]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Fast Userspace Mutexes (which I call "Futexes!"). | |
3 | * (C) Rusty Russell, IBM 2002 | |
4 | * | |
5 | * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar | |
6 | * (C) Copyright 2003 Red Hat Inc, All Rights Reserved | |
7 | * | |
8 | * Removed page pinning, fix privately mapped COW pages and other cleanups | |
9 | * (C) Copyright 2003, 2004 Jamie Lokier | |
10 | * | |
0771dfef IM |
11 | * Robust futex support started by Ingo Molnar |
12 | * (C) Copyright 2006 Red Hat Inc, All Rights Reserved | |
13 | * Thanks to Thomas Gleixner for suggestions, analysis and fixes. | |
14 | * | |
c87e2837 IM |
15 | * PI-futex support started by Ingo Molnar and Thomas Gleixner |
16 | * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <[email protected]> | |
17 | * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <[email protected]> | |
18 | * | |
34f01cc1 ED |
19 | * PRIVATE futexes by Eric Dumazet |
20 | * Copyright (C) 2007 Eric Dumazet <[email protected]> | |
21 | * | |
52400ba9 DH |
22 | * Requeue-PI support by Darren Hart <[email protected]> |
23 | * Copyright (C) IBM Corporation, 2009 | |
24 | * Thanks to Thomas Gleixner for conceptual design and careful reviews. | |
25 | * | |
1da177e4 LT |
26 | * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly |
27 | * enough at me, Linus for the original (flawed) idea, Matthew | |
28 | * Kirkwood for proof-of-concept implementation. | |
29 | * | |
30 | * "The futexes are also cursed." | |
31 | * "But they come in a choice of three flavours!" | |
32 | * | |
33 | * This program is free software; you can redistribute it and/or modify | |
34 | * it under the terms of the GNU General Public License as published by | |
35 | * the Free Software Foundation; either version 2 of the License, or | |
36 | * (at your option) any later version. | |
37 | * | |
38 | * This program is distributed in the hope that it will be useful, | |
39 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
40 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
41 | * GNU General Public License for more details. | |
42 | * | |
43 | * You should have received a copy of the GNU General Public License | |
44 | * along with this program; if not, write to the Free Software | |
45 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
46 | */ | |
47 | #include <linux/slab.h> | |
48 | #include <linux/poll.h> | |
49 | #include <linux/fs.h> | |
50 | #include <linux/file.h> | |
51 | #include <linux/jhash.h> | |
52 | #include <linux/init.h> | |
53 | #include <linux/futex.h> | |
54 | #include <linux/mount.h> | |
55 | #include <linux/pagemap.h> | |
56 | #include <linux/syscalls.h> | |
7ed20e1a | 57 | #include <linux/signal.h> |
9984de1a | 58 | #include <linux/export.h> |
fd5eea42 | 59 | #include <linux/magic.h> |
b488893a PE |
60 | #include <linux/pid.h> |
61 | #include <linux/nsproxy.h> | |
bdbb776f | 62 | #include <linux/ptrace.h> |
8bd75c77 | 63 | #include <linux/sched/rt.h> |
84f001e1 | 64 | #include <linux/sched/wake_q.h> |
6e84f315 | 65 | #include <linux/sched/mm.h> |
13d60f4b | 66 | #include <linux/hugetlb.h> |
88c8004f | 67 | #include <linux/freezer.h> |
a52b89eb | 68 | #include <linux/bootmem.h> |
ab51fbab | 69 | #include <linux/fault-inject.h> |
b488893a | 70 | |
4732efbe | 71 | #include <asm/futex.h> |
1da177e4 | 72 | |
1696a8be | 73 | #include "locking/rtmutex_common.h" |
c87e2837 | 74 | |
99b60ce6 | 75 | /* |
d7e8af1a DB |
76 | * READ this before attempting to hack on futexes! |
77 | * | |
78 | * Basic futex operation and ordering guarantees | |
79 | * ============================================= | |
99b60ce6 TG |
80 | * |
81 | * The waiter reads the futex value in user space and calls | |
82 | * futex_wait(). This function computes the hash bucket and acquires | |
83 | * the hash bucket lock. After that it reads the futex user space value | |
b0c29f79 DB |
84 | * again and verifies that the data has not changed. If it has not changed |
85 | * it enqueues itself into the hash bucket, releases the hash bucket lock | |
86 | * and schedules. | |
99b60ce6 TG |
87 | * |
88 | * The waker side modifies the user space value of the futex and calls | |
b0c29f79 DB |
89 | * futex_wake(). This function computes the hash bucket and acquires the |
90 | * hash bucket lock. Then it looks for waiters on that futex in the hash | |
91 | * bucket and wakes them. | |
99b60ce6 | 92 | * |
b0c29f79 DB |
93 | * In futex wake up scenarios where no tasks are blocked on a futex, taking |
94 | * the hb spinlock can be avoided and simply return. In order for this | |
95 | * optimization to work, ordering guarantees must exist so that the waiter | |
96 | * being added to the list is acknowledged when the list is concurrently being | |
97 | * checked by the waker, avoiding scenarios like the following: | |
99b60ce6 TG |
98 | * |
99 | * CPU 0 CPU 1 | |
100 | * val = *futex; | |
101 | * sys_futex(WAIT, futex, val); | |
102 | * futex_wait(futex, val); | |
103 | * uval = *futex; | |
104 | * *futex = newval; | |
105 | * sys_futex(WAKE, futex); | |
106 | * futex_wake(futex); | |
107 | * if (queue_empty()) | |
108 | * return; | |
109 | * if (uval == val) | |
110 | * lock(hash_bucket(futex)); | |
111 | * queue(); | |
112 | * unlock(hash_bucket(futex)); | |
113 | * schedule(); | |
114 | * | |
115 | * This would cause the waiter on CPU 0 to wait forever because it | |
116 | * missed the transition of the user space value from val to newval | |
117 | * and the waker did not find the waiter in the hash bucket queue. | |
99b60ce6 | 118 | * |
b0c29f79 DB |
119 | * The correct serialization ensures that a waiter either observes |
120 | * the changed user space value before blocking or is woken by a | |
121 | * concurrent waker: | |
122 | * | |
123 | * CPU 0 CPU 1 | |
99b60ce6 TG |
124 | * val = *futex; |
125 | * sys_futex(WAIT, futex, val); | |
126 | * futex_wait(futex, val); | |
b0c29f79 | 127 | * |
d7e8af1a | 128 | * waiters++; (a) |
8ad7b378 DB |
129 | * smp_mb(); (A) <-- paired with -. |
130 | * | | |
131 | * lock(hash_bucket(futex)); | | |
132 | * | | |
133 | * uval = *futex; | | |
134 | * | *futex = newval; | |
135 | * | sys_futex(WAKE, futex); | |
136 | * | futex_wake(futex); | |
137 | * | | |
138 | * `--------> smp_mb(); (B) | |
99b60ce6 | 139 | * if (uval == val) |
b0c29f79 | 140 | * queue(); |
99b60ce6 | 141 | * unlock(hash_bucket(futex)); |
b0c29f79 DB |
142 | * schedule(); if (waiters) |
143 | * lock(hash_bucket(futex)); | |
d7e8af1a DB |
144 | * else wake_waiters(futex); |
145 | * waiters--; (b) unlock(hash_bucket(futex)); | |
b0c29f79 | 146 | * |
d7e8af1a DB |
147 | * Where (A) orders the waiters increment and the futex value read through |
148 | * atomic operations (see hb_waiters_inc) and where (B) orders the write | |
993b2ff2 DB |
149 | * to futex and the waiters read -- this is done by the barriers for both |
150 | * shared and private futexes in get_futex_key_refs(). | |
b0c29f79 DB |
151 | * |
152 | * This yields the following case (where X:=waiters, Y:=futex): | |
153 | * | |
154 | * X = Y = 0 | |
155 | * | |
156 | * w[X]=1 w[Y]=1 | |
157 | * MB MB | |
158 | * r[Y]=y r[X]=x | |
159 | * | |
160 | * Which guarantees that x==0 && y==0 is impossible; which translates back into | |
161 | * the guarantee that we cannot both miss the futex variable change and the | |
162 | * enqueue. | |
d7e8af1a DB |
163 | * |
164 | * Note that a new waiter is accounted for in (a) even when it is possible that | |
165 | * the wait call can return error, in which case we backtrack from it in (b). | |
166 | * Refer to the comment in queue_lock(). | |
167 | * | |
168 | * Similarly, in order to account for waiters being requeued on another | |
169 | * address we always increment the waiters for the destination bucket before | |
170 | * acquiring the lock. It then decrements them again after releasing it - | |
171 | * the code that actually moves the futex(es) between hash buckets (requeue_futex) | |
172 | * will do the additional required waiter count housekeeping. This is done for | |
173 | * double_lock_hb() and double_unlock_hb(), respectively. | |
99b60ce6 TG |
174 | */ |
175 | ||
03b8c7b6 | 176 | #ifndef CONFIG_HAVE_FUTEX_CMPXCHG |
a0c1e907 | 177 | int __read_mostly futex_cmpxchg_enabled; |
03b8c7b6 | 178 | #endif |
a0c1e907 | 179 | |
b41277dc DH |
180 | /* |
181 | * Futex flags used to encode options to functions and preserve them across | |
182 | * restarts. | |
183 | */ | |
784bdf3b TG |
184 | #ifdef CONFIG_MMU |
185 | # define FLAGS_SHARED 0x01 | |
186 | #else | |
187 | /* | |
188 | * NOMMU does not have per process address space. Let the compiler optimize | |
189 | * code away. | |
190 | */ | |
191 | # define FLAGS_SHARED 0x00 | |
192 | #endif | |
b41277dc DH |
193 | #define FLAGS_CLOCKRT 0x02 |
194 | #define FLAGS_HAS_TIMEOUT 0x04 | |
195 | ||
c87e2837 IM |
196 | /* |
197 | * Priority Inheritance state: | |
198 | */ | |
199 | struct futex_pi_state { | |
200 | /* | |
201 | * list of 'owned' pi_state instances - these have to be | |
202 | * cleaned up in do_exit() if the task exits prematurely: | |
203 | */ | |
204 | struct list_head list; | |
205 | ||
206 | /* | |
207 | * The PI object: | |
208 | */ | |
209 | struct rt_mutex pi_mutex; | |
210 | ||
211 | struct task_struct *owner; | |
212 | atomic_t refcount; | |
213 | ||
214 | union futex_key key; | |
215 | }; | |
216 | ||
d8d88fbb DH |
217 | /** |
218 | * struct futex_q - The hashed futex queue entry, one per waiting task | |
fb62db2b | 219 | * @list: priority-sorted list of tasks waiting on this futex |
d8d88fbb DH |
220 | * @task: the task waiting on the futex |
221 | * @lock_ptr: the hash bucket lock | |
222 | * @key: the key the futex is hashed on | |
223 | * @pi_state: optional priority inheritance state | |
224 | * @rt_waiter: rt_waiter storage for use with requeue_pi | |
225 | * @requeue_pi_key: the requeue_pi target futex key | |
226 | * @bitset: bitset for the optional bitmasked wakeup | |
227 | * | |
228 | * We use this hashed waitqueue, instead of a normal wait_queue_t, so | |
1da177e4 LT |
229 | * we can wake only the relevant ones (hashed queues may be shared). |
230 | * | |
231 | * A futex_q has a woken state, just like tasks have TASK_RUNNING. | |
ec92d082 | 232 | * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0. |
fb62db2b | 233 | * The order of wakeup is always to make the first condition true, then |
d8d88fbb DH |
234 | * the second. |
235 | * | |
236 | * PI futexes are typically woken before they are removed from the hash list via | |
237 | * the rt_mutex code. See unqueue_me_pi(). | |
1da177e4 LT |
238 | */ |
239 | struct futex_q { | |
ec92d082 | 240 | struct plist_node list; |
1da177e4 | 241 | |
d8d88fbb | 242 | struct task_struct *task; |
1da177e4 | 243 | spinlock_t *lock_ptr; |
1da177e4 | 244 | union futex_key key; |
c87e2837 | 245 | struct futex_pi_state *pi_state; |
52400ba9 | 246 | struct rt_mutex_waiter *rt_waiter; |
84bc4af5 | 247 | union futex_key *requeue_pi_key; |
cd689985 | 248 | u32 bitset; |
1da177e4 LT |
249 | }; |
250 | ||
5bdb05f9 DH |
251 | static const struct futex_q futex_q_init = { |
252 | /* list gets initialized in queue_me()*/ | |
253 | .key = FUTEX_KEY_INIT, | |
254 | .bitset = FUTEX_BITSET_MATCH_ANY | |
255 | }; | |
256 | ||
1da177e4 | 257 | /* |
b2d0994b DH |
258 | * Hash buckets are shared by all the futex_keys that hash to the same |
259 | * location. Each key may have multiple futex_q structures, one for each task | |
260 | * waiting on a futex. | |
1da177e4 LT |
261 | */ |
262 | struct futex_hash_bucket { | |
11d4616b | 263 | atomic_t waiters; |
ec92d082 PP |
264 | spinlock_t lock; |
265 | struct plist_head chain; | |
a52b89eb | 266 | } ____cacheline_aligned_in_smp; |
1da177e4 | 267 | |
ac742d37 RV |
268 | /* |
269 | * The base of the bucket array and its size are always used together | |
270 | * (after initialization only in hash_futex()), so ensure that they | |
271 | * reside in the same cacheline. | |
272 | */ | |
273 | static struct { | |
274 | struct futex_hash_bucket *queues; | |
275 | unsigned long hashsize; | |
276 | } __futex_data __read_mostly __aligned(2*sizeof(long)); | |
277 | #define futex_queues (__futex_data.queues) | |
278 | #define futex_hashsize (__futex_data.hashsize) | |
a52b89eb | 279 | |
1da177e4 | 280 | |
ab51fbab DB |
281 | /* |
282 | * Fault injections for futexes. | |
283 | */ | |
284 | #ifdef CONFIG_FAIL_FUTEX | |
285 | ||
286 | static struct { | |
287 | struct fault_attr attr; | |
288 | ||
621a5f7a | 289 | bool ignore_private; |
ab51fbab DB |
290 | } fail_futex = { |
291 | .attr = FAULT_ATTR_INITIALIZER, | |
621a5f7a | 292 | .ignore_private = false, |
ab51fbab DB |
293 | }; |
294 | ||
295 | static int __init setup_fail_futex(char *str) | |
296 | { | |
297 | return setup_fault_attr(&fail_futex.attr, str); | |
298 | } | |
299 | __setup("fail_futex=", setup_fail_futex); | |
300 | ||
5d285a7f | 301 | static bool should_fail_futex(bool fshared) |
ab51fbab DB |
302 | { |
303 | if (fail_futex.ignore_private && !fshared) | |
304 | return false; | |
305 | ||
306 | return should_fail(&fail_futex.attr, 1); | |
307 | } | |
308 | ||
309 | #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS | |
310 | ||
311 | static int __init fail_futex_debugfs(void) | |
312 | { | |
313 | umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; | |
314 | struct dentry *dir; | |
315 | ||
316 | dir = fault_create_debugfs_attr("fail_futex", NULL, | |
317 | &fail_futex.attr); | |
318 | if (IS_ERR(dir)) | |
319 | return PTR_ERR(dir); | |
320 | ||
321 | if (!debugfs_create_bool("ignore-private", mode, dir, | |
322 | &fail_futex.ignore_private)) { | |
323 | debugfs_remove_recursive(dir); | |
324 | return -ENOMEM; | |
325 | } | |
326 | ||
327 | return 0; | |
328 | } | |
329 | ||
330 | late_initcall(fail_futex_debugfs); | |
331 | ||
332 | #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ | |
333 | ||
334 | #else | |
335 | static inline bool should_fail_futex(bool fshared) | |
336 | { | |
337 | return false; | |
338 | } | |
339 | #endif /* CONFIG_FAIL_FUTEX */ | |
340 | ||
b0c29f79 DB |
341 | static inline void futex_get_mm(union futex_key *key) |
342 | { | |
f1f10076 | 343 | mmgrab(key->private.mm); |
b0c29f79 DB |
344 | /* |
345 | * Ensure futex_get_mm() implies a full barrier such that | |
346 | * get_futex_key() implies a full barrier. This is relied upon | |
8ad7b378 | 347 | * as smp_mb(); (B), see the ordering comment above. |
b0c29f79 | 348 | */ |
4e857c58 | 349 | smp_mb__after_atomic(); |
b0c29f79 DB |
350 | } |
351 | ||
11d4616b LT |
352 | /* |
353 | * Reflects a new waiter being added to the waitqueue. | |
354 | */ | |
355 | static inline void hb_waiters_inc(struct futex_hash_bucket *hb) | |
b0c29f79 DB |
356 | { |
357 | #ifdef CONFIG_SMP | |
11d4616b | 358 | atomic_inc(&hb->waiters); |
b0c29f79 | 359 | /* |
11d4616b | 360 | * Full barrier (A), see the ordering comment above. |
b0c29f79 | 361 | */ |
4e857c58 | 362 | smp_mb__after_atomic(); |
11d4616b LT |
363 | #endif |
364 | } | |
365 | ||
366 | /* | |
367 | * Reflects a waiter being removed from the waitqueue by wakeup | |
368 | * paths. | |
369 | */ | |
370 | static inline void hb_waiters_dec(struct futex_hash_bucket *hb) | |
371 | { | |
372 | #ifdef CONFIG_SMP | |
373 | atomic_dec(&hb->waiters); | |
374 | #endif | |
375 | } | |
b0c29f79 | 376 | |
11d4616b LT |
377 | static inline int hb_waiters_pending(struct futex_hash_bucket *hb) |
378 | { | |
379 | #ifdef CONFIG_SMP | |
380 | return atomic_read(&hb->waiters); | |
b0c29f79 | 381 | #else |
11d4616b | 382 | return 1; |
b0c29f79 DB |
383 | #endif |
384 | } | |
385 | ||
e8b61b3f TG |
386 | /** |
387 | * hash_futex - Return the hash bucket in the global hash | |
388 | * @key: Pointer to the futex key for which the hash is calculated | |
389 | * | |
390 | * We hash on the keys returned from get_futex_key (see below) and return the | |
391 | * corresponding hash bucket in the global hash. | |
1da177e4 LT |
392 | */ |
393 | static struct futex_hash_bucket *hash_futex(union futex_key *key) | |
394 | { | |
395 | u32 hash = jhash2((u32*)&key->both.word, | |
396 | (sizeof(key->both.word)+sizeof(key->both.ptr))/4, | |
397 | key->both.offset); | |
a52b89eb | 398 | return &futex_queues[hash & (futex_hashsize - 1)]; |
1da177e4 LT |
399 | } |
400 | ||
e8b61b3f TG |
401 | |
402 | /** | |
403 | * match_futex - Check whether two futex keys are equal | |
404 | * @key1: Pointer to key1 | |
405 | * @key2: Pointer to key2 | |
406 | * | |
1da177e4 LT |
407 | * Return 1 if two futex_keys are equal, 0 otherwise. |
408 | */ | |
409 | static inline int match_futex(union futex_key *key1, union futex_key *key2) | |
410 | { | |
2bc87203 DH |
411 | return (key1 && key2 |
412 | && key1->both.word == key2->both.word | |
1da177e4 LT |
413 | && key1->both.ptr == key2->both.ptr |
414 | && key1->both.offset == key2->both.offset); | |
415 | } | |
416 | ||
38d47c1b PZ |
417 | /* |
418 | * Take a reference to the resource addressed by a key. | |
419 | * Can be called while holding spinlocks. | |
420 | * | |
421 | */ | |
422 | static void get_futex_key_refs(union futex_key *key) | |
423 | { | |
424 | if (!key->both.ptr) | |
425 | return; | |
426 | ||
784bdf3b TG |
427 | /* |
428 | * On MMU less systems futexes are always "private" as there is no per | |
429 | * process address space. We need the smp wmb nevertheless - yes, | |
430 | * arch/blackfin has MMU less SMP ... | |
431 | */ | |
432 | if (!IS_ENABLED(CONFIG_MMU)) { | |
433 | smp_mb(); /* explicit smp_mb(); (B) */ | |
434 | return; | |
435 | } | |
436 | ||
38d47c1b PZ |
437 | switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) { |
438 | case FUT_OFF_INODE: | |
8ad7b378 | 439 | ihold(key->shared.inode); /* implies smp_mb(); (B) */ |
38d47c1b PZ |
440 | break; |
441 | case FUT_OFF_MMSHARED: | |
8ad7b378 | 442 | futex_get_mm(key); /* implies smp_mb(); (B) */ |
38d47c1b | 443 | break; |
76835b0e | 444 | default: |
993b2ff2 DB |
445 | /* |
446 | * Private futexes do not hold reference on an inode or | |
447 | * mm, therefore the only purpose of calling get_futex_key_refs | |
448 | * is because we need the barrier for the lockless waiter check. | |
449 | */ | |
8ad7b378 | 450 | smp_mb(); /* explicit smp_mb(); (B) */ |
38d47c1b PZ |
451 | } |
452 | } | |
453 | ||
454 | /* | |
455 | * Drop a reference to the resource addressed by a key. | |
993b2ff2 DB |
456 | * The hash bucket spinlock must not be held. This is |
457 | * a no-op for private futexes, see comment in the get | |
458 | * counterpart. | |
38d47c1b PZ |
459 | */ |
460 | static void drop_futex_key_refs(union futex_key *key) | |
461 | { | |
90621c40 DH |
462 | if (!key->both.ptr) { |
463 | /* If we're here then we tried to put a key we failed to get */ | |
464 | WARN_ON_ONCE(1); | |
38d47c1b | 465 | return; |
90621c40 | 466 | } |
38d47c1b | 467 | |
784bdf3b TG |
468 | if (!IS_ENABLED(CONFIG_MMU)) |
469 | return; | |
470 | ||
38d47c1b PZ |
471 | switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) { |
472 | case FUT_OFF_INODE: | |
473 | iput(key->shared.inode); | |
474 | break; | |
475 | case FUT_OFF_MMSHARED: | |
476 | mmdrop(key->private.mm); | |
477 | break; | |
478 | } | |
479 | } | |
480 | ||
34f01cc1 | 481 | /** |
d96ee56c DH |
482 | * get_futex_key() - Get parameters which are the keys for a futex |
483 | * @uaddr: virtual address of the futex | |
484 | * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED | |
485 | * @key: address where result is stored. | |
9ea71503 SB |
486 | * @rw: mapping needs to be read/write (values: VERIFY_READ, |
487 | * VERIFY_WRITE) | |
34f01cc1 | 488 | * |
6c23cbbd RD |
489 | * Return: a negative error code or 0 |
490 | * | |
34f01cc1 | 491 | * The key words are stored in *key on success. |
1da177e4 | 492 | * |
6131ffaa | 493 | * For shared mappings, it's (page->index, file_inode(vma->vm_file), |
1da177e4 LT |
494 | * offset_within_page). For private mappings, it's (uaddr, current->mm). |
495 | * We can usually work out the index without swapping in the page. | |
496 | * | |
b2d0994b | 497 | * lock_page() might sleep, the caller should not hold a spinlock. |
1da177e4 | 498 | */ |
64d1304a | 499 | static int |
9ea71503 | 500 | get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw) |
1da177e4 | 501 | { |
e2970f2f | 502 | unsigned long address = (unsigned long)uaddr; |
1da177e4 | 503 | struct mm_struct *mm = current->mm; |
077fa7ae | 504 | struct page *page, *tail; |
14d27abd | 505 | struct address_space *mapping; |
9ea71503 | 506 | int err, ro = 0; |
1da177e4 LT |
507 | |
508 | /* | |
509 | * The futex address must be "naturally" aligned. | |
510 | */ | |
e2970f2f | 511 | key->both.offset = address % PAGE_SIZE; |
34f01cc1 | 512 | if (unlikely((address % sizeof(u32)) != 0)) |
1da177e4 | 513 | return -EINVAL; |
e2970f2f | 514 | address -= key->both.offset; |
1da177e4 | 515 | |
5cdec2d8 LT |
516 | if (unlikely(!access_ok(rw, uaddr, sizeof(u32)))) |
517 | return -EFAULT; | |
518 | ||
ab51fbab DB |
519 | if (unlikely(should_fail_futex(fshared))) |
520 | return -EFAULT; | |
521 | ||
34f01cc1 ED |
522 | /* |
523 | * PROCESS_PRIVATE futexes are fast. | |
524 | * As the mm cannot disappear under us and the 'key' only needs | |
525 | * virtual address, we dont even have to find the underlying vma. | |
526 | * Note : We do have to check 'uaddr' is a valid user address, | |
527 | * but access_ok() should be faster than find_vma() | |
528 | */ | |
529 | if (!fshared) { | |
34f01cc1 ED |
530 | key->private.mm = mm; |
531 | key->private.address = address; | |
8ad7b378 | 532 | get_futex_key_refs(key); /* implies smp_mb(); (B) */ |
34f01cc1 ED |
533 | return 0; |
534 | } | |
1da177e4 | 535 | |
38d47c1b | 536 | again: |
ab51fbab DB |
537 | /* Ignore any VERIFY_READ mapping (futex common case) */ |
538 | if (unlikely(should_fail_futex(fshared))) | |
539 | return -EFAULT; | |
540 | ||
7485d0d3 | 541 | err = get_user_pages_fast(address, 1, 1, &page); |
9ea71503 SB |
542 | /* |
543 | * If write access is not required (eg. FUTEX_WAIT), try | |
544 | * and get read-only access. | |
545 | */ | |
546 | if (err == -EFAULT && rw == VERIFY_READ) { | |
547 | err = get_user_pages_fast(address, 1, 0, &page); | |
548 | ro = 1; | |
549 | } | |
38d47c1b PZ |
550 | if (err < 0) |
551 | return err; | |
9ea71503 SB |
552 | else |
553 | err = 0; | |
38d47c1b | 554 | |
65d8fc77 MG |
555 | /* |
556 | * The treatment of mapping from this point on is critical. The page | |
557 | * lock protects many things but in this context the page lock | |
558 | * stabilizes mapping, prevents inode freeing in the shared | |
559 | * file-backed region case and guards against movement to swap cache. | |
560 | * | |
561 | * Strictly speaking the page lock is not needed in all cases being | |
562 | * considered here and page lock forces unnecessarily serialization | |
563 | * From this point on, mapping will be re-verified if necessary and | |
564 | * page lock will be acquired only if it is unavoidable | |
077fa7ae MG |
565 | * |
566 | * Mapping checks require the head page for any compound page so the | |
567 | * head page and mapping is looked up now. For anonymous pages, it | |
568 | * does not matter if the page splits in the future as the key is | |
569 | * based on the address. For filesystem-backed pages, the tail is | |
570 | * required as the index of the page determines the key. For | |
571 | * base pages, there is no tail page and tail == page. | |
65d8fc77 | 572 | */ |
077fa7ae | 573 | tail = page; |
65d8fc77 MG |
574 | page = compound_head(page); |
575 | mapping = READ_ONCE(page->mapping); | |
576 | ||
e6780f72 | 577 | /* |
14d27abd | 578 | * If page->mapping is NULL, then it cannot be a PageAnon |
e6780f72 HD |
579 | * page; but it might be the ZERO_PAGE or in the gate area or |
580 | * in a special mapping (all cases which we are happy to fail); | |
581 | * or it may have been a good file page when get_user_pages_fast | |
582 | * found it, but truncated or holepunched or subjected to | |
583 | * invalidate_complete_page2 before we got the page lock (also | |
584 | * cases which we are happy to fail). And we hold a reference, | |
585 | * so refcount care in invalidate_complete_page's remove_mapping | |
586 | * prevents drop_caches from setting mapping to NULL beneath us. | |
587 | * | |
588 | * The case we do have to guard against is when memory pressure made | |
589 | * shmem_writepage move it from filecache to swapcache beneath us: | |
14d27abd | 590 | * an unlikely race, but we do need to retry for page->mapping. |
e6780f72 | 591 | */ |
65d8fc77 MG |
592 | if (unlikely(!mapping)) { |
593 | int shmem_swizzled; | |
594 | ||
595 | /* | |
596 | * Page lock is required to identify which special case above | |
597 | * applies. If this is really a shmem page then the page lock | |
598 | * will prevent unexpected transitions. | |
599 | */ | |
600 | lock_page(page); | |
601 | shmem_swizzled = PageSwapCache(page) || page->mapping; | |
14d27abd KS |
602 | unlock_page(page); |
603 | put_page(page); | |
65d8fc77 | 604 | |
e6780f72 HD |
605 | if (shmem_swizzled) |
606 | goto again; | |
65d8fc77 | 607 | |
e6780f72 | 608 | return -EFAULT; |
38d47c1b | 609 | } |
1da177e4 LT |
610 | |
611 | /* | |
612 | * Private mappings are handled in a simple way. | |
613 | * | |
65d8fc77 MG |
614 | * If the futex key is stored on an anonymous page, then the associated |
615 | * object is the mm which is implicitly pinned by the calling process. | |
616 | * | |
1da177e4 LT |
617 | * NOTE: When userspace waits on a MAP_SHARED mapping, even if |
618 | * it's a read-only handle, it's expected that futexes attach to | |
38d47c1b | 619 | * the object not the particular process. |
1da177e4 | 620 | */ |
14d27abd | 621 | if (PageAnon(page)) { |
9ea71503 SB |
622 | /* |
623 | * A RO anonymous page will never change and thus doesn't make | |
624 | * sense for futex operations. | |
625 | */ | |
ab51fbab | 626 | if (unlikely(should_fail_futex(fshared)) || ro) { |
9ea71503 SB |
627 | err = -EFAULT; |
628 | goto out; | |
629 | } | |
630 | ||
38d47c1b | 631 | key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */ |
1da177e4 | 632 | key->private.mm = mm; |
e2970f2f | 633 | key->private.address = address; |
65d8fc77 MG |
634 | |
635 | get_futex_key_refs(key); /* implies smp_mb(); (B) */ | |
636 | ||
38d47c1b | 637 | } else { |
65d8fc77 MG |
638 | struct inode *inode; |
639 | ||
640 | /* | |
641 | * The associated futex object in this case is the inode and | |
642 | * the page->mapping must be traversed. Ordinarily this should | |
643 | * be stabilised under page lock but it's not strictly | |
644 | * necessary in this case as we just want to pin the inode, not | |
645 | * update the radix tree or anything like that. | |
646 | * | |
647 | * The RCU read lock is taken as the inode is finally freed | |
648 | * under RCU. If the mapping still matches expectations then the | |
649 | * mapping->host can be safely accessed as being a valid inode. | |
650 | */ | |
651 | rcu_read_lock(); | |
652 | ||
653 | if (READ_ONCE(page->mapping) != mapping) { | |
654 | rcu_read_unlock(); | |
655 | put_page(page); | |
656 | ||
657 | goto again; | |
658 | } | |
659 | ||
660 | inode = READ_ONCE(mapping->host); | |
661 | if (!inode) { | |
662 | rcu_read_unlock(); | |
663 | put_page(page); | |
664 | ||
665 | goto again; | |
666 | } | |
667 | ||
668 | /* | |
669 | * Take a reference unless it is about to be freed. Previously | |
670 | * this reference was taken by ihold under the page lock | |
671 | * pinning the inode in place so i_lock was unnecessary. The | |
672 | * only way for this check to fail is if the inode was | |
673 | * truncated in parallel so warn for now if this happens. | |
674 | * | |
675 | * We are not calling into get_futex_key_refs() in file-backed | |
676 | * cases, therefore a successful atomic_inc return below will | |
677 | * guarantee that get_futex_key() will still imply smp_mb(); (B). | |
678 | */ | |
679 | if (WARN_ON_ONCE(!atomic_inc_not_zero(&inode->i_count))) { | |
680 | rcu_read_unlock(); | |
681 | put_page(page); | |
682 | ||
683 | goto again; | |
684 | } | |
685 | ||
686 | /* Should be impossible but lets be paranoid for now */ | |
687 | if (WARN_ON_ONCE(inode->i_mapping != mapping)) { | |
688 | err = -EFAULT; | |
689 | rcu_read_unlock(); | |
690 | iput(inode); | |
691 | ||
692 | goto out; | |
693 | } | |
694 | ||
38d47c1b | 695 | key->both.offset |= FUT_OFF_INODE; /* inode-based key */ |
65d8fc77 | 696 | key->shared.inode = inode; |
077fa7ae | 697 | key->shared.pgoff = basepage_index(tail); |
65d8fc77 | 698 | rcu_read_unlock(); |
1da177e4 LT |
699 | } |
700 | ||
9ea71503 | 701 | out: |
14d27abd | 702 | put_page(page); |
9ea71503 | 703 | return err; |
1da177e4 LT |
704 | } |
705 | ||
ae791a2d | 706 | static inline void put_futex_key(union futex_key *key) |
1da177e4 | 707 | { |
38d47c1b | 708 | drop_futex_key_refs(key); |
1da177e4 LT |
709 | } |
710 | ||
d96ee56c DH |
711 | /** |
712 | * fault_in_user_writeable() - Fault in user address and verify RW access | |
d0725992 TG |
713 | * @uaddr: pointer to faulting user space address |
714 | * | |
715 | * Slow path to fixup the fault we just took in the atomic write | |
716 | * access to @uaddr. | |
717 | * | |
fb62db2b | 718 | * We have no generic implementation of a non-destructive write to the |
d0725992 TG |
719 | * user address. We know that we faulted in the atomic pagefault |
720 | * disabled section so we can as well avoid the #PF overhead by | |
721 | * calling get_user_pages() right away. | |
722 | */ | |
723 | static int fault_in_user_writeable(u32 __user *uaddr) | |
724 | { | |
722d0172 AK |
725 | struct mm_struct *mm = current->mm; |
726 | int ret; | |
727 | ||
728 | down_read(&mm->mmap_sem); | |
2efaca92 | 729 | ret = fixup_user_fault(current, mm, (unsigned long)uaddr, |
4a9e1cda | 730 | FAULT_FLAG_WRITE, NULL); |
722d0172 AK |
731 | up_read(&mm->mmap_sem); |
732 | ||
d0725992 TG |
733 | return ret < 0 ? ret : 0; |
734 | } | |
735 | ||
4b1c486b DH |
736 | /** |
737 | * futex_top_waiter() - Return the highest priority waiter on a futex | |
d96ee56c DH |
738 | * @hb: the hash bucket the futex_q's reside in |
739 | * @key: the futex key (to distinguish it from other futex futex_q's) | |
4b1c486b DH |
740 | * |
741 | * Must be called with the hb lock held. | |
742 | */ | |
743 | static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb, | |
744 | union futex_key *key) | |
745 | { | |
746 | struct futex_q *this; | |
747 | ||
748 | plist_for_each_entry(this, &hb->chain, list) { | |
749 | if (match_futex(&this->key, key)) | |
750 | return this; | |
751 | } | |
752 | return NULL; | |
753 | } | |
754 | ||
37a9d912 ML |
755 | static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr, |
756 | u32 uval, u32 newval) | |
36cf3b5c | 757 | { |
37a9d912 | 758 | int ret; |
36cf3b5c TG |
759 | |
760 | pagefault_disable(); | |
37a9d912 | 761 | ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval); |
36cf3b5c TG |
762 | pagefault_enable(); |
763 | ||
37a9d912 | 764 | return ret; |
36cf3b5c TG |
765 | } |
766 | ||
767 | static int get_futex_value_locked(u32 *dest, u32 __user *from) | |
1da177e4 LT |
768 | { |
769 | int ret; | |
770 | ||
a866374a | 771 | pagefault_disable(); |
bd28b145 | 772 | ret = __get_user(*dest, from); |
a866374a | 773 | pagefault_enable(); |
1da177e4 LT |
774 | |
775 | return ret ? -EFAULT : 0; | |
776 | } | |
777 | ||
c87e2837 IM |
778 | |
779 | /* | |
780 | * PI code: | |
781 | */ | |
782 | static int refill_pi_state_cache(void) | |
783 | { | |
784 | struct futex_pi_state *pi_state; | |
785 | ||
786 | if (likely(current->pi_state_cache)) | |
787 | return 0; | |
788 | ||
4668edc3 | 789 | pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL); |
c87e2837 IM |
790 | |
791 | if (!pi_state) | |
792 | return -ENOMEM; | |
793 | ||
c87e2837 IM |
794 | INIT_LIST_HEAD(&pi_state->list); |
795 | /* pi_mutex gets initialized later */ | |
796 | pi_state->owner = NULL; | |
797 | atomic_set(&pi_state->refcount, 1); | |
38d47c1b | 798 | pi_state->key = FUTEX_KEY_INIT; |
c87e2837 IM |
799 | |
800 | current->pi_state_cache = pi_state; | |
801 | ||
802 | return 0; | |
803 | } | |
804 | ||
805 | static struct futex_pi_state * alloc_pi_state(void) | |
806 | { | |
807 | struct futex_pi_state *pi_state = current->pi_state_cache; | |
808 | ||
809 | WARN_ON(!pi_state); | |
810 | current->pi_state_cache = NULL; | |
811 | ||
812 | return pi_state; | |
813 | } | |
814 | ||
30a6b803 | 815 | /* |
29e9ee5d TG |
816 | * Drops a reference to the pi_state object and frees or caches it |
817 | * when the last reference is gone. | |
818 | * | |
30a6b803 BS |
819 | * Must be called with the hb lock held. |
820 | */ | |
29e9ee5d | 821 | static void put_pi_state(struct futex_pi_state *pi_state) |
c87e2837 | 822 | { |
30a6b803 BS |
823 | if (!pi_state) |
824 | return; | |
825 | ||
c87e2837 IM |
826 | if (!atomic_dec_and_test(&pi_state->refcount)) |
827 | return; | |
828 | ||
829 | /* | |
830 | * If pi_state->owner is NULL, the owner is most probably dying | |
831 | * and has cleaned up the pi_state already | |
832 | */ | |
833 | if (pi_state->owner) { | |
1d615482 | 834 | raw_spin_lock_irq(&pi_state->owner->pi_lock); |
c87e2837 | 835 | list_del_init(&pi_state->list); |
1d615482 | 836 | raw_spin_unlock_irq(&pi_state->owner->pi_lock); |
c87e2837 IM |
837 | |
838 | rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner); | |
839 | } | |
840 | ||
841 | if (current->pi_state_cache) | |
842 | kfree(pi_state); | |
843 | else { | |
844 | /* | |
845 | * pi_state->list is already empty. | |
846 | * clear pi_state->owner. | |
847 | * refcount is at 0 - put it back to 1. | |
848 | */ | |
849 | pi_state->owner = NULL; | |
850 | atomic_set(&pi_state->refcount, 1); | |
851 | current->pi_state_cache = pi_state; | |
852 | } | |
853 | } | |
854 | ||
855 | /* | |
856 | * Look up the task based on what TID userspace gave us. | |
857 | * We dont trust it. | |
858 | */ | |
859 | static struct task_struct * futex_find_get_task(pid_t pid) | |
860 | { | |
861 | struct task_struct *p; | |
862 | ||
d359b549 | 863 | rcu_read_lock(); |
228ebcbe | 864 | p = find_task_by_vpid(pid); |
7a0ea09a MH |
865 | if (p) |
866 | get_task_struct(p); | |
a06381fe | 867 | |
d359b549 | 868 | rcu_read_unlock(); |
c87e2837 IM |
869 | |
870 | return p; | |
871 | } | |
872 | ||
873 | /* | |
874 | * This task is holding PI mutexes at exit time => bad. | |
875 | * Kernel cleans up PI-state, but userspace is likely hosed. | |
876 | * (Robust-futex cleanup is separate and might save the day for userspace.) | |
877 | */ | |
878 | void exit_pi_state_list(struct task_struct *curr) | |
879 | { | |
c87e2837 IM |
880 | struct list_head *next, *head = &curr->pi_state_list; |
881 | struct futex_pi_state *pi_state; | |
627371d7 | 882 | struct futex_hash_bucket *hb; |
38d47c1b | 883 | union futex_key key = FUTEX_KEY_INIT; |
c87e2837 | 884 | |
a0c1e907 TG |
885 | if (!futex_cmpxchg_enabled) |
886 | return; | |
c87e2837 IM |
887 | /* |
888 | * We are a ZOMBIE and nobody can enqueue itself on | |
889 | * pi_state_list anymore, but we have to be careful | |
627371d7 | 890 | * versus waiters unqueueing themselves: |
c87e2837 | 891 | */ |
1d615482 | 892 | raw_spin_lock_irq(&curr->pi_lock); |
c87e2837 IM |
893 | while (!list_empty(head)) { |
894 | ||
895 | next = head->next; | |
896 | pi_state = list_entry(next, struct futex_pi_state, list); | |
897 | key = pi_state->key; | |
627371d7 | 898 | hb = hash_futex(&key); |
1d615482 | 899 | raw_spin_unlock_irq(&curr->pi_lock); |
c87e2837 | 900 | |
c87e2837 IM |
901 | spin_lock(&hb->lock); |
902 | ||
1d615482 | 903 | raw_spin_lock_irq(&curr->pi_lock); |
627371d7 IM |
904 | /* |
905 | * We dropped the pi-lock, so re-check whether this | |
906 | * task still owns the PI-state: | |
907 | */ | |
c87e2837 IM |
908 | if (head->next != next) { |
909 | spin_unlock(&hb->lock); | |
910 | continue; | |
911 | } | |
912 | ||
c87e2837 | 913 | WARN_ON(pi_state->owner != curr); |
627371d7 IM |
914 | WARN_ON(list_empty(&pi_state->list)); |
915 | list_del_init(&pi_state->list); | |
c87e2837 | 916 | pi_state->owner = NULL; |
1d615482 | 917 | raw_spin_unlock_irq(&curr->pi_lock); |
c87e2837 IM |
918 | |
919 | rt_mutex_unlock(&pi_state->pi_mutex); | |
920 | ||
921 | spin_unlock(&hb->lock); | |
922 | ||
1d615482 | 923 | raw_spin_lock_irq(&curr->pi_lock); |
c87e2837 | 924 | } |
1d615482 | 925 | raw_spin_unlock_irq(&curr->pi_lock); |
c87e2837 IM |
926 | } |
927 | ||
54a21788 TG |
928 | /* |
929 | * We need to check the following states: | |
930 | * | |
931 | * Waiter | pi_state | pi->owner | uTID | uODIED | ? | |
932 | * | |
933 | * [1] NULL | --- | --- | 0 | 0/1 | Valid | |
934 | * [2] NULL | --- | --- | >0 | 0/1 | Valid | |
935 | * | |
936 | * [3] Found | NULL | -- | Any | 0/1 | Invalid | |
937 | * | |
938 | * [4] Found | Found | NULL | 0 | 1 | Valid | |
939 | * [5] Found | Found | NULL | >0 | 1 | Invalid | |
940 | * | |
941 | * [6] Found | Found | task | 0 | 1 | Valid | |
942 | * | |
943 | * [7] Found | Found | NULL | Any | 0 | Invalid | |
944 | * | |
945 | * [8] Found | Found | task | ==taskTID | 0/1 | Valid | |
946 | * [9] Found | Found | task | 0 | 0 | Invalid | |
947 | * [10] Found | Found | task | !=taskTID | 0/1 | Invalid | |
948 | * | |
949 | * [1] Indicates that the kernel can acquire the futex atomically. We | |
950 | * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit. | |
951 | * | |
952 | * [2] Valid, if TID does not belong to a kernel thread. If no matching | |
953 | * thread is found then it indicates that the owner TID has died. | |
954 | * | |
955 | * [3] Invalid. The waiter is queued on a non PI futex | |
956 | * | |
957 | * [4] Valid state after exit_robust_list(), which sets the user space | |
958 | * value to FUTEX_WAITERS | FUTEX_OWNER_DIED. | |
959 | * | |
960 | * [5] The user space value got manipulated between exit_robust_list() | |
961 | * and exit_pi_state_list() | |
962 | * | |
963 | * [6] Valid state after exit_pi_state_list() which sets the new owner in | |
964 | * the pi_state but cannot access the user space value. | |
965 | * | |
966 | * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set. | |
967 | * | |
968 | * [8] Owner and user space value match | |
969 | * | |
970 | * [9] There is no transient state which sets the user space TID to 0 | |
971 | * except exit_robust_list(), but this is indicated by the | |
972 | * FUTEX_OWNER_DIED bit. See [4] | |
973 | * | |
974 | * [10] There is no transient state which leaves owner and user space | |
975 | * TID out of sync. | |
976 | */ | |
e60cbc5c TG |
977 | |
978 | /* | |
979 | * Validate that the existing waiter has a pi_state and sanity check | |
980 | * the pi_state against the user space value. If correct, attach to | |
981 | * it. | |
982 | */ | |
983 | static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state, | |
984 | struct futex_pi_state **ps) | |
c87e2837 | 985 | { |
778e9a9c | 986 | pid_t pid = uval & FUTEX_TID_MASK; |
c87e2837 | 987 | |
e60cbc5c TG |
988 | /* |
989 | * Userspace might have messed up non-PI and PI futexes [3] | |
990 | */ | |
991 | if (unlikely(!pi_state)) | |
992 | return -EINVAL; | |
06a9ec29 | 993 | |
e60cbc5c | 994 | WARN_ON(!atomic_read(&pi_state->refcount)); |
59647b6a | 995 | |
e60cbc5c TG |
996 | /* |
997 | * Handle the owner died case: | |
998 | */ | |
999 | if (uval & FUTEX_OWNER_DIED) { | |
bd1dbcc6 | 1000 | /* |
e60cbc5c TG |
1001 | * exit_pi_state_list sets owner to NULL and wakes the |
1002 | * topmost waiter. The task which acquires the | |
1003 | * pi_state->rt_mutex will fixup owner. | |
bd1dbcc6 | 1004 | */ |
e60cbc5c | 1005 | if (!pi_state->owner) { |
59647b6a | 1006 | /* |
e60cbc5c TG |
1007 | * No pi state owner, but the user space TID |
1008 | * is not 0. Inconsistent state. [5] | |
59647b6a | 1009 | */ |
e60cbc5c TG |
1010 | if (pid) |
1011 | return -EINVAL; | |
bd1dbcc6 | 1012 | /* |
e60cbc5c | 1013 | * Take a ref on the state and return success. [4] |
866293ee | 1014 | */ |
e60cbc5c | 1015 | goto out_state; |
c87e2837 | 1016 | } |
bd1dbcc6 TG |
1017 | |
1018 | /* | |
e60cbc5c TG |
1019 | * If TID is 0, then either the dying owner has not |
1020 | * yet executed exit_pi_state_list() or some waiter | |
1021 | * acquired the rtmutex in the pi state, but did not | |
1022 | * yet fixup the TID in user space. | |
1023 | * | |
1024 | * Take a ref on the state and return success. [6] | |
1025 | */ | |
1026 | if (!pid) | |
1027 | goto out_state; | |
1028 | } else { | |
1029 | /* | |
1030 | * If the owner died bit is not set, then the pi_state | |
1031 | * must have an owner. [7] | |
bd1dbcc6 | 1032 | */ |
e60cbc5c | 1033 | if (!pi_state->owner) |
bd1dbcc6 | 1034 | return -EINVAL; |
c87e2837 IM |
1035 | } |
1036 | ||
e60cbc5c TG |
1037 | /* |
1038 | * Bail out if user space manipulated the futex value. If pi | |
1039 | * state exists then the owner TID must be the same as the | |
1040 | * user space TID. [9/10] | |
1041 | */ | |
1042 | if (pid != task_pid_vnr(pi_state->owner)) | |
1043 | return -EINVAL; | |
1044 | out_state: | |
1045 | atomic_inc(&pi_state->refcount); | |
1046 | *ps = pi_state; | |
1047 | return 0; | |
1048 | } | |
1049 | ||
04e1b2e5 TG |
1050 | /* |
1051 | * Lookup the task for the TID provided from user space and attach to | |
1052 | * it after doing proper sanity checks. | |
1053 | */ | |
1054 | static int attach_to_pi_owner(u32 uval, union futex_key *key, | |
1055 | struct futex_pi_state **ps) | |
e60cbc5c | 1056 | { |
e60cbc5c | 1057 | pid_t pid = uval & FUTEX_TID_MASK; |
04e1b2e5 TG |
1058 | struct futex_pi_state *pi_state; |
1059 | struct task_struct *p; | |
e60cbc5c | 1060 | |
c87e2837 | 1061 | /* |
e3f2ddea | 1062 | * We are the first waiter - try to look up the real owner and attach |
54a21788 | 1063 | * the new pi_state to it, but bail out when TID = 0 [1] |
c87e2837 | 1064 | */ |
778e9a9c | 1065 | if (!pid) |
e3f2ddea | 1066 | return -ESRCH; |
c87e2837 | 1067 | p = futex_find_get_task(pid); |
7a0ea09a MH |
1068 | if (!p) |
1069 | return -ESRCH; | |
778e9a9c | 1070 | |
a2129464 | 1071 | if (unlikely(p->flags & PF_KTHREAD)) { |
f0d71b3d TG |
1072 | put_task_struct(p); |
1073 | return -EPERM; | |
1074 | } | |
1075 | ||
778e9a9c AK |
1076 | /* |
1077 | * We need to look at the task state flags to figure out, | |
1078 | * whether the task is exiting. To protect against the do_exit | |
1079 | * change of the task flags, we do this protected by | |
1080 | * p->pi_lock: | |
1081 | */ | |
1d615482 | 1082 | raw_spin_lock_irq(&p->pi_lock); |
778e9a9c AK |
1083 | if (unlikely(p->flags & PF_EXITING)) { |
1084 | /* | |
1085 | * The task is on the way out. When PF_EXITPIDONE is | |
1086 | * set, we know that the task has finished the | |
1087 | * cleanup: | |
1088 | */ | |
1089 | int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN; | |
1090 | ||
1d615482 | 1091 | raw_spin_unlock_irq(&p->pi_lock); |
778e9a9c AK |
1092 | put_task_struct(p); |
1093 | return ret; | |
1094 | } | |
c87e2837 | 1095 | |
54a21788 TG |
1096 | /* |
1097 | * No existing pi state. First waiter. [2] | |
1098 | */ | |
c87e2837 IM |
1099 | pi_state = alloc_pi_state(); |
1100 | ||
1101 | /* | |
04e1b2e5 | 1102 | * Initialize the pi_mutex in locked state and make @p |
c87e2837 IM |
1103 | * the owner of it: |
1104 | */ | |
1105 | rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p); | |
1106 | ||
1107 | /* Store the key for possible exit cleanups: */ | |
d0aa7a70 | 1108 | pi_state->key = *key; |
c87e2837 | 1109 | |
627371d7 | 1110 | WARN_ON(!list_empty(&pi_state->list)); |
c87e2837 IM |
1111 | list_add(&pi_state->list, &p->pi_state_list); |
1112 | pi_state->owner = p; | |
1d615482 | 1113 | raw_spin_unlock_irq(&p->pi_lock); |
c87e2837 IM |
1114 | |
1115 | put_task_struct(p); | |
1116 | ||
d0aa7a70 | 1117 | *ps = pi_state; |
c87e2837 IM |
1118 | |
1119 | return 0; | |
1120 | } | |
1121 | ||
04e1b2e5 TG |
1122 | static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb, |
1123 | union futex_key *key, struct futex_pi_state **ps) | |
1124 | { | |
1125 | struct futex_q *match = futex_top_waiter(hb, key); | |
1126 | ||
1127 | /* | |
1128 | * If there is a waiter on that futex, validate it and | |
1129 | * attach to the pi_state when the validation succeeds. | |
1130 | */ | |
1131 | if (match) | |
1132 | return attach_to_pi_state(uval, match->pi_state, ps); | |
1133 | ||
1134 | /* | |
1135 | * We are the first waiter - try to look up the owner based on | |
1136 | * @uval and attach to it. | |
1137 | */ | |
1138 | return attach_to_pi_owner(uval, key, ps); | |
1139 | } | |
1140 | ||
af54d6a1 TG |
1141 | static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval) |
1142 | { | |
1143 | u32 uninitialized_var(curval); | |
1144 | ||
ab51fbab DB |
1145 | if (unlikely(should_fail_futex(true))) |
1146 | return -EFAULT; | |
1147 | ||
af54d6a1 TG |
1148 | if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))) |
1149 | return -EFAULT; | |
1150 | ||
1151 | /*If user space value changed, let the caller retry */ | |
1152 | return curval != uval ? -EAGAIN : 0; | |
1153 | } | |
1154 | ||
1a52084d | 1155 | /** |
d96ee56c | 1156 | * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex |
bab5bc9e DH |
1157 | * @uaddr: the pi futex user address |
1158 | * @hb: the pi futex hash bucket | |
1159 | * @key: the futex key associated with uaddr and hb | |
1160 | * @ps: the pi_state pointer where we store the result of the | |
1161 | * lookup | |
1162 | * @task: the task to perform the atomic lock work for. This will | |
1163 | * be "current" except in the case of requeue pi. | |
1164 | * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0) | |
1a52084d | 1165 | * |
6c23cbbd RD |
1166 | * Return: |
1167 | * 0 - ready to wait; | |
1168 | * 1 - acquired the lock; | |
1a52084d DH |
1169 | * <0 - error |
1170 | * | |
1171 | * The hb->lock and futex_key refs shall be held by the caller. | |
1172 | */ | |
1173 | static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb, | |
1174 | union futex_key *key, | |
1175 | struct futex_pi_state **ps, | |
bab5bc9e | 1176 | struct task_struct *task, int set_waiters) |
1a52084d | 1177 | { |
af54d6a1 TG |
1178 | u32 uval, newval, vpid = task_pid_vnr(task); |
1179 | struct futex_q *match; | |
1180 | int ret; | |
1a52084d DH |
1181 | |
1182 | /* | |
af54d6a1 TG |
1183 | * Read the user space value first so we can validate a few |
1184 | * things before proceeding further. | |
1a52084d | 1185 | */ |
af54d6a1 | 1186 | if (get_futex_value_locked(&uval, uaddr)) |
1a52084d DH |
1187 | return -EFAULT; |
1188 | ||
ab51fbab DB |
1189 | if (unlikely(should_fail_futex(true))) |
1190 | return -EFAULT; | |
1191 | ||
1a52084d DH |
1192 | /* |
1193 | * Detect deadlocks. | |
1194 | */ | |
af54d6a1 | 1195 | if ((unlikely((uval & FUTEX_TID_MASK) == vpid))) |
1a52084d DH |
1196 | return -EDEADLK; |
1197 | ||
ab51fbab DB |
1198 | if ((unlikely(should_fail_futex(true)))) |
1199 | return -EDEADLK; | |
1200 | ||
1a52084d | 1201 | /* |
af54d6a1 TG |
1202 | * Lookup existing state first. If it exists, try to attach to |
1203 | * its pi_state. | |
1a52084d | 1204 | */ |
af54d6a1 TG |
1205 | match = futex_top_waiter(hb, key); |
1206 | if (match) | |
1207 | return attach_to_pi_state(uval, match->pi_state, ps); | |
1a52084d DH |
1208 | |
1209 | /* | |
af54d6a1 TG |
1210 | * No waiter and user TID is 0. We are here because the |
1211 | * waiters or the owner died bit is set or called from | |
1212 | * requeue_cmp_pi or for whatever reason something took the | |
1213 | * syscall. | |
1a52084d | 1214 | */ |
af54d6a1 | 1215 | if (!(uval & FUTEX_TID_MASK)) { |
59fa6245 | 1216 | /* |
af54d6a1 TG |
1217 | * We take over the futex. No other waiters and the user space |
1218 | * TID is 0. We preserve the owner died bit. | |
59fa6245 | 1219 | */ |
af54d6a1 TG |
1220 | newval = uval & FUTEX_OWNER_DIED; |
1221 | newval |= vpid; | |
1a52084d | 1222 | |
af54d6a1 TG |
1223 | /* The futex requeue_pi code can enforce the waiters bit */ |
1224 | if (set_waiters) | |
1225 | newval |= FUTEX_WAITERS; | |
1226 | ||
1227 | ret = lock_pi_update_atomic(uaddr, uval, newval); | |
1228 | /* If the take over worked, return 1 */ | |
1229 | return ret < 0 ? ret : 1; | |
1230 | } | |
1a52084d DH |
1231 | |
1232 | /* | |
af54d6a1 TG |
1233 | * First waiter. Set the waiters bit before attaching ourself to |
1234 | * the owner. If owner tries to unlock, it will be forced into | |
1235 | * the kernel and blocked on hb->lock. | |
1a52084d | 1236 | */ |
af54d6a1 TG |
1237 | newval = uval | FUTEX_WAITERS; |
1238 | ret = lock_pi_update_atomic(uaddr, uval, newval); | |
1239 | if (ret) | |
1240 | return ret; | |
1a52084d | 1241 | /* |
af54d6a1 TG |
1242 | * If the update of the user space value succeeded, we try to |
1243 | * attach to the owner. If that fails, no harm done, we only | |
1244 | * set the FUTEX_WAITERS bit in the user space variable. | |
1a52084d | 1245 | */ |
af54d6a1 | 1246 | return attach_to_pi_owner(uval, key, ps); |
1a52084d DH |
1247 | } |
1248 | ||
2e12978a LJ |
1249 | /** |
1250 | * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket | |
1251 | * @q: The futex_q to unqueue | |
1252 | * | |
1253 | * The q->lock_ptr must not be NULL and must be held by the caller. | |
1254 | */ | |
1255 | static void __unqueue_futex(struct futex_q *q) | |
1256 | { | |
1257 | struct futex_hash_bucket *hb; | |
1258 | ||
29096202 SR |
1259 | if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr)) |
1260 | || WARN_ON(plist_node_empty(&q->list))) | |
2e12978a LJ |
1261 | return; |
1262 | ||
1263 | hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock); | |
1264 | plist_del(&q->list, &hb->chain); | |
11d4616b | 1265 | hb_waiters_dec(hb); |
2e12978a LJ |
1266 | } |
1267 | ||
1da177e4 LT |
1268 | /* |
1269 | * The hash bucket lock must be held when this is called. | |
1d0dcb3a DB |
1270 | * Afterwards, the futex_q must not be accessed. Callers |
1271 | * must ensure to later call wake_up_q() for the actual | |
1272 | * wakeups to occur. | |
1da177e4 | 1273 | */ |
1d0dcb3a | 1274 | static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q) |
1da177e4 | 1275 | { |
f1a11e05 TG |
1276 | struct task_struct *p = q->task; |
1277 | ||
aa10990e DH |
1278 | if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n")) |
1279 | return; | |
1280 | ||
1da177e4 | 1281 | /* |
1d0dcb3a DB |
1282 | * Queue the task for later wakeup for after we've released |
1283 | * the hb->lock. wake_q_add() grabs reference to p. | |
1da177e4 | 1284 | */ |
1d0dcb3a | 1285 | wake_q_add(wake_q, p); |
2e12978a | 1286 | __unqueue_futex(q); |
1da177e4 | 1287 | /* |
f1a11e05 TG |
1288 | * The waiting task can free the futex_q as soon as |
1289 | * q->lock_ptr = NULL is written, without taking any locks. A | |
1290 | * memory barrier is required here to prevent the following | |
1291 | * store to lock_ptr from getting ahead of the plist_del. | |
1da177e4 | 1292 | */ |
ccdea2f8 | 1293 | smp_wmb(); |
1da177e4 LT |
1294 | q->lock_ptr = NULL; |
1295 | } | |
1296 | ||
802ab58d SAS |
1297 | static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this, |
1298 | struct futex_hash_bucket *hb) | |
c87e2837 IM |
1299 | { |
1300 | struct task_struct *new_owner; | |
1301 | struct futex_pi_state *pi_state = this->pi_state; | |
7cfdaf38 | 1302 | u32 uninitialized_var(curval), newval; |
194a6b5b | 1303 | DEFINE_WAKE_Q(wake_q); |
802ab58d | 1304 | bool deboost; |
13fbca4c | 1305 | int ret = 0; |
c87e2837 IM |
1306 | |
1307 | if (!pi_state) | |
1308 | return -EINVAL; | |
1309 | ||
51246bfd TG |
1310 | /* |
1311 | * If current does not own the pi_state then the futex is | |
1312 | * inconsistent and user space fiddled with the futex value. | |
1313 | */ | |
1314 | if (pi_state->owner != current) | |
1315 | return -EINVAL; | |
1316 | ||
b4abf910 | 1317 | raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock); |
c87e2837 IM |
1318 | new_owner = rt_mutex_next_owner(&pi_state->pi_mutex); |
1319 | ||
1320 | /* | |
f123c98e SR |
1321 | * It is possible that the next waiter (the one that brought |
1322 | * this owner to the kernel) timed out and is no longer | |
1323 | * waiting on the lock. | |
c87e2837 IM |
1324 | */ |
1325 | if (!new_owner) | |
1326 | new_owner = this->task; | |
1327 | ||
1328 | /* | |
13fbca4c TG |
1329 | * We pass it to the next owner. The WAITERS bit is always |
1330 | * kept enabled while there is PI state around. We cleanup the | |
1331 | * owner died bit, because we are the owner. | |
c87e2837 | 1332 | */ |
13fbca4c | 1333 | newval = FUTEX_WAITERS | task_pid_vnr(new_owner); |
e3f2ddea | 1334 | |
ab51fbab DB |
1335 | if (unlikely(should_fail_futex(true))) |
1336 | ret = -EFAULT; | |
1337 | ||
89e9e66b | 1338 | if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) { |
13fbca4c | 1339 | ret = -EFAULT; |
89e9e66b SAS |
1340 | } else if (curval != uval) { |
1341 | /* | |
1342 | * If a unconditional UNLOCK_PI operation (user space did not | |
1343 | * try the TID->0 transition) raced with a waiter setting the | |
1344 | * FUTEX_WAITERS flag between get_user() and locking the hash | |
1345 | * bucket lock, retry the operation. | |
1346 | */ | |
1347 | if ((FUTEX_TID_MASK & curval) == uval) | |
1348 | ret = -EAGAIN; | |
1349 | else | |
1350 | ret = -EINVAL; | |
1351 | } | |
13fbca4c | 1352 | if (ret) { |
b4abf910 | 1353 | raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock); |
13fbca4c | 1354 | return ret; |
e3f2ddea | 1355 | } |
c87e2837 | 1356 | |
b4abf910 | 1357 | raw_spin_lock(&pi_state->owner->pi_lock); |
627371d7 IM |
1358 | WARN_ON(list_empty(&pi_state->list)); |
1359 | list_del_init(&pi_state->list); | |
b4abf910 | 1360 | raw_spin_unlock(&pi_state->owner->pi_lock); |
627371d7 | 1361 | |
b4abf910 | 1362 | raw_spin_lock(&new_owner->pi_lock); |
627371d7 | 1363 | WARN_ON(!list_empty(&pi_state->list)); |
c87e2837 IM |
1364 | list_add(&pi_state->list, &new_owner->pi_state_list); |
1365 | pi_state->owner = new_owner; | |
b4abf910 | 1366 | raw_spin_unlock(&new_owner->pi_lock); |
627371d7 | 1367 | |
b4abf910 | 1368 | raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock); |
802ab58d SAS |
1369 | |
1370 | deboost = rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q); | |
1371 | ||
1372 | /* | |
1373 | * First unlock HB so the waiter does not spin on it once he got woken | |
1374 | * up. Second wake up the waiter before the priority is adjusted. If we | |
1375 | * deboost first (and lose our higher priority), then the task might get | |
1376 | * scheduled away before the wake up can take place. | |
1377 | */ | |
1378 | spin_unlock(&hb->lock); | |
1379 | wake_up_q(&wake_q); | |
1380 | if (deboost) | |
1381 | rt_mutex_adjust_prio(current); | |
c87e2837 IM |
1382 | |
1383 | return 0; | |
1384 | } | |
1385 | ||
8b8f319f IM |
1386 | /* |
1387 | * Express the locking dependencies for lockdep: | |
1388 | */ | |
1389 | static inline void | |
1390 | double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2) | |
1391 | { | |
1392 | if (hb1 <= hb2) { | |
1393 | spin_lock(&hb1->lock); | |
1394 | if (hb1 < hb2) | |
1395 | spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING); | |
1396 | } else { /* hb1 > hb2 */ | |
1397 | spin_lock(&hb2->lock); | |
1398 | spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING); | |
1399 | } | |
1400 | } | |
1401 | ||
5eb3dc62 DH |
1402 | static inline void |
1403 | double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2) | |
1404 | { | |
f061d351 | 1405 | spin_unlock(&hb1->lock); |
88f502fe IM |
1406 | if (hb1 != hb2) |
1407 | spin_unlock(&hb2->lock); | |
5eb3dc62 DH |
1408 | } |
1409 | ||
1da177e4 | 1410 | /* |
b2d0994b | 1411 | * Wake up waiters matching bitset queued on this futex (uaddr). |
1da177e4 | 1412 | */ |
b41277dc DH |
1413 | static int |
1414 | futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset) | |
1da177e4 | 1415 | { |
e2970f2f | 1416 | struct futex_hash_bucket *hb; |
1da177e4 | 1417 | struct futex_q *this, *next; |
38d47c1b | 1418 | union futex_key key = FUTEX_KEY_INIT; |
1da177e4 | 1419 | int ret; |
194a6b5b | 1420 | DEFINE_WAKE_Q(wake_q); |
1da177e4 | 1421 | |
cd689985 TG |
1422 | if (!bitset) |
1423 | return -EINVAL; | |
1424 | ||
9ea71503 | 1425 | ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ); |
1da177e4 LT |
1426 | if (unlikely(ret != 0)) |
1427 | goto out; | |
1428 | ||
e2970f2f | 1429 | hb = hash_futex(&key); |
b0c29f79 DB |
1430 | |
1431 | /* Make sure we really have tasks to wakeup */ | |
1432 | if (!hb_waiters_pending(hb)) | |
1433 | goto out_put_key; | |
1434 | ||
e2970f2f | 1435 | spin_lock(&hb->lock); |
1da177e4 | 1436 | |
0d00c7b2 | 1437 | plist_for_each_entry_safe(this, next, &hb->chain, list) { |
1da177e4 | 1438 | if (match_futex (&this->key, &key)) { |
52400ba9 | 1439 | if (this->pi_state || this->rt_waiter) { |
ed6f7b10 IM |
1440 | ret = -EINVAL; |
1441 | break; | |
1442 | } | |
cd689985 TG |
1443 | |
1444 | /* Check if one of the bits is set in both bitsets */ | |
1445 | if (!(this->bitset & bitset)) | |
1446 | continue; | |
1447 | ||
1d0dcb3a | 1448 | mark_wake_futex(&wake_q, this); |
1da177e4 LT |
1449 | if (++ret >= nr_wake) |
1450 | break; | |
1451 | } | |
1452 | } | |
1453 | ||
e2970f2f | 1454 | spin_unlock(&hb->lock); |
1d0dcb3a | 1455 | wake_up_q(&wake_q); |
b0c29f79 | 1456 | out_put_key: |
ae791a2d | 1457 | put_futex_key(&key); |
42d35d48 | 1458 | out: |
1da177e4 LT |
1459 | return ret; |
1460 | } | |
1461 | ||
4732efbe JJ |
1462 | /* |
1463 | * Wake up all waiters hashed on the physical page that is mapped | |
1464 | * to this virtual address: | |
1465 | */ | |
e2970f2f | 1466 | static int |
b41277dc | 1467 | futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2, |
e2970f2f | 1468 | int nr_wake, int nr_wake2, int op) |
4732efbe | 1469 | { |
38d47c1b | 1470 | union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT; |
e2970f2f | 1471 | struct futex_hash_bucket *hb1, *hb2; |
4732efbe | 1472 | struct futex_q *this, *next; |
e4dc5b7a | 1473 | int ret, op_ret; |
194a6b5b | 1474 | DEFINE_WAKE_Q(wake_q); |
4732efbe | 1475 | |
e4dc5b7a | 1476 | retry: |
9ea71503 | 1477 | ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ); |
4732efbe JJ |
1478 | if (unlikely(ret != 0)) |
1479 | goto out; | |
9ea71503 | 1480 | ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE); |
4732efbe | 1481 | if (unlikely(ret != 0)) |
42d35d48 | 1482 | goto out_put_key1; |
4732efbe | 1483 | |
e2970f2f IM |
1484 | hb1 = hash_futex(&key1); |
1485 | hb2 = hash_futex(&key2); | |
4732efbe | 1486 | |
e4dc5b7a | 1487 | retry_private: |
eaaea803 | 1488 | double_lock_hb(hb1, hb2); |
e2970f2f | 1489 | op_ret = futex_atomic_op_inuser(op, uaddr2); |
4732efbe | 1490 | if (unlikely(op_ret < 0)) { |
4732efbe | 1491 | |
5eb3dc62 | 1492 | double_unlock_hb(hb1, hb2); |
4732efbe | 1493 | |
7ee1dd3f | 1494 | #ifndef CONFIG_MMU |
e2970f2f IM |
1495 | /* |
1496 | * we don't get EFAULT from MMU faults if we don't have an MMU, | |
1497 | * but we might get them from range checking | |
1498 | */ | |
7ee1dd3f | 1499 | ret = op_ret; |
42d35d48 | 1500 | goto out_put_keys; |
7ee1dd3f DH |
1501 | #endif |
1502 | ||
796f8d9b DG |
1503 | if (unlikely(op_ret != -EFAULT)) { |
1504 | ret = op_ret; | |
42d35d48 | 1505 | goto out_put_keys; |
796f8d9b DG |
1506 | } |
1507 | ||
d0725992 | 1508 | ret = fault_in_user_writeable(uaddr2); |
4732efbe | 1509 | if (ret) |
de87fcc1 | 1510 | goto out_put_keys; |
4732efbe | 1511 | |
b41277dc | 1512 | if (!(flags & FLAGS_SHARED)) |
e4dc5b7a DH |
1513 | goto retry_private; |
1514 | ||
ae791a2d TG |
1515 | put_futex_key(&key2); |
1516 | put_futex_key(&key1); | |
e4dc5b7a | 1517 | goto retry; |
4732efbe JJ |
1518 | } |
1519 | ||
0d00c7b2 | 1520 | plist_for_each_entry_safe(this, next, &hb1->chain, list) { |
4732efbe | 1521 | if (match_futex (&this->key, &key1)) { |
aa10990e DH |
1522 | if (this->pi_state || this->rt_waiter) { |
1523 | ret = -EINVAL; | |
1524 | goto out_unlock; | |
1525 | } | |
1d0dcb3a | 1526 | mark_wake_futex(&wake_q, this); |
4732efbe JJ |
1527 | if (++ret >= nr_wake) |
1528 | break; | |
1529 | } | |
1530 | } | |
1531 | ||
1532 | if (op_ret > 0) { | |
4732efbe | 1533 | op_ret = 0; |
0d00c7b2 | 1534 | plist_for_each_entry_safe(this, next, &hb2->chain, list) { |
4732efbe | 1535 | if (match_futex (&this->key, &key2)) { |
aa10990e DH |
1536 | if (this->pi_state || this->rt_waiter) { |
1537 | ret = -EINVAL; | |
1538 | goto out_unlock; | |
1539 | } | |
1d0dcb3a | 1540 | mark_wake_futex(&wake_q, this); |
4732efbe JJ |
1541 | if (++op_ret >= nr_wake2) |
1542 | break; | |
1543 | } | |
1544 | } | |
1545 | ret += op_ret; | |
1546 | } | |
1547 | ||
aa10990e | 1548 | out_unlock: |
5eb3dc62 | 1549 | double_unlock_hb(hb1, hb2); |
1d0dcb3a | 1550 | wake_up_q(&wake_q); |
42d35d48 | 1551 | out_put_keys: |
ae791a2d | 1552 | put_futex_key(&key2); |
42d35d48 | 1553 | out_put_key1: |
ae791a2d | 1554 | put_futex_key(&key1); |
42d35d48 | 1555 | out: |
4732efbe JJ |
1556 | return ret; |
1557 | } | |
1558 | ||
9121e478 DH |
1559 | /** |
1560 | * requeue_futex() - Requeue a futex_q from one hb to another | |
1561 | * @q: the futex_q to requeue | |
1562 | * @hb1: the source hash_bucket | |
1563 | * @hb2: the target hash_bucket | |
1564 | * @key2: the new key for the requeued futex_q | |
1565 | */ | |
1566 | static inline | |
1567 | void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1, | |
1568 | struct futex_hash_bucket *hb2, union futex_key *key2) | |
1569 | { | |
1570 | ||
1571 | /* | |
1572 | * If key1 and key2 hash to the same bucket, no need to | |
1573 | * requeue. | |
1574 | */ | |
1575 | if (likely(&hb1->chain != &hb2->chain)) { | |
1576 | plist_del(&q->list, &hb1->chain); | |
11d4616b | 1577 | hb_waiters_dec(hb1); |
11d4616b | 1578 | hb_waiters_inc(hb2); |
fe1bce9e | 1579 | plist_add(&q->list, &hb2->chain); |
9121e478 | 1580 | q->lock_ptr = &hb2->lock; |
9121e478 DH |
1581 | } |
1582 | get_futex_key_refs(key2); | |
1583 | q->key = *key2; | |
1584 | } | |
1585 | ||
52400ba9 DH |
1586 | /** |
1587 | * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue | |
d96ee56c DH |
1588 | * @q: the futex_q |
1589 | * @key: the key of the requeue target futex | |
1590 | * @hb: the hash_bucket of the requeue target futex | |
52400ba9 DH |
1591 | * |
1592 | * During futex_requeue, with requeue_pi=1, it is possible to acquire the | |
1593 | * target futex if it is uncontended or via a lock steal. Set the futex_q key | |
1594 | * to the requeue target futex so the waiter can detect the wakeup on the right | |
1595 | * futex, but remove it from the hb and NULL the rt_waiter so it can detect | |
beda2c7e DH |
1596 | * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock |
1597 | * to protect access to the pi_state to fixup the owner later. Must be called | |
1598 | * with both q->lock_ptr and hb->lock held. | |
52400ba9 DH |
1599 | */ |
1600 | static inline | |
beda2c7e DH |
1601 | void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key, |
1602 | struct futex_hash_bucket *hb) | |
52400ba9 | 1603 | { |
52400ba9 DH |
1604 | get_futex_key_refs(key); |
1605 | q->key = *key; | |
1606 | ||
2e12978a | 1607 | __unqueue_futex(q); |
52400ba9 DH |
1608 | |
1609 | WARN_ON(!q->rt_waiter); | |
1610 | q->rt_waiter = NULL; | |
1611 | ||
beda2c7e | 1612 | q->lock_ptr = &hb->lock; |
beda2c7e | 1613 | |
f1a11e05 | 1614 | wake_up_state(q->task, TASK_NORMAL); |
52400ba9 DH |
1615 | } |
1616 | ||
1617 | /** | |
1618 | * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter | |
bab5bc9e DH |
1619 | * @pifutex: the user address of the to futex |
1620 | * @hb1: the from futex hash bucket, must be locked by the caller | |
1621 | * @hb2: the to futex hash bucket, must be locked by the caller | |
1622 | * @key1: the from futex key | |
1623 | * @key2: the to futex key | |
1624 | * @ps: address to store the pi_state pointer | |
1625 | * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0) | |
52400ba9 DH |
1626 | * |
1627 | * Try and get the lock on behalf of the top waiter if we can do it atomically. | |
bab5bc9e DH |
1628 | * Wake the top waiter if we succeed. If the caller specified set_waiters, |
1629 | * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit. | |
1630 | * hb1 and hb2 must be held by the caller. | |
52400ba9 | 1631 | * |
6c23cbbd RD |
1632 | * Return: |
1633 | * 0 - failed to acquire the lock atomically; | |
866293ee | 1634 | * >0 - acquired the lock, return value is vpid of the top_waiter |
52400ba9 DH |
1635 | * <0 - error |
1636 | */ | |
1637 | static int futex_proxy_trylock_atomic(u32 __user *pifutex, | |
1638 | struct futex_hash_bucket *hb1, | |
1639 | struct futex_hash_bucket *hb2, | |
1640 | union futex_key *key1, union futex_key *key2, | |
bab5bc9e | 1641 | struct futex_pi_state **ps, int set_waiters) |
52400ba9 | 1642 | { |
bab5bc9e | 1643 | struct futex_q *top_waiter = NULL; |
52400ba9 | 1644 | u32 curval; |
866293ee | 1645 | int ret, vpid; |
52400ba9 DH |
1646 | |
1647 | if (get_futex_value_locked(&curval, pifutex)) | |
1648 | return -EFAULT; | |
1649 | ||
ab51fbab DB |
1650 | if (unlikely(should_fail_futex(true))) |
1651 | return -EFAULT; | |
1652 | ||
bab5bc9e DH |
1653 | /* |
1654 | * Find the top_waiter and determine if there are additional waiters. | |
1655 | * If the caller intends to requeue more than 1 waiter to pifutex, | |
1656 | * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now, | |
1657 | * as we have means to handle the possible fault. If not, don't set | |
1658 | * the bit unecessarily as it will force the subsequent unlock to enter | |
1659 | * the kernel. | |
1660 | */ | |
52400ba9 DH |
1661 | top_waiter = futex_top_waiter(hb1, key1); |
1662 | ||
1663 | /* There are no waiters, nothing for us to do. */ | |
1664 | if (!top_waiter) | |
1665 | return 0; | |
1666 | ||
84bc4af5 DH |
1667 | /* Ensure we requeue to the expected futex. */ |
1668 | if (!match_futex(top_waiter->requeue_pi_key, key2)) | |
1669 | return -EINVAL; | |
1670 | ||
52400ba9 | 1671 | /* |
bab5bc9e DH |
1672 | * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in |
1673 | * the contended case or if set_waiters is 1. The pi_state is returned | |
1674 | * in ps in contended cases. | |
52400ba9 | 1675 | */ |
866293ee | 1676 | vpid = task_pid_vnr(top_waiter->task); |
bab5bc9e DH |
1677 | ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task, |
1678 | set_waiters); | |
866293ee | 1679 | if (ret == 1) { |
beda2c7e | 1680 | requeue_pi_wake_futex(top_waiter, key2, hb2); |
866293ee TG |
1681 | return vpid; |
1682 | } | |
52400ba9 DH |
1683 | return ret; |
1684 | } | |
1685 | ||
1686 | /** | |
1687 | * futex_requeue() - Requeue waiters from uaddr1 to uaddr2 | |
fb62db2b | 1688 | * @uaddr1: source futex user address |
b41277dc | 1689 | * @flags: futex flags (FLAGS_SHARED, etc.) |
fb62db2b RD |
1690 | * @uaddr2: target futex user address |
1691 | * @nr_wake: number of waiters to wake (must be 1 for requeue_pi) | |
1692 | * @nr_requeue: number of waiters to requeue (0-INT_MAX) | |
1693 | * @cmpval: @uaddr1 expected value (or %NULL) | |
1694 | * @requeue_pi: if we are attempting to requeue from a non-pi futex to a | |
b41277dc | 1695 | * pi futex (pi to pi requeue is not supported) |
52400ba9 DH |
1696 | * |
1697 | * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire | |
1698 | * uaddr2 atomically on behalf of the top waiter. | |
1699 | * | |
6c23cbbd RD |
1700 | * Return: |
1701 | * >=0 - on success, the number of tasks requeued or woken; | |
52400ba9 | 1702 | * <0 - on error |
1da177e4 | 1703 | */ |
b41277dc DH |
1704 | static int futex_requeue(u32 __user *uaddr1, unsigned int flags, |
1705 | u32 __user *uaddr2, int nr_wake, int nr_requeue, | |
1706 | u32 *cmpval, int requeue_pi) | |
1da177e4 | 1707 | { |
38d47c1b | 1708 | union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT; |
52400ba9 DH |
1709 | int drop_count = 0, task_count = 0, ret; |
1710 | struct futex_pi_state *pi_state = NULL; | |
e2970f2f | 1711 | struct futex_hash_bucket *hb1, *hb2; |
1da177e4 | 1712 | struct futex_q *this, *next; |
194a6b5b | 1713 | DEFINE_WAKE_Q(wake_q); |
52400ba9 DH |
1714 | |
1715 | if (requeue_pi) { | |
e9c243a5 TG |
1716 | /* |
1717 | * Requeue PI only works on two distinct uaddrs. This | |
1718 | * check is only valid for private futexes. See below. | |
1719 | */ | |
1720 | if (uaddr1 == uaddr2) | |
1721 | return -EINVAL; | |
1722 | ||
52400ba9 DH |
1723 | /* |
1724 | * requeue_pi requires a pi_state, try to allocate it now | |
1725 | * without any locks in case it fails. | |
1726 | */ | |
1727 | if (refill_pi_state_cache()) | |
1728 | return -ENOMEM; | |
1729 | /* | |
1730 | * requeue_pi must wake as many tasks as it can, up to nr_wake | |
1731 | * + nr_requeue, since it acquires the rt_mutex prior to | |
1732 | * returning to userspace, so as to not leave the rt_mutex with | |
1733 | * waiters and no owner. However, second and third wake-ups | |
1734 | * cannot be predicted as they involve race conditions with the | |
1735 | * first wake and a fault while looking up the pi_state. Both | |
1736 | * pthread_cond_signal() and pthread_cond_broadcast() should | |
1737 | * use nr_wake=1. | |
1738 | */ | |
1739 | if (nr_wake != 1) | |
1740 | return -EINVAL; | |
1741 | } | |
1da177e4 | 1742 | |
42d35d48 | 1743 | retry: |
9ea71503 | 1744 | ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ); |
1da177e4 LT |
1745 | if (unlikely(ret != 0)) |
1746 | goto out; | |
9ea71503 SB |
1747 | ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, |
1748 | requeue_pi ? VERIFY_WRITE : VERIFY_READ); | |
1da177e4 | 1749 | if (unlikely(ret != 0)) |
42d35d48 | 1750 | goto out_put_key1; |
1da177e4 | 1751 | |
e9c243a5 TG |
1752 | /* |
1753 | * The check above which compares uaddrs is not sufficient for | |
1754 | * shared futexes. We need to compare the keys: | |
1755 | */ | |
1756 | if (requeue_pi && match_futex(&key1, &key2)) { | |
1757 | ret = -EINVAL; | |
1758 | goto out_put_keys; | |
1759 | } | |
1760 | ||
e2970f2f IM |
1761 | hb1 = hash_futex(&key1); |
1762 | hb2 = hash_futex(&key2); | |
1da177e4 | 1763 | |
e4dc5b7a | 1764 | retry_private: |
69cd9eba | 1765 | hb_waiters_inc(hb2); |
8b8f319f | 1766 | double_lock_hb(hb1, hb2); |
1da177e4 | 1767 | |
e2970f2f IM |
1768 | if (likely(cmpval != NULL)) { |
1769 | u32 curval; | |
1da177e4 | 1770 | |
e2970f2f | 1771 | ret = get_futex_value_locked(&curval, uaddr1); |
1da177e4 LT |
1772 | |
1773 | if (unlikely(ret)) { | |
5eb3dc62 | 1774 | double_unlock_hb(hb1, hb2); |
69cd9eba | 1775 | hb_waiters_dec(hb2); |
1da177e4 | 1776 | |
e2970f2f | 1777 | ret = get_user(curval, uaddr1); |
e4dc5b7a DH |
1778 | if (ret) |
1779 | goto out_put_keys; | |
1da177e4 | 1780 | |
b41277dc | 1781 | if (!(flags & FLAGS_SHARED)) |
e4dc5b7a | 1782 | goto retry_private; |
1da177e4 | 1783 | |
ae791a2d TG |
1784 | put_futex_key(&key2); |
1785 | put_futex_key(&key1); | |
e4dc5b7a | 1786 | goto retry; |
1da177e4 | 1787 | } |
e2970f2f | 1788 | if (curval != *cmpval) { |
1da177e4 LT |
1789 | ret = -EAGAIN; |
1790 | goto out_unlock; | |
1791 | } | |
1792 | } | |
1793 | ||
52400ba9 | 1794 | if (requeue_pi && (task_count - nr_wake < nr_requeue)) { |
bab5bc9e DH |
1795 | /* |
1796 | * Attempt to acquire uaddr2 and wake the top waiter. If we | |
1797 | * intend to requeue waiters, force setting the FUTEX_WAITERS | |
1798 | * bit. We force this here where we are able to easily handle | |
1799 | * faults rather in the requeue loop below. | |
1800 | */ | |
52400ba9 | 1801 | ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1, |
bab5bc9e | 1802 | &key2, &pi_state, nr_requeue); |
52400ba9 DH |
1803 | |
1804 | /* | |
1805 | * At this point the top_waiter has either taken uaddr2 or is | |
1806 | * waiting on it. If the former, then the pi_state will not | |
1807 | * exist yet, look it up one more time to ensure we have a | |
866293ee TG |
1808 | * reference to it. If the lock was taken, ret contains the |
1809 | * vpid of the top waiter task. | |
ecb38b78 TG |
1810 | * If the lock was not taken, we have pi_state and an initial |
1811 | * refcount on it. In case of an error we have nothing. | |
52400ba9 | 1812 | */ |
866293ee | 1813 | if (ret > 0) { |
52400ba9 | 1814 | WARN_ON(pi_state); |
89061d3d | 1815 | drop_count++; |
52400ba9 | 1816 | task_count++; |
866293ee | 1817 | /* |
ecb38b78 TG |
1818 | * If we acquired the lock, then the user space value |
1819 | * of uaddr2 should be vpid. It cannot be changed by | |
1820 | * the top waiter as it is blocked on hb2 lock if it | |
1821 | * tries to do so. If something fiddled with it behind | |
1822 | * our back the pi state lookup might unearth it. So | |
1823 | * we rather use the known value than rereading and | |
1824 | * handing potential crap to lookup_pi_state. | |
1825 | * | |
1826 | * If that call succeeds then we have pi_state and an | |
1827 | * initial refcount on it. | |
866293ee | 1828 | */ |
54a21788 | 1829 | ret = lookup_pi_state(ret, hb2, &key2, &pi_state); |
52400ba9 DH |
1830 | } |
1831 | ||
1832 | switch (ret) { | |
1833 | case 0: | |
ecb38b78 | 1834 | /* We hold a reference on the pi state. */ |
52400ba9 | 1835 | break; |
4959f2de TG |
1836 | |
1837 | /* If the above failed, then pi_state is NULL */ | |
52400ba9 DH |
1838 | case -EFAULT: |
1839 | double_unlock_hb(hb1, hb2); | |
69cd9eba | 1840 | hb_waiters_dec(hb2); |
ae791a2d TG |
1841 | put_futex_key(&key2); |
1842 | put_futex_key(&key1); | |
d0725992 | 1843 | ret = fault_in_user_writeable(uaddr2); |
52400ba9 DH |
1844 | if (!ret) |
1845 | goto retry; | |
1846 | goto out; | |
1847 | case -EAGAIN: | |
af54d6a1 TG |
1848 | /* |
1849 | * Two reasons for this: | |
1850 | * - Owner is exiting and we just wait for the | |
1851 | * exit to complete. | |
1852 | * - The user space value changed. | |
1853 | */ | |
52400ba9 | 1854 | double_unlock_hb(hb1, hb2); |
69cd9eba | 1855 | hb_waiters_dec(hb2); |
ae791a2d TG |
1856 | put_futex_key(&key2); |
1857 | put_futex_key(&key1); | |
52400ba9 DH |
1858 | cond_resched(); |
1859 | goto retry; | |
1860 | default: | |
1861 | goto out_unlock; | |
1862 | } | |
1863 | } | |
1864 | ||
0d00c7b2 | 1865 | plist_for_each_entry_safe(this, next, &hb1->chain, list) { |
52400ba9 DH |
1866 | if (task_count - nr_wake >= nr_requeue) |
1867 | break; | |
1868 | ||
1869 | if (!match_futex(&this->key, &key1)) | |
1da177e4 | 1870 | continue; |
52400ba9 | 1871 | |
392741e0 DH |
1872 | /* |
1873 | * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always | |
1874 | * be paired with each other and no other futex ops. | |
aa10990e DH |
1875 | * |
1876 | * We should never be requeueing a futex_q with a pi_state, | |
1877 | * which is awaiting a futex_unlock_pi(). | |
392741e0 DH |
1878 | */ |
1879 | if ((requeue_pi && !this->rt_waiter) || | |
aa10990e DH |
1880 | (!requeue_pi && this->rt_waiter) || |
1881 | this->pi_state) { | |
392741e0 DH |
1882 | ret = -EINVAL; |
1883 | break; | |
1884 | } | |
52400ba9 DH |
1885 | |
1886 | /* | |
1887 | * Wake nr_wake waiters. For requeue_pi, if we acquired the | |
1888 | * lock, we already woke the top_waiter. If not, it will be | |
1889 | * woken by futex_unlock_pi(). | |
1890 | */ | |
1891 | if (++task_count <= nr_wake && !requeue_pi) { | |
1d0dcb3a | 1892 | mark_wake_futex(&wake_q, this); |
52400ba9 DH |
1893 | continue; |
1894 | } | |
1da177e4 | 1895 | |
84bc4af5 DH |
1896 | /* Ensure we requeue to the expected futex for requeue_pi. */ |
1897 | if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) { | |
1898 | ret = -EINVAL; | |
1899 | break; | |
1900 | } | |
1901 | ||
52400ba9 DH |
1902 | /* |
1903 | * Requeue nr_requeue waiters and possibly one more in the case | |
1904 | * of requeue_pi if we couldn't acquire the lock atomically. | |
1905 | */ | |
1906 | if (requeue_pi) { | |
ecb38b78 TG |
1907 | /* |
1908 | * Prepare the waiter to take the rt_mutex. Take a | |
1909 | * refcount on the pi_state and store the pointer in | |
1910 | * the futex_q object of the waiter. | |
1911 | */ | |
52400ba9 DH |
1912 | atomic_inc(&pi_state->refcount); |
1913 | this->pi_state = pi_state; | |
1914 | ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex, | |
1915 | this->rt_waiter, | |
c051b21f | 1916 | this->task); |
52400ba9 | 1917 | if (ret == 1) { |
ecb38b78 TG |
1918 | /* |
1919 | * We got the lock. We do neither drop the | |
1920 | * refcount on pi_state nor clear | |
1921 | * this->pi_state because the waiter needs the | |
1922 | * pi_state for cleaning up the user space | |
1923 | * value. It will drop the refcount after | |
1924 | * doing so. | |
1925 | */ | |
beda2c7e | 1926 | requeue_pi_wake_futex(this, &key2, hb2); |
89061d3d | 1927 | drop_count++; |
52400ba9 DH |
1928 | continue; |
1929 | } else if (ret) { | |
ecb38b78 TG |
1930 | /* |
1931 | * rt_mutex_start_proxy_lock() detected a | |
1932 | * potential deadlock when we tried to queue | |
1933 | * that waiter. Drop the pi_state reference | |
1934 | * which we took above and remove the pointer | |
1935 | * to the state from the waiters futex_q | |
1936 | * object. | |
1937 | */ | |
52400ba9 | 1938 | this->pi_state = NULL; |
29e9ee5d | 1939 | put_pi_state(pi_state); |
885c2cb7 TG |
1940 | /* |
1941 | * We stop queueing more waiters and let user | |
1942 | * space deal with the mess. | |
1943 | */ | |
1944 | break; | |
52400ba9 | 1945 | } |
1da177e4 | 1946 | } |
52400ba9 DH |
1947 | requeue_futex(this, hb1, hb2, &key2); |
1948 | drop_count++; | |
1da177e4 LT |
1949 | } |
1950 | ||
ecb38b78 TG |
1951 | /* |
1952 | * We took an extra initial reference to the pi_state either | |
1953 | * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We | |
1954 | * need to drop it here again. | |
1955 | */ | |
29e9ee5d | 1956 | put_pi_state(pi_state); |
885c2cb7 TG |
1957 | |
1958 | out_unlock: | |
5eb3dc62 | 1959 | double_unlock_hb(hb1, hb2); |
1d0dcb3a | 1960 | wake_up_q(&wake_q); |
69cd9eba | 1961 | hb_waiters_dec(hb2); |
1da177e4 | 1962 | |
cd84a42f DH |
1963 | /* |
1964 | * drop_futex_key_refs() must be called outside the spinlocks. During | |
1965 | * the requeue we moved futex_q's from the hash bucket at key1 to the | |
1966 | * one at key2 and updated their key pointer. We no longer need to | |
1967 | * hold the references to key1. | |
1968 | */ | |
1da177e4 | 1969 | while (--drop_count >= 0) |
9adef58b | 1970 | drop_futex_key_refs(&key1); |
1da177e4 | 1971 | |
42d35d48 | 1972 | out_put_keys: |
ae791a2d | 1973 | put_futex_key(&key2); |
42d35d48 | 1974 | out_put_key1: |
ae791a2d | 1975 | put_futex_key(&key1); |
42d35d48 | 1976 | out: |
52400ba9 | 1977 | return ret ? ret : task_count; |
1da177e4 LT |
1978 | } |
1979 | ||
1980 | /* The key must be already stored in q->key. */ | |
82af7aca | 1981 | static inline struct futex_hash_bucket *queue_lock(struct futex_q *q) |
15e408cd | 1982 | __acquires(&hb->lock) |
1da177e4 | 1983 | { |
e2970f2f | 1984 | struct futex_hash_bucket *hb; |
1da177e4 | 1985 | |
e2970f2f | 1986 | hb = hash_futex(&q->key); |
11d4616b LT |
1987 | |
1988 | /* | |
1989 | * Increment the counter before taking the lock so that | |
1990 | * a potential waker won't miss a to-be-slept task that is | |
1991 | * waiting for the spinlock. This is safe as all queue_lock() | |
1992 | * users end up calling queue_me(). Similarly, for housekeeping, | |
1993 | * decrement the counter at queue_unlock() when some error has | |
1994 | * occurred and we don't end up adding the task to the list. | |
1995 | */ | |
1996 | hb_waiters_inc(hb); | |
1997 | ||
e2970f2f | 1998 | q->lock_ptr = &hb->lock; |
1da177e4 | 1999 | |
8ad7b378 | 2000 | spin_lock(&hb->lock); /* implies smp_mb(); (A) */ |
e2970f2f | 2001 | return hb; |
1da177e4 LT |
2002 | } |
2003 | ||
d40d65c8 | 2004 | static inline void |
0d00c7b2 | 2005 | queue_unlock(struct futex_hash_bucket *hb) |
15e408cd | 2006 | __releases(&hb->lock) |
d40d65c8 DH |
2007 | { |
2008 | spin_unlock(&hb->lock); | |
11d4616b | 2009 | hb_waiters_dec(hb); |
d40d65c8 DH |
2010 | } |
2011 | ||
2012 | /** | |
2013 | * queue_me() - Enqueue the futex_q on the futex_hash_bucket | |
2014 | * @q: The futex_q to enqueue | |
2015 | * @hb: The destination hash bucket | |
2016 | * | |
2017 | * The hb->lock must be held by the caller, and is released here. A call to | |
2018 | * queue_me() is typically paired with exactly one call to unqueue_me(). The | |
2019 | * exceptions involve the PI related operations, which may use unqueue_me_pi() | |
2020 | * or nothing if the unqueue is done as part of the wake process and the unqueue | |
2021 | * state is implicit in the state of woken task (see futex_wait_requeue_pi() for | |
2022 | * an example). | |
2023 | */ | |
82af7aca | 2024 | static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb) |
15e408cd | 2025 | __releases(&hb->lock) |
1da177e4 | 2026 | { |
ec92d082 PP |
2027 | int prio; |
2028 | ||
2029 | /* | |
2030 | * The priority used to register this element is | |
2031 | * - either the real thread-priority for the real-time threads | |
2032 | * (i.e. threads with a priority lower than MAX_RT_PRIO) | |
2033 | * - or MAX_RT_PRIO for non-RT threads. | |
2034 | * Thus, all RT-threads are woken first in priority order, and | |
2035 | * the others are woken last, in FIFO order. | |
2036 | */ | |
2037 | prio = min(current->normal_prio, MAX_RT_PRIO); | |
2038 | ||
2039 | plist_node_init(&q->list, prio); | |
ec92d082 | 2040 | plist_add(&q->list, &hb->chain); |
c87e2837 | 2041 | q->task = current; |
e2970f2f | 2042 | spin_unlock(&hb->lock); |
1da177e4 LT |
2043 | } |
2044 | ||
d40d65c8 DH |
2045 | /** |
2046 | * unqueue_me() - Remove the futex_q from its futex_hash_bucket | |
2047 | * @q: The futex_q to unqueue | |
2048 | * | |
2049 | * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must | |
2050 | * be paired with exactly one earlier call to queue_me(). | |
2051 | * | |
6c23cbbd RD |
2052 | * Return: |
2053 | * 1 - if the futex_q was still queued (and we removed unqueued it); | |
d40d65c8 | 2054 | * 0 - if the futex_q was already removed by the waking thread |
1da177e4 | 2055 | */ |
1da177e4 LT |
2056 | static int unqueue_me(struct futex_q *q) |
2057 | { | |
1da177e4 | 2058 | spinlock_t *lock_ptr; |
e2970f2f | 2059 | int ret = 0; |
1da177e4 LT |
2060 | |
2061 | /* In the common case we don't take the spinlock, which is nice. */ | |
42d35d48 | 2062 | retry: |
29b75eb2 JZ |
2063 | /* |
2064 | * q->lock_ptr can change between this read and the following spin_lock. | |
2065 | * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and | |
2066 | * optimizing lock_ptr out of the logic below. | |
2067 | */ | |
2068 | lock_ptr = READ_ONCE(q->lock_ptr); | |
c80544dc | 2069 | if (lock_ptr != NULL) { |
1da177e4 LT |
2070 | spin_lock(lock_ptr); |
2071 | /* | |
2072 | * q->lock_ptr can change between reading it and | |
2073 | * spin_lock(), causing us to take the wrong lock. This | |
2074 | * corrects the race condition. | |
2075 | * | |
2076 | * Reasoning goes like this: if we have the wrong lock, | |
2077 | * q->lock_ptr must have changed (maybe several times) | |
2078 | * between reading it and the spin_lock(). It can | |
2079 | * change again after the spin_lock() but only if it was | |
2080 | * already changed before the spin_lock(). It cannot, | |
2081 | * however, change back to the original value. Therefore | |
2082 | * we can detect whether we acquired the correct lock. | |
2083 | */ | |
2084 | if (unlikely(lock_ptr != q->lock_ptr)) { | |
2085 | spin_unlock(lock_ptr); | |
2086 | goto retry; | |
2087 | } | |
2e12978a | 2088 | __unqueue_futex(q); |
c87e2837 IM |
2089 | |
2090 | BUG_ON(q->pi_state); | |
2091 | ||
1da177e4 LT |
2092 | spin_unlock(lock_ptr); |
2093 | ret = 1; | |
2094 | } | |
2095 | ||
9adef58b | 2096 | drop_futex_key_refs(&q->key); |
1da177e4 LT |
2097 | return ret; |
2098 | } | |
2099 | ||
c87e2837 IM |
2100 | /* |
2101 | * PI futexes can not be requeued and must remove themself from the | |
d0aa7a70 PP |
2102 | * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry |
2103 | * and dropped here. | |
c87e2837 | 2104 | */ |
d0aa7a70 | 2105 | static void unqueue_me_pi(struct futex_q *q) |
15e408cd | 2106 | __releases(q->lock_ptr) |
c87e2837 | 2107 | { |
2e12978a | 2108 | __unqueue_futex(q); |
c87e2837 IM |
2109 | |
2110 | BUG_ON(!q->pi_state); | |
29e9ee5d | 2111 | put_pi_state(q->pi_state); |
c87e2837 IM |
2112 | q->pi_state = NULL; |
2113 | ||
d0aa7a70 | 2114 | spin_unlock(q->lock_ptr); |
c87e2837 IM |
2115 | } |
2116 | ||
d0aa7a70 | 2117 | /* |
cdf71a10 | 2118 | * Fixup the pi_state owner with the new owner. |
d0aa7a70 | 2119 | * |
778e9a9c AK |
2120 | * Must be called with hash bucket lock held and mm->sem held for non |
2121 | * private futexes. | |
d0aa7a70 | 2122 | */ |
778e9a9c | 2123 | static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q, |
ae791a2d | 2124 | struct task_struct *newowner) |
d0aa7a70 | 2125 | { |
cdf71a10 | 2126 | u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS; |
d0aa7a70 | 2127 | struct futex_pi_state *pi_state = q->pi_state; |
1b7558e4 | 2128 | struct task_struct *oldowner = pi_state->owner; |
7cfdaf38 | 2129 | u32 uval, uninitialized_var(curval), newval; |
e4dc5b7a | 2130 | int ret; |
d0aa7a70 PP |
2131 | |
2132 | /* Owner died? */ | |
1b7558e4 TG |
2133 | if (!pi_state->owner) |
2134 | newtid |= FUTEX_OWNER_DIED; | |
2135 | ||
2136 | /* | |
2137 | * We are here either because we stole the rtmutex from the | |
8161239a LJ |
2138 | * previous highest priority waiter or we are the highest priority |
2139 | * waiter but failed to get the rtmutex the first time. | |
2140 | * We have to replace the newowner TID in the user space variable. | |
2141 | * This must be atomic as we have to preserve the owner died bit here. | |
1b7558e4 | 2142 | * |
b2d0994b DH |
2143 | * Note: We write the user space value _before_ changing the pi_state |
2144 | * because we can fault here. Imagine swapped out pages or a fork | |
2145 | * that marked all the anonymous memory readonly for cow. | |
1b7558e4 TG |
2146 | * |
2147 | * Modifying pi_state _before_ the user space value would | |
2148 | * leave the pi_state in an inconsistent state when we fault | |
2149 | * here, because we need to drop the hash bucket lock to | |
2150 | * handle the fault. This might be observed in the PID check | |
2151 | * in lookup_pi_state. | |
2152 | */ | |
2153 | retry: | |
2154 | if (get_futex_value_locked(&uval, uaddr)) | |
2155 | goto handle_fault; | |
2156 | ||
2157 | while (1) { | |
2158 | newval = (uval & FUTEX_OWNER_DIED) | newtid; | |
2159 | ||
37a9d912 | 2160 | if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) |
1b7558e4 TG |
2161 | goto handle_fault; |
2162 | if (curval == uval) | |
2163 | break; | |
2164 | uval = curval; | |
2165 | } | |
2166 | ||
2167 | /* | |
2168 | * We fixed up user space. Now we need to fix the pi_state | |
2169 | * itself. | |
2170 | */ | |
d0aa7a70 | 2171 | if (pi_state->owner != NULL) { |
1d615482 | 2172 | raw_spin_lock_irq(&pi_state->owner->pi_lock); |
d0aa7a70 PP |
2173 | WARN_ON(list_empty(&pi_state->list)); |
2174 | list_del_init(&pi_state->list); | |
1d615482 | 2175 | raw_spin_unlock_irq(&pi_state->owner->pi_lock); |
1b7558e4 | 2176 | } |
d0aa7a70 | 2177 | |
cdf71a10 | 2178 | pi_state->owner = newowner; |
d0aa7a70 | 2179 | |
1d615482 | 2180 | raw_spin_lock_irq(&newowner->pi_lock); |
d0aa7a70 | 2181 | WARN_ON(!list_empty(&pi_state->list)); |
cdf71a10 | 2182 | list_add(&pi_state->list, &newowner->pi_state_list); |
1d615482 | 2183 | raw_spin_unlock_irq(&newowner->pi_lock); |
1b7558e4 | 2184 | return 0; |
d0aa7a70 | 2185 | |
d0aa7a70 | 2186 | /* |
1b7558e4 | 2187 | * To handle the page fault we need to drop the hash bucket |
8161239a LJ |
2188 | * lock here. That gives the other task (either the highest priority |
2189 | * waiter itself or the task which stole the rtmutex) the | |
1b7558e4 TG |
2190 | * chance to try the fixup of the pi_state. So once we are |
2191 | * back from handling the fault we need to check the pi_state | |
2192 | * after reacquiring the hash bucket lock and before trying to | |
2193 | * do another fixup. When the fixup has been done already we | |
2194 | * simply return. | |
d0aa7a70 | 2195 | */ |
1b7558e4 TG |
2196 | handle_fault: |
2197 | spin_unlock(q->lock_ptr); | |
778e9a9c | 2198 | |
d0725992 | 2199 | ret = fault_in_user_writeable(uaddr); |
778e9a9c | 2200 | |
1b7558e4 | 2201 | spin_lock(q->lock_ptr); |
778e9a9c | 2202 | |
1b7558e4 TG |
2203 | /* |
2204 | * Check if someone else fixed it for us: | |
2205 | */ | |
2206 | if (pi_state->owner != oldowner) | |
2207 | return 0; | |
2208 | ||
2209 | if (ret) | |
2210 | return ret; | |
2211 | ||
2212 | goto retry; | |
d0aa7a70 PP |
2213 | } |
2214 | ||
72c1bbf3 | 2215 | static long futex_wait_restart(struct restart_block *restart); |
36cf3b5c | 2216 | |
dd973998 DH |
2217 | /** |
2218 | * fixup_owner() - Post lock pi_state and corner case management | |
2219 | * @uaddr: user address of the futex | |
dd973998 DH |
2220 | * @q: futex_q (contains pi_state and access to the rt_mutex) |
2221 | * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0) | |
2222 | * | |
2223 | * After attempting to lock an rt_mutex, this function is called to cleanup | |
2224 | * the pi_state owner as well as handle race conditions that may allow us to | |
2225 | * acquire the lock. Must be called with the hb lock held. | |
2226 | * | |
6c23cbbd RD |
2227 | * Return: |
2228 | * 1 - success, lock taken; | |
2229 | * 0 - success, lock not taken; | |
dd973998 DH |
2230 | * <0 - on error (-EFAULT) |
2231 | */ | |
ae791a2d | 2232 | static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked) |
dd973998 DH |
2233 | { |
2234 | struct task_struct *owner; | |
2235 | int ret = 0; | |
2236 | ||
2237 | if (locked) { | |
2238 | /* | |
2239 | * Got the lock. We might not be the anticipated owner if we | |
2240 | * did a lock-steal - fix up the PI-state in that case: | |
2241 | */ | |
2242 | if (q->pi_state->owner != current) | |
ae791a2d | 2243 | ret = fixup_pi_state_owner(uaddr, q, current); |
dd973998 DH |
2244 | goto out; |
2245 | } | |
2246 | ||
2247 | /* | |
2248 | * Catch the rare case, where the lock was released when we were on the | |
2249 | * way back before we locked the hash bucket. | |
2250 | */ | |
2251 | if (q->pi_state->owner == current) { | |
2252 | /* | |
2253 | * Try to get the rt_mutex now. This might fail as some other | |
2254 | * task acquired the rt_mutex after we removed ourself from the | |
2255 | * rt_mutex waiters list. | |
2256 | */ | |
2257 | if (rt_mutex_trylock(&q->pi_state->pi_mutex)) { | |
2258 | locked = 1; | |
2259 | goto out; | |
2260 | } | |
2261 | ||
2262 | /* | |
2263 | * pi_state is incorrect, some other task did a lock steal and | |
2264 | * we returned due to timeout or signal without taking the | |
8161239a | 2265 | * rt_mutex. Too late. |
dd973998 | 2266 | */ |
b4abf910 | 2267 | raw_spin_lock_irq(&q->pi_state->pi_mutex.wait_lock); |
dd973998 | 2268 | owner = rt_mutex_owner(&q->pi_state->pi_mutex); |
8161239a LJ |
2269 | if (!owner) |
2270 | owner = rt_mutex_next_owner(&q->pi_state->pi_mutex); | |
b4abf910 | 2271 | raw_spin_unlock_irq(&q->pi_state->pi_mutex.wait_lock); |
ae791a2d | 2272 | ret = fixup_pi_state_owner(uaddr, q, owner); |
dd973998 DH |
2273 | goto out; |
2274 | } | |
2275 | ||
2276 | /* | |
2277 | * Paranoia check. If we did not take the lock, then we should not be | |
8161239a | 2278 | * the owner of the rt_mutex. |
dd973998 DH |
2279 | */ |
2280 | if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) | |
2281 | printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p " | |
2282 | "pi-state %p\n", ret, | |
2283 | q->pi_state->pi_mutex.owner, | |
2284 | q->pi_state->owner); | |
2285 | ||
2286 | out: | |
2287 | return ret ? ret : locked; | |
2288 | } | |
2289 | ||
ca5f9524 DH |
2290 | /** |
2291 | * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal | |
2292 | * @hb: the futex hash bucket, must be locked by the caller | |
2293 | * @q: the futex_q to queue up on | |
2294 | * @timeout: the prepared hrtimer_sleeper, or null for no timeout | |
ca5f9524 DH |
2295 | */ |
2296 | static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q, | |
f1a11e05 | 2297 | struct hrtimer_sleeper *timeout) |
ca5f9524 | 2298 | { |
9beba3c5 DH |
2299 | /* |
2300 | * The task state is guaranteed to be set before another task can | |
b92b8b35 | 2301 | * wake it. set_current_state() is implemented using smp_store_mb() and |
9beba3c5 DH |
2302 | * queue_me() calls spin_unlock() upon completion, both serializing |
2303 | * access to the hash list and forcing another memory barrier. | |
2304 | */ | |
f1a11e05 | 2305 | set_current_state(TASK_INTERRUPTIBLE); |
0729e196 | 2306 | queue_me(q, hb); |
ca5f9524 DH |
2307 | |
2308 | /* Arm the timer */ | |
2e4b0d3f | 2309 | if (timeout) |
ca5f9524 | 2310 | hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS); |
ca5f9524 DH |
2311 | |
2312 | /* | |
0729e196 DH |
2313 | * If we have been removed from the hash list, then another task |
2314 | * has tried to wake us, and we can skip the call to schedule(). | |
ca5f9524 DH |
2315 | */ |
2316 | if (likely(!plist_node_empty(&q->list))) { | |
2317 | /* | |
2318 | * If the timer has already expired, current will already be | |
2319 | * flagged for rescheduling. Only call schedule if there | |
2320 | * is no timeout, or if it has yet to expire. | |
2321 | */ | |
2322 | if (!timeout || timeout->task) | |
88c8004f | 2323 | freezable_schedule(); |
ca5f9524 DH |
2324 | } |
2325 | __set_current_state(TASK_RUNNING); | |
2326 | } | |
2327 | ||
f801073f DH |
2328 | /** |
2329 | * futex_wait_setup() - Prepare to wait on a futex | |
2330 | * @uaddr: the futex userspace address | |
2331 | * @val: the expected value | |
b41277dc | 2332 | * @flags: futex flags (FLAGS_SHARED, etc.) |
f801073f DH |
2333 | * @q: the associated futex_q |
2334 | * @hb: storage for hash_bucket pointer to be returned to caller | |
2335 | * | |
2336 | * Setup the futex_q and locate the hash_bucket. Get the futex value and | |
2337 | * compare it with the expected value. Handle atomic faults internally. | |
2338 | * Return with the hb lock held and a q.key reference on success, and unlocked | |
2339 | * with no q.key reference on failure. | |
2340 | * | |
6c23cbbd RD |
2341 | * Return: |
2342 | * 0 - uaddr contains val and hb has been locked; | |
ca4a04cf | 2343 | * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked |
f801073f | 2344 | */ |
b41277dc | 2345 | static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags, |
f801073f | 2346 | struct futex_q *q, struct futex_hash_bucket **hb) |
1da177e4 | 2347 | { |
e2970f2f IM |
2348 | u32 uval; |
2349 | int ret; | |
1da177e4 | 2350 | |
1da177e4 | 2351 | /* |
b2d0994b | 2352 | * Access the page AFTER the hash-bucket is locked. |
1da177e4 LT |
2353 | * Order is important: |
2354 | * | |
2355 | * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val); | |
2356 | * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); } | |
2357 | * | |
2358 | * The basic logical guarantee of a futex is that it blocks ONLY | |
2359 | * if cond(var) is known to be true at the time of blocking, for | |
8fe8f545 ML |
2360 | * any cond. If we locked the hash-bucket after testing *uaddr, that |
2361 | * would open a race condition where we could block indefinitely with | |
1da177e4 LT |
2362 | * cond(var) false, which would violate the guarantee. |
2363 | * | |
8fe8f545 ML |
2364 | * On the other hand, we insert q and release the hash-bucket only |
2365 | * after testing *uaddr. This guarantees that futex_wait() will NOT | |
2366 | * absorb a wakeup if *uaddr does not match the desired values | |
2367 | * while the syscall executes. | |
1da177e4 | 2368 | */ |
f801073f | 2369 | retry: |
9ea71503 | 2370 | ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ); |
f801073f | 2371 | if (unlikely(ret != 0)) |
a5a2a0c7 | 2372 | return ret; |
f801073f DH |
2373 | |
2374 | retry_private: | |
2375 | *hb = queue_lock(q); | |
2376 | ||
e2970f2f | 2377 | ret = get_futex_value_locked(&uval, uaddr); |
1da177e4 | 2378 | |
f801073f | 2379 | if (ret) { |
0d00c7b2 | 2380 | queue_unlock(*hb); |
1da177e4 | 2381 | |
e2970f2f | 2382 | ret = get_user(uval, uaddr); |
e4dc5b7a | 2383 | if (ret) |
f801073f | 2384 | goto out; |
1da177e4 | 2385 | |
b41277dc | 2386 | if (!(flags & FLAGS_SHARED)) |
e4dc5b7a DH |
2387 | goto retry_private; |
2388 | ||
ae791a2d | 2389 | put_futex_key(&q->key); |
e4dc5b7a | 2390 | goto retry; |
1da177e4 | 2391 | } |
ca5f9524 | 2392 | |
f801073f | 2393 | if (uval != val) { |
0d00c7b2 | 2394 | queue_unlock(*hb); |
f801073f | 2395 | ret = -EWOULDBLOCK; |
2fff78c7 | 2396 | } |
1da177e4 | 2397 | |
f801073f DH |
2398 | out: |
2399 | if (ret) | |
ae791a2d | 2400 | put_futex_key(&q->key); |
f801073f DH |
2401 | return ret; |
2402 | } | |
2403 | ||
b41277dc DH |
2404 | static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val, |
2405 | ktime_t *abs_time, u32 bitset) | |
f801073f DH |
2406 | { |
2407 | struct hrtimer_sleeper timeout, *to = NULL; | |
f801073f DH |
2408 | struct restart_block *restart; |
2409 | struct futex_hash_bucket *hb; | |
5bdb05f9 | 2410 | struct futex_q q = futex_q_init; |
f801073f DH |
2411 | int ret; |
2412 | ||
2413 | if (!bitset) | |
2414 | return -EINVAL; | |
f801073f DH |
2415 | q.bitset = bitset; |
2416 | ||
2417 | if (abs_time) { | |
2418 | to = &timeout; | |
2419 | ||
b41277dc DH |
2420 | hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ? |
2421 | CLOCK_REALTIME : CLOCK_MONOTONIC, | |
2422 | HRTIMER_MODE_ABS); | |
f801073f DH |
2423 | hrtimer_init_sleeper(to, current); |
2424 | hrtimer_set_expires_range_ns(&to->timer, *abs_time, | |
2425 | current->timer_slack_ns); | |
2426 | } | |
2427 | ||
d58e6576 | 2428 | retry: |
7ada876a DH |
2429 | /* |
2430 | * Prepare to wait on uaddr. On success, holds hb lock and increments | |
2431 | * q.key refs. | |
2432 | */ | |
b41277dc | 2433 | ret = futex_wait_setup(uaddr, val, flags, &q, &hb); |
f801073f DH |
2434 | if (ret) |
2435 | goto out; | |
2436 | ||
ca5f9524 | 2437 | /* queue_me and wait for wakeup, timeout, or a signal. */ |
f1a11e05 | 2438 | futex_wait_queue_me(hb, &q, to); |
1da177e4 LT |
2439 | |
2440 | /* If we were woken (and unqueued), we succeeded, whatever. */ | |
2fff78c7 | 2441 | ret = 0; |
7ada876a | 2442 | /* unqueue_me() drops q.key ref */ |
1da177e4 | 2443 | if (!unqueue_me(&q)) |
7ada876a | 2444 | goto out; |
2fff78c7 | 2445 | ret = -ETIMEDOUT; |
ca5f9524 | 2446 | if (to && !to->task) |
7ada876a | 2447 | goto out; |
72c1bbf3 | 2448 | |
e2970f2f | 2449 | /* |
d58e6576 TG |
2450 | * We expect signal_pending(current), but we might be the |
2451 | * victim of a spurious wakeup as well. | |
e2970f2f | 2452 | */ |
7ada876a | 2453 | if (!signal_pending(current)) |
d58e6576 | 2454 | goto retry; |
d58e6576 | 2455 | |
2fff78c7 | 2456 | ret = -ERESTARTSYS; |
c19384b5 | 2457 | if (!abs_time) |
7ada876a | 2458 | goto out; |
1da177e4 | 2459 | |
f56141e3 | 2460 | restart = ¤t->restart_block; |
2fff78c7 | 2461 | restart->fn = futex_wait_restart; |
a3c74c52 | 2462 | restart->futex.uaddr = uaddr; |
2fff78c7 | 2463 | restart->futex.val = val; |
2456e855 | 2464 | restart->futex.time = *abs_time; |
2fff78c7 | 2465 | restart->futex.bitset = bitset; |
0cd9c649 | 2466 | restart->futex.flags = flags | FLAGS_HAS_TIMEOUT; |
42d35d48 | 2467 | |
2fff78c7 PZ |
2468 | ret = -ERESTART_RESTARTBLOCK; |
2469 | ||
42d35d48 | 2470 | out: |
ca5f9524 DH |
2471 | if (to) { |
2472 | hrtimer_cancel(&to->timer); | |
2473 | destroy_hrtimer_on_stack(&to->timer); | |
2474 | } | |
c87e2837 IM |
2475 | return ret; |
2476 | } | |
2477 | ||
72c1bbf3 NP |
2478 | |
2479 | static long futex_wait_restart(struct restart_block *restart) | |
2480 | { | |
a3c74c52 | 2481 | u32 __user *uaddr = restart->futex.uaddr; |
a72188d8 | 2482 | ktime_t t, *tp = NULL; |
72c1bbf3 | 2483 | |
a72188d8 | 2484 | if (restart->futex.flags & FLAGS_HAS_TIMEOUT) { |
2456e855 | 2485 | t = restart->futex.time; |
a72188d8 DH |
2486 | tp = &t; |
2487 | } | |
72c1bbf3 | 2488 | restart->fn = do_no_restart_syscall; |
b41277dc DH |
2489 | |
2490 | return (long)futex_wait(uaddr, restart->futex.flags, | |
2491 | restart->futex.val, tp, restart->futex.bitset); | |
72c1bbf3 NP |
2492 | } |
2493 | ||
2494 | ||
c87e2837 IM |
2495 | /* |
2496 | * Userspace tried a 0 -> TID atomic transition of the futex value | |
2497 | * and failed. The kernel side here does the whole locking operation: | |
767f509c DB |
2498 | * if there are waiters then it will block as a consequence of relying |
2499 | * on rt-mutexes, it does PI, etc. (Due to races the kernel might see | |
2500 | * a 0 value of the futex too.). | |
2501 | * | |
2502 | * Also serves as futex trylock_pi()'ing, and due semantics. | |
c87e2837 | 2503 | */ |
996636dd | 2504 | static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, |
b41277dc | 2505 | ktime_t *time, int trylock) |
c87e2837 | 2506 | { |
c5780e97 | 2507 | struct hrtimer_sleeper timeout, *to = NULL; |
c87e2837 | 2508 | struct futex_hash_bucket *hb; |
5bdb05f9 | 2509 | struct futex_q q = futex_q_init; |
dd973998 | 2510 | int res, ret; |
c87e2837 IM |
2511 | |
2512 | if (refill_pi_state_cache()) | |
2513 | return -ENOMEM; | |
2514 | ||
c19384b5 | 2515 | if (time) { |
c5780e97 | 2516 | to = &timeout; |
237fc6e7 TG |
2517 | hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME, |
2518 | HRTIMER_MODE_ABS); | |
c5780e97 | 2519 | hrtimer_init_sleeper(to, current); |
cc584b21 | 2520 | hrtimer_set_expires(&to->timer, *time); |
c5780e97 TG |
2521 | } |
2522 | ||
42d35d48 | 2523 | retry: |
9ea71503 | 2524 | ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE); |
c87e2837 | 2525 | if (unlikely(ret != 0)) |
42d35d48 | 2526 | goto out; |
c87e2837 | 2527 | |
e4dc5b7a | 2528 | retry_private: |
82af7aca | 2529 | hb = queue_lock(&q); |
c87e2837 | 2530 | |
bab5bc9e | 2531 | ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0); |
c87e2837 | 2532 | if (unlikely(ret)) { |
767f509c DB |
2533 | /* |
2534 | * Atomic work succeeded and we got the lock, | |
2535 | * or failed. Either way, we do _not_ block. | |
2536 | */ | |
778e9a9c | 2537 | switch (ret) { |
1a52084d DH |
2538 | case 1: |
2539 | /* We got the lock. */ | |
2540 | ret = 0; | |
2541 | goto out_unlock_put_key; | |
2542 | case -EFAULT: | |
2543 | goto uaddr_faulted; | |
778e9a9c AK |
2544 | case -EAGAIN: |
2545 | /* | |
af54d6a1 TG |
2546 | * Two reasons for this: |
2547 | * - Task is exiting and we just wait for the | |
2548 | * exit to complete. | |
2549 | * - The user space value changed. | |
778e9a9c | 2550 | */ |
0d00c7b2 | 2551 | queue_unlock(hb); |
ae791a2d | 2552 | put_futex_key(&q.key); |
778e9a9c AK |
2553 | cond_resched(); |
2554 | goto retry; | |
778e9a9c | 2555 | default: |
42d35d48 | 2556 | goto out_unlock_put_key; |
c87e2837 | 2557 | } |
c87e2837 IM |
2558 | } |
2559 | ||
2560 | /* | |
2561 | * Only actually queue now that the atomic ops are done: | |
2562 | */ | |
82af7aca | 2563 | queue_me(&q, hb); |
c87e2837 | 2564 | |
c87e2837 IM |
2565 | WARN_ON(!q.pi_state); |
2566 | /* | |
2567 | * Block on the PI mutex: | |
2568 | */ | |
c051b21f TG |
2569 | if (!trylock) { |
2570 | ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to); | |
2571 | } else { | |
c87e2837 IM |
2572 | ret = rt_mutex_trylock(&q.pi_state->pi_mutex); |
2573 | /* Fixup the trylock return value: */ | |
2574 | ret = ret ? 0 : -EWOULDBLOCK; | |
2575 | } | |
2576 | ||
a99e4e41 | 2577 | spin_lock(q.lock_ptr); |
dd973998 DH |
2578 | /* |
2579 | * Fixup the pi_state owner and possibly acquire the lock if we | |
2580 | * haven't already. | |
2581 | */ | |
ae791a2d | 2582 | res = fixup_owner(uaddr, &q, !ret); |
dd973998 DH |
2583 | /* |
2584 | * If fixup_owner() returned an error, proprogate that. If it acquired | |
2585 | * the lock, clear our -ETIMEDOUT or -EINTR. | |
2586 | */ | |
2587 | if (res) | |
2588 | ret = (res < 0) ? res : 0; | |
c87e2837 | 2589 | |
e8f6386c | 2590 | /* |
dd973998 DH |
2591 | * If fixup_owner() faulted and was unable to handle the fault, unlock |
2592 | * it and return the fault to userspace. | |
e8f6386c DH |
2593 | */ |
2594 | if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) | |
2595 | rt_mutex_unlock(&q.pi_state->pi_mutex); | |
2596 | ||
778e9a9c AK |
2597 | /* Unqueue and drop the lock */ |
2598 | unqueue_me_pi(&q); | |
c87e2837 | 2599 | |
5ecb01cf | 2600 | goto out_put_key; |
c87e2837 | 2601 | |
42d35d48 | 2602 | out_unlock_put_key: |
0d00c7b2 | 2603 | queue_unlock(hb); |
c87e2837 | 2604 | |
42d35d48 | 2605 | out_put_key: |
ae791a2d | 2606 | put_futex_key(&q.key); |
42d35d48 | 2607 | out: |
237fc6e7 TG |
2608 | if (to) |
2609 | destroy_hrtimer_on_stack(&to->timer); | |
dd973998 | 2610 | return ret != -EINTR ? ret : -ERESTARTNOINTR; |
c87e2837 | 2611 | |
42d35d48 | 2612 | uaddr_faulted: |
0d00c7b2 | 2613 | queue_unlock(hb); |
778e9a9c | 2614 | |
d0725992 | 2615 | ret = fault_in_user_writeable(uaddr); |
e4dc5b7a DH |
2616 | if (ret) |
2617 | goto out_put_key; | |
c87e2837 | 2618 | |
b41277dc | 2619 | if (!(flags & FLAGS_SHARED)) |
e4dc5b7a DH |
2620 | goto retry_private; |
2621 | ||
ae791a2d | 2622 | put_futex_key(&q.key); |
e4dc5b7a | 2623 | goto retry; |
c87e2837 IM |
2624 | } |
2625 | ||
c87e2837 IM |
2626 | /* |
2627 | * Userspace attempted a TID -> 0 atomic transition, and failed. | |
2628 | * This is the in-kernel slowpath: we look up the PI state (if any), | |
2629 | * and do the rt-mutex unlock. | |
2630 | */ | |
b41277dc | 2631 | static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags) |
c87e2837 | 2632 | { |
ccf9e6a8 | 2633 | u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current); |
38d47c1b | 2634 | union futex_key key = FUTEX_KEY_INIT; |
ccf9e6a8 TG |
2635 | struct futex_hash_bucket *hb; |
2636 | struct futex_q *match; | |
e4dc5b7a | 2637 | int ret; |
c87e2837 IM |
2638 | |
2639 | retry: | |
2640 | if (get_user(uval, uaddr)) | |
2641 | return -EFAULT; | |
2642 | /* | |
2643 | * We release only a lock we actually own: | |
2644 | */ | |
c0c9ed15 | 2645 | if ((uval & FUTEX_TID_MASK) != vpid) |
c87e2837 | 2646 | return -EPERM; |
c87e2837 | 2647 | |
9ea71503 | 2648 | ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE); |
ccf9e6a8 TG |
2649 | if (ret) |
2650 | return ret; | |
c87e2837 IM |
2651 | |
2652 | hb = hash_futex(&key); | |
2653 | spin_lock(&hb->lock); | |
2654 | ||
c87e2837 | 2655 | /* |
ccf9e6a8 TG |
2656 | * Check waiters first. We do not trust user space values at |
2657 | * all and we at least want to know if user space fiddled | |
2658 | * with the futex value instead of blindly unlocking. | |
c87e2837 | 2659 | */ |
ccf9e6a8 TG |
2660 | match = futex_top_waiter(hb, &key); |
2661 | if (match) { | |
802ab58d SAS |
2662 | ret = wake_futex_pi(uaddr, uval, match, hb); |
2663 | /* | |
2664 | * In case of success wake_futex_pi dropped the hash | |
2665 | * bucket lock. | |
2666 | */ | |
2667 | if (!ret) | |
2668 | goto out_putkey; | |
c87e2837 | 2669 | /* |
ccf9e6a8 TG |
2670 | * The atomic access to the futex value generated a |
2671 | * pagefault, so retry the user-access and the wakeup: | |
c87e2837 IM |
2672 | */ |
2673 | if (ret == -EFAULT) | |
2674 | goto pi_faulted; | |
89e9e66b SAS |
2675 | /* |
2676 | * A unconditional UNLOCK_PI op raced against a waiter | |
2677 | * setting the FUTEX_WAITERS bit. Try again. | |
2678 | */ | |
2679 | if (ret == -EAGAIN) { | |
2680 | spin_unlock(&hb->lock); | |
2681 | put_futex_key(&key); | |
2682 | goto retry; | |
2683 | } | |
802ab58d SAS |
2684 | /* |
2685 | * wake_futex_pi has detected invalid state. Tell user | |
2686 | * space. | |
2687 | */ | |
c87e2837 IM |
2688 | goto out_unlock; |
2689 | } | |
ccf9e6a8 | 2690 | |
c87e2837 | 2691 | /* |
ccf9e6a8 TG |
2692 | * We have no kernel internal state, i.e. no waiters in the |
2693 | * kernel. Waiters which are about to queue themselves are stuck | |
2694 | * on hb->lock. So we can safely ignore them. We do neither | |
2695 | * preserve the WAITERS bit not the OWNER_DIED one. We are the | |
2696 | * owner. | |
c87e2837 | 2697 | */ |
ccf9e6a8 | 2698 | if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) |
13fbca4c | 2699 | goto pi_faulted; |
c87e2837 | 2700 | |
ccf9e6a8 TG |
2701 | /* |
2702 | * If uval has changed, let user space handle it. | |
2703 | */ | |
2704 | ret = (curval == uval) ? 0 : -EAGAIN; | |
2705 | ||
c87e2837 IM |
2706 | out_unlock: |
2707 | spin_unlock(&hb->lock); | |
802ab58d | 2708 | out_putkey: |
ae791a2d | 2709 | put_futex_key(&key); |
c87e2837 IM |
2710 | return ret; |
2711 | ||
2712 | pi_faulted: | |
778e9a9c | 2713 | spin_unlock(&hb->lock); |
ae791a2d | 2714 | put_futex_key(&key); |
c87e2837 | 2715 | |
d0725992 | 2716 | ret = fault_in_user_writeable(uaddr); |
b5686363 | 2717 | if (!ret) |
c87e2837 IM |
2718 | goto retry; |
2719 | ||
1da177e4 LT |
2720 | return ret; |
2721 | } | |
2722 | ||
52400ba9 DH |
2723 | /** |
2724 | * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex | |
2725 | * @hb: the hash_bucket futex_q was original enqueued on | |
2726 | * @q: the futex_q woken while waiting to be requeued | |
2727 | * @key2: the futex_key of the requeue target futex | |
2728 | * @timeout: the timeout associated with the wait (NULL if none) | |
2729 | * | |
2730 | * Detect if the task was woken on the initial futex as opposed to the requeue | |
2731 | * target futex. If so, determine if it was a timeout or a signal that caused | |
2732 | * the wakeup and return the appropriate error code to the caller. Must be | |
2733 | * called with the hb lock held. | |
2734 | * | |
6c23cbbd RD |
2735 | * Return: |
2736 | * 0 = no early wakeup detected; | |
2737 | * <0 = -ETIMEDOUT or -ERESTARTNOINTR | |
52400ba9 DH |
2738 | */ |
2739 | static inline | |
2740 | int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb, | |
2741 | struct futex_q *q, union futex_key *key2, | |
2742 | struct hrtimer_sleeper *timeout) | |
2743 | { | |
2744 | int ret = 0; | |
2745 | ||
2746 | /* | |
2747 | * With the hb lock held, we avoid races while we process the wakeup. | |
2748 | * We only need to hold hb (and not hb2) to ensure atomicity as the | |
2749 | * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb. | |
2750 | * It can't be requeued from uaddr2 to something else since we don't | |
2751 | * support a PI aware source futex for requeue. | |
2752 | */ | |
2753 | if (!match_futex(&q->key, key2)) { | |
2754 | WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr)); | |
2755 | /* | |
2756 | * We were woken prior to requeue by a timeout or a signal. | |
2757 | * Unqueue the futex_q and determine which it was. | |
2758 | */ | |
2e12978a | 2759 | plist_del(&q->list, &hb->chain); |
11d4616b | 2760 | hb_waiters_dec(hb); |
52400ba9 | 2761 | |
d58e6576 | 2762 | /* Handle spurious wakeups gracefully */ |
11df6ddd | 2763 | ret = -EWOULDBLOCK; |
52400ba9 DH |
2764 | if (timeout && !timeout->task) |
2765 | ret = -ETIMEDOUT; | |
d58e6576 | 2766 | else if (signal_pending(current)) |
1c840c14 | 2767 | ret = -ERESTARTNOINTR; |
52400ba9 DH |
2768 | } |
2769 | return ret; | |
2770 | } | |
2771 | ||
2772 | /** | |
2773 | * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2 | |
56ec1607 | 2774 | * @uaddr: the futex we initially wait on (non-pi) |
b41277dc | 2775 | * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be |
ab51fbab | 2776 | * the same type, no requeueing from private to shared, etc. |
52400ba9 DH |
2777 | * @val: the expected value of uaddr |
2778 | * @abs_time: absolute timeout | |
56ec1607 | 2779 | * @bitset: 32 bit wakeup bitset set by userspace, defaults to all |
52400ba9 DH |
2780 | * @uaddr2: the pi futex we will take prior to returning to user-space |
2781 | * | |
2782 | * The caller will wait on uaddr and will be requeued by futex_requeue() to | |
6f7b0a2a DH |
2783 | * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake |
2784 | * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to | |
2785 | * userspace. This ensures the rt_mutex maintains an owner when it has waiters; | |
2786 | * without one, the pi logic would not know which task to boost/deboost, if | |
2787 | * there was a need to. | |
52400ba9 DH |
2788 | * |
2789 | * We call schedule in futex_wait_queue_me() when we enqueue and return there | |
6c23cbbd | 2790 | * via the following-- |
52400ba9 | 2791 | * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue() |
cc6db4e6 DH |
2792 | * 2) wakeup on uaddr2 after a requeue |
2793 | * 3) signal | |
2794 | * 4) timeout | |
52400ba9 | 2795 | * |
cc6db4e6 | 2796 | * If 3, cleanup and return -ERESTARTNOINTR. |
52400ba9 DH |
2797 | * |
2798 | * If 2, we may then block on trying to take the rt_mutex and return via: | |
2799 | * 5) successful lock | |
2800 | * 6) signal | |
2801 | * 7) timeout | |
2802 | * 8) other lock acquisition failure | |
2803 | * | |
cc6db4e6 | 2804 | * If 6, return -EWOULDBLOCK (restarting the syscall would do the same). |
52400ba9 DH |
2805 | * |
2806 | * If 4 or 7, we cleanup and return with -ETIMEDOUT. | |
2807 | * | |
6c23cbbd RD |
2808 | * Return: |
2809 | * 0 - On success; | |
52400ba9 DH |
2810 | * <0 - On error |
2811 | */ | |
b41277dc | 2812 | static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags, |
52400ba9 | 2813 | u32 val, ktime_t *abs_time, u32 bitset, |
b41277dc | 2814 | u32 __user *uaddr2) |
52400ba9 DH |
2815 | { |
2816 | struct hrtimer_sleeper timeout, *to = NULL; | |
2817 | struct rt_mutex_waiter rt_waiter; | |
2818 | struct rt_mutex *pi_mutex = NULL; | |
52400ba9 | 2819 | struct futex_hash_bucket *hb; |
5bdb05f9 DH |
2820 | union futex_key key2 = FUTEX_KEY_INIT; |
2821 | struct futex_q q = futex_q_init; | |
52400ba9 | 2822 | int res, ret; |
52400ba9 | 2823 | |
6f7b0a2a DH |
2824 | if (uaddr == uaddr2) |
2825 | return -EINVAL; | |
2826 | ||
52400ba9 DH |
2827 | if (!bitset) |
2828 | return -EINVAL; | |
2829 | ||
2830 | if (abs_time) { | |
2831 | to = &timeout; | |
b41277dc DH |
2832 | hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ? |
2833 | CLOCK_REALTIME : CLOCK_MONOTONIC, | |
2834 | HRTIMER_MODE_ABS); | |
52400ba9 DH |
2835 | hrtimer_init_sleeper(to, current); |
2836 | hrtimer_set_expires_range_ns(&to->timer, *abs_time, | |
2837 | current->timer_slack_ns); | |
2838 | } | |
2839 | ||
2840 | /* | |
2841 | * The waiter is allocated on our stack, manipulated by the requeue | |
2842 | * code while we sleep on uaddr. | |
2843 | */ | |
2844 | debug_rt_mutex_init_waiter(&rt_waiter); | |
fb00aca4 PZ |
2845 | RB_CLEAR_NODE(&rt_waiter.pi_tree_entry); |
2846 | RB_CLEAR_NODE(&rt_waiter.tree_entry); | |
52400ba9 DH |
2847 | rt_waiter.task = NULL; |
2848 | ||
9ea71503 | 2849 | ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE); |
52400ba9 DH |
2850 | if (unlikely(ret != 0)) |
2851 | goto out; | |
2852 | ||
84bc4af5 DH |
2853 | q.bitset = bitset; |
2854 | q.rt_waiter = &rt_waiter; | |
2855 | q.requeue_pi_key = &key2; | |
2856 | ||
7ada876a DH |
2857 | /* |
2858 | * Prepare to wait on uaddr. On success, increments q.key (key1) ref | |
2859 | * count. | |
2860 | */ | |
b41277dc | 2861 | ret = futex_wait_setup(uaddr, val, flags, &q, &hb); |
c8b15a70 TG |
2862 | if (ret) |
2863 | goto out_key2; | |
52400ba9 | 2864 | |
e9c243a5 TG |
2865 | /* |
2866 | * The check above which compares uaddrs is not sufficient for | |
2867 | * shared futexes. We need to compare the keys: | |
2868 | */ | |
2869 | if (match_futex(&q.key, &key2)) { | |
13c42c2f | 2870 | queue_unlock(hb); |
e9c243a5 TG |
2871 | ret = -EINVAL; |
2872 | goto out_put_keys; | |
2873 | } | |
2874 | ||
52400ba9 | 2875 | /* Queue the futex_q, drop the hb lock, wait for wakeup. */ |
f1a11e05 | 2876 | futex_wait_queue_me(hb, &q, to); |
52400ba9 DH |
2877 | |
2878 | spin_lock(&hb->lock); | |
2879 | ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to); | |
2880 | spin_unlock(&hb->lock); | |
2881 | if (ret) | |
2882 | goto out_put_keys; | |
2883 | ||
2884 | /* | |
2885 | * In order for us to be here, we know our q.key == key2, and since | |
2886 | * we took the hb->lock above, we also know that futex_requeue() has | |
2887 | * completed and we no longer have to concern ourselves with a wakeup | |
7ada876a DH |
2888 | * race with the atomic proxy lock acquisition by the requeue code. The |
2889 | * futex_requeue dropped our key1 reference and incremented our key2 | |
2890 | * reference count. | |
52400ba9 DH |
2891 | */ |
2892 | ||
2893 | /* Check if the requeue code acquired the second futex for us. */ | |
2894 | if (!q.rt_waiter) { | |
2895 | /* | |
2896 | * Got the lock. We might not be the anticipated owner if we | |
2897 | * did a lock-steal - fix up the PI-state in that case. | |
2898 | */ | |
2899 | if (q.pi_state && (q.pi_state->owner != current)) { | |
2900 | spin_lock(q.lock_ptr); | |
ae791a2d | 2901 | ret = fixup_pi_state_owner(uaddr2, &q, current); |
fb75a428 TG |
2902 | /* |
2903 | * Drop the reference to the pi state which | |
2904 | * the requeue_pi() code acquired for us. | |
2905 | */ | |
29e9ee5d | 2906 | put_pi_state(q.pi_state); |
52400ba9 DH |
2907 | spin_unlock(q.lock_ptr); |
2908 | } | |
2909 | } else { | |
2910 | /* | |
2911 | * We have been woken up by futex_unlock_pi(), a timeout, or a | |
2912 | * signal. futex_unlock_pi() will not destroy the lock_ptr nor | |
2913 | * the pi_state. | |
2914 | */ | |
f27071cb | 2915 | WARN_ON(!q.pi_state); |
52400ba9 | 2916 | pi_mutex = &q.pi_state->pi_mutex; |
c051b21f | 2917 | ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter); |
52400ba9 DH |
2918 | debug_rt_mutex_free_waiter(&rt_waiter); |
2919 | ||
2920 | spin_lock(q.lock_ptr); | |
2921 | /* | |
2922 | * Fixup the pi_state owner and possibly acquire the lock if we | |
2923 | * haven't already. | |
2924 | */ | |
ae791a2d | 2925 | res = fixup_owner(uaddr2, &q, !ret); |
52400ba9 DH |
2926 | /* |
2927 | * If fixup_owner() returned an error, proprogate that. If it | |
56ec1607 | 2928 | * acquired the lock, clear -ETIMEDOUT or -EINTR. |
52400ba9 DH |
2929 | */ |
2930 | if (res) | |
2931 | ret = (res < 0) ? res : 0; | |
2932 | ||
2933 | /* Unqueue and drop the lock. */ | |
2934 | unqueue_me_pi(&q); | |
2935 | } | |
2936 | ||
2937 | /* | |
2938 | * If fixup_pi_state_owner() faulted and was unable to handle the | |
2939 | * fault, unlock the rt_mutex and return the fault to userspace. | |
2940 | */ | |
2941 | if (ret == -EFAULT) { | |
b6070a8d | 2942 | if (pi_mutex && rt_mutex_owner(pi_mutex) == current) |
52400ba9 DH |
2943 | rt_mutex_unlock(pi_mutex); |
2944 | } else if (ret == -EINTR) { | |
52400ba9 | 2945 | /* |
cc6db4e6 DH |
2946 | * We've already been requeued, but cannot restart by calling |
2947 | * futex_lock_pi() directly. We could restart this syscall, but | |
2948 | * it would detect that the user space "val" changed and return | |
2949 | * -EWOULDBLOCK. Save the overhead of the restart and return | |
2950 | * -EWOULDBLOCK directly. | |
52400ba9 | 2951 | */ |
2070887f | 2952 | ret = -EWOULDBLOCK; |
52400ba9 DH |
2953 | } |
2954 | ||
2955 | out_put_keys: | |
ae791a2d | 2956 | put_futex_key(&q.key); |
c8b15a70 | 2957 | out_key2: |
ae791a2d | 2958 | put_futex_key(&key2); |
52400ba9 DH |
2959 | |
2960 | out: | |
2961 | if (to) { | |
2962 | hrtimer_cancel(&to->timer); | |
2963 | destroy_hrtimer_on_stack(&to->timer); | |
2964 | } | |
2965 | return ret; | |
2966 | } | |
2967 | ||
0771dfef IM |
2968 | /* |
2969 | * Support for robust futexes: the kernel cleans up held futexes at | |
2970 | * thread exit time. | |
2971 | * | |
2972 | * Implementation: user-space maintains a per-thread list of locks it | |
2973 | * is holding. Upon do_exit(), the kernel carefully walks this list, | |
2974 | * and marks all locks that are owned by this thread with the | |
c87e2837 | 2975 | * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is |
0771dfef IM |
2976 | * always manipulated with the lock held, so the list is private and |
2977 | * per-thread. Userspace also maintains a per-thread 'list_op_pending' | |
2978 | * field, to allow the kernel to clean up if the thread dies after | |
2979 | * acquiring the lock, but just before it could have added itself to | |
2980 | * the list. There can only be one such pending lock. | |
2981 | */ | |
2982 | ||
2983 | /** | |
d96ee56c DH |
2984 | * sys_set_robust_list() - Set the robust-futex list head of a task |
2985 | * @head: pointer to the list-head | |
2986 | * @len: length of the list-head, as userspace expects | |
0771dfef | 2987 | */ |
836f92ad HC |
2988 | SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head, |
2989 | size_t, len) | |
0771dfef | 2990 | { |
a0c1e907 TG |
2991 | if (!futex_cmpxchg_enabled) |
2992 | return -ENOSYS; | |
0771dfef IM |
2993 | /* |
2994 | * The kernel knows only one size for now: | |
2995 | */ | |
2996 | if (unlikely(len != sizeof(*head))) | |
2997 | return -EINVAL; | |
2998 | ||
2999 | current->robust_list = head; | |
3000 | ||
3001 | return 0; | |
3002 | } | |
3003 | ||
3004 | /** | |
d96ee56c DH |
3005 | * sys_get_robust_list() - Get the robust-futex list head of a task |
3006 | * @pid: pid of the process [zero for current task] | |
3007 | * @head_ptr: pointer to a list-head pointer, the kernel fills it in | |
3008 | * @len_ptr: pointer to a length field, the kernel fills in the header size | |
0771dfef | 3009 | */ |
836f92ad HC |
3010 | SYSCALL_DEFINE3(get_robust_list, int, pid, |
3011 | struct robust_list_head __user * __user *, head_ptr, | |
3012 | size_t __user *, len_ptr) | |
0771dfef | 3013 | { |
ba46df98 | 3014 | struct robust_list_head __user *head; |
0771dfef | 3015 | unsigned long ret; |
bdbb776f | 3016 | struct task_struct *p; |
0771dfef | 3017 | |
a0c1e907 TG |
3018 | if (!futex_cmpxchg_enabled) |
3019 | return -ENOSYS; | |
3020 | ||
bdbb776f KC |
3021 | rcu_read_lock(); |
3022 | ||
3023 | ret = -ESRCH; | |
0771dfef | 3024 | if (!pid) |
bdbb776f | 3025 | p = current; |
0771dfef | 3026 | else { |
228ebcbe | 3027 | p = find_task_by_vpid(pid); |
0771dfef IM |
3028 | if (!p) |
3029 | goto err_unlock; | |
0771dfef IM |
3030 | } |
3031 | ||
bdbb776f | 3032 | ret = -EPERM; |
caaee623 | 3033 | if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS)) |
bdbb776f KC |
3034 | goto err_unlock; |
3035 | ||
3036 | head = p->robust_list; | |
3037 | rcu_read_unlock(); | |
3038 | ||
0771dfef IM |
3039 | if (put_user(sizeof(*head), len_ptr)) |
3040 | return -EFAULT; | |
3041 | return put_user(head, head_ptr); | |
3042 | ||
3043 | err_unlock: | |
aaa2a97e | 3044 | rcu_read_unlock(); |
0771dfef IM |
3045 | |
3046 | return ret; | |
3047 | } | |
3048 | ||
3049 | /* | |
3050 | * Process a futex-list entry, check whether it's owned by the | |
3051 | * dying task, and do notification if so: | |
3052 | */ | |
e3f2ddea | 3053 | int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi) |
0771dfef | 3054 | { |
7cfdaf38 | 3055 | u32 uval, uninitialized_var(nval), mval; |
0771dfef | 3056 | |
8f17d3a5 IM |
3057 | retry: |
3058 | if (get_user(uval, uaddr)) | |
0771dfef IM |
3059 | return -1; |
3060 | ||
b488893a | 3061 | if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) { |
0771dfef IM |
3062 | /* |
3063 | * Ok, this dying thread is truly holding a futex | |
3064 | * of interest. Set the OWNER_DIED bit atomically | |
3065 | * via cmpxchg, and if the value had FUTEX_WAITERS | |
3066 | * set, wake up a waiter (if any). (We have to do a | |
3067 | * futex_wake() even if OWNER_DIED is already set - | |
3068 | * to handle the rare but possible case of recursive | |
3069 | * thread-death.) The rest of the cleanup is done in | |
3070 | * userspace. | |
3071 | */ | |
e3f2ddea | 3072 | mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED; |
6e0aa9f8 TG |
3073 | /* |
3074 | * We are not holding a lock here, but we want to have | |
3075 | * the pagefault_disable/enable() protection because | |
3076 | * we want to handle the fault gracefully. If the | |
3077 | * access fails we try to fault in the futex with R/W | |
3078 | * verification via get_user_pages. get_user() above | |
3079 | * does not guarantee R/W access. If that fails we | |
3080 | * give up and leave the futex locked. | |
3081 | */ | |
3082 | if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) { | |
3083 | if (fault_in_user_writeable(uaddr)) | |
3084 | return -1; | |
3085 | goto retry; | |
3086 | } | |
c87e2837 | 3087 | if (nval != uval) |
8f17d3a5 | 3088 | goto retry; |
0771dfef | 3089 | |
e3f2ddea IM |
3090 | /* |
3091 | * Wake robust non-PI futexes here. The wakeup of | |
3092 | * PI futexes happens in exit_pi_state(): | |
3093 | */ | |
36cf3b5c | 3094 | if (!pi && (uval & FUTEX_WAITERS)) |
c2f9f201 | 3095 | futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY); |
0771dfef IM |
3096 | } |
3097 | return 0; | |
3098 | } | |
3099 | ||
e3f2ddea IM |
3100 | /* |
3101 | * Fetch a robust-list pointer. Bit 0 signals PI futexes: | |
3102 | */ | |
3103 | static inline int fetch_robust_entry(struct robust_list __user **entry, | |
ba46df98 | 3104 | struct robust_list __user * __user *head, |
1dcc41bb | 3105 | unsigned int *pi) |
e3f2ddea IM |
3106 | { |
3107 | unsigned long uentry; | |
3108 | ||
ba46df98 | 3109 | if (get_user(uentry, (unsigned long __user *)head)) |
e3f2ddea IM |
3110 | return -EFAULT; |
3111 | ||
ba46df98 | 3112 | *entry = (void __user *)(uentry & ~1UL); |
e3f2ddea IM |
3113 | *pi = uentry & 1; |
3114 | ||
3115 | return 0; | |
3116 | } | |
3117 | ||
0771dfef IM |
3118 | /* |
3119 | * Walk curr->robust_list (very carefully, it's a userspace list!) | |
3120 | * and mark any locks found there dead, and notify any waiters. | |
3121 | * | |
3122 | * We silently return on any sign of list-walking problem. | |
3123 | */ | |
3124 | void exit_robust_list(struct task_struct *curr) | |
3125 | { | |
3126 | struct robust_list_head __user *head = curr->robust_list; | |
9f96cb1e | 3127 | struct robust_list __user *entry, *next_entry, *pending; |
4c115e95 DH |
3128 | unsigned int limit = ROBUST_LIST_LIMIT, pi, pip; |
3129 | unsigned int uninitialized_var(next_pi); | |
0771dfef | 3130 | unsigned long futex_offset; |
9f96cb1e | 3131 | int rc; |
0771dfef | 3132 | |
a0c1e907 TG |
3133 | if (!futex_cmpxchg_enabled) |
3134 | return; | |
3135 | ||
0771dfef IM |
3136 | /* |
3137 | * Fetch the list head (which was registered earlier, via | |
3138 | * sys_set_robust_list()): | |
3139 | */ | |
e3f2ddea | 3140 | if (fetch_robust_entry(&entry, &head->list.next, &pi)) |
0771dfef IM |
3141 | return; |
3142 | /* | |
3143 | * Fetch the relative futex offset: | |
3144 | */ | |
3145 | if (get_user(futex_offset, &head->futex_offset)) | |
3146 | return; | |
3147 | /* | |
3148 | * Fetch any possibly pending lock-add first, and handle it | |
3149 | * if it exists: | |
3150 | */ | |
e3f2ddea | 3151 | if (fetch_robust_entry(&pending, &head->list_op_pending, &pip)) |
0771dfef | 3152 | return; |
e3f2ddea | 3153 | |
9f96cb1e | 3154 | next_entry = NULL; /* avoid warning with gcc */ |
0771dfef | 3155 | while (entry != &head->list) { |
9f96cb1e MS |
3156 | /* |
3157 | * Fetch the next entry in the list before calling | |
3158 | * handle_futex_death: | |
3159 | */ | |
3160 | rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi); | |
0771dfef IM |
3161 | /* |
3162 | * A pending lock might already be on the list, so | |
c87e2837 | 3163 | * don't process it twice: |
0771dfef IM |
3164 | */ |
3165 | if (entry != pending) | |
ba46df98 | 3166 | if (handle_futex_death((void __user *)entry + futex_offset, |
e3f2ddea | 3167 | curr, pi)) |
0771dfef | 3168 | return; |
9f96cb1e | 3169 | if (rc) |
0771dfef | 3170 | return; |
9f96cb1e MS |
3171 | entry = next_entry; |
3172 | pi = next_pi; | |
0771dfef IM |
3173 | /* |
3174 | * Avoid excessively long or circular lists: | |
3175 | */ | |
3176 | if (!--limit) | |
3177 | break; | |
3178 | ||
3179 | cond_resched(); | |
3180 | } | |
9f96cb1e MS |
3181 | |
3182 | if (pending) | |
3183 | handle_futex_death((void __user *)pending + futex_offset, | |
3184 | curr, pip); | |
0771dfef IM |
3185 | } |
3186 | ||
c19384b5 | 3187 | long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout, |
e2970f2f | 3188 | u32 __user *uaddr2, u32 val2, u32 val3) |
1da177e4 | 3189 | { |
81b40539 | 3190 | int cmd = op & FUTEX_CMD_MASK; |
b41277dc | 3191 | unsigned int flags = 0; |
34f01cc1 ED |
3192 | |
3193 | if (!(op & FUTEX_PRIVATE_FLAG)) | |
b41277dc | 3194 | flags |= FLAGS_SHARED; |
1da177e4 | 3195 | |
b41277dc DH |
3196 | if (op & FUTEX_CLOCK_REALTIME) { |
3197 | flags |= FLAGS_CLOCKRT; | |
337f1304 DH |
3198 | if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \ |
3199 | cmd != FUTEX_WAIT_REQUEUE_PI) | |
b41277dc DH |
3200 | return -ENOSYS; |
3201 | } | |
1da177e4 | 3202 | |
59263b51 TG |
3203 | switch (cmd) { |
3204 | case FUTEX_LOCK_PI: | |
3205 | case FUTEX_UNLOCK_PI: | |
3206 | case FUTEX_TRYLOCK_PI: | |
3207 | case FUTEX_WAIT_REQUEUE_PI: | |
3208 | case FUTEX_CMP_REQUEUE_PI: | |
3209 | if (!futex_cmpxchg_enabled) | |
3210 | return -ENOSYS; | |
3211 | } | |
3212 | ||
34f01cc1 | 3213 | switch (cmd) { |
1da177e4 | 3214 | case FUTEX_WAIT: |
cd689985 TG |
3215 | val3 = FUTEX_BITSET_MATCH_ANY; |
3216 | case FUTEX_WAIT_BITSET: | |
81b40539 | 3217 | return futex_wait(uaddr, flags, val, timeout, val3); |
1da177e4 | 3218 | case FUTEX_WAKE: |
cd689985 TG |
3219 | val3 = FUTEX_BITSET_MATCH_ANY; |
3220 | case FUTEX_WAKE_BITSET: | |
81b40539 | 3221 | return futex_wake(uaddr, flags, val, val3); |
1da177e4 | 3222 | case FUTEX_REQUEUE: |
81b40539 | 3223 | return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0); |
1da177e4 | 3224 | case FUTEX_CMP_REQUEUE: |
81b40539 | 3225 | return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0); |
4732efbe | 3226 | case FUTEX_WAKE_OP: |
81b40539 | 3227 | return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3); |
c87e2837 | 3228 | case FUTEX_LOCK_PI: |
996636dd | 3229 | return futex_lock_pi(uaddr, flags, timeout, 0); |
c87e2837 | 3230 | case FUTEX_UNLOCK_PI: |
81b40539 | 3231 | return futex_unlock_pi(uaddr, flags); |
c87e2837 | 3232 | case FUTEX_TRYLOCK_PI: |
996636dd | 3233 | return futex_lock_pi(uaddr, flags, NULL, 1); |
52400ba9 DH |
3234 | case FUTEX_WAIT_REQUEUE_PI: |
3235 | val3 = FUTEX_BITSET_MATCH_ANY; | |
81b40539 TG |
3236 | return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3, |
3237 | uaddr2); | |
52400ba9 | 3238 | case FUTEX_CMP_REQUEUE_PI: |
81b40539 | 3239 | return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1); |
1da177e4 | 3240 | } |
81b40539 | 3241 | return -ENOSYS; |
1da177e4 LT |
3242 | } |
3243 | ||
3244 | ||
17da2bd9 HC |
3245 | SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val, |
3246 | struct timespec __user *, utime, u32 __user *, uaddr2, | |
3247 | u32, val3) | |
1da177e4 | 3248 | { |
c19384b5 PP |
3249 | struct timespec ts; |
3250 | ktime_t t, *tp = NULL; | |
e2970f2f | 3251 | u32 val2 = 0; |
34f01cc1 | 3252 | int cmd = op & FUTEX_CMD_MASK; |
1da177e4 | 3253 | |
cd689985 | 3254 | if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI || |
52400ba9 DH |
3255 | cmd == FUTEX_WAIT_BITSET || |
3256 | cmd == FUTEX_WAIT_REQUEUE_PI)) { | |
ab51fbab DB |
3257 | if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG)))) |
3258 | return -EFAULT; | |
c19384b5 | 3259 | if (copy_from_user(&ts, utime, sizeof(ts)) != 0) |
1da177e4 | 3260 | return -EFAULT; |
c19384b5 | 3261 | if (!timespec_valid(&ts)) |
9741ef96 | 3262 | return -EINVAL; |
c19384b5 PP |
3263 | |
3264 | t = timespec_to_ktime(ts); | |
34f01cc1 | 3265 | if (cmd == FUTEX_WAIT) |
5a7780e7 | 3266 | t = ktime_add_safe(ktime_get(), t); |
c19384b5 | 3267 | tp = &t; |
1da177e4 LT |
3268 | } |
3269 | /* | |
52400ba9 | 3270 | * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*. |
f54f0986 | 3271 | * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP. |
1da177e4 | 3272 | */ |
f54f0986 | 3273 | if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE || |
ba9c22f2 | 3274 | cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP) |
e2970f2f | 3275 | val2 = (u32) (unsigned long) utime; |
1da177e4 | 3276 | |
c19384b5 | 3277 | return do_futex(uaddr, op, val, tp, uaddr2, val2, val3); |
1da177e4 LT |
3278 | } |
3279 | ||
03b8c7b6 | 3280 | static void __init futex_detect_cmpxchg(void) |
1da177e4 | 3281 | { |
03b8c7b6 | 3282 | #ifndef CONFIG_HAVE_FUTEX_CMPXCHG |
a0c1e907 | 3283 | u32 curval; |
03b8c7b6 HC |
3284 | |
3285 | /* | |
3286 | * This will fail and we want it. Some arch implementations do | |
3287 | * runtime detection of the futex_atomic_cmpxchg_inatomic() | |
3288 | * functionality. We want to know that before we call in any | |
3289 | * of the complex code paths. Also we want to prevent | |
3290 | * registration of robust lists in that case. NULL is | |
3291 | * guaranteed to fault and we get -EFAULT on functional | |
3292 | * implementation, the non-functional ones will return | |
3293 | * -ENOSYS. | |
3294 | */ | |
3295 | if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT) | |
3296 | futex_cmpxchg_enabled = 1; | |
3297 | #endif | |
3298 | } | |
3299 | ||
3300 | static int __init futex_init(void) | |
3301 | { | |
63b1a816 | 3302 | unsigned int futex_shift; |
a52b89eb DB |
3303 | unsigned long i; |
3304 | ||
3305 | #if CONFIG_BASE_SMALL | |
3306 | futex_hashsize = 16; | |
3307 | #else | |
3308 | futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus()); | |
3309 | #endif | |
3310 | ||
3311 | futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues), | |
3312 | futex_hashsize, 0, | |
3313 | futex_hashsize < 256 ? HASH_SMALL : 0, | |
63b1a816 HC |
3314 | &futex_shift, NULL, |
3315 | futex_hashsize, futex_hashsize); | |
3316 | futex_hashsize = 1UL << futex_shift; | |
03b8c7b6 HC |
3317 | |
3318 | futex_detect_cmpxchg(); | |
a0c1e907 | 3319 | |
a52b89eb | 3320 | for (i = 0; i < futex_hashsize; i++) { |
11d4616b | 3321 | atomic_set(&futex_queues[i].waiters, 0); |
732375c6 | 3322 | plist_head_init(&futex_queues[i].chain); |
3e4ab747 TG |
3323 | spin_lock_init(&futex_queues[i].lock); |
3324 | } | |
3325 | ||
1da177e4 LT |
3326 | return 0; |
3327 | } | |
25f71d1c | 3328 | core_initcall(futex_init); |