]>
Commit | Line | Data |
---|---|---|
22e40925 | 1 | /* SPDX-License-Identifier: GPL-2.0+ */ |
f41d911f PM |
2 | /* |
3 | * Read-Copy Update mechanism for mutual exclusion (tree-based version) | |
4 | * Internal non-public definitions that provide either classic | |
6cc68793 | 5 | * or preemptible semantics. |
f41d911f | 6 | * |
f41d911f PM |
7 | * Copyright Red Hat, 2009 |
8 | * Copyright IBM Corporation, 2009 | |
9 | * | |
10 | * Author: Ingo Molnar <[email protected]> | |
22e40925 | 11 | * Paul E. McKenney <[email protected]> |
f41d911f PM |
12 | */ |
13 | ||
abaa93d9 | 14 | #include "../locking/rtmutex_common.h" |
5b61b0ba | 15 | |
3fbfbf7a PM |
16 | #ifdef CONFIG_RCU_NOCB_CPU |
17 | static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ | |
1b0048a4 | 18 | static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ |
3fbfbf7a PM |
19 | #endif /* #ifdef CONFIG_RCU_NOCB_CPU */ |
20 | ||
26845c28 PM |
21 | /* |
22 | * Check the RCU kernel configuration parameters and print informative | |
699d4035 | 23 | * messages about anything out of the ordinary. |
26845c28 PM |
24 | */ |
25 | static void __init rcu_bootup_announce_oddness(void) | |
26 | { | |
ab6f5bd6 | 27 | if (IS_ENABLED(CONFIG_RCU_TRACE)) |
ae91aa0a | 28 | pr_info("\tRCU event tracing is enabled.\n"); |
05c5df31 PM |
29 | if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) || |
30 | (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32)) | |
a7538352 JP |
31 | pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n", |
32 | RCU_FANOUT); | |
7fa27001 | 33 | if (rcu_fanout_exact) |
ab6f5bd6 PM |
34 | pr_info("\tHierarchical RCU autobalancing is disabled.\n"); |
35 | if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ)) | |
36 | pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n"); | |
c4a09ff7 | 37 | if (IS_ENABLED(CONFIG_PROVE_RCU)) |
ab6f5bd6 | 38 | pr_info("\tRCU lockdep checking is enabled.\n"); |
8cbd0e38 PM |
39 | if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) |
40 | pr_info("\tRCU strict (and thus non-scalable) grace periods enabled.\n"); | |
42621697 AG |
41 | if (RCU_NUM_LVLS >= 4) |
42 | pr_info("\tFour(or more)-level hierarchy is enabled.\n"); | |
47d631af | 43 | if (RCU_FANOUT_LEAF != 16) |
a3bd2c09 | 44 | pr_info("\tBuild-time adjustment of leaf fanout to %d.\n", |
47d631af PM |
45 | RCU_FANOUT_LEAF); |
46 | if (rcu_fanout_leaf != RCU_FANOUT_LEAF) | |
a7538352 JP |
47 | pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", |
48 | rcu_fanout_leaf); | |
cca6f393 | 49 | if (nr_cpu_ids != NR_CPUS) |
9b130ad5 | 50 | pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids); |
17c7798b | 51 | #ifdef CONFIG_RCU_BOOST |
a7538352 JP |
52 | pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", |
53 | kthread_prio, CONFIG_RCU_BOOST_DELAY); | |
17c7798b PM |
54 | #endif |
55 | if (blimit != DEFAULT_RCU_BLIMIT) | |
56 | pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit); | |
57 | if (qhimark != DEFAULT_RCU_QHIMARK) | |
58 | pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark); | |
59 | if (qlowmark != DEFAULT_RCU_QLOMARK) | |
60 | pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark); | |
b2b00ddf | 61 | if (qovld != DEFAULT_RCU_QOVLD) |
aa96a93b | 62 | pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld); |
17c7798b PM |
63 | if (jiffies_till_first_fqs != ULONG_MAX) |
64 | pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs); | |
65 | if (jiffies_till_next_fqs != ULONG_MAX) | |
66 | pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs); | |
c06aed0e PM |
67 | if (jiffies_till_sched_qs != ULONG_MAX) |
68 | pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs); | |
17c7798b PM |
69 | if (rcu_kick_kthreads) |
70 | pr_info("\tKick kthreads if too-long grace period.\n"); | |
71 | if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD)) | |
72 | pr_info("\tRCU callback double-/use-after-free debug enabled.\n"); | |
90040c9e | 73 | if (gp_preinit_delay) |
17c7798b | 74 | pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay); |
90040c9e | 75 | if (gp_init_delay) |
17c7798b | 76 | pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay); |
90040c9e | 77 | if (gp_cleanup_delay) |
17c7798b | 78 | pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay); |
48d07c04 SAS |
79 | if (!use_softirq) |
80 | pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n"); | |
17c7798b PM |
81 | if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG)) |
82 | pr_info("\tRCU debug extended QS entry/exit.\n"); | |
59d80fd8 | 83 | rcupdate_announce_bootup_oddness(); |
26845c28 PM |
84 | } |
85 | ||
28f6569a | 86 | #ifdef CONFIG_PREEMPT_RCU |
f41d911f | 87 | |
63d4c8c9 | 88 | static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake); |
3949fa9b | 89 | static void rcu_read_unlock_special(struct task_struct *t); |
d9a3da06 | 90 | |
f41d911f PM |
91 | /* |
92 | * Tell them what RCU they are running. | |
93 | */ | |
0e0fc1c2 | 94 | static void __init rcu_bootup_announce(void) |
f41d911f | 95 | { |
efc151c3 | 96 | pr_info("Preemptible hierarchical RCU implementation.\n"); |
26845c28 | 97 | rcu_bootup_announce_oddness(); |
f41d911f PM |
98 | } |
99 | ||
8203d6d0 PM |
100 | /* Flags for rcu_preempt_ctxt_queue() decision table. */ |
101 | #define RCU_GP_TASKS 0x8 | |
102 | #define RCU_EXP_TASKS 0x4 | |
103 | #define RCU_GP_BLKD 0x2 | |
104 | #define RCU_EXP_BLKD 0x1 | |
105 | ||
106 | /* | |
107 | * Queues a task preempted within an RCU-preempt read-side critical | |
108 | * section into the appropriate location within the ->blkd_tasks list, | |
109 | * depending on the states of any ongoing normal and expedited grace | |
110 | * periods. The ->gp_tasks pointer indicates which element the normal | |
111 | * grace period is waiting on (NULL if none), and the ->exp_tasks pointer | |
112 | * indicates which element the expedited grace period is waiting on (again, | |
113 | * NULL if none). If a grace period is waiting on a given element in the | |
114 | * ->blkd_tasks list, it also waits on all subsequent elements. Thus, | |
115 | * adding a task to the tail of the list blocks any grace period that is | |
116 | * already waiting on one of the elements. In contrast, adding a task | |
117 | * to the head of the list won't block any grace period that is already | |
118 | * waiting on one of the elements. | |
119 | * | |
120 | * This queuing is imprecise, and can sometimes make an ongoing grace | |
121 | * period wait for a task that is not strictly speaking blocking it. | |
122 | * Given the choice, we needlessly block a normal grace period rather than | |
123 | * blocking an expedited grace period. | |
124 | * | |
125 | * Note that an endless sequence of expedited grace periods still cannot | |
126 | * indefinitely postpone a normal grace period. Eventually, all of the | |
127 | * fixed number of preempted tasks blocking the normal grace period that are | |
128 | * not also blocking the expedited grace period will resume and complete | |
129 | * their RCU read-side critical sections. At that point, the ->gp_tasks | |
130 | * pointer will equal the ->exp_tasks pointer, at which point the end of | |
131 | * the corresponding expedited grace period will also be the end of the | |
132 | * normal grace period. | |
133 | */ | |
46a5d164 PM |
134 | static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp) |
135 | __releases(rnp->lock) /* But leaves rrupts disabled. */ | |
8203d6d0 PM |
136 | { |
137 | int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) + | |
138 | (rnp->exp_tasks ? RCU_EXP_TASKS : 0) + | |
139 | (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) + | |
140 | (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0); | |
141 | struct task_struct *t = current; | |
142 | ||
a32e01ee | 143 | raw_lockdep_assert_held_rcu_node(rnp); |
2dee9404 | 144 | WARN_ON_ONCE(rdp->mynode != rnp); |
5b4c11d5 | 145 | WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); |
1f3e5f51 PM |
146 | /* RCU better not be waiting on newly onlined CPUs! */ |
147 | WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask & | |
148 | rdp->grpmask); | |
ea9b0c8a | 149 | |
8203d6d0 PM |
150 | /* |
151 | * Decide where to queue the newly blocked task. In theory, | |
152 | * this could be an if-statement. In practice, when I tried | |
153 | * that, it was quite messy. | |
154 | */ | |
155 | switch (blkd_state) { | |
156 | case 0: | |
157 | case RCU_EXP_TASKS: | |
158 | case RCU_EXP_TASKS + RCU_GP_BLKD: | |
159 | case RCU_GP_TASKS: | |
160 | case RCU_GP_TASKS + RCU_EXP_TASKS: | |
161 | ||
162 | /* | |
163 | * Blocking neither GP, or first task blocking the normal | |
164 | * GP but not blocking the already-waiting expedited GP. | |
165 | * Queue at the head of the list to avoid unnecessarily | |
166 | * blocking the already-waiting GPs. | |
167 | */ | |
168 | list_add(&t->rcu_node_entry, &rnp->blkd_tasks); | |
169 | break; | |
170 | ||
171 | case RCU_EXP_BLKD: | |
172 | case RCU_GP_BLKD: | |
173 | case RCU_GP_BLKD + RCU_EXP_BLKD: | |
174 | case RCU_GP_TASKS + RCU_EXP_BLKD: | |
175 | case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: | |
176 | case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: | |
177 | ||
178 | /* | |
179 | * First task arriving that blocks either GP, or first task | |
180 | * arriving that blocks the expedited GP (with the normal | |
181 | * GP already waiting), or a task arriving that blocks | |
182 | * both GPs with both GPs already waiting. Queue at the | |
183 | * tail of the list to avoid any GP waiting on any of the | |
184 | * already queued tasks that are not blocking it. | |
185 | */ | |
186 | list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks); | |
187 | break; | |
188 | ||
189 | case RCU_EXP_TASKS + RCU_EXP_BLKD: | |
190 | case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: | |
191 | case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD: | |
192 | ||
193 | /* | |
194 | * Second or subsequent task blocking the expedited GP. | |
195 | * The task either does not block the normal GP, or is the | |
196 | * first task blocking the normal GP. Queue just after | |
197 | * the first task blocking the expedited GP. | |
198 | */ | |
199 | list_add(&t->rcu_node_entry, rnp->exp_tasks); | |
200 | break; | |
201 | ||
202 | case RCU_GP_TASKS + RCU_GP_BLKD: | |
203 | case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD: | |
204 | ||
205 | /* | |
206 | * Second or subsequent task blocking the normal GP. | |
207 | * The task does not block the expedited GP. Queue just | |
208 | * after the first task blocking the normal GP. | |
209 | */ | |
210 | list_add(&t->rcu_node_entry, rnp->gp_tasks); | |
211 | break; | |
212 | ||
213 | default: | |
214 | ||
215 | /* Yet another exercise in excessive paranoia. */ | |
216 | WARN_ON_ONCE(1); | |
217 | break; | |
218 | } | |
219 | ||
220 | /* | |
221 | * We have now queued the task. If it was the first one to | |
222 | * block either grace period, update the ->gp_tasks and/or | |
223 | * ->exp_tasks pointers, respectively, to reference the newly | |
224 | * blocked tasks. | |
225 | */ | |
4bc8d555 | 226 | if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) { |
6935c398 | 227 | WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry); |
d43a5d32 | 228 | WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq); |
4bc8d555 | 229 | } |
8203d6d0 | 230 | if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD)) |
314eeb43 | 231 | WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry); |
2dee9404 PM |
232 | WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) != |
233 | !(rnp->qsmask & rdp->grpmask)); | |
234 | WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) != | |
235 | !(rnp->expmask & rdp->grpmask)); | |
67c583a7 | 236 | raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */ |
8203d6d0 PM |
237 | |
238 | /* | |
239 | * Report the quiescent state for the expedited GP. This expedited | |
240 | * GP should not be able to end until we report, so there should be | |
241 | * no need to check for a subsequent expedited GP. (Though we are | |
242 | * still in a quiescent state in any case.) | |
243 | */ | |
1bb33644 | 244 | if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs) |
63d4c8c9 | 245 | rcu_report_exp_rdp(rdp); |
fcc878e4 | 246 | else |
1bb33644 | 247 | WARN_ON_ONCE(rdp->exp_deferred_qs); |
8203d6d0 PM |
248 | } |
249 | ||
f41d911f | 250 | /* |
c7037ff5 PM |
251 | * Record a preemptible-RCU quiescent state for the specified CPU. |
252 | * Note that this does not necessarily mean that the task currently running | |
253 | * on the CPU is in a quiescent state: Instead, it means that the current | |
254 | * grace period need not wait on any RCU read-side critical section that | |
255 | * starts later on this CPU. It also means that if the current task is | |
256 | * in an RCU read-side critical section, it has already added itself to | |
257 | * some leaf rcu_node structure's ->blkd_tasks list. In addition to the | |
258 | * current task, there might be any number of other tasks blocked while | |
259 | * in an RCU read-side critical section. | |
25502a6c | 260 | * |
c7037ff5 | 261 | * Callers to this function must disable preemption. |
f41d911f | 262 | */ |
45975c7d | 263 | static void rcu_qs(void) |
f41d911f | 264 | { |
45975c7d | 265 | RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n"); |
2280ee5a | 266 | if (__this_cpu_read(rcu_data.cpu_no_qs.s)) { |
284a8c93 | 267 | trace_rcu_grace_period(TPS("rcu_preempt"), |
2280ee5a | 268 | __this_cpu_read(rcu_data.gp_seq), |
284a8c93 | 269 | TPS("cpuqs")); |
2280ee5a | 270 | __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false); |
c98cac60 | 271 | barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */ |
add0d37b | 272 | WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false); |
284a8c93 | 273 | } |
f41d911f PM |
274 | } |
275 | ||
276 | /* | |
c3422bea PM |
277 | * We have entered the scheduler, and the current task might soon be |
278 | * context-switched away from. If this task is in an RCU read-side | |
279 | * critical section, we will no longer be able to rely on the CPU to | |
12f5f524 PM |
280 | * record that fact, so we enqueue the task on the blkd_tasks list. |
281 | * The task will dequeue itself when it exits the outermost enclosing | |
282 | * RCU read-side critical section. Therefore, the current grace period | |
283 | * cannot be permitted to complete until the blkd_tasks list entries | |
284 | * predating the current grace period drain, in other words, until | |
285 | * rnp->gp_tasks becomes NULL. | |
c3422bea | 286 | * |
46a5d164 | 287 | * Caller must disable interrupts. |
f41d911f | 288 | */ |
45975c7d | 289 | void rcu_note_context_switch(bool preempt) |
f41d911f PM |
290 | { |
291 | struct task_struct *t = current; | |
da1df50d | 292 | struct rcu_data *rdp = this_cpu_ptr(&rcu_data); |
f41d911f PM |
293 | struct rcu_node *rnp; |
294 | ||
45975c7d | 295 | trace_rcu_utilization(TPS("Start context switch")); |
b04db8e1 | 296 | lockdep_assert_irqs_disabled(); |
77339e61 LJ |
297 | WARN_ON_ONCE(!preempt && rcu_preempt_depth() > 0); |
298 | if (rcu_preempt_depth() > 0 && | |
1d082fd0 | 299 | !t->rcu_read_unlock_special.b.blocked) { |
f41d911f PM |
300 | |
301 | /* Possibly blocking in an RCU read-side critical section. */ | |
f41d911f | 302 | rnp = rdp->mynode; |
46a5d164 | 303 | raw_spin_lock_rcu_node(rnp); |
1d082fd0 | 304 | t->rcu_read_unlock_special.b.blocked = true; |
86848966 | 305 | t->rcu_blocked_node = rnp; |
f41d911f PM |
306 | |
307 | /* | |
8203d6d0 PM |
308 | * Verify the CPU's sanity, trace the preemption, and |
309 | * then queue the task as required based on the states | |
310 | * of any ongoing and expedited grace periods. | |
f41d911f | 311 | */ |
0aa04b05 | 312 | WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0); |
e7d8842e | 313 | WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); |
88d1bead | 314 | trace_rcu_preempt_task(rcu_state.name, |
d4c08f2a PM |
315 | t->pid, |
316 | (rnp->qsmask & rdp->grpmask) | |
598ce094 PM |
317 | ? rnp->gp_seq |
318 | : rcu_seq_snap(&rnp->gp_seq)); | |
46a5d164 | 319 | rcu_preempt_ctxt_queue(rnp, rdp); |
3e310098 PM |
320 | } else { |
321 | rcu_preempt_deferred_qs(t); | |
f41d911f PM |
322 | } |
323 | ||
324 | /* | |
325 | * Either we were not in an RCU read-side critical section to | |
326 | * begin with, or we have now recorded that critical section | |
327 | * globally. Either way, we can now note a quiescent state | |
328 | * for this CPU. Again, if we were in an RCU read-side critical | |
329 | * section, and if that critical section was blocking the current | |
330 | * grace period, then the fact that the task has been enqueued | |
331 | * means that we continue to block the current grace period. | |
332 | */ | |
45975c7d | 333 | rcu_qs(); |
1bb33644 | 334 | if (rdp->exp_deferred_qs) |
63d4c8c9 | 335 | rcu_report_exp_rdp(rdp); |
43766c3e | 336 | rcu_tasks_qs(current, preempt); |
45975c7d | 337 | trace_rcu_utilization(TPS("End context switch")); |
f41d911f | 338 | } |
45975c7d | 339 | EXPORT_SYMBOL_GPL(rcu_note_context_switch); |
f41d911f | 340 | |
fc2219d4 PM |
341 | /* |
342 | * Check for preempted RCU readers blocking the current grace period | |
343 | * for the specified rcu_node structure. If the caller needs a reliable | |
344 | * answer, it must hold the rcu_node's ->lock. | |
345 | */ | |
27f4d280 | 346 | static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) |
fc2219d4 | 347 | { |
6935c398 | 348 | return READ_ONCE(rnp->gp_tasks) != NULL; |
fc2219d4 PM |
349 | } |
350 | ||
5f5fa7ea | 351 | /* limit value for ->rcu_read_lock_nesting. */ |
5f1a6ef3 PM |
352 | #define RCU_NEST_PMAX (INT_MAX / 2) |
353 | ||
77339e61 LJ |
354 | static void rcu_preempt_read_enter(void) |
355 | { | |
356 | current->rcu_read_lock_nesting++; | |
357 | } | |
358 | ||
5f5fa7ea | 359 | static int rcu_preempt_read_exit(void) |
77339e61 | 360 | { |
5f5fa7ea | 361 | return --current->rcu_read_lock_nesting; |
77339e61 LJ |
362 | } |
363 | ||
364 | static void rcu_preempt_depth_set(int val) | |
365 | { | |
366 | current->rcu_read_lock_nesting = val; | |
367 | } | |
368 | ||
0e5da22e PM |
369 | /* |
370 | * Preemptible RCU implementation for rcu_read_lock(). | |
371 | * Just increment ->rcu_read_lock_nesting, shared state will be updated | |
372 | * if we block. | |
373 | */ | |
374 | void __rcu_read_lock(void) | |
375 | { | |
77339e61 | 376 | rcu_preempt_read_enter(); |
5f1a6ef3 | 377 | if (IS_ENABLED(CONFIG_PROVE_LOCKING)) |
77339e61 | 378 | WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX); |
f19920e4 PM |
379 | if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread) |
380 | WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true); | |
0e5da22e PM |
381 | barrier(); /* critical section after entry code. */ |
382 | } | |
383 | EXPORT_SYMBOL_GPL(__rcu_read_lock); | |
384 | ||
385 | /* | |
386 | * Preemptible RCU implementation for rcu_read_unlock(). | |
387 | * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost | |
388 | * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then | |
389 | * invoke rcu_read_unlock_special() to clean up after a context switch | |
390 | * in an RCU read-side critical section and other special cases. | |
391 | */ | |
392 | void __rcu_read_unlock(void) | |
393 | { | |
394 | struct task_struct *t = current; | |
395 | ||
5f5fa7ea | 396 | if (rcu_preempt_read_exit() == 0) { |
0e5da22e | 397 | barrier(); /* critical section before exit code. */ |
0e5da22e PM |
398 | if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s))) |
399 | rcu_read_unlock_special(t); | |
0e5da22e | 400 | } |
5f1a6ef3 | 401 | if (IS_ENABLED(CONFIG_PROVE_LOCKING)) { |
77339e61 | 402 | int rrln = rcu_preempt_depth(); |
0e5da22e | 403 | |
5f5fa7ea | 404 | WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX); |
0e5da22e | 405 | } |
0e5da22e PM |
406 | } |
407 | EXPORT_SYMBOL_GPL(__rcu_read_unlock); | |
408 | ||
12f5f524 PM |
409 | /* |
410 | * Advance a ->blkd_tasks-list pointer to the next entry, instead | |
411 | * returning NULL if at the end of the list. | |
412 | */ | |
413 | static struct list_head *rcu_next_node_entry(struct task_struct *t, | |
414 | struct rcu_node *rnp) | |
415 | { | |
416 | struct list_head *np; | |
417 | ||
418 | np = t->rcu_node_entry.next; | |
419 | if (np == &rnp->blkd_tasks) | |
420 | np = NULL; | |
421 | return np; | |
422 | } | |
423 | ||
8af3a5e7 PM |
424 | /* |
425 | * Return true if the specified rcu_node structure has tasks that were | |
426 | * preempted within an RCU read-side critical section. | |
427 | */ | |
428 | static bool rcu_preempt_has_tasks(struct rcu_node *rnp) | |
429 | { | |
430 | return !list_empty(&rnp->blkd_tasks); | |
431 | } | |
432 | ||
b668c9cf | 433 | /* |
3e310098 PM |
434 | * Report deferred quiescent states. The deferral time can |
435 | * be quite short, for example, in the case of the call from | |
436 | * rcu_read_unlock_special(). | |
b668c9cf | 437 | */ |
3e310098 PM |
438 | static void |
439 | rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags) | |
f41d911f | 440 | { |
b6a932d1 PM |
441 | bool empty_exp; |
442 | bool empty_norm; | |
443 | bool empty_exp_now; | |
12f5f524 | 444 | struct list_head *np; |
abaa93d9 | 445 | bool drop_boost_mutex = false; |
8203d6d0 | 446 | struct rcu_data *rdp; |
f41d911f | 447 | struct rcu_node *rnp; |
1d082fd0 | 448 | union rcu_special special; |
f41d911f | 449 | |
f41d911f | 450 | /* |
8203d6d0 PM |
451 | * If RCU core is waiting for this CPU to exit its critical section, |
452 | * report the fact that it has exited. Because irqs are disabled, | |
1d082fd0 | 453 | * t->rcu_read_unlock_special cannot change. |
f41d911f PM |
454 | */ |
455 | special = t->rcu_read_unlock_special; | |
da1df50d | 456 | rdp = this_cpu_ptr(&rcu_data); |
1bb33644 | 457 | if (!special.s && !rdp->exp_deferred_qs) { |
3e310098 PM |
458 | local_irq_restore(flags); |
459 | return; | |
460 | } | |
3717e1e9 | 461 | t->rcu_read_unlock_special.s = 0; |
44bad5b3 | 462 | if (special.b.need_qs) { |
3d29aaf1 | 463 | if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { |
cfeac397 | 464 | rcu_report_qs_rdp(rdp); |
3d29aaf1 PM |
465 | udelay(rcu_unlock_delay); |
466 | } else { | |
44bad5b3 | 467 | rcu_qs(); |
3d29aaf1 | 468 | } |
44bad5b3 | 469 | } |
f41d911f | 470 | |
8203d6d0 | 471 | /* |
3e310098 PM |
472 | * Respond to a request by an expedited grace period for a |
473 | * quiescent state from this CPU. Note that requests from | |
474 | * tasks are handled when removing the task from the | |
475 | * blocked-tasks list below. | |
8203d6d0 | 476 | */ |
3717e1e9 | 477 | if (rdp->exp_deferred_qs) |
63d4c8c9 | 478 | rcu_report_exp_rdp(rdp); |
8203d6d0 | 479 | |
f41d911f | 480 | /* Clean up if blocked during RCU read-side critical section. */ |
1d082fd0 | 481 | if (special.b.blocked) { |
f41d911f | 482 | |
dd5d19ba | 483 | /* |
0a0ba1c9 | 484 | * Remove this task from the list it blocked on. The task |
8ba9153b PM |
485 | * now remains queued on the rcu_node corresponding to the |
486 | * CPU it first blocked on, so there is no longer any need | |
487 | * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia. | |
dd5d19ba | 488 | */ |
8ba9153b PM |
489 | rnp = t->rcu_blocked_node; |
490 | raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ | |
491 | WARN_ON_ONCE(rnp != t->rcu_blocked_node); | |
5b4c11d5 | 492 | WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); |
74e871ac | 493 | empty_norm = !rcu_preempt_blocked_readers_cgp(rnp); |
d43a5d32 | 494 | WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq && |
4bc8d555 | 495 | (!empty_norm || rnp->qsmask)); |
6c7d7dbf | 496 | empty_exp = sync_rcu_exp_done(rnp); |
d9a3da06 | 497 | smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ |
12f5f524 | 498 | np = rcu_next_node_entry(t, rnp); |
f41d911f | 499 | list_del_init(&t->rcu_node_entry); |
82e78d80 | 500 | t->rcu_blocked_node = NULL; |
f7f7bac9 | 501 | trace_rcu_unlock_preempted_task(TPS("rcu_preempt"), |
865aa1e0 | 502 | rnp->gp_seq, t->pid); |
12f5f524 | 503 | if (&t->rcu_node_entry == rnp->gp_tasks) |
6935c398 | 504 | WRITE_ONCE(rnp->gp_tasks, np); |
12f5f524 | 505 | if (&t->rcu_node_entry == rnp->exp_tasks) |
314eeb43 | 506 | WRITE_ONCE(rnp->exp_tasks, np); |
727b705b | 507 | if (IS_ENABLED(CONFIG_RCU_BOOST)) { |
727b705b PM |
508 | /* Snapshot ->boost_mtx ownership w/rnp->lock held. */ |
509 | drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t; | |
2dee9404 | 510 | if (&t->rcu_node_entry == rnp->boost_tasks) |
5822b812 | 511 | WRITE_ONCE(rnp->boost_tasks, np); |
727b705b | 512 | } |
f41d911f PM |
513 | |
514 | /* | |
515 | * If this was the last task on the current list, and if | |
516 | * we aren't waiting on any CPUs, report the quiescent state. | |
389abd48 PM |
517 | * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, |
518 | * so we must take a snapshot of the expedited state. | |
f41d911f | 519 | */ |
6c7d7dbf | 520 | empty_exp_now = sync_rcu_exp_done(rnp); |
74e871ac | 521 | if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) { |
f7f7bac9 | 522 | trace_rcu_quiescent_state_report(TPS("preempt_rcu"), |
db023296 | 523 | rnp->gp_seq, |
d4c08f2a PM |
524 | 0, rnp->qsmask, |
525 | rnp->level, | |
526 | rnp->grplo, | |
527 | rnp->grphi, | |
528 | !!rnp->gp_tasks); | |
139ad4da | 529 | rcu_report_unblock_qs_rnp(rnp, flags); |
c701d5d9 | 530 | } else { |
67c583a7 | 531 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
c701d5d9 | 532 | } |
d9a3da06 | 533 | |
27f4d280 | 534 | /* Unboost if we were boosted. */ |
727b705b | 535 | if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex) |
02a7c234 | 536 | rt_mutex_futex_unlock(&rnp->boost_mtx); |
27f4d280 | 537 | |
d9a3da06 PM |
538 | /* |
539 | * If this was the last task on the expedited lists, | |
540 | * then we need to report up the rcu_node hierarchy. | |
541 | */ | |
389abd48 | 542 | if (!empty_exp && empty_exp_now) |
63d4c8c9 | 543 | rcu_report_exp_rnp(rnp, true); |
b668c9cf PM |
544 | } else { |
545 | local_irq_restore(flags); | |
f41d911f | 546 | } |
f41d911f PM |
547 | } |
548 | ||
3e310098 PM |
549 | /* |
550 | * Is a deferred quiescent-state pending, and are we also not in | |
551 | * an RCU read-side critical section? It is the caller's responsibility | |
552 | * to ensure it is otherwise safe to report any deferred quiescent | |
553 | * states. The reason for this is that it is safe to report a | |
554 | * quiescent state during context switch even though preemption | |
555 | * is disabled. This function cannot be expected to understand these | |
556 | * nuances, so the caller must handle them. | |
557 | */ | |
558 | static bool rcu_preempt_need_deferred_qs(struct task_struct *t) | |
559 | { | |
1bb33644 | 560 | return (__this_cpu_read(rcu_data.exp_deferred_qs) || |
3e310098 | 561 | READ_ONCE(t->rcu_read_unlock_special.s)) && |
5f5fa7ea | 562 | rcu_preempt_depth() == 0; |
3e310098 PM |
563 | } |
564 | ||
565 | /* | |
566 | * Report a deferred quiescent state if needed and safe to do so. | |
567 | * As with rcu_preempt_need_deferred_qs(), "safe" involves only | |
568 | * not being in an RCU read-side critical section. The caller must | |
569 | * evaluate safety in terms of interrupt, softirq, and preemption | |
570 | * disabling. | |
571 | */ | |
572 | static void rcu_preempt_deferred_qs(struct task_struct *t) | |
573 | { | |
574 | unsigned long flags; | |
3e310098 PM |
575 | |
576 | if (!rcu_preempt_need_deferred_qs(t)) | |
577 | return; | |
3e310098 PM |
578 | local_irq_save(flags); |
579 | rcu_preempt_deferred_qs_irqrestore(t, flags); | |
3e310098 PM |
580 | } |
581 | ||
0864f057 PM |
582 | /* |
583 | * Minimal handler to give the scheduler a chance to re-evaluate. | |
584 | */ | |
585 | static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp) | |
586 | { | |
587 | struct rcu_data *rdp; | |
588 | ||
589 | rdp = container_of(iwp, struct rcu_data, defer_qs_iw); | |
590 | rdp->defer_qs_iw_pending = false; | |
591 | } | |
592 | ||
3e310098 PM |
593 | /* |
594 | * Handle special cases during rcu_read_unlock(), such as needing to | |
595 | * notify RCU core processing or task having blocked during the RCU | |
596 | * read-side critical section. | |
597 | */ | |
598 | static void rcu_read_unlock_special(struct task_struct *t) | |
599 | { | |
600 | unsigned long flags; | |
601 | bool preempt_bh_were_disabled = | |
602 | !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK)); | |
603 | bool irqs_were_disabled; | |
604 | ||
605 | /* NMI handlers cannot block and cannot safely manipulate state. */ | |
606 | if (in_nmi()) | |
607 | return; | |
608 | ||
609 | local_irq_save(flags); | |
610 | irqs_were_disabled = irqs_disabled_flags(flags); | |
05f41571 | 611 | if (preempt_bh_were_disabled || irqs_were_disabled) { |
25102de6 PM |
612 | bool exp; |
613 | struct rcu_data *rdp = this_cpu_ptr(&rcu_data); | |
614 | struct rcu_node *rnp = rdp->mynode; | |
615 | ||
e4453d8a PM |
616 | exp = (t->rcu_blocked_node && |
617 | READ_ONCE(t->rcu_blocked_node->exp_tasks)) || | |
618 | (rdp->grpmask & READ_ONCE(rnp->expmask)); | |
23634ebc | 619 | // Need to defer quiescent state until everything is enabled. |
e4453d8a PM |
620 | if (use_softirq && (in_irq() || (exp && !irqs_were_disabled))) { |
621 | // Using softirq, safe to awaken, and either the | |
622 | // wakeup is free or there is an expedited GP. | |
05f41571 PM |
623 | raise_softirq_irqoff(RCU_SOFTIRQ); |
624 | } else { | |
23634ebc | 625 | // Enabling BH or preempt does reschedule, so... |
e4453d8a PM |
626 | // Also if no expediting, slow is OK. |
627 | // Plus nohz_full CPUs eventually get tick enabled. | |
05f41571 PM |
628 | set_tsk_need_resched(current); |
629 | set_preempt_need_resched(); | |
d143b3d1 | 630 | if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled && |
bfb3aa73 | 631 | !rdp->defer_qs_iw_pending && exp && cpu_online(rdp->cpu)) { |
0864f057 PM |
632 | // Get scheduler to re-evaluate and call hooks. |
633 | // If !IRQ_WORK, FQS scan will eventually IPI. | |
634 | init_irq_work(&rdp->defer_qs_iw, | |
635 | rcu_preempt_deferred_qs_handler); | |
636 | rdp->defer_qs_iw_pending = true; | |
637 | irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu); | |
638 | } | |
05f41571 | 639 | } |
3e310098 PM |
640 | local_irq_restore(flags); |
641 | return; | |
642 | } | |
643 | rcu_preempt_deferred_qs_irqrestore(t, flags); | |
644 | } | |
645 | ||
b0e165c0 PM |
646 | /* |
647 | * Check that the list of blocked tasks for the newly completed grace | |
648 | * period is in fact empty. It is a serious bug to complete a grace | |
649 | * period that still has RCU readers blocked! This function must be | |
03bd2983 | 650 | * invoked -before- updating this rnp's ->gp_seq. |
12f5f524 PM |
651 | * |
652 | * Also, if there are blocked tasks on the list, they automatically | |
653 | * block the newly created grace period, so set up ->gp_tasks accordingly. | |
b0e165c0 | 654 | */ |
81ab59a3 | 655 | static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) |
b0e165c0 | 656 | { |
c5ebe66c PM |
657 | struct task_struct *t; |
658 | ||
ea9b0c8a | 659 | RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n"); |
03bd2983 | 660 | raw_lockdep_assert_held_rcu_node(rnp); |
4bc8d555 | 661 | if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) |
81ab59a3 | 662 | dump_blkd_tasks(rnp, 10); |
0b107d24 PM |
663 | if (rcu_preempt_has_tasks(rnp) && |
664 | (rnp->qsmaskinit || rnp->wait_blkd_tasks)) { | |
6935c398 | 665 | WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next); |
c5ebe66c PM |
666 | t = container_of(rnp->gp_tasks, struct task_struct, |
667 | rcu_node_entry); | |
668 | trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"), | |
865aa1e0 | 669 | rnp->gp_seq, t->pid); |
c5ebe66c | 670 | } |
28ecd580 | 671 | WARN_ON_ONCE(rnp->qsmask); |
b0e165c0 PM |
672 | } |
673 | ||
f41d911f | 674 | /* |
c98cac60 PM |
675 | * Check for a quiescent state from the current CPU, including voluntary |
676 | * context switches for Tasks RCU. When a task blocks, the task is | |
677 | * recorded in the corresponding CPU's rcu_node structure, which is checked | |
678 | * elsewhere, hence this function need only check for quiescent states | |
679 | * related to the current CPU, not to those related to tasks. | |
f41d911f | 680 | */ |
c98cac60 | 681 | static void rcu_flavor_sched_clock_irq(int user) |
f41d911f PM |
682 | { |
683 | struct task_struct *t = current; | |
684 | ||
45975c7d PM |
685 | if (user || rcu_is_cpu_rrupt_from_idle()) { |
686 | rcu_note_voluntary_context_switch(current); | |
687 | } | |
77339e61 | 688 | if (rcu_preempt_depth() > 0 || |
3e310098 PM |
689 | (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) { |
690 | /* No QS, force context switch if deferred. */ | |
fced9c8c PM |
691 | if (rcu_preempt_need_deferred_qs(t)) { |
692 | set_tsk_need_resched(t); | |
693 | set_preempt_need_resched(); | |
694 | } | |
3e310098 PM |
695 | } else if (rcu_preempt_need_deferred_qs(t)) { |
696 | rcu_preempt_deferred_qs(t); /* Report deferred QS. */ | |
697 | return; | |
5f5fa7ea | 698 | } else if (!WARN_ON_ONCE(rcu_preempt_depth())) { |
45975c7d | 699 | rcu_qs(); /* Report immediate QS. */ |
f41d911f PM |
700 | return; |
701 | } | |
3e310098 PM |
702 | |
703 | /* If GP is oldish, ask for help from rcu_read_unlock_special(). */ | |
77339e61 | 704 | if (rcu_preempt_depth() > 0 && |
2280ee5a PM |
705 | __this_cpu_read(rcu_data.core_needs_qs) && |
706 | __this_cpu_read(rcu_data.cpu_no_qs.b.norm) && | |
15651201 | 707 | !t->rcu_read_unlock_special.b.need_qs && |
564a9ae6 | 708 | time_after(jiffies, rcu_state.gp_start + HZ)) |
1d082fd0 | 709 | t->rcu_read_unlock_special.b.need_qs = true; |
f41d911f PM |
710 | } |
711 | ||
2439b696 PM |
712 | /* |
713 | * Check for a task exiting while in a preemptible-RCU read-side | |
884157ce PM |
714 | * critical section, clean up if so. No need to issue warnings, as |
715 | * debug_check_no_locks_held() already does this if lockdep is enabled. | |
716 | * Besides, if this function does anything other than just immediately | |
717 | * return, there was a bug of some sort. Spewing warnings from this | |
718 | * function is like as not to simply obscure important prior warnings. | |
2439b696 PM |
719 | */ |
720 | void exit_rcu(void) | |
721 | { | |
722 | struct task_struct *t = current; | |
723 | ||
884157ce | 724 | if (unlikely(!list_empty(¤t->rcu_node_entry))) { |
77339e61 | 725 | rcu_preempt_depth_set(1); |
884157ce | 726 | barrier(); |
add0d37b | 727 | WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true); |
77339e61 LJ |
728 | } else if (unlikely(rcu_preempt_depth())) { |
729 | rcu_preempt_depth_set(1); | |
884157ce | 730 | } else { |
2439b696 | 731 | return; |
884157ce | 732 | } |
2439b696 | 733 | __rcu_read_unlock(); |
3e310098 | 734 | rcu_preempt_deferred_qs(current); |
2439b696 PM |
735 | } |
736 | ||
4bc8d555 PM |
737 | /* |
738 | * Dump the blocked-tasks state, but limit the list dump to the | |
739 | * specified number of elements. | |
740 | */ | |
57738942 | 741 | static void |
81ab59a3 | 742 | dump_blkd_tasks(struct rcu_node *rnp, int ncheck) |
4bc8d555 | 743 | { |
57738942 | 744 | int cpu; |
4bc8d555 PM |
745 | int i; |
746 | struct list_head *lhp; | |
57738942 PM |
747 | bool onl; |
748 | struct rcu_data *rdp; | |
ff3cee39 | 749 | struct rcu_node *rnp1; |
4bc8d555 | 750 | |
ce11fae8 | 751 | raw_lockdep_assert_held_rcu_node(rnp); |
ff3cee39 | 752 | pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", |
77cfc7bf | 753 | __func__, rnp->grplo, rnp->grphi, rnp->level, |
8ff37290 | 754 | (long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs); |
ff3cee39 PM |
755 | for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) |
756 | pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n", | |
757 | __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext); | |
77cfc7bf | 758 | pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n", |
065a6db1 | 759 | __func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks), |
314eeb43 | 760 | READ_ONCE(rnp->exp_tasks)); |
77cfc7bf | 761 | pr_info("%s: ->blkd_tasks", __func__); |
4bc8d555 PM |
762 | i = 0; |
763 | list_for_each(lhp, &rnp->blkd_tasks) { | |
764 | pr_cont(" %p", lhp); | |
cd6d17b4 | 765 | if (++i >= ncheck) |
4bc8d555 PM |
766 | break; |
767 | } | |
768 | pr_cont("\n"); | |
57738942 | 769 | for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) { |
da1df50d | 770 | rdp = per_cpu_ptr(&rcu_data, cpu); |
57738942 PM |
771 | onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp)); |
772 | pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n", | |
773 | cpu, ".o"[onl], | |
774 | (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, | |
775 | (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); | |
776 | } | |
4bc8d555 PM |
777 | } |
778 | ||
28f6569a | 779 | #else /* #ifdef CONFIG_PREEMPT_RCU */ |
f41d911f | 780 | |
aa40c138 PM |
781 | /* |
782 | * If strict grace periods are enabled, and if the calling | |
783 | * __rcu_read_unlock() marks the beginning of a quiescent state, immediately | |
784 | * report that quiescent state and, if requested, spin for a bit. | |
785 | */ | |
786 | void rcu_read_unlock_strict(void) | |
787 | { | |
788 | struct rcu_data *rdp; | |
789 | ||
790 | if (!IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) || | |
791 | irqs_disabled() || preempt_count() || !rcu_state.gp_kthread) | |
792 | return; | |
793 | rdp = this_cpu_ptr(&rcu_data); | |
cfeac397 | 794 | rcu_report_qs_rdp(rdp); |
aa40c138 PM |
795 | udelay(rcu_unlock_delay); |
796 | } | |
797 | EXPORT_SYMBOL_GPL(rcu_read_unlock_strict); | |
798 | ||
f41d911f PM |
799 | /* |
800 | * Tell them what RCU they are running. | |
801 | */ | |
0e0fc1c2 | 802 | static void __init rcu_bootup_announce(void) |
f41d911f | 803 | { |
efc151c3 | 804 | pr_info("Hierarchical RCU implementation.\n"); |
26845c28 | 805 | rcu_bootup_announce_oddness(); |
f41d911f PM |
806 | } |
807 | ||
45975c7d | 808 | /* |
90326f05 | 809 | * Note a quiescent state for PREEMPTION=n. Because we do not need to know |
45975c7d PM |
810 | * how many quiescent states passed, just if there was at least one since |
811 | * the start of the grace period, this just sets a flag. The caller must | |
812 | * have disabled preemption. | |
813 | */ | |
814 | static void rcu_qs(void) | |
d28139c4 | 815 | { |
45975c7d PM |
816 | RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!"); |
817 | if (!__this_cpu_read(rcu_data.cpu_no_qs.s)) | |
818 | return; | |
819 | trace_rcu_grace_period(TPS("rcu_sched"), | |
820 | __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs")); | |
821 | __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false); | |
822 | if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp)) | |
823 | return; | |
824 | __this_cpu_write(rcu_data.cpu_no_qs.b.exp, false); | |
63d4c8c9 | 825 | rcu_report_exp_rdp(this_cpu_ptr(&rcu_data)); |
d28139c4 PM |
826 | } |
827 | ||
395a2f09 PM |
828 | /* |
829 | * Register an urgently needed quiescent state. If there is an | |
830 | * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight | |
831 | * dyntick-idle quiescent state visible to other CPUs, which will in | |
832 | * some cases serve for expedited as well as normal grace periods. | |
833 | * Either way, register a lightweight quiescent state. | |
395a2f09 PM |
834 | */ |
835 | void rcu_all_qs(void) | |
836 | { | |
837 | unsigned long flags; | |
838 | ||
2dba13f0 | 839 | if (!raw_cpu_read(rcu_data.rcu_urgent_qs)) |
395a2f09 PM |
840 | return; |
841 | preempt_disable(); | |
842 | /* Load rcu_urgent_qs before other flags. */ | |
2dba13f0 | 843 | if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { |
395a2f09 PM |
844 | preempt_enable(); |
845 | return; | |
846 | } | |
2dba13f0 | 847 | this_cpu_write(rcu_data.rcu_urgent_qs, false); |
2dba13f0 | 848 | if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) { |
395a2f09 PM |
849 | local_irq_save(flags); |
850 | rcu_momentary_dyntick_idle(); | |
851 | local_irq_restore(flags); | |
852 | } | |
7e28c5af | 853 | rcu_qs(); |
395a2f09 PM |
854 | preempt_enable(); |
855 | } | |
856 | EXPORT_SYMBOL_GPL(rcu_all_qs); | |
857 | ||
cba6d0d6 | 858 | /* |
90326f05 | 859 | * Note a PREEMPTION=n context switch. The caller must have disabled interrupts. |
cba6d0d6 | 860 | */ |
45975c7d | 861 | void rcu_note_context_switch(bool preempt) |
cba6d0d6 | 862 | { |
45975c7d PM |
863 | trace_rcu_utilization(TPS("Start context switch")); |
864 | rcu_qs(); | |
865 | /* Load rcu_urgent_qs before other flags. */ | |
2dba13f0 | 866 | if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) |
45975c7d | 867 | goto out; |
2dba13f0 PM |
868 | this_cpu_write(rcu_data.rcu_urgent_qs, false); |
869 | if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) | |
45975c7d | 870 | rcu_momentary_dyntick_idle(); |
43766c3e | 871 | rcu_tasks_qs(current, preempt); |
45975c7d PM |
872 | out: |
873 | trace_rcu_utilization(TPS("End context switch")); | |
cba6d0d6 | 874 | } |
45975c7d | 875 | EXPORT_SYMBOL_GPL(rcu_note_context_switch); |
cba6d0d6 | 876 | |
fc2219d4 | 877 | /* |
6cc68793 | 878 | * Because preemptible RCU does not exist, there are never any preempted |
fc2219d4 PM |
879 | * RCU readers. |
880 | */ | |
27f4d280 | 881 | static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) |
fc2219d4 PM |
882 | { |
883 | return 0; | |
884 | } | |
885 | ||
8af3a5e7 PM |
886 | /* |
887 | * Because there is no preemptible RCU, there can be no readers blocked. | |
888 | */ | |
889 | static bool rcu_preempt_has_tasks(struct rcu_node *rnp) | |
b668c9cf | 890 | { |
8af3a5e7 | 891 | return false; |
b668c9cf PM |
892 | } |
893 | ||
3e310098 PM |
894 | /* |
895 | * Because there is no preemptible RCU, there can be no deferred quiescent | |
896 | * states. | |
897 | */ | |
898 | static bool rcu_preempt_need_deferred_qs(struct task_struct *t) | |
899 | { | |
900 | return false; | |
901 | } | |
902 | static void rcu_preempt_deferred_qs(struct task_struct *t) { } | |
903 | ||
b0e165c0 | 904 | /* |
6cc68793 | 905 | * Because there is no preemptible RCU, there can be no readers blocked, |
49e29126 PM |
906 | * so there is no need to check for blocked tasks. So check only for |
907 | * bogus qsmask values. | |
b0e165c0 | 908 | */ |
81ab59a3 | 909 | static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) |
b0e165c0 | 910 | { |
49e29126 | 911 | WARN_ON_ONCE(rnp->qsmask); |
b0e165c0 PM |
912 | } |
913 | ||
f41d911f | 914 | /* |
c98cac60 PM |
915 | * Check to see if this CPU is in a non-context-switch quiescent state, |
916 | * namely user mode and idle loop. | |
f41d911f | 917 | */ |
c98cac60 | 918 | static void rcu_flavor_sched_clock_irq(int user) |
f41d911f | 919 | { |
45975c7d | 920 | if (user || rcu_is_cpu_rrupt_from_idle()) { |
f41d911f | 921 | |
45975c7d PM |
922 | /* |
923 | * Get here if this CPU took its interrupt from user | |
924 | * mode or from the idle loop, and if this is not a | |
925 | * nested interrupt. In this case, the CPU is in | |
926 | * a quiescent state, so note it. | |
927 | * | |
928 | * No memory barrier is required here because rcu_qs() | |
929 | * references only CPU-local variables that other CPUs | |
930 | * neither access nor modify, at least not while the | |
931 | * corresponding CPU is online. | |
932 | */ | |
933 | ||
934 | rcu_qs(); | |
935 | } | |
e74f4c45 | 936 | } |
e74f4c45 | 937 | |
2439b696 PM |
938 | /* |
939 | * Because preemptible RCU does not exist, tasks cannot possibly exit | |
940 | * while in preemptible RCU read-side critical sections. | |
941 | */ | |
942 | void exit_rcu(void) | |
943 | { | |
944 | } | |
945 | ||
4bc8d555 PM |
946 | /* |
947 | * Dump the guaranteed-empty blocked-tasks state. Trust but verify. | |
948 | */ | |
57738942 | 949 | static void |
81ab59a3 | 950 | dump_blkd_tasks(struct rcu_node *rnp, int ncheck) |
4bc8d555 PM |
951 | { |
952 | WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks)); | |
953 | } | |
954 | ||
28f6569a | 955 | #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ |
8bd93a2c | 956 | |
48d07c04 SAS |
957 | /* |
958 | * If boosting, set rcuc kthreads to realtime priority. | |
959 | */ | |
960 | static void rcu_cpu_kthread_setup(unsigned int cpu) | |
961 | { | |
27f4d280 | 962 | #ifdef CONFIG_RCU_BOOST |
48d07c04 | 963 | struct sched_param sp; |
27f4d280 | 964 | |
48d07c04 SAS |
965 | sp.sched_priority = kthread_prio; |
966 | sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); | |
967 | #endif /* #ifdef CONFIG_RCU_BOOST */ | |
5d01bbd1 TG |
968 | } |
969 | ||
48d07c04 SAS |
970 | #ifdef CONFIG_RCU_BOOST |
971 | ||
27f4d280 PM |
972 | /* |
973 | * Carry out RCU priority boosting on the task indicated by ->exp_tasks | |
974 | * or ->boost_tasks, advancing the pointer to the next task in the | |
975 | * ->blkd_tasks list. | |
976 | * | |
977 | * Note that irqs must be enabled: boosting the task can block. | |
978 | * Returns 1 if there are more tasks needing to be boosted. | |
979 | */ | |
980 | static int rcu_boost(struct rcu_node *rnp) | |
981 | { | |
982 | unsigned long flags; | |
27f4d280 PM |
983 | struct task_struct *t; |
984 | struct list_head *tb; | |
985 | ||
7d0ae808 PM |
986 | if (READ_ONCE(rnp->exp_tasks) == NULL && |
987 | READ_ONCE(rnp->boost_tasks) == NULL) | |
27f4d280 PM |
988 | return 0; /* Nothing left to boost. */ |
989 | ||
2a67e741 | 990 | raw_spin_lock_irqsave_rcu_node(rnp, flags); |
27f4d280 PM |
991 | |
992 | /* | |
993 | * Recheck under the lock: all tasks in need of boosting | |
994 | * might exit their RCU read-side critical sections on their own. | |
995 | */ | |
996 | if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { | |
67c583a7 | 997 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
27f4d280 PM |
998 | return 0; |
999 | } | |
1000 | ||
1001 | /* | |
1002 | * Preferentially boost tasks blocking expedited grace periods. | |
1003 | * This cannot starve the normal grace periods because a second | |
1004 | * expedited grace period must boost all blocked tasks, including | |
1005 | * those blocking the pre-existing normal grace period. | |
1006 | */ | |
bec06785 | 1007 | if (rnp->exp_tasks != NULL) |
27f4d280 | 1008 | tb = rnp->exp_tasks; |
bec06785 | 1009 | else |
27f4d280 PM |
1010 | tb = rnp->boost_tasks; |
1011 | ||
1012 | /* | |
1013 | * We boost task t by manufacturing an rt_mutex that appears to | |
1014 | * be held by task t. We leave a pointer to that rt_mutex where | |
1015 | * task t can find it, and task t will release the mutex when it | |
1016 | * exits its outermost RCU read-side critical section. Then | |
1017 | * simply acquiring this artificial rt_mutex will boost task | |
1018 | * t's priority. (Thanks to tglx for suggesting this approach!) | |
1019 | * | |
1020 | * Note that task t must acquire rnp->lock to remove itself from | |
1021 | * the ->blkd_tasks list, which it will do from exit() if from | |
1022 | * nowhere else. We therefore are guaranteed that task t will | |
1023 | * stay around at least until we drop rnp->lock. Note that | |
1024 | * rnp->lock also resolves races between our priority boosting | |
1025 | * and task t's exiting its outermost RCU read-side critical | |
1026 | * section. | |
1027 | */ | |
1028 | t = container_of(tb, struct task_struct, rcu_node_entry); | |
abaa93d9 | 1029 | rt_mutex_init_proxy_locked(&rnp->boost_mtx, t); |
67c583a7 | 1030 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
abaa93d9 PM |
1031 | /* Lock only for side effect: boosts task t's priority. */ |
1032 | rt_mutex_lock(&rnp->boost_mtx); | |
1033 | rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */ | |
27f4d280 | 1034 | |
7d0ae808 PM |
1035 | return READ_ONCE(rnp->exp_tasks) != NULL || |
1036 | READ_ONCE(rnp->boost_tasks) != NULL; | |
27f4d280 PM |
1037 | } |
1038 | ||
27f4d280 | 1039 | /* |
bc17ea10 | 1040 | * Priority-boosting kthread, one per leaf rcu_node. |
27f4d280 PM |
1041 | */ |
1042 | static int rcu_boost_kthread(void *arg) | |
1043 | { | |
1044 | struct rcu_node *rnp = (struct rcu_node *)arg; | |
1045 | int spincnt = 0; | |
1046 | int more2boost; | |
1047 | ||
f7f7bac9 | 1048 | trace_rcu_utilization(TPS("Start boost kthread@init")); |
27f4d280 | 1049 | for (;;) { |
3ca3b0e2 | 1050 | WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING); |
f7f7bac9 | 1051 | trace_rcu_utilization(TPS("End boost kthread@rcu_wait")); |
065a6db1 PM |
1052 | rcu_wait(READ_ONCE(rnp->boost_tasks) || |
1053 | READ_ONCE(rnp->exp_tasks)); | |
f7f7bac9 | 1054 | trace_rcu_utilization(TPS("Start boost kthread@rcu_wait")); |
3ca3b0e2 | 1055 | WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING); |
27f4d280 PM |
1056 | more2boost = rcu_boost(rnp); |
1057 | if (more2boost) | |
1058 | spincnt++; | |
1059 | else | |
1060 | spincnt = 0; | |
1061 | if (spincnt > 10) { | |
3ca3b0e2 | 1062 | WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING); |
f7f7bac9 | 1063 | trace_rcu_utilization(TPS("End boost kthread@rcu_yield")); |
a9352f72 | 1064 | schedule_timeout_idle(2); |
f7f7bac9 | 1065 | trace_rcu_utilization(TPS("Start boost kthread@rcu_yield")); |
27f4d280 PM |
1066 | spincnt = 0; |
1067 | } | |
1068 | } | |
1217ed1b | 1069 | /* NOTREACHED */ |
f7f7bac9 | 1070 | trace_rcu_utilization(TPS("End boost kthread@notreached")); |
27f4d280 PM |
1071 | return 0; |
1072 | } | |
1073 | ||
1074 | /* | |
1075 | * Check to see if it is time to start boosting RCU readers that are | |
1076 | * blocking the current grace period, and, if so, tell the per-rcu_node | |
1077 | * kthread to start boosting them. If there is an expedited grace | |
1078 | * period in progress, it is always time to boost. | |
1079 | * | |
b065a853 PM |
1080 | * The caller must hold rnp->lock, which this function releases. |
1081 | * The ->boost_kthread_task is immortal, so we don't need to worry | |
1082 | * about it going away. | |
27f4d280 | 1083 | */ |
1217ed1b | 1084 | static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) |
615e41c6 | 1085 | __releases(rnp->lock) |
27f4d280 | 1086 | { |
a32e01ee | 1087 | raw_lockdep_assert_held_rcu_node(rnp); |
0ea1f2eb | 1088 | if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) { |
67c583a7 | 1089 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
27f4d280 | 1090 | return; |
0ea1f2eb | 1091 | } |
27f4d280 PM |
1092 | if (rnp->exp_tasks != NULL || |
1093 | (rnp->gp_tasks != NULL && | |
1094 | rnp->boost_tasks == NULL && | |
1095 | rnp->qsmask == 0 && | |
7b241311 | 1096 | (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld))) { |
27f4d280 | 1097 | if (rnp->exp_tasks == NULL) |
5822b812 | 1098 | WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks); |
67c583a7 | 1099 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
a2badefa | 1100 | rcu_wake_cond(rnp->boost_kthread_task, |
3ca3b0e2 | 1101 | READ_ONCE(rnp->boost_kthread_status)); |
1217ed1b | 1102 | } else { |
67c583a7 | 1103 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
1217ed1b | 1104 | } |
27f4d280 PM |
1105 | } |
1106 | ||
dff1672d PM |
1107 | /* |
1108 | * Is the current CPU running the RCU-callbacks kthread? | |
1109 | * Caller must have preemption disabled. | |
1110 | */ | |
1111 | static bool rcu_is_callbacks_kthread(void) | |
1112 | { | |
37f62d7c | 1113 | return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current; |
dff1672d PM |
1114 | } |
1115 | ||
27f4d280 PM |
1116 | #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) |
1117 | ||
1118 | /* | |
1119 | * Do priority-boost accounting for the start of a new grace period. | |
1120 | */ | |
1121 | static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) | |
1122 | { | |
1123 | rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; | |
1124 | } | |
1125 | ||
27f4d280 PM |
1126 | /* |
1127 | * Create an RCU-boost kthread for the specified node if one does not | |
1128 | * already exist. We only create this kthread for preemptible RCU. | |
1129 | * Returns zero if all is well, a negated errno otherwise. | |
1130 | */ | |
3545832f | 1131 | static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp) |
27f4d280 | 1132 | { |
6dbfdc14 | 1133 | int rnp_index = rnp - rcu_get_root(); |
27f4d280 PM |
1134 | unsigned long flags; |
1135 | struct sched_param sp; | |
1136 | struct task_struct *t; | |
1137 | ||
6dbfdc14 | 1138 | if (!IS_ENABLED(CONFIG_PREEMPT_RCU)) |
3545832f | 1139 | return; |
5d01bbd1 | 1140 | |
0aa04b05 | 1141 | if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0) |
3545832f | 1142 | return; |
5d01bbd1 | 1143 | |
6dbfdc14 | 1144 | rcu_state.boost = 1; |
3545832f | 1145 | |
27f4d280 | 1146 | if (rnp->boost_kthread_task != NULL) |
3545832f BP |
1147 | return; |
1148 | ||
27f4d280 | 1149 | t = kthread_create(rcu_boost_kthread, (void *)rnp, |
5b61b0ba | 1150 | "rcub/%d", rnp_index); |
3545832f BP |
1151 | if (WARN_ON_ONCE(IS_ERR(t))) |
1152 | return; | |
1153 | ||
2a67e741 | 1154 | raw_spin_lock_irqsave_rcu_node(rnp, flags); |
27f4d280 | 1155 | rnp->boost_kthread_task = t; |
67c583a7 | 1156 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
21871d7e | 1157 | sp.sched_priority = kthread_prio; |
27f4d280 | 1158 | sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); |
9a432736 | 1159 | wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ |
27f4d280 PM |
1160 | } |
1161 | ||
f8b7fc6b PM |
1162 | /* |
1163 | * Set the per-rcu_node kthread's affinity to cover all CPUs that are | |
1164 | * served by the rcu_node in question. The CPU hotplug lock is still | |
1165 | * held, so the value of rnp->qsmaskinit will be stable. | |
1166 | * | |
1167 | * We don't include outgoingcpu in the affinity set, use -1 if there is | |
1168 | * no outgoing CPU. If there are no CPUs left in the affinity set, | |
1169 | * this function allows the kthread to execute on any CPU. | |
1170 | */ | |
5d01bbd1 | 1171 | static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) |
f8b7fc6b | 1172 | { |
5d01bbd1 | 1173 | struct task_struct *t = rnp->boost_kthread_task; |
0aa04b05 | 1174 | unsigned long mask = rcu_rnp_online_cpus(rnp); |
f8b7fc6b PM |
1175 | cpumask_var_t cm; |
1176 | int cpu; | |
f8b7fc6b | 1177 | |
5d01bbd1 | 1178 | if (!t) |
f8b7fc6b | 1179 | return; |
5d01bbd1 | 1180 | if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) |
f8b7fc6b | 1181 | return; |
bc75e999 MR |
1182 | for_each_leaf_node_possible_cpu(rnp, cpu) |
1183 | if ((mask & leaf_node_cpu_bit(rnp, cpu)) && | |
1184 | cpu != outgoingcpu) | |
f8b7fc6b | 1185 | cpumask_set_cpu(cpu, cm); |
5d0b0249 | 1186 | if (cpumask_weight(cm) == 0) |
f8b7fc6b | 1187 | cpumask_setall(cm); |
5d01bbd1 | 1188 | set_cpus_allowed_ptr(t, cm); |
f8b7fc6b PM |
1189 | free_cpumask_var(cm); |
1190 | } | |
1191 | ||
f8b7fc6b | 1192 | /* |
9386c0b7 | 1193 | * Spawn boost kthreads -- called as soon as the scheduler is running. |
f8b7fc6b | 1194 | */ |
9386c0b7 | 1195 | static void __init rcu_spawn_boost_kthreads(void) |
f8b7fc6b | 1196 | { |
f8b7fc6b PM |
1197 | struct rcu_node *rnp; |
1198 | ||
aedf4ba9 | 1199 | rcu_for_each_leaf_node(rnp) |
3545832f | 1200 | rcu_spawn_one_boost_kthread(rnp); |
f8b7fc6b | 1201 | } |
f8b7fc6b | 1202 | |
49fb4c62 | 1203 | static void rcu_prepare_kthreads(int cpu) |
f8b7fc6b | 1204 | { |
da1df50d | 1205 | struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); |
f8b7fc6b PM |
1206 | struct rcu_node *rnp = rdp->mynode; |
1207 | ||
1208 | /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */ | |
62ab7072 | 1209 | if (rcu_scheduler_fully_active) |
3545832f | 1210 | rcu_spawn_one_boost_kthread(rnp); |
f8b7fc6b PM |
1211 | } |
1212 | ||
27f4d280 PM |
1213 | #else /* #ifdef CONFIG_RCU_BOOST */ |
1214 | ||
1217ed1b | 1215 | static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) |
615e41c6 | 1216 | __releases(rnp->lock) |
27f4d280 | 1217 | { |
67c583a7 | 1218 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
27f4d280 PM |
1219 | } |
1220 | ||
dff1672d PM |
1221 | static bool rcu_is_callbacks_kthread(void) |
1222 | { | |
1223 | return false; | |
1224 | } | |
1225 | ||
27f4d280 PM |
1226 | static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) |
1227 | { | |
1228 | } | |
1229 | ||
5d01bbd1 | 1230 | static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) |
f8b7fc6b PM |
1231 | { |
1232 | } | |
1233 | ||
9386c0b7 | 1234 | static void __init rcu_spawn_boost_kthreads(void) |
b0d30417 | 1235 | { |
b0d30417 | 1236 | } |
b0d30417 | 1237 | |
49fb4c62 | 1238 | static void rcu_prepare_kthreads(int cpu) |
f8b7fc6b PM |
1239 | { |
1240 | } | |
1241 | ||
27f4d280 PM |
1242 | #endif /* #else #ifdef CONFIG_RCU_BOOST */ |
1243 | ||
8bd93a2c PM |
1244 | #if !defined(CONFIG_RCU_FAST_NO_HZ) |
1245 | ||
1246 | /* | |
0bd55c69 PM |
1247 | * Check to see if any future non-offloaded RCU-related work will need |
1248 | * to be done by the current CPU, even if none need be done immediately, | |
1249 | * returning 1 if so. This function is part of the RCU implementation; | |
1250 | * it is -not- an exported member of the RCU API. | |
8bd93a2c | 1251 | * |
0ae86a27 PM |
1252 | * Because we not have RCU_FAST_NO_HZ, just check whether or not this |
1253 | * CPU has RCU callbacks queued. | |
8bd93a2c | 1254 | */ |
c1ad348b | 1255 | int rcu_needs_cpu(u64 basemono, u64 *nextevt) |
8bd93a2c | 1256 | { |
c1ad348b | 1257 | *nextevt = KTIME_MAX; |
0bd55c69 PM |
1258 | return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) && |
1259 | !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist); | |
7cb92499 PM |
1260 | } |
1261 | ||
1262 | /* | |
1263 | * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up | |
1264 | * after it. | |
1265 | */ | |
8fa7845d | 1266 | static void rcu_cleanup_after_idle(void) |
7cb92499 PM |
1267 | { |
1268 | } | |
1269 | ||
aea1b35e | 1270 | /* |
a858af28 | 1271 | * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n, |
aea1b35e PM |
1272 | * is nothing. |
1273 | */ | |
198bbf81 | 1274 | static void rcu_prepare_for_idle(void) |
aea1b35e PM |
1275 | { |
1276 | } | |
1277 | ||
8bd93a2c PM |
1278 | #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */ |
1279 | ||
f23f7fa1 PM |
1280 | /* |
1281 | * This code is invoked when a CPU goes idle, at which point we want | |
1282 | * to have the CPU do everything required for RCU so that it can enter | |
77a40f97 | 1283 | * the energy-efficient dyntick-idle mode. |
f23f7fa1 | 1284 | * |
77a40f97 | 1285 | * The following preprocessor symbol controls this: |
f23f7fa1 | 1286 | * |
f23f7fa1 PM |
1287 | * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted |
1288 | * to sleep in dyntick-idle mode with RCU callbacks pending. This | |
1289 | * is sized to be roughly one RCU grace period. Those energy-efficiency | |
1290 | * benchmarkers who might otherwise be tempted to set this to a large | |
1291 | * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your | |
1292 | * system. And if you are -that- concerned about energy efficiency, | |
1293 | * just power the system down and be done with it! | |
1294 | * | |
77a40f97 | 1295 | * The value below works well in practice. If future workloads require |
f23f7fa1 PM |
1296 | * adjustment, they can be converted into kernel config parameters, though |
1297 | * making the state machine smarter might be a better option. | |
1298 | */ | |
e84c48ae | 1299 | #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */ |
f23f7fa1 | 1300 | |
5e44ce35 PM |
1301 | static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY; |
1302 | module_param(rcu_idle_gp_delay, int, 0644); | |
486e2593 | 1303 | |
486e2593 | 1304 | /* |
0ae86a27 PM |
1305 | * Try to advance callbacks on the current CPU, but only if it has been |
1306 | * awhile since the last time we did so. Afterwards, if there are any | |
1307 | * callbacks ready for immediate invocation, return true. | |
486e2593 | 1308 | */ |
f1f399d1 | 1309 | static bool __maybe_unused rcu_try_advance_all_cbs(void) |
486e2593 | 1310 | { |
c0f4dfd4 | 1311 | bool cbs_ready = false; |
5998a75a | 1312 | struct rcu_data *rdp = this_cpu_ptr(&rcu_data); |
c0f4dfd4 | 1313 | struct rcu_node *rnp; |
486e2593 | 1314 | |
c229828c | 1315 | /* Exit early if we advanced recently. */ |
5998a75a | 1316 | if (jiffies == rdp->last_advance_all) |
d0bc90fd | 1317 | return false; |
5998a75a | 1318 | rdp->last_advance_all = jiffies; |
c229828c | 1319 | |
b97d23c5 | 1320 | rnp = rdp->mynode; |
486e2593 | 1321 | |
b97d23c5 PM |
1322 | /* |
1323 | * Don't bother checking unless a grace period has | |
1324 | * completed since we last checked and there are | |
1325 | * callbacks not yet ready to invoke. | |
1326 | */ | |
1327 | if ((rcu_seq_completed_gp(rdp->gp_seq, | |
1328 | rcu_seq_current(&rnp->gp_seq)) || | |
1329 | unlikely(READ_ONCE(rdp->gpwrap))) && | |
1330 | rcu_segcblist_pend_cbs(&rdp->cblist)) | |
1331 | note_gp_changes(rdp); | |
1332 | ||
1333 | if (rcu_segcblist_ready_cbs(&rdp->cblist)) | |
1334 | cbs_ready = true; | |
c0f4dfd4 | 1335 | return cbs_ready; |
486e2593 PM |
1336 | } |
1337 | ||
aa9b1630 | 1338 | /* |
c0f4dfd4 PM |
1339 | * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready |
1340 | * to invoke. If the CPU has callbacks, try to advance them. Tell the | |
77a40f97 | 1341 | * caller about what to set the timeout. |
aa9b1630 | 1342 | * |
c0f4dfd4 | 1343 | * The caller must have disabled interrupts. |
aa9b1630 | 1344 | */ |
c1ad348b | 1345 | int rcu_needs_cpu(u64 basemono, u64 *nextevt) |
aa9b1630 | 1346 | { |
5998a75a | 1347 | struct rcu_data *rdp = this_cpu_ptr(&rcu_data); |
c1ad348b | 1348 | unsigned long dj; |
aa9b1630 | 1349 | |
b04db8e1 | 1350 | lockdep_assert_irqs_disabled(); |
3382adbc | 1351 | |
0bd55c69 PM |
1352 | /* If no non-offloaded callbacks, RCU doesn't need the CPU. */ |
1353 | if (rcu_segcblist_empty(&rdp->cblist) || | |
1354 | rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) { | |
c1ad348b | 1355 | *nextevt = KTIME_MAX; |
aa9b1630 PM |
1356 | return 0; |
1357 | } | |
c0f4dfd4 PM |
1358 | |
1359 | /* Attempt to advance callbacks. */ | |
1360 | if (rcu_try_advance_all_cbs()) { | |
1361 | /* Some ready to invoke, so initiate later invocation. */ | |
1362 | invoke_rcu_core(); | |
aa9b1630 PM |
1363 | return 1; |
1364 | } | |
5998a75a | 1365 | rdp->last_accelerate = jiffies; |
c0f4dfd4 | 1366 | |
77a40f97 JFG |
1367 | /* Request timer and round. */ |
1368 | dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies; | |
1369 | ||
c1ad348b | 1370 | *nextevt = basemono + dj * TICK_NSEC; |
aa9b1630 PM |
1371 | return 0; |
1372 | } | |
1373 | ||
21e52e15 | 1374 | /* |
77a40f97 JFG |
1375 | * Prepare a CPU for idle from an RCU perspective. The first major task is to |
1376 | * sense whether nohz mode has been enabled or disabled via sysfs. The second | |
1377 | * major task is to accelerate (that is, assign grace-period numbers to) any | |
1378 | * recently arrived callbacks. | |
aea1b35e PM |
1379 | * |
1380 | * The caller must have disabled interrupts. | |
8bd93a2c | 1381 | */ |
198bbf81 | 1382 | static void rcu_prepare_for_idle(void) |
8bd93a2c | 1383 | { |
48a7639c | 1384 | bool needwake; |
0fd79e75 | 1385 | struct rcu_data *rdp = this_cpu_ptr(&rcu_data); |
c0f4dfd4 | 1386 | struct rcu_node *rnp; |
9d2ad243 PM |
1387 | int tne; |
1388 | ||
b04db8e1 | 1389 | lockdep_assert_irqs_disabled(); |
ce5215c1 | 1390 | if (rcu_segcblist_is_offloaded(&rdp->cblist)) |
3382adbc PM |
1391 | return; |
1392 | ||
9d2ad243 | 1393 | /* Handle nohz enablement switches conservatively. */ |
7d0ae808 | 1394 | tne = READ_ONCE(tick_nohz_active); |
0fd79e75 | 1395 | if (tne != rdp->tick_nohz_enabled_snap) { |
260e1e4f | 1396 | if (!rcu_segcblist_empty(&rdp->cblist)) |
9d2ad243 | 1397 | invoke_rcu_core(); /* force nohz to see update. */ |
0fd79e75 | 1398 | rdp->tick_nohz_enabled_snap = tne; |
9d2ad243 PM |
1399 | return; |
1400 | } | |
1401 | if (!tne) | |
1402 | return; | |
f511fc62 | 1403 | |
3084f2f8 | 1404 | /* |
c0f4dfd4 PM |
1405 | * If we have not yet accelerated this jiffy, accelerate all |
1406 | * callbacks on this CPU. | |
3084f2f8 | 1407 | */ |
5998a75a | 1408 | if (rdp->last_accelerate == jiffies) |
aea1b35e | 1409 | return; |
5998a75a | 1410 | rdp->last_accelerate = jiffies; |
b97d23c5 | 1411 | if (rcu_segcblist_pend_cbs(&rdp->cblist)) { |
c0f4dfd4 | 1412 | rnp = rdp->mynode; |
2a67e741 | 1413 | raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ |
02f50142 | 1414 | needwake = rcu_accelerate_cbs(rnp, rdp); |
67c583a7 | 1415 | raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ |
48a7639c | 1416 | if (needwake) |
532c00c9 | 1417 | rcu_gp_kthread_wake(); |
77e38ed3 | 1418 | } |
c0f4dfd4 | 1419 | } |
3084f2f8 | 1420 | |
c0f4dfd4 PM |
1421 | /* |
1422 | * Clean up for exit from idle. Attempt to advance callbacks based on | |
1423 | * any grace periods that elapsed while the CPU was idle, and if any | |
1424 | * callbacks are now ready to invoke, initiate invocation. | |
1425 | */ | |
8fa7845d | 1426 | static void rcu_cleanup_after_idle(void) |
c0f4dfd4 | 1427 | { |
ce5215c1 PM |
1428 | struct rcu_data *rdp = this_cpu_ptr(&rcu_data); |
1429 | ||
b04db8e1 | 1430 | lockdep_assert_irqs_disabled(); |
ce5215c1 | 1431 | if (rcu_segcblist_is_offloaded(&rdp->cblist)) |
aea1b35e | 1432 | return; |
7a497c96 PM |
1433 | if (rcu_try_advance_all_cbs()) |
1434 | invoke_rcu_core(); | |
8bd93a2c PM |
1435 | } |
1436 | ||
1437 | #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */ | |
a858af28 | 1438 | |
3fbfbf7a PM |
1439 | #ifdef CONFIG_RCU_NOCB_CPU |
1440 | ||
1441 | /* | |
1442 | * Offload callback processing from the boot-time-specified set of CPUs | |
a9fefdb2 PM |
1443 | * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads |
1444 | * created that pull the callbacks from the corresponding CPU, wait for | |
1445 | * a grace period to elapse, and invoke the callbacks. These kthreads | |
6484fe54 PM |
1446 | * are organized into GP kthreads, which manage incoming callbacks, wait for |
1447 | * grace periods, and awaken CB kthreads, and the CB kthreads, which only | |
1448 | * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs | |
1449 | * do a wake_up() on their GP kthread when they insert a callback into any | |
a9fefdb2 PM |
1450 | * empty list, unless the rcu_nocb_poll boot parameter has been specified, |
1451 | * in which case each kthread actively polls its CPU. (Which isn't so great | |
1452 | * for energy efficiency, but which does reduce RCU's overhead on that CPU.) | |
3fbfbf7a PM |
1453 | * |
1454 | * This is intended to be used in conjunction with Frederic Weisbecker's | |
1455 | * adaptive-idle work, which would seriously reduce OS jitter on CPUs | |
1456 | * running CPU-bound user-mode computations. | |
1457 | * | |
a9fefdb2 PM |
1458 | * Offloading of callbacks can also be used as an energy-efficiency |
1459 | * measure because CPUs with no RCU callbacks queued are more aggressive | |
1460 | * about entering dyntick-idle mode. | |
3fbfbf7a PM |
1461 | */ |
1462 | ||
1463 | ||
497e4260 PM |
1464 | /* |
1465 | * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. | |
1466 | * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a | |
1467 | * comma-separated list of CPUs and/or CPU ranges. If an invalid list is | |
1468 | * given, a warning is emitted and all CPUs are offloaded. | |
1469 | */ | |
3fbfbf7a PM |
1470 | static int __init rcu_nocb_setup(char *str) |
1471 | { | |
1472 | alloc_bootmem_cpumask_var(&rcu_nocb_mask); | |
da8739f2 PM |
1473 | if (!strcasecmp(str, "all")) |
1474 | cpumask_setall(rcu_nocb_mask); | |
1475 | else | |
497e4260 PM |
1476 | if (cpulist_parse(str, rcu_nocb_mask)) { |
1477 | pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n"); | |
1478 | cpumask_setall(rcu_nocb_mask); | |
1479 | } | |
3fbfbf7a PM |
1480 | return 1; |
1481 | } | |
1482 | __setup("rcu_nocbs=", rcu_nocb_setup); | |
1483 | ||
1b0048a4 PG |
1484 | static int __init parse_rcu_nocb_poll(char *arg) |
1485 | { | |
5455a7f6 | 1486 | rcu_nocb_poll = true; |
1b0048a4 PG |
1487 | return 0; |
1488 | } | |
1489 | early_param("rcu_nocb_poll", parse_rcu_nocb_poll); | |
1490 | ||
5d6742b3 | 1491 | /* |
d1b222c6 PM |
1492 | * Don't bother bypassing ->cblist if the call_rcu() rate is low. |
1493 | * After all, the main point of bypassing is to avoid lock contention | |
1494 | * on ->nocb_lock, which only can happen at high call_rcu() rates. | |
5d6742b3 | 1495 | */ |
d1b222c6 PM |
1496 | int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ; |
1497 | module_param(nocb_nobypass_lim_per_jiffy, int, 0); | |
1498 | ||
1499 | /* | |
1500 | * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the | |
1501 | * lock isn't immediately available, increment ->nocb_lock_contended to | |
1502 | * flag the contention. | |
1503 | */ | |
1504 | static void rcu_nocb_bypass_lock(struct rcu_data *rdp) | |
9ced4548 | 1505 | __acquires(&rdp->nocb_bypass_lock) |
5d6742b3 | 1506 | { |
81c0b3d7 | 1507 | lockdep_assert_irqs_disabled(); |
d1b222c6 | 1508 | if (raw_spin_trylock(&rdp->nocb_bypass_lock)) |
81c0b3d7 PM |
1509 | return; |
1510 | atomic_inc(&rdp->nocb_lock_contended); | |
6aacd88d | 1511 | WARN_ON_ONCE(smp_processor_id() != rdp->cpu); |
81c0b3d7 | 1512 | smp_mb__after_atomic(); /* atomic_inc() before lock. */ |
d1b222c6 | 1513 | raw_spin_lock(&rdp->nocb_bypass_lock); |
81c0b3d7 PM |
1514 | smp_mb__before_atomic(); /* atomic_dec() after lock. */ |
1515 | atomic_dec(&rdp->nocb_lock_contended); | |
1516 | } | |
1517 | ||
1518 | /* | |
1519 | * Spinwait until the specified rcu_data structure's ->nocb_lock is | |
1520 | * not contended. Please note that this is extremely special-purpose, | |
1521 | * relying on the fact that at most two kthreads and one CPU contend for | |
1522 | * this lock, and also that the two kthreads are guaranteed to have frequent | |
1523 | * grace-period-duration time intervals between successive acquisitions | |
1524 | * of the lock. This allows us to use an extremely simple throttling | |
1525 | * mechanism, and further to apply it only to the CPU doing floods of | |
1526 | * call_rcu() invocations. Don't try this at home! | |
1527 | */ | |
1528 | static void rcu_nocb_wait_contended(struct rcu_data *rdp) | |
1529 | { | |
6aacd88d PM |
1530 | WARN_ON_ONCE(smp_processor_id() != rdp->cpu); |
1531 | while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended))) | |
81c0b3d7 | 1532 | cpu_relax(); |
5d6742b3 PM |
1533 | } |
1534 | ||
d1b222c6 PM |
1535 | /* |
1536 | * Conditionally acquire the specified rcu_data structure's | |
1537 | * ->nocb_bypass_lock. | |
1538 | */ | |
1539 | static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp) | |
1540 | { | |
1541 | lockdep_assert_irqs_disabled(); | |
1542 | return raw_spin_trylock(&rdp->nocb_bypass_lock); | |
1543 | } | |
1544 | ||
1545 | /* | |
1546 | * Release the specified rcu_data structure's ->nocb_bypass_lock. | |
1547 | */ | |
1548 | static void rcu_nocb_bypass_unlock(struct rcu_data *rdp) | |
92c0b889 | 1549 | __releases(&rdp->nocb_bypass_lock) |
d1b222c6 PM |
1550 | { |
1551 | lockdep_assert_irqs_disabled(); | |
1552 | raw_spin_unlock(&rdp->nocb_bypass_lock); | |
1553 | } | |
1554 | ||
1555 | /* | |
1556 | * Acquire the specified rcu_data structure's ->nocb_lock, but only | |
1557 | * if it corresponds to a no-CBs CPU. | |
1558 | */ | |
1559 | static void rcu_nocb_lock(struct rcu_data *rdp) | |
1560 | { | |
1561 | lockdep_assert_irqs_disabled(); | |
1562 | if (!rcu_segcblist_is_offloaded(&rdp->cblist)) | |
1563 | return; | |
1564 | raw_spin_lock(&rdp->nocb_lock); | |
1565 | } | |
1566 | ||
5d6742b3 PM |
1567 | /* |
1568 | * Release the specified rcu_data structure's ->nocb_lock, but only | |
1569 | * if it corresponds to a no-CBs CPU. | |
1570 | */ | |
1571 | static void rcu_nocb_unlock(struct rcu_data *rdp) | |
1572 | { | |
1573 | if (rcu_segcblist_is_offloaded(&rdp->cblist)) { | |
1574 | lockdep_assert_irqs_disabled(); | |
1575 | raw_spin_unlock(&rdp->nocb_lock); | |
1576 | } | |
1577 | } | |
1578 | ||
1579 | /* | |
1580 | * Release the specified rcu_data structure's ->nocb_lock and restore | |
1581 | * interrupts, but only if it corresponds to a no-CBs CPU. | |
1582 | */ | |
1583 | static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, | |
1584 | unsigned long flags) | |
1585 | { | |
1586 | if (rcu_segcblist_is_offloaded(&rdp->cblist)) { | |
1587 | lockdep_assert_irqs_disabled(); | |
1588 | raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); | |
1589 | } else { | |
1590 | local_irq_restore(flags); | |
1591 | } | |
1592 | } | |
1593 | ||
d1b222c6 PM |
1594 | /* Lockdep check that ->cblist may be safely accessed. */ |
1595 | static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) | |
1596 | { | |
1597 | lockdep_assert_irqs_disabled(); | |
13817dd5 | 1598 | if (rcu_segcblist_is_offloaded(&rdp->cblist)) |
d1b222c6 PM |
1599 | lockdep_assert_held(&rdp->nocb_lock); |
1600 | } | |
1601 | ||
dae6e64d | 1602 | /* |
0446be48 PM |
1603 | * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended |
1604 | * grace period. | |
dae6e64d | 1605 | */ |
abedf8e2 | 1606 | static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) |
dae6e64d | 1607 | { |
abedf8e2 | 1608 | swake_up_all(sq); |
dae6e64d PM |
1609 | } |
1610 | ||
abedf8e2 | 1611 | static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) |
065bb78c | 1612 | { |
e0da2374 | 1613 | return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1]; |
065bb78c DW |
1614 | } |
1615 | ||
dae6e64d | 1616 | static void rcu_init_one_nocb(struct rcu_node *rnp) |
34ed6246 | 1617 | { |
abedf8e2 PG |
1618 | init_swait_queue_head(&rnp->nocb_gp_wq[0]); |
1619 | init_swait_queue_head(&rnp->nocb_gp_wq[1]); | |
34ed6246 PM |
1620 | } |
1621 | ||
24342c96 | 1622 | /* Is the specified CPU a no-CBs CPU? */ |
d1e43fa5 | 1623 | bool rcu_is_nocb_cpu(int cpu) |
3fbfbf7a | 1624 | { |
84b12b75 | 1625 | if (cpumask_available(rcu_nocb_mask)) |
3fbfbf7a PM |
1626 | return cpumask_test_cpu(cpu, rcu_nocb_mask); |
1627 | return false; | |
1628 | } | |
1629 | ||
fbce7497 | 1630 | /* |
6484fe54 | 1631 | * Kick the GP kthread for this NOCB group. Caller holds ->nocb_lock |
8be6e1b1 | 1632 | * and this function releases it. |
fbce7497 | 1633 | */ |
5d6742b3 | 1634 | static void wake_nocb_gp(struct rcu_data *rdp, bool force, |
5f675ba6 | 1635 | unsigned long flags) |
8be6e1b1 | 1636 | __releases(rdp->nocb_lock) |
fbce7497 | 1637 | { |
d1b222c6 | 1638 | bool needwake = false; |
5f675ba6 | 1639 | struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; |
fbce7497 | 1640 | |
8be6e1b1 | 1641 | lockdep_assert_held(&rdp->nocb_lock); |
5f675ba6 | 1642 | if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) { |
d1b222c6 PM |
1643 | trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, |
1644 | TPS("AlreadyAwake")); | |
81c0b3d7 | 1645 | rcu_nocb_unlock_irqrestore(rdp, flags); |
fbce7497 | 1646 | return; |
8be6e1b1 | 1647 | } |
d1b222c6 PM |
1648 | del_timer(&rdp->nocb_timer); |
1649 | rcu_nocb_unlock_irqrestore(rdp, flags); | |
1650 | raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); | |
1651 | if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) { | |
5d6742b3 | 1652 | WRITE_ONCE(rdp_gp->nocb_gp_sleep, false); |
d1b222c6 PM |
1653 | needwake = true; |
1654 | trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake")); | |
fbce7497 | 1655 | } |
d1b222c6 PM |
1656 | raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); |
1657 | if (needwake) | |
1658 | wake_up_process(rdp_gp->nocb_gp_kthread); | |
fbce7497 PM |
1659 | } |
1660 | ||
8be6e1b1 | 1661 | /* |
6484fe54 PM |
1662 | * Arrange to wake the GP kthread for this NOCB group at some future |
1663 | * time when it is safe to do so. | |
8be6e1b1 | 1664 | */ |
0d52a665 PM |
1665 | static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype, |
1666 | const char *reason) | |
8be6e1b1 | 1667 | { |
8be6e1b1 PM |
1668 | if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) |
1669 | mod_timer(&rdp->nocb_timer, jiffies + 1); | |
383e1332 PM |
1670 | if (rdp->nocb_defer_wakeup < waketype) |
1671 | WRITE_ONCE(rdp->nocb_defer_wakeup, waketype); | |
88d1bead | 1672 | trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason); |
d7e29933 PM |
1673 | } |
1674 | ||
d1b222c6 PM |
1675 | /* |
1676 | * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. | |
1677 | * However, if there is a callback to be enqueued and if ->nocb_bypass | |
1678 | * proves to be initially empty, just return false because the no-CB GP | |
1679 | * kthread may need to be awakened in this case. | |
1680 | * | |
1681 | * Note that this function always returns true if rhp is NULL. | |
1682 | */ | |
1683 | static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, | |
1684 | unsigned long j) | |
1685 | { | |
1686 | struct rcu_cblist rcl; | |
1687 | ||
1688 | WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist)); | |
1689 | rcu_lockdep_assert_cblist_protected(rdp); | |
1690 | lockdep_assert_held(&rdp->nocb_bypass_lock); | |
1691 | if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) { | |
1692 | raw_spin_unlock(&rdp->nocb_bypass_lock); | |
1693 | return false; | |
1694 | } | |
1695 | /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */ | |
1696 | if (rhp) | |
1697 | rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ | |
1698 | rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp); | |
1699 | rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl); | |
1700 | WRITE_ONCE(rdp->nocb_bypass_first, j); | |
1701 | rcu_nocb_bypass_unlock(rdp); | |
1702 | return true; | |
1703 | } | |
1704 | ||
1705 | /* | |
1706 | * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. | |
1707 | * However, if there is a callback to be enqueued and if ->nocb_bypass | |
1708 | * proves to be initially empty, just return false because the no-CB GP | |
1709 | * kthread may need to be awakened in this case. | |
1710 | * | |
1711 | * Note that this function always returns true if rhp is NULL. | |
1712 | */ | |
1713 | static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, | |
1714 | unsigned long j) | |
1715 | { | |
1716 | if (!rcu_segcblist_is_offloaded(&rdp->cblist)) | |
1717 | return true; | |
1718 | rcu_lockdep_assert_cblist_protected(rdp); | |
1719 | rcu_nocb_bypass_lock(rdp); | |
1720 | return rcu_nocb_do_flush_bypass(rdp, rhp, j); | |
1721 | } | |
1722 | ||
1723 | /* | |
1724 | * If the ->nocb_bypass_lock is immediately available, flush the | |
1725 | * ->nocb_bypass queue into ->cblist. | |
1726 | */ | |
1727 | static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j) | |
1728 | { | |
1729 | rcu_lockdep_assert_cblist_protected(rdp); | |
1730 | if (!rcu_segcblist_is_offloaded(&rdp->cblist) || | |
1731 | !rcu_nocb_bypass_trylock(rdp)) | |
1732 | return; | |
1733 | WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j)); | |
1734 | } | |
1735 | ||
1736 | /* | |
1737 | * See whether it is appropriate to use the ->nocb_bypass list in order | |
1738 | * to control contention on ->nocb_lock. A limited number of direct | |
1739 | * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass | |
1740 | * is non-empty, further callbacks must be placed into ->nocb_bypass, | |
1741 | * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch | |
1742 | * back to direct use of ->cblist. However, ->nocb_bypass should not be | |
1743 | * used if ->cblist is empty, because otherwise callbacks can be stranded | |
1744 | * on ->nocb_bypass because we cannot count on the current CPU ever again | |
1745 | * invoking call_rcu(). The general rule is that if ->nocb_bypass is | |
1746 | * non-empty, the corresponding no-CBs grace-period kthread must not be | |
1747 | * in an indefinite sleep state. | |
1748 | * | |
1749 | * Finally, it is not permitted to use the bypass during early boot, | |
1750 | * as doing so would confuse the auto-initialization code. Besides | |
1751 | * which, there is no point in worrying about lock contention while | |
1752 | * there is only one CPU in operation. | |
1753 | */ | |
1754 | static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp, | |
1755 | bool *was_alldone, unsigned long flags) | |
1756 | { | |
1757 | unsigned long c; | |
1758 | unsigned long cur_gp_seq; | |
1759 | unsigned long j = jiffies; | |
1760 | long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); | |
1761 | ||
1762 | if (!rcu_segcblist_is_offloaded(&rdp->cblist)) { | |
1763 | *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); | |
1764 | return false; /* Not offloaded, no bypassing. */ | |
1765 | } | |
1766 | lockdep_assert_irqs_disabled(); | |
1767 | ||
1768 | // Don't use ->nocb_bypass during early boot. | |
1769 | if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) { | |
1770 | rcu_nocb_lock(rdp); | |
1771 | WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); | |
1772 | *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); | |
1773 | return false; | |
1774 | } | |
1775 | ||
1776 | // If we have advanced to a new jiffy, reset counts to allow | |
1777 | // moving back from ->nocb_bypass to ->cblist. | |
1778 | if (j == rdp->nocb_nobypass_last) { | |
1779 | c = rdp->nocb_nobypass_count + 1; | |
1780 | } else { | |
1781 | WRITE_ONCE(rdp->nocb_nobypass_last, j); | |
1782 | c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy; | |
1783 | if (ULONG_CMP_LT(rdp->nocb_nobypass_count, | |
1784 | nocb_nobypass_lim_per_jiffy)) | |
1785 | c = 0; | |
1786 | else if (c > nocb_nobypass_lim_per_jiffy) | |
1787 | c = nocb_nobypass_lim_per_jiffy; | |
1788 | } | |
1789 | WRITE_ONCE(rdp->nocb_nobypass_count, c); | |
1790 | ||
1791 | // If there hasn't yet been all that many ->cblist enqueues | |
1792 | // this jiffy, tell the caller to enqueue onto ->cblist. But flush | |
1793 | // ->nocb_bypass first. | |
1794 | if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) { | |
1795 | rcu_nocb_lock(rdp); | |
1796 | *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); | |
1797 | if (*was_alldone) | |
1798 | trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, | |
1799 | TPS("FirstQ")); | |
1800 | WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j)); | |
1801 | WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); | |
1802 | return false; // Caller must enqueue the callback. | |
1803 | } | |
1804 | ||
1805 | // If ->nocb_bypass has been used too long or is too full, | |
1806 | // flush ->nocb_bypass to ->cblist. | |
1807 | if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) || | |
1808 | ncbs >= qhimark) { | |
1809 | rcu_nocb_lock(rdp); | |
1810 | if (!rcu_nocb_flush_bypass(rdp, rhp, j)) { | |
1811 | *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); | |
1812 | if (*was_alldone) | |
1813 | trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, | |
1814 | TPS("FirstQ")); | |
1815 | WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); | |
1816 | return false; // Caller must enqueue the callback. | |
1817 | } | |
1818 | if (j != rdp->nocb_gp_adv_time && | |
1819 | rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && | |
1820 | rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { | |
1821 | rcu_advance_cbs_nowake(rdp->mynode, rdp); | |
1822 | rdp->nocb_gp_adv_time = j; | |
1823 | } | |
1824 | rcu_nocb_unlock_irqrestore(rdp, flags); | |
1825 | return true; // Callback already enqueued. | |
1826 | } | |
1827 | ||
1828 | // We need to use the bypass. | |
1829 | rcu_nocb_wait_contended(rdp); | |
1830 | rcu_nocb_bypass_lock(rdp); | |
1831 | ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); | |
1832 | rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ | |
1833 | rcu_cblist_enqueue(&rdp->nocb_bypass, rhp); | |
1834 | if (!ncbs) { | |
1835 | WRITE_ONCE(rdp->nocb_bypass_first, j); | |
1836 | trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ")); | |
1837 | } | |
1838 | rcu_nocb_bypass_unlock(rdp); | |
1839 | smp_mb(); /* Order enqueue before wake. */ | |
1840 | if (ncbs) { | |
1841 | local_irq_restore(flags); | |
1842 | } else { | |
1843 | // No-CBs GP kthread might be indefinitely asleep, if so, wake. | |
1844 | rcu_nocb_lock(rdp); // Rare during call_rcu() flood. | |
1845 | if (!rcu_segcblist_pend_cbs(&rdp->cblist)) { | |
1846 | trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, | |
1847 | TPS("FirstBQwake")); | |
1848 | __call_rcu_nocb_wake(rdp, true, flags); | |
1849 | } else { | |
1850 | trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, | |
1851 | TPS("FirstBQnoWake")); | |
1852 | rcu_nocb_unlock_irqrestore(rdp, flags); | |
1853 | } | |
1854 | } | |
1855 | return true; // Callback already enqueued. | |
1856 | } | |
1857 | ||
3fbfbf7a | 1858 | /* |
5d6742b3 PM |
1859 | * Awaken the no-CBs grace-period kthead if needed, either due to it |
1860 | * legitimately being asleep or due to overload conditions. | |
3fbfbf7a PM |
1861 | * |
1862 | * If warranted, also wake up the kthread servicing this CPUs queues. | |
1863 | */ | |
5d6742b3 PM |
1864 | static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone, |
1865 | unsigned long flags) | |
1866 | __releases(rdp->nocb_lock) | |
3fbfbf7a | 1867 | { |
296181d7 PM |
1868 | unsigned long cur_gp_seq; |
1869 | unsigned long j; | |
ce0a825e | 1870 | long len; |
3fbfbf7a PM |
1871 | struct task_struct *t; |
1872 | ||
5d6742b3 | 1873 | // If we are being polled or there is no kthread, just leave. |
12f54c3a | 1874 | t = READ_ONCE(rdp->nocb_gp_kthread); |
25e03a74 | 1875 | if (rcu_nocb_poll || !t) { |
88d1bead | 1876 | trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, |
9261dd0d | 1877 | TPS("WakeNotPoll")); |
5d6742b3 | 1878 | rcu_nocb_unlock_irqrestore(rdp, flags); |
3fbfbf7a | 1879 | return; |
9261dd0d | 1880 | } |
5d6742b3 PM |
1881 | // Need to actually to a wakeup. |
1882 | len = rcu_segcblist_n_cbs(&rdp->cblist); | |
1883 | if (was_alldone) { | |
aeeacd9d | 1884 | rdp->qlen_last_fqs_check = len; |
96d3fd0d | 1885 | if (!irqs_disabled_flags(flags)) { |
fbce7497 | 1886 | /* ... if queue was empty ... */ |
5d6742b3 | 1887 | wake_nocb_gp(rdp, false, flags); |
88d1bead | 1888 | trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, |
96d3fd0d PM |
1889 | TPS("WakeEmpty")); |
1890 | } else { | |
0d52a665 PM |
1891 | wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE, |
1892 | TPS("WakeEmptyIsDeferred")); | |
5d6742b3 | 1893 | rcu_nocb_unlock_irqrestore(rdp, flags); |
96d3fd0d | 1894 | } |
3fbfbf7a | 1895 | } else if (len > rdp->qlen_last_fqs_check + qhimark) { |
fbce7497 | 1896 | /* ... or if many callbacks queued. */ |
aeeacd9d | 1897 | rdp->qlen_last_fqs_check = len; |
296181d7 PM |
1898 | j = jiffies; |
1899 | if (j != rdp->nocb_gp_adv_time && | |
1900 | rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && | |
1901 | rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { | |
faca5c25 | 1902 | rcu_advance_cbs_nowake(rdp->mynode, rdp); |
296181d7 PM |
1903 | rdp->nocb_gp_adv_time = j; |
1904 | } | |
f48fe4c5 PM |
1905 | smp_mb(); /* Enqueue before timer_pending(). */ |
1906 | if ((rdp->nocb_cb_sleep || | |
1907 | !rcu_segcblist_ready_cbs(&rdp->cblist)) && | |
1908 | !timer_pending(&rdp->nocb_bypass_timer)) | |
273f0340 PM |
1909 | wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE, |
1910 | TPS("WakeOvfIsDeferred")); | |
273f0340 | 1911 | rcu_nocb_unlock_irqrestore(rdp, flags); |
9261dd0d | 1912 | } else { |
88d1bead | 1913 | trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot")); |
5d6742b3 | 1914 | rcu_nocb_unlock_irqrestore(rdp, flags); |
3fbfbf7a PM |
1915 | } |
1916 | return; | |
1917 | } | |
1918 | ||
d1b222c6 PM |
1919 | /* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */ |
1920 | static void do_nocb_bypass_wakeup_timer(struct timer_list *t) | |
1921 | { | |
1922 | unsigned long flags; | |
1923 | struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer); | |
1924 | ||
1925 | trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer")); | |
1926 | rcu_nocb_lock_irqsave(rdp, flags); | |
f48fe4c5 | 1927 | smp_mb__after_spinlock(); /* Timer expire before wakeup. */ |
d1b222c6 PM |
1928 | __call_rcu_nocb_wake(rdp, true, flags); |
1929 | } | |
1930 | ||
3fbfbf7a | 1931 | /* |
5d6742b3 PM |
1932 | * No-CBs GP kthreads come here to wait for additional callbacks to show up |
1933 | * or for grace periods to end. | |
fbce7497 | 1934 | */ |
12f54c3a | 1935 | static void nocb_gp_wait(struct rcu_data *my_rdp) |
fbce7497 | 1936 | { |
d1b222c6 PM |
1937 | bool bypass = false; |
1938 | long bypass_ncbs; | |
5d6742b3 PM |
1939 | int __maybe_unused cpu = my_rdp->cpu; |
1940 | unsigned long cur_gp_seq; | |
8be6e1b1 | 1941 | unsigned long flags; |
b8889c9c | 1942 | bool gotcbs = false; |
d1b222c6 | 1943 | unsigned long j = jiffies; |
969974e5 | 1944 | bool needwait_gp = false; // This prevents actual uninitialized use. |
5d6742b3 PM |
1945 | bool needwake; |
1946 | bool needwake_gp; | |
fbce7497 | 1947 | struct rcu_data *rdp; |
5d6742b3 | 1948 | struct rcu_node *rnp; |
969974e5 | 1949 | unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning. |
3d05031a | 1950 | bool wasempty = false; |
fbce7497 PM |
1951 | |
1952 | /* | |
5d6742b3 PM |
1953 | * Each pass through the following loop checks for CBs and for the |
1954 | * nearest grace period (if any) to wait for next. The CB kthreads | |
1955 | * and the global grace-period kthread are awakened if needed. | |
fbce7497 | 1956 | */ |
4569c5ee | 1957 | WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp); |
58bf6f77 | 1958 | for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) { |
d1b222c6 PM |
1959 | trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check")); |
1960 | rcu_nocb_lock_irqsave(rdp, flags); | |
1961 | bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); | |
1962 | if (bypass_ncbs && | |
1963 | (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) || | |
1964 | bypass_ncbs > 2 * qhimark)) { | |
1965 | // Bypass full or old, so flush it. | |
1966 | (void)rcu_nocb_try_flush_bypass(rdp, j); | |
1967 | bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); | |
1968 | } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) { | |
1969 | rcu_nocb_unlock_irqrestore(rdp, flags); | |
5d6742b3 | 1970 | continue; /* No callbacks here, try next. */ |
d1b222c6 PM |
1971 | } |
1972 | if (bypass_ncbs) { | |
1973 | trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, | |
1974 | TPS("Bypass")); | |
1975 | bypass = true; | |
1976 | } | |
5d6742b3 | 1977 | rnp = rdp->mynode; |
d1b222c6 PM |
1978 | if (bypass) { // Avoid race with first bypass CB. |
1979 | WRITE_ONCE(my_rdp->nocb_defer_wakeup, | |
1980 | RCU_NOCB_WAKE_NOT); | |
1981 | del_timer(&my_rdp->nocb_timer); | |
1982 | } | |
1983 | // Advance callbacks if helpful and low contention. | |
1984 | needwake_gp = false; | |
1985 | if (!rcu_segcblist_restempty(&rdp->cblist, | |
1986 | RCU_NEXT_READY_TAIL) || | |
1987 | (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && | |
1988 | rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) { | |
1989 | raw_spin_lock_rcu_node(rnp); /* irqs disabled. */ | |
1990 | needwake_gp = rcu_advance_cbs(rnp, rdp); | |
3d05031a PM |
1991 | wasempty = rcu_segcblist_restempty(&rdp->cblist, |
1992 | RCU_NEXT_READY_TAIL); | |
d1b222c6 PM |
1993 | raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */ |
1994 | } | |
5d6742b3 | 1995 | // Need to wait on some grace period? |
3d05031a PM |
1996 | WARN_ON_ONCE(wasempty && |
1997 | !rcu_segcblist_restempty(&rdp->cblist, | |
d1b222c6 | 1998 | RCU_NEXT_READY_TAIL)); |
5d6742b3 PM |
1999 | if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) { |
2000 | if (!needwait_gp || | |
2001 | ULONG_CMP_LT(cur_gp_seq, wait_gp_seq)) | |
2002 | wait_gp_seq = cur_gp_seq; | |
2003 | needwait_gp = true; | |
d1b222c6 PM |
2004 | trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, |
2005 | TPS("NeedWaitGP")); | |
8be6e1b1 | 2006 | } |
5d6742b3 PM |
2007 | if (rcu_segcblist_ready_cbs(&rdp->cblist)) { |
2008 | needwake = rdp->nocb_cb_sleep; | |
2009 | WRITE_ONCE(rdp->nocb_cb_sleep, false); | |
2010 | smp_mb(); /* CB invocation -after- GP end. */ | |
2011 | } else { | |
2012 | needwake = false; | |
8be6e1b1 | 2013 | } |
81c0b3d7 | 2014 | rcu_nocb_unlock_irqrestore(rdp, flags); |
5d6742b3 | 2015 | if (needwake) { |
12f54c3a | 2016 | swake_up_one(&rdp->nocb_cb_wq); |
5d6742b3 | 2017 | gotcbs = true; |
fbce7497 | 2018 | } |
5d6742b3 PM |
2019 | if (needwake_gp) |
2020 | rcu_gp_kthread_wake(); | |
2021 | } | |
2022 | ||
f7a81b12 PM |
2023 | my_rdp->nocb_gp_bypass = bypass; |
2024 | my_rdp->nocb_gp_gp = needwait_gp; | |
2025 | my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0; | |
d1b222c6 PM |
2026 | if (bypass && !rcu_nocb_poll) { |
2027 | // At least one child with non-empty ->nocb_bypass, so set | |
2028 | // timer in order to avoid stranding its callbacks. | |
2029 | raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); | |
2030 | mod_timer(&my_rdp->nocb_bypass_timer, j + 2); | |
2031 | raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); | |
2032 | } | |
5d6742b3 PM |
2033 | if (rcu_nocb_poll) { |
2034 | /* Polling, so trace if first poll in the series. */ | |
2035 | if (gotcbs) | |
2036 | trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll")); | |
f5ca3464 | 2037 | schedule_timeout_idle(1); |
5d6742b3 PM |
2038 | } else if (!needwait_gp) { |
2039 | /* Wait for callbacks to appear. */ | |
2040 | trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep")); | |
2041 | swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq, | |
2042 | !READ_ONCE(my_rdp->nocb_gp_sleep)); | |
d1b222c6 | 2043 | trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep")); |
5d6742b3 PM |
2044 | } else { |
2045 | rnp = my_rdp->mynode; | |
2046 | trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait")); | |
2047 | swait_event_interruptible_exclusive( | |
2048 | rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1], | |
2049 | rcu_seq_done(&rnp->gp_seq, wait_gp_seq) || | |
2050 | !READ_ONCE(my_rdp->nocb_gp_sleep)); | |
2051 | trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait")); | |
2052 | } | |
2053 | if (!rcu_nocb_poll) { | |
4fd8c5f1 | 2054 | raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); |
d1b222c6 PM |
2055 | if (bypass) |
2056 | del_timer(&my_rdp->nocb_bypass_timer); | |
5d6742b3 | 2057 | WRITE_ONCE(my_rdp->nocb_gp_sleep, true); |
4fd8c5f1 | 2058 | raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); |
fbce7497 | 2059 | } |
f7a81b12 | 2060 | my_rdp->nocb_gp_seq = -1; |
5d6742b3 | 2061 | WARN_ON(signal_pending(current)); |
12f54c3a | 2062 | } |
fbce7497 | 2063 | |
12f54c3a PM |
2064 | /* |
2065 | * No-CBs grace-period-wait kthread. There is one of these per group | |
2066 | * of CPUs, but only once at least one CPU in that group has come online | |
2067 | * at least once since boot. This kthread checks for newly posted | |
2068 | * callbacks from any of the CPUs it is responsible for, waits for a | |
2069 | * grace period, then awakens all of the rcu_nocb_cb_kthread() instances | |
2070 | * that then have callback-invocation work to do. | |
2071 | */ | |
2072 | static int rcu_nocb_gp_kthread(void *arg) | |
2073 | { | |
2074 | struct rcu_data *rdp = arg; | |
2075 | ||
5d6742b3 | 2076 | for (;;) { |
f7a81b12 | 2077 | WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1); |
12f54c3a | 2078 | nocb_gp_wait(rdp); |
5d6742b3 PM |
2079 | cond_resched_tasks_rcu_qs(); |
2080 | } | |
12f54c3a | 2081 | return 0; |
fbce7497 PM |
2082 | } |
2083 | ||
2084 | /* | |
5d6742b3 PM |
2085 | * Invoke any ready callbacks from the corresponding no-CBs CPU, |
2086 | * then, if there are no more, wait for more to appear. | |
fbce7497 | 2087 | */ |
5d6742b3 | 2088 | static void nocb_cb_wait(struct rcu_data *rdp) |
fbce7497 | 2089 | { |
1d5a81c1 | 2090 | unsigned long cur_gp_seq; |
5d6742b3 PM |
2091 | unsigned long flags; |
2092 | bool needwake_gp = false; | |
2093 | struct rcu_node *rnp = rdp->mynode; | |
2094 | ||
2095 | local_irq_save(flags); | |
2096 | rcu_momentary_dyntick_idle(); | |
2097 | local_irq_restore(flags); | |
2098 | local_bh_disable(); | |
2099 | rcu_do_batch(rdp); | |
2100 | local_bh_enable(); | |
2101 | lockdep_assert_irqs_enabled(); | |
81c0b3d7 | 2102 | rcu_nocb_lock_irqsave(rdp, flags); |
1d5a81c1 PM |
2103 | if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && |
2104 | rcu_seq_done(&rnp->gp_seq, cur_gp_seq) && | |
2105 | raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */ | |
523bddd5 PM |
2106 | needwake_gp = rcu_advance_cbs(rdp->mynode, rdp); |
2107 | raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ | |
2108 | } | |
5d6742b3 | 2109 | if (rcu_segcblist_ready_cbs(&rdp->cblist)) { |
81c0b3d7 | 2110 | rcu_nocb_unlock_irqrestore(rdp, flags); |
5d6742b3 PM |
2111 | if (needwake_gp) |
2112 | rcu_gp_kthread_wake(); | |
2113 | return; | |
2114 | } | |
2115 | ||
f7c9a9b6 | 2116 | trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep")); |
5d6742b3 | 2117 | WRITE_ONCE(rdp->nocb_cb_sleep, true); |
81c0b3d7 | 2118 | rcu_nocb_unlock_irqrestore(rdp, flags); |
5d6742b3 PM |
2119 | if (needwake_gp) |
2120 | rcu_gp_kthread_wake(); | |
12f54c3a | 2121 | swait_event_interruptible_exclusive(rdp->nocb_cb_wq, |
5d6742b3 PM |
2122 | !READ_ONCE(rdp->nocb_cb_sleep)); |
2123 | if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */ | |
2124 | /* ^^^ Ensure CB invocation follows _sleep test. */ | |
2125 | return; | |
fbce7497 | 2126 | } |
12f54c3a PM |
2127 | WARN_ON(signal_pending(current)); |
2128 | trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty")); | |
fbce7497 PM |
2129 | } |
2130 | ||
3fbfbf7a | 2131 | /* |
5d6742b3 PM |
2132 | * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke |
2133 | * nocb_cb_wait() to do the dirty work. | |
3fbfbf7a | 2134 | */ |
12f54c3a | 2135 | static int rcu_nocb_cb_kthread(void *arg) |
3fbfbf7a | 2136 | { |
3fbfbf7a PM |
2137 | struct rcu_data *rdp = arg; |
2138 | ||
5d6742b3 PM |
2139 | // Each pass through this loop does one callback batch, and, |
2140 | // if there are no more ready callbacks, waits for them. | |
3fbfbf7a | 2141 | for (;;) { |
5d6742b3 PM |
2142 | nocb_cb_wait(rdp); |
2143 | cond_resched_tasks_rcu_qs(); | |
3fbfbf7a PM |
2144 | } |
2145 | return 0; | |
2146 | } | |
2147 | ||
96d3fd0d | 2148 | /* Is a deferred wakeup of rcu_nocb_kthread() required? */ |
9fdd3bc9 | 2149 | static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) |
96d3fd0d | 2150 | { |
7d0ae808 | 2151 | return READ_ONCE(rdp->nocb_defer_wakeup); |
96d3fd0d PM |
2152 | } |
2153 | ||
2154 | /* Do a deferred wakeup of rcu_nocb_kthread(). */ | |
8be6e1b1 | 2155 | static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp) |
96d3fd0d | 2156 | { |
8be6e1b1 | 2157 | unsigned long flags; |
9fdd3bc9 PM |
2158 | int ndw; |
2159 | ||
81c0b3d7 | 2160 | rcu_nocb_lock_irqsave(rdp, flags); |
8be6e1b1 | 2161 | if (!rcu_nocb_need_deferred_wakeup(rdp)) { |
81c0b3d7 | 2162 | rcu_nocb_unlock_irqrestore(rdp, flags); |
96d3fd0d | 2163 | return; |
8be6e1b1 | 2164 | } |
7d0ae808 | 2165 | ndw = READ_ONCE(rdp->nocb_defer_wakeup); |
511324e4 | 2166 | WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); |
5d6742b3 | 2167 | wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags); |
88d1bead | 2168 | trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake")); |
96d3fd0d PM |
2169 | } |
2170 | ||
8be6e1b1 | 2171 | /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */ |
fd30b717 | 2172 | static void do_nocb_deferred_wakeup_timer(struct timer_list *t) |
8be6e1b1 | 2173 | { |
fd30b717 KC |
2174 | struct rcu_data *rdp = from_timer(rdp, t, nocb_timer); |
2175 | ||
2176 | do_nocb_deferred_wakeup_common(rdp); | |
8be6e1b1 PM |
2177 | } |
2178 | ||
2179 | /* | |
2180 | * Do a deferred wakeup of rcu_nocb_kthread() from fastpath. | |
2181 | * This means we do an inexact common-case check. Note that if | |
2182 | * we miss, ->nocb_timer will eventually clean things up. | |
2183 | */ | |
2184 | static void do_nocb_deferred_wakeup(struct rcu_data *rdp) | |
2185 | { | |
2186 | if (rcu_nocb_need_deferred_wakeup(rdp)) | |
2187 | do_nocb_deferred_wakeup_common(rdp); | |
2188 | } | |
2189 | ||
f4579fc5 PM |
2190 | void __init rcu_init_nohz(void) |
2191 | { | |
2192 | int cpu; | |
ef126206 | 2193 | bool need_rcu_nocb_mask = false; |
e83e73f5 | 2194 | struct rcu_data *rdp; |
f4579fc5 | 2195 | |
f4579fc5 PM |
2196 | #if defined(CONFIG_NO_HZ_FULL) |
2197 | if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask)) | |
2198 | need_rcu_nocb_mask = true; | |
2199 | #endif /* #if defined(CONFIG_NO_HZ_FULL) */ | |
2200 | ||
84b12b75 | 2201 | if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) { |
949cccdb PK |
2202 | if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) { |
2203 | pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n"); | |
2204 | return; | |
2205 | } | |
f4579fc5 | 2206 | } |
84b12b75 | 2207 | if (!cpumask_available(rcu_nocb_mask)) |
f4579fc5 PM |
2208 | return; |
2209 | ||
f4579fc5 PM |
2210 | #if defined(CONFIG_NO_HZ_FULL) |
2211 | if (tick_nohz_full_running) | |
2212 | cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask); | |
2213 | #endif /* #if defined(CONFIG_NO_HZ_FULL) */ | |
2214 | ||
2215 | if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { | |
ef126206 | 2216 | pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n"); |
f4579fc5 PM |
2217 | cpumask_and(rcu_nocb_mask, cpu_possible_mask, |
2218 | rcu_nocb_mask); | |
2219 | } | |
3016611e PM |
2220 | if (cpumask_empty(rcu_nocb_mask)) |
2221 | pr_info("\tOffload RCU callbacks from CPUs: (none).\n"); | |
2222 | else | |
2223 | pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n", | |
2224 | cpumask_pr_args(rcu_nocb_mask)); | |
f4579fc5 PM |
2225 | if (rcu_nocb_poll) |
2226 | pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); | |
2227 | ||
e83e73f5 PM |
2228 | for_each_cpu(cpu, rcu_nocb_mask) { |
2229 | rdp = per_cpu_ptr(&rcu_data, cpu); | |
2230 | if (rcu_segcblist_empty(&rdp->cblist)) | |
2231 | rcu_segcblist_init(&rdp->cblist); | |
2232 | rcu_segcblist_offload(&rdp->cblist); | |
2233 | } | |
b97d23c5 | 2234 | rcu_organize_nocb_kthreads(); |
96d3fd0d PM |
2235 | } |
2236 | ||
3fbfbf7a PM |
2237 | /* Initialize per-rcu_data variables for no-CBs CPUs. */ |
2238 | static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) | |
2239 | { | |
12f54c3a PM |
2240 | init_swait_queue_head(&rdp->nocb_cb_wq); |
2241 | init_swait_queue_head(&rdp->nocb_gp_wq); | |
8be6e1b1 | 2242 | raw_spin_lock_init(&rdp->nocb_lock); |
d1b222c6 | 2243 | raw_spin_lock_init(&rdp->nocb_bypass_lock); |
4fd8c5f1 | 2244 | raw_spin_lock_init(&rdp->nocb_gp_lock); |
fd30b717 | 2245 | timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0); |
d1b222c6 PM |
2246 | timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0); |
2247 | rcu_cblist_init(&rdp->nocb_bypass); | |
3fbfbf7a PM |
2248 | } |
2249 | ||
35ce7f29 PM |
2250 | /* |
2251 | * If the specified CPU is a no-CBs CPU that does not already have its | |
12f54c3a PM |
2252 | * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread |
2253 | * for this CPU's group has not yet been created, spawn it as well. | |
35ce7f29 | 2254 | */ |
4580b054 | 2255 | static void rcu_spawn_one_nocb_kthread(int cpu) |
35ce7f29 | 2256 | { |
12f54c3a PM |
2257 | struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); |
2258 | struct rcu_data *rdp_gp; | |
35ce7f29 PM |
2259 | struct task_struct *t; |
2260 | ||
2261 | /* | |
2262 | * If this isn't a no-CBs CPU or if it already has an rcuo kthread, | |
2263 | * then nothing to do. | |
2264 | */ | |
12f54c3a | 2265 | if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread) |
35ce7f29 PM |
2266 | return; |
2267 | ||
6484fe54 | 2268 | /* If we didn't spawn the GP kthread first, reorganize! */ |
12f54c3a PM |
2269 | rdp_gp = rdp->nocb_gp_rdp; |
2270 | if (!rdp_gp->nocb_gp_kthread) { | |
2271 | t = kthread_run(rcu_nocb_gp_kthread, rdp_gp, | |
2272 | "rcuog/%d", rdp_gp->cpu); | |
2273 | if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__)) | |
2274 | return; | |
2275 | WRITE_ONCE(rdp_gp->nocb_gp_kthread, t); | |
35ce7f29 PM |
2276 | } |
2277 | ||
0ae86a27 | 2278 | /* Spawn the kthread for this CPU. */ |
12f54c3a | 2279 | t = kthread_run(rcu_nocb_cb_kthread, rdp, |
4580b054 | 2280 | "rcuo%c/%d", rcu_state.abbr, cpu); |
12f54c3a | 2281 | if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__)) |
9213784b | 2282 | return; |
12f54c3a PM |
2283 | WRITE_ONCE(rdp->nocb_cb_kthread, t); |
2284 | WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread); | |
35ce7f29 PM |
2285 | } |
2286 | ||
2287 | /* | |
2288 | * If the specified CPU is a no-CBs CPU that does not already have its | |
ad368d15 | 2289 | * rcuo kthread, spawn it. |
35ce7f29 | 2290 | */ |
ad368d15 | 2291 | static void rcu_spawn_cpu_nocb_kthread(int cpu) |
35ce7f29 | 2292 | { |
35ce7f29 | 2293 | if (rcu_scheduler_fully_active) |
b97d23c5 | 2294 | rcu_spawn_one_nocb_kthread(cpu); |
35ce7f29 PM |
2295 | } |
2296 | ||
2297 | /* | |
2298 | * Once the scheduler is running, spawn rcuo kthreads for all online | |
2299 | * no-CBs CPUs. This assumes that the early_initcall()s happen before | |
2300 | * non-boot CPUs come online -- if this changes, we will need to add | |
2301 | * some mutual exclusion. | |
2302 | */ | |
2303 | static void __init rcu_spawn_nocb_kthreads(void) | |
2304 | { | |
2305 | int cpu; | |
2306 | ||
2307 | for_each_online_cpu(cpu) | |
ad368d15 | 2308 | rcu_spawn_cpu_nocb_kthread(cpu); |
35ce7f29 PM |
2309 | } |
2310 | ||
6484fe54 | 2311 | /* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */ |
f7c612b0 PM |
2312 | static int rcu_nocb_gp_stride = -1; |
2313 | module_param(rcu_nocb_gp_stride, int, 0444); | |
fbce7497 PM |
2314 | |
2315 | /* | |
6484fe54 | 2316 | * Initialize GP-CB relationships for all no-CBs CPU. |
fbce7497 | 2317 | */ |
4580b054 | 2318 | static void __init rcu_organize_nocb_kthreads(void) |
3fbfbf7a PM |
2319 | { |
2320 | int cpu; | |
18cd8c93 | 2321 | bool firsttime = true; |
610dea36 SR |
2322 | bool gotnocbs = false; |
2323 | bool gotnocbscbs = true; | |
f7c612b0 | 2324 | int ls = rcu_nocb_gp_stride; |
6484fe54 | 2325 | int nl = 0; /* Next GP kthread. */ |
3fbfbf7a | 2326 | struct rcu_data *rdp; |
0bdc33da | 2327 | struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */ |
fbce7497 | 2328 | struct rcu_data *rdp_prev = NULL; |
3fbfbf7a | 2329 | |
84b12b75 | 2330 | if (!cpumask_available(rcu_nocb_mask)) |
3fbfbf7a | 2331 | return; |
fbce7497 | 2332 | if (ls == -1) { |
9fcb09bd | 2333 | ls = nr_cpu_ids / int_sqrt(nr_cpu_ids); |
f7c612b0 | 2334 | rcu_nocb_gp_stride = ls; |
fbce7497 PM |
2335 | } |
2336 | ||
2337 | /* | |
9831ce3b PM |
2338 | * Each pass through this loop sets up one rcu_data structure. |
2339 | * Should the corresponding CPU come online in the future, then | |
2340 | * we will spawn the needed set of rcu_nocb_kthread() kthreads. | |
fbce7497 | 2341 | */ |
3fbfbf7a | 2342 | for_each_cpu(cpu, rcu_nocb_mask) { |
da1df50d | 2343 | rdp = per_cpu_ptr(&rcu_data, cpu); |
fbce7497 | 2344 | if (rdp->cpu >= nl) { |
6484fe54 | 2345 | /* New GP kthread, set up for CBs & next GP. */ |
610dea36 | 2346 | gotnocbs = true; |
fbce7497 | 2347 | nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls; |
58bf6f77 | 2348 | rdp->nocb_gp_rdp = rdp; |
0bdc33da | 2349 | rdp_gp = rdp; |
610dea36 SR |
2350 | if (dump_tree) { |
2351 | if (!firsttime) | |
2352 | pr_cont("%s\n", gotnocbscbs | |
2353 | ? "" : " (self only)"); | |
2354 | gotnocbscbs = false; | |
2355 | firsttime = false; | |
2356 | pr_alert("%s: No-CB GP kthread CPU %d:", | |
2357 | __func__, cpu); | |
2358 | } | |
fbce7497 | 2359 | } else { |
6484fe54 | 2360 | /* Another CB kthread, link to previous GP kthread. */ |
610dea36 | 2361 | gotnocbscbs = true; |
0bdc33da | 2362 | rdp->nocb_gp_rdp = rdp_gp; |
58bf6f77 | 2363 | rdp_prev->nocb_next_cb_rdp = rdp; |
610dea36 SR |
2364 | if (dump_tree) |
2365 | pr_cont(" %d", cpu); | |
fbce7497 PM |
2366 | } |
2367 | rdp_prev = rdp; | |
3fbfbf7a | 2368 | } |
610dea36 SR |
2369 | if (gotnocbs && dump_tree) |
2370 | pr_cont("%s\n", gotnocbscbs ? "" : " (self only)"); | |
3fbfbf7a PM |
2371 | } |
2372 | ||
5ab7ab83 PM |
2373 | /* |
2374 | * Bind the current task to the offloaded CPUs. If there are no offloaded | |
2375 | * CPUs, leave the task unbound. Splat if the bind attempt fails. | |
2376 | */ | |
2377 | void rcu_bind_current_to_nocb(void) | |
2378 | { | |
2379 | if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask)) | |
2380 | WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask)); | |
2381 | } | |
2382 | EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb); | |
2383 | ||
f7a81b12 PM |
2384 | /* |
2385 | * Dump out nocb grace-period kthread state for the specified rcu_data | |
2386 | * structure. | |
2387 | */ | |
2388 | static void show_rcu_nocb_gp_state(struct rcu_data *rdp) | |
2389 | { | |
2390 | struct rcu_node *rnp = rdp->mynode; | |
2391 | ||
2392 | pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n", | |
2393 | rdp->cpu, | |
2394 | "kK"[!!rdp->nocb_gp_kthread], | |
2395 | "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)], | |
2396 | "dD"[!!rdp->nocb_defer_wakeup], | |
2397 | "tT"[timer_pending(&rdp->nocb_timer)], | |
2398 | "bB"[timer_pending(&rdp->nocb_bypass_timer)], | |
2399 | "sS"[!!rdp->nocb_gp_sleep], | |
2400 | ".W"[swait_active(&rdp->nocb_gp_wq)], | |
2401 | ".W"[swait_active(&rnp->nocb_gp_wq[0])], | |
2402 | ".W"[swait_active(&rnp->nocb_gp_wq[1])], | |
2403 | ".B"[!!rdp->nocb_gp_bypass], | |
2404 | ".G"[!!rdp->nocb_gp_gp], | |
2405 | (long)rdp->nocb_gp_seq, | |
2406 | rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops)); | |
2407 | } | |
2408 | ||
2409 | /* Dump out nocb kthread state for the specified rcu_data structure. */ | |
2410 | static void show_rcu_nocb_state(struct rcu_data *rdp) | |
2411 | { | |
2412 | struct rcu_segcblist *rsclp = &rdp->cblist; | |
2413 | bool waslocked; | |
2414 | bool wastimer; | |
2415 | bool wassleep; | |
2416 | ||
2417 | if (rdp->nocb_gp_rdp == rdp) | |
2418 | show_rcu_nocb_gp_state(rdp); | |
2419 | ||
2420 | pr_info(" CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n", | |
2421 | rdp->cpu, rdp->nocb_gp_rdp->cpu, | |
2422 | "kK"[!!rdp->nocb_cb_kthread], | |
2423 | "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)], | |
2424 | "cC"[!!atomic_read(&rdp->nocb_lock_contended)], | |
2425 | "lL"[raw_spin_is_locked(&rdp->nocb_lock)], | |
2426 | "sS"[!!rdp->nocb_cb_sleep], | |
2427 | ".W"[swait_active(&rdp->nocb_cb_wq)], | |
2428 | jiffies - rdp->nocb_bypass_first, | |
2429 | jiffies - rdp->nocb_nobypass_last, | |
2430 | rdp->nocb_nobypass_count, | |
2431 | ".D"[rcu_segcblist_ready_cbs(rsclp)], | |
2432 | ".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)], | |
2433 | ".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)], | |
2434 | ".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)], | |
2435 | ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)], | |
2436 | rcu_segcblist_n_cbs(&rdp->cblist)); | |
2437 | ||
2438 | /* It is OK for GP kthreads to have GP state. */ | |
2439 | if (rdp->nocb_gp_rdp == rdp) | |
2440 | return; | |
2441 | ||
2442 | waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock); | |
2130c6b4 | 2443 | wastimer = timer_pending(&rdp->nocb_bypass_timer); |
f7a81b12 | 2444 | wassleep = swait_active(&rdp->nocb_gp_wq); |
2130c6b4 | 2445 | if (!rdp->nocb_gp_sleep && !waslocked && !wastimer && !wassleep) |
f7a81b12 PM |
2446 | return; /* Nothing untowards. */ |
2447 | ||
e082c7b3 | 2448 | pr_info(" nocb GP activity on CB-only CPU!!! %c%c%c%c %c\n", |
f7a81b12 PM |
2449 | "lL"[waslocked], |
2450 | "dD"[!!rdp->nocb_defer_wakeup], | |
2451 | "tT"[wastimer], | |
2452 | "sS"[!!rdp->nocb_gp_sleep], | |
2453 | ".W"[wassleep]); | |
2454 | } | |
2455 | ||
34ed6246 PM |
2456 | #else /* #ifdef CONFIG_RCU_NOCB_CPU */ |
2457 | ||
5d6742b3 PM |
2458 | /* No ->nocb_lock to acquire. */ |
2459 | static void rcu_nocb_lock(struct rcu_data *rdp) | |
d7e29933 | 2460 | { |
5d6742b3 PM |
2461 | } |
2462 | ||
2463 | /* No ->nocb_lock to release. */ | |
2464 | static void rcu_nocb_unlock(struct rcu_data *rdp) | |
2465 | { | |
2466 | } | |
2467 | ||
2468 | /* No ->nocb_lock to release. */ | |
2469 | static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, | |
2470 | unsigned long flags) | |
2471 | { | |
2472 | local_irq_restore(flags); | |
d7e29933 PM |
2473 | } |
2474 | ||
d1b222c6 PM |
2475 | /* Lockdep check that ->cblist may be safely accessed. */ |
2476 | static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) | |
2477 | { | |
2478 | lockdep_assert_irqs_disabled(); | |
2479 | } | |
2480 | ||
abedf8e2 | 2481 | static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) |
3fbfbf7a | 2482 | { |
3fbfbf7a PM |
2483 | } |
2484 | ||
abedf8e2 | 2485 | static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) |
065bb78c DW |
2486 | { |
2487 | return NULL; | |
2488 | } | |
2489 | ||
dae6e64d PM |
2490 | static void rcu_init_one_nocb(struct rcu_node *rnp) |
2491 | { | |
2492 | } | |
3fbfbf7a | 2493 | |
d1b222c6 PM |
2494 | static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, |
2495 | unsigned long j) | |
2496 | { | |
2497 | return true; | |
2498 | } | |
2499 | ||
2500 | static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp, | |
2501 | bool *was_alldone, unsigned long flags) | |
2502 | { | |
2503 | return false; | |
2504 | } | |
2505 | ||
5d6742b3 PM |
2506 | static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty, |
2507 | unsigned long flags) | |
3fbfbf7a | 2508 | { |
5d6742b3 | 2509 | WARN_ON_ONCE(1); /* Should be dead code! */ |
3fbfbf7a PM |
2510 | } |
2511 | ||
3fbfbf7a PM |
2512 | static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) |
2513 | { | |
2514 | } | |
2515 | ||
9fdd3bc9 | 2516 | static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) |
96d3fd0d PM |
2517 | { |
2518 | return false; | |
2519 | } | |
2520 | ||
2521 | static void do_nocb_deferred_wakeup(struct rcu_data *rdp) | |
2522 | { | |
2523 | } | |
2524 | ||
ad368d15 | 2525 | static void rcu_spawn_cpu_nocb_kthread(int cpu) |
35ce7f29 PM |
2526 | { |
2527 | } | |
2528 | ||
2529 | static void __init rcu_spawn_nocb_kthreads(void) | |
3fbfbf7a PM |
2530 | { |
2531 | } | |
2532 | ||
f7a81b12 PM |
2533 | static void show_rcu_nocb_state(struct rcu_data *rdp) |
2534 | { | |
2535 | } | |
2536 | ||
3fbfbf7a | 2537 | #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ |
65d798f0 | 2538 | |
a096932f PM |
2539 | /* |
2540 | * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the | |
2541 | * grace-period kthread will do force_quiescent_state() processing? | |
2542 | * The idea is to avoid waking up RCU core processing on such a | |
2543 | * CPU unless the grace period has extended for too long. | |
2544 | * | |
2545 | * This code relies on the fact that all NO_HZ_FULL CPUs are also | |
52e2bb95 | 2546 | * CONFIG_RCU_NOCB_CPU CPUs. |
a096932f | 2547 | */ |
4580b054 | 2548 | static bool rcu_nohz_full_cpu(void) |
a096932f PM |
2549 | { |
2550 | #ifdef CONFIG_NO_HZ_FULL | |
2551 | if (tick_nohz_full_cpu(smp_processor_id()) && | |
de8e8730 | 2552 | (!rcu_gp_in_progress() || |
e2f3ccfa | 2553 | time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ))) |
5ce035fb | 2554 | return true; |
a096932f | 2555 | #endif /* #ifdef CONFIG_NO_HZ_FULL */ |
5ce035fb | 2556 | return false; |
a096932f | 2557 | } |
5057f55e PM |
2558 | |
2559 | /* | |
265f5f28 | 2560 | * Bind the RCU grace-period kthreads to the housekeeping CPU. |
5057f55e PM |
2561 | */ |
2562 | static void rcu_bind_gp_kthread(void) | |
2563 | { | |
c0f489d2 | 2564 | if (!tick_nohz_full_enabled()) |
5057f55e | 2565 | return; |
de201559 | 2566 | housekeeping_affine(current, HK_FLAG_RCU); |
5057f55e | 2567 | } |
176f8f7a PM |
2568 | |
2569 | /* Record the current task on dyntick-idle entry. */ | |
ff5c4f5c | 2570 | static void noinstr rcu_dynticks_task_enter(void) |
176f8f7a PM |
2571 | { |
2572 | #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) | |
7d0ae808 | 2573 | WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id()); |
176f8f7a PM |
2574 | #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ |
2575 | } | |
2576 | ||
2577 | /* Record no current task on dyntick-idle exit. */ | |
ff5c4f5c | 2578 | static void noinstr rcu_dynticks_task_exit(void) |
176f8f7a PM |
2579 | { |
2580 | #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) | |
7d0ae808 | 2581 | WRITE_ONCE(current->rcu_tasks_idle_cpu, -1); |
176f8f7a PM |
2582 | #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ |
2583 | } | |
7d0c9c50 PM |
2584 | |
2585 | /* Turn on heavyweight RCU tasks trace readers on idle/user entry. */ | |
2586 | static void rcu_dynticks_task_trace_enter(void) | |
2587 | { | |
2588 | #ifdef CONFIG_TASKS_RCU_TRACE | |
2589 | if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) | |
2590 | current->trc_reader_special.b.need_mb = true; | |
2591 | #endif /* #ifdef CONFIG_TASKS_RCU_TRACE */ | |
2592 | } | |
2593 | ||
2594 | /* Turn off heavyweight RCU tasks trace readers on idle/user exit. */ | |
2595 | static void rcu_dynticks_task_trace_exit(void) | |
2596 | { | |
2597 | #ifdef CONFIG_TASKS_RCU_TRACE | |
2598 | if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) | |
2599 | current->trc_reader_special.b.need_mb = false; | |
2600 | #endif /* #ifdef CONFIG_TASKS_RCU_TRACE */ | |
2601 | } |