]>
Commit | Line | Data |
---|---|---|
f41d911f PM |
1 | /* |
2 | * Read-Copy Update mechanism for mutual exclusion (tree-based version) | |
3 | * Internal non-public definitions that provide either classic | |
6cc68793 | 4 | * or preemptible semantics. |
f41d911f PM |
5 | * |
6 | * This program is free software; you can redistribute it and/or modify | |
7 | * it under the terms of the GNU General Public License as published by | |
8 | * the Free Software Foundation; either version 2 of the License, or | |
9 | * (at your option) any later version. | |
10 | * | |
11 | * This program is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | * GNU General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU General Public License | |
17 | * along with this program; if not, write to the Free Software | |
18 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | |
19 | * | |
20 | * Copyright Red Hat, 2009 | |
21 | * Copyright IBM Corporation, 2009 | |
22 | * | |
23 | * Author: Ingo Molnar <[email protected]> | |
24 | * Paul E. McKenney <[email protected]> | |
25 | */ | |
26 | ||
d9a3da06 | 27 | #include <linux/delay.h> |
3fbfbf7a | 28 | #include <linux/gfp.h> |
b626c1b6 | 29 | #include <linux/oom.h> |
62ab7072 | 30 | #include <linux/smpboot.h> |
f41d911f | 31 | |
5b61b0ba MG |
32 | #define RCU_KTHREAD_PRIO 1 |
33 | ||
34 | #ifdef CONFIG_RCU_BOOST | |
35 | #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO | |
36 | #else | |
37 | #define RCU_BOOST_PRIO RCU_KTHREAD_PRIO | |
38 | #endif | |
39 | ||
3fbfbf7a PM |
40 | #ifdef CONFIG_RCU_NOCB_CPU |
41 | static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ | |
42 | static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */ | |
1b0048a4 | 43 | static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ |
3fbfbf7a PM |
44 | static char __initdata nocb_buf[NR_CPUS * 5]; |
45 | #endif /* #ifdef CONFIG_RCU_NOCB_CPU */ | |
46 | ||
26845c28 PM |
47 | /* |
48 | * Check the RCU kernel configuration parameters and print informative | |
49 | * messages about anything out of the ordinary. If you like #ifdef, you | |
50 | * will love this function. | |
51 | */ | |
52 | static void __init rcu_bootup_announce_oddness(void) | |
53 | { | |
54 | #ifdef CONFIG_RCU_TRACE | |
55 | printk(KERN_INFO "\tRCU debugfs-based tracing is enabled.\n"); | |
56 | #endif | |
57 | #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32) | |
58 | printk(KERN_INFO "\tCONFIG_RCU_FANOUT set to non-default value of %d\n", | |
59 | CONFIG_RCU_FANOUT); | |
60 | #endif | |
61 | #ifdef CONFIG_RCU_FANOUT_EXACT | |
62 | printk(KERN_INFO "\tHierarchical RCU autobalancing is disabled.\n"); | |
63 | #endif | |
64 | #ifdef CONFIG_RCU_FAST_NO_HZ | |
65 | printk(KERN_INFO | |
66 | "\tRCU dyntick-idle grace-period acceleration is enabled.\n"); | |
67 | #endif | |
68 | #ifdef CONFIG_PROVE_RCU | |
69 | printk(KERN_INFO "\tRCU lockdep checking is enabled.\n"); | |
70 | #endif | |
71 | #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE | |
72 | printk(KERN_INFO "\tRCU torture testing starts during boot.\n"); | |
73 | #endif | |
81a294c4 | 74 | #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE) |
a858af28 PM |
75 | printk(KERN_INFO "\tDump stacks of tasks blocking RCU-preempt GP.\n"); |
76 | #endif | |
77 | #if defined(CONFIG_RCU_CPU_STALL_INFO) | |
78 | printk(KERN_INFO "\tAdditional per-CPU info printed with stalls.\n"); | |
26845c28 PM |
79 | #endif |
80 | #if NUM_RCU_LVL_4 != 0 | |
cc5df65b | 81 | printk(KERN_INFO "\tFour-level hierarchy is enabled.\n"); |
26845c28 | 82 | #endif |
f885b7f2 PM |
83 | if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF) |
84 | printk(KERN_INFO "\tExperimental boot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf); | |
cca6f393 PM |
85 | if (nr_cpu_ids != NR_CPUS) |
86 | printk(KERN_INFO "\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids); | |
3fbfbf7a | 87 | #ifdef CONFIG_RCU_NOCB_CPU |
911af505 PM |
88 | #ifndef CONFIG_RCU_NOCB_CPU_NONE |
89 | if (!have_rcu_nocb_mask) { | |
90 | alloc_bootmem_cpumask_var(&rcu_nocb_mask); | |
91 | have_rcu_nocb_mask = true; | |
92 | } | |
93 | #ifdef CONFIG_RCU_NOCB_CPU_ZERO | |
94 | pr_info("\tExperimental no-CBs CPU 0\n"); | |
95 | cpumask_set_cpu(0, rcu_nocb_mask); | |
96 | #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */ | |
97 | #ifdef CONFIG_RCU_NOCB_CPU_ALL | |
98 | pr_info("\tExperimental no-CBs for all CPUs\n"); | |
99 | cpumask_setall(rcu_nocb_mask); | |
100 | #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */ | |
101 | #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */ | |
3fbfbf7a | 102 | if (have_rcu_nocb_mask) { |
3fbfbf7a PM |
103 | cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask); |
104 | pr_info("\tExperimental no-CBs CPUs: %s.\n", nocb_buf); | |
105 | if (rcu_nocb_poll) | |
106 | pr_info("\tExperimental polled no-CBs CPUs.\n"); | |
107 | } | |
108 | #endif /* #ifdef CONFIG_RCU_NOCB_CPU */ | |
26845c28 PM |
109 | } |
110 | ||
f41d911f PM |
111 | #ifdef CONFIG_TREE_PREEMPT_RCU |
112 | ||
037b64ed | 113 | struct rcu_state rcu_preempt_state = |
a4889858 | 114 | RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu); |
f41d911f | 115 | DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data); |
27f4d280 | 116 | static struct rcu_state *rcu_state = &rcu_preempt_state; |
f41d911f | 117 | |
d9a3da06 PM |
118 | static int rcu_preempted_readers_exp(struct rcu_node *rnp); |
119 | ||
f41d911f PM |
120 | /* |
121 | * Tell them what RCU they are running. | |
122 | */ | |
0e0fc1c2 | 123 | static void __init rcu_bootup_announce(void) |
f41d911f | 124 | { |
6cc68793 | 125 | printk(KERN_INFO "Preemptible hierarchical RCU implementation.\n"); |
26845c28 | 126 | rcu_bootup_announce_oddness(); |
f41d911f PM |
127 | } |
128 | ||
129 | /* | |
130 | * Return the number of RCU-preempt batches processed thus far | |
131 | * for debug and statistics. | |
132 | */ | |
133 | long rcu_batches_completed_preempt(void) | |
134 | { | |
135 | return rcu_preempt_state.completed; | |
136 | } | |
137 | EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt); | |
138 | ||
139 | /* | |
140 | * Return the number of RCU batches processed thus far for debug & stats. | |
141 | */ | |
142 | long rcu_batches_completed(void) | |
143 | { | |
144 | return rcu_batches_completed_preempt(); | |
145 | } | |
146 | EXPORT_SYMBOL_GPL(rcu_batches_completed); | |
147 | ||
bf66f18e PM |
148 | /* |
149 | * Force a quiescent state for preemptible RCU. | |
150 | */ | |
151 | void rcu_force_quiescent_state(void) | |
152 | { | |
4cdfc175 | 153 | force_quiescent_state(&rcu_preempt_state); |
bf66f18e PM |
154 | } |
155 | EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); | |
156 | ||
f41d911f | 157 | /* |
6cc68793 | 158 | * Record a preemptible-RCU quiescent state for the specified CPU. Note |
f41d911f PM |
159 | * that this just means that the task currently running on the CPU is |
160 | * not in a quiescent state. There might be any number of tasks blocked | |
161 | * while in an RCU read-side critical section. | |
25502a6c PM |
162 | * |
163 | * Unlike the other rcu_*_qs() functions, callers to this function | |
164 | * must disable irqs in order to protect the assignment to | |
165 | * ->rcu_read_unlock_special. | |
f41d911f | 166 | */ |
c3422bea | 167 | static void rcu_preempt_qs(int cpu) |
f41d911f PM |
168 | { |
169 | struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu); | |
25502a6c | 170 | |
e4cc1f22 | 171 | if (rdp->passed_quiesce == 0) |
d4c08f2a | 172 | trace_rcu_grace_period("rcu_preempt", rdp->gpnum, "cpuqs"); |
e4cc1f22 | 173 | rdp->passed_quiesce = 1; |
25502a6c | 174 | current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS; |
f41d911f PM |
175 | } |
176 | ||
177 | /* | |
c3422bea PM |
178 | * We have entered the scheduler, and the current task might soon be |
179 | * context-switched away from. If this task is in an RCU read-side | |
180 | * critical section, we will no longer be able to rely on the CPU to | |
12f5f524 PM |
181 | * record that fact, so we enqueue the task on the blkd_tasks list. |
182 | * The task will dequeue itself when it exits the outermost enclosing | |
183 | * RCU read-side critical section. Therefore, the current grace period | |
184 | * cannot be permitted to complete until the blkd_tasks list entries | |
185 | * predating the current grace period drain, in other words, until | |
186 | * rnp->gp_tasks becomes NULL. | |
c3422bea PM |
187 | * |
188 | * Caller must disable preemption. | |
f41d911f | 189 | */ |
cba6d0d6 | 190 | static void rcu_preempt_note_context_switch(int cpu) |
f41d911f PM |
191 | { |
192 | struct task_struct *t = current; | |
c3422bea | 193 | unsigned long flags; |
f41d911f PM |
194 | struct rcu_data *rdp; |
195 | struct rcu_node *rnp; | |
196 | ||
10f39bb1 | 197 | if (t->rcu_read_lock_nesting > 0 && |
f41d911f PM |
198 | (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) { |
199 | ||
200 | /* Possibly blocking in an RCU read-side critical section. */ | |
cba6d0d6 | 201 | rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu); |
f41d911f | 202 | rnp = rdp->mynode; |
1304afb2 | 203 | raw_spin_lock_irqsave(&rnp->lock, flags); |
f41d911f | 204 | t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED; |
86848966 | 205 | t->rcu_blocked_node = rnp; |
f41d911f PM |
206 | |
207 | /* | |
208 | * If this CPU has already checked in, then this task | |
209 | * will hold up the next grace period rather than the | |
210 | * current grace period. Queue the task accordingly. | |
211 | * If the task is queued for the current grace period | |
212 | * (i.e., this CPU has not yet passed through a quiescent | |
213 | * state for the current grace period), then as long | |
214 | * as that task remains queued, the current grace period | |
12f5f524 PM |
215 | * cannot end. Note that there is some uncertainty as |
216 | * to exactly when the current grace period started. | |
217 | * We take a conservative approach, which can result | |
218 | * in unnecessarily waiting on tasks that started very | |
219 | * slightly after the current grace period began. C'est | |
220 | * la vie!!! | |
b0e165c0 PM |
221 | * |
222 | * But first, note that the current CPU must still be | |
223 | * on line! | |
f41d911f | 224 | */ |
b0e165c0 | 225 | WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0); |
e7d8842e | 226 | WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); |
12f5f524 PM |
227 | if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) { |
228 | list_add(&t->rcu_node_entry, rnp->gp_tasks->prev); | |
229 | rnp->gp_tasks = &t->rcu_node_entry; | |
27f4d280 PM |
230 | #ifdef CONFIG_RCU_BOOST |
231 | if (rnp->boost_tasks != NULL) | |
232 | rnp->boost_tasks = rnp->gp_tasks; | |
233 | #endif /* #ifdef CONFIG_RCU_BOOST */ | |
12f5f524 PM |
234 | } else { |
235 | list_add(&t->rcu_node_entry, &rnp->blkd_tasks); | |
236 | if (rnp->qsmask & rdp->grpmask) | |
237 | rnp->gp_tasks = &t->rcu_node_entry; | |
238 | } | |
d4c08f2a PM |
239 | trace_rcu_preempt_task(rdp->rsp->name, |
240 | t->pid, | |
241 | (rnp->qsmask & rdp->grpmask) | |
242 | ? rnp->gpnum | |
243 | : rnp->gpnum + 1); | |
1304afb2 | 244 | raw_spin_unlock_irqrestore(&rnp->lock, flags); |
10f39bb1 PM |
245 | } else if (t->rcu_read_lock_nesting < 0 && |
246 | t->rcu_read_unlock_special) { | |
247 | ||
248 | /* | |
249 | * Complete exit from RCU read-side critical section on | |
250 | * behalf of preempted instance of __rcu_read_unlock(). | |
251 | */ | |
252 | rcu_read_unlock_special(t); | |
f41d911f PM |
253 | } |
254 | ||
255 | /* | |
256 | * Either we were not in an RCU read-side critical section to | |
257 | * begin with, or we have now recorded that critical section | |
258 | * globally. Either way, we can now note a quiescent state | |
259 | * for this CPU. Again, if we were in an RCU read-side critical | |
260 | * section, and if that critical section was blocking the current | |
261 | * grace period, then the fact that the task has been enqueued | |
262 | * means that we continue to block the current grace period. | |
263 | */ | |
e7d8842e | 264 | local_irq_save(flags); |
cba6d0d6 | 265 | rcu_preempt_qs(cpu); |
e7d8842e | 266 | local_irq_restore(flags); |
f41d911f PM |
267 | } |
268 | ||
fc2219d4 PM |
269 | /* |
270 | * Check for preempted RCU readers blocking the current grace period | |
271 | * for the specified rcu_node structure. If the caller needs a reliable | |
272 | * answer, it must hold the rcu_node's ->lock. | |
273 | */ | |
27f4d280 | 274 | static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) |
fc2219d4 | 275 | { |
12f5f524 | 276 | return rnp->gp_tasks != NULL; |
fc2219d4 PM |
277 | } |
278 | ||
b668c9cf PM |
279 | /* |
280 | * Record a quiescent state for all tasks that were previously queued | |
281 | * on the specified rcu_node structure and that were blocking the current | |
282 | * RCU grace period. The caller must hold the specified rnp->lock with | |
283 | * irqs disabled, and this lock is released upon return, but irqs remain | |
284 | * disabled. | |
285 | */ | |
d3f6bad3 | 286 | static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) |
b668c9cf PM |
287 | __releases(rnp->lock) |
288 | { | |
289 | unsigned long mask; | |
290 | struct rcu_node *rnp_p; | |
291 | ||
27f4d280 | 292 | if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { |
1304afb2 | 293 | raw_spin_unlock_irqrestore(&rnp->lock, flags); |
b668c9cf PM |
294 | return; /* Still need more quiescent states! */ |
295 | } | |
296 | ||
297 | rnp_p = rnp->parent; | |
298 | if (rnp_p == NULL) { | |
299 | /* | |
300 | * Either there is only one rcu_node in the tree, | |
301 | * or tasks were kicked up to root rcu_node due to | |
302 | * CPUs going offline. | |
303 | */ | |
d3f6bad3 | 304 | rcu_report_qs_rsp(&rcu_preempt_state, flags); |
b668c9cf PM |
305 | return; |
306 | } | |
307 | ||
308 | /* Report up the rest of the hierarchy. */ | |
309 | mask = rnp->grpmask; | |
1304afb2 PM |
310 | raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ |
311 | raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */ | |
d3f6bad3 | 312 | rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags); |
b668c9cf PM |
313 | } |
314 | ||
12f5f524 PM |
315 | /* |
316 | * Advance a ->blkd_tasks-list pointer to the next entry, instead | |
317 | * returning NULL if at the end of the list. | |
318 | */ | |
319 | static struct list_head *rcu_next_node_entry(struct task_struct *t, | |
320 | struct rcu_node *rnp) | |
321 | { | |
322 | struct list_head *np; | |
323 | ||
324 | np = t->rcu_node_entry.next; | |
325 | if (np == &rnp->blkd_tasks) | |
326 | np = NULL; | |
327 | return np; | |
328 | } | |
329 | ||
b668c9cf PM |
330 | /* |
331 | * Handle special cases during rcu_read_unlock(), such as needing to | |
332 | * notify RCU core processing or task having blocked during the RCU | |
333 | * read-side critical section. | |
334 | */ | |
2a3fa843 | 335 | void rcu_read_unlock_special(struct task_struct *t) |
f41d911f PM |
336 | { |
337 | int empty; | |
d9a3da06 | 338 | int empty_exp; |
389abd48 | 339 | int empty_exp_now; |
f41d911f | 340 | unsigned long flags; |
12f5f524 | 341 | struct list_head *np; |
82e78d80 PM |
342 | #ifdef CONFIG_RCU_BOOST |
343 | struct rt_mutex *rbmp = NULL; | |
344 | #endif /* #ifdef CONFIG_RCU_BOOST */ | |
f41d911f PM |
345 | struct rcu_node *rnp; |
346 | int special; | |
347 | ||
348 | /* NMI handlers cannot block and cannot safely manipulate state. */ | |
349 | if (in_nmi()) | |
350 | return; | |
351 | ||
352 | local_irq_save(flags); | |
353 | ||
354 | /* | |
355 | * If RCU core is waiting for this CPU to exit critical section, | |
356 | * let it know that we have done so. | |
357 | */ | |
358 | special = t->rcu_read_unlock_special; | |
359 | if (special & RCU_READ_UNLOCK_NEED_QS) { | |
c3422bea | 360 | rcu_preempt_qs(smp_processor_id()); |
f41d911f PM |
361 | } |
362 | ||
363 | /* Hardware IRQ handlers cannot block. */ | |
ec433f0c | 364 | if (in_irq() || in_serving_softirq()) { |
f41d911f PM |
365 | local_irq_restore(flags); |
366 | return; | |
367 | } | |
368 | ||
369 | /* Clean up if blocked during RCU read-side critical section. */ | |
370 | if (special & RCU_READ_UNLOCK_BLOCKED) { | |
371 | t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED; | |
372 | ||
dd5d19ba PM |
373 | /* |
374 | * Remove this task from the list it blocked on. The | |
375 | * task can migrate while we acquire the lock, but at | |
376 | * most one time. So at most two passes through loop. | |
377 | */ | |
378 | for (;;) { | |
86848966 | 379 | rnp = t->rcu_blocked_node; |
1304afb2 | 380 | raw_spin_lock(&rnp->lock); /* irqs already disabled. */ |
86848966 | 381 | if (rnp == t->rcu_blocked_node) |
dd5d19ba | 382 | break; |
1304afb2 | 383 | raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ |
dd5d19ba | 384 | } |
27f4d280 | 385 | empty = !rcu_preempt_blocked_readers_cgp(rnp); |
d9a3da06 PM |
386 | empty_exp = !rcu_preempted_readers_exp(rnp); |
387 | smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ | |
12f5f524 | 388 | np = rcu_next_node_entry(t, rnp); |
f41d911f | 389 | list_del_init(&t->rcu_node_entry); |
82e78d80 | 390 | t->rcu_blocked_node = NULL; |
d4c08f2a PM |
391 | trace_rcu_unlock_preempted_task("rcu_preempt", |
392 | rnp->gpnum, t->pid); | |
12f5f524 PM |
393 | if (&t->rcu_node_entry == rnp->gp_tasks) |
394 | rnp->gp_tasks = np; | |
395 | if (&t->rcu_node_entry == rnp->exp_tasks) | |
396 | rnp->exp_tasks = np; | |
27f4d280 PM |
397 | #ifdef CONFIG_RCU_BOOST |
398 | if (&t->rcu_node_entry == rnp->boost_tasks) | |
399 | rnp->boost_tasks = np; | |
82e78d80 PM |
400 | /* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */ |
401 | if (t->rcu_boost_mutex) { | |
402 | rbmp = t->rcu_boost_mutex; | |
403 | t->rcu_boost_mutex = NULL; | |
7765be2f | 404 | } |
27f4d280 | 405 | #endif /* #ifdef CONFIG_RCU_BOOST */ |
f41d911f PM |
406 | |
407 | /* | |
408 | * If this was the last task on the current list, and if | |
409 | * we aren't waiting on any CPUs, report the quiescent state. | |
389abd48 PM |
410 | * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, |
411 | * so we must take a snapshot of the expedited state. | |
f41d911f | 412 | */ |
389abd48 | 413 | empty_exp_now = !rcu_preempted_readers_exp(rnp); |
d4c08f2a PM |
414 | if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) { |
415 | trace_rcu_quiescent_state_report("preempt_rcu", | |
416 | rnp->gpnum, | |
417 | 0, rnp->qsmask, | |
418 | rnp->level, | |
419 | rnp->grplo, | |
420 | rnp->grphi, | |
421 | !!rnp->gp_tasks); | |
d3f6bad3 | 422 | rcu_report_unblock_qs_rnp(rnp, flags); |
c701d5d9 | 423 | } else { |
d4c08f2a | 424 | raw_spin_unlock_irqrestore(&rnp->lock, flags); |
c701d5d9 | 425 | } |
d9a3da06 | 426 | |
27f4d280 PM |
427 | #ifdef CONFIG_RCU_BOOST |
428 | /* Unboost if we were boosted. */ | |
82e78d80 PM |
429 | if (rbmp) |
430 | rt_mutex_unlock(rbmp); | |
27f4d280 PM |
431 | #endif /* #ifdef CONFIG_RCU_BOOST */ |
432 | ||
d9a3da06 PM |
433 | /* |
434 | * If this was the last task on the expedited lists, | |
435 | * then we need to report up the rcu_node hierarchy. | |
436 | */ | |
389abd48 | 437 | if (!empty_exp && empty_exp_now) |
b40d293e | 438 | rcu_report_exp_rnp(&rcu_preempt_state, rnp, true); |
b668c9cf PM |
439 | } else { |
440 | local_irq_restore(flags); | |
f41d911f | 441 | } |
f41d911f PM |
442 | } |
443 | ||
1ed509a2 PM |
444 | #ifdef CONFIG_RCU_CPU_STALL_VERBOSE |
445 | ||
446 | /* | |
447 | * Dump detailed information for all tasks blocking the current RCU | |
448 | * grace period on the specified rcu_node structure. | |
449 | */ | |
450 | static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp) | |
451 | { | |
452 | unsigned long flags; | |
1ed509a2 PM |
453 | struct task_struct *t; |
454 | ||
12f5f524 | 455 | raw_spin_lock_irqsave(&rnp->lock, flags); |
5fd4dc06 PM |
456 | if (!rcu_preempt_blocked_readers_cgp(rnp)) { |
457 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | |
458 | return; | |
459 | } | |
12f5f524 PM |
460 | t = list_entry(rnp->gp_tasks, |
461 | struct task_struct, rcu_node_entry); | |
462 | list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) | |
463 | sched_show_task(t); | |
464 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | |
1ed509a2 PM |
465 | } |
466 | ||
467 | /* | |
468 | * Dump detailed information for all tasks blocking the current RCU | |
469 | * grace period. | |
470 | */ | |
471 | static void rcu_print_detail_task_stall(struct rcu_state *rsp) | |
472 | { | |
473 | struct rcu_node *rnp = rcu_get_root(rsp); | |
474 | ||
475 | rcu_print_detail_task_stall_rnp(rnp); | |
476 | rcu_for_each_leaf_node(rsp, rnp) | |
477 | rcu_print_detail_task_stall_rnp(rnp); | |
478 | } | |
479 | ||
480 | #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */ | |
481 | ||
482 | static void rcu_print_detail_task_stall(struct rcu_state *rsp) | |
483 | { | |
484 | } | |
485 | ||
486 | #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */ | |
487 | ||
a858af28 PM |
488 | #ifdef CONFIG_RCU_CPU_STALL_INFO |
489 | ||
490 | static void rcu_print_task_stall_begin(struct rcu_node *rnp) | |
491 | { | |
492 | printk(KERN_ERR "\tTasks blocked on level-%d rcu_node (CPUs %d-%d):", | |
493 | rnp->level, rnp->grplo, rnp->grphi); | |
494 | } | |
495 | ||
496 | static void rcu_print_task_stall_end(void) | |
497 | { | |
498 | printk(KERN_CONT "\n"); | |
499 | } | |
500 | ||
501 | #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */ | |
502 | ||
503 | static void rcu_print_task_stall_begin(struct rcu_node *rnp) | |
504 | { | |
505 | } | |
506 | ||
507 | static void rcu_print_task_stall_end(void) | |
508 | { | |
509 | } | |
510 | ||
511 | #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */ | |
512 | ||
f41d911f PM |
513 | /* |
514 | * Scan the current list of tasks blocked within RCU read-side critical | |
515 | * sections, printing out the tid of each. | |
516 | */ | |
9bc8b558 | 517 | static int rcu_print_task_stall(struct rcu_node *rnp) |
f41d911f | 518 | { |
f41d911f | 519 | struct task_struct *t; |
9bc8b558 | 520 | int ndetected = 0; |
f41d911f | 521 | |
27f4d280 | 522 | if (!rcu_preempt_blocked_readers_cgp(rnp)) |
9bc8b558 | 523 | return 0; |
a858af28 | 524 | rcu_print_task_stall_begin(rnp); |
12f5f524 PM |
525 | t = list_entry(rnp->gp_tasks, |
526 | struct task_struct, rcu_node_entry); | |
9bc8b558 | 527 | list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { |
a858af28 | 528 | printk(KERN_CONT " P%d", t->pid); |
9bc8b558 PM |
529 | ndetected++; |
530 | } | |
a858af28 | 531 | rcu_print_task_stall_end(); |
9bc8b558 | 532 | return ndetected; |
f41d911f PM |
533 | } |
534 | ||
b0e165c0 PM |
535 | /* |
536 | * Check that the list of blocked tasks for the newly completed grace | |
537 | * period is in fact empty. It is a serious bug to complete a grace | |
538 | * period that still has RCU readers blocked! This function must be | |
539 | * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock | |
540 | * must be held by the caller. | |
12f5f524 PM |
541 | * |
542 | * Also, if there are blocked tasks on the list, they automatically | |
543 | * block the newly created grace period, so set up ->gp_tasks accordingly. | |
b0e165c0 PM |
544 | */ |
545 | static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) | |
546 | { | |
27f4d280 | 547 | WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)); |
12f5f524 PM |
548 | if (!list_empty(&rnp->blkd_tasks)) |
549 | rnp->gp_tasks = rnp->blkd_tasks.next; | |
28ecd580 | 550 | WARN_ON_ONCE(rnp->qsmask); |
b0e165c0 PM |
551 | } |
552 | ||
33f76148 PM |
553 | #ifdef CONFIG_HOTPLUG_CPU |
554 | ||
dd5d19ba PM |
555 | /* |
556 | * Handle tasklist migration for case in which all CPUs covered by the | |
557 | * specified rcu_node have gone offline. Move them up to the root | |
558 | * rcu_node. The reason for not just moving them to the immediate | |
559 | * parent is to remove the need for rcu_read_unlock_special() to | |
560 | * make more than two attempts to acquire the target rcu_node's lock. | |
b668c9cf PM |
561 | * Returns true if there were tasks blocking the current RCU grace |
562 | * period. | |
dd5d19ba | 563 | * |
237c80c5 PM |
564 | * Returns 1 if there was previously a task blocking the current grace |
565 | * period on the specified rcu_node structure. | |
566 | * | |
dd5d19ba PM |
567 | * The caller must hold rnp->lock with irqs disabled. |
568 | */ | |
237c80c5 PM |
569 | static int rcu_preempt_offline_tasks(struct rcu_state *rsp, |
570 | struct rcu_node *rnp, | |
571 | struct rcu_data *rdp) | |
dd5d19ba | 572 | { |
dd5d19ba PM |
573 | struct list_head *lp; |
574 | struct list_head *lp_root; | |
d9a3da06 | 575 | int retval = 0; |
dd5d19ba | 576 | struct rcu_node *rnp_root = rcu_get_root(rsp); |
12f5f524 | 577 | struct task_struct *t; |
dd5d19ba | 578 | |
86848966 PM |
579 | if (rnp == rnp_root) { |
580 | WARN_ONCE(1, "Last CPU thought to be offlined?"); | |
237c80c5 | 581 | return 0; /* Shouldn't happen: at least one CPU online. */ |
86848966 | 582 | } |
12f5f524 PM |
583 | |
584 | /* If we are on an internal node, complain bitterly. */ | |
585 | WARN_ON_ONCE(rnp != rdp->mynode); | |
dd5d19ba PM |
586 | |
587 | /* | |
12f5f524 PM |
588 | * Move tasks up to root rcu_node. Don't try to get fancy for |
589 | * this corner-case operation -- just put this node's tasks | |
590 | * at the head of the root node's list, and update the root node's | |
591 | * ->gp_tasks and ->exp_tasks pointers to those of this node's, | |
592 | * if non-NULL. This might result in waiting for more tasks than | |
593 | * absolutely necessary, but this is a good performance/complexity | |
594 | * tradeoff. | |
dd5d19ba | 595 | */ |
2036d94a | 596 | if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0) |
d9a3da06 PM |
597 | retval |= RCU_OFL_TASKS_NORM_GP; |
598 | if (rcu_preempted_readers_exp(rnp)) | |
599 | retval |= RCU_OFL_TASKS_EXP_GP; | |
12f5f524 PM |
600 | lp = &rnp->blkd_tasks; |
601 | lp_root = &rnp_root->blkd_tasks; | |
602 | while (!list_empty(lp)) { | |
603 | t = list_entry(lp->next, typeof(*t), rcu_node_entry); | |
604 | raw_spin_lock(&rnp_root->lock); /* irqs already disabled */ | |
605 | list_del(&t->rcu_node_entry); | |
606 | t->rcu_blocked_node = rnp_root; | |
607 | list_add(&t->rcu_node_entry, lp_root); | |
608 | if (&t->rcu_node_entry == rnp->gp_tasks) | |
609 | rnp_root->gp_tasks = rnp->gp_tasks; | |
610 | if (&t->rcu_node_entry == rnp->exp_tasks) | |
611 | rnp_root->exp_tasks = rnp->exp_tasks; | |
27f4d280 PM |
612 | #ifdef CONFIG_RCU_BOOST |
613 | if (&t->rcu_node_entry == rnp->boost_tasks) | |
614 | rnp_root->boost_tasks = rnp->boost_tasks; | |
615 | #endif /* #ifdef CONFIG_RCU_BOOST */ | |
12f5f524 | 616 | raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */ |
dd5d19ba | 617 | } |
27f4d280 | 618 | |
1e3fd2b3 PM |
619 | rnp->gp_tasks = NULL; |
620 | rnp->exp_tasks = NULL; | |
27f4d280 | 621 | #ifdef CONFIG_RCU_BOOST |
1e3fd2b3 | 622 | rnp->boost_tasks = NULL; |
5cc900cf PM |
623 | /* |
624 | * In case root is being boosted and leaf was not. Make sure | |
625 | * that we boost the tasks blocking the current grace period | |
626 | * in this case. | |
627 | */ | |
27f4d280 PM |
628 | raw_spin_lock(&rnp_root->lock); /* irqs already disabled */ |
629 | if (rnp_root->boost_tasks != NULL && | |
5cc900cf PM |
630 | rnp_root->boost_tasks != rnp_root->gp_tasks && |
631 | rnp_root->boost_tasks != rnp_root->exp_tasks) | |
27f4d280 PM |
632 | rnp_root->boost_tasks = rnp_root->gp_tasks; |
633 | raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */ | |
634 | #endif /* #ifdef CONFIG_RCU_BOOST */ | |
635 | ||
237c80c5 | 636 | return retval; |
dd5d19ba PM |
637 | } |
638 | ||
e5601400 PM |
639 | #endif /* #ifdef CONFIG_HOTPLUG_CPU */ |
640 | ||
f41d911f PM |
641 | /* |
642 | * Check for a quiescent state from the current CPU. When a task blocks, | |
643 | * the task is recorded in the corresponding CPU's rcu_node structure, | |
644 | * which is checked elsewhere. | |
645 | * | |
646 | * Caller must disable hard irqs. | |
647 | */ | |
648 | static void rcu_preempt_check_callbacks(int cpu) | |
649 | { | |
650 | struct task_struct *t = current; | |
651 | ||
652 | if (t->rcu_read_lock_nesting == 0) { | |
c3422bea | 653 | rcu_preempt_qs(cpu); |
f41d911f PM |
654 | return; |
655 | } | |
10f39bb1 PM |
656 | if (t->rcu_read_lock_nesting > 0 && |
657 | per_cpu(rcu_preempt_data, cpu).qs_pending) | |
c3422bea | 658 | t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS; |
f41d911f PM |
659 | } |
660 | ||
a46e0899 PM |
661 | #ifdef CONFIG_RCU_BOOST |
662 | ||
09223371 SL |
663 | static void rcu_preempt_do_callbacks(void) |
664 | { | |
665 | rcu_do_batch(&rcu_preempt_state, &__get_cpu_var(rcu_preempt_data)); | |
666 | } | |
667 | ||
a46e0899 PM |
668 | #endif /* #ifdef CONFIG_RCU_BOOST */ |
669 | ||
f41d911f | 670 | /* |
6cc68793 | 671 | * Queue a preemptible-RCU callback for invocation after a grace period. |
f41d911f PM |
672 | */ |
673 | void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) | |
674 | { | |
3fbfbf7a | 675 | __call_rcu(head, func, &rcu_preempt_state, -1, 0); |
f41d911f PM |
676 | } |
677 | EXPORT_SYMBOL_GPL(call_rcu); | |
678 | ||
486e2593 PM |
679 | /* |
680 | * Queue an RCU callback for lazy invocation after a grace period. | |
681 | * This will likely be later named something like "call_rcu_lazy()", | |
682 | * but this change will require some way of tagging the lazy RCU | |
683 | * callbacks in the list of pending callbacks. Until then, this | |
684 | * function may only be called from __kfree_rcu(). | |
685 | */ | |
686 | void kfree_call_rcu(struct rcu_head *head, | |
687 | void (*func)(struct rcu_head *rcu)) | |
688 | { | |
3fbfbf7a | 689 | __call_rcu(head, func, &rcu_preempt_state, -1, 1); |
486e2593 PM |
690 | } |
691 | EXPORT_SYMBOL_GPL(kfree_call_rcu); | |
692 | ||
6ebb237b PM |
693 | /** |
694 | * synchronize_rcu - wait until a grace period has elapsed. | |
695 | * | |
696 | * Control will return to the caller some time after a full grace | |
697 | * period has elapsed, in other words after all currently executing RCU | |
77d8485a PM |
698 | * read-side critical sections have completed. Note, however, that |
699 | * upon return from synchronize_rcu(), the caller might well be executing | |
700 | * concurrently with new RCU read-side critical sections that began while | |
701 | * synchronize_rcu() was waiting. RCU read-side critical sections are | |
702 | * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested. | |
f0a0e6f2 PM |
703 | * |
704 | * See the description of synchronize_sched() for more detailed information | |
705 | * on memory ordering guarantees. | |
6ebb237b PM |
706 | */ |
707 | void synchronize_rcu(void) | |
708 | { | |
fe15d706 PM |
709 | rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) && |
710 | !lock_is_held(&rcu_lock_map) && | |
711 | !lock_is_held(&rcu_sched_lock_map), | |
712 | "Illegal synchronize_rcu() in RCU read-side critical section"); | |
6ebb237b PM |
713 | if (!rcu_scheduler_active) |
714 | return; | |
3705b88d AM |
715 | if (rcu_expedited) |
716 | synchronize_rcu_expedited(); | |
717 | else | |
718 | wait_rcu_gp(call_rcu); | |
6ebb237b PM |
719 | } |
720 | EXPORT_SYMBOL_GPL(synchronize_rcu); | |
721 | ||
d9a3da06 | 722 | static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq); |
bcfa57ce | 723 | static unsigned long sync_rcu_preempt_exp_count; |
d9a3da06 PM |
724 | static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex); |
725 | ||
726 | /* | |
727 | * Return non-zero if there are any tasks in RCU read-side critical | |
728 | * sections blocking the current preemptible-RCU expedited grace period. | |
729 | * If there is no preemptible-RCU expedited grace period currently in | |
730 | * progress, returns zero unconditionally. | |
731 | */ | |
732 | static int rcu_preempted_readers_exp(struct rcu_node *rnp) | |
733 | { | |
12f5f524 | 734 | return rnp->exp_tasks != NULL; |
d9a3da06 PM |
735 | } |
736 | ||
737 | /* | |
738 | * return non-zero if there is no RCU expedited grace period in progress | |
739 | * for the specified rcu_node structure, in other words, if all CPUs and | |
740 | * tasks covered by the specified rcu_node structure have done their bit | |
741 | * for the current expedited grace period. Works only for preemptible | |
742 | * RCU -- other RCU implementation use other means. | |
743 | * | |
744 | * Caller must hold sync_rcu_preempt_exp_mutex. | |
745 | */ | |
746 | static int sync_rcu_preempt_exp_done(struct rcu_node *rnp) | |
747 | { | |
748 | return !rcu_preempted_readers_exp(rnp) && | |
749 | ACCESS_ONCE(rnp->expmask) == 0; | |
750 | } | |
751 | ||
752 | /* | |
753 | * Report the exit from RCU read-side critical section for the last task | |
754 | * that queued itself during or before the current expedited preemptible-RCU | |
755 | * grace period. This event is reported either to the rcu_node structure on | |
756 | * which the task was queued or to one of that rcu_node structure's ancestors, | |
757 | * recursively up the tree. (Calm down, calm down, we do the recursion | |
758 | * iteratively!) | |
759 | * | |
b40d293e TG |
760 | * Most callers will set the "wake" flag, but the task initiating the |
761 | * expedited grace period need not wake itself. | |
762 | * | |
d9a3da06 PM |
763 | * Caller must hold sync_rcu_preempt_exp_mutex. |
764 | */ | |
b40d293e TG |
765 | static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp, |
766 | bool wake) | |
d9a3da06 PM |
767 | { |
768 | unsigned long flags; | |
769 | unsigned long mask; | |
770 | ||
1304afb2 | 771 | raw_spin_lock_irqsave(&rnp->lock, flags); |
d9a3da06 | 772 | for (;;) { |
131906b0 PM |
773 | if (!sync_rcu_preempt_exp_done(rnp)) { |
774 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | |
d9a3da06 | 775 | break; |
131906b0 | 776 | } |
d9a3da06 | 777 | if (rnp->parent == NULL) { |
131906b0 | 778 | raw_spin_unlock_irqrestore(&rnp->lock, flags); |
b40d293e TG |
779 | if (wake) |
780 | wake_up(&sync_rcu_preempt_exp_wq); | |
d9a3da06 PM |
781 | break; |
782 | } | |
783 | mask = rnp->grpmask; | |
1304afb2 | 784 | raw_spin_unlock(&rnp->lock); /* irqs remain disabled */ |
d9a3da06 | 785 | rnp = rnp->parent; |
1304afb2 | 786 | raw_spin_lock(&rnp->lock); /* irqs already disabled */ |
d9a3da06 PM |
787 | rnp->expmask &= ~mask; |
788 | } | |
d9a3da06 PM |
789 | } |
790 | ||
791 | /* | |
792 | * Snapshot the tasks blocking the newly started preemptible-RCU expedited | |
793 | * grace period for the specified rcu_node structure. If there are no such | |
794 | * tasks, report it up the rcu_node hierarchy. | |
795 | * | |
7b2e6011 PM |
796 | * Caller must hold sync_rcu_preempt_exp_mutex and must exclude |
797 | * CPU hotplug operations. | |
d9a3da06 PM |
798 | */ |
799 | static void | |
800 | sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp) | |
801 | { | |
1217ed1b | 802 | unsigned long flags; |
12f5f524 | 803 | int must_wait = 0; |
d9a3da06 | 804 | |
1217ed1b | 805 | raw_spin_lock_irqsave(&rnp->lock, flags); |
c701d5d9 | 806 | if (list_empty(&rnp->blkd_tasks)) { |
1217ed1b | 807 | raw_spin_unlock_irqrestore(&rnp->lock, flags); |
c701d5d9 | 808 | } else { |
12f5f524 | 809 | rnp->exp_tasks = rnp->blkd_tasks.next; |
1217ed1b | 810 | rcu_initiate_boost(rnp, flags); /* releases rnp->lock */ |
12f5f524 PM |
811 | must_wait = 1; |
812 | } | |
d9a3da06 | 813 | if (!must_wait) |
b40d293e | 814 | rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */ |
d9a3da06 PM |
815 | } |
816 | ||
236fefaf PM |
817 | /** |
818 | * synchronize_rcu_expedited - Brute-force RCU grace period | |
819 | * | |
820 | * Wait for an RCU-preempt grace period, but expedite it. The basic | |
821 | * idea is to invoke synchronize_sched_expedited() to push all the tasks to | |
822 | * the ->blkd_tasks lists and wait for this list to drain. This consumes | |
823 | * significant time on all CPUs and is unfriendly to real-time workloads, | |
824 | * so is thus not recommended for any sort of common-case code. | |
825 | * In fact, if you are using synchronize_rcu_expedited() in a loop, | |
826 | * please restructure your code to batch your updates, and then Use a | |
827 | * single synchronize_rcu() instead. | |
828 | * | |
829 | * Note that it is illegal to call this function while holding any lock | |
830 | * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal | |
831 | * to call this function from a CPU-hotplug notifier. Failing to observe | |
832 | * these restriction will result in deadlock. | |
019129d5 PM |
833 | */ |
834 | void synchronize_rcu_expedited(void) | |
835 | { | |
d9a3da06 PM |
836 | unsigned long flags; |
837 | struct rcu_node *rnp; | |
838 | struct rcu_state *rsp = &rcu_preempt_state; | |
bcfa57ce | 839 | unsigned long snap; |
d9a3da06 PM |
840 | int trycount = 0; |
841 | ||
842 | smp_mb(); /* Caller's modifications seen first by other CPUs. */ | |
843 | snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1; | |
844 | smp_mb(); /* Above access cannot bleed into critical section. */ | |
845 | ||
1943c89d PM |
846 | /* |
847 | * Block CPU-hotplug operations. This means that any CPU-hotplug | |
848 | * operation that finds an rcu_node structure with tasks in the | |
849 | * process of being boosted will know that all tasks blocking | |
850 | * this expedited grace period will already be in the process of | |
851 | * being boosted. This simplifies the process of moving tasks | |
852 | * from leaf to root rcu_node structures. | |
853 | */ | |
854 | get_online_cpus(); | |
855 | ||
d9a3da06 PM |
856 | /* |
857 | * Acquire lock, falling back to synchronize_rcu() if too many | |
858 | * lock-acquisition failures. Of course, if someone does the | |
859 | * expedited grace period for us, just leave. | |
860 | */ | |
861 | while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) { | |
1943c89d PM |
862 | if (ULONG_CMP_LT(snap, |
863 | ACCESS_ONCE(sync_rcu_preempt_exp_count))) { | |
864 | put_online_cpus(); | |
865 | goto mb_ret; /* Others did our work for us. */ | |
866 | } | |
c701d5d9 | 867 | if (trycount++ < 10) { |
d9a3da06 | 868 | udelay(trycount * num_online_cpus()); |
c701d5d9 | 869 | } else { |
1943c89d | 870 | put_online_cpus(); |
3705b88d | 871 | wait_rcu_gp(call_rcu); |
d9a3da06 PM |
872 | return; |
873 | } | |
d9a3da06 | 874 | } |
1943c89d PM |
875 | if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) { |
876 | put_online_cpus(); | |
d9a3da06 | 877 | goto unlock_mb_ret; /* Others did our work for us. */ |
1943c89d | 878 | } |
d9a3da06 | 879 | |
12f5f524 | 880 | /* force all RCU readers onto ->blkd_tasks lists. */ |
d9a3da06 PM |
881 | synchronize_sched_expedited(); |
882 | ||
d9a3da06 PM |
883 | /* Initialize ->expmask for all non-leaf rcu_node structures. */ |
884 | rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) { | |
1943c89d | 885 | raw_spin_lock_irqsave(&rnp->lock, flags); |
d9a3da06 | 886 | rnp->expmask = rnp->qsmaskinit; |
1943c89d | 887 | raw_spin_unlock_irqrestore(&rnp->lock, flags); |
d9a3da06 PM |
888 | } |
889 | ||
12f5f524 | 890 | /* Snapshot current state of ->blkd_tasks lists. */ |
d9a3da06 PM |
891 | rcu_for_each_leaf_node(rsp, rnp) |
892 | sync_rcu_preempt_exp_init(rsp, rnp); | |
893 | if (NUM_RCU_NODES > 1) | |
894 | sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp)); | |
895 | ||
1943c89d | 896 | put_online_cpus(); |
d9a3da06 | 897 | |
12f5f524 | 898 | /* Wait for snapshotted ->blkd_tasks lists to drain. */ |
d9a3da06 PM |
899 | rnp = rcu_get_root(rsp); |
900 | wait_event(sync_rcu_preempt_exp_wq, | |
901 | sync_rcu_preempt_exp_done(rnp)); | |
902 | ||
903 | /* Clean up and exit. */ | |
904 | smp_mb(); /* ensure expedited GP seen before counter increment. */ | |
905 | ACCESS_ONCE(sync_rcu_preempt_exp_count)++; | |
906 | unlock_mb_ret: | |
907 | mutex_unlock(&sync_rcu_preempt_exp_mutex); | |
908 | mb_ret: | |
909 | smp_mb(); /* ensure subsequent action seen after grace period. */ | |
019129d5 PM |
910 | } |
911 | EXPORT_SYMBOL_GPL(synchronize_rcu_expedited); | |
912 | ||
e74f4c45 PM |
913 | /** |
914 | * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. | |
f0a0e6f2 PM |
915 | * |
916 | * Note that this primitive does not necessarily wait for an RCU grace period | |
917 | * to complete. For example, if there are no RCU callbacks queued anywhere | |
918 | * in the system, then rcu_barrier() is within its rights to return | |
919 | * immediately, without waiting for anything, much less an RCU grace period. | |
e74f4c45 PM |
920 | */ |
921 | void rcu_barrier(void) | |
922 | { | |
037b64ed | 923 | _rcu_barrier(&rcu_preempt_state); |
e74f4c45 PM |
924 | } |
925 | EXPORT_SYMBOL_GPL(rcu_barrier); | |
926 | ||
1eba8f84 | 927 | /* |
6cc68793 | 928 | * Initialize preemptible RCU's state structures. |
1eba8f84 PM |
929 | */ |
930 | static void __init __rcu_init_preempt(void) | |
931 | { | |
394f99a9 | 932 | rcu_init_one(&rcu_preempt_state, &rcu_preempt_data); |
1eba8f84 PM |
933 | } |
934 | ||
f41d911f PM |
935 | #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */ |
936 | ||
27f4d280 PM |
937 | static struct rcu_state *rcu_state = &rcu_sched_state; |
938 | ||
f41d911f PM |
939 | /* |
940 | * Tell them what RCU they are running. | |
941 | */ | |
0e0fc1c2 | 942 | static void __init rcu_bootup_announce(void) |
f41d911f PM |
943 | { |
944 | printk(KERN_INFO "Hierarchical RCU implementation.\n"); | |
26845c28 | 945 | rcu_bootup_announce_oddness(); |
f41d911f PM |
946 | } |
947 | ||
948 | /* | |
949 | * Return the number of RCU batches processed thus far for debug & stats. | |
950 | */ | |
951 | long rcu_batches_completed(void) | |
952 | { | |
953 | return rcu_batches_completed_sched(); | |
954 | } | |
955 | EXPORT_SYMBOL_GPL(rcu_batches_completed); | |
956 | ||
bf66f18e PM |
957 | /* |
958 | * Force a quiescent state for RCU, which, because there is no preemptible | |
959 | * RCU, becomes the same as rcu-sched. | |
960 | */ | |
961 | void rcu_force_quiescent_state(void) | |
962 | { | |
963 | rcu_sched_force_quiescent_state(); | |
964 | } | |
965 | EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); | |
966 | ||
cba6d0d6 PM |
967 | /* |
968 | * Because preemptible RCU does not exist, we never have to check for | |
969 | * CPUs being in quiescent states. | |
970 | */ | |
971 | static void rcu_preempt_note_context_switch(int cpu) | |
972 | { | |
973 | } | |
974 | ||
fc2219d4 | 975 | /* |
6cc68793 | 976 | * Because preemptible RCU does not exist, there are never any preempted |
fc2219d4 PM |
977 | * RCU readers. |
978 | */ | |
27f4d280 | 979 | static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) |
fc2219d4 PM |
980 | { |
981 | return 0; | |
982 | } | |
983 | ||
b668c9cf PM |
984 | #ifdef CONFIG_HOTPLUG_CPU |
985 | ||
986 | /* Because preemptible RCU does not exist, no quieting of tasks. */ | |
d3f6bad3 | 987 | static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) |
b668c9cf | 988 | { |
1304afb2 | 989 | raw_spin_unlock_irqrestore(&rnp->lock, flags); |
b668c9cf PM |
990 | } |
991 | ||
992 | #endif /* #ifdef CONFIG_HOTPLUG_CPU */ | |
993 | ||
1ed509a2 | 994 | /* |
6cc68793 | 995 | * Because preemptible RCU does not exist, we never have to check for |
1ed509a2 PM |
996 | * tasks blocked within RCU read-side critical sections. |
997 | */ | |
998 | static void rcu_print_detail_task_stall(struct rcu_state *rsp) | |
999 | { | |
1000 | } | |
1001 | ||
f41d911f | 1002 | /* |
6cc68793 | 1003 | * Because preemptible RCU does not exist, we never have to check for |
f41d911f PM |
1004 | * tasks blocked within RCU read-side critical sections. |
1005 | */ | |
9bc8b558 | 1006 | static int rcu_print_task_stall(struct rcu_node *rnp) |
f41d911f | 1007 | { |
9bc8b558 | 1008 | return 0; |
f41d911f PM |
1009 | } |
1010 | ||
b0e165c0 | 1011 | /* |
6cc68793 | 1012 | * Because there is no preemptible RCU, there can be no readers blocked, |
49e29126 PM |
1013 | * so there is no need to check for blocked tasks. So check only for |
1014 | * bogus qsmask values. | |
b0e165c0 PM |
1015 | */ |
1016 | static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) | |
1017 | { | |
49e29126 | 1018 | WARN_ON_ONCE(rnp->qsmask); |
b0e165c0 PM |
1019 | } |
1020 | ||
33f76148 PM |
1021 | #ifdef CONFIG_HOTPLUG_CPU |
1022 | ||
dd5d19ba | 1023 | /* |
6cc68793 | 1024 | * Because preemptible RCU does not exist, it never needs to migrate |
237c80c5 PM |
1025 | * tasks that were blocked within RCU read-side critical sections, and |
1026 | * such non-existent tasks cannot possibly have been blocking the current | |
1027 | * grace period. | |
dd5d19ba | 1028 | */ |
237c80c5 PM |
1029 | static int rcu_preempt_offline_tasks(struct rcu_state *rsp, |
1030 | struct rcu_node *rnp, | |
1031 | struct rcu_data *rdp) | |
dd5d19ba | 1032 | { |
237c80c5 | 1033 | return 0; |
dd5d19ba PM |
1034 | } |
1035 | ||
e5601400 PM |
1036 | #endif /* #ifdef CONFIG_HOTPLUG_CPU */ |
1037 | ||
f41d911f | 1038 | /* |
6cc68793 | 1039 | * Because preemptible RCU does not exist, it never has any callbacks |
f41d911f PM |
1040 | * to check. |
1041 | */ | |
1eba8f84 | 1042 | static void rcu_preempt_check_callbacks(int cpu) |
f41d911f PM |
1043 | { |
1044 | } | |
1045 | ||
486e2593 PM |
1046 | /* |
1047 | * Queue an RCU callback for lazy invocation after a grace period. | |
1048 | * This will likely be later named something like "call_rcu_lazy()", | |
1049 | * but this change will require some way of tagging the lazy RCU | |
1050 | * callbacks in the list of pending callbacks. Until then, this | |
1051 | * function may only be called from __kfree_rcu(). | |
1052 | * | |
1053 | * Because there is no preemptible RCU, we use RCU-sched instead. | |
1054 | */ | |
1055 | void kfree_call_rcu(struct rcu_head *head, | |
1056 | void (*func)(struct rcu_head *rcu)) | |
1057 | { | |
3fbfbf7a | 1058 | __call_rcu(head, func, &rcu_sched_state, -1, 1); |
486e2593 PM |
1059 | } |
1060 | EXPORT_SYMBOL_GPL(kfree_call_rcu); | |
1061 | ||
019129d5 PM |
1062 | /* |
1063 | * Wait for an rcu-preempt grace period, but make it happen quickly. | |
6cc68793 | 1064 | * But because preemptible RCU does not exist, map to rcu-sched. |
019129d5 PM |
1065 | */ |
1066 | void synchronize_rcu_expedited(void) | |
1067 | { | |
1068 | synchronize_sched_expedited(); | |
1069 | } | |
1070 | EXPORT_SYMBOL_GPL(synchronize_rcu_expedited); | |
1071 | ||
d9a3da06 PM |
1072 | #ifdef CONFIG_HOTPLUG_CPU |
1073 | ||
1074 | /* | |
6cc68793 | 1075 | * Because preemptible RCU does not exist, there is never any need to |
d9a3da06 PM |
1076 | * report on tasks preempted in RCU read-side critical sections during |
1077 | * expedited RCU grace periods. | |
1078 | */ | |
b40d293e TG |
1079 | static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp, |
1080 | bool wake) | |
d9a3da06 | 1081 | { |
d9a3da06 PM |
1082 | } |
1083 | ||
1084 | #endif /* #ifdef CONFIG_HOTPLUG_CPU */ | |
1085 | ||
e74f4c45 | 1086 | /* |
6cc68793 | 1087 | * Because preemptible RCU does not exist, rcu_barrier() is just |
e74f4c45 PM |
1088 | * another name for rcu_barrier_sched(). |
1089 | */ | |
1090 | void rcu_barrier(void) | |
1091 | { | |
1092 | rcu_barrier_sched(); | |
1093 | } | |
1094 | EXPORT_SYMBOL_GPL(rcu_barrier); | |
1095 | ||
1eba8f84 | 1096 | /* |
6cc68793 | 1097 | * Because preemptible RCU does not exist, it need not be initialized. |
1eba8f84 PM |
1098 | */ |
1099 | static void __init __rcu_init_preempt(void) | |
1100 | { | |
1101 | } | |
1102 | ||
f41d911f | 1103 | #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */ |
8bd93a2c | 1104 | |
27f4d280 PM |
1105 | #ifdef CONFIG_RCU_BOOST |
1106 | ||
1107 | #include "rtmutex_common.h" | |
1108 | ||
0ea1f2eb PM |
1109 | #ifdef CONFIG_RCU_TRACE |
1110 | ||
1111 | static void rcu_initiate_boost_trace(struct rcu_node *rnp) | |
1112 | { | |
1113 | if (list_empty(&rnp->blkd_tasks)) | |
1114 | rnp->n_balk_blkd_tasks++; | |
1115 | else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL) | |
1116 | rnp->n_balk_exp_gp_tasks++; | |
1117 | else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL) | |
1118 | rnp->n_balk_boost_tasks++; | |
1119 | else if (rnp->gp_tasks != NULL && rnp->qsmask != 0) | |
1120 | rnp->n_balk_notblocked++; | |
1121 | else if (rnp->gp_tasks != NULL && | |
a9f4793d | 1122 | ULONG_CMP_LT(jiffies, rnp->boost_time)) |
0ea1f2eb PM |
1123 | rnp->n_balk_notyet++; |
1124 | else | |
1125 | rnp->n_balk_nos++; | |
1126 | } | |
1127 | ||
1128 | #else /* #ifdef CONFIG_RCU_TRACE */ | |
1129 | ||
1130 | static void rcu_initiate_boost_trace(struct rcu_node *rnp) | |
1131 | { | |
1132 | } | |
1133 | ||
1134 | #endif /* #else #ifdef CONFIG_RCU_TRACE */ | |
1135 | ||
5d01bbd1 TG |
1136 | static void rcu_wake_cond(struct task_struct *t, int status) |
1137 | { | |
1138 | /* | |
1139 | * If the thread is yielding, only wake it when this | |
1140 | * is invoked from idle | |
1141 | */ | |
1142 | if (status != RCU_KTHREAD_YIELDING || is_idle_task(current)) | |
1143 | wake_up_process(t); | |
1144 | } | |
1145 | ||
27f4d280 PM |
1146 | /* |
1147 | * Carry out RCU priority boosting on the task indicated by ->exp_tasks | |
1148 | * or ->boost_tasks, advancing the pointer to the next task in the | |
1149 | * ->blkd_tasks list. | |
1150 | * | |
1151 | * Note that irqs must be enabled: boosting the task can block. | |
1152 | * Returns 1 if there are more tasks needing to be boosted. | |
1153 | */ | |
1154 | static int rcu_boost(struct rcu_node *rnp) | |
1155 | { | |
1156 | unsigned long flags; | |
1157 | struct rt_mutex mtx; | |
1158 | struct task_struct *t; | |
1159 | struct list_head *tb; | |
1160 | ||
1161 | if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) | |
1162 | return 0; /* Nothing left to boost. */ | |
1163 | ||
1164 | raw_spin_lock_irqsave(&rnp->lock, flags); | |
1165 | ||
1166 | /* | |
1167 | * Recheck under the lock: all tasks in need of boosting | |
1168 | * might exit their RCU read-side critical sections on their own. | |
1169 | */ | |
1170 | if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { | |
1171 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | |
1172 | return 0; | |
1173 | } | |
1174 | ||
1175 | /* | |
1176 | * Preferentially boost tasks blocking expedited grace periods. | |
1177 | * This cannot starve the normal grace periods because a second | |
1178 | * expedited grace period must boost all blocked tasks, including | |
1179 | * those blocking the pre-existing normal grace period. | |
1180 | */ | |
0ea1f2eb | 1181 | if (rnp->exp_tasks != NULL) { |
27f4d280 | 1182 | tb = rnp->exp_tasks; |
0ea1f2eb PM |
1183 | rnp->n_exp_boosts++; |
1184 | } else { | |
27f4d280 | 1185 | tb = rnp->boost_tasks; |
0ea1f2eb PM |
1186 | rnp->n_normal_boosts++; |
1187 | } | |
1188 | rnp->n_tasks_boosted++; | |
27f4d280 PM |
1189 | |
1190 | /* | |
1191 | * We boost task t by manufacturing an rt_mutex that appears to | |
1192 | * be held by task t. We leave a pointer to that rt_mutex where | |
1193 | * task t can find it, and task t will release the mutex when it | |
1194 | * exits its outermost RCU read-side critical section. Then | |
1195 | * simply acquiring this artificial rt_mutex will boost task | |
1196 | * t's priority. (Thanks to tglx for suggesting this approach!) | |
1197 | * | |
1198 | * Note that task t must acquire rnp->lock to remove itself from | |
1199 | * the ->blkd_tasks list, which it will do from exit() if from | |
1200 | * nowhere else. We therefore are guaranteed that task t will | |
1201 | * stay around at least until we drop rnp->lock. Note that | |
1202 | * rnp->lock also resolves races between our priority boosting | |
1203 | * and task t's exiting its outermost RCU read-side critical | |
1204 | * section. | |
1205 | */ | |
1206 | t = container_of(tb, struct task_struct, rcu_node_entry); | |
1207 | rt_mutex_init_proxy_locked(&mtx, t); | |
1208 | t->rcu_boost_mutex = &mtx; | |
27f4d280 PM |
1209 | raw_spin_unlock_irqrestore(&rnp->lock, flags); |
1210 | rt_mutex_lock(&mtx); /* Side effect: boosts task t's priority. */ | |
1211 | rt_mutex_unlock(&mtx); /* Keep lockdep happy. */ | |
1212 | ||
4f89b336 PM |
1213 | return ACCESS_ONCE(rnp->exp_tasks) != NULL || |
1214 | ACCESS_ONCE(rnp->boost_tasks) != NULL; | |
27f4d280 PM |
1215 | } |
1216 | ||
27f4d280 PM |
1217 | /* |
1218 | * Priority-boosting kthread. One per leaf rcu_node and one for the | |
1219 | * root rcu_node. | |
1220 | */ | |
1221 | static int rcu_boost_kthread(void *arg) | |
1222 | { | |
1223 | struct rcu_node *rnp = (struct rcu_node *)arg; | |
1224 | int spincnt = 0; | |
1225 | int more2boost; | |
1226 | ||
385680a9 | 1227 | trace_rcu_utilization("Start boost kthread@init"); |
27f4d280 | 1228 | for (;;) { |
d71df90e | 1229 | rnp->boost_kthread_status = RCU_KTHREAD_WAITING; |
385680a9 | 1230 | trace_rcu_utilization("End boost kthread@rcu_wait"); |
08bca60a | 1231 | rcu_wait(rnp->boost_tasks || rnp->exp_tasks); |
385680a9 | 1232 | trace_rcu_utilization("Start boost kthread@rcu_wait"); |
d71df90e | 1233 | rnp->boost_kthread_status = RCU_KTHREAD_RUNNING; |
27f4d280 PM |
1234 | more2boost = rcu_boost(rnp); |
1235 | if (more2boost) | |
1236 | spincnt++; | |
1237 | else | |
1238 | spincnt = 0; | |
1239 | if (spincnt > 10) { | |
5d01bbd1 | 1240 | rnp->boost_kthread_status = RCU_KTHREAD_YIELDING; |
385680a9 | 1241 | trace_rcu_utilization("End boost kthread@rcu_yield"); |
5d01bbd1 | 1242 | schedule_timeout_interruptible(2); |
385680a9 | 1243 | trace_rcu_utilization("Start boost kthread@rcu_yield"); |
27f4d280 PM |
1244 | spincnt = 0; |
1245 | } | |
1246 | } | |
1217ed1b | 1247 | /* NOTREACHED */ |
385680a9 | 1248 | trace_rcu_utilization("End boost kthread@notreached"); |
27f4d280 PM |
1249 | return 0; |
1250 | } | |
1251 | ||
1252 | /* | |
1253 | * Check to see if it is time to start boosting RCU readers that are | |
1254 | * blocking the current grace period, and, if so, tell the per-rcu_node | |
1255 | * kthread to start boosting them. If there is an expedited grace | |
1256 | * period in progress, it is always time to boost. | |
1257 | * | |
b065a853 PM |
1258 | * The caller must hold rnp->lock, which this function releases. |
1259 | * The ->boost_kthread_task is immortal, so we don't need to worry | |
1260 | * about it going away. | |
27f4d280 | 1261 | */ |
1217ed1b | 1262 | static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) |
27f4d280 PM |
1263 | { |
1264 | struct task_struct *t; | |
1265 | ||
0ea1f2eb PM |
1266 | if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) { |
1267 | rnp->n_balk_exp_gp_tasks++; | |
1217ed1b | 1268 | raw_spin_unlock_irqrestore(&rnp->lock, flags); |
27f4d280 | 1269 | return; |
0ea1f2eb | 1270 | } |
27f4d280 PM |
1271 | if (rnp->exp_tasks != NULL || |
1272 | (rnp->gp_tasks != NULL && | |
1273 | rnp->boost_tasks == NULL && | |
1274 | rnp->qsmask == 0 && | |
1275 | ULONG_CMP_GE(jiffies, rnp->boost_time))) { | |
1276 | if (rnp->exp_tasks == NULL) | |
1277 | rnp->boost_tasks = rnp->gp_tasks; | |
1217ed1b | 1278 | raw_spin_unlock_irqrestore(&rnp->lock, flags); |
27f4d280 | 1279 | t = rnp->boost_kthread_task; |
5d01bbd1 TG |
1280 | if (t) |
1281 | rcu_wake_cond(t, rnp->boost_kthread_status); | |
1217ed1b | 1282 | } else { |
0ea1f2eb | 1283 | rcu_initiate_boost_trace(rnp); |
1217ed1b PM |
1284 | raw_spin_unlock_irqrestore(&rnp->lock, flags); |
1285 | } | |
27f4d280 PM |
1286 | } |
1287 | ||
a46e0899 PM |
1288 | /* |
1289 | * Wake up the per-CPU kthread to invoke RCU callbacks. | |
1290 | */ | |
1291 | static void invoke_rcu_callbacks_kthread(void) | |
1292 | { | |
1293 | unsigned long flags; | |
1294 | ||
1295 | local_irq_save(flags); | |
1296 | __this_cpu_write(rcu_cpu_has_work, 1); | |
1eb52121 | 1297 | if (__this_cpu_read(rcu_cpu_kthread_task) != NULL && |
5d01bbd1 TG |
1298 | current != __this_cpu_read(rcu_cpu_kthread_task)) { |
1299 | rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task), | |
1300 | __this_cpu_read(rcu_cpu_kthread_status)); | |
1301 | } | |
a46e0899 PM |
1302 | local_irq_restore(flags); |
1303 | } | |
1304 | ||
dff1672d PM |
1305 | /* |
1306 | * Is the current CPU running the RCU-callbacks kthread? | |
1307 | * Caller must have preemption disabled. | |
1308 | */ | |
1309 | static bool rcu_is_callbacks_kthread(void) | |
1310 | { | |
1311 | return __get_cpu_var(rcu_cpu_kthread_task) == current; | |
1312 | } | |
1313 | ||
27f4d280 PM |
1314 | #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) |
1315 | ||
1316 | /* | |
1317 | * Do priority-boost accounting for the start of a new grace period. | |
1318 | */ | |
1319 | static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) | |
1320 | { | |
1321 | rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; | |
1322 | } | |
1323 | ||
27f4d280 PM |
1324 | /* |
1325 | * Create an RCU-boost kthread for the specified node if one does not | |
1326 | * already exist. We only create this kthread for preemptible RCU. | |
1327 | * Returns zero if all is well, a negated errno otherwise. | |
1328 | */ | |
1329 | static int __cpuinit rcu_spawn_one_boost_kthread(struct rcu_state *rsp, | |
5d01bbd1 | 1330 | struct rcu_node *rnp) |
27f4d280 | 1331 | { |
5d01bbd1 | 1332 | int rnp_index = rnp - &rsp->node[0]; |
27f4d280 PM |
1333 | unsigned long flags; |
1334 | struct sched_param sp; | |
1335 | struct task_struct *t; | |
1336 | ||
1337 | if (&rcu_preempt_state != rsp) | |
1338 | return 0; | |
5d01bbd1 TG |
1339 | |
1340 | if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0) | |
1341 | return 0; | |
1342 | ||
a46e0899 | 1343 | rsp->boost = 1; |
27f4d280 PM |
1344 | if (rnp->boost_kthread_task != NULL) |
1345 | return 0; | |
1346 | t = kthread_create(rcu_boost_kthread, (void *)rnp, | |
5b61b0ba | 1347 | "rcub/%d", rnp_index); |
27f4d280 PM |
1348 | if (IS_ERR(t)) |
1349 | return PTR_ERR(t); | |
1350 | raw_spin_lock_irqsave(&rnp->lock, flags); | |
1351 | rnp->boost_kthread_task = t; | |
1352 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | |
5b61b0ba | 1353 | sp.sched_priority = RCU_BOOST_PRIO; |
27f4d280 | 1354 | sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); |
9a432736 | 1355 | wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ |
27f4d280 PM |
1356 | return 0; |
1357 | } | |
1358 | ||
f8b7fc6b PM |
1359 | static void rcu_kthread_do_work(void) |
1360 | { | |
1361 | rcu_do_batch(&rcu_sched_state, &__get_cpu_var(rcu_sched_data)); | |
1362 | rcu_do_batch(&rcu_bh_state, &__get_cpu_var(rcu_bh_data)); | |
1363 | rcu_preempt_do_callbacks(); | |
1364 | } | |
1365 | ||
62ab7072 | 1366 | static void rcu_cpu_kthread_setup(unsigned int cpu) |
f8b7fc6b | 1367 | { |
f8b7fc6b | 1368 | struct sched_param sp; |
f8b7fc6b | 1369 | |
62ab7072 PM |
1370 | sp.sched_priority = RCU_KTHREAD_PRIO; |
1371 | sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); | |
f8b7fc6b PM |
1372 | } |
1373 | ||
62ab7072 | 1374 | static void rcu_cpu_kthread_park(unsigned int cpu) |
f8b7fc6b | 1375 | { |
62ab7072 | 1376 | per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; |
f8b7fc6b PM |
1377 | } |
1378 | ||
62ab7072 | 1379 | static int rcu_cpu_kthread_should_run(unsigned int cpu) |
f8b7fc6b | 1380 | { |
62ab7072 | 1381 | return __get_cpu_var(rcu_cpu_has_work); |
f8b7fc6b PM |
1382 | } |
1383 | ||
1384 | /* | |
1385 | * Per-CPU kernel thread that invokes RCU callbacks. This replaces the | |
e0f23060 PM |
1386 | * RCU softirq used in flavors and configurations of RCU that do not |
1387 | * support RCU priority boosting. | |
f8b7fc6b | 1388 | */ |
62ab7072 | 1389 | static void rcu_cpu_kthread(unsigned int cpu) |
f8b7fc6b | 1390 | { |
62ab7072 PM |
1391 | unsigned int *statusp = &__get_cpu_var(rcu_cpu_kthread_status); |
1392 | char work, *workp = &__get_cpu_var(rcu_cpu_has_work); | |
1393 | int spincnt; | |
f8b7fc6b | 1394 | |
62ab7072 | 1395 | for (spincnt = 0; spincnt < 10; spincnt++) { |
385680a9 | 1396 | trace_rcu_utilization("Start CPU kthread@rcu_wait"); |
f8b7fc6b | 1397 | local_bh_disable(); |
f8b7fc6b | 1398 | *statusp = RCU_KTHREAD_RUNNING; |
62ab7072 PM |
1399 | this_cpu_inc(rcu_cpu_kthread_loops); |
1400 | local_irq_disable(); | |
f8b7fc6b PM |
1401 | work = *workp; |
1402 | *workp = 0; | |
62ab7072 | 1403 | local_irq_enable(); |
f8b7fc6b PM |
1404 | if (work) |
1405 | rcu_kthread_do_work(); | |
1406 | local_bh_enable(); | |
62ab7072 PM |
1407 | if (*workp == 0) { |
1408 | trace_rcu_utilization("End CPU kthread@rcu_wait"); | |
1409 | *statusp = RCU_KTHREAD_WAITING; | |
1410 | return; | |
f8b7fc6b PM |
1411 | } |
1412 | } | |
62ab7072 PM |
1413 | *statusp = RCU_KTHREAD_YIELDING; |
1414 | trace_rcu_utilization("Start CPU kthread@rcu_yield"); | |
1415 | schedule_timeout_interruptible(2); | |
1416 | trace_rcu_utilization("End CPU kthread@rcu_yield"); | |
1417 | *statusp = RCU_KTHREAD_WAITING; | |
f8b7fc6b PM |
1418 | } |
1419 | ||
1420 | /* | |
1421 | * Set the per-rcu_node kthread's affinity to cover all CPUs that are | |
1422 | * served by the rcu_node in question. The CPU hotplug lock is still | |
1423 | * held, so the value of rnp->qsmaskinit will be stable. | |
1424 | * | |
1425 | * We don't include outgoingcpu in the affinity set, use -1 if there is | |
1426 | * no outgoing CPU. If there are no CPUs left in the affinity set, | |
1427 | * this function allows the kthread to execute on any CPU. | |
1428 | */ | |
5d01bbd1 | 1429 | static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) |
f8b7fc6b | 1430 | { |
5d01bbd1 TG |
1431 | struct task_struct *t = rnp->boost_kthread_task; |
1432 | unsigned long mask = rnp->qsmaskinit; | |
f8b7fc6b PM |
1433 | cpumask_var_t cm; |
1434 | int cpu; | |
f8b7fc6b | 1435 | |
5d01bbd1 | 1436 | if (!t) |
f8b7fc6b | 1437 | return; |
5d01bbd1 | 1438 | if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) |
f8b7fc6b | 1439 | return; |
f8b7fc6b PM |
1440 | for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) |
1441 | if ((mask & 0x1) && cpu != outgoingcpu) | |
1442 | cpumask_set_cpu(cpu, cm); | |
1443 | if (cpumask_weight(cm) == 0) { | |
1444 | cpumask_setall(cm); | |
1445 | for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) | |
1446 | cpumask_clear_cpu(cpu, cm); | |
1447 | WARN_ON_ONCE(cpumask_weight(cm) == 0); | |
1448 | } | |
5d01bbd1 | 1449 | set_cpus_allowed_ptr(t, cm); |
f8b7fc6b PM |
1450 | free_cpumask_var(cm); |
1451 | } | |
1452 | ||
62ab7072 PM |
1453 | static struct smp_hotplug_thread rcu_cpu_thread_spec = { |
1454 | .store = &rcu_cpu_kthread_task, | |
1455 | .thread_should_run = rcu_cpu_kthread_should_run, | |
1456 | .thread_fn = rcu_cpu_kthread, | |
1457 | .thread_comm = "rcuc/%u", | |
1458 | .setup = rcu_cpu_kthread_setup, | |
1459 | .park = rcu_cpu_kthread_park, | |
1460 | }; | |
f8b7fc6b PM |
1461 | |
1462 | /* | |
1463 | * Spawn all kthreads -- called as soon as the scheduler is running. | |
1464 | */ | |
1465 | static int __init rcu_spawn_kthreads(void) | |
1466 | { | |
f8b7fc6b | 1467 | struct rcu_node *rnp; |
5d01bbd1 | 1468 | int cpu; |
f8b7fc6b | 1469 | |
b0d30417 | 1470 | rcu_scheduler_fully_active = 1; |
62ab7072 | 1471 | for_each_possible_cpu(cpu) |
f8b7fc6b | 1472 | per_cpu(rcu_cpu_has_work, cpu) = 0; |
62ab7072 | 1473 | BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec)); |
f8b7fc6b | 1474 | rnp = rcu_get_root(rcu_state); |
5d01bbd1 | 1475 | (void)rcu_spawn_one_boost_kthread(rcu_state, rnp); |
f8b7fc6b PM |
1476 | if (NUM_RCU_NODES > 1) { |
1477 | rcu_for_each_leaf_node(rcu_state, rnp) | |
5d01bbd1 | 1478 | (void)rcu_spawn_one_boost_kthread(rcu_state, rnp); |
f8b7fc6b PM |
1479 | } |
1480 | return 0; | |
1481 | } | |
1482 | early_initcall(rcu_spawn_kthreads); | |
1483 | ||
1484 | static void __cpuinit rcu_prepare_kthreads(int cpu) | |
1485 | { | |
1486 | struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu); | |
1487 | struct rcu_node *rnp = rdp->mynode; | |
1488 | ||
1489 | /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */ | |
62ab7072 | 1490 | if (rcu_scheduler_fully_active) |
5d01bbd1 | 1491 | (void)rcu_spawn_one_boost_kthread(rcu_state, rnp); |
f8b7fc6b PM |
1492 | } |
1493 | ||
27f4d280 PM |
1494 | #else /* #ifdef CONFIG_RCU_BOOST */ |
1495 | ||
1217ed1b | 1496 | static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) |
27f4d280 | 1497 | { |
1217ed1b | 1498 | raw_spin_unlock_irqrestore(&rnp->lock, flags); |
27f4d280 PM |
1499 | } |
1500 | ||
a46e0899 | 1501 | static void invoke_rcu_callbacks_kthread(void) |
27f4d280 | 1502 | { |
a46e0899 | 1503 | WARN_ON_ONCE(1); |
27f4d280 PM |
1504 | } |
1505 | ||
dff1672d PM |
1506 | static bool rcu_is_callbacks_kthread(void) |
1507 | { | |
1508 | return false; | |
1509 | } | |
1510 | ||
27f4d280 PM |
1511 | static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) |
1512 | { | |
1513 | } | |
1514 | ||
5d01bbd1 | 1515 | static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) |
f8b7fc6b PM |
1516 | { |
1517 | } | |
1518 | ||
b0d30417 PM |
1519 | static int __init rcu_scheduler_really_started(void) |
1520 | { | |
1521 | rcu_scheduler_fully_active = 1; | |
1522 | return 0; | |
1523 | } | |
1524 | early_initcall(rcu_scheduler_really_started); | |
1525 | ||
f8b7fc6b PM |
1526 | static void __cpuinit rcu_prepare_kthreads(int cpu) |
1527 | { | |
1528 | } | |
1529 | ||
27f4d280 PM |
1530 | #endif /* #else #ifdef CONFIG_RCU_BOOST */ |
1531 | ||
8bd93a2c PM |
1532 | #if !defined(CONFIG_RCU_FAST_NO_HZ) |
1533 | ||
1534 | /* | |
1535 | * Check to see if any future RCU-related work will need to be done | |
1536 | * by the current CPU, even if none need be done immediately, returning | |
1537 | * 1 if so. This function is part of the RCU implementation; it is -not- | |
1538 | * an exported member of the RCU API. | |
1539 | * | |
7cb92499 PM |
1540 | * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs |
1541 | * any flavor of RCU. | |
8bd93a2c | 1542 | */ |
aa9b1630 | 1543 | int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies) |
8bd93a2c | 1544 | { |
aa9b1630 | 1545 | *delta_jiffies = ULONG_MAX; |
c0f4dfd4 | 1546 | return rcu_cpu_has_callbacks(cpu, NULL); |
7cb92499 PM |
1547 | } |
1548 | ||
1549 | /* | |
1550 | * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up | |
1551 | * after it. | |
1552 | */ | |
1553 | static void rcu_cleanup_after_idle(int cpu) | |
1554 | { | |
1555 | } | |
1556 | ||
aea1b35e | 1557 | /* |
a858af28 | 1558 | * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n, |
aea1b35e PM |
1559 | * is nothing. |
1560 | */ | |
1561 | static void rcu_prepare_for_idle(int cpu) | |
1562 | { | |
1563 | } | |
1564 | ||
c57afe80 PM |
1565 | /* |
1566 | * Don't bother keeping a running count of the number of RCU callbacks | |
1567 | * posted because CONFIG_RCU_FAST_NO_HZ=n. | |
1568 | */ | |
1569 | static void rcu_idle_count_callbacks_posted(void) | |
1570 | { | |
1571 | } | |
1572 | ||
8bd93a2c PM |
1573 | #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */ |
1574 | ||
f23f7fa1 PM |
1575 | /* |
1576 | * This code is invoked when a CPU goes idle, at which point we want | |
1577 | * to have the CPU do everything required for RCU so that it can enter | |
1578 | * the energy-efficient dyntick-idle mode. This is handled by a | |
1579 | * state machine implemented by rcu_prepare_for_idle() below. | |
1580 | * | |
1581 | * The following three proprocessor symbols control this state machine: | |
1582 | * | |
f23f7fa1 PM |
1583 | * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted |
1584 | * to sleep in dyntick-idle mode with RCU callbacks pending. This | |
1585 | * is sized to be roughly one RCU grace period. Those energy-efficiency | |
1586 | * benchmarkers who might otherwise be tempted to set this to a large | |
1587 | * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your | |
1588 | * system. And if you are -that- concerned about energy efficiency, | |
1589 | * just power the system down and be done with it! | |
778d250a PM |
1590 | * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is |
1591 | * permitted to sleep in dyntick-idle mode with only lazy RCU | |
1592 | * callbacks pending. Setting this too high can OOM your system. | |
f23f7fa1 PM |
1593 | * |
1594 | * The values below work well in practice. If future workloads require | |
1595 | * adjustment, they can be converted into kernel config parameters, though | |
1596 | * making the state machine smarter might be a better option. | |
1597 | */ | |
e84c48ae | 1598 | #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */ |
778d250a | 1599 | #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */ |
f23f7fa1 | 1600 | |
5e44ce35 PM |
1601 | static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY; |
1602 | module_param(rcu_idle_gp_delay, int, 0644); | |
1603 | static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY; | |
1604 | module_param(rcu_idle_lazy_gp_delay, int, 0644); | |
1605 | ||
9d2ad243 PM |
1606 | extern int tick_nohz_enabled; |
1607 | ||
486e2593 | 1608 | /* |
c0f4dfd4 PM |
1609 | * Try to advance callbacks for all flavors of RCU on the current CPU. |
1610 | * Afterwards, if there are any callbacks ready for immediate invocation, | |
1611 | * return true. | |
486e2593 | 1612 | */ |
c0f4dfd4 | 1613 | static bool rcu_try_advance_all_cbs(void) |
486e2593 | 1614 | { |
c0f4dfd4 PM |
1615 | bool cbs_ready = false; |
1616 | struct rcu_data *rdp; | |
1617 | struct rcu_node *rnp; | |
1618 | struct rcu_state *rsp; | |
486e2593 | 1619 | |
c0f4dfd4 PM |
1620 | for_each_rcu_flavor(rsp) { |
1621 | rdp = this_cpu_ptr(rsp->rda); | |
1622 | rnp = rdp->mynode; | |
486e2593 | 1623 | |
c0f4dfd4 PM |
1624 | /* |
1625 | * Don't bother checking unless a grace period has | |
1626 | * completed since we last checked and there are | |
1627 | * callbacks not yet ready to invoke. | |
1628 | */ | |
1629 | if (rdp->completed != rnp->completed && | |
1630 | rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL]) | |
1631 | rcu_process_gp_end(rsp, rdp); | |
486e2593 | 1632 | |
c0f4dfd4 PM |
1633 | if (cpu_has_callbacks_ready_to_invoke(rdp)) |
1634 | cbs_ready = true; | |
1635 | } | |
1636 | return cbs_ready; | |
486e2593 PM |
1637 | } |
1638 | ||
aa9b1630 | 1639 | /* |
c0f4dfd4 PM |
1640 | * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready |
1641 | * to invoke. If the CPU has callbacks, try to advance them. Tell the | |
1642 | * caller to set the timeout based on whether or not there are non-lazy | |
1643 | * callbacks. | |
aa9b1630 | 1644 | * |
c0f4dfd4 | 1645 | * The caller must have disabled interrupts. |
aa9b1630 | 1646 | */ |
c0f4dfd4 | 1647 | int rcu_needs_cpu(int cpu, unsigned long *dj) |
aa9b1630 PM |
1648 | { |
1649 | struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); | |
1650 | ||
c0f4dfd4 PM |
1651 | /* Snapshot to detect later posting of non-lazy callback. */ |
1652 | rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; | |
1653 | ||
aa9b1630 | 1654 | /* If no callbacks, RCU doesn't need the CPU. */ |
c0f4dfd4 PM |
1655 | if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) { |
1656 | *dj = ULONG_MAX; | |
aa9b1630 PM |
1657 | return 0; |
1658 | } | |
c0f4dfd4 PM |
1659 | |
1660 | /* Attempt to advance callbacks. */ | |
1661 | if (rcu_try_advance_all_cbs()) { | |
1662 | /* Some ready to invoke, so initiate later invocation. */ | |
1663 | invoke_rcu_core(); | |
aa9b1630 PM |
1664 | return 1; |
1665 | } | |
c0f4dfd4 PM |
1666 | rdtp->last_accelerate = jiffies; |
1667 | ||
1668 | /* Request timer delay depending on laziness, and round. */ | |
1669 | if (rdtp->all_lazy) { | |
1670 | *dj = round_up(rcu_idle_gp_delay + jiffies, | |
1671 | rcu_idle_gp_delay) - jiffies; | |
e84c48ae | 1672 | } else { |
c0f4dfd4 | 1673 | *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies; |
e84c48ae | 1674 | } |
aa9b1630 PM |
1675 | return 0; |
1676 | } | |
1677 | ||
21e52e15 | 1678 | /* |
c0f4dfd4 PM |
1679 | * Prepare a CPU for idle from an RCU perspective. The first major task |
1680 | * is to sense whether nohz mode has been enabled or disabled via sysfs. | |
1681 | * The second major task is to check to see if a non-lazy callback has | |
1682 | * arrived at a CPU that previously had only lazy callbacks. The third | |
1683 | * major task is to accelerate (that is, assign grace-period numbers to) | |
1684 | * any recently arrived callbacks. | |
aea1b35e PM |
1685 | * |
1686 | * The caller must have disabled interrupts. | |
8bd93a2c | 1687 | */ |
aea1b35e | 1688 | static void rcu_prepare_for_idle(int cpu) |
8bd93a2c | 1689 | { |
c0f4dfd4 | 1690 | struct rcu_data *rdp; |
5955f7ee | 1691 | struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); |
c0f4dfd4 PM |
1692 | struct rcu_node *rnp; |
1693 | struct rcu_state *rsp; | |
9d2ad243 PM |
1694 | int tne; |
1695 | ||
1696 | /* Handle nohz enablement switches conservatively. */ | |
1697 | tne = ACCESS_ONCE(tick_nohz_enabled); | |
1698 | if (tne != rdtp->tick_nohz_enabled_snap) { | |
c0f4dfd4 | 1699 | if (rcu_cpu_has_callbacks(cpu, NULL)) |
9d2ad243 PM |
1700 | invoke_rcu_core(); /* force nohz to see update. */ |
1701 | rdtp->tick_nohz_enabled_snap = tne; | |
1702 | return; | |
1703 | } | |
1704 | if (!tne) | |
1705 | return; | |
f511fc62 | 1706 | |
c0f4dfd4 PM |
1707 | /* If this is a no-CBs CPU, no callbacks, just return. */ |
1708 | if (is_nocb_cpu(cpu)) | |
9a0c6fef | 1709 | return; |
9a0c6fef | 1710 | |
c57afe80 | 1711 | /* |
c0f4dfd4 PM |
1712 | * If a non-lazy callback arrived at a CPU having only lazy |
1713 | * callbacks, invoke RCU core for the side-effect of recalculating | |
1714 | * idle duration on re-entry to idle. | |
c57afe80 | 1715 | */ |
c0f4dfd4 PM |
1716 | if (rdtp->all_lazy && |
1717 | rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) { | |
1718 | invoke_rcu_core(); | |
c57afe80 PM |
1719 | return; |
1720 | } | |
c57afe80 | 1721 | |
3084f2f8 | 1722 | /* |
c0f4dfd4 PM |
1723 | * If we have not yet accelerated this jiffy, accelerate all |
1724 | * callbacks on this CPU. | |
3084f2f8 | 1725 | */ |
c0f4dfd4 | 1726 | if (rdtp->last_accelerate == jiffies) |
aea1b35e | 1727 | return; |
c0f4dfd4 PM |
1728 | rdtp->last_accelerate = jiffies; |
1729 | for_each_rcu_flavor(rsp) { | |
1730 | rdp = per_cpu_ptr(rsp->rda, cpu); | |
1731 | if (!*rdp->nxttail[RCU_DONE_TAIL]) | |
1732 | continue; | |
1733 | rnp = rdp->mynode; | |
1734 | raw_spin_lock(&rnp->lock); /* irqs already disabled. */ | |
1735 | rcu_accelerate_cbs(rsp, rnp, rdp); | |
1736 | raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ | |
77e38ed3 | 1737 | } |
c0f4dfd4 | 1738 | } |
3084f2f8 | 1739 | |
c0f4dfd4 PM |
1740 | /* |
1741 | * Clean up for exit from idle. Attempt to advance callbacks based on | |
1742 | * any grace periods that elapsed while the CPU was idle, and if any | |
1743 | * callbacks are now ready to invoke, initiate invocation. | |
1744 | */ | |
1745 | static void rcu_cleanup_after_idle(int cpu) | |
1746 | { | |
1747 | struct rcu_data *rdp; | |
1748 | struct rcu_state *rsp; | |
a47cd880 | 1749 | |
c0f4dfd4 | 1750 | if (is_nocb_cpu(cpu)) |
aea1b35e | 1751 | return; |
c0f4dfd4 PM |
1752 | rcu_try_advance_all_cbs(); |
1753 | for_each_rcu_flavor(rsp) { | |
1754 | rdp = per_cpu_ptr(rsp->rda, cpu); | |
1755 | if (cpu_has_callbacks_ready_to_invoke(rdp)) | |
1756 | invoke_rcu_core(); | |
c701d5d9 | 1757 | } |
8bd93a2c PM |
1758 | } |
1759 | ||
c57afe80 | 1760 | /* |
98248a0e PM |
1761 | * Keep a running count of the number of non-lazy callbacks posted |
1762 | * on this CPU. This running counter (which is never decremented) allows | |
1763 | * rcu_prepare_for_idle() to detect when something out of the idle loop | |
1764 | * posts a callback, even if an equal number of callbacks are invoked. | |
1765 | * Of course, callbacks should only be posted from within a trace event | |
1766 | * designed to be called from idle or from within RCU_NONIDLE(). | |
c57afe80 PM |
1767 | */ |
1768 | static void rcu_idle_count_callbacks_posted(void) | |
1769 | { | |
5955f7ee | 1770 | __this_cpu_add(rcu_dynticks.nonlazy_posted, 1); |
c57afe80 PM |
1771 | } |
1772 | ||
b626c1b6 PM |
1773 | /* |
1774 | * Data for flushing lazy RCU callbacks at OOM time. | |
1775 | */ | |
1776 | static atomic_t oom_callback_count; | |
1777 | static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq); | |
1778 | ||
1779 | /* | |
1780 | * RCU OOM callback -- decrement the outstanding count and deliver the | |
1781 | * wake-up if we are the last one. | |
1782 | */ | |
1783 | static void rcu_oom_callback(struct rcu_head *rhp) | |
1784 | { | |
1785 | if (atomic_dec_and_test(&oom_callback_count)) | |
1786 | wake_up(&oom_callback_wq); | |
1787 | } | |
1788 | ||
1789 | /* | |
1790 | * Post an rcu_oom_notify callback on the current CPU if it has at | |
1791 | * least one lazy callback. This will unnecessarily post callbacks | |
1792 | * to CPUs that already have a non-lazy callback at the end of their | |
1793 | * callback list, but this is an infrequent operation, so accept some | |
1794 | * extra overhead to keep things simple. | |
1795 | */ | |
1796 | static void rcu_oom_notify_cpu(void *unused) | |
1797 | { | |
1798 | struct rcu_state *rsp; | |
1799 | struct rcu_data *rdp; | |
1800 | ||
1801 | for_each_rcu_flavor(rsp) { | |
1802 | rdp = __this_cpu_ptr(rsp->rda); | |
1803 | if (rdp->qlen_lazy != 0) { | |
1804 | atomic_inc(&oom_callback_count); | |
1805 | rsp->call(&rdp->oom_head, rcu_oom_callback); | |
1806 | } | |
1807 | } | |
1808 | } | |
1809 | ||
1810 | /* | |
1811 | * If low on memory, ensure that each CPU has a non-lazy callback. | |
1812 | * This will wake up CPUs that have only lazy callbacks, in turn | |
1813 | * ensuring that they free up the corresponding memory in a timely manner. | |
1814 | * Because an uncertain amount of memory will be freed in some uncertain | |
1815 | * timeframe, we do not claim to have freed anything. | |
1816 | */ | |
1817 | static int rcu_oom_notify(struct notifier_block *self, | |
1818 | unsigned long notused, void *nfreed) | |
1819 | { | |
1820 | int cpu; | |
1821 | ||
1822 | /* Wait for callbacks from earlier instance to complete. */ | |
1823 | wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0); | |
1824 | ||
1825 | /* | |
1826 | * Prevent premature wakeup: ensure that all increments happen | |
1827 | * before there is a chance of the counter reaching zero. | |
1828 | */ | |
1829 | atomic_set(&oom_callback_count, 1); | |
1830 | ||
1831 | get_online_cpus(); | |
1832 | for_each_online_cpu(cpu) { | |
1833 | smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1); | |
1834 | cond_resched(); | |
1835 | } | |
1836 | put_online_cpus(); | |
1837 | ||
1838 | /* Unconditionally decrement: no need to wake ourselves up. */ | |
1839 | atomic_dec(&oom_callback_count); | |
1840 | ||
1841 | return NOTIFY_OK; | |
1842 | } | |
1843 | ||
1844 | static struct notifier_block rcu_oom_nb = { | |
1845 | .notifier_call = rcu_oom_notify | |
1846 | }; | |
1847 | ||
1848 | static int __init rcu_register_oom_notifier(void) | |
1849 | { | |
1850 | register_oom_notifier(&rcu_oom_nb); | |
1851 | return 0; | |
1852 | } | |
1853 | early_initcall(rcu_register_oom_notifier); | |
1854 | ||
8bd93a2c | 1855 | #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */ |
a858af28 PM |
1856 | |
1857 | #ifdef CONFIG_RCU_CPU_STALL_INFO | |
1858 | ||
1859 | #ifdef CONFIG_RCU_FAST_NO_HZ | |
1860 | ||
1861 | static void print_cpu_stall_fast_no_hz(char *cp, int cpu) | |
1862 | { | |
5955f7ee | 1863 | struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); |
c0f4dfd4 | 1864 | unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap; |
a858af28 | 1865 | |
c0f4dfd4 PM |
1866 | sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c", |
1867 | rdtp->last_accelerate & 0xffff, jiffies & 0xffff, | |
1868 | ulong2long(nlpd), | |
1869 | rdtp->all_lazy ? 'L' : '.', | |
1870 | rdtp->tick_nohz_enabled_snap ? '.' : 'D'); | |
a858af28 PM |
1871 | } |
1872 | ||
1873 | #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */ | |
1874 | ||
1875 | static void print_cpu_stall_fast_no_hz(char *cp, int cpu) | |
1876 | { | |
1c17e4d4 | 1877 | *cp = '\0'; |
a858af28 PM |
1878 | } |
1879 | ||
1880 | #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */ | |
1881 | ||
1882 | /* Initiate the stall-info list. */ | |
1883 | static void print_cpu_stall_info_begin(void) | |
1884 | { | |
1885 | printk(KERN_CONT "\n"); | |
1886 | } | |
1887 | ||
1888 | /* | |
1889 | * Print out diagnostic information for the specified stalled CPU. | |
1890 | * | |
1891 | * If the specified CPU is aware of the current RCU grace period | |
1892 | * (flavor specified by rsp), then print the number of scheduling | |
1893 | * clock interrupts the CPU has taken during the time that it has | |
1894 | * been aware. Otherwise, print the number of RCU grace periods | |
1895 | * that this CPU is ignorant of, for example, "1" if the CPU was | |
1896 | * aware of the previous grace period. | |
1897 | * | |
1898 | * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info. | |
1899 | */ | |
1900 | static void print_cpu_stall_info(struct rcu_state *rsp, int cpu) | |
1901 | { | |
1902 | char fast_no_hz[72]; | |
1903 | struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); | |
1904 | struct rcu_dynticks *rdtp = rdp->dynticks; | |
1905 | char *ticks_title; | |
1906 | unsigned long ticks_value; | |
1907 | ||
1908 | if (rsp->gpnum == rdp->gpnum) { | |
1909 | ticks_title = "ticks this GP"; | |
1910 | ticks_value = rdp->ticks_this_gp; | |
1911 | } else { | |
1912 | ticks_title = "GPs behind"; | |
1913 | ticks_value = rsp->gpnum - rdp->gpnum; | |
1914 | } | |
1915 | print_cpu_stall_fast_no_hz(fast_no_hz, cpu); | |
1916 | printk(KERN_ERR "\t%d: (%lu %s) idle=%03x/%llx/%d %s\n", | |
1917 | cpu, ticks_value, ticks_title, | |
1918 | atomic_read(&rdtp->dynticks) & 0xfff, | |
1919 | rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting, | |
1920 | fast_no_hz); | |
1921 | } | |
1922 | ||
1923 | /* Terminate the stall-info list. */ | |
1924 | static void print_cpu_stall_info_end(void) | |
1925 | { | |
1926 | printk(KERN_ERR "\t"); | |
1927 | } | |
1928 | ||
1929 | /* Zero ->ticks_this_gp for all flavors of RCU. */ | |
1930 | static void zero_cpu_stall_ticks(struct rcu_data *rdp) | |
1931 | { | |
1932 | rdp->ticks_this_gp = 0; | |
1933 | } | |
1934 | ||
1935 | /* Increment ->ticks_this_gp for all flavors of RCU. */ | |
1936 | static void increment_cpu_stall_ticks(void) | |
1937 | { | |
115f7a7c PM |
1938 | struct rcu_state *rsp; |
1939 | ||
1940 | for_each_rcu_flavor(rsp) | |
1941 | __this_cpu_ptr(rsp->rda)->ticks_this_gp++; | |
a858af28 PM |
1942 | } |
1943 | ||
1944 | #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */ | |
1945 | ||
1946 | static void print_cpu_stall_info_begin(void) | |
1947 | { | |
1948 | printk(KERN_CONT " {"); | |
1949 | } | |
1950 | ||
1951 | static void print_cpu_stall_info(struct rcu_state *rsp, int cpu) | |
1952 | { | |
1953 | printk(KERN_CONT " %d", cpu); | |
1954 | } | |
1955 | ||
1956 | static void print_cpu_stall_info_end(void) | |
1957 | { | |
1958 | printk(KERN_CONT "} "); | |
1959 | } | |
1960 | ||
1961 | static void zero_cpu_stall_ticks(struct rcu_data *rdp) | |
1962 | { | |
1963 | } | |
1964 | ||
1965 | static void increment_cpu_stall_ticks(void) | |
1966 | { | |
1967 | } | |
1968 | ||
1969 | #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */ | |
3fbfbf7a PM |
1970 | |
1971 | #ifdef CONFIG_RCU_NOCB_CPU | |
1972 | ||
1973 | /* | |
1974 | * Offload callback processing from the boot-time-specified set of CPUs | |
1975 | * specified by rcu_nocb_mask. For each CPU in the set, there is a | |
1976 | * kthread created that pulls the callbacks from the corresponding CPU, | |
1977 | * waits for a grace period to elapse, and invokes the callbacks. | |
1978 | * The no-CBs CPUs do a wake_up() on their kthread when they insert | |
1979 | * a callback into any empty list, unless the rcu_nocb_poll boot parameter | |
1980 | * has been specified, in which case each kthread actively polls its | |
1981 | * CPU. (Which isn't so great for energy efficiency, but which does | |
1982 | * reduce RCU's overhead on that CPU.) | |
1983 | * | |
1984 | * This is intended to be used in conjunction with Frederic Weisbecker's | |
1985 | * adaptive-idle work, which would seriously reduce OS jitter on CPUs | |
1986 | * running CPU-bound user-mode computations. | |
1987 | * | |
1988 | * Offloading of callback processing could also in theory be used as | |
1989 | * an energy-efficiency measure because CPUs with no RCU callbacks | |
1990 | * queued are more aggressive about entering dyntick-idle mode. | |
1991 | */ | |
1992 | ||
1993 | ||
1994 | /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */ | |
1995 | static int __init rcu_nocb_setup(char *str) | |
1996 | { | |
1997 | alloc_bootmem_cpumask_var(&rcu_nocb_mask); | |
1998 | have_rcu_nocb_mask = true; | |
1999 | cpulist_parse(str, rcu_nocb_mask); | |
2000 | return 1; | |
2001 | } | |
2002 | __setup("rcu_nocbs=", rcu_nocb_setup); | |
2003 | ||
1b0048a4 PG |
2004 | static int __init parse_rcu_nocb_poll(char *arg) |
2005 | { | |
2006 | rcu_nocb_poll = 1; | |
2007 | return 0; | |
2008 | } | |
2009 | early_param("rcu_nocb_poll", parse_rcu_nocb_poll); | |
2010 | ||
34ed6246 | 2011 | /* |
dae6e64d PM |
2012 | * Do any no-CBs CPUs need another grace period? |
2013 | * | |
2014 | * Interrupts must be disabled. If the caller does not hold the root | |
2015 | * rnp_node structure's ->lock, the results are advisory only. | |
2016 | */ | |
2017 | static int rcu_nocb_needs_gp(struct rcu_state *rsp) | |
2018 | { | |
2019 | struct rcu_node *rnp = rcu_get_root(rsp); | |
2020 | ||
8b425aa8 | 2021 | return rnp->need_future_gp[(ACCESS_ONCE(rnp->completed) + 1) & 0x1]; |
dae6e64d PM |
2022 | } |
2023 | ||
2024 | /* | |
2025 | * Clean up this rcu_node structure's no-CBs state at the end of | |
2026 | * a grace period, and also return whether any no-CBs CPU associated | |
2027 | * with this rcu_node structure needs another grace period. | |
2028 | */ | |
2029 | static int rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) | |
2030 | { | |
2031 | int c = rnp->completed; | |
2032 | int needmore; | |
2033 | ||
2034 | wake_up_all(&rnp->nocb_gp_wq[c & 0x1]); | |
8b425aa8 PM |
2035 | rnp->need_future_gp[c & 0x1] = 0; |
2036 | needmore = rnp->need_future_gp[(c + 1) & 0x1]; | |
bd9f0686 PM |
2037 | trace_rcu_future_grace_period(rsp->name, rnp->gpnum, rnp->completed, |
2038 | c, rnp->level, rnp->grplo, rnp->grphi, | |
2039 | needmore ? "CleanupMore" : "Cleanup"); | |
dae6e64d PM |
2040 | return needmore; |
2041 | } | |
2042 | ||
2043 | /* | |
8b425aa8 | 2044 | * Set the root rcu_node structure's ->need_future_gp field |
dae6e64d PM |
2045 | * based on the sum of those of all rcu_node structures. This does |
2046 | * double-count the root rcu_node structure's requests, but this | |
2047 | * is necessary to handle the possibility of a rcu_nocb_kthread() | |
2048 | * having awakened during the time that the rcu_node structures | |
2049 | * were being updated for the end of the previous grace period. | |
34ed6246 | 2050 | */ |
dae6e64d PM |
2051 | static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq) |
2052 | { | |
8b425aa8 | 2053 | rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq; |
dae6e64d PM |
2054 | } |
2055 | ||
2056 | static void rcu_init_one_nocb(struct rcu_node *rnp) | |
34ed6246 | 2057 | { |
dae6e64d PM |
2058 | init_waitqueue_head(&rnp->nocb_gp_wq[0]); |
2059 | init_waitqueue_head(&rnp->nocb_gp_wq[1]); | |
34ed6246 PM |
2060 | } |
2061 | ||
3fbfbf7a PM |
2062 | /* Is the specified CPU a no-CPUs CPU? */ |
2063 | static bool is_nocb_cpu(int cpu) | |
2064 | { | |
2065 | if (have_rcu_nocb_mask) | |
2066 | return cpumask_test_cpu(cpu, rcu_nocb_mask); | |
2067 | return false; | |
2068 | } | |
2069 | ||
2070 | /* | |
2071 | * Enqueue the specified string of rcu_head structures onto the specified | |
2072 | * CPU's no-CBs lists. The CPU is specified by rdp, the head of the | |
2073 | * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy | |
2074 | * counts are supplied by rhcount and rhcount_lazy. | |
2075 | * | |
2076 | * If warranted, also wake up the kthread servicing this CPUs queues. | |
2077 | */ | |
2078 | static void __call_rcu_nocb_enqueue(struct rcu_data *rdp, | |
2079 | struct rcu_head *rhp, | |
2080 | struct rcu_head **rhtp, | |
2081 | int rhcount, int rhcount_lazy) | |
2082 | { | |
2083 | int len; | |
2084 | struct rcu_head **old_rhpp; | |
2085 | struct task_struct *t; | |
2086 | ||
2087 | /* Enqueue the callback on the nocb list and update counts. */ | |
2088 | old_rhpp = xchg(&rdp->nocb_tail, rhtp); | |
2089 | ACCESS_ONCE(*old_rhpp) = rhp; | |
2090 | atomic_long_add(rhcount, &rdp->nocb_q_count); | |
2091 | atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy); | |
2092 | ||
2093 | /* If we are not being polled and there is a kthread, awaken it ... */ | |
2094 | t = ACCESS_ONCE(rdp->nocb_kthread); | |
2095 | if (rcu_nocb_poll | !t) | |
2096 | return; | |
2097 | len = atomic_long_read(&rdp->nocb_q_count); | |
2098 | if (old_rhpp == &rdp->nocb_head) { | |
2099 | wake_up(&rdp->nocb_wq); /* ... only if queue was empty ... */ | |
2100 | rdp->qlen_last_fqs_check = 0; | |
2101 | } else if (len > rdp->qlen_last_fqs_check + qhimark) { | |
2102 | wake_up_process(t); /* ... or if many callbacks queued. */ | |
2103 | rdp->qlen_last_fqs_check = LONG_MAX / 2; | |
2104 | } | |
2105 | return; | |
2106 | } | |
2107 | ||
2108 | /* | |
2109 | * This is a helper for __call_rcu(), which invokes this when the normal | |
2110 | * callback queue is inoperable. If this is not a no-CBs CPU, this | |
2111 | * function returns failure back to __call_rcu(), which can complain | |
2112 | * appropriately. | |
2113 | * | |
2114 | * Otherwise, this function queues the callback where the corresponding | |
2115 | * "rcuo" kthread can find it. | |
2116 | */ | |
2117 | static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, | |
2118 | bool lazy) | |
2119 | { | |
2120 | ||
2121 | if (!is_nocb_cpu(rdp->cpu)) | |
2122 | return 0; | |
2123 | __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy); | |
21e7a608 PM |
2124 | if (__is_kfree_rcu_offset((unsigned long)rhp->func)) |
2125 | trace_rcu_kfree_callback(rdp->rsp->name, rhp, | |
2126 | (unsigned long)rhp->func, | |
2127 | rdp->qlen_lazy, rdp->qlen); | |
2128 | else | |
2129 | trace_rcu_callback(rdp->rsp->name, rhp, | |
2130 | rdp->qlen_lazy, rdp->qlen); | |
3fbfbf7a PM |
2131 | return 1; |
2132 | } | |
2133 | ||
2134 | /* | |
2135 | * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is | |
2136 | * not a no-CBs CPU. | |
2137 | */ | |
2138 | static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp, | |
2139 | struct rcu_data *rdp) | |
2140 | { | |
2141 | long ql = rsp->qlen; | |
2142 | long qll = rsp->qlen_lazy; | |
2143 | ||
2144 | /* If this is not a no-CBs CPU, tell the caller to do it the old way. */ | |
2145 | if (!is_nocb_cpu(smp_processor_id())) | |
2146 | return 0; | |
2147 | rsp->qlen = 0; | |
2148 | rsp->qlen_lazy = 0; | |
2149 | ||
2150 | /* First, enqueue the donelist, if any. This preserves CB ordering. */ | |
2151 | if (rsp->orphan_donelist != NULL) { | |
2152 | __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist, | |
2153 | rsp->orphan_donetail, ql, qll); | |
2154 | ql = qll = 0; | |
2155 | rsp->orphan_donelist = NULL; | |
2156 | rsp->orphan_donetail = &rsp->orphan_donelist; | |
2157 | } | |
2158 | if (rsp->orphan_nxtlist != NULL) { | |
2159 | __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist, | |
2160 | rsp->orphan_nxttail, ql, qll); | |
2161 | ql = qll = 0; | |
2162 | rsp->orphan_nxtlist = NULL; | |
2163 | rsp->orphan_nxttail = &rsp->orphan_nxtlist; | |
2164 | } | |
2165 | return 1; | |
2166 | } | |
2167 | ||
2168 | /* | |
34ed6246 PM |
2169 | * If necessary, kick off a new grace period, and either way wait |
2170 | * for a subsequent grace period to complete. | |
3fbfbf7a | 2171 | */ |
34ed6246 | 2172 | static void rcu_nocb_wait_gp(struct rcu_data *rdp) |
3fbfbf7a | 2173 | { |
34ed6246 | 2174 | unsigned long c; |
dae6e64d | 2175 | bool d; |
34ed6246 | 2176 | unsigned long flags; |
34ed6246 | 2177 | struct rcu_node *rnp = rdp->mynode; |
dae6e64d | 2178 | struct rcu_node *rnp_root = rcu_get_root(rdp->rsp); |
34ed6246 PM |
2179 | |
2180 | raw_spin_lock_irqsave(&rnp->lock, flags); | |
2181 | c = rnp->completed + 2; | |
dae6e64d PM |
2182 | |
2183 | /* Count our request for a grace period. */ | |
8b425aa8 | 2184 | rnp->need_future_gp[c & 0x1]++; |
bd9f0686 PM |
2185 | trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum, |
2186 | rnp->completed, c, rnp->level, | |
2187 | rnp->grplo, rnp->grphi, "Startleaf"); | |
dae6e64d PM |
2188 | |
2189 | if (rnp->gpnum != rnp->completed) { | |
2190 | ||
2191 | /* | |
2192 | * This rcu_node structure believes that a grace period | |
2193 | * is in progress, so we are done. When this grace | |
2194 | * period ends, our request will be acted upon. | |
2195 | */ | |
bd9f0686 PM |
2196 | trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum, |
2197 | rnp->completed, c, rnp->level, | |
2198 | rnp->grplo, rnp->grphi, | |
2199 | "Startedleaf"); | |
dae6e64d PM |
2200 | raw_spin_unlock_irqrestore(&rnp->lock, flags); |
2201 | ||
2202 | } else { | |
2203 | ||
2204 | /* | |
2205 | * Might not be a grace period, check root rcu_node | |
2206 | * structure to see if we must start one. | |
2207 | */ | |
2208 | if (rnp != rnp_root) | |
2209 | raw_spin_lock(&rnp_root->lock); /* irqs disabled. */ | |
2210 | if (rnp_root->gpnum != rnp_root->completed) { | |
bd9f0686 PM |
2211 | trace_rcu_future_grace_period(rdp->rsp->name, |
2212 | rnp->gpnum, | |
2213 | rnp->completed, | |
2214 | c, rnp->level, | |
2215 | rnp->grplo, rnp->grphi, | |
2216 | "Startedleafroot"); | |
dae6e64d PM |
2217 | raw_spin_unlock(&rnp_root->lock); /* irqs disabled. */ |
2218 | } else { | |
2219 | ||
2220 | /* | |
2221 | * No grace period, so we need to start one. | |
2222 | * The good news is that we can wait for exactly | |
2223 | * one grace period instead of part of the current | |
2224 | * grace period and all of the next grace period. | |
2225 | * Adjust counters accordingly and start the | |
2226 | * needed grace period. | |
2227 | */ | |
8b425aa8 | 2228 | rnp->need_future_gp[c & 0x1]--; |
dae6e64d | 2229 | c = rnp_root->completed + 1; |
8b425aa8 PM |
2230 | rnp->need_future_gp[c & 0x1]++; |
2231 | rnp_root->need_future_gp[c & 0x1]++; | |
bd9f0686 PM |
2232 | trace_rcu_future_grace_period(rdp->rsp->name, |
2233 | rnp->gpnum, | |
2234 | rnp->completed, | |
2235 | c, rnp->level, | |
2236 | rnp->grplo, rnp->grphi, | |
2237 | "Startedroot"); | |
b8462084 PM |
2238 | rcu_start_gp(rdp->rsp); |
2239 | raw_spin_unlock(&rnp->lock); | |
dae6e64d PM |
2240 | } |
2241 | ||
2242 | /* Clean up locking and irq state. */ | |
2243 | if (rnp != rnp_root) | |
2244 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | |
2245 | else | |
2246 | local_irq_restore(flags); | |
2247 | } | |
3fbfbf7a PM |
2248 | |
2249 | /* | |
34ed6246 PM |
2250 | * Wait for the grace period. Do so interruptibly to avoid messing |
2251 | * up the load average. | |
3fbfbf7a | 2252 | */ |
bd9f0686 PM |
2253 | trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum, |
2254 | rnp->completed, c, rnp->level, | |
2255 | rnp->grplo, rnp->grphi, "StartWait"); | |
34ed6246 | 2256 | for (;;) { |
dae6e64d PM |
2257 | wait_event_interruptible( |
2258 | rnp->nocb_gp_wq[c & 0x1], | |
2259 | (d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c))); | |
2260 | if (likely(d)) | |
34ed6246 | 2261 | break; |
dae6e64d | 2262 | flush_signals(current); |
bd9f0686 PM |
2263 | trace_rcu_future_grace_period(rdp->rsp->name, |
2264 | rnp->gpnum, rnp->completed, c, | |
2265 | rnp->level, rnp->grplo, | |
2266 | rnp->grphi, "ResumeWait"); | |
34ed6246 | 2267 | } |
bd9f0686 PM |
2268 | trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum, |
2269 | rnp->completed, c, rnp->level, | |
2270 | rnp->grplo, rnp->grphi, "EndWait"); | |
34ed6246 | 2271 | smp_mb(); /* Ensure that CB invocation happens after GP end. */ |
3fbfbf7a PM |
2272 | } |
2273 | ||
2274 | /* | |
2275 | * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes | |
2276 | * callbacks queued by the corresponding no-CBs CPU. | |
2277 | */ | |
2278 | static int rcu_nocb_kthread(void *arg) | |
2279 | { | |
2280 | int c, cl; | |
2281 | struct rcu_head *list; | |
2282 | struct rcu_head *next; | |
2283 | struct rcu_head **tail; | |
2284 | struct rcu_data *rdp = arg; | |
2285 | ||
2286 | /* Each pass through this loop invokes one batch of callbacks */ | |
2287 | for (;;) { | |
2288 | /* If not polling, wait for next batch of callbacks. */ | |
2289 | if (!rcu_nocb_poll) | |
353af9c9 | 2290 | wait_event_interruptible(rdp->nocb_wq, rdp->nocb_head); |
3fbfbf7a PM |
2291 | list = ACCESS_ONCE(rdp->nocb_head); |
2292 | if (!list) { | |
2293 | schedule_timeout_interruptible(1); | |
353af9c9 | 2294 | flush_signals(current); |
3fbfbf7a PM |
2295 | continue; |
2296 | } | |
2297 | ||
2298 | /* | |
2299 | * Extract queued callbacks, update counts, and wait | |
2300 | * for a grace period to elapse. | |
2301 | */ | |
2302 | ACCESS_ONCE(rdp->nocb_head) = NULL; | |
2303 | tail = xchg(&rdp->nocb_tail, &rdp->nocb_head); | |
2304 | c = atomic_long_xchg(&rdp->nocb_q_count, 0); | |
2305 | cl = atomic_long_xchg(&rdp->nocb_q_count_lazy, 0); | |
2306 | ACCESS_ONCE(rdp->nocb_p_count) += c; | |
2307 | ACCESS_ONCE(rdp->nocb_p_count_lazy) += cl; | |
34ed6246 | 2308 | rcu_nocb_wait_gp(rdp); |
3fbfbf7a PM |
2309 | |
2310 | /* Each pass through the following loop invokes a callback. */ | |
2311 | trace_rcu_batch_start(rdp->rsp->name, cl, c, -1); | |
2312 | c = cl = 0; | |
2313 | while (list) { | |
2314 | next = list->next; | |
2315 | /* Wait for enqueuing to complete, if needed. */ | |
2316 | while (next == NULL && &list->next != tail) { | |
2317 | schedule_timeout_interruptible(1); | |
2318 | next = list->next; | |
2319 | } | |
2320 | debug_rcu_head_unqueue(list); | |
2321 | local_bh_disable(); | |
2322 | if (__rcu_reclaim(rdp->rsp->name, list)) | |
2323 | cl++; | |
2324 | c++; | |
2325 | local_bh_enable(); | |
2326 | list = next; | |
2327 | } | |
2328 | trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1); | |
2329 | ACCESS_ONCE(rdp->nocb_p_count) -= c; | |
2330 | ACCESS_ONCE(rdp->nocb_p_count_lazy) -= cl; | |
c635a4e1 | 2331 | rdp->n_nocbs_invoked += c; |
3fbfbf7a PM |
2332 | } |
2333 | return 0; | |
2334 | } | |
2335 | ||
2336 | /* Initialize per-rcu_data variables for no-CBs CPUs. */ | |
2337 | static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) | |
2338 | { | |
2339 | rdp->nocb_tail = &rdp->nocb_head; | |
2340 | init_waitqueue_head(&rdp->nocb_wq); | |
2341 | } | |
2342 | ||
2343 | /* Create a kthread for each RCU flavor for each no-CBs CPU. */ | |
2344 | static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp) | |
2345 | { | |
2346 | int cpu; | |
2347 | struct rcu_data *rdp; | |
2348 | struct task_struct *t; | |
2349 | ||
2350 | if (rcu_nocb_mask == NULL) | |
2351 | return; | |
2352 | for_each_cpu(cpu, rcu_nocb_mask) { | |
2353 | rdp = per_cpu_ptr(rsp->rda, cpu); | |
a4889858 PM |
2354 | t = kthread_run(rcu_nocb_kthread, rdp, |
2355 | "rcuo%c/%d", rsp->abbr, cpu); | |
3fbfbf7a PM |
2356 | BUG_ON(IS_ERR(t)); |
2357 | ACCESS_ONCE(rdp->nocb_kthread) = t; | |
2358 | } | |
2359 | } | |
2360 | ||
2361 | /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */ | |
34ed6246 | 2362 | static bool init_nocb_callback_list(struct rcu_data *rdp) |
3fbfbf7a PM |
2363 | { |
2364 | if (rcu_nocb_mask == NULL || | |
2365 | !cpumask_test_cpu(rdp->cpu, rcu_nocb_mask)) | |
34ed6246 | 2366 | return false; |
3fbfbf7a | 2367 | rdp->nxttail[RCU_NEXT_TAIL] = NULL; |
34ed6246 | 2368 | return true; |
3fbfbf7a PM |
2369 | } |
2370 | ||
34ed6246 PM |
2371 | #else /* #ifdef CONFIG_RCU_NOCB_CPU */ |
2372 | ||
dae6e64d PM |
2373 | static int rcu_nocb_needs_gp(struct rcu_state *rsp) |
2374 | { | |
2375 | return 0; | |
2376 | } | |
2377 | ||
2378 | static int rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) | |
3fbfbf7a | 2379 | { |
34ed6246 | 2380 | return 0; |
3fbfbf7a PM |
2381 | } |
2382 | ||
dae6e64d PM |
2383 | static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq) |
2384 | { | |
2385 | } | |
2386 | ||
2387 | static void rcu_init_one_nocb(struct rcu_node *rnp) | |
2388 | { | |
2389 | } | |
2390 | ||
3fbfbf7a PM |
2391 | static bool is_nocb_cpu(int cpu) |
2392 | { | |
2393 | return false; | |
2394 | } | |
2395 | ||
2396 | static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, | |
2397 | bool lazy) | |
2398 | { | |
2399 | return 0; | |
2400 | } | |
2401 | ||
2402 | static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp, | |
2403 | struct rcu_data *rdp) | |
2404 | { | |
2405 | return 0; | |
2406 | } | |
2407 | ||
3fbfbf7a PM |
2408 | static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) |
2409 | { | |
2410 | } | |
2411 | ||
2412 | static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp) | |
2413 | { | |
2414 | } | |
2415 | ||
34ed6246 | 2416 | static bool init_nocb_callback_list(struct rcu_data *rdp) |
3fbfbf7a | 2417 | { |
34ed6246 | 2418 | return false; |
3fbfbf7a PM |
2419 | } |
2420 | ||
2421 | #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ |