0x10 | PL3_W) | |
1473 | #define PL1_R (0x08 | PL2_R) | |
1474 | #define PL1_W (0x04 | PL2_W) | |
1475 | #define PL0_R (0x02 | PL1_R) | |
1476 | #define PL0_W (0x01 | PL1_W) | |
1477 | ||
1478 | #define PL3_RW (PL3_R | PL3_W) | |
1479 | #define PL2_RW (PL2_R | PL2_W) | |
1480 | #define PL1_RW (PL1_R | PL1_W) | |
1481 | #define PL0_RW (PL0_R | PL0_W) | |
1482 | ||
75502672 PM |
1483 | /* Return the highest implemented Exception Level */ |
1484 | static inline int arm_highest_el(CPUARMState *env) | |
1485 | { | |
1486 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
1487 | return 3; | |
1488 | } | |
1489 | if (arm_feature(env, ARM_FEATURE_EL2)) { | |
1490 | return 2; | |
1491 | } | |
1492 | return 1; | |
1493 | } | |
1494 | ||
dcbff19b GB |
1495 | /* Return the current Exception Level (as per ARMv8; note that this differs |
1496 | * from the ARMv7 Privilege Level). | |
1497 | */ | |
1498 | static inline int arm_current_el(CPUARMState *env) | |
4b6a83fb | 1499 | { |
6d54ed3c PM |
1500 | if (arm_feature(env, ARM_FEATURE_M)) { |
1501 | return !((env->v7m.exception == 0) && (env->v7m.control & 1)); | |
1502 | } | |
1503 | ||
592125f8 | 1504 | if (is_a64(env)) { |
f5a0a5a5 PM |
1505 | return extract32(env->pstate, 2, 2); |
1506 | } | |
1507 | ||
592125f8 FA |
1508 | switch (env->uncached_cpsr & 0x1f) { |
1509 | case ARM_CPU_MODE_USR: | |
4b6a83fb | 1510 | return 0; |
592125f8 FA |
1511 | case ARM_CPU_MODE_HYP: |
1512 | return 2; | |
1513 | case ARM_CPU_MODE_MON: | |
1514 | return 3; | |
1515 | default: | |
1516 | if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { | |
1517 | /* If EL3 is 32-bit then all secure privileged modes run in | |
1518 | * EL3 | |
1519 | */ | |
1520 | return 3; | |
1521 | } | |
1522 | ||
1523 | return 1; | |
4b6a83fb | 1524 | } |
4b6a83fb PM |
1525 | } |
1526 | ||
1527 | typedef struct ARMCPRegInfo ARMCPRegInfo; | |
1528 | ||
f59df3f2 PM |
1529 | typedef enum CPAccessResult { |
1530 | /* Access is permitted */ | |
1531 | CP_ACCESS_OK = 0, | |
1532 | /* Access fails due to a configurable trap or enable which would | |
1533 | * result in a categorized exception syndrome giving information about | |
1534 | * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6, | |
38836a2c PM |
1535 | * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or |
1536 | * PL1 if in EL0, otherwise to the current EL). | |
f59df3f2 PM |
1537 | */ |
1538 | CP_ACCESS_TRAP = 1, | |
1539 | /* Access fails and results in an exception syndrome 0x0 ("uncategorized"). | |
1540 | * Note that this is not a catch-all case -- the set of cases which may | |
1541 | * result in this failure is specifically defined by the architecture. | |
1542 | */ | |
1543 | CP_ACCESS_TRAP_UNCATEGORIZED = 2, | |
38836a2c PM |
1544 | /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */ |
1545 | CP_ACCESS_TRAP_EL2 = 3, | |
1546 | CP_ACCESS_TRAP_EL3 = 4, | |
e7615726 PM |
1547 | /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */ |
1548 | CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5, | |
1549 | CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6, | |
f2cae609 PM |
1550 | /* Access fails and results in an exception syndrome for an FP access, |
1551 | * trapped directly to EL2 or EL3 | |
1552 | */ | |
1553 | CP_ACCESS_TRAP_FP_EL2 = 7, | |
1554 | CP_ACCESS_TRAP_FP_EL3 = 8, | |
f59df3f2 PM |
1555 | } CPAccessResult; |
1556 | ||
c4241c7d PM |
1557 | /* Access functions for coprocessor registers. These cannot fail and |
1558 | * may not raise exceptions. | |
1559 | */ | |
1560 | typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque); | |
1561 | typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque, | |
1562 | uint64_t value); | |
f59df3f2 | 1563 | /* Access permission check functions for coprocessor registers. */ |
3f208fd7 PM |
1564 | typedef CPAccessResult CPAccessFn(CPUARMState *env, |
1565 | const ARMCPRegInfo *opaque, | |
1566 | bool isread); | |
4b6a83fb PM |
1567 | /* Hook function for register reset */ |
1568 | typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque); | |
1569 | ||
1570 | #define CP_ANY 0xff | |
1571 | ||
1572 | /* Definition of an ARM coprocessor register */ | |
1573 | struct ARMCPRegInfo { | |
1574 | /* Name of register (useful mainly for debugging, need not be unique) */ | |
1575 | const char *name; | |
1576 | /* Location of register: coprocessor number and (crn,crm,opc1,opc2) | |
1577 | * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a | |
1578 | * 'wildcard' field -- any value of that field in the MRC/MCR insn | |
1579 | * will be decoded to this register. The register read and write | |
1580 | * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2 | |
1581 | * used by the program, so it is possible to register a wildcard and | |
1582 | * then behave differently on read/write if necessary. | |
1583 | * For 64 bit registers, only crm and opc1 are relevant; crn and opc2 | |
1584 | * must both be zero. | |
f5a0a5a5 PM |
1585 | * For AArch64-visible registers, opc0 is also used. |
1586 | * Since there are no "coprocessors" in AArch64, cp is purely used as a | |
1587 | * way to distinguish (for KVM's benefit) guest-visible system registers | |
1588 | * from demuxed ones provided to preserve the "no side effects on | |
1589 | * KVM register read/write from QEMU" semantics. cp==0x13 is guest | |
1590 | * visible (to match KVM's encoding); cp==0 will be converted to | |
1591 | * cp==0x13 when the ARMCPRegInfo is registered, for convenience. | |
4b6a83fb PM |
1592 | */ |
1593 | uint8_t cp; | |
1594 | uint8_t crn; | |
1595 | uint8_t crm; | |
f5a0a5a5 | 1596 | uint8_t opc0; |
4b6a83fb PM |
1597 | uint8_t opc1; |
1598 | uint8_t opc2; | |
f5a0a5a5 PM |
1599 | /* Execution state in which this register is visible: ARM_CP_STATE_* */ |
1600 | int state; | |
4b6a83fb PM |
1601 | /* Register type: ARM_CP_* bits/values */ |
1602 | int type; | |
1603 | /* Access rights: PL*_[RW] */ | |
1604 | int access; | |
c3e30260 FA |
1605 | /* Security state: ARM_CP_SECSTATE_* bits/values */ |
1606 | int secure; | |
4b6a83fb PM |
1607 | /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when |
1608 | * this register was defined: can be used to hand data through to the | |
1609 | * register read/write functions, since they are passed the ARMCPRegInfo*. | |
1610 | */ | |
1611 | void *opaque; | |
1612 | /* Value of this register, if it is ARM_CP_CONST. Otherwise, if | |
1613 | * fieldoffset is non-zero, the reset value of the register. | |
1614 | */ | |
1615 | uint64_t resetvalue; | |
c3e30260 FA |
1616 | /* Offset of the field in CPUARMState for this register. |
1617 | * | |
1618 | * This is not needed if either: | |
4b6a83fb PM |
1619 | * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs |
1620 | * 2. both readfn and writefn are specified | |
1621 | */ | |
1622 | ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */ | |
c3e30260 FA |
1623 | |
1624 | /* Offsets of the secure and non-secure fields in CPUARMState for the | |
1625 | * register if it is banked. These fields are only used during the static | |
1626 | * registration of a register. During hashing the bank associated | |
1627 | * with a given security state is copied to fieldoffset which is used from | |
1628 | * there on out. | |
1629 | * | |
1630 | * It is expected that register definitions use either fieldoffset or | |
1631 | * bank_fieldoffsets in the definition but not both. It is also expected | |
1632 | * that both bank offsets are set when defining a banked register. This | |
1633 | * use indicates that a register is banked. | |
1634 | */ | |
1635 | ptrdiff_t bank_fieldoffsets[2]; | |
1636 | ||
f59df3f2 PM |
1637 | /* Function for making any access checks for this register in addition to |
1638 | * those specified by the 'access' permissions bits. If NULL, no extra | |
1639 | * checks required. The access check is performed at runtime, not at | |
1640 | * translate time. | |
1641 | */ | |
1642 | CPAccessFn *accessfn; | |
4b6a83fb PM |
1643 | /* Function for handling reads of this register. If NULL, then reads |
1644 | * will be done by loading from the offset into CPUARMState specified | |
1645 | * by fieldoffset. | |
1646 | */ | |
1647 | CPReadFn *readfn; | |
1648 | /* Function for handling writes of this register. If NULL, then writes | |
1649 | * will be done by writing to the offset into CPUARMState specified | |
1650 | * by fieldoffset. | |
1651 | */ | |
1652 | CPWriteFn *writefn; | |
7023ec7e PM |
1653 | /* Function for doing a "raw" read; used when we need to copy |
1654 | * coprocessor state to the kernel for KVM or out for | |
1655 | * migration. This only needs to be provided if there is also a | |
c4241c7d | 1656 | * readfn and it has side effects (for instance clear-on-read bits). |
7023ec7e PM |
1657 | */ |
1658 | CPReadFn *raw_readfn; | |
1659 | /* Function for doing a "raw" write; used when we need to copy KVM | |
1660 | * kernel coprocessor state into userspace, or for inbound | |
1661 | * migration. This only needs to be provided if there is also a | |
c4241c7d PM |
1662 | * writefn and it masks out "unwritable" bits or has write-one-to-clear |
1663 | * or similar behaviour. | |
7023ec7e PM |
1664 | */ |
1665 | CPWriteFn *raw_writefn; | |
4b6a83fb PM |
1666 | /* Function for resetting the register. If NULL, then reset will be done |
1667 | * by writing resetvalue to the field specified in fieldoffset. If | |
1668 | * fieldoffset is 0 then no reset will be done. | |
1669 | */ | |
1670 | CPResetFn *resetfn; | |
1671 | }; | |
1672 | ||
1673 | /* Macros which are lvalues for the field in CPUARMState for the | |
1674 | * ARMCPRegInfo *ri. | |
1675 | */ | |
1676 | #define CPREG_FIELD32(env, ri) \ | |
1677 | (*(uint32_t *)((char *)(env) + (ri)->fieldoffset)) | |
1678 | #define CPREG_FIELD64(env, ri) \ | |
1679 | (*(uint64_t *)((char *)(env) + (ri)->fieldoffset)) | |
1680 | ||
1681 | #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL } | |
1682 | ||
1683 | void define_arm_cp_regs_with_opaque(ARMCPU *cpu, | |
1684 | const ARMCPRegInfo *regs, void *opaque); | |
1685 | void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, | |
1686 | const ARMCPRegInfo *regs, void *opaque); | |
1687 | static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs) | |
1688 | { | |
1689 | define_arm_cp_regs_with_opaque(cpu, regs, 0); | |
1690 | } | |
1691 | static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs) | |
1692 | { | |
1693 | define_one_arm_cp_reg_with_opaque(cpu, regs, 0); | |
1694 | } | |
60322b39 | 1695 | const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp); |
4b6a83fb PM |
1696 | |
1697 | /* CPWriteFn that can be used to implement writes-ignored behaviour */ | |
c4241c7d PM |
1698 | void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, |
1699 | uint64_t value); | |
4b6a83fb | 1700 | /* CPReadFn that can be used for read-as-zero behaviour */ |
c4241c7d | 1701 | uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri); |
4b6a83fb | 1702 | |
f5a0a5a5 PM |
1703 | /* CPResetFn that does nothing, for use if no reset is required even |
1704 | * if fieldoffset is non zero. | |
1705 | */ | |
1706 | void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque); | |
1707 | ||
67ed771d PM |
1708 | /* Return true if this reginfo struct's field in the cpu state struct |
1709 | * is 64 bits wide. | |
1710 | */ | |
1711 | static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri) | |
1712 | { | |
1713 | return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT); | |
1714 | } | |
1715 | ||
dcbff19b | 1716 | static inline bool cp_access_ok(int current_el, |
4b6a83fb PM |
1717 | const ARMCPRegInfo *ri, int isread) |
1718 | { | |
dcbff19b | 1719 | return (ri->access >> ((current_el * 2) + isread)) & 1; |
4b6a83fb PM |
1720 | } |
1721 | ||
49a66191 PM |
1722 | /* Raw read of a coprocessor register (as needed for migration, etc) */ |
1723 | uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri); | |
1724 | ||
721fae12 PM |
1725 | /** |
1726 | * write_list_to_cpustate | |
1727 | * @cpu: ARMCPU | |
1728 | * | |
1729 | * For each register listed in the ARMCPU cpreg_indexes list, write | |
1730 | * its value from the cpreg_values list into the ARMCPUState structure. | |
1731 | * This updates TCG's working data structures from KVM data or | |
1732 | * from incoming migration state. | |
1733 | * | |
1734 | * Returns: true if all register values were updated correctly, | |
1735 | * false if some register was unknown or could not be written. | |
1736 | * Note that we do not stop early on failure -- we will attempt | |
1737 | * writing all registers in the list. | |
1738 | */ | |
1739 | bool write_list_to_cpustate(ARMCPU *cpu); | |
1740 | ||
1741 | /** | |
1742 | * write_cpustate_to_list: | |
1743 | * @cpu: ARMCPU | |
1744 | * | |
1745 | * For each register listed in the ARMCPU cpreg_indexes list, write | |
1746 | * its value from the ARMCPUState structure into the cpreg_values list. | |
1747 | * This is used to copy info from TCG's working data structures into | |
1748 | * KVM or for outbound migration. | |
1749 | * | |
1750 | * Returns: true if all register values were read correctly, | |
1751 | * false if some register was unknown or could not be read. | |
1752 | * Note that we do not stop early on failure -- we will attempt | |
1753 | * reading all registers in the list. | |
1754 | */ | |
1755 | bool write_cpustate_to_list(ARMCPU *cpu); | |
1756 | ||
b6af0975 | 1757 | /* Does the core conform to the "MicroController" profile. e.g. Cortex-M3. |
9ee6e8bb PB |
1758 | Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are |
1759 | conventional cores (ie. Application or Realtime profile). */ | |
1760 | ||
1761 | #define IS_M(env) arm_feature(env, ARM_FEATURE_M) | |
9ee6e8bb | 1762 | |
9ee6e8bb PB |
1763 | #define ARM_CPUID_TI915T 0x54029152 |
1764 | #define ARM_CPUID_TI925T 0x54029252 | |
40f137e1 | 1765 | |
b5ff1b31 | 1766 | #if defined(CONFIG_USER_ONLY) |
2c0262af | 1767 | #define TARGET_PAGE_BITS 12 |
b5ff1b31 FB |
1768 | #else |
1769 | /* The ARM MMU allows 1k pages. */ | |
1770 | /* ??? Linux doesn't actually use these, and they're deprecated in recent | |
82d17978 | 1771 | architecture revisions. Maybe a configure option to disable them. */ |
b5ff1b31 FB |
1772 | #define TARGET_PAGE_BITS 10 |
1773 | #endif | |
9467d44c | 1774 | |
3926cc84 AG |
1775 | #if defined(TARGET_AARCH64) |
1776 | # define TARGET_PHYS_ADDR_SPACE_BITS 48 | |
1777 | # define TARGET_VIRT_ADDR_SPACE_BITS 64 | |
1778 | #else | |
1779 | # define TARGET_PHYS_ADDR_SPACE_BITS 40 | |
1780 | # define TARGET_VIRT_ADDR_SPACE_BITS 32 | |
1781 | #endif | |
52705890 | 1782 | |
012a906b GB |
1783 | static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx, |
1784 | unsigned int target_el) | |
043b7f8d EI |
1785 | { |
1786 | CPUARMState *env = cs->env_ptr; | |
dcbff19b | 1787 | unsigned int cur_el = arm_current_el(env); |
57e3a0c7 | 1788 | bool secure = arm_is_secure(env); |
57e3a0c7 GB |
1789 | bool pstate_unmasked; |
1790 | int8_t unmasked = 0; | |
1791 | ||
1792 | /* Don't take exceptions if they target a lower EL. | |
1793 | * This check should catch any exceptions that would not be taken but left | |
1794 | * pending. | |
1795 | */ | |
dfafd090 EI |
1796 | if (cur_el > target_el) { |
1797 | return false; | |
1798 | } | |
043b7f8d EI |
1799 | |
1800 | switch (excp_idx) { | |
1801 | case EXCP_FIQ: | |
57e3a0c7 GB |
1802 | pstate_unmasked = !(env->daif & PSTATE_F); |
1803 | break; | |
1804 | ||
043b7f8d | 1805 | case EXCP_IRQ: |
57e3a0c7 GB |
1806 | pstate_unmasked = !(env->daif & PSTATE_I); |
1807 | break; | |
1808 | ||
136e67e9 | 1809 | case EXCP_VFIQ: |
9fae24f5 | 1810 | if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) { |
136e67e9 EI |
1811 | /* VFIQs are only taken when hypervized and non-secure. */ |
1812 | return false; | |
1813 | } | |
1814 | return !(env->daif & PSTATE_F); | |
1815 | case EXCP_VIRQ: | |
9fae24f5 | 1816 | if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) { |
136e67e9 EI |
1817 | /* VIRQs are only taken when hypervized and non-secure. */ |
1818 | return false; | |
1819 | } | |
b5c633c5 | 1820 | return !(env->daif & PSTATE_I); |
043b7f8d EI |
1821 | default: |
1822 | g_assert_not_reached(); | |
1823 | } | |
57e3a0c7 GB |
1824 | |
1825 | /* Use the target EL, current execution state and SCR/HCR settings to | |
1826 | * determine whether the corresponding CPSR bit is used to mask the | |
1827 | * interrupt. | |
1828 | */ | |
1829 | if ((target_el > cur_el) && (target_el != 1)) { | |
7cd6de3b PM |
1830 | /* Exceptions targeting a higher EL may not be maskable */ |
1831 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { | |
1832 | /* 64-bit masking rules are simple: exceptions to EL3 | |
1833 | * can't be masked, and exceptions to EL2 can only be | |
1834 | * masked from Secure state. The HCR and SCR settings | |
1835 | * don't affect the masking logic, only the interrupt routing. | |
1836 | */ | |
1837 | if (target_el == 3 || !secure) { | |
1838 | unmasked = 1; | |
1839 | } | |
1840 | } else { | |
1841 | /* The old 32-bit-only environment has a more complicated | |
1842 | * masking setup. HCR and SCR bits not only affect interrupt | |
1843 | * routing but also change the behaviour of masking. | |
1844 | */ | |
1845 | bool hcr, scr; | |
1846 | ||
1847 | switch (excp_idx) { | |
1848 | case EXCP_FIQ: | |
1849 | /* If FIQs are routed to EL3 or EL2 then there are cases where | |
1850 | * we override the CPSR.F in determining if the exception is | |
1851 | * masked or not. If neither of these are set then we fall back | |
1852 | * to the CPSR.F setting otherwise we further assess the state | |
1853 | * below. | |
1854 | */ | |
1855 | hcr = (env->cp15.hcr_el2 & HCR_FMO); | |
1856 | scr = (env->cp15.scr_el3 & SCR_FIQ); | |
1857 | ||
1858 | /* When EL3 is 32-bit, the SCR.FW bit controls whether the | |
1859 | * CPSR.F bit masks FIQ interrupts when taken in non-secure | |
1860 | * state. If SCR.FW is set then FIQs can be masked by CPSR.F | |
1861 | * when non-secure but only when FIQs are only routed to EL3. | |
1862 | */ | |
1863 | scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr); | |
1864 | break; | |
1865 | case EXCP_IRQ: | |
1866 | /* When EL3 execution state is 32-bit, if HCR.IMO is set then | |
1867 | * we may override the CPSR.I masking when in non-secure state. | |
1868 | * The SCR.IRQ setting has already been taken into consideration | |
1869 | * when setting the target EL, so it does not have a further | |
1870 | * affect here. | |
1871 | */ | |
1872 | hcr = (env->cp15.hcr_el2 & HCR_IMO); | |
1873 | scr = false; | |
1874 | break; | |
1875 | default: | |
1876 | g_assert_not_reached(); | |
1877 | } | |
1878 | ||
1879 | if ((scr || hcr) && !secure) { | |
1880 | unmasked = 1; | |
1881 | } | |
57e3a0c7 GB |
1882 | } |
1883 | } | |
1884 | ||
1885 | /* The PSTATE bits only mask the interrupt if we have not overriden the | |
1886 | * ability above. | |
1887 | */ | |
1888 | return unmasked || pstate_unmasked; | |
043b7f8d EI |
1889 | } |
1890 | ||
2994fd96 | 1891 | #define cpu_init(cpu_model) CPU(cpu_arm_init(cpu_model)) |
ad37ad5b | 1892 | |
9467d44c | 1893 | #define cpu_signal_handler cpu_arm_signal_handler |
c732abe2 | 1894 | #define cpu_list arm_cpu_list |
9467d44c | 1895 | |
c1e37810 PM |
1896 | /* ARM has the following "translation regimes" (as the ARM ARM calls them): |
1897 | * | |
1898 | * If EL3 is 64-bit: | |
1899 | * + NonSecure EL1 & 0 stage 1 | |
1900 | * + NonSecure EL1 & 0 stage 2 | |
1901 | * + NonSecure EL2 | |
1902 | * + Secure EL1 & EL0 | |
1903 | * + Secure EL3 | |
1904 | * If EL3 is 32-bit: | |
1905 | * + NonSecure PL1 & 0 stage 1 | |
1906 | * + NonSecure PL1 & 0 stage 2 | |
1907 | * + NonSecure PL2 | |
1908 | * + Secure PL0 & PL1 | |
1909 | * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.) | |
1910 | * | |
1911 | * For QEMU, an mmu_idx is not quite the same as a translation regime because: | |
1912 | * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they | |
1913 | * may differ in access permissions even if the VA->PA map is the same | |
1914 | * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2 | |
1915 | * translation, which means that we have one mmu_idx that deals with two | |
1916 | * concatenated translation regimes [this sort of combined s1+2 TLB is | |
1917 | * architecturally permitted] | |
1918 | * 3. we don't need to allocate an mmu_idx to translations that we won't be | |
1919 | * handling via the TLB. The only way to do a stage 1 translation without | |
1920 | * the immediate stage 2 translation is via the ATS or AT system insns, | |
1921 | * which can be slow-pathed and always do a page table walk. | |
1922 | * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3" | |
1923 | * translation regimes, because they map reasonably well to each other | |
1924 | * and they can't both be active at the same time. | |
1925 | * This gives us the following list of mmu_idx values: | |
1926 | * | |
1927 | * NS EL0 (aka NS PL0) stage 1+2 | |
1928 | * NS EL1 (aka NS PL1) stage 1+2 | |
1929 | * NS EL2 (aka NS PL2) | |
1930 | * S EL3 (aka S PL1) | |
1931 | * S EL0 (aka S PL0) | |
1932 | * S EL1 (not used if EL3 is 32 bit) | |
1933 | * NS EL0+1 stage 2 | |
1934 | * | |
1935 | * (The last of these is an mmu_idx because we want to be able to use the TLB | |
1936 | * for the accesses done as part of a stage 1 page table walk, rather than | |
1937 | * having to walk the stage 2 page table over and over.) | |
1938 | * | |
1939 | * Our enumeration includes at the end some entries which are not "true" | |
1940 | * mmu_idx values in that they don't have corresponding TLBs and are only | |
1941 | * valid for doing slow path page table walks. | |
1942 | * | |
1943 | * The constant names here are patterned after the general style of the names | |
1944 | * of the AT/ATS operations. | |
1945 | * The values used are carefully arranged to make mmu_idx => EL lookup easy. | |
1946 | */ | |
1947 | typedef enum ARMMMUIdx { | |
1948 | ARMMMUIdx_S12NSE0 = 0, | |
1949 | ARMMMUIdx_S12NSE1 = 1, | |
1950 | ARMMMUIdx_S1E2 = 2, | |
1951 | ARMMMUIdx_S1E3 = 3, | |
1952 | ARMMMUIdx_S1SE0 = 4, | |
1953 | ARMMMUIdx_S1SE1 = 5, | |
1954 | ARMMMUIdx_S2NS = 6, | |
1955 | /* Indexes below here don't have TLBs and are used only for AT system | |
1956 | * instructions or for the first stage of an S12 page table walk. | |
1957 | */ | |
1958 | ARMMMUIdx_S1NSE0 = 7, | |
1959 | ARMMMUIdx_S1NSE1 = 8, | |
1960 | } ARMMMUIdx; | |
1961 | ||
f79fbf39 | 1962 | #define MMU_USER_IDX 0 |
c1e37810 PM |
1963 | |
1964 | /* Return the exception level we're running at if this is our mmu_idx */ | |
1965 | static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) | |
6ebbf390 | 1966 | { |
c1e37810 PM |
1967 | assert(mmu_idx < ARMMMUIdx_S2NS); |
1968 | return mmu_idx & 3; | |
1969 | } | |
1970 | ||
1971 | /* Determine the current mmu_idx to use for normal loads/stores */ | |
97ed5ccd | 1972 | static inline int cpu_mmu_index(CPUARMState *env, bool ifetch) |
c1e37810 PM |
1973 | { |
1974 | int el = arm_current_el(env); | |
1975 | ||
1976 | if (el < 2 && arm_is_secure_below_el3(env)) { | |
1977 | return ARMMMUIdx_S1SE0 + el; | |
1978 | } | |
1979 | return el; | |
6ebbf390 JM |
1980 | } |
1981 | ||
9e273ef2 PM |
1982 | /* Indexes used when registering address spaces with cpu_address_space_init */ |
1983 | typedef enum ARMASIdx { | |
1984 | ARMASIdx_NS = 0, | |
1985 | ARMASIdx_S = 1, | |
1986 | } ARMASIdx; | |
1987 | ||
533e93f1 | 1988 | /* Return the Exception Level targeted by debug exceptions. */ |
3a298203 PM |
1989 | static inline int arm_debug_target_el(CPUARMState *env) |
1990 | { | |
81669b8b SF |
1991 | bool secure = arm_is_secure(env); |
1992 | bool route_to_el2 = false; | |
1993 | ||
1994 | if (arm_feature(env, ARM_FEATURE_EL2) && !secure) { | |
1995 | route_to_el2 = env->cp15.hcr_el2 & HCR_TGE || | |
1996 | env->cp15.mdcr_el2 & (1 << 8); | |
1997 | } | |
1998 | ||
1999 | if (route_to_el2) { | |
2000 | return 2; | |
2001 | } else if (arm_feature(env, ARM_FEATURE_EL3) && | |
2002 | !arm_el_is_aa64(env, 3) && secure) { | |
2003 | return 3; | |
2004 | } else { | |
2005 | return 1; | |
2006 | } | |
3a298203 PM |
2007 | } |
2008 | ||
2009 | static inline bool aa64_generate_debug_exceptions(CPUARMState *env) | |
2010 | { | |
533e93f1 PM |
2011 | if (arm_is_secure(env)) { |
2012 | /* MDCR_EL3.SDD disables debug events from Secure state */ | |
2013 | if (extract32(env->cp15.mdcr_el3, 16, 1) != 0 | |
2014 | || arm_current_el(env) == 3) { | |
2015 | return false; | |
2016 | } | |
2017 | } | |
2018 | ||
dcbff19b | 2019 | if (arm_current_el(env) == arm_debug_target_el(env)) { |
3a298203 PM |
2020 | if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0) |
2021 | || (env->daif & PSTATE_D)) { | |
2022 | return false; | |
2023 | } | |
2024 | } | |
2025 | return true; | |
2026 | } | |
2027 | ||
2028 | static inline bool aa32_generate_debug_exceptions(CPUARMState *env) | |
2029 | { | |
533e93f1 PM |
2030 | int el = arm_current_el(env); |
2031 | ||
2032 | if (el == 0 && arm_el_is_aa64(env, 1)) { | |
3a298203 PM |
2033 | return aa64_generate_debug_exceptions(env); |
2034 | } | |
533e93f1 PM |
2035 | |
2036 | if (arm_is_secure(env)) { | |
2037 | int spd; | |
2038 | ||
2039 | if (el == 0 && (env->cp15.sder & 1)) { | |
2040 | /* SDER.SUIDEN means debug exceptions from Secure EL0 | |
2041 | * are always enabled. Otherwise they are controlled by | |
2042 | * SDCR.SPD like those from other Secure ELs. | |
2043 | */ | |
2044 | return true; | |
2045 | } | |
2046 | ||
2047 | spd = extract32(env->cp15.mdcr_el3, 14, 2); | |
2048 | switch (spd) { | |
2049 | case 1: | |
2050 | /* SPD == 0b01 is reserved, but behaves as 0b00. */ | |
2051 | case 0: | |
2052 | /* For 0b00 we return true if external secure invasive debug | |
2053 | * is enabled. On real hardware this is controlled by external | |
2054 | * signals to the core. QEMU always permits debug, and behaves | |
2055 | * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high. | |
2056 | */ | |
2057 | return true; | |
2058 | case 2: | |
2059 | return false; | |
2060 | case 3: | |
2061 | return true; | |
2062 | } | |
2063 | } | |
2064 | ||
2065 | return el != 2; | |
3a298203 PM |
2066 | } |
2067 | ||
2068 | /* Return true if debugging exceptions are currently enabled. | |
2069 | * This corresponds to what in ARM ARM pseudocode would be | |
2070 | * if UsingAArch32() then | |
2071 | * return AArch32.GenerateDebugExceptions() | |
2072 | * else | |
2073 | * return AArch64.GenerateDebugExceptions() | |
2074 | * We choose to push the if() down into this function for clarity, | |
2075 | * since the pseudocode has it at all callsites except for the one in | |
2076 | * CheckSoftwareStep(), where it is elided because both branches would | |
2077 | * always return the same value. | |
2078 | * | |
2079 | * Parts of the pseudocode relating to EL2 and EL3 are omitted because we | |
2080 | * don't yet implement those exception levels or their associated trap bits. | |
2081 | */ | |
2082 | static inline bool arm_generate_debug_exceptions(CPUARMState *env) | |
2083 | { | |
2084 | if (env->aarch64) { | |
2085 | return aa64_generate_debug_exceptions(env); | |
2086 | } else { | |
2087 | return aa32_generate_debug_exceptions(env); | |
2088 | } | |
2089 | } | |
2090 | ||
2091 | /* Is single-stepping active? (Note that the "is EL_D AArch64?" check | |
2092 | * implicitly means this always returns false in pre-v8 CPUs.) | |
2093 | */ | |
2094 | static inline bool arm_singlestep_active(CPUARMState *env) | |
2095 | { | |
2096 | return extract32(env->cp15.mdscr_el1, 0, 1) | |
2097 | && arm_el_is_aa64(env, arm_debug_target_el(env)) | |
2098 | && arm_generate_debug_exceptions(env); | |
2099 | } | |
2100 | ||
f9fd40eb PB |
2101 | static inline bool arm_sctlr_b(CPUARMState *env) |
2102 | { | |
2103 | return | |
2104 | /* We need not implement SCTLR.ITD in user-mode emulation, so | |
2105 | * let linux-user ignore the fact that it conflicts with SCTLR_B. | |
2106 | * This lets people run BE32 binaries with "-cpu any". | |
2107 | */ | |
2108 | #ifndef CONFIG_USER_ONLY | |
2109 | !arm_feature(env, ARM_FEATURE_V7) && | |
2110 | #endif | |
2111 | (env->cp15.sctlr_el[1] & SCTLR_B) != 0; | |
2112 | } | |
2113 | ||
ed50ff78 PC |
2114 | /* Return true if the processor is in big-endian mode. */ |
2115 | static inline bool arm_cpu_data_is_big_endian(CPUARMState *env) | |
2116 | { | |
2117 | int cur_el; | |
2118 | ||
2119 | /* In 32bit endianness is determined by looking at CPSR's E bit */ | |
2120 | if (!is_a64(env)) { | |
b2e62d9a PC |
2121 | return |
2122 | #ifdef CONFIG_USER_ONLY | |
2123 | /* In system mode, BE32 is modelled in line with the | |
2124 | * architecture (as word-invariant big-endianness), where loads | |
2125 | * and stores are done little endian but from addresses which | |
2126 | * are adjusted by XORing with the appropriate constant. So the | |
2127 | * endianness to use for the raw data access is not affected by | |
2128 | * SCTLR.B. | |
2129 | * In user mode, however, we model BE32 as byte-invariant | |
2130 | * big-endianness (because user-only code cannot tell the | |
2131 | * difference), and so we need to use a data access endianness | |
2132 | * that depends on SCTLR.B. | |
2133 | */ | |
2134 | arm_sctlr_b(env) || | |
2135 | #endif | |
2136 | ((env->uncached_cpsr & CPSR_E) ? 1 : 0); | |
ed50ff78 PC |
2137 | } |
2138 | ||
2139 | cur_el = arm_current_el(env); | |
2140 | ||
2141 | if (cur_el == 0) { | |
2142 | return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0; | |
2143 | } | |
2144 | ||
2145 | return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0; | |
2146 | } | |
2147 | ||
022c62cb | 2148 | #include "exec/cpu-all.h" |
622ed360 | 2149 | |
3926cc84 AG |
2150 | /* Bit usage in the TB flags field: bit 31 indicates whether we are |
2151 | * in 32 or 64 bit mode. The meaning of the other bits depends on that. | |
c1e37810 PM |
2152 | * We put flags which are shared between 32 and 64 bit mode at the top |
2153 | * of the word, and flags which apply to only one mode at the bottom. | |
3926cc84 AG |
2154 | */ |
2155 | #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31 | |
2156 | #define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT) | |
c1e37810 PM |
2157 | #define ARM_TBFLAG_MMUIDX_SHIFT 28 |
2158 | #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT) | |
3cf6a0fc PM |
2159 | #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27 |
2160 | #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT) | |
2161 | #define ARM_TBFLAG_PSTATE_SS_SHIFT 26 | |
2162 | #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT) | |
9dbbc748 GB |
2163 | /* Target EL if we take a floating-point-disabled exception */ |
2164 | #define ARM_TBFLAG_FPEXC_EL_SHIFT 24 | |
2165 | #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT) | |
3926cc84 AG |
2166 | |
2167 | /* Bit usage when in AArch32 state: */ | |
a1705768 PM |
2168 | #define ARM_TBFLAG_THUMB_SHIFT 0 |
2169 | #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT) | |
2170 | #define ARM_TBFLAG_VECLEN_SHIFT 1 | |
2171 | #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT) | |
2172 | #define ARM_TBFLAG_VECSTRIDE_SHIFT 4 | |
2173 | #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT) | |
a1705768 PM |
2174 | #define ARM_TBFLAG_VFPEN_SHIFT 7 |
2175 | #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT) | |
2176 | #define ARM_TBFLAG_CONDEXEC_SHIFT 8 | |
2177 | #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT) | |
f9fd40eb PB |
2178 | #define ARM_TBFLAG_SCTLR_B_SHIFT 16 |
2179 | #define ARM_TBFLAG_SCTLR_B_MASK (1 << ARM_TBFLAG_SCTLR_B_SHIFT) | |
c0f4af17 PM |
2180 | /* We store the bottom two bits of the CPAR as TB flags and handle |
2181 | * checks on the other bits at runtime | |
2182 | */ | |
647f767b | 2183 | #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17 |
c0f4af17 | 2184 | #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT) |
3f342b9e SF |
2185 | /* Indicates whether cp register reads and writes by guest code should access |
2186 | * the secure or nonsecure bank of banked registers; note that this is not | |
2187 | * the same thing as the current security state of the processor! | |
2188 | */ | |
647f767b | 2189 | #define ARM_TBFLAG_NS_SHIFT 19 |
3f342b9e | 2190 | #define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT) |
91cca2cd PC |
2191 | #define ARM_TBFLAG_BE_DATA_SHIFT 20 |
2192 | #define ARM_TBFLAG_BE_DATA_MASK (1 << ARM_TBFLAG_BE_DATA_SHIFT) | |
3926cc84 | 2193 | |
9dbbc748 | 2194 | /* Bit usage when in AArch64 state: currently we have no A64 specific bits */ |
a1705768 PM |
2195 | |
2196 | /* some convenience accessor macros */ | |
3926cc84 AG |
2197 | #define ARM_TBFLAG_AARCH64_STATE(F) \ |
2198 | (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT) | |
c1e37810 PM |
2199 | #define ARM_TBFLAG_MMUIDX(F) \ |
2200 | (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT) | |
3cf6a0fc PM |
2201 | #define ARM_TBFLAG_SS_ACTIVE(F) \ |
2202 | (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT) | |
2203 | #define ARM_TBFLAG_PSTATE_SS(F) \ | |
2204 | (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT) | |
9dbbc748 GB |
2205 | #define ARM_TBFLAG_FPEXC_EL(F) \ |
2206 | (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT) | |
a1705768 PM |
2207 | #define ARM_TBFLAG_THUMB(F) \ |
2208 | (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT) | |
2209 | #define ARM_TBFLAG_VECLEN(F) \ | |
2210 | (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT) | |
2211 | #define ARM_TBFLAG_VECSTRIDE(F) \ | |
2212 | (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT) | |
a1705768 PM |
2213 | #define ARM_TBFLAG_VFPEN(F) \ |
2214 | (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT) | |
2215 | #define ARM_TBFLAG_CONDEXEC(F) \ | |
2216 | (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT) | |
f9fd40eb PB |
2217 | #define ARM_TBFLAG_SCTLR_B(F) \ |
2218 | (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT) | |
c0f4af17 PM |
2219 | #define ARM_TBFLAG_XSCALE_CPAR(F) \ |
2220 | (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT) | |
3f342b9e SF |
2221 | #define ARM_TBFLAG_NS(F) \ |
2222 | (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT) | |
91cca2cd PC |
2223 | #define ARM_TBFLAG_BE_DATA(F) \ |
2224 | (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT) | |
a1705768 | 2225 | |
f9fd40eb PB |
2226 | static inline bool bswap_code(bool sctlr_b) |
2227 | { | |
2228 | #ifdef CONFIG_USER_ONLY | |
2229 | /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian. | |
2230 | * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0 | |
2231 | * would also end up as a mixed-endian mode with BE code, LE data. | |
2232 | */ | |
2233 | return | |
2234 | #ifdef TARGET_WORDS_BIGENDIAN | |
2235 | 1 ^ | |
2236 | #endif | |
2237 | sctlr_b; | |
2238 | #else | |
e334bd31 PB |
2239 | /* All code access in ARM is little endian, and there are no loaders |
2240 | * doing swaps that need to be reversed | |
f9fd40eb PB |
2241 | */ |
2242 | return 0; | |
2243 | #endif | |
2244 | } | |
2245 | ||
9dbbc748 GB |
2246 | /* Return the exception level to which FP-disabled exceptions should |
2247 | * be taken, or 0 if FP is enabled. | |
2248 | */ | |
2249 | static inline int fp_exception_el(CPUARMState *env) | |
6b917547 | 2250 | { |
ed1f13d6 | 2251 | int fpen; |
9dbbc748 | 2252 | int cur_el = arm_current_el(env); |
ed1f13d6 | 2253 | |
9dbbc748 GB |
2254 | /* CPACR and the CPTR registers don't exist before v6, so FP is |
2255 | * always accessible | |
2256 | */ | |
2257 | if (!arm_feature(env, ARM_FEATURE_V6)) { | |
2258 | return 0; | |
2259 | } | |
2260 | ||
2261 | /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: | |
2262 | * 0, 2 : trap EL0 and EL1/PL1 accesses | |
2263 | * 1 : trap only EL0 accesses | |
2264 | * 3 : trap no accesses | |
2265 | */ | |
2266 | fpen = extract32(env->cp15.cpacr_el1, 20, 2); | |
2267 | switch (fpen) { | |
2268 | case 0: | |
2269 | case 2: | |
2270 | if (cur_el == 0 || cur_el == 1) { | |
2271 | /* Trap to PL1, which might be EL1 or EL3 */ | |
2272 | if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { | |
2273 | return 3; | |
2274 | } | |
2275 | return 1; | |
2276 | } | |
2277 | if (cur_el == 3 && !is_a64(env)) { | |
2278 | /* Secure PL1 running at EL3 */ | |
2279 | return 3; | |
2280 | } | |
2281 | break; | |
2282 | case 1: | |
2283 | if (cur_el == 0) { | |
2284 | return 1; | |
2285 | } | |
2286 | break; | |
2287 | case 3: | |
2288 | break; | |
2289 | } | |
2290 | ||
2291 | /* For the CPTR registers we don't need to guard with an ARM_FEATURE | |
2292 | * check because zero bits in the registers mean "don't trap". | |
2293 | */ | |
2294 | ||
2295 | /* CPTR_EL2 : present in v7VE or v8 */ | |
2296 | if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) | |
2297 | && !arm_is_secure_below_el3(env)) { | |
2298 | /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ | |
2299 | return 2; | |
2300 | } | |
2301 | ||
2302 | /* CPTR_EL3 : present in v8 */ | |
2303 | if (extract32(env->cp15.cptr_el[3], 10, 1)) { | |
2304 | /* Trap all FP ops to EL3 */ | |
2305 | return 3; | |
ed1f13d6 | 2306 | } |
8c6afa6a | 2307 | |
9dbbc748 GB |
2308 | return 0; |
2309 | } | |
2310 | ||
c3ae85fc PB |
2311 | #ifdef CONFIG_USER_ONLY |
2312 | static inline bool arm_cpu_bswap_data(CPUARMState *env) | |
2313 | { | |
2314 | return | |
2315 | #ifdef TARGET_WORDS_BIGENDIAN | |
2316 | 1 ^ | |
2317 | #endif | |
2318 | arm_cpu_data_is_big_endian(env); | |
2319 | } | |
2320 | #endif | |
2321 | ||
9dbbc748 | 2322 | static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, |
89fee74a | 2323 | target_ulong *cs_base, uint32_t *flags) |
9dbbc748 | 2324 | { |
3926cc84 AG |
2325 | if (is_a64(env)) { |
2326 | *pc = env->pc; | |
c1e37810 | 2327 | *flags = ARM_TBFLAG_AARCH64_STATE_MASK; |
05ed9a99 | 2328 | } else { |
3926cc84 AG |
2329 | *pc = env->regs[15]; |
2330 | *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT) | |
2331 | | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT) | |
2332 | | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT) | |
2333 | | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT) | |
f9fd40eb | 2334 | | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT); |
3f342b9e SF |
2335 | if (!(access_secure_reg(env))) { |
2336 | *flags |= ARM_TBFLAG_NS_MASK; | |
2337 | } | |
2c7ffc41 PM |
2338 | if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30) |
2339 | || arm_el_is_aa64(env, 1)) { | |
3926cc84 AG |
2340 | *flags |= ARM_TBFLAG_VFPEN_MASK; |
2341 | } | |
c0f4af17 PM |
2342 | *flags |= (extract32(env->cp15.c15_cpar, 0, 2) |
2343 | << ARM_TBFLAG_XSCALE_CPAR_SHIFT); | |
a1705768 | 2344 | } |
3926cc84 | 2345 | |
97ed5ccd | 2346 | *flags |= (cpu_mmu_index(env, false) << ARM_TBFLAG_MMUIDX_SHIFT); |
3cf6a0fc PM |
2347 | /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine |
2348 | * states defined in the ARM ARM for software singlestep: | |
2349 | * SS_ACTIVE PSTATE.SS State | |
2350 | * 0 x Inactive (the TB flag for SS is always 0) | |
2351 | * 1 0 Active-pending | |
2352 | * 1 1 Active-not-pending | |
2353 | */ | |
2354 | if (arm_singlestep_active(env)) { | |
2355 | *flags |= ARM_TBFLAG_SS_ACTIVE_MASK; | |
2356 | if (is_a64(env)) { | |
2357 | if (env->pstate & PSTATE_SS) { | |
2358 | *flags |= ARM_TBFLAG_PSTATE_SS_MASK; | |
2359 | } | |
2360 | } else { | |
2361 | if (env->uncached_cpsr & PSTATE_SS) { | |
2362 | *flags |= ARM_TBFLAG_PSTATE_SS_MASK; | |
2363 | } | |
2364 | } | |
2365 | } | |
91cca2cd PC |
2366 | if (arm_cpu_data_is_big_endian(env)) { |
2367 | *flags |= ARM_TBFLAG_BE_DATA_MASK; | |
2368 | } | |
9dbbc748 | 2369 | *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT; |
c1e37810 | 2370 | |
3926cc84 | 2371 | *cs_base = 0; |
6b917547 AL |
2372 | } |
2373 | ||
98128601 RH |
2374 | enum { |
2375 | QEMU_PSCI_CONDUIT_DISABLED = 0, | |
2376 | QEMU_PSCI_CONDUIT_SMC = 1, | |
2377 | QEMU_PSCI_CONDUIT_HVC = 2, | |
2378 | }; | |
2379 | ||
017518c1 PM |
2380 | #ifndef CONFIG_USER_ONLY |
2381 | /* Return the address space index to use for a memory access */ | |
2382 | static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs) | |
2383 | { | |
2384 | return attrs.secure ? ARMASIdx_S : ARMASIdx_NS; | |
2385 | } | |
5ce4ff65 PM |
2386 | |
2387 | /* Return the AddressSpace to use for a memory access | |
2388 | * (which depends on whether the access is S or NS, and whether | |
2389 | * the board gave us a separate AddressSpace for S accesses). | |
2390 | */ | |
2391 | static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs) | |
2392 | { | |
2393 | return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs)); | |
2394 | } | |
017518c1 PM |
2395 | #endif |
2396 | ||
bd7d00fc PM |
2397 | /** |
2398 | * arm_register_el_change_hook: | |
2399 | * Register a hook function which will be called back whenever this | |
2400 | * CPU changes exception level or mode. The hook function will be | |
2401 | * passed a pointer to the ARMCPU and the opaque data pointer passed | |
2402 | * to this function when the hook was registered. | |
2403 | * | |
2404 | * Note that we currently only support registering a single hook function, | |
2405 | * and will assert if this function is called twice. | |
2406 | * This facility is intended for the use of the GICv3 emulation. | |
2407 | */ | |
2408 | void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook, | |
2409 | void *opaque); | |
2410 | ||
2411 | /** | |
2412 | * arm_get_el_change_hook_opaque: | |
2413 | * Return the opaque data that will be used by the el_change_hook | |
2414 | * for this CPU. | |
2415 | */ | |
2416 | static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu) | |
2417 | { | |
2418 | return cpu->el_change_hook_opaque; | |
2419 | } | |
2420 | ||
2c0262af | 2421 | #endif |