]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Fast Userspace Mutexes (which I call "Futexes!"). | |
3 | * (C) Rusty Russell, IBM 2002 | |
4 | * | |
5 | * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar | |
6 | * (C) Copyright 2003 Red Hat Inc, All Rights Reserved | |
7 | * | |
8 | * Removed page pinning, fix privately mapped COW pages and other cleanups | |
9 | * (C) Copyright 2003, 2004 Jamie Lokier | |
10 | * | |
0771dfef IM |
11 | * Robust futex support started by Ingo Molnar |
12 | * (C) Copyright 2006 Red Hat Inc, All Rights Reserved | |
13 | * Thanks to Thomas Gleixner for suggestions, analysis and fixes. | |
14 | * | |
c87e2837 IM |
15 | * PI-futex support started by Ingo Molnar and Thomas Gleixner |
16 | * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <[email protected]> | |
17 | * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <[email protected]> | |
18 | * | |
34f01cc1 ED |
19 | * PRIVATE futexes by Eric Dumazet |
20 | * Copyright (C) 2007 Eric Dumazet <[email protected]> | |
21 | * | |
52400ba9 DH |
22 | * Requeue-PI support by Darren Hart <[email protected]> |
23 | * Copyright (C) IBM Corporation, 2009 | |
24 | * Thanks to Thomas Gleixner for conceptual design and careful reviews. | |
25 | * | |
1da177e4 LT |
26 | * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly |
27 | * enough at me, Linus for the original (flawed) idea, Matthew | |
28 | * Kirkwood for proof-of-concept implementation. | |
29 | * | |
30 | * "The futexes are also cursed." | |
31 | * "But they come in a choice of three flavours!" | |
32 | * | |
33 | * This program is free software; you can redistribute it and/or modify | |
34 | * it under the terms of the GNU General Public License as published by | |
35 | * the Free Software Foundation; either version 2 of the License, or | |
36 | * (at your option) any later version. | |
37 | * | |
38 | * This program is distributed in the hope that it will be useful, | |
39 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
40 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
41 | * GNU General Public License for more details. | |
42 | * | |
43 | * You should have received a copy of the GNU General Public License | |
44 | * along with this program; if not, write to the Free Software | |
45 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
46 | */ | |
47 | #include <linux/slab.h> | |
48 | #include <linux/poll.h> | |
49 | #include <linux/fs.h> | |
50 | #include <linux/file.h> | |
51 | #include <linux/jhash.h> | |
52 | #include <linux/init.h> | |
53 | #include <linux/futex.h> | |
54 | #include <linux/mount.h> | |
55 | #include <linux/pagemap.h> | |
56 | #include <linux/syscalls.h> | |
7ed20e1a | 57 | #include <linux/signal.h> |
9984de1a | 58 | #include <linux/export.h> |
fd5eea42 | 59 | #include <linux/magic.h> |
b488893a PE |
60 | #include <linux/pid.h> |
61 | #include <linux/nsproxy.h> | |
bdbb776f | 62 | #include <linux/ptrace.h> |
8bd75c77 | 63 | #include <linux/sched/rt.h> |
13d60f4b | 64 | #include <linux/hugetlb.h> |
88c8004f | 65 | #include <linux/freezer.h> |
a52b89eb | 66 | #include <linux/bootmem.h> |
b488893a | 67 | |
4732efbe | 68 | #include <asm/futex.h> |
1da177e4 | 69 | |
1696a8be | 70 | #include "locking/rtmutex_common.h" |
c87e2837 | 71 | |
99b60ce6 | 72 | /* |
d7e8af1a DB |
73 | * READ this before attempting to hack on futexes! |
74 | * | |
75 | * Basic futex operation and ordering guarantees | |
76 | * ============================================= | |
99b60ce6 TG |
77 | * |
78 | * The waiter reads the futex value in user space and calls | |
79 | * futex_wait(). This function computes the hash bucket and acquires | |
80 | * the hash bucket lock. After that it reads the futex user space value | |
b0c29f79 DB |
81 | * again and verifies that the data has not changed. If it has not changed |
82 | * it enqueues itself into the hash bucket, releases the hash bucket lock | |
83 | * and schedules. | |
99b60ce6 TG |
84 | * |
85 | * The waker side modifies the user space value of the futex and calls | |
b0c29f79 DB |
86 | * futex_wake(). This function computes the hash bucket and acquires the |
87 | * hash bucket lock. Then it looks for waiters on that futex in the hash | |
88 | * bucket and wakes them. | |
99b60ce6 | 89 | * |
b0c29f79 DB |
90 | * In futex wake up scenarios where no tasks are blocked on a futex, taking |
91 | * the hb spinlock can be avoided and simply return. In order for this | |
92 | * optimization to work, ordering guarantees must exist so that the waiter | |
93 | * being added to the list is acknowledged when the list is concurrently being | |
94 | * checked by the waker, avoiding scenarios like the following: | |
99b60ce6 TG |
95 | * |
96 | * CPU 0 CPU 1 | |
97 | * val = *futex; | |
98 | * sys_futex(WAIT, futex, val); | |
99 | * futex_wait(futex, val); | |
100 | * uval = *futex; | |
101 | * *futex = newval; | |
102 | * sys_futex(WAKE, futex); | |
103 | * futex_wake(futex); | |
104 | * if (queue_empty()) | |
105 | * return; | |
106 | * if (uval == val) | |
107 | * lock(hash_bucket(futex)); | |
108 | * queue(); | |
109 | * unlock(hash_bucket(futex)); | |
110 | * schedule(); | |
111 | * | |
112 | * This would cause the waiter on CPU 0 to wait forever because it | |
113 | * missed the transition of the user space value from val to newval | |
114 | * and the waker did not find the waiter in the hash bucket queue. | |
99b60ce6 | 115 | * |
b0c29f79 DB |
116 | * The correct serialization ensures that a waiter either observes |
117 | * the changed user space value before blocking or is woken by a | |
118 | * concurrent waker: | |
119 | * | |
120 | * CPU 0 CPU 1 | |
99b60ce6 TG |
121 | * val = *futex; |
122 | * sys_futex(WAIT, futex, val); | |
123 | * futex_wait(futex, val); | |
b0c29f79 | 124 | * |
d7e8af1a | 125 | * waiters++; (a) |
b0c29f79 DB |
126 | * mb(); (A) <-- paired with -. |
127 | * | | |
128 | * lock(hash_bucket(futex)); | | |
129 | * | | |
130 | * uval = *futex; | | |
131 | * | *futex = newval; | |
132 | * | sys_futex(WAKE, futex); | |
133 | * | futex_wake(futex); | |
134 | * | | |
135 | * `-------> mb(); (B) | |
99b60ce6 | 136 | * if (uval == val) |
b0c29f79 | 137 | * queue(); |
99b60ce6 | 138 | * unlock(hash_bucket(futex)); |
b0c29f79 DB |
139 | * schedule(); if (waiters) |
140 | * lock(hash_bucket(futex)); | |
d7e8af1a DB |
141 | * else wake_waiters(futex); |
142 | * waiters--; (b) unlock(hash_bucket(futex)); | |
b0c29f79 | 143 | * |
d7e8af1a DB |
144 | * Where (A) orders the waiters increment and the futex value read through |
145 | * atomic operations (see hb_waiters_inc) and where (B) orders the write | |
993b2ff2 DB |
146 | * to futex and the waiters read -- this is done by the barriers for both |
147 | * shared and private futexes in get_futex_key_refs(). | |
b0c29f79 DB |
148 | * |
149 | * This yields the following case (where X:=waiters, Y:=futex): | |
150 | * | |
151 | * X = Y = 0 | |
152 | * | |
153 | * w[X]=1 w[Y]=1 | |
154 | * MB MB | |
155 | * r[Y]=y r[X]=x | |
156 | * | |
157 | * Which guarantees that x==0 && y==0 is impossible; which translates back into | |
158 | * the guarantee that we cannot both miss the futex variable change and the | |
159 | * enqueue. | |
d7e8af1a DB |
160 | * |
161 | * Note that a new waiter is accounted for in (a) even when it is possible that | |
162 | * the wait call can return error, in which case we backtrack from it in (b). | |
163 | * Refer to the comment in queue_lock(). | |
164 | * | |
165 | * Similarly, in order to account for waiters being requeued on another | |
166 | * address we always increment the waiters for the destination bucket before | |
167 | * acquiring the lock. It then decrements them again after releasing it - | |
168 | * the code that actually moves the futex(es) between hash buckets (requeue_futex) | |
169 | * will do the additional required waiter count housekeeping. This is done for | |
170 | * double_lock_hb() and double_unlock_hb(), respectively. | |
99b60ce6 TG |
171 | */ |
172 | ||
03b8c7b6 | 173 | #ifndef CONFIG_HAVE_FUTEX_CMPXCHG |
a0c1e907 | 174 | int __read_mostly futex_cmpxchg_enabled; |
03b8c7b6 | 175 | #endif |
a0c1e907 | 176 | |
b41277dc DH |
177 | /* |
178 | * Futex flags used to encode options to functions and preserve them across | |
179 | * restarts. | |
180 | */ | |
181 | #define FLAGS_SHARED 0x01 | |
182 | #define FLAGS_CLOCKRT 0x02 | |
183 | #define FLAGS_HAS_TIMEOUT 0x04 | |
184 | ||
c87e2837 IM |
185 | /* |
186 | * Priority Inheritance state: | |
187 | */ | |
188 | struct futex_pi_state { | |
189 | /* | |
190 | * list of 'owned' pi_state instances - these have to be | |
191 | * cleaned up in do_exit() if the task exits prematurely: | |
192 | */ | |
193 | struct list_head list; | |
194 | ||
195 | /* | |
196 | * The PI object: | |
197 | */ | |
198 | struct rt_mutex pi_mutex; | |
199 | ||
200 | struct task_struct *owner; | |
201 | atomic_t refcount; | |
202 | ||
203 | union futex_key key; | |
204 | }; | |
205 | ||
d8d88fbb DH |
206 | /** |
207 | * struct futex_q - The hashed futex queue entry, one per waiting task | |
fb62db2b | 208 | * @list: priority-sorted list of tasks waiting on this futex |
d8d88fbb DH |
209 | * @task: the task waiting on the futex |
210 | * @lock_ptr: the hash bucket lock | |
211 | * @key: the key the futex is hashed on | |
212 | * @pi_state: optional priority inheritance state | |
213 | * @rt_waiter: rt_waiter storage for use with requeue_pi | |
214 | * @requeue_pi_key: the requeue_pi target futex key | |
215 | * @bitset: bitset for the optional bitmasked wakeup | |
216 | * | |
217 | * We use this hashed waitqueue, instead of a normal wait_queue_t, so | |
1da177e4 LT |
218 | * we can wake only the relevant ones (hashed queues may be shared). |
219 | * | |
220 | * A futex_q has a woken state, just like tasks have TASK_RUNNING. | |
ec92d082 | 221 | * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0. |
fb62db2b | 222 | * The order of wakeup is always to make the first condition true, then |
d8d88fbb DH |
223 | * the second. |
224 | * | |
225 | * PI futexes are typically woken before they are removed from the hash list via | |
226 | * the rt_mutex code. See unqueue_me_pi(). | |
1da177e4 LT |
227 | */ |
228 | struct futex_q { | |
ec92d082 | 229 | struct plist_node list; |
1da177e4 | 230 | |
d8d88fbb | 231 | struct task_struct *task; |
1da177e4 | 232 | spinlock_t *lock_ptr; |
1da177e4 | 233 | union futex_key key; |
c87e2837 | 234 | struct futex_pi_state *pi_state; |
52400ba9 | 235 | struct rt_mutex_waiter *rt_waiter; |
84bc4af5 | 236 | union futex_key *requeue_pi_key; |
cd689985 | 237 | u32 bitset; |
1da177e4 LT |
238 | }; |
239 | ||
5bdb05f9 DH |
240 | static const struct futex_q futex_q_init = { |
241 | /* list gets initialized in queue_me()*/ | |
242 | .key = FUTEX_KEY_INIT, | |
243 | .bitset = FUTEX_BITSET_MATCH_ANY | |
244 | }; | |
245 | ||
1da177e4 | 246 | /* |
b2d0994b DH |
247 | * Hash buckets are shared by all the futex_keys that hash to the same |
248 | * location. Each key may have multiple futex_q structures, one for each task | |
249 | * waiting on a futex. | |
1da177e4 LT |
250 | */ |
251 | struct futex_hash_bucket { | |
11d4616b | 252 | atomic_t waiters; |
ec92d082 PP |
253 | spinlock_t lock; |
254 | struct plist_head chain; | |
a52b89eb | 255 | } ____cacheline_aligned_in_smp; |
1da177e4 | 256 | |
a52b89eb DB |
257 | static unsigned long __read_mostly futex_hashsize; |
258 | ||
259 | static struct futex_hash_bucket *futex_queues; | |
1da177e4 | 260 | |
b0c29f79 DB |
261 | static inline void futex_get_mm(union futex_key *key) |
262 | { | |
263 | atomic_inc(&key->private.mm->mm_count); | |
264 | /* | |
265 | * Ensure futex_get_mm() implies a full barrier such that | |
266 | * get_futex_key() implies a full barrier. This is relied upon | |
267 | * as full barrier (B), see the ordering comment above. | |
268 | */ | |
4e857c58 | 269 | smp_mb__after_atomic(); |
b0c29f79 DB |
270 | } |
271 | ||
11d4616b LT |
272 | /* |
273 | * Reflects a new waiter being added to the waitqueue. | |
274 | */ | |
275 | static inline void hb_waiters_inc(struct futex_hash_bucket *hb) | |
b0c29f79 DB |
276 | { |
277 | #ifdef CONFIG_SMP | |
11d4616b | 278 | atomic_inc(&hb->waiters); |
b0c29f79 | 279 | /* |
11d4616b | 280 | * Full barrier (A), see the ordering comment above. |
b0c29f79 | 281 | */ |
4e857c58 | 282 | smp_mb__after_atomic(); |
11d4616b LT |
283 | #endif |
284 | } | |
285 | ||
286 | /* | |
287 | * Reflects a waiter being removed from the waitqueue by wakeup | |
288 | * paths. | |
289 | */ | |
290 | static inline void hb_waiters_dec(struct futex_hash_bucket *hb) | |
291 | { | |
292 | #ifdef CONFIG_SMP | |
293 | atomic_dec(&hb->waiters); | |
294 | #endif | |
295 | } | |
b0c29f79 | 296 | |
11d4616b LT |
297 | static inline int hb_waiters_pending(struct futex_hash_bucket *hb) |
298 | { | |
299 | #ifdef CONFIG_SMP | |
300 | return atomic_read(&hb->waiters); | |
b0c29f79 | 301 | #else |
11d4616b | 302 | return 1; |
b0c29f79 DB |
303 | #endif |
304 | } | |
305 | ||
1da177e4 LT |
306 | /* |
307 | * We hash on the keys returned from get_futex_key (see below). | |
308 | */ | |
309 | static struct futex_hash_bucket *hash_futex(union futex_key *key) | |
310 | { | |
311 | u32 hash = jhash2((u32*)&key->both.word, | |
312 | (sizeof(key->both.word)+sizeof(key->both.ptr))/4, | |
313 | key->both.offset); | |
a52b89eb | 314 | return &futex_queues[hash & (futex_hashsize - 1)]; |
1da177e4 LT |
315 | } |
316 | ||
317 | /* | |
318 | * Return 1 if two futex_keys are equal, 0 otherwise. | |
319 | */ | |
320 | static inline int match_futex(union futex_key *key1, union futex_key *key2) | |
321 | { | |
2bc87203 DH |
322 | return (key1 && key2 |
323 | && key1->both.word == key2->both.word | |
1da177e4 LT |
324 | && key1->both.ptr == key2->both.ptr |
325 | && key1->both.offset == key2->both.offset); | |
326 | } | |
327 | ||
38d47c1b PZ |
328 | /* |
329 | * Take a reference to the resource addressed by a key. | |
330 | * Can be called while holding spinlocks. | |
331 | * | |
332 | */ | |
333 | static void get_futex_key_refs(union futex_key *key) | |
334 | { | |
335 | if (!key->both.ptr) | |
336 | return; | |
337 | ||
338 | switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) { | |
339 | case FUT_OFF_INODE: | |
b0c29f79 | 340 | ihold(key->shared.inode); /* implies MB (B) */ |
38d47c1b PZ |
341 | break; |
342 | case FUT_OFF_MMSHARED: | |
b0c29f79 | 343 | futex_get_mm(key); /* implies MB (B) */ |
38d47c1b | 344 | break; |
76835b0e | 345 | default: |
993b2ff2 DB |
346 | /* |
347 | * Private futexes do not hold reference on an inode or | |
348 | * mm, therefore the only purpose of calling get_futex_key_refs | |
349 | * is because we need the barrier for the lockless waiter check. | |
350 | */ | |
76835b0e | 351 | smp_mb(); /* explicit MB (B) */ |
38d47c1b PZ |
352 | } |
353 | } | |
354 | ||
355 | /* | |
356 | * Drop a reference to the resource addressed by a key. | |
993b2ff2 DB |
357 | * The hash bucket spinlock must not be held. This is |
358 | * a no-op for private futexes, see comment in the get | |
359 | * counterpart. | |
38d47c1b PZ |
360 | */ |
361 | static void drop_futex_key_refs(union futex_key *key) | |
362 | { | |
90621c40 DH |
363 | if (!key->both.ptr) { |
364 | /* If we're here then we tried to put a key we failed to get */ | |
365 | WARN_ON_ONCE(1); | |
38d47c1b | 366 | return; |
90621c40 | 367 | } |
38d47c1b PZ |
368 | |
369 | switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) { | |
370 | case FUT_OFF_INODE: | |
371 | iput(key->shared.inode); | |
372 | break; | |
373 | case FUT_OFF_MMSHARED: | |
374 | mmdrop(key->private.mm); | |
375 | break; | |
376 | } | |
377 | } | |
378 | ||
34f01cc1 | 379 | /** |
d96ee56c DH |
380 | * get_futex_key() - Get parameters which are the keys for a futex |
381 | * @uaddr: virtual address of the futex | |
382 | * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED | |
383 | * @key: address where result is stored. | |
9ea71503 SB |
384 | * @rw: mapping needs to be read/write (values: VERIFY_READ, |
385 | * VERIFY_WRITE) | |
34f01cc1 | 386 | * |
6c23cbbd RD |
387 | * Return: a negative error code or 0 |
388 | * | |
34f01cc1 | 389 | * The key words are stored in *key on success. |
1da177e4 | 390 | * |
6131ffaa | 391 | * For shared mappings, it's (page->index, file_inode(vma->vm_file), |
1da177e4 LT |
392 | * offset_within_page). For private mappings, it's (uaddr, current->mm). |
393 | * We can usually work out the index without swapping in the page. | |
394 | * | |
b2d0994b | 395 | * lock_page() might sleep, the caller should not hold a spinlock. |
1da177e4 | 396 | */ |
64d1304a | 397 | static int |
9ea71503 | 398 | get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw) |
1da177e4 | 399 | { |
e2970f2f | 400 | unsigned long address = (unsigned long)uaddr; |
1da177e4 | 401 | struct mm_struct *mm = current->mm; |
a5b338f2 | 402 | struct page *page, *page_head; |
9ea71503 | 403 | int err, ro = 0; |
1da177e4 LT |
404 | |
405 | /* | |
406 | * The futex address must be "naturally" aligned. | |
407 | */ | |
e2970f2f | 408 | key->both.offset = address % PAGE_SIZE; |
34f01cc1 | 409 | if (unlikely((address % sizeof(u32)) != 0)) |
1da177e4 | 410 | return -EINVAL; |
e2970f2f | 411 | address -= key->both.offset; |
1da177e4 | 412 | |
5cdec2d8 LT |
413 | if (unlikely(!access_ok(rw, uaddr, sizeof(u32)))) |
414 | return -EFAULT; | |
415 | ||
34f01cc1 ED |
416 | /* |
417 | * PROCESS_PRIVATE futexes are fast. | |
418 | * As the mm cannot disappear under us and the 'key' only needs | |
419 | * virtual address, we dont even have to find the underlying vma. | |
420 | * Note : We do have to check 'uaddr' is a valid user address, | |
421 | * but access_ok() should be faster than find_vma() | |
422 | */ | |
423 | if (!fshared) { | |
34f01cc1 ED |
424 | key->private.mm = mm; |
425 | key->private.address = address; | |
b0c29f79 | 426 | get_futex_key_refs(key); /* implies MB (B) */ |
34f01cc1 ED |
427 | return 0; |
428 | } | |
1da177e4 | 429 | |
38d47c1b | 430 | again: |
7485d0d3 | 431 | err = get_user_pages_fast(address, 1, 1, &page); |
9ea71503 SB |
432 | /* |
433 | * If write access is not required (eg. FUTEX_WAIT), try | |
434 | * and get read-only access. | |
435 | */ | |
436 | if (err == -EFAULT && rw == VERIFY_READ) { | |
437 | err = get_user_pages_fast(address, 1, 0, &page); | |
438 | ro = 1; | |
439 | } | |
38d47c1b PZ |
440 | if (err < 0) |
441 | return err; | |
9ea71503 SB |
442 | else |
443 | err = 0; | |
38d47c1b | 444 | |
a5b338f2 AA |
445 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
446 | page_head = page; | |
447 | if (unlikely(PageTail(page))) { | |
38d47c1b | 448 | put_page(page); |
a5b338f2 AA |
449 | /* serialize against __split_huge_page_splitting() */ |
450 | local_irq_disable(); | |
f12d5bfc | 451 | if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) { |
a5b338f2 AA |
452 | page_head = compound_head(page); |
453 | /* | |
454 | * page_head is valid pointer but we must pin | |
455 | * it before taking the PG_lock and/or | |
456 | * PG_compound_lock. The moment we re-enable | |
457 | * irqs __split_huge_page_splitting() can | |
458 | * return and the head page can be freed from | |
459 | * under us. We can't take the PG_lock and/or | |
460 | * PG_compound_lock on a page that could be | |
461 | * freed from under us. | |
462 | */ | |
463 | if (page != page_head) { | |
464 | get_page(page_head); | |
465 | put_page(page); | |
466 | } | |
467 | local_irq_enable(); | |
468 | } else { | |
469 | local_irq_enable(); | |
470 | goto again; | |
471 | } | |
472 | } | |
473 | #else | |
474 | page_head = compound_head(page); | |
475 | if (page != page_head) { | |
476 | get_page(page_head); | |
477 | put_page(page); | |
478 | } | |
479 | #endif | |
480 | ||
481 | lock_page(page_head); | |
e6780f72 HD |
482 | |
483 | /* | |
484 | * If page_head->mapping is NULL, then it cannot be a PageAnon | |
485 | * page; but it might be the ZERO_PAGE or in the gate area or | |
486 | * in a special mapping (all cases which we are happy to fail); | |
487 | * or it may have been a good file page when get_user_pages_fast | |
488 | * found it, but truncated or holepunched or subjected to | |
489 | * invalidate_complete_page2 before we got the page lock (also | |
490 | * cases which we are happy to fail). And we hold a reference, | |
491 | * so refcount care in invalidate_complete_page's remove_mapping | |
492 | * prevents drop_caches from setting mapping to NULL beneath us. | |
493 | * | |
494 | * The case we do have to guard against is when memory pressure made | |
495 | * shmem_writepage move it from filecache to swapcache beneath us: | |
496 | * an unlikely race, but we do need to retry for page_head->mapping. | |
497 | */ | |
a5b338f2 | 498 | if (!page_head->mapping) { |
e6780f72 | 499 | int shmem_swizzled = PageSwapCache(page_head); |
a5b338f2 AA |
500 | unlock_page(page_head); |
501 | put_page(page_head); | |
e6780f72 HD |
502 | if (shmem_swizzled) |
503 | goto again; | |
504 | return -EFAULT; | |
38d47c1b | 505 | } |
1da177e4 LT |
506 | |
507 | /* | |
508 | * Private mappings are handled in a simple way. | |
509 | * | |
510 | * NOTE: When userspace waits on a MAP_SHARED mapping, even if | |
511 | * it's a read-only handle, it's expected that futexes attach to | |
38d47c1b | 512 | * the object not the particular process. |
1da177e4 | 513 | */ |
a5b338f2 | 514 | if (PageAnon(page_head)) { |
9ea71503 SB |
515 | /* |
516 | * A RO anonymous page will never change and thus doesn't make | |
517 | * sense for futex operations. | |
518 | */ | |
519 | if (ro) { | |
520 | err = -EFAULT; | |
521 | goto out; | |
522 | } | |
523 | ||
38d47c1b | 524 | key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */ |
1da177e4 | 525 | key->private.mm = mm; |
e2970f2f | 526 | key->private.address = address; |
38d47c1b PZ |
527 | } else { |
528 | key->both.offset |= FUT_OFF_INODE; /* inode-based key */ | |
a5b338f2 | 529 | key->shared.inode = page_head->mapping->host; |
13d60f4b | 530 | key->shared.pgoff = basepage_index(page); |
1da177e4 LT |
531 | } |
532 | ||
b0c29f79 | 533 | get_futex_key_refs(key); /* implies MB (B) */ |
1da177e4 | 534 | |
9ea71503 | 535 | out: |
a5b338f2 AA |
536 | unlock_page(page_head); |
537 | put_page(page_head); | |
9ea71503 | 538 | return err; |
1da177e4 LT |
539 | } |
540 | ||
ae791a2d | 541 | static inline void put_futex_key(union futex_key *key) |
1da177e4 | 542 | { |
38d47c1b | 543 | drop_futex_key_refs(key); |
1da177e4 LT |
544 | } |
545 | ||
d96ee56c DH |
546 | /** |
547 | * fault_in_user_writeable() - Fault in user address and verify RW access | |
d0725992 TG |
548 | * @uaddr: pointer to faulting user space address |
549 | * | |
550 | * Slow path to fixup the fault we just took in the atomic write | |
551 | * access to @uaddr. | |
552 | * | |
fb62db2b | 553 | * We have no generic implementation of a non-destructive write to the |
d0725992 TG |
554 | * user address. We know that we faulted in the atomic pagefault |
555 | * disabled section so we can as well avoid the #PF overhead by | |
556 | * calling get_user_pages() right away. | |
557 | */ | |
558 | static int fault_in_user_writeable(u32 __user *uaddr) | |
559 | { | |
722d0172 AK |
560 | struct mm_struct *mm = current->mm; |
561 | int ret; | |
562 | ||
563 | down_read(&mm->mmap_sem); | |
2efaca92 BH |
564 | ret = fixup_user_fault(current, mm, (unsigned long)uaddr, |
565 | FAULT_FLAG_WRITE); | |
722d0172 AK |
566 | up_read(&mm->mmap_sem); |
567 | ||
d0725992 TG |
568 | return ret < 0 ? ret : 0; |
569 | } | |
570 | ||
4b1c486b DH |
571 | /** |
572 | * futex_top_waiter() - Return the highest priority waiter on a futex | |
d96ee56c DH |
573 | * @hb: the hash bucket the futex_q's reside in |
574 | * @key: the futex key (to distinguish it from other futex futex_q's) | |
4b1c486b DH |
575 | * |
576 | * Must be called with the hb lock held. | |
577 | */ | |
578 | static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb, | |
579 | union futex_key *key) | |
580 | { | |
581 | struct futex_q *this; | |
582 | ||
583 | plist_for_each_entry(this, &hb->chain, list) { | |
584 | if (match_futex(&this->key, key)) | |
585 | return this; | |
586 | } | |
587 | return NULL; | |
588 | } | |
589 | ||
37a9d912 ML |
590 | static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr, |
591 | u32 uval, u32 newval) | |
36cf3b5c | 592 | { |
37a9d912 | 593 | int ret; |
36cf3b5c TG |
594 | |
595 | pagefault_disable(); | |
37a9d912 | 596 | ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval); |
36cf3b5c TG |
597 | pagefault_enable(); |
598 | ||
37a9d912 | 599 | return ret; |
36cf3b5c TG |
600 | } |
601 | ||
602 | static int get_futex_value_locked(u32 *dest, u32 __user *from) | |
1da177e4 LT |
603 | { |
604 | int ret; | |
605 | ||
a866374a | 606 | pagefault_disable(); |
e2970f2f | 607 | ret = __copy_from_user_inatomic(dest, from, sizeof(u32)); |
a866374a | 608 | pagefault_enable(); |
1da177e4 LT |
609 | |
610 | return ret ? -EFAULT : 0; | |
611 | } | |
612 | ||
c87e2837 IM |
613 | |
614 | /* | |
615 | * PI code: | |
616 | */ | |
617 | static int refill_pi_state_cache(void) | |
618 | { | |
619 | struct futex_pi_state *pi_state; | |
620 | ||
621 | if (likely(current->pi_state_cache)) | |
622 | return 0; | |
623 | ||
4668edc3 | 624 | pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL); |
c87e2837 IM |
625 | |
626 | if (!pi_state) | |
627 | return -ENOMEM; | |
628 | ||
c87e2837 IM |
629 | INIT_LIST_HEAD(&pi_state->list); |
630 | /* pi_mutex gets initialized later */ | |
631 | pi_state->owner = NULL; | |
632 | atomic_set(&pi_state->refcount, 1); | |
38d47c1b | 633 | pi_state->key = FUTEX_KEY_INIT; |
c87e2837 IM |
634 | |
635 | current->pi_state_cache = pi_state; | |
636 | ||
637 | return 0; | |
638 | } | |
639 | ||
640 | static struct futex_pi_state * alloc_pi_state(void) | |
641 | { | |
642 | struct futex_pi_state *pi_state = current->pi_state_cache; | |
643 | ||
644 | WARN_ON(!pi_state); | |
645 | current->pi_state_cache = NULL; | |
646 | ||
647 | return pi_state; | |
648 | } | |
649 | ||
30a6b803 BS |
650 | /* |
651 | * Must be called with the hb lock held. | |
652 | */ | |
c87e2837 IM |
653 | static void free_pi_state(struct futex_pi_state *pi_state) |
654 | { | |
30a6b803 BS |
655 | if (!pi_state) |
656 | return; | |
657 | ||
c87e2837 IM |
658 | if (!atomic_dec_and_test(&pi_state->refcount)) |
659 | return; | |
660 | ||
661 | /* | |
662 | * If pi_state->owner is NULL, the owner is most probably dying | |
663 | * and has cleaned up the pi_state already | |
664 | */ | |
665 | if (pi_state->owner) { | |
1d615482 | 666 | raw_spin_lock_irq(&pi_state->owner->pi_lock); |
c87e2837 | 667 | list_del_init(&pi_state->list); |
1d615482 | 668 | raw_spin_unlock_irq(&pi_state->owner->pi_lock); |
c87e2837 IM |
669 | |
670 | rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner); | |
671 | } | |
672 | ||
673 | if (current->pi_state_cache) | |
674 | kfree(pi_state); | |
675 | else { | |
676 | /* | |
677 | * pi_state->list is already empty. | |
678 | * clear pi_state->owner. | |
679 | * refcount is at 0 - put it back to 1. | |
680 | */ | |
681 | pi_state->owner = NULL; | |
682 | atomic_set(&pi_state->refcount, 1); | |
683 | current->pi_state_cache = pi_state; | |
684 | } | |
685 | } | |
686 | ||
687 | /* | |
688 | * Look up the task based on what TID userspace gave us. | |
689 | * We dont trust it. | |
690 | */ | |
691 | static struct task_struct * futex_find_get_task(pid_t pid) | |
692 | { | |
693 | struct task_struct *p; | |
694 | ||
d359b549 | 695 | rcu_read_lock(); |
228ebcbe | 696 | p = find_task_by_vpid(pid); |
7a0ea09a MH |
697 | if (p) |
698 | get_task_struct(p); | |
a06381fe | 699 | |
d359b549 | 700 | rcu_read_unlock(); |
c87e2837 IM |
701 | |
702 | return p; | |
703 | } | |
704 | ||
705 | /* | |
706 | * This task is holding PI mutexes at exit time => bad. | |
707 | * Kernel cleans up PI-state, but userspace is likely hosed. | |
708 | * (Robust-futex cleanup is separate and might save the day for userspace.) | |
709 | */ | |
710 | void exit_pi_state_list(struct task_struct *curr) | |
711 | { | |
c87e2837 IM |
712 | struct list_head *next, *head = &curr->pi_state_list; |
713 | struct futex_pi_state *pi_state; | |
627371d7 | 714 | struct futex_hash_bucket *hb; |
38d47c1b | 715 | union futex_key key = FUTEX_KEY_INIT; |
c87e2837 | 716 | |
a0c1e907 TG |
717 | if (!futex_cmpxchg_enabled) |
718 | return; | |
c87e2837 IM |
719 | /* |
720 | * We are a ZOMBIE and nobody can enqueue itself on | |
721 | * pi_state_list anymore, but we have to be careful | |
627371d7 | 722 | * versus waiters unqueueing themselves: |
c87e2837 | 723 | */ |
1d615482 | 724 | raw_spin_lock_irq(&curr->pi_lock); |
c87e2837 IM |
725 | while (!list_empty(head)) { |
726 | ||
727 | next = head->next; | |
728 | pi_state = list_entry(next, struct futex_pi_state, list); | |
729 | key = pi_state->key; | |
627371d7 | 730 | hb = hash_futex(&key); |
1d615482 | 731 | raw_spin_unlock_irq(&curr->pi_lock); |
c87e2837 | 732 | |
c87e2837 IM |
733 | spin_lock(&hb->lock); |
734 | ||
1d615482 | 735 | raw_spin_lock_irq(&curr->pi_lock); |
627371d7 IM |
736 | /* |
737 | * We dropped the pi-lock, so re-check whether this | |
738 | * task still owns the PI-state: | |
739 | */ | |
c87e2837 IM |
740 | if (head->next != next) { |
741 | spin_unlock(&hb->lock); | |
742 | continue; | |
743 | } | |
744 | ||
c87e2837 | 745 | WARN_ON(pi_state->owner != curr); |
627371d7 IM |
746 | WARN_ON(list_empty(&pi_state->list)); |
747 | list_del_init(&pi_state->list); | |
c87e2837 | 748 | pi_state->owner = NULL; |
1d615482 | 749 | raw_spin_unlock_irq(&curr->pi_lock); |
c87e2837 IM |
750 | |
751 | rt_mutex_unlock(&pi_state->pi_mutex); | |
752 | ||
753 | spin_unlock(&hb->lock); | |
754 | ||
1d615482 | 755 | raw_spin_lock_irq(&curr->pi_lock); |
c87e2837 | 756 | } |
1d615482 | 757 | raw_spin_unlock_irq(&curr->pi_lock); |
c87e2837 IM |
758 | } |
759 | ||
54a21788 TG |
760 | /* |
761 | * We need to check the following states: | |
762 | * | |
763 | * Waiter | pi_state | pi->owner | uTID | uODIED | ? | |
764 | * | |
765 | * [1] NULL | --- | --- | 0 | 0/1 | Valid | |
766 | * [2] NULL | --- | --- | >0 | 0/1 | Valid | |
767 | * | |
768 | * [3] Found | NULL | -- | Any | 0/1 | Invalid | |
769 | * | |
770 | * [4] Found | Found | NULL | 0 | 1 | Valid | |
771 | * [5] Found | Found | NULL | >0 | 1 | Invalid | |
772 | * | |
773 | * [6] Found | Found | task | 0 | 1 | Valid | |
774 | * | |
775 | * [7] Found | Found | NULL | Any | 0 | Invalid | |
776 | * | |
777 | * [8] Found | Found | task | ==taskTID | 0/1 | Valid | |
778 | * [9] Found | Found | task | 0 | 0 | Invalid | |
779 | * [10] Found | Found | task | !=taskTID | 0/1 | Invalid | |
780 | * | |
781 | * [1] Indicates that the kernel can acquire the futex atomically. We | |
782 | * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit. | |
783 | * | |
784 | * [2] Valid, if TID does not belong to a kernel thread. If no matching | |
785 | * thread is found then it indicates that the owner TID has died. | |
786 | * | |
787 | * [3] Invalid. The waiter is queued on a non PI futex | |
788 | * | |
789 | * [4] Valid state after exit_robust_list(), which sets the user space | |
790 | * value to FUTEX_WAITERS | FUTEX_OWNER_DIED. | |
791 | * | |
792 | * [5] The user space value got manipulated between exit_robust_list() | |
793 | * and exit_pi_state_list() | |
794 | * | |
795 | * [6] Valid state after exit_pi_state_list() which sets the new owner in | |
796 | * the pi_state but cannot access the user space value. | |
797 | * | |
798 | * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set. | |
799 | * | |
800 | * [8] Owner and user space value match | |
801 | * | |
802 | * [9] There is no transient state which sets the user space TID to 0 | |
803 | * except exit_robust_list(), but this is indicated by the | |
804 | * FUTEX_OWNER_DIED bit. See [4] | |
805 | * | |
806 | * [10] There is no transient state which leaves owner and user space | |
807 | * TID out of sync. | |
808 | */ | |
e60cbc5c TG |
809 | |
810 | /* | |
811 | * Validate that the existing waiter has a pi_state and sanity check | |
812 | * the pi_state against the user space value. If correct, attach to | |
813 | * it. | |
814 | */ | |
815 | static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state, | |
816 | struct futex_pi_state **ps) | |
c87e2837 | 817 | { |
778e9a9c | 818 | pid_t pid = uval & FUTEX_TID_MASK; |
c87e2837 | 819 | |
e60cbc5c TG |
820 | /* |
821 | * Userspace might have messed up non-PI and PI futexes [3] | |
822 | */ | |
823 | if (unlikely(!pi_state)) | |
824 | return -EINVAL; | |
06a9ec29 | 825 | |
e60cbc5c | 826 | WARN_ON(!atomic_read(&pi_state->refcount)); |
59647b6a | 827 | |
e60cbc5c TG |
828 | /* |
829 | * Handle the owner died case: | |
830 | */ | |
831 | if (uval & FUTEX_OWNER_DIED) { | |
bd1dbcc6 | 832 | /* |
e60cbc5c TG |
833 | * exit_pi_state_list sets owner to NULL and wakes the |
834 | * topmost waiter. The task which acquires the | |
835 | * pi_state->rt_mutex will fixup owner. | |
bd1dbcc6 | 836 | */ |
e60cbc5c | 837 | if (!pi_state->owner) { |
59647b6a | 838 | /* |
e60cbc5c TG |
839 | * No pi state owner, but the user space TID |
840 | * is not 0. Inconsistent state. [5] | |
59647b6a | 841 | */ |
e60cbc5c TG |
842 | if (pid) |
843 | return -EINVAL; | |
bd1dbcc6 | 844 | /* |
e60cbc5c | 845 | * Take a ref on the state and return success. [4] |
866293ee | 846 | */ |
e60cbc5c | 847 | goto out_state; |
c87e2837 | 848 | } |
bd1dbcc6 TG |
849 | |
850 | /* | |
e60cbc5c TG |
851 | * If TID is 0, then either the dying owner has not |
852 | * yet executed exit_pi_state_list() or some waiter | |
853 | * acquired the rtmutex in the pi state, but did not | |
854 | * yet fixup the TID in user space. | |
855 | * | |
856 | * Take a ref on the state and return success. [6] | |
857 | */ | |
858 | if (!pid) | |
859 | goto out_state; | |
860 | } else { | |
861 | /* | |
862 | * If the owner died bit is not set, then the pi_state | |
863 | * must have an owner. [7] | |
bd1dbcc6 | 864 | */ |
e60cbc5c | 865 | if (!pi_state->owner) |
bd1dbcc6 | 866 | return -EINVAL; |
c87e2837 IM |
867 | } |
868 | ||
e60cbc5c TG |
869 | /* |
870 | * Bail out if user space manipulated the futex value. If pi | |
871 | * state exists then the owner TID must be the same as the | |
872 | * user space TID. [9/10] | |
873 | */ | |
874 | if (pid != task_pid_vnr(pi_state->owner)) | |
875 | return -EINVAL; | |
876 | out_state: | |
877 | atomic_inc(&pi_state->refcount); | |
878 | *ps = pi_state; | |
879 | return 0; | |
880 | } | |
881 | ||
04e1b2e5 TG |
882 | /* |
883 | * Lookup the task for the TID provided from user space and attach to | |
884 | * it after doing proper sanity checks. | |
885 | */ | |
886 | static int attach_to_pi_owner(u32 uval, union futex_key *key, | |
887 | struct futex_pi_state **ps) | |
e60cbc5c | 888 | { |
e60cbc5c | 889 | pid_t pid = uval & FUTEX_TID_MASK; |
04e1b2e5 TG |
890 | struct futex_pi_state *pi_state; |
891 | struct task_struct *p; | |
e60cbc5c | 892 | |
c87e2837 | 893 | /* |
e3f2ddea | 894 | * We are the first waiter - try to look up the real owner and attach |
54a21788 | 895 | * the new pi_state to it, but bail out when TID = 0 [1] |
c87e2837 | 896 | */ |
778e9a9c | 897 | if (!pid) |
e3f2ddea | 898 | return -ESRCH; |
c87e2837 | 899 | p = futex_find_get_task(pid); |
7a0ea09a MH |
900 | if (!p) |
901 | return -ESRCH; | |
778e9a9c | 902 | |
f0d71b3d TG |
903 | if (!p->mm) { |
904 | put_task_struct(p); | |
905 | return -EPERM; | |
906 | } | |
907 | ||
778e9a9c AK |
908 | /* |
909 | * We need to look at the task state flags to figure out, | |
910 | * whether the task is exiting. To protect against the do_exit | |
911 | * change of the task flags, we do this protected by | |
912 | * p->pi_lock: | |
913 | */ | |
1d615482 | 914 | raw_spin_lock_irq(&p->pi_lock); |
778e9a9c AK |
915 | if (unlikely(p->flags & PF_EXITING)) { |
916 | /* | |
917 | * The task is on the way out. When PF_EXITPIDONE is | |
918 | * set, we know that the task has finished the | |
919 | * cleanup: | |
920 | */ | |
921 | int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN; | |
922 | ||
1d615482 | 923 | raw_spin_unlock_irq(&p->pi_lock); |
778e9a9c AK |
924 | put_task_struct(p); |
925 | return ret; | |
926 | } | |
c87e2837 | 927 | |
54a21788 TG |
928 | /* |
929 | * No existing pi state. First waiter. [2] | |
930 | */ | |
c87e2837 IM |
931 | pi_state = alloc_pi_state(); |
932 | ||
933 | /* | |
04e1b2e5 | 934 | * Initialize the pi_mutex in locked state and make @p |
c87e2837 IM |
935 | * the owner of it: |
936 | */ | |
937 | rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p); | |
938 | ||
939 | /* Store the key for possible exit cleanups: */ | |
d0aa7a70 | 940 | pi_state->key = *key; |
c87e2837 | 941 | |
627371d7 | 942 | WARN_ON(!list_empty(&pi_state->list)); |
c87e2837 IM |
943 | list_add(&pi_state->list, &p->pi_state_list); |
944 | pi_state->owner = p; | |
1d615482 | 945 | raw_spin_unlock_irq(&p->pi_lock); |
c87e2837 IM |
946 | |
947 | put_task_struct(p); | |
948 | ||
d0aa7a70 | 949 | *ps = pi_state; |
c87e2837 IM |
950 | |
951 | return 0; | |
952 | } | |
953 | ||
04e1b2e5 TG |
954 | static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb, |
955 | union futex_key *key, struct futex_pi_state **ps) | |
956 | { | |
957 | struct futex_q *match = futex_top_waiter(hb, key); | |
958 | ||
959 | /* | |
960 | * If there is a waiter on that futex, validate it and | |
961 | * attach to the pi_state when the validation succeeds. | |
962 | */ | |
963 | if (match) | |
964 | return attach_to_pi_state(uval, match->pi_state, ps); | |
965 | ||
966 | /* | |
967 | * We are the first waiter - try to look up the owner based on | |
968 | * @uval and attach to it. | |
969 | */ | |
970 | return attach_to_pi_owner(uval, key, ps); | |
971 | } | |
972 | ||
af54d6a1 TG |
973 | static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval) |
974 | { | |
975 | u32 uninitialized_var(curval); | |
976 | ||
977 | if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))) | |
978 | return -EFAULT; | |
979 | ||
980 | /*If user space value changed, let the caller retry */ | |
981 | return curval != uval ? -EAGAIN : 0; | |
982 | } | |
983 | ||
1a52084d | 984 | /** |
d96ee56c | 985 | * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex |
bab5bc9e DH |
986 | * @uaddr: the pi futex user address |
987 | * @hb: the pi futex hash bucket | |
988 | * @key: the futex key associated with uaddr and hb | |
989 | * @ps: the pi_state pointer where we store the result of the | |
990 | * lookup | |
991 | * @task: the task to perform the atomic lock work for. This will | |
992 | * be "current" except in the case of requeue pi. | |
993 | * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0) | |
1a52084d | 994 | * |
6c23cbbd RD |
995 | * Return: |
996 | * 0 - ready to wait; | |
997 | * 1 - acquired the lock; | |
1a52084d DH |
998 | * <0 - error |
999 | * | |
1000 | * The hb->lock and futex_key refs shall be held by the caller. | |
1001 | */ | |
1002 | static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb, | |
1003 | union futex_key *key, | |
1004 | struct futex_pi_state **ps, | |
bab5bc9e | 1005 | struct task_struct *task, int set_waiters) |
1a52084d | 1006 | { |
af54d6a1 TG |
1007 | u32 uval, newval, vpid = task_pid_vnr(task); |
1008 | struct futex_q *match; | |
1009 | int ret; | |
1a52084d DH |
1010 | |
1011 | /* | |
af54d6a1 TG |
1012 | * Read the user space value first so we can validate a few |
1013 | * things before proceeding further. | |
1a52084d | 1014 | */ |
af54d6a1 | 1015 | if (get_futex_value_locked(&uval, uaddr)) |
1a52084d DH |
1016 | return -EFAULT; |
1017 | ||
1018 | /* | |
1019 | * Detect deadlocks. | |
1020 | */ | |
af54d6a1 | 1021 | if ((unlikely((uval & FUTEX_TID_MASK) == vpid))) |
1a52084d DH |
1022 | return -EDEADLK; |
1023 | ||
1024 | /* | |
af54d6a1 TG |
1025 | * Lookup existing state first. If it exists, try to attach to |
1026 | * its pi_state. | |
1a52084d | 1027 | */ |
af54d6a1 TG |
1028 | match = futex_top_waiter(hb, key); |
1029 | if (match) | |
1030 | return attach_to_pi_state(uval, match->pi_state, ps); | |
1a52084d DH |
1031 | |
1032 | /* | |
af54d6a1 TG |
1033 | * No waiter and user TID is 0. We are here because the |
1034 | * waiters or the owner died bit is set or called from | |
1035 | * requeue_cmp_pi or for whatever reason something took the | |
1036 | * syscall. | |
1a52084d | 1037 | */ |
af54d6a1 | 1038 | if (!(uval & FUTEX_TID_MASK)) { |
59fa6245 | 1039 | /* |
af54d6a1 TG |
1040 | * We take over the futex. No other waiters and the user space |
1041 | * TID is 0. We preserve the owner died bit. | |
59fa6245 | 1042 | */ |
af54d6a1 TG |
1043 | newval = uval & FUTEX_OWNER_DIED; |
1044 | newval |= vpid; | |
1a52084d | 1045 | |
af54d6a1 TG |
1046 | /* The futex requeue_pi code can enforce the waiters bit */ |
1047 | if (set_waiters) | |
1048 | newval |= FUTEX_WAITERS; | |
1049 | ||
1050 | ret = lock_pi_update_atomic(uaddr, uval, newval); | |
1051 | /* If the take over worked, return 1 */ | |
1052 | return ret < 0 ? ret : 1; | |
1053 | } | |
1a52084d DH |
1054 | |
1055 | /* | |
af54d6a1 TG |
1056 | * First waiter. Set the waiters bit before attaching ourself to |
1057 | * the owner. If owner tries to unlock, it will be forced into | |
1058 | * the kernel and blocked on hb->lock. | |
1a52084d | 1059 | */ |
af54d6a1 TG |
1060 | newval = uval | FUTEX_WAITERS; |
1061 | ret = lock_pi_update_atomic(uaddr, uval, newval); | |
1062 | if (ret) | |
1063 | return ret; | |
1a52084d | 1064 | /* |
af54d6a1 TG |
1065 | * If the update of the user space value succeeded, we try to |
1066 | * attach to the owner. If that fails, no harm done, we only | |
1067 | * set the FUTEX_WAITERS bit in the user space variable. | |
1a52084d | 1068 | */ |
af54d6a1 | 1069 | return attach_to_pi_owner(uval, key, ps); |
1a52084d DH |
1070 | } |
1071 | ||
2e12978a LJ |
1072 | /** |
1073 | * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket | |
1074 | * @q: The futex_q to unqueue | |
1075 | * | |
1076 | * The q->lock_ptr must not be NULL and must be held by the caller. | |
1077 | */ | |
1078 | static void __unqueue_futex(struct futex_q *q) | |
1079 | { | |
1080 | struct futex_hash_bucket *hb; | |
1081 | ||
29096202 SR |
1082 | if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr)) |
1083 | || WARN_ON(plist_node_empty(&q->list))) | |
2e12978a LJ |
1084 | return; |
1085 | ||
1086 | hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock); | |
1087 | plist_del(&q->list, &hb->chain); | |
11d4616b | 1088 | hb_waiters_dec(hb); |
2e12978a LJ |
1089 | } |
1090 | ||
1da177e4 LT |
1091 | /* |
1092 | * The hash bucket lock must be held when this is called. | |
1093 | * Afterwards, the futex_q must not be accessed. | |
1094 | */ | |
1095 | static void wake_futex(struct futex_q *q) | |
1096 | { | |
f1a11e05 TG |
1097 | struct task_struct *p = q->task; |
1098 | ||
aa10990e DH |
1099 | if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n")) |
1100 | return; | |
1101 | ||
1da177e4 | 1102 | /* |
f1a11e05 | 1103 | * We set q->lock_ptr = NULL _before_ we wake up the task. If |
fb62db2b RD |
1104 | * a non-futex wake up happens on another CPU then the task |
1105 | * might exit and p would dereference a non-existing task | |
f1a11e05 TG |
1106 | * struct. Prevent this by holding a reference on p across the |
1107 | * wake up. | |
1da177e4 | 1108 | */ |
f1a11e05 TG |
1109 | get_task_struct(p); |
1110 | ||
2e12978a | 1111 | __unqueue_futex(q); |
1da177e4 | 1112 | /* |
f1a11e05 TG |
1113 | * The waiting task can free the futex_q as soon as |
1114 | * q->lock_ptr = NULL is written, without taking any locks. A | |
1115 | * memory barrier is required here to prevent the following | |
1116 | * store to lock_ptr from getting ahead of the plist_del. | |
1da177e4 | 1117 | */ |
ccdea2f8 | 1118 | smp_wmb(); |
1da177e4 | 1119 | q->lock_ptr = NULL; |
f1a11e05 TG |
1120 | |
1121 | wake_up_state(p, TASK_NORMAL); | |
1122 | put_task_struct(p); | |
1da177e4 LT |
1123 | } |
1124 | ||
c87e2837 IM |
1125 | static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this) |
1126 | { | |
1127 | struct task_struct *new_owner; | |
1128 | struct futex_pi_state *pi_state = this->pi_state; | |
7cfdaf38 | 1129 | u32 uninitialized_var(curval), newval; |
13fbca4c | 1130 | int ret = 0; |
c87e2837 IM |
1131 | |
1132 | if (!pi_state) | |
1133 | return -EINVAL; | |
1134 | ||
51246bfd TG |
1135 | /* |
1136 | * If current does not own the pi_state then the futex is | |
1137 | * inconsistent and user space fiddled with the futex value. | |
1138 | */ | |
1139 | if (pi_state->owner != current) | |
1140 | return -EINVAL; | |
1141 | ||
d209d74d | 1142 | raw_spin_lock(&pi_state->pi_mutex.wait_lock); |
c87e2837 IM |
1143 | new_owner = rt_mutex_next_owner(&pi_state->pi_mutex); |
1144 | ||
1145 | /* | |
f123c98e SR |
1146 | * It is possible that the next waiter (the one that brought |
1147 | * this owner to the kernel) timed out and is no longer | |
1148 | * waiting on the lock. | |
c87e2837 IM |
1149 | */ |
1150 | if (!new_owner) | |
1151 | new_owner = this->task; | |
1152 | ||
1153 | /* | |
13fbca4c TG |
1154 | * We pass it to the next owner. The WAITERS bit is always |
1155 | * kept enabled while there is PI state around. We cleanup the | |
1156 | * owner died bit, because we are the owner. | |
c87e2837 | 1157 | */ |
13fbca4c | 1158 | newval = FUTEX_WAITERS | task_pid_vnr(new_owner); |
e3f2ddea | 1159 | |
13fbca4c TG |
1160 | if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) |
1161 | ret = -EFAULT; | |
1162 | else if (curval != uval) | |
1163 | ret = -EINVAL; | |
1164 | if (ret) { | |
1165 | raw_spin_unlock(&pi_state->pi_mutex.wait_lock); | |
1166 | return ret; | |
e3f2ddea | 1167 | } |
c87e2837 | 1168 | |
1d615482 | 1169 | raw_spin_lock_irq(&pi_state->owner->pi_lock); |
627371d7 IM |
1170 | WARN_ON(list_empty(&pi_state->list)); |
1171 | list_del_init(&pi_state->list); | |
1d615482 | 1172 | raw_spin_unlock_irq(&pi_state->owner->pi_lock); |
627371d7 | 1173 | |
1d615482 | 1174 | raw_spin_lock_irq(&new_owner->pi_lock); |
627371d7 | 1175 | WARN_ON(!list_empty(&pi_state->list)); |
c87e2837 IM |
1176 | list_add(&pi_state->list, &new_owner->pi_state_list); |
1177 | pi_state->owner = new_owner; | |
1d615482 | 1178 | raw_spin_unlock_irq(&new_owner->pi_lock); |
627371d7 | 1179 | |
d209d74d | 1180 | raw_spin_unlock(&pi_state->pi_mutex.wait_lock); |
c87e2837 IM |
1181 | rt_mutex_unlock(&pi_state->pi_mutex); |
1182 | ||
1183 | return 0; | |
1184 | } | |
1185 | ||
8b8f319f IM |
1186 | /* |
1187 | * Express the locking dependencies for lockdep: | |
1188 | */ | |
1189 | static inline void | |
1190 | double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2) | |
1191 | { | |
1192 | if (hb1 <= hb2) { | |
1193 | spin_lock(&hb1->lock); | |
1194 | if (hb1 < hb2) | |
1195 | spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING); | |
1196 | } else { /* hb1 > hb2 */ | |
1197 | spin_lock(&hb2->lock); | |
1198 | spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING); | |
1199 | } | |
1200 | } | |
1201 | ||
5eb3dc62 DH |
1202 | static inline void |
1203 | double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2) | |
1204 | { | |
f061d351 | 1205 | spin_unlock(&hb1->lock); |
88f502fe IM |
1206 | if (hb1 != hb2) |
1207 | spin_unlock(&hb2->lock); | |
5eb3dc62 DH |
1208 | } |
1209 | ||
1da177e4 | 1210 | /* |
b2d0994b | 1211 | * Wake up waiters matching bitset queued on this futex (uaddr). |
1da177e4 | 1212 | */ |
b41277dc DH |
1213 | static int |
1214 | futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset) | |
1da177e4 | 1215 | { |
e2970f2f | 1216 | struct futex_hash_bucket *hb; |
1da177e4 | 1217 | struct futex_q *this, *next; |
38d47c1b | 1218 | union futex_key key = FUTEX_KEY_INIT; |
1da177e4 LT |
1219 | int ret; |
1220 | ||
cd689985 TG |
1221 | if (!bitset) |
1222 | return -EINVAL; | |
1223 | ||
9ea71503 | 1224 | ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ); |
1da177e4 LT |
1225 | if (unlikely(ret != 0)) |
1226 | goto out; | |
1227 | ||
e2970f2f | 1228 | hb = hash_futex(&key); |
b0c29f79 DB |
1229 | |
1230 | /* Make sure we really have tasks to wakeup */ | |
1231 | if (!hb_waiters_pending(hb)) | |
1232 | goto out_put_key; | |
1233 | ||
e2970f2f | 1234 | spin_lock(&hb->lock); |
1da177e4 | 1235 | |
0d00c7b2 | 1236 | plist_for_each_entry_safe(this, next, &hb->chain, list) { |
1da177e4 | 1237 | if (match_futex (&this->key, &key)) { |
52400ba9 | 1238 | if (this->pi_state || this->rt_waiter) { |
ed6f7b10 IM |
1239 | ret = -EINVAL; |
1240 | break; | |
1241 | } | |
cd689985 TG |
1242 | |
1243 | /* Check if one of the bits is set in both bitsets */ | |
1244 | if (!(this->bitset & bitset)) | |
1245 | continue; | |
1246 | ||
1da177e4 LT |
1247 | wake_futex(this); |
1248 | if (++ret >= nr_wake) | |
1249 | break; | |
1250 | } | |
1251 | } | |
1252 | ||
e2970f2f | 1253 | spin_unlock(&hb->lock); |
b0c29f79 | 1254 | out_put_key: |
ae791a2d | 1255 | put_futex_key(&key); |
42d35d48 | 1256 | out: |
1da177e4 LT |
1257 | return ret; |
1258 | } | |
1259 | ||
4732efbe JJ |
1260 | /* |
1261 | * Wake up all waiters hashed on the physical page that is mapped | |
1262 | * to this virtual address: | |
1263 | */ | |
e2970f2f | 1264 | static int |
b41277dc | 1265 | futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2, |
e2970f2f | 1266 | int nr_wake, int nr_wake2, int op) |
4732efbe | 1267 | { |
38d47c1b | 1268 | union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT; |
e2970f2f | 1269 | struct futex_hash_bucket *hb1, *hb2; |
4732efbe | 1270 | struct futex_q *this, *next; |
e4dc5b7a | 1271 | int ret, op_ret; |
4732efbe | 1272 | |
e4dc5b7a | 1273 | retry: |
9ea71503 | 1274 | ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ); |
4732efbe JJ |
1275 | if (unlikely(ret != 0)) |
1276 | goto out; | |
9ea71503 | 1277 | ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE); |
4732efbe | 1278 | if (unlikely(ret != 0)) |
42d35d48 | 1279 | goto out_put_key1; |
4732efbe | 1280 | |
e2970f2f IM |
1281 | hb1 = hash_futex(&key1); |
1282 | hb2 = hash_futex(&key2); | |
4732efbe | 1283 | |
e4dc5b7a | 1284 | retry_private: |
eaaea803 | 1285 | double_lock_hb(hb1, hb2); |
e2970f2f | 1286 | op_ret = futex_atomic_op_inuser(op, uaddr2); |
4732efbe | 1287 | if (unlikely(op_ret < 0)) { |
4732efbe | 1288 | |
5eb3dc62 | 1289 | double_unlock_hb(hb1, hb2); |
4732efbe | 1290 | |
7ee1dd3f | 1291 | #ifndef CONFIG_MMU |
e2970f2f IM |
1292 | /* |
1293 | * we don't get EFAULT from MMU faults if we don't have an MMU, | |
1294 | * but we might get them from range checking | |
1295 | */ | |
7ee1dd3f | 1296 | ret = op_ret; |
42d35d48 | 1297 | goto out_put_keys; |
7ee1dd3f DH |
1298 | #endif |
1299 | ||
796f8d9b DG |
1300 | if (unlikely(op_ret != -EFAULT)) { |
1301 | ret = op_ret; | |
42d35d48 | 1302 | goto out_put_keys; |
796f8d9b DG |
1303 | } |
1304 | ||
d0725992 | 1305 | ret = fault_in_user_writeable(uaddr2); |
4732efbe | 1306 | if (ret) |
de87fcc1 | 1307 | goto out_put_keys; |
4732efbe | 1308 | |
b41277dc | 1309 | if (!(flags & FLAGS_SHARED)) |
e4dc5b7a DH |
1310 | goto retry_private; |
1311 | ||
ae791a2d TG |
1312 | put_futex_key(&key2); |
1313 | put_futex_key(&key1); | |
e4dc5b7a | 1314 | goto retry; |
4732efbe JJ |
1315 | } |
1316 | ||
0d00c7b2 | 1317 | plist_for_each_entry_safe(this, next, &hb1->chain, list) { |
4732efbe | 1318 | if (match_futex (&this->key, &key1)) { |
aa10990e DH |
1319 | if (this->pi_state || this->rt_waiter) { |
1320 | ret = -EINVAL; | |
1321 | goto out_unlock; | |
1322 | } | |
4732efbe JJ |
1323 | wake_futex(this); |
1324 | if (++ret >= nr_wake) | |
1325 | break; | |
1326 | } | |
1327 | } | |
1328 | ||
1329 | if (op_ret > 0) { | |
4732efbe | 1330 | op_ret = 0; |
0d00c7b2 | 1331 | plist_for_each_entry_safe(this, next, &hb2->chain, list) { |
4732efbe | 1332 | if (match_futex (&this->key, &key2)) { |
aa10990e DH |
1333 | if (this->pi_state || this->rt_waiter) { |
1334 | ret = -EINVAL; | |
1335 | goto out_unlock; | |
1336 | } | |
4732efbe JJ |
1337 | wake_futex(this); |
1338 | if (++op_ret >= nr_wake2) | |
1339 | break; | |
1340 | } | |
1341 | } | |
1342 | ret += op_ret; | |
1343 | } | |
1344 | ||
aa10990e | 1345 | out_unlock: |
5eb3dc62 | 1346 | double_unlock_hb(hb1, hb2); |
42d35d48 | 1347 | out_put_keys: |
ae791a2d | 1348 | put_futex_key(&key2); |
42d35d48 | 1349 | out_put_key1: |
ae791a2d | 1350 | put_futex_key(&key1); |
42d35d48 | 1351 | out: |
4732efbe JJ |
1352 | return ret; |
1353 | } | |
1354 | ||
9121e478 DH |
1355 | /** |
1356 | * requeue_futex() - Requeue a futex_q from one hb to another | |
1357 | * @q: the futex_q to requeue | |
1358 | * @hb1: the source hash_bucket | |
1359 | * @hb2: the target hash_bucket | |
1360 | * @key2: the new key for the requeued futex_q | |
1361 | */ | |
1362 | static inline | |
1363 | void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1, | |
1364 | struct futex_hash_bucket *hb2, union futex_key *key2) | |
1365 | { | |
1366 | ||
1367 | /* | |
1368 | * If key1 and key2 hash to the same bucket, no need to | |
1369 | * requeue. | |
1370 | */ | |
1371 | if (likely(&hb1->chain != &hb2->chain)) { | |
1372 | plist_del(&q->list, &hb1->chain); | |
11d4616b | 1373 | hb_waiters_dec(hb1); |
9121e478 | 1374 | plist_add(&q->list, &hb2->chain); |
11d4616b | 1375 | hb_waiters_inc(hb2); |
9121e478 | 1376 | q->lock_ptr = &hb2->lock; |
9121e478 DH |
1377 | } |
1378 | get_futex_key_refs(key2); | |
1379 | q->key = *key2; | |
1380 | } | |
1381 | ||
52400ba9 DH |
1382 | /** |
1383 | * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue | |
d96ee56c DH |
1384 | * @q: the futex_q |
1385 | * @key: the key of the requeue target futex | |
1386 | * @hb: the hash_bucket of the requeue target futex | |
52400ba9 DH |
1387 | * |
1388 | * During futex_requeue, with requeue_pi=1, it is possible to acquire the | |
1389 | * target futex if it is uncontended or via a lock steal. Set the futex_q key | |
1390 | * to the requeue target futex so the waiter can detect the wakeup on the right | |
1391 | * futex, but remove it from the hb and NULL the rt_waiter so it can detect | |
beda2c7e DH |
1392 | * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock |
1393 | * to protect access to the pi_state to fixup the owner later. Must be called | |
1394 | * with both q->lock_ptr and hb->lock held. | |
52400ba9 DH |
1395 | */ |
1396 | static inline | |
beda2c7e DH |
1397 | void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key, |
1398 | struct futex_hash_bucket *hb) | |
52400ba9 | 1399 | { |
52400ba9 DH |
1400 | get_futex_key_refs(key); |
1401 | q->key = *key; | |
1402 | ||
2e12978a | 1403 | __unqueue_futex(q); |
52400ba9 DH |
1404 | |
1405 | WARN_ON(!q->rt_waiter); | |
1406 | q->rt_waiter = NULL; | |
1407 | ||
beda2c7e | 1408 | q->lock_ptr = &hb->lock; |
beda2c7e | 1409 | |
f1a11e05 | 1410 | wake_up_state(q->task, TASK_NORMAL); |
52400ba9 DH |
1411 | } |
1412 | ||
1413 | /** | |
1414 | * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter | |
bab5bc9e DH |
1415 | * @pifutex: the user address of the to futex |
1416 | * @hb1: the from futex hash bucket, must be locked by the caller | |
1417 | * @hb2: the to futex hash bucket, must be locked by the caller | |
1418 | * @key1: the from futex key | |
1419 | * @key2: the to futex key | |
1420 | * @ps: address to store the pi_state pointer | |
1421 | * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0) | |
52400ba9 DH |
1422 | * |
1423 | * Try and get the lock on behalf of the top waiter if we can do it atomically. | |
bab5bc9e DH |
1424 | * Wake the top waiter if we succeed. If the caller specified set_waiters, |
1425 | * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit. | |
1426 | * hb1 and hb2 must be held by the caller. | |
52400ba9 | 1427 | * |
6c23cbbd RD |
1428 | * Return: |
1429 | * 0 - failed to acquire the lock atomically; | |
866293ee | 1430 | * >0 - acquired the lock, return value is vpid of the top_waiter |
52400ba9 DH |
1431 | * <0 - error |
1432 | */ | |
1433 | static int futex_proxy_trylock_atomic(u32 __user *pifutex, | |
1434 | struct futex_hash_bucket *hb1, | |
1435 | struct futex_hash_bucket *hb2, | |
1436 | union futex_key *key1, union futex_key *key2, | |
bab5bc9e | 1437 | struct futex_pi_state **ps, int set_waiters) |
52400ba9 | 1438 | { |
bab5bc9e | 1439 | struct futex_q *top_waiter = NULL; |
52400ba9 | 1440 | u32 curval; |
866293ee | 1441 | int ret, vpid; |
52400ba9 DH |
1442 | |
1443 | if (get_futex_value_locked(&curval, pifutex)) | |
1444 | return -EFAULT; | |
1445 | ||
bab5bc9e DH |
1446 | /* |
1447 | * Find the top_waiter and determine if there are additional waiters. | |
1448 | * If the caller intends to requeue more than 1 waiter to pifutex, | |
1449 | * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now, | |
1450 | * as we have means to handle the possible fault. If not, don't set | |
1451 | * the bit unecessarily as it will force the subsequent unlock to enter | |
1452 | * the kernel. | |
1453 | */ | |
52400ba9 DH |
1454 | top_waiter = futex_top_waiter(hb1, key1); |
1455 | ||
1456 | /* There are no waiters, nothing for us to do. */ | |
1457 | if (!top_waiter) | |
1458 | return 0; | |
1459 | ||
84bc4af5 DH |
1460 | /* Ensure we requeue to the expected futex. */ |
1461 | if (!match_futex(top_waiter->requeue_pi_key, key2)) | |
1462 | return -EINVAL; | |
1463 | ||
52400ba9 | 1464 | /* |
bab5bc9e DH |
1465 | * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in |
1466 | * the contended case or if set_waiters is 1. The pi_state is returned | |
1467 | * in ps in contended cases. | |
52400ba9 | 1468 | */ |
866293ee | 1469 | vpid = task_pid_vnr(top_waiter->task); |
bab5bc9e DH |
1470 | ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task, |
1471 | set_waiters); | |
866293ee | 1472 | if (ret == 1) { |
beda2c7e | 1473 | requeue_pi_wake_futex(top_waiter, key2, hb2); |
866293ee TG |
1474 | return vpid; |
1475 | } | |
52400ba9 DH |
1476 | return ret; |
1477 | } | |
1478 | ||
1479 | /** | |
1480 | * futex_requeue() - Requeue waiters from uaddr1 to uaddr2 | |
fb62db2b | 1481 | * @uaddr1: source futex user address |
b41277dc | 1482 | * @flags: futex flags (FLAGS_SHARED, etc.) |
fb62db2b RD |
1483 | * @uaddr2: target futex user address |
1484 | * @nr_wake: number of waiters to wake (must be 1 for requeue_pi) | |
1485 | * @nr_requeue: number of waiters to requeue (0-INT_MAX) | |
1486 | * @cmpval: @uaddr1 expected value (or %NULL) | |
1487 | * @requeue_pi: if we are attempting to requeue from a non-pi futex to a | |
b41277dc | 1488 | * pi futex (pi to pi requeue is not supported) |
52400ba9 DH |
1489 | * |
1490 | * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire | |
1491 | * uaddr2 atomically on behalf of the top waiter. | |
1492 | * | |
6c23cbbd RD |
1493 | * Return: |
1494 | * >=0 - on success, the number of tasks requeued or woken; | |
52400ba9 | 1495 | * <0 - on error |
1da177e4 | 1496 | */ |
b41277dc DH |
1497 | static int futex_requeue(u32 __user *uaddr1, unsigned int flags, |
1498 | u32 __user *uaddr2, int nr_wake, int nr_requeue, | |
1499 | u32 *cmpval, int requeue_pi) | |
1da177e4 | 1500 | { |
38d47c1b | 1501 | union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT; |
52400ba9 DH |
1502 | int drop_count = 0, task_count = 0, ret; |
1503 | struct futex_pi_state *pi_state = NULL; | |
e2970f2f | 1504 | struct futex_hash_bucket *hb1, *hb2; |
1da177e4 | 1505 | struct futex_q *this, *next; |
52400ba9 DH |
1506 | |
1507 | if (requeue_pi) { | |
e9c243a5 TG |
1508 | /* |
1509 | * Requeue PI only works on two distinct uaddrs. This | |
1510 | * check is only valid for private futexes. See below. | |
1511 | */ | |
1512 | if (uaddr1 == uaddr2) | |
1513 | return -EINVAL; | |
1514 | ||
52400ba9 DH |
1515 | /* |
1516 | * requeue_pi requires a pi_state, try to allocate it now | |
1517 | * without any locks in case it fails. | |
1518 | */ | |
1519 | if (refill_pi_state_cache()) | |
1520 | return -ENOMEM; | |
1521 | /* | |
1522 | * requeue_pi must wake as many tasks as it can, up to nr_wake | |
1523 | * + nr_requeue, since it acquires the rt_mutex prior to | |
1524 | * returning to userspace, so as to not leave the rt_mutex with | |
1525 | * waiters and no owner. However, second and third wake-ups | |
1526 | * cannot be predicted as they involve race conditions with the | |
1527 | * first wake and a fault while looking up the pi_state. Both | |
1528 | * pthread_cond_signal() and pthread_cond_broadcast() should | |
1529 | * use nr_wake=1. | |
1530 | */ | |
1531 | if (nr_wake != 1) | |
1532 | return -EINVAL; | |
1533 | } | |
1da177e4 | 1534 | |
42d35d48 | 1535 | retry: |
9ea71503 | 1536 | ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ); |
1da177e4 LT |
1537 | if (unlikely(ret != 0)) |
1538 | goto out; | |
9ea71503 SB |
1539 | ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, |
1540 | requeue_pi ? VERIFY_WRITE : VERIFY_READ); | |
1da177e4 | 1541 | if (unlikely(ret != 0)) |
42d35d48 | 1542 | goto out_put_key1; |
1da177e4 | 1543 | |
e9c243a5 TG |
1544 | /* |
1545 | * The check above which compares uaddrs is not sufficient for | |
1546 | * shared futexes. We need to compare the keys: | |
1547 | */ | |
1548 | if (requeue_pi && match_futex(&key1, &key2)) { | |
1549 | ret = -EINVAL; | |
1550 | goto out_put_keys; | |
1551 | } | |
1552 | ||
e2970f2f IM |
1553 | hb1 = hash_futex(&key1); |
1554 | hb2 = hash_futex(&key2); | |
1da177e4 | 1555 | |
e4dc5b7a | 1556 | retry_private: |
69cd9eba | 1557 | hb_waiters_inc(hb2); |
8b8f319f | 1558 | double_lock_hb(hb1, hb2); |
1da177e4 | 1559 | |
e2970f2f IM |
1560 | if (likely(cmpval != NULL)) { |
1561 | u32 curval; | |
1da177e4 | 1562 | |
e2970f2f | 1563 | ret = get_futex_value_locked(&curval, uaddr1); |
1da177e4 LT |
1564 | |
1565 | if (unlikely(ret)) { | |
5eb3dc62 | 1566 | double_unlock_hb(hb1, hb2); |
69cd9eba | 1567 | hb_waiters_dec(hb2); |
1da177e4 | 1568 | |
e2970f2f | 1569 | ret = get_user(curval, uaddr1); |
e4dc5b7a DH |
1570 | if (ret) |
1571 | goto out_put_keys; | |
1da177e4 | 1572 | |
b41277dc | 1573 | if (!(flags & FLAGS_SHARED)) |
e4dc5b7a | 1574 | goto retry_private; |
1da177e4 | 1575 | |
ae791a2d TG |
1576 | put_futex_key(&key2); |
1577 | put_futex_key(&key1); | |
e4dc5b7a | 1578 | goto retry; |
1da177e4 | 1579 | } |
e2970f2f | 1580 | if (curval != *cmpval) { |
1da177e4 LT |
1581 | ret = -EAGAIN; |
1582 | goto out_unlock; | |
1583 | } | |
1584 | } | |
1585 | ||
52400ba9 | 1586 | if (requeue_pi && (task_count - nr_wake < nr_requeue)) { |
bab5bc9e DH |
1587 | /* |
1588 | * Attempt to acquire uaddr2 and wake the top waiter. If we | |
1589 | * intend to requeue waiters, force setting the FUTEX_WAITERS | |
1590 | * bit. We force this here where we are able to easily handle | |
1591 | * faults rather in the requeue loop below. | |
1592 | */ | |
52400ba9 | 1593 | ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1, |
bab5bc9e | 1594 | &key2, &pi_state, nr_requeue); |
52400ba9 DH |
1595 | |
1596 | /* | |
1597 | * At this point the top_waiter has either taken uaddr2 or is | |
1598 | * waiting on it. If the former, then the pi_state will not | |
1599 | * exist yet, look it up one more time to ensure we have a | |
866293ee TG |
1600 | * reference to it. If the lock was taken, ret contains the |
1601 | * vpid of the top waiter task. | |
52400ba9 | 1602 | */ |
866293ee | 1603 | if (ret > 0) { |
52400ba9 | 1604 | WARN_ON(pi_state); |
89061d3d | 1605 | drop_count++; |
52400ba9 | 1606 | task_count++; |
866293ee TG |
1607 | /* |
1608 | * If we acquired the lock, then the user | |
1609 | * space value of uaddr2 should be vpid. It | |
1610 | * cannot be changed by the top waiter as it | |
1611 | * is blocked on hb2 lock if it tries to do | |
1612 | * so. If something fiddled with it behind our | |
1613 | * back the pi state lookup might unearth | |
1614 | * it. So we rather use the known value than | |
1615 | * rereading and handing potential crap to | |
1616 | * lookup_pi_state. | |
1617 | */ | |
54a21788 | 1618 | ret = lookup_pi_state(ret, hb2, &key2, &pi_state); |
52400ba9 DH |
1619 | } |
1620 | ||
1621 | switch (ret) { | |
1622 | case 0: | |
1623 | break; | |
1624 | case -EFAULT: | |
30a6b803 BS |
1625 | free_pi_state(pi_state); |
1626 | pi_state = NULL; | |
52400ba9 | 1627 | double_unlock_hb(hb1, hb2); |
69cd9eba | 1628 | hb_waiters_dec(hb2); |
ae791a2d TG |
1629 | put_futex_key(&key2); |
1630 | put_futex_key(&key1); | |
d0725992 | 1631 | ret = fault_in_user_writeable(uaddr2); |
52400ba9 DH |
1632 | if (!ret) |
1633 | goto retry; | |
1634 | goto out; | |
1635 | case -EAGAIN: | |
af54d6a1 TG |
1636 | /* |
1637 | * Two reasons for this: | |
1638 | * - Owner is exiting and we just wait for the | |
1639 | * exit to complete. | |
1640 | * - The user space value changed. | |
1641 | */ | |
30a6b803 BS |
1642 | free_pi_state(pi_state); |
1643 | pi_state = NULL; | |
52400ba9 | 1644 | double_unlock_hb(hb1, hb2); |
69cd9eba | 1645 | hb_waiters_dec(hb2); |
ae791a2d TG |
1646 | put_futex_key(&key2); |
1647 | put_futex_key(&key1); | |
52400ba9 DH |
1648 | cond_resched(); |
1649 | goto retry; | |
1650 | default: | |
1651 | goto out_unlock; | |
1652 | } | |
1653 | } | |
1654 | ||
0d00c7b2 | 1655 | plist_for_each_entry_safe(this, next, &hb1->chain, list) { |
52400ba9 DH |
1656 | if (task_count - nr_wake >= nr_requeue) |
1657 | break; | |
1658 | ||
1659 | if (!match_futex(&this->key, &key1)) | |
1da177e4 | 1660 | continue; |
52400ba9 | 1661 | |
392741e0 DH |
1662 | /* |
1663 | * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always | |
1664 | * be paired with each other and no other futex ops. | |
aa10990e DH |
1665 | * |
1666 | * We should never be requeueing a futex_q with a pi_state, | |
1667 | * which is awaiting a futex_unlock_pi(). | |
392741e0 DH |
1668 | */ |
1669 | if ((requeue_pi && !this->rt_waiter) || | |
aa10990e DH |
1670 | (!requeue_pi && this->rt_waiter) || |
1671 | this->pi_state) { | |
392741e0 DH |
1672 | ret = -EINVAL; |
1673 | break; | |
1674 | } | |
52400ba9 DH |
1675 | |
1676 | /* | |
1677 | * Wake nr_wake waiters. For requeue_pi, if we acquired the | |
1678 | * lock, we already woke the top_waiter. If not, it will be | |
1679 | * woken by futex_unlock_pi(). | |
1680 | */ | |
1681 | if (++task_count <= nr_wake && !requeue_pi) { | |
1da177e4 | 1682 | wake_futex(this); |
52400ba9 DH |
1683 | continue; |
1684 | } | |
1da177e4 | 1685 | |
84bc4af5 DH |
1686 | /* Ensure we requeue to the expected futex for requeue_pi. */ |
1687 | if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) { | |
1688 | ret = -EINVAL; | |
1689 | break; | |
1690 | } | |
1691 | ||
52400ba9 DH |
1692 | /* |
1693 | * Requeue nr_requeue waiters and possibly one more in the case | |
1694 | * of requeue_pi if we couldn't acquire the lock atomically. | |
1695 | */ | |
1696 | if (requeue_pi) { | |
1697 | /* Prepare the waiter to take the rt_mutex. */ | |
1698 | atomic_inc(&pi_state->refcount); | |
1699 | this->pi_state = pi_state; | |
1700 | ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex, | |
1701 | this->rt_waiter, | |
c051b21f | 1702 | this->task); |
52400ba9 DH |
1703 | if (ret == 1) { |
1704 | /* We got the lock. */ | |
beda2c7e | 1705 | requeue_pi_wake_futex(this, &key2, hb2); |
89061d3d | 1706 | drop_count++; |
52400ba9 DH |
1707 | continue; |
1708 | } else if (ret) { | |
1709 | /* -EDEADLK */ | |
1710 | this->pi_state = NULL; | |
1711 | free_pi_state(pi_state); | |
1712 | goto out_unlock; | |
1713 | } | |
1da177e4 | 1714 | } |
52400ba9 DH |
1715 | requeue_futex(this, hb1, hb2, &key2); |
1716 | drop_count++; | |
1da177e4 LT |
1717 | } |
1718 | ||
1719 | out_unlock: | |
30a6b803 | 1720 | free_pi_state(pi_state); |
5eb3dc62 | 1721 | double_unlock_hb(hb1, hb2); |
69cd9eba | 1722 | hb_waiters_dec(hb2); |
1da177e4 | 1723 | |
cd84a42f DH |
1724 | /* |
1725 | * drop_futex_key_refs() must be called outside the spinlocks. During | |
1726 | * the requeue we moved futex_q's from the hash bucket at key1 to the | |
1727 | * one at key2 and updated their key pointer. We no longer need to | |
1728 | * hold the references to key1. | |
1729 | */ | |
1da177e4 | 1730 | while (--drop_count >= 0) |
9adef58b | 1731 | drop_futex_key_refs(&key1); |
1da177e4 | 1732 | |
42d35d48 | 1733 | out_put_keys: |
ae791a2d | 1734 | put_futex_key(&key2); |
42d35d48 | 1735 | out_put_key1: |
ae791a2d | 1736 | put_futex_key(&key1); |
42d35d48 | 1737 | out: |
52400ba9 | 1738 | return ret ? ret : task_count; |
1da177e4 LT |
1739 | } |
1740 | ||
1741 | /* The key must be already stored in q->key. */ | |
82af7aca | 1742 | static inline struct futex_hash_bucket *queue_lock(struct futex_q *q) |
15e408cd | 1743 | __acquires(&hb->lock) |
1da177e4 | 1744 | { |
e2970f2f | 1745 | struct futex_hash_bucket *hb; |
1da177e4 | 1746 | |
e2970f2f | 1747 | hb = hash_futex(&q->key); |
11d4616b LT |
1748 | |
1749 | /* | |
1750 | * Increment the counter before taking the lock so that | |
1751 | * a potential waker won't miss a to-be-slept task that is | |
1752 | * waiting for the spinlock. This is safe as all queue_lock() | |
1753 | * users end up calling queue_me(). Similarly, for housekeeping, | |
1754 | * decrement the counter at queue_unlock() when some error has | |
1755 | * occurred and we don't end up adding the task to the list. | |
1756 | */ | |
1757 | hb_waiters_inc(hb); | |
1758 | ||
e2970f2f | 1759 | q->lock_ptr = &hb->lock; |
1da177e4 | 1760 | |
b0c29f79 | 1761 | spin_lock(&hb->lock); /* implies MB (A) */ |
e2970f2f | 1762 | return hb; |
1da177e4 LT |
1763 | } |
1764 | ||
d40d65c8 | 1765 | static inline void |
0d00c7b2 | 1766 | queue_unlock(struct futex_hash_bucket *hb) |
15e408cd | 1767 | __releases(&hb->lock) |
d40d65c8 DH |
1768 | { |
1769 | spin_unlock(&hb->lock); | |
11d4616b | 1770 | hb_waiters_dec(hb); |
d40d65c8 DH |
1771 | } |
1772 | ||
1773 | /** | |
1774 | * queue_me() - Enqueue the futex_q on the futex_hash_bucket | |
1775 | * @q: The futex_q to enqueue | |
1776 | * @hb: The destination hash bucket | |
1777 | * | |
1778 | * The hb->lock must be held by the caller, and is released here. A call to | |
1779 | * queue_me() is typically paired with exactly one call to unqueue_me(). The | |
1780 | * exceptions involve the PI related operations, which may use unqueue_me_pi() | |
1781 | * or nothing if the unqueue is done as part of the wake process and the unqueue | |
1782 | * state is implicit in the state of woken task (see futex_wait_requeue_pi() for | |
1783 | * an example). | |
1784 | */ | |
82af7aca | 1785 | static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb) |
15e408cd | 1786 | __releases(&hb->lock) |
1da177e4 | 1787 | { |
ec92d082 PP |
1788 | int prio; |
1789 | ||
1790 | /* | |
1791 | * The priority used to register this element is | |
1792 | * - either the real thread-priority for the real-time threads | |
1793 | * (i.e. threads with a priority lower than MAX_RT_PRIO) | |
1794 | * - or MAX_RT_PRIO for non-RT threads. | |
1795 | * Thus, all RT-threads are woken first in priority order, and | |
1796 | * the others are woken last, in FIFO order. | |
1797 | */ | |
1798 | prio = min(current->normal_prio, MAX_RT_PRIO); | |
1799 | ||
1800 | plist_node_init(&q->list, prio); | |
ec92d082 | 1801 | plist_add(&q->list, &hb->chain); |
c87e2837 | 1802 | q->task = current; |
e2970f2f | 1803 | spin_unlock(&hb->lock); |
1da177e4 LT |
1804 | } |
1805 | ||
d40d65c8 DH |
1806 | /** |
1807 | * unqueue_me() - Remove the futex_q from its futex_hash_bucket | |
1808 | * @q: The futex_q to unqueue | |
1809 | * | |
1810 | * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must | |
1811 | * be paired with exactly one earlier call to queue_me(). | |
1812 | * | |
6c23cbbd RD |
1813 | * Return: |
1814 | * 1 - if the futex_q was still queued (and we removed unqueued it); | |
d40d65c8 | 1815 | * 0 - if the futex_q was already removed by the waking thread |
1da177e4 | 1816 | */ |
1da177e4 LT |
1817 | static int unqueue_me(struct futex_q *q) |
1818 | { | |
1da177e4 | 1819 | spinlock_t *lock_ptr; |
e2970f2f | 1820 | int ret = 0; |
1da177e4 LT |
1821 | |
1822 | /* In the common case we don't take the spinlock, which is nice. */ | |
42d35d48 | 1823 | retry: |
1da177e4 | 1824 | lock_ptr = q->lock_ptr; |
e91467ec | 1825 | barrier(); |
c80544dc | 1826 | if (lock_ptr != NULL) { |
1da177e4 LT |
1827 | spin_lock(lock_ptr); |
1828 | /* | |
1829 | * q->lock_ptr can change between reading it and | |
1830 | * spin_lock(), causing us to take the wrong lock. This | |
1831 | * corrects the race condition. | |
1832 | * | |
1833 | * Reasoning goes like this: if we have the wrong lock, | |
1834 | * q->lock_ptr must have changed (maybe several times) | |
1835 | * between reading it and the spin_lock(). It can | |
1836 | * change again after the spin_lock() but only if it was | |
1837 | * already changed before the spin_lock(). It cannot, | |
1838 | * however, change back to the original value. Therefore | |
1839 | * we can detect whether we acquired the correct lock. | |
1840 | */ | |
1841 | if (unlikely(lock_ptr != q->lock_ptr)) { | |
1842 | spin_unlock(lock_ptr); | |
1843 | goto retry; | |
1844 | } | |
2e12978a | 1845 | __unqueue_futex(q); |
c87e2837 IM |
1846 | |
1847 | BUG_ON(q->pi_state); | |
1848 | ||
1da177e4 LT |
1849 | spin_unlock(lock_ptr); |
1850 | ret = 1; | |
1851 | } | |
1852 | ||
9adef58b | 1853 | drop_futex_key_refs(&q->key); |
1da177e4 LT |
1854 | return ret; |
1855 | } | |
1856 | ||
c87e2837 IM |
1857 | /* |
1858 | * PI futexes can not be requeued and must remove themself from the | |
d0aa7a70 PP |
1859 | * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry |
1860 | * and dropped here. | |
c87e2837 | 1861 | */ |
d0aa7a70 | 1862 | static void unqueue_me_pi(struct futex_q *q) |
15e408cd | 1863 | __releases(q->lock_ptr) |
c87e2837 | 1864 | { |
2e12978a | 1865 | __unqueue_futex(q); |
c87e2837 IM |
1866 | |
1867 | BUG_ON(!q->pi_state); | |
1868 | free_pi_state(q->pi_state); | |
1869 | q->pi_state = NULL; | |
1870 | ||
d0aa7a70 | 1871 | spin_unlock(q->lock_ptr); |
c87e2837 IM |
1872 | } |
1873 | ||
d0aa7a70 | 1874 | /* |
cdf71a10 | 1875 | * Fixup the pi_state owner with the new owner. |
d0aa7a70 | 1876 | * |
778e9a9c AK |
1877 | * Must be called with hash bucket lock held and mm->sem held for non |
1878 | * private futexes. | |
d0aa7a70 | 1879 | */ |
778e9a9c | 1880 | static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q, |
ae791a2d | 1881 | struct task_struct *newowner) |
d0aa7a70 | 1882 | { |
cdf71a10 | 1883 | u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS; |
d0aa7a70 | 1884 | struct futex_pi_state *pi_state = q->pi_state; |
1b7558e4 | 1885 | struct task_struct *oldowner = pi_state->owner; |
7cfdaf38 | 1886 | u32 uval, uninitialized_var(curval), newval; |
e4dc5b7a | 1887 | int ret; |
d0aa7a70 PP |
1888 | |
1889 | /* Owner died? */ | |
1b7558e4 TG |
1890 | if (!pi_state->owner) |
1891 | newtid |= FUTEX_OWNER_DIED; | |
1892 | ||
1893 | /* | |
1894 | * We are here either because we stole the rtmutex from the | |
8161239a LJ |
1895 | * previous highest priority waiter or we are the highest priority |
1896 | * waiter but failed to get the rtmutex the first time. | |
1897 | * We have to replace the newowner TID in the user space variable. | |
1898 | * This must be atomic as we have to preserve the owner died bit here. | |
1b7558e4 | 1899 | * |
b2d0994b DH |
1900 | * Note: We write the user space value _before_ changing the pi_state |
1901 | * because we can fault here. Imagine swapped out pages or a fork | |
1902 | * that marked all the anonymous memory readonly for cow. | |
1b7558e4 TG |
1903 | * |
1904 | * Modifying pi_state _before_ the user space value would | |
1905 | * leave the pi_state in an inconsistent state when we fault | |
1906 | * here, because we need to drop the hash bucket lock to | |
1907 | * handle the fault. This might be observed in the PID check | |
1908 | * in lookup_pi_state. | |
1909 | */ | |
1910 | retry: | |
1911 | if (get_futex_value_locked(&uval, uaddr)) | |
1912 | goto handle_fault; | |
1913 | ||
1914 | while (1) { | |
1915 | newval = (uval & FUTEX_OWNER_DIED) | newtid; | |
1916 | ||
37a9d912 | 1917 | if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) |
1b7558e4 TG |
1918 | goto handle_fault; |
1919 | if (curval == uval) | |
1920 | break; | |
1921 | uval = curval; | |
1922 | } | |
1923 | ||
1924 | /* | |
1925 | * We fixed up user space. Now we need to fix the pi_state | |
1926 | * itself. | |
1927 | */ | |
d0aa7a70 | 1928 | if (pi_state->owner != NULL) { |
1d615482 | 1929 | raw_spin_lock_irq(&pi_state->owner->pi_lock); |
d0aa7a70 PP |
1930 | WARN_ON(list_empty(&pi_state->list)); |
1931 | list_del_init(&pi_state->list); | |
1d615482 | 1932 | raw_spin_unlock_irq(&pi_state->owner->pi_lock); |
1b7558e4 | 1933 | } |
d0aa7a70 | 1934 | |
cdf71a10 | 1935 | pi_state->owner = newowner; |
d0aa7a70 | 1936 | |
1d615482 | 1937 | raw_spin_lock_irq(&newowner->pi_lock); |
d0aa7a70 | 1938 | WARN_ON(!list_empty(&pi_state->list)); |
cdf71a10 | 1939 | list_add(&pi_state->list, &newowner->pi_state_list); |
1d615482 | 1940 | raw_spin_unlock_irq(&newowner->pi_lock); |
1b7558e4 | 1941 | return 0; |
d0aa7a70 | 1942 | |
d0aa7a70 | 1943 | /* |
1b7558e4 | 1944 | * To handle the page fault we need to drop the hash bucket |
8161239a LJ |
1945 | * lock here. That gives the other task (either the highest priority |
1946 | * waiter itself or the task which stole the rtmutex) the | |
1b7558e4 TG |
1947 | * chance to try the fixup of the pi_state. So once we are |
1948 | * back from handling the fault we need to check the pi_state | |
1949 | * after reacquiring the hash bucket lock and before trying to | |
1950 | * do another fixup. When the fixup has been done already we | |
1951 | * simply return. | |
d0aa7a70 | 1952 | */ |
1b7558e4 TG |
1953 | handle_fault: |
1954 | spin_unlock(q->lock_ptr); | |
778e9a9c | 1955 | |
d0725992 | 1956 | ret = fault_in_user_writeable(uaddr); |
778e9a9c | 1957 | |
1b7558e4 | 1958 | spin_lock(q->lock_ptr); |
778e9a9c | 1959 | |
1b7558e4 TG |
1960 | /* |
1961 | * Check if someone else fixed it for us: | |
1962 | */ | |
1963 | if (pi_state->owner != oldowner) | |
1964 | return 0; | |
1965 | ||
1966 | if (ret) | |
1967 | return ret; | |
1968 | ||
1969 | goto retry; | |
d0aa7a70 PP |
1970 | } |
1971 | ||
72c1bbf3 | 1972 | static long futex_wait_restart(struct restart_block *restart); |
36cf3b5c | 1973 | |
dd973998 DH |
1974 | /** |
1975 | * fixup_owner() - Post lock pi_state and corner case management | |
1976 | * @uaddr: user address of the futex | |
dd973998 DH |
1977 | * @q: futex_q (contains pi_state and access to the rt_mutex) |
1978 | * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0) | |
1979 | * | |
1980 | * After attempting to lock an rt_mutex, this function is called to cleanup | |
1981 | * the pi_state owner as well as handle race conditions that may allow us to | |
1982 | * acquire the lock. Must be called with the hb lock held. | |
1983 | * | |
6c23cbbd RD |
1984 | * Return: |
1985 | * 1 - success, lock taken; | |
1986 | * 0 - success, lock not taken; | |
dd973998 DH |
1987 | * <0 - on error (-EFAULT) |
1988 | */ | |
ae791a2d | 1989 | static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked) |
dd973998 DH |
1990 | { |
1991 | struct task_struct *owner; | |
1992 | int ret = 0; | |
1993 | ||
1994 | if (locked) { | |
1995 | /* | |
1996 | * Got the lock. We might not be the anticipated owner if we | |
1997 | * did a lock-steal - fix up the PI-state in that case: | |
1998 | */ | |
1999 | if (q->pi_state->owner != current) | |
ae791a2d | 2000 | ret = fixup_pi_state_owner(uaddr, q, current); |
dd973998 DH |
2001 | goto out; |
2002 | } | |
2003 | ||
2004 | /* | |
2005 | * Catch the rare case, where the lock was released when we were on the | |
2006 | * way back before we locked the hash bucket. | |
2007 | */ | |
2008 | if (q->pi_state->owner == current) { | |
2009 | /* | |
2010 | * Try to get the rt_mutex now. This might fail as some other | |
2011 | * task acquired the rt_mutex after we removed ourself from the | |
2012 | * rt_mutex waiters list. | |
2013 | */ | |
2014 | if (rt_mutex_trylock(&q->pi_state->pi_mutex)) { | |
2015 | locked = 1; | |
2016 | goto out; | |
2017 | } | |
2018 | ||
2019 | /* | |
2020 | * pi_state is incorrect, some other task did a lock steal and | |
2021 | * we returned due to timeout or signal without taking the | |
8161239a | 2022 | * rt_mutex. Too late. |
dd973998 | 2023 | */ |
8161239a | 2024 | raw_spin_lock(&q->pi_state->pi_mutex.wait_lock); |
dd973998 | 2025 | owner = rt_mutex_owner(&q->pi_state->pi_mutex); |
8161239a LJ |
2026 | if (!owner) |
2027 | owner = rt_mutex_next_owner(&q->pi_state->pi_mutex); | |
2028 | raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock); | |
ae791a2d | 2029 | ret = fixup_pi_state_owner(uaddr, q, owner); |
dd973998 DH |
2030 | goto out; |
2031 | } | |
2032 | ||
2033 | /* | |
2034 | * Paranoia check. If we did not take the lock, then we should not be | |
8161239a | 2035 | * the owner of the rt_mutex. |
dd973998 DH |
2036 | */ |
2037 | if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) | |
2038 | printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p " | |
2039 | "pi-state %p\n", ret, | |
2040 | q->pi_state->pi_mutex.owner, | |
2041 | q->pi_state->owner); | |
2042 | ||
2043 | out: | |
2044 | return ret ? ret : locked; | |
2045 | } | |
2046 | ||
ca5f9524 DH |
2047 | /** |
2048 | * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal | |
2049 | * @hb: the futex hash bucket, must be locked by the caller | |
2050 | * @q: the futex_q to queue up on | |
2051 | * @timeout: the prepared hrtimer_sleeper, or null for no timeout | |
ca5f9524 DH |
2052 | */ |
2053 | static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q, | |
f1a11e05 | 2054 | struct hrtimer_sleeper *timeout) |
ca5f9524 | 2055 | { |
9beba3c5 DH |
2056 | /* |
2057 | * The task state is guaranteed to be set before another task can | |
2058 | * wake it. set_current_state() is implemented using set_mb() and | |
2059 | * queue_me() calls spin_unlock() upon completion, both serializing | |
2060 | * access to the hash list and forcing another memory barrier. | |
2061 | */ | |
f1a11e05 | 2062 | set_current_state(TASK_INTERRUPTIBLE); |
0729e196 | 2063 | queue_me(q, hb); |
ca5f9524 DH |
2064 | |
2065 | /* Arm the timer */ | |
2066 | if (timeout) { | |
2067 | hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS); | |
2068 | if (!hrtimer_active(&timeout->timer)) | |
2069 | timeout->task = NULL; | |
2070 | } | |
2071 | ||
2072 | /* | |
0729e196 DH |
2073 | * If we have been removed from the hash list, then another task |
2074 | * has tried to wake us, and we can skip the call to schedule(). | |
ca5f9524 DH |
2075 | */ |
2076 | if (likely(!plist_node_empty(&q->list))) { | |
2077 | /* | |
2078 | * If the timer has already expired, current will already be | |
2079 | * flagged for rescheduling. Only call schedule if there | |
2080 | * is no timeout, or if it has yet to expire. | |
2081 | */ | |
2082 | if (!timeout || timeout->task) | |
88c8004f | 2083 | freezable_schedule(); |
ca5f9524 DH |
2084 | } |
2085 | __set_current_state(TASK_RUNNING); | |
2086 | } | |
2087 | ||
f801073f DH |
2088 | /** |
2089 | * futex_wait_setup() - Prepare to wait on a futex | |
2090 | * @uaddr: the futex userspace address | |
2091 | * @val: the expected value | |
b41277dc | 2092 | * @flags: futex flags (FLAGS_SHARED, etc.) |
f801073f DH |
2093 | * @q: the associated futex_q |
2094 | * @hb: storage for hash_bucket pointer to be returned to caller | |
2095 | * | |
2096 | * Setup the futex_q and locate the hash_bucket. Get the futex value and | |
2097 | * compare it with the expected value. Handle atomic faults internally. | |
2098 | * Return with the hb lock held and a q.key reference on success, and unlocked | |
2099 | * with no q.key reference on failure. | |
2100 | * | |
6c23cbbd RD |
2101 | * Return: |
2102 | * 0 - uaddr contains val and hb has been locked; | |
ca4a04cf | 2103 | * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked |
f801073f | 2104 | */ |
b41277dc | 2105 | static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags, |
f801073f | 2106 | struct futex_q *q, struct futex_hash_bucket **hb) |
1da177e4 | 2107 | { |
e2970f2f IM |
2108 | u32 uval; |
2109 | int ret; | |
1da177e4 | 2110 | |
1da177e4 | 2111 | /* |
b2d0994b | 2112 | * Access the page AFTER the hash-bucket is locked. |
1da177e4 LT |
2113 | * Order is important: |
2114 | * | |
2115 | * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val); | |
2116 | * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); } | |
2117 | * | |
2118 | * The basic logical guarantee of a futex is that it blocks ONLY | |
2119 | * if cond(var) is known to be true at the time of blocking, for | |
8fe8f545 ML |
2120 | * any cond. If we locked the hash-bucket after testing *uaddr, that |
2121 | * would open a race condition where we could block indefinitely with | |
1da177e4 LT |
2122 | * cond(var) false, which would violate the guarantee. |
2123 | * | |
8fe8f545 ML |
2124 | * On the other hand, we insert q and release the hash-bucket only |
2125 | * after testing *uaddr. This guarantees that futex_wait() will NOT | |
2126 | * absorb a wakeup if *uaddr does not match the desired values | |
2127 | * while the syscall executes. | |
1da177e4 | 2128 | */ |
f801073f | 2129 | retry: |
9ea71503 | 2130 | ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ); |
f801073f | 2131 | if (unlikely(ret != 0)) |
a5a2a0c7 | 2132 | return ret; |
f801073f DH |
2133 | |
2134 | retry_private: | |
2135 | *hb = queue_lock(q); | |
2136 | ||
e2970f2f | 2137 | ret = get_futex_value_locked(&uval, uaddr); |
1da177e4 | 2138 | |
f801073f | 2139 | if (ret) { |
0d00c7b2 | 2140 | queue_unlock(*hb); |
1da177e4 | 2141 | |
e2970f2f | 2142 | ret = get_user(uval, uaddr); |
e4dc5b7a | 2143 | if (ret) |
f801073f | 2144 | goto out; |
1da177e4 | 2145 | |
b41277dc | 2146 | if (!(flags & FLAGS_SHARED)) |
e4dc5b7a DH |
2147 | goto retry_private; |
2148 | ||
ae791a2d | 2149 | put_futex_key(&q->key); |
e4dc5b7a | 2150 | goto retry; |
1da177e4 | 2151 | } |
ca5f9524 | 2152 | |
f801073f | 2153 | if (uval != val) { |
0d00c7b2 | 2154 | queue_unlock(*hb); |
f801073f | 2155 | ret = -EWOULDBLOCK; |
2fff78c7 | 2156 | } |
1da177e4 | 2157 | |
f801073f DH |
2158 | out: |
2159 | if (ret) | |
ae791a2d | 2160 | put_futex_key(&q->key); |
f801073f DH |
2161 | return ret; |
2162 | } | |
2163 | ||
b41277dc DH |
2164 | static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val, |
2165 | ktime_t *abs_time, u32 bitset) | |
f801073f DH |
2166 | { |
2167 | struct hrtimer_sleeper timeout, *to = NULL; | |
f801073f DH |
2168 | struct restart_block *restart; |
2169 | struct futex_hash_bucket *hb; | |
5bdb05f9 | 2170 | struct futex_q q = futex_q_init; |
f801073f DH |
2171 | int ret; |
2172 | ||
2173 | if (!bitset) | |
2174 | return -EINVAL; | |
f801073f DH |
2175 | q.bitset = bitset; |
2176 | ||
2177 | if (abs_time) { | |
2178 | to = &timeout; | |
2179 | ||
b41277dc DH |
2180 | hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ? |
2181 | CLOCK_REALTIME : CLOCK_MONOTONIC, | |
2182 | HRTIMER_MODE_ABS); | |
f801073f DH |
2183 | hrtimer_init_sleeper(to, current); |
2184 | hrtimer_set_expires_range_ns(&to->timer, *abs_time, | |
2185 | current->timer_slack_ns); | |
2186 | } | |
2187 | ||
d58e6576 | 2188 | retry: |
7ada876a DH |
2189 | /* |
2190 | * Prepare to wait on uaddr. On success, holds hb lock and increments | |
2191 | * q.key refs. | |
2192 | */ | |
b41277dc | 2193 | ret = futex_wait_setup(uaddr, val, flags, &q, &hb); |
f801073f DH |
2194 | if (ret) |
2195 | goto out; | |
2196 | ||
ca5f9524 | 2197 | /* queue_me and wait for wakeup, timeout, or a signal. */ |
f1a11e05 | 2198 | futex_wait_queue_me(hb, &q, to); |
1da177e4 LT |
2199 | |
2200 | /* If we were woken (and unqueued), we succeeded, whatever. */ | |
2fff78c7 | 2201 | ret = 0; |
7ada876a | 2202 | /* unqueue_me() drops q.key ref */ |
1da177e4 | 2203 | if (!unqueue_me(&q)) |
7ada876a | 2204 | goto out; |
2fff78c7 | 2205 | ret = -ETIMEDOUT; |
ca5f9524 | 2206 | if (to && !to->task) |
7ada876a | 2207 | goto out; |
72c1bbf3 | 2208 | |
e2970f2f | 2209 | /* |
d58e6576 TG |
2210 | * We expect signal_pending(current), but we might be the |
2211 | * victim of a spurious wakeup as well. | |
e2970f2f | 2212 | */ |
7ada876a | 2213 | if (!signal_pending(current)) |
d58e6576 | 2214 | goto retry; |
d58e6576 | 2215 | |
2fff78c7 | 2216 | ret = -ERESTARTSYS; |
c19384b5 | 2217 | if (!abs_time) |
7ada876a | 2218 | goto out; |
1da177e4 | 2219 | |
2fff78c7 PZ |
2220 | restart = ¤t_thread_info()->restart_block; |
2221 | restart->fn = futex_wait_restart; | |
a3c74c52 | 2222 | restart->futex.uaddr = uaddr; |
2fff78c7 PZ |
2223 | restart->futex.val = val; |
2224 | restart->futex.time = abs_time->tv64; | |
2225 | restart->futex.bitset = bitset; | |
0cd9c649 | 2226 | restart->futex.flags = flags | FLAGS_HAS_TIMEOUT; |
42d35d48 | 2227 | |
2fff78c7 PZ |
2228 | ret = -ERESTART_RESTARTBLOCK; |
2229 | ||
42d35d48 | 2230 | out: |
ca5f9524 DH |
2231 | if (to) { |
2232 | hrtimer_cancel(&to->timer); | |
2233 | destroy_hrtimer_on_stack(&to->timer); | |
2234 | } | |
c87e2837 IM |
2235 | return ret; |
2236 | } | |
2237 | ||
72c1bbf3 NP |
2238 | |
2239 | static long futex_wait_restart(struct restart_block *restart) | |
2240 | { | |
a3c74c52 | 2241 | u32 __user *uaddr = restart->futex.uaddr; |
a72188d8 | 2242 | ktime_t t, *tp = NULL; |
72c1bbf3 | 2243 | |
a72188d8 DH |
2244 | if (restart->futex.flags & FLAGS_HAS_TIMEOUT) { |
2245 | t.tv64 = restart->futex.time; | |
2246 | tp = &t; | |
2247 | } | |
72c1bbf3 | 2248 | restart->fn = do_no_restart_syscall; |
b41277dc DH |
2249 | |
2250 | return (long)futex_wait(uaddr, restart->futex.flags, | |
2251 | restart->futex.val, tp, restart->futex.bitset); | |
72c1bbf3 NP |
2252 | } |
2253 | ||
2254 | ||
c87e2837 IM |
2255 | /* |
2256 | * Userspace tried a 0 -> TID atomic transition of the futex value | |
2257 | * and failed. The kernel side here does the whole locking operation: | |
2258 | * if there are waiters then it will block, it does PI, etc. (Due to | |
2259 | * races the kernel might see a 0 value of the futex too.) | |
2260 | */ | |
b41277dc DH |
2261 | static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect, |
2262 | ktime_t *time, int trylock) | |
c87e2837 | 2263 | { |
c5780e97 | 2264 | struct hrtimer_sleeper timeout, *to = NULL; |
c87e2837 | 2265 | struct futex_hash_bucket *hb; |
5bdb05f9 | 2266 | struct futex_q q = futex_q_init; |
dd973998 | 2267 | int res, ret; |
c87e2837 IM |
2268 | |
2269 | if (refill_pi_state_cache()) | |
2270 | return -ENOMEM; | |
2271 | ||
c19384b5 | 2272 | if (time) { |
c5780e97 | 2273 | to = &timeout; |
237fc6e7 TG |
2274 | hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME, |
2275 | HRTIMER_MODE_ABS); | |
c5780e97 | 2276 | hrtimer_init_sleeper(to, current); |
cc584b21 | 2277 | hrtimer_set_expires(&to->timer, *time); |
c5780e97 TG |
2278 | } |
2279 | ||
42d35d48 | 2280 | retry: |
9ea71503 | 2281 | ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE); |
c87e2837 | 2282 | if (unlikely(ret != 0)) |
42d35d48 | 2283 | goto out; |
c87e2837 | 2284 | |
e4dc5b7a | 2285 | retry_private: |
82af7aca | 2286 | hb = queue_lock(&q); |
c87e2837 | 2287 | |
bab5bc9e | 2288 | ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0); |
c87e2837 | 2289 | if (unlikely(ret)) { |
778e9a9c | 2290 | switch (ret) { |
1a52084d DH |
2291 | case 1: |
2292 | /* We got the lock. */ | |
2293 | ret = 0; | |
2294 | goto out_unlock_put_key; | |
2295 | case -EFAULT: | |
2296 | goto uaddr_faulted; | |
778e9a9c AK |
2297 | case -EAGAIN: |
2298 | /* | |
af54d6a1 TG |
2299 | * Two reasons for this: |
2300 | * - Task is exiting and we just wait for the | |
2301 | * exit to complete. | |
2302 | * - The user space value changed. | |
778e9a9c | 2303 | */ |
0d00c7b2 | 2304 | queue_unlock(hb); |
ae791a2d | 2305 | put_futex_key(&q.key); |
778e9a9c AK |
2306 | cond_resched(); |
2307 | goto retry; | |
778e9a9c | 2308 | default: |
42d35d48 | 2309 | goto out_unlock_put_key; |
c87e2837 | 2310 | } |
c87e2837 IM |
2311 | } |
2312 | ||
2313 | /* | |
2314 | * Only actually queue now that the atomic ops are done: | |
2315 | */ | |
82af7aca | 2316 | queue_me(&q, hb); |
c87e2837 | 2317 | |
c87e2837 IM |
2318 | WARN_ON(!q.pi_state); |
2319 | /* | |
2320 | * Block on the PI mutex: | |
2321 | */ | |
c051b21f TG |
2322 | if (!trylock) { |
2323 | ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to); | |
2324 | } else { | |
c87e2837 IM |
2325 | ret = rt_mutex_trylock(&q.pi_state->pi_mutex); |
2326 | /* Fixup the trylock return value: */ | |
2327 | ret = ret ? 0 : -EWOULDBLOCK; | |
2328 | } | |
2329 | ||
a99e4e41 | 2330 | spin_lock(q.lock_ptr); |
dd973998 DH |
2331 | /* |
2332 | * Fixup the pi_state owner and possibly acquire the lock if we | |
2333 | * haven't already. | |
2334 | */ | |
ae791a2d | 2335 | res = fixup_owner(uaddr, &q, !ret); |
dd973998 DH |
2336 | /* |
2337 | * If fixup_owner() returned an error, proprogate that. If it acquired | |
2338 | * the lock, clear our -ETIMEDOUT or -EINTR. | |
2339 | */ | |
2340 | if (res) | |
2341 | ret = (res < 0) ? res : 0; | |
c87e2837 | 2342 | |
e8f6386c | 2343 | /* |
dd973998 DH |
2344 | * If fixup_owner() faulted and was unable to handle the fault, unlock |
2345 | * it and return the fault to userspace. | |
e8f6386c DH |
2346 | */ |
2347 | if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) | |
2348 | rt_mutex_unlock(&q.pi_state->pi_mutex); | |
2349 | ||
778e9a9c AK |
2350 | /* Unqueue and drop the lock */ |
2351 | unqueue_me_pi(&q); | |
c87e2837 | 2352 | |
5ecb01cf | 2353 | goto out_put_key; |
c87e2837 | 2354 | |
42d35d48 | 2355 | out_unlock_put_key: |
0d00c7b2 | 2356 | queue_unlock(hb); |
c87e2837 | 2357 | |
42d35d48 | 2358 | out_put_key: |
ae791a2d | 2359 | put_futex_key(&q.key); |
42d35d48 | 2360 | out: |
237fc6e7 TG |
2361 | if (to) |
2362 | destroy_hrtimer_on_stack(&to->timer); | |
dd973998 | 2363 | return ret != -EINTR ? ret : -ERESTARTNOINTR; |
c87e2837 | 2364 | |
42d35d48 | 2365 | uaddr_faulted: |
0d00c7b2 | 2366 | queue_unlock(hb); |
778e9a9c | 2367 | |
d0725992 | 2368 | ret = fault_in_user_writeable(uaddr); |
e4dc5b7a DH |
2369 | if (ret) |
2370 | goto out_put_key; | |
c87e2837 | 2371 | |
b41277dc | 2372 | if (!(flags & FLAGS_SHARED)) |
e4dc5b7a DH |
2373 | goto retry_private; |
2374 | ||
ae791a2d | 2375 | put_futex_key(&q.key); |
e4dc5b7a | 2376 | goto retry; |
c87e2837 IM |
2377 | } |
2378 | ||
c87e2837 IM |
2379 | /* |
2380 | * Userspace attempted a TID -> 0 atomic transition, and failed. | |
2381 | * This is the in-kernel slowpath: we look up the PI state (if any), | |
2382 | * and do the rt-mutex unlock. | |
2383 | */ | |
b41277dc | 2384 | static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags) |
c87e2837 | 2385 | { |
ccf9e6a8 | 2386 | u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current); |
38d47c1b | 2387 | union futex_key key = FUTEX_KEY_INIT; |
ccf9e6a8 TG |
2388 | struct futex_hash_bucket *hb; |
2389 | struct futex_q *match; | |
e4dc5b7a | 2390 | int ret; |
c87e2837 IM |
2391 | |
2392 | retry: | |
2393 | if (get_user(uval, uaddr)) | |
2394 | return -EFAULT; | |
2395 | /* | |
2396 | * We release only a lock we actually own: | |
2397 | */ | |
c0c9ed15 | 2398 | if ((uval & FUTEX_TID_MASK) != vpid) |
c87e2837 | 2399 | return -EPERM; |
c87e2837 | 2400 | |
9ea71503 | 2401 | ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE); |
ccf9e6a8 TG |
2402 | if (ret) |
2403 | return ret; | |
c87e2837 IM |
2404 | |
2405 | hb = hash_futex(&key); | |
2406 | spin_lock(&hb->lock); | |
2407 | ||
c87e2837 | 2408 | /* |
ccf9e6a8 TG |
2409 | * Check waiters first. We do not trust user space values at |
2410 | * all and we at least want to know if user space fiddled | |
2411 | * with the futex value instead of blindly unlocking. | |
c87e2837 | 2412 | */ |
ccf9e6a8 TG |
2413 | match = futex_top_waiter(hb, &key); |
2414 | if (match) { | |
2415 | ret = wake_futex_pi(uaddr, uval, match); | |
c87e2837 | 2416 | /* |
ccf9e6a8 TG |
2417 | * The atomic access to the futex value generated a |
2418 | * pagefault, so retry the user-access and the wakeup: | |
c87e2837 IM |
2419 | */ |
2420 | if (ret == -EFAULT) | |
2421 | goto pi_faulted; | |
2422 | goto out_unlock; | |
2423 | } | |
ccf9e6a8 | 2424 | |
c87e2837 | 2425 | /* |
ccf9e6a8 TG |
2426 | * We have no kernel internal state, i.e. no waiters in the |
2427 | * kernel. Waiters which are about to queue themselves are stuck | |
2428 | * on hb->lock. So we can safely ignore them. We do neither | |
2429 | * preserve the WAITERS bit not the OWNER_DIED one. We are the | |
2430 | * owner. | |
c87e2837 | 2431 | */ |
ccf9e6a8 | 2432 | if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) |
13fbca4c | 2433 | goto pi_faulted; |
c87e2837 | 2434 | |
ccf9e6a8 TG |
2435 | /* |
2436 | * If uval has changed, let user space handle it. | |
2437 | */ | |
2438 | ret = (curval == uval) ? 0 : -EAGAIN; | |
2439 | ||
c87e2837 IM |
2440 | out_unlock: |
2441 | spin_unlock(&hb->lock); | |
ae791a2d | 2442 | put_futex_key(&key); |
c87e2837 IM |
2443 | return ret; |
2444 | ||
2445 | pi_faulted: | |
778e9a9c | 2446 | spin_unlock(&hb->lock); |
ae791a2d | 2447 | put_futex_key(&key); |
c87e2837 | 2448 | |
d0725992 | 2449 | ret = fault_in_user_writeable(uaddr); |
b5686363 | 2450 | if (!ret) |
c87e2837 IM |
2451 | goto retry; |
2452 | ||
1da177e4 LT |
2453 | return ret; |
2454 | } | |
2455 | ||
52400ba9 DH |
2456 | /** |
2457 | * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex | |
2458 | * @hb: the hash_bucket futex_q was original enqueued on | |
2459 | * @q: the futex_q woken while waiting to be requeued | |
2460 | * @key2: the futex_key of the requeue target futex | |
2461 | * @timeout: the timeout associated with the wait (NULL if none) | |
2462 | * | |
2463 | * Detect if the task was woken on the initial futex as opposed to the requeue | |
2464 | * target futex. If so, determine if it was a timeout or a signal that caused | |
2465 | * the wakeup and return the appropriate error code to the caller. Must be | |
2466 | * called with the hb lock held. | |
2467 | * | |
6c23cbbd RD |
2468 | * Return: |
2469 | * 0 = no early wakeup detected; | |
2470 | * <0 = -ETIMEDOUT or -ERESTARTNOINTR | |
52400ba9 DH |
2471 | */ |
2472 | static inline | |
2473 | int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb, | |
2474 | struct futex_q *q, union futex_key *key2, | |
2475 | struct hrtimer_sleeper *timeout) | |
2476 | { | |
2477 | int ret = 0; | |
2478 | ||
2479 | /* | |
2480 | * With the hb lock held, we avoid races while we process the wakeup. | |
2481 | * We only need to hold hb (and not hb2) to ensure atomicity as the | |
2482 | * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb. | |
2483 | * It can't be requeued from uaddr2 to something else since we don't | |
2484 | * support a PI aware source futex for requeue. | |
2485 | */ | |
2486 | if (!match_futex(&q->key, key2)) { | |
2487 | WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr)); | |
2488 | /* | |
2489 | * We were woken prior to requeue by a timeout or a signal. | |
2490 | * Unqueue the futex_q and determine which it was. | |
2491 | */ | |
2e12978a | 2492 | plist_del(&q->list, &hb->chain); |
11d4616b | 2493 | hb_waiters_dec(hb); |
52400ba9 | 2494 | |
d58e6576 | 2495 | /* Handle spurious wakeups gracefully */ |
11df6ddd | 2496 | ret = -EWOULDBLOCK; |
52400ba9 DH |
2497 | if (timeout && !timeout->task) |
2498 | ret = -ETIMEDOUT; | |
d58e6576 | 2499 | else if (signal_pending(current)) |
1c840c14 | 2500 | ret = -ERESTARTNOINTR; |
52400ba9 DH |
2501 | } |
2502 | return ret; | |
2503 | } | |
2504 | ||
2505 | /** | |
2506 | * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2 | |
56ec1607 | 2507 | * @uaddr: the futex we initially wait on (non-pi) |
b41277dc | 2508 | * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be |
52400ba9 DH |
2509 | * the same type, no requeueing from private to shared, etc. |
2510 | * @val: the expected value of uaddr | |
2511 | * @abs_time: absolute timeout | |
56ec1607 | 2512 | * @bitset: 32 bit wakeup bitset set by userspace, defaults to all |
52400ba9 DH |
2513 | * @uaddr2: the pi futex we will take prior to returning to user-space |
2514 | * | |
2515 | * The caller will wait on uaddr and will be requeued by futex_requeue() to | |
6f7b0a2a DH |
2516 | * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake |
2517 | * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to | |
2518 | * userspace. This ensures the rt_mutex maintains an owner when it has waiters; | |
2519 | * without one, the pi logic would not know which task to boost/deboost, if | |
2520 | * there was a need to. | |
52400ba9 DH |
2521 | * |
2522 | * We call schedule in futex_wait_queue_me() when we enqueue and return there | |
6c23cbbd | 2523 | * via the following-- |
52400ba9 | 2524 | * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue() |
cc6db4e6 DH |
2525 | * 2) wakeup on uaddr2 after a requeue |
2526 | * 3) signal | |
2527 | * 4) timeout | |
52400ba9 | 2528 | * |
cc6db4e6 | 2529 | * If 3, cleanup and return -ERESTARTNOINTR. |
52400ba9 DH |
2530 | * |
2531 | * If 2, we may then block on trying to take the rt_mutex and return via: | |
2532 | * 5) successful lock | |
2533 | * 6) signal | |
2534 | * 7) timeout | |
2535 | * 8) other lock acquisition failure | |
2536 | * | |
cc6db4e6 | 2537 | * If 6, return -EWOULDBLOCK (restarting the syscall would do the same). |
52400ba9 DH |
2538 | * |
2539 | * If 4 or 7, we cleanup and return with -ETIMEDOUT. | |
2540 | * | |
6c23cbbd RD |
2541 | * Return: |
2542 | * 0 - On success; | |
52400ba9 DH |
2543 | * <0 - On error |
2544 | */ | |
b41277dc | 2545 | static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags, |
52400ba9 | 2546 | u32 val, ktime_t *abs_time, u32 bitset, |
b41277dc | 2547 | u32 __user *uaddr2) |
52400ba9 DH |
2548 | { |
2549 | struct hrtimer_sleeper timeout, *to = NULL; | |
2550 | struct rt_mutex_waiter rt_waiter; | |
2551 | struct rt_mutex *pi_mutex = NULL; | |
52400ba9 | 2552 | struct futex_hash_bucket *hb; |
5bdb05f9 DH |
2553 | union futex_key key2 = FUTEX_KEY_INIT; |
2554 | struct futex_q q = futex_q_init; | |
52400ba9 | 2555 | int res, ret; |
52400ba9 | 2556 | |
6f7b0a2a DH |
2557 | if (uaddr == uaddr2) |
2558 | return -EINVAL; | |
2559 | ||
52400ba9 DH |
2560 | if (!bitset) |
2561 | return -EINVAL; | |
2562 | ||
2563 | if (abs_time) { | |
2564 | to = &timeout; | |
b41277dc DH |
2565 | hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ? |
2566 | CLOCK_REALTIME : CLOCK_MONOTONIC, | |
2567 | HRTIMER_MODE_ABS); | |
52400ba9 DH |
2568 | hrtimer_init_sleeper(to, current); |
2569 | hrtimer_set_expires_range_ns(&to->timer, *abs_time, | |
2570 | current->timer_slack_ns); | |
2571 | } | |
2572 | ||
2573 | /* | |
2574 | * The waiter is allocated on our stack, manipulated by the requeue | |
2575 | * code while we sleep on uaddr. | |
2576 | */ | |
2577 | debug_rt_mutex_init_waiter(&rt_waiter); | |
fb00aca4 PZ |
2578 | RB_CLEAR_NODE(&rt_waiter.pi_tree_entry); |
2579 | RB_CLEAR_NODE(&rt_waiter.tree_entry); | |
52400ba9 DH |
2580 | rt_waiter.task = NULL; |
2581 | ||
9ea71503 | 2582 | ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE); |
52400ba9 DH |
2583 | if (unlikely(ret != 0)) |
2584 | goto out; | |
2585 | ||
84bc4af5 DH |
2586 | q.bitset = bitset; |
2587 | q.rt_waiter = &rt_waiter; | |
2588 | q.requeue_pi_key = &key2; | |
2589 | ||
7ada876a DH |
2590 | /* |
2591 | * Prepare to wait on uaddr. On success, increments q.key (key1) ref | |
2592 | * count. | |
2593 | */ | |
b41277dc | 2594 | ret = futex_wait_setup(uaddr, val, flags, &q, &hb); |
c8b15a70 TG |
2595 | if (ret) |
2596 | goto out_key2; | |
52400ba9 | 2597 | |
e9c243a5 TG |
2598 | /* |
2599 | * The check above which compares uaddrs is not sufficient for | |
2600 | * shared futexes. We need to compare the keys: | |
2601 | */ | |
2602 | if (match_futex(&q.key, &key2)) { | |
13c42c2f | 2603 | queue_unlock(hb); |
e9c243a5 TG |
2604 | ret = -EINVAL; |
2605 | goto out_put_keys; | |
2606 | } | |
2607 | ||
52400ba9 | 2608 | /* Queue the futex_q, drop the hb lock, wait for wakeup. */ |
f1a11e05 | 2609 | futex_wait_queue_me(hb, &q, to); |
52400ba9 DH |
2610 | |
2611 | spin_lock(&hb->lock); | |
2612 | ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to); | |
2613 | spin_unlock(&hb->lock); | |
2614 | if (ret) | |
2615 | goto out_put_keys; | |
2616 | ||
2617 | /* | |
2618 | * In order for us to be here, we know our q.key == key2, and since | |
2619 | * we took the hb->lock above, we also know that futex_requeue() has | |
2620 | * completed and we no longer have to concern ourselves with a wakeup | |
7ada876a DH |
2621 | * race with the atomic proxy lock acquisition by the requeue code. The |
2622 | * futex_requeue dropped our key1 reference and incremented our key2 | |
2623 | * reference count. | |
52400ba9 DH |
2624 | */ |
2625 | ||
2626 | /* Check if the requeue code acquired the second futex for us. */ | |
2627 | if (!q.rt_waiter) { | |
2628 | /* | |
2629 | * Got the lock. We might not be the anticipated owner if we | |
2630 | * did a lock-steal - fix up the PI-state in that case. | |
2631 | */ | |
2632 | if (q.pi_state && (q.pi_state->owner != current)) { | |
2633 | spin_lock(q.lock_ptr); | |
ae791a2d | 2634 | ret = fixup_pi_state_owner(uaddr2, &q, current); |
52400ba9 DH |
2635 | spin_unlock(q.lock_ptr); |
2636 | } | |
2637 | } else { | |
2638 | /* | |
2639 | * We have been woken up by futex_unlock_pi(), a timeout, or a | |
2640 | * signal. futex_unlock_pi() will not destroy the lock_ptr nor | |
2641 | * the pi_state. | |
2642 | */ | |
f27071cb | 2643 | WARN_ON(!q.pi_state); |
52400ba9 | 2644 | pi_mutex = &q.pi_state->pi_mutex; |
c051b21f | 2645 | ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter); |
52400ba9 DH |
2646 | debug_rt_mutex_free_waiter(&rt_waiter); |
2647 | ||
2648 | spin_lock(q.lock_ptr); | |
2649 | /* | |
2650 | * Fixup the pi_state owner and possibly acquire the lock if we | |
2651 | * haven't already. | |
2652 | */ | |
ae791a2d | 2653 | res = fixup_owner(uaddr2, &q, !ret); |
52400ba9 DH |
2654 | /* |
2655 | * If fixup_owner() returned an error, proprogate that. If it | |
56ec1607 | 2656 | * acquired the lock, clear -ETIMEDOUT or -EINTR. |
52400ba9 DH |
2657 | */ |
2658 | if (res) | |
2659 | ret = (res < 0) ? res : 0; | |
2660 | ||
2661 | /* Unqueue and drop the lock. */ | |
2662 | unqueue_me_pi(&q); | |
2663 | } | |
2664 | ||
2665 | /* | |
2666 | * If fixup_pi_state_owner() faulted and was unable to handle the | |
2667 | * fault, unlock the rt_mutex and return the fault to userspace. | |
2668 | */ | |
2669 | if (ret == -EFAULT) { | |
b6070a8d | 2670 | if (pi_mutex && rt_mutex_owner(pi_mutex) == current) |
52400ba9 DH |
2671 | rt_mutex_unlock(pi_mutex); |
2672 | } else if (ret == -EINTR) { | |
52400ba9 | 2673 | /* |
cc6db4e6 DH |
2674 | * We've already been requeued, but cannot restart by calling |
2675 | * futex_lock_pi() directly. We could restart this syscall, but | |
2676 | * it would detect that the user space "val" changed and return | |
2677 | * -EWOULDBLOCK. Save the overhead of the restart and return | |
2678 | * -EWOULDBLOCK directly. | |
52400ba9 | 2679 | */ |
2070887f | 2680 | ret = -EWOULDBLOCK; |
52400ba9 DH |
2681 | } |
2682 | ||
2683 | out_put_keys: | |
ae791a2d | 2684 | put_futex_key(&q.key); |
c8b15a70 | 2685 | out_key2: |
ae791a2d | 2686 | put_futex_key(&key2); |
52400ba9 DH |
2687 | |
2688 | out: | |
2689 | if (to) { | |
2690 | hrtimer_cancel(&to->timer); | |
2691 | destroy_hrtimer_on_stack(&to->timer); | |
2692 | } | |
2693 | return ret; | |
2694 | } | |
2695 | ||
0771dfef IM |
2696 | /* |
2697 | * Support for robust futexes: the kernel cleans up held futexes at | |
2698 | * thread exit time. | |
2699 | * | |
2700 | * Implementation: user-space maintains a per-thread list of locks it | |
2701 | * is holding. Upon do_exit(), the kernel carefully walks this list, | |
2702 | * and marks all locks that are owned by this thread with the | |
c87e2837 | 2703 | * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is |
0771dfef IM |
2704 | * always manipulated with the lock held, so the list is private and |
2705 | * per-thread. Userspace also maintains a per-thread 'list_op_pending' | |
2706 | * field, to allow the kernel to clean up if the thread dies after | |
2707 | * acquiring the lock, but just before it could have added itself to | |
2708 | * the list. There can only be one such pending lock. | |
2709 | */ | |
2710 | ||
2711 | /** | |
d96ee56c DH |
2712 | * sys_set_robust_list() - Set the robust-futex list head of a task |
2713 | * @head: pointer to the list-head | |
2714 | * @len: length of the list-head, as userspace expects | |
0771dfef | 2715 | */ |
836f92ad HC |
2716 | SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head, |
2717 | size_t, len) | |
0771dfef | 2718 | { |
a0c1e907 TG |
2719 | if (!futex_cmpxchg_enabled) |
2720 | return -ENOSYS; | |
0771dfef IM |
2721 | /* |
2722 | * The kernel knows only one size for now: | |
2723 | */ | |
2724 | if (unlikely(len != sizeof(*head))) | |
2725 | return -EINVAL; | |
2726 | ||
2727 | current->robust_list = head; | |
2728 | ||
2729 | return 0; | |
2730 | } | |
2731 | ||
2732 | /** | |
d96ee56c DH |
2733 | * sys_get_robust_list() - Get the robust-futex list head of a task |
2734 | * @pid: pid of the process [zero for current task] | |
2735 | * @head_ptr: pointer to a list-head pointer, the kernel fills it in | |
2736 | * @len_ptr: pointer to a length field, the kernel fills in the header size | |
0771dfef | 2737 | */ |
836f92ad HC |
2738 | SYSCALL_DEFINE3(get_robust_list, int, pid, |
2739 | struct robust_list_head __user * __user *, head_ptr, | |
2740 | size_t __user *, len_ptr) | |
0771dfef | 2741 | { |
ba46df98 | 2742 | struct robust_list_head __user *head; |
0771dfef | 2743 | unsigned long ret; |
bdbb776f | 2744 | struct task_struct *p; |
0771dfef | 2745 | |
a0c1e907 TG |
2746 | if (!futex_cmpxchg_enabled) |
2747 | return -ENOSYS; | |
2748 | ||
bdbb776f KC |
2749 | rcu_read_lock(); |
2750 | ||
2751 | ret = -ESRCH; | |
0771dfef | 2752 | if (!pid) |
bdbb776f | 2753 | p = current; |
0771dfef | 2754 | else { |
228ebcbe | 2755 | p = find_task_by_vpid(pid); |
0771dfef IM |
2756 | if (!p) |
2757 | goto err_unlock; | |
0771dfef IM |
2758 | } |
2759 | ||
bdbb776f KC |
2760 | ret = -EPERM; |
2761 | if (!ptrace_may_access(p, PTRACE_MODE_READ)) | |
2762 | goto err_unlock; | |
2763 | ||
2764 | head = p->robust_list; | |
2765 | rcu_read_unlock(); | |
2766 | ||
0771dfef IM |
2767 | if (put_user(sizeof(*head), len_ptr)) |
2768 | return -EFAULT; | |
2769 | return put_user(head, head_ptr); | |
2770 | ||
2771 | err_unlock: | |
aaa2a97e | 2772 | rcu_read_unlock(); |
0771dfef IM |
2773 | |
2774 | return ret; | |
2775 | } | |
2776 | ||
2777 | /* | |
2778 | * Process a futex-list entry, check whether it's owned by the | |
2779 | * dying task, and do notification if so: | |
2780 | */ | |
e3f2ddea | 2781 | int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi) |
0771dfef | 2782 | { |
7cfdaf38 | 2783 | u32 uval, uninitialized_var(nval), mval; |
0771dfef | 2784 | |
8f17d3a5 IM |
2785 | retry: |
2786 | if (get_user(uval, uaddr)) | |
0771dfef IM |
2787 | return -1; |
2788 | ||
b488893a | 2789 | if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) { |
0771dfef IM |
2790 | /* |
2791 | * Ok, this dying thread is truly holding a futex | |
2792 | * of interest. Set the OWNER_DIED bit atomically | |
2793 | * via cmpxchg, and if the value had FUTEX_WAITERS | |
2794 | * set, wake up a waiter (if any). (We have to do a | |
2795 | * futex_wake() even if OWNER_DIED is already set - | |
2796 | * to handle the rare but possible case of recursive | |
2797 | * thread-death.) The rest of the cleanup is done in | |
2798 | * userspace. | |
2799 | */ | |
e3f2ddea | 2800 | mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED; |
6e0aa9f8 TG |
2801 | /* |
2802 | * We are not holding a lock here, but we want to have | |
2803 | * the pagefault_disable/enable() protection because | |
2804 | * we want to handle the fault gracefully. If the | |
2805 | * access fails we try to fault in the futex with R/W | |
2806 | * verification via get_user_pages. get_user() above | |
2807 | * does not guarantee R/W access. If that fails we | |
2808 | * give up and leave the futex locked. | |
2809 | */ | |
2810 | if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) { | |
2811 | if (fault_in_user_writeable(uaddr)) | |
2812 | return -1; | |
2813 | goto retry; | |
2814 | } | |
c87e2837 | 2815 | if (nval != uval) |
8f17d3a5 | 2816 | goto retry; |
0771dfef | 2817 | |
e3f2ddea IM |
2818 | /* |
2819 | * Wake robust non-PI futexes here. The wakeup of | |
2820 | * PI futexes happens in exit_pi_state(): | |
2821 | */ | |
36cf3b5c | 2822 | if (!pi && (uval & FUTEX_WAITERS)) |
c2f9f201 | 2823 | futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY); |
0771dfef IM |
2824 | } |
2825 | return 0; | |
2826 | } | |
2827 | ||
e3f2ddea IM |
2828 | /* |
2829 | * Fetch a robust-list pointer. Bit 0 signals PI futexes: | |
2830 | */ | |
2831 | static inline int fetch_robust_entry(struct robust_list __user **entry, | |
ba46df98 | 2832 | struct robust_list __user * __user *head, |
1dcc41bb | 2833 | unsigned int *pi) |
e3f2ddea IM |
2834 | { |
2835 | unsigned long uentry; | |
2836 | ||
ba46df98 | 2837 | if (get_user(uentry, (unsigned long __user *)head)) |
e3f2ddea IM |
2838 | return -EFAULT; |
2839 | ||
ba46df98 | 2840 | *entry = (void __user *)(uentry & ~1UL); |
e3f2ddea IM |
2841 | *pi = uentry & 1; |
2842 | ||
2843 | return 0; | |
2844 | } | |
2845 | ||
0771dfef IM |
2846 | /* |
2847 | * Walk curr->robust_list (very carefully, it's a userspace list!) | |
2848 | * and mark any locks found there dead, and notify any waiters. | |
2849 | * | |
2850 | * We silently return on any sign of list-walking problem. | |
2851 | */ | |
2852 | void exit_robust_list(struct task_struct *curr) | |
2853 | { | |
2854 | struct robust_list_head __user *head = curr->robust_list; | |
9f96cb1e | 2855 | struct robust_list __user *entry, *next_entry, *pending; |
4c115e95 DH |
2856 | unsigned int limit = ROBUST_LIST_LIMIT, pi, pip; |
2857 | unsigned int uninitialized_var(next_pi); | |
0771dfef | 2858 | unsigned long futex_offset; |
9f96cb1e | 2859 | int rc; |
0771dfef | 2860 | |
a0c1e907 TG |
2861 | if (!futex_cmpxchg_enabled) |
2862 | return; | |
2863 | ||
0771dfef IM |
2864 | /* |
2865 | * Fetch the list head (which was registered earlier, via | |
2866 | * sys_set_robust_list()): | |
2867 | */ | |
e3f2ddea | 2868 | if (fetch_robust_entry(&entry, &head->list.next, &pi)) |
0771dfef IM |
2869 | return; |
2870 | /* | |
2871 | * Fetch the relative futex offset: | |
2872 | */ | |
2873 | if (get_user(futex_offset, &head->futex_offset)) | |
2874 | return; | |
2875 | /* | |
2876 | * Fetch any possibly pending lock-add first, and handle it | |
2877 | * if it exists: | |
2878 | */ | |
e3f2ddea | 2879 | if (fetch_robust_entry(&pending, &head->list_op_pending, &pip)) |
0771dfef | 2880 | return; |
e3f2ddea | 2881 | |
9f96cb1e | 2882 | next_entry = NULL; /* avoid warning with gcc */ |
0771dfef | 2883 | while (entry != &head->list) { |
9f96cb1e MS |
2884 | /* |
2885 | * Fetch the next entry in the list before calling | |
2886 | * handle_futex_death: | |
2887 | */ | |
2888 | rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi); | |
0771dfef IM |
2889 | /* |
2890 | * A pending lock might already be on the list, so | |
c87e2837 | 2891 | * don't process it twice: |
0771dfef IM |
2892 | */ |
2893 | if (entry != pending) | |
ba46df98 | 2894 | if (handle_futex_death((void __user *)entry + futex_offset, |
e3f2ddea | 2895 | curr, pi)) |
0771dfef | 2896 | return; |
9f96cb1e | 2897 | if (rc) |
0771dfef | 2898 | return; |
9f96cb1e MS |
2899 | entry = next_entry; |
2900 | pi = next_pi; | |
0771dfef IM |
2901 | /* |
2902 | * Avoid excessively long or circular lists: | |
2903 | */ | |
2904 | if (!--limit) | |
2905 | break; | |
2906 | ||
2907 | cond_resched(); | |
2908 | } | |
9f96cb1e MS |
2909 | |
2910 | if (pending) | |
2911 | handle_futex_death((void __user *)pending + futex_offset, | |
2912 | curr, pip); | |
0771dfef IM |
2913 | } |
2914 | ||
c19384b5 | 2915 | long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout, |
e2970f2f | 2916 | u32 __user *uaddr2, u32 val2, u32 val3) |
1da177e4 | 2917 | { |
81b40539 | 2918 | int cmd = op & FUTEX_CMD_MASK; |
b41277dc | 2919 | unsigned int flags = 0; |
34f01cc1 ED |
2920 | |
2921 | if (!(op & FUTEX_PRIVATE_FLAG)) | |
b41277dc | 2922 | flags |= FLAGS_SHARED; |
1da177e4 | 2923 | |
b41277dc DH |
2924 | if (op & FUTEX_CLOCK_REALTIME) { |
2925 | flags |= FLAGS_CLOCKRT; | |
2926 | if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI) | |
2927 | return -ENOSYS; | |
2928 | } | |
1da177e4 | 2929 | |
59263b51 TG |
2930 | switch (cmd) { |
2931 | case FUTEX_LOCK_PI: | |
2932 | case FUTEX_UNLOCK_PI: | |
2933 | case FUTEX_TRYLOCK_PI: | |
2934 | case FUTEX_WAIT_REQUEUE_PI: | |
2935 | case FUTEX_CMP_REQUEUE_PI: | |
2936 | if (!futex_cmpxchg_enabled) | |
2937 | return -ENOSYS; | |
2938 | } | |
2939 | ||
34f01cc1 | 2940 | switch (cmd) { |
1da177e4 | 2941 | case FUTEX_WAIT: |
cd689985 TG |
2942 | val3 = FUTEX_BITSET_MATCH_ANY; |
2943 | case FUTEX_WAIT_BITSET: | |
81b40539 | 2944 | return futex_wait(uaddr, flags, val, timeout, val3); |
1da177e4 | 2945 | case FUTEX_WAKE: |
cd689985 TG |
2946 | val3 = FUTEX_BITSET_MATCH_ANY; |
2947 | case FUTEX_WAKE_BITSET: | |
81b40539 | 2948 | return futex_wake(uaddr, flags, val, val3); |
1da177e4 | 2949 | case FUTEX_REQUEUE: |
81b40539 | 2950 | return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0); |
1da177e4 | 2951 | case FUTEX_CMP_REQUEUE: |
81b40539 | 2952 | return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0); |
4732efbe | 2953 | case FUTEX_WAKE_OP: |
81b40539 | 2954 | return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3); |
c87e2837 | 2955 | case FUTEX_LOCK_PI: |
81b40539 | 2956 | return futex_lock_pi(uaddr, flags, val, timeout, 0); |
c87e2837 | 2957 | case FUTEX_UNLOCK_PI: |
81b40539 | 2958 | return futex_unlock_pi(uaddr, flags); |
c87e2837 | 2959 | case FUTEX_TRYLOCK_PI: |
81b40539 | 2960 | return futex_lock_pi(uaddr, flags, 0, timeout, 1); |
52400ba9 DH |
2961 | case FUTEX_WAIT_REQUEUE_PI: |
2962 | val3 = FUTEX_BITSET_MATCH_ANY; | |
81b40539 TG |
2963 | return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3, |
2964 | uaddr2); | |
52400ba9 | 2965 | case FUTEX_CMP_REQUEUE_PI: |
81b40539 | 2966 | return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1); |
1da177e4 | 2967 | } |
81b40539 | 2968 | return -ENOSYS; |
1da177e4 LT |
2969 | } |
2970 | ||
2971 | ||
17da2bd9 HC |
2972 | SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val, |
2973 | struct timespec __user *, utime, u32 __user *, uaddr2, | |
2974 | u32, val3) | |
1da177e4 | 2975 | { |
c19384b5 PP |
2976 | struct timespec ts; |
2977 | ktime_t t, *tp = NULL; | |
e2970f2f | 2978 | u32 val2 = 0; |
34f01cc1 | 2979 | int cmd = op & FUTEX_CMD_MASK; |
1da177e4 | 2980 | |
cd689985 | 2981 | if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI || |
52400ba9 DH |
2982 | cmd == FUTEX_WAIT_BITSET || |
2983 | cmd == FUTEX_WAIT_REQUEUE_PI)) { | |
c19384b5 | 2984 | if (copy_from_user(&ts, utime, sizeof(ts)) != 0) |
1da177e4 | 2985 | return -EFAULT; |
c19384b5 | 2986 | if (!timespec_valid(&ts)) |
9741ef96 | 2987 | return -EINVAL; |
c19384b5 PP |
2988 | |
2989 | t = timespec_to_ktime(ts); | |
34f01cc1 | 2990 | if (cmd == FUTEX_WAIT) |
5a7780e7 | 2991 | t = ktime_add_safe(ktime_get(), t); |
c19384b5 | 2992 | tp = &t; |
1da177e4 LT |
2993 | } |
2994 | /* | |
52400ba9 | 2995 | * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*. |
f54f0986 | 2996 | * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP. |
1da177e4 | 2997 | */ |
f54f0986 | 2998 | if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE || |
ba9c22f2 | 2999 | cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP) |
e2970f2f | 3000 | val2 = (u32) (unsigned long) utime; |
1da177e4 | 3001 | |
c19384b5 | 3002 | return do_futex(uaddr, op, val, tp, uaddr2, val2, val3); |
1da177e4 LT |
3003 | } |
3004 | ||
03b8c7b6 | 3005 | static void __init futex_detect_cmpxchg(void) |
1da177e4 | 3006 | { |
03b8c7b6 | 3007 | #ifndef CONFIG_HAVE_FUTEX_CMPXCHG |
a0c1e907 | 3008 | u32 curval; |
03b8c7b6 HC |
3009 | |
3010 | /* | |
3011 | * This will fail and we want it. Some arch implementations do | |
3012 | * runtime detection of the futex_atomic_cmpxchg_inatomic() | |
3013 | * functionality. We want to know that before we call in any | |
3014 | * of the complex code paths. Also we want to prevent | |
3015 | * registration of robust lists in that case. NULL is | |
3016 | * guaranteed to fault and we get -EFAULT on functional | |
3017 | * implementation, the non-functional ones will return | |
3018 | * -ENOSYS. | |
3019 | */ | |
3020 | if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT) | |
3021 | futex_cmpxchg_enabled = 1; | |
3022 | #endif | |
3023 | } | |
3024 | ||
3025 | static int __init futex_init(void) | |
3026 | { | |
63b1a816 | 3027 | unsigned int futex_shift; |
a52b89eb DB |
3028 | unsigned long i; |
3029 | ||
3030 | #if CONFIG_BASE_SMALL | |
3031 | futex_hashsize = 16; | |
3032 | #else | |
3033 | futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus()); | |
3034 | #endif | |
3035 | ||
3036 | futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues), | |
3037 | futex_hashsize, 0, | |
3038 | futex_hashsize < 256 ? HASH_SMALL : 0, | |
63b1a816 HC |
3039 | &futex_shift, NULL, |
3040 | futex_hashsize, futex_hashsize); | |
3041 | futex_hashsize = 1UL << futex_shift; | |
03b8c7b6 HC |
3042 | |
3043 | futex_detect_cmpxchg(); | |
a0c1e907 | 3044 | |
a52b89eb | 3045 | for (i = 0; i < futex_hashsize; i++) { |
11d4616b | 3046 | atomic_set(&futex_queues[i].waiters, 0); |
732375c6 | 3047 | plist_head_init(&futex_queues[i].chain); |
3e4ab747 TG |
3048 | spin_lock_init(&futex_queues[i].lock); |
3049 | } | |
3050 | ||
1da177e4 LT |
3051 | return 0; |
3052 | } | |
f6d107fb | 3053 | __initcall(futex_init); |