]>
Commit | Line | Data |
---|---|---|
1a59d1b8 | 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
1da177e4 LT |
2 | /* |
3 | * Fast Userspace Mutexes (which I call "Futexes!"). | |
4 | * (C) Rusty Russell, IBM 2002 | |
5 | * | |
6 | * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar | |
7 | * (C) Copyright 2003 Red Hat Inc, All Rights Reserved | |
8 | * | |
9 | * Removed page pinning, fix privately mapped COW pages and other cleanups | |
10 | * (C) Copyright 2003, 2004 Jamie Lokier | |
11 | * | |
0771dfef IM |
12 | * Robust futex support started by Ingo Molnar |
13 | * (C) Copyright 2006 Red Hat Inc, All Rights Reserved | |
14 | * Thanks to Thomas Gleixner for suggestions, analysis and fixes. | |
15 | * | |
c87e2837 IM |
16 | * PI-futex support started by Ingo Molnar and Thomas Gleixner |
17 | * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <[email protected]> | |
18 | * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <[email protected]> | |
19 | * | |
34f01cc1 ED |
20 | * PRIVATE futexes by Eric Dumazet |
21 | * Copyright (C) 2007 Eric Dumazet <[email protected]> | |
22 | * | |
52400ba9 DH |
23 | * Requeue-PI support by Darren Hart <[email protected]> |
24 | * Copyright (C) IBM Corporation, 2009 | |
25 | * Thanks to Thomas Gleixner for conceptual design and careful reviews. | |
26 | * | |
1da177e4 LT |
27 | * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly |
28 | * enough at me, Linus for the original (flawed) idea, Matthew | |
29 | * Kirkwood for proof-of-concept implementation. | |
30 | * | |
31 | * "The futexes are also cursed." | |
32 | * "But they come in a choice of three flavours!" | |
1da177e4 | 33 | */ |
04e7712f | 34 | #include <linux/compat.h> |
1da177e4 | 35 | #include <linux/jhash.h> |
1da177e4 LT |
36 | #include <linux/pagemap.h> |
37 | #include <linux/syscalls.h> | |
13d60f4b | 38 | #include <linux/hugetlb.h> |
88c8004f | 39 | #include <linux/freezer.h> |
57c8a661 | 40 | #include <linux/memblock.h> |
ab51fbab | 41 | #include <linux/fault-inject.h> |
c2f7d08c | 42 | #include <linux/time_namespace.h> |
b488893a | 43 | |
4732efbe | 44 | #include <asm/futex.h> |
1da177e4 | 45 | |
1696a8be | 46 | #include "locking/rtmutex_common.h" |
c87e2837 | 47 | |
99b60ce6 | 48 | /* |
d7e8af1a DB |
49 | * READ this before attempting to hack on futexes! |
50 | * | |
51 | * Basic futex operation and ordering guarantees | |
52 | * ============================================= | |
99b60ce6 TG |
53 | * |
54 | * The waiter reads the futex value in user space and calls | |
55 | * futex_wait(). This function computes the hash bucket and acquires | |
56 | * the hash bucket lock. After that it reads the futex user space value | |
b0c29f79 DB |
57 | * again and verifies that the data has not changed. If it has not changed |
58 | * it enqueues itself into the hash bucket, releases the hash bucket lock | |
59 | * and schedules. | |
99b60ce6 TG |
60 | * |
61 | * The waker side modifies the user space value of the futex and calls | |
b0c29f79 DB |
62 | * futex_wake(). This function computes the hash bucket and acquires the |
63 | * hash bucket lock. Then it looks for waiters on that futex in the hash | |
64 | * bucket and wakes them. | |
99b60ce6 | 65 | * |
b0c29f79 DB |
66 | * In futex wake up scenarios where no tasks are blocked on a futex, taking |
67 | * the hb spinlock can be avoided and simply return. In order for this | |
68 | * optimization to work, ordering guarantees must exist so that the waiter | |
69 | * being added to the list is acknowledged when the list is concurrently being | |
70 | * checked by the waker, avoiding scenarios like the following: | |
99b60ce6 TG |
71 | * |
72 | * CPU 0 CPU 1 | |
73 | * val = *futex; | |
74 | * sys_futex(WAIT, futex, val); | |
75 | * futex_wait(futex, val); | |
76 | * uval = *futex; | |
77 | * *futex = newval; | |
78 | * sys_futex(WAKE, futex); | |
79 | * futex_wake(futex); | |
80 | * if (queue_empty()) | |
81 | * return; | |
82 | * if (uval == val) | |
83 | * lock(hash_bucket(futex)); | |
84 | * queue(); | |
85 | * unlock(hash_bucket(futex)); | |
86 | * schedule(); | |
87 | * | |
88 | * This would cause the waiter on CPU 0 to wait forever because it | |
89 | * missed the transition of the user space value from val to newval | |
90 | * and the waker did not find the waiter in the hash bucket queue. | |
99b60ce6 | 91 | * |
b0c29f79 DB |
92 | * The correct serialization ensures that a waiter either observes |
93 | * the changed user space value before blocking or is woken by a | |
94 | * concurrent waker: | |
95 | * | |
96 | * CPU 0 CPU 1 | |
99b60ce6 TG |
97 | * val = *futex; |
98 | * sys_futex(WAIT, futex, val); | |
99 | * futex_wait(futex, val); | |
b0c29f79 | 100 | * |
d7e8af1a | 101 | * waiters++; (a) |
8ad7b378 DB |
102 | * smp_mb(); (A) <-- paired with -. |
103 | * | | |
104 | * lock(hash_bucket(futex)); | | |
105 | * | | |
106 | * uval = *futex; | | |
107 | * | *futex = newval; | |
108 | * | sys_futex(WAKE, futex); | |
109 | * | futex_wake(futex); | |
110 | * | | |
111 | * `--------> smp_mb(); (B) | |
99b60ce6 | 112 | * if (uval == val) |
b0c29f79 | 113 | * queue(); |
99b60ce6 | 114 | * unlock(hash_bucket(futex)); |
b0c29f79 DB |
115 | * schedule(); if (waiters) |
116 | * lock(hash_bucket(futex)); | |
d7e8af1a DB |
117 | * else wake_waiters(futex); |
118 | * waiters--; (b) unlock(hash_bucket(futex)); | |
b0c29f79 | 119 | * |
d7e8af1a DB |
120 | * Where (A) orders the waiters increment and the futex value read through |
121 | * atomic operations (see hb_waiters_inc) and where (B) orders the write | |
4b39f99c | 122 | * to futex and the waiters read (see hb_waiters_pending()). |
b0c29f79 DB |
123 | * |
124 | * This yields the following case (where X:=waiters, Y:=futex): | |
125 | * | |
126 | * X = Y = 0 | |
127 | * | |
128 | * w[X]=1 w[Y]=1 | |
129 | * MB MB | |
130 | * r[Y]=y r[X]=x | |
131 | * | |
132 | * Which guarantees that x==0 && y==0 is impossible; which translates back into | |
133 | * the guarantee that we cannot both miss the futex variable change and the | |
134 | * enqueue. | |
d7e8af1a DB |
135 | * |
136 | * Note that a new waiter is accounted for in (a) even when it is possible that | |
137 | * the wait call can return error, in which case we backtrack from it in (b). | |
138 | * Refer to the comment in queue_lock(). | |
139 | * | |
140 | * Similarly, in order to account for waiters being requeued on another | |
141 | * address we always increment the waiters for the destination bucket before | |
142 | * acquiring the lock. It then decrements them again after releasing it - | |
143 | * the code that actually moves the futex(es) between hash buckets (requeue_futex) | |
144 | * will do the additional required waiter count housekeeping. This is done for | |
145 | * double_lock_hb() and double_unlock_hb(), respectively. | |
99b60ce6 TG |
146 | */ |
147 | ||
04e7712f AB |
148 | #ifdef CONFIG_HAVE_FUTEX_CMPXCHG |
149 | #define futex_cmpxchg_enabled 1 | |
150 | #else | |
151 | static int __read_mostly futex_cmpxchg_enabled; | |
03b8c7b6 | 152 | #endif |
a0c1e907 | 153 | |
b41277dc DH |
154 | /* |
155 | * Futex flags used to encode options to functions and preserve them across | |
156 | * restarts. | |
157 | */ | |
784bdf3b TG |
158 | #ifdef CONFIG_MMU |
159 | # define FLAGS_SHARED 0x01 | |
160 | #else | |
161 | /* | |
162 | * NOMMU does not have per process address space. Let the compiler optimize | |
163 | * code away. | |
164 | */ | |
165 | # define FLAGS_SHARED 0x00 | |
166 | #endif | |
b41277dc DH |
167 | #define FLAGS_CLOCKRT 0x02 |
168 | #define FLAGS_HAS_TIMEOUT 0x04 | |
169 | ||
c87e2837 IM |
170 | /* |
171 | * Priority Inheritance state: | |
172 | */ | |
173 | struct futex_pi_state { | |
174 | /* | |
175 | * list of 'owned' pi_state instances - these have to be | |
176 | * cleaned up in do_exit() if the task exits prematurely: | |
177 | */ | |
178 | struct list_head list; | |
179 | ||
180 | /* | |
181 | * The PI object: | |
182 | */ | |
183 | struct rt_mutex pi_mutex; | |
184 | ||
185 | struct task_struct *owner; | |
49262de2 | 186 | refcount_t refcount; |
c87e2837 IM |
187 | |
188 | union futex_key key; | |
3859a271 | 189 | } __randomize_layout; |
c87e2837 | 190 | |
d8d88fbb DH |
191 | /** |
192 | * struct futex_q - The hashed futex queue entry, one per waiting task | |
fb62db2b | 193 | * @list: priority-sorted list of tasks waiting on this futex |
d8d88fbb DH |
194 | * @task: the task waiting on the futex |
195 | * @lock_ptr: the hash bucket lock | |
196 | * @key: the key the futex is hashed on | |
197 | * @pi_state: optional priority inheritance state | |
198 | * @rt_waiter: rt_waiter storage for use with requeue_pi | |
199 | * @requeue_pi_key: the requeue_pi target futex key | |
200 | * @bitset: bitset for the optional bitmasked wakeup | |
201 | * | |
ac6424b9 | 202 | * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so |
1da177e4 LT |
203 | * we can wake only the relevant ones (hashed queues may be shared). |
204 | * | |
205 | * A futex_q has a woken state, just like tasks have TASK_RUNNING. | |
ec92d082 | 206 | * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0. |
fb62db2b | 207 | * The order of wakeup is always to make the first condition true, then |
d8d88fbb DH |
208 | * the second. |
209 | * | |
210 | * PI futexes are typically woken before they are removed from the hash list via | |
211 | * the rt_mutex code. See unqueue_me_pi(). | |
1da177e4 LT |
212 | */ |
213 | struct futex_q { | |
ec92d082 | 214 | struct plist_node list; |
1da177e4 | 215 | |
d8d88fbb | 216 | struct task_struct *task; |
1da177e4 | 217 | spinlock_t *lock_ptr; |
1da177e4 | 218 | union futex_key key; |
c87e2837 | 219 | struct futex_pi_state *pi_state; |
52400ba9 | 220 | struct rt_mutex_waiter *rt_waiter; |
84bc4af5 | 221 | union futex_key *requeue_pi_key; |
cd689985 | 222 | u32 bitset; |
3859a271 | 223 | } __randomize_layout; |
1da177e4 | 224 | |
5bdb05f9 DH |
225 | static const struct futex_q futex_q_init = { |
226 | /* list gets initialized in queue_me()*/ | |
227 | .key = FUTEX_KEY_INIT, | |
228 | .bitset = FUTEX_BITSET_MATCH_ANY | |
229 | }; | |
230 | ||
1da177e4 | 231 | /* |
b2d0994b DH |
232 | * Hash buckets are shared by all the futex_keys that hash to the same |
233 | * location. Each key may have multiple futex_q structures, one for each task | |
234 | * waiting on a futex. | |
1da177e4 LT |
235 | */ |
236 | struct futex_hash_bucket { | |
11d4616b | 237 | atomic_t waiters; |
ec92d082 PP |
238 | spinlock_t lock; |
239 | struct plist_head chain; | |
a52b89eb | 240 | } ____cacheline_aligned_in_smp; |
1da177e4 | 241 | |
ac742d37 RV |
242 | /* |
243 | * The base of the bucket array and its size are always used together | |
244 | * (after initialization only in hash_futex()), so ensure that they | |
245 | * reside in the same cacheline. | |
246 | */ | |
247 | static struct { | |
248 | struct futex_hash_bucket *queues; | |
249 | unsigned long hashsize; | |
250 | } __futex_data __read_mostly __aligned(2*sizeof(long)); | |
251 | #define futex_queues (__futex_data.queues) | |
252 | #define futex_hashsize (__futex_data.hashsize) | |
a52b89eb | 253 | |
1da177e4 | 254 | |
ab51fbab DB |
255 | /* |
256 | * Fault injections for futexes. | |
257 | */ | |
258 | #ifdef CONFIG_FAIL_FUTEX | |
259 | ||
260 | static struct { | |
261 | struct fault_attr attr; | |
262 | ||
621a5f7a | 263 | bool ignore_private; |
ab51fbab DB |
264 | } fail_futex = { |
265 | .attr = FAULT_ATTR_INITIALIZER, | |
621a5f7a | 266 | .ignore_private = false, |
ab51fbab DB |
267 | }; |
268 | ||
269 | static int __init setup_fail_futex(char *str) | |
270 | { | |
271 | return setup_fault_attr(&fail_futex.attr, str); | |
272 | } | |
273 | __setup("fail_futex=", setup_fail_futex); | |
274 | ||
5d285a7f | 275 | static bool should_fail_futex(bool fshared) |
ab51fbab DB |
276 | { |
277 | if (fail_futex.ignore_private && !fshared) | |
278 | return false; | |
279 | ||
280 | return should_fail(&fail_futex.attr, 1); | |
281 | } | |
282 | ||
283 | #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS | |
284 | ||
285 | static int __init fail_futex_debugfs(void) | |
286 | { | |
287 | umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; | |
288 | struct dentry *dir; | |
289 | ||
290 | dir = fault_create_debugfs_attr("fail_futex", NULL, | |
291 | &fail_futex.attr); | |
292 | if (IS_ERR(dir)) | |
293 | return PTR_ERR(dir); | |
294 | ||
0365aeba GKH |
295 | debugfs_create_bool("ignore-private", mode, dir, |
296 | &fail_futex.ignore_private); | |
ab51fbab DB |
297 | return 0; |
298 | } | |
299 | ||
300 | late_initcall(fail_futex_debugfs); | |
301 | ||
302 | #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ | |
303 | ||
304 | #else | |
305 | static inline bool should_fail_futex(bool fshared) | |
306 | { | |
307 | return false; | |
308 | } | |
309 | #endif /* CONFIG_FAIL_FUTEX */ | |
310 | ||
ba31c1a4 TG |
311 | #ifdef CONFIG_COMPAT |
312 | static void compat_exit_robust_list(struct task_struct *curr); | |
313 | #else | |
314 | static inline void compat_exit_robust_list(struct task_struct *curr) { } | |
315 | #endif | |
316 | ||
11d4616b LT |
317 | /* |
318 | * Reflects a new waiter being added to the waitqueue. | |
319 | */ | |
320 | static inline void hb_waiters_inc(struct futex_hash_bucket *hb) | |
b0c29f79 DB |
321 | { |
322 | #ifdef CONFIG_SMP | |
11d4616b | 323 | atomic_inc(&hb->waiters); |
b0c29f79 | 324 | /* |
11d4616b | 325 | * Full barrier (A), see the ordering comment above. |
b0c29f79 | 326 | */ |
4e857c58 | 327 | smp_mb__after_atomic(); |
11d4616b LT |
328 | #endif |
329 | } | |
330 | ||
331 | /* | |
332 | * Reflects a waiter being removed from the waitqueue by wakeup | |
333 | * paths. | |
334 | */ | |
335 | static inline void hb_waiters_dec(struct futex_hash_bucket *hb) | |
336 | { | |
337 | #ifdef CONFIG_SMP | |
338 | atomic_dec(&hb->waiters); | |
339 | #endif | |
340 | } | |
b0c29f79 | 341 | |
11d4616b LT |
342 | static inline int hb_waiters_pending(struct futex_hash_bucket *hb) |
343 | { | |
344 | #ifdef CONFIG_SMP | |
4b39f99c PZ |
345 | /* |
346 | * Full barrier (B), see the ordering comment above. | |
347 | */ | |
348 | smp_mb(); | |
11d4616b | 349 | return atomic_read(&hb->waiters); |
b0c29f79 | 350 | #else |
11d4616b | 351 | return 1; |
b0c29f79 DB |
352 | #endif |
353 | } | |
354 | ||
e8b61b3f TG |
355 | /** |
356 | * hash_futex - Return the hash bucket in the global hash | |
357 | * @key: Pointer to the futex key for which the hash is calculated | |
358 | * | |
359 | * We hash on the keys returned from get_futex_key (see below) and return the | |
360 | * corresponding hash bucket in the global hash. | |
1da177e4 LT |
361 | */ |
362 | static struct futex_hash_bucket *hash_futex(union futex_key *key) | |
363 | { | |
8d677436 | 364 | u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4, |
1da177e4 | 365 | key->both.offset); |
8d677436 | 366 | |
a52b89eb | 367 | return &futex_queues[hash & (futex_hashsize - 1)]; |
1da177e4 LT |
368 | } |
369 | ||
e8b61b3f TG |
370 | |
371 | /** | |
372 | * match_futex - Check whether two futex keys are equal | |
373 | * @key1: Pointer to key1 | |
374 | * @key2: Pointer to key2 | |
375 | * | |
1da177e4 LT |
376 | * Return 1 if two futex_keys are equal, 0 otherwise. |
377 | */ | |
378 | static inline int match_futex(union futex_key *key1, union futex_key *key2) | |
379 | { | |
2bc87203 DH |
380 | return (key1 && key2 |
381 | && key1->both.word == key2->both.word | |
1da177e4 LT |
382 | && key1->both.ptr == key2->both.ptr |
383 | && key1->both.offset == key2->both.offset); | |
384 | } | |
385 | ||
96d4f267 LT |
386 | enum futex_access { |
387 | FUTEX_READ, | |
388 | FUTEX_WRITE | |
389 | }; | |
390 | ||
5ca584d9 WL |
391 | /** |
392 | * futex_setup_timer - set up the sleeping hrtimer. | |
393 | * @time: ptr to the given timeout value | |
394 | * @timeout: the hrtimer_sleeper structure to be set up | |
395 | * @flags: futex flags | |
396 | * @range_ns: optional range in ns | |
397 | * | |
398 | * Return: Initialized hrtimer_sleeper structure or NULL if no timeout | |
399 | * value given | |
400 | */ | |
401 | static inline struct hrtimer_sleeper * | |
402 | futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout, | |
403 | int flags, u64 range_ns) | |
404 | { | |
405 | if (!time) | |
406 | return NULL; | |
407 | ||
dbc1625f SAS |
408 | hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ? |
409 | CLOCK_REALTIME : CLOCK_MONOTONIC, | |
410 | HRTIMER_MODE_ABS); | |
5ca584d9 WL |
411 | /* |
412 | * If range_ns is 0, calling hrtimer_set_expires_range_ns() is | |
413 | * effectively the same as calling hrtimer_set_expires(). | |
414 | */ | |
415 | hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns); | |
416 | ||
417 | return timeout; | |
418 | } | |
419 | ||
8019ad13 PZ |
420 | /* |
421 | * Generate a machine wide unique identifier for this inode. | |
422 | * | |
423 | * This relies on u64 not wrapping in the life-time of the machine; which with | |
424 | * 1ns resolution means almost 585 years. | |
425 | * | |
426 | * This further relies on the fact that a well formed program will not unmap | |
427 | * the file while it has a (shared) futex waiting on it. This mapping will have | |
428 | * a file reference which pins the mount and inode. | |
429 | * | |
430 | * If for some reason an inode gets evicted and read back in again, it will get | |
431 | * a new sequence number and will _NOT_ match, even though it is the exact same | |
432 | * file. | |
433 | * | |
434 | * It is important that match_futex() will never have a false-positive, esp. | |
435 | * for PI futexes that can mess up the state. The above argues that false-negatives | |
436 | * are only possible for malformed programs. | |
437 | */ | |
438 | static u64 get_inode_sequence_number(struct inode *inode) | |
439 | { | |
440 | static atomic64_t i_seq; | |
441 | u64 old; | |
442 | ||
443 | /* Does the inode already have a sequence number? */ | |
444 | old = atomic64_read(&inode->i_sequence); | |
445 | if (likely(old)) | |
446 | return old; | |
447 | ||
448 | for (;;) { | |
449 | u64 new = atomic64_add_return(1, &i_seq); | |
450 | if (WARN_ON_ONCE(!new)) | |
451 | continue; | |
452 | ||
453 | old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new); | |
454 | if (old) | |
455 | return old; | |
456 | return new; | |
457 | } | |
458 | } | |
459 | ||
34f01cc1 | 460 | /** |
d96ee56c DH |
461 | * get_futex_key() - Get parameters which are the keys for a futex |
462 | * @uaddr: virtual address of the futex | |
92613085 | 463 | * @fshared: false for a PROCESS_PRIVATE futex, true for PROCESS_SHARED |
d96ee56c | 464 | * @key: address where result is stored. |
96d4f267 LT |
465 | * @rw: mapping needs to be read/write (values: FUTEX_READ, |
466 | * FUTEX_WRITE) | |
34f01cc1 | 467 | * |
6c23cbbd RD |
468 | * Return: a negative error code or 0 |
469 | * | |
7b4ff1ad | 470 | * The key words are stored in @key on success. |
1da177e4 | 471 | * |
8019ad13 | 472 | * For shared mappings (when @fshared), the key is: |
03c109d6 | 473 | * |
8019ad13 | 474 | * ( inode->i_sequence, page->index, offset_within_page ) |
03c109d6 | 475 | * |
8019ad13 PZ |
476 | * [ also see get_inode_sequence_number() ] |
477 | * | |
478 | * For private mappings (or when !@fshared), the key is: | |
03c109d6 | 479 | * |
8019ad13 PZ |
480 | * ( current->mm, address, 0 ) |
481 | * | |
482 | * This allows (cross process, where applicable) identification of the futex | |
483 | * without keeping the page pinned for the duration of the FUTEX_WAIT. | |
1da177e4 | 484 | * |
b2d0994b | 485 | * lock_page() might sleep, the caller should not hold a spinlock. |
1da177e4 | 486 | */ |
92613085 AA |
487 | static int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key, |
488 | enum futex_access rw) | |
1da177e4 | 489 | { |
e2970f2f | 490 | unsigned long address = (unsigned long)uaddr; |
1da177e4 | 491 | struct mm_struct *mm = current->mm; |
077fa7ae | 492 | struct page *page, *tail; |
14d27abd | 493 | struct address_space *mapping; |
9ea71503 | 494 | int err, ro = 0; |
1da177e4 LT |
495 | |
496 | /* | |
497 | * The futex address must be "naturally" aligned. | |
498 | */ | |
e2970f2f | 499 | key->both.offset = address % PAGE_SIZE; |
34f01cc1 | 500 | if (unlikely((address % sizeof(u32)) != 0)) |
1da177e4 | 501 | return -EINVAL; |
e2970f2f | 502 | address -= key->both.offset; |
1da177e4 | 503 | |
96d4f267 | 504 | if (unlikely(!access_ok(uaddr, sizeof(u32)))) |
5cdec2d8 LT |
505 | return -EFAULT; |
506 | ||
ab51fbab DB |
507 | if (unlikely(should_fail_futex(fshared))) |
508 | return -EFAULT; | |
509 | ||
34f01cc1 ED |
510 | /* |
511 | * PROCESS_PRIVATE futexes are fast. | |
512 | * As the mm cannot disappear under us and the 'key' only needs | |
513 | * virtual address, we dont even have to find the underlying vma. | |
514 | * Note : We do have to check 'uaddr' is a valid user address, | |
515 | * but access_ok() should be faster than find_vma() | |
516 | */ | |
517 | if (!fshared) { | |
34f01cc1 ED |
518 | key->private.mm = mm; |
519 | key->private.address = address; | |
520 | return 0; | |
521 | } | |
1da177e4 | 522 | |
38d47c1b | 523 | again: |
ab51fbab | 524 | /* Ignore any VERIFY_READ mapping (futex common case) */ |
92613085 | 525 | if (unlikely(should_fail_futex(true))) |
ab51fbab DB |
526 | return -EFAULT; |
527 | ||
73b0140b | 528 | err = get_user_pages_fast(address, 1, FOLL_WRITE, &page); |
9ea71503 SB |
529 | /* |
530 | * If write access is not required (eg. FUTEX_WAIT), try | |
531 | * and get read-only access. | |
532 | */ | |
96d4f267 | 533 | if (err == -EFAULT && rw == FUTEX_READ) { |
9ea71503 SB |
534 | err = get_user_pages_fast(address, 1, 0, &page); |
535 | ro = 1; | |
536 | } | |
38d47c1b PZ |
537 | if (err < 0) |
538 | return err; | |
9ea71503 SB |
539 | else |
540 | err = 0; | |
38d47c1b | 541 | |
65d8fc77 MG |
542 | /* |
543 | * The treatment of mapping from this point on is critical. The page | |
544 | * lock protects many things but in this context the page lock | |
545 | * stabilizes mapping, prevents inode freeing in the shared | |
546 | * file-backed region case and guards against movement to swap cache. | |
547 | * | |
548 | * Strictly speaking the page lock is not needed in all cases being | |
549 | * considered here and page lock forces unnecessarily serialization | |
550 | * From this point on, mapping will be re-verified if necessary and | |
551 | * page lock will be acquired only if it is unavoidable | |
077fa7ae MG |
552 | * |
553 | * Mapping checks require the head page for any compound page so the | |
554 | * head page and mapping is looked up now. For anonymous pages, it | |
555 | * does not matter if the page splits in the future as the key is | |
556 | * based on the address. For filesystem-backed pages, the tail is | |
557 | * required as the index of the page determines the key. For | |
558 | * base pages, there is no tail page and tail == page. | |
65d8fc77 | 559 | */ |
077fa7ae | 560 | tail = page; |
65d8fc77 MG |
561 | page = compound_head(page); |
562 | mapping = READ_ONCE(page->mapping); | |
563 | ||
e6780f72 | 564 | /* |
14d27abd | 565 | * If page->mapping is NULL, then it cannot be a PageAnon |
e6780f72 HD |
566 | * page; but it might be the ZERO_PAGE or in the gate area or |
567 | * in a special mapping (all cases which we are happy to fail); | |
568 | * or it may have been a good file page when get_user_pages_fast | |
569 | * found it, but truncated or holepunched or subjected to | |
570 | * invalidate_complete_page2 before we got the page lock (also | |
571 | * cases which we are happy to fail). And we hold a reference, | |
572 | * so refcount care in invalidate_complete_page's remove_mapping | |
573 | * prevents drop_caches from setting mapping to NULL beneath us. | |
574 | * | |
575 | * The case we do have to guard against is when memory pressure made | |
576 | * shmem_writepage move it from filecache to swapcache beneath us: | |
14d27abd | 577 | * an unlikely race, but we do need to retry for page->mapping. |
e6780f72 | 578 | */ |
65d8fc77 MG |
579 | if (unlikely(!mapping)) { |
580 | int shmem_swizzled; | |
581 | ||
582 | /* | |
583 | * Page lock is required to identify which special case above | |
584 | * applies. If this is really a shmem page then the page lock | |
585 | * will prevent unexpected transitions. | |
586 | */ | |
587 | lock_page(page); | |
588 | shmem_swizzled = PageSwapCache(page) || page->mapping; | |
14d27abd KS |
589 | unlock_page(page); |
590 | put_page(page); | |
65d8fc77 | 591 | |
e6780f72 HD |
592 | if (shmem_swizzled) |
593 | goto again; | |
65d8fc77 | 594 | |
e6780f72 | 595 | return -EFAULT; |
38d47c1b | 596 | } |
1da177e4 LT |
597 | |
598 | /* | |
599 | * Private mappings are handled in a simple way. | |
600 | * | |
65d8fc77 MG |
601 | * If the futex key is stored on an anonymous page, then the associated |
602 | * object is the mm which is implicitly pinned by the calling process. | |
603 | * | |
1da177e4 LT |
604 | * NOTE: When userspace waits on a MAP_SHARED mapping, even if |
605 | * it's a read-only handle, it's expected that futexes attach to | |
38d47c1b | 606 | * the object not the particular process. |
1da177e4 | 607 | */ |
14d27abd | 608 | if (PageAnon(page)) { |
9ea71503 SB |
609 | /* |
610 | * A RO anonymous page will never change and thus doesn't make | |
611 | * sense for futex operations. | |
612 | */ | |
92613085 | 613 | if (unlikely(should_fail_futex(true)) || ro) { |
9ea71503 SB |
614 | err = -EFAULT; |
615 | goto out; | |
616 | } | |
617 | ||
38d47c1b | 618 | key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */ |
1da177e4 | 619 | key->private.mm = mm; |
e2970f2f | 620 | key->private.address = address; |
65d8fc77 | 621 | |
38d47c1b | 622 | } else { |
65d8fc77 MG |
623 | struct inode *inode; |
624 | ||
625 | /* | |
626 | * The associated futex object in this case is the inode and | |
627 | * the page->mapping must be traversed. Ordinarily this should | |
628 | * be stabilised under page lock but it's not strictly | |
629 | * necessary in this case as we just want to pin the inode, not | |
630 | * update the radix tree or anything like that. | |
631 | * | |
632 | * The RCU read lock is taken as the inode is finally freed | |
633 | * under RCU. If the mapping still matches expectations then the | |
634 | * mapping->host can be safely accessed as being a valid inode. | |
635 | */ | |
636 | rcu_read_lock(); | |
637 | ||
638 | if (READ_ONCE(page->mapping) != mapping) { | |
639 | rcu_read_unlock(); | |
640 | put_page(page); | |
641 | ||
642 | goto again; | |
643 | } | |
644 | ||
645 | inode = READ_ONCE(mapping->host); | |
646 | if (!inode) { | |
647 | rcu_read_unlock(); | |
648 | put_page(page); | |
649 | ||
650 | goto again; | |
651 | } | |
652 | ||
38d47c1b | 653 | key->both.offset |= FUT_OFF_INODE; /* inode-based key */ |
8019ad13 | 654 | key->shared.i_seq = get_inode_sequence_number(inode); |
077fa7ae | 655 | key->shared.pgoff = basepage_index(tail); |
65d8fc77 | 656 | rcu_read_unlock(); |
1da177e4 LT |
657 | } |
658 | ||
9ea71503 | 659 | out: |
14d27abd | 660 | put_page(page); |
9ea71503 | 661 | return err; |
1da177e4 LT |
662 | } |
663 | ||
d96ee56c DH |
664 | /** |
665 | * fault_in_user_writeable() - Fault in user address and verify RW access | |
d0725992 TG |
666 | * @uaddr: pointer to faulting user space address |
667 | * | |
668 | * Slow path to fixup the fault we just took in the atomic write | |
669 | * access to @uaddr. | |
670 | * | |
fb62db2b | 671 | * We have no generic implementation of a non-destructive write to the |
d0725992 TG |
672 | * user address. We know that we faulted in the atomic pagefault |
673 | * disabled section so we can as well avoid the #PF overhead by | |
674 | * calling get_user_pages() right away. | |
675 | */ | |
676 | static int fault_in_user_writeable(u32 __user *uaddr) | |
677 | { | |
722d0172 AK |
678 | struct mm_struct *mm = current->mm; |
679 | int ret; | |
680 | ||
d8ed45c5 | 681 | mmap_read_lock(mm); |
64019a2e | 682 | ret = fixup_user_fault(mm, (unsigned long)uaddr, |
4a9e1cda | 683 | FAULT_FLAG_WRITE, NULL); |
d8ed45c5 | 684 | mmap_read_unlock(mm); |
722d0172 | 685 | |
d0725992 TG |
686 | return ret < 0 ? ret : 0; |
687 | } | |
688 | ||
4b1c486b DH |
689 | /** |
690 | * futex_top_waiter() - Return the highest priority waiter on a futex | |
d96ee56c DH |
691 | * @hb: the hash bucket the futex_q's reside in |
692 | * @key: the futex key (to distinguish it from other futex futex_q's) | |
4b1c486b DH |
693 | * |
694 | * Must be called with the hb lock held. | |
695 | */ | |
696 | static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb, | |
697 | union futex_key *key) | |
698 | { | |
699 | struct futex_q *this; | |
700 | ||
701 | plist_for_each_entry(this, &hb->chain, list) { | |
702 | if (match_futex(&this->key, key)) | |
703 | return this; | |
704 | } | |
705 | return NULL; | |
706 | } | |
707 | ||
37a9d912 ML |
708 | static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr, |
709 | u32 uval, u32 newval) | |
36cf3b5c | 710 | { |
37a9d912 | 711 | int ret; |
36cf3b5c TG |
712 | |
713 | pagefault_disable(); | |
37a9d912 | 714 | ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval); |
36cf3b5c TG |
715 | pagefault_enable(); |
716 | ||
37a9d912 | 717 | return ret; |
36cf3b5c TG |
718 | } |
719 | ||
720 | static int get_futex_value_locked(u32 *dest, u32 __user *from) | |
1da177e4 LT |
721 | { |
722 | int ret; | |
723 | ||
a866374a | 724 | pagefault_disable(); |
bd28b145 | 725 | ret = __get_user(*dest, from); |
a866374a | 726 | pagefault_enable(); |
1da177e4 LT |
727 | |
728 | return ret ? -EFAULT : 0; | |
729 | } | |
730 | ||
c87e2837 IM |
731 | |
732 | /* | |
733 | * PI code: | |
734 | */ | |
735 | static int refill_pi_state_cache(void) | |
736 | { | |
737 | struct futex_pi_state *pi_state; | |
738 | ||
739 | if (likely(current->pi_state_cache)) | |
740 | return 0; | |
741 | ||
4668edc3 | 742 | pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL); |
c87e2837 IM |
743 | |
744 | if (!pi_state) | |
745 | return -ENOMEM; | |
746 | ||
c87e2837 IM |
747 | INIT_LIST_HEAD(&pi_state->list); |
748 | /* pi_mutex gets initialized later */ | |
749 | pi_state->owner = NULL; | |
49262de2 | 750 | refcount_set(&pi_state->refcount, 1); |
38d47c1b | 751 | pi_state->key = FUTEX_KEY_INIT; |
c87e2837 IM |
752 | |
753 | current->pi_state_cache = pi_state; | |
754 | ||
755 | return 0; | |
756 | } | |
757 | ||
bf92cf3a | 758 | static struct futex_pi_state *alloc_pi_state(void) |
c87e2837 IM |
759 | { |
760 | struct futex_pi_state *pi_state = current->pi_state_cache; | |
761 | ||
762 | WARN_ON(!pi_state); | |
763 | current->pi_state_cache = NULL; | |
764 | ||
765 | return pi_state; | |
766 | } | |
767 | ||
bf92cf3a PZ |
768 | static void get_pi_state(struct futex_pi_state *pi_state) |
769 | { | |
49262de2 | 770 | WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount)); |
bf92cf3a PZ |
771 | } |
772 | ||
30a6b803 | 773 | /* |
29e9ee5d TG |
774 | * Drops a reference to the pi_state object and frees or caches it |
775 | * when the last reference is gone. | |
30a6b803 | 776 | */ |
29e9ee5d | 777 | static void put_pi_state(struct futex_pi_state *pi_state) |
c87e2837 | 778 | { |
30a6b803 BS |
779 | if (!pi_state) |
780 | return; | |
781 | ||
49262de2 | 782 | if (!refcount_dec_and_test(&pi_state->refcount)) |
c87e2837 IM |
783 | return; |
784 | ||
785 | /* | |
786 | * If pi_state->owner is NULL, the owner is most probably dying | |
787 | * and has cleaned up the pi_state already | |
788 | */ | |
789 | if (pi_state->owner) { | |
c74aef2d | 790 | struct task_struct *owner; |
1e106aa3 | 791 | unsigned long flags; |
c87e2837 | 792 | |
1e106aa3 | 793 | raw_spin_lock_irqsave(&pi_state->pi_mutex.wait_lock, flags); |
c74aef2d PZ |
794 | owner = pi_state->owner; |
795 | if (owner) { | |
796 | raw_spin_lock(&owner->pi_lock); | |
797 | list_del_init(&pi_state->list); | |
798 | raw_spin_unlock(&owner->pi_lock); | |
799 | } | |
800 | rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner); | |
1e106aa3 | 801 | raw_spin_unlock_irqrestore(&pi_state->pi_mutex.wait_lock, flags); |
c87e2837 IM |
802 | } |
803 | ||
c74aef2d | 804 | if (current->pi_state_cache) { |
c87e2837 | 805 | kfree(pi_state); |
c74aef2d | 806 | } else { |
c87e2837 IM |
807 | /* |
808 | * pi_state->list is already empty. | |
809 | * clear pi_state->owner. | |
810 | * refcount is at 0 - put it back to 1. | |
811 | */ | |
812 | pi_state->owner = NULL; | |
49262de2 | 813 | refcount_set(&pi_state->refcount, 1); |
c87e2837 IM |
814 | current->pi_state_cache = pi_state; |
815 | } | |
816 | } | |
817 | ||
bc2eecd7 NP |
818 | #ifdef CONFIG_FUTEX_PI |
819 | ||
c87e2837 IM |
820 | /* |
821 | * This task is holding PI mutexes at exit time => bad. | |
822 | * Kernel cleans up PI-state, but userspace is likely hosed. | |
823 | * (Robust-futex cleanup is separate and might save the day for userspace.) | |
824 | */ | |
ba31c1a4 | 825 | static void exit_pi_state_list(struct task_struct *curr) |
c87e2837 | 826 | { |
c87e2837 IM |
827 | struct list_head *next, *head = &curr->pi_state_list; |
828 | struct futex_pi_state *pi_state; | |
627371d7 | 829 | struct futex_hash_bucket *hb; |
38d47c1b | 830 | union futex_key key = FUTEX_KEY_INIT; |
c87e2837 | 831 | |
a0c1e907 TG |
832 | if (!futex_cmpxchg_enabled) |
833 | return; | |
c87e2837 IM |
834 | /* |
835 | * We are a ZOMBIE and nobody can enqueue itself on | |
836 | * pi_state_list anymore, but we have to be careful | |
627371d7 | 837 | * versus waiters unqueueing themselves: |
c87e2837 | 838 | */ |
1d615482 | 839 | raw_spin_lock_irq(&curr->pi_lock); |
c87e2837 | 840 | while (!list_empty(head)) { |
c87e2837 IM |
841 | next = head->next; |
842 | pi_state = list_entry(next, struct futex_pi_state, list); | |
843 | key = pi_state->key; | |
627371d7 | 844 | hb = hash_futex(&key); |
153fbd12 PZ |
845 | |
846 | /* | |
847 | * We can race against put_pi_state() removing itself from the | |
848 | * list (a waiter going away). put_pi_state() will first | |
849 | * decrement the reference count and then modify the list, so | |
850 | * its possible to see the list entry but fail this reference | |
851 | * acquire. | |
852 | * | |
853 | * In that case; drop the locks to let put_pi_state() make | |
854 | * progress and retry the loop. | |
855 | */ | |
49262de2 | 856 | if (!refcount_inc_not_zero(&pi_state->refcount)) { |
153fbd12 PZ |
857 | raw_spin_unlock_irq(&curr->pi_lock); |
858 | cpu_relax(); | |
859 | raw_spin_lock_irq(&curr->pi_lock); | |
860 | continue; | |
861 | } | |
1d615482 | 862 | raw_spin_unlock_irq(&curr->pi_lock); |
c87e2837 | 863 | |
c87e2837 | 864 | spin_lock(&hb->lock); |
c74aef2d PZ |
865 | raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock); |
866 | raw_spin_lock(&curr->pi_lock); | |
627371d7 IM |
867 | /* |
868 | * We dropped the pi-lock, so re-check whether this | |
869 | * task still owns the PI-state: | |
870 | */ | |
c87e2837 | 871 | if (head->next != next) { |
153fbd12 | 872 | /* retain curr->pi_lock for the loop invariant */ |
c74aef2d | 873 | raw_spin_unlock(&pi_state->pi_mutex.wait_lock); |
c87e2837 | 874 | spin_unlock(&hb->lock); |
153fbd12 | 875 | put_pi_state(pi_state); |
c87e2837 IM |
876 | continue; |
877 | } | |
878 | ||
c87e2837 | 879 | WARN_ON(pi_state->owner != curr); |
627371d7 IM |
880 | WARN_ON(list_empty(&pi_state->list)); |
881 | list_del_init(&pi_state->list); | |
c87e2837 | 882 | pi_state->owner = NULL; |
c87e2837 | 883 | |
153fbd12 | 884 | raw_spin_unlock(&curr->pi_lock); |
c74aef2d | 885 | raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock); |
c87e2837 IM |
886 | spin_unlock(&hb->lock); |
887 | ||
16ffa12d PZ |
888 | rt_mutex_futex_unlock(&pi_state->pi_mutex); |
889 | put_pi_state(pi_state); | |
890 | ||
1d615482 | 891 | raw_spin_lock_irq(&curr->pi_lock); |
c87e2837 | 892 | } |
1d615482 | 893 | raw_spin_unlock_irq(&curr->pi_lock); |
c87e2837 | 894 | } |
ba31c1a4 TG |
895 | #else |
896 | static inline void exit_pi_state_list(struct task_struct *curr) { } | |
bc2eecd7 NP |
897 | #endif |
898 | ||
54a21788 TG |
899 | /* |
900 | * We need to check the following states: | |
901 | * | |
902 | * Waiter | pi_state | pi->owner | uTID | uODIED | ? | |
903 | * | |
904 | * [1] NULL | --- | --- | 0 | 0/1 | Valid | |
905 | * [2] NULL | --- | --- | >0 | 0/1 | Valid | |
906 | * | |
907 | * [3] Found | NULL | -- | Any | 0/1 | Invalid | |
908 | * | |
909 | * [4] Found | Found | NULL | 0 | 1 | Valid | |
910 | * [5] Found | Found | NULL | >0 | 1 | Invalid | |
911 | * | |
912 | * [6] Found | Found | task | 0 | 1 | Valid | |
913 | * | |
914 | * [7] Found | Found | NULL | Any | 0 | Invalid | |
915 | * | |
916 | * [8] Found | Found | task | ==taskTID | 0/1 | Valid | |
917 | * [9] Found | Found | task | 0 | 0 | Invalid | |
918 | * [10] Found | Found | task | !=taskTID | 0/1 | Invalid | |
919 | * | |
920 | * [1] Indicates that the kernel can acquire the futex atomically. We | |
7b7b8a2c | 921 | * came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit. |
54a21788 TG |
922 | * |
923 | * [2] Valid, if TID does not belong to a kernel thread. If no matching | |
924 | * thread is found then it indicates that the owner TID has died. | |
925 | * | |
926 | * [3] Invalid. The waiter is queued on a non PI futex | |
927 | * | |
928 | * [4] Valid state after exit_robust_list(), which sets the user space | |
929 | * value to FUTEX_WAITERS | FUTEX_OWNER_DIED. | |
930 | * | |
931 | * [5] The user space value got manipulated between exit_robust_list() | |
932 | * and exit_pi_state_list() | |
933 | * | |
934 | * [6] Valid state after exit_pi_state_list() which sets the new owner in | |
935 | * the pi_state but cannot access the user space value. | |
936 | * | |
937 | * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set. | |
938 | * | |
939 | * [8] Owner and user space value match | |
940 | * | |
941 | * [9] There is no transient state which sets the user space TID to 0 | |
942 | * except exit_robust_list(), but this is indicated by the | |
943 | * FUTEX_OWNER_DIED bit. See [4] | |
944 | * | |
945 | * [10] There is no transient state which leaves owner and user space | |
946 | * TID out of sync. | |
734009e9 PZ |
947 | * |
948 | * | |
949 | * Serialization and lifetime rules: | |
950 | * | |
951 | * hb->lock: | |
952 | * | |
953 | * hb -> futex_q, relation | |
954 | * futex_q -> pi_state, relation | |
955 | * | |
956 | * (cannot be raw because hb can contain arbitrary amount | |
957 | * of futex_q's) | |
958 | * | |
959 | * pi_mutex->wait_lock: | |
960 | * | |
961 | * {uval, pi_state} | |
962 | * | |
963 | * (and pi_mutex 'obviously') | |
964 | * | |
965 | * p->pi_lock: | |
966 | * | |
967 | * p->pi_state_list -> pi_state->list, relation | |
968 | * | |
969 | * pi_state->refcount: | |
970 | * | |
971 | * pi_state lifetime | |
972 | * | |
973 | * | |
974 | * Lock order: | |
975 | * | |
976 | * hb->lock | |
977 | * pi_mutex->wait_lock | |
978 | * p->pi_lock | |
979 | * | |
54a21788 | 980 | */ |
e60cbc5c TG |
981 | |
982 | /* | |
983 | * Validate that the existing waiter has a pi_state and sanity check | |
984 | * the pi_state against the user space value. If correct, attach to | |
985 | * it. | |
986 | */ | |
734009e9 PZ |
987 | static int attach_to_pi_state(u32 __user *uaddr, u32 uval, |
988 | struct futex_pi_state *pi_state, | |
e60cbc5c | 989 | struct futex_pi_state **ps) |
c87e2837 | 990 | { |
778e9a9c | 991 | pid_t pid = uval & FUTEX_TID_MASK; |
94ffac5d PZ |
992 | u32 uval2; |
993 | int ret; | |
c87e2837 | 994 | |
e60cbc5c TG |
995 | /* |
996 | * Userspace might have messed up non-PI and PI futexes [3] | |
997 | */ | |
998 | if (unlikely(!pi_state)) | |
999 | return -EINVAL; | |
06a9ec29 | 1000 | |
734009e9 PZ |
1001 | /* |
1002 | * We get here with hb->lock held, and having found a | |
1003 | * futex_top_waiter(). This means that futex_lock_pi() of said futex_q | |
1004 | * has dropped the hb->lock in between queue_me() and unqueue_me_pi(), | |
1005 | * which in turn means that futex_lock_pi() still has a reference on | |
1006 | * our pi_state. | |
16ffa12d PZ |
1007 | * |
1008 | * The waiter holding a reference on @pi_state also protects against | |
1009 | * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi() | |
1010 | * and futex_wait_requeue_pi() as it cannot go to 0 and consequently | |
1011 | * free pi_state before we can take a reference ourselves. | |
734009e9 | 1012 | */ |
49262de2 | 1013 | WARN_ON(!refcount_read(&pi_state->refcount)); |
59647b6a | 1014 | |
734009e9 PZ |
1015 | /* |
1016 | * Now that we have a pi_state, we can acquire wait_lock | |
1017 | * and do the state validation. | |
1018 | */ | |
1019 | raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock); | |
1020 | ||
1021 | /* | |
1022 | * Since {uval, pi_state} is serialized by wait_lock, and our current | |
1023 | * uval was read without holding it, it can have changed. Verify it | |
1024 | * still is what we expect it to be, otherwise retry the entire | |
1025 | * operation. | |
1026 | */ | |
1027 | if (get_futex_value_locked(&uval2, uaddr)) | |
1028 | goto out_efault; | |
1029 | ||
1030 | if (uval != uval2) | |
1031 | goto out_eagain; | |
1032 | ||
e60cbc5c TG |
1033 | /* |
1034 | * Handle the owner died case: | |
1035 | */ | |
1036 | if (uval & FUTEX_OWNER_DIED) { | |
bd1dbcc6 | 1037 | /* |
e60cbc5c TG |
1038 | * exit_pi_state_list sets owner to NULL and wakes the |
1039 | * topmost waiter. The task which acquires the | |
1040 | * pi_state->rt_mutex will fixup owner. | |
bd1dbcc6 | 1041 | */ |
e60cbc5c | 1042 | if (!pi_state->owner) { |
59647b6a | 1043 | /* |
e60cbc5c TG |
1044 | * No pi state owner, but the user space TID |
1045 | * is not 0. Inconsistent state. [5] | |
59647b6a | 1046 | */ |
e60cbc5c | 1047 | if (pid) |
734009e9 | 1048 | goto out_einval; |
bd1dbcc6 | 1049 | /* |
e60cbc5c | 1050 | * Take a ref on the state and return success. [4] |
866293ee | 1051 | */ |
734009e9 | 1052 | goto out_attach; |
c87e2837 | 1053 | } |
bd1dbcc6 TG |
1054 | |
1055 | /* | |
e60cbc5c TG |
1056 | * If TID is 0, then either the dying owner has not |
1057 | * yet executed exit_pi_state_list() or some waiter | |
1058 | * acquired the rtmutex in the pi state, but did not | |
1059 | * yet fixup the TID in user space. | |
1060 | * | |
1061 | * Take a ref on the state and return success. [6] | |
1062 | */ | |
1063 | if (!pid) | |
734009e9 | 1064 | goto out_attach; |
e60cbc5c TG |
1065 | } else { |
1066 | /* | |
1067 | * If the owner died bit is not set, then the pi_state | |
1068 | * must have an owner. [7] | |
bd1dbcc6 | 1069 | */ |
e60cbc5c | 1070 | if (!pi_state->owner) |
734009e9 | 1071 | goto out_einval; |
c87e2837 IM |
1072 | } |
1073 | ||
e60cbc5c TG |
1074 | /* |
1075 | * Bail out if user space manipulated the futex value. If pi | |
1076 | * state exists then the owner TID must be the same as the | |
1077 | * user space TID. [9/10] | |
1078 | */ | |
1079 | if (pid != task_pid_vnr(pi_state->owner)) | |
734009e9 PZ |
1080 | goto out_einval; |
1081 | ||
1082 | out_attach: | |
bf92cf3a | 1083 | get_pi_state(pi_state); |
734009e9 | 1084 | raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock); |
e60cbc5c TG |
1085 | *ps = pi_state; |
1086 | return 0; | |
734009e9 PZ |
1087 | |
1088 | out_einval: | |
1089 | ret = -EINVAL; | |
1090 | goto out_error; | |
1091 | ||
1092 | out_eagain: | |
1093 | ret = -EAGAIN; | |
1094 | goto out_error; | |
1095 | ||
1096 | out_efault: | |
1097 | ret = -EFAULT; | |
1098 | goto out_error; | |
1099 | ||
1100 | out_error: | |
1101 | raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock); | |
1102 | return ret; | |
e60cbc5c TG |
1103 | } |
1104 | ||
3ef240ea TG |
1105 | /** |
1106 | * wait_for_owner_exiting - Block until the owner has exited | |
51bfb1d1 | 1107 | * @ret: owner's current futex lock status |
3ef240ea TG |
1108 | * @exiting: Pointer to the exiting task |
1109 | * | |
1110 | * Caller must hold a refcount on @exiting. | |
1111 | */ | |
1112 | static void wait_for_owner_exiting(int ret, struct task_struct *exiting) | |
1113 | { | |
1114 | if (ret != -EBUSY) { | |
1115 | WARN_ON_ONCE(exiting); | |
1116 | return; | |
1117 | } | |
1118 | ||
1119 | if (WARN_ON_ONCE(ret == -EBUSY && !exiting)) | |
1120 | return; | |
1121 | ||
1122 | mutex_lock(&exiting->futex_exit_mutex); | |
1123 | /* | |
1124 | * No point in doing state checking here. If the waiter got here | |
1125 | * while the task was in exec()->exec_futex_release() then it can | |
1126 | * have any FUTEX_STATE_* value when the waiter has acquired the | |
1127 | * mutex. OK, if running, EXITING or DEAD if it reached exit() | |
1128 | * already. Highly unlikely and not a problem. Just one more round | |
1129 | * through the futex maze. | |
1130 | */ | |
1131 | mutex_unlock(&exiting->futex_exit_mutex); | |
1132 | ||
1133 | put_task_struct(exiting); | |
1134 | } | |
1135 | ||
da791a66 TG |
1136 | static int handle_exit_race(u32 __user *uaddr, u32 uval, |
1137 | struct task_struct *tsk) | |
1138 | { | |
1139 | u32 uval2; | |
1140 | ||
1141 | /* | |
ac31c7ff TG |
1142 | * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the |
1143 | * caller that the alleged owner is busy. | |
da791a66 | 1144 | */ |
3d4775df | 1145 | if (tsk && tsk->futex_state != FUTEX_STATE_DEAD) |
ac31c7ff | 1146 | return -EBUSY; |
da791a66 TG |
1147 | |
1148 | /* | |
1149 | * Reread the user space value to handle the following situation: | |
1150 | * | |
1151 | * CPU0 CPU1 | |
1152 | * | |
1153 | * sys_exit() sys_futex() | |
1154 | * do_exit() futex_lock_pi() | |
1155 | * futex_lock_pi_atomic() | |
1156 | * exit_signals(tsk) No waiters: | |
1157 | * tsk->flags |= PF_EXITING; *uaddr == 0x00000PID | |
1158 | * mm_release(tsk) Set waiter bit | |
1159 | * exit_robust_list(tsk) { *uaddr = 0x80000PID; | |
1160 | * Set owner died attach_to_pi_owner() { | |
1161 | * *uaddr = 0xC0000000; tsk = get_task(PID); | |
1162 | * } if (!tsk->flags & PF_EXITING) { | |
1163 | * ... attach(); | |
3d4775df TG |
1164 | * tsk->futex_state = } else { |
1165 | * FUTEX_STATE_DEAD; if (tsk->futex_state != | |
1166 | * FUTEX_STATE_DEAD) | |
da791a66 TG |
1167 | * return -EAGAIN; |
1168 | * return -ESRCH; <--- FAIL | |
1169 | * } | |
1170 | * | |
1171 | * Returning ESRCH unconditionally is wrong here because the | |
1172 | * user space value has been changed by the exiting task. | |
1173 | * | |
1174 | * The same logic applies to the case where the exiting task is | |
1175 | * already gone. | |
1176 | */ | |
1177 | if (get_futex_value_locked(&uval2, uaddr)) | |
1178 | return -EFAULT; | |
1179 | ||
1180 | /* If the user space value has changed, try again. */ | |
1181 | if (uval2 != uval) | |
1182 | return -EAGAIN; | |
1183 | ||
1184 | /* | |
1185 | * The exiting task did not have a robust list, the robust list was | |
1186 | * corrupted or the user space value in *uaddr is simply bogus. | |
1187 | * Give up and tell user space. | |
1188 | */ | |
1189 | return -ESRCH; | |
1190 | } | |
1191 | ||
04e1b2e5 TG |
1192 | /* |
1193 | * Lookup the task for the TID provided from user space and attach to | |
1194 | * it after doing proper sanity checks. | |
1195 | */ | |
da791a66 | 1196 | static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key, |
3ef240ea TG |
1197 | struct futex_pi_state **ps, |
1198 | struct task_struct **exiting) | |
e60cbc5c | 1199 | { |
e60cbc5c | 1200 | pid_t pid = uval & FUTEX_TID_MASK; |
04e1b2e5 TG |
1201 | struct futex_pi_state *pi_state; |
1202 | struct task_struct *p; | |
e60cbc5c | 1203 | |
c87e2837 | 1204 | /* |
e3f2ddea | 1205 | * We are the first waiter - try to look up the real owner and attach |
54a21788 | 1206 | * the new pi_state to it, but bail out when TID = 0 [1] |
da791a66 TG |
1207 | * |
1208 | * The !pid check is paranoid. None of the call sites should end up | |
1209 | * with pid == 0, but better safe than sorry. Let the caller retry | |
c87e2837 | 1210 | */ |
778e9a9c | 1211 | if (!pid) |
da791a66 | 1212 | return -EAGAIN; |
2ee08260 | 1213 | p = find_get_task_by_vpid(pid); |
7a0ea09a | 1214 | if (!p) |
da791a66 | 1215 | return handle_exit_race(uaddr, uval, NULL); |
778e9a9c | 1216 | |
a2129464 | 1217 | if (unlikely(p->flags & PF_KTHREAD)) { |
f0d71b3d TG |
1218 | put_task_struct(p); |
1219 | return -EPERM; | |
1220 | } | |
1221 | ||
778e9a9c | 1222 | /* |
3d4775df TG |
1223 | * We need to look at the task state to figure out, whether the |
1224 | * task is exiting. To protect against the change of the task state | |
1225 | * in futex_exit_release(), we do this protected by p->pi_lock: | |
778e9a9c | 1226 | */ |
1d615482 | 1227 | raw_spin_lock_irq(&p->pi_lock); |
3d4775df | 1228 | if (unlikely(p->futex_state != FUTEX_STATE_OK)) { |
778e9a9c | 1229 | /* |
3d4775df TG |
1230 | * The task is on the way out. When the futex state is |
1231 | * FUTEX_STATE_DEAD, we know that the task has finished | |
1232 | * the cleanup: | |
778e9a9c | 1233 | */ |
da791a66 | 1234 | int ret = handle_exit_race(uaddr, uval, p); |
778e9a9c | 1235 | |
1d615482 | 1236 | raw_spin_unlock_irq(&p->pi_lock); |
3ef240ea TG |
1237 | /* |
1238 | * If the owner task is between FUTEX_STATE_EXITING and | |
1239 | * FUTEX_STATE_DEAD then store the task pointer and keep | |
1240 | * the reference on the task struct. The calling code will | |
1241 | * drop all locks, wait for the task to reach | |
1242 | * FUTEX_STATE_DEAD and then drop the refcount. This is | |
1243 | * required to prevent a live lock when the current task | |
1244 | * preempted the exiting task between the two states. | |
1245 | */ | |
1246 | if (ret == -EBUSY) | |
1247 | *exiting = p; | |
1248 | else | |
1249 | put_task_struct(p); | |
778e9a9c AK |
1250 | return ret; |
1251 | } | |
c87e2837 | 1252 | |
54a21788 TG |
1253 | /* |
1254 | * No existing pi state. First waiter. [2] | |
734009e9 PZ |
1255 | * |
1256 | * This creates pi_state, we have hb->lock held, this means nothing can | |
1257 | * observe this state, wait_lock is irrelevant. | |
54a21788 | 1258 | */ |
c87e2837 IM |
1259 | pi_state = alloc_pi_state(); |
1260 | ||
1261 | /* | |
04e1b2e5 | 1262 | * Initialize the pi_mutex in locked state and make @p |
c87e2837 IM |
1263 | * the owner of it: |
1264 | */ | |
1265 | rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p); | |
1266 | ||
1267 | /* Store the key for possible exit cleanups: */ | |
d0aa7a70 | 1268 | pi_state->key = *key; |
c87e2837 | 1269 | |
627371d7 | 1270 | WARN_ON(!list_empty(&pi_state->list)); |
c87e2837 | 1271 | list_add(&pi_state->list, &p->pi_state_list); |
c74aef2d PZ |
1272 | /* |
1273 | * Assignment without holding pi_state->pi_mutex.wait_lock is safe | |
1274 | * because there is no concurrency as the object is not published yet. | |
1275 | */ | |
c87e2837 | 1276 | pi_state->owner = p; |
1d615482 | 1277 | raw_spin_unlock_irq(&p->pi_lock); |
c87e2837 IM |
1278 | |
1279 | put_task_struct(p); | |
1280 | ||
d0aa7a70 | 1281 | *ps = pi_state; |
c87e2837 IM |
1282 | |
1283 | return 0; | |
1284 | } | |
1285 | ||
734009e9 PZ |
1286 | static int lookup_pi_state(u32 __user *uaddr, u32 uval, |
1287 | struct futex_hash_bucket *hb, | |
3ef240ea TG |
1288 | union futex_key *key, struct futex_pi_state **ps, |
1289 | struct task_struct **exiting) | |
04e1b2e5 | 1290 | { |
499f5aca | 1291 | struct futex_q *top_waiter = futex_top_waiter(hb, key); |
04e1b2e5 TG |
1292 | |
1293 | /* | |
1294 | * If there is a waiter on that futex, validate it and | |
1295 | * attach to the pi_state when the validation succeeds. | |
1296 | */ | |
499f5aca | 1297 | if (top_waiter) |
734009e9 | 1298 | return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps); |
04e1b2e5 TG |
1299 | |
1300 | /* | |
1301 | * We are the first waiter - try to look up the owner based on | |
1302 | * @uval and attach to it. | |
1303 | */ | |
3ef240ea | 1304 | return attach_to_pi_owner(uaddr, uval, key, ps, exiting); |
04e1b2e5 TG |
1305 | } |
1306 | ||
af54d6a1 TG |
1307 | static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval) |
1308 | { | |
6b4f4bc9 | 1309 | int err; |
3f649ab7 | 1310 | u32 curval; |
af54d6a1 | 1311 | |
ab51fbab DB |
1312 | if (unlikely(should_fail_futex(true))) |
1313 | return -EFAULT; | |
1314 | ||
6b4f4bc9 WD |
1315 | err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval); |
1316 | if (unlikely(err)) | |
1317 | return err; | |
af54d6a1 | 1318 | |
734009e9 | 1319 | /* If user space value changed, let the caller retry */ |
af54d6a1 TG |
1320 | return curval != uval ? -EAGAIN : 0; |
1321 | } | |
1322 | ||
1a52084d | 1323 | /** |
d96ee56c | 1324 | * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex |
bab5bc9e DH |
1325 | * @uaddr: the pi futex user address |
1326 | * @hb: the pi futex hash bucket | |
1327 | * @key: the futex key associated with uaddr and hb | |
1328 | * @ps: the pi_state pointer where we store the result of the | |
1329 | * lookup | |
1330 | * @task: the task to perform the atomic lock work for. This will | |
1331 | * be "current" except in the case of requeue pi. | |
3ef240ea TG |
1332 | * @exiting: Pointer to store the task pointer of the owner task |
1333 | * which is in the middle of exiting | |
bab5bc9e | 1334 | * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0) |
1a52084d | 1335 | * |
6c23cbbd | 1336 | * Return: |
7b4ff1ad MCC |
1337 | * - 0 - ready to wait; |
1338 | * - 1 - acquired the lock; | |
1339 | * - <0 - error | |
1a52084d DH |
1340 | * |
1341 | * The hb->lock and futex_key refs shall be held by the caller. | |
3ef240ea TG |
1342 | * |
1343 | * @exiting is only set when the return value is -EBUSY. If so, this holds | |
1344 | * a refcount on the exiting task on return and the caller needs to drop it | |
1345 | * after waiting for the exit to complete. | |
1a52084d DH |
1346 | */ |
1347 | static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb, | |
1348 | union futex_key *key, | |
1349 | struct futex_pi_state **ps, | |
3ef240ea TG |
1350 | struct task_struct *task, |
1351 | struct task_struct **exiting, | |
1352 | int set_waiters) | |
1a52084d | 1353 | { |
af54d6a1 | 1354 | u32 uval, newval, vpid = task_pid_vnr(task); |
499f5aca | 1355 | struct futex_q *top_waiter; |
af54d6a1 | 1356 | int ret; |
1a52084d DH |
1357 | |
1358 | /* | |
af54d6a1 TG |
1359 | * Read the user space value first so we can validate a few |
1360 | * things before proceeding further. | |
1a52084d | 1361 | */ |
af54d6a1 | 1362 | if (get_futex_value_locked(&uval, uaddr)) |
1a52084d DH |
1363 | return -EFAULT; |
1364 | ||
ab51fbab DB |
1365 | if (unlikely(should_fail_futex(true))) |
1366 | return -EFAULT; | |
1367 | ||
1a52084d DH |
1368 | /* |
1369 | * Detect deadlocks. | |
1370 | */ | |
af54d6a1 | 1371 | if ((unlikely((uval & FUTEX_TID_MASK) == vpid))) |
1a52084d DH |
1372 | return -EDEADLK; |
1373 | ||
ab51fbab DB |
1374 | if ((unlikely(should_fail_futex(true)))) |
1375 | return -EDEADLK; | |
1376 | ||
1a52084d | 1377 | /* |
af54d6a1 TG |
1378 | * Lookup existing state first. If it exists, try to attach to |
1379 | * its pi_state. | |
1a52084d | 1380 | */ |
499f5aca PZ |
1381 | top_waiter = futex_top_waiter(hb, key); |
1382 | if (top_waiter) | |
734009e9 | 1383 | return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps); |
1a52084d DH |
1384 | |
1385 | /* | |
af54d6a1 TG |
1386 | * No waiter and user TID is 0. We are here because the |
1387 | * waiters or the owner died bit is set or called from | |
1388 | * requeue_cmp_pi or for whatever reason something took the | |
1389 | * syscall. | |
1a52084d | 1390 | */ |
af54d6a1 | 1391 | if (!(uval & FUTEX_TID_MASK)) { |
59fa6245 | 1392 | /* |
af54d6a1 TG |
1393 | * We take over the futex. No other waiters and the user space |
1394 | * TID is 0. We preserve the owner died bit. | |
59fa6245 | 1395 | */ |
af54d6a1 TG |
1396 | newval = uval & FUTEX_OWNER_DIED; |
1397 | newval |= vpid; | |
1a52084d | 1398 | |
af54d6a1 TG |
1399 | /* The futex requeue_pi code can enforce the waiters bit */ |
1400 | if (set_waiters) | |
1401 | newval |= FUTEX_WAITERS; | |
1402 | ||
1403 | ret = lock_pi_update_atomic(uaddr, uval, newval); | |
1404 | /* If the take over worked, return 1 */ | |
1405 | return ret < 0 ? ret : 1; | |
1406 | } | |
1a52084d DH |
1407 | |
1408 | /* | |
af54d6a1 TG |
1409 | * First waiter. Set the waiters bit before attaching ourself to |
1410 | * the owner. If owner tries to unlock, it will be forced into | |
1411 | * the kernel and blocked on hb->lock. | |
1a52084d | 1412 | */ |
af54d6a1 TG |
1413 | newval = uval | FUTEX_WAITERS; |
1414 | ret = lock_pi_update_atomic(uaddr, uval, newval); | |
1415 | if (ret) | |
1416 | return ret; | |
1a52084d | 1417 | /* |
af54d6a1 TG |
1418 | * If the update of the user space value succeeded, we try to |
1419 | * attach to the owner. If that fails, no harm done, we only | |
1420 | * set the FUTEX_WAITERS bit in the user space variable. | |
1a52084d | 1421 | */ |
3ef240ea | 1422 | return attach_to_pi_owner(uaddr, newval, key, ps, exiting); |
1a52084d DH |
1423 | } |
1424 | ||
2e12978a LJ |
1425 | /** |
1426 | * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket | |
1427 | * @q: The futex_q to unqueue | |
1428 | * | |
1429 | * The q->lock_ptr must not be NULL and must be held by the caller. | |
1430 | */ | |
1431 | static void __unqueue_futex(struct futex_q *q) | |
1432 | { | |
1433 | struct futex_hash_bucket *hb; | |
1434 | ||
4de1a293 | 1435 | if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list))) |
2e12978a | 1436 | return; |
4de1a293 | 1437 | lockdep_assert_held(q->lock_ptr); |
2e12978a LJ |
1438 | |
1439 | hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock); | |
1440 | plist_del(&q->list, &hb->chain); | |
11d4616b | 1441 | hb_waiters_dec(hb); |
2e12978a LJ |
1442 | } |
1443 | ||
1da177e4 LT |
1444 | /* |
1445 | * The hash bucket lock must be held when this is called. | |
1d0dcb3a DB |
1446 | * Afterwards, the futex_q must not be accessed. Callers |
1447 | * must ensure to later call wake_up_q() for the actual | |
1448 | * wakeups to occur. | |
1da177e4 | 1449 | */ |
1d0dcb3a | 1450 | static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q) |
1da177e4 | 1451 | { |
f1a11e05 TG |
1452 | struct task_struct *p = q->task; |
1453 | ||
aa10990e DH |
1454 | if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n")) |
1455 | return; | |
1456 | ||
b061c38b | 1457 | get_task_struct(p); |
2e12978a | 1458 | __unqueue_futex(q); |
1da177e4 | 1459 | /* |
38fcd06e DHV |
1460 | * The waiting task can free the futex_q as soon as q->lock_ptr = NULL |
1461 | * is written, without taking any locks. This is possible in the event | |
1462 | * of a spurious wakeup, for example. A memory barrier is required here | |
1463 | * to prevent the following store to lock_ptr from getting ahead of the | |
1464 | * plist_del in __unqueue_futex(). | |
1da177e4 | 1465 | */ |
1b367ece | 1466 | smp_store_release(&q->lock_ptr, NULL); |
b061c38b PZ |
1467 | |
1468 | /* | |
1469 | * Queue the task for later wakeup for after we've released | |
75145904 | 1470 | * the hb->lock. |
b061c38b | 1471 | */ |
07879c6a | 1472 | wake_q_add_safe(wake_q, p); |
1da177e4 LT |
1473 | } |
1474 | ||
16ffa12d PZ |
1475 | /* |
1476 | * Caller must hold a reference on @pi_state. | |
1477 | */ | |
1478 | static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state) | |
c87e2837 | 1479 | { |
3f649ab7 | 1480 | u32 curval, newval; |
16ffa12d | 1481 | struct task_struct *new_owner; |
aa2bfe55 | 1482 | bool postunlock = false; |
194a6b5b | 1483 | DEFINE_WAKE_Q(wake_q); |
13fbca4c | 1484 | int ret = 0; |
c87e2837 | 1485 | |
c87e2837 | 1486 | new_owner = rt_mutex_next_owner(&pi_state->pi_mutex); |
bebe5b51 | 1487 | if (WARN_ON_ONCE(!new_owner)) { |
16ffa12d | 1488 | /* |
bebe5b51 | 1489 | * As per the comment in futex_unlock_pi() this should not happen. |
16ffa12d PZ |
1490 | * |
1491 | * When this happens, give up our locks and try again, giving | |
1492 | * the futex_lock_pi() instance time to complete, either by | |
1493 | * waiting on the rtmutex or removing itself from the futex | |
1494 | * queue. | |
1495 | */ | |
1496 | ret = -EAGAIN; | |
1497 | goto out_unlock; | |
73d786bd | 1498 | } |
c87e2837 IM |
1499 | |
1500 | /* | |
16ffa12d PZ |
1501 | * We pass it to the next owner. The WAITERS bit is always kept |
1502 | * enabled while there is PI state around. We cleanup the owner | |
1503 | * died bit, because we are the owner. | |
c87e2837 | 1504 | */ |
13fbca4c | 1505 | newval = FUTEX_WAITERS | task_pid_vnr(new_owner); |
e3f2ddea | 1506 | |
921c7ebd | 1507 | if (unlikely(should_fail_futex(true))) { |
ab51fbab | 1508 | ret = -EFAULT; |
921c7ebd MN |
1509 | goto out_unlock; |
1510 | } | |
ab51fbab | 1511 | |
6b4f4bc9 WD |
1512 | ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval); |
1513 | if (!ret && (curval != uval)) { | |
89e9e66b SAS |
1514 | /* |
1515 | * If a unconditional UNLOCK_PI operation (user space did not | |
1516 | * try the TID->0 transition) raced with a waiter setting the | |
1517 | * FUTEX_WAITERS flag between get_user() and locking the hash | |
1518 | * bucket lock, retry the operation. | |
1519 | */ | |
1520 | if ((FUTEX_TID_MASK & curval) == uval) | |
1521 | ret = -EAGAIN; | |
1522 | else | |
1523 | ret = -EINVAL; | |
1524 | } | |
734009e9 | 1525 | |
16ffa12d PZ |
1526 | if (ret) |
1527 | goto out_unlock; | |
c87e2837 | 1528 | |
94ffac5d PZ |
1529 | /* |
1530 | * This is a point of no return; once we modify the uval there is no | |
1531 | * going back and subsequent operations must not fail. | |
1532 | */ | |
1533 | ||
b4abf910 | 1534 | raw_spin_lock(&pi_state->owner->pi_lock); |
627371d7 IM |
1535 | WARN_ON(list_empty(&pi_state->list)); |
1536 | list_del_init(&pi_state->list); | |
b4abf910 | 1537 | raw_spin_unlock(&pi_state->owner->pi_lock); |
627371d7 | 1538 | |
b4abf910 | 1539 | raw_spin_lock(&new_owner->pi_lock); |
627371d7 | 1540 | WARN_ON(!list_empty(&pi_state->list)); |
c87e2837 IM |
1541 | list_add(&pi_state->list, &new_owner->pi_state_list); |
1542 | pi_state->owner = new_owner; | |
b4abf910 | 1543 | raw_spin_unlock(&new_owner->pi_lock); |
627371d7 | 1544 | |
aa2bfe55 | 1545 | postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q); |
5293c2ef | 1546 | |
16ffa12d | 1547 | out_unlock: |
5293c2ef | 1548 | raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock); |
5293c2ef | 1549 | |
aa2bfe55 PZ |
1550 | if (postunlock) |
1551 | rt_mutex_postunlock(&wake_q); | |
c87e2837 | 1552 | |
16ffa12d | 1553 | return ret; |
c87e2837 IM |
1554 | } |
1555 | ||
8b8f319f IM |
1556 | /* |
1557 | * Express the locking dependencies for lockdep: | |
1558 | */ | |
1559 | static inline void | |
1560 | double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2) | |
1561 | { | |
1562 | if (hb1 <= hb2) { | |
1563 | spin_lock(&hb1->lock); | |
1564 | if (hb1 < hb2) | |
1565 | spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING); | |
1566 | } else { /* hb1 > hb2 */ | |
1567 | spin_lock(&hb2->lock); | |
1568 | spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING); | |
1569 | } | |
1570 | } | |
1571 | ||
5eb3dc62 DH |
1572 | static inline void |
1573 | double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2) | |
1574 | { | |
f061d351 | 1575 | spin_unlock(&hb1->lock); |
88f502fe IM |
1576 | if (hb1 != hb2) |
1577 | spin_unlock(&hb2->lock); | |
5eb3dc62 DH |
1578 | } |
1579 | ||
1da177e4 | 1580 | /* |
b2d0994b | 1581 | * Wake up waiters matching bitset queued on this futex (uaddr). |
1da177e4 | 1582 | */ |
b41277dc DH |
1583 | static int |
1584 | futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset) | |
1da177e4 | 1585 | { |
e2970f2f | 1586 | struct futex_hash_bucket *hb; |
1da177e4 | 1587 | struct futex_q *this, *next; |
38d47c1b | 1588 | union futex_key key = FUTEX_KEY_INIT; |
1da177e4 | 1589 | int ret; |
194a6b5b | 1590 | DEFINE_WAKE_Q(wake_q); |
1da177e4 | 1591 | |
cd689985 TG |
1592 | if (!bitset) |
1593 | return -EINVAL; | |
1594 | ||
96d4f267 | 1595 | ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ); |
1da177e4 | 1596 | if (unlikely(ret != 0)) |
d7c5ed73 | 1597 | return ret; |
1da177e4 | 1598 | |
e2970f2f | 1599 | hb = hash_futex(&key); |
b0c29f79 DB |
1600 | |
1601 | /* Make sure we really have tasks to wakeup */ | |
1602 | if (!hb_waiters_pending(hb)) | |
d7c5ed73 | 1603 | return ret; |
b0c29f79 | 1604 | |
e2970f2f | 1605 | spin_lock(&hb->lock); |
1da177e4 | 1606 | |
0d00c7b2 | 1607 | plist_for_each_entry_safe(this, next, &hb->chain, list) { |
1da177e4 | 1608 | if (match_futex (&this->key, &key)) { |
52400ba9 | 1609 | if (this->pi_state || this->rt_waiter) { |
ed6f7b10 IM |
1610 | ret = -EINVAL; |
1611 | break; | |
1612 | } | |
cd689985 TG |
1613 | |
1614 | /* Check if one of the bits is set in both bitsets */ | |
1615 | if (!(this->bitset & bitset)) | |
1616 | continue; | |
1617 | ||
1d0dcb3a | 1618 | mark_wake_futex(&wake_q, this); |
1da177e4 LT |
1619 | if (++ret >= nr_wake) |
1620 | break; | |
1621 | } | |
1622 | } | |
1623 | ||
e2970f2f | 1624 | spin_unlock(&hb->lock); |
1d0dcb3a | 1625 | wake_up_q(&wake_q); |
1da177e4 LT |
1626 | return ret; |
1627 | } | |
1628 | ||
30d6e0a4 JS |
1629 | static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr) |
1630 | { | |
1631 | unsigned int op = (encoded_op & 0x70000000) >> 28; | |
1632 | unsigned int cmp = (encoded_op & 0x0f000000) >> 24; | |
d70ef228 JS |
1633 | int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11); |
1634 | int cmparg = sign_extend32(encoded_op & 0x00000fff, 11); | |
30d6e0a4 JS |
1635 | int oldval, ret; |
1636 | ||
1637 | if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) { | |
e78c38f6 JS |
1638 | if (oparg < 0 || oparg > 31) { |
1639 | char comm[sizeof(current->comm)]; | |
1640 | /* | |
1641 | * kill this print and return -EINVAL when userspace | |
1642 | * is sane again | |
1643 | */ | |
1644 | pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n", | |
1645 | get_task_comm(comm, current), oparg); | |
1646 | oparg &= 31; | |
1647 | } | |
30d6e0a4 JS |
1648 | oparg = 1 << oparg; |
1649 | } | |
1650 | ||
a08971e9 | 1651 | pagefault_disable(); |
30d6e0a4 | 1652 | ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr); |
a08971e9 | 1653 | pagefault_enable(); |
30d6e0a4 JS |
1654 | if (ret) |
1655 | return ret; | |
1656 | ||
1657 | switch (cmp) { | |
1658 | case FUTEX_OP_CMP_EQ: | |
1659 | return oldval == cmparg; | |
1660 | case FUTEX_OP_CMP_NE: | |
1661 | return oldval != cmparg; | |
1662 | case FUTEX_OP_CMP_LT: | |
1663 | return oldval < cmparg; | |
1664 | case FUTEX_OP_CMP_GE: | |
1665 | return oldval >= cmparg; | |
1666 | case FUTEX_OP_CMP_LE: | |
1667 | return oldval <= cmparg; | |
1668 | case FUTEX_OP_CMP_GT: | |
1669 | return oldval > cmparg; | |
1670 | default: | |
1671 | return -ENOSYS; | |
1672 | } | |
1673 | } | |
1674 | ||
4732efbe JJ |
1675 | /* |
1676 | * Wake up all waiters hashed on the physical page that is mapped | |
1677 | * to this virtual address: | |
1678 | */ | |
e2970f2f | 1679 | static int |
b41277dc | 1680 | futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2, |
e2970f2f | 1681 | int nr_wake, int nr_wake2, int op) |
4732efbe | 1682 | { |
38d47c1b | 1683 | union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT; |
e2970f2f | 1684 | struct futex_hash_bucket *hb1, *hb2; |
4732efbe | 1685 | struct futex_q *this, *next; |
e4dc5b7a | 1686 | int ret, op_ret; |
194a6b5b | 1687 | DEFINE_WAKE_Q(wake_q); |
4732efbe | 1688 | |
e4dc5b7a | 1689 | retry: |
96d4f267 | 1690 | ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ); |
4732efbe | 1691 | if (unlikely(ret != 0)) |
d7c5ed73 | 1692 | return ret; |
96d4f267 | 1693 | ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE); |
4732efbe | 1694 | if (unlikely(ret != 0)) |
d7c5ed73 | 1695 | return ret; |
4732efbe | 1696 | |
e2970f2f IM |
1697 | hb1 = hash_futex(&key1); |
1698 | hb2 = hash_futex(&key2); | |
4732efbe | 1699 | |
e4dc5b7a | 1700 | retry_private: |
eaaea803 | 1701 | double_lock_hb(hb1, hb2); |
e2970f2f | 1702 | op_ret = futex_atomic_op_inuser(op, uaddr2); |
4732efbe | 1703 | if (unlikely(op_ret < 0)) { |
5eb3dc62 | 1704 | double_unlock_hb(hb1, hb2); |
4732efbe | 1705 | |
6b4f4bc9 WD |
1706 | if (!IS_ENABLED(CONFIG_MMU) || |
1707 | unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) { | |
1708 | /* | |
1709 | * we don't get EFAULT from MMU faults if we don't have | |
1710 | * an MMU, but we might get them from range checking | |
1711 | */ | |
796f8d9b | 1712 | ret = op_ret; |
d7c5ed73 | 1713 | return ret; |
796f8d9b DG |
1714 | } |
1715 | ||
6b4f4bc9 WD |
1716 | if (op_ret == -EFAULT) { |
1717 | ret = fault_in_user_writeable(uaddr2); | |
1718 | if (ret) | |
d7c5ed73 | 1719 | return ret; |
6b4f4bc9 | 1720 | } |
4732efbe | 1721 | |
6b4f4bc9 WD |
1722 | if (!(flags & FLAGS_SHARED)) { |
1723 | cond_resched(); | |
e4dc5b7a | 1724 | goto retry_private; |
6b4f4bc9 | 1725 | } |
e4dc5b7a | 1726 | |
6b4f4bc9 | 1727 | cond_resched(); |
e4dc5b7a | 1728 | goto retry; |
4732efbe JJ |
1729 | } |
1730 | ||
0d00c7b2 | 1731 | plist_for_each_entry_safe(this, next, &hb1->chain, list) { |
4732efbe | 1732 | if (match_futex (&this->key, &key1)) { |
aa10990e DH |
1733 | if (this->pi_state || this->rt_waiter) { |
1734 | ret = -EINVAL; | |
1735 | goto out_unlock; | |
1736 | } | |
1d0dcb3a | 1737 | mark_wake_futex(&wake_q, this); |
4732efbe JJ |
1738 | if (++ret >= nr_wake) |
1739 | break; | |
1740 | } | |
1741 | } | |
1742 | ||
1743 | if (op_ret > 0) { | |
4732efbe | 1744 | op_ret = 0; |
0d00c7b2 | 1745 | plist_for_each_entry_safe(this, next, &hb2->chain, list) { |
4732efbe | 1746 | if (match_futex (&this->key, &key2)) { |
aa10990e DH |
1747 | if (this->pi_state || this->rt_waiter) { |
1748 | ret = -EINVAL; | |
1749 | goto out_unlock; | |
1750 | } | |
1d0dcb3a | 1751 | mark_wake_futex(&wake_q, this); |
4732efbe JJ |
1752 | if (++op_ret >= nr_wake2) |
1753 | break; | |
1754 | } | |
1755 | } | |
1756 | ret += op_ret; | |
1757 | } | |
1758 | ||
aa10990e | 1759 | out_unlock: |
5eb3dc62 | 1760 | double_unlock_hb(hb1, hb2); |
1d0dcb3a | 1761 | wake_up_q(&wake_q); |
4732efbe JJ |
1762 | return ret; |
1763 | } | |
1764 | ||
9121e478 DH |
1765 | /** |
1766 | * requeue_futex() - Requeue a futex_q from one hb to another | |
1767 | * @q: the futex_q to requeue | |
1768 | * @hb1: the source hash_bucket | |
1769 | * @hb2: the target hash_bucket | |
1770 | * @key2: the new key for the requeued futex_q | |
1771 | */ | |
1772 | static inline | |
1773 | void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1, | |
1774 | struct futex_hash_bucket *hb2, union futex_key *key2) | |
1775 | { | |
1776 | ||
1777 | /* | |
1778 | * If key1 and key2 hash to the same bucket, no need to | |
1779 | * requeue. | |
1780 | */ | |
1781 | if (likely(&hb1->chain != &hb2->chain)) { | |
1782 | plist_del(&q->list, &hb1->chain); | |
11d4616b | 1783 | hb_waiters_dec(hb1); |
11d4616b | 1784 | hb_waiters_inc(hb2); |
fe1bce9e | 1785 | plist_add(&q->list, &hb2->chain); |
9121e478 | 1786 | q->lock_ptr = &hb2->lock; |
9121e478 | 1787 | } |
9121e478 DH |
1788 | q->key = *key2; |
1789 | } | |
1790 | ||
52400ba9 DH |
1791 | /** |
1792 | * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue | |
d96ee56c DH |
1793 | * @q: the futex_q |
1794 | * @key: the key of the requeue target futex | |
1795 | * @hb: the hash_bucket of the requeue target futex | |
52400ba9 DH |
1796 | * |
1797 | * During futex_requeue, with requeue_pi=1, it is possible to acquire the | |
1798 | * target futex if it is uncontended or via a lock steal. Set the futex_q key | |
1799 | * to the requeue target futex so the waiter can detect the wakeup on the right | |
1800 | * futex, but remove it from the hb and NULL the rt_waiter so it can detect | |
beda2c7e DH |
1801 | * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock |
1802 | * to protect access to the pi_state to fixup the owner later. Must be called | |
1803 | * with both q->lock_ptr and hb->lock held. | |
52400ba9 DH |
1804 | */ |
1805 | static inline | |
beda2c7e DH |
1806 | void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key, |
1807 | struct futex_hash_bucket *hb) | |
52400ba9 | 1808 | { |
52400ba9 DH |
1809 | q->key = *key; |
1810 | ||
2e12978a | 1811 | __unqueue_futex(q); |
52400ba9 DH |
1812 | |
1813 | WARN_ON(!q->rt_waiter); | |
1814 | q->rt_waiter = NULL; | |
1815 | ||
beda2c7e | 1816 | q->lock_ptr = &hb->lock; |
beda2c7e | 1817 | |
f1a11e05 | 1818 | wake_up_state(q->task, TASK_NORMAL); |
52400ba9 DH |
1819 | } |
1820 | ||
1821 | /** | |
1822 | * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter | |
bab5bc9e DH |
1823 | * @pifutex: the user address of the to futex |
1824 | * @hb1: the from futex hash bucket, must be locked by the caller | |
1825 | * @hb2: the to futex hash bucket, must be locked by the caller | |
1826 | * @key1: the from futex key | |
1827 | * @key2: the to futex key | |
1828 | * @ps: address to store the pi_state pointer | |
3ef240ea TG |
1829 | * @exiting: Pointer to store the task pointer of the owner task |
1830 | * which is in the middle of exiting | |
bab5bc9e | 1831 | * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0) |
52400ba9 DH |
1832 | * |
1833 | * Try and get the lock on behalf of the top waiter if we can do it atomically. | |
bab5bc9e DH |
1834 | * Wake the top waiter if we succeed. If the caller specified set_waiters, |
1835 | * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit. | |
1836 | * hb1 and hb2 must be held by the caller. | |
52400ba9 | 1837 | * |
3ef240ea TG |
1838 | * @exiting is only set when the return value is -EBUSY. If so, this holds |
1839 | * a refcount on the exiting task on return and the caller needs to drop it | |
1840 | * after waiting for the exit to complete. | |
1841 | * | |
6c23cbbd | 1842 | * Return: |
7b4ff1ad MCC |
1843 | * - 0 - failed to acquire the lock atomically; |
1844 | * - >0 - acquired the lock, return value is vpid of the top_waiter | |
1845 | * - <0 - error | |
52400ba9 | 1846 | */ |
3ef240ea TG |
1847 | static int |
1848 | futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1, | |
1849 | struct futex_hash_bucket *hb2, union futex_key *key1, | |
1850 | union futex_key *key2, struct futex_pi_state **ps, | |
1851 | struct task_struct **exiting, int set_waiters) | |
52400ba9 | 1852 | { |
bab5bc9e | 1853 | struct futex_q *top_waiter = NULL; |
52400ba9 | 1854 | u32 curval; |
866293ee | 1855 | int ret, vpid; |
52400ba9 DH |
1856 | |
1857 | if (get_futex_value_locked(&curval, pifutex)) | |
1858 | return -EFAULT; | |
1859 | ||
ab51fbab DB |
1860 | if (unlikely(should_fail_futex(true))) |
1861 | return -EFAULT; | |
1862 | ||
bab5bc9e DH |
1863 | /* |
1864 | * Find the top_waiter and determine if there are additional waiters. | |
1865 | * If the caller intends to requeue more than 1 waiter to pifutex, | |
1866 | * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now, | |
1867 | * as we have means to handle the possible fault. If not, don't set | |
1868 | * the bit unecessarily as it will force the subsequent unlock to enter | |
1869 | * the kernel. | |
1870 | */ | |
52400ba9 DH |
1871 | top_waiter = futex_top_waiter(hb1, key1); |
1872 | ||
1873 | /* There are no waiters, nothing for us to do. */ | |
1874 | if (!top_waiter) | |
1875 | return 0; | |
1876 | ||
84bc4af5 DH |
1877 | /* Ensure we requeue to the expected futex. */ |
1878 | if (!match_futex(top_waiter->requeue_pi_key, key2)) | |
1879 | return -EINVAL; | |
1880 | ||
52400ba9 | 1881 | /* |
bab5bc9e DH |
1882 | * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in |
1883 | * the contended case or if set_waiters is 1. The pi_state is returned | |
1884 | * in ps in contended cases. | |
52400ba9 | 1885 | */ |
866293ee | 1886 | vpid = task_pid_vnr(top_waiter->task); |
bab5bc9e | 1887 | ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task, |
3ef240ea | 1888 | exiting, set_waiters); |
866293ee | 1889 | if (ret == 1) { |
beda2c7e | 1890 | requeue_pi_wake_futex(top_waiter, key2, hb2); |
866293ee TG |
1891 | return vpid; |
1892 | } | |
52400ba9 DH |
1893 | return ret; |
1894 | } | |
1895 | ||
1896 | /** | |
1897 | * futex_requeue() - Requeue waiters from uaddr1 to uaddr2 | |
fb62db2b | 1898 | * @uaddr1: source futex user address |
b41277dc | 1899 | * @flags: futex flags (FLAGS_SHARED, etc.) |
fb62db2b RD |
1900 | * @uaddr2: target futex user address |
1901 | * @nr_wake: number of waiters to wake (must be 1 for requeue_pi) | |
1902 | * @nr_requeue: number of waiters to requeue (0-INT_MAX) | |
1903 | * @cmpval: @uaddr1 expected value (or %NULL) | |
1904 | * @requeue_pi: if we are attempting to requeue from a non-pi futex to a | |
b41277dc | 1905 | * pi futex (pi to pi requeue is not supported) |
52400ba9 DH |
1906 | * |
1907 | * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire | |
1908 | * uaddr2 atomically on behalf of the top waiter. | |
1909 | * | |
6c23cbbd | 1910 | * Return: |
7b4ff1ad MCC |
1911 | * - >=0 - on success, the number of tasks requeued or woken; |
1912 | * - <0 - on error | |
1da177e4 | 1913 | */ |
b41277dc DH |
1914 | static int futex_requeue(u32 __user *uaddr1, unsigned int flags, |
1915 | u32 __user *uaddr2, int nr_wake, int nr_requeue, | |
1916 | u32 *cmpval, int requeue_pi) | |
1da177e4 | 1917 | { |
38d47c1b | 1918 | union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT; |
4b39f99c | 1919 | int task_count = 0, ret; |
52400ba9 | 1920 | struct futex_pi_state *pi_state = NULL; |
e2970f2f | 1921 | struct futex_hash_bucket *hb1, *hb2; |
1da177e4 | 1922 | struct futex_q *this, *next; |
194a6b5b | 1923 | DEFINE_WAKE_Q(wake_q); |
52400ba9 | 1924 | |
fbe0e839 LJ |
1925 | if (nr_wake < 0 || nr_requeue < 0) |
1926 | return -EINVAL; | |
1927 | ||
bc2eecd7 NP |
1928 | /* |
1929 | * When PI not supported: return -ENOSYS if requeue_pi is true, | |
1930 | * consequently the compiler knows requeue_pi is always false past | |
1931 | * this point which will optimize away all the conditional code | |
1932 | * further down. | |
1933 | */ | |
1934 | if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi) | |
1935 | return -ENOSYS; | |
1936 | ||
52400ba9 | 1937 | if (requeue_pi) { |
e9c243a5 TG |
1938 | /* |
1939 | * Requeue PI only works on two distinct uaddrs. This | |
1940 | * check is only valid for private futexes. See below. | |
1941 | */ | |
1942 | if (uaddr1 == uaddr2) | |
1943 | return -EINVAL; | |
1944 | ||
52400ba9 DH |
1945 | /* |
1946 | * requeue_pi requires a pi_state, try to allocate it now | |
1947 | * without any locks in case it fails. | |
1948 | */ | |
1949 | if (refill_pi_state_cache()) | |
1950 | return -ENOMEM; | |
1951 | /* | |
1952 | * requeue_pi must wake as many tasks as it can, up to nr_wake | |
1953 | * + nr_requeue, since it acquires the rt_mutex prior to | |
1954 | * returning to userspace, so as to not leave the rt_mutex with | |
1955 | * waiters and no owner. However, second and third wake-ups | |
1956 | * cannot be predicted as they involve race conditions with the | |
1957 | * first wake and a fault while looking up the pi_state. Both | |
1958 | * pthread_cond_signal() and pthread_cond_broadcast() should | |
1959 | * use nr_wake=1. | |
1960 | */ | |
1961 | if (nr_wake != 1) | |
1962 | return -EINVAL; | |
1963 | } | |
1da177e4 | 1964 | |
42d35d48 | 1965 | retry: |
96d4f267 | 1966 | ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ); |
1da177e4 | 1967 | if (unlikely(ret != 0)) |
d7c5ed73 | 1968 | return ret; |
9ea71503 | 1969 | ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, |
96d4f267 | 1970 | requeue_pi ? FUTEX_WRITE : FUTEX_READ); |
1da177e4 | 1971 | if (unlikely(ret != 0)) |
d7c5ed73 | 1972 | return ret; |
1da177e4 | 1973 | |
e9c243a5 TG |
1974 | /* |
1975 | * The check above which compares uaddrs is not sufficient for | |
1976 | * shared futexes. We need to compare the keys: | |
1977 | */ | |
d7c5ed73 AA |
1978 | if (requeue_pi && match_futex(&key1, &key2)) |
1979 | return -EINVAL; | |
e9c243a5 | 1980 | |
e2970f2f IM |
1981 | hb1 = hash_futex(&key1); |
1982 | hb2 = hash_futex(&key2); | |
1da177e4 | 1983 | |
e4dc5b7a | 1984 | retry_private: |
69cd9eba | 1985 | hb_waiters_inc(hb2); |
8b8f319f | 1986 | double_lock_hb(hb1, hb2); |
1da177e4 | 1987 | |
e2970f2f IM |
1988 | if (likely(cmpval != NULL)) { |
1989 | u32 curval; | |
1da177e4 | 1990 | |
e2970f2f | 1991 | ret = get_futex_value_locked(&curval, uaddr1); |
1da177e4 LT |
1992 | |
1993 | if (unlikely(ret)) { | |
5eb3dc62 | 1994 | double_unlock_hb(hb1, hb2); |
69cd9eba | 1995 | hb_waiters_dec(hb2); |
1da177e4 | 1996 | |
e2970f2f | 1997 | ret = get_user(curval, uaddr1); |
e4dc5b7a | 1998 | if (ret) |
d7c5ed73 | 1999 | return ret; |
1da177e4 | 2000 | |
b41277dc | 2001 | if (!(flags & FLAGS_SHARED)) |
e4dc5b7a | 2002 | goto retry_private; |
1da177e4 | 2003 | |
e4dc5b7a | 2004 | goto retry; |
1da177e4 | 2005 | } |
e2970f2f | 2006 | if (curval != *cmpval) { |
1da177e4 LT |
2007 | ret = -EAGAIN; |
2008 | goto out_unlock; | |
2009 | } | |
2010 | } | |
2011 | ||
52400ba9 | 2012 | if (requeue_pi && (task_count - nr_wake < nr_requeue)) { |
3ef240ea TG |
2013 | struct task_struct *exiting = NULL; |
2014 | ||
bab5bc9e DH |
2015 | /* |
2016 | * Attempt to acquire uaddr2 and wake the top waiter. If we | |
2017 | * intend to requeue waiters, force setting the FUTEX_WAITERS | |
2018 | * bit. We force this here where we are able to easily handle | |
2019 | * faults rather in the requeue loop below. | |
2020 | */ | |
52400ba9 | 2021 | ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1, |
3ef240ea TG |
2022 | &key2, &pi_state, |
2023 | &exiting, nr_requeue); | |
52400ba9 DH |
2024 | |
2025 | /* | |
2026 | * At this point the top_waiter has either taken uaddr2 or is | |
2027 | * waiting on it. If the former, then the pi_state will not | |
2028 | * exist yet, look it up one more time to ensure we have a | |
866293ee TG |
2029 | * reference to it. If the lock was taken, ret contains the |
2030 | * vpid of the top waiter task. | |
ecb38b78 TG |
2031 | * If the lock was not taken, we have pi_state and an initial |
2032 | * refcount on it. In case of an error we have nothing. | |
52400ba9 | 2033 | */ |
866293ee | 2034 | if (ret > 0) { |
52400ba9 DH |
2035 | WARN_ON(pi_state); |
2036 | task_count++; | |
866293ee | 2037 | /* |
ecb38b78 TG |
2038 | * If we acquired the lock, then the user space value |
2039 | * of uaddr2 should be vpid. It cannot be changed by | |
2040 | * the top waiter as it is blocked on hb2 lock if it | |
2041 | * tries to do so. If something fiddled with it behind | |
2042 | * our back the pi state lookup might unearth it. So | |
2043 | * we rather use the known value than rereading and | |
2044 | * handing potential crap to lookup_pi_state. | |
2045 | * | |
2046 | * If that call succeeds then we have pi_state and an | |
2047 | * initial refcount on it. | |
866293ee | 2048 | */ |
3ef240ea TG |
2049 | ret = lookup_pi_state(uaddr2, ret, hb2, &key2, |
2050 | &pi_state, &exiting); | |
52400ba9 DH |
2051 | } |
2052 | ||
2053 | switch (ret) { | |
2054 | case 0: | |
ecb38b78 | 2055 | /* We hold a reference on the pi state. */ |
52400ba9 | 2056 | break; |
4959f2de TG |
2057 | |
2058 | /* If the above failed, then pi_state is NULL */ | |
52400ba9 DH |
2059 | case -EFAULT: |
2060 | double_unlock_hb(hb1, hb2); | |
69cd9eba | 2061 | hb_waiters_dec(hb2); |
d0725992 | 2062 | ret = fault_in_user_writeable(uaddr2); |
52400ba9 DH |
2063 | if (!ret) |
2064 | goto retry; | |
d7c5ed73 | 2065 | return ret; |
ac31c7ff | 2066 | case -EBUSY: |
52400ba9 | 2067 | case -EAGAIN: |
af54d6a1 TG |
2068 | /* |
2069 | * Two reasons for this: | |
ac31c7ff | 2070 | * - EBUSY: Owner is exiting and we just wait for the |
af54d6a1 | 2071 | * exit to complete. |
ac31c7ff | 2072 | * - EAGAIN: The user space value changed. |
af54d6a1 | 2073 | */ |
52400ba9 | 2074 | double_unlock_hb(hb1, hb2); |
69cd9eba | 2075 | hb_waiters_dec(hb2); |
3ef240ea TG |
2076 | /* |
2077 | * Handle the case where the owner is in the middle of | |
2078 | * exiting. Wait for the exit to complete otherwise | |
2079 | * this task might loop forever, aka. live lock. | |
2080 | */ | |
2081 | wait_for_owner_exiting(ret, exiting); | |
52400ba9 DH |
2082 | cond_resched(); |
2083 | goto retry; | |
2084 | default: | |
2085 | goto out_unlock; | |
2086 | } | |
2087 | } | |
2088 | ||
0d00c7b2 | 2089 | plist_for_each_entry_safe(this, next, &hb1->chain, list) { |
52400ba9 DH |
2090 | if (task_count - nr_wake >= nr_requeue) |
2091 | break; | |
2092 | ||
2093 | if (!match_futex(&this->key, &key1)) | |
1da177e4 | 2094 | continue; |
52400ba9 | 2095 | |
392741e0 DH |
2096 | /* |
2097 | * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always | |
2098 | * be paired with each other and no other futex ops. | |
aa10990e DH |
2099 | * |
2100 | * We should never be requeueing a futex_q with a pi_state, | |
2101 | * which is awaiting a futex_unlock_pi(). | |
392741e0 DH |
2102 | */ |
2103 | if ((requeue_pi && !this->rt_waiter) || | |
aa10990e DH |
2104 | (!requeue_pi && this->rt_waiter) || |
2105 | this->pi_state) { | |
392741e0 DH |
2106 | ret = -EINVAL; |
2107 | break; | |
2108 | } | |
52400ba9 DH |
2109 | |
2110 | /* | |
2111 | * Wake nr_wake waiters. For requeue_pi, if we acquired the | |
2112 | * lock, we already woke the top_waiter. If not, it will be | |
2113 | * woken by futex_unlock_pi(). | |
2114 | */ | |
2115 | if (++task_count <= nr_wake && !requeue_pi) { | |
1d0dcb3a | 2116 | mark_wake_futex(&wake_q, this); |
52400ba9 DH |
2117 | continue; |
2118 | } | |
1da177e4 | 2119 | |
84bc4af5 DH |
2120 | /* Ensure we requeue to the expected futex for requeue_pi. */ |
2121 | if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) { | |
2122 | ret = -EINVAL; | |
2123 | break; | |
2124 | } | |
2125 | ||
52400ba9 DH |
2126 | /* |
2127 | * Requeue nr_requeue waiters and possibly one more in the case | |
2128 | * of requeue_pi if we couldn't acquire the lock atomically. | |
2129 | */ | |
2130 | if (requeue_pi) { | |
ecb38b78 TG |
2131 | /* |
2132 | * Prepare the waiter to take the rt_mutex. Take a | |
2133 | * refcount on the pi_state and store the pointer in | |
2134 | * the futex_q object of the waiter. | |
2135 | */ | |
bf92cf3a | 2136 | get_pi_state(pi_state); |
52400ba9 DH |
2137 | this->pi_state = pi_state; |
2138 | ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex, | |
2139 | this->rt_waiter, | |
c051b21f | 2140 | this->task); |
52400ba9 | 2141 | if (ret == 1) { |
ecb38b78 TG |
2142 | /* |
2143 | * We got the lock. We do neither drop the | |
2144 | * refcount on pi_state nor clear | |
2145 | * this->pi_state because the waiter needs the | |
2146 | * pi_state for cleaning up the user space | |
2147 | * value. It will drop the refcount after | |
2148 | * doing so. | |
2149 | */ | |
beda2c7e | 2150 | requeue_pi_wake_futex(this, &key2, hb2); |
52400ba9 DH |
2151 | continue; |
2152 | } else if (ret) { | |
ecb38b78 TG |
2153 | /* |
2154 | * rt_mutex_start_proxy_lock() detected a | |
2155 | * potential deadlock when we tried to queue | |
2156 | * that waiter. Drop the pi_state reference | |
2157 | * which we took above and remove the pointer | |
2158 | * to the state from the waiters futex_q | |
2159 | * object. | |
2160 | */ | |
52400ba9 | 2161 | this->pi_state = NULL; |
29e9ee5d | 2162 | put_pi_state(pi_state); |
885c2cb7 TG |
2163 | /* |
2164 | * We stop queueing more waiters and let user | |
2165 | * space deal with the mess. | |
2166 | */ | |
2167 | break; | |
52400ba9 | 2168 | } |
1da177e4 | 2169 | } |
52400ba9 | 2170 | requeue_futex(this, hb1, hb2, &key2); |
1da177e4 LT |
2171 | } |
2172 | ||
ecb38b78 TG |
2173 | /* |
2174 | * We took an extra initial reference to the pi_state either | |
2175 | * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We | |
2176 | * need to drop it here again. | |
2177 | */ | |
29e9ee5d | 2178 | put_pi_state(pi_state); |
885c2cb7 TG |
2179 | |
2180 | out_unlock: | |
5eb3dc62 | 2181 | double_unlock_hb(hb1, hb2); |
1d0dcb3a | 2182 | wake_up_q(&wake_q); |
69cd9eba | 2183 | hb_waiters_dec(hb2); |
52400ba9 | 2184 | return ret ? ret : task_count; |
1da177e4 LT |
2185 | } |
2186 | ||
2187 | /* The key must be already stored in q->key. */ | |
82af7aca | 2188 | static inline struct futex_hash_bucket *queue_lock(struct futex_q *q) |
15e408cd | 2189 | __acquires(&hb->lock) |
1da177e4 | 2190 | { |
e2970f2f | 2191 | struct futex_hash_bucket *hb; |
1da177e4 | 2192 | |
e2970f2f | 2193 | hb = hash_futex(&q->key); |
11d4616b LT |
2194 | |
2195 | /* | |
2196 | * Increment the counter before taking the lock so that | |
2197 | * a potential waker won't miss a to-be-slept task that is | |
2198 | * waiting for the spinlock. This is safe as all queue_lock() | |
2199 | * users end up calling queue_me(). Similarly, for housekeeping, | |
2200 | * decrement the counter at queue_unlock() when some error has | |
2201 | * occurred and we don't end up adding the task to the list. | |
2202 | */ | |
6f568ebe | 2203 | hb_waiters_inc(hb); /* implies smp_mb(); (A) */ |
11d4616b | 2204 | |
e2970f2f | 2205 | q->lock_ptr = &hb->lock; |
1da177e4 | 2206 | |
6f568ebe | 2207 | spin_lock(&hb->lock); |
e2970f2f | 2208 | return hb; |
1da177e4 LT |
2209 | } |
2210 | ||
d40d65c8 | 2211 | static inline void |
0d00c7b2 | 2212 | queue_unlock(struct futex_hash_bucket *hb) |
15e408cd | 2213 | __releases(&hb->lock) |
d40d65c8 DH |
2214 | { |
2215 | spin_unlock(&hb->lock); | |
11d4616b | 2216 | hb_waiters_dec(hb); |
d40d65c8 DH |
2217 | } |
2218 | ||
cfafcd11 | 2219 | static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb) |
1da177e4 | 2220 | { |
ec92d082 PP |
2221 | int prio; |
2222 | ||
2223 | /* | |
2224 | * The priority used to register this element is | |
2225 | * - either the real thread-priority for the real-time threads | |
2226 | * (i.e. threads with a priority lower than MAX_RT_PRIO) | |
2227 | * - or MAX_RT_PRIO for non-RT threads. | |
2228 | * Thus, all RT-threads are woken first in priority order, and | |
2229 | * the others are woken last, in FIFO order. | |
2230 | */ | |
2231 | prio = min(current->normal_prio, MAX_RT_PRIO); | |
2232 | ||
2233 | plist_node_init(&q->list, prio); | |
ec92d082 | 2234 | plist_add(&q->list, &hb->chain); |
c87e2837 | 2235 | q->task = current; |
cfafcd11 PZ |
2236 | } |
2237 | ||
2238 | /** | |
2239 | * queue_me() - Enqueue the futex_q on the futex_hash_bucket | |
2240 | * @q: The futex_q to enqueue | |
2241 | * @hb: The destination hash bucket | |
2242 | * | |
2243 | * The hb->lock must be held by the caller, and is released here. A call to | |
2244 | * queue_me() is typically paired with exactly one call to unqueue_me(). The | |
2245 | * exceptions involve the PI related operations, which may use unqueue_me_pi() | |
2246 | * or nothing if the unqueue is done as part of the wake process and the unqueue | |
2247 | * state is implicit in the state of woken task (see futex_wait_requeue_pi() for | |
2248 | * an example). | |
2249 | */ | |
2250 | static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb) | |
2251 | __releases(&hb->lock) | |
2252 | { | |
2253 | __queue_me(q, hb); | |
e2970f2f | 2254 | spin_unlock(&hb->lock); |
1da177e4 LT |
2255 | } |
2256 | ||
d40d65c8 DH |
2257 | /** |
2258 | * unqueue_me() - Remove the futex_q from its futex_hash_bucket | |
2259 | * @q: The futex_q to unqueue | |
2260 | * | |
2261 | * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must | |
2262 | * be paired with exactly one earlier call to queue_me(). | |
2263 | * | |
6c23cbbd | 2264 | * Return: |
7b4ff1ad MCC |
2265 | * - 1 - if the futex_q was still queued (and we removed unqueued it); |
2266 | * - 0 - if the futex_q was already removed by the waking thread | |
1da177e4 | 2267 | */ |
1da177e4 LT |
2268 | static int unqueue_me(struct futex_q *q) |
2269 | { | |
1da177e4 | 2270 | spinlock_t *lock_ptr; |
e2970f2f | 2271 | int ret = 0; |
1da177e4 LT |
2272 | |
2273 | /* In the common case we don't take the spinlock, which is nice. */ | |
42d35d48 | 2274 | retry: |
29b75eb2 JZ |
2275 | /* |
2276 | * q->lock_ptr can change between this read and the following spin_lock. | |
2277 | * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and | |
2278 | * optimizing lock_ptr out of the logic below. | |
2279 | */ | |
2280 | lock_ptr = READ_ONCE(q->lock_ptr); | |
c80544dc | 2281 | if (lock_ptr != NULL) { |
1da177e4 LT |
2282 | spin_lock(lock_ptr); |
2283 | /* | |
2284 | * q->lock_ptr can change between reading it and | |
2285 | * spin_lock(), causing us to take the wrong lock. This | |
2286 | * corrects the race condition. | |
2287 | * | |
2288 | * Reasoning goes like this: if we have the wrong lock, | |
2289 | * q->lock_ptr must have changed (maybe several times) | |
2290 | * between reading it and the spin_lock(). It can | |
2291 | * change again after the spin_lock() but only if it was | |
2292 | * already changed before the spin_lock(). It cannot, | |
2293 | * however, change back to the original value. Therefore | |
2294 | * we can detect whether we acquired the correct lock. | |
2295 | */ | |
2296 | if (unlikely(lock_ptr != q->lock_ptr)) { | |
2297 | spin_unlock(lock_ptr); | |
2298 | goto retry; | |
2299 | } | |
2e12978a | 2300 | __unqueue_futex(q); |
c87e2837 IM |
2301 | |
2302 | BUG_ON(q->pi_state); | |
2303 | ||
1da177e4 LT |
2304 | spin_unlock(lock_ptr); |
2305 | ret = 1; | |
2306 | } | |
2307 | ||
1da177e4 LT |
2308 | return ret; |
2309 | } | |
2310 | ||
c87e2837 IM |
2311 | /* |
2312 | * PI futexes can not be requeued and must remove themself from the | |
d0aa7a70 PP |
2313 | * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry |
2314 | * and dropped here. | |
c87e2837 | 2315 | */ |
d0aa7a70 | 2316 | static void unqueue_me_pi(struct futex_q *q) |
15e408cd | 2317 | __releases(q->lock_ptr) |
c87e2837 | 2318 | { |
2e12978a | 2319 | __unqueue_futex(q); |
c87e2837 IM |
2320 | |
2321 | BUG_ON(!q->pi_state); | |
29e9ee5d | 2322 | put_pi_state(q->pi_state); |
c87e2837 IM |
2323 | q->pi_state = NULL; |
2324 | ||
d0aa7a70 | 2325 | spin_unlock(q->lock_ptr); |
c87e2837 IM |
2326 | } |
2327 | ||
778e9a9c | 2328 | static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q, |
c1e2f0ea | 2329 | struct task_struct *argowner) |
d0aa7a70 | 2330 | { |
d0aa7a70 | 2331 | struct futex_pi_state *pi_state = q->pi_state; |
3f649ab7 | 2332 | u32 uval, curval, newval; |
c1e2f0ea PZ |
2333 | struct task_struct *oldowner, *newowner; |
2334 | u32 newtid; | |
6b4f4bc9 | 2335 | int ret, err = 0; |
d0aa7a70 | 2336 | |
c1e2f0ea PZ |
2337 | lockdep_assert_held(q->lock_ptr); |
2338 | ||
734009e9 PZ |
2339 | raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock); |
2340 | ||
2341 | oldowner = pi_state->owner; | |
1b7558e4 TG |
2342 | |
2343 | /* | |
c1e2f0ea | 2344 | * We are here because either: |
16ffa12d | 2345 | * |
c1e2f0ea PZ |
2346 | * - we stole the lock and pi_state->owner needs updating to reflect |
2347 | * that (@argowner == current), | |
2348 | * | |
2349 | * or: | |
2350 | * | |
2351 | * - someone stole our lock and we need to fix things to point to the | |
2352 | * new owner (@argowner == NULL). | |
2353 | * | |
2354 | * Either way, we have to replace the TID in the user space variable. | |
8161239a | 2355 | * This must be atomic as we have to preserve the owner died bit here. |
1b7558e4 | 2356 | * |
b2d0994b DH |
2357 | * Note: We write the user space value _before_ changing the pi_state |
2358 | * because we can fault here. Imagine swapped out pages or a fork | |
2359 | * that marked all the anonymous memory readonly for cow. | |
1b7558e4 | 2360 | * |
734009e9 PZ |
2361 | * Modifying pi_state _before_ the user space value would leave the |
2362 | * pi_state in an inconsistent state when we fault here, because we | |
2363 | * need to drop the locks to handle the fault. This might be observed | |
2364 | * in the PID check in lookup_pi_state. | |
1b7558e4 TG |
2365 | */ |
2366 | retry: | |
c1e2f0ea PZ |
2367 | if (!argowner) { |
2368 | if (oldowner != current) { | |
2369 | /* | |
2370 | * We raced against a concurrent self; things are | |
2371 | * already fixed up. Nothing to do. | |
2372 | */ | |
2373 | ret = 0; | |
2374 | goto out_unlock; | |
2375 | } | |
2376 | ||
2377 | if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) { | |
2378 | /* We got the lock after all, nothing to fix. */ | |
2379 | ret = 0; | |
2380 | goto out_unlock; | |
2381 | } | |
2382 | ||
2383 | /* | |
9f5d1c33 MG |
2384 | * The trylock just failed, so either there is an owner or |
2385 | * there is a higher priority waiter than this one. | |
c1e2f0ea PZ |
2386 | */ |
2387 | newowner = rt_mutex_owner(&pi_state->pi_mutex); | |
9f5d1c33 MG |
2388 | /* |
2389 | * If the higher priority waiter has not yet taken over the | |
2390 | * rtmutex then newowner is NULL. We can't return here with | |
2391 | * that state because it's inconsistent vs. the user space | |
2392 | * state. So drop the locks and try again. It's a valid | |
2393 | * situation and not any different from the other retry | |
2394 | * conditions. | |
2395 | */ | |
2396 | if (unlikely(!newowner)) { | |
2397 | err = -EAGAIN; | |
2398 | goto handle_err; | |
2399 | } | |
c1e2f0ea PZ |
2400 | } else { |
2401 | WARN_ON_ONCE(argowner != current); | |
2402 | if (oldowner == current) { | |
2403 | /* | |
2404 | * We raced against a concurrent self; things are | |
2405 | * already fixed up. Nothing to do. | |
2406 | */ | |
2407 | ret = 0; | |
2408 | goto out_unlock; | |
2409 | } | |
2410 | newowner = argowner; | |
2411 | } | |
2412 | ||
2413 | newtid = task_pid_vnr(newowner) | FUTEX_WAITERS; | |
a97cb0e7 PZ |
2414 | /* Owner died? */ |
2415 | if (!pi_state->owner) | |
2416 | newtid |= FUTEX_OWNER_DIED; | |
c1e2f0ea | 2417 | |
6b4f4bc9 WD |
2418 | err = get_futex_value_locked(&uval, uaddr); |
2419 | if (err) | |
2420 | goto handle_err; | |
1b7558e4 | 2421 | |
16ffa12d | 2422 | for (;;) { |
1b7558e4 TG |
2423 | newval = (uval & FUTEX_OWNER_DIED) | newtid; |
2424 | ||
6b4f4bc9 WD |
2425 | err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval); |
2426 | if (err) | |
2427 | goto handle_err; | |
2428 | ||
1b7558e4 TG |
2429 | if (curval == uval) |
2430 | break; | |
2431 | uval = curval; | |
2432 | } | |
2433 | ||
2434 | /* | |
2435 | * We fixed up user space. Now we need to fix the pi_state | |
2436 | * itself. | |
2437 | */ | |
d0aa7a70 | 2438 | if (pi_state->owner != NULL) { |
734009e9 | 2439 | raw_spin_lock(&pi_state->owner->pi_lock); |
d0aa7a70 PP |
2440 | WARN_ON(list_empty(&pi_state->list)); |
2441 | list_del_init(&pi_state->list); | |
734009e9 | 2442 | raw_spin_unlock(&pi_state->owner->pi_lock); |
1b7558e4 | 2443 | } |
d0aa7a70 | 2444 | |
cdf71a10 | 2445 | pi_state->owner = newowner; |
d0aa7a70 | 2446 | |
734009e9 | 2447 | raw_spin_lock(&newowner->pi_lock); |
d0aa7a70 | 2448 | WARN_ON(!list_empty(&pi_state->list)); |
cdf71a10 | 2449 | list_add(&pi_state->list, &newowner->pi_state_list); |
734009e9 PZ |
2450 | raw_spin_unlock(&newowner->pi_lock); |
2451 | raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock); | |
2452 | ||
1b7558e4 | 2453 | return 0; |
d0aa7a70 | 2454 | |
d0aa7a70 | 2455 | /* |
6b4f4bc9 WD |
2456 | * In order to reschedule or handle a page fault, we need to drop the |
2457 | * locks here. In the case of a fault, this gives the other task | |
2458 | * (either the highest priority waiter itself or the task which stole | |
2459 | * the rtmutex) the chance to try the fixup of the pi_state. So once we | |
2460 | * are back from handling the fault we need to check the pi_state after | |
2461 | * reacquiring the locks and before trying to do another fixup. When | |
2462 | * the fixup has been done already we simply return. | |
734009e9 PZ |
2463 | * |
2464 | * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely | |
2465 | * drop hb->lock since the caller owns the hb -> futex_q relation. | |
2466 | * Dropping the pi_mutex->wait_lock requires the state revalidate. | |
d0aa7a70 | 2467 | */ |
6b4f4bc9 | 2468 | handle_err: |
734009e9 | 2469 | raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock); |
1b7558e4 | 2470 | spin_unlock(q->lock_ptr); |
778e9a9c | 2471 | |
6b4f4bc9 WD |
2472 | switch (err) { |
2473 | case -EFAULT: | |
2474 | ret = fault_in_user_writeable(uaddr); | |
2475 | break; | |
2476 | ||
2477 | case -EAGAIN: | |
2478 | cond_resched(); | |
2479 | ret = 0; | |
2480 | break; | |
2481 | ||
2482 | default: | |
2483 | WARN_ON_ONCE(1); | |
2484 | ret = err; | |
2485 | break; | |
2486 | } | |
778e9a9c | 2487 | |
1b7558e4 | 2488 | spin_lock(q->lock_ptr); |
734009e9 | 2489 | raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock); |
778e9a9c | 2490 | |
1b7558e4 TG |
2491 | /* |
2492 | * Check if someone else fixed it for us: | |
2493 | */ | |
734009e9 PZ |
2494 | if (pi_state->owner != oldowner) { |
2495 | ret = 0; | |
2496 | goto out_unlock; | |
2497 | } | |
1b7558e4 TG |
2498 | |
2499 | if (ret) | |
734009e9 | 2500 | goto out_unlock; |
1b7558e4 TG |
2501 | |
2502 | goto retry; | |
734009e9 PZ |
2503 | |
2504 | out_unlock: | |
2505 | raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock); | |
2506 | return ret; | |
d0aa7a70 PP |
2507 | } |
2508 | ||
72c1bbf3 | 2509 | static long futex_wait_restart(struct restart_block *restart); |
36cf3b5c | 2510 | |
dd973998 DH |
2511 | /** |
2512 | * fixup_owner() - Post lock pi_state and corner case management | |
2513 | * @uaddr: user address of the futex | |
dd973998 DH |
2514 | * @q: futex_q (contains pi_state and access to the rt_mutex) |
2515 | * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0) | |
2516 | * | |
2517 | * After attempting to lock an rt_mutex, this function is called to cleanup | |
2518 | * the pi_state owner as well as handle race conditions that may allow us to | |
2519 | * acquire the lock. Must be called with the hb lock held. | |
2520 | * | |
6c23cbbd | 2521 | * Return: |
7b4ff1ad MCC |
2522 | * - 1 - success, lock taken; |
2523 | * - 0 - success, lock not taken; | |
2524 | * - <0 - on error (-EFAULT) | |
dd973998 | 2525 | */ |
ae791a2d | 2526 | static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked) |
dd973998 | 2527 | { |
dd973998 DH |
2528 | int ret = 0; |
2529 | ||
2530 | if (locked) { | |
2531 | /* | |
2532 | * Got the lock. We might not be the anticipated owner if we | |
2533 | * did a lock-steal - fix up the PI-state in that case: | |
16ffa12d | 2534 | * |
c1e2f0ea PZ |
2535 | * Speculative pi_state->owner read (we don't hold wait_lock); |
2536 | * since we own the lock pi_state->owner == current is the | |
2537 | * stable state, anything else needs more attention. | |
dd973998 DH |
2538 | */ |
2539 | if (q->pi_state->owner != current) | |
ae791a2d | 2540 | ret = fixup_pi_state_owner(uaddr, q, current); |
d7c5ed73 | 2541 | return ret ? ret : locked; |
dd973998 DH |
2542 | } |
2543 | ||
c1e2f0ea PZ |
2544 | /* |
2545 | * If we didn't get the lock; check if anybody stole it from us. In | |
2546 | * that case, we need to fix up the uval to point to them instead of | |
2547 | * us, otherwise bad things happen. [10] | |
2548 | * | |
2549 | * Another speculative read; pi_state->owner == current is unstable | |
2550 | * but needs our attention. | |
2551 | */ | |
2552 | if (q->pi_state->owner == current) { | |
2553 | ret = fixup_pi_state_owner(uaddr, q, NULL); | |
d7c5ed73 | 2554 | return ret; |
c1e2f0ea PZ |
2555 | } |
2556 | ||
dd973998 DH |
2557 | /* |
2558 | * Paranoia check. If we did not take the lock, then we should not be | |
8161239a | 2559 | * the owner of the rt_mutex. |
dd973998 | 2560 | */ |
73d786bd | 2561 | if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) { |
dd973998 DH |
2562 | printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p " |
2563 | "pi-state %p\n", ret, | |
2564 | q->pi_state->pi_mutex.owner, | |
2565 | q->pi_state->owner); | |
73d786bd | 2566 | } |
dd973998 | 2567 | |
d7c5ed73 | 2568 | return ret; |
dd973998 DH |
2569 | } |
2570 | ||
ca5f9524 DH |
2571 | /** |
2572 | * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal | |
2573 | * @hb: the futex hash bucket, must be locked by the caller | |
2574 | * @q: the futex_q to queue up on | |
2575 | * @timeout: the prepared hrtimer_sleeper, or null for no timeout | |
ca5f9524 DH |
2576 | */ |
2577 | static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q, | |
f1a11e05 | 2578 | struct hrtimer_sleeper *timeout) |
ca5f9524 | 2579 | { |
9beba3c5 DH |
2580 | /* |
2581 | * The task state is guaranteed to be set before another task can | |
b92b8b35 | 2582 | * wake it. set_current_state() is implemented using smp_store_mb() and |
9beba3c5 DH |
2583 | * queue_me() calls spin_unlock() upon completion, both serializing |
2584 | * access to the hash list and forcing another memory barrier. | |
2585 | */ | |
f1a11e05 | 2586 | set_current_state(TASK_INTERRUPTIBLE); |
0729e196 | 2587 | queue_me(q, hb); |
ca5f9524 DH |
2588 | |
2589 | /* Arm the timer */ | |
2e4b0d3f | 2590 | if (timeout) |
9dd8813e | 2591 | hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS); |
ca5f9524 DH |
2592 | |
2593 | /* | |
0729e196 DH |
2594 | * If we have been removed from the hash list, then another task |
2595 | * has tried to wake us, and we can skip the call to schedule(). | |
ca5f9524 DH |
2596 | */ |
2597 | if (likely(!plist_node_empty(&q->list))) { | |
2598 | /* | |
2599 | * If the timer has already expired, current will already be | |
2600 | * flagged for rescheduling. Only call schedule if there | |
2601 | * is no timeout, or if it has yet to expire. | |
2602 | */ | |
2603 | if (!timeout || timeout->task) | |
88c8004f | 2604 | freezable_schedule(); |
ca5f9524 DH |
2605 | } |
2606 | __set_current_state(TASK_RUNNING); | |
2607 | } | |
2608 | ||
f801073f DH |
2609 | /** |
2610 | * futex_wait_setup() - Prepare to wait on a futex | |
2611 | * @uaddr: the futex userspace address | |
2612 | * @val: the expected value | |
b41277dc | 2613 | * @flags: futex flags (FLAGS_SHARED, etc.) |
f801073f DH |
2614 | * @q: the associated futex_q |
2615 | * @hb: storage for hash_bucket pointer to be returned to caller | |
2616 | * | |
2617 | * Setup the futex_q and locate the hash_bucket. Get the futex value and | |
2618 | * compare it with the expected value. Handle atomic faults internally. | |
2619 | * Return with the hb lock held and a q.key reference on success, and unlocked | |
2620 | * with no q.key reference on failure. | |
2621 | * | |
6c23cbbd | 2622 | * Return: |
7b4ff1ad MCC |
2623 | * - 0 - uaddr contains val and hb has been locked; |
2624 | * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked | |
f801073f | 2625 | */ |
b41277dc | 2626 | static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags, |
f801073f | 2627 | struct futex_q *q, struct futex_hash_bucket **hb) |
1da177e4 | 2628 | { |
e2970f2f IM |
2629 | u32 uval; |
2630 | int ret; | |
1da177e4 | 2631 | |
1da177e4 | 2632 | /* |
b2d0994b | 2633 | * Access the page AFTER the hash-bucket is locked. |
1da177e4 LT |
2634 | * Order is important: |
2635 | * | |
2636 | * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val); | |
2637 | * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); } | |
2638 | * | |
2639 | * The basic logical guarantee of a futex is that it blocks ONLY | |
2640 | * if cond(var) is known to be true at the time of blocking, for | |
8fe8f545 ML |
2641 | * any cond. If we locked the hash-bucket after testing *uaddr, that |
2642 | * would open a race condition where we could block indefinitely with | |
1da177e4 LT |
2643 | * cond(var) false, which would violate the guarantee. |
2644 | * | |
8fe8f545 ML |
2645 | * On the other hand, we insert q and release the hash-bucket only |
2646 | * after testing *uaddr. This guarantees that futex_wait() will NOT | |
2647 | * absorb a wakeup if *uaddr does not match the desired values | |
2648 | * while the syscall executes. | |
1da177e4 | 2649 | */ |
f801073f | 2650 | retry: |
96d4f267 | 2651 | ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ); |
f801073f | 2652 | if (unlikely(ret != 0)) |
a5a2a0c7 | 2653 | return ret; |
f801073f DH |
2654 | |
2655 | retry_private: | |
2656 | *hb = queue_lock(q); | |
2657 | ||
e2970f2f | 2658 | ret = get_futex_value_locked(&uval, uaddr); |
1da177e4 | 2659 | |
f801073f | 2660 | if (ret) { |
0d00c7b2 | 2661 | queue_unlock(*hb); |
1da177e4 | 2662 | |
e2970f2f | 2663 | ret = get_user(uval, uaddr); |
e4dc5b7a | 2664 | if (ret) |
d7c5ed73 | 2665 | return ret; |
1da177e4 | 2666 | |
b41277dc | 2667 | if (!(flags & FLAGS_SHARED)) |
e4dc5b7a DH |
2668 | goto retry_private; |
2669 | ||
e4dc5b7a | 2670 | goto retry; |
1da177e4 | 2671 | } |
ca5f9524 | 2672 | |
f801073f | 2673 | if (uval != val) { |
0d00c7b2 | 2674 | queue_unlock(*hb); |
f801073f | 2675 | ret = -EWOULDBLOCK; |
2fff78c7 | 2676 | } |
1da177e4 | 2677 | |
f801073f DH |
2678 | return ret; |
2679 | } | |
2680 | ||
b41277dc DH |
2681 | static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val, |
2682 | ktime_t *abs_time, u32 bitset) | |
f801073f | 2683 | { |
5ca584d9 | 2684 | struct hrtimer_sleeper timeout, *to; |
f801073f DH |
2685 | struct restart_block *restart; |
2686 | struct futex_hash_bucket *hb; | |
5bdb05f9 | 2687 | struct futex_q q = futex_q_init; |
f801073f DH |
2688 | int ret; |
2689 | ||
2690 | if (!bitset) | |
2691 | return -EINVAL; | |
f801073f DH |
2692 | q.bitset = bitset; |
2693 | ||
5ca584d9 WL |
2694 | to = futex_setup_timer(abs_time, &timeout, flags, |
2695 | current->timer_slack_ns); | |
d58e6576 | 2696 | retry: |
7ada876a DH |
2697 | /* |
2698 | * Prepare to wait on uaddr. On success, holds hb lock and increments | |
2699 | * q.key refs. | |
2700 | */ | |
b41277dc | 2701 | ret = futex_wait_setup(uaddr, val, flags, &q, &hb); |
f801073f DH |
2702 | if (ret) |
2703 | goto out; | |
2704 | ||
ca5f9524 | 2705 | /* queue_me and wait for wakeup, timeout, or a signal. */ |
f1a11e05 | 2706 | futex_wait_queue_me(hb, &q, to); |
1da177e4 LT |
2707 | |
2708 | /* If we were woken (and unqueued), we succeeded, whatever. */ | |
2fff78c7 | 2709 | ret = 0; |
7ada876a | 2710 | /* unqueue_me() drops q.key ref */ |
1da177e4 | 2711 | if (!unqueue_me(&q)) |
7ada876a | 2712 | goto out; |
2fff78c7 | 2713 | ret = -ETIMEDOUT; |
ca5f9524 | 2714 | if (to && !to->task) |
7ada876a | 2715 | goto out; |
72c1bbf3 | 2716 | |
e2970f2f | 2717 | /* |
d58e6576 TG |
2718 | * We expect signal_pending(current), but we might be the |
2719 | * victim of a spurious wakeup as well. | |
e2970f2f | 2720 | */ |
7ada876a | 2721 | if (!signal_pending(current)) |
d58e6576 | 2722 | goto retry; |
d58e6576 | 2723 | |
2fff78c7 | 2724 | ret = -ERESTARTSYS; |
c19384b5 | 2725 | if (!abs_time) |
7ada876a | 2726 | goto out; |
1da177e4 | 2727 | |
f56141e3 | 2728 | restart = ¤t->restart_block; |
2fff78c7 | 2729 | restart->fn = futex_wait_restart; |
a3c74c52 | 2730 | restart->futex.uaddr = uaddr; |
2fff78c7 | 2731 | restart->futex.val = val; |
2456e855 | 2732 | restart->futex.time = *abs_time; |
2fff78c7 | 2733 | restart->futex.bitset = bitset; |
0cd9c649 | 2734 | restart->futex.flags = flags | FLAGS_HAS_TIMEOUT; |
42d35d48 | 2735 | |
2fff78c7 PZ |
2736 | ret = -ERESTART_RESTARTBLOCK; |
2737 | ||
42d35d48 | 2738 | out: |
ca5f9524 DH |
2739 | if (to) { |
2740 | hrtimer_cancel(&to->timer); | |
2741 | destroy_hrtimer_on_stack(&to->timer); | |
2742 | } | |
c87e2837 IM |
2743 | return ret; |
2744 | } | |
2745 | ||
72c1bbf3 NP |
2746 | |
2747 | static long futex_wait_restart(struct restart_block *restart) | |
2748 | { | |
a3c74c52 | 2749 | u32 __user *uaddr = restart->futex.uaddr; |
a72188d8 | 2750 | ktime_t t, *tp = NULL; |
72c1bbf3 | 2751 | |
a72188d8 | 2752 | if (restart->futex.flags & FLAGS_HAS_TIMEOUT) { |
2456e855 | 2753 | t = restart->futex.time; |
a72188d8 DH |
2754 | tp = &t; |
2755 | } | |
72c1bbf3 | 2756 | restart->fn = do_no_restart_syscall; |
b41277dc DH |
2757 | |
2758 | return (long)futex_wait(uaddr, restart->futex.flags, | |
2759 | restart->futex.val, tp, restart->futex.bitset); | |
72c1bbf3 NP |
2760 | } |
2761 | ||
2762 | ||
c87e2837 IM |
2763 | /* |
2764 | * Userspace tried a 0 -> TID atomic transition of the futex value | |
2765 | * and failed. The kernel side here does the whole locking operation: | |
767f509c DB |
2766 | * if there are waiters then it will block as a consequence of relying |
2767 | * on rt-mutexes, it does PI, etc. (Due to races the kernel might see | |
2768 | * a 0 value of the futex too.). | |
2769 | * | |
2770 | * Also serves as futex trylock_pi()'ing, and due semantics. | |
c87e2837 | 2771 | */ |
996636dd | 2772 | static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, |
b41277dc | 2773 | ktime_t *time, int trylock) |
c87e2837 | 2774 | { |
5ca584d9 | 2775 | struct hrtimer_sleeper timeout, *to; |
16ffa12d | 2776 | struct futex_pi_state *pi_state = NULL; |
3ef240ea | 2777 | struct task_struct *exiting = NULL; |
cfafcd11 | 2778 | struct rt_mutex_waiter rt_waiter; |
c87e2837 | 2779 | struct futex_hash_bucket *hb; |
5bdb05f9 | 2780 | struct futex_q q = futex_q_init; |
dd973998 | 2781 | int res, ret; |
c87e2837 | 2782 | |
bc2eecd7 NP |
2783 | if (!IS_ENABLED(CONFIG_FUTEX_PI)) |
2784 | return -ENOSYS; | |
2785 | ||
c87e2837 IM |
2786 | if (refill_pi_state_cache()) |
2787 | return -ENOMEM; | |
2788 | ||
5ca584d9 | 2789 | to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0); |
c5780e97 | 2790 | |
42d35d48 | 2791 | retry: |
96d4f267 | 2792 | ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE); |
c87e2837 | 2793 | if (unlikely(ret != 0)) |
42d35d48 | 2794 | goto out; |
c87e2837 | 2795 | |
e4dc5b7a | 2796 | retry_private: |
82af7aca | 2797 | hb = queue_lock(&q); |
c87e2837 | 2798 | |
3ef240ea TG |
2799 | ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, |
2800 | &exiting, 0); | |
c87e2837 | 2801 | if (unlikely(ret)) { |
767f509c DB |
2802 | /* |
2803 | * Atomic work succeeded and we got the lock, | |
2804 | * or failed. Either way, we do _not_ block. | |
2805 | */ | |
778e9a9c | 2806 | switch (ret) { |
1a52084d DH |
2807 | case 1: |
2808 | /* We got the lock. */ | |
2809 | ret = 0; | |
2810 | goto out_unlock_put_key; | |
2811 | case -EFAULT: | |
2812 | goto uaddr_faulted; | |
ac31c7ff | 2813 | case -EBUSY: |
778e9a9c AK |
2814 | case -EAGAIN: |
2815 | /* | |
af54d6a1 | 2816 | * Two reasons for this: |
ac31c7ff | 2817 | * - EBUSY: Task is exiting and we just wait for the |
af54d6a1 | 2818 | * exit to complete. |
ac31c7ff | 2819 | * - EAGAIN: The user space value changed. |
778e9a9c | 2820 | */ |
0d00c7b2 | 2821 | queue_unlock(hb); |
3ef240ea TG |
2822 | /* |
2823 | * Handle the case where the owner is in the middle of | |
2824 | * exiting. Wait for the exit to complete otherwise | |
2825 | * this task might loop forever, aka. live lock. | |
2826 | */ | |
2827 | wait_for_owner_exiting(ret, exiting); | |
778e9a9c AK |
2828 | cond_resched(); |
2829 | goto retry; | |
778e9a9c | 2830 | default: |
42d35d48 | 2831 | goto out_unlock_put_key; |
c87e2837 | 2832 | } |
c87e2837 IM |
2833 | } |
2834 | ||
cfafcd11 PZ |
2835 | WARN_ON(!q.pi_state); |
2836 | ||
c87e2837 IM |
2837 | /* |
2838 | * Only actually queue now that the atomic ops are done: | |
2839 | */ | |
cfafcd11 | 2840 | __queue_me(&q, hb); |
c87e2837 | 2841 | |
cfafcd11 | 2842 | if (trylock) { |
5293c2ef | 2843 | ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex); |
c87e2837 IM |
2844 | /* Fixup the trylock return value: */ |
2845 | ret = ret ? 0 : -EWOULDBLOCK; | |
cfafcd11 | 2846 | goto no_block; |
c87e2837 IM |
2847 | } |
2848 | ||
56222b21 PZ |
2849 | rt_mutex_init_waiter(&rt_waiter); |
2850 | ||
cfafcd11 | 2851 | /* |
56222b21 PZ |
2852 | * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not |
2853 | * hold it while doing rt_mutex_start_proxy(), because then it will | |
2854 | * include hb->lock in the blocking chain, even through we'll not in | |
2855 | * fact hold it while blocking. This will lead it to report -EDEADLK | |
2856 | * and BUG when futex_unlock_pi() interleaves with this. | |
2857 | * | |
2858 | * Therefore acquire wait_lock while holding hb->lock, but drop the | |
1a1fb985 TG |
2859 | * latter before calling __rt_mutex_start_proxy_lock(). This |
2860 | * interleaves with futex_unlock_pi() -- which does a similar lock | |
2861 | * handoff -- such that the latter can observe the futex_q::pi_state | |
2862 | * before __rt_mutex_start_proxy_lock() is done. | |
cfafcd11 | 2863 | */ |
56222b21 PZ |
2864 | raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock); |
2865 | spin_unlock(q.lock_ptr); | |
1a1fb985 TG |
2866 | /* |
2867 | * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter | |
2868 | * such that futex_unlock_pi() is guaranteed to observe the waiter when | |
2869 | * it sees the futex_q::pi_state. | |
2870 | */ | |
56222b21 PZ |
2871 | ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current); |
2872 | raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock); | |
2873 | ||
cfafcd11 PZ |
2874 | if (ret) { |
2875 | if (ret == 1) | |
2876 | ret = 0; | |
1a1fb985 | 2877 | goto cleanup; |
cfafcd11 PZ |
2878 | } |
2879 | ||
cfafcd11 | 2880 | if (unlikely(to)) |
9dd8813e | 2881 | hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS); |
cfafcd11 PZ |
2882 | |
2883 | ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter); | |
2884 | ||
1a1fb985 | 2885 | cleanup: |
a99e4e41 | 2886 | spin_lock(q.lock_ptr); |
cfafcd11 | 2887 | /* |
1a1fb985 | 2888 | * If we failed to acquire the lock (deadlock/signal/timeout), we must |
cfafcd11 | 2889 | * first acquire the hb->lock before removing the lock from the |
1a1fb985 TG |
2890 | * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait |
2891 | * lists consistent. | |
56222b21 PZ |
2892 | * |
2893 | * In particular; it is important that futex_unlock_pi() can not | |
2894 | * observe this inconsistency. | |
cfafcd11 PZ |
2895 | */ |
2896 | if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter)) | |
2897 | ret = 0; | |
2898 | ||
2899 | no_block: | |
dd973998 DH |
2900 | /* |
2901 | * Fixup the pi_state owner and possibly acquire the lock if we | |
2902 | * haven't already. | |
2903 | */ | |
ae791a2d | 2904 | res = fixup_owner(uaddr, &q, !ret); |
dd973998 DH |
2905 | /* |
2906 | * If fixup_owner() returned an error, proprogate that. If it acquired | |
2907 | * the lock, clear our -ETIMEDOUT or -EINTR. | |
2908 | */ | |
2909 | if (res) | |
2910 | ret = (res < 0) ? res : 0; | |
c87e2837 | 2911 | |
e8f6386c | 2912 | /* |
dd973998 DH |
2913 | * If fixup_owner() faulted and was unable to handle the fault, unlock |
2914 | * it and return the fault to userspace. | |
e8f6386c | 2915 | */ |
16ffa12d PZ |
2916 | if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) { |
2917 | pi_state = q.pi_state; | |
2918 | get_pi_state(pi_state); | |
2919 | } | |
e8f6386c | 2920 | |
778e9a9c AK |
2921 | /* Unqueue and drop the lock */ |
2922 | unqueue_me_pi(&q); | |
c87e2837 | 2923 | |
16ffa12d PZ |
2924 | if (pi_state) { |
2925 | rt_mutex_futex_unlock(&pi_state->pi_mutex); | |
2926 | put_pi_state(pi_state); | |
2927 | } | |
2928 | ||
9180bd46 | 2929 | goto out; |
c87e2837 | 2930 | |
42d35d48 | 2931 | out_unlock_put_key: |
0d00c7b2 | 2932 | queue_unlock(hb); |
c87e2837 | 2933 | |
42d35d48 | 2934 | out: |
97181f9b TG |
2935 | if (to) { |
2936 | hrtimer_cancel(&to->timer); | |
237fc6e7 | 2937 | destroy_hrtimer_on_stack(&to->timer); |
97181f9b | 2938 | } |
dd973998 | 2939 | return ret != -EINTR ? ret : -ERESTARTNOINTR; |
c87e2837 | 2940 | |
42d35d48 | 2941 | uaddr_faulted: |
0d00c7b2 | 2942 | queue_unlock(hb); |
778e9a9c | 2943 | |
d0725992 | 2944 | ret = fault_in_user_writeable(uaddr); |
e4dc5b7a | 2945 | if (ret) |
9180bd46 | 2946 | goto out; |
c87e2837 | 2947 | |
b41277dc | 2948 | if (!(flags & FLAGS_SHARED)) |
e4dc5b7a DH |
2949 | goto retry_private; |
2950 | ||
e4dc5b7a | 2951 | goto retry; |
c87e2837 IM |
2952 | } |
2953 | ||
c87e2837 IM |
2954 | /* |
2955 | * Userspace attempted a TID -> 0 atomic transition, and failed. | |
2956 | * This is the in-kernel slowpath: we look up the PI state (if any), | |
2957 | * and do the rt-mutex unlock. | |
2958 | */ | |
b41277dc | 2959 | static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags) |
c87e2837 | 2960 | { |
3f649ab7 | 2961 | u32 curval, uval, vpid = task_pid_vnr(current); |
38d47c1b | 2962 | union futex_key key = FUTEX_KEY_INIT; |
ccf9e6a8 | 2963 | struct futex_hash_bucket *hb; |
499f5aca | 2964 | struct futex_q *top_waiter; |
e4dc5b7a | 2965 | int ret; |
c87e2837 | 2966 | |
bc2eecd7 NP |
2967 | if (!IS_ENABLED(CONFIG_FUTEX_PI)) |
2968 | return -ENOSYS; | |
2969 | ||
c87e2837 IM |
2970 | retry: |
2971 | if (get_user(uval, uaddr)) | |
2972 | return -EFAULT; | |
2973 | /* | |
2974 | * We release only a lock we actually own: | |
2975 | */ | |
c0c9ed15 | 2976 | if ((uval & FUTEX_TID_MASK) != vpid) |
c87e2837 | 2977 | return -EPERM; |
c87e2837 | 2978 | |
96d4f267 | 2979 | ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE); |
ccf9e6a8 TG |
2980 | if (ret) |
2981 | return ret; | |
c87e2837 IM |
2982 | |
2983 | hb = hash_futex(&key); | |
2984 | spin_lock(&hb->lock); | |
2985 | ||
c87e2837 | 2986 | /* |
ccf9e6a8 TG |
2987 | * Check waiters first. We do not trust user space values at |
2988 | * all and we at least want to know if user space fiddled | |
2989 | * with the futex value instead of blindly unlocking. | |
c87e2837 | 2990 | */ |
499f5aca PZ |
2991 | top_waiter = futex_top_waiter(hb, &key); |
2992 | if (top_waiter) { | |
16ffa12d PZ |
2993 | struct futex_pi_state *pi_state = top_waiter->pi_state; |
2994 | ||
2995 | ret = -EINVAL; | |
2996 | if (!pi_state) | |
2997 | goto out_unlock; | |
2998 | ||
2999 | /* | |
3000 | * If current does not own the pi_state then the futex is | |
3001 | * inconsistent and user space fiddled with the futex value. | |
3002 | */ | |
3003 | if (pi_state->owner != current) | |
3004 | goto out_unlock; | |
3005 | ||
bebe5b51 | 3006 | get_pi_state(pi_state); |
802ab58d | 3007 | /* |
bebe5b51 PZ |
3008 | * By taking wait_lock while still holding hb->lock, we ensure |
3009 | * there is no point where we hold neither; and therefore | |
3010 | * wake_futex_pi() must observe a state consistent with what we | |
3011 | * observed. | |
1a1fb985 TG |
3012 | * |
3013 | * In particular; this forces __rt_mutex_start_proxy() to | |
3014 | * complete such that we're guaranteed to observe the | |
3015 | * rt_waiter. Also see the WARN in wake_futex_pi(). | |
16ffa12d | 3016 | */ |
bebe5b51 | 3017 | raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock); |
16ffa12d PZ |
3018 | spin_unlock(&hb->lock); |
3019 | ||
c74aef2d | 3020 | /* drops pi_state->pi_mutex.wait_lock */ |
16ffa12d PZ |
3021 | ret = wake_futex_pi(uaddr, uval, pi_state); |
3022 | ||
3023 | put_pi_state(pi_state); | |
3024 | ||
3025 | /* | |
3026 | * Success, we're done! No tricky corner cases. | |
802ab58d SAS |
3027 | */ |
3028 | if (!ret) | |
3029 | goto out_putkey; | |
c87e2837 | 3030 | /* |
ccf9e6a8 TG |
3031 | * The atomic access to the futex value generated a |
3032 | * pagefault, so retry the user-access and the wakeup: | |
c87e2837 IM |
3033 | */ |
3034 | if (ret == -EFAULT) | |
3035 | goto pi_faulted; | |
89e9e66b SAS |
3036 | /* |
3037 | * A unconditional UNLOCK_PI op raced against a waiter | |
3038 | * setting the FUTEX_WAITERS bit. Try again. | |
3039 | */ | |
6b4f4bc9 WD |
3040 | if (ret == -EAGAIN) |
3041 | goto pi_retry; | |
802ab58d SAS |
3042 | /* |
3043 | * wake_futex_pi has detected invalid state. Tell user | |
3044 | * space. | |
3045 | */ | |
16ffa12d | 3046 | goto out_putkey; |
c87e2837 | 3047 | } |
ccf9e6a8 | 3048 | |
c87e2837 | 3049 | /* |
ccf9e6a8 TG |
3050 | * We have no kernel internal state, i.e. no waiters in the |
3051 | * kernel. Waiters which are about to queue themselves are stuck | |
3052 | * on hb->lock. So we can safely ignore them. We do neither | |
3053 | * preserve the WAITERS bit not the OWNER_DIED one. We are the | |
3054 | * owner. | |
c87e2837 | 3055 | */ |
6b4f4bc9 | 3056 | if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) { |
16ffa12d | 3057 | spin_unlock(&hb->lock); |
6b4f4bc9 WD |
3058 | switch (ret) { |
3059 | case -EFAULT: | |
3060 | goto pi_faulted; | |
3061 | ||
3062 | case -EAGAIN: | |
3063 | goto pi_retry; | |
3064 | ||
3065 | default: | |
3066 | WARN_ON_ONCE(1); | |
3067 | goto out_putkey; | |
3068 | } | |
16ffa12d | 3069 | } |
c87e2837 | 3070 | |
ccf9e6a8 TG |
3071 | /* |
3072 | * If uval has changed, let user space handle it. | |
3073 | */ | |
3074 | ret = (curval == uval) ? 0 : -EAGAIN; | |
3075 | ||
c87e2837 IM |
3076 | out_unlock: |
3077 | spin_unlock(&hb->lock); | |
802ab58d | 3078 | out_putkey: |
c87e2837 IM |
3079 | return ret; |
3080 | ||
6b4f4bc9 | 3081 | pi_retry: |
6b4f4bc9 WD |
3082 | cond_resched(); |
3083 | goto retry; | |
3084 | ||
c87e2837 | 3085 | pi_faulted: |
c87e2837 | 3086 | |
d0725992 | 3087 | ret = fault_in_user_writeable(uaddr); |
b5686363 | 3088 | if (!ret) |
c87e2837 IM |
3089 | goto retry; |
3090 | ||
1da177e4 LT |
3091 | return ret; |
3092 | } | |
3093 | ||
52400ba9 DH |
3094 | /** |
3095 | * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex | |
3096 | * @hb: the hash_bucket futex_q was original enqueued on | |
3097 | * @q: the futex_q woken while waiting to be requeued | |
3098 | * @key2: the futex_key of the requeue target futex | |
3099 | * @timeout: the timeout associated with the wait (NULL if none) | |
3100 | * | |
3101 | * Detect if the task was woken on the initial futex as opposed to the requeue | |
3102 | * target futex. If so, determine if it was a timeout or a signal that caused | |
3103 | * the wakeup and return the appropriate error code to the caller. Must be | |
3104 | * called with the hb lock held. | |
3105 | * | |
6c23cbbd | 3106 | * Return: |
7b4ff1ad MCC |
3107 | * - 0 = no early wakeup detected; |
3108 | * - <0 = -ETIMEDOUT or -ERESTARTNOINTR | |
52400ba9 DH |
3109 | */ |
3110 | static inline | |
3111 | int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb, | |
3112 | struct futex_q *q, union futex_key *key2, | |
3113 | struct hrtimer_sleeper *timeout) | |
3114 | { | |
3115 | int ret = 0; | |
3116 | ||
3117 | /* | |
3118 | * With the hb lock held, we avoid races while we process the wakeup. | |
3119 | * We only need to hold hb (and not hb2) to ensure atomicity as the | |
3120 | * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb. | |
3121 | * It can't be requeued from uaddr2 to something else since we don't | |
3122 | * support a PI aware source futex for requeue. | |
3123 | */ | |
3124 | if (!match_futex(&q->key, key2)) { | |
3125 | WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr)); | |
3126 | /* | |
3127 | * We were woken prior to requeue by a timeout or a signal. | |
3128 | * Unqueue the futex_q and determine which it was. | |
3129 | */ | |
2e12978a | 3130 | plist_del(&q->list, &hb->chain); |
11d4616b | 3131 | hb_waiters_dec(hb); |
52400ba9 | 3132 | |
d58e6576 | 3133 | /* Handle spurious wakeups gracefully */ |
11df6ddd | 3134 | ret = -EWOULDBLOCK; |
52400ba9 DH |
3135 | if (timeout && !timeout->task) |
3136 | ret = -ETIMEDOUT; | |
d58e6576 | 3137 | else if (signal_pending(current)) |
1c840c14 | 3138 | ret = -ERESTARTNOINTR; |
52400ba9 DH |
3139 | } |
3140 | return ret; | |
3141 | } | |
3142 | ||
3143 | /** | |
3144 | * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2 | |
56ec1607 | 3145 | * @uaddr: the futex we initially wait on (non-pi) |
b41277dc | 3146 | * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be |
ab51fbab | 3147 | * the same type, no requeueing from private to shared, etc. |
52400ba9 DH |
3148 | * @val: the expected value of uaddr |
3149 | * @abs_time: absolute timeout | |
56ec1607 | 3150 | * @bitset: 32 bit wakeup bitset set by userspace, defaults to all |
52400ba9 DH |
3151 | * @uaddr2: the pi futex we will take prior to returning to user-space |
3152 | * | |
3153 | * The caller will wait on uaddr and will be requeued by futex_requeue() to | |
6f7b0a2a DH |
3154 | * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake |
3155 | * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to | |
3156 | * userspace. This ensures the rt_mutex maintains an owner when it has waiters; | |
3157 | * without one, the pi logic would not know which task to boost/deboost, if | |
3158 | * there was a need to. | |
52400ba9 DH |
3159 | * |
3160 | * We call schedule in futex_wait_queue_me() when we enqueue and return there | |
6c23cbbd | 3161 | * via the following-- |
52400ba9 | 3162 | * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue() |
cc6db4e6 DH |
3163 | * 2) wakeup on uaddr2 after a requeue |
3164 | * 3) signal | |
3165 | * 4) timeout | |
52400ba9 | 3166 | * |
cc6db4e6 | 3167 | * If 3, cleanup and return -ERESTARTNOINTR. |
52400ba9 DH |
3168 | * |
3169 | * If 2, we may then block on trying to take the rt_mutex and return via: | |
3170 | * 5) successful lock | |
3171 | * 6) signal | |
3172 | * 7) timeout | |
3173 | * 8) other lock acquisition failure | |
3174 | * | |
cc6db4e6 | 3175 | * If 6, return -EWOULDBLOCK (restarting the syscall would do the same). |
52400ba9 DH |
3176 | * |
3177 | * If 4 or 7, we cleanup and return with -ETIMEDOUT. | |
3178 | * | |
6c23cbbd | 3179 | * Return: |
7b4ff1ad MCC |
3180 | * - 0 - On success; |
3181 | * - <0 - On error | |
52400ba9 | 3182 | */ |
b41277dc | 3183 | static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags, |
52400ba9 | 3184 | u32 val, ktime_t *abs_time, u32 bitset, |
b41277dc | 3185 | u32 __user *uaddr2) |
52400ba9 | 3186 | { |
5ca584d9 | 3187 | struct hrtimer_sleeper timeout, *to; |
16ffa12d | 3188 | struct futex_pi_state *pi_state = NULL; |
52400ba9 | 3189 | struct rt_mutex_waiter rt_waiter; |
52400ba9 | 3190 | struct futex_hash_bucket *hb; |
5bdb05f9 DH |
3191 | union futex_key key2 = FUTEX_KEY_INIT; |
3192 | struct futex_q q = futex_q_init; | |
52400ba9 | 3193 | int res, ret; |
52400ba9 | 3194 | |
bc2eecd7 NP |
3195 | if (!IS_ENABLED(CONFIG_FUTEX_PI)) |
3196 | return -ENOSYS; | |
3197 | ||
6f7b0a2a DH |
3198 | if (uaddr == uaddr2) |
3199 | return -EINVAL; | |
3200 | ||
52400ba9 DH |
3201 | if (!bitset) |
3202 | return -EINVAL; | |
3203 | ||
5ca584d9 WL |
3204 | to = futex_setup_timer(abs_time, &timeout, flags, |
3205 | current->timer_slack_ns); | |
52400ba9 DH |
3206 | |
3207 | /* | |
3208 | * The waiter is allocated on our stack, manipulated by the requeue | |
3209 | * code while we sleep on uaddr. | |
3210 | */ | |
50809358 | 3211 | rt_mutex_init_waiter(&rt_waiter); |
52400ba9 | 3212 | |
96d4f267 | 3213 | ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE); |
52400ba9 DH |
3214 | if (unlikely(ret != 0)) |
3215 | goto out; | |
3216 | ||
84bc4af5 DH |
3217 | q.bitset = bitset; |
3218 | q.rt_waiter = &rt_waiter; | |
3219 | q.requeue_pi_key = &key2; | |
3220 | ||
7ada876a DH |
3221 | /* |
3222 | * Prepare to wait on uaddr. On success, increments q.key (key1) ref | |
3223 | * count. | |
3224 | */ | |
b41277dc | 3225 | ret = futex_wait_setup(uaddr, val, flags, &q, &hb); |
c8b15a70 | 3226 | if (ret) |
9180bd46 | 3227 | goto out; |
52400ba9 | 3228 | |
e9c243a5 TG |
3229 | /* |
3230 | * The check above which compares uaddrs is not sufficient for | |
3231 | * shared futexes. We need to compare the keys: | |
3232 | */ | |
3233 | if (match_futex(&q.key, &key2)) { | |
13c42c2f | 3234 | queue_unlock(hb); |
e9c243a5 | 3235 | ret = -EINVAL; |
9180bd46 | 3236 | goto out; |
e9c243a5 TG |
3237 | } |
3238 | ||
52400ba9 | 3239 | /* Queue the futex_q, drop the hb lock, wait for wakeup. */ |
f1a11e05 | 3240 | futex_wait_queue_me(hb, &q, to); |
52400ba9 DH |
3241 | |
3242 | spin_lock(&hb->lock); | |
3243 | ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to); | |
3244 | spin_unlock(&hb->lock); | |
3245 | if (ret) | |
9180bd46 | 3246 | goto out; |
52400ba9 DH |
3247 | |
3248 | /* | |
3249 | * In order for us to be here, we know our q.key == key2, and since | |
3250 | * we took the hb->lock above, we also know that futex_requeue() has | |
3251 | * completed and we no longer have to concern ourselves with a wakeup | |
7ada876a DH |
3252 | * race with the atomic proxy lock acquisition by the requeue code. The |
3253 | * futex_requeue dropped our key1 reference and incremented our key2 | |
3254 | * reference count. | |
52400ba9 DH |
3255 | */ |
3256 | ||
3257 | /* Check if the requeue code acquired the second futex for us. */ | |
3258 | if (!q.rt_waiter) { | |
3259 | /* | |
3260 | * Got the lock. We might not be the anticipated owner if we | |
3261 | * did a lock-steal - fix up the PI-state in that case. | |
3262 | */ | |
3263 | if (q.pi_state && (q.pi_state->owner != current)) { | |
3264 | spin_lock(q.lock_ptr); | |
ae791a2d | 3265 | ret = fixup_pi_state_owner(uaddr2, &q, current); |
16ffa12d PZ |
3266 | if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) { |
3267 | pi_state = q.pi_state; | |
3268 | get_pi_state(pi_state); | |
3269 | } | |
fb75a428 TG |
3270 | /* |
3271 | * Drop the reference to the pi state which | |
3272 | * the requeue_pi() code acquired for us. | |
3273 | */ | |
29e9ee5d | 3274 | put_pi_state(q.pi_state); |
52400ba9 DH |
3275 | spin_unlock(q.lock_ptr); |
3276 | } | |
3277 | } else { | |
c236c8e9 PZ |
3278 | struct rt_mutex *pi_mutex; |
3279 | ||
52400ba9 DH |
3280 | /* |
3281 | * We have been woken up by futex_unlock_pi(), a timeout, or a | |
3282 | * signal. futex_unlock_pi() will not destroy the lock_ptr nor | |
3283 | * the pi_state. | |
3284 | */ | |
f27071cb | 3285 | WARN_ON(!q.pi_state); |
52400ba9 | 3286 | pi_mutex = &q.pi_state->pi_mutex; |
38d589f2 | 3287 | ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter); |
52400ba9 DH |
3288 | |
3289 | spin_lock(q.lock_ptr); | |
38d589f2 PZ |
3290 | if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter)) |
3291 | ret = 0; | |
3292 | ||
3293 | debug_rt_mutex_free_waiter(&rt_waiter); | |
52400ba9 DH |
3294 | /* |
3295 | * Fixup the pi_state owner and possibly acquire the lock if we | |
3296 | * haven't already. | |
3297 | */ | |
ae791a2d | 3298 | res = fixup_owner(uaddr2, &q, !ret); |
52400ba9 DH |
3299 | /* |
3300 | * If fixup_owner() returned an error, proprogate that. If it | |
56ec1607 | 3301 | * acquired the lock, clear -ETIMEDOUT or -EINTR. |
52400ba9 DH |
3302 | */ |
3303 | if (res) | |
3304 | ret = (res < 0) ? res : 0; | |
3305 | ||
c236c8e9 PZ |
3306 | /* |
3307 | * If fixup_pi_state_owner() faulted and was unable to handle | |
3308 | * the fault, unlock the rt_mutex and return the fault to | |
3309 | * userspace. | |
3310 | */ | |
16ffa12d PZ |
3311 | if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) { |
3312 | pi_state = q.pi_state; | |
3313 | get_pi_state(pi_state); | |
3314 | } | |
c236c8e9 | 3315 | |
52400ba9 DH |
3316 | /* Unqueue and drop the lock. */ |
3317 | unqueue_me_pi(&q); | |
3318 | } | |
3319 | ||
16ffa12d PZ |
3320 | if (pi_state) { |
3321 | rt_mutex_futex_unlock(&pi_state->pi_mutex); | |
3322 | put_pi_state(pi_state); | |
3323 | } | |
3324 | ||
c236c8e9 | 3325 | if (ret == -EINTR) { |
52400ba9 | 3326 | /* |
cc6db4e6 DH |
3327 | * We've already been requeued, but cannot restart by calling |
3328 | * futex_lock_pi() directly. We could restart this syscall, but | |
3329 | * it would detect that the user space "val" changed and return | |
3330 | * -EWOULDBLOCK. Save the overhead of the restart and return | |
3331 | * -EWOULDBLOCK directly. | |
52400ba9 | 3332 | */ |
2070887f | 3333 | ret = -EWOULDBLOCK; |
52400ba9 DH |
3334 | } |
3335 | ||
52400ba9 DH |
3336 | out: |
3337 | if (to) { | |
3338 | hrtimer_cancel(&to->timer); | |
3339 | destroy_hrtimer_on_stack(&to->timer); | |
3340 | } | |
3341 | return ret; | |
3342 | } | |
3343 | ||
0771dfef IM |
3344 | /* |
3345 | * Support for robust futexes: the kernel cleans up held futexes at | |
3346 | * thread exit time. | |
3347 | * | |
3348 | * Implementation: user-space maintains a per-thread list of locks it | |
3349 | * is holding. Upon do_exit(), the kernel carefully walks this list, | |
3350 | * and marks all locks that are owned by this thread with the | |
c87e2837 | 3351 | * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is |
0771dfef IM |
3352 | * always manipulated with the lock held, so the list is private and |
3353 | * per-thread. Userspace also maintains a per-thread 'list_op_pending' | |
3354 | * field, to allow the kernel to clean up if the thread dies after | |
3355 | * acquiring the lock, but just before it could have added itself to | |
3356 | * the list. There can only be one such pending lock. | |
3357 | */ | |
3358 | ||
3359 | /** | |
d96ee56c DH |
3360 | * sys_set_robust_list() - Set the robust-futex list head of a task |
3361 | * @head: pointer to the list-head | |
3362 | * @len: length of the list-head, as userspace expects | |
0771dfef | 3363 | */ |
836f92ad HC |
3364 | SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head, |
3365 | size_t, len) | |
0771dfef | 3366 | { |
a0c1e907 TG |
3367 | if (!futex_cmpxchg_enabled) |
3368 | return -ENOSYS; | |
0771dfef IM |
3369 | /* |
3370 | * The kernel knows only one size for now: | |
3371 | */ | |
3372 | if (unlikely(len != sizeof(*head))) | |
3373 | return -EINVAL; | |
3374 | ||
3375 | current->robust_list = head; | |
3376 | ||
3377 | return 0; | |
3378 | } | |
3379 | ||
3380 | /** | |
d96ee56c DH |
3381 | * sys_get_robust_list() - Get the robust-futex list head of a task |
3382 | * @pid: pid of the process [zero for current task] | |
3383 | * @head_ptr: pointer to a list-head pointer, the kernel fills it in | |
3384 | * @len_ptr: pointer to a length field, the kernel fills in the header size | |
0771dfef | 3385 | */ |
836f92ad HC |
3386 | SYSCALL_DEFINE3(get_robust_list, int, pid, |
3387 | struct robust_list_head __user * __user *, head_ptr, | |
3388 | size_t __user *, len_ptr) | |
0771dfef | 3389 | { |
ba46df98 | 3390 | struct robust_list_head __user *head; |
0771dfef | 3391 | unsigned long ret; |
bdbb776f | 3392 | struct task_struct *p; |
0771dfef | 3393 | |
a0c1e907 TG |
3394 | if (!futex_cmpxchg_enabled) |
3395 | return -ENOSYS; | |
3396 | ||
bdbb776f KC |
3397 | rcu_read_lock(); |
3398 | ||
3399 | ret = -ESRCH; | |
0771dfef | 3400 | if (!pid) |
bdbb776f | 3401 | p = current; |
0771dfef | 3402 | else { |
228ebcbe | 3403 | p = find_task_by_vpid(pid); |
0771dfef IM |
3404 | if (!p) |
3405 | goto err_unlock; | |
0771dfef IM |
3406 | } |
3407 | ||
bdbb776f | 3408 | ret = -EPERM; |
caaee623 | 3409 | if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS)) |
bdbb776f KC |
3410 | goto err_unlock; |
3411 | ||
3412 | head = p->robust_list; | |
3413 | rcu_read_unlock(); | |
3414 | ||
0771dfef IM |
3415 | if (put_user(sizeof(*head), len_ptr)) |
3416 | return -EFAULT; | |
3417 | return put_user(head, head_ptr); | |
3418 | ||
3419 | err_unlock: | |
aaa2a97e | 3420 | rcu_read_unlock(); |
0771dfef IM |
3421 | |
3422 | return ret; | |
3423 | } | |
3424 | ||
ca16d5be YT |
3425 | /* Constants for the pending_op argument of handle_futex_death */ |
3426 | #define HANDLE_DEATH_PENDING true | |
3427 | #define HANDLE_DEATH_LIST false | |
3428 | ||
0771dfef IM |
3429 | /* |
3430 | * Process a futex-list entry, check whether it's owned by the | |
3431 | * dying task, and do notification if so: | |
3432 | */ | |
ca16d5be YT |
3433 | static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, |
3434 | bool pi, bool pending_op) | |
0771dfef | 3435 | { |
3f649ab7 | 3436 | u32 uval, nval, mval; |
6b4f4bc9 | 3437 | int err; |
0771dfef | 3438 | |
5a07168d CJ |
3439 | /* Futex address must be 32bit aligned */ |
3440 | if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0) | |
3441 | return -1; | |
3442 | ||
8f17d3a5 IM |
3443 | retry: |
3444 | if (get_user(uval, uaddr)) | |
0771dfef IM |
3445 | return -1; |
3446 | ||
ca16d5be YT |
3447 | /* |
3448 | * Special case for regular (non PI) futexes. The unlock path in | |
3449 | * user space has two race scenarios: | |
3450 | * | |
3451 | * 1. The unlock path releases the user space futex value and | |
3452 | * before it can execute the futex() syscall to wake up | |
3453 | * waiters it is killed. | |
3454 | * | |
3455 | * 2. A woken up waiter is killed before it can acquire the | |
3456 | * futex in user space. | |
3457 | * | |
3458 | * In both cases the TID validation below prevents a wakeup of | |
3459 | * potential waiters which can cause these waiters to block | |
3460 | * forever. | |
3461 | * | |
3462 | * In both cases the following conditions are met: | |
3463 | * | |
3464 | * 1) task->robust_list->list_op_pending != NULL | |
3465 | * @pending_op == true | |
3466 | * 2) User space futex value == 0 | |
3467 | * 3) Regular futex: @pi == false | |
3468 | * | |
3469 | * If these conditions are met, it is safe to attempt waking up a | |
3470 | * potential waiter without touching the user space futex value and | |
3471 | * trying to set the OWNER_DIED bit. The user space futex value is | |
3472 | * uncontended and the rest of the user space mutex state is | |
3473 | * consistent, so a woken waiter will just take over the | |
3474 | * uncontended futex. Setting the OWNER_DIED bit would create | |
3475 | * inconsistent state and malfunction of the user space owner died | |
3476 | * handling. | |
3477 | */ | |
3478 | if (pending_op && !pi && !uval) { | |
3479 | futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY); | |
3480 | return 0; | |
3481 | } | |
3482 | ||
6b4f4bc9 WD |
3483 | if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr)) |
3484 | return 0; | |
3485 | ||
3486 | /* | |
3487 | * Ok, this dying thread is truly holding a futex | |
3488 | * of interest. Set the OWNER_DIED bit atomically | |
3489 | * via cmpxchg, and if the value had FUTEX_WAITERS | |
3490 | * set, wake up a waiter (if any). (We have to do a | |
3491 | * futex_wake() even if OWNER_DIED is already set - | |
3492 | * to handle the rare but possible case of recursive | |
3493 | * thread-death.) The rest of the cleanup is done in | |
3494 | * userspace. | |
3495 | */ | |
3496 | mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED; | |
3497 | ||
3498 | /* | |
3499 | * We are not holding a lock here, but we want to have | |
3500 | * the pagefault_disable/enable() protection because | |
3501 | * we want to handle the fault gracefully. If the | |
3502 | * access fails we try to fault in the futex with R/W | |
3503 | * verification via get_user_pages. get_user() above | |
3504 | * does not guarantee R/W access. If that fails we | |
3505 | * give up and leave the futex locked. | |
3506 | */ | |
3507 | if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) { | |
3508 | switch (err) { | |
3509 | case -EFAULT: | |
6e0aa9f8 TG |
3510 | if (fault_in_user_writeable(uaddr)) |
3511 | return -1; | |
3512 | goto retry; | |
6b4f4bc9 WD |
3513 | |
3514 | case -EAGAIN: | |
3515 | cond_resched(); | |
8f17d3a5 | 3516 | goto retry; |
0771dfef | 3517 | |
6b4f4bc9 WD |
3518 | default: |
3519 | WARN_ON_ONCE(1); | |
3520 | return err; | |
3521 | } | |
0771dfef | 3522 | } |
6b4f4bc9 WD |
3523 | |
3524 | if (nval != uval) | |
3525 | goto retry; | |
3526 | ||
3527 | /* | |
3528 | * Wake robust non-PI futexes here. The wakeup of | |
3529 | * PI futexes happens in exit_pi_state(): | |
3530 | */ | |
3531 | if (!pi && (uval & FUTEX_WAITERS)) | |
3532 | futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY); | |
3533 | ||
0771dfef IM |
3534 | return 0; |
3535 | } | |
3536 | ||
e3f2ddea IM |
3537 | /* |
3538 | * Fetch a robust-list pointer. Bit 0 signals PI futexes: | |
3539 | */ | |
3540 | static inline int fetch_robust_entry(struct robust_list __user **entry, | |
ba46df98 | 3541 | struct robust_list __user * __user *head, |
1dcc41bb | 3542 | unsigned int *pi) |
e3f2ddea IM |
3543 | { |
3544 | unsigned long uentry; | |
3545 | ||
ba46df98 | 3546 | if (get_user(uentry, (unsigned long __user *)head)) |
e3f2ddea IM |
3547 | return -EFAULT; |
3548 | ||
ba46df98 | 3549 | *entry = (void __user *)(uentry & ~1UL); |
e3f2ddea IM |
3550 | *pi = uentry & 1; |
3551 | ||
3552 | return 0; | |
3553 | } | |
3554 | ||
0771dfef IM |
3555 | /* |
3556 | * Walk curr->robust_list (very carefully, it's a userspace list!) | |
3557 | * and mark any locks found there dead, and notify any waiters. | |
3558 | * | |
3559 | * We silently return on any sign of list-walking problem. | |
3560 | */ | |
ba31c1a4 | 3561 | static void exit_robust_list(struct task_struct *curr) |
0771dfef IM |
3562 | { |
3563 | struct robust_list_head __user *head = curr->robust_list; | |
9f96cb1e | 3564 | struct robust_list __user *entry, *next_entry, *pending; |
4c115e95 | 3565 | unsigned int limit = ROBUST_LIST_LIMIT, pi, pip; |
3f649ab7 | 3566 | unsigned int next_pi; |
0771dfef | 3567 | unsigned long futex_offset; |
9f96cb1e | 3568 | int rc; |
0771dfef | 3569 | |
a0c1e907 TG |
3570 | if (!futex_cmpxchg_enabled) |
3571 | return; | |
3572 | ||
0771dfef IM |
3573 | /* |
3574 | * Fetch the list head (which was registered earlier, via | |
3575 | * sys_set_robust_list()): | |
3576 | */ | |
e3f2ddea | 3577 | if (fetch_robust_entry(&entry, &head->list.next, &pi)) |
0771dfef IM |
3578 | return; |
3579 | /* | |
3580 | * Fetch the relative futex offset: | |
3581 | */ | |
3582 | if (get_user(futex_offset, &head->futex_offset)) | |
3583 | return; | |
3584 | /* | |
3585 | * Fetch any possibly pending lock-add first, and handle it | |
3586 | * if it exists: | |
3587 | */ | |
e3f2ddea | 3588 | if (fetch_robust_entry(&pending, &head->list_op_pending, &pip)) |
0771dfef | 3589 | return; |
e3f2ddea | 3590 | |
9f96cb1e | 3591 | next_entry = NULL; /* avoid warning with gcc */ |
0771dfef | 3592 | while (entry != &head->list) { |
9f96cb1e MS |
3593 | /* |
3594 | * Fetch the next entry in the list before calling | |
3595 | * handle_futex_death: | |
3596 | */ | |
3597 | rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi); | |
0771dfef IM |
3598 | /* |
3599 | * A pending lock might already be on the list, so | |
c87e2837 | 3600 | * don't process it twice: |
0771dfef | 3601 | */ |
ca16d5be | 3602 | if (entry != pending) { |
ba46df98 | 3603 | if (handle_futex_death((void __user *)entry + futex_offset, |
ca16d5be | 3604 | curr, pi, HANDLE_DEATH_LIST)) |
0771dfef | 3605 | return; |
ca16d5be | 3606 | } |
9f96cb1e | 3607 | if (rc) |
0771dfef | 3608 | return; |
9f96cb1e MS |
3609 | entry = next_entry; |
3610 | pi = next_pi; | |
0771dfef IM |
3611 | /* |
3612 | * Avoid excessively long or circular lists: | |
3613 | */ | |
3614 | if (!--limit) | |
3615 | break; | |
3616 | ||
3617 | cond_resched(); | |
3618 | } | |
9f96cb1e | 3619 | |
ca16d5be | 3620 | if (pending) { |
9f96cb1e | 3621 | handle_futex_death((void __user *)pending + futex_offset, |
ca16d5be YT |
3622 | curr, pip, HANDLE_DEATH_PENDING); |
3623 | } | |
0771dfef IM |
3624 | } |
3625 | ||
af8cbda2 | 3626 | static void futex_cleanup(struct task_struct *tsk) |
ba31c1a4 TG |
3627 | { |
3628 | if (unlikely(tsk->robust_list)) { | |
3629 | exit_robust_list(tsk); | |
3630 | tsk->robust_list = NULL; | |
3631 | } | |
3632 | ||
3633 | #ifdef CONFIG_COMPAT | |
3634 | if (unlikely(tsk->compat_robust_list)) { | |
3635 | compat_exit_robust_list(tsk); | |
3636 | tsk->compat_robust_list = NULL; | |
3637 | } | |
3638 | #endif | |
3639 | ||
3640 | if (unlikely(!list_empty(&tsk->pi_state_list))) | |
3641 | exit_pi_state_list(tsk); | |
3642 | } | |
3643 | ||
18f69438 TG |
3644 | /** |
3645 | * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD | |
3646 | * @tsk: task to set the state on | |
3647 | * | |
3648 | * Set the futex exit state of the task lockless. The futex waiter code | |
3649 | * observes that state when a task is exiting and loops until the task has | |
3650 | * actually finished the futex cleanup. The worst case for this is that the | |
3651 | * waiter runs through the wait loop until the state becomes visible. | |
3652 | * | |
3653 | * This is called from the recursive fault handling path in do_exit(). | |
3654 | * | |
3655 | * This is best effort. Either the futex exit code has run already or | |
3656 | * not. If the OWNER_DIED bit has been set on the futex then the waiter can | |
3657 | * take it over. If not, the problem is pushed back to user space. If the | |
3658 | * futex exit code did not run yet, then an already queued waiter might | |
3659 | * block forever, but there is nothing which can be done about that. | |
3660 | */ | |
3661 | void futex_exit_recursive(struct task_struct *tsk) | |
3662 | { | |
3f186d97 TG |
3663 | /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */ |
3664 | if (tsk->futex_state == FUTEX_STATE_EXITING) | |
3665 | mutex_unlock(&tsk->futex_exit_mutex); | |
18f69438 TG |
3666 | tsk->futex_state = FUTEX_STATE_DEAD; |
3667 | } | |
3668 | ||
af8cbda2 | 3669 | static void futex_cleanup_begin(struct task_struct *tsk) |
150d7158 | 3670 | { |
3f186d97 TG |
3671 | /* |
3672 | * Prevent various race issues against a concurrent incoming waiter | |
3673 | * including live locks by forcing the waiter to block on | |
3674 | * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in | |
3675 | * attach_to_pi_owner(). | |
3676 | */ | |
3677 | mutex_lock(&tsk->futex_exit_mutex); | |
3678 | ||
18f69438 | 3679 | /* |
4a8e991b TG |
3680 | * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock. |
3681 | * | |
3682 | * This ensures that all subsequent checks of tsk->futex_state in | |
3683 | * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with | |
3684 | * tsk->pi_lock held. | |
3685 | * | |
3686 | * It guarantees also that a pi_state which was queued right before | |
3687 | * the state change under tsk->pi_lock by a concurrent waiter must | |
3688 | * be observed in exit_pi_state_list(). | |
18f69438 TG |
3689 | */ |
3690 | raw_spin_lock_irq(&tsk->pi_lock); | |
4a8e991b | 3691 | tsk->futex_state = FUTEX_STATE_EXITING; |
18f69438 | 3692 | raw_spin_unlock_irq(&tsk->pi_lock); |
af8cbda2 | 3693 | } |
18f69438 | 3694 | |
af8cbda2 TG |
3695 | static void futex_cleanup_end(struct task_struct *tsk, int state) |
3696 | { | |
3697 | /* | |
3698 | * Lockless store. The only side effect is that an observer might | |
3699 | * take another loop until it becomes visible. | |
3700 | */ | |
3701 | tsk->futex_state = state; | |
3f186d97 TG |
3702 | /* |
3703 | * Drop the exit protection. This unblocks waiters which observed | |
3704 | * FUTEX_STATE_EXITING to reevaluate the state. | |
3705 | */ | |
3706 | mutex_unlock(&tsk->futex_exit_mutex); | |
af8cbda2 | 3707 | } |
18f69438 | 3708 | |
af8cbda2 TG |
3709 | void futex_exec_release(struct task_struct *tsk) |
3710 | { | |
3711 | /* | |
3712 | * The state handling is done for consistency, but in the case of | |
3713 | * exec() there is no way to prevent futher damage as the PID stays | |
3714 | * the same. But for the unlikely and arguably buggy case that a | |
3715 | * futex is held on exec(), this provides at least as much state | |
3716 | * consistency protection which is possible. | |
3717 | */ | |
3718 | futex_cleanup_begin(tsk); | |
3719 | futex_cleanup(tsk); | |
3720 | /* | |
3721 | * Reset the state to FUTEX_STATE_OK. The task is alive and about | |
3722 | * exec a new binary. | |
3723 | */ | |
3724 | futex_cleanup_end(tsk, FUTEX_STATE_OK); | |
3725 | } | |
3726 | ||
3727 | void futex_exit_release(struct task_struct *tsk) | |
3728 | { | |
3729 | futex_cleanup_begin(tsk); | |
3730 | futex_cleanup(tsk); | |
3731 | futex_cleanup_end(tsk, FUTEX_STATE_DEAD); | |
150d7158 TG |
3732 | } |
3733 | ||
c19384b5 | 3734 | long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout, |
e2970f2f | 3735 | u32 __user *uaddr2, u32 val2, u32 val3) |
1da177e4 | 3736 | { |
81b40539 | 3737 | int cmd = op & FUTEX_CMD_MASK; |
b41277dc | 3738 | unsigned int flags = 0; |
34f01cc1 ED |
3739 | |
3740 | if (!(op & FUTEX_PRIVATE_FLAG)) | |
b41277dc | 3741 | flags |= FLAGS_SHARED; |
1da177e4 | 3742 | |
b41277dc DH |
3743 | if (op & FUTEX_CLOCK_REALTIME) { |
3744 | flags |= FLAGS_CLOCKRT; | |
337f1304 DH |
3745 | if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \ |
3746 | cmd != FUTEX_WAIT_REQUEUE_PI) | |
b41277dc DH |
3747 | return -ENOSYS; |
3748 | } | |
1da177e4 | 3749 | |
59263b51 TG |
3750 | switch (cmd) { |
3751 | case FUTEX_LOCK_PI: | |
3752 | case FUTEX_UNLOCK_PI: | |
3753 | case FUTEX_TRYLOCK_PI: | |
3754 | case FUTEX_WAIT_REQUEUE_PI: | |
3755 | case FUTEX_CMP_REQUEUE_PI: | |
3756 | if (!futex_cmpxchg_enabled) | |
3757 | return -ENOSYS; | |
3758 | } | |
3759 | ||
34f01cc1 | 3760 | switch (cmd) { |
1da177e4 | 3761 | case FUTEX_WAIT: |
cd689985 | 3762 | val3 = FUTEX_BITSET_MATCH_ANY; |
405fa8ac | 3763 | fallthrough; |
cd689985 | 3764 | case FUTEX_WAIT_BITSET: |
81b40539 | 3765 | return futex_wait(uaddr, flags, val, timeout, val3); |
1da177e4 | 3766 | case FUTEX_WAKE: |
cd689985 | 3767 | val3 = FUTEX_BITSET_MATCH_ANY; |
405fa8ac | 3768 | fallthrough; |
cd689985 | 3769 | case FUTEX_WAKE_BITSET: |
81b40539 | 3770 | return futex_wake(uaddr, flags, val, val3); |
1da177e4 | 3771 | case FUTEX_REQUEUE: |
81b40539 | 3772 | return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0); |
1da177e4 | 3773 | case FUTEX_CMP_REQUEUE: |
81b40539 | 3774 | return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0); |
4732efbe | 3775 | case FUTEX_WAKE_OP: |
81b40539 | 3776 | return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3); |
c87e2837 | 3777 | case FUTEX_LOCK_PI: |
996636dd | 3778 | return futex_lock_pi(uaddr, flags, timeout, 0); |
c87e2837 | 3779 | case FUTEX_UNLOCK_PI: |
81b40539 | 3780 | return futex_unlock_pi(uaddr, flags); |
c87e2837 | 3781 | case FUTEX_TRYLOCK_PI: |
996636dd | 3782 | return futex_lock_pi(uaddr, flags, NULL, 1); |
52400ba9 DH |
3783 | case FUTEX_WAIT_REQUEUE_PI: |
3784 | val3 = FUTEX_BITSET_MATCH_ANY; | |
81b40539 TG |
3785 | return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3, |
3786 | uaddr2); | |
52400ba9 | 3787 | case FUTEX_CMP_REQUEUE_PI: |
81b40539 | 3788 | return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1); |
1da177e4 | 3789 | } |
81b40539 | 3790 | return -ENOSYS; |
1da177e4 LT |
3791 | } |
3792 | ||
3793 | ||
17da2bd9 | 3794 | SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val, |
bec2f7cb | 3795 | struct __kernel_timespec __user *, utime, u32 __user *, uaddr2, |
17da2bd9 | 3796 | u32, val3) |
1da177e4 | 3797 | { |
bec2f7cb | 3798 | struct timespec64 ts; |
c19384b5 | 3799 | ktime_t t, *tp = NULL; |
e2970f2f | 3800 | u32 val2 = 0; |
34f01cc1 | 3801 | int cmd = op & FUTEX_CMD_MASK; |
1da177e4 | 3802 | |
cd689985 | 3803 | if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI || |
52400ba9 DH |
3804 | cmd == FUTEX_WAIT_BITSET || |
3805 | cmd == FUTEX_WAIT_REQUEUE_PI)) { | |
ab51fbab DB |
3806 | if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG)))) |
3807 | return -EFAULT; | |
bec2f7cb | 3808 | if (get_timespec64(&ts, utime)) |
1da177e4 | 3809 | return -EFAULT; |
bec2f7cb | 3810 | if (!timespec64_valid(&ts)) |
9741ef96 | 3811 | return -EINVAL; |
c19384b5 | 3812 | |
bec2f7cb | 3813 | t = timespec64_to_ktime(ts); |
34f01cc1 | 3814 | if (cmd == FUTEX_WAIT) |
5a7780e7 | 3815 | t = ktime_add_safe(ktime_get(), t); |
c2f7d08c AV |
3816 | else if (!(op & FUTEX_CLOCK_REALTIME)) |
3817 | t = timens_ktime_to_host(CLOCK_MONOTONIC, t); | |
c19384b5 | 3818 | tp = &t; |
1da177e4 LT |
3819 | } |
3820 | /* | |
52400ba9 | 3821 | * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*. |
f54f0986 | 3822 | * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP. |
1da177e4 | 3823 | */ |
f54f0986 | 3824 | if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE || |
ba9c22f2 | 3825 | cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP) |
e2970f2f | 3826 | val2 = (u32) (unsigned long) utime; |
1da177e4 | 3827 | |
c19384b5 | 3828 | return do_futex(uaddr, op, val, tp, uaddr2, val2, val3); |
1da177e4 LT |
3829 | } |
3830 | ||
04e7712f AB |
3831 | #ifdef CONFIG_COMPAT |
3832 | /* | |
3833 | * Fetch a robust-list pointer. Bit 0 signals PI futexes: | |
3834 | */ | |
3835 | static inline int | |
3836 | compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry, | |
3837 | compat_uptr_t __user *head, unsigned int *pi) | |
3838 | { | |
3839 | if (get_user(*uentry, head)) | |
3840 | return -EFAULT; | |
3841 | ||
3842 | *entry = compat_ptr((*uentry) & ~1); | |
3843 | *pi = (unsigned int)(*uentry) & 1; | |
3844 | ||
3845 | return 0; | |
3846 | } | |
3847 | ||
3848 | static void __user *futex_uaddr(struct robust_list __user *entry, | |
3849 | compat_long_t futex_offset) | |
3850 | { | |
3851 | compat_uptr_t base = ptr_to_compat(entry); | |
3852 | void __user *uaddr = compat_ptr(base + futex_offset); | |
3853 | ||
3854 | return uaddr; | |
3855 | } | |
3856 | ||
3857 | /* | |
3858 | * Walk curr->robust_list (very carefully, it's a userspace list!) | |
3859 | * and mark any locks found there dead, and notify any waiters. | |
3860 | * | |
3861 | * We silently return on any sign of list-walking problem. | |
3862 | */ | |
ba31c1a4 | 3863 | static void compat_exit_robust_list(struct task_struct *curr) |
04e7712f AB |
3864 | { |
3865 | struct compat_robust_list_head __user *head = curr->compat_robust_list; | |
3866 | struct robust_list __user *entry, *next_entry, *pending; | |
3867 | unsigned int limit = ROBUST_LIST_LIMIT, pi, pip; | |
3f649ab7 | 3868 | unsigned int next_pi; |
04e7712f AB |
3869 | compat_uptr_t uentry, next_uentry, upending; |
3870 | compat_long_t futex_offset; | |
3871 | int rc; | |
3872 | ||
3873 | if (!futex_cmpxchg_enabled) | |
3874 | return; | |
3875 | ||
3876 | /* | |
3877 | * Fetch the list head (which was registered earlier, via | |
3878 | * sys_set_robust_list()): | |
3879 | */ | |
3880 | if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi)) | |
3881 | return; | |
3882 | /* | |
3883 | * Fetch the relative futex offset: | |
3884 | */ | |
3885 | if (get_user(futex_offset, &head->futex_offset)) | |
3886 | return; | |
3887 | /* | |
3888 | * Fetch any possibly pending lock-add first, and handle it | |
3889 | * if it exists: | |
3890 | */ | |
3891 | if (compat_fetch_robust_entry(&upending, &pending, | |
3892 | &head->list_op_pending, &pip)) | |
3893 | return; | |
3894 | ||
3895 | next_entry = NULL; /* avoid warning with gcc */ | |
3896 | while (entry != (struct robust_list __user *) &head->list) { | |
3897 | /* | |
3898 | * Fetch the next entry in the list before calling | |
3899 | * handle_futex_death: | |
3900 | */ | |
3901 | rc = compat_fetch_robust_entry(&next_uentry, &next_entry, | |
3902 | (compat_uptr_t __user *)&entry->next, &next_pi); | |
3903 | /* | |
3904 | * A pending lock might already be on the list, so | |
3905 | * dont process it twice: | |
3906 | */ | |
3907 | if (entry != pending) { | |
3908 | void __user *uaddr = futex_uaddr(entry, futex_offset); | |
3909 | ||
ca16d5be YT |
3910 | if (handle_futex_death(uaddr, curr, pi, |
3911 | HANDLE_DEATH_LIST)) | |
04e7712f AB |
3912 | return; |
3913 | } | |
3914 | if (rc) | |
3915 | return; | |
3916 | uentry = next_uentry; | |
3917 | entry = next_entry; | |
3918 | pi = next_pi; | |
3919 | /* | |
3920 | * Avoid excessively long or circular lists: | |
3921 | */ | |
3922 | if (!--limit) | |
3923 | break; | |
3924 | ||
3925 | cond_resched(); | |
3926 | } | |
3927 | if (pending) { | |
3928 | void __user *uaddr = futex_uaddr(pending, futex_offset); | |
3929 | ||
ca16d5be | 3930 | handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING); |
04e7712f AB |
3931 | } |
3932 | } | |
3933 | ||
3934 | COMPAT_SYSCALL_DEFINE2(set_robust_list, | |
3935 | struct compat_robust_list_head __user *, head, | |
3936 | compat_size_t, len) | |
3937 | { | |
3938 | if (!futex_cmpxchg_enabled) | |
3939 | return -ENOSYS; | |
3940 | ||
3941 | if (unlikely(len != sizeof(*head))) | |
3942 | return -EINVAL; | |
3943 | ||
3944 | current->compat_robust_list = head; | |
3945 | ||
3946 | return 0; | |
3947 | } | |
3948 | ||
3949 | COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid, | |
3950 | compat_uptr_t __user *, head_ptr, | |
3951 | compat_size_t __user *, len_ptr) | |
3952 | { | |
3953 | struct compat_robust_list_head __user *head; | |
3954 | unsigned long ret; | |
3955 | struct task_struct *p; | |
3956 | ||
3957 | if (!futex_cmpxchg_enabled) | |
3958 | return -ENOSYS; | |
3959 | ||
3960 | rcu_read_lock(); | |
3961 | ||
3962 | ret = -ESRCH; | |
3963 | if (!pid) | |
3964 | p = current; | |
3965 | else { | |
3966 | p = find_task_by_vpid(pid); | |
3967 | if (!p) | |
3968 | goto err_unlock; | |
3969 | } | |
3970 | ||
3971 | ret = -EPERM; | |
3972 | if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS)) | |
3973 | goto err_unlock; | |
3974 | ||
3975 | head = p->compat_robust_list; | |
3976 | rcu_read_unlock(); | |
3977 | ||
3978 | if (put_user(sizeof(*head), len_ptr)) | |
3979 | return -EFAULT; | |
3980 | return put_user(ptr_to_compat(head), head_ptr); | |
3981 | ||
3982 | err_unlock: | |
3983 | rcu_read_unlock(); | |
3984 | ||
3985 | return ret; | |
3986 | } | |
bec2f7cb | 3987 | #endif /* CONFIG_COMPAT */ |
04e7712f | 3988 | |
bec2f7cb | 3989 | #ifdef CONFIG_COMPAT_32BIT_TIME |
8dabe724 | 3990 | SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val, |
04e7712f AB |
3991 | struct old_timespec32 __user *, utime, u32 __user *, uaddr2, |
3992 | u32, val3) | |
3993 | { | |
bec2f7cb | 3994 | struct timespec64 ts; |
04e7712f AB |
3995 | ktime_t t, *tp = NULL; |
3996 | int val2 = 0; | |
3997 | int cmd = op & FUTEX_CMD_MASK; | |
3998 | ||
3999 | if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI || | |
4000 | cmd == FUTEX_WAIT_BITSET || | |
4001 | cmd == FUTEX_WAIT_REQUEUE_PI)) { | |
bec2f7cb | 4002 | if (get_old_timespec32(&ts, utime)) |
04e7712f | 4003 | return -EFAULT; |
bec2f7cb | 4004 | if (!timespec64_valid(&ts)) |
04e7712f AB |
4005 | return -EINVAL; |
4006 | ||
bec2f7cb | 4007 | t = timespec64_to_ktime(ts); |
04e7712f AB |
4008 | if (cmd == FUTEX_WAIT) |
4009 | t = ktime_add_safe(ktime_get(), t); | |
c2f7d08c AV |
4010 | else if (!(op & FUTEX_CLOCK_REALTIME)) |
4011 | t = timens_ktime_to_host(CLOCK_MONOTONIC, t); | |
04e7712f AB |
4012 | tp = &t; |
4013 | } | |
4014 | if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE || | |
4015 | cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP) | |
4016 | val2 = (int) (unsigned long) utime; | |
4017 | ||
4018 | return do_futex(uaddr, op, val, tp, uaddr2, val2, val3); | |
4019 | } | |
bec2f7cb | 4020 | #endif /* CONFIG_COMPAT_32BIT_TIME */ |
04e7712f | 4021 | |
03b8c7b6 | 4022 | static void __init futex_detect_cmpxchg(void) |
1da177e4 | 4023 | { |
03b8c7b6 | 4024 | #ifndef CONFIG_HAVE_FUTEX_CMPXCHG |
a0c1e907 | 4025 | u32 curval; |
03b8c7b6 HC |
4026 | |
4027 | /* | |
4028 | * This will fail and we want it. Some arch implementations do | |
4029 | * runtime detection of the futex_atomic_cmpxchg_inatomic() | |
4030 | * functionality. We want to know that before we call in any | |
4031 | * of the complex code paths. Also we want to prevent | |
4032 | * registration of robust lists in that case. NULL is | |
4033 | * guaranteed to fault and we get -EFAULT on functional | |
4034 | * implementation, the non-functional ones will return | |
4035 | * -ENOSYS. | |
4036 | */ | |
4037 | if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT) | |
4038 | futex_cmpxchg_enabled = 1; | |
4039 | #endif | |
4040 | } | |
4041 | ||
4042 | static int __init futex_init(void) | |
4043 | { | |
63b1a816 | 4044 | unsigned int futex_shift; |
a52b89eb DB |
4045 | unsigned long i; |
4046 | ||
4047 | #if CONFIG_BASE_SMALL | |
4048 | futex_hashsize = 16; | |
4049 | #else | |
4050 | futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus()); | |
4051 | #endif | |
4052 | ||
4053 | futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues), | |
4054 | futex_hashsize, 0, | |
4055 | futex_hashsize < 256 ? HASH_SMALL : 0, | |
63b1a816 HC |
4056 | &futex_shift, NULL, |
4057 | futex_hashsize, futex_hashsize); | |
4058 | futex_hashsize = 1UL << futex_shift; | |
03b8c7b6 HC |
4059 | |
4060 | futex_detect_cmpxchg(); | |
a0c1e907 | 4061 | |
a52b89eb | 4062 | for (i = 0; i < futex_hashsize; i++) { |
11d4616b | 4063 | atomic_set(&futex_queues[i].waiters, 0); |
732375c6 | 4064 | plist_head_init(&futex_queues[i].chain); |
3e4ab747 TG |
4065 | spin_lock_init(&futex_queues[i].lock); |
4066 | } | |
4067 | ||
1da177e4 LT |
4068 | return 0; |
4069 | } | |
25f71d1c | 4070 | core_initcall(futex_init); |