]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Fast Userspace Mutexes (which I call "Futexes!"). | |
3 | * (C) Rusty Russell, IBM 2002 | |
4 | * | |
5 | * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar | |
6 | * (C) Copyright 2003 Red Hat Inc, All Rights Reserved | |
7 | * | |
8 | * Removed page pinning, fix privately mapped COW pages and other cleanups | |
9 | * (C) Copyright 2003, 2004 Jamie Lokier | |
10 | * | |
0771dfef IM |
11 | * Robust futex support started by Ingo Molnar |
12 | * (C) Copyright 2006 Red Hat Inc, All Rights Reserved | |
13 | * Thanks to Thomas Gleixner for suggestions, analysis and fixes. | |
14 | * | |
c87e2837 IM |
15 | * PI-futex support started by Ingo Molnar and Thomas Gleixner |
16 | * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <[email protected]> | |
17 | * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <[email protected]> | |
18 | * | |
1da177e4 LT |
19 | * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly |
20 | * enough at me, Linus for the original (flawed) idea, Matthew | |
21 | * Kirkwood for proof-of-concept implementation. | |
22 | * | |
23 | * "The futexes are also cursed." | |
24 | * "But they come in a choice of three flavours!" | |
25 | * | |
26 | * This program is free software; you can redistribute it and/or modify | |
27 | * it under the terms of the GNU General Public License as published by | |
28 | * the Free Software Foundation; either version 2 of the License, or | |
29 | * (at your option) any later version. | |
30 | * | |
31 | * This program is distributed in the hope that it will be useful, | |
32 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
33 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
34 | * GNU General Public License for more details. | |
35 | * | |
36 | * You should have received a copy of the GNU General Public License | |
37 | * along with this program; if not, write to the Free Software | |
38 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
39 | */ | |
40 | #include <linux/slab.h> | |
41 | #include <linux/poll.h> | |
42 | #include <linux/fs.h> | |
43 | #include <linux/file.h> | |
44 | #include <linux/jhash.h> | |
45 | #include <linux/init.h> | |
46 | #include <linux/futex.h> | |
47 | #include <linux/mount.h> | |
48 | #include <linux/pagemap.h> | |
49 | #include <linux/syscalls.h> | |
7ed20e1a | 50 | #include <linux/signal.h> |
4732efbe | 51 | #include <asm/futex.h> |
1da177e4 | 52 | |
c87e2837 IM |
53 | #include "rtmutex_common.h" |
54 | ||
1da177e4 LT |
55 | #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8) |
56 | ||
57 | /* | |
58 | * Futexes are matched on equal values of this key. | |
59 | * The key type depends on whether it's a shared or private mapping. | |
60 | * Don't rearrange members without looking at hash_futex(). | |
61 | * | |
62 | * offset is aligned to a multiple of sizeof(u32) (== 4) by definition. | |
63 | * We set bit 0 to indicate if it's an inode-based key. | |
64 | */ | |
65 | union futex_key { | |
66 | struct { | |
67 | unsigned long pgoff; | |
68 | struct inode *inode; | |
69 | int offset; | |
70 | } shared; | |
71 | struct { | |
e2970f2f | 72 | unsigned long address; |
1da177e4 LT |
73 | struct mm_struct *mm; |
74 | int offset; | |
75 | } private; | |
76 | struct { | |
77 | unsigned long word; | |
78 | void *ptr; | |
79 | int offset; | |
80 | } both; | |
81 | }; | |
82 | ||
c87e2837 IM |
83 | /* |
84 | * Priority Inheritance state: | |
85 | */ | |
86 | struct futex_pi_state { | |
87 | /* | |
88 | * list of 'owned' pi_state instances - these have to be | |
89 | * cleaned up in do_exit() if the task exits prematurely: | |
90 | */ | |
91 | struct list_head list; | |
92 | ||
93 | /* | |
94 | * The PI object: | |
95 | */ | |
96 | struct rt_mutex pi_mutex; | |
97 | ||
98 | struct task_struct *owner; | |
99 | atomic_t refcount; | |
100 | ||
101 | union futex_key key; | |
102 | }; | |
103 | ||
1da177e4 LT |
104 | /* |
105 | * We use this hashed waitqueue instead of a normal wait_queue_t, so | |
106 | * we can wake only the relevant ones (hashed queues may be shared). | |
107 | * | |
108 | * A futex_q has a woken state, just like tasks have TASK_RUNNING. | |
109 | * It is considered woken when list_empty(&q->list) || q->lock_ptr == 0. | |
110 | * The order of wakup is always to make the first condition true, then | |
111 | * wake up q->waiters, then make the second condition true. | |
112 | */ | |
113 | struct futex_q { | |
114 | struct list_head list; | |
115 | wait_queue_head_t waiters; | |
116 | ||
e2970f2f | 117 | /* Which hash list lock to use: */ |
1da177e4 LT |
118 | spinlock_t *lock_ptr; |
119 | ||
e2970f2f | 120 | /* Key which the futex is hashed on: */ |
1da177e4 LT |
121 | union futex_key key; |
122 | ||
e2970f2f | 123 | /* For fd, sigio sent using these: */ |
1da177e4 LT |
124 | int fd; |
125 | struct file *filp; | |
c87e2837 IM |
126 | |
127 | /* Optional priority inheritance state: */ | |
128 | struct futex_pi_state *pi_state; | |
129 | struct task_struct *task; | |
1da177e4 LT |
130 | }; |
131 | ||
132 | /* | |
133 | * Split the global futex_lock into every hash list lock. | |
134 | */ | |
135 | struct futex_hash_bucket { | |
136 | spinlock_t lock; | |
137 | struct list_head chain; | |
138 | }; | |
139 | ||
140 | static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS]; | |
141 | ||
142 | /* Futex-fs vfsmount entry: */ | |
143 | static struct vfsmount *futex_mnt; | |
144 | ||
145 | /* | |
146 | * We hash on the keys returned from get_futex_key (see below). | |
147 | */ | |
148 | static struct futex_hash_bucket *hash_futex(union futex_key *key) | |
149 | { | |
150 | u32 hash = jhash2((u32*)&key->both.word, | |
151 | (sizeof(key->both.word)+sizeof(key->both.ptr))/4, | |
152 | key->both.offset); | |
153 | return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)]; | |
154 | } | |
155 | ||
156 | /* | |
157 | * Return 1 if two futex_keys are equal, 0 otherwise. | |
158 | */ | |
159 | static inline int match_futex(union futex_key *key1, union futex_key *key2) | |
160 | { | |
161 | return (key1->both.word == key2->both.word | |
162 | && key1->both.ptr == key2->both.ptr | |
163 | && key1->both.offset == key2->both.offset); | |
164 | } | |
165 | ||
166 | /* | |
167 | * Get parameters which are the keys for a futex. | |
168 | * | |
169 | * For shared mappings, it's (page->index, vma->vm_file->f_dentry->d_inode, | |
170 | * offset_within_page). For private mappings, it's (uaddr, current->mm). | |
171 | * We can usually work out the index without swapping in the page. | |
172 | * | |
173 | * Returns: 0, or negative error code. | |
174 | * The key words are stored in *key on success. | |
175 | * | |
176 | * Should be called with ¤t->mm->mmap_sem but NOT any spinlocks. | |
177 | */ | |
e2970f2f | 178 | static int get_futex_key(u32 __user *uaddr, union futex_key *key) |
1da177e4 | 179 | { |
e2970f2f | 180 | unsigned long address = (unsigned long)uaddr; |
1da177e4 LT |
181 | struct mm_struct *mm = current->mm; |
182 | struct vm_area_struct *vma; | |
183 | struct page *page; | |
184 | int err; | |
185 | ||
186 | /* | |
187 | * The futex address must be "naturally" aligned. | |
188 | */ | |
e2970f2f | 189 | key->both.offset = address % PAGE_SIZE; |
1da177e4 LT |
190 | if (unlikely((key->both.offset % sizeof(u32)) != 0)) |
191 | return -EINVAL; | |
e2970f2f | 192 | address -= key->both.offset; |
1da177e4 LT |
193 | |
194 | /* | |
195 | * The futex is hashed differently depending on whether | |
196 | * it's in a shared or private mapping. So check vma first. | |
197 | */ | |
e2970f2f | 198 | vma = find_extend_vma(mm, address); |
1da177e4 LT |
199 | if (unlikely(!vma)) |
200 | return -EFAULT; | |
201 | ||
202 | /* | |
203 | * Permissions. | |
204 | */ | |
205 | if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ)) | |
206 | return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES; | |
207 | ||
208 | /* | |
209 | * Private mappings are handled in a simple way. | |
210 | * | |
211 | * NOTE: When userspace waits on a MAP_SHARED mapping, even if | |
212 | * it's a read-only handle, it's expected that futexes attach to | |
213 | * the object not the particular process. Therefore we use | |
214 | * VM_MAYSHARE here, not VM_SHARED which is restricted to shared | |
215 | * mappings of _writable_ handles. | |
216 | */ | |
217 | if (likely(!(vma->vm_flags & VM_MAYSHARE))) { | |
218 | key->private.mm = mm; | |
e2970f2f | 219 | key->private.address = address; |
1da177e4 LT |
220 | return 0; |
221 | } | |
222 | ||
223 | /* | |
224 | * Linear file mappings are also simple. | |
225 | */ | |
226 | key->shared.inode = vma->vm_file->f_dentry->d_inode; | |
227 | key->both.offset++; /* Bit 0 of offset indicates inode-based key. */ | |
228 | if (likely(!(vma->vm_flags & VM_NONLINEAR))) { | |
e2970f2f | 229 | key->shared.pgoff = (((address - vma->vm_start) >> PAGE_SHIFT) |
1da177e4 LT |
230 | + vma->vm_pgoff); |
231 | return 0; | |
232 | } | |
233 | ||
234 | /* | |
235 | * We could walk the page table to read the non-linear | |
236 | * pte, and get the page index without fetching the page | |
237 | * from swap. But that's a lot of code to duplicate here | |
238 | * for a rare case, so we simply fetch the page. | |
239 | */ | |
e2970f2f | 240 | err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL); |
1da177e4 LT |
241 | if (err >= 0) { |
242 | key->shared.pgoff = | |
243 | page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
244 | put_page(page); | |
245 | return 0; | |
246 | } | |
247 | return err; | |
248 | } | |
249 | ||
250 | /* | |
251 | * Take a reference to the resource addressed by a key. | |
252 | * Can be called while holding spinlocks. | |
253 | * | |
254 | * NOTE: mmap_sem MUST be held between get_futex_key() and calling this | |
255 | * function, if it is called at all. mmap_sem keeps key->shared.inode valid. | |
256 | */ | |
257 | static inline void get_key_refs(union futex_key *key) | |
258 | { | |
259 | if (key->both.ptr != 0) { | |
260 | if (key->both.offset & 1) | |
261 | atomic_inc(&key->shared.inode->i_count); | |
262 | else | |
263 | atomic_inc(&key->private.mm->mm_count); | |
264 | } | |
265 | } | |
266 | ||
267 | /* | |
268 | * Drop a reference to the resource addressed by a key. | |
269 | * The hash bucket spinlock must not be held. | |
270 | */ | |
271 | static void drop_key_refs(union futex_key *key) | |
272 | { | |
273 | if (key->both.ptr != 0) { | |
274 | if (key->both.offset & 1) | |
275 | iput(key->shared.inode); | |
276 | else | |
277 | mmdrop(key->private.mm); | |
278 | } | |
279 | } | |
280 | ||
e2970f2f | 281 | static inline int get_futex_value_locked(u32 *dest, u32 __user *from) |
1da177e4 LT |
282 | { |
283 | int ret; | |
284 | ||
285 | inc_preempt_count(); | |
e2970f2f | 286 | ret = __copy_from_user_inatomic(dest, from, sizeof(u32)); |
1da177e4 LT |
287 | dec_preempt_count(); |
288 | ||
289 | return ret ? -EFAULT : 0; | |
290 | } | |
291 | ||
c87e2837 IM |
292 | /* |
293 | * Fault handling. Called with current->mm->mmap_sem held. | |
294 | */ | |
295 | static int futex_handle_fault(unsigned long address, int attempt) | |
296 | { | |
297 | struct vm_area_struct * vma; | |
298 | struct mm_struct *mm = current->mm; | |
299 | ||
300 | if (attempt >= 2 || !(vma = find_vma(mm, address)) || | |
301 | vma->vm_start > address || !(vma->vm_flags & VM_WRITE)) | |
302 | return -EFAULT; | |
303 | ||
304 | switch (handle_mm_fault(mm, vma, address, 1)) { | |
305 | case VM_FAULT_MINOR: | |
306 | current->min_flt++; | |
307 | break; | |
308 | case VM_FAULT_MAJOR: | |
309 | current->maj_flt++; | |
310 | break; | |
311 | default: | |
312 | return -EFAULT; | |
313 | } | |
314 | return 0; | |
315 | } | |
316 | ||
317 | /* | |
318 | * PI code: | |
319 | */ | |
320 | static int refill_pi_state_cache(void) | |
321 | { | |
322 | struct futex_pi_state *pi_state; | |
323 | ||
324 | if (likely(current->pi_state_cache)) | |
325 | return 0; | |
326 | ||
327 | pi_state = kmalloc(sizeof(*pi_state), GFP_KERNEL); | |
328 | ||
329 | if (!pi_state) | |
330 | return -ENOMEM; | |
331 | ||
332 | memset(pi_state, 0, sizeof(*pi_state)); | |
333 | INIT_LIST_HEAD(&pi_state->list); | |
334 | /* pi_mutex gets initialized later */ | |
335 | pi_state->owner = NULL; | |
336 | atomic_set(&pi_state->refcount, 1); | |
337 | ||
338 | current->pi_state_cache = pi_state; | |
339 | ||
340 | return 0; | |
341 | } | |
342 | ||
343 | static struct futex_pi_state * alloc_pi_state(void) | |
344 | { | |
345 | struct futex_pi_state *pi_state = current->pi_state_cache; | |
346 | ||
347 | WARN_ON(!pi_state); | |
348 | current->pi_state_cache = NULL; | |
349 | ||
350 | return pi_state; | |
351 | } | |
352 | ||
353 | static void free_pi_state(struct futex_pi_state *pi_state) | |
354 | { | |
355 | if (!atomic_dec_and_test(&pi_state->refcount)) | |
356 | return; | |
357 | ||
358 | /* | |
359 | * If pi_state->owner is NULL, the owner is most probably dying | |
360 | * and has cleaned up the pi_state already | |
361 | */ | |
362 | if (pi_state->owner) { | |
363 | spin_lock_irq(&pi_state->owner->pi_lock); | |
364 | list_del_init(&pi_state->list); | |
365 | spin_unlock_irq(&pi_state->owner->pi_lock); | |
366 | ||
367 | rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner); | |
368 | } | |
369 | ||
370 | if (current->pi_state_cache) | |
371 | kfree(pi_state); | |
372 | else { | |
373 | /* | |
374 | * pi_state->list is already empty. | |
375 | * clear pi_state->owner. | |
376 | * refcount is at 0 - put it back to 1. | |
377 | */ | |
378 | pi_state->owner = NULL; | |
379 | atomic_set(&pi_state->refcount, 1); | |
380 | current->pi_state_cache = pi_state; | |
381 | } | |
382 | } | |
383 | ||
384 | /* | |
385 | * Look up the task based on what TID userspace gave us. | |
386 | * We dont trust it. | |
387 | */ | |
388 | static struct task_struct * futex_find_get_task(pid_t pid) | |
389 | { | |
390 | struct task_struct *p; | |
391 | ||
392 | read_lock(&tasklist_lock); | |
393 | p = find_task_by_pid(pid); | |
394 | if (!p) | |
395 | goto out_unlock; | |
396 | if ((current->euid != p->euid) && (current->euid != p->uid)) { | |
397 | p = NULL; | |
398 | goto out_unlock; | |
399 | } | |
400 | if (p->state == EXIT_ZOMBIE || p->exit_state == EXIT_ZOMBIE) { | |
401 | p = NULL; | |
402 | goto out_unlock; | |
403 | } | |
404 | get_task_struct(p); | |
405 | out_unlock: | |
406 | read_unlock(&tasklist_lock); | |
407 | ||
408 | return p; | |
409 | } | |
410 | ||
411 | /* | |
412 | * This task is holding PI mutexes at exit time => bad. | |
413 | * Kernel cleans up PI-state, but userspace is likely hosed. | |
414 | * (Robust-futex cleanup is separate and might save the day for userspace.) | |
415 | */ | |
416 | void exit_pi_state_list(struct task_struct *curr) | |
417 | { | |
418 | struct futex_hash_bucket *hb; | |
419 | struct list_head *next, *head = &curr->pi_state_list; | |
420 | struct futex_pi_state *pi_state; | |
421 | union futex_key key; | |
422 | ||
423 | /* | |
424 | * We are a ZOMBIE and nobody can enqueue itself on | |
425 | * pi_state_list anymore, but we have to be careful | |
426 | * versus waiters unqueueing themselfs | |
427 | */ | |
428 | spin_lock_irq(&curr->pi_lock); | |
429 | while (!list_empty(head)) { | |
430 | ||
431 | next = head->next; | |
432 | pi_state = list_entry(next, struct futex_pi_state, list); | |
433 | key = pi_state->key; | |
434 | spin_unlock_irq(&curr->pi_lock); | |
435 | ||
436 | hb = hash_futex(&key); | |
437 | spin_lock(&hb->lock); | |
438 | ||
439 | spin_lock_irq(&curr->pi_lock); | |
440 | if (head->next != next) { | |
441 | spin_unlock(&hb->lock); | |
442 | continue; | |
443 | } | |
444 | ||
445 | list_del_init(&pi_state->list); | |
446 | ||
447 | WARN_ON(pi_state->owner != curr); | |
448 | ||
449 | pi_state->owner = NULL; | |
450 | spin_unlock_irq(&curr->pi_lock); | |
451 | ||
452 | rt_mutex_unlock(&pi_state->pi_mutex); | |
453 | ||
454 | spin_unlock(&hb->lock); | |
455 | ||
456 | spin_lock_irq(&curr->pi_lock); | |
457 | } | |
458 | spin_unlock_irq(&curr->pi_lock); | |
459 | } | |
460 | ||
461 | static int | |
462 | lookup_pi_state(u32 uval, struct futex_hash_bucket *hb, struct futex_q *me) | |
463 | { | |
464 | struct futex_pi_state *pi_state = NULL; | |
465 | struct futex_q *this, *next; | |
466 | struct list_head *head; | |
467 | struct task_struct *p; | |
468 | pid_t pid; | |
469 | ||
470 | head = &hb->chain; | |
471 | ||
472 | list_for_each_entry_safe(this, next, head, list) { | |
473 | if (match_futex (&this->key, &me->key)) { | |
474 | /* | |
475 | * Another waiter already exists - bump up | |
476 | * the refcount and return its pi_state: | |
477 | */ | |
478 | pi_state = this->pi_state; | |
479 | atomic_inc(&pi_state->refcount); | |
480 | me->pi_state = pi_state; | |
481 | ||
482 | return 0; | |
483 | } | |
484 | } | |
485 | ||
486 | /* | |
487 | * We are the first waiter - try to look up the real owner and | |
488 | * attach the new pi_state to it: | |
489 | */ | |
490 | pid = uval & FUTEX_TID_MASK; | |
491 | p = futex_find_get_task(pid); | |
492 | if (!p) | |
493 | return -ESRCH; | |
494 | ||
495 | pi_state = alloc_pi_state(); | |
496 | ||
497 | /* | |
498 | * Initialize the pi_mutex in locked state and make 'p' | |
499 | * the owner of it: | |
500 | */ | |
501 | rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p); | |
502 | ||
503 | /* Store the key for possible exit cleanups: */ | |
504 | pi_state->key = me->key; | |
505 | ||
506 | spin_lock_irq(&p->pi_lock); | |
507 | list_add(&pi_state->list, &p->pi_state_list); | |
508 | pi_state->owner = p; | |
509 | spin_unlock_irq(&p->pi_lock); | |
510 | ||
511 | put_task_struct(p); | |
512 | ||
513 | me->pi_state = pi_state; | |
514 | ||
515 | return 0; | |
516 | } | |
517 | ||
1da177e4 LT |
518 | /* |
519 | * The hash bucket lock must be held when this is called. | |
520 | * Afterwards, the futex_q must not be accessed. | |
521 | */ | |
522 | static void wake_futex(struct futex_q *q) | |
523 | { | |
524 | list_del_init(&q->list); | |
525 | if (q->filp) | |
526 | send_sigio(&q->filp->f_owner, q->fd, POLL_IN); | |
527 | /* | |
528 | * The lock in wake_up_all() is a crucial memory barrier after the | |
529 | * list_del_init() and also before assigning to q->lock_ptr. | |
530 | */ | |
531 | wake_up_all(&q->waiters); | |
532 | /* | |
533 | * The waiting task can free the futex_q as soon as this is written, | |
534 | * without taking any locks. This must come last. | |
8e31108b AM |
535 | * |
536 | * A memory barrier is required here to prevent the following store | |
537 | * to lock_ptr from getting ahead of the wakeup. Clearing the lock | |
538 | * at the end of wake_up_all() does not prevent this store from | |
539 | * moving. | |
1da177e4 | 540 | */ |
8e31108b | 541 | wmb(); |
1da177e4 LT |
542 | q->lock_ptr = NULL; |
543 | } | |
544 | ||
c87e2837 IM |
545 | static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this) |
546 | { | |
547 | struct task_struct *new_owner; | |
548 | struct futex_pi_state *pi_state = this->pi_state; | |
549 | u32 curval, newval; | |
550 | ||
551 | if (!pi_state) | |
552 | return -EINVAL; | |
553 | ||
554 | new_owner = rt_mutex_next_owner(&pi_state->pi_mutex); | |
555 | ||
556 | /* | |
557 | * This happens when we have stolen the lock and the original | |
558 | * pending owner did not enqueue itself back on the rt_mutex. | |
559 | * Thats not a tragedy. We know that way, that a lock waiter | |
560 | * is on the fly. We make the futex_q waiter the pending owner. | |
561 | */ | |
562 | if (!new_owner) | |
563 | new_owner = this->task; | |
564 | ||
565 | /* | |
566 | * We pass it to the next owner. (The WAITERS bit is always | |
567 | * kept enabled while there is PI state around. We must also | |
568 | * preserve the owner died bit.) | |
569 | */ | |
570 | newval = (uval & FUTEX_OWNER_DIED) | FUTEX_WAITERS | new_owner->pid; | |
571 | ||
572 | inc_preempt_count(); | |
573 | curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval); | |
574 | dec_preempt_count(); | |
575 | ||
576 | if (curval == -EFAULT) | |
577 | return -EFAULT; | |
578 | if (curval != uval) | |
579 | return -EINVAL; | |
580 | ||
581 | list_del_init(&pi_state->owner->pi_state_list); | |
582 | list_add(&pi_state->list, &new_owner->pi_state_list); | |
583 | pi_state->owner = new_owner; | |
584 | rt_mutex_unlock(&pi_state->pi_mutex); | |
585 | ||
586 | return 0; | |
587 | } | |
588 | ||
589 | static int unlock_futex_pi(u32 __user *uaddr, u32 uval) | |
590 | { | |
591 | u32 oldval; | |
592 | ||
593 | /* | |
594 | * There is no waiter, so we unlock the futex. The owner died | |
595 | * bit has not to be preserved here. We are the owner: | |
596 | */ | |
597 | inc_preempt_count(); | |
598 | oldval = futex_atomic_cmpxchg_inatomic(uaddr, uval, 0); | |
599 | dec_preempt_count(); | |
600 | ||
601 | if (oldval == -EFAULT) | |
602 | return oldval; | |
603 | if (oldval != uval) | |
604 | return -EAGAIN; | |
605 | ||
606 | return 0; | |
607 | } | |
608 | ||
1da177e4 LT |
609 | /* |
610 | * Wake up all waiters hashed on the physical page that is mapped | |
611 | * to this virtual address: | |
612 | */ | |
e2970f2f | 613 | static int futex_wake(u32 __user *uaddr, int nr_wake) |
1da177e4 | 614 | { |
e2970f2f | 615 | struct futex_hash_bucket *hb; |
1da177e4 | 616 | struct futex_q *this, *next; |
e2970f2f IM |
617 | struct list_head *head; |
618 | union futex_key key; | |
1da177e4 LT |
619 | int ret; |
620 | ||
621 | down_read(¤t->mm->mmap_sem); | |
622 | ||
623 | ret = get_futex_key(uaddr, &key); | |
624 | if (unlikely(ret != 0)) | |
625 | goto out; | |
626 | ||
e2970f2f IM |
627 | hb = hash_futex(&key); |
628 | spin_lock(&hb->lock); | |
629 | head = &hb->chain; | |
1da177e4 LT |
630 | |
631 | list_for_each_entry_safe(this, next, head, list) { | |
632 | if (match_futex (&this->key, &key)) { | |
c87e2837 IM |
633 | if (this->pi_state) |
634 | return -EINVAL; | |
1da177e4 LT |
635 | wake_futex(this); |
636 | if (++ret >= nr_wake) | |
637 | break; | |
638 | } | |
639 | } | |
640 | ||
e2970f2f | 641 | spin_unlock(&hb->lock); |
1da177e4 LT |
642 | out: |
643 | up_read(¤t->mm->mmap_sem); | |
644 | return ret; | |
645 | } | |
646 | ||
4732efbe JJ |
647 | /* |
648 | * Wake up all waiters hashed on the physical page that is mapped | |
649 | * to this virtual address: | |
650 | */ | |
e2970f2f IM |
651 | static int |
652 | futex_wake_op(u32 __user *uaddr1, u32 __user *uaddr2, | |
653 | int nr_wake, int nr_wake2, int op) | |
4732efbe JJ |
654 | { |
655 | union futex_key key1, key2; | |
e2970f2f | 656 | struct futex_hash_bucket *hb1, *hb2; |
4732efbe JJ |
657 | struct list_head *head; |
658 | struct futex_q *this, *next; | |
659 | int ret, op_ret, attempt = 0; | |
660 | ||
661 | retryfull: | |
662 | down_read(¤t->mm->mmap_sem); | |
663 | ||
664 | ret = get_futex_key(uaddr1, &key1); | |
665 | if (unlikely(ret != 0)) | |
666 | goto out; | |
667 | ret = get_futex_key(uaddr2, &key2); | |
668 | if (unlikely(ret != 0)) | |
669 | goto out; | |
670 | ||
e2970f2f IM |
671 | hb1 = hash_futex(&key1); |
672 | hb2 = hash_futex(&key2); | |
4732efbe JJ |
673 | |
674 | retry: | |
e2970f2f IM |
675 | if (hb1 < hb2) |
676 | spin_lock(&hb1->lock); | |
677 | spin_lock(&hb2->lock); | |
678 | if (hb1 > hb2) | |
679 | spin_lock(&hb1->lock); | |
4732efbe | 680 | |
e2970f2f | 681 | op_ret = futex_atomic_op_inuser(op, uaddr2); |
4732efbe | 682 | if (unlikely(op_ret < 0)) { |
e2970f2f | 683 | u32 dummy; |
4732efbe | 684 | |
e2970f2f IM |
685 | spin_unlock(&hb1->lock); |
686 | if (hb1 != hb2) | |
687 | spin_unlock(&hb2->lock); | |
4732efbe | 688 | |
7ee1dd3f | 689 | #ifndef CONFIG_MMU |
e2970f2f IM |
690 | /* |
691 | * we don't get EFAULT from MMU faults if we don't have an MMU, | |
692 | * but we might get them from range checking | |
693 | */ | |
7ee1dd3f DH |
694 | ret = op_ret; |
695 | goto out; | |
696 | #endif | |
697 | ||
796f8d9b DG |
698 | if (unlikely(op_ret != -EFAULT)) { |
699 | ret = op_ret; | |
700 | goto out; | |
701 | } | |
702 | ||
e2970f2f IM |
703 | /* |
704 | * futex_atomic_op_inuser needs to both read and write | |
4732efbe JJ |
705 | * *(int __user *)uaddr2, but we can't modify it |
706 | * non-atomically. Therefore, if get_user below is not | |
707 | * enough, we need to handle the fault ourselves, while | |
e2970f2f IM |
708 | * still holding the mmap_sem. |
709 | */ | |
4732efbe | 710 | if (attempt++) { |
c87e2837 IM |
711 | if (futex_handle_fault((unsigned long)uaddr2, |
712 | attempt)) | |
4732efbe | 713 | goto out; |
4732efbe JJ |
714 | goto retry; |
715 | } | |
716 | ||
e2970f2f IM |
717 | /* |
718 | * If we would have faulted, release mmap_sem, | |
719 | * fault it in and start all over again. | |
720 | */ | |
4732efbe JJ |
721 | up_read(¤t->mm->mmap_sem); |
722 | ||
e2970f2f | 723 | ret = get_user(dummy, uaddr2); |
4732efbe JJ |
724 | if (ret) |
725 | return ret; | |
726 | ||
727 | goto retryfull; | |
728 | } | |
729 | ||
e2970f2f | 730 | head = &hb1->chain; |
4732efbe JJ |
731 | |
732 | list_for_each_entry_safe(this, next, head, list) { | |
733 | if (match_futex (&this->key, &key1)) { | |
734 | wake_futex(this); | |
735 | if (++ret >= nr_wake) | |
736 | break; | |
737 | } | |
738 | } | |
739 | ||
740 | if (op_ret > 0) { | |
e2970f2f | 741 | head = &hb2->chain; |
4732efbe JJ |
742 | |
743 | op_ret = 0; | |
744 | list_for_each_entry_safe(this, next, head, list) { | |
745 | if (match_futex (&this->key, &key2)) { | |
746 | wake_futex(this); | |
747 | if (++op_ret >= nr_wake2) | |
748 | break; | |
749 | } | |
750 | } | |
751 | ret += op_ret; | |
752 | } | |
753 | ||
e2970f2f IM |
754 | spin_unlock(&hb1->lock); |
755 | if (hb1 != hb2) | |
756 | spin_unlock(&hb2->lock); | |
4732efbe JJ |
757 | out: |
758 | up_read(¤t->mm->mmap_sem); | |
759 | return ret; | |
760 | } | |
761 | ||
1da177e4 LT |
762 | /* |
763 | * Requeue all waiters hashed on one physical page to another | |
764 | * physical page. | |
765 | */ | |
e2970f2f IM |
766 | static int futex_requeue(u32 __user *uaddr1, u32 __user *uaddr2, |
767 | int nr_wake, int nr_requeue, u32 *cmpval) | |
1da177e4 LT |
768 | { |
769 | union futex_key key1, key2; | |
e2970f2f | 770 | struct futex_hash_bucket *hb1, *hb2; |
1da177e4 LT |
771 | struct list_head *head1; |
772 | struct futex_q *this, *next; | |
773 | int ret, drop_count = 0; | |
774 | ||
775 | retry: | |
776 | down_read(¤t->mm->mmap_sem); | |
777 | ||
778 | ret = get_futex_key(uaddr1, &key1); | |
779 | if (unlikely(ret != 0)) | |
780 | goto out; | |
781 | ret = get_futex_key(uaddr2, &key2); | |
782 | if (unlikely(ret != 0)) | |
783 | goto out; | |
784 | ||
e2970f2f IM |
785 | hb1 = hash_futex(&key1); |
786 | hb2 = hash_futex(&key2); | |
1da177e4 | 787 | |
e2970f2f IM |
788 | if (hb1 < hb2) |
789 | spin_lock(&hb1->lock); | |
790 | spin_lock(&hb2->lock); | |
791 | if (hb1 > hb2) | |
792 | spin_lock(&hb1->lock); | |
1da177e4 | 793 | |
e2970f2f IM |
794 | if (likely(cmpval != NULL)) { |
795 | u32 curval; | |
1da177e4 | 796 | |
e2970f2f | 797 | ret = get_futex_value_locked(&curval, uaddr1); |
1da177e4 LT |
798 | |
799 | if (unlikely(ret)) { | |
e2970f2f IM |
800 | spin_unlock(&hb1->lock); |
801 | if (hb1 != hb2) | |
802 | spin_unlock(&hb2->lock); | |
1da177e4 | 803 | |
e2970f2f IM |
804 | /* |
805 | * If we would have faulted, release mmap_sem, fault | |
1da177e4 LT |
806 | * it in and start all over again. |
807 | */ | |
808 | up_read(¤t->mm->mmap_sem); | |
809 | ||
e2970f2f | 810 | ret = get_user(curval, uaddr1); |
1da177e4 LT |
811 | |
812 | if (!ret) | |
813 | goto retry; | |
814 | ||
815 | return ret; | |
816 | } | |
e2970f2f | 817 | if (curval != *cmpval) { |
1da177e4 LT |
818 | ret = -EAGAIN; |
819 | goto out_unlock; | |
820 | } | |
821 | } | |
822 | ||
e2970f2f | 823 | head1 = &hb1->chain; |
1da177e4 LT |
824 | list_for_each_entry_safe(this, next, head1, list) { |
825 | if (!match_futex (&this->key, &key1)) | |
826 | continue; | |
827 | if (++ret <= nr_wake) { | |
828 | wake_futex(this); | |
829 | } else { | |
59e0e0ac SD |
830 | /* |
831 | * If key1 and key2 hash to the same bucket, no need to | |
832 | * requeue. | |
833 | */ | |
834 | if (likely(head1 != &hb2->chain)) { | |
835 | list_move_tail(&this->list, &hb2->chain); | |
836 | this->lock_ptr = &hb2->lock; | |
837 | } | |
1da177e4 LT |
838 | this->key = key2; |
839 | get_key_refs(&key2); | |
840 | drop_count++; | |
841 | ||
842 | if (ret - nr_wake >= nr_requeue) | |
843 | break; | |
1da177e4 LT |
844 | } |
845 | } | |
846 | ||
847 | out_unlock: | |
e2970f2f IM |
848 | spin_unlock(&hb1->lock); |
849 | if (hb1 != hb2) | |
850 | spin_unlock(&hb2->lock); | |
1da177e4 LT |
851 | |
852 | /* drop_key_refs() must be called outside the spinlocks. */ | |
853 | while (--drop_count >= 0) | |
854 | drop_key_refs(&key1); | |
855 | ||
856 | out: | |
857 | up_read(¤t->mm->mmap_sem); | |
858 | return ret; | |
859 | } | |
860 | ||
861 | /* The key must be already stored in q->key. */ | |
862 | static inline struct futex_hash_bucket * | |
863 | queue_lock(struct futex_q *q, int fd, struct file *filp) | |
864 | { | |
e2970f2f | 865 | struct futex_hash_bucket *hb; |
1da177e4 LT |
866 | |
867 | q->fd = fd; | |
868 | q->filp = filp; | |
869 | ||
870 | init_waitqueue_head(&q->waiters); | |
871 | ||
872 | get_key_refs(&q->key); | |
e2970f2f IM |
873 | hb = hash_futex(&q->key); |
874 | q->lock_ptr = &hb->lock; | |
1da177e4 | 875 | |
e2970f2f IM |
876 | spin_lock(&hb->lock); |
877 | return hb; | |
1da177e4 LT |
878 | } |
879 | ||
e2970f2f | 880 | static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb) |
1da177e4 | 881 | { |
e2970f2f | 882 | list_add_tail(&q->list, &hb->chain); |
c87e2837 | 883 | q->task = current; |
e2970f2f | 884 | spin_unlock(&hb->lock); |
1da177e4 LT |
885 | } |
886 | ||
887 | static inline void | |
e2970f2f | 888 | queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb) |
1da177e4 | 889 | { |
e2970f2f | 890 | spin_unlock(&hb->lock); |
1da177e4 LT |
891 | drop_key_refs(&q->key); |
892 | } | |
893 | ||
894 | /* | |
895 | * queue_me and unqueue_me must be called as a pair, each | |
896 | * exactly once. They are called with the hashed spinlock held. | |
897 | */ | |
898 | ||
899 | /* The key must be already stored in q->key. */ | |
900 | static void queue_me(struct futex_q *q, int fd, struct file *filp) | |
901 | { | |
e2970f2f IM |
902 | struct futex_hash_bucket *hb; |
903 | ||
904 | hb = queue_lock(q, fd, filp); | |
905 | __queue_me(q, hb); | |
1da177e4 LT |
906 | } |
907 | ||
908 | /* Return 1 if we were still queued (ie. 0 means we were woken) */ | |
909 | static int unqueue_me(struct futex_q *q) | |
910 | { | |
1da177e4 | 911 | spinlock_t *lock_ptr; |
e2970f2f | 912 | int ret = 0; |
1da177e4 LT |
913 | |
914 | /* In the common case we don't take the spinlock, which is nice. */ | |
915 | retry: | |
916 | lock_ptr = q->lock_ptr; | |
917 | if (lock_ptr != 0) { | |
918 | spin_lock(lock_ptr); | |
919 | /* | |
920 | * q->lock_ptr can change between reading it and | |
921 | * spin_lock(), causing us to take the wrong lock. This | |
922 | * corrects the race condition. | |
923 | * | |
924 | * Reasoning goes like this: if we have the wrong lock, | |
925 | * q->lock_ptr must have changed (maybe several times) | |
926 | * between reading it and the spin_lock(). It can | |
927 | * change again after the spin_lock() but only if it was | |
928 | * already changed before the spin_lock(). It cannot, | |
929 | * however, change back to the original value. Therefore | |
930 | * we can detect whether we acquired the correct lock. | |
931 | */ | |
932 | if (unlikely(lock_ptr != q->lock_ptr)) { | |
933 | spin_unlock(lock_ptr); | |
934 | goto retry; | |
935 | } | |
936 | WARN_ON(list_empty(&q->list)); | |
937 | list_del(&q->list); | |
c87e2837 IM |
938 | |
939 | BUG_ON(q->pi_state); | |
940 | ||
1da177e4 LT |
941 | spin_unlock(lock_ptr); |
942 | ret = 1; | |
943 | } | |
944 | ||
945 | drop_key_refs(&q->key); | |
946 | return ret; | |
947 | } | |
948 | ||
c87e2837 IM |
949 | /* |
950 | * PI futexes can not be requeued and must remove themself from the | |
951 | * hash bucket. The hash bucket lock is held on entry and dropped here. | |
952 | */ | |
953 | static void unqueue_me_pi(struct futex_q *q, struct futex_hash_bucket *hb) | |
954 | { | |
955 | WARN_ON(list_empty(&q->list)); | |
956 | list_del(&q->list); | |
957 | ||
958 | BUG_ON(!q->pi_state); | |
959 | free_pi_state(q->pi_state); | |
960 | q->pi_state = NULL; | |
961 | ||
962 | spin_unlock(&hb->lock); | |
963 | ||
964 | drop_key_refs(&q->key); | |
965 | } | |
966 | ||
e2970f2f | 967 | static int futex_wait(u32 __user *uaddr, u32 val, unsigned long time) |
1da177e4 | 968 | { |
c87e2837 IM |
969 | struct task_struct *curr = current; |
970 | DECLARE_WAITQUEUE(wait, curr); | |
e2970f2f | 971 | struct futex_hash_bucket *hb; |
1da177e4 | 972 | struct futex_q q; |
e2970f2f IM |
973 | u32 uval; |
974 | int ret; | |
1da177e4 | 975 | |
c87e2837 | 976 | q.pi_state = NULL; |
1da177e4 | 977 | retry: |
c87e2837 | 978 | down_read(&curr->mm->mmap_sem); |
1da177e4 LT |
979 | |
980 | ret = get_futex_key(uaddr, &q.key); | |
981 | if (unlikely(ret != 0)) | |
982 | goto out_release_sem; | |
983 | ||
e2970f2f | 984 | hb = queue_lock(&q, -1, NULL); |
1da177e4 LT |
985 | |
986 | /* | |
987 | * Access the page AFTER the futex is queued. | |
988 | * Order is important: | |
989 | * | |
990 | * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val); | |
991 | * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); } | |
992 | * | |
993 | * The basic logical guarantee of a futex is that it blocks ONLY | |
994 | * if cond(var) is known to be true at the time of blocking, for | |
995 | * any cond. If we queued after testing *uaddr, that would open | |
996 | * a race condition where we could block indefinitely with | |
997 | * cond(var) false, which would violate the guarantee. | |
998 | * | |
999 | * A consequence is that futex_wait() can return zero and absorb | |
1000 | * a wakeup when *uaddr != val on entry to the syscall. This is | |
1001 | * rare, but normal. | |
1002 | * | |
1003 | * We hold the mmap semaphore, so the mapping cannot have changed | |
1004 | * since we looked it up in get_futex_key. | |
1005 | */ | |
e2970f2f | 1006 | ret = get_futex_value_locked(&uval, uaddr); |
1da177e4 LT |
1007 | |
1008 | if (unlikely(ret)) { | |
e2970f2f | 1009 | queue_unlock(&q, hb); |
1da177e4 | 1010 | |
e2970f2f IM |
1011 | /* |
1012 | * If we would have faulted, release mmap_sem, fault it in and | |
1da177e4 LT |
1013 | * start all over again. |
1014 | */ | |
c87e2837 | 1015 | up_read(&curr->mm->mmap_sem); |
1da177e4 | 1016 | |
e2970f2f | 1017 | ret = get_user(uval, uaddr); |
1da177e4 LT |
1018 | |
1019 | if (!ret) | |
1020 | goto retry; | |
1021 | return ret; | |
1022 | } | |
c87e2837 IM |
1023 | ret = -EWOULDBLOCK; |
1024 | if (uval != val) | |
1025 | goto out_unlock_release_sem; | |
1da177e4 LT |
1026 | |
1027 | /* Only actually queue if *uaddr contained val. */ | |
e2970f2f | 1028 | __queue_me(&q, hb); |
1da177e4 LT |
1029 | |
1030 | /* | |
1031 | * Now the futex is queued and we have checked the data, we | |
1032 | * don't want to hold mmap_sem while we sleep. | |
c87e2837 IM |
1033 | */ |
1034 | up_read(&curr->mm->mmap_sem); | |
1da177e4 LT |
1035 | |
1036 | /* | |
1037 | * There might have been scheduling since the queue_me(), as we | |
1038 | * cannot hold a spinlock across the get_user() in case it | |
1039 | * faults, and we cannot just set TASK_INTERRUPTIBLE state when | |
1040 | * queueing ourselves into the futex hash. This code thus has to | |
1041 | * rely on the futex_wake() code removing us from hash when it | |
1042 | * wakes us up. | |
1043 | */ | |
1044 | ||
1045 | /* add_wait_queue is the barrier after __set_current_state. */ | |
1046 | __set_current_state(TASK_INTERRUPTIBLE); | |
1047 | add_wait_queue(&q.waiters, &wait); | |
1048 | /* | |
1049 | * !list_empty() is safe here without any lock. | |
1050 | * q.lock_ptr != 0 is not safe, because of ordering against wakeup. | |
1051 | */ | |
1052 | if (likely(!list_empty(&q.list))) | |
1053 | time = schedule_timeout(time); | |
1054 | __set_current_state(TASK_RUNNING); | |
1055 | ||
1056 | /* | |
1057 | * NOTE: we don't remove ourselves from the waitqueue because | |
1058 | * we are the only user of it. | |
1059 | */ | |
1060 | ||
1061 | /* If we were woken (and unqueued), we succeeded, whatever. */ | |
1062 | if (!unqueue_me(&q)) | |
1063 | return 0; | |
1064 | if (time == 0) | |
1065 | return -ETIMEDOUT; | |
e2970f2f IM |
1066 | /* |
1067 | * We expect signal_pending(current), but another thread may | |
1068 | * have handled it for us already. | |
1069 | */ | |
1da177e4 LT |
1070 | return -EINTR; |
1071 | ||
c87e2837 IM |
1072 | out_unlock_release_sem: |
1073 | queue_unlock(&q, hb); | |
1074 | ||
1da177e4 | 1075 | out_release_sem: |
c87e2837 IM |
1076 | up_read(&curr->mm->mmap_sem); |
1077 | return ret; | |
1078 | } | |
1079 | ||
1080 | /* | |
1081 | * Userspace tried a 0 -> TID atomic transition of the futex value | |
1082 | * and failed. The kernel side here does the whole locking operation: | |
1083 | * if there are waiters then it will block, it does PI, etc. (Due to | |
1084 | * races the kernel might see a 0 value of the futex too.) | |
1085 | */ | |
1086 | static int do_futex_lock_pi(u32 __user *uaddr, int detect, int trylock, | |
1087 | struct hrtimer_sleeper *to) | |
1088 | { | |
1089 | struct task_struct *curr = current; | |
1090 | struct futex_hash_bucket *hb; | |
1091 | u32 uval, newval, curval; | |
1092 | struct futex_q q; | |
1093 | int ret, attempt = 0; | |
1094 | ||
1095 | if (refill_pi_state_cache()) | |
1096 | return -ENOMEM; | |
1097 | ||
1098 | q.pi_state = NULL; | |
1099 | retry: | |
1100 | down_read(&curr->mm->mmap_sem); | |
1101 | ||
1102 | ret = get_futex_key(uaddr, &q.key); | |
1103 | if (unlikely(ret != 0)) | |
1104 | goto out_release_sem; | |
1105 | ||
1106 | hb = queue_lock(&q, -1, NULL); | |
1107 | ||
1108 | retry_locked: | |
1109 | /* | |
1110 | * To avoid races, we attempt to take the lock here again | |
1111 | * (by doing a 0 -> TID atomic cmpxchg), while holding all | |
1112 | * the locks. It will most likely not succeed. | |
1113 | */ | |
1114 | newval = current->pid; | |
1115 | ||
1116 | inc_preempt_count(); | |
1117 | curval = futex_atomic_cmpxchg_inatomic(uaddr, 0, newval); | |
1118 | dec_preempt_count(); | |
1119 | ||
1120 | if (unlikely(curval == -EFAULT)) | |
1121 | goto uaddr_faulted; | |
1122 | ||
1123 | /* We own the lock already */ | |
1124 | if (unlikely((curval & FUTEX_TID_MASK) == current->pid)) { | |
1125 | if (!detect && 0) | |
1126 | force_sig(SIGKILL, current); | |
1127 | ret = -EDEADLK; | |
1128 | goto out_unlock_release_sem; | |
1129 | } | |
1130 | ||
1131 | /* | |
1132 | * Surprise - we got the lock. Just return | |
1133 | * to userspace: | |
1134 | */ | |
1135 | if (unlikely(!curval)) | |
1136 | goto out_unlock_release_sem; | |
1137 | ||
1138 | uval = curval; | |
1139 | newval = uval | FUTEX_WAITERS; | |
1140 | ||
1141 | inc_preempt_count(); | |
1142 | curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval); | |
1143 | dec_preempt_count(); | |
1144 | ||
1145 | if (unlikely(curval == -EFAULT)) | |
1146 | goto uaddr_faulted; | |
1147 | if (unlikely(curval != uval)) | |
1148 | goto retry_locked; | |
1149 | ||
1150 | /* | |
1151 | * We dont have the lock. Look up the PI state (or create it if | |
1152 | * we are the first waiter): | |
1153 | */ | |
1154 | ret = lookup_pi_state(uval, hb, &q); | |
1155 | ||
1156 | if (unlikely(ret)) { | |
1157 | /* | |
1158 | * There were no waiters and the owner task lookup | |
1159 | * failed. When the OWNER_DIED bit is set, then we | |
1160 | * know that this is a robust futex and we actually | |
1161 | * take the lock. This is safe as we are protected by | |
1162 | * the hash bucket lock. We also set the waiters bit | |
1163 | * unconditionally here, to simplify glibc handling of | |
1164 | * multiple tasks racing to acquire the lock and | |
1165 | * cleanup the problems which were left by the dead | |
1166 | * owner. | |
1167 | */ | |
1168 | if (curval & FUTEX_OWNER_DIED) { | |
1169 | uval = newval; | |
1170 | newval = current->pid | | |
1171 | FUTEX_OWNER_DIED | FUTEX_WAITERS; | |
1172 | ||
1173 | inc_preempt_count(); | |
1174 | curval = futex_atomic_cmpxchg_inatomic(uaddr, | |
1175 | uval, newval); | |
1176 | dec_preempt_count(); | |
1177 | ||
1178 | if (unlikely(curval == -EFAULT)) | |
1179 | goto uaddr_faulted; | |
1180 | if (unlikely(curval != uval)) | |
1181 | goto retry_locked; | |
1182 | ret = 0; | |
1183 | } | |
1184 | goto out_unlock_release_sem; | |
1185 | } | |
1186 | ||
1187 | /* | |
1188 | * Only actually queue now that the atomic ops are done: | |
1189 | */ | |
1190 | __queue_me(&q, hb); | |
1191 | ||
1192 | /* | |
1193 | * Now the futex is queued and we have checked the data, we | |
1194 | * don't want to hold mmap_sem while we sleep. | |
1195 | */ | |
1196 | up_read(&curr->mm->mmap_sem); | |
1197 | ||
1198 | WARN_ON(!q.pi_state); | |
1199 | /* | |
1200 | * Block on the PI mutex: | |
1201 | */ | |
1202 | if (!trylock) | |
1203 | ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1); | |
1204 | else { | |
1205 | ret = rt_mutex_trylock(&q.pi_state->pi_mutex); | |
1206 | /* Fixup the trylock return value: */ | |
1207 | ret = ret ? 0 : -EWOULDBLOCK; | |
1208 | } | |
1209 | ||
1210 | down_read(&curr->mm->mmap_sem); | |
1211 | hb = queue_lock(&q, -1, NULL); | |
1212 | ||
1213 | /* | |
1214 | * Got the lock. We might not be the anticipated owner if we | |
1215 | * did a lock-steal - fix up the PI-state in that case. | |
1216 | */ | |
1217 | if (!ret && q.pi_state->owner != curr) { | |
1218 | u32 newtid = current->pid | FUTEX_WAITERS; | |
1219 | ||
1220 | /* Owner died? */ | |
1221 | if (q.pi_state->owner != NULL) { | |
1222 | spin_lock_irq(&q.pi_state->owner->pi_lock); | |
1223 | list_del_init(&q.pi_state->list); | |
1224 | spin_unlock_irq(&q.pi_state->owner->pi_lock); | |
1225 | } else | |
1226 | newtid |= FUTEX_OWNER_DIED; | |
1227 | ||
1228 | q.pi_state->owner = current; | |
1229 | ||
1230 | spin_lock_irq(¤t->pi_lock); | |
1231 | list_add(&q.pi_state->list, ¤t->pi_state_list); | |
1232 | spin_unlock_irq(¤t->pi_lock); | |
1233 | ||
1234 | /* Unqueue and drop the lock */ | |
1235 | unqueue_me_pi(&q, hb); | |
1236 | up_read(&curr->mm->mmap_sem); | |
1237 | /* | |
1238 | * We own it, so we have to replace the pending owner | |
1239 | * TID. This must be atomic as we have preserve the | |
1240 | * owner died bit here. | |
1241 | */ | |
1242 | ret = get_user(uval, uaddr); | |
1243 | while (!ret) { | |
1244 | newval = (uval & FUTEX_OWNER_DIED) | newtid; | |
1245 | curval = futex_atomic_cmpxchg_inatomic(uaddr, | |
1246 | uval, newval); | |
1247 | if (curval == -EFAULT) | |
1248 | ret = -EFAULT; | |
1249 | if (curval == uval) | |
1250 | break; | |
1251 | uval = curval; | |
1252 | } | |
1253 | } else { | |
1254 | /* | |
1255 | * Catch the rare case, where the lock was released | |
1256 | * when we were on the way back before we locked | |
1257 | * the hash bucket. | |
1258 | */ | |
1259 | if (ret && q.pi_state->owner == curr) { | |
1260 | if (rt_mutex_trylock(&q.pi_state->pi_mutex)) | |
1261 | ret = 0; | |
1262 | } | |
1263 | /* Unqueue and drop the lock */ | |
1264 | unqueue_me_pi(&q, hb); | |
1265 | up_read(&curr->mm->mmap_sem); | |
1266 | } | |
1267 | ||
1268 | if (!detect && ret == -EDEADLK && 0) | |
1269 | force_sig(SIGKILL, current); | |
1270 | ||
1271 | return ret; | |
1272 | ||
1273 | out_unlock_release_sem: | |
1274 | queue_unlock(&q, hb); | |
1275 | ||
1276 | out_release_sem: | |
1277 | up_read(&curr->mm->mmap_sem); | |
1278 | return ret; | |
1279 | ||
1280 | uaddr_faulted: | |
1281 | /* | |
1282 | * We have to r/w *(int __user *)uaddr, but we can't modify it | |
1283 | * non-atomically. Therefore, if get_user below is not | |
1284 | * enough, we need to handle the fault ourselves, while | |
1285 | * still holding the mmap_sem. | |
1286 | */ | |
1287 | if (attempt++) { | |
1288 | if (futex_handle_fault((unsigned long)uaddr, attempt)) | |
1289 | goto out_unlock_release_sem; | |
1290 | ||
1291 | goto retry_locked; | |
1292 | } | |
1293 | ||
1294 | queue_unlock(&q, hb); | |
1295 | up_read(&curr->mm->mmap_sem); | |
1296 | ||
1297 | ret = get_user(uval, uaddr); | |
1298 | if (!ret && (uval != -EFAULT)) | |
1299 | goto retry; | |
1300 | ||
1301 | return ret; | |
1302 | } | |
1303 | ||
1304 | /* | |
1305 | * Restart handler | |
1306 | */ | |
1307 | static long futex_lock_pi_restart(struct restart_block *restart) | |
1308 | { | |
1309 | struct hrtimer_sleeper timeout, *to = NULL; | |
1310 | int ret; | |
1311 | ||
1312 | restart->fn = do_no_restart_syscall; | |
1313 | ||
1314 | if (restart->arg2 || restart->arg3) { | |
1315 | to = &timeout; | |
1316 | hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_ABS); | |
1317 | hrtimer_init_sleeper(to, current); | |
1318 | to->timer.expires.tv64 = ((u64)restart->arg1 << 32) | | |
1319 | (u64) restart->arg0; | |
1320 | } | |
1321 | ||
1322 | pr_debug("lock_pi restart: %p, %d (%d)\n", | |
1323 | (u32 __user *)restart->arg0, current->pid); | |
1324 | ||
1325 | ret = do_futex_lock_pi((u32 __user *)restart->arg0, restart->arg1, | |
1326 | 0, to); | |
1327 | ||
1328 | if (ret != -EINTR) | |
1329 | return ret; | |
1330 | ||
1331 | restart->fn = futex_lock_pi_restart; | |
1332 | ||
1333 | /* The other values are filled in */ | |
1334 | return -ERESTART_RESTARTBLOCK; | |
1335 | } | |
1336 | ||
1337 | /* | |
1338 | * Called from the syscall entry below. | |
1339 | */ | |
1340 | static int futex_lock_pi(u32 __user *uaddr, int detect, unsigned long sec, | |
1341 | long nsec, int trylock) | |
1342 | { | |
1343 | struct hrtimer_sleeper timeout, *to = NULL; | |
1344 | struct restart_block *restart; | |
1345 | int ret; | |
1346 | ||
1347 | if (sec != MAX_SCHEDULE_TIMEOUT) { | |
1348 | to = &timeout; | |
1349 | hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_ABS); | |
1350 | hrtimer_init_sleeper(to, current); | |
1351 | to->timer.expires = ktime_set(sec, nsec); | |
1352 | } | |
1353 | ||
1354 | ret = do_futex_lock_pi(uaddr, detect, trylock, to); | |
1355 | ||
1356 | if (ret != -EINTR) | |
1357 | return ret; | |
1358 | ||
1359 | pr_debug("lock_pi interrupted: %p, %d (%d)\n", uaddr, current->pid); | |
1360 | ||
1361 | restart = ¤t_thread_info()->restart_block; | |
1362 | restart->fn = futex_lock_pi_restart; | |
1363 | restart->arg0 = (unsigned long) uaddr; | |
1364 | restart->arg1 = detect; | |
1365 | if (to) { | |
1366 | restart->arg2 = to->timer.expires.tv64 & 0xFFFFFFFF; | |
1367 | restart->arg3 = to->timer.expires.tv64 >> 32; | |
1368 | } else | |
1369 | restart->arg2 = restart->arg3 = 0; | |
1370 | ||
1371 | return -ERESTART_RESTARTBLOCK; | |
1372 | } | |
1373 | ||
1374 | /* | |
1375 | * Userspace attempted a TID -> 0 atomic transition, and failed. | |
1376 | * This is the in-kernel slowpath: we look up the PI state (if any), | |
1377 | * and do the rt-mutex unlock. | |
1378 | */ | |
1379 | static int futex_unlock_pi(u32 __user *uaddr) | |
1380 | { | |
1381 | struct futex_hash_bucket *hb; | |
1382 | struct futex_q *this, *next; | |
1383 | u32 uval; | |
1384 | struct list_head *head; | |
1385 | union futex_key key; | |
1386 | int ret, attempt = 0; | |
1387 | ||
1388 | retry: | |
1389 | if (get_user(uval, uaddr)) | |
1390 | return -EFAULT; | |
1391 | /* | |
1392 | * We release only a lock we actually own: | |
1393 | */ | |
1394 | if ((uval & FUTEX_TID_MASK) != current->pid) | |
1395 | return -EPERM; | |
1396 | /* | |
1397 | * First take all the futex related locks: | |
1398 | */ | |
1399 | down_read(¤t->mm->mmap_sem); | |
1400 | ||
1401 | ret = get_futex_key(uaddr, &key); | |
1402 | if (unlikely(ret != 0)) | |
1403 | goto out; | |
1404 | ||
1405 | hb = hash_futex(&key); | |
1406 | spin_lock(&hb->lock); | |
1407 | ||
1408 | retry_locked: | |
1409 | /* | |
1410 | * To avoid races, try to do the TID -> 0 atomic transition | |
1411 | * again. If it succeeds then we can return without waking | |
1412 | * anyone else up: | |
1413 | */ | |
1414 | inc_preempt_count(); | |
1415 | uval = futex_atomic_cmpxchg_inatomic(uaddr, current->pid, 0); | |
1416 | dec_preempt_count(); | |
1417 | ||
1418 | if (unlikely(uval == -EFAULT)) | |
1419 | goto pi_faulted; | |
1420 | /* | |
1421 | * Rare case: we managed to release the lock atomically, | |
1422 | * no need to wake anyone else up: | |
1423 | */ | |
1424 | if (unlikely(uval == current->pid)) | |
1425 | goto out_unlock; | |
1426 | ||
1427 | /* | |
1428 | * Ok, other tasks may need to be woken up - check waiters | |
1429 | * and do the wakeup if necessary: | |
1430 | */ | |
1431 | head = &hb->chain; | |
1432 | ||
1433 | list_for_each_entry_safe(this, next, head, list) { | |
1434 | if (!match_futex (&this->key, &key)) | |
1435 | continue; | |
1436 | ret = wake_futex_pi(uaddr, uval, this); | |
1437 | /* | |
1438 | * The atomic access to the futex value | |
1439 | * generated a pagefault, so retry the | |
1440 | * user-access and the wakeup: | |
1441 | */ | |
1442 | if (ret == -EFAULT) | |
1443 | goto pi_faulted; | |
1444 | goto out_unlock; | |
1445 | } | |
1446 | /* | |
1447 | * No waiters - kernel unlocks the futex: | |
1448 | */ | |
1449 | ret = unlock_futex_pi(uaddr, uval); | |
1450 | if (ret == -EFAULT) | |
1451 | goto pi_faulted; | |
1452 | ||
1453 | out_unlock: | |
1454 | spin_unlock(&hb->lock); | |
1455 | out: | |
1456 | up_read(¤t->mm->mmap_sem); | |
1457 | ||
1458 | return ret; | |
1459 | ||
1460 | pi_faulted: | |
1461 | /* | |
1462 | * We have to r/w *(int __user *)uaddr, but we can't modify it | |
1463 | * non-atomically. Therefore, if get_user below is not | |
1464 | * enough, we need to handle the fault ourselves, while | |
1465 | * still holding the mmap_sem. | |
1466 | */ | |
1467 | if (attempt++) { | |
1468 | if (futex_handle_fault((unsigned long)uaddr, attempt)) | |
1469 | goto out_unlock; | |
1470 | ||
1471 | goto retry_locked; | |
1472 | } | |
1473 | ||
1474 | spin_unlock(&hb->lock); | |
1da177e4 | 1475 | up_read(¤t->mm->mmap_sem); |
c87e2837 IM |
1476 | |
1477 | ret = get_user(uval, uaddr); | |
1478 | if (!ret && (uval != -EFAULT)) | |
1479 | goto retry; | |
1480 | ||
1da177e4 LT |
1481 | return ret; |
1482 | } | |
1483 | ||
1484 | static int futex_close(struct inode *inode, struct file *filp) | |
1485 | { | |
1486 | struct futex_q *q = filp->private_data; | |
1487 | ||
1488 | unqueue_me(q); | |
1489 | kfree(q); | |
e2970f2f | 1490 | |
1da177e4 LT |
1491 | return 0; |
1492 | } | |
1493 | ||
1494 | /* This is one-shot: once it's gone off you need a new fd */ | |
1495 | static unsigned int futex_poll(struct file *filp, | |
1496 | struct poll_table_struct *wait) | |
1497 | { | |
1498 | struct futex_q *q = filp->private_data; | |
1499 | int ret = 0; | |
1500 | ||
1501 | poll_wait(filp, &q->waiters, wait); | |
1502 | ||
1503 | /* | |
1504 | * list_empty() is safe here without any lock. | |
1505 | * q->lock_ptr != 0 is not safe, because of ordering against wakeup. | |
1506 | */ | |
1507 | if (list_empty(&q->list)) | |
1508 | ret = POLLIN | POLLRDNORM; | |
1509 | ||
1510 | return ret; | |
1511 | } | |
1512 | ||
1513 | static struct file_operations futex_fops = { | |
1514 | .release = futex_close, | |
1515 | .poll = futex_poll, | |
1516 | }; | |
1517 | ||
1518 | /* | |
1519 | * Signal allows caller to avoid the race which would occur if they | |
1520 | * set the sigio stuff up afterwards. | |
1521 | */ | |
e2970f2f | 1522 | static int futex_fd(u32 __user *uaddr, int signal) |
1da177e4 LT |
1523 | { |
1524 | struct futex_q *q; | |
1525 | struct file *filp; | |
1526 | int ret, err; | |
1527 | ||
1528 | ret = -EINVAL; | |
7ed20e1a | 1529 | if (!valid_signal(signal)) |
1da177e4 LT |
1530 | goto out; |
1531 | ||
1532 | ret = get_unused_fd(); | |
1533 | if (ret < 0) | |
1534 | goto out; | |
1535 | filp = get_empty_filp(); | |
1536 | if (!filp) { | |
1537 | put_unused_fd(ret); | |
1538 | ret = -ENFILE; | |
1539 | goto out; | |
1540 | } | |
1541 | filp->f_op = &futex_fops; | |
1542 | filp->f_vfsmnt = mntget(futex_mnt); | |
1543 | filp->f_dentry = dget(futex_mnt->mnt_root); | |
1544 | filp->f_mapping = filp->f_dentry->d_inode->i_mapping; | |
1545 | ||
1546 | if (signal) { | |
1da177e4 LT |
1547 | err = f_setown(filp, current->pid, 1); |
1548 | if (err < 0) { | |
39ed3fde | 1549 | goto error; |
1da177e4 LT |
1550 | } |
1551 | filp->f_owner.signum = signal; | |
1552 | } | |
1553 | ||
1554 | q = kmalloc(sizeof(*q), GFP_KERNEL); | |
1555 | if (!q) { | |
39ed3fde PE |
1556 | err = -ENOMEM; |
1557 | goto error; | |
1da177e4 | 1558 | } |
c87e2837 | 1559 | q->pi_state = NULL; |
1da177e4 LT |
1560 | |
1561 | down_read(¤t->mm->mmap_sem); | |
1562 | err = get_futex_key(uaddr, &q->key); | |
1563 | ||
1564 | if (unlikely(err != 0)) { | |
1565 | up_read(¤t->mm->mmap_sem); | |
1da177e4 | 1566 | kfree(q); |
39ed3fde | 1567 | goto error; |
1da177e4 LT |
1568 | } |
1569 | ||
1570 | /* | |
1571 | * queue_me() must be called before releasing mmap_sem, because | |
1572 | * key->shared.inode needs to be referenced while holding it. | |
1573 | */ | |
1574 | filp->private_data = q; | |
1575 | ||
1576 | queue_me(q, ret, filp); | |
1577 | up_read(¤t->mm->mmap_sem); | |
1578 | ||
1579 | /* Now we map fd to filp, so userspace can access it */ | |
1580 | fd_install(ret, filp); | |
1581 | out: | |
1582 | return ret; | |
39ed3fde PE |
1583 | error: |
1584 | put_unused_fd(ret); | |
1585 | put_filp(filp); | |
1586 | ret = err; | |
1587 | goto out; | |
1da177e4 LT |
1588 | } |
1589 | ||
0771dfef IM |
1590 | /* |
1591 | * Support for robust futexes: the kernel cleans up held futexes at | |
1592 | * thread exit time. | |
1593 | * | |
1594 | * Implementation: user-space maintains a per-thread list of locks it | |
1595 | * is holding. Upon do_exit(), the kernel carefully walks this list, | |
1596 | * and marks all locks that are owned by this thread with the | |
c87e2837 | 1597 | * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is |
0771dfef IM |
1598 | * always manipulated with the lock held, so the list is private and |
1599 | * per-thread. Userspace also maintains a per-thread 'list_op_pending' | |
1600 | * field, to allow the kernel to clean up if the thread dies after | |
1601 | * acquiring the lock, but just before it could have added itself to | |
1602 | * the list. There can only be one such pending lock. | |
1603 | */ | |
1604 | ||
1605 | /** | |
1606 | * sys_set_robust_list - set the robust-futex list head of a task | |
1607 | * @head: pointer to the list-head | |
1608 | * @len: length of the list-head, as userspace expects | |
1609 | */ | |
1610 | asmlinkage long | |
1611 | sys_set_robust_list(struct robust_list_head __user *head, | |
1612 | size_t len) | |
1613 | { | |
1614 | /* | |
1615 | * The kernel knows only one size for now: | |
1616 | */ | |
1617 | if (unlikely(len != sizeof(*head))) | |
1618 | return -EINVAL; | |
1619 | ||
1620 | current->robust_list = head; | |
1621 | ||
1622 | return 0; | |
1623 | } | |
1624 | ||
1625 | /** | |
1626 | * sys_get_robust_list - get the robust-futex list head of a task | |
1627 | * @pid: pid of the process [zero for current task] | |
1628 | * @head_ptr: pointer to a list-head pointer, the kernel fills it in | |
1629 | * @len_ptr: pointer to a length field, the kernel fills in the header size | |
1630 | */ | |
1631 | asmlinkage long | |
1632 | sys_get_robust_list(int pid, struct robust_list_head __user **head_ptr, | |
1633 | size_t __user *len_ptr) | |
1634 | { | |
1635 | struct robust_list_head *head; | |
1636 | unsigned long ret; | |
1637 | ||
1638 | if (!pid) | |
1639 | head = current->robust_list; | |
1640 | else { | |
1641 | struct task_struct *p; | |
1642 | ||
1643 | ret = -ESRCH; | |
1644 | read_lock(&tasklist_lock); | |
1645 | p = find_task_by_pid(pid); | |
1646 | if (!p) | |
1647 | goto err_unlock; | |
1648 | ret = -EPERM; | |
1649 | if ((current->euid != p->euid) && (current->euid != p->uid) && | |
1650 | !capable(CAP_SYS_PTRACE)) | |
1651 | goto err_unlock; | |
1652 | head = p->robust_list; | |
1653 | read_unlock(&tasklist_lock); | |
1654 | } | |
1655 | ||
1656 | if (put_user(sizeof(*head), len_ptr)) | |
1657 | return -EFAULT; | |
1658 | return put_user(head, head_ptr); | |
1659 | ||
1660 | err_unlock: | |
1661 | read_unlock(&tasklist_lock); | |
1662 | ||
1663 | return ret; | |
1664 | } | |
1665 | ||
1666 | /* | |
1667 | * Process a futex-list entry, check whether it's owned by the | |
1668 | * dying task, and do notification if so: | |
1669 | */ | |
8f17d3a5 | 1670 | int handle_futex_death(u32 __user *uaddr, struct task_struct *curr) |
0771dfef | 1671 | { |
c87e2837 | 1672 | u32 uval, nval; |
0771dfef | 1673 | |
8f17d3a5 IM |
1674 | retry: |
1675 | if (get_user(uval, uaddr)) | |
0771dfef IM |
1676 | return -1; |
1677 | ||
8f17d3a5 | 1678 | if ((uval & FUTEX_TID_MASK) == curr->pid) { |
0771dfef IM |
1679 | /* |
1680 | * Ok, this dying thread is truly holding a futex | |
1681 | * of interest. Set the OWNER_DIED bit atomically | |
1682 | * via cmpxchg, and if the value had FUTEX_WAITERS | |
1683 | * set, wake up a waiter (if any). (We have to do a | |
1684 | * futex_wake() even if OWNER_DIED is already set - | |
1685 | * to handle the rare but possible case of recursive | |
1686 | * thread-death.) The rest of the cleanup is done in | |
1687 | * userspace. | |
1688 | */ | |
c87e2837 IM |
1689 | nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, |
1690 | uval | FUTEX_OWNER_DIED); | |
1691 | if (nval == -EFAULT) | |
1692 | return -1; | |
1693 | ||
1694 | if (nval != uval) | |
8f17d3a5 | 1695 | goto retry; |
0771dfef | 1696 | |
8f17d3a5 | 1697 | if (uval & FUTEX_WAITERS) |
e2970f2f | 1698 | futex_wake(uaddr, 1); |
0771dfef IM |
1699 | } |
1700 | return 0; | |
1701 | } | |
1702 | ||
1703 | /* | |
1704 | * Walk curr->robust_list (very carefully, it's a userspace list!) | |
1705 | * and mark any locks found there dead, and notify any waiters. | |
1706 | * | |
1707 | * We silently return on any sign of list-walking problem. | |
1708 | */ | |
1709 | void exit_robust_list(struct task_struct *curr) | |
1710 | { | |
1711 | struct robust_list_head __user *head = curr->robust_list; | |
1712 | struct robust_list __user *entry, *pending; | |
1713 | unsigned int limit = ROBUST_LIST_LIMIT; | |
1714 | unsigned long futex_offset; | |
1715 | ||
1716 | /* | |
1717 | * Fetch the list head (which was registered earlier, via | |
1718 | * sys_set_robust_list()): | |
1719 | */ | |
1720 | if (get_user(entry, &head->list.next)) | |
1721 | return; | |
1722 | /* | |
1723 | * Fetch the relative futex offset: | |
1724 | */ | |
1725 | if (get_user(futex_offset, &head->futex_offset)) | |
1726 | return; | |
1727 | /* | |
1728 | * Fetch any possibly pending lock-add first, and handle it | |
1729 | * if it exists: | |
1730 | */ | |
1731 | if (get_user(pending, &head->list_op_pending)) | |
1732 | return; | |
1733 | if (pending) | |
1734 | handle_futex_death((void *)pending + futex_offset, curr); | |
1735 | ||
1736 | while (entry != &head->list) { | |
1737 | /* | |
1738 | * A pending lock might already be on the list, so | |
c87e2837 | 1739 | * don't process it twice: |
0771dfef IM |
1740 | */ |
1741 | if (entry != pending) | |
1742 | if (handle_futex_death((void *)entry + futex_offset, | |
1743 | curr)) | |
1744 | return; | |
0771dfef IM |
1745 | /* |
1746 | * Fetch the next entry in the list: | |
1747 | */ | |
1748 | if (get_user(entry, &entry->next)) | |
1749 | return; | |
1750 | /* | |
1751 | * Avoid excessively long or circular lists: | |
1752 | */ | |
1753 | if (!--limit) | |
1754 | break; | |
1755 | ||
1756 | cond_resched(); | |
1757 | } | |
1758 | } | |
1759 | ||
e2970f2f IM |
1760 | long do_futex(u32 __user *uaddr, int op, u32 val, unsigned long timeout, |
1761 | u32 __user *uaddr2, u32 val2, u32 val3) | |
1da177e4 LT |
1762 | { |
1763 | int ret; | |
1764 | ||
1765 | switch (op) { | |
1766 | case FUTEX_WAIT: | |
1767 | ret = futex_wait(uaddr, val, timeout); | |
1768 | break; | |
1769 | case FUTEX_WAKE: | |
1770 | ret = futex_wake(uaddr, val); | |
1771 | break; | |
1772 | case FUTEX_FD: | |
1773 | /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */ | |
1774 | ret = futex_fd(uaddr, val); | |
1775 | break; | |
1776 | case FUTEX_REQUEUE: | |
1777 | ret = futex_requeue(uaddr, uaddr2, val, val2, NULL); | |
1778 | break; | |
1779 | case FUTEX_CMP_REQUEUE: | |
1780 | ret = futex_requeue(uaddr, uaddr2, val, val2, &val3); | |
1781 | break; | |
4732efbe JJ |
1782 | case FUTEX_WAKE_OP: |
1783 | ret = futex_wake_op(uaddr, uaddr2, val, val2, val3); | |
1784 | break; | |
c87e2837 IM |
1785 | case FUTEX_LOCK_PI: |
1786 | ret = futex_lock_pi(uaddr, val, timeout, val2, 0); | |
1787 | break; | |
1788 | case FUTEX_UNLOCK_PI: | |
1789 | ret = futex_unlock_pi(uaddr); | |
1790 | break; | |
1791 | case FUTEX_TRYLOCK_PI: | |
1792 | ret = futex_lock_pi(uaddr, 0, timeout, val2, 1); | |
1793 | break; | |
1da177e4 LT |
1794 | default: |
1795 | ret = -ENOSYS; | |
1796 | } | |
1797 | return ret; | |
1798 | } | |
1799 | ||
1800 | ||
e2970f2f | 1801 | asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val, |
1da177e4 | 1802 | struct timespec __user *utime, u32 __user *uaddr2, |
e2970f2f | 1803 | u32 val3) |
1da177e4 LT |
1804 | { |
1805 | struct timespec t; | |
1806 | unsigned long timeout = MAX_SCHEDULE_TIMEOUT; | |
e2970f2f | 1807 | u32 val2 = 0; |
1da177e4 | 1808 | |
c87e2837 | 1809 | if (utime && (op == FUTEX_WAIT || op == FUTEX_LOCK_PI)) { |
1da177e4 LT |
1810 | if (copy_from_user(&t, utime, sizeof(t)) != 0) |
1811 | return -EFAULT; | |
9741ef96 TG |
1812 | if (!timespec_valid(&t)) |
1813 | return -EINVAL; | |
c87e2837 IM |
1814 | if (op == FUTEX_WAIT) |
1815 | timeout = timespec_to_jiffies(&t) + 1; | |
1816 | else { | |
1817 | timeout = t.tv_sec; | |
1818 | val2 = t.tv_nsec; | |
1819 | } | |
1da177e4 LT |
1820 | } |
1821 | /* | |
1822 | * requeue parameter in 'utime' if op == FUTEX_REQUEUE. | |
1823 | */ | |
c87e2837 | 1824 | if (op == FUTEX_REQUEUE || op == FUTEX_CMP_REQUEUE) |
e2970f2f | 1825 | val2 = (u32) (unsigned long) utime; |
1da177e4 | 1826 | |
e2970f2f | 1827 | return do_futex(uaddr, op, val, timeout, uaddr2, val2, val3); |
1da177e4 LT |
1828 | } |
1829 | ||
454e2398 DH |
1830 | static int futexfs_get_sb(struct file_system_type *fs_type, |
1831 | int flags, const char *dev_name, void *data, | |
1832 | struct vfsmount *mnt) | |
1da177e4 | 1833 | { |
454e2398 | 1834 | return get_sb_pseudo(fs_type, "futex", NULL, 0xBAD1DEA, mnt); |
1da177e4 LT |
1835 | } |
1836 | ||
1837 | static struct file_system_type futex_fs_type = { | |
1838 | .name = "futexfs", | |
1839 | .get_sb = futexfs_get_sb, | |
1840 | .kill_sb = kill_anon_super, | |
1841 | }; | |
1842 | ||
1843 | static int __init init(void) | |
1844 | { | |
1845 | unsigned int i; | |
1846 | ||
1847 | register_filesystem(&futex_fs_type); | |
1848 | futex_mnt = kern_mount(&futex_fs_type); | |
1849 | ||
1850 | for (i = 0; i < ARRAY_SIZE(futex_queues); i++) { | |
1851 | INIT_LIST_HEAD(&futex_queues[i].chain); | |
1852 | spin_lock_init(&futex_queues[i].lock); | |
1853 | } | |
1854 | return 0; | |
1855 | } | |
1856 | __initcall(init); |