]>
Commit | Line | Data |
---|---|---|
f41d911f PM |
1 | /* |
2 | * Read-Copy Update mechanism for mutual exclusion (tree-based version) | |
3 | * Internal non-public definitions that provide either classic | |
6cc68793 | 4 | * or preemptible semantics. |
f41d911f PM |
5 | * |
6 | * This program is free software; you can redistribute it and/or modify | |
7 | * it under the terms of the GNU General Public License as published by | |
8 | * the Free Software Foundation; either version 2 of the License, or | |
9 | * (at your option) any later version. | |
10 | * | |
11 | * This program is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | * GNU General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU General Public License | |
87de1cfd PM |
17 | * along with this program; if not, you can access it online at |
18 | * http://www.gnu.org/licenses/gpl-2.0.html. | |
f41d911f PM |
19 | * |
20 | * Copyright Red Hat, 2009 | |
21 | * Copyright IBM Corporation, 2009 | |
22 | * | |
23 | * Author: Ingo Molnar <[email protected]> | |
24 | * Paul E. McKenney <[email protected]> | |
25 | */ | |
26 | ||
d9a3da06 | 27 | #include <linux/delay.h> |
3fbfbf7a | 28 | #include <linux/gfp.h> |
b626c1b6 | 29 | #include <linux/oom.h> |
62ab7072 | 30 | #include <linux/smpboot.h> |
4102adab | 31 | #include "../time/tick-internal.h" |
f41d911f | 32 | |
5b61b0ba | 33 | #ifdef CONFIG_RCU_BOOST |
61cfd097 | 34 | |
abaa93d9 | 35 | #include "../locking/rtmutex_common.h" |
21871d7e | 36 | |
61cfd097 PM |
37 | /* |
38 | * Control variables for per-CPU and per-rcu_node kthreads. These | |
39 | * handle all flavors of RCU. | |
40 | */ | |
41 | static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task); | |
42 | DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status); | |
43 | DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops); | |
44 | DEFINE_PER_CPU(char, rcu_cpu_has_work); | |
45 | ||
21871d7e | 46 | #endif /* #ifdef CONFIG_RCU_BOOST */ |
5b61b0ba | 47 | |
3fbfbf7a PM |
48 | #ifdef CONFIG_RCU_NOCB_CPU |
49 | static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ | |
50 | static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */ | |
1b0048a4 | 51 | static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ |
3fbfbf7a PM |
52 | #endif /* #ifdef CONFIG_RCU_NOCB_CPU */ |
53 | ||
26845c28 PM |
54 | /* |
55 | * Check the RCU kernel configuration parameters and print informative | |
56 | * messages about anything out of the ordinary. If you like #ifdef, you | |
57 | * will love this function. | |
58 | */ | |
59 | static void __init rcu_bootup_announce_oddness(void) | |
60 | { | |
ab6f5bd6 PM |
61 | if (IS_ENABLED(CONFIG_RCU_TRACE)) |
62 | pr_info("\tRCU debugfs-based tracing is enabled.\n"); | |
63 | if ((IS_ENABLED(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || | |
64 | (!IS_ENABLED(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)) | |
65 | pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n", | |
66 | CONFIG_RCU_FANOUT); | |
67 | if (IS_ENABLED(CONFIG_RCU_FANOUT_EXACT)) | |
68 | pr_info("\tHierarchical RCU autobalancing is disabled.\n"); | |
69 | if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ)) | |
70 | pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n"); | |
71 | if (IS_ENABLED(CONFIG_PROVE_RCU)) | |
72 | pr_info("\tRCU lockdep checking is enabled.\n"); | |
73 | if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE)) | |
74 | pr_info("\tRCU torture testing starts during boot.\n"); | |
75 | if (IS_ENABLED(CONFIG_RCU_CPU_STALL_INFO)) | |
76 | pr_info("\tAdditional per-CPU info printed with stalls.\n"); | |
77 | if (NUM_RCU_LVL_4 != 0) | |
78 | pr_info("\tFour-level hierarchy is enabled.\n"); | |
a3bd2c09 PM |
79 | if (CONFIG_RCU_FANOUT_LEAF != 16) |
80 | pr_info("\tBuild-time adjustment of leaf fanout to %d.\n", | |
81 | CONFIG_RCU_FANOUT_LEAF); | |
f885b7f2 | 82 | if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF) |
9a5739d7 | 83 | pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf); |
cca6f393 | 84 | if (nr_cpu_ids != NR_CPUS) |
efc151c3 | 85 | pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids); |
ab6f5bd6 PM |
86 | if (IS_ENABLED(CONFIG_RCU_BOOST)) |
87 | pr_info("\tRCU kthread priority: %d.\n", kthread_prio); | |
26845c28 PM |
88 | } |
89 | ||
28f6569a | 90 | #ifdef CONFIG_PREEMPT_RCU |
f41d911f | 91 | |
a41bfeb2 | 92 | RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu); |
e534165b | 93 | static struct rcu_state *rcu_state_p = &rcu_preempt_state; |
f41d911f | 94 | |
d9a3da06 | 95 | static int rcu_preempted_readers_exp(struct rcu_node *rnp); |
d19fb8d1 PM |
96 | static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp, |
97 | bool wake); | |
d9a3da06 | 98 | |
f41d911f PM |
99 | /* |
100 | * Tell them what RCU they are running. | |
101 | */ | |
0e0fc1c2 | 102 | static void __init rcu_bootup_announce(void) |
f41d911f | 103 | { |
efc151c3 | 104 | pr_info("Preemptible hierarchical RCU implementation.\n"); |
26845c28 | 105 | rcu_bootup_announce_oddness(); |
f41d911f PM |
106 | } |
107 | ||
f41d911f | 108 | /* |
6cc68793 | 109 | * Record a preemptible-RCU quiescent state for the specified CPU. Note |
f41d911f PM |
110 | * that this just means that the task currently running on the CPU is |
111 | * not in a quiescent state. There might be any number of tasks blocked | |
112 | * while in an RCU read-side critical section. | |
25502a6c | 113 | * |
1d082fd0 PM |
114 | * As with the other rcu_*_qs() functions, callers to this function |
115 | * must disable preemption. | |
f41d911f | 116 | */ |
284a8c93 | 117 | static void rcu_preempt_qs(void) |
f41d911f | 118 | { |
284a8c93 PM |
119 | if (!__this_cpu_read(rcu_preempt_data.passed_quiesce)) { |
120 | trace_rcu_grace_period(TPS("rcu_preempt"), | |
121 | __this_cpu_read(rcu_preempt_data.gpnum), | |
122 | TPS("cpuqs")); | |
123 | __this_cpu_write(rcu_preempt_data.passed_quiesce, 1); | |
124 | barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */ | |
125 | current->rcu_read_unlock_special.b.need_qs = false; | |
126 | } | |
f41d911f PM |
127 | } |
128 | ||
129 | /* | |
c3422bea PM |
130 | * We have entered the scheduler, and the current task might soon be |
131 | * context-switched away from. If this task is in an RCU read-side | |
132 | * critical section, we will no longer be able to rely on the CPU to | |
12f5f524 PM |
133 | * record that fact, so we enqueue the task on the blkd_tasks list. |
134 | * The task will dequeue itself when it exits the outermost enclosing | |
135 | * RCU read-side critical section. Therefore, the current grace period | |
136 | * cannot be permitted to complete until the blkd_tasks list entries | |
137 | * predating the current grace period drain, in other words, until | |
138 | * rnp->gp_tasks becomes NULL. | |
c3422bea PM |
139 | * |
140 | * Caller must disable preemption. | |
f41d911f | 141 | */ |
38200cf2 | 142 | static void rcu_preempt_note_context_switch(void) |
f41d911f PM |
143 | { |
144 | struct task_struct *t = current; | |
c3422bea | 145 | unsigned long flags; |
f41d911f PM |
146 | struct rcu_data *rdp; |
147 | struct rcu_node *rnp; | |
148 | ||
10f39bb1 | 149 | if (t->rcu_read_lock_nesting > 0 && |
1d082fd0 | 150 | !t->rcu_read_unlock_special.b.blocked) { |
f41d911f PM |
151 | |
152 | /* Possibly blocking in an RCU read-side critical section. */ | |
38200cf2 | 153 | rdp = this_cpu_ptr(rcu_preempt_state.rda); |
f41d911f | 154 | rnp = rdp->mynode; |
1304afb2 | 155 | raw_spin_lock_irqsave(&rnp->lock, flags); |
6303b9c8 | 156 | smp_mb__after_unlock_lock(); |
1d082fd0 | 157 | t->rcu_read_unlock_special.b.blocked = true; |
86848966 | 158 | t->rcu_blocked_node = rnp; |
f41d911f PM |
159 | |
160 | /* | |
161 | * If this CPU has already checked in, then this task | |
162 | * will hold up the next grace period rather than the | |
163 | * current grace period. Queue the task accordingly. | |
164 | * If the task is queued for the current grace period | |
165 | * (i.e., this CPU has not yet passed through a quiescent | |
166 | * state for the current grace period), then as long | |
167 | * as that task remains queued, the current grace period | |
12f5f524 PM |
168 | * cannot end. Note that there is some uncertainty as |
169 | * to exactly when the current grace period started. | |
170 | * We take a conservative approach, which can result | |
171 | * in unnecessarily waiting on tasks that started very | |
172 | * slightly after the current grace period began. C'est | |
173 | * la vie!!! | |
b0e165c0 PM |
174 | * |
175 | * But first, note that the current CPU must still be | |
176 | * on line! | |
f41d911f | 177 | */ |
0aa04b05 | 178 | WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0); |
e7d8842e | 179 | WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); |
12f5f524 PM |
180 | if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) { |
181 | list_add(&t->rcu_node_entry, rnp->gp_tasks->prev); | |
182 | rnp->gp_tasks = &t->rcu_node_entry; | |
27f4d280 PM |
183 | #ifdef CONFIG_RCU_BOOST |
184 | if (rnp->boost_tasks != NULL) | |
185 | rnp->boost_tasks = rnp->gp_tasks; | |
186 | #endif /* #ifdef CONFIG_RCU_BOOST */ | |
12f5f524 PM |
187 | } else { |
188 | list_add(&t->rcu_node_entry, &rnp->blkd_tasks); | |
189 | if (rnp->qsmask & rdp->grpmask) | |
190 | rnp->gp_tasks = &t->rcu_node_entry; | |
191 | } | |
d4c08f2a PM |
192 | trace_rcu_preempt_task(rdp->rsp->name, |
193 | t->pid, | |
194 | (rnp->qsmask & rdp->grpmask) | |
195 | ? rnp->gpnum | |
196 | : rnp->gpnum + 1); | |
1304afb2 | 197 | raw_spin_unlock_irqrestore(&rnp->lock, flags); |
10f39bb1 | 198 | } else if (t->rcu_read_lock_nesting < 0 && |
1d082fd0 | 199 | t->rcu_read_unlock_special.s) { |
10f39bb1 PM |
200 | |
201 | /* | |
202 | * Complete exit from RCU read-side critical section on | |
203 | * behalf of preempted instance of __rcu_read_unlock(). | |
204 | */ | |
205 | rcu_read_unlock_special(t); | |
f41d911f PM |
206 | } |
207 | ||
208 | /* | |
209 | * Either we were not in an RCU read-side critical section to | |
210 | * begin with, or we have now recorded that critical section | |
211 | * globally. Either way, we can now note a quiescent state | |
212 | * for this CPU. Again, if we were in an RCU read-side critical | |
213 | * section, and if that critical section was blocking the current | |
214 | * grace period, then the fact that the task has been enqueued | |
215 | * means that we continue to block the current grace period. | |
216 | */ | |
284a8c93 | 217 | rcu_preempt_qs(); |
f41d911f PM |
218 | } |
219 | ||
fc2219d4 PM |
220 | /* |
221 | * Check for preempted RCU readers blocking the current grace period | |
222 | * for the specified rcu_node structure. If the caller needs a reliable | |
223 | * answer, it must hold the rcu_node's ->lock. | |
224 | */ | |
27f4d280 | 225 | static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) |
fc2219d4 | 226 | { |
12f5f524 | 227 | return rnp->gp_tasks != NULL; |
fc2219d4 PM |
228 | } |
229 | ||
12f5f524 PM |
230 | /* |
231 | * Advance a ->blkd_tasks-list pointer to the next entry, instead | |
232 | * returning NULL if at the end of the list. | |
233 | */ | |
234 | static struct list_head *rcu_next_node_entry(struct task_struct *t, | |
235 | struct rcu_node *rnp) | |
236 | { | |
237 | struct list_head *np; | |
238 | ||
239 | np = t->rcu_node_entry.next; | |
240 | if (np == &rnp->blkd_tasks) | |
241 | np = NULL; | |
242 | return np; | |
243 | } | |
244 | ||
8af3a5e7 PM |
245 | /* |
246 | * Return true if the specified rcu_node structure has tasks that were | |
247 | * preempted within an RCU read-side critical section. | |
248 | */ | |
249 | static bool rcu_preempt_has_tasks(struct rcu_node *rnp) | |
250 | { | |
251 | return !list_empty(&rnp->blkd_tasks); | |
252 | } | |
253 | ||
b668c9cf PM |
254 | /* |
255 | * Handle special cases during rcu_read_unlock(), such as needing to | |
256 | * notify RCU core processing or task having blocked during the RCU | |
257 | * read-side critical section. | |
258 | */ | |
2a3fa843 | 259 | void rcu_read_unlock_special(struct task_struct *t) |
f41d911f | 260 | { |
b6a932d1 PM |
261 | bool empty_exp; |
262 | bool empty_norm; | |
263 | bool empty_exp_now; | |
f41d911f | 264 | unsigned long flags; |
12f5f524 | 265 | struct list_head *np; |
82e78d80 | 266 | #ifdef CONFIG_RCU_BOOST |
abaa93d9 | 267 | bool drop_boost_mutex = false; |
82e78d80 | 268 | #endif /* #ifdef CONFIG_RCU_BOOST */ |
f41d911f | 269 | struct rcu_node *rnp; |
1d082fd0 | 270 | union rcu_special special; |
f41d911f PM |
271 | |
272 | /* NMI handlers cannot block and cannot safely manipulate state. */ | |
273 | if (in_nmi()) | |
274 | return; | |
275 | ||
276 | local_irq_save(flags); | |
277 | ||
278 | /* | |
279 | * If RCU core is waiting for this CPU to exit critical section, | |
1d082fd0 PM |
280 | * let it know that we have done so. Because irqs are disabled, |
281 | * t->rcu_read_unlock_special cannot change. | |
f41d911f PM |
282 | */ |
283 | special = t->rcu_read_unlock_special; | |
1d082fd0 | 284 | if (special.b.need_qs) { |
284a8c93 | 285 | rcu_preempt_qs(); |
c0135d07 | 286 | t->rcu_read_unlock_special.b.need_qs = false; |
1d082fd0 | 287 | if (!t->rcu_read_unlock_special.s) { |
79a62f95 LJ |
288 | local_irq_restore(flags); |
289 | return; | |
290 | } | |
f41d911f PM |
291 | } |
292 | ||
79a62f95 | 293 | /* Hardware IRQ handlers cannot block, complain if they get here. */ |
d24209bb PM |
294 | if (in_irq() || in_serving_softirq()) { |
295 | lockdep_rcu_suspicious(__FILE__, __LINE__, | |
296 | "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n"); | |
297 | pr_alert("->rcu_read_unlock_special: %#x (b: %d, nq: %d)\n", | |
298 | t->rcu_read_unlock_special.s, | |
299 | t->rcu_read_unlock_special.b.blocked, | |
300 | t->rcu_read_unlock_special.b.need_qs); | |
f41d911f PM |
301 | local_irq_restore(flags); |
302 | return; | |
303 | } | |
304 | ||
305 | /* Clean up if blocked during RCU read-side critical section. */ | |
1d082fd0 PM |
306 | if (special.b.blocked) { |
307 | t->rcu_read_unlock_special.b.blocked = false; | |
f41d911f | 308 | |
dd5d19ba PM |
309 | /* |
310 | * Remove this task from the list it blocked on. The | |
311 | * task can migrate while we acquire the lock, but at | |
312 | * most one time. So at most two passes through loop. | |
313 | */ | |
314 | for (;;) { | |
86848966 | 315 | rnp = t->rcu_blocked_node; |
1304afb2 | 316 | raw_spin_lock(&rnp->lock); /* irqs already disabled. */ |
6303b9c8 | 317 | smp_mb__after_unlock_lock(); |
86848966 | 318 | if (rnp == t->rcu_blocked_node) |
dd5d19ba | 319 | break; |
1304afb2 | 320 | raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ |
dd5d19ba | 321 | } |
74e871ac | 322 | empty_norm = !rcu_preempt_blocked_readers_cgp(rnp); |
d9a3da06 PM |
323 | empty_exp = !rcu_preempted_readers_exp(rnp); |
324 | smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ | |
12f5f524 | 325 | np = rcu_next_node_entry(t, rnp); |
f41d911f | 326 | list_del_init(&t->rcu_node_entry); |
82e78d80 | 327 | t->rcu_blocked_node = NULL; |
f7f7bac9 | 328 | trace_rcu_unlock_preempted_task(TPS("rcu_preempt"), |
d4c08f2a | 329 | rnp->gpnum, t->pid); |
12f5f524 PM |
330 | if (&t->rcu_node_entry == rnp->gp_tasks) |
331 | rnp->gp_tasks = np; | |
332 | if (&t->rcu_node_entry == rnp->exp_tasks) | |
333 | rnp->exp_tasks = np; | |
27f4d280 PM |
334 | #ifdef CONFIG_RCU_BOOST |
335 | if (&t->rcu_node_entry == rnp->boost_tasks) | |
336 | rnp->boost_tasks = np; | |
abaa93d9 PM |
337 | /* Snapshot ->boost_mtx ownership with rcu_node lock held. */ |
338 | drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t; | |
27f4d280 | 339 | #endif /* #ifdef CONFIG_RCU_BOOST */ |
f41d911f PM |
340 | |
341 | /* | |
342 | * If this was the last task on the current list, and if | |
343 | * we aren't waiting on any CPUs, report the quiescent state. | |
389abd48 PM |
344 | * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, |
345 | * so we must take a snapshot of the expedited state. | |
f41d911f | 346 | */ |
389abd48 | 347 | empty_exp_now = !rcu_preempted_readers_exp(rnp); |
74e871ac | 348 | if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) { |
f7f7bac9 | 349 | trace_rcu_quiescent_state_report(TPS("preempt_rcu"), |
d4c08f2a PM |
350 | rnp->gpnum, |
351 | 0, rnp->qsmask, | |
352 | rnp->level, | |
353 | rnp->grplo, | |
354 | rnp->grphi, | |
355 | !!rnp->gp_tasks); | |
cc99a310 PM |
356 | rcu_report_unblock_qs_rnp(&rcu_preempt_state, |
357 | rnp, flags); | |
c701d5d9 | 358 | } else { |
d4c08f2a | 359 | raw_spin_unlock_irqrestore(&rnp->lock, flags); |
c701d5d9 | 360 | } |
d9a3da06 | 361 | |
27f4d280 PM |
362 | #ifdef CONFIG_RCU_BOOST |
363 | /* Unboost if we were boosted. */ | |
abaf3f9d | 364 | if (drop_boost_mutex) |
abaa93d9 | 365 | rt_mutex_unlock(&rnp->boost_mtx); |
27f4d280 PM |
366 | #endif /* #ifdef CONFIG_RCU_BOOST */ |
367 | ||
d9a3da06 PM |
368 | /* |
369 | * If this was the last task on the expedited lists, | |
370 | * then we need to report up the rcu_node hierarchy. | |
371 | */ | |
389abd48 | 372 | if (!empty_exp && empty_exp_now) |
b40d293e | 373 | rcu_report_exp_rnp(&rcu_preempt_state, rnp, true); |
b668c9cf PM |
374 | } else { |
375 | local_irq_restore(flags); | |
f41d911f | 376 | } |
f41d911f PM |
377 | } |
378 | ||
1ed509a2 PM |
379 | /* |
380 | * Dump detailed information for all tasks blocking the current RCU | |
381 | * grace period on the specified rcu_node structure. | |
382 | */ | |
383 | static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp) | |
384 | { | |
385 | unsigned long flags; | |
1ed509a2 PM |
386 | struct task_struct *t; |
387 | ||
12f5f524 | 388 | raw_spin_lock_irqsave(&rnp->lock, flags); |
5fd4dc06 PM |
389 | if (!rcu_preempt_blocked_readers_cgp(rnp)) { |
390 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | |
391 | return; | |
392 | } | |
12f5f524 PM |
393 | t = list_entry(rnp->gp_tasks, |
394 | struct task_struct, rcu_node_entry); | |
395 | list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) | |
396 | sched_show_task(t); | |
397 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | |
1ed509a2 PM |
398 | } |
399 | ||
400 | /* | |
401 | * Dump detailed information for all tasks blocking the current RCU | |
402 | * grace period. | |
403 | */ | |
404 | static void rcu_print_detail_task_stall(struct rcu_state *rsp) | |
405 | { | |
406 | struct rcu_node *rnp = rcu_get_root(rsp); | |
407 | ||
408 | rcu_print_detail_task_stall_rnp(rnp); | |
409 | rcu_for_each_leaf_node(rsp, rnp) | |
410 | rcu_print_detail_task_stall_rnp(rnp); | |
411 | } | |
412 | ||
a858af28 PM |
413 | #ifdef CONFIG_RCU_CPU_STALL_INFO |
414 | ||
415 | static void rcu_print_task_stall_begin(struct rcu_node *rnp) | |
416 | { | |
efc151c3 | 417 | pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):", |
a858af28 PM |
418 | rnp->level, rnp->grplo, rnp->grphi); |
419 | } | |
420 | ||
421 | static void rcu_print_task_stall_end(void) | |
422 | { | |
efc151c3 | 423 | pr_cont("\n"); |
a858af28 PM |
424 | } |
425 | ||
426 | #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */ | |
427 | ||
428 | static void rcu_print_task_stall_begin(struct rcu_node *rnp) | |
429 | { | |
430 | } | |
431 | ||
432 | static void rcu_print_task_stall_end(void) | |
433 | { | |
434 | } | |
435 | ||
436 | #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */ | |
437 | ||
f41d911f PM |
438 | /* |
439 | * Scan the current list of tasks blocked within RCU read-side critical | |
440 | * sections, printing out the tid of each. | |
441 | */ | |
9bc8b558 | 442 | static int rcu_print_task_stall(struct rcu_node *rnp) |
f41d911f | 443 | { |
f41d911f | 444 | struct task_struct *t; |
9bc8b558 | 445 | int ndetected = 0; |
f41d911f | 446 | |
27f4d280 | 447 | if (!rcu_preempt_blocked_readers_cgp(rnp)) |
9bc8b558 | 448 | return 0; |
a858af28 | 449 | rcu_print_task_stall_begin(rnp); |
12f5f524 PM |
450 | t = list_entry(rnp->gp_tasks, |
451 | struct task_struct, rcu_node_entry); | |
9bc8b558 | 452 | list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { |
efc151c3 | 453 | pr_cont(" P%d", t->pid); |
9bc8b558 PM |
454 | ndetected++; |
455 | } | |
a858af28 | 456 | rcu_print_task_stall_end(); |
9bc8b558 | 457 | return ndetected; |
f41d911f PM |
458 | } |
459 | ||
b0e165c0 PM |
460 | /* |
461 | * Check that the list of blocked tasks for the newly completed grace | |
462 | * period is in fact empty. It is a serious bug to complete a grace | |
463 | * period that still has RCU readers blocked! This function must be | |
464 | * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock | |
465 | * must be held by the caller. | |
12f5f524 PM |
466 | * |
467 | * Also, if there are blocked tasks on the list, they automatically | |
468 | * block the newly created grace period, so set up ->gp_tasks accordingly. | |
b0e165c0 PM |
469 | */ |
470 | static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) | |
471 | { | |
27f4d280 | 472 | WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)); |
96e92021 | 473 | if (rcu_preempt_has_tasks(rnp)) |
12f5f524 | 474 | rnp->gp_tasks = rnp->blkd_tasks.next; |
28ecd580 | 475 | WARN_ON_ONCE(rnp->qsmask); |
b0e165c0 PM |
476 | } |
477 | ||
f41d911f PM |
478 | /* |
479 | * Check for a quiescent state from the current CPU. When a task blocks, | |
480 | * the task is recorded in the corresponding CPU's rcu_node structure, | |
481 | * which is checked elsewhere. | |
482 | * | |
483 | * Caller must disable hard irqs. | |
484 | */ | |
86aea0e6 | 485 | static void rcu_preempt_check_callbacks(void) |
f41d911f PM |
486 | { |
487 | struct task_struct *t = current; | |
488 | ||
489 | if (t->rcu_read_lock_nesting == 0) { | |
284a8c93 | 490 | rcu_preempt_qs(); |
f41d911f PM |
491 | return; |
492 | } | |
10f39bb1 | 493 | if (t->rcu_read_lock_nesting > 0 && |
86aea0e6 PM |
494 | __this_cpu_read(rcu_preempt_data.qs_pending) && |
495 | !__this_cpu_read(rcu_preempt_data.passed_quiesce)) | |
1d082fd0 | 496 | t->rcu_read_unlock_special.b.need_qs = true; |
f41d911f PM |
497 | } |
498 | ||
a46e0899 PM |
499 | #ifdef CONFIG_RCU_BOOST |
500 | ||
09223371 SL |
501 | static void rcu_preempt_do_callbacks(void) |
502 | { | |
c9d4b0af | 503 | rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data)); |
09223371 SL |
504 | } |
505 | ||
a46e0899 PM |
506 | #endif /* #ifdef CONFIG_RCU_BOOST */ |
507 | ||
f41d911f | 508 | /* |
6cc68793 | 509 | * Queue a preemptible-RCU callback for invocation after a grace period. |
f41d911f PM |
510 | */ |
511 | void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) | |
512 | { | |
3fbfbf7a | 513 | __call_rcu(head, func, &rcu_preempt_state, -1, 0); |
f41d911f PM |
514 | } |
515 | EXPORT_SYMBOL_GPL(call_rcu); | |
516 | ||
6ebb237b PM |
517 | /** |
518 | * synchronize_rcu - wait until a grace period has elapsed. | |
519 | * | |
520 | * Control will return to the caller some time after a full grace | |
521 | * period has elapsed, in other words after all currently executing RCU | |
77d8485a PM |
522 | * read-side critical sections have completed. Note, however, that |
523 | * upon return from synchronize_rcu(), the caller might well be executing | |
524 | * concurrently with new RCU read-side critical sections that began while | |
525 | * synchronize_rcu() was waiting. RCU read-side critical sections are | |
526 | * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested. | |
f0a0e6f2 PM |
527 | * |
528 | * See the description of synchronize_sched() for more detailed information | |
529 | * on memory ordering guarantees. | |
6ebb237b PM |
530 | */ |
531 | void synchronize_rcu(void) | |
532 | { | |
fe15d706 PM |
533 | rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) && |
534 | !lock_is_held(&rcu_lock_map) && | |
535 | !lock_is_held(&rcu_sched_lock_map), | |
536 | "Illegal synchronize_rcu() in RCU read-side critical section"); | |
6ebb237b PM |
537 | if (!rcu_scheduler_active) |
538 | return; | |
5afff48b | 539 | if (rcu_gp_is_expedited()) |
3705b88d AM |
540 | synchronize_rcu_expedited(); |
541 | else | |
542 | wait_rcu_gp(call_rcu); | |
6ebb237b PM |
543 | } |
544 | EXPORT_SYMBOL_GPL(synchronize_rcu); | |
545 | ||
d9a3da06 | 546 | static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq); |
bcfa57ce | 547 | static unsigned long sync_rcu_preempt_exp_count; |
d9a3da06 PM |
548 | static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex); |
549 | ||
550 | /* | |
551 | * Return non-zero if there are any tasks in RCU read-side critical | |
552 | * sections blocking the current preemptible-RCU expedited grace period. | |
553 | * If there is no preemptible-RCU expedited grace period currently in | |
554 | * progress, returns zero unconditionally. | |
555 | */ | |
556 | static int rcu_preempted_readers_exp(struct rcu_node *rnp) | |
557 | { | |
12f5f524 | 558 | return rnp->exp_tasks != NULL; |
d9a3da06 PM |
559 | } |
560 | ||
561 | /* | |
562 | * return non-zero if there is no RCU expedited grace period in progress | |
563 | * for the specified rcu_node structure, in other words, if all CPUs and | |
564 | * tasks covered by the specified rcu_node structure have done their bit | |
565 | * for the current expedited grace period. Works only for preemptible | |
566 | * RCU -- other RCU implementation use other means. | |
567 | * | |
568 | * Caller must hold sync_rcu_preempt_exp_mutex. | |
569 | */ | |
570 | static int sync_rcu_preempt_exp_done(struct rcu_node *rnp) | |
571 | { | |
572 | return !rcu_preempted_readers_exp(rnp) && | |
7d0ae808 | 573 | READ_ONCE(rnp->expmask) == 0; |
d9a3da06 PM |
574 | } |
575 | ||
576 | /* | |
577 | * Report the exit from RCU read-side critical section for the last task | |
578 | * that queued itself during or before the current expedited preemptible-RCU | |
579 | * grace period. This event is reported either to the rcu_node structure on | |
580 | * which the task was queued or to one of that rcu_node structure's ancestors, | |
581 | * recursively up the tree. (Calm down, calm down, we do the recursion | |
582 | * iteratively!) | |
583 | * | |
584 | * Caller must hold sync_rcu_preempt_exp_mutex. | |
585 | */ | |
b40d293e TG |
586 | static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp, |
587 | bool wake) | |
d9a3da06 PM |
588 | { |
589 | unsigned long flags; | |
590 | unsigned long mask; | |
591 | ||
1304afb2 | 592 | raw_spin_lock_irqsave(&rnp->lock, flags); |
6303b9c8 | 593 | smp_mb__after_unlock_lock(); |
d9a3da06 | 594 | for (;;) { |
131906b0 PM |
595 | if (!sync_rcu_preempt_exp_done(rnp)) { |
596 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | |
d9a3da06 | 597 | break; |
131906b0 | 598 | } |
d9a3da06 | 599 | if (rnp->parent == NULL) { |
131906b0 | 600 | raw_spin_unlock_irqrestore(&rnp->lock, flags); |
78e4bc34 PM |
601 | if (wake) { |
602 | smp_mb(); /* EGP done before wake_up(). */ | |
b40d293e | 603 | wake_up(&sync_rcu_preempt_exp_wq); |
78e4bc34 | 604 | } |
d9a3da06 PM |
605 | break; |
606 | } | |
607 | mask = rnp->grpmask; | |
1304afb2 | 608 | raw_spin_unlock(&rnp->lock); /* irqs remain disabled */ |
d9a3da06 | 609 | rnp = rnp->parent; |
1304afb2 | 610 | raw_spin_lock(&rnp->lock); /* irqs already disabled */ |
6303b9c8 | 611 | smp_mb__after_unlock_lock(); |
d9a3da06 PM |
612 | rnp->expmask &= ~mask; |
613 | } | |
d9a3da06 PM |
614 | } |
615 | ||
616 | /* | |
617 | * Snapshot the tasks blocking the newly started preemptible-RCU expedited | |
8eb74b2b PM |
618 | * grace period for the specified rcu_node structure, phase 1. If there |
619 | * are such tasks, set the ->expmask bits up the rcu_node tree and also | |
620 | * set the ->expmask bits on the leaf rcu_node structures to tell phase 2 | |
621 | * that work is needed here. | |
d9a3da06 | 622 | * |
8eb74b2b | 623 | * Caller must hold sync_rcu_preempt_exp_mutex. |
d9a3da06 PM |
624 | */ |
625 | static void | |
8eb74b2b | 626 | sync_rcu_preempt_exp_init1(struct rcu_state *rsp, struct rcu_node *rnp) |
d9a3da06 | 627 | { |
1217ed1b | 628 | unsigned long flags; |
8eb74b2b PM |
629 | unsigned long mask; |
630 | struct rcu_node *rnp_up; | |
d9a3da06 | 631 | |
1217ed1b | 632 | raw_spin_lock_irqsave(&rnp->lock, flags); |
6303b9c8 | 633 | smp_mb__after_unlock_lock(); |
8eb74b2b PM |
634 | WARN_ON_ONCE(rnp->expmask); |
635 | WARN_ON_ONCE(rnp->exp_tasks); | |
96e92021 | 636 | if (!rcu_preempt_has_tasks(rnp)) { |
8eb74b2b | 637 | /* No blocked tasks, nothing to do. */ |
1217ed1b | 638 | raw_spin_unlock_irqrestore(&rnp->lock, flags); |
8eb74b2b PM |
639 | return; |
640 | } | |
641 | /* Call for Phase 2 and propagate ->expmask bits up the tree. */ | |
642 | rnp->expmask = 1; | |
643 | rnp_up = rnp; | |
644 | while (rnp_up->parent) { | |
645 | mask = rnp_up->grpmask; | |
646 | rnp_up = rnp_up->parent; | |
647 | if (rnp_up->expmask & mask) | |
648 | break; | |
649 | raw_spin_lock(&rnp_up->lock); /* irqs already off */ | |
650 | smp_mb__after_unlock_lock(); | |
651 | rnp_up->expmask |= mask; | |
652 | raw_spin_unlock(&rnp_up->lock); /* irqs still off */ | |
653 | } | |
654 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | |
655 | } | |
656 | ||
657 | /* | |
658 | * Snapshot the tasks blocking the newly started preemptible-RCU expedited | |
659 | * grace period for the specified rcu_node structure, phase 2. If the | |
660 | * leaf rcu_node structure has its ->expmask field set, check for tasks. | |
661 | * If there are some, clear ->expmask and set ->exp_tasks accordingly, | |
662 | * then initiate RCU priority boosting. Otherwise, clear ->expmask and | |
663 | * invoke rcu_report_exp_rnp() to clear out the upper-level ->expmask bits, | |
664 | * enabling rcu_read_unlock_special() to do the bit-clearing. | |
665 | * | |
666 | * Caller must hold sync_rcu_preempt_exp_mutex. | |
667 | */ | |
668 | static void | |
669 | sync_rcu_preempt_exp_init2(struct rcu_state *rsp, struct rcu_node *rnp) | |
670 | { | |
671 | unsigned long flags; | |
672 | ||
673 | raw_spin_lock_irqsave(&rnp->lock, flags); | |
674 | smp_mb__after_unlock_lock(); | |
675 | if (!rnp->expmask) { | |
676 | /* Phase 1 didn't do anything, so Phase 2 doesn't either. */ | |
677 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | |
678 | return; | |
679 | } | |
680 | ||
681 | /* Phase 1 is over. */ | |
682 | rnp->expmask = 0; | |
683 | ||
684 | /* | |
685 | * If there are still blocked tasks, set up ->exp_tasks so that | |
686 | * rcu_read_unlock_special() will wake us and then boost them. | |
687 | */ | |
688 | if (rcu_preempt_has_tasks(rnp)) { | |
12f5f524 | 689 | rnp->exp_tasks = rnp->blkd_tasks.next; |
1217ed1b | 690 | rcu_initiate_boost(rnp, flags); /* releases rnp->lock */ |
8eb74b2b | 691 | return; |
12f5f524 | 692 | } |
8eb74b2b PM |
693 | |
694 | /* No longer any blocked tasks, so undo bit setting. */ | |
695 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | |
696 | rcu_report_exp_rnp(rsp, rnp, false); | |
d9a3da06 PM |
697 | } |
698 | ||
236fefaf PM |
699 | /** |
700 | * synchronize_rcu_expedited - Brute-force RCU grace period | |
701 | * | |
702 | * Wait for an RCU-preempt grace period, but expedite it. The basic | |
703 | * idea is to invoke synchronize_sched_expedited() to push all the tasks to | |
704 | * the ->blkd_tasks lists and wait for this list to drain. This consumes | |
705 | * significant time on all CPUs and is unfriendly to real-time workloads, | |
706 | * so is thus not recommended for any sort of common-case code. | |
707 | * In fact, if you are using synchronize_rcu_expedited() in a loop, | |
708 | * please restructure your code to batch your updates, and then Use a | |
709 | * single synchronize_rcu() instead. | |
019129d5 PM |
710 | */ |
711 | void synchronize_rcu_expedited(void) | |
712 | { | |
d9a3da06 PM |
713 | struct rcu_node *rnp; |
714 | struct rcu_state *rsp = &rcu_preempt_state; | |
bcfa57ce | 715 | unsigned long snap; |
d9a3da06 PM |
716 | int trycount = 0; |
717 | ||
718 | smp_mb(); /* Caller's modifications seen first by other CPUs. */ | |
7d0ae808 | 719 | snap = READ_ONCE(sync_rcu_preempt_exp_count) + 1; |
d9a3da06 PM |
720 | smp_mb(); /* Above access cannot bleed into critical section. */ |
721 | ||
1943c89d PM |
722 | /* |
723 | * Block CPU-hotplug operations. This means that any CPU-hotplug | |
724 | * operation that finds an rcu_node structure with tasks in the | |
725 | * process of being boosted will know that all tasks blocking | |
726 | * this expedited grace period will already be in the process of | |
727 | * being boosted. This simplifies the process of moving tasks | |
728 | * from leaf to root rcu_node structures. | |
729 | */ | |
dd56af42 PM |
730 | if (!try_get_online_cpus()) { |
731 | /* CPU-hotplug operation in flight, fall back to normal GP. */ | |
732 | wait_rcu_gp(call_rcu); | |
733 | return; | |
734 | } | |
1943c89d | 735 | |
d9a3da06 PM |
736 | /* |
737 | * Acquire lock, falling back to synchronize_rcu() if too many | |
738 | * lock-acquisition failures. Of course, if someone does the | |
739 | * expedited grace period for us, just leave. | |
740 | */ | |
741 | while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) { | |
1943c89d | 742 | if (ULONG_CMP_LT(snap, |
7d0ae808 | 743 | READ_ONCE(sync_rcu_preempt_exp_count))) { |
1943c89d PM |
744 | put_online_cpus(); |
745 | goto mb_ret; /* Others did our work for us. */ | |
746 | } | |
c701d5d9 | 747 | if (trycount++ < 10) { |
d9a3da06 | 748 | udelay(trycount * num_online_cpus()); |
c701d5d9 | 749 | } else { |
1943c89d | 750 | put_online_cpus(); |
3705b88d | 751 | wait_rcu_gp(call_rcu); |
d9a3da06 PM |
752 | return; |
753 | } | |
d9a3da06 | 754 | } |
7d0ae808 | 755 | if (ULONG_CMP_LT(snap, READ_ONCE(sync_rcu_preempt_exp_count))) { |
1943c89d | 756 | put_online_cpus(); |
d9a3da06 | 757 | goto unlock_mb_ret; /* Others did our work for us. */ |
1943c89d | 758 | } |
d9a3da06 | 759 | |
12f5f524 | 760 | /* force all RCU readers onto ->blkd_tasks lists. */ |
d9a3da06 PM |
761 | synchronize_sched_expedited(); |
762 | ||
8eb74b2b PM |
763 | /* |
764 | * Snapshot current state of ->blkd_tasks lists into ->expmask. | |
765 | * Phase 1 sets bits and phase 2 permits rcu_read_unlock_special() | |
766 | * to start clearing them. Doing this in one phase leads to | |
767 | * strange races between setting and clearing bits, so just say "no"! | |
768 | */ | |
d9a3da06 | 769 | rcu_for_each_leaf_node(rsp, rnp) |
8eb74b2b | 770 | sync_rcu_preempt_exp_init1(rsp, rnp); |
d9a3da06 | 771 | rcu_for_each_leaf_node(rsp, rnp) |
8eb74b2b | 772 | sync_rcu_preempt_exp_init2(rsp, rnp); |
d9a3da06 | 773 | |
1943c89d | 774 | put_online_cpus(); |
d9a3da06 | 775 | |
12f5f524 | 776 | /* Wait for snapshotted ->blkd_tasks lists to drain. */ |
d9a3da06 PM |
777 | rnp = rcu_get_root(rsp); |
778 | wait_event(sync_rcu_preempt_exp_wq, | |
779 | sync_rcu_preempt_exp_done(rnp)); | |
780 | ||
781 | /* Clean up and exit. */ | |
782 | smp_mb(); /* ensure expedited GP seen before counter increment. */ | |
7d0ae808 | 783 | WRITE_ONCE(sync_rcu_preempt_exp_count, sync_rcu_preempt_exp_count + 1); |
d9a3da06 PM |
784 | unlock_mb_ret: |
785 | mutex_unlock(&sync_rcu_preempt_exp_mutex); | |
786 | mb_ret: | |
787 | smp_mb(); /* ensure subsequent action seen after grace period. */ | |
019129d5 PM |
788 | } |
789 | EXPORT_SYMBOL_GPL(synchronize_rcu_expedited); | |
790 | ||
e74f4c45 PM |
791 | /** |
792 | * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. | |
f0a0e6f2 PM |
793 | * |
794 | * Note that this primitive does not necessarily wait for an RCU grace period | |
795 | * to complete. For example, if there are no RCU callbacks queued anywhere | |
796 | * in the system, then rcu_barrier() is within its rights to return | |
797 | * immediately, without waiting for anything, much less an RCU grace period. | |
e74f4c45 PM |
798 | */ |
799 | void rcu_barrier(void) | |
800 | { | |
037b64ed | 801 | _rcu_barrier(&rcu_preempt_state); |
e74f4c45 PM |
802 | } |
803 | EXPORT_SYMBOL_GPL(rcu_barrier); | |
804 | ||
1eba8f84 | 805 | /* |
6cc68793 | 806 | * Initialize preemptible RCU's state structures. |
1eba8f84 PM |
807 | */ |
808 | static void __init __rcu_init_preempt(void) | |
809 | { | |
394f99a9 | 810 | rcu_init_one(&rcu_preempt_state, &rcu_preempt_data); |
1eba8f84 PM |
811 | } |
812 | ||
2439b696 PM |
813 | /* |
814 | * Check for a task exiting while in a preemptible-RCU read-side | |
815 | * critical section, clean up if so. No need to issue warnings, | |
816 | * as debug_check_no_locks_held() already does this if lockdep | |
817 | * is enabled. | |
818 | */ | |
819 | void exit_rcu(void) | |
820 | { | |
821 | struct task_struct *t = current; | |
822 | ||
823 | if (likely(list_empty(¤t->rcu_node_entry))) | |
824 | return; | |
825 | t->rcu_read_lock_nesting = 1; | |
826 | barrier(); | |
1d082fd0 | 827 | t->rcu_read_unlock_special.b.blocked = true; |
2439b696 PM |
828 | __rcu_read_unlock(); |
829 | } | |
830 | ||
28f6569a | 831 | #else /* #ifdef CONFIG_PREEMPT_RCU */ |
f41d911f | 832 | |
e534165b | 833 | static struct rcu_state *rcu_state_p = &rcu_sched_state; |
27f4d280 | 834 | |
f41d911f PM |
835 | /* |
836 | * Tell them what RCU they are running. | |
837 | */ | |
0e0fc1c2 | 838 | static void __init rcu_bootup_announce(void) |
f41d911f | 839 | { |
efc151c3 | 840 | pr_info("Hierarchical RCU implementation.\n"); |
26845c28 | 841 | rcu_bootup_announce_oddness(); |
f41d911f PM |
842 | } |
843 | ||
cba6d0d6 PM |
844 | /* |
845 | * Because preemptible RCU does not exist, we never have to check for | |
846 | * CPUs being in quiescent states. | |
847 | */ | |
38200cf2 | 848 | static void rcu_preempt_note_context_switch(void) |
cba6d0d6 PM |
849 | { |
850 | } | |
851 | ||
fc2219d4 | 852 | /* |
6cc68793 | 853 | * Because preemptible RCU does not exist, there are never any preempted |
fc2219d4 PM |
854 | * RCU readers. |
855 | */ | |
27f4d280 | 856 | static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) |
fc2219d4 PM |
857 | { |
858 | return 0; | |
859 | } | |
860 | ||
8af3a5e7 PM |
861 | /* |
862 | * Because there is no preemptible RCU, there can be no readers blocked. | |
863 | */ | |
864 | static bool rcu_preempt_has_tasks(struct rcu_node *rnp) | |
b668c9cf | 865 | { |
8af3a5e7 | 866 | return false; |
b668c9cf PM |
867 | } |
868 | ||
1ed509a2 | 869 | /* |
6cc68793 | 870 | * Because preemptible RCU does not exist, we never have to check for |
1ed509a2 PM |
871 | * tasks blocked within RCU read-side critical sections. |
872 | */ | |
873 | static void rcu_print_detail_task_stall(struct rcu_state *rsp) | |
874 | { | |
875 | } | |
876 | ||
f41d911f | 877 | /* |
6cc68793 | 878 | * Because preemptible RCU does not exist, we never have to check for |
f41d911f PM |
879 | * tasks blocked within RCU read-side critical sections. |
880 | */ | |
9bc8b558 | 881 | static int rcu_print_task_stall(struct rcu_node *rnp) |
f41d911f | 882 | { |
9bc8b558 | 883 | return 0; |
f41d911f PM |
884 | } |
885 | ||
b0e165c0 | 886 | /* |
6cc68793 | 887 | * Because there is no preemptible RCU, there can be no readers blocked, |
49e29126 PM |
888 | * so there is no need to check for blocked tasks. So check only for |
889 | * bogus qsmask values. | |
b0e165c0 PM |
890 | */ |
891 | static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) | |
892 | { | |
49e29126 | 893 | WARN_ON_ONCE(rnp->qsmask); |
b0e165c0 PM |
894 | } |
895 | ||
f41d911f | 896 | /* |
6cc68793 | 897 | * Because preemptible RCU does not exist, it never has any callbacks |
f41d911f PM |
898 | * to check. |
899 | */ | |
86aea0e6 | 900 | static void rcu_preempt_check_callbacks(void) |
f41d911f PM |
901 | { |
902 | } | |
903 | ||
019129d5 PM |
904 | /* |
905 | * Wait for an rcu-preempt grace period, but make it happen quickly. | |
6cc68793 | 906 | * But because preemptible RCU does not exist, map to rcu-sched. |
019129d5 PM |
907 | */ |
908 | void synchronize_rcu_expedited(void) | |
909 | { | |
910 | synchronize_sched_expedited(); | |
911 | } | |
912 | EXPORT_SYMBOL_GPL(synchronize_rcu_expedited); | |
913 | ||
e74f4c45 | 914 | /* |
6cc68793 | 915 | * Because preemptible RCU does not exist, rcu_barrier() is just |
e74f4c45 PM |
916 | * another name for rcu_barrier_sched(). |
917 | */ | |
918 | void rcu_barrier(void) | |
919 | { | |
920 | rcu_barrier_sched(); | |
921 | } | |
922 | EXPORT_SYMBOL_GPL(rcu_barrier); | |
923 | ||
1eba8f84 | 924 | /* |
6cc68793 | 925 | * Because preemptible RCU does not exist, it need not be initialized. |
1eba8f84 PM |
926 | */ |
927 | static void __init __rcu_init_preempt(void) | |
928 | { | |
929 | } | |
930 | ||
2439b696 PM |
931 | /* |
932 | * Because preemptible RCU does not exist, tasks cannot possibly exit | |
933 | * while in preemptible RCU read-side critical sections. | |
934 | */ | |
935 | void exit_rcu(void) | |
936 | { | |
937 | } | |
938 | ||
28f6569a | 939 | #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ |
8bd93a2c | 940 | |
27f4d280 PM |
941 | #ifdef CONFIG_RCU_BOOST |
942 | ||
1696a8be | 943 | #include "../locking/rtmutex_common.h" |
27f4d280 | 944 | |
0ea1f2eb PM |
945 | #ifdef CONFIG_RCU_TRACE |
946 | ||
947 | static void rcu_initiate_boost_trace(struct rcu_node *rnp) | |
948 | { | |
96e92021 | 949 | if (!rcu_preempt_has_tasks(rnp)) |
0ea1f2eb PM |
950 | rnp->n_balk_blkd_tasks++; |
951 | else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL) | |
952 | rnp->n_balk_exp_gp_tasks++; | |
953 | else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL) | |
954 | rnp->n_balk_boost_tasks++; | |
955 | else if (rnp->gp_tasks != NULL && rnp->qsmask != 0) | |
956 | rnp->n_balk_notblocked++; | |
957 | else if (rnp->gp_tasks != NULL && | |
a9f4793d | 958 | ULONG_CMP_LT(jiffies, rnp->boost_time)) |
0ea1f2eb PM |
959 | rnp->n_balk_notyet++; |
960 | else | |
961 | rnp->n_balk_nos++; | |
962 | } | |
963 | ||
964 | #else /* #ifdef CONFIG_RCU_TRACE */ | |
965 | ||
966 | static void rcu_initiate_boost_trace(struct rcu_node *rnp) | |
967 | { | |
968 | } | |
969 | ||
970 | #endif /* #else #ifdef CONFIG_RCU_TRACE */ | |
971 | ||
5d01bbd1 TG |
972 | static void rcu_wake_cond(struct task_struct *t, int status) |
973 | { | |
974 | /* | |
975 | * If the thread is yielding, only wake it when this | |
976 | * is invoked from idle | |
977 | */ | |
978 | if (status != RCU_KTHREAD_YIELDING || is_idle_task(current)) | |
979 | wake_up_process(t); | |
980 | } | |
981 | ||
27f4d280 PM |
982 | /* |
983 | * Carry out RCU priority boosting on the task indicated by ->exp_tasks | |
984 | * or ->boost_tasks, advancing the pointer to the next task in the | |
985 | * ->blkd_tasks list. | |
986 | * | |
987 | * Note that irqs must be enabled: boosting the task can block. | |
988 | * Returns 1 if there are more tasks needing to be boosted. | |
989 | */ | |
990 | static int rcu_boost(struct rcu_node *rnp) | |
991 | { | |
992 | unsigned long flags; | |
27f4d280 PM |
993 | struct task_struct *t; |
994 | struct list_head *tb; | |
995 | ||
7d0ae808 PM |
996 | if (READ_ONCE(rnp->exp_tasks) == NULL && |
997 | READ_ONCE(rnp->boost_tasks) == NULL) | |
27f4d280 PM |
998 | return 0; /* Nothing left to boost. */ |
999 | ||
1000 | raw_spin_lock_irqsave(&rnp->lock, flags); | |
6303b9c8 | 1001 | smp_mb__after_unlock_lock(); |
27f4d280 PM |
1002 | |
1003 | /* | |
1004 | * Recheck under the lock: all tasks in need of boosting | |
1005 | * might exit their RCU read-side critical sections on their own. | |
1006 | */ | |
1007 | if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { | |
1008 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | |
1009 | return 0; | |
1010 | } | |
1011 | ||
1012 | /* | |
1013 | * Preferentially boost tasks blocking expedited grace periods. | |
1014 | * This cannot starve the normal grace periods because a second | |
1015 | * expedited grace period must boost all blocked tasks, including | |
1016 | * those blocking the pre-existing normal grace period. | |
1017 | */ | |
0ea1f2eb | 1018 | if (rnp->exp_tasks != NULL) { |
27f4d280 | 1019 | tb = rnp->exp_tasks; |
0ea1f2eb PM |
1020 | rnp->n_exp_boosts++; |
1021 | } else { | |
27f4d280 | 1022 | tb = rnp->boost_tasks; |
0ea1f2eb PM |
1023 | rnp->n_normal_boosts++; |
1024 | } | |
1025 | rnp->n_tasks_boosted++; | |
27f4d280 PM |
1026 | |
1027 | /* | |
1028 | * We boost task t by manufacturing an rt_mutex that appears to | |
1029 | * be held by task t. We leave a pointer to that rt_mutex where | |
1030 | * task t can find it, and task t will release the mutex when it | |
1031 | * exits its outermost RCU read-side critical section. Then | |
1032 | * simply acquiring this artificial rt_mutex will boost task | |
1033 | * t's priority. (Thanks to tglx for suggesting this approach!) | |
1034 | * | |
1035 | * Note that task t must acquire rnp->lock to remove itself from | |
1036 | * the ->blkd_tasks list, which it will do from exit() if from | |
1037 | * nowhere else. We therefore are guaranteed that task t will | |
1038 | * stay around at least until we drop rnp->lock. Note that | |
1039 | * rnp->lock also resolves races between our priority boosting | |
1040 | * and task t's exiting its outermost RCU read-side critical | |
1041 | * section. | |
1042 | */ | |
1043 | t = container_of(tb, struct task_struct, rcu_node_entry); | |
abaa93d9 | 1044 | rt_mutex_init_proxy_locked(&rnp->boost_mtx, t); |
27f4d280 | 1045 | raw_spin_unlock_irqrestore(&rnp->lock, flags); |
abaa93d9 PM |
1046 | /* Lock only for side effect: boosts task t's priority. */ |
1047 | rt_mutex_lock(&rnp->boost_mtx); | |
1048 | rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */ | |
27f4d280 | 1049 | |
7d0ae808 PM |
1050 | return READ_ONCE(rnp->exp_tasks) != NULL || |
1051 | READ_ONCE(rnp->boost_tasks) != NULL; | |
27f4d280 PM |
1052 | } |
1053 | ||
27f4d280 PM |
1054 | /* |
1055 | * Priority-boosting kthread. One per leaf rcu_node and one for the | |
1056 | * root rcu_node. | |
1057 | */ | |
1058 | static int rcu_boost_kthread(void *arg) | |
1059 | { | |
1060 | struct rcu_node *rnp = (struct rcu_node *)arg; | |
1061 | int spincnt = 0; | |
1062 | int more2boost; | |
1063 | ||
f7f7bac9 | 1064 | trace_rcu_utilization(TPS("Start boost kthread@init")); |
27f4d280 | 1065 | for (;;) { |
d71df90e | 1066 | rnp->boost_kthread_status = RCU_KTHREAD_WAITING; |
f7f7bac9 | 1067 | trace_rcu_utilization(TPS("End boost kthread@rcu_wait")); |
08bca60a | 1068 | rcu_wait(rnp->boost_tasks || rnp->exp_tasks); |
f7f7bac9 | 1069 | trace_rcu_utilization(TPS("Start boost kthread@rcu_wait")); |
d71df90e | 1070 | rnp->boost_kthread_status = RCU_KTHREAD_RUNNING; |
27f4d280 PM |
1071 | more2boost = rcu_boost(rnp); |
1072 | if (more2boost) | |
1073 | spincnt++; | |
1074 | else | |
1075 | spincnt = 0; | |
1076 | if (spincnt > 10) { | |
5d01bbd1 | 1077 | rnp->boost_kthread_status = RCU_KTHREAD_YIELDING; |
f7f7bac9 | 1078 | trace_rcu_utilization(TPS("End boost kthread@rcu_yield")); |
5d01bbd1 | 1079 | schedule_timeout_interruptible(2); |
f7f7bac9 | 1080 | trace_rcu_utilization(TPS("Start boost kthread@rcu_yield")); |
27f4d280 PM |
1081 | spincnt = 0; |
1082 | } | |
1083 | } | |
1217ed1b | 1084 | /* NOTREACHED */ |
f7f7bac9 | 1085 | trace_rcu_utilization(TPS("End boost kthread@notreached")); |
27f4d280 PM |
1086 | return 0; |
1087 | } | |
1088 | ||
1089 | /* | |
1090 | * Check to see if it is time to start boosting RCU readers that are | |
1091 | * blocking the current grace period, and, if so, tell the per-rcu_node | |
1092 | * kthread to start boosting them. If there is an expedited grace | |
1093 | * period in progress, it is always time to boost. | |
1094 | * | |
b065a853 PM |
1095 | * The caller must hold rnp->lock, which this function releases. |
1096 | * The ->boost_kthread_task is immortal, so we don't need to worry | |
1097 | * about it going away. | |
27f4d280 | 1098 | */ |
1217ed1b | 1099 | static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) |
615e41c6 | 1100 | __releases(rnp->lock) |
27f4d280 PM |
1101 | { |
1102 | struct task_struct *t; | |
1103 | ||
0ea1f2eb PM |
1104 | if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) { |
1105 | rnp->n_balk_exp_gp_tasks++; | |
1217ed1b | 1106 | raw_spin_unlock_irqrestore(&rnp->lock, flags); |
27f4d280 | 1107 | return; |
0ea1f2eb | 1108 | } |
27f4d280 PM |
1109 | if (rnp->exp_tasks != NULL || |
1110 | (rnp->gp_tasks != NULL && | |
1111 | rnp->boost_tasks == NULL && | |
1112 | rnp->qsmask == 0 && | |
1113 | ULONG_CMP_GE(jiffies, rnp->boost_time))) { | |
1114 | if (rnp->exp_tasks == NULL) | |
1115 | rnp->boost_tasks = rnp->gp_tasks; | |
1217ed1b | 1116 | raw_spin_unlock_irqrestore(&rnp->lock, flags); |
27f4d280 | 1117 | t = rnp->boost_kthread_task; |
5d01bbd1 TG |
1118 | if (t) |
1119 | rcu_wake_cond(t, rnp->boost_kthread_status); | |
1217ed1b | 1120 | } else { |
0ea1f2eb | 1121 | rcu_initiate_boost_trace(rnp); |
1217ed1b PM |
1122 | raw_spin_unlock_irqrestore(&rnp->lock, flags); |
1123 | } | |
27f4d280 PM |
1124 | } |
1125 | ||
a46e0899 PM |
1126 | /* |
1127 | * Wake up the per-CPU kthread to invoke RCU callbacks. | |
1128 | */ | |
1129 | static void invoke_rcu_callbacks_kthread(void) | |
1130 | { | |
1131 | unsigned long flags; | |
1132 | ||
1133 | local_irq_save(flags); | |
1134 | __this_cpu_write(rcu_cpu_has_work, 1); | |
1eb52121 | 1135 | if (__this_cpu_read(rcu_cpu_kthread_task) != NULL && |
5d01bbd1 TG |
1136 | current != __this_cpu_read(rcu_cpu_kthread_task)) { |
1137 | rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task), | |
1138 | __this_cpu_read(rcu_cpu_kthread_status)); | |
1139 | } | |
a46e0899 PM |
1140 | local_irq_restore(flags); |
1141 | } | |
1142 | ||
dff1672d PM |
1143 | /* |
1144 | * Is the current CPU running the RCU-callbacks kthread? | |
1145 | * Caller must have preemption disabled. | |
1146 | */ | |
1147 | static bool rcu_is_callbacks_kthread(void) | |
1148 | { | |
c9d4b0af | 1149 | return __this_cpu_read(rcu_cpu_kthread_task) == current; |
dff1672d PM |
1150 | } |
1151 | ||
27f4d280 PM |
1152 | #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) |
1153 | ||
1154 | /* | |
1155 | * Do priority-boost accounting for the start of a new grace period. | |
1156 | */ | |
1157 | static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) | |
1158 | { | |
1159 | rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; | |
1160 | } | |
1161 | ||
27f4d280 PM |
1162 | /* |
1163 | * Create an RCU-boost kthread for the specified node if one does not | |
1164 | * already exist. We only create this kthread for preemptible RCU. | |
1165 | * Returns zero if all is well, a negated errno otherwise. | |
1166 | */ | |
49fb4c62 | 1167 | static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp, |
0aa04b05 | 1168 | struct rcu_node *rnp) |
27f4d280 | 1169 | { |
5d01bbd1 | 1170 | int rnp_index = rnp - &rsp->node[0]; |
27f4d280 PM |
1171 | unsigned long flags; |
1172 | struct sched_param sp; | |
1173 | struct task_struct *t; | |
1174 | ||
1175 | if (&rcu_preempt_state != rsp) | |
1176 | return 0; | |
5d01bbd1 | 1177 | |
0aa04b05 | 1178 | if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0) |
5d01bbd1 TG |
1179 | return 0; |
1180 | ||
a46e0899 | 1181 | rsp->boost = 1; |
27f4d280 PM |
1182 | if (rnp->boost_kthread_task != NULL) |
1183 | return 0; | |
1184 | t = kthread_create(rcu_boost_kthread, (void *)rnp, | |
5b61b0ba | 1185 | "rcub/%d", rnp_index); |
27f4d280 PM |
1186 | if (IS_ERR(t)) |
1187 | return PTR_ERR(t); | |
1188 | raw_spin_lock_irqsave(&rnp->lock, flags); | |
6303b9c8 | 1189 | smp_mb__after_unlock_lock(); |
27f4d280 PM |
1190 | rnp->boost_kthread_task = t; |
1191 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | |
21871d7e | 1192 | sp.sched_priority = kthread_prio; |
27f4d280 | 1193 | sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); |
9a432736 | 1194 | wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ |
27f4d280 PM |
1195 | return 0; |
1196 | } | |
1197 | ||
f8b7fc6b PM |
1198 | static void rcu_kthread_do_work(void) |
1199 | { | |
c9d4b0af CL |
1200 | rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data)); |
1201 | rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data)); | |
f8b7fc6b PM |
1202 | rcu_preempt_do_callbacks(); |
1203 | } | |
1204 | ||
62ab7072 | 1205 | static void rcu_cpu_kthread_setup(unsigned int cpu) |
f8b7fc6b | 1206 | { |
f8b7fc6b | 1207 | struct sched_param sp; |
f8b7fc6b | 1208 | |
21871d7e | 1209 | sp.sched_priority = kthread_prio; |
62ab7072 | 1210 | sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); |
f8b7fc6b PM |
1211 | } |
1212 | ||
62ab7072 | 1213 | static void rcu_cpu_kthread_park(unsigned int cpu) |
f8b7fc6b | 1214 | { |
62ab7072 | 1215 | per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; |
f8b7fc6b PM |
1216 | } |
1217 | ||
62ab7072 | 1218 | static int rcu_cpu_kthread_should_run(unsigned int cpu) |
f8b7fc6b | 1219 | { |
c9d4b0af | 1220 | return __this_cpu_read(rcu_cpu_has_work); |
f8b7fc6b PM |
1221 | } |
1222 | ||
1223 | /* | |
1224 | * Per-CPU kernel thread that invokes RCU callbacks. This replaces the | |
e0f23060 PM |
1225 | * RCU softirq used in flavors and configurations of RCU that do not |
1226 | * support RCU priority boosting. | |
f8b7fc6b | 1227 | */ |
62ab7072 | 1228 | static void rcu_cpu_kthread(unsigned int cpu) |
f8b7fc6b | 1229 | { |
c9d4b0af CL |
1230 | unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status); |
1231 | char work, *workp = this_cpu_ptr(&rcu_cpu_has_work); | |
62ab7072 | 1232 | int spincnt; |
f8b7fc6b | 1233 | |
62ab7072 | 1234 | for (spincnt = 0; spincnt < 10; spincnt++) { |
f7f7bac9 | 1235 | trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait")); |
f8b7fc6b | 1236 | local_bh_disable(); |
f8b7fc6b | 1237 | *statusp = RCU_KTHREAD_RUNNING; |
62ab7072 PM |
1238 | this_cpu_inc(rcu_cpu_kthread_loops); |
1239 | local_irq_disable(); | |
f8b7fc6b PM |
1240 | work = *workp; |
1241 | *workp = 0; | |
62ab7072 | 1242 | local_irq_enable(); |
f8b7fc6b PM |
1243 | if (work) |
1244 | rcu_kthread_do_work(); | |
1245 | local_bh_enable(); | |
62ab7072 | 1246 | if (*workp == 0) { |
f7f7bac9 | 1247 | trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); |
62ab7072 PM |
1248 | *statusp = RCU_KTHREAD_WAITING; |
1249 | return; | |
f8b7fc6b PM |
1250 | } |
1251 | } | |
62ab7072 | 1252 | *statusp = RCU_KTHREAD_YIELDING; |
f7f7bac9 | 1253 | trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); |
62ab7072 | 1254 | schedule_timeout_interruptible(2); |
f7f7bac9 | 1255 | trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); |
62ab7072 | 1256 | *statusp = RCU_KTHREAD_WAITING; |
f8b7fc6b PM |
1257 | } |
1258 | ||
1259 | /* | |
1260 | * Set the per-rcu_node kthread's affinity to cover all CPUs that are | |
1261 | * served by the rcu_node in question. The CPU hotplug lock is still | |
1262 | * held, so the value of rnp->qsmaskinit will be stable. | |
1263 | * | |
1264 | * We don't include outgoingcpu in the affinity set, use -1 if there is | |
1265 | * no outgoing CPU. If there are no CPUs left in the affinity set, | |
1266 | * this function allows the kthread to execute on any CPU. | |
1267 | */ | |
5d01bbd1 | 1268 | static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) |
f8b7fc6b | 1269 | { |
5d01bbd1 | 1270 | struct task_struct *t = rnp->boost_kthread_task; |
0aa04b05 | 1271 | unsigned long mask = rcu_rnp_online_cpus(rnp); |
f8b7fc6b PM |
1272 | cpumask_var_t cm; |
1273 | int cpu; | |
f8b7fc6b | 1274 | |
5d01bbd1 | 1275 | if (!t) |
f8b7fc6b | 1276 | return; |
5d01bbd1 | 1277 | if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) |
f8b7fc6b | 1278 | return; |
f8b7fc6b PM |
1279 | for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) |
1280 | if ((mask & 0x1) && cpu != outgoingcpu) | |
1281 | cpumask_set_cpu(cpu, cm); | |
5d0b0249 | 1282 | if (cpumask_weight(cm) == 0) |
f8b7fc6b | 1283 | cpumask_setall(cm); |
5d01bbd1 | 1284 | set_cpus_allowed_ptr(t, cm); |
f8b7fc6b PM |
1285 | free_cpumask_var(cm); |
1286 | } | |
1287 | ||
62ab7072 PM |
1288 | static struct smp_hotplug_thread rcu_cpu_thread_spec = { |
1289 | .store = &rcu_cpu_kthread_task, | |
1290 | .thread_should_run = rcu_cpu_kthread_should_run, | |
1291 | .thread_fn = rcu_cpu_kthread, | |
1292 | .thread_comm = "rcuc/%u", | |
1293 | .setup = rcu_cpu_kthread_setup, | |
1294 | .park = rcu_cpu_kthread_park, | |
1295 | }; | |
f8b7fc6b PM |
1296 | |
1297 | /* | |
9386c0b7 | 1298 | * Spawn boost kthreads -- called as soon as the scheduler is running. |
f8b7fc6b | 1299 | */ |
9386c0b7 | 1300 | static void __init rcu_spawn_boost_kthreads(void) |
f8b7fc6b | 1301 | { |
f8b7fc6b | 1302 | struct rcu_node *rnp; |
5d01bbd1 | 1303 | int cpu; |
f8b7fc6b | 1304 | |
62ab7072 | 1305 | for_each_possible_cpu(cpu) |
f8b7fc6b | 1306 | per_cpu(rcu_cpu_has_work, cpu) = 0; |
62ab7072 | 1307 | BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec)); |
3e9f5c70 PM |
1308 | rcu_for_each_leaf_node(rcu_state_p, rnp) |
1309 | (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); | |
f8b7fc6b | 1310 | } |
f8b7fc6b | 1311 | |
49fb4c62 | 1312 | static void rcu_prepare_kthreads(int cpu) |
f8b7fc6b | 1313 | { |
e534165b | 1314 | struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); |
f8b7fc6b PM |
1315 | struct rcu_node *rnp = rdp->mynode; |
1316 | ||
1317 | /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */ | |
62ab7072 | 1318 | if (rcu_scheduler_fully_active) |
e534165b | 1319 | (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); |
f8b7fc6b PM |
1320 | } |
1321 | ||
27f4d280 PM |
1322 | #else /* #ifdef CONFIG_RCU_BOOST */ |
1323 | ||
1217ed1b | 1324 | static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) |
615e41c6 | 1325 | __releases(rnp->lock) |
27f4d280 | 1326 | { |
1217ed1b | 1327 | raw_spin_unlock_irqrestore(&rnp->lock, flags); |
27f4d280 PM |
1328 | } |
1329 | ||
a46e0899 | 1330 | static void invoke_rcu_callbacks_kthread(void) |
27f4d280 | 1331 | { |
a46e0899 | 1332 | WARN_ON_ONCE(1); |
27f4d280 PM |
1333 | } |
1334 | ||
dff1672d PM |
1335 | static bool rcu_is_callbacks_kthread(void) |
1336 | { | |
1337 | return false; | |
1338 | } | |
1339 | ||
27f4d280 PM |
1340 | static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) |
1341 | { | |
1342 | } | |
1343 | ||
5d01bbd1 | 1344 | static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) |
f8b7fc6b PM |
1345 | { |
1346 | } | |
1347 | ||
9386c0b7 | 1348 | static void __init rcu_spawn_boost_kthreads(void) |
b0d30417 | 1349 | { |
b0d30417 | 1350 | } |
b0d30417 | 1351 | |
49fb4c62 | 1352 | static void rcu_prepare_kthreads(int cpu) |
f8b7fc6b PM |
1353 | { |
1354 | } | |
1355 | ||
27f4d280 PM |
1356 | #endif /* #else #ifdef CONFIG_RCU_BOOST */ |
1357 | ||
8bd93a2c PM |
1358 | #if !defined(CONFIG_RCU_FAST_NO_HZ) |
1359 | ||
1360 | /* | |
1361 | * Check to see if any future RCU-related work will need to be done | |
1362 | * by the current CPU, even if none need be done immediately, returning | |
1363 | * 1 if so. This function is part of the RCU implementation; it is -not- | |
1364 | * an exported member of the RCU API. | |
1365 | * | |
7cb92499 PM |
1366 | * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs |
1367 | * any flavor of RCU. | |
8bd93a2c | 1368 | */ |
ffa83fb5 | 1369 | #ifndef CONFIG_RCU_NOCB_CPU_ALL |
aa6da514 | 1370 | int rcu_needs_cpu(unsigned long *delta_jiffies) |
8bd93a2c | 1371 | { |
aa9b1630 | 1372 | *delta_jiffies = ULONG_MAX; |
aa6da514 | 1373 | return rcu_cpu_has_callbacks(NULL); |
7cb92499 | 1374 | } |
ffa83fb5 | 1375 | #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */ |
7cb92499 PM |
1376 | |
1377 | /* | |
1378 | * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up | |
1379 | * after it. | |
1380 | */ | |
8fa7845d | 1381 | static void rcu_cleanup_after_idle(void) |
7cb92499 PM |
1382 | { |
1383 | } | |
1384 | ||
aea1b35e | 1385 | /* |
a858af28 | 1386 | * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n, |
aea1b35e PM |
1387 | * is nothing. |
1388 | */ | |
198bbf81 | 1389 | static void rcu_prepare_for_idle(void) |
aea1b35e PM |
1390 | { |
1391 | } | |
1392 | ||
c57afe80 PM |
1393 | /* |
1394 | * Don't bother keeping a running count of the number of RCU callbacks | |
1395 | * posted because CONFIG_RCU_FAST_NO_HZ=n. | |
1396 | */ | |
1397 | static void rcu_idle_count_callbacks_posted(void) | |
1398 | { | |
1399 | } | |
1400 | ||
8bd93a2c PM |
1401 | #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */ |
1402 | ||
f23f7fa1 PM |
1403 | /* |
1404 | * This code is invoked when a CPU goes idle, at which point we want | |
1405 | * to have the CPU do everything required for RCU so that it can enter | |
1406 | * the energy-efficient dyntick-idle mode. This is handled by a | |
1407 | * state machine implemented by rcu_prepare_for_idle() below. | |
1408 | * | |
1409 | * The following three proprocessor symbols control this state machine: | |
1410 | * | |
f23f7fa1 PM |
1411 | * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted |
1412 | * to sleep in dyntick-idle mode with RCU callbacks pending. This | |
1413 | * is sized to be roughly one RCU grace period. Those energy-efficiency | |
1414 | * benchmarkers who might otherwise be tempted to set this to a large | |
1415 | * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your | |
1416 | * system. And if you are -that- concerned about energy efficiency, | |
1417 | * just power the system down and be done with it! | |
778d250a PM |
1418 | * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is |
1419 | * permitted to sleep in dyntick-idle mode with only lazy RCU | |
1420 | * callbacks pending. Setting this too high can OOM your system. | |
f23f7fa1 PM |
1421 | * |
1422 | * The values below work well in practice. If future workloads require | |
1423 | * adjustment, they can be converted into kernel config parameters, though | |
1424 | * making the state machine smarter might be a better option. | |
1425 | */ | |
e84c48ae | 1426 | #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */ |
778d250a | 1427 | #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */ |
f23f7fa1 | 1428 | |
5e44ce35 PM |
1429 | static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY; |
1430 | module_param(rcu_idle_gp_delay, int, 0644); | |
1431 | static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY; | |
1432 | module_param(rcu_idle_lazy_gp_delay, int, 0644); | |
486e2593 | 1433 | |
d689fe22 | 1434 | extern int tick_nohz_active; |
486e2593 PM |
1435 | |
1436 | /* | |
c229828c PM |
1437 | * Try to advance callbacks for all flavors of RCU on the current CPU, but |
1438 | * only if it has been awhile since the last time we did so. Afterwards, | |
1439 | * if there are any callbacks ready for immediate invocation, return true. | |
486e2593 | 1440 | */ |
f1f399d1 | 1441 | static bool __maybe_unused rcu_try_advance_all_cbs(void) |
486e2593 | 1442 | { |
c0f4dfd4 PM |
1443 | bool cbs_ready = false; |
1444 | struct rcu_data *rdp; | |
c229828c | 1445 | struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); |
c0f4dfd4 PM |
1446 | struct rcu_node *rnp; |
1447 | struct rcu_state *rsp; | |
486e2593 | 1448 | |
c229828c PM |
1449 | /* Exit early if we advanced recently. */ |
1450 | if (jiffies == rdtp->last_advance_all) | |
d0bc90fd | 1451 | return false; |
c229828c PM |
1452 | rdtp->last_advance_all = jiffies; |
1453 | ||
c0f4dfd4 PM |
1454 | for_each_rcu_flavor(rsp) { |
1455 | rdp = this_cpu_ptr(rsp->rda); | |
1456 | rnp = rdp->mynode; | |
486e2593 | 1457 | |
c0f4dfd4 PM |
1458 | /* |
1459 | * Don't bother checking unless a grace period has | |
1460 | * completed since we last checked and there are | |
1461 | * callbacks not yet ready to invoke. | |
1462 | */ | |
e3663b10 | 1463 | if ((rdp->completed != rnp->completed || |
7d0ae808 | 1464 | unlikely(READ_ONCE(rdp->gpwrap))) && |
c0f4dfd4 | 1465 | rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL]) |
470716fc | 1466 | note_gp_changes(rsp, rdp); |
486e2593 | 1467 | |
c0f4dfd4 PM |
1468 | if (cpu_has_callbacks_ready_to_invoke(rdp)) |
1469 | cbs_ready = true; | |
1470 | } | |
1471 | return cbs_ready; | |
486e2593 PM |
1472 | } |
1473 | ||
aa9b1630 | 1474 | /* |
c0f4dfd4 PM |
1475 | * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready |
1476 | * to invoke. If the CPU has callbacks, try to advance them. Tell the | |
1477 | * caller to set the timeout based on whether or not there are non-lazy | |
1478 | * callbacks. | |
aa9b1630 | 1479 | * |
c0f4dfd4 | 1480 | * The caller must have disabled interrupts. |
aa9b1630 | 1481 | */ |
ffa83fb5 | 1482 | #ifndef CONFIG_RCU_NOCB_CPU_ALL |
aa6da514 | 1483 | int rcu_needs_cpu(unsigned long *dj) |
aa9b1630 | 1484 | { |
aa6da514 | 1485 | struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); |
aa9b1630 | 1486 | |
c0f4dfd4 PM |
1487 | /* Snapshot to detect later posting of non-lazy callback. */ |
1488 | rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; | |
1489 | ||
aa9b1630 | 1490 | /* If no callbacks, RCU doesn't need the CPU. */ |
aa6da514 | 1491 | if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) { |
c0f4dfd4 | 1492 | *dj = ULONG_MAX; |
aa9b1630 PM |
1493 | return 0; |
1494 | } | |
c0f4dfd4 PM |
1495 | |
1496 | /* Attempt to advance callbacks. */ | |
1497 | if (rcu_try_advance_all_cbs()) { | |
1498 | /* Some ready to invoke, so initiate later invocation. */ | |
1499 | invoke_rcu_core(); | |
aa9b1630 PM |
1500 | return 1; |
1501 | } | |
c0f4dfd4 PM |
1502 | rdtp->last_accelerate = jiffies; |
1503 | ||
1504 | /* Request timer delay depending on laziness, and round. */ | |
6faf7283 | 1505 | if (!rdtp->all_lazy) { |
c0f4dfd4 PM |
1506 | *dj = round_up(rcu_idle_gp_delay + jiffies, |
1507 | rcu_idle_gp_delay) - jiffies; | |
e84c48ae | 1508 | } else { |
c0f4dfd4 | 1509 | *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies; |
e84c48ae | 1510 | } |
aa9b1630 PM |
1511 | return 0; |
1512 | } | |
ffa83fb5 | 1513 | #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */ |
aa9b1630 | 1514 | |
21e52e15 | 1515 | /* |
c0f4dfd4 PM |
1516 | * Prepare a CPU for idle from an RCU perspective. The first major task |
1517 | * is to sense whether nohz mode has been enabled or disabled via sysfs. | |
1518 | * The second major task is to check to see if a non-lazy callback has | |
1519 | * arrived at a CPU that previously had only lazy callbacks. The third | |
1520 | * major task is to accelerate (that is, assign grace-period numbers to) | |
1521 | * any recently arrived callbacks. | |
aea1b35e PM |
1522 | * |
1523 | * The caller must have disabled interrupts. | |
8bd93a2c | 1524 | */ |
198bbf81 | 1525 | static void rcu_prepare_for_idle(void) |
8bd93a2c | 1526 | { |
f1f399d1 | 1527 | #ifndef CONFIG_RCU_NOCB_CPU_ALL |
48a7639c | 1528 | bool needwake; |
c0f4dfd4 | 1529 | struct rcu_data *rdp; |
198bbf81 | 1530 | struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); |
c0f4dfd4 PM |
1531 | struct rcu_node *rnp; |
1532 | struct rcu_state *rsp; | |
9d2ad243 PM |
1533 | int tne; |
1534 | ||
1535 | /* Handle nohz enablement switches conservatively. */ | |
7d0ae808 | 1536 | tne = READ_ONCE(tick_nohz_active); |
9d2ad243 | 1537 | if (tne != rdtp->tick_nohz_enabled_snap) { |
aa6da514 | 1538 | if (rcu_cpu_has_callbacks(NULL)) |
9d2ad243 PM |
1539 | invoke_rcu_core(); /* force nohz to see update. */ |
1540 | rdtp->tick_nohz_enabled_snap = tne; | |
1541 | return; | |
1542 | } | |
1543 | if (!tne) | |
1544 | return; | |
f511fc62 | 1545 | |
c0f4dfd4 | 1546 | /* If this is a no-CBs CPU, no callbacks, just return. */ |
198bbf81 | 1547 | if (rcu_is_nocb_cpu(smp_processor_id())) |
9a0c6fef | 1548 | return; |
9a0c6fef | 1549 | |
c57afe80 | 1550 | /* |
c0f4dfd4 PM |
1551 | * If a non-lazy callback arrived at a CPU having only lazy |
1552 | * callbacks, invoke RCU core for the side-effect of recalculating | |
1553 | * idle duration on re-entry to idle. | |
c57afe80 | 1554 | */ |
c0f4dfd4 PM |
1555 | if (rdtp->all_lazy && |
1556 | rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) { | |
c337f8f5 PM |
1557 | rdtp->all_lazy = false; |
1558 | rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; | |
c0f4dfd4 | 1559 | invoke_rcu_core(); |
c57afe80 PM |
1560 | return; |
1561 | } | |
c57afe80 | 1562 | |
3084f2f8 | 1563 | /* |
c0f4dfd4 PM |
1564 | * If we have not yet accelerated this jiffy, accelerate all |
1565 | * callbacks on this CPU. | |
3084f2f8 | 1566 | */ |
c0f4dfd4 | 1567 | if (rdtp->last_accelerate == jiffies) |
aea1b35e | 1568 | return; |
c0f4dfd4 PM |
1569 | rdtp->last_accelerate = jiffies; |
1570 | for_each_rcu_flavor(rsp) { | |
198bbf81 | 1571 | rdp = this_cpu_ptr(rsp->rda); |
c0f4dfd4 PM |
1572 | if (!*rdp->nxttail[RCU_DONE_TAIL]) |
1573 | continue; | |
1574 | rnp = rdp->mynode; | |
1575 | raw_spin_lock(&rnp->lock); /* irqs already disabled. */ | |
6303b9c8 | 1576 | smp_mb__after_unlock_lock(); |
48a7639c | 1577 | needwake = rcu_accelerate_cbs(rsp, rnp, rdp); |
c0f4dfd4 | 1578 | raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ |
48a7639c PM |
1579 | if (needwake) |
1580 | rcu_gp_kthread_wake(rsp); | |
77e38ed3 | 1581 | } |
f1f399d1 | 1582 | #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */ |
c0f4dfd4 | 1583 | } |
3084f2f8 | 1584 | |
c0f4dfd4 PM |
1585 | /* |
1586 | * Clean up for exit from idle. Attempt to advance callbacks based on | |
1587 | * any grace periods that elapsed while the CPU was idle, and if any | |
1588 | * callbacks are now ready to invoke, initiate invocation. | |
1589 | */ | |
8fa7845d | 1590 | static void rcu_cleanup_after_idle(void) |
c0f4dfd4 | 1591 | { |
f1f399d1 | 1592 | #ifndef CONFIG_RCU_NOCB_CPU_ALL |
8fa7845d | 1593 | if (rcu_is_nocb_cpu(smp_processor_id())) |
aea1b35e | 1594 | return; |
7a497c96 PM |
1595 | if (rcu_try_advance_all_cbs()) |
1596 | invoke_rcu_core(); | |
f1f399d1 | 1597 | #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */ |
8bd93a2c PM |
1598 | } |
1599 | ||
c57afe80 | 1600 | /* |
98248a0e PM |
1601 | * Keep a running count of the number of non-lazy callbacks posted |
1602 | * on this CPU. This running counter (which is never decremented) allows | |
1603 | * rcu_prepare_for_idle() to detect when something out of the idle loop | |
1604 | * posts a callback, even if an equal number of callbacks are invoked. | |
1605 | * Of course, callbacks should only be posted from within a trace event | |
1606 | * designed to be called from idle or from within RCU_NONIDLE(). | |
c57afe80 PM |
1607 | */ |
1608 | static void rcu_idle_count_callbacks_posted(void) | |
1609 | { | |
5955f7ee | 1610 | __this_cpu_add(rcu_dynticks.nonlazy_posted, 1); |
c57afe80 PM |
1611 | } |
1612 | ||
b626c1b6 PM |
1613 | /* |
1614 | * Data for flushing lazy RCU callbacks at OOM time. | |
1615 | */ | |
1616 | static atomic_t oom_callback_count; | |
1617 | static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq); | |
1618 | ||
1619 | /* | |
1620 | * RCU OOM callback -- decrement the outstanding count and deliver the | |
1621 | * wake-up if we are the last one. | |
1622 | */ | |
1623 | static void rcu_oom_callback(struct rcu_head *rhp) | |
1624 | { | |
1625 | if (atomic_dec_and_test(&oom_callback_count)) | |
1626 | wake_up(&oom_callback_wq); | |
1627 | } | |
1628 | ||
1629 | /* | |
1630 | * Post an rcu_oom_notify callback on the current CPU if it has at | |
1631 | * least one lazy callback. This will unnecessarily post callbacks | |
1632 | * to CPUs that already have a non-lazy callback at the end of their | |
1633 | * callback list, but this is an infrequent operation, so accept some | |
1634 | * extra overhead to keep things simple. | |
1635 | */ | |
1636 | static void rcu_oom_notify_cpu(void *unused) | |
1637 | { | |
1638 | struct rcu_state *rsp; | |
1639 | struct rcu_data *rdp; | |
1640 | ||
1641 | for_each_rcu_flavor(rsp) { | |
fa07a58f | 1642 | rdp = raw_cpu_ptr(rsp->rda); |
b626c1b6 PM |
1643 | if (rdp->qlen_lazy != 0) { |
1644 | atomic_inc(&oom_callback_count); | |
1645 | rsp->call(&rdp->oom_head, rcu_oom_callback); | |
1646 | } | |
1647 | } | |
1648 | } | |
1649 | ||
1650 | /* | |
1651 | * If low on memory, ensure that each CPU has a non-lazy callback. | |
1652 | * This will wake up CPUs that have only lazy callbacks, in turn | |
1653 | * ensuring that they free up the corresponding memory in a timely manner. | |
1654 | * Because an uncertain amount of memory will be freed in some uncertain | |
1655 | * timeframe, we do not claim to have freed anything. | |
1656 | */ | |
1657 | static int rcu_oom_notify(struct notifier_block *self, | |
1658 | unsigned long notused, void *nfreed) | |
1659 | { | |
1660 | int cpu; | |
1661 | ||
1662 | /* Wait for callbacks from earlier instance to complete. */ | |
1663 | wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0); | |
78e4bc34 | 1664 | smp_mb(); /* Ensure callback reuse happens after callback invocation. */ |
b626c1b6 PM |
1665 | |
1666 | /* | |
1667 | * Prevent premature wakeup: ensure that all increments happen | |
1668 | * before there is a chance of the counter reaching zero. | |
1669 | */ | |
1670 | atomic_set(&oom_callback_count, 1); | |
1671 | ||
1672 | get_online_cpus(); | |
1673 | for_each_online_cpu(cpu) { | |
1674 | smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1); | |
bde6c3aa | 1675 | cond_resched_rcu_qs(); |
b626c1b6 PM |
1676 | } |
1677 | put_online_cpus(); | |
1678 | ||
1679 | /* Unconditionally decrement: no need to wake ourselves up. */ | |
1680 | atomic_dec(&oom_callback_count); | |
1681 | ||
1682 | return NOTIFY_OK; | |
1683 | } | |
1684 | ||
1685 | static struct notifier_block rcu_oom_nb = { | |
1686 | .notifier_call = rcu_oom_notify | |
1687 | }; | |
1688 | ||
1689 | static int __init rcu_register_oom_notifier(void) | |
1690 | { | |
1691 | register_oom_notifier(&rcu_oom_nb); | |
1692 | return 0; | |
1693 | } | |
1694 | early_initcall(rcu_register_oom_notifier); | |
1695 | ||
8bd93a2c | 1696 | #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */ |
a858af28 PM |
1697 | |
1698 | #ifdef CONFIG_RCU_CPU_STALL_INFO | |
1699 | ||
1700 | #ifdef CONFIG_RCU_FAST_NO_HZ | |
1701 | ||
1702 | static void print_cpu_stall_fast_no_hz(char *cp, int cpu) | |
1703 | { | |
5955f7ee | 1704 | struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); |
c0f4dfd4 | 1705 | unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap; |
a858af28 | 1706 | |
c0f4dfd4 PM |
1707 | sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c", |
1708 | rdtp->last_accelerate & 0xffff, jiffies & 0xffff, | |
1709 | ulong2long(nlpd), | |
1710 | rdtp->all_lazy ? 'L' : '.', | |
1711 | rdtp->tick_nohz_enabled_snap ? '.' : 'D'); | |
a858af28 PM |
1712 | } |
1713 | ||
1714 | #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */ | |
1715 | ||
1716 | static void print_cpu_stall_fast_no_hz(char *cp, int cpu) | |
1717 | { | |
1c17e4d4 | 1718 | *cp = '\0'; |
a858af28 PM |
1719 | } |
1720 | ||
1721 | #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */ | |
1722 | ||
1723 | /* Initiate the stall-info list. */ | |
1724 | static void print_cpu_stall_info_begin(void) | |
1725 | { | |
efc151c3 | 1726 | pr_cont("\n"); |
a858af28 PM |
1727 | } |
1728 | ||
1729 | /* | |
1730 | * Print out diagnostic information for the specified stalled CPU. | |
1731 | * | |
1732 | * If the specified CPU is aware of the current RCU grace period | |
1733 | * (flavor specified by rsp), then print the number of scheduling | |
1734 | * clock interrupts the CPU has taken during the time that it has | |
1735 | * been aware. Otherwise, print the number of RCU grace periods | |
1736 | * that this CPU is ignorant of, for example, "1" if the CPU was | |
1737 | * aware of the previous grace period. | |
1738 | * | |
1739 | * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info. | |
1740 | */ | |
1741 | static void print_cpu_stall_info(struct rcu_state *rsp, int cpu) | |
1742 | { | |
1743 | char fast_no_hz[72]; | |
1744 | struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); | |
1745 | struct rcu_dynticks *rdtp = rdp->dynticks; | |
1746 | char *ticks_title; | |
1747 | unsigned long ticks_value; | |
1748 | ||
1749 | if (rsp->gpnum == rdp->gpnum) { | |
1750 | ticks_title = "ticks this GP"; | |
1751 | ticks_value = rdp->ticks_this_gp; | |
1752 | } else { | |
1753 | ticks_title = "GPs behind"; | |
1754 | ticks_value = rsp->gpnum - rdp->gpnum; | |
1755 | } | |
1756 | print_cpu_stall_fast_no_hz(fast_no_hz, cpu); | |
fc908ed3 | 1757 | pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n", |
a858af28 PM |
1758 | cpu, ticks_value, ticks_title, |
1759 | atomic_read(&rdtp->dynticks) & 0xfff, | |
1760 | rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting, | |
6231069b | 1761 | rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu), |
7d0ae808 | 1762 | READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart, |
a858af28 PM |
1763 | fast_no_hz); |
1764 | } | |
1765 | ||
1766 | /* Terminate the stall-info list. */ | |
1767 | static void print_cpu_stall_info_end(void) | |
1768 | { | |
efc151c3 | 1769 | pr_err("\t"); |
a858af28 PM |
1770 | } |
1771 | ||
1772 | /* Zero ->ticks_this_gp for all flavors of RCU. */ | |
1773 | static void zero_cpu_stall_ticks(struct rcu_data *rdp) | |
1774 | { | |
1775 | rdp->ticks_this_gp = 0; | |
6231069b | 1776 | rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id()); |
a858af28 PM |
1777 | } |
1778 | ||
1779 | /* Increment ->ticks_this_gp for all flavors of RCU. */ | |
1780 | static void increment_cpu_stall_ticks(void) | |
1781 | { | |
115f7a7c PM |
1782 | struct rcu_state *rsp; |
1783 | ||
1784 | for_each_rcu_flavor(rsp) | |
fa07a58f | 1785 | raw_cpu_inc(rsp->rda->ticks_this_gp); |
a858af28 PM |
1786 | } |
1787 | ||
1788 | #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */ | |
1789 | ||
1790 | static void print_cpu_stall_info_begin(void) | |
1791 | { | |
efc151c3 | 1792 | pr_cont(" {"); |
a858af28 PM |
1793 | } |
1794 | ||
1795 | static void print_cpu_stall_info(struct rcu_state *rsp, int cpu) | |
1796 | { | |
efc151c3 | 1797 | pr_cont(" %d", cpu); |
a858af28 PM |
1798 | } |
1799 | ||
1800 | static void print_cpu_stall_info_end(void) | |
1801 | { | |
efc151c3 | 1802 | pr_cont("} "); |
a858af28 PM |
1803 | } |
1804 | ||
1805 | static void zero_cpu_stall_ticks(struct rcu_data *rdp) | |
1806 | { | |
1807 | } | |
1808 | ||
1809 | static void increment_cpu_stall_ticks(void) | |
1810 | { | |
1811 | } | |
1812 | ||
1813 | #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */ | |
3fbfbf7a PM |
1814 | |
1815 | #ifdef CONFIG_RCU_NOCB_CPU | |
1816 | ||
1817 | /* | |
1818 | * Offload callback processing from the boot-time-specified set of CPUs | |
1819 | * specified by rcu_nocb_mask. For each CPU in the set, there is a | |
1820 | * kthread created that pulls the callbacks from the corresponding CPU, | |
1821 | * waits for a grace period to elapse, and invokes the callbacks. | |
1822 | * The no-CBs CPUs do a wake_up() on their kthread when they insert | |
1823 | * a callback into any empty list, unless the rcu_nocb_poll boot parameter | |
1824 | * has been specified, in which case each kthread actively polls its | |
1825 | * CPU. (Which isn't so great for energy efficiency, but which does | |
1826 | * reduce RCU's overhead on that CPU.) | |
1827 | * | |
1828 | * This is intended to be used in conjunction with Frederic Weisbecker's | |
1829 | * adaptive-idle work, which would seriously reduce OS jitter on CPUs | |
1830 | * running CPU-bound user-mode computations. | |
1831 | * | |
1832 | * Offloading of callback processing could also in theory be used as | |
1833 | * an energy-efficiency measure because CPUs with no RCU callbacks | |
1834 | * queued are more aggressive about entering dyntick-idle mode. | |
1835 | */ | |
1836 | ||
1837 | ||
1838 | /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */ | |
1839 | static int __init rcu_nocb_setup(char *str) | |
1840 | { | |
1841 | alloc_bootmem_cpumask_var(&rcu_nocb_mask); | |
1842 | have_rcu_nocb_mask = true; | |
1843 | cpulist_parse(str, rcu_nocb_mask); | |
1844 | return 1; | |
1845 | } | |
1846 | __setup("rcu_nocbs=", rcu_nocb_setup); | |
1847 | ||
1b0048a4 PG |
1848 | static int __init parse_rcu_nocb_poll(char *arg) |
1849 | { | |
1850 | rcu_nocb_poll = 1; | |
1851 | return 0; | |
1852 | } | |
1853 | early_param("rcu_nocb_poll", parse_rcu_nocb_poll); | |
1854 | ||
dae6e64d | 1855 | /* |
0446be48 PM |
1856 | * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended |
1857 | * grace period. | |
dae6e64d | 1858 | */ |
0446be48 | 1859 | static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) |
dae6e64d | 1860 | { |
0446be48 | 1861 | wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]); |
dae6e64d PM |
1862 | } |
1863 | ||
1864 | /* | |
8b425aa8 | 1865 | * Set the root rcu_node structure's ->need_future_gp field |
dae6e64d PM |
1866 | * based on the sum of those of all rcu_node structures. This does |
1867 | * double-count the root rcu_node structure's requests, but this | |
1868 | * is necessary to handle the possibility of a rcu_nocb_kthread() | |
1869 | * having awakened during the time that the rcu_node structures | |
1870 | * were being updated for the end of the previous grace period. | |
34ed6246 | 1871 | */ |
dae6e64d PM |
1872 | static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq) |
1873 | { | |
8b425aa8 | 1874 | rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq; |
dae6e64d PM |
1875 | } |
1876 | ||
1877 | static void rcu_init_one_nocb(struct rcu_node *rnp) | |
34ed6246 | 1878 | { |
dae6e64d PM |
1879 | init_waitqueue_head(&rnp->nocb_gp_wq[0]); |
1880 | init_waitqueue_head(&rnp->nocb_gp_wq[1]); | |
34ed6246 PM |
1881 | } |
1882 | ||
2f33b512 | 1883 | #ifndef CONFIG_RCU_NOCB_CPU_ALL |
24342c96 | 1884 | /* Is the specified CPU a no-CBs CPU? */ |
d1e43fa5 | 1885 | bool rcu_is_nocb_cpu(int cpu) |
3fbfbf7a PM |
1886 | { |
1887 | if (have_rcu_nocb_mask) | |
1888 | return cpumask_test_cpu(cpu, rcu_nocb_mask); | |
1889 | return false; | |
1890 | } | |
2f33b512 | 1891 | #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */ |
3fbfbf7a | 1892 | |
fbce7497 PM |
1893 | /* |
1894 | * Kick the leader kthread for this NOCB group. | |
1895 | */ | |
1896 | static void wake_nocb_leader(struct rcu_data *rdp, bool force) | |
1897 | { | |
1898 | struct rcu_data *rdp_leader = rdp->nocb_leader; | |
1899 | ||
7d0ae808 | 1900 | if (!READ_ONCE(rdp_leader->nocb_kthread)) |
fbce7497 | 1901 | return; |
7d0ae808 | 1902 | if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) { |
39953dfd | 1903 | /* Prior smp_mb__after_atomic() orders against prior enqueue. */ |
7d0ae808 | 1904 | WRITE_ONCE(rdp_leader->nocb_leader_sleep, false); |
fbce7497 PM |
1905 | wake_up(&rdp_leader->nocb_wq); |
1906 | } | |
1907 | } | |
1908 | ||
d7e29933 PM |
1909 | /* |
1910 | * Does the specified CPU need an RCU callback for the specified flavor | |
1911 | * of rcu_barrier()? | |
1912 | */ | |
1913 | static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu) | |
1914 | { | |
1915 | struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); | |
41050a00 PM |
1916 | unsigned long ret; |
1917 | #ifdef CONFIG_PROVE_RCU | |
d7e29933 | 1918 | struct rcu_head *rhp; |
41050a00 | 1919 | #endif /* #ifdef CONFIG_PROVE_RCU */ |
d7e29933 | 1920 | |
41050a00 PM |
1921 | /* |
1922 | * Check count of all no-CBs callbacks awaiting invocation. | |
1923 | * There needs to be a barrier before this function is called, | |
1924 | * but associated with a prior determination that no more | |
1925 | * callbacks would be posted. In the worst case, the first | |
1926 | * barrier in _rcu_barrier() suffices (but the caller cannot | |
1927 | * necessarily rely on this, not a substitute for the caller | |
1928 | * getting the concurrency design right!). There must also be | |
1929 | * a barrier between the following load an posting of a callback | |
1930 | * (if a callback is in fact needed). This is associated with an | |
1931 | * atomic_inc() in the caller. | |
1932 | */ | |
1933 | ret = atomic_long_read(&rdp->nocb_q_count); | |
d7e29933 | 1934 | |
41050a00 | 1935 | #ifdef CONFIG_PROVE_RCU |
7d0ae808 | 1936 | rhp = READ_ONCE(rdp->nocb_head); |
d7e29933 | 1937 | if (!rhp) |
7d0ae808 | 1938 | rhp = READ_ONCE(rdp->nocb_gp_head); |
d7e29933 | 1939 | if (!rhp) |
7d0ae808 | 1940 | rhp = READ_ONCE(rdp->nocb_follower_head); |
d7e29933 PM |
1941 | |
1942 | /* Having no rcuo kthread but CBs after scheduler starts is bad! */ | |
7d0ae808 | 1943 | if (!READ_ONCE(rdp->nocb_kthread) && rhp && |
59f792d1 | 1944 | rcu_scheduler_fully_active) { |
d7e29933 PM |
1945 | /* RCU callback enqueued before CPU first came online??? */ |
1946 | pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n", | |
1947 | cpu, rhp->func); | |
1948 | WARN_ON_ONCE(1); | |
1949 | } | |
41050a00 | 1950 | #endif /* #ifdef CONFIG_PROVE_RCU */ |
d7e29933 | 1951 | |
41050a00 | 1952 | return !!ret; |
d7e29933 PM |
1953 | } |
1954 | ||
3fbfbf7a PM |
1955 | /* |
1956 | * Enqueue the specified string of rcu_head structures onto the specified | |
1957 | * CPU's no-CBs lists. The CPU is specified by rdp, the head of the | |
1958 | * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy | |
1959 | * counts are supplied by rhcount and rhcount_lazy. | |
1960 | * | |
1961 | * If warranted, also wake up the kthread servicing this CPUs queues. | |
1962 | */ | |
1963 | static void __call_rcu_nocb_enqueue(struct rcu_data *rdp, | |
1964 | struct rcu_head *rhp, | |
1965 | struct rcu_head **rhtp, | |
96d3fd0d PM |
1966 | int rhcount, int rhcount_lazy, |
1967 | unsigned long flags) | |
3fbfbf7a PM |
1968 | { |
1969 | int len; | |
1970 | struct rcu_head **old_rhpp; | |
1971 | struct task_struct *t; | |
1972 | ||
1973 | /* Enqueue the callback on the nocb list and update counts. */ | |
41050a00 PM |
1974 | atomic_long_add(rhcount, &rdp->nocb_q_count); |
1975 | /* rcu_barrier() relies on ->nocb_q_count add before xchg. */ | |
3fbfbf7a | 1976 | old_rhpp = xchg(&rdp->nocb_tail, rhtp); |
7d0ae808 | 1977 | WRITE_ONCE(*old_rhpp, rhp); |
3fbfbf7a | 1978 | atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy); |
39953dfd | 1979 | smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */ |
3fbfbf7a PM |
1980 | |
1981 | /* If we are not being polled and there is a kthread, awaken it ... */ | |
7d0ae808 | 1982 | t = READ_ONCE(rdp->nocb_kthread); |
25e03a74 | 1983 | if (rcu_nocb_poll || !t) { |
9261dd0d PM |
1984 | trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, |
1985 | TPS("WakeNotPoll")); | |
3fbfbf7a | 1986 | return; |
9261dd0d | 1987 | } |
3fbfbf7a PM |
1988 | len = atomic_long_read(&rdp->nocb_q_count); |
1989 | if (old_rhpp == &rdp->nocb_head) { | |
96d3fd0d | 1990 | if (!irqs_disabled_flags(flags)) { |
fbce7497 PM |
1991 | /* ... if queue was empty ... */ |
1992 | wake_nocb_leader(rdp, false); | |
96d3fd0d PM |
1993 | trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, |
1994 | TPS("WakeEmpty")); | |
1995 | } else { | |
9fdd3bc9 | 1996 | rdp->nocb_defer_wakeup = RCU_NOGP_WAKE; |
96d3fd0d PM |
1997 | trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, |
1998 | TPS("WakeEmptyIsDeferred")); | |
1999 | } | |
3fbfbf7a PM |
2000 | rdp->qlen_last_fqs_check = 0; |
2001 | } else if (len > rdp->qlen_last_fqs_check + qhimark) { | |
fbce7497 | 2002 | /* ... or if many callbacks queued. */ |
9fdd3bc9 PM |
2003 | if (!irqs_disabled_flags(flags)) { |
2004 | wake_nocb_leader(rdp, true); | |
2005 | trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, | |
2006 | TPS("WakeOvf")); | |
2007 | } else { | |
2008 | rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE; | |
2009 | trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, | |
2010 | TPS("WakeOvfIsDeferred")); | |
2011 | } | |
3fbfbf7a | 2012 | rdp->qlen_last_fqs_check = LONG_MAX / 2; |
9261dd0d PM |
2013 | } else { |
2014 | trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot")); | |
3fbfbf7a PM |
2015 | } |
2016 | return; | |
2017 | } | |
2018 | ||
2019 | /* | |
2020 | * This is a helper for __call_rcu(), which invokes this when the normal | |
2021 | * callback queue is inoperable. If this is not a no-CBs CPU, this | |
2022 | * function returns failure back to __call_rcu(), which can complain | |
2023 | * appropriately. | |
2024 | * | |
2025 | * Otherwise, this function queues the callback where the corresponding | |
2026 | * "rcuo" kthread can find it. | |
2027 | */ | |
2028 | static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, | |
96d3fd0d | 2029 | bool lazy, unsigned long flags) |
3fbfbf7a PM |
2030 | { |
2031 | ||
d1e43fa5 | 2032 | if (!rcu_is_nocb_cpu(rdp->cpu)) |
c271d3a9 | 2033 | return false; |
96d3fd0d | 2034 | __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags); |
21e7a608 PM |
2035 | if (__is_kfree_rcu_offset((unsigned long)rhp->func)) |
2036 | trace_rcu_kfree_callback(rdp->rsp->name, rhp, | |
2037 | (unsigned long)rhp->func, | |
756cbf6b PM |
2038 | -atomic_long_read(&rdp->nocb_q_count_lazy), |
2039 | -atomic_long_read(&rdp->nocb_q_count)); | |
21e7a608 PM |
2040 | else |
2041 | trace_rcu_callback(rdp->rsp->name, rhp, | |
756cbf6b PM |
2042 | -atomic_long_read(&rdp->nocb_q_count_lazy), |
2043 | -atomic_long_read(&rdp->nocb_q_count)); | |
1772947b PM |
2044 | |
2045 | /* | |
2046 | * If called from an extended quiescent state with interrupts | |
2047 | * disabled, invoke the RCU core in order to allow the idle-entry | |
2048 | * deferred-wakeup check to function. | |
2049 | */ | |
2050 | if (irqs_disabled_flags(flags) && | |
2051 | !rcu_is_watching() && | |
2052 | cpu_online(smp_processor_id())) | |
2053 | invoke_rcu_core(); | |
2054 | ||
c271d3a9 | 2055 | return true; |
3fbfbf7a PM |
2056 | } |
2057 | ||
2058 | /* | |
2059 | * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is | |
2060 | * not a no-CBs CPU. | |
2061 | */ | |
2062 | static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp, | |
96d3fd0d PM |
2063 | struct rcu_data *rdp, |
2064 | unsigned long flags) | |
3fbfbf7a PM |
2065 | { |
2066 | long ql = rsp->qlen; | |
2067 | long qll = rsp->qlen_lazy; | |
2068 | ||
2069 | /* If this is not a no-CBs CPU, tell the caller to do it the old way. */ | |
d1e43fa5 | 2070 | if (!rcu_is_nocb_cpu(smp_processor_id())) |
0a9e1e11 | 2071 | return false; |
3fbfbf7a PM |
2072 | rsp->qlen = 0; |
2073 | rsp->qlen_lazy = 0; | |
2074 | ||
2075 | /* First, enqueue the donelist, if any. This preserves CB ordering. */ | |
2076 | if (rsp->orphan_donelist != NULL) { | |
2077 | __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist, | |
96d3fd0d | 2078 | rsp->orphan_donetail, ql, qll, flags); |
3fbfbf7a PM |
2079 | ql = qll = 0; |
2080 | rsp->orphan_donelist = NULL; | |
2081 | rsp->orphan_donetail = &rsp->orphan_donelist; | |
2082 | } | |
2083 | if (rsp->orphan_nxtlist != NULL) { | |
2084 | __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist, | |
96d3fd0d | 2085 | rsp->orphan_nxttail, ql, qll, flags); |
3fbfbf7a PM |
2086 | ql = qll = 0; |
2087 | rsp->orphan_nxtlist = NULL; | |
2088 | rsp->orphan_nxttail = &rsp->orphan_nxtlist; | |
2089 | } | |
0a9e1e11 | 2090 | return true; |
3fbfbf7a PM |
2091 | } |
2092 | ||
2093 | /* | |
34ed6246 PM |
2094 | * If necessary, kick off a new grace period, and either way wait |
2095 | * for a subsequent grace period to complete. | |
3fbfbf7a | 2096 | */ |
34ed6246 | 2097 | static void rcu_nocb_wait_gp(struct rcu_data *rdp) |
3fbfbf7a | 2098 | { |
34ed6246 | 2099 | unsigned long c; |
dae6e64d | 2100 | bool d; |
34ed6246 | 2101 | unsigned long flags; |
48a7639c | 2102 | bool needwake; |
34ed6246 PM |
2103 | struct rcu_node *rnp = rdp->mynode; |
2104 | ||
2105 | raw_spin_lock_irqsave(&rnp->lock, flags); | |
6303b9c8 | 2106 | smp_mb__after_unlock_lock(); |
48a7639c | 2107 | needwake = rcu_start_future_gp(rnp, rdp, &c); |
0446be48 | 2108 | raw_spin_unlock_irqrestore(&rnp->lock, flags); |
48a7639c PM |
2109 | if (needwake) |
2110 | rcu_gp_kthread_wake(rdp->rsp); | |
3fbfbf7a PM |
2111 | |
2112 | /* | |
34ed6246 PM |
2113 | * Wait for the grace period. Do so interruptibly to avoid messing |
2114 | * up the load average. | |
3fbfbf7a | 2115 | */ |
f7f7bac9 | 2116 | trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait")); |
34ed6246 | 2117 | for (;;) { |
dae6e64d PM |
2118 | wait_event_interruptible( |
2119 | rnp->nocb_gp_wq[c & 0x1], | |
7d0ae808 | 2120 | (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c))); |
dae6e64d | 2121 | if (likely(d)) |
34ed6246 | 2122 | break; |
73a860cd | 2123 | WARN_ON(signal_pending(current)); |
f7f7bac9 | 2124 | trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait")); |
34ed6246 | 2125 | } |
f7f7bac9 | 2126 | trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait")); |
34ed6246 | 2127 | smp_mb(); /* Ensure that CB invocation happens after GP end. */ |
3fbfbf7a PM |
2128 | } |
2129 | ||
fbce7497 PM |
2130 | /* |
2131 | * Leaders come here to wait for additional callbacks to show up. | |
2132 | * This function does not return until callbacks appear. | |
2133 | */ | |
2134 | static void nocb_leader_wait(struct rcu_data *my_rdp) | |
2135 | { | |
2136 | bool firsttime = true; | |
2137 | bool gotcbs; | |
2138 | struct rcu_data *rdp; | |
2139 | struct rcu_head **tail; | |
2140 | ||
2141 | wait_again: | |
2142 | ||
2143 | /* Wait for callbacks to appear. */ | |
2144 | if (!rcu_nocb_poll) { | |
2145 | trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep"); | |
2146 | wait_event_interruptible(my_rdp->nocb_wq, | |
7d0ae808 | 2147 | !READ_ONCE(my_rdp->nocb_leader_sleep)); |
fbce7497 PM |
2148 | /* Memory barrier handled by smp_mb() calls below and repoll. */ |
2149 | } else if (firsttime) { | |
2150 | firsttime = false; /* Don't drown trace log with "Poll"! */ | |
2151 | trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll"); | |
2152 | } | |
2153 | ||
2154 | /* | |
2155 | * Each pass through the following loop checks a follower for CBs. | |
2156 | * We are our own first follower. Any CBs found are moved to | |
2157 | * nocb_gp_head, where they await a grace period. | |
2158 | */ | |
2159 | gotcbs = false; | |
2160 | for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) { | |
7d0ae808 | 2161 | rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head); |
fbce7497 PM |
2162 | if (!rdp->nocb_gp_head) |
2163 | continue; /* No CBs here, try next follower. */ | |
2164 | ||
2165 | /* Move callbacks to wait-for-GP list, which is empty. */ | |
7d0ae808 | 2166 | WRITE_ONCE(rdp->nocb_head, NULL); |
fbce7497 | 2167 | rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head); |
fbce7497 PM |
2168 | gotcbs = true; |
2169 | } | |
2170 | ||
2171 | /* | |
2172 | * If there were no callbacks, sleep a bit, rescan after a | |
2173 | * memory barrier, and go retry. | |
2174 | */ | |
2175 | if (unlikely(!gotcbs)) { | |
2176 | if (!rcu_nocb_poll) | |
2177 | trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, | |
2178 | "WokeEmpty"); | |
73a860cd | 2179 | WARN_ON(signal_pending(current)); |
fbce7497 PM |
2180 | schedule_timeout_interruptible(1); |
2181 | ||
2182 | /* Rescan in case we were a victim of memory ordering. */ | |
11ed7f93 PK |
2183 | my_rdp->nocb_leader_sleep = true; |
2184 | smp_mb(); /* Ensure _sleep true before scan. */ | |
fbce7497 | 2185 | for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) |
7d0ae808 | 2186 | if (READ_ONCE(rdp->nocb_head)) { |
fbce7497 | 2187 | /* Found CB, so short-circuit next wait. */ |
11ed7f93 | 2188 | my_rdp->nocb_leader_sleep = false; |
fbce7497 PM |
2189 | break; |
2190 | } | |
2191 | goto wait_again; | |
2192 | } | |
2193 | ||
2194 | /* Wait for one grace period. */ | |
2195 | rcu_nocb_wait_gp(my_rdp); | |
2196 | ||
2197 | /* | |
11ed7f93 PK |
2198 | * We left ->nocb_leader_sleep unset to reduce cache thrashing. |
2199 | * We set it now, but recheck for new callbacks while | |
fbce7497 PM |
2200 | * traversing our follower list. |
2201 | */ | |
11ed7f93 PK |
2202 | my_rdp->nocb_leader_sleep = true; |
2203 | smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */ | |
fbce7497 PM |
2204 | |
2205 | /* Each pass through the following loop wakes a follower, if needed. */ | |
2206 | for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) { | |
7d0ae808 | 2207 | if (READ_ONCE(rdp->nocb_head)) |
11ed7f93 | 2208 | my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/ |
fbce7497 PM |
2209 | if (!rdp->nocb_gp_head) |
2210 | continue; /* No CBs, so no need to wake follower. */ | |
2211 | ||
2212 | /* Append callbacks to follower's "done" list. */ | |
2213 | tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail); | |
2214 | *tail = rdp->nocb_gp_head; | |
c847f142 | 2215 | smp_mb__after_atomic(); /* Store *tail before wakeup. */ |
fbce7497 PM |
2216 | if (rdp != my_rdp && tail == &rdp->nocb_follower_head) { |
2217 | /* | |
2218 | * List was empty, wake up the follower. | |
2219 | * Memory barriers supplied by atomic_long_add(). | |
2220 | */ | |
2221 | wake_up(&rdp->nocb_wq); | |
2222 | } | |
2223 | } | |
2224 | ||
2225 | /* If we (the leader) don't have CBs, go wait some more. */ | |
2226 | if (!my_rdp->nocb_follower_head) | |
2227 | goto wait_again; | |
2228 | } | |
2229 | ||
2230 | /* | |
2231 | * Followers come here to wait for additional callbacks to show up. | |
2232 | * This function does not return until callbacks appear. | |
2233 | */ | |
2234 | static void nocb_follower_wait(struct rcu_data *rdp) | |
2235 | { | |
2236 | bool firsttime = true; | |
2237 | ||
2238 | for (;;) { | |
2239 | if (!rcu_nocb_poll) { | |
2240 | trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, | |
2241 | "FollowerSleep"); | |
2242 | wait_event_interruptible(rdp->nocb_wq, | |
7d0ae808 | 2243 | READ_ONCE(rdp->nocb_follower_head)); |
fbce7497 PM |
2244 | } else if (firsttime) { |
2245 | /* Don't drown trace log with "Poll"! */ | |
2246 | firsttime = false; | |
2247 | trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll"); | |
2248 | } | |
2249 | if (smp_load_acquire(&rdp->nocb_follower_head)) { | |
2250 | /* ^^^ Ensure CB invocation follows _head test. */ | |
2251 | return; | |
2252 | } | |
2253 | if (!rcu_nocb_poll) | |
2254 | trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, | |
2255 | "WokeEmpty"); | |
73a860cd | 2256 | WARN_ON(signal_pending(current)); |
fbce7497 PM |
2257 | schedule_timeout_interruptible(1); |
2258 | } | |
2259 | } | |
2260 | ||
3fbfbf7a PM |
2261 | /* |
2262 | * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes | |
fbce7497 PM |
2263 | * callbacks queued by the corresponding no-CBs CPU, however, there is |
2264 | * an optional leader-follower relationship so that the grace-period | |
2265 | * kthreads don't have to do quite so many wakeups. | |
3fbfbf7a PM |
2266 | */ |
2267 | static int rcu_nocb_kthread(void *arg) | |
2268 | { | |
2269 | int c, cl; | |
2270 | struct rcu_head *list; | |
2271 | struct rcu_head *next; | |
2272 | struct rcu_head **tail; | |
2273 | struct rcu_data *rdp = arg; | |
2274 | ||
2275 | /* Each pass through this loop invokes one batch of callbacks */ | |
2276 | for (;;) { | |
fbce7497 PM |
2277 | /* Wait for callbacks. */ |
2278 | if (rdp->nocb_leader == rdp) | |
2279 | nocb_leader_wait(rdp); | |
2280 | else | |
2281 | nocb_follower_wait(rdp); | |
2282 | ||
2283 | /* Pull the ready-to-invoke callbacks onto local list. */ | |
7d0ae808 | 2284 | list = READ_ONCE(rdp->nocb_follower_head); |
fbce7497 PM |
2285 | BUG_ON(!list); |
2286 | trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty"); | |
7d0ae808 | 2287 | WRITE_ONCE(rdp->nocb_follower_head, NULL); |
fbce7497 | 2288 | tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head); |
3fbfbf7a PM |
2289 | |
2290 | /* Each pass through the following loop invokes a callback. */ | |
41050a00 PM |
2291 | trace_rcu_batch_start(rdp->rsp->name, |
2292 | atomic_long_read(&rdp->nocb_q_count_lazy), | |
2293 | atomic_long_read(&rdp->nocb_q_count), -1); | |
3fbfbf7a PM |
2294 | c = cl = 0; |
2295 | while (list) { | |
2296 | next = list->next; | |
2297 | /* Wait for enqueuing to complete, if needed. */ | |
2298 | while (next == NULL && &list->next != tail) { | |
69a79bb1 PM |
2299 | trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, |
2300 | TPS("WaitQueue")); | |
3fbfbf7a | 2301 | schedule_timeout_interruptible(1); |
69a79bb1 PM |
2302 | trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, |
2303 | TPS("WokeQueue")); | |
3fbfbf7a PM |
2304 | next = list->next; |
2305 | } | |
2306 | debug_rcu_head_unqueue(list); | |
2307 | local_bh_disable(); | |
2308 | if (__rcu_reclaim(rdp->rsp->name, list)) | |
2309 | cl++; | |
2310 | c++; | |
2311 | local_bh_enable(); | |
2312 | list = next; | |
2313 | } | |
2314 | trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1); | |
41050a00 PM |
2315 | smp_mb__before_atomic(); /* _add after CB invocation. */ |
2316 | atomic_long_add(-c, &rdp->nocb_q_count); | |
2317 | atomic_long_add(-cl, &rdp->nocb_q_count_lazy); | |
c635a4e1 | 2318 | rdp->n_nocbs_invoked += c; |
3fbfbf7a PM |
2319 | } |
2320 | return 0; | |
2321 | } | |
2322 | ||
96d3fd0d | 2323 | /* Is a deferred wakeup of rcu_nocb_kthread() required? */ |
9fdd3bc9 | 2324 | static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) |
96d3fd0d | 2325 | { |
7d0ae808 | 2326 | return READ_ONCE(rdp->nocb_defer_wakeup); |
96d3fd0d PM |
2327 | } |
2328 | ||
2329 | /* Do a deferred wakeup of rcu_nocb_kthread(). */ | |
2330 | static void do_nocb_deferred_wakeup(struct rcu_data *rdp) | |
2331 | { | |
9fdd3bc9 PM |
2332 | int ndw; |
2333 | ||
96d3fd0d PM |
2334 | if (!rcu_nocb_need_deferred_wakeup(rdp)) |
2335 | return; | |
7d0ae808 PM |
2336 | ndw = READ_ONCE(rdp->nocb_defer_wakeup); |
2337 | WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT); | |
9fdd3bc9 PM |
2338 | wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE); |
2339 | trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake")); | |
96d3fd0d PM |
2340 | } |
2341 | ||
f4579fc5 PM |
2342 | void __init rcu_init_nohz(void) |
2343 | { | |
2344 | int cpu; | |
2345 | bool need_rcu_nocb_mask = true; | |
2346 | struct rcu_state *rsp; | |
2347 | ||
2348 | #ifdef CONFIG_RCU_NOCB_CPU_NONE | |
2349 | need_rcu_nocb_mask = false; | |
2350 | #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */ | |
2351 | ||
2352 | #if defined(CONFIG_NO_HZ_FULL) | |
2353 | if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask)) | |
2354 | need_rcu_nocb_mask = true; | |
2355 | #endif /* #if defined(CONFIG_NO_HZ_FULL) */ | |
2356 | ||
2357 | if (!have_rcu_nocb_mask && need_rcu_nocb_mask) { | |
949cccdb PK |
2358 | if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) { |
2359 | pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n"); | |
2360 | return; | |
2361 | } | |
f4579fc5 PM |
2362 | have_rcu_nocb_mask = true; |
2363 | } | |
2364 | if (!have_rcu_nocb_mask) | |
2365 | return; | |
2366 | ||
2367 | #ifdef CONFIG_RCU_NOCB_CPU_ZERO | |
2368 | pr_info("\tOffload RCU callbacks from CPU 0\n"); | |
2369 | cpumask_set_cpu(0, rcu_nocb_mask); | |
2370 | #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */ | |
2371 | #ifdef CONFIG_RCU_NOCB_CPU_ALL | |
2372 | pr_info("\tOffload RCU callbacks from all CPUs\n"); | |
2373 | cpumask_copy(rcu_nocb_mask, cpu_possible_mask); | |
2374 | #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */ | |
2375 | #if defined(CONFIG_NO_HZ_FULL) | |
2376 | if (tick_nohz_full_running) | |
2377 | cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask); | |
2378 | #endif /* #if defined(CONFIG_NO_HZ_FULL) */ | |
2379 | ||
2380 | if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { | |
2381 | pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n"); | |
2382 | cpumask_and(rcu_nocb_mask, cpu_possible_mask, | |
2383 | rcu_nocb_mask); | |
2384 | } | |
ad853b48 TH |
2385 | pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n", |
2386 | cpumask_pr_args(rcu_nocb_mask)); | |
f4579fc5 PM |
2387 | if (rcu_nocb_poll) |
2388 | pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); | |
2389 | ||
2390 | for_each_rcu_flavor(rsp) { | |
34404ca8 PM |
2391 | for_each_cpu(cpu, rcu_nocb_mask) |
2392 | init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu)); | |
35ce7f29 | 2393 | rcu_organize_nocb_kthreads(rsp); |
f4579fc5 | 2394 | } |
96d3fd0d PM |
2395 | } |
2396 | ||
3fbfbf7a PM |
2397 | /* Initialize per-rcu_data variables for no-CBs CPUs. */ |
2398 | static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) | |
2399 | { | |
2400 | rdp->nocb_tail = &rdp->nocb_head; | |
2401 | init_waitqueue_head(&rdp->nocb_wq); | |
fbce7497 | 2402 | rdp->nocb_follower_tail = &rdp->nocb_follower_head; |
3fbfbf7a PM |
2403 | } |
2404 | ||
35ce7f29 PM |
2405 | /* |
2406 | * If the specified CPU is a no-CBs CPU that does not already have its | |
2407 | * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are | |
2408 | * brought online out of order, this can require re-organizing the | |
2409 | * leader-follower relationships. | |
2410 | */ | |
2411 | static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu) | |
2412 | { | |
2413 | struct rcu_data *rdp; | |
2414 | struct rcu_data *rdp_last; | |
2415 | struct rcu_data *rdp_old_leader; | |
2416 | struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu); | |
2417 | struct task_struct *t; | |
2418 | ||
2419 | /* | |
2420 | * If this isn't a no-CBs CPU or if it already has an rcuo kthread, | |
2421 | * then nothing to do. | |
2422 | */ | |
2423 | if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread) | |
2424 | return; | |
2425 | ||
2426 | /* If we didn't spawn the leader first, reorganize! */ | |
2427 | rdp_old_leader = rdp_spawn->nocb_leader; | |
2428 | if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) { | |
2429 | rdp_last = NULL; | |
2430 | rdp = rdp_old_leader; | |
2431 | do { | |
2432 | rdp->nocb_leader = rdp_spawn; | |
2433 | if (rdp_last && rdp != rdp_spawn) | |
2434 | rdp_last->nocb_next_follower = rdp; | |
bbe5d7a9 PM |
2435 | if (rdp == rdp_spawn) { |
2436 | rdp = rdp->nocb_next_follower; | |
2437 | } else { | |
2438 | rdp_last = rdp; | |
2439 | rdp = rdp->nocb_next_follower; | |
2440 | rdp_last->nocb_next_follower = NULL; | |
2441 | } | |
35ce7f29 PM |
2442 | } while (rdp); |
2443 | rdp_spawn->nocb_next_follower = rdp_old_leader; | |
2444 | } | |
2445 | ||
2446 | /* Spawn the kthread for this CPU and RCU flavor. */ | |
2447 | t = kthread_run(rcu_nocb_kthread, rdp_spawn, | |
2448 | "rcuo%c/%d", rsp->abbr, cpu); | |
2449 | BUG_ON(IS_ERR(t)); | |
7d0ae808 | 2450 | WRITE_ONCE(rdp_spawn->nocb_kthread, t); |
35ce7f29 PM |
2451 | } |
2452 | ||
2453 | /* | |
2454 | * If the specified CPU is a no-CBs CPU that does not already have its | |
2455 | * rcuo kthreads, spawn them. | |
2456 | */ | |
2457 | static void rcu_spawn_all_nocb_kthreads(int cpu) | |
2458 | { | |
2459 | struct rcu_state *rsp; | |
2460 | ||
2461 | if (rcu_scheduler_fully_active) | |
2462 | for_each_rcu_flavor(rsp) | |
2463 | rcu_spawn_one_nocb_kthread(rsp, cpu); | |
2464 | } | |
2465 | ||
2466 | /* | |
2467 | * Once the scheduler is running, spawn rcuo kthreads for all online | |
2468 | * no-CBs CPUs. This assumes that the early_initcall()s happen before | |
2469 | * non-boot CPUs come online -- if this changes, we will need to add | |
2470 | * some mutual exclusion. | |
2471 | */ | |
2472 | static void __init rcu_spawn_nocb_kthreads(void) | |
2473 | { | |
2474 | int cpu; | |
2475 | ||
2476 | for_each_online_cpu(cpu) | |
2477 | rcu_spawn_all_nocb_kthreads(cpu); | |
2478 | } | |
2479 | ||
fbce7497 PM |
2480 | /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */ |
2481 | static int rcu_nocb_leader_stride = -1; | |
2482 | module_param(rcu_nocb_leader_stride, int, 0444); | |
2483 | ||
2484 | /* | |
35ce7f29 | 2485 | * Initialize leader-follower relationships for all no-CBs CPU. |
fbce7497 | 2486 | */ |
35ce7f29 | 2487 | static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp) |
3fbfbf7a PM |
2488 | { |
2489 | int cpu; | |
fbce7497 PM |
2490 | int ls = rcu_nocb_leader_stride; |
2491 | int nl = 0; /* Next leader. */ | |
3fbfbf7a | 2492 | struct rcu_data *rdp; |
fbce7497 PM |
2493 | struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */ |
2494 | struct rcu_data *rdp_prev = NULL; | |
3fbfbf7a | 2495 | |
22c2f669 | 2496 | if (!have_rcu_nocb_mask) |
3fbfbf7a | 2497 | return; |
fbce7497 PM |
2498 | if (ls == -1) { |
2499 | ls = int_sqrt(nr_cpu_ids); | |
2500 | rcu_nocb_leader_stride = ls; | |
2501 | } | |
2502 | ||
2503 | /* | |
2504 | * Each pass through this loop sets up one rcu_data structure and | |
2505 | * spawns one rcu_nocb_kthread(). | |
2506 | */ | |
3fbfbf7a PM |
2507 | for_each_cpu(cpu, rcu_nocb_mask) { |
2508 | rdp = per_cpu_ptr(rsp->rda, cpu); | |
fbce7497 PM |
2509 | if (rdp->cpu >= nl) { |
2510 | /* New leader, set up for followers & next leader. */ | |
2511 | nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls; | |
2512 | rdp->nocb_leader = rdp; | |
2513 | rdp_leader = rdp; | |
2514 | } else { | |
2515 | /* Another follower, link to previous leader. */ | |
2516 | rdp->nocb_leader = rdp_leader; | |
2517 | rdp_prev->nocb_next_follower = rdp; | |
2518 | } | |
2519 | rdp_prev = rdp; | |
3fbfbf7a PM |
2520 | } |
2521 | } | |
2522 | ||
2523 | /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */ | |
34ed6246 | 2524 | static bool init_nocb_callback_list(struct rcu_data *rdp) |
3fbfbf7a | 2525 | { |
22c2f669 | 2526 | if (!rcu_is_nocb_cpu(rdp->cpu)) |
34ed6246 | 2527 | return false; |
22c2f669 | 2528 | |
34404ca8 PM |
2529 | /* If there are early-boot callbacks, move them to nocb lists. */ |
2530 | if (rdp->nxtlist) { | |
2531 | rdp->nocb_head = rdp->nxtlist; | |
2532 | rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL]; | |
2533 | atomic_long_set(&rdp->nocb_q_count, rdp->qlen); | |
2534 | atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy); | |
2535 | rdp->nxtlist = NULL; | |
2536 | rdp->qlen = 0; | |
2537 | rdp->qlen_lazy = 0; | |
2538 | } | |
3fbfbf7a | 2539 | rdp->nxttail[RCU_NEXT_TAIL] = NULL; |
34ed6246 | 2540 | return true; |
3fbfbf7a PM |
2541 | } |
2542 | ||
34ed6246 PM |
2543 | #else /* #ifdef CONFIG_RCU_NOCB_CPU */ |
2544 | ||
d7e29933 PM |
2545 | static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu) |
2546 | { | |
2547 | WARN_ON_ONCE(1); /* Should be dead code. */ | |
2548 | return false; | |
2549 | } | |
2550 | ||
0446be48 | 2551 | static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) |
3fbfbf7a | 2552 | { |
3fbfbf7a PM |
2553 | } |
2554 | ||
dae6e64d PM |
2555 | static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq) |
2556 | { | |
2557 | } | |
2558 | ||
2559 | static void rcu_init_one_nocb(struct rcu_node *rnp) | |
2560 | { | |
2561 | } | |
3fbfbf7a | 2562 | |
3fbfbf7a | 2563 | static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, |
96d3fd0d | 2564 | bool lazy, unsigned long flags) |
3fbfbf7a | 2565 | { |
4afc7e26 | 2566 | return false; |
3fbfbf7a PM |
2567 | } |
2568 | ||
2569 | static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp, | |
96d3fd0d PM |
2570 | struct rcu_data *rdp, |
2571 | unsigned long flags) | |
3fbfbf7a | 2572 | { |
f4aa84ba | 2573 | return false; |
3fbfbf7a PM |
2574 | } |
2575 | ||
3fbfbf7a PM |
2576 | static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) |
2577 | { | |
2578 | } | |
2579 | ||
9fdd3bc9 | 2580 | static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) |
96d3fd0d PM |
2581 | { |
2582 | return false; | |
2583 | } | |
2584 | ||
2585 | static void do_nocb_deferred_wakeup(struct rcu_data *rdp) | |
2586 | { | |
2587 | } | |
2588 | ||
35ce7f29 PM |
2589 | static void rcu_spawn_all_nocb_kthreads(int cpu) |
2590 | { | |
2591 | } | |
2592 | ||
2593 | static void __init rcu_spawn_nocb_kthreads(void) | |
3fbfbf7a PM |
2594 | { |
2595 | } | |
2596 | ||
34ed6246 | 2597 | static bool init_nocb_callback_list(struct rcu_data *rdp) |
3fbfbf7a | 2598 | { |
34ed6246 | 2599 | return false; |
3fbfbf7a PM |
2600 | } |
2601 | ||
2602 | #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ | |
65d798f0 PM |
2603 | |
2604 | /* | |
2605 | * An adaptive-ticks CPU can potentially execute in kernel mode for an | |
2606 | * arbitrarily long period of time with the scheduling-clock tick turned | |
2607 | * off. RCU will be paying attention to this CPU because it is in the | |
2608 | * kernel, but the CPU cannot be guaranteed to be executing the RCU state | |
2609 | * machine because the scheduling-clock tick has been disabled. Therefore, | |
2610 | * if an adaptive-ticks CPU is failing to respond to the current grace | |
2611 | * period and has not be idle from an RCU perspective, kick it. | |
2612 | */ | |
4a81e832 | 2613 | static void __maybe_unused rcu_kick_nohz_cpu(int cpu) |
65d798f0 PM |
2614 | { |
2615 | #ifdef CONFIG_NO_HZ_FULL | |
2616 | if (tick_nohz_full_cpu(cpu)) | |
2617 | smp_send_reschedule(cpu); | |
2618 | #endif /* #ifdef CONFIG_NO_HZ_FULL */ | |
2619 | } | |
2333210b PM |
2620 | |
2621 | ||
2622 | #ifdef CONFIG_NO_HZ_FULL_SYSIDLE | |
2623 | ||
0edd1b17 | 2624 | static int full_sysidle_state; /* Current system-idle state. */ |
d4bd54fb PM |
2625 | #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */ |
2626 | #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */ | |
2627 | #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */ | |
2628 | #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */ | |
2629 | #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */ | |
2630 | ||
eb348b89 PM |
2631 | /* |
2632 | * Invoked to note exit from irq or task transition to idle. Note that | |
2633 | * usermode execution does -not- count as idle here! After all, we want | |
2634 | * to detect full-system idle states, not RCU quiescent states and grace | |
2635 | * periods. The caller must have disabled interrupts. | |
2636 | */ | |
28ced795 | 2637 | static void rcu_sysidle_enter(int irq) |
eb348b89 PM |
2638 | { |
2639 | unsigned long j; | |
28ced795 | 2640 | struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); |
eb348b89 | 2641 | |
663e1310 PM |
2642 | /* If there are no nohz_full= CPUs, no need to track this. */ |
2643 | if (!tick_nohz_full_enabled()) | |
2644 | return; | |
2645 | ||
eb348b89 PM |
2646 | /* Adjust nesting, check for fully idle. */ |
2647 | if (irq) { | |
2648 | rdtp->dynticks_idle_nesting--; | |
2649 | WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0); | |
2650 | if (rdtp->dynticks_idle_nesting != 0) | |
2651 | return; /* Still not fully idle. */ | |
2652 | } else { | |
2653 | if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) == | |
2654 | DYNTICK_TASK_NEST_VALUE) { | |
2655 | rdtp->dynticks_idle_nesting = 0; | |
2656 | } else { | |
2657 | rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE; | |
2658 | WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0); | |
2659 | return; /* Still not fully idle. */ | |
2660 | } | |
2661 | } | |
2662 | ||
2663 | /* Record start of fully idle period. */ | |
2664 | j = jiffies; | |
7d0ae808 | 2665 | WRITE_ONCE(rdtp->dynticks_idle_jiffies, j); |
4e857c58 | 2666 | smp_mb__before_atomic(); |
eb348b89 | 2667 | atomic_inc(&rdtp->dynticks_idle); |
4e857c58 | 2668 | smp_mb__after_atomic(); |
eb348b89 PM |
2669 | WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1); |
2670 | } | |
2671 | ||
0edd1b17 PM |
2672 | /* |
2673 | * Unconditionally force exit from full system-idle state. This is | |
2674 | * invoked when a normal CPU exits idle, but must be called separately | |
2675 | * for the timekeeping CPU (tick_do_timer_cpu). The reason for this | |
2676 | * is that the timekeeping CPU is permitted to take scheduling-clock | |
2677 | * interrupts while the system is in system-idle state, and of course | |
2678 | * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock | |
2679 | * interrupt from any other type of interrupt. | |
2680 | */ | |
2681 | void rcu_sysidle_force_exit(void) | |
2682 | { | |
7d0ae808 | 2683 | int oldstate = READ_ONCE(full_sysidle_state); |
0edd1b17 PM |
2684 | int newoldstate; |
2685 | ||
2686 | /* | |
2687 | * Each pass through the following loop attempts to exit full | |
2688 | * system-idle state. If contention proves to be a problem, | |
2689 | * a trylock-based contention tree could be used here. | |
2690 | */ | |
2691 | while (oldstate > RCU_SYSIDLE_SHORT) { | |
2692 | newoldstate = cmpxchg(&full_sysidle_state, | |
2693 | oldstate, RCU_SYSIDLE_NOT); | |
2694 | if (oldstate == newoldstate && | |
2695 | oldstate == RCU_SYSIDLE_FULL_NOTED) { | |
2696 | rcu_kick_nohz_cpu(tick_do_timer_cpu); | |
2697 | return; /* We cleared it, done! */ | |
2698 | } | |
2699 | oldstate = newoldstate; | |
2700 | } | |
2701 | smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */ | |
2702 | } | |
2703 | ||
eb348b89 PM |
2704 | /* |
2705 | * Invoked to note entry to irq or task transition from idle. Note that | |
2706 | * usermode execution does -not- count as idle here! The caller must | |
2707 | * have disabled interrupts. | |
2708 | */ | |
28ced795 | 2709 | static void rcu_sysidle_exit(int irq) |
eb348b89 | 2710 | { |
28ced795 CL |
2711 | struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); |
2712 | ||
663e1310 PM |
2713 | /* If there are no nohz_full= CPUs, no need to track this. */ |
2714 | if (!tick_nohz_full_enabled()) | |
2715 | return; | |
2716 | ||
eb348b89 PM |
2717 | /* Adjust nesting, check for already non-idle. */ |
2718 | if (irq) { | |
2719 | rdtp->dynticks_idle_nesting++; | |
2720 | WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0); | |
2721 | if (rdtp->dynticks_idle_nesting != 1) | |
2722 | return; /* Already non-idle. */ | |
2723 | } else { | |
2724 | /* | |
2725 | * Allow for irq misnesting. Yes, it really is possible | |
2726 | * to enter an irq handler then never leave it, and maybe | |
2727 | * also vice versa. Handle both possibilities. | |
2728 | */ | |
2729 | if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) { | |
2730 | rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE; | |
2731 | WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0); | |
2732 | return; /* Already non-idle. */ | |
2733 | } else { | |
2734 | rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE; | |
2735 | } | |
2736 | } | |
2737 | ||
2738 | /* Record end of idle period. */ | |
4e857c58 | 2739 | smp_mb__before_atomic(); |
eb348b89 | 2740 | atomic_inc(&rdtp->dynticks_idle); |
4e857c58 | 2741 | smp_mb__after_atomic(); |
eb348b89 | 2742 | WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1)); |
0edd1b17 PM |
2743 | |
2744 | /* | |
2745 | * If we are the timekeeping CPU, we are permitted to be non-idle | |
2746 | * during a system-idle state. This must be the case, because | |
2747 | * the timekeeping CPU has to take scheduling-clock interrupts | |
2748 | * during the time that the system is transitioning to full | |
2749 | * system-idle state. This means that the timekeeping CPU must | |
2750 | * invoke rcu_sysidle_force_exit() directly if it does anything | |
2751 | * more than take a scheduling-clock interrupt. | |
2752 | */ | |
2753 | if (smp_processor_id() == tick_do_timer_cpu) | |
2754 | return; | |
2755 | ||
2756 | /* Update system-idle state: We are clearly no longer fully idle! */ | |
2757 | rcu_sysidle_force_exit(); | |
2758 | } | |
2759 | ||
2760 | /* | |
2761 | * Check to see if the current CPU is idle. Note that usermode execution | |
5871968d PM |
2762 | * does not count as idle. The caller must have disabled interrupts, |
2763 | * and must be running on tick_do_timer_cpu. | |
0edd1b17 PM |
2764 | */ |
2765 | static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle, | |
2766 | unsigned long *maxj) | |
2767 | { | |
2768 | int cur; | |
2769 | unsigned long j; | |
2770 | struct rcu_dynticks *rdtp = rdp->dynticks; | |
2771 | ||
663e1310 PM |
2772 | /* If there are no nohz_full= CPUs, don't check system-wide idleness. */ |
2773 | if (!tick_nohz_full_enabled()) | |
2774 | return; | |
2775 | ||
0edd1b17 PM |
2776 | /* |
2777 | * If some other CPU has already reported non-idle, if this is | |
2778 | * not the flavor of RCU that tracks sysidle state, or if this | |
2779 | * is an offline or the timekeeping CPU, nothing to do. | |
2780 | */ | |
417e8d26 | 2781 | if (!*isidle || rdp->rsp != rcu_state_p || |
0edd1b17 PM |
2782 | cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu) |
2783 | return; | |
5871968d PM |
2784 | /* Verify affinity of current kthread. */ |
2785 | WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu); | |
0edd1b17 PM |
2786 | |
2787 | /* Pick up current idle and NMI-nesting counter and check. */ | |
2788 | cur = atomic_read(&rdtp->dynticks_idle); | |
2789 | if (cur & 0x1) { | |
2790 | *isidle = false; /* We are not idle! */ | |
2791 | return; | |
2792 | } | |
2793 | smp_mb(); /* Read counters before timestamps. */ | |
2794 | ||
2795 | /* Pick up timestamps. */ | |
7d0ae808 | 2796 | j = READ_ONCE(rdtp->dynticks_idle_jiffies); |
0edd1b17 PM |
2797 | /* If this CPU entered idle more recently, update maxj timestamp. */ |
2798 | if (ULONG_CMP_LT(*maxj, j)) | |
2799 | *maxj = j; | |
2800 | } | |
2801 | ||
2802 | /* | |
2803 | * Is this the flavor of RCU that is handling full-system idle? | |
2804 | */ | |
2805 | static bool is_sysidle_rcu_state(struct rcu_state *rsp) | |
2806 | { | |
417e8d26 | 2807 | return rsp == rcu_state_p; |
0edd1b17 PM |
2808 | } |
2809 | ||
2810 | /* | |
2811 | * Return a delay in jiffies based on the number of CPUs, rcu_node | |
2812 | * leaf fanout, and jiffies tick rate. The idea is to allow larger | |
2813 | * systems more time to transition to full-idle state in order to | |
2814 | * avoid the cache thrashing that otherwise occur on the state variable. | |
2815 | * Really small systems (less than a couple of tens of CPUs) should | |
2816 | * instead use a single global atomically incremented counter, and later | |
2817 | * versions of this will automatically reconfigure themselves accordingly. | |
2818 | */ | |
2819 | static unsigned long rcu_sysidle_delay(void) | |
2820 | { | |
2821 | if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) | |
2822 | return 0; | |
2823 | return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000); | |
2824 | } | |
2825 | ||
2826 | /* | |
2827 | * Advance the full-system-idle state. This is invoked when all of | |
2828 | * the non-timekeeping CPUs are idle. | |
2829 | */ | |
2830 | static void rcu_sysidle(unsigned long j) | |
2831 | { | |
2832 | /* Check the current state. */ | |
7d0ae808 | 2833 | switch (READ_ONCE(full_sysidle_state)) { |
0edd1b17 PM |
2834 | case RCU_SYSIDLE_NOT: |
2835 | ||
2836 | /* First time all are idle, so note a short idle period. */ | |
7d0ae808 | 2837 | WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT); |
0edd1b17 PM |
2838 | break; |
2839 | ||
2840 | case RCU_SYSIDLE_SHORT: | |
2841 | ||
2842 | /* | |
2843 | * Idle for a bit, time to advance to next state? | |
2844 | * cmpxchg failure means race with non-idle, let them win. | |
2845 | */ | |
2846 | if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay())) | |
2847 | (void)cmpxchg(&full_sysidle_state, | |
2848 | RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG); | |
2849 | break; | |
2850 | ||
2851 | case RCU_SYSIDLE_LONG: | |
2852 | ||
2853 | /* | |
2854 | * Do an additional check pass before advancing to full. | |
2855 | * cmpxchg failure means race with non-idle, let them win. | |
2856 | */ | |
2857 | if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay())) | |
2858 | (void)cmpxchg(&full_sysidle_state, | |
2859 | RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL); | |
2860 | break; | |
2861 | ||
2862 | default: | |
2863 | break; | |
2864 | } | |
2865 | } | |
2866 | ||
2867 | /* | |
2868 | * Found a non-idle non-timekeeping CPU, so kick the system-idle state | |
2869 | * back to the beginning. | |
2870 | */ | |
2871 | static void rcu_sysidle_cancel(void) | |
2872 | { | |
2873 | smp_mb(); | |
becb41bf | 2874 | if (full_sysidle_state > RCU_SYSIDLE_SHORT) |
7d0ae808 | 2875 | WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT); |
0edd1b17 PM |
2876 | } |
2877 | ||
2878 | /* | |
2879 | * Update the sysidle state based on the results of a force-quiescent-state | |
2880 | * scan of the CPUs' dyntick-idle state. | |
2881 | */ | |
2882 | static void rcu_sysidle_report(struct rcu_state *rsp, int isidle, | |
2883 | unsigned long maxj, bool gpkt) | |
2884 | { | |
417e8d26 | 2885 | if (rsp != rcu_state_p) |
0edd1b17 PM |
2886 | return; /* Wrong flavor, ignore. */ |
2887 | if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) | |
2888 | return; /* Running state machine from timekeeping CPU. */ | |
2889 | if (isidle) | |
2890 | rcu_sysidle(maxj); /* More idle! */ | |
2891 | else | |
2892 | rcu_sysidle_cancel(); /* Idle is over. */ | |
2893 | } | |
2894 | ||
2895 | /* | |
2896 | * Wrapper for rcu_sysidle_report() when called from the grace-period | |
2897 | * kthread's context. | |
2898 | */ | |
2899 | static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle, | |
2900 | unsigned long maxj) | |
2901 | { | |
663e1310 PM |
2902 | /* If there are no nohz_full= CPUs, no need to track this. */ |
2903 | if (!tick_nohz_full_enabled()) | |
2904 | return; | |
2905 | ||
0edd1b17 PM |
2906 | rcu_sysidle_report(rsp, isidle, maxj, true); |
2907 | } | |
2908 | ||
2909 | /* Callback and function for forcing an RCU grace period. */ | |
2910 | struct rcu_sysidle_head { | |
2911 | struct rcu_head rh; | |
2912 | int inuse; | |
2913 | }; | |
2914 | ||
2915 | static void rcu_sysidle_cb(struct rcu_head *rhp) | |
2916 | { | |
2917 | struct rcu_sysidle_head *rshp; | |
2918 | ||
2919 | /* | |
2920 | * The following memory barrier is needed to replace the | |
2921 | * memory barriers that would normally be in the memory | |
2922 | * allocator. | |
2923 | */ | |
2924 | smp_mb(); /* grace period precedes setting inuse. */ | |
2925 | ||
2926 | rshp = container_of(rhp, struct rcu_sysidle_head, rh); | |
7d0ae808 | 2927 | WRITE_ONCE(rshp->inuse, 0); |
0edd1b17 PM |
2928 | } |
2929 | ||
2930 | /* | |
2931 | * Check to see if the system is fully idle, other than the timekeeping CPU. | |
663e1310 PM |
2932 | * The caller must have disabled interrupts. This is not intended to be |
2933 | * called unless tick_nohz_full_enabled(). | |
0edd1b17 PM |
2934 | */ |
2935 | bool rcu_sys_is_idle(void) | |
2936 | { | |
2937 | static struct rcu_sysidle_head rsh; | |
7d0ae808 | 2938 | int rss = READ_ONCE(full_sysidle_state); |
0edd1b17 PM |
2939 | |
2940 | if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu)) | |
2941 | return false; | |
2942 | ||
2943 | /* Handle small-system case by doing a full scan of CPUs. */ | |
2944 | if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) { | |
2945 | int oldrss = rss - 1; | |
2946 | ||
2947 | /* | |
2948 | * One pass to advance to each state up to _FULL. | |
2949 | * Give up if any pass fails to advance the state. | |
2950 | */ | |
2951 | while (rss < RCU_SYSIDLE_FULL && oldrss < rss) { | |
2952 | int cpu; | |
2953 | bool isidle = true; | |
2954 | unsigned long maxj = jiffies - ULONG_MAX / 4; | |
2955 | struct rcu_data *rdp; | |
2956 | ||
2957 | /* Scan all the CPUs looking for nonidle CPUs. */ | |
2958 | for_each_possible_cpu(cpu) { | |
417e8d26 | 2959 | rdp = per_cpu_ptr(rcu_state_p->rda, cpu); |
0edd1b17 PM |
2960 | rcu_sysidle_check_cpu(rdp, &isidle, &maxj); |
2961 | if (!isidle) | |
2962 | break; | |
2963 | } | |
417e8d26 | 2964 | rcu_sysidle_report(rcu_state_p, isidle, maxj, false); |
0edd1b17 | 2965 | oldrss = rss; |
7d0ae808 | 2966 | rss = READ_ONCE(full_sysidle_state); |
0edd1b17 PM |
2967 | } |
2968 | } | |
2969 | ||
2970 | /* If this is the first observation of an idle period, record it. */ | |
2971 | if (rss == RCU_SYSIDLE_FULL) { | |
2972 | rss = cmpxchg(&full_sysidle_state, | |
2973 | RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED); | |
2974 | return rss == RCU_SYSIDLE_FULL; | |
2975 | } | |
2976 | ||
2977 | smp_mb(); /* ensure rss load happens before later caller actions. */ | |
2978 | ||
2979 | /* If already fully idle, tell the caller (in case of races). */ | |
2980 | if (rss == RCU_SYSIDLE_FULL_NOTED) | |
2981 | return true; | |
2982 | ||
2983 | /* | |
2984 | * If we aren't there yet, and a grace period is not in flight, | |
2985 | * initiate a grace period. Either way, tell the caller that | |
2986 | * we are not there yet. We use an xchg() rather than an assignment | |
2987 | * to make up for the memory barriers that would otherwise be | |
2988 | * provided by the memory allocator. | |
2989 | */ | |
2990 | if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL && | |
417e8d26 | 2991 | !rcu_gp_in_progress(rcu_state_p) && |
0edd1b17 PM |
2992 | !rsh.inuse && xchg(&rsh.inuse, 1) == 0) |
2993 | call_rcu(&rsh.rh, rcu_sysidle_cb); | |
2994 | return false; | |
eb348b89 PM |
2995 | } |
2996 | ||
2333210b PM |
2997 | /* |
2998 | * Initialize dynticks sysidle state for CPUs coming online. | |
2999 | */ | |
3000 | static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp) | |
3001 | { | |
3002 | rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE; | |
3003 | } | |
3004 | ||
3005 | #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ | |
3006 | ||
28ced795 | 3007 | static void rcu_sysidle_enter(int irq) |
eb348b89 PM |
3008 | { |
3009 | } | |
3010 | ||
28ced795 | 3011 | static void rcu_sysidle_exit(int irq) |
eb348b89 PM |
3012 | { |
3013 | } | |
3014 | ||
0edd1b17 PM |
3015 | static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle, |
3016 | unsigned long *maxj) | |
3017 | { | |
3018 | } | |
3019 | ||
3020 | static bool is_sysidle_rcu_state(struct rcu_state *rsp) | |
3021 | { | |
3022 | return false; | |
3023 | } | |
3024 | ||
3025 | static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle, | |
3026 | unsigned long maxj) | |
3027 | { | |
3028 | } | |
3029 | ||
2333210b PM |
3030 | static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp) |
3031 | { | |
3032 | } | |
3033 | ||
3034 | #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ | |
a096932f PM |
3035 | |
3036 | /* | |
3037 | * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the | |
3038 | * grace-period kthread will do force_quiescent_state() processing? | |
3039 | * The idea is to avoid waking up RCU core processing on such a | |
3040 | * CPU unless the grace period has extended for too long. | |
3041 | * | |
3042 | * This code relies on the fact that all NO_HZ_FULL CPUs are also | |
52e2bb95 | 3043 | * CONFIG_RCU_NOCB_CPU CPUs. |
a096932f PM |
3044 | */ |
3045 | static bool rcu_nohz_full_cpu(struct rcu_state *rsp) | |
3046 | { | |
3047 | #ifdef CONFIG_NO_HZ_FULL | |
3048 | if (tick_nohz_full_cpu(smp_processor_id()) && | |
3049 | (!rcu_gp_in_progress(rsp) || | |
7d0ae808 | 3050 | ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ))) |
a096932f PM |
3051 | return 1; |
3052 | #endif /* #ifdef CONFIG_NO_HZ_FULL */ | |
3053 | return 0; | |
3054 | } | |
5057f55e PM |
3055 | |
3056 | /* | |
3057 | * Bind the grace-period kthread for the sysidle flavor of RCU to the | |
3058 | * timekeeping CPU. | |
3059 | */ | |
3060 | static void rcu_bind_gp_kthread(void) | |
3061 | { | |
c0f489d2 | 3062 | int __maybe_unused cpu; |
5057f55e | 3063 | |
c0f489d2 | 3064 | if (!tick_nohz_full_enabled()) |
5057f55e | 3065 | return; |
c0f489d2 PM |
3066 | #ifdef CONFIG_NO_HZ_FULL_SYSIDLE |
3067 | cpu = tick_do_timer_cpu; | |
5871968d | 3068 | if (cpu >= 0 && cpu < nr_cpu_ids) |
5057f55e | 3069 | set_cpus_allowed_ptr(current, cpumask_of(cpu)); |
c0f489d2 | 3070 | #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ |
5871968d | 3071 | housekeeping_affine(current); |
c0f489d2 | 3072 | #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ |
5057f55e | 3073 | } |
176f8f7a PM |
3074 | |
3075 | /* Record the current task on dyntick-idle entry. */ | |
3076 | static void rcu_dynticks_task_enter(void) | |
3077 | { | |
3078 | #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) | |
7d0ae808 | 3079 | WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id()); |
176f8f7a PM |
3080 | #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ |
3081 | } | |
3082 | ||
3083 | /* Record no current task on dyntick-idle exit. */ | |
3084 | static void rcu_dynticks_task_exit(void) | |
3085 | { | |
3086 | #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) | |
7d0ae808 | 3087 | WRITE_ONCE(current->rcu_tasks_idle_cpu, -1); |
176f8f7a PM |
3088 | #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ |
3089 | } |