]> Git Repo - linux.git/blame - kernel/rcu/tree_plugin.h
rcu: Always set .need_qs from __rcu_read_lock() for strict GPs
[linux.git] / kernel / rcu / tree_plugin.h
CommitLineData
22e40925 1/* SPDX-License-Identifier: GPL-2.0+ */
f41d911f
PM
2/*
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 * Internal non-public definitions that provide either classic
6cc68793 5 * or preemptible semantics.
f41d911f 6 *
f41d911f
PM
7 * Copyright Red Hat, 2009
8 * Copyright IBM Corporation, 2009
9 *
10 * Author: Ingo Molnar <[email protected]>
22e40925 11 * Paul E. McKenney <[email protected]>
f41d911f
PM
12 */
13
abaa93d9 14#include "../locking/rtmutex_common.h"
5b61b0ba 15
3fbfbf7a
PM
16#ifdef CONFIG_RCU_NOCB_CPU
17static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
1b0048a4 18static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
3fbfbf7a
PM
19#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
20
26845c28
PM
21/*
22 * Check the RCU kernel configuration parameters and print informative
699d4035 23 * messages about anything out of the ordinary.
26845c28
PM
24 */
25static void __init rcu_bootup_announce_oddness(void)
26{
ab6f5bd6 27 if (IS_ENABLED(CONFIG_RCU_TRACE))
ae91aa0a 28 pr_info("\tRCU event tracing is enabled.\n");
05c5df31
PM
29 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
30 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
a7538352
JP
31 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
32 RCU_FANOUT);
7fa27001 33 if (rcu_fanout_exact)
ab6f5bd6
PM
34 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
35 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
36 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
c4a09ff7 37 if (IS_ENABLED(CONFIG_PROVE_RCU))
ab6f5bd6 38 pr_info("\tRCU lockdep checking is enabled.\n");
8cbd0e38
PM
39 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
40 pr_info("\tRCU strict (and thus non-scalable) grace periods enabled.\n");
42621697
AG
41 if (RCU_NUM_LVLS >= 4)
42 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
47d631af 43 if (RCU_FANOUT_LEAF != 16)
a3bd2c09 44 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
47d631af
PM
45 RCU_FANOUT_LEAF);
46 if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
a7538352
JP
47 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
48 rcu_fanout_leaf);
cca6f393 49 if (nr_cpu_ids != NR_CPUS)
9b130ad5 50 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
17c7798b 51#ifdef CONFIG_RCU_BOOST
a7538352
JP
52 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
53 kthread_prio, CONFIG_RCU_BOOST_DELAY);
17c7798b
PM
54#endif
55 if (blimit != DEFAULT_RCU_BLIMIT)
56 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
57 if (qhimark != DEFAULT_RCU_QHIMARK)
58 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
59 if (qlowmark != DEFAULT_RCU_QLOMARK)
60 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
b2b00ddf 61 if (qovld != DEFAULT_RCU_QOVLD)
aa96a93b 62 pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld);
17c7798b
PM
63 if (jiffies_till_first_fqs != ULONG_MAX)
64 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
65 if (jiffies_till_next_fqs != ULONG_MAX)
66 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
c06aed0e
PM
67 if (jiffies_till_sched_qs != ULONG_MAX)
68 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
17c7798b
PM
69 if (rcu_kick_kthreads)
70 pr_info("\tKick kthreads if too-long grace period.\n");
71 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
72 pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
90040c9e 73 if (gp_preinit_delay)
17c7798b 74 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
90040c9e 75 if (gp_init_delay)
17c7798b 76 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
90040c9e 77 if (gp_cleanup_delay)
17c7798b 78 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
48d07c04
SAS
79 if (!use_softirq)
80 pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
17c7798b
PM
81 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
82 pr_info("\tRCU debug extended QS entry/exit.\n");
59d80fd8 83 rcupdate_announce_bootup_oddness();
26845c28
PM
84}
85
28f6569a 86#ifdef CONFIG_PREEMPT_RCU
f41d911f 87
63d4c8c9 88static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
3949fa9b 89static void rcu_read_unlock_special(struct task_struct *t);
d9a3da06 90
f41d911f
PM
91/*
92 * Tell them what RCU they are running.
93 */
0e0fc1c2 94static void __init rcu_bootup_announce(void)
f41d911f 95{
efc151c3 96 pr_info("Preemptible hierarchical RCU implementation.\n");
26845c28 97 rcu_bootup_announce_oddness();
f41d911f
PM
98}
99
8203d6d0
PM
100/* Flags for rcu_preempt_ctxt_queue() decision table. */
101#define RCU_GP_TASKS 0x8
102#define RCU_EXP_TASKS 0x4
103#define RCU_GP_BLKD 0x2
104#define RCU_EXP_BLKD 0x1
105
106/*
107 * Queues a task preempted within an RCU-preempt read-side critical
108 * section into the appropriate location within the ->blkd_tasks list,
109 * depending on the states of any ongoing normal and expedited grace
110 * periods. The ->gp_tasks pointer indicates which element the normal
111 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
112 * indicates which element the expedited grace period is waiting on (again,
113 * NULL if none). If a grace period is waiting on a given element in the
114 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
115 * adding a task to the tail of the list blocks any grace period that is
116 * already waiting on one of the elements. In contrast, adding a task
117 * to the head of the list won't block any grace period that is already
118 * waiting on one of the elements.
119 *
120 * This queuing is imprecise, and can sometimes make an ongoing grace
121 * period wait for a task that is not strictly speaking blocking it.
122 * Given the choice, we needlessly block a normal grace period rather than
123 * blocking an expedited grace period.
124 *
125 * Note that an endless sequence of expedited grace periods still cannot
126 * indefinitely postpone a normal grace period. Eventually, all of the
127 * fixed number of preempted tasks blocking the normal grace period that are
128 * not also blocking the expedited grace period will resume and complete
129 * their RCU read-side critical sections. At that point, the ->gp_tasks
130 * pointer will equal the ->exp_tasks pointer, at which point the end of
131 * the corresponding expedited grace period will also be the end of the
132 * normal grace period.
133 */
46a5d164
PM
134static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
135 __releases(rnp->lock) /* But leaves rrupts disabled. */
8203d6d0
PM
136{
137 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
138 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
139 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
140 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
141 struct task_struct *t = current;
142
a32e01ee 143 raw_lockdep_assert_held_rcu_node(rnp);
2dee9404 144 WARN_ON_ONCE(rdp->mynode != rnp);
5b4c11d5 145 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
1f3e5f51
PM
146 /* RCU better not be waiting on newly onlined CPUs! */
147 WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
148 rdp->grpmask);
ea9b0c8a 149
8203d6d0
PM
150 /*
151 * Decide where to queue the newly blocked task. In theory,
152 * this could be an if-statement. In practice, when I tried
153 * that, it was quite messy.
154 */
155 switch (blkd_state) {
156 case 0:
157 case RCU_EXP_TASKS:
158 case RCU_EXP_TASKS + RCU_GP_BLKD:
159 case RCU_GP_TASKS:
160 case RCU_GP_TASKS + RCU_EXP_TASKS:
161
162 /*
163 * Blocking neither GP, or first task blocking the normal
164 * GP but not blocking the already-waiting expedited GP.
165 * Queue at the head of the list to avoid unnecessarily
166 * blocking the already-waiting GPs.
167 */
168 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
169 break;
170
171 case RCU_EXP_BLKD:
172 case RCU_GP_BLKD:
173 case RCU_GP_BLKD + RCU_EXP_BLKD:
174 case RCU_GP_TASKS + RCU_EXP_BLKD:
175 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
176 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
177
178 /*
179 * First task arriving that blocks either GP, or first task
180 * arriving that blocks the expedited GP (with the normal
181 * GP already waiting), or a task arriving that blocks
182 * both GPs with both GPs already waiting. Queue at the
183 * tail of the list to avoid any GP waiting on any of the
184 * already queued tasks that are not blocking it.
185 */
186 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
187 break;
188
189 case RCU_EXP_TASKS + RCU_EXP_BLKD:
190 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
191 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD:
192
193 /*
194 * Second or subsequent task blocking the expedited GP.
195 * The task either does not block the normal GP, or is the
196 * first task blocking the normal GP. Queue just after
197 * the first task blocking the expedited GP.
198 */
199 list_add(&t->rcu_node_entry, rnp->exp_tasks);
200 break;
201
202 case RCU_GP_TASKS + RCU_GP_BLKD:
203 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
204
205 /*
206 * Second or subsequent task blocking the normal GP.
207 * The task does not block the expedited GP. Queue just
208 * after the first task blocking the normal GP.
209 */
210 list_add(&t->rcu_node_entry, rnp->gp_tasks);
211 break;
212
213 default:
214
215 /* Yet another exercise in excessive paranoia. */
216 WARN_ON_ONCE(1);
217 break;
218 }
219
220 /*
221 * We have now queued the task. If it was the first one to
222 * block either grace period, update the ->gp_tasks and/or
223 * ->exp_tasks pointers, respectively, to reference the newly
224 * blocked tasks.
225 */
4bc8d555 226 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
6935c398 227 WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
d43a5d32 228 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
4bc8d555 229 }
8203d6d0 230 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
314eeb43 231 WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry);
2dee9404
PM
232 WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
233 !(rnp->qsmask & rdp->grpmask));
234 WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
235 !(rnp->expmask & rdp->grpmask));
67c583a7 236 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
8203d6d0
PM
237
238 /*
239 * Report the quiescent state for the expedited GP. This expedited
240 * GP should not be able to end until we report, so there should be
241 * no need to check for a subsequent expedited GP. (Though we are
242 * still in a quiescent state in any case.)
243 */
1bb33644 244 if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
63d4c8c9 245 rcu_report_exp_rdp(rdp);
fcc878e4 246 else
1bb33644 247 WARN_ON_ONCE(rdp->exp_deferred_qs);
8203d6d0
PM
248}
249
f41d911f 250/*
c7037ff5
PM
251 * Record a preemptible-RCU quiescent state for the specified CPU.
252 * Note that this does not necessarily mean that the task currently running
253 * on the CPU is in a quiescent state: Instead, it means that the current
254 * grace period need not wait on any RCU read-side critical section that
255 * starts later on this CPU. It also means that if the current task is
256 * in an RCU read-side critical section, it has already added itself to
257 * some leaf rcu_node structure's ->blkd_tasks list. In addition to the
258 * current task, there might be any number of other tasks blocked while
259 * in an RCU read-side critical section.
25502a6c 260 *
c7037ff5 261 * Callers to this function must disable preemption.
f41d911f 262 */
45975c7d 263static void rcu_qs(void)
f41d911f 264{
45975c7d 265 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
2280ee5a 266 if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
284a8c93 267 trace_rcu_grace_period(TPS("rcu_preempt"),
2280ee5a 268 __this_cpu_read(rcu_data.gp_seq),
284a8c93 269 TPS("cpuqs"));
2280ee5a 270 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
c98cac60 271 barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
add0d37b 272 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
284a8c93 273 }
f41d911f
PM
274}
275
276/*
c3422bea
PM
277 * We have entered the scheduler, and the current task might soon be
278 * context-switched away from. If this task is in an RCU read-side
279 * critical section, we will no longer be able to rely on the CPU to
12f5f524
PM
280 * record that fact, so we enqueue the task on the blkd_tasks list.
281 * The task will dequeue itself when it exits the outermost enclosing
282 * RCU read-side critical section. Therefore, the current grace period
283 * cannot be permitted to complete until the blkd_tasks list entries
284 * predating the current grace period drain, in other words, until
285 * rnp->gp_tasks becomes NULL.
c3422bea 286 *
46a5d164 287 * Caller must disable interrupts.
f41d911f 288 */
45975c7d 289void rcu_note_context_switch(bool preempt)
f41d911f
PM
290{
291 struct task_struct *t = current;
da1df50d 292 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
f41d911f
PM
293 struct rcu_node *rnp;
294
45975c7d 295 trace_rcu_utilization(TPS("Start context switch"));
b04db8e1 296 lockdep_assert_irqs_disabled();
77339e61
LJ
297 WARN_ON_ONCE(!preempt && rcu_preempt_depth() > 0);
298 if (rcu_preempt_depth() > 0 &&
1d082fd0 299 !t->rcu_read_unlock_special.b.blocked) {
f41d911f
PM
300
301 /* Possibly blocking in an RCU read-side critical section. */
f41d911f 302 rnp = rdp->mynode;
46a5d164 303 raw_spin_lock_rcu_node(rnp);
1d082fd0 304 t->rcu_read_unlock_special.b.blocked = true;
86848966 305 t->rcu_blocked_node = rnp;
f41d911f
PM
306
307 /*
8203d6d0
PM
308 * Verify the CPU's sanity, trace the preemption, and
309 * then queue the task as required based on the states
310 * of any ongoing and expedited grace periods.
f41d911f 311 */
0aa04b05 312 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
e7d8842e 313 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
88d1bead 314 trace_rcu_preempt_task(rcu_state.name,
d4c08f2a
PM
315 t->pid,
316 (rnp->qsmask & rdp->grpmask)
598ce094
PM
317 ? rnp->gp_seq
318 : rcu_seq_snap(&rnp->gp_seq));
46a5d164 319 rcu_preempt_ctxt_queue(rnp, rdp);
3e310098
PM
320 } else {
321 rcu_preempt_deferred_qs(t);
f41d911f
PM
322 }
323
324 /*
325 * Either we were not in an RCU read-side critical section to
326 * begin with, or we have now recorded that critical section
327 * globally. Either way, we can now note a quiescent state
328 * for this CPU. Again, if we were in an RCU read-side critical
329 * section, and if that critical section was blocking the current
330 * grace period, then the fact that the task has been enqueued
331 * means that we continue to block the current grace period.
332 */
45975c7d 333 rcu_qs();
1bb33644 334 if (rdp->exp_deferred_qs)
63d4c8c9 335 rcu_report_exp_rdp(rdp);
43766c3e 336 rcu_tasks_qs(current, preempt);
45975c7d 337 trace_rcu_utilization(TPS("End context switch"));
f41d911f 338}
45975c7d 339EXPORT_SYMBOL_GPL(rcu_note_context_switch);
f41d911f 340
fc2219d4
PM
341/*
342 * Check for preempted RCU readers blocking the current grace period
343 * for the specified rcu_node structure. If the caller needs a reliable
344 * answer, it must hold the rcu_node's ->lock.
345 */
27f4d280 346static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4 347{
6935c398 348 return READ_ONCE(rnp->gp_tasks) != NULL;
fc2219d4
PM
349}
350
5f5fa7ea 351/* limit value for ->rcu_read_lock_nesting. */
5f1a6ef3
PM
352#define RCU_NEST_PMAX (INT_MAX / 2)
353
77339e61
LJ
354static void rcu_preempt_read_enter(void)
355{
356 current->rcu_read_lock_nesting++;
357}
358
5f5fa7ea 359static int rcu_preempt_read_exit(void)
77339e61 360{
5f5fa7ea 361 return --current->rcu_read_lock_nesting;
77339e61
LJ
362}
363
364static void rcu_preempt_depth_set(int val)
365{
366 current->rcu_read_lock_nesting = val;
367}
368
0e5da22e
PM
369/*
370 * Preemptible RCU implementation for rcu_read_lock().
371 * Just increment ->rcu_read_lock_nesting, shared state will be updated
372 * if we block.
373 */
374void __rcu_read_lock(void)
375{
77339e61 376 rcu_preempt_read_enter();
5f1a6ef3 377 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
77339e61 378 WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
f19920e4
PM
379 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread)
380 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true);
0e5da22e
PM
381 barrier(); /* critical section after entry code. */
382}
383EXPORT_SYMBOL_GPL(__rcu_read_lock);
384
385/*
386 * Preemptible RCU implementation for rcu_read_unlock().
387 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
388 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
389 * invoke rcu_read_unlock_special() to clean up after a context switch
390 * in an RCU read-side critical section and other special cases.
391 */
392void __rcu_read_unlock(void)
393{
394 struct task_struct *t = current;
395
5f5fa7ea 396 if (rcu_preempt_read_exit() == 0) {
0e5da22e 397 barrier(); /* critical section before exit code. */
0e5da22e
PM
398 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
399 rcu_read_unlock_special(t);
0e5da22e 400 }
5f1a6ef3 401 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
77339e61 402 int rrln = rcu_preempt_depth();
0e5da22e 403
5f5fa7ea 404 WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX);
0e5da22e 405 }
0e5da22e
PM
406}
407EXPORT_SYMBOL_GPL(__rcu_read_unlock);
408
12f5f524
PM
409/*
410 * Advance a ->blkd_tasks-list pointer to the next entry, instead
411 * returning NULL if at the end of the list.
412 */
413static struct list_head *rcu_next_node_entry(struct task_struct *t,
414 struct rcu_node *rnp)
415{
416 struct list_head *np;
417
418 np = t->rcu_node_entry.next;
419 if (np == &rnp->blkd_tasks)
420 np = NULL;
421 return np;
422}
423
8af3a5e7
PM
424/*
425 * Return true if the specified rcu_node structure has tasks that were
426 * preempted within an RCU read-side critical section.
427 */
428static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
429{
430 return !list_empty(&rnp->blkd_tasks);
431}
432
b668c9cf 433/*
3e310098
PM
434 * Report deferred quiescent states. The deferral time can
435 * be quite short, for example, in the case of the call from
436 * rcu_read_unlock_special().
b668c9cf 437 */
3e310098
PM
438static void
439rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
f41d911f 440{
b6a932d1
PM
441 bool empty_exp;
442 bool empty_norm;
443 bool empty_exp_now;
12f5f524 444 struct list_head *np;
abaa93d9 445 bool drop_boost_mutex = false;
8203d6d0 446 struct rcu_data *rdp;
f41d911f 447 struct rcu_node *rnp;
1d082fd0 448 union rcu_special special;
f41d911f 449
f41d911f 450 /*
8203d6d0
PM
451 * If RCU core is waiting for this CPU to exit its critical section,
452 * report the fact that it has exited. Because irqs are disabled,
1d082fd0 453 * t->rcu_read_unlock_special cannot change.
f41d911f
PM
454 */
455 special = t->rcu_read_unlock_special;
da1df50d 456 rdp = this_cpu_ptr(&rcu_data);
1bb33644 457 if (!special.s && !rdp->exp_deferred_qs) {
3e310098
PM
458 local_irq_restore(flags);
459 return;
460 }
3717e1e9
LJ
461 t->rcu_read_unlock_special.s = 0;
462 if (special.b.need_qs)
45975c7d 463 rcu_qs();
f41d911f 464
8203d6d0 465 /*
3e310098
PM
466 * Respond to a request by an expedited grace period for a
467 * quiescent state from this CPU. Note that requests from
468 * tasks are handled when removing the task from the
469 * blocked-tasks list below.
8203d6d0 470 */
3717e1e9 471 if (rdp->exp_deferred_qs)
63d4c8c9 472 rcu_report_exp_rdp(rdp);
8203d6d0 473
f41d911f 474 /* Clean up if blocked during RCU read-side critical section. */
1d082fd0 475 if (special.b.blocked) {
f41d911f 476
dd5d19ba 477 /*
0a0ba1c9 478 * Remove this task from the list it blocked on. The task
8ba9153b
PM
479 * now remains queued on the rcu_node corresponding to the
480 * CPU it first blocked on, so there is no longer any need
481 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
dd5d19ba 482 */
8ba9153b
PM
483 rnp = t->rcu_blocked_node;
484 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
485 WARN_ON_ONCE(rnp != t->rcu_blocked_node);
5b4c11d5 486 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
74e871ac 487 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
d43a5d32 488 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
4bc8d555 489 (!empty_norm || rnp->qsmask));
6c7d7dbf 490 empty_exp = sync_rcu_exp_done(rnp);
d9a3da06 491 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
12f5f524 492 np = rcu_next_node_entry(t, rnp);
f41d911f 493 list_del_init(&t->rcu_node_entry);
82e78d80 494 t->rcu_blocked_node = NULL;
f7f7bac9 495 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
865aa1e0 496 rnp->gp_seq, t->pid);
12f5f524 497 if (&t->rcu_node_entry == rnp->gp_tasks)
6935c398 498 WRITE_ONCE(rnp->gp_tasks, np);
12f5f524 499 if (&t->rcu_node_entry == rnp->exp_tasks)
314eeb43 500 WRITE_ONCE(rnp->exp_tasks, np);
727b705b 501 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
727b705b
PM
502 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
503 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
2dee9404 504 if (&t->rcu_node_entry == rnp->boost_tasks)
5822b812 505 WRITE_ONCE(rnp->boost_tasks, np);
727b705b 506 }
f41d911f
PM
507
508 /*
509 * If this was the last task on the current list, and if
510 * we aren't waiting on any CPUs, report the quiescent state.
389abd48
PM
511 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
512 * so we must take a snapshot of the expedited state.
f41d911f 513 */
6c7d7dbf 514 empty_exp_now = sync_rcu_exp_done(rnp);
74e871ac 515 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
f7f7bac9 516 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
db023296 517 rnp->gp_seq,
d4c08f2a
PM
518 0, rnp->qsmask,
519 rnp->level,
520 rnp->grplo,
521 rnp->grphi,
522 !!rnp->gp_tasks);
139ad4da 523 rcu_report_unblock_qs_rnp(rnp, flags);
c701d5d9 524 } else {
67c583a7 525 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
c701d5d9 526 }
d9a3da06 527
27f4d280 528 /* Unboost if we were boosted. */
727b705b 529 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
02a7c234 530 rt_mutex_futex_unlock(&rnp->boost_mtx);
27f4d280 531
d9a3da06
PM
532 /*
533 * If this was the last task on the expedited lists,
534 * then we need to report up the rcu_node hierarchy.
535 */
389abd48 536 if (!empty_exp && empty_exp_now)
63d4c8c9 537 rcu_report_exp_rnp(rnp, true);
b668c9cf
PM
538 } else {
539 local_irq_restore(flags);
f41d911f 540 }
f41d911f
PM
541}
542
3e310098
PM
543/*
544 * Is a deferred quiescent-state pending, and are we also not in
545 * an RCU read-side critical section? It is the caller's responsibility
546 * to ensure it is otherwise safe to report any deferred quiescent
547 * states. The reason for this is that it is safe to report a
548 * quiescent state during context switch even though preemption
549 * is disabled. This function cannot be expected to understand these
550 * nuances, so the caller must handle them.
551 */
552static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
553{
1bb33644 554 return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
3e310098 555 READ_ONCE(t->rcu_read_unlock_special.s)) &&
5f5fa7ea 556 rcu_preempt_depth() == 0;
3e310098
PM
557}
558
559/*
560 * Report a deferred quiescent state if needed and safe to do so.
561 * As with rcu_preempt_need_deferred_qs(), "safe" involves only
562 * not being in an RCU read-side critical section. The caller must
563 * evaluate safety in terms of interrupt, softirq, and preemption
564 * disabling.
565 */
566static void rcu_preempt_deferred_qs(struct task_struct *t)
567{
568 unsigned long flags;
3e310098
PM
569
570 if (!rcu_preempt_need_deferred_qs(t))
571 return;
3e310098
PM
572 local_irq_save(flags);
573 rcu_preempt_deferred_qs_irqrestore(t, flags);
3e310098
PM
574}
575
0864f057
PM
576/*
577 * Minimal handler to give the scheduler a chance to re-evaluate.
578 */
579static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
580{
581 struct rcu_data *rdp;
582
583 rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
584 rdp->defer_qs_iw_pending = false;
585}
586
3e310098
PM
587/*
588 * Handle special cases during rcu_read_unlock(), such as needing to
589 * notify RCU core processing or task having blocked during the RCU
590 * read-side critical section.
591 */
592static void rcu_read_unlock_special(struct task_struct *t)
593{
594 unsigned long flags;
595 bool preempt_bh_were_disabled =
596 !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
597 bool irqs_were_disabled;
598
599 /* NMI handlers cannot block and cannot safely manipulate state. */
600 if (in_nmi())
601 return;
602
603 local_irq_save(flags);
604 irqs_were_disabled = irqs_disabled_flags(flags);
05f41571 605 if (preempt_bh_were_disabled || irqs_were_disabled) {
25102de6
PM
606 bool exp;
607 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
608 struct rcu_node *rnp = rdp->mynode;
609
e4453d8a
PM
610 exp = (t->rcu_blocked_node &&
611 READ_ONCE(t->rcu_blocked_node->exp_tasks)) ||
612 (rdp->grpmask & READ_ONCE(rnp->expmask));
23634ebc 613 // Need to defer quiescent state until everything is enabled.
e4453d8a
PM
614 if (use_softirq && (in_irq() || (exp && !irqs_were_disabled))) {
615 // Using softirq, safe to awaken, and either the
616 // wakeup is free or there is an expedited GP.
05f41571
PM
617 raise_softirq_irqoff(RCU_SOFTIRQ);
618 } else {
23634ebc 619 // Enabling BH or preempt does reschedule, so...
e4453d8a
PM
620 // Also if no expediting, slow is OK.
621 // Plus nohz_full CPUs eventually get tick enabled.
05f41571
PM
622 set_tsk_need_resched(current);
623 set_preempt_need_resched();
d143b3d1 624 if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
0864f057
PM
625 !rdp->defer_qs_iw_pending && exp) {
626 // Get scheduler to re-evaluate and call hooks.
627 // If !IRQ_WORK, FQS scan will eventually IPI.
628 init_irq_work(&rdp->defer_qs_iw,
629 rcu_preempt_deferred_qs_handler);
630 rdp->defer_qs_iw_pending = true;
631 irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
632 }
05f41571 633 }
3e310098
PM
634 local_irq_restore(flags);
635 return;
636 }
637 rcu_preempt_deferred_qs_irqrestore(t, flags);
638}
639
b0e165c0
PM
640/*
641 * Check that the list of blocked tasks for the newly completed grace
642 * period is in fact empty. It is a serious bug to complete a grace
643 * period that still has RCU readers blocked! This function must be
03bd2983 644 * invoked -before- updating this rnp's ->gp_seq.
12f5f524
PM
645 *
646 * Also, if there are blocked tasks on the list, they automatically
647 * block the newly created grace period, so set up ->gp_tasks accordingly.
b0e165c0 648 */
81ab59a3 649static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
b0e165c0 650{
c5ebe66c
PM
651 struct task_struct *t;
652
ea9b0c8a 653 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
03bd2983 654 raw_lockdep_assert_held_rcu_node(rnp);
4bc8d555 655 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
81ab59a3 656 dump_blkd_tasks(rnp, 10);
0b107d24
PM
657 if (rcu_preempt_has_tasks(rnp) &&
658 (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
6935c398 659 WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
c5ebe66c
PM
660 t = container_of(rnp->gp_tasks, struct task_struct,
661 rcu_node_entry);
662 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
865aa1e0 663 rnp->gp_seq, t->pid);
c5ebe66c 664 }
28ecd580 665 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
666}
667
f41d911f 668/*
c98cac60
PM
669 * Check for a quiescent state from the current CPU, including voluntary
670 * context switches for Tasks RCU. When a task blocks, the task is
671 * recorded in the corresponding CPU's rcu_node structure, which is checked
672 * elsewhere, hence this function need only check for quiescent states
673 * related to the current CPU, not to those related to tasks.
f41d911f 674 */
c98cac60 675static void rcu_flavor_sched_clock_irq(int user)
f41d911f
PM
676{
677 struct task_struct *t = current;
678
45975c7d
PM
679 if (user || rcu_is_cpu_rrupt_from_idle()) {
680 rcu_note_voluntary_context_switch(current);
681 }
77339e61 682 if (rcu_preempt_depth() > 0 ||
3e310098
PM
683 (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
684 /* No QS, force context switch if deferred. */
fced9c8c
PM
685 if (rcu_preempt_need_deferred_qs(t)) {
686 set_tsk_need_resched(t);
687 set_preempt_need_resched();
688 }
3e310098
PM
689 } else if (rcu_preempt_need_deferred_qs(t)) {
690 rcu_preempt_deferred_qs(t); /* Report deferred QS. */
691 return;
5f5fa7ea 692 } else if (!WARN_ON_ONCE(rcu_preempt_depth())) {
45975c7d 693 rcu_qs(); /* Report immediate QS. */
f41d911f
PM
694 return;
695 }
3e310098
PM
696
697 /* If GP is oldish, ask for help from rcu_read_unlock_special(). */
77339e61 698 if (rcu_preempt_depth() > 0 &&
2280ee5a
PM
699 __this_cpu_read(rcu_data.core_needs_qs) &&
700 __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
15651201 701 !t->rcu_read_unlock_special.b.need_qs &&
564a9ae6 702 time_after(jiffies, rcu_state.gp_start + HZ))
1d082fd0 703 t->rcu_read_unlock_special.b.need_qs = true;
f41d911f
PM
704}
705
2439b696
PM
706/*
707 * Check for a task exiting while in a preemptible-RCU read-side
884157ce
PM
708 * critical section, clean up if so. No need to issue warnings, as
709 * debug_check_no_locks_held() already does this if lockdep is enabled.
710 * Besides, if this function does anything other than just immediately
711 * return, there was a bug of some sort. Spewing warnings from this
712 * function is like as not to simply obscure important prior warnings.
2439b696
PM
713 */
714void exit_rcu(void)
715{
716 struct task_struct *t = current;
717
884157ce 718 if (unlikely(!list_empty(&current->rcu_node_entry))) {
77339e61 719 rcu_preempt_depth_set(1);
884157ce 720 barrier();
add0d37b 721 WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
77339e61
LJ
722 } else if (unlikely(rcu_preempt_depth())) {
723 rcu_preempt_depth_set(1);
884157ce 724 } else {
2439b696 725 return;
884157ce 726 }
2439b696 727 __rcu_read_unlock();
3e310098 728 rcu_preempt_deferred_qs(current);
2439b696
PM
729}
730
4bc8d555
PM
731/*
732 * Dump the blocked-tasks state, but limit the list dump to the
733 * specified number of elements.
734 */
57738942 735static void
81ab59a3 736dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
4bc8d555 737{
57738942 738 int cpu;
4bc8d555
PM
739 int i;
740 struct list_head *lhp;
57738942
PM
741 bool onl;
742 struct rcu_data *rdp;
ff3cee39 743 struct rcu_node *rnp1;
4bc8d555 744
ce11fae8 745 raw_lockdep_assert_held_rcu_node(rnp);
ff3cee39 746 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
77cfc7bf 747 __func__, rnp->grplo, rnp->grphi, rnp->level,
8ff37290 748 (long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs);
ff3cee39
PM
749 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
750 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
751 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
77cfc7bf 752 pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
065a6db1 753 __func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks),
314eeb43 754 READ_ONCE(rnp->exp_tasks));
77cfc7bf 755 pr_info("%s: ->blkd_tasks", __func__);
4bc8d555
PM
756 i = 0;
757 list_for_each(lhp, &rnp->blkd_tasks) {
758 pr_cont(" %p", lhp);
cd6d17b4 759 if (++i >= ncheck)
4bc8d555
PM
760 break;
761 }
762 pr_cont("\n");
57738942 763 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
da1df50d 764 rdp = per_cpu_ptr(&rcu_data, cpu);
57738942
PM
765 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
766 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
767 cpu, ".o"[onl],
768 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
769 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
770 }
4bc8d555
PM
771}
772
28f6569a 773#else /* #ifdef CONFIG_PREEMPT_RCU */
f41d911f
PM
774
775/*
776 * Tell them what RCU they are running.
777 */
0e0fc1c2 778static void __init rcu_bootup_announce(void)
f41d911f 779{
efc151c3 780 pr_info("Hierarchical RCU implementation.\n");
26845c28 781 rcu_bootup_announce_oddness();
f41d911f
PM
782}
783
45975c7d 784/*
90326f05 785 * Note a quiescent state for PREEMPTION=n. Because we do not need to know
45975c7d
PM
786 * how many quiescent states passed, just if there was at least one since
787 * the start of the grace period, this just sets a flag. The caller must
788 * have disabled preemption.
789 */
790static void rcu_qs(void)
d28139c4 791{
45975c7d
PM
792 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
793 if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
794 return;
795 trace_rcu_grace_period(TPS("rcu_sched"),
796 __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
797 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
798 if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
799 return;
800 __this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
63d4c8c9 801 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
d28139c4
PM
802}
803
395a2f09
PM
804/*
805 * Register an urgently needed quiescent state. If there is an
806 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
807 * dyntick-idle quiescent state visible to other CPUs, which will in
808 * some cases serve for expedited as well as normal grace periods.
809 * Either way, register a lightweight quiescent state.
395a2f09
PM
810 */
811void rcu_all_qs(void)
812{
813 unsigned long flags;
814
2dba13f0 815 if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
395a2f09
PM
816 return;
817 preempt_disable();
818 /* Load rcu_urgent_qs before other flags. */
2dba13f0 819 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
395a2f09
PM
820 preempt_enable();
821 return;
822 }
2dba13f0 823 this_cpu_write(rcu_data.rcu_urgent_qs, false);
2dba13f0 824 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
395a2f09
PM
825 local_irq_save(flags);
826 rcu_momentary_dyntick_idle();
827 local_irq_restore(flags);
828 }
7e28c5af 829 rcu_qs();
395a2f09
PM
830 preempt_enable();
831}
832EXPORT_SYMBOL_GPL(rcu_all_qs);
833
cba6d0d6 834/*
90326f05 835 * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
cba6d0d6 836 */
45975c7d 837void rcu_note_context_switch(bool preempt)
cba6d0d6 838{
45975c7d
PM
839 trace_rcu_utilization(TPS("Start context switch"));
840 rcu_qs();
841 /* Load rcu_urgent_qs before other flags. */
2dba13f0 842 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
45975c7d 843 goto out;
2dba13f0
PM
844 this_cpu_write(rcu_data.rcu_urgent_qs, false);
845 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
45975c7d 846 rcu_momentary_dyntick_idle();
43766c3e 847 rcu_tasks_qs(current, preempt);
45975c7d
PM
848out:
849 trace_rcu_utilization(TPS("End context switch"));
cba6d0d6 850}
45975c7d 851EXPORT_SYMBOL_GPL(rcu_note_context_switch);
cba6d0d6 852
fc2219d4 853/*
6cc68793 854 * Because preemptible RCU does not exist, there are never any preempted
fc2219d4
PM
855 * RCU readers.
856 */
27f4d280 857static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4
PM
858{
859 return 0;
860}
861
8af3a5e7
PM
862/*
863 * Because there is no preemptible RCU, there can be no readers blocked.
864 */
865static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
b668c9cf 866{
8af3a5e7 867 return false;
b668c9cf
PM
868}
869
3e310098
PM
870/*
871 * Because there is no preemptible RCU, there can be no deferred quiescent
872 * states.
873 */
874static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
875{
876 return false;
877}
878static void rcu_preempt_deferred_qs(struct task_struct *t) { }
879
b0e165c0 880/*
6cc68793 881 * Because there is no preemptible RCU, there can be no readers blocked,
49e29126
PM
882 * so there is no need to check for blocked tasks. So check only for
883 * bogus qsmask values.
b0e165c0 884 */
81ab59a3 885static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
b0e165c0 886{
49e29126 887 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
888}
889
f41d911f 890/*
c98cac60
PM
891 * Check to see if this CPU is in a non-context-switch quiescent state,
892 * namely user mode and idle loop.
f41d911f 893 */
c98cac60 894static void rcu_flavor_sched_clock_irq(int user)
f41d911f 895{
45975c7d 896 if (user || rcu_is_cpu_rrupt_from_idle()) {
f41d911f 897
45975c7d
PM
898 /*
899 * Get here if this CPU took its interrupt from user
900 * mode or from the idle loop, and if this is not a
901 * nested interrupt. In this case, the CPU is in
902 * a quiescent state, so note it.
903 *
904 * No memory barrier is required here because rcu_qs()
905 * references only CPU-local variables that other CPUs
906 * neither access nor modify, at least not while the
907 * corresponding CPU is online.
908 */
909
910 rcu_qs();
911 }
e74f4c45 912}
e74f4c45 913
2439b696
PM
914/*
915 * Because preemptible RCU does not exist, tasks cannot possibly exit
916 * while in preemptible RCU read-side critical sections.
917 */
918void exit_rcu(void)
919{
920}
921
4bc8d555
PM
922/*
923 * Dump the guaranteed-empty blocked-tasks state. Trust but verify.
924 */
57738942 925static void
81ab59a3 926dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
4bc8d555
PM
927{
928 WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
929}
930
28f6569a 931#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
8bd93a2c 932
48d07c04
SAS
933/*
934 * If boosting, set rcuc kthreads to realtime priority.
935 */
936static void rcu_cpu_kthread_setup(unsigned int cpu)
937{
27f4d280 938#ifdef CONFIG_RCU_BOOST
48d07c04 939 struct sched_param sp;
27f4d280 940
48d07c04
SAS
941 sp.sched_priority = kthread_prio;
942 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
943#endif /* #ifdef CONFIG_RCU_BOOST */
5d01bbd1
TG
944}
945
48d07c04
SAS
946#ifdef CONFIG_RCU_BOOST
947
27f4d280
PM
948/*
949 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
950 * or ->boost_tasks, advancing the pointer to the next task in the
951 * ->blkd_tasks list.
952 *
953 * Note that irqs must be enabled: boosting the task can block.
954 * Returns 1 if there are more tasks needing to be boosted.
955 */
956static int rcu_boost(struct rcu_node *rnp)
957{
958 unsigned long flags;
27f4d280
PM
959 struct task_struct *t;
960 struct list_head *tb;
961
7d0ae808
PM
962 if (READ_ONCE(rnp->exp_tasks) == NULL &&
963 READ_ONCE(rnp->boost_tasks) == NULL)
27f4d280
PM
964 return 0; /* Nothing left to boost. */
965
2a67e741 966 raw_spin_lock_irqsave_rcu_node(rnp, flags);
27f4d280
PM
967
968 /*
969 * Recheck under the lock: all tasks in need of boosting
970 * might exit their RCU read-side critical sections on their own.
971 */
972 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
67c583a7 973 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27f4d280
PM
974 return 0;
975 }
976
977 /*
978 * Preferentially boost tasks blocking expedited grace periods.
979 * This cannot starve the normal grace periods because a second
980 * expedited grace period must boost all blocked tasks, including
981 * those blocking the pre-existing normal grace period.
982 */
bec06785 983 if (rnp->exp_tasks != NULL)
27f4d280 984 tb = rnp->exp_tasks;
bec06785 985 else
27f4d280
PM
986 tb = rnp->boost_tasks;
987
988 /*
989 * We boost task t by manufacturing an rt_mutex that appears to
990 * be held by task t. We leave a pointer to that rt_mutex where
991 * task t can find it, and task t will release the mutex when it
992 * exits its outermost RCU read-side critical section. Then
993 * simply acquiring this artificial rt_mutex will boost task
994 * t's priority. (Thanks to tglx for suggesting this approach!)
995 *
996 * Note that task t must acquire rnp->lock to remove itself from
997 * the ->blkd_tasks list, which it will do from exit() if from
998 * nowhere else. We therefore are guaranteed that task t will
999 * stay around at least until we drop rnp->lock. Note that
1000 * rnp->lock also resolves races between our priority boosting
1001 * and task t's exiting its outermost RCU read-side critical
1002 * section.
1003 */
1004 t = container_of(tb, struct task_struct, rcu_node_entry);
abaa93d9 1005 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
67c583a7 1006 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
abaa93d9
PM
1007 /* Lock only for side effect: boosts task t's priority. */
1008 rt_mutex_lock(&rnp->boost_mtx);
1009 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
27f4d280 1010
7d0ae808
PM
1011 return READ_ONCE(rnp->exp_tasks) != NULL ||
1012 READ_ONCE(rnp->boost_tasks) != NULL;
27f4d280
PM
1013}
1014
27f4d280 1015/*
bc17ea10 1016 * Priority-boosting kthread, one per leaf rcu_node.
27f4d280
PM
1017 */
1018static int rcu_boost_kthread(void *arg)
1019{
1020 struct rcu_node *rnp = (struct rcu_node *)arg;
1021 int spincnt = 0;
1022 int more2boost;
1023
f7f7bac9 1024 trace_rcu_utilization(TPS("Start boost kthread@init"));
27f4d280 1025 for (;;) {
3ca3b0e2 1026 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING);
f7f7bac9 1027 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
065a6db1
PM
1028 rcu_wait(READ_ONCE(rnp->boost_tasks) ||
1029 READ_ONCE(rnp->exp_tasks));
f7f7bac9 1030 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
3ca3b0e2 1031 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING);
27f4d280
PM
1032 more2boost = rcu_boost(rnp);
1033 if (more2boost)
1034 spincnt++;
1035 else
1036 spincnt = 0;
1037 if (spincnt > 10) {
3ca3b0e2 1038 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING);
f7f7bac9 1039 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
a9352f72 1040 schedule_timeout_idle(2);
f7f7bac9 1041 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
27f4d280
PM
1042 spincnt = 0;
1043 }
1044 }
1217ed1b 1045 /* NOTREACHED */
f7f7bac9 1046 trace_rcu_utilization(TPS("End boost kthread@notreached"));
27f4d280
PM
1047 return 0;
1048}
1049
1050/*
1051 * Check to see if it is time to start boosting RCU readers that are
1052 * blocking the current grace period, and, if so, tell the per-rcu_node
1053 * kthread to start boosting them. If there is an expedited grace
1054 * period in progress, it is always time to boost.
1055 *
b065a853
PM
1056 * The caller must hold rnp->lock, which this function releases.
1057 * The ->boost_kthread_task is immortal, so we don't need to worry
1058 * about it going away.
27f4d280 1059 */
1217ed1b 1060static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1061 __releases(rnp->lock)
27f4d280 1062{
a32e01ee 1063 raw_lockdep_assert_held_rcu_node(rnp);
0ea1f2eb 1064 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
67c583a7 1065 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27f4d280 1066 return;
0ea1f2eb 1067 }
27f4d280
PM
1068 if (rnp->exp_tasks != NULL ||
1069 (rnp->gp_tasks != NULL &&
1070 rnp->boost_tasks == NULL &&
1071 rnp->qsmask == 0 &&
7b241311 1072 (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld))) {
27f4d280 1073 if (rnp->exp_tasks == NULL)
5822b812 1074 WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks);
67c583a7 1075 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
a2badefa 1076 rcu_wake_cond(rnp->boost_kthread_task,
3ca3b0e2 1077 READ_ONCE(rnp->boost_kthread_status));
1217ed1b 1078 } else {
67c583a7 1079 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1217ed1b 1080 }
27f4d280
PM
1081}
1082
dff1672d
PM
1083/*
1084 * Is the current CPU running the RCU-callbacks kthread?
1085 * Caller must have preemption disabled.
1086 */
1087static bool rcu_is_callbacks_kthread(void)
1088{
37f62d7c 1089 return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
dff1672d
PM
1090}
1091
27f4d280
PM
1092#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1093
1094/*
1095 * Do priority-boost accounting for the start of a new grace period.
1096 */
1097static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1098{
1099 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1100}
1101
27f4d280
PM
1102/*
1103 * Create an RCU-boost kthread for the specified node if one does not
1104 * already exist. We only create this kthread for preemptible RCU.
1105 * Returns zero if all is well, a negated errno otherwise.
1106 */
3545832f 1107static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
27f4d280 1108{
6dbfdc14 1109 int rnp_index = rnp - rcu_get_root();
27f4d280
PM
1110 unsigned long flags;
1111 struct sched_param sp;
1112 struct task_struct *t;
1113
6dbfdc14 1114 if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
3545832f 1115 return;
5d01bbd1 1116
0aa04b05 1117 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
3545832f 1118 return;
5d01bbd1 1119
6dbfdc14 1120 rcu_state.boost = 1;
3545832f 1121
27f4d280 1122 if (rnp->boost_kthread_task != NULL)
3545832f
BP
1123 return;
1124
27f4d280 1125 t = kthread_create(rcu_boost_kthread, (void *)rnp,
5b61b0ba 1126 "rcub/%d", rnp_index);
3545832f
BP
1127 if (WARN_ON_ONCE(IS_ERR(t)))
1128 return;
1129
2a67e741 1130 raw_spin_lock_irqsave_rcu_node(rnp, flags);
27f4d280 1131 rnp->boost_kthread_task = t;
67c583a7 1132 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
21871d7e 1133 sp.sched_priority = kthread_prio;
27f4d280 1134 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
9a432736 1135 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
27f4d280
PM
1136}
1137
f8b7fc6b
PM
1138/*
1139 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1140 * served by the rcu_node in question. The CPU hotplug lock is still
1141 * held, so the value of rnp->qsmaskinit will be stable.
1142 *
1143 * We don't include outgoingcpu in the affinity set, use -1 if there is
1144 * no outgoing CPU. If there are no CPUs left in the affinity set,
1145 * this function allows the kthread to execute on any CPU.
1146 */
5d01bbd1 1147static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b 1148{
5d01bbd1 1149 struct task_struct *t = rnp->boost_kthread_task;
0aa04b05 1150 unsigned long mask = rcu_rnp_online_cpus(rnp);
f8b7fc6b
PM
1151 cpumask_var_t cm;
1152 int cpu;
f8b7fc6b 1153
5d01bbd1 1154 if (!t)
f8b7fc6b 1155 return;
5d01bbd1 1156 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
f8b7fc6b 1157 return;
bc75e999
MR
1158 for_each_leaf_node_possible_cpu(rnp, cpu)
1159 if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1160 cpu != outgoingcpu)
f8b7fc6b 1161 cpumask_set_cpu(cpu, cm);
5d0b0249 1162 if (cpumask_weight(cm) == 0)
f8b7fc6b 1163 cpumask_setall(cm);
5d01bbd1 1164 set_cpus_allowed_ptr(t, cm);
f8b7fc6b
PM
1165 free_cpumask_var(cm);
1166}
1167
f8b7fc6b 1168/*
9386c0b7 1169 * Spawn boost kthreads -- called as soon as the scheduler is running.
f8b7fc6b 1170 */
9386c0b7 1171static void __init rcu_spawn_boost_kthreads(void)
f8b7fc6b 1172{
f8b7fc6b
PM
1173 struct rcu_node *rnp;
1174
aedf4ba9 1175 rcu_for_each_leaf_node(rnp)
3545832f 1176 rcu_spawn_one_boost_kthread(rnp);
f8b7fc6b 1177}
f8b7fc6b 1178
49fb4c62 1179static void rcu_prepare_kthreads(int cpu)
f8b7fc6b 1180{
da1df50d 1181 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
f8b7fc6b
PM
1182 struct rcu_node *rnp = rdp->mynode;
1183
1184 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
62ab7072 1185 if (rcu_scheduler_fully_active)
3545832f 1186 rcu_spawn_one_boost_kthread(rnp);
f8b7fc6b
PM
1187}
1188
27f4d280
PM
1189#else /* #ifdef CONFIG_RCU_BOOST */
1190
1217ed1b 1191static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1192 __releases(rnp->lock)
27f4d280 1193{
67c583a7 1194 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27f4d280
PM
1195}
1196
dff1672d
PM
1197static bool rcu_is_callbacks_kthread(void)
1198{
1199 return false;
1200}
1201
27f4d280
PM
1202static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1203{
1204}
1205
5d01bbd1 1206static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b
PM
1207{
1208}
1209
9386c0b7 1210static void __init rcu_spawn_boost_kthreads(void)
b0d30417 1211{
b0d30417 1212}
b0d30417 1213
49fb4c62 1214static void rcu_prepare_kthreads(int cpu)
f8b7fc6b
PM
1215{
1216}
1217
27f4d280
PM
1218#endif /* #else #ifdef CONFIG_RCU_BOOST */
1219
8bd93a2c
PM
1220#if !defined(CONFIG_RCU_FAST_NO_HZ)
1221
1222/*
0bd55c69
PM
1223 * Check to see if any future non-offloaded RCU-related work will need
1224 * to be done by the current CPU, even if none need be done immediately,
1225 * returning 1 if so. This function is part of the RCU implementation;
1226 * it is -not- an exported member of the RCU API.
8bd93a2c 1227 *
0ae86a27
PM
1228 * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1229 * CPU has RCU callbacks queued.
8bd93a2c 1230 */
c1ad348b 1231int rcu_needs_cpu(u64 basemono, u64 *nextevt)
8bd93a2c 1232{
c1ad348b 1233 *nextevt = KTIME_MAX;
0bd55c69
PM
1234 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1235 !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist);
7cb92499
PM
1236}
1237
1238/*
1239 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1240 * after it.
1241 */
8fa7845d 1242static void rcu_cleanup_after_idle(void)
7cb92499
PM
1243{
1244}
1245
aea1b35e 1246/*
a858af28 1247 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
aea1b35e
PM
1248 * is nothing.
1249 */
198bbf81 1250static void rcu_prepare_for_idle(void)
aea1b35e
PM
1251{
1252}
1253
8bd93a2c
PM
1254#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1255
f23f7fa1
PM
1256/*
1257 * This code is invoked when a CPU goes idle, at which point we want
1258 * to have the CPU do everything required for RCU so that it can enter
77a40f97 1259 * the energy-efficient dyntick-idle mode.
f23f7fa1 1260 *
77a40f97 1261 * The following preprocessor symbol controls this:
f23f7fa1 1262 *
f23f7fa1
PM
1263 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1264 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1265 * is sized to be roughly one RCU grace period. Those energy-efficiency
1266 * benchmarkers who might otherwise be tempted to set this to a large
1267 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1268 * system. And if you are -that- concerned about energy efficiency,
1269 * just power the system down and be done with it!
1270 *
77a40f97 1271 * The value below works well in practice. If future workloads require
f23f7fa1
PM
1272 * adjustment, they can be converted into kernel config parameters, though
1273 * making the state machine smarter might be a better option.
1274 */
e84c48ae 1275#define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
f23f7fa1 1276
5e44ce35
PM
1277static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1278module_param(rcu_idle_gp_delay, int, 0644);
486e2593 1279
486e2593 1280/*
0ae86a27
PM
1281 * Try to advance callbacks on the current CPU, but only if it has been
1282 * awhile since the last time we did so. Afterwards, if there are any
1283 * callbacks ready for immediate invocation, return true.
486e2593 1284 */
f1f399d1 1285static bool __maybe_unused rcu_try_advance_all_cbs(void)
486e2593 1286{
c0f4dfd4 1287 bool cbs_ready = false;
5998a75a 1288 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
c0f4dfd4 1289 struct rcu_node *rnp;
486e2593 1290
c229828c 1291 /* Exit early if we advanced recently. */
5998a75a 1292 if (jiffies == rdp->last_advance_all)
d0bc90fd 1293 return false;
5998a75a 1294 rdp->last_advance_all = jiffies;
c229828c 1295
b97d23c5 1296 rnp = rdp->mynode;
486e2593 1297
b97d23c5
PM
1298 /*
1299 * Don't bother checking unless a grace period has
1300 * completed since we last checked and there are
1301 * callbacks not yet ready to invoke.
1302 */
1303 if ((rcu_seq_completed_gp(rdp->gp_seq,
1304 rcu_seq_current(&rnp->gp_seq)) ||
1305 unlikely(READ_ONCE(rdp->gpwrap))) &&
1306 rcu_segcblist_pend_cbs(&rdp->cblist))
1307 note_gp_changes(rdp);
1308
1309 if (rcu_segcblist_ready_cbs(&rdp->cblist))
1310 cbs_ready = true;
c0f4dfd4 1311 return cbs_ready;
486e2593
PM
1312}
1313
aa9b1630 1314/*
c0f4dfd4
PM
1315 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1316 * to invoke. If the CPU has callbacks, try to advance them. Tell the
77a40f97 1317 * caller about what to set the timeout.
aa9b1630 1318 *
c0f4dfd4 1319 * The caller must have disabled interrupts.
aa9b1630 1320 */
c1ad348b 1321int rcu_needs_cpu(u64 basemono, u64 *nextevt)
aa9b1630 1322{
5998a75a 1323 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
c1ad348b 1324 unsigned long dj;
aa9b1630 1325
b04db8e1 1326 lockdep_assert_irqs_disabled();
3382adbc 1327
0bd55c69
PM
1328 /* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1329 if (rcu_segcblist_empty(&rdp->cblist) ||
1330 rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) {
c1ad348b 1331 *nextevt = KTIME_MAX;
aa9b1630
PM
1332 return 0;
1333 }
c0f4dfd4
PM
1334
1335 /* Attempt to advance callbacks. */
1336 if (rcu_try_advance_all_cbs()) {
1337 /* Some ready to invoke, so initiate later invocation. */
1338 invoke_rcu_core();
aa9b1630
PM
1339 return 1;
1340 }
5998a75a 1341 rdp->last_accelerate = jiffies;
c0f4dfd4 1342
77a40f97
JFG
1343 /* Request timer and round. */
1344 dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies;
1345
c1ad348b 1346 *nextevt = basemono + dj * TICK_NSEC;
aa9b1630
PM
1347 return 0;
1348}
1349
21e52e15 1350/*
77a40f97
JFG
1351 * Prepare a CPU for idle from an RCU perspective. The first major task is to
1352 * sense whether nohz mode has been enabled or disabled via sysfs. The second
1353 * major task is to accelerate (that is, assign grace-period numbers to) any
1354 * recently arrived callbacks.
aea1b35e
PM
1355 *
1356 * The caller must have disabled interrupts.
8bd93a2c 1357 */
198bbf81 1358static void rcu_prepare_for_idle(void)
8bd93a2c 1359{
48a7639c 1360 bool needwake;
0fd79e75 1361 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
c0f4dfd4 1362 struct rcu_node *rnp;
9d2ad243
PM
1363 int tne;
1364
b04db8e1 1365 lockdep_assert_irqs_disabled();
ce5215c1 1366 if (rcu_segcblist_is_offloaded(&rdp->cblist))
3382adbc
PM
1367 return;
1368
9d2ad243 1369 /* Handle nohz enablement switches conservatively. */
7d0ae808 1370 tne = READ_ONCE(tick_nohz_active);
0fd79e75 1371 if (tne != rdp->tick_nohz_enabled_snap) {
260e1e4f 1372 if (!rcu_segcblist_empty(&rdp->cblist))
9d2ad243 1373 invoke_rcu_core(); /* force nohz to see update. */
0fd79e75 1374 rdp->tick_nohz_enabled_snap = tne;
9d2ad243
PM
1375 return;
1376 }
1377 if (!tne)
1378 return;
f511fc62 1379
3084f2f8 1380 /*
c0f4dfd4
PM
1381 * If we have not yet accelerated this jiffy, accelerate all
1382 * callbacks on this CPU.
3084f2f8 1383 */
5998a75a 1384 if (rdp->last_accelerate == jiffies)
aea1b35e 1385 return;
5998a75a 1386 rdp->last_accelerate = jiffies;
b97d23c5 1387 if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
c0f4dfd4 1388 rnp = rdp->mynode;
2a67e741 1389 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
02f50142 1390 needwake = rcu_accelerate_cbs(rnp, rdp);
67c583a7 1391 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
48a7639c 1392 if (needwake)
532c00c9 1393 rcu_gp_kthread_wake();
77e38ed3 1394 }
c0f4dfd4 1395}
3084f2f8 1396
c0f4dfd4
PM
1397/*
1398 * Clean up for exit from idle. Attempt to advance callbacks based on
1399 * any grace periods that elapsed while the CPU was idle, and if any
1400 * callbacks are now ready to invoke, initiate invocation.
1401 */
8fa7845d 1402static void rcu_cleanup_after_idle(void)
c0f4dfd4 1403{
ce5215c1
PM
1404 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1405
b04db8e1 1406 lockdep_assert_irqs_disabled();
ce5215c1 1407 if (rcu_segcblist_is_offloaded(&rdp->cblist))
aea1b35e 1408 return;
7a497c96
PM
1409 if (rcu_try_advance_all_cbs())
1410 invoke_rcu_core();
8bd93a2c
PM
1411}
1412
1413#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
a858af28 1414
3fbfbf7a
PM
1415#ifdef CONFIG_RCU_NOCB_CPU
1416
1417/*
1418 * Offload callback processing from the boot-time-specified set of CPUs
a9fefdb2
PM
1419 * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads
1420 * created that pull the callbacks from the corresponding CPU, wait for
1421 * a grace period to elapse, and invoke the callbacks. These kthreads
6484fe54
PM
1422 * are organized into GP kthreads, which manage incoming callbacks, wait for
1423 * grace periods, and awaken CB kthreads, and the CB kthreads, which only
1424 * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs
1425 * do a wake_up() on their GP kthread when they insert a callback into any
a9fefdb2
PM
1426 * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1427 * in which case each kthread actively polls its CPU. (Which isn't so great
1428 * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
3fbfbf7a
PM
1429 *
1430 * This is intended to be used in conjunction with Frederic Weisbecker's
1431 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1432 * running CPU-bound user-mode computations.
1433 *
a9fefdb2
PM
1434 * Offloading of callbacks can also be used as an energy-efficiency
1435 * measure because CPUs with no RCU callbacks queued are more aggressive
1436 * about entering dyntick-idle mode.
3fbfbf7a
PM
1437 */
1438
1439
497e4260
PM
1440/*
1441 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1442 * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a
1443 * comma-separated list of CPUs and/or CPU ranges. If an invalid list is
1444 * given, a warning is emitted and all CPUs are offloaded.
1445 */
3fbfbf7a
PM
1446static int __init rcu_nocb_setup(char *str)
1447{
1448 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
da8739f2
PM
1449 if (!strcasecmp(str, "all"))
1450 cpumask_setall(rcu_nocb_mask);
1451 else
497e4260
PM
1452 if (cpulist_parse(str, rcu_nocb_mask)) {
1453 pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1454 cpumask_setall(rcu_nocb_mask);
1455 }
3fbfbf7a
PM
1456 return 1;
1457}
1458__setup("rcu_nocbs=", rcu_nocb_setup);
1459
1b0048a4
PG
1460static int __init parse_rcu_nocb_poll(char *arg)
1461{
5455a7f6 1462 rcu_nocb_poll = true;
1b0048a4
PG
1463 return 0;
1464}
1465early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1466
5d6742b3 1467/*
d1b222c6
PM
1468 * Don't bother bypassing ->cblist if the call_rcu() rate is low.
1469 * After all, the main point of bypassing is to avoid lock contention
1470 * on ->nocb_lock, which only can happen at high call_rcu() rates.
5d6742b3 1471 */
d1b222c6
PM
1472int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
1473module_param(nocb_nobypass_lim_per_jiffy, int, 0);
1474
1475/*
1476 * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the
1477 * lock isn't immediately available, increment ->nocb_lock_contended to
1478 * flag the contention.
1479 */
1480static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
9ced4548 1481 __acquires(&rdp->nocb_bypass_lock)
5d6742b3 1482{
81c0b3d7 1483 lockdep_assert_irqs_disabled();
d1b222c6 1484 if (raw_spin_trylock(&rdp->nocb_bypass_lock))
81c0b3d7
PM
1485 return;
1486 atomic_inc(&rdp->nocb_lock_contended);
6aacd88d 1487 WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
81c0b3d7 1488 smp_mb__after_atomic(); /* atomic_inc() before lock. */
d1b222c6 1489 raw_spin_lock(&rdp->nocb_bypass_lock);
81c0b3d7
PM
1490 smp_mb__before_atomic(); /* atomic_dec() after lock. */
1491 atomic_dec(&rdp->nocb_lock_contended);
1492}
1493
1494/*
1495 * Spinwait until the specified rcu_data structure's ->nocb_lock is
1496 * not contended. Please note that this is extremely special-purpose,
1497 * relying on the fact that at most two kthreads and one CPU contend for
1498 * this lock, and also that the two kthreads are guaranteed to have frequent
1499 * grace-period-duration time intervals between successive acquisitions
1500 * of the lock. This allows us to use an extremely simple throttling
1501 * mechanism, and further to apply it only to the CPU doing floods of
1502 * call_rcu() invocations. Don't try this at home!
1503 */
1504static void rcu_nocb_wait_contended(struct rcu_data *rdp)
1505{
6aacd88d
PM
1506 WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1507 while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
81c0b3d7 1508 cpu_relax();
5d6742b3
PM
1509}
1510
d1b222c6
PM
1511/*
1512 * Conditionally acquire the specified rcu_data structure's
1513 * ->nocb_bypass_lock.
1514 */
1515static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
1516{
1517 lockdep_assert_irqs_disabled();
1518 return raw_spin_trylock(&rdp->nocb_bypass_lock);
1519}
1520
1521/*
1522 * Release the specified rcu_data structure's ->nocb_bypass_lock.
1523 */
1524static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
92c0b889 1525 __releases(&rdp->nocb_bypass_lock)
d1b222c6
PM
1526{
1527 lockdep_assert_irqs_disabled();
1528 raw_spin_unlock(&rdp->nocb_bypass_lock);
1529}
1530
1531/*
1532 * Acquire the specified rcu_data structure's ->nocb_lock, but only
1533 * if it corresponds to a no-CBs CPU.
1534 */
1535static void rcu_nocb_lock(struct rcu_data *rdp)
1536{
1537 lockdep_assert_irqs_disabled();
1538 if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1539 return;
1540 raw_spin_lock(&rdp->nocb_lock);
1541}
1542
5d6742b3
PM
1543/*
1544 * Release the specified rcu_data structure's ->nocb_lock, but only
1545 * if it corresponds to a no-CBs CPU.
1546 */
1547static void rcu_nocb_unlock(struct rcu_data *rdp)
1548{
1549 if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1550 lockdep_assert_irqs_disabled();
1551 raw_spin_unlock(&rdp->nocb_lock);
1552 }
1553}
1554
1555/*
1556 * Release the specified rcu_data structure's ->nocb_lock and restore
1557 * interrupts, but only if it corresponds to a no-CBs CPU.
1558 */
1559static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1560 unsigned long flags)
1561{
1562 if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1563 lockdep_assert_irqs_disabled();
1564 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1565 } else {
1566 local_irq_restore(flags);
1567 }
1568}
1569
d1b222c6
PM
1570/* Lockdep check that ->cblist may be safely accessed. */
1571static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1572{
1573 lockdep_assert_irqs_disabled();
13817dd5 1574 if (rcu_segcblist_is_offloaded(&rdp->cblist))
d1b222c6
PM
1575 lockdep_assert_held(&rdp->nocb_lock);
1576}
1577
dae6e64d 1578/*
0446be48
PM
1579 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1580 * grace period.
dae6e64d 1581 */
abedf8e2 1582static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
dae6e64d 1583{
abedf8e2 1584 swake_up_all(sq);
dae6e64d
PM
1585}
1586
abedf8e2 1587static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
065bb78c 1588{
e0da2374 1589 return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
065bb78c
DW
1590}
1591
dae6e64d 1592static void rcu_init_one_nocb(struct rcu_node *rnp)
34ed6246 1593{
abedf8e2
PG
1594 init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1595 init_swait_queue_head(&rnp->nocb_gp_wq[1]);
34ed6246
PM
1596}
1597
24342c96 1598/* Is the specified CPU a no-CBs CPU? */
d1e43fa5 1599bool rcu_is_nocb_cpu(int cpu)
3fbfbf7a 1600{
84b12b75 1601 if (cpumask_available(rcu_nocb_mask))
3fbfbf7a
PM
1602 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1603 return false;
1604}
1605
fbce7497 1606/*
6484fe54 1607 * Kick the GP kthread for this NOCB group. Caller holds ->nocb_lock
8be6e1b1 1608 * and this function releases it.
fbce7497 1609 */
5d6742b3 1610static void wake_nocb_gp(struct rcu_data *rdp, bool force,
5f675ba6 1611 unsigned long flags)
8be6e1b1 1612 __releases(rdp->nocb_lock)
fbce7497 1613{
d1b222c6 1614 bool needwake = false;
5f675ba6 1615 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
fbce7497 1616
8be6e1b1 1617 lockdep_assert_held(&rdp->nocb_lock);
5f675ba6 1618 if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
d1b222c6
PM
1619 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1620 TPS("AlreadyAwake"));
81c0b3d7 1621 rcu_nocb_unlock_irqrestore(rdp, flags);
fbce7497 1622 return;
8be6e1b1 1623 }
d1b222c6
PM
1624 del_timer(&rdp->nocb_timer);
1625 rcu_nocb_unlock_irqrestore(rdp, flags);
1626 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1627 if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
5d6742b3 1628 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
d1b222c6
PM
1629 needwake = true;
1630 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
fbce7497 1631 }
d1b222c6
PM
1632 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1633 if (needwake)
1634 wake_up_process(rdp_gp->nocb_gp_kthread);
fbce7497
PM
1635}
1636
8be6e1b1 1637/*
6484fe54
PM
1638 * Arrange to wake the GP kthread for this NOCB group at some future
1639 * time when it is safe to do so.
8be6e1b1 1640 */
0d52a665
PM
1641static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
1642 const char *reason)
8be6e1b1 1643{
8be6e1b1
PM
1644 if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1645 mod_timer(&rdp->nocb_timer, jiffies + 1);
383e1332
PM
1646 if (rdp->nocb_defer_wakeup < waketype)
1647 WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
88d1bead 1648 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
d7e29933
PM
1649}
1650
d1b222c6
PM
1651/*
1652 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1653 * However, if there is a callback to be enqueued and if ->nocb_bypass
1654 * proves to be initially empty, just return false because the no-CB GP
1655 * kthread may need to be awakened in this case.
1656 *
1657 * Note that this function always returns true if rhp is NULL.
1658 */
1659static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1660 unsigned long j)
1661{
1662 struct rcu_cblist rcl;
1663
1664 WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist));
1665 rcu_lockdep_assert_cblist_protected(rdp);
1666 lockdep_assert_held(&rdp->nocb_bypass_lock);
1667 if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
1668 raw_spin_unlock(&rdp->nocb_bypass_lock);
1669 return false;
1670 }
1671 /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
1672 if (rhp)
1673 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1674 rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
1675 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
1676 WRITE_ONCE(rdp->nocb_bypass_first, j);
1677 rcu_nocb_bypass_unlock(rdp);
1678 return true;
1679}
1680
1681/*
1682 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1683 * However, if there is a callback to be enqueued and if ->nocb_bypass
1684 * proves to be initially empty, just return false because the no-CB GP
1685 * kthread may need to be awakened in this case.
1686 *
1687 * Note that this function always returns true if rhp is NULL.
1688 */
1689static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1690 unsigned long j)
1691{
1692 if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1693 return true;
1694 rcu_lockdep_assert_cblist_protected(rdp);
1695 rcu_nocb_bypass_lock(rdp);
1696 return rcu_nocb_do_flush_bypass(rdp, rhp, j);
1697}
1698
1699/*
1700 * If the ->nocb_bypass_lock is immediately available, flush the
1701 * ->nocb_bypass queue into ->cblist.
1702 */
1703static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
1704{
1705 rcu_lockdep_assert_cblist_protected(rdp);
1706 if (!rcu_segcblist_is_offloaded(&rdp->cblist) ||
1707 !rcu_nocb_bypass_trylock(rdp))
1708 return;
1709 WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
1710}
1711
1712/*
1713 * See whether it is appropriate to use the ->nocb_bypass list in order
1714 * to control contention on ->nocb_lock. A limited number of direct
1715 * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass
1716 * is non-empty, further callbacks must be placed into ->nocb_bypass,
1717 * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch
1718 * back to direct use of ->cblist. However, ->nocb_bypass should not be
1719 * used if ->cblist is empty, because otherwise callbacks can be stranded
1720 * on ->nocb_bypass because we cannot count on the current CPU ever again
1721 * invoking call_rcu(). The general rule is that if ->nocb_bypass is
1722 * non-empty, the corresponding no-CBs grace-period kthread must not be
1723 * in an indefinite sleep state.
1724 *
1725 * Finally, it is not permitted to use the bypass during early boot,
1726 * as doing so would confuse the auto-initialization code. Besides
1727 * which, there is no point in worrying about lock contention while
1728 * there is only one CPU in operation.
1729 */
1730static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1731 bool *was_alldone, unsigned long flags)
1732{
1733 unsigned long c;
1734 unsigned long cur_gp_seq;
1735 unsigned long j = jiffies;
1736 long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1737
1738 if (!rcu_segcblist_is_offloaded(&rdp->cblist)) {
1739 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1740 return false; /* Not offloaded, no bypassing. */
1741 }
1742 lockdep_assert_irqs_disabled();
1743
1744 // Don't use ->nocb_bypass during early boot.
1745 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
1746 rcu_nocb_lock(rdp);
1747 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1748 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1749 return false;
1750 }
1751
1752 // If we have advanced to a new jiffy, reset counts to allow
1753 // moving back from ->nocb_bypass to ->cblist.
1754 if (j == rdp->nocb_nobypass_last) {
1755 c = rdp->nocb_nobypass_count + 1;
1756 } else {
1757 WRITE_ONCE(rdp->nocb_nobypass_last, j);
1758 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
1759 if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
1760 nocb_nobypass_lim_per_jiffy))
1761 c = 0;
1762 else if (c > nocb_nobypass_lim_per_jiffy)
1763 c = nocb_nobypass_lim_per_jiffy;
1764 }
1765 WRITE_ONCE(rdp->nocb_nobypass_count, c);
1766
1767 // If there hasn't yet been all that many ->cblist enqueues
1768 // this jiffy, tell the caller to enqueue onto ->cblist. But flush
1769 // ->nocb_bypass first.
1770 if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
1771 rcu_nocb_lock(rdp);
1772 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1773 if (*was_alldone)
1774 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1775 TPS("FirstQ"));
1776 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
1777 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1778 return false; // Caller must enqueue the callback.
1779 }
1780
1781 // If ->nocb_bypass has been used too long or is too full,
1782 // flush ->nocb_bypass to ->cblist.
1783 if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
1784 ncbs >= qhimark) {
1785 rcu_nocb_lock(rdp);
1786 if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
1787 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1788 if (*was_alldone)
1789 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1790 TPS("FirstQ"));
1791 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1792 return false; // Caller must enqueue the callback.
1793 }
1794 if (j != rdp->nocb_gp_adv_time &&
1795 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1796 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1797 rcu_advance_cbs_nowake(rdp->mynode, rdp);
1798 rdp->nocb_gp_adv_time = j;
1799 }
1800 rcu_nocb_unlock_irqrestore(rdp, flags);
1801 return true; // Callback already enqueued.
1802 }
1803
1804 // We need to use the bypass.
1805 rcu_nocb_wait_contended(rdp);
1806 rcu_nocb_bypass_lock(rdp);
1807 ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1808 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1809 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
1810 if (!ncbs) {
1811 WRITE_ONCE(rdp->nocb_bypass_first, j);
1812 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
1813 }
1814 rcu_nocb_bypass_unlock(rdp);
1815 smp_mb(); /* Order enqueue before wake. */
1816 if (ncbs) {
1817 local_irq_restore(flags);
1818 } else {
1819 // No-CBs GP kthread might be indefinitely asleep, if so, wake.
1820 rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
1821 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
1822 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1823 TPS("FirstBQwake"));
1824 __call_rcu_nocb_wake(rdp, true, flags);
1825 } else {
1826 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1827 TPS("FirstBQnoWake"));
1828 rcu_nocb_unlock_irqrestore(rdp, flags);
1829 }
1830 }
1831 return true; // Callback already enqueued.
1832}
1833
3fbfbf7a 1834/*
5d6742b3
PM
1835 * Awaken the no-CBs grace-period kthead if needed, either due to it
1836 * legitimately being asleep or due to overload conditions.
3fbfbf7a
PM
1837 *
1838 * If warranted, also wake up the kthread servicing this CPUs queues.
1839 */
5d6742b3
PM
1840static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
1841 unsigned long flags)
1842 __releases(rdp->nocb_lock)
3fbfbf7a 1843{
296181d7
PM
1844 unsigned long cur_gp_seq;
1845 unsigned long j;
ce0a825e 1846 long len;
3fbfbf7a
PM
1847 struct task_struct *t;
1848
5d6742b3 1849 // If we are being polled or there is no kthread, just leave.
12f54c3a 1850 t = READ_ONCE(rdp->nocb_gp_kthread);
25e03a74 1851 if (rcu_nocb_poll || !t) {
88d1bead 1852 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
9261dd0d 1853 TPS("WakeNotPoll"));
5d6742b3 1854 rcu_nocb_unlock_irqrestore(rdp, flags);
3fbfbf7a 1855 return;
9261dd0d 1856 }
5d6742b3
PM
1857 // Need to actually to a wakeup.
1858 len = rcu_segcblist_n_cbs(&rdp->cblist);
1859 if (was_alldone) {
aeeacd9d 1860 rdp->qlen_last_fqs_check = len;
96d3fd0d 1861 if (!irqs_disabled_flags(flags)) {
fbce7497 1862 /* ... if queue was empty ... */
5d6742b3 1863 wake_nocb_gp(rdp, false, flags);
88d1bead 1864 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
96d3fd0d
PM
1865 TPS("WakeEmpty"));
1866 } else {
0d52a665
PM
1867 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
1868 TPS("WakeEmptyIsDeferred"));
5d6742b3 1869 rcu_nocb_unlock_irqrestore(rdp, flags);
96d3fd0d 1870 }
3fbfbf7a 1871 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
fbce7497 1872 /* ... or if many callbacks queued. */
aeeacd9d 1873 rdp->qlen_last_fqs_check = len;
296181d7
PM
1874 j = jiffies;
1875 if (j != rdp->nocb_gp_adv_time &&
1876 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1877 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
faca5c25 1878 rcu_advance_cbs_nowake(rdp->mynode, rdp);
296181d7
PM
1879 rdp->nocb_gp_adv_time = j;
1880 }
f48fe4c5
PM
1881 smp_mb(); /* Enqueue before timer_pending(). */
1882 if ((rdp->nocb_cb_sleep ||
1883 !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
1884 !timer_pending(&rdp->nocb_bypass_timer))
273f0340
PM
1885 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
1886 TPS("WakeOvfIsDeferred"));
273f0340 1887 rcu_nocb_unlock_irqrestore(rdp, flags);
9261dd0d 1888 } else {
88d1bead 1889 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
5d6742b3 1890 rcu_nocb_unlock_irqrestore(rdp, flags);
3fbfbf7a
PM
1891 }
1892 return;
1893}
1894
d1b222c6
PM
1895/* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */
1896static void do_nocb_bypass_wakeup_timer(struct timer_list *t)
1897{
1898 unsigned long flags;
1899 struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer);
1900
1901 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1902 rcu_nocb_lock_irqsave(rdp, flags);
f48fe4c5 1903 smp_mb__after_spinlock(); /* Timer expire before wakeup. */
d1b222c6
PM
1904 __call_rcu_nocb_wake(rdp, true, flags);
1905}
1906
3fbfbf7a 1907/*
5d6742b3
PM
1908 * No-CBs GP kthreads come here to wait for additional callbacks to show up
1909 * or for grace periods to end.
fbce7497 1910 */
12f54c3a 1911static void nocb_gp_wait(struct rcu_data *my_rdp)
fbce7497 1912{
d1b222c6
PM
1913 bool bypass = false;
1914 long bypass_ncbs;
5d6742b3
PM
1915 int __maybe_unused cpu = my_rdp->cpu;
1916 unsigned long cur_gp_seq;
8be6e1b1 1917 unsigned long flags;
b8889c9c 1918 bool gotcbs = false;
d1b222c6 1919 unsigned long j = jiffies;
969974e5 1920 bool needwait_gp = false; // This prevents actual uninitialized use.
5d6742b3
PM
1921 bool needwake;
1922 bool needwake_gp;
fbce7497 1923 struct rcu_data *rdp;
5d6742b3 1924 struct rcu_node *rnp;
969974e5 1925 unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
3d05031a 1926 bool wasempty = false;
fbce7497
PM
1927
1928 /*
5d6742b3
PM
1929 * Each pass through the following loop checks for CBs and for the
1930 * nearest grace period (if any) to wait for next. The CB kthreads
1931 * and the global grace-period kthread are awakened if needed.
fbce7497 1932 */
58bf6f77 1933 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
d1b222c6
PM
1934 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
1935 rcu_nocb_lock_irqsave(rdp, flags);
1936 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1937 if (bypass_ncbs &&
1938 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
1939 bypass_ncbs > 2 * qhimark)) {
1940 // Bypass full or old, so flush it.
1941 (void)rcu_nocb_try_flush_bypass(rdp, j);
1942 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1943 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
1944 rcu_nocb_unlock_irqrestore(rdp, flags);
5d6742b3 1945 continue; /* No callbacks here, try next. */
d1b222c6
PM
1946 }
1947 if (bypass_ncbs) {
1948 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1949 TPS("Bypass"));
1950 bypass = true;
1951 }
5d6742b3 1952 rnp = rdp->mynode;
d1b222c6
PM
1953 if (bypass) { // Avoid race with first bypass CB.
1954 WRITE_ONCE(my_rdp->nocb_defer_wakeup,
1955 RCU_NOCB_WAKE_NOT);
1956 del_timer(&my_rdp->nocb_timer);
1957 }
1958 // Advance callbacks if helpful and low contention.
1959 needwake_gp = false;
1960 if (!rcu_segcblist_restempty(&rdp->cblist,
1961 RCU_NEXT_READY_TAIL) ||
1962 (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1963 rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
1964 raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
1965 needwake_gp = rcu_advance_cbs(rnp, rdp);
3d05031a
PM
1966 wasempty = rcu_segcblist_restempty(&rdp->cblist,
1967 RCU_NEXT_READY_TAIL);
d1b222c6
PM
1968 raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
1969 }
5d6742b3 1970 // Need to wait on some grace period?
3d05031a
PM
1971 WARN_ON_ONCE(wasempty &&
1972 !rcu_segcblist_restempty(&rdp->cblist,
d1b222c6 1973 RCU_NEXT_READY_TAIL));
5d6742b3
PM
1974 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
1975 if (!needwait_gp ||
1976 ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
1977 wait_gp_seq = cur_gp_seq;
1978 needwait_gp = true;
d1b222c6
PM
1979 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1980 TPS("NeedWaitGP"));
8be6e1b1 1981 }
5d6742b3
PM
1982 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
1983 needwake = rdp->nocb_cb_sleep;
1984 WRITE_ONCE(rdp->nocb_cb_sleep, false);
1985 smp_mb(); /* CB invocation -after- GP end. */
1986 } else {
1987 needwake = false;
8be6e1b1 1988 }
81c0b3d7 1989 rcu_nocb_unlock_irqrestore(rdp, flags);
5d6742b3 1990 if (needwake) {
12f54c3a 1991 swake_up_one(&rdp->nocb_cb_wq);
5d6742b3 1992 gotcbs = true;
fbce7497 1993 }
5d6742b3
PM
1994 if (needwake_gp)
1995 rcu_gp_kthread_wake();
1996 }
1997
f7a81b12
PM
1998 my_rdp->nocb_gp_bypass = bypass;
1999 my_rdp->nocb_gp_gp = needwait_gp;
2000 my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
d1b222c6
PM
2001 if (bypass && !rcu_nocb_poll) {
2002 // At least one child with non-empty ->nocb_bypass, so set
2003 // timer in order to avoid stranding its callbacks.
2004 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2005 mod_timer(&my_rdp->nocb_bypass_timer, j + 2);
2006 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2007 }
5d6742b3
PM
2008 if (rcu_nocb_poll) {
2009 /* Polling, so trace if first poll in the series. */
2010 if (gotcbs)
2011 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
f5ca3464 2012 schedule_timeout_idle(1);
5d6742b3
PM
2013 } else if (!needwait_gp) {
2014 /* Wait for callbacks to appear. */
2015 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
2016 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
2017 !READ_ONCE(my_rdp->nocb_gp_sleep));
d1b222c6 2018 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
5d6742b3
PM
2019 } else {
2020 rnp = my_rdp->mynode;
2021 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
2022 swait_event_interruptible_exclusive(
2023 rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
2024 rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
2025 !READ_ONCE(my_rdp->nocb_gp_sleep));
2026 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
2027 }
2028 if (!rcu_nocb_poll) {
4fd8c5f1 2029 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
d1b222c6
PM
2030 if (bypass)
2031 del_timer(&my_rdp->nocb_bypass_timer);
5d6742b3 2032 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
4fd8c5f1 2033 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
fbce7497 2034 }
f7a81b12 2035 my_rdp->nocb_gp_seq = -1;
5d6742b3 2036 WARN_ON(signal_pending(current));
12f54c3a 2037}
fbce7497 2038
12f54c3a
PM
2039/*
2040 * No-CBs grace-period-wait kthread. There is one of these per group
2041 * of CPUs, but only once at least one CPU in that group has come online
2042 * at least once since boot. This kthread checks for newly posted
2043 * callbacks from any of the CPUs it is responsible for, waits for a
2044 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
2045 * that then have callback-invocation work to do.
2046 */
2047static int rcu_nocb_gp_kthread(void *arg)
2048{
2049 struct rcu_data *rdp = arg;
2050
5d6742b3 2051 for (;;) {
f7a81b12 2052 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
12f54c3a 2053 nocb_gp_wait(rdp);
5d6742b3
PM
2054 cond_resched_tasks_rcu_qs();
2055 }
12f54c3a 2056 return 0;
fbce7497
PM
2057}
2058
2059/*
5d6742b3
PM
2060 * Invoke any ready callbacks from the corresponding no-CBs CPU,
2061 * then, if there are no more, wait for more to appear.
fbce7497 2062 */
5d6742b3 2063static void nocb_cb_wait(struct rcu_data *rdp)
fbce7497 2064{
1d5a81c1 2065 unsigned long cur_gp_seq;
5d6742b3
PM
2066 unsigned long flags;
2067 bool needwake_gp = false;
2068 struct rcu_node *rnp = rdp->mynode;
2069
2070 local_irq_save(flags);
2071 rcu_momentary_dyntick_idle();
2072 local_irq_restore(flags);
2073 local_bh_disable();
2074 rcu_do_batch(rdp);
2075 local_bh_enable();
2076 lockdep_assert_irqs_enabled();
81c0b3d7 2077 rcu_nocb_lock_irqsave(rdp, flags);
1d5a81c1
PM
2078 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
2079 rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
2080 raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
523bddd5
PM
2081 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
2082 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2083 }
5d6742b3 2084 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
81c0b3d7 2085 rcu_nocb_unlock_irqrestore(rdp, flags);
5d6742b3
PM
2086 if (needwake_gp)
2087 rcu_gp_kthread_wake();
2088 return;
2089 }
2090
f7c9a9b6 2091 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
5d6742b3 2092 WRITE_ONCE(rdp->nocb_cb_sleep, true);
81c0b3d7 2093 rcu_nocb_unlock_irqrestore(rdp, flags);
5d6742b3
PM
2094 if (needwake_gp)
2095 rcu_gp_kthread_wake();
12f54c3a 2096 swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
5d6742b3
PM
2097 !READ_ONCE(rdp->nocb_cb_sleep));
2098 if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */
2099 /* ^^^ Ensure CB invocation follows _sleep test. */
2100 return;
fbce7497 2101 }
12f54c3a
PM
2102 WARN_ON(signal_pending(current));
2103 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
fbce7497
PM
2104}
2105
3fbfbf7a 2106/*
5d6742b3
PM
2107 * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke
2108 * nocb_cb_wait() to do the dirty work.
3fbfbf7a 2109 */
12f54c3a 2110static int rcu_nocb_cb_kthread(void *arg)
3fbfbf7a 2111{
3fbfbf7a
PM
2112 struct rcu_data *rdp = arg;
2113
5d6742b3
PM
2114 // Each pass through this loop does one callback batch, and,
2115 // if there are no more ready callbacks, waits for them.
3fbfbf7a 2116 for (;;) {
5d6742b3
PM
2117 nocb_cb_wait(rdp);
2118 cond_resched_tasks_rcu_qs();
3fbfbf7a
PM
2119 }
2120 return 0;
2121}
2122
96d3fd0d 2123/* Is a deferred wakeup of rcu_nocb_kthread() required? */
9fdd3bc9 2124static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
96d3fd0d 2125{
7d0ae808 2126 return READ_ONCE(rdp->nocb_defer_wakeup);
96d3fd0d
PM
2127}
2128
2129/* Do a deferred wakeup of rcu_nocb_kthread(). */
8be6e1b1 2130static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
96d3fd0d 2131{
8be6e1b1 2132 unsigned long flags;
9fdd3bc9
PM
2133 int ndw;
2134
81c0b3d7 2135 rcu_nocb_lock_irqsave(rdp, flags);
8be6e1b1 2136 if (!rcu_nocb_need_deferred_wakeup(rdp)) {
81c0b3d7 2137 rcu_nocb_unlock_irqrestore(rdp, flags);
96d3fd0d 2138 return;
8be6e1b1 2139 }
7d0ae808 2140 ndw = READ_ONCE(rdp->nocb_defer_wakeup);
511324e4 2141 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
5d6742b3 2142 wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
88d1bead 2143 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
96d3fd0d
PM
2144}
2145
8be6e1b1 2146/* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
fd30b717 2147static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
8be6e1b1 2148{
fd30b717
KC
2149 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2150
2151 do_nocb_deferred_wakeup_common(rdp);
8be6e1b1
PM
2152}
2153
2154/*
2155 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2156 * This means we do an inexact common-case check. Note that if
2157 * we miss, ->nocb_timer will eventually clean things up.
2158 */
2159static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2160{
2161 if (rcu_nocb_need_deferred_wakeup(rdp))
2162 do_nocb_deferred_wakeup_common(rdp);
2163}
2164
f4579fc5
PM
2165void __init rcu_init_nohz(void)
2166{
2167 int cpu;
ef126206 2168 bool need_rcu_nocb_mask = false;
e83e73f5 2169 struct rcu_data *rdp;
f4579fc5 2170
f4579fc5
PM
2171#if defined(CONFIG_NO_HZ_FULL)
2172 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2173 need_rcu_nocb_mask = true;
2174#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2175
84b12b75 2176 if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
949cccdb
PK
2177 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2178 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2179 return;
2180 }
f4579fc5 2181 }
84b12b75 2182 if (!cpumask_available(rcu_nocb_mask))
f4579fc5
PM
2183 return;
2184
f4579fc5
PM
2185#if defined(CONFIG_NO_HZ_FULL)
2186 if (tick_nohz_full_running)
2187 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2188#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2189
2190 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
ef126206 2191 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
f4579fc5
PM
2192 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2193 rcu_nocb_mask);
2194 }
3016611e
PM
2195 if (cpumask_empty(rcu_nocb_mask))
2196 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2197 else
2198 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2199 cpumask_pr_args(rcu_nocb_mask));
f4579fc5
PM
2200 if (rcu_nocb_poll)
2201 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2202
e83e73f5
PM
2203 for_each_cpu(cpu, rcu_nocb_mask) {
2204 rdp = per_cpu_ptr(&rcu_data, cpu);
2205 if (rcu_segcblist_empty(&rdp->cblist))
2206 rcu_segcblist_init(&rdp->cblist);
2207 rcu_segcblist_offload(&rdp->cblist);
2208 }
b97d23c5 2209 rcu_organize_nocb_kthreads();
96d3fd0d
PM
2210}
2211
3fbfbf7a
PM
2212/* Initialize per-rcu_data variables for no-CBs CPUs. */
2213static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2214{
12f54c3a
PM
2215 init_swait_queue_head(&rdp->nocb_cb_wq);
2216 init_swait_queue_head(&rdp->nocb_gp_wq);
8be6e1b1 2217 raw_spin_lock_init(&rdp->nocb_lock);
d1b222c6 2218 raw_spin_lock_init(&rdp->nocb_bypass_lock);
4fd8c5f1 2219 raw_spin_lock_init(&rdp->nocb_gp_lock);
fd30b717 2220 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
d1b222c6
PM
2221 timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0);
2222 rcu_cblist_init(&rdp->nocb_bypass);
3fbfbf7a
PM
2223}
2224
35ce7f29
PM
2225/*
2226 * If the specified CPU is a no-CBs CPU that does not already have its
12f54c3a
PM
2227 * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread
2228 * for this CPU's group has not yet been created, spawn it as well.
35ce7f29 2229 */
4580b054 2230static void rcu_spawn_one_nocb_kthread(int cpu)
35ce7f29 2231{
12f54c3a
PM
2232 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2233 struct rcu_data *rdp_gp;
35ce7f29
PM
2234 struct task_struct *t;
2235
2236 /*
2237 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2238 * then nothing to do.
2239 */
12f54c3a 2240 if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
35ce7f29
PM
2241 return;
2242
6484fe54 2243 /* If we didn't spawn the GP kthread first, reorganize! */
12f54c3a
PM
2244 rdp_gp = rdp->nocb_gp_rdp;
2245 if (!rdp_gp->nocb_gp_kthread) {
2246 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
2247 "rcuog/%d", rdp_gp->cpu);
2248 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
2249 return;
2250 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
35ce7f29
PM
2251 }
2252
0ae86a27 2253 /* Spawn the kthread for this CPU. */
12f54c3a 2254 t = kthread_run(rcu_nocb_cb_kthread, rdp,
4580b054 2255 "rcuo%c/%d", rcu_state.abbr, cpu);
12f54c3a 2256 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
9213784b 2257 return;
12f54c3a
PM
2258 WRITE_ONCE(rdp->nocb_cb_kthread, t);
2259 WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
35ce7f29
PM
2260}
2261
2262/*
2263 * If the specified CPU is a no-CBs CPU that does not already have its
ad368d15 2264 * rcuo kthread, spawn it.
35ce7f29 2265 */
ad368d15 2266static void rcu_spawn_cpu_nocb_kthread(int cpu)
35ce7f29 2267{
35ce7f29 2268 if (rcu_scheduler_fully_active)
b97d23c5 2269 rcu_spawn_one_nocb_kthread(cpu);
35ce7f29
PM
2270}
2271
2272/*
2273 * Once the scheduler is running, spawn rcuo kthreads for all online
2274 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2275 * non-boot CPUs come online -- if this changes, we will need to add
2276 * some mutual exclusion.
2277 */
2278static void __init rcu_spawn_nocb_kthreads(void)
2279{
2280 int cpu;
2281
2282 for_each_online_cpu(cpu)
ad368d15 2283 rcu_spawn_cpu_nocb_kthread(cpu);
35ce7f29
PM
2284}
2285
6484fe54 2286/* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */
f7c612b0
PM
2287static int rcu_nocb_gp_stride = -1;
2288module_param(rcu_nocb_gp_stride, int, 0444);
fbce7497
PM
2289
2290/*
6484fe54 2291 * Initialize GP-CB relationships for all no-CBs CPU.
fbce7497 2292 */
4580b054 2293static void __init rcu_organize_nocb_kthreads(void)
3fbfbf7a
PM
2294{
2295 int cpu;
18cd8c93 2296 bool firsttime = true;
610dea36
SR
2297 bool gotnocbs = false;
2298 bool gotnocbscbs = true;
f7c612b0 2299 int ls = rcu_nocb_gp_stride;
6484fe54 2300 int nl = 0; /* Next GP kthread. */
3fbfbf7a 2301 struct rcu_data *rdp;
0bdc33da 2302 struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */
fbce7497 2303 struct rcu_data *rdp_prev = NULL;
3fbfbf7a 2304
84b12b75 2305 if (!cpumask_available(rcu_nocb_mask))
3fbfbf7a 2306 return;
fbce7497 2307 if (ls == -1) {
9fcb09bd 2308 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
f7c612b0 2309 rcu_nocb_gp_stride = ls;
fbce7497
PM
2310 }
2311
2312 /*
9831ce3b
PM
2313 * Each pass through this loop sets up one rcu_data structure.
2314 * Should the corresponding CPU come online in the future, then
2315 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
fbce7497 2316 */
3fbfbf7a 2317 for_each_cpu(cpu, rcu_nocb_mask) {
da1df50d 2318 rdp = per_cpu_ptr(&rcu_data, cpu);
fbce7497 2319 if (rdp->cpu >= nl) {
6484fe54 2320 /* New GP kthread, set up for CBs & next GP. */
610dea36 2321 gotnocbs = true;
fbce7497 2322 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
58bf6f77 2323 rdp->nocb_gp_rdp = rdp;
0bdc33da 2324 rdp_gp = rdp;
610dea36
SR
2325 if (dump_tree) {
2326 if (!firsttime)
2327 pr_cont("%s\n", gotnocbscbs
2328 ? "" : " (self only)");
2329 gotnocbscbs = false;
2330 firsttime = false;
2331 pr_alert("%s: No-CB GP kthread CPU %d:",
2332 __func__, cpu);
2333 }
fbce7497 2334 } else {
6484fe54 2335 /* Another CB kthread, link to previous GP kthread. */
610dea36 2336 gotnocbscbs = true;
0bdc33da 2337 rdp->nocb_gp_rdp = rdp_gp;
58bf6f77 2338 rdp_prev->nocb_next_cb_rdp = rdp;
610dea36
SR
2339 if (dump_tree)
2340 pr_cont(" %d", cpu);
fbce7497
PM
2341 }
2342 rdp_prev = rdp;
3fbfbf7a 2343 }
610dea36
SR
2344 if (gotnocbs && dump_tree)
2345 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
3fbfbf7a
PM
2346}
2347
5ab7ab83
PM
2348/*
2349 * Bind the current task to the offloaded CPUs. If there are no offloaded
2350 * CPUs, leave the task unbound. Splat if the bind attempt fails.
2351 */
2352void rcu_bind_current_to_nocb(void)
2353{
2354 if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2355 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
2356}
2357EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
2358
f7a81b12
PM
2359/*
2360 * Dump out nocb grace-period kthread state for the specified rcu_data
2361 * structure.
2362 */
2363static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
2364{
2365 struct rcu_node *rnp = rdp->mynode;
2366
2367 pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n",
2368 rdp->cpu,
2369 "kK"[!!rdp->nocb_gp_kthread],
2370 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
2371 "dD"[!!rdp->nocb_defer_wakeup],
2372 "tT"[timer_pending(&rdp->nocb_timer)],
2373 "bB"[timer_pending(&rdp->nocb_bypass_timer)],
2374 "sS"[!!rdp->nocb_gp_sleep],
2375 ".W"[swait_active(&rdp->nocb_gp_wq)],
2376 ".W"[swait_active(&rnp->nocb_gp_wq[0])],
2377 ".W"[swait_active(&rnp->nocb_gp_wq[1])],
2378 ".B"[!!rdp->nocb_gp_bypass],
2379 ".G"[!!rdp->nocb_gp_gp],
2380 (long)rdp->nocb_gp_seq,
2381 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops));
2382}
2383
2384/* Dump out nocb kthread state for the specified rcu_data structure. */
2385static void show_rcu_nocb_state(struct rcu_data *rdp)
2386{
2387 struct rcu_segcblist *rsclp = &rdp->cblist;
2388 bool waslocked;
2389 bool wastimer;
2390 bool wassleep;
2391
2392 if (rdp->nocb_gp_rdp == rdp)
2393 show_rcu_nocb_gp_state(rdp);
2394
2395 pr_info(" CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n",
2396 rdp->cpu, rdp->nocb_gp_rdp->cpu,
2397 "kK"[!!rdp->nocb_cb_kthread],
2398 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
2399 "cC"[!!atomic_read(&rdp->nocb_lock_contended)],
2400 "lL"[raw_spin_is_locked(&rdp->nocb_lock)],
2401 "sS"[!!rdp->nocb_cb_sleep],
2402 ".W"[swait_active(&rdp->nocb_cb_wq)],
2403 jiffies - rdp->nocb_bypass_first,
2404 jiffies - rdp->nocb_nobypass_last,
2405 rdp->nocb_nobypass_count,
2406 ".D"[rcu_segcblist_ready_cbs(rsclp)],
2407 ".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)],
2408 ".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)],
2409 ".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)],
2410 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
2411 rcu_segcblist_n_cbs(&rdp->cblist));
2412
2413 /* It is OK for GP kthreads to have GP state. */
2414 if (rdp->nocb_gp_rdp == rdp)
2415 return;
2416
2417 waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
2418 wastimer = timer_pending(&rdp->nocb_timer);
2419 wassleep = swait_active(&rdp->nocb_gp_wq);
2420 if (!rdp->nocb_defer_wakeup && !rdp->nocb_gp_sleep &&
2421 !waslocked && !wastimer && !wassleep)
2422 return; /* Nothing untowards. */
2423
2424 pr_info(" !!! %c%c%c%c %c\n",
2425 "lL"[waslocked],
2426 "dD"[!!rdp->nocb_defer_wakeup],
2427 "tT"[wastimer],
2428 "sS"[!!rdp->nocb_gp_sleep],
2429 ".W"[wassleep]);
2430}
2431
34ed6246
PM
2432#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2433
5d6742b3
PM
2434/* No ->nocb_lock to acquire. */
2435static void rcu_nocb_lock(struct rcu_data *rdp)
d7e29933 2436{
5d6742b3
PM
2437}
2438
2439/* No ->nocb_lock to release. */
2440static void rcu_nocb_unlock(struct rcu_data *rdp)
2441{
2442}
2443
2444/* No ->nocb_lock to release. */
2445static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
2446 unsigned long flags)
2447{
2448 local_irq_restore(flags);
d7e29933
PM
2449}
2450
d1b222c6
PM
2451/* Lockdep check that ->cblist may be safely accessed. */
2452static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
2453{
2454 lockdep_assert_irqs_disabled();
2455}
2456
abedf8e2 2457static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
3fbfbf7a 2458{
3fbfbf7a
PM
2459}
2460
abedf8e2 2461static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
065bb78c
DW
2462{
2463 return NULL;
2464}
2465
dae6e64d
PM
2466static void rcu_init_one_nocb(struct rcu_node *rnp)
2467{
2468}
3fbfbf7a 2469
d1b222c6
PM
2470static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2471 unsigned long j)
2472{
2473 return true;
2474}
2475
2476static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2477 bool *was_alldone, unsigned long flags)
2478{
2479 return false;
2480}
2481
5d6742b3
PM
2482static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
2483 unsigned long flags)
3fbfbf7a 2484{
5d6742b3 2485 WARN_ON_ONCE(1); /* Should be dead code! */
3fbfbf7a
PM
2486}
2487
3fbfbf7a
PM
2488static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2489{
2490}
2491
9fdd3bc9 2492static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
96d3fd0d
PM
2493{
2494 return false;
2495}
2496
2497static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2498{
2499}
2500
ad368d15 2501static void rcu_spawn_cpu_nocb_kthread(int cpu)
35ce7f29
PM
2502{
2503}
2504
2505static void __init rcu_spawn_nocb_kthreads(void)
3fbfbf7a
PM
2506{
2507}
2508
f7a81b12
PM
2509static void show_rcu_nocb_state(struct rcu_data *rdp)
2510{
2511}
2512
3fbfbf7a 2513#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
65d798f0 2514
a096932f
PM
2515/*
2516 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2517 * grace-period kthread will do force_quiescent_state() processing?
2518 * The idea is to avoid waking up RCU core processing on such a
2519 * CPU unless the grace period has extended for too long.
2520 *
2521 * This code relies on the fact that all NO_HZ_FULL CPUs are also
52e2bb95 2522 * CONFIG_RCU_NOCB_CPU CPUs.
a096932f 2523 */
4580b054 2524static bool rcu_nohz_full_cpu(void)
a096932f
PM
2525{
2526#ifdef CONFIG_NO_HZ_FULL
2527 if (tick_nohz_full_cpu(smp_processor_id()) &&
de8e8730 2528 (!rcu_gp_in_progress() ||
e2f3ccfa 2529 time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
5ce035fb 2530 return true;
a096932f 2531#endif /* #ifdef CONFIG_NO_HZ_FULL */
5ce035fb 2532 return false;
a096932f 2533}
5057f55e
PM
2534
2535/*
265f5f28 2536 * Bind the RCU grace-period kthreads to the housekeeping CPU.
5057f55e
PM
2537 */
2538static void rcu_bind_gp_kthread(void)
2539{
c0f489d2 2540 if (!tick_nohz_full_enabled())
5057f55e 2541 return;
de201559 2542 housekeeping_affine(current, HK_FLAG_RCU);
5057f55e 2543}
176f8f7a
PM
2544
2545/* Record the current task on dyntick-idle entry. */
ff5c4f5c 2546static void noinstr rcu_dynticks_task_enter(void)
176f8f7a
PM
2547{
2548#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
7d0ae808 2549 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
176f8f7a
PM
2550#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2551}
2552
2553/* Record no current task on dyntick-idle exit. */
ff5c4f5c 2554static void noinstr rcu_dynticks_task_exit(void)
176f8f7a
PM
2555{
2556#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
7d0ae808 2557 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
176f8f7a
PM
2558#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2559}
7d0c9c50
PM
2560
2561/* Turn on heavyweight RCU tasks trace readers on idle/user entry. */
2562static void rcu_dynticks_task_trace_enter(void)
2563{
2564#ifdef CONFIG_TASKS_RCU_TRACE
2565 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
2566 current->trc_reader_special.b.need_mb = true;
2567#endif /* #ifdef CONFIG_TASKS_RCU_TRACE */
2568}
2569
2570/* Turn off heavyweight RCU tasks trace readers on idle/user exit. */
2571static void rcu_dynticks_task_trace_exit(void)
2572{
2573#ifdef CONFIG_TASKS_RCU_TRACE
2574 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
2575 current->trc_reader_special.b.need_mb = false;
2576#endif /* #ifdef CONFIG_TASKS_RCU_TRACE */
2577}
This page took 1.303335 seconds and 4 git commands to generate.