]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Fast Userspace Mutexes (which I call "Futexes!"). | |
3 | * (C) Rusty Russell, IBM 2002 | |
4 | * | |
5 | * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar | |
6 | * (C) Copyright 2003 Red Hat Inc, All Rights Reserved | |
7 | * | |
8 | * Removed page pinning, fix privately mapped COW pages and other cleanups | |
9 | * (C) Copyright 2003, 2004 Jamie Lokier | |
10 | * | |
0771dfef IM |
11 | * Robust futex support started by Ingo Molnar |
12 | * (C) Copyright 2006 Red Hat Inc, All Rights Reserved | |
13 | * Thanks to Thomas Gleixner for suggestions, analysis and fixes. | |
14 | * | |
c87e2837 IM |
15 | * PI-futex support started by Ingo Molnar and Thomas Gleixner |
16 | * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <[email protected]> | |
17 | * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <[email protected]> | |
18 | * | |
1da177e4 LT |
19 | * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly |
20 | * enough at me, Linus for the original (flawed) idea, Matthew | |
21 | * Kirkwood for proof-of-concept implementation. | |
22 | * | |
23 | * "The futexes are also cursed." | |
24 | * "But they come in a choice of three flavours!" | |
25 | * | |
26 | * This program is free software; you can redistribute it and/or modify | |
27 | * it under the terms of the GNU General Public License as published by | |
28 | * the Free Software Foundation; either version 2 of the License, or | |
29 | * (at your option) any later version. | |
30 | * | |
31 | * This program is distributed in the hope that it will be useful, | |
32 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
33 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
34 | * GNU General Public License for more details. | |
35 | * | |
36 | * You should have received a copy of the GNU General Public License | |
37 | * along with this program; if not, write to the Free Software | |
38 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
39 | */ | |
40 | #include <linux/slab.h> | |
41 | #include <linux/poll.h> | |
42 | #include <linux/fs.h> | |
43 | #include <linux/file.h> | |
44 | #include <linux/jhash.h> | |
45 | #include <linux/init.h> | |
46 | #include <linux/futex.h> | |
47 | #include <linux/mount.h> | |
48 | #include <linux/pagemap.h> | |
49 | #include <linux/syscalls.h> | |
7ed20e1a | 50 | #include <linux/signal.h> |
9adef58b | 51 | #include <linux/module.h> |
4732efbe | 52 | #include <asm/futex.h> |
1da177e4 | 53 | |
c87e2837 IM |
54 | #include "rtmutex_common.h" |
55 | ||
d0aa7a70 PP |
56 | #ifdef CONFIG_DEBUG_RT_MUTEXES |
57 | # include "rtmutex-debug.h" | |
58 | #else | |
59 | # include "rtmutex.h" | |
60 | #endif | |
61 | ||
1da177e4 LT |
62 | #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8) |
63 | ||
c87e2837 IM |
64 | /* |
65 | * Priority Inheritance state: | |
66 | */ | |
67 | struct futex_pi_state { | |
68 | /* | |
69 | * list of 'owned' pi_state instances - these have to be | |
70 | * cleaned up in do_exit() if the task exits prematurely: | |
71 | */ | |
72 | struct list_head list; | |
73 | ||
74 | /* | |
75 | * The PI object: | |
76 | */ | |
77 | struct rt_mutex pi_mutex; | |
78 | ||
79 | struct task_struct *owner; | |
80 | atomic_t refcount; | |
81 | ||
82 | union futex_key key; | |
83 | }; | |
84 | ||
1da177e4 LT |
85 | /* |
86 | * We use this hashed waitqueue instead of a normal wait_queue_t, so | |
87 | * we can wake only the relevant ones (hashed queues may be shared). | |
88 | * | |
89 | * A futex_q has a woken state, just like tasks have TASK_RUNNING. | |
ec92d082 | 90 | * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0. |
1da177e4 LT |
91 | * The order of wakup is always to make the first condition true, then |
92 | * wake up q->waiters, then make the second condition true. | |
93 | */ | |
94 | struct futex_q { | |
ec92d082 | 95 | struct plist_node list; |
1da177e4 LT |
96 | wait_queue_head_t waiters; |
97 | ||
e2970f2f | 98 | /* Which hash list lock to use: */ |
1da177e4 LT |
99 | spinlock_t *lock_ptr; |
100 | ||
e2970f2f | 101 | /* Key which the futex is hashed on: */ |
1da177e4 LT |
102 | union futex_key key; |
103 | ||
e2970f2f | 104 | /* For fd, sigio sent using these: */ |
1da177e4 LT |
105 | int fd; |
106 | struct file *filp; | |
c87e2837 IM |
107 | |
108 | /* Optional priority inheritance state: */ | |
109 | struct futex_pi_state *pi_state; | |
110 | struct task_struct *task; | |
d0aa7a70 PP |
111 | |
112 | /* | |
113 | * This waiter is used in case of requeue from a | |
114 | * normal futex to a PI-futex | |
115 | */ | |
116 | struct rt_mutex_waiter waiter; | |
1da177e4 LT |
117 | }; |
118 | ||
119 | /* | |
120 | * Split the global futex_lock into every hash list lock. | |
121 | */ | |
122 | struct futex_hash_bucket { | |
ec92d082 PP |
123 | spinlock_t lock; |
124 | struct plist_head chain; | |
1da177e4 LT |
125 | }; |
126 | ||
127 | static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS]; | |
128 | ||
129 | /* Futex-fs vfsmount entry: */ | |
130 | static struct vfsmount *futex_mnt; | |
131 | ||
132 | /* | |
133 | * We hash on the keys returned from get_futex_key (see below). | |
134 | */ | |
135 | static struct futex_hash_bucket *hash_futex(union futex_key *key) | |
136 | { | |
137 | u32 hash = jhash2((u32*)&key->both.word, | |
138 | (sizeof(key->both.word)+sizeof(key->both.ptr))/4, | |
139 | key->both.offset); | |
140 | return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)]; | |
141 | } | |
142 | ||
143 | /* | |
144 | * Return 1 if two futex_keys are equal, 0 otherwise. | |
145 | */ | |
146 | static inline int match_futex(union futex_key *key1, union futex_key *key2) | |
147 | { | |
148 | return (key1->both.word == key2->both.word | |
149 | && key1->both.ptr == key2->both.ptr | |
150 | && key1->both.offset == key2->both.offset); | |
151 | } | |
152 | ||
153 | /* | |
154 | * Get parameters which are the keys for a futex. | |
155 | * | |
f3a43f3f | 156 | * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode, |
1da177e4 LT |
157 | * offset_within_page). For private mappings, it's (uaddr, current->mm). |
158 | * We can usually work out the index without swapping in the page. | |
159 | * | |
160 | * Returns: 0, or negative error code. | |
161 | * The key words are stored in *key on success. | |
162 | * | |
163 | * Should be called with ¤t->mm->mmap_sem but NOT any spinlocks. | |
164 | */ | |
9adef58b | 165 | int get_futex_key(u32 __user *uaddr, union futex_key *key) |
1da177e4 | 166 | { |
e2970f2f | 167 | unsigned long address = (unsigned long)uaddr; |
1da177e4 LT |
168 | struct mm_struct *mm = current->mm; |
169 | struct vm_area_struct *vma; | |
170 | struct page *page; | |
171 | int err; | |
172 | ||
173 | /* | |
174 | * The futex address must be "naturally" aligned. | |
175 | */ | |
e2970f2f | 176 | key->both.offset = address % PAGE_SIZE; |
1da177e4 LT |
177 | if (unlikely((key->both.offset % sizeof(u32)) != 0)) |
178 | return -EINVAL; | |
e2970f2f | 179 | address -= key->both.offset; |
1da177e4 LT |
180 | |
181 | /* | |
182 | * The futex is hashed differently depending on whether | |
183 | * it's in a shared or private mapping. So check vma first. | |
184 | */ | |
e2970f2f | 185 | vma = find_extend_vma(mm, address); |
1da177e4 LT |
186 | if (unlikely(!vma)) |
187 | return -EFAULT; | |
188 | ||
189 | /* | |
190 | * Permissions. | |
191 | */ | |
192 | if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ)) | |
193 | return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES; | |
194 | ||
d0aa7a70 PP |
195 | /* Save the user address in the ley */ |
196 | key->uaddr = uaddr; | |
197 | ||
1da177e4 LT |
198 | /* |
199 | * Private mappings are handled in a simple way. | |
200 | * | |
201 | * NOTE: When userspace waits on a MAP_SHARED mapping, even if | |
202 | * it's a read-only handle, it's expected that futexes attach to | |
203 | * the object not the particular process. Therefore we use | |
204 | * VM_MAYSHARE here, not VM_SHARED which is restricted to shared | |
205 | * mappings of _writable_ handles. | |
206 | */ | |
207 | if (likely(!(vma->vm_flags & VM_MAYSHARE))) { | |
208 | key->private.mm = mm; | |
e2970f2f | 209 | key->private.address = address; |
1da177e4 LT |
210 | return 0; |
211 | } | |
212 | ||
213 | /* | |
214 | * Linear file mappings are also simple. | |
215 | */ | |
f3a43f3f | 216 | key->shared.inode = vma->vm_file->f_path.dentry->d_inode; |
1da177e4 LT |
217 | key->both.offset++; /* Bit 0 of offset indicates inode-based key. */ |
218 | if (likely(!(vma->vm_flags & VM_NONLINEAR))) { | |
e2970f2f | 219 | key->shared.pgoff = (((address - vma->vm_start) >> PAGE_SHIFT) |
1da177e4 LT |
220 | + vma->vm_pgoff); |
221 | return 0; | |
222 | } | |
223 | ||
224 | /* | |
225 | * We could walk the page table to read the non-linear | |
226 | * pte, and get the page index without fetching the page | |
227 | * from swap. But that's a lot of code to duplicate here | |
228 | * for a rare case, so we simply fetch the page. | |
229 | */ | |
e2970f2f | 230 | err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL); |
1da177e4 LT |
231 | if (err >= 0) { |
232 | key->shared.pgoff = | |
233 | page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
234 | put_page(page); | |
235 | return 0; | |
236 | } | |
237 | return err; | |
238 | } | |
9adef58b | 239 | EXPORT_SYMBOL_GPL(get_futex_key); |
1da177e4 LT |
240 | |
241 | /* | |
242 | * Take a reference to the resource addressed by a key. | |
243 | * Can be called while holding spinlocks. | |
244 | * | |
245 | * NOTE: mmap_sem MUST be held between get_futex_key() and calling this | |
246 | * function, if it is called at all. mmap_sem keeps key->shared.inode valid. | |
247 | */ | |
9adef58b | 248 | inline void get_futex_key_refs(union futex_key *key) |
1da177e4 LT |
249 | { |
250 | if (key->both.ptr != 0) { | |
251 | if (key->both.offset & 1) | |
252 | atomic_inc(&key->shared.inode->i_count); | |
253 | else | |
254 | atomic_inc(&key->private.mm->mm_count); | |
255 | } | |
256 | } | |
9adef58b | 257 | EXPORT_SYMBOL_GPL(get_futex_key_refs); |
1da177e4 LT |
258 | |
259 | /* | |
260 | * Drop a reference to the resource addressed by a key. | |
261 | * The hash bucket spinlock must not be held. | |
262 | */ | |
9adef58b | 263 | void drop_futex_key_refs(union futex_key *key) |
1da177e4 LT |
264 | { |
265 | if (key->both.ptr != 0) { | |
266 | if (key->both.offset & 1) | |
267 | iput(key->shared.inode); | |
268 | else | |
269 | mmdrop(key->private.mm); | |
270 | } | |
271 | } | |
9adef58b | 272 | EXPORT_SYMBOL_GPL(drop_futex_key_refs); |
1da177e4 | 273 | |
e2970f2f | 274 | static inline int get_futex_value_locked(u32 *dest, u32 __user *from) |
1da177e4 LT |
275 | { |
276 | int ret; | |
277 | ||
a866374a | 278 | pagefault_disable(); |
e2970f2f | 279 | ret = __copy_from_user_inatomic(dest, from, sizeof(u32)); |
a866374a | 280 | pagefault_enable(); |
1da177e4 LT |
281 | |
282 | return ret ? -EFAULT : 0; | |
283 | } | |
284 | ||
c87e2837 IM |
285 | /* |
286 | * Fault handling. Called with current->mm->mmap_sem held. | |
287 | */ | |
288 | static int futex_handle_fault(unsigned long address, int attempt) | |
289 | { | |
290 | struct vm_area_struct * vma; | |
291 | struct mm_struct *mm = current->mm; | |
292 | ||
e579dcbf | 293 | if (attempt > 2 || !(vma = find_vma(mm, address)) || |
c87e2837 IM |
294 | vma->vm_start > address || !(vma->vm_flags & VM_WRITE)) |
295 | return -EFAULT; | |
296 | ||
297 | switch (handle_mm_fault(mm, vma, address, 1)) { | |
298 | case VM_FAULT_MINOR: | |
299 | current->min_flt++; | |
300 | break; | |
301 | case VM_FAULT_MAJOR: | |
302 | current->maj_flt++; | |
303 | break; | |
304 | default: | |
305 | return -EFAULT; | |
306 | } | |
307 | return 0; | |
308 | } | |
309 | ||
310 | /* | |
311 | * PI code: | |
312 | */ | |
313 | static int refill_pi_state_cache(void) | |
314 | { | |
315 | struct futex_pi_state *pi_state; | |
316 | ||
317 | if (likely(current->pi_state_cache)) | |
318 | return 0; | |
319 | ||
4668edc3 | 320 | pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL); |
c87e2837 IM |
321 | |
322 | if (!pi_state) | |
323 | return -ENOMEM; | |
324 | ||
c87e2837 IM |
325 | INIT_LIST_HEAD(&pi_state->list); |
326 | /* pi_mutex gets initialized later */ | |
327 | pi_state->owner = NULL; | |
328 | atomic_set(&pi_state->refcount, 1); | |
329 | ||
330 | current->pi_state_cache = pi_state; | |
331 | ||
332 | return 0; | |
333 | } | |
334 | ||
335 | static struct futex_pi_state * alloc_pi_state(void) | |
336 | { | |
337 | struct futex_pi_state *pi_state = current->pi_state_cache; | |
338 | ||
339 | WARN_ON(!pi_state); | |
340 | current->pi_state_cache = NULL; | |
341 | ||
342 | return pi_state; | |
343 | } | |
344 | ||
345 | static void free_pi_state(struct futex_pi_state *pi_state) | |
346 | { | |
347 | if (!atomic_dec_and_test(&pi_state->refcount)) | |
348 | return; | |
349 | ||
350 | /* | |
351 | * If pi_state->owner is NULL, the owner is most probably dying | |
352 | * and has cleaned up the pi_state already | |
353 | */ | |
354 | if (pi_state->owner) { | |
355 | spin_lock_irq(&pi_state->owner->pi_lock); | |
356 | list_del_init(&pi_state->list); | |
357 | spin_unlock_irq(&pi_state->owner->pi_lock); | |
358 | ||
359 | rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner); | |
360 | } | |
361 | ||
362 | if (current->pi_state_cache) | |
363 | kfree(pi_state); | |
364 | else { | |
365 | /* | |
366 | * pi_state->list is already empty. | |
367 | * clear pi_state->owner. | |
368 | * refcount is at 0 - put it back to 1. | |
369 | */ | |
370 | pi_state->owner = NULL; | |
371 | atomic_set(&pi_state->refcount, 1); | |
372 | current->pi_state_cache = pi_state; | |
373 | } | |
374 | } | |
375 | ||
376 | /* | |
377 | * Look up the task based on what TID userspace gave us. | |
378 | * We dont trust it. | |
379 | */ | |
380 | static struct task_struct * futex_find_get_task(pid_t pid) | |
381 | { | |
382 | struct task_struct *p; | |
383 | ||
d359b549 | 384 | rcu_read_lock(); |
c87e2837 IM |
385 | p = find_task_by_pid(pid); |
386 | if (!p) | |
387 | goto out_unlock; | |
388 | if ((current->euid != p->euid) && (current->euid != p->uid)) { | |
389 | p = NULL; | |
390 | goto out_unlock; | |
391 | } | |
d015baeb | 392 | if (p->exit_state != 0) { |
c87e2837 IM |
393 | p = NULL; |
394 | goto out_unlock; | |
395 | } | |
396 | get_task_struct(p); | |
397 | out_unlock: | |
d359b549 | 398 | rcu_read_unlock(); |
c87e2837 IM |
399 | |
400 | return p; | |
401 | } | |
402 | ||
403 | /* | |
404 | * This task is holding PI mutexes at exit time => bad. | |
405 | * Kernel cleans up PI-state, but userspace is likely hosed. | |
406 | * (Robust-futex cleanup is separate and might save the day for userspace.) | |
407 | */ | |
408 | void exit_pi_state_list(struct task_struct *curr) | |
409 | { | |
c87e2837 IM |
410 | struct list_head *next, *head = &curr->pi_state_list; |
411 | struct futex_pi_state *pi_state; | |
627371d7 | 412 | struct futex_hash_bucket *hb; |
c87e2837 IM |
413 | union futex_key key; |
414 | ||
415 | /* | |
416 | * We are a ZOMBIE and nobody can enqueue itself on | |
417 | * pi_state_list anymore, but we have to be careful | |
627371d7 | 418 | * versus waiters unqueueing themselves: |
c87e2837 IM |
419 | */ |
420 | spin_lock_irq(&curr->pi_lock); | |
421 | while (!list_empty(head)) { | |
422 | ||
423 | next = head->next; | |
424 | pi_state = list_entry(next, struct futex_pi_state, list); | |
425 | key = pi_state->key; | |
627371d7 | 426 | hb = hash_futex(&key); |
c87e2837 IM |
427 | spin_unlock_irq(&curr->pi_lock); |
428 | ||
c87e2837 IM |
429 | spin_lock(&hb->lock); |
430 | ||
431 | spin_lock_irq(&curr->pi_lock); | |
627371d7 IM |
432 | /* |
433 | * We dropped the pi-lock, so re-check whether this | |
434 | * task still owns the PI-state: | |
435 | */ | |
c87e2837 IM |
436 | if (head->next != next) { |
437 | spin_unlock(&hb->lock); | |
438 | continue; | |
439 | } | |
440 | ||
c87e2837 | 441 | WARN_ON(pi_state->owner != curr); |
627371d7 IM |
442 | WARN_ON(list_empty(&pi_state->list)); |
443 | list_del_init(&pi_state->list); | |
c87e2837 IM |
444 | pi_state->owner = NULL; |
445 | spin_unlock_irq(&curr->pi_lock); | |
446 | ||
447 | rt_mutex_unlock(&pi_state->pi_mutex); | |
448 | ||
449 | spin_unlock(&hb->lock); | |
450 | ||
451 | spin_lock_irq(&curr->pi_lock); | |
452 | } | |
453 | spin_unlock_irq(&curr->pi_lock); | |
454 | } | |
455 | ||
456 | static int | |
d0aa7a70 PP |
457 | lookup_pi_state(u32 uval, struct futex_hash_bucket *hb, |
458 | union futex_key *key, struct futex_pi_state **ps) | |
c87e2837 IM |
459 | { |
460 | struct futex_pi_state *pi_state = NULL; | |
461 | struct futex_q *this, *next; | |
ec92d082 | 462 | struct plist_head *head; |
c87e2837 IM |
463 | struct task_struct *p; |
464 | pid_t pid; | |
465 | ||
466 | head = &hb->chain; | |
467 | ||
ec92d082 | 468 | plist_for_each_entry_safe(this, next, head, list) { |
d0aa7a70 | 469 | if (match_futex(&this->key, key)) { |
c87e2837 IM |
470 | /* |
471 | * Another waiter already exists - bump up | |
472 | * the refcount and return its pi_state: | |
473 | */ | |
474 | pi_state = this->pi_state; | |
06a9ec29 TG |
475 | /* |
476 | * Userspace might have messed up non PI and PI futexes | |
477 | */ | |
478 | if (unlikely(!pi_state)) | |
479 | return -EINVAL; | |
480 | ||
627371d7 IM |
481 | WARN_ON(!atomic_read(&pi_state->refcount)); |
482 | ||
c87e2837 | 483 | atomic_inc(&pi_state->refcount); |
d0aa7a70 | 484 | *ps = pi_state; |
c87e2837 IM |
485 | |
486 | return 0; | |
487 | } | |
488 | } | |
489 | ||
490 | /* | |
e3f2ddea IM |
491 | * We are the first waiter - try to look up the real owner and attach |
492 | * the new pi_state to it, but bail out when the owner died bit is set | |
493 | * and TID = 0: | |
c87e2837 IM |
494 | */ |
495 | pid = uval & FUTEX_TID_MASK; | |
e3f2ddea IM |
496 | if (!pid && (uval & FUTEX_OWNER_DIED)) |
497 | return -ESRCH; | |
c87e2837 IM |
498 | p = futex_find_get_task(pid); |
499 | if (!p) | |
500 | return -ESRCH; | |
501 | ||
502 | pi_state = alloc_pi_state(); | |
503 | ||
504 | /* | |
505 | * Initialize the pi_mutex in locked state and make 'p' | |
506 | * the owner of it: | |
507 | */ | |
508 | rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p); | |
509 | ||
510 | /* Store the key for possible exit cleanups: */ | |
d0aa7a70 | 511 | pi_state->key = *key; |
c87e2837 IM |
512 | |
513 | spin_lock_irq(&p->pi_lock); | |
627371d7 | 514 | WARN_ON(!list_empty(&pi_state->list)); |
c87e2837 IM |
515 | list_add(&pi_state->list, &p->pi_state_list); |
516 | pi_state->owner = p; | |
517 | spin_unlock_irq(&p->pi_lock); | |
518 | ||
519 | put_task_struct(p); | |
520 | ||
d0aa7a70 | 521 | *ps = pi_state; |
c87e2837 IM |
522 | |
523 | return 0; | |
524 | } | |
525 | ||
1da177e4 LT |
526 | /* |
527 | * The hash bucket lock must be held when this is called. | |
528 | * Afterwards, the futex_q must not be accessed. | |
529 | */ | |
530 | static void wake_futex(struct futex_q *q) | |
531 | { | |
ec92d082 | 532 | plist_del(&q->list, &q->list.plist); |
1da177e4 LT |
533 | if (q->filp) |
534 | send_sigio(&q->filp->f_owner, q->fd, POLL_IN); | |
535 | /* | |
536 | * The lock in wake_up_all() is a crucial memory barrier after the | |
ec92d082 | 537 | * plist_del() and also before assigning to q->lock_ptr. |
1da177e4 LT |
538 | */ |
539 | wake_up_all(&q->waiters); | |
540 | /* | |
541 | * The waiting task can free the futex_q as soon as this is written, | |
542 | * without taking any locks. This must come last. | |
8e31108b AM |
543 | * |
544 | * A memory barrier is required here to prevent the following store | |
545 | * to lock_ptr from getting ahead of the wakeup. Clearing the lock | |
546 | * at the end of wake_up_all() does not prevent this store from | |
547 | * moving. | |
1da177e4 | 548 | */ |
ccdea2f8 | 549 | smp_wmb(); |
1da177e4 LT |
550 | q->lock_ptr = NULL; |
551 | } | |
552 | ||
c87e2837 IM |
553 | static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this) |
554 | { | |
555 | struct task_struct *new_owner; | |
556 | struct futex_pi_state *pi_state = this->pi_state; | |
557 | u32 curval, newval; | |
558 | ||
559 | if (!pi_state) | |
560 | return -EINVAL; | |
561 | ||
21778867 | 562 | spin_lock(&pi_state->pi_mutex.wait_lock); |
c87e2837 IM |
563 | new_owner = rt_mutex_next_owner(&pi_state->pi_mutex); |
564 | ||
565 | /* | |
566 | * This happens when we have stolen the lock and the original | |
567 | * pending owner did not enqueue itself back on the rt_mutex. | |
568 | * Thats not a tragedy. We know that way, that a lock waiter | |
569 | * is on the fly. We make the futex_q waiter the pending owner. | |
570 | */ | |
571 | if (!new_owner) | |
572 | new_owner = this->task; | |
573 | ||
574 | /* | |
575 | * We pass it to the next owner. (The WAITERS bit is always | |
576 | * kept enabled while there is PI state around. We must also | |
577 | * preserve the owner died bit.) | |
578 | */ | |
e3f2ddea IM |
579 | if (!(uval & FUTEX_OWNER_DIED)) { |
580 | newval = FUTEX_WAITERS | new_owner->pid; | |
d0aa7a70 PP |
581 | /* Keep the FUTEX_WAITER_REQUEUED flag if it was set */ |
582 | newval |= (uval & FUTEX_WAITER_REQUEUED); | |
e3f2ddea | 583 | |
a866374a | 584 | pagefault_disable(); |
e3f2ddea | 585 | curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval); |
a866374a | 586 | pagefault_enable(); |
e3f2ddea IM |
587 | if (curval == -EFAULT) |
588 | return -EFAULT; | |
589 | if (curval != uval) | |
590 | return -EINVAL; | |
591 | } | |
c87e2837 | 592 | |
627371d7 IM |
593 | spin_lock_irq(&pi_state->owner->pi_lock); |
594 | WARN_ON(list_empty(&pi_state->list)); | |
595 | list_del_init(&pi_state->list); | |
596 | spin_unlock_irq(&pi_state->owner->pi_lock); | |
597 | ||
598 | spin_lock_irq(&new_owner->pi_lock); | |
599 | WARN_ON(!list_empty(&pi_state->list)); | |
c87e2837 IM |
600 | list_add(&pi_state->list, &new_owner->pi_state_list); |
601 | pi_state->owner = new_owner; | |
627371d7 IM |
602 | spin_unlock_irq(&new_owner->pi_lock); |
603 | ||
21778867 | 604 | spin_unlock(&pi_state->pi_mutex.wait_lock); |
c87e2837 IM |
605 | rt_mutex_unlock(&pi_state->pi_mutex); |
606 | ||
607 | return 0; | |
608 | } | |
609 | ||
610 | static int unlock_futex_pi(u32 __user *uaddr, u32 uval) | |
611 | { | |
612 | u32 oldval; | |
613 | ||
614 | /* | |
615 | * There is no waiter, so we unlock the futex. The owner died | |
616 | * bit has not to be preserved here. We are the owner: | |
617 | */ | |
a866374a | 618 | pagefault_disable(); |
c87e2837 | 619 | oldval = futex_atomic_cmpxchg_inatomic(uaddr, uval, 0); |
a866374a | 620 | pagefault_enable(); |
c87e2837 IM |
621 | |
622 | if (oldval == -EFAULT) | |
623 | return oldval; | |
624 | if (oldval != uval) | |
625 | return -EAGAIN; | |
626 | ||
627 | return 0; | |
628 | } | |
629 | ||
8b8f319f IM |
630 | /* |
631 | * Express the locking dependencies for lockdep: | |
632 | */ | |
633 | static inline void | |
634 | double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2) | |
635 | { | |
636 | if (hb1 <= hb2) { | |
637 | spin_lock(&hb1->lock); | |
638 | if (hb1 < hb2) | |
639 | spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING); | |
640 | } else { /* hb1 > hb2 */ | |
641 | spin_lock(&hb2->lock); | |
642 | spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING); | |
643 | } | |
644 | } | |
645 | ||
1da177e4 LT |
646 | /* |
647 | * Wake up all waiters hashed on the physical page that is mapped | |
648 | * to this virtual address: | |
649 | */ | |
e2970f2f | 650 | static int futex_wake(u32 __user *uaddr, int nr_wake) |
1da177e4 | 651 | { |
e2970f2f | 652 | struct futex_hash_bucket *hb; |
1da177e4 | 653 | struct futex_q *this, *next; |
ec92d082 | 654 | struct plist_head *head; |
e2970f2f | 655 | union futex_key key; |
1da177e4 LT |
656 | int ret; |
657 | ||
658 | down_read(¤t->mm->mmap_sem); | |
659 | ||
660 | ret = get_futex_key(uaddr, &key); | |
661 | if (unlikely(ret != 0)) | |
662 | goto out; | |
663 | ||
e2970f2f IM |
664 | hb = hash_futex(&key); |
665 | spin_lock(&hb->lock); | |
666 | head = &hb->chain; | |
1da177e4 | 667 | |
ec92d082 | 668 | plist_for_each_entry_safe(this, next, head, list) { |
1da177e4 | 669 | if (match_futex (&this->key, &key)) { |
ed6f7b10 IM |
670 | if (this->pi_state) { |
671 | ret = -EINVAL; | |
672 | break; | |
673 | } | |
1da177e4 LT |
674 | wake_futex(this); |
675 | if (++ret >= nr_wake) | |
676 | break; | |
677 | } | |
678 | } | |
679 | ||
e2970f2f | 680 | spin_unlock(&hb->lock); |
1da177e4 LT |
681 | out: |
682 | up_read(¤t->mm->mmap_sem); | |
683 | return ret; | |
684 | } | |
685 | ||
d0aa7a70 PP |
686 | /* |
687 | * Called from futex_requeue_pi. | |
688 | * Set FUTEX_WAITERS and FUTEX_WAITER_REQUEUED flags on the | |
689 | * PI-futex value; search its associated pi_state if an owner exist | |
690 | * or create a new one without owner. | |
691 | */ | |
692 | static inline int | |
693 | lookup_pi_state_for_requeue(u32 __user *uaddr, struct futex_hash_bucket *hb, | |
694 | union futex_key *key, | |
695 | struct futex_pi_state **pi_state) | |
696 | { | |
697 | u32 curval, uval, newval; | |
698 | ||
699 | retry: | |
700 | /* | |
701 | * We can't handle a fault cleanly because we can't | |
702 | * release the locks here. Simply return the fault. | |
703 | */ | |
704 | if (get_futex_value_locked(&curval, uaddr)) | |
705 | return -EFAULT; | |
706 | ||
707 | /* set the flags FUTEX_WAITERS and FUTEX_WAITER_REQUEUED */ | |
708 | if ((curval & (FUTEX_WAITERS | FUTEX_WAITER_REQUEUED)) | |
709 | != (FUTEX_WAITERS | FUTEX_WAITER_REQUEUED)) { | |
710 | /* | |
711 | * No waiters yet, we prepare the futex to have some waiters. | |
712 | */ | |
713 | ||
714 | uval = curval; | |
715 | newval = uval | FUTEX_WAITERS | FUTEX_WAITER_REQUEUED; | |
716 | ||
717 | pagefault_disable(); | |
718 | curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval); | |
719 | pagefault_enable(); | |
720 | ||
721 | if (unlikely(curval == -EFAULT)) | |
722 | return -EFAULT; | |
723 | if (unlikely(curval != uval)) | |
724 | goto retry; | |
725 | } | |
726 | ||
727 | if (!(curval & FUTEX_TID_MASK) | |
728 | || lookup_pi_state(curval, hb, key, pi_state)) { | |
729 | /* the futex has no owner (yet) or the lookup failed: | |
730 | allocate one pi_state without owner */ | |
731 | ||
732 | *pi_state = alloc_pi_state(); | |
733 | ||
734 | /* Already stores the key: */ | |
735 | (*pi_state)->key = *key; | |
736 | ||
737 | /* init the mutex without owner */ | |
738 | __rt_mutex_init(&(*pi_state)->pi_mutex, NULL); | |
739 | } | |
740 | ||
741 | return 0; | |
742 | } | |
743 | ||
744 | /* | |
745 | * Keep the first nr_wake waiter from futex1, wake up one, | |
746 | * and requeue the next nr_requeue waiters following hashed on | |
747 | * one physical page to another physical page (PI-futex uaddr2) | |
748 | */ | |
749 | static int futex_requeue_pi(u32 __user *uaddr1, u32 __user *uaddr2, | |
750 | int nr_wake, int nr_requeue, u32 *cmpval) | |
751 | { | |
752 | union futex_key key1, key2; | |
753 | struct futex_hash_bucket *hb1, *hb2; | |
754 | struct plist_head *head1; | |
755 | struct futex_q *this, *next; | |
756 | struct futex_pi_state *pi_state2 = NULL; | |
757 | struct rt_mutex_waiter *waiter, *top_waiter = NULL; | |
758 | struct rt_mutex *lock2 = NULL; | |
759 | int ret, drop_count = 0; | |
760 | ||
761 | if (refill_pi_state_cache()) | |
762 | return -ENOMEM; | |
763 | ||
764 | retry: | |
765 | /* | |
766 | * First take all the futex related locks: | |
767 | */ | |
768 | down_read(¤t->mm->mmap_sem); | |
769 | ||
770 | ret = get_futex_key(uaddr1, &key1); | |
771 | if (unlikely(ret != 0)) | |
772 | goto out; | |
773 | ret = get_futex_key(uaddr2, &key2); | |
774 | if (unlikely(ret != 0)) | |
775 | goto out; | |
776 | ||
777 | hb1 = hash_futex(&key1); | |
778 | hb2 = hash_futex(&key2); | |
779 | ||
780 | double_lock_hb(hb1, hb2); | |
781 | ||
782 | if (likely(cmpval != NULL)) { | |
783 | u32 curval; | |
784 | ||
785 | ret = get_futex_value_locked(&curval, uaddr1); | |
786 | ||
787 | if (unlikely(ret)) { | |
788 | spin_unlock(&hb1->lock); | |
789 | if (hb1 != hb2) | |
790 | spin_unlock(&hb2->lock); | |
791 | ||
792 | /* | |
793 | * If we would have faulted, release mmap_sem, fault | |
794 | * it in and start all over again. | |
795 | */ | |
796 | up_read(¤t->mm->mmap_sem); | |
797 | ||
798 | ret = get_user(curval, uaddr1); | |
799 | ||
800 | if (!ret) | |
801 | goto retry; | |
802 | ||
803 | return ret; | |
804 | } | |
805 | if (curval != *cmpval) { | |
806 | ret = -EAGAIN; | |
807 | goto out_unlock; | |
808 | } | |
809 | } | |
810 | ||
811 | head1 = &hb1->chain; | |
812 | plist_for_each_entry_safe(this, next, head1, list) { | |
813 | if (!match_futex (&this->key, &key1)) | |
814 | continue; | |
815 | if (++ret <= nr_wake) { | |
816 | wake_futex(this); | |
817 | } else { | |
818 | /* | |
819 | * FIRST: get and set the pi_state | |
820 | */ | |
821 | if (!pi_state2) { | |
822 | int s; | |
823 | /* do this only the first time we requeue someone */ | |
824 | s = lookup_pi_state_for_requeue(uaddr2, hb2, | |
825 | &key2, &pi_state2); | |
826 | if (s) { | |
827 | ret = s; | |
828 | goto out_unlock; | |
829 | } | |
830 | ||
831 | lock2 = &pi_state2->pi_mutex; | |
832 | spin_lock(&lock2->wait_lock); | |
833 | ||
834 | /* Save the top waiter of the wait_list */ | |
835 | if (rt_mutex_has_waiters(lock2)) | |
836 | top_waiter = rt_mutex_top_waiter(lock2); | |
837 | } else | |
838 | atomic_inc(&pi_state2->refcount); | |
839 | ||
840 | ||
841 | this->pi_state = pi_state2; | |
842 | ||
843 | /* | |
844 | * SECOND: requeue futex_q to the correct hashbucket | |
845 | */ | |
846 | ||
847 | /* | |
848 | * If key1 and key2 hash to the same bucket, no need to | |
849 | * requeue. | |
850 | */ | |
851 | if (likely(head1 != &hb2->chain)) { | |
852 | plist_del(&this->list, &hb1->chain); | |
853 | plist_add(&this->list, &hb2->chain); | |
854 | this->lock_ptr = &hb2->lock; | |
855 | #ifdef CONFIG_DEBUG_PI_LIST | |
856 | this->list.plist.lock = &hb2->lock; | |
857 | #endif | |
858 | } | |
859 | this->key = key2; | |
860 | get_futex_key_refs(&key2); | |
861 | drop_count++; | |
862 | ||
863 | ||
864 | /* | |
865 | * THIRD: queue it to lock2 | |
866 | */ | |
867 | spin_lock_irq(&this->task->pi_lock); | |
868 | waiter = &this->waiter; | |
869 | waiter->task = this->task; | |
870 | waiter->lock = lock2; | |
871 | plist_node_init(&waiter->list_entry, this->task->prio); | |
872 | plist_node_init(&waiter->pi_list_entry, this->task->prio); | |
873 | plist_add(&waiter->list_entry, &lock2->wait_list); | |
874 | this->task->pi_blocked_on = waiter; | |
875 | spin_unlock_irq(&this->task->pi_lock); | |
876 | ||
877 | if (ret - nr_wake >= nr_requeue) | |
878 | break; | |
879 | } | |
880 | } | |
881 | ||
882 | /* If we've requeued some tasks and the top_waiter of the rt_mutex | |
883 | has changed, we must adjust the priority of the owner, if any */ | |
884 | if (drop_count) { | |
885 | struct task_struct *owner = rt_mutex_owner(lock2); | |
886 | if (owner && | |
887 | (top_waiter != (waiter = rt_mutex_top_waiter(lock2)))) { | |
888 | int chain_walk = 0; | |
889 | ||
890 | spin_lock_irq(&owner->pi_lock); | |
891 | if (top_waiter) | |
892 | plist_del(&top_waiter->pi_list_entry, &owner->pi_waiters); | |
893 | else | |
894 | /* | |
895 | * There was no waiters before the requeue, | |
896 | * the flag must be updated | |
897 | */ | |
898 | mark_rt_mutex_waiters(lock2); | |
899 | ||
900 | plist_add(&waiter->pi_list_entry, &owner->pi_waiters); | |
901 | __rt_mutex_adjust_prio(owner); | |
902 | if (owner->pi_blocked_on) { | |
903 | chain_walk = 1; | |
904 | get_task_struct(owner); | |
905 | } | |
906 | ||
907 | spin_unlock_irq(&owner->pi_lock); | |
908 | spin_unlock(&lock2->wait_lock); | |
909 | ||
910 | if (chain_walk) | |
911 | rt_mutex_adjust_prio_chain(owner, 0, lock2, NULL, | |
912 | current); | |
913 | } else { | |
914 | /* No owner or the top_waiter does not change */ | |
915 | mark_rt_mutex_waiters(lock2); | |
916 | spin_unlock(&lock2->wait_lock); | |
917 | } | |
918 | } | |
919 | ||
920 | out_unlock: | |
921 | spin_unlock(&hb1->lock); | |
922 | if (hb1 != hb2) | |
923 | spin_unlock(&hb2->lock); | |
924 | ||
925 | /* drop_futex_key_refs() must be called outside the spinlocks. */ | |
926 | while (--drop_count >= 0) | |
927 | drop_futex_key_refs(&key1); | |
928 | ||
929 | out: | |
930 | up_read(¤t->mm->mmap_sem); | |
931 | return ret; | |
932 | } | |
933 | ||
4732efbe JJ |
934 | /* |
935 | * Wake up all waiters hashed on the physical page that is mapped | |
936 | * to this virtual address: | |
937 | */ | |
e2970f2f IM |
938 | static int |
939 | futex_wake_op(u32 __user *uaddr1, u32 __user *uaddr2, | |
940 | int nr_wake, int nr_wake2, int op) | |
4732efbe JJ |
941 | { |
942 | union futex_key key1, key2; | |
e2970f2f | 943 | struct futex_hash_bucket *hb1, *hb2; |
ec92d082 | 944 | struct plist_head *head; |
4732efbe JJ |
945 | struct futex_q *this, *next; |
946 | int ret, op_ret, attempt = 0; | |
947 | ||
948 | retryfull: | |
949 | down_read(¤t->mm->mmap_sem); | |
950 | ||
951 | ret = get_futex_key(uaddr1, &key1); | |
952 | if (unlikely(ret != 0)) | |
953 | goto out; | |
954 | ret = get_futex_key(uaddr2, &key2); | |
955 | if (unlikely(ret != 0)) | |
956 | goto out; | |
957 | ||
e2970f2f IM |
958 | hb1 = hash_futex(&key1); |
959 | hb2 = hash_futex(&key2); | |
4732efbe JJ |
960 | |
961 | retry: | |
8b8f319f | 962 | double_lock_hb(hb1, hb2); |
4732efbe | 963 | |
e2970f2f | 964 | op_ret = futex_atomic_op_inuser(op, uaddr2); |
4732efbe | 965 | if (unlikely(op_ret < 0)) { |
e2970f2f | 966 | u32 dummy; |
4732efbe | 967 | |
e2970f2f IM |
968 | spin_unlock(&hb1->lock); |
969 | if (hb1 != hb2) | |
970 | spin_unlock(&hb2->lock); | |
4732efbe | 971 | |
7ee1dd3f | 972 | #ifndef CONFIG_MMU |
e2970f2f IM |
973 | /* |
974 | * we don't get EFAULT from MMU faults if we don't have an MMU, | |
975 | * but we might get them from range checking | |
976 | */ | |
7ee1dd3f DH |
977 | ret = op_ret; |
978 | goto out; | |
979 | #endif | |
980 | ||
796f8d9b DG |
981 | if (unlikely(op_ret != -EFAULT)) { |
982 | ret = op_ret; | |
983 | goto out; | |
984 | } | |
985 | ||
e2970f2f IM |
986 | /* |
987 | * futex_atomic_op_inuser needs to both read and write | |
4732efbe JJ |
988 | * *(int __user *)uaddr2, but we can't modify it |
989 | * non-atomically. Therefore, if get_user below is not | |
990 | * enough, we need to handle the fault ourselves, while | |
e2970f2f IM |
991 | * still holding the mmap_sem. |
992 | */ | |
4732efbe | 993 | if (attempt++) { |
c87e2837 | 994 | if (futex_handle_fault((unsigned long)uaddr2, |
e579dcbf JS |
995 | attempt)) { |
996 | ret = -EFAULT; | |
4732efbe | 997 | goto out; |
e579dcbf | 998 | } |
4732efbe JJ |
999 | goto retry; |
1000 | } | |
1001 | ||
e2970f2f IM |
1002 | /* |
1003 | * If we would have faulted, release mmap_sem, | |
1004 | * fault it in and start all over again. | |
1005 | */ | |
4732efbe JJ |
1006 | up_read(¤t->mm->mmap_sem); |
1007 | ||
e2970f2f | 1008 | ret = get_user(dummy, uaddr2); |
4732efbe JJ |
1009 | if (ret) |
1010 | return ret; | |
1011 | ||
1012 | goto retryfull; | |
1013 | } | |
1014 | ||
e2970f2f | 1015 | head = &hb1->chain; |
4732efbe | 1016 | |
ec92d082 | 1017 | plist_for_each_entry_safe(this, next, head, list) { |
4732efbe JJ |
1018 | if (match_futex (&this->key, &key1)) { |
1019 | wake_futex(this); | |
1020 | if (++ret >= nr_wake) | |
1021 | break; | |
1022 | } | |
1023 | } | |
1024 | ||
1025 | if (op_ret > 0) { | |
e2970f2f | 1026 | head = &hb2->chain; |
4732efbe JJ |
1027 | |
1028 | op_ret = 0; | |
ec92d082 | 1029 | plist_for_each_entry_safe(this, next, head, list) { |
4732efbe JJ |
1030 | if (match_futex (&this->key, &key2)) { |
1031 | wake_futex(this); | |
1032 | if (++op_ret >= nr_wake2) | |
1033 | break; | |
1034 | } | |
1035 | } | |
1036 | ret += op_ret; | |
1037 | } | |
1038 | ||
e2970f2f IM |
1039 | spin_unlock(&hb1->lock); |
1040 | if (hb1 != hb2) | |
1041 | spin_unlock(&hb2->lock); | |
4732efbe JJ |
1042 | out: |
1043 | up_read(¤t->mm->mmap_sem); | |
1044 | return ret; | |
1045 | } | |
1046 | ||
1da177e4 LT |
1047 | /* |
1048 | * Requeue all waiters hashed on one physical page to another | |
1049 | * physical page. | |
1050 | */ | |
e2970f2f IM |
1051 | static int futex_requeue(u32 __user *uaddr1, u32 __user *uaddr2, |
1052 | int nr_wake, int nr_requeue, u32 *cmpval) | |
1da177e4 LT |
1053 | { |
1054 | union futex_key key1, key2; | |
e2970f2f | 1055 | struct futex_hash_bucket *hb1, *hb2; |
ec92d082 | 1056 | struct plist_head *head1; |
1da177e4 LT |
1057 | struct futex_q *this, *next; |
1058 | int ret, drop_count = 0; | |
1059 | ||
1060 | retry: | |
1061 | down_read(¤t->mm->mmap_sem); | |
1062 | ||
1063 | ret = get_futex_key(uaddr1, &key1); | |
1064 | if (unlikely(ret != 0)) | |
1065 | goto out; | |
1066 | ret = get_futex_key(uaddr2, &key2); | |
1067 | if (unlikely(ret != 0)) | |
1068 | goto out; | |
1069 | ||
e2970f2f IM |
1070 | hb1 = hash_futex(&key1); |
1071 | hb2 = hash_futex(&key2); | |
1da177e4 | 1072 | |
8b8f319f | 1073 | double_lock_hb(hb1, hb2); |
1da177e4 | 1074 | |
e2970f2f IM |
1075 | if (likely(cmpval != NULL)) { |
1076 | u32 curval; | |
1da177e4 | 1077 | |
e2970f2f | 1078 | ret = get_futex_value_locked(&curval, uaddr1); |
1da177e4 LT |
1079 | |
1080 | if (unlikely(ret)) { | |
e2970f2f IM |
1081 | spin_unlock(&hb1->lock); |
1082 | if (hb1 != hb2) | |
1083 | spin_unlock(&hb2->lock); | |
1da177e4 | 1084 | |
e2970f2f IM |
1085 | /* |
1086 | * If we would have faulted, release mmap_sem, fault | |
1da177e4 LT |
1087 | * it in and start all over again. |
1088 | */ | |
1089 | up_read(¤t->mm->mmap_sem); | |
1090 | ||
e2970f2f | 1091 | ret = get_user(curval, uaddr1); |
1da177e4 LT |
1092 | |
1093 | if (!ret) | |
1094 | goto retry; | |
1095 | ||
1096 | return ret; | |
1097 | } | |
e2970f2f | 1098 | if (curval != *cmpval) { |
1da177e4 LT |
1099 | ret = -EAGAIN; |
1100 | goto out_unlock; | |
1101 | } | |
1102 | } | |
1103 | ||
e2970f2f | 1104 | head1 = &hb1->chain; |
ec92d082 | 1105 | plist_for_each_entry_safe(this, next, head1, list) { |
1da177e4 LT |
1106 | if (!match_futex (&this->key, &key1)) |
1107 | continue; | |
1108 | if (++ret <= nr_wake) { | |
1109 | wake_futex(this); | |
1110 | } else { | |
59e0e0ac SD |
1111 | /* |
1112 | * If key1 and key2 hash to the same bucket, no need to | |
1113 | * requeue. | |
1114 | */ | |
1115 | if (likely(head1 != &hb2->chain)) { | |
ec92d082 PP |
1116 | plist_del(&this->list, &hb1->chain); |
1117 | plist_add(&this->list, &hb2->chain); | |
59e0e0ac | 1118 | this->lock_ptr = &hb2->lock; |
ec92d082 PP |
1119 | #ifdef CONFIG_DEBUG_PI_LIST |
1120 | this->list.plist.lock = &hb2->lock; | |
1121 | #endif | |
1122 | } | |
1da177e4 | 1123 | this->key = key2; |
9adef58b | 1124 | get_futex_key_refs(&key2); |
1da177e4 LT |
1125 | drop_count++; |
1126 | ||
1127 | if (ret - nr_wake >= nr_requeue) | |
1128 | break; | |
1da177e4 LT |
1129 | } |
1130 | } | |
1131 | ||
1132 | out_unlock: | |
e2970f2f IM |
1133 | spin_unlock(&hb1->lock); |
1134 | if (hb1 != hb2) | |
1135 | spin_unlock(&hb2->lock); | |
1da177e4 | 1136 | |
9adef58b | 1137 | /* drop_futex_key_refs() must be called outside the spinlocks. */ |
1da177e4 | 1138 | while (--drop_count >= 0) |
9adef58b | 1139 | drop_futex_key_refs(&key1); |
1da177e4 LT |
1140 | |
1141 | out: | |
1142 | up_read(¤t->mm->mmap_sem); | |
1143 | return ret; | |
1144 | } | |
1145 | ||
1146 | /* The key must be already stored in q->key. */ | |
1147 | static inline struct futex_hash_bucket * | |
1148 | queue_lock(struct futex_q *q, int fd, struct file *filp) | |
1149 | { | |
e2970f2f | 1150 | struct futex_hash_bucket *hb; |
1da177e4 LT |
1151 | |
1152 | q->fd = fd; | |
1153 | q->filp = filp; | |
1154 | ||
1155 | init_waitqueue_head(&q->waiters); | |
1156 | ||
9adef58b | 1157 | get_futex_key_refs(&q->key); |
e2970f2f IM |
1158 | hb = hash_futex(&q->key); |
1159 | q->lock_ptr = &hb->lock; | |
1da177e4 | 1160 | |
e2970f2f IM |
1161 | spin_lock(&hb->lock); |
1162 | return hb; | |
1da177e4 LT |
1163 | } |
1164 | ||
e2970f2f | 1165 | static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb) |
1da177e4 | 1166 | { |
ec92d082 PP |
1167 | int prio; |
1168 | ||
1169 | /* | |
1170 | * The priority used to register this element is | |
1171 | * - either the real thread-priority for the real-time threads | |
1172 | * (i.e. threads with a priority lower than MAX_RT_PRIO) | |
1173 | * - or MAX_RT_PRIO for non-RT threads. | |
1174 | * Thus, all RT-threads are woken first in priority order, and | |
1175 | * the others are woken last, in FIFO order. | |
1176 | */ | |
1177 | prio = min(current->normal_prio, MAX_RT_PRIO); | |
1178 | ||
1179 | plist_node_init(&q->list, prio); | |
1180 | #ifdef CONFIG_DEBUG_PI_LIST | |
1181 | q->list.plist.lock = &hb->lock; | |
1182 | #endif | |
1183 | plist_add(&q->list, &hb->chain); | |
c87e2837 | 1184 | q->task = current; |
e2970f2f | 1185 | spin_unlock(&hb->lock); |
1da177e4 LT |
1186 | } |
1187 | ||
1188 | static inline void | |
e2970f2f | 1189 | queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb) |
1da177e4 | 1190 | { |
e2970f2f | 1191 | spin_unlock(&hb->lock); |
9adef58b | 1192 | drop_futex_key_refs(&q->key); |
1da177e4 LT |
1193 | } |
1194 | ||
1195 | /* | |
1196 | * queue_me and unqueue_me must be called as a pair, each | |
1197 | * exactly once. They are called with the hashed spinlock held. | |
1198 | */ | |
1199 | ||
1200 | /* The key must be already stored in q->key. */ | |
1201 | static void queue_me(struct futex_q *q, int fd, struct file *filp) | |
1202 | { | |
e2970f2f IM |
1203 | struct futex_hash_bucket *hb; |
1204 | ||
1205 | hb = queue_lock(q, fd, filp); | |
1206 | __queue_me(q, hb); | |
1da177e4 LT |
1207 | } |
1208 | ||
1209 | /* Return 1 if we were still queued (ie. 0 means we were woken) */ | |
1210 | static int unqueue_me(struct futex_q *q) | |
1211 | { | |
1da177e4 | 1212 | spinlock_t *lock_ptr; |
e2970f2f | 1213 | int ret = 0; |
1da177e4 LT |
1214 | |
1215 | /* In the common case we don't take the spinlock, which is nice. */ | |
1216 | retry: | |
1217 | lock_ptr = q->lock_ptr; | |
e91467ec | 1218 | barrier(); |
1da177e4 LT |
1219 | if (lock_ptr != 0) { |
1220 | spin_lock(lock_ptr); | |
1221 | /* | |
1222 | * q->lock_ptr can change between reading it and | |
1223 | * spin_lock(), causing us to take the wrong lock. This | |
1224 | * corrects the race condition. | |
1225 | * | |
1226 | * Reasoning goes like this: if we have the wrong lock, | |
1227 | * q->lock_ptr must have changed (maybe several times) | |
1228 | * between reading it and the spin_lock(). It can | |
1229 | * change again after the spin_lock() but only if it was | |
1230 | * already changed before the spin_lock(). It cannot, | |
1231 | * however, change back to the original value. Therefore | |
1232 | * we can detect whether we acquired the correct lock. | |
1233 | */ | |
1234 | if (unlikely(lock_ptr != q->lock_ptr)) { | |
1235 | spin_unlock(lock_ptr); | |
1236 | goto retry; | |
1237 | } | |
ec92d082 PP |
1238 | WARN_ON(plist_node_empty(&q->list)); |
1239 | plist_del(&q->list, &q->list.plist); | |
c87e2837 IM |
1240 | |
1241 | BUG_ON(q->pi_state); | |
1242 | ||
1da177e4 LT |
1243 | spin_unlock(lock_ptr); |
1244 | ret = 1; | |
1245 | } | |
1246 | ||
9adef58b | 1247 | drop_futex_key_refs(&q->key); |
1da177e4 LT |
1248 | return ret; |
1249 | } | |
1250 | ||
c87e2837 IM |
1251 | /* |
1252 | * PI futexes can not be requeued and must remove themself from the | |
d0aa7a70 PP |
1253 | * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry |
1254 | * and dropped here. | |
c87e2837 | 1255 | */ |
d0aa7a70 | 1256 | static void unqueue_me_pi(struct futex_q *q) |
c87e2837 | 1257 | { |
ec92d082 PP |
1258 | WARN_ON(plist_node_empty(&q->list)); |
1259 | plist_del(&q->list, &q->list.plist); | |
c87e2837 IM |
1260 | |
1261 | BUG_ON(!q->pi_state); | |
1262 | free_pi_state(q->pi_state); | |
1263 | q->pi_state = NULL; | |
1264 | ||
d0aa7a70 | 1265 | spin_unlock(q->lock_ptr); |
c87e2837 | 1266 | |
9adef58b | 1267 | drop_futex_key_refs(&q->key); |
c87e2837 IM |
1268 | } |
1269 | ||
d0aa7a70 PP |
1270 | /* |
1271 | * Fixup the pi_state owner with current. | |
1272 | * | |
1273 | * The cur->mm semaphore must be held, it is released at return of this | |
1274 | * function. | |
1275 | */ | |
1276 | static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q, | |
1277 | struct futex_hash_bucket *hb, | |
1278 | struct task_struct *curr) | |
1279 | { | |
1280 | u32 newtid = curr->pid | FUTEX_WAITERS; | |
1281 | struct futex_pi_state *pi_state = q->pi_state; | |
1282 | u32 uval, curval, newval; | |
1283 | int ret; | |
1284 | ||
1285 | /* Owner died? */ | |
1286 | if (pi_state->owner != NULL) { | |
1287 | spin_lock_irq(&pi_state->owner->pi_lock); | |
1288 | WARN_ON(list_empty(&pi_state->list)); | |
1289 | list_del_init(&pi_state->list); | |
1290 | spin_unlock_irq(&pi_state->owner->pi_lock); | |
1291 | } else | |
1292 | newtid |= FUTEX_OWNER_DIED; | |
1293 | ||
1294 | pi_state->owner = curr; | |
1295 | ||
1296 | spin_lock_irq(&curr->pi_lock); | |
1297 | WARN_ON(!list_empty(&pi_state->list)); | |
1298 | list_add(&pi_state->list, &curr->pi_state_list); | |
1299 | spin_unlock_irq(&curr->pi_lock); | |
1300 | ||
1301 | /* Unqueue and drop the lock */ | |
1302 | unqueue_me_pi(q); | |
1303 | up_read(&curr->mm->mmap_sem); | |
1304 | /* | |
1305 | * We own it, so we have to replace the pending owner | |
1306 | * TID. This must be atomic as we have preserve the | |
1307 | * owner died bit here. | |
1308 | */ | |
1309 | ret = get_user(uval, uaddr); | |
1310 | while (!ret) { | |
1311 | newval = (uval & FUTEX_OWNER_DIED) | newtid; | |
1312 | newval |= (uval & FUTEX_WAITER_REQUEUED); | |
1313 | curval = futex_atomic_cmpxchg_inatomic(uaddr, | |
1314 | uval, newval); | |
1315 | if (curval == -EFAULT) | |
1316 | ret = -EFAULT; | |
1317 | if (curval == uval) | |
1318 | break; | |
1319 | uval = curval; | |
1320 | } | |
1321 | return ret; | |
1322 | } | |
1323 | ||
72c1bbf3 | 1324 | static long futex_wait_restart(struct restart_block *restart); |
c19384b5 | 1325 | static int futex_wait(u32 __user *uaddr, u32 val, ktime_t *abs_time) |
1da177e4 | 1326 | { |
c87e2837 IM |
1327 | struct task_struct *curr = current; |
1328 | DECLARE_WAITQUEUE(wait, curr); | |
e2970f2f | 1329 | struct futex_hash_bucket *hb; |
1da177e4 | 1330 | struct futex_q q; |
e2970f2f IM |
1331 | u32 uval; |
1332 | int ret; | |
d0aa7a70 | 1333 | struct hrtimer_sleeper t, *to = NULL; |
c19384b5 | 1334 | int rem = 0; |
1da177e4 | 1335 | |
c87e2837 | 1336 | q.pi_state = NULL; |
1da177e4 | 1337 | retry: |
c87e2837 | 1338 | down_read(&curr->mm->mmap_sem); |
1da177e4 LT |
1339 | |
1340 | ret = get_futex_key(uaddr, &q.key); | |
1341 | if (unlikely(ret != 0)) | |
1342 | goto out_release_sem; | |
1343 | ||
e2970f2f | 1344 | hb = queue_lock(&q, -1, NULL); |
1da177e4 LT |
1345 | |
1346 | /* | |
1347 | * Access the page AFTER the futex is queued. | |
1348 | * Order is important: | |
1349 | * | |
1350 | * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val); | |
1351 | * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); } | |
1352 | * | |
1353 | * The basic logical guarantee of a futex is that it blocks ONLY | |
1354 | * if cond(var) is known to be true at the time of blocking, for | |
1355 | * any cond. If we queued after testing *uaddr, that would open | |
1356 | * a race condition where we could block indefinitely with | |
1357 | * cond(var) false, which would violate the guarantee. | |
1358 | * | |
1359 | * A consequence is that futex_wait() can return zero and absorb | |
1360 | * a wakeup when *uaddr != val on entry to the syscall. This is | |
1361 | * rare, but normal. | |
1362 | * | |
1363 | * We hold the mmap semaphore, so the mapping cannot have changed | |
1364 | * since we looked it up in get_futex_key. | |
1365 | */ | |
e2970f2f | 1366 | ret = get_futex_value_locked(&uval, uaddr); |
1da177e4 LT |
1367 | |
1368 | if (unlikely(ret)) { | |
e2970f2f | 1369 | queue_unlock(&q, hb); |
1da177e4 | 1370 | |
e2970f2f IM |
1371 | /* |
1372 | * If we would have faulted, release mmap_sem, fault it in and | |
1da177e4 LT |
1373 | * start all over again. |
1374 | */ | |
c87e2837 | 1375 | up_read(&curr->mm->mmap_sem); |
1da177e4 | 1376 | |
e2970f2f | 1377 | ret = get_user(uval, uaddr); |
1da177e4 LT |
1378 | |
1379 | if (!ret) | |
1380 | goto retry; | |
1381 | return ret; | |
1382 | } | |
c87e2837 IM |
1383 | ret = -EWOULDBLOCK; |
1384 | if (uval != val) | |
1385 | goto out_unlock_release_sem; | |
1da177e4 | 1386 | |
d0aa7a70 PP |
1387 | /* |
1388 | * This rt_mutex_waiter structure is prepared here and will | |
1389 | * be used only if this task is requeued from a normal futex to | |
1390 | * a PI-futex with futex_requeue_pi. | |
1391 | */ | |
1392 | debug_rt_mutex_init_waiter(&q.waiter); | |
1393 | q.waiter.task = NULL; | |
1394 | ||
1da177e4 | 1395 | /* Only actually queue if *uaddr contained val. */ |
e2970f2f | 1396 | __queue_me(&q, hb); |
1da177e4 LT |
1397 | |
1398 | /* | |
1399 | * Now the futex is queued and we have checked the data, we | |
1400 | * don't want to hold mmap_sem while we sleep. | |
c87e2837 IM |
1401 | */ |
1402 | up_read(&curr->mm->mmap_sem); | |
1da177e4 LT |
1403 | |
1404 | /* | |
1405 | * There might have been scheduling since the queue_me(), as we | |
1406 | * cannot hold a spinlock across the get_user() in case it | |
1407 | * faults, and we cannot just set TASK_INTERRUPTIBLE state when | |
1408 | * queueing ourselves into the futex hash. This code thus has to | |
1409 | * rely on the futex_wake() code removing us from hash when it | |
1410 | * wakes us up. | |
1411 | */ | |
1412 | ||
1413 | /* add_wait_queue is the barrier after __set_current_state. */ | |
1414 | __set_current_state(TASK_INTERRUPTIBLE); | |
1415 | add_wait_queue(&q.waiters, &wait); | |
1416 | /* | |
ec92d082 | 1417 | * !plist_node_empty() is safe here without any lock. |
1da177e4 LT |
1418 | * q.lock_ptr != 0 is not safe, because of ordering against wakeup. |
1419 | */ | |
ec92d082 | 1420 | if (likely(!plist_node_empty(&q.list))) { |
c19384b5 PP |
1421 | if (!abs_time) |
1422 | schedule(); | |
1423 | else { | |
d0aa7a70 | 1424 | to = &t; |
c19384b5 PP |
1425 | hrtimer_init(&t.timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); |
1426 | hrtimer_init_sleeper(&t, current); | |
1427 | t.timer.expires = *abs_time; | |
1428 | ||
1429 | hrtimer_start(&t.timer, t.timer.expires, HRTIMER_MODE_ABS); | |
1430 | ||
1431 | /* | |
1432 | * the timer could have already expired, in which | |
1433 | * case current would be flagged for rescheduling. | |
1434 | * Don't bother calling schedule. | |
1435 | */ | |
1436 | if (likely(t.task)) | |
1437 | schedule(); | |
1438 | ||
1439 | hrtimer_cancel(&t.timer); | |
72c1bbf3 | 1440 | |
c19384b5 PP |
1441 | /* Flag if a timeout occured */ |
1442 | rem = (t.task == NULL); | |
1443 | } | |
72c1bbf3 | 1444 | } |
1da177e4 LT |
1445 | __set_current_state(TASK_RUNNING); |
1446 | ||
1447 | /* | |
1448 | * NOTE: we don't remove ourselves from the waitqueue because | |
1449 | * we are the only user of it. | |
1450 | */ | |
1451 | ||
d0aa7a70 PP |
1452 | if (q.pi_state) { |
1453 | /* | |
1454 | * We were woken but have been requeued on a PI-futex. | |
1455 | * We have to complete the lock acquisition by taking | |
1456 | * the rtmutex. | |
1457 | */ | |
1458 | ||
1459 | struct rt_mutex *lock = &q.pi_state->pi_mutex; | |
1460 | ||
1461 | spin_lock(&lock->wait_lock); | |
1462 | if (unlikely(q.waiter.task)) { | |
1463 | remove_waiter(lock, &q.waiter); | |
1464 | } | |
1465 | spin_unlock(&lock->wait_lock); | |
1466 | ||
1467 | if (rem) | |
1468 | ret = -ETIMEDOUT; | |
1469 | else | |
1470 | ret = rt_mutex_timed_lock(lock, to, 1); | |
1471 | ||
1472 | down_read(&curr->mm->mmap_sem); | |
1473 | spin_lock(q.lock_ptr); | |
1474 | ||
1475 | /* | |
1476 | * Got the lock. We might not be the anticipated owner if we | |
1477 | * did a lock-steal - fix up the PI-state in that case. | |
1478 | */ | |
1479 | if (!ret && q.pi_state->owner != curr) { | |
1480 | /* | |
1481 | * We MUST play with the futex we were requeued on, | |
1482 | * NOT the current futex. | |
1483 | * We can retrieve it from the key of the pi_state | |
1484 | */ | |
1485 | uaddr = q.pi_state->key.uaddr; | |
1486 | ||
1487 | /* mmap_sem and hash_bucket lock are unlocked at | |
1488 | return of this function */ | |
1489 | ret = fixup_pi_state_owner(uaddr, &q, hb, curr); | |
1490 | } else { | |
1491 | /* | |
1492 | * Catch the rare case, where the lock was released | |
1493 | * when we were on the way back before we locked | |
1494 | * the hash bucket. | |
1495 | */ | |
1496 | if (ret && q.pi_state->owner == curr) { | |
1497 | if (rt_mutex_trylock(&q.pi_state->pi_mutex)) | |
1498 | ret = 0; | |
1499 | } | |
1500 | /* Unqueue and drop the lock */ | |
1501 | unqueue_me_pi(&q); | |
1502 | up_read(&curr->mm->mmap_sem); | |
1503 | } | |
1504 | ||
1505 | debug_rt_mutex_free_waiter(&q.waiter); | |
1506 | ||
1507 | return ret; | |
1508 | } | |
1509 | ||
1510 | debug_rt_mutex_free_waiter(&q.waiter); | |
1511 | ||
1da177e4 LT |
1512 | /* If we were woken (and unqueued), we succeeded, whatever. */ |
1513 | if (!unqueue_me(&q)) | |
1514 | return 0; | |
c19384b5 | 1515 | if (rem) |
1da177e4 | 1516 | return -ETIMEDOUT; |
72c1bbf3 | 1517 | |
e2970f2f IM |
1518 | /* |
1519 | * We expect signal_pending(current), but another thread may | |
1520 | * have handled it for us already. | |
1521 | */ | |
c19384b5 | 1522 | if (!abs_time) |
72c1bbf3 NP |
1523 | return -ERESTARTSYS; |
1524 | else { | |
1525 | struct restart_block *restart; | |
1526 | restart = ¤t_thread_info()->restart_block; | |
1527 | restart->fn = futex_wait_restart; | |
1528 | restart->arg0 = (unsigned long)uaddr; | |
1529 | restart->arg1 = (unsigned long)val; | |
c19384b5 | 1530 | restart->arg2 = (unsigned long)abs_time; |
72c1bbf3 NP |
1531 | return -ERESTART_RESTARTBLOCK; |
1532 | } | |
1da177e4 | 1533 | |
c87e2837 IM |
1534 | out_unlock_release_sem: |
1535 | queue_unlock(&q, hb); | |
1536 | ||
1da177e4 | 1537 | out_release_sem: |
c87e2837 IM |
1538 | up_read(&curr->mm->mmap_sem); |
1539 | return ret; | |
1540 | } | |
1541 | ||
72c1bbf3 NP |
1542 | |
1543 | static long futex_wait_restart(struct restart_block *restart) | |
1544 | { | |
1545 | u32 __user *uaddr = (u32 __user *)restart->arg0; | |
1546 | u32 val = (u32)restart->arg1; | |
c19384b5 | 1547 | ktime_t *abs_time = (ktime_t *)restart->arg2; |
72c1bbf3 NP |
1548 | |
1549 | restart->fn = do_no_restart_syscall; | |
c19384b5 | 1550 | return (long)futex_wait(uaddr, val, abs_time); |
72c1bbf3 NP |
1551 | } |
1552 | ||
1553 | ||
d0aa7a70 PP |
1554 | static void set_pi_futex_owner(struct futex_hash_bucket *hb, |
1555 | union futex_key *key, struct task_struct *p) | |
1556 | { | |
1557 | struct plist_head *head; | |
1558 | struct futex_q *this, *next; | |
1559 | struct futex_pi_state *pi_state = NULL; | |
1560 | struct rt_mutex *lock; | |
1561 | ||
1562 | /* Search a waiter that should already exists */ | |
1563 | ||
1564 | head = &hb->chain; | |
1565 | ||
1566 | plist_for_each_entry_safe(this, next, head, list) { | |
1567 | if (match_futex (&this->key, key)) { | |
1568 | pi_state = this->pi_state; | |
1569 | break; | |
1570 | } | |
1571 | } | |
1572 | ||
1573 | BUG_ON(!pi_state); | |
1574 | ||
1575 | /* set p as pi_state's owner */ | |
1576 | lock = &pi_state->pi_mutex; | |
1577 | ||
1578 | spin_lock(&lock->wait_lock); | |
1579 | spin_lock_irq(&p->pi_lock); | |
1580 | ||
1581 | list_add(&pi_state->list, &p->pi_state_list); | |
1582 | pi_state->owner = p; | |
1583 | ||
1584 | ||
1585 | /* set p as pi_mutex's owner */ | |
1586 | debug_rt_mutex_proxy_lock(lock, p); | |
1587 | WARN_ON(rt_mutex_owner(lock)); | |
1588 | rt_mutex_set_owner(lock, p, 0); | |
1589 | rt_mutex_deadlock_account_lock(lock, p); | |
1590 | ||
1591 | plist_add(&rt_mutex_top_waiter(lock)->pi_list_entry, | |
1592 | &p->pi_waiters); | |
1593 | __rt_mutex_adjust_prio(p); | |
1594 | ||
1595 | spin_unlock_irq(&p->pi_lock); | |
1596 | spin_unlock(&lock->wait_lock); | |
1597 | } | |
1598 | ||
c87e2837 IM |
1599 | /* |
1600 | * Userspace tried a 0 -> TID atomic transition of the futex value | |
1601 | * and failed. The kernel side here does the whole locking operation: | |
1602 | * if there are waiters then it will block, it does PI, etc. (Due to | |
1603 | * races the kernel might see a 0 value of the futex too.) | |
1604 | */ | |
c19384b5 PP |
1605 | static int futex_lock_pi(u32 __user *uaddr, int detect, ktime_t *time, |
1606 | int trylock) | |
c87e2837 | 1607 | { |
c5780e97 | 1608 | struct hrtimer_sleeper timeout, *to = NULL; |
c87e2837 IM |
1609 | struct task_struct *curr = current; |
1610 | struct futex_hash_bucket *hb; | |
1611 | u32 uval, newval, curval; | |
1612 | struct futex_q q; | |
d0aa7a70 | 1613 | int ret, lock_held, attempt = 0; |
c87e2837 IM |
1614 | |
1615 | if (refill_pi_state_cache()) | |
1616 | return -ENOMEM; | |
1617 | ||
c19384b5 | 1618 | if (time) { |
c5780e97 | 1619 | to = &timeout; |
c9cb2e3d | 1620 | hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_MODE_ABS); |
c5780e97 | 1621 | hrtimer_init_sleeper(to, current); |
c19384b5 | 1622 | to->timer.expires = *time; |
c5780e97 TG |
1623 | } |
1624 | ||
c87e2837 IM |
1625 | q.pi_state = NULL; |
1626 | retry: | |
1627 | down_read(&curr->mm->mmap_sem); | |
1628 | ||
1629 | ret = get_futex_key(uaddr, &q.key); | |
1630 | if (unlikely(ret != 0)) | |
1631 | goto out_release_sem; | |
1632 | ||
1633 | hb = queue_lock(&q, -1, NULL); | |
1634 | ||
1635 | retry_locked: | |
d0aa7a70 PP |
1636 | lock_held = 0; |
1637 | ||
c87e2837 IM |
1638 | /* |
1639 | * To avoid races, we attempt to take the lock here again | |
1640 | * (by doing a 0 -> TID atomic cmpxchg), while holding all | |
1641 | * the locks. It will most likely not succeed. | |
1642 | */ | |
1643 | newval = current->pid; | |
1644 | ||
a866374a | 1645 | pagefault_disable(); |
c87e2837 | 1646 | curval = futex_atomic_cmpxchg_inatomic(uaddr, 0, newval); |
a866374a | 1647 | pagefault_enable(); |
c87e2837 IM |
1648 | |
1649 | if (unlikely(curval == -EFAULT)) | |
1650 | goto uaddr_faulted; | |
1651 | ||
1652 | /* We own the lock already */ | |
1653 | if (unlikely((curval & FUTEX_TID_MASK) == current->pid)) { | |
1654 | if (!detect && 0) | |
1655 | force_sig(SIGKILL, current); | |
d0aa7a70 PP |
1656 | /* |
1657 | * Normally, this check is done in user space. | |
1658 | * In case of requeue, the owner may attempt to lock this futex, | |
1659 | * even if the ownership has already been given by the previous | |
1660 | * waker. | |
1661 | * In the usual case, this is a case of deadlock, but not in case | |
1662 | * of REQUEUE_PI. | |
1663 | */ | |
1664 | if (!(curval & FUTEX_WAITER_REQUEUED)) | |
1665 | ret = -EDEADLK; | |
c87e2837 IM |
1666 | goto out_unlock_release_sem; |
1667 | } | |
1668 | ||
1669 | /* | |
1670 | * Surprise - we got the lock. Just return | |
1671 | * to userspace: | |
1672 | */ | |
1673 | if (unlikely(!curval)) | |
1674 | goto out_unlock_release_sem; | |
1675 | ||
1676 | uval = curval; | |
d0aa7a70 PP |
1677 | /* |
1678 | * In case of a requeue, check if there already is an owner | |
1679 | * If not, just take the futex. | |
1680 | */ | |
1681 | if ((curval & FUTEX_WAITER_REQUEUED) && !(curval & FUTEX_TID_MASK)) { | |
1682 | /* set current as futex owner */ | |
1683 | newval = curval | current->pid; | |
1684 | lock_held = 1; | |
1685 | } else | |
1686 | /* Set the WAITERS flag, so the owner will know it has someone | |
1687 | to wake at next unlock */ | |
1688 | newval = curval | FUTEX_WAITERS; | |
c87e2837 | 1689 | |
a866374a | 1690 | pagefault_disable(); |
c87e2837 | 1691 | curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval); |
a866374a | 1692 | pagefault_enable(); |
c87e2837 IM |
1693 | |
1694 | if (unlikely(curval == -EFAULT)) | |
1695 | goto uaddr_faulted; | |
1696 | if (unlikely(curval != uval)) | |
1697 | goto retry_locked; | |
1698 | ||
d0aa7a70 PP |
1699 | if (lock_held) { |
1700 | set_pi_futex_owner(hb, &q.key, curr); | |
1701 | goto out_unlock_release_sem; | |
1702 | } | |
1703 | ||
c87e2837 IM |
1704 | /* |
1705 | * We dont have the lock. Look up the PI state (or create it if | |
1706 | * we are the first waiter): | |
1707 | */ | |
d0aa7a70 | 1708 | ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state); |
c87e2837 IM |
1709 | |
1710 | if (unlikely(ret)) { | |
1711 | /* | |
1712 | * There were no waiters and the owner task lookup | |
1713 | * failed. When the OWNER_DIED bit is set, then we | |
1714 | * know that this is a robust futex and we actually | |
1715 | * take the lock. This is safe as we are protected by | |
1716 | * the hash bucket lock. We also set the waiters bit | |
1717 | * unconditionally here, to simplify glibc handling of | |
1718 | * multiple tasks racing to acquire the lock and | |
1719 | * cleanup the problems which were left by the dead | |
1720 | * owner. | |
1721 | */ | |
1722 | if (curval & FUTEX_OWNER_DIED) { | |
1723 | uval = newval; | |
1724 | newval = current->pid | | |
1725 | FUTEX_OWNER_DIED | FUTEX_WAITERS; | |
1726 | ||
a866374a | 1727 | pagefault_disable(); |
c87e2837 IM |
1728 | curval = futex_atomic_cmpxchg_inatomic(uaddr, |
1729 | uval, newval); | |
a866374a | 1730 | pagefault_enable(); |
c87e2837 IM |
1731 | |
1732 | if (unlikely(curval == -EFAULT)) | |
1733 | goto uaddr_faulted; | |
1734 | if (unlikely(curval != uval)) | |
1735 | goto retry_locked; | |
1736 | ret = 0; | |
1737 | } | |
1738 | goto out_unlock_release_sem; | |
1739 | } | |
1740 | ||
1741 | /* | |
1742 | * Only actually queue now that the atomic ops are done: | |
1743 | */ | |
1744 | __queue_me(&q, hb); | |
1745 | ||
1746 | /* | |
1747 | * Now the futex is queued and we have checked the data, we | |
1748 | * don't want to hold mmap_sem while we sleep. | |
1749 | */ | |
1750 | up_read(&curr->mm->mmap_sem); | |
1751 | ||
1752 | WARN_ON(!q.pi_state); | |
1753 | /* | |
1754 | * Block on the PI mutex: | |
1755 | */ | |
1756 | if (!trylock) | |
1757 | ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1); | |
1758 | else { | |
1759 | ret = rt_mutex_trylock(&q.pi_state->pi_mutex); | |
1760 | /* Fixup the trylock return value: */ | |
1761 | ret = ret ? 0 : -EWOULDBLOCK; | |
1762 | } | |
1763 | ||
1764 | down_read(&curr->mm->mmap_sem); | |
a99e4e41 | 1765 | spin_lock(q.lock_ptr); |
c87e2837 IM |
1766 | |
1767 | /* | |
1768 | * Got the lock. We might not be the anticipated owner if we | |
1769 | * did a lock-steal - fix up the PI-state in that case. | |
1770 | */ | |
d0aa7a70 PP |
1771 | if (!ret && q.pi_state->owner != curr) |
1772 | /* mmap_sem is unlocked at return of this function */ | |
1773 | ret = fixup_pi_state_owner(uaddr, &q, hb, curr); | |
1774 | else { | |
c87e2837 IM |
1775 | /* |
1776 | * Catch the rare case, where the lock was released | |
1777 | * when we were on the way back before we locked | |
1778 | * the hash bucket. | |
1779 | */ | |
1780 | if (ret && q.pi_state->owner == curr) { | |
1781 | if (rt_mutex_trylock(&q.pi_state->pi_mutex)) | |
1782 | ret = 0; | |
1783 | } | |
1784 | /* Unqueue and drop the lock */ | |
d0aa7a70 | 1785 | unqueue_me_pi(&q); |
c87e2837 IM |
1786 | up_read(&curr->mm->mmap_sem); |
1787 | } | |
1788 | ||
1789 | if (!detect && ret == -EDEADLK && 0) | |
1790 | force_sig(SIGKILL, current); | |
1791 | ||
c5780e97 | 1792 | return ret != -EINTR ? ret : -ERESTARTNOINTR; |
c87e2837 IM |
1793 | |
1794 | out_unlock_release_sem: | |
1795 | queue_unlock(&q, hb); | |
1796 | ||
1797 | out_release_sem: | |
1798 | up_read(&curr->mm->mmap_sem); | |
1799 | return ret; | |
1800 | ||
1801 | uaddr_faulted: | |
1802 | /* | |
1803 | * We have to r/w *(int __user *)uaddr, but we can't modify it | |
1804 | * non-atomically. Therefore, if get_user below is not | |
1805 | * enough, we need to handle the fault ourselves, while | |
1806 | * still holding the mmap_sem. | |
1807 | */ | |
1808 | if (attempt++) { | |
e579dcbf JS |
1809 | if (futex_handle_fault((unsigned long)uaddr, attempt)) { |
1810 | ret = -EFAULT; | |
c87e2837 | 1811 | goto out_unlock_release_sem; |
e579dcbf | 1812 | } |
c87e2837 IM |
1813 | goto retry_locked; |
1814 | } | |
1815 | ||
1816 | queue_unlock(&q, hb); | |
1817 | up_read(&curr->mm->mmap_sem); | |
1818 | ||
1819 | ret = get_user(uval, uaddr); | |
1820 | if (!ret && (uval != -EFAULT)) | |
1821 | goto retry; | |
1822 | ||
1823 | return ret; | |
1824 | } | |
1825 | ||
c87e2837 IM |
1826 | /* |
1827 | * Userspace attempted a TID -> 0 atomic transition, and failed. | |
1828 | * This is the in-kernel slowpath: we look up the PI state (if any), | |
1829 | * and do the rt-mutex unlock. | |
1830 | */ | |
1831 | static int futex_unlock_pi(u32 __user *uaddr) | |
1832 | { | |
1833 | struct futex_hash_bucket *hb; | |
1834 | struct futex_q *this, *next; | |
1835 | u32 uval; | |
ec92d082 | 1836 | struct plist_head *head; |
c87e2837 IM |
1837 | union futex_key key; |
1838 | int ret, attempt = 0; | |
1839 | ||
1840 | retry: | |
1841 | if (get_user(uval, uaddr)) | |
1842 | return -EFAULT; | |
1843 | /* | |
1844 | * We release only a lock we actually own: | |
1845 | */ | |
1846 | if ((uval & FUTEX_TID_MASK) != current->pid) | |
1847 | return -EPERM; | |
1848 | /* | |
1849 | * First take all the futex related locks: | |
1850 | */ | |
1851 | down_read(¤t->mm->mmap_sem); | |
1852 | ||
1853 | ret = get_futex_key(uaddr, &key); | |
1854 | if (unlikely(ret != 0)) | |
1855 | goto out; | |
1856 | ||
1857 | hb = hash_futex(&key); | |
1858 | spin_lock(&hb->lock); | |
1859 | ||
1860 | retry_locked: | |
1861 | /* | |
1862 | * To avoid races, try to do the TID -> 0 atomic transition | |
1863 | * again. If it succeeds then we can return without waking | |
1864 | * anyone else up: | |
1865 | */ | |
e3f2ddea | 1866 | if (!(uval & FUTEX_OWNER_DIED)) { |
a866374a | 1867 | pagefault_disable(); |
e3f2ddea | 1868 | uval = futex_atomic_cmpxchg_inatomic(uaddr, current->pid, 0); |
a866374a | 1869 | pagefault_enable(); |
e3f2ddea | 1870 | } |
c87e2837 IM |
1871 | |
1872 | if (unlikely(uval == -EFAULT)) | |
1873 | goto pi_faulted; | |
1874 | /* | |
1875 | * Rare case: we managed to release the lock atomically, | |
1876 | * no need to wake anyone else up: | |
1877 | */ | |
1878 | if (unlikely(uval == current->pid)) | |
1879 | goto out_unlock; | |
1880 | ||
1881 | /* | |
1882 | * Ok, other tasks may need to be woken up - check waiters | |
1883 | * and do the wakeup if necessary: | |
1884 | */ | |
1885 | head = &hb->chain; | |
1886 | ||
ec92d082 | 1887 | plist_for_each_entry_safe(this, next, head, list) { |
c87e2837 IM |
1888 | if (!match_futex (&this->key, &key)) |
1889 | continue; | |
1890 | ret = wake_futex_pi(uaddr, uval, this); | |
1891 | /* | |
1892 | * The atomic access to the futex value | |
1893 | * generated a pagefault, so retry the | |
1894 | * user-access and the wakeup: | |
1895 | */ | |
1896 | if (ret == -EFAULT) | |
1897 | goto pi_faulted; | |
1898 | goto out_unlock; | |
1899 | } | |
1900 | /* | |
1901 | * No waiters - kernel unlocks the futex: | |
1902 | */ | |
e3f2ddea IM |
1903 | if (!(uval & FUTEX_OWNER_DIED)) { |
1904 | ret = unlock_futex_pi(uaddr, uval); | |
1905 | if (ret == -EFAULT) | |
1906 | goto pi_faulted; | |
1907 | } | |
c87e2837 IM |
1908 | |
1909 | out_unlock: | |
1910 | spin_unlock(&hb->lock); | |
1911 | out: | |
1912 | up_read(¤t->mm->mmap_sem); | |
1913 | ||
1914 | return ret; | |
1915 | ||
1916 | pi_faulted: | |
1917 | /* | |
1918 | * We have to r/w *(int __user *)uaddr, but we can't modify it | |
1919 | * non-atomically. Therefore, if get_user below is not | |
1920 | * enough, we need to handle the fault ourselves, while | |
1921 | * still holding the mmap_sem. | |
1922 | */ | |
1923 | if (attempt++) { | |
e579dcbf JS |
1924 | if (futex_handle_fault((unsigned long)uaddr, attempt)) { |
1925 | ret = -EFAULT; | |
c87e2837 | 1926 | goto out_unlock; |
e579dcbf | 1927 | } |
c87e2837 IM |
1928 | goto retry_locked; |
1929 | } | |
1930 | ||
1931 | spin_unlock(&hb->lock); | |
1da177e4 | 1932 | up_read(¤t->mm->mmap_sem); |
c87e2837 IM |
1933 | |
1934 | ret = get_user(uval, uaddr); | |
1935 | if (!ret && (uval != -EFAULT)) | |
1936 | goto retry; | |
1937 | ||
1da177e4 LT |
1938 | return ret; |
1939 | } | |
1940 | ||
1941 | static int futex_close(struct inode *inode, struct file *filp) | |
1942 | { | |
1943 | struct futex_q *q = filp->private_data; | |
1944 | ||
1945 | unqueue_me(q); | |
1946 | kfree(q); | |
e2970f2f | 1947 | |
1da177e4 LT |
1948 | return 0; |
1949 | } | |
1950 | ||
1951 | /* This is one-shot: once it's gone off you need a new fd */ | |
1952 | static unsigned int futex_poll(struct file *filp, | |
1953 | struct poll_table_struct *wait) | |
1954 | { | |
1955 | struct futex_q *q = filp->private_data; | |
1956 | int ret = 0; | |
1957 | ||
1958 | poll_wait(filp, &q->waiters, wait); | |
1959 | ||
1960 | /* | |
ec92d082 | 1961 | * plist_node_empty() is safe here without any lock. |
1da177e4 LT |
1962 | * q->lock_ptr != 0 is not safe, because of ordering against wakeup. |
1963 | */ | |
ec92d082 | 1964 | if (plist_node_empty(&q->list)) |
1da177e4 LT |
1965 | ret = POLLIN | POLLRDNORM; |
1966 | ||
1967 | return ret; | |
1968 | } | |
1969 | ||
15ad7cdc | 1970 | static const struct file_operations futex_fops = { |
1da177e4 LT |
1971 | .release = futex_close, |
1972 | .poll = futex_poll, | |
1973 | }; | |
1974 | ||
1975 | /* | |
1976 | * Signal allows caller to avoid the race which would occur if they | |
1977 | * set the sigio stuff up afterwards. | |
1978 | */ | |
e2970f2f | 1979 | static int futex_fd(u32 __user *uaddr, int signal) |
1da177e4 LT |
1980 | { |
1981 | struct futex_q *q; | |
1982 | struct file *filp; | |
1983 | int ret, err; | |
19c6b6ed AM |
1984 | static unsigned long printk_interval; |
1985 | ||
1986 | if (printk_timed_ratelimit(&printk_interval, 60 * 60 * 1000)) { | |
1987 | printk(KERN_WARNING "Process `%s' used FUTEX_FD, which " | |
1988 | "will be removed from the kernel in June 2007\n", | |
1989 | current->comm); | |
1990 | } | |
1da177e4 LT |
1991 | |
1992 | ret = -EINVAL; | |
7ed20e1a | 1993 | if (!valid_signal(signal)) |
1da177e4 LT |
1994 | goto out; |
1995 | ||
1996 | ret = get_unused_fd(); | |
1997 | if (ret < 0) | |
1998 | goto out; | |
1999 | filp = get_empty_filp(); | |
2000 | if (!filp) { | |
2001 | put_unused_fd(ret); | |
2002 | ret = -ENFILE; | |
2003 | goto out; | |
2004 | } | |
2005 | filp->f_op = &futex_fops; | |
f3a43f3f JJS |
2006 | filp->f_path.mnt = mntget(futex_mnt); |
2007 | filp->f_path.dentry = dget(futex_mnt->mnt_root); | |
2008 | filp->f_mapping = filp->f_path.dentry->d_inode->i_mapping; | |
1da177e4 LT |
2009 | |
2010 | if (signal) { | |
609d7fa9 | 2011 | err = __f_setown(filp, task_pid(current), PIDTYPE_PID, 1); |
1da177e4 | 2012 | if (err < 0) { |
39ed3fde | 2013 | goto error; |
1da177e4 LT |
2014 | } |
2015 | filp->f_owner.signum = signal; | |
2016 | } | |
2017 | ||
2018 | q = kmalloc(sizeof(*q), GFP_KERNEL); | |
2019 | if (!q) { | |
39ed3fde PE |
2020 | err = -ENOMEM; |
2021 | goto error; | |
1da177e4 | 2022 | } |
c87e2837 | 2023 | q->pi_state = NULL; |
1da177e4 LT |
2024 | |
2025 | down_read(¤t->mm->mmap_sem); | |
2026 | err = get_futex_key(uaddr, &q->key); | |
2027 | ||
2028 | if (unlikely(err != 0)) { | |
2029 | up_read(¤t->mm->mmap_sem); | |
1da177e4 | 2030 | kfree(q); |
39ed3fde | 2031 | goto error; |
1da177e4 LT |
2032 | } |
2033 | ||
2034 | /* | |
2035 | * queue_me() must be called before releasing mmap_sem, because | |
2036 | * key->shared.inode needs to be referenced while holding it. | |
2037 | */ | |
2038 | filp->private_data = q; | |
2039 | ||
2040 | queue_me(q, ret, filp); | |
2041 | up_read(¤t->mm->mmap_sem); | |
2042 | ||
2043 | /* Now we map fd to filp, so userspace can access it */ | |
2044 | fd_install(ret, filp); | |
2045 | out: | |
2046 | return ret; | |
39ed3fde PE |
2047 | error: |
2048 | put_unused_fd(ret); | |
2049 | put_filp(filp); | |
2050 | ret = err; | |
2051 | goto out; | |
1da177e4 LT |
2052 | } |
2053 | ||
0771dfef IM |
2054 | /* |
2055 | * Support for robust futexes: the kernel cleans up held futexes at | |
2056 | * thread exit time. | |
2057 | * | |
2058 | * Implementation: user-space maintains a per-thread list of locks it | |
2059 | * is holding. Upon do_exit(), the kernel carefully walks this list, | |
2060 | * and marks all locks that are owned by this thread with the | |
c87e2837 | 2061 | * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is |
0771dfef IM |
2062 | * always manipulated with the lock held, so the list is private and |
2063 | * per-thread. Userspace also maintains a per-thread 'list_op_pending' | |
2064 | * field, to allow the kernel to clean up if the thread dies after | |
2065 | * acquiring the lock, but just before it could have added itself to | |
2066 | * the list. There can only be one such pending lock. | |
2067 | */ | |
2068 | ||
2069 | /** | |
2070 | * sys_set_robust_list - set the robust-futex list head of a task | |
2071 | * @head: pointer to the list-head | |
2072 | * @len: length of the list-head, as userspace expects | |
2073 | */ | |
2074 | asmlinkage long | |
2075 | sys_set_robust_list(struct robust_list_head __user *head, | |
2076 | size_t len) | |
2077 | { | |
2078 | /* | |
2079 | * The kernel knows only one size for now: | |
2080 | */ | |
2081 | if (unlikely(len != sizeof(*head))) | |
2082 | return -EINVAL; | |
2083 | ||
2084 | current->robust_list = head; | |
2085 | ||
2086 | return 0; | |
2087 | } | |
2088 | ||
2089 | /** | |
2090 | * sys_get_robust_list - get the robust-futex list head of a task | |
2091 | * @pid: pid of the process [zero for current task] | |
2092 | * @head_ptr: pointer to a list-head pointer, the kernel fills it in | |
2093 | * @len_ptr: pointer to a length field, the kernel fills in the header size | |
2094 | */ | |
2095 | asmlinkage long | |
ba46df98 | 2096 | sys_get_robust_list(int pid, struct robust_list_head __user * __user *head_ptr, |
0771dfef IM |
2097 | size_t __user *len_ptr) |
2098 | { | |
ba46df98 | 2099 | struct robust_list_head __user *head; |
0771dfef IM |
2100 | unsigned long ret; |
2101 | ||
2102 | if (!pid) | |
2103 | head = current->robust_list; | |
2104 | else { | |
2105 | struct task_struct *p; | |
2106 | ||
2107 | ret = -ESRCH; | |
aaa2a97e | 2108 | rcu_read_lock(); |
0771dfef IM |
2109 | p = find_task_by_pid(pid); |
2110 | if (!p) | |
2111 | goto err_unlock; | |
2112 | ret = -EPERM; | |
2113 | if ((current->euid != p->euid) && (current->euid != p->uid) && | |
2114 | !capable(CAP_SYS_PTRACE)) | |
2115 | goto err_unlock; | |
2116 | head = p->robust_list; | |
aaa2a97e | 2117 | rcu_read_unlock(); |
0771dfef IM |
2118 | } |
2119 | ||
2120 | if (put_user(sizeof(*head), len_ptr)) | |
2121 | return -EFAULT; | |
2122 | return put_user(head, head_ptr); | |
2123 | ||
2124 | err_unlock: | |
aaa2a97e | 2125 | rcu_read_unlock(); |
0771dfef IM |
2126 | |
2127 | return ret; | |
2128 | } | |
2129 | ||
2130 | /* | |
2131 | * Process a futex-list entry, check whether it's owned by the | |
2132 | * dying task, and do notification if so: | |
2133 | */ | |
e3f2ddea | 2134 | int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi) |
0771dfef | 2135 | { |
e3f2ddea | 2136 | u32 uval, nval, mval; |
0771dfef | 2137 | |
8f17d3a5 IM |
2138 | retry: |
2139 | if (get_user(uval, uaddr)) | |
0771dfef IM |
2140 | return -1; |
2141 | ||
8f17d3a5 | 2142 | if ((uval & FUTEX_TID_MASK) == curr->pid) { |
0771dfef IM |
2143 | /* |
2144 | * Ok, this dying thread is truly holding a futex | |
2145 | * of interest. Set the OWNER_DIED bit atomically | |
2146 | * via cmpxchg, and if the value had FUTEX_WAITERS | |
2147 | * set, wake up a waiter (if any). (We have to do a | |
2148 | * futex_wake() even if OWNER_DIED is already set - | |
2149 | * to handle the rare but possible case of recursive | |
2150 | * thread-death.) The rest of the cleanup is done in | |
2151 | * userspace. | |
2152 | */ | |
e3f2ddea | 2153 | mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED; |
d0aa7a70 PP |
2154 | /* Also keep the FUTEX_WAITER_REQUEUED flag if set */ |
2155 | mval |= (uval & FUTEX_WAITER_REQUEUED); | |
e3f2ddea IM |
2156 | nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval); |
2157 | ||
c87e2837 IM |
2158 | if (nval == -EFAULT) |
2159 | return -1; | |
2160 | ||
2161 | if (nval != uval) | |
8f17d3a5 | 2162 | goto retry; |
0771dfef | 2163 | |
e3f2ddea IM |
2164 | /* |
2165 | * Wake robust non-PI futexes here. The wakeup of | |
2166 | * PI futexes happens in exit_pi_state(): | |
2167 | */ | |
2168 | if (!pi) { | |
2169 | if (uval & FUTEX_WAITERS) | |
2170 | futex_wake(uaddr, 1); | |
2171 | } | |
0771dfef IM |
2172 | } |
2173 | return 0; | |
2174 | } | |
2175 | ||
e3f2ddea IM |
2176 | /* |
2177 | * Fetch a robust-list pointer. Bit 0 signals PI futexes: | |
2178 | */ | |
2179 | static inline int fetch_robust_entry(struct robust_list __user **entry, | |
ba46df98 AV |
2180 | struct robust_list __user * __user *head, |
2181 | int *pi) | |
e3f2ddea IM |
2182 | { |
2183 | unsigned long uentry; | |
2184 | ||
ba46df98 | 2185 | if (get_user(uentry, (unsigned long __user *)head)) |
e3f2ddea IM |
2186 | return -EFAULT; |
2187 | ||
ba46df98 | 2188 | *entry = (void __user *)(uentry & ~1UL); |
e3f2ddea IM |
2189 | *pi = uentry & 1; |
2190 | ||
2191 | return 0; | |
2192 | } | |
2193 | ||
0771dfef IM |
2194 | /* |
2195 | * Walk curr->robust_list (very carefully, it's a userspace list!) | |
2196 | * and mark any locks found there dead, and notify any waiters. | |
2197 | * | |
2198 | * We silently return on any sign of list-walking problem. | |
2199 | */ | |
2200 | void exit_robust_list(struct task_struct *curr) | |
2201 | { | |
2202 | struct robust_list_head __user *head = curr->robust_list; | |
2203 | struct robust_list __user *entry, *pending; | |
e3f2ddea | 2204 | unsigned int limit = ROBUST_LIST_LIMIT, pi, pip; |
0771dfef IM |
2205 | unsigned long futex_offset; |
2206 | ||
2207 | /* | |
2208 | * Fetch the list head (which was registered earlier, via | |
2209 | * sys_set_robust_list()): | |
2210 | */ | |
e3f2ddea | 2211 | if (fetch_robust_entry(&entry, &head->list.next, &pi)) |
0771dfef IM |
2212 | return; |
2213 | /* | |
2214 | * Fetch the relative futex offset: | |
2215 | */ | |
2216 | if (get_user(futex_offset, &head->futex_offset)) | |
2217 | return; | |
2218 | /* | |
2219 | * Fetch any possibly pending lock-add first, and handle it | |
2220 | * if it exists: | |
2221 | */ | |
e3f2ddea | 2222 | if (fetch_robust_entry(&pending, &head->list_op_pending, &pip)) |
0771dfef | 2223 | return; |
e3f2ddea | 2224 | |
0771dfef | 2225 | if (pending) |
ba46df98 | 2226 | handle_futex_death((void __user *)pending + futex_offset, curr, pip); |
0771dfef IM |
2227 | |
2228 | while (entry != &head->list) { | |
2229 | /* | |
2230 | * A pending lock might already be on the list, so | |
c87e2837 | 2231 | * don't process it twice: |
0771dfef IM |
2232 | */ |
2233 | if (entry != pending) | |
ba46df98 | 2234 | if (handle_futex_death((void __user *)entry + futex_offset, |
e3f2ddea | 2235 | curr, pi)) |
0771dfef | 2236 | return; |
0771dfef IM |
2237 | /* |
2238 | * Fetch the next entry in the list: | |
2239 | */ | |
e3f2ddea | 2240 | if (fetch_robust_entry(&entry, &entry->next, &pi)) |
0771dfef IM |
2241 | return; |
2242 | /* | |
2243 | * Avoid excessively long or circular lists: | |
2244 | */ | |
2245 | if (!--limit) | |
2246 | break; | |
2247 | ||
2248 | cond_resched(); | |
2249 | } | |
2250 | } | |
2251 | ||
c19384b5 | 2252 | long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout, |
e2970f2f | 2253 | u32 __user *uaddr2, u32 val2, u32 val3) |
1da177e4 LT |
2254 | { |
2255 | int ret; | |
2256 | ||
2257 | switch (op) { | |
2258 | case FUTEX_WAIT: | |
2259 | ret = futex_wait(uaddr, val, timeout); | |
2260 | break; | |
2261 | case FUTEX_WAKE: | |
2262 | ret = futex_wake(uaddr, val); | |
2263 | break; | |
2264 | case FUTEX_FD: | |
2265 | /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */ | |
2266 | ret = futex_fd(uaddr, val); | |
2267 | break; | |
2268 | case FUTEX_REQUEUE: | |
2269 | ret = futex_requeue(uaddr, uaddr2, val, val2, NULL); | |
2270 | break; | |
2271 | case FUTEX_CMP_REQUEUE: | |
2272 | ret = futex_requeue(uaddr, uaddr2, val, val2, &val3); | |
2273 | break; | |
4732efbe JJ |
2274 | case FUTEX_WAKE_OP: |
2275 | ret = futex_wake_op(uaddr, uaddr2, val, val2, val3); | |
2276 | break; | |
c87e2837 | 2277 | case FUTEX_LOCK_PI: |
c19384b5 | 2278 | ret = futex_lock_pi(uaddr, val, timeout, 0); |
c87e2837 IM |
2279 | break; |
2280 | case FUTEX_UNLOCK_PI: | |
2281 | ret = futex_unlock_pi(uaddr); | |
2282 | break; | |
2283 | case FUTEX_TRYLOCK_PI: | |
c19384b5 | 2284 | ret = futex_lock_pi(uaddr, 0, timeout, 1); |
c87e2837 | 2285 | break; |
d0aa7a70 PP |
2286 | case FUTEX_CMP_REQUEUE_PI: |
2287 | ret = futex_requeue_pi(uaddr, uaddr2, val, val2, &val3); | |
2288 | break; | |
1da177e4 LT |
2289 | default: |
2290 | ret = -ENOSYS; | |
2291 | } | |
2292 | return ret; | |
2293 | } | |
2294 | ||
2295 | ||
e2970f2f | 2296 | asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val, |
1da177e4 | 2297 | struct timespec __user *utime, u32 __user *uaddr2, |
e2970f2f | 2298 | u32 val3) |
1da177e4 | 2299 | { |
c19384b5 PP |
2300 | struct timespec ts; |
2301 | ktime_t t, *tp = NULL; | |
e2970f2f | 2302 | u32 val2 = 0; |
1da177e4 | 2303 | |
c87e2837 | 2304 | if (utime && (op == FUTEX_WAIT || op == FUTEX_LOCK_PI)) { |
c19384b5 | 2305 | if (copy_from_user(&ts, utime, sizeof(ts)) != 0) |
1da177e4 | 2306 | return -EFAULT; |
c19384b5 | 2307 | if (!timespec_valid(&ts)) |
9741ef96 | 2308 | return -EINVAL; |
c19384b5 PP |
2309 | |
2310 | t = timespec_to_ktime(ts); | |
c87e2837 | 2311 | if (op == FUTEX_WAIT) |
c19384b5 PP |
2312 | t = ktime_add(ktime_get(), t); |
2313 | tp = &t; | |
1da177e4 LT |
2314 | } |
2315 | /* | |
2316 | * requeue parameter in 'utime' if op == FUTEX_REQUEUE. | |
2317 | */ | |
d0aa7a70 PP |
2318 | if (op == FUTEX_REQUEUE || op == FUTEX_CMP_REQUEUE |
2319 | || op == FUTEX_CMP_REQUEUE_PI) | |
e2970f2f | 2320 | val2 = (u32) (unsigned long) utime; |
1da177e4 | 2321 | |
c19384b5 | 2322 | return do_futex(uaddr, op, val, tp, uaddr2, val2, val3); |
1da177e4 LT |
2323 | } |
2324 | ||
454e2398 DH |
2325 | static int futexfs_get_sb(struct file_system_type *fs_type, |
2326 | int flags, const char *dev_name, void *data, | |
2327 | struct vfsmount *mnt) | |
1da177e4 | 2328 | { |
454e2398 | 2329 | return get_sb_pseudo(fs_type, "futex", NULL, 0xBAD1DEA, mnt); |
1da177e4 LT |
2330 | } |
2331 | ||
2332 | static struct file_system_type futex_fs_type = { | |
2333 | .name = "futexfs", | |
2334 | .get_sb = futexfs_get_sb, | |
2335 | .kill_sb = kill_anon_super, | |
2336 | }; | |
2337 | ||
2338 | static int __init init(void) | |
2339 | { | |
95362fa9 AM |
2340 | int i = register_filesystem(&futex_fs_type); |
2341 | ||
2342 | if (i) | |
2343 | return i; | |
1da177e4 | 2344 | |
1da177e4 | 2345 | futex_mnt = kern_mount(&futex_fs_type); |
95362fa9 AM |
2346 | if (IS_ERR(futex_mnt)) { |
2347 | unregister_filesystem(&futex_fs_type); | |
2348 | return PTR_ERR(futex_mnt); | |
2349 | } | |
1da177e4 LT |
2350 | |
2351 | for (i = 0; i < ARRAY_SIZE(futex_queues); i++) { | |
ec92d082 | 2352 | plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock); |
1da177e4 LT |
2353 | spin_lock_init(&futex_queues[i].lock); |
2354 | } | |
2355 | return 0; | |
2356 | } | |
2357 | __initcall(init); |