]>
Commit | Line | Data |
---|---|---|
f41d911f PM |
1 | /* |
2 | * Read-Copy Update mechanism for mutual exclusion (tree-based version) | |
3 | * Internal non-public definitions that provide either classic | |
6cc68793 | 4 | * or preemptible semantics. |
f41d911f PM |
5 | * |
6 | * This program is free software; you can redistribute it and/or modify | |
7 | * it under the terms of the GNU General Public License as published by | |
8 | * the Free Software Foundation; either version 2 of the License, or | |
9 | * (at your option) any later version. | |
10 | * | |
11 | * This program is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | * GNU General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU General Public License | |
17 | * along with this program; if not, write to the Free Software | |
18 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | |
19 | * | |
20 | * Copyright Red Hat, 2009 | |
21 | * Copyright IBM Corporation, 2009 | |
22 | * | |
23 | * Author: Ingo Molnar <[email protected]> | |
24 | * Paul E. McKenney <[email protected]> | |
25 | */ | |
26 | ||
d9a3da06 | 27 | #include <linux/delay.h> |
3fbfbf7a | 28 | #include <linux/gfp.h> |
b626c1b6 | 29 | #include <linux/oom.h> |
62ab7072 | 30 | #include <linux/smpboot.h> |
65d798f0 | 31 | #include <linux/tick.h> |
f41d911f | 32 | |
5b61b0ba MG |
33 | #define RCU_KTHREAD_PRIO 1 |
34 | ||
35 | #ifdef CONFIG_RCU_BOOST | |
36 | #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO | |
37 | #else | |
38 | #define RCU_BOOST_PRIO RCU_KTHREAD_PRIO | |
39 | #endif | |
40 | ||
3fbfbf7a PM |
41 | #ifdef CONFIG_RCU_NOCB_CPU |
42 | static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ | |
43 | static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */ | |
1b0048a4 | 44 | static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ |
3fbfbf7a PM |
45 | static char __initdata nocb_buf[NR_CPUS * 5]; |
46 | #endif /* #ifdef CONFIG_RCU_NOCB_CPU */ | |
47 | ||
26845c28 PM |
48 | /* |
49 | * Check the RCU kernel configuration parameters and print informative | |
50 | * messages about anything out of the ordinary. If you like #ifdef, you | |
51 | * will love this function. | |
52 | */ | |
53 | static void __init rcu_bootup_announce_oddness(void) | |
54 | { | |
55 | #ifdef CONFIG_RCU_TRACE | |
56 | printk(KERN_INFO "\tRCU debugfs-based tracing is enabled.\n"); | |
57 | #endif | |
58 | #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32) | |
59 | printk(KERN_INFO "\tCONFIG_RCU_FANOUT set to non-default value of %d\n", | |
60 | CONFIG_RCU_FANOUT); | |
61 | #endif | |
62 | #ifdef CONFIG_RCU_FANOUT_EXACT | |
63 | printk(KERN_INFO "\tHierarchical RCU autobalancing is disabled.\n"); | |
64 | #endif | |
65 | #ifdef CONFIG_RCU_FAST_NO_HZ | |
66 | printk(KERN_INFO | |
67 | "\tRCU dyntick-idle grace-period acceleration is enabled.\n"); | |
68 | #endif | |
69 | #ifdef CONFIG_PROVE_RCU | |
70 | printk(KERN_INFO "\tRCU lockdep checking is enabled.\n"); | |
71 | #endif | |
72 | #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE | |
73 | printk(KERN_INFO "\tRCU torture testing starts during boot.\n"); | |
74 | #endif | |
81a294c4 | 75 | #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE) |
a858af28 PM |
76 | printk(KERN_INFO "\tDump stacks of tasks blocking RCU-preempt GP.\n"); |
77 | #endif | |
78 | #if defined(CONFIG_RCU_CPU_STALL_INFO) | |
79 | printk(KERN_INFO "\tAdditional per-CPU info printed with stalls.\n"); | |
26845c28 PM |
80 | #endif |
81 | #if NUM_RCU_LVL_4 != 0 | |
cc5df65b | 82 | printk(KERN_INFO "\tFour-level hierarchy is enabled.\n"); |
26845c28 | 83 | #endif |
f885b7f2 PM |
84 | if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF) |
85 | printk(KERN_INFO "\tExperimental boot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf); | |
cca6f393 PM |
86 | if (nr_cpu_ids != NR_CPUS) |
87 | printk(KERN_INFO "\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids); | |
3fbfbf7a | 88 | #ifdef CONFIG_RCU_NOCB_CPU |
911af505 PM |
89 | #ifndef CONFIG_RCU_NOCB_CPU_NONE |
90 | if (!have_rcu_nocb_mask) { | |
615ee544 | 91 | zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL); |
911af505 PM |
92 | have_rcu_nocb_mask = true; |
93 | } | |
94 | #ifdef CONFIG_RCU_NOCB_CPU_ZERO | |
95 | pr_info("\tExperimental no-CBs CPU 0\n"); | |
96 | cpumask_set_cpu(0, rcu_nocb_mask); | |
97 | #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */ | |
98 | #ifdef CONFIG_RCU_NOCB_CPU_ALL | |
99 | pr_info("\tExperimental no-CBs for all CPUs\n"); | |
100 | cpumask_setall(rcu_nocb_mask); | |
101 | #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */ | |
102 | #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */ | |
3fbfbf7a | 103 | if (have_rcu_nocb_mask) { |
3fbfbf7a PM |
104 | cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask); |
105 | pr_info("\tExperimental no-CBs CPUs: %s.\n", nocb_buf); | |
106 | if (rcu_nocb_poll) | |
107 | pr_info("\tExperimental polled no-CBs CPUs.\n"); | |
108 | } | |
109 | #endif /* #ifdef CONFIG_RCU_NOCB_CPU */ | |
26845c28 PM |
110 | } |
111 | ||
f41d911f PM |
112 | #ifdef CONFIG_TREE_PREEMPT_RCU |
113 | ||
037b64ed | 114 | struct rcu_state rcu_preempt_state = |
a4889858 | 115 | RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu); |
f41d911f | 116 | DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data); |
27f4d280 | 117 | static struct rcu_state *rcu_state = &rcu_preempt_state; |
f41d911f | 118 | |
d9a3da06 PM |
119 | static int rcu_preempted_readers_exp(struct rcu_node *rnp); |
120 | ||
f41d911f PM |
121 | /* |
122 | * Tell them what RCU they are running. | |
123 | */ | |
0e0fc1c2 | 124 | static void __init rcu_bootup_announce(void) |
f41d911f | 125 | { |
6cc68793 | 126 | printk(KERN_INFO "Preemptible hierarchical RCU implementation.\n"); |
26845c28 | 127 | rcu_bootup_announce_oddness(); |
f41d911f PM |
128 | } |
129 | ||
130 | /* | |
131 | * Return the number of RCU-preempt batches processed thus far | |
132 | * for debug and statistics. | |
133 | */ | |
134 | long rcu_batches_completed_preempt(void) | |
135 | { | |
136 | return rcu_preempt_state.completed; | |
137 | } | |
138 | EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt); | |
139 | ||
140 | /* | |
141 | * Return the number of RCU batches processed thus far for debug & stats. | |
142 | */ | |
143 | long rcu_batches_completed(void) | |
144 | { | |
145 | return rcu_batches_completed_preempt(); | |
146 | } | |
147 | EXPORT_SYMBOL_GPL(rcu_batches_completed); | |
148 | ||
bf66f18e PM |
149 | /* |
150 | * Force a quiescent state for preemptible RCU. | |
151 | */ | |
152 | void rcu_force_quiescent_state(void) | |
153 | { | |
4cdfc175 | 154 | force_quiescent_state(&rcu_preempt_state); |
bf66f18e PM |
155 | } |
156 | EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); | |
157 | ||
f41d911f | 158 | /* |
6cc68793 | 159 | * Record a preemptible-RCU quiescent state for the specified CPU. Note |
f41d911f PM |
160 | * that this just means that the task currently running on the CPU is |
161 | * not in a quiescent state. There might be any number of tasks blocked | |
162 | * while in an RCU read-side critical section. | |
25502a6c PM |
163 | * |
164 | * Unlike the other rcu_*_qs() functions, callers to this function | |
165 | * must disable irqs in order to protect the assignment to | |
166 | * ->rcu_read_unlock_special. | |
f41d911f | 167 | */ |
c3422bea | 168 | static void rcu_preempt_qs(int cpu) |
f41d911f PM |
169 | { |
170 | struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu); | |
25502a6c | 171 | |
e4cc1f22 | 172 | if (rdp->passed_quiesce == 0) |
d4c08f2a | 173 | trace_rcu_grace_period("rcu_preempt", rdp->gpnum, "cpuqs"); |
e4cc1f22 | 174 | rdp->passed_quiesce = 1; |
25502a6c | 175 | current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS; |
f41d911f PM |
176 | } |
177 | ||
178 | /* | |
c3422bea PM |
179 | * We have entered the scheduler, and the current task might soon be |
180 | * context-switched away from. If this task is in an RCU read-side | |
181 | * critical section, we will no longer be able to rely on the CPU to | |
12f5f524 PM |
182 | * record that fact, so we enqueue the task on the blkd_tasks list. |
183 | * The task will dequeue itself when it exits the outermost enclosing | |
184 | * RCU read-side critical section. Therefore, the current grace period | |
185 | * cannot be permitted to complete until the blkd_tasks list entries | |
186 | * predating the current grace period drain, in other words, until | |
187 | * rnp->gp_tasks becomes NULL. | |
c3422bea PM |
188 | * |
189 | * Caller must disable preemption. | |
f41d911f | 190 | */ |
cba6d0d6 | 191 | static void rcu_preempt_note_context_switch(int cpu) |
f41d911f PM |
192 | { |
193 | struct task_struct *t = current; | |
c3422bea | 194 | unsigned long flags; |
f41d911f PM |
195 | struct rcu_data *rdp; |
196 | struct rcu_node *rnp; | |
197 | ||
10f39bb1 | 198 | if (t->rcu_read_lock_nesting > 0 && |
f41d911f PM |
199 | (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) { |
200 | ||
201 | /* Possibly blocking in an RCU read-side critical section. */ | |
cba6d0d6 | 202 | rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu); |
f41d911f | 203 | rnp = rdp->mynode; |
1304afb2 | 204 | raw_spin_lock_irqsave(&rnp->lock, flags); |
f41d911f | 205 | t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED; |
86848966 | 206 | t->rcu_blocked_node = rnp; |
f41d911f PM |
207 | |
208 | /* | |
209 | * If this CPU has already checked in, then this task | |
210 | * will hold up the next grace period rather than the | |
211 | * current grace period. Queue the task accordingly. | |
212 | * If the task is queued for the current grace period | |
213 | * (i.e., this CPU has not yet passed through a quiescent | |
214 | * state for the current grace period), then as long | |
215 | * as that task remains queued, the current grace period | |
12f5f524 PM |
216 | * cannot end. Note that there is some uncertainty as |
217 | * to exactly when the current grace period started. | |
218 | * We take a conservative approach, which can result | |
219 | * in unnecessarily waiting on tasks that started very | |
220 | * slightly after the current grace period began. C'est | |
221 | * la vie!!! | |
b0e165c0 PM |
222 | * |
223 | * But first, note that the current CPU must still be | |
224 | * on line! | |
f41d911f | 225 | */ |
b0e165c0 | 226 | WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0); |
e7d8842e | 227 | WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); |
12f5f524 PM |
228 | if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) { |
229 | list_add(&t->rcu_node_entry, rnp->gp_tasks->prev); | |
230 | rnp->gp_tasks = &t->rcu_node_entry; | |
27f4d280 PM |
231 | #ifdef CONFIG_RCU_BOOST |
232 | if (rnp->boost_tasks != NULL) | |
233 | rnp->boost_tasks = rnp->gp_tasks; | |
234 | #endif /* #ifdef CONFIG_RCU_BOOST */ | |
12f5f524 PM |
235 | } else { |
236 | list_add(&t->rcu_node_entry, &rnp->blkd_tasks); | |
237 | if (rnp->qsmask & rdp->grpmask) | |
238 | rnp->gp_tasks = &t->rcu_node_entry; | |
239 | } | |
d4c08f2a PM |
240 | trace_rcu_preempt_task(rdp->rsp->name, |
241 | t->pid, | |
242 | (rnp->qsmask & rdp->grpmask) | |
243 | ? rnp->gpnum | |
244 | : rnp->gpnum + 1); | |
1304afb2 | 245 | raw_spin_unlock_irqrestore(&rnp->lock, flags); |
10f39bb1 PM |
246 | } else if (t->rcu_read_lock_nesting < 0 && |
247 | t->rcu_read_unlock_special) { | |
248 | ||
249 | /* | |
250 | * Complete exit from RCU read-side critical section on | |
251 | * behalf of preempted instance of __rcu_read_unlock(). | |
252 | */ | |
253 | rcu_read_unlock_special(t); | |
f41d911f PM |
254 | } |
255 | ||
256 | /* | |
257 | * Either we were not in an RCU read-side critical section to | |
258 | * begin with, or we have now recorded that critical section | |
259 | * globally. Either way, we can now note a quiescent state | |
260 | * for this CPU. Again, if we were in an RCU read-side critical | |
261 | * section, and if that critical section was blocking the current | |
262 | * grace period, then the fact that the task has been enqueued | |
263 | * means that we continue to block the current grace period. | |
264 | */ | |
e7d8842e | 265 | local_irq_save(flags); |
cba6d0d6 | 266 | rcu_preempt_qs(cpu); |
e7d8842e | 267 | local_irq_restore(flags); |
f41d911f PM |
268 | } |
269 | ||
fc2219d4 PM |
270 | /* |
271 | * Check for preempted RCU readers blocking the current grace period | |
272 | * for the specified rcu_node structure. If the caller needs a reliable | |
273 | * answer, it must hold the rcu_node's ->lock. | |
274 | */ | |
27f4d280 | 275 | static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) |
fc2219d4 | 276 | { |
12f5f524 | 277 | return rnp->gp_tasks != NULL; |
fc2219d4 PM |
278 | } |
279 | ||
b668c9cf PM |
280 | /* |
281 | * Record a quiescent state for all tasks that were previously queued | |
282 | * on the specified rcu_node structure and that were blocking the current | |
283 | * RCU grace period. The caller must hold the specified rnp->lock with | |
284 | * irqs disabled, and this lock is released upon return, but irqs remain | |
285 | * disabled. | |
286 | */ | |
d3f6bad3 | 287 | static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) |
b668c9cf PM |
288 | __releases(rnp->lock) |
289 | { | |
290 | unsigned long mask; | |
291 | struct rcu_node *rnp_p; | |
292 | ||
27f4d280 | 293 | if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { |
1304afb2 | 294 | raw_spin_unlock_irqrestore(&rnp->lock, flags); |
b668c9cf PM |
295 | return; /* Still need more quiescent states! */ |
296 | } | |
297 | ||
298 | rnp_p = rnp->parent; | |
299 | if (rnp_p == NULL) { | |
300 | /* | |
301 | * Either there is only one rcu_node in the tree, | |
302 | * or tasks were kicked up to root rcu_node due to | |
303 | * CPUs going offline. | |
304 | */ | |
d3f6bad3 | 305 | rcu_report_qs_rsp(&rcu_preempt_state, flags); |
b668c9cf PM |
306 | return; |
307 | } | |
308 | ||
309 | /* Report up the rest of the hierarchy. */ | |
310 | mask = rnp->grpmask; | |
1304afb2 PM |
311 | raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ |
312 | raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */ | |
d3f6bad3 | 313 | rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags); |
b668c9cf PM |
314 | } |
315 | ||
12f5f524 PM |
316 | /* |
317 | * Advance a ->blkd_tasks-list pointer to the next entry, instead | |
318 | * returning NULL if at the end of the list. | |
319 | */ | |
320 | static struct list_head *rcu_next_node_entry(struct task_struct *t, | |
321 | struct rcu_node *rnp) | |
322 | { | |
323 | struct list_head *np; | |
324 | ||
325 | np = t->rcu_node_entry.next; | |
326 | if (np == &rnp->blkd_tasks) | |
327 | np = NULL; | |
328 | return np; | |
329 | } | |
330 | ||
b668c9cf PM |
331 | /* |
332 | * Handle special cases during rcu_read_unlock(), such as needing to | |
333 | * notify RCU core processing or task having blocked during the RCU | |
334 | * read-side critical section. | |
335 | */ | |
2a3fa843 | 336 | void rcu_read_unlock_special(struct task_struct *t) |
f41d911f PM |
337 | { |
338 | int empty; | |
d9a3da06 | 339 | int empty_exp; |
389abd48 | 340 | int empty_exp_now; |
f41d911f | 341 | unsigned long flags; |
12f5f524 | 342 | struct list_head *np; |
82e78d80 PM |
343 | #ifdef CONFIG_RCU_BOOST |
344 | struct rt_mutex *rbmp = NULL; | |
345 | #endif /* #ifdef CONFIG_RCU_BOOST */ | |
f41d911f PM |
346 | struct rcu_node *rnp; |
347 | int special; | |
348 | ||
349 | /* NMI handlers cannot block and cannot safely manipulate state. */ | |
350 | if (in_nmi()) | |
351 | return; | |
352 | ||
353 | local_irq_save(flags); | |
354 | ||
355 | /* | |
356 | * If RCU core is waiting for this CPU to exit critical section, | |
357 | * let it know that we have done so. | |
358 | */ | |
359 | special = t->rcu_read_unlock_special; | |
360 | if (special & RCU_READ_UNLOCK_NEED_QS) { | |
c3422bea | 361 | rcu_preempt_qs(smp_processor_id()); |
f41d911f PM |
362 | } |
363 | ||
364 | /* Hardware IRQ handlers cannot block. */ | |
ec433f0c | 365 | if (in_irq() || in_serving_softirq()) { |
f41d911f PM |
366 | local_irq_restore(flags); |
367 | return; | |
368 | } | |
369 | ||
370 | /* Clean up if blocked during RCU read-side critical section. */ | |
371 | if (special & RCU_READ_UNLOCK_BLOCKED) { | |
372 | t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED; | |
373 | ||
dd5d19ba PM |
374 | /* |
375 | * Remove this task from the list it blocked on. The | |
376 | * task can migrate while we acquire the lock, but at | |
377 | * most one time. So at most two passes through loop. | |
378 | */ | |
379 | for (;;) { | |
86848966 | 380 | rnp = t->rcu_blocked_node; |
1304afb2 | 381 | raw_spin_lock(&rnp->lock); /* irqs already disabled. */ |
86848966 | 382 | if (rnp == t->rcu_blocked_node) |
dd5d19ba | 383 | break; |
1304afb2 | 384 | raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ |
dd5d19ba | 385 | } |
27f4d280 | 386 | empty = !rcu_preempt_blocked_readers_cgp(rnp); |
d9a3da06 PM |
387 | empty_exp = !rcu_preempted_readers_exp(rnp); |
388 | smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ | |
12f5f524 | 389 | np = rcu_next_node_entry(t, rnp); |
f41d911f | 390 | list_del_init(&t->rcu_node_entry); |
82e78d80 | 391 | t->rcu_blocked_node = NULL; |
d4c08f2a PM |
392 | trace_rcu_unlock_preempted_task("rcu_preempt", |
393 | rnp->gpnum, t->pid); | |
12f5f524 PM |
394 | if (&t->rcu_node_entry == rnp->gp_tasks) |
395 | rnp->gp_tasks = np; | |
396 | if (&t->rcu_node_entry == rnp->exp_tasks) | |
397 | rnp->exp_tasks = np; | |
27f4d280 PM |
398 | #ifdef CONFIG_RCU_BOOST |
399 | if (&t->rcu_node_entry == rnp->boost_tasks) | |
400 | rnp->boost_tasks = np; | |
82e78d80 PM |
401 | /* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */ |
402 | if (t->rcu_boost_mutex) { | |
403 | rbmp = t->rcu_boost_mutex; | |
404 | t->rcu_boost_mutex = NULL; | |
7765be2f | 405 | } |
27f4d280 | 406 | #endif /* #ifdef CONFIG_RCU_BOOST */ |
f41d911f PM |
407 | |
408 | /* | |
409 | * If this was the last task on the current list, and if | |
410 | * we aren't waiting on any CPUs, report the quiescent state. | |
389abd48 PM |
411 | * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, |
412 | * so we must take a snapshot of the expedited state. | |
f41d911f | 413 | */ |
389abd48 | 414 | empty_exp_now = !rcu_preempted_readers_exp(rnp); |
d4c08f2a PM |
415 | if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) { |
416 | trace_rcu_quiescent_state_report("preempt_rcu", | |
417 | rnp->gpnum, | |
418 | 0, rnp->qsmask, | |
419 | rnp->level, | |
420 | rnp->grplo, | |
421 | rnp->grphi, | |
422 | !!rnp->gp_tasks); | |
d3f6bad3 | 423 | rcu_report_unblock_qs_rnp(rnp, flags); |
c701d5d9 | 424 | } else { |
d4c08f2a | 425 | raw_spin_unlock_irqrestore(&rnp->lock, flags); |
c701d5d9 | 426 | } |
d9a3da06 | 427 | |
27f4d280 PM |
428 | #ifdef CONFIG_RCU_BOOST |
429 | /* Unboost if we were boosted. */ | |
82e78d80 PM |
430 | if (rbmp) |
431 | rt_mutex_unlock(rbmp); | |
27f4d280 PM |
432 | #endif /* #ifdef CONFIG_RCU_BOOST */ |
433 | ||
d9a3da06 PM |
434 | /* |
435 | * If this was the last task on the expedited lists, | |
436 | * then we need to report up the rcu_node hierarchy. | |
437 | */ | |
389abd48 | 438 | if (!empty_exp && empty_exp_now) |
b40d293e | 439 | rcu_report_exp_rnp(&rcu_preempt_state, rnp, true); |
b668c9cf PM |
440 | } else { |
441 | local_irq_restore(flags); | |
f41d911f | 442 | } |
f41d911f PM |
443 | } |
444 | ||
1ed509a2 PM |
445 | #ifdef CONFIG_RCU_CPU_STALL_VERBOSE |
446 | ||
447 | /* | |
448 | * Dump detailed information for all tasks blocking the current RCU | |
449 | * grace period on the specified rcu_node structure. | |
450 | */ | |
451 | static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp) | |
452 | { | |
453 | unsigned long flags; | |
1ed509a2 PM |
454 | struct task_struct *t; |
455 | ||
12f5f524 | 456 | raw_spin_lock_irqsave(&rnp->lock, flags); |
5fd4dc06 PM |
457 | if (!rcu_preempt_blocked_readers_cgp(rnp)) { |
458 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | |
459 | return; | |
460 | } | |
12f5f524 PM |
461 | t = list_entry(rnp->gp_tasks, |
462 | struct task_struct, rcu_node_entry); | |
463 | list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) | |
464 | sched_show_task(t); | |
465 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | |
1ed509a2 PM |
466 | } |
467 | ||
468 | /* | |
469 | * Dump detailed information for all tasks blocking the current RCU | |
470 | * grace period. | |
471 | */ | |
472 | static void rcu_print_detail_task_stall(struct rcu_state *rsp) | |
473 | { | |
474 | struct rcu_node *rnp = rcu_get_root(rsp); | |
475 | ||
476 | rcu_print_detail_task_stall_rnp(rnp); | |
477 | rcu_for_each_leaf_node(rsp, rnp) | |
478 | rcu_print_detail_task_stall_rnp(rnp); | |
479 | } | |
480 | ||
481 | #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */ | |
482 | ||
483 | static void rcu_print_detail_task_stall(struct rcu_state *rsp) | |
484 | { | |
485 | } | |
486 | ||
487 | #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */ | |
488 | ||
a858af28 PM |
489 | #ifdef CONFIG_RCU_CPU_STALL_INFO |
490 | ||
491 | static void rcu_print_task_stall_begin(struct rcu_node *rnp) | |
492 | { | |
493 | printk(KERN_ERR "\tTasks blocked on level-%d rcu_node (CPUs %d-%d):", | |
494 | rnp->level, rnp->grplo, rnp->grphi); | |
495 | } | |
496 | ||
497 | static void rcu_print_task_stall_end(void) | |
498 | { | |
499 | printk(KERN_CONT "\n"); | |
500 | } | |
501 | ||
502 | #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */ | |
503 | ||
504 | static void rcu_print_task_stall_begin(struct rcu_node *rnp) | |
505 | { | |
506 | } | |
507 | ||
508 | static void rcu_print_task_stall_end(void) | |
509 | { | |
510 | } | |
511 | ||
512 | #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */ | |
513 | ||
f41d911f PM |
514 | /* |
515 | * Scan the current list of tasks blocked within RCU read-side critical | |
516 | * sections, printing out the tid of each. | |
517 | */ | |
9bc8b558 | 518 | static int rcu_print_task_stall(struct rcu_node *rnp) |
f41d911f | 519 | { |
f41d911f | 520 | struct task_struct *t; |
9bc8b558 | 521 | int ndetected = 0; |
f41d911f | 522 | |
27f4d280 | 523 | if (!rcu_preempt_blocked_readers_cgp(rnp)) |
9bc8b558 | 524 | return 0; |
a858af28 | 525 | rcu_print_task_stall_begin(rnp); |
12f5f524 PM |
526 | t = list_entry(rnp->gp_tasks, |
527 | struct task_struct, rcu_node_entry); | |
9bc8b558 | 528 | list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { |
a858af28 | 529 | printk(KERN_CONT " P%d", t->pid); |
9bc8b558 PM |
530 | ndetected++; |
531 | } | |
a858af28 | 532 | rcu_print_task_stall_end(); |
9bc8b558 | 533 | return ndetected; |
f41d911f PM |
534 | } |
535 | ||
b0e165c0 PM |
536 | /* |
537 | * Check that the list of blocked tasks for the newly completed grace | |
538 | * period is in fact empty. It is a serious bug to complete a grace | |
539 | * period that still has RCU readers blocked! This function must be | |
540 | * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock | |
541 | * must be held by the caller. | |
12f5f524 PM |
542 | * |
543 | * Also, if there are blocked tasks on the list, they automatically | |
544 | * block the newly created grace period, so set up ->gp_tasks accordingly. | |
b0e165c0 PM |
545 | */ |
546 | static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) | |
547 | { | |
27f4d280 | 548 | WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)); |
12f5f524 PM |
549 | if (!list_empty(&rnp->blkd_tasks)) |
550 | rnp->gp_tasks = rnp->blkd_tasks.next; | |
28ecd580 | 551 | WARN_ON_ONCE(rnp->qsmask); |
b0e165c0 PM |
552 | } |
553 | ||
33f76148 PM |
554 | #ifdef CONFIG_HOTPLUG_CPU |
555 | ||
dd5d19ba PM |
556 | /* |
557 | * Handle tasklist migration for case in which all CPUs covered by the | |
558 | * specified rcu_node have gone offline. Move them up to the root | |
559 | * rcu_node. The reason for not just moving them to the immediate | |
560 | * parent is to remove the need for rcu_read_unlock_special() to | |
561 | * make more than two attempts to acquire the target rcu_node's lock. | |
b668c9cf PM |
562 | * Returns true if there were tasks blocking the current RCU grace |
563 | * period. | |
dd5d19ba | 564 | * |
237c80c5 PM |
565 | * Returns 1 if there was previously a task blocking the current grace |
566 | * period on the specified rcu_node structure. | |
567 | * | |
dd5d19ba PM |
568 | * The caller must hold rnp->lock with irqs disabled. |
569 | */ | |
237c80c5 PM |
570 | static int rcu_preempt_offline_tasks(struct rcu_state *rsp, |
571 | struct rcu_node *rnp, | |
572 | struct rcu_data *rdp) | |
dd5d19ba | 573 | { |
dd5d19ba PM |
574 | struct list_head *lp; |
575 | struct list_head *lp_root; | |
d9a3da06 | 576 | int retval = 0; |
dd5d19ba | 577 | struct rcu_node *rnp_root = rcu_get_root(rsp); |
12f5f524 | 578 | struct task_struct *t; |
dd5d19ba | 579 | |
86848966 PM |
580 | if (rnp == rnp_root) { |
581 | WARN_ONCE(1, "Last CPU thought to be offlined?"); | |
237c80c5 | 582 | return 0; /* Shouldn't happen: at least one CPU online. */ |
86848966 | 583 | } |
12f5f524 PM |
584 | |
585 | /* If we are on an internal node, complain bitterly. */ | |
586 | WARN_ON_ONCE(rnp != rdp->mynode); | |
dd5d19ba PM |
587 | |
588 | /* | |
12f5f524 PM |
589 | * Move tasks up to root rcu_node. Don't try to get fancy for |
590 | * this corner-case operation -- just put this node's tasks | |
591 | * at the head of the root node's list, and update the root node's | |
592 | * ->gp_tasks and ->exp_tasks pointers to those of this node's, | |
593 | * if non-NULL. This might result in waiting for more tasks than | |
594 | * absolutely necessary, but this is a good performance/complexity | |
595 | * tradeoff. | |
dd5d19ba | 596 | */ |
2036d94a | 597 | if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0) |
d9a3da06 PM |
598 | retval |= RCU_OFL_TASKS_NORM_GP; |
599 | if (rcu_preempted_readers_exp(rnp)) | |
600 | retval |= RCU_OFL_TASKS_EXP_GP; | |
12f5f524 PM |
601 | lp = &rnp->blkd_tasks; |
602 | lp_root = &rnp_root->blkd_tasks; | |
603 | while (!list_empty(lp)) { | |
604 | t = list_entry(lp->next, typeof(*t), rcu_node_entry); | |
605 | raw_spin_lock(&rnp_root->lock); /* irqs already disabled */ | |
606 | list_del(&t->rcu_node_entry); | |
607 | t->rcu_blocked_node = rnp_root; | |
608 | list_add(&t->rcu_node_entry, lp_root); | |
609 | if (&t->rcu_node_entry == rnp->gp_tasks) | |
610 | rnp_root->gp_tasks = rnp->gp_tasks; | |
611 | if (&t->rcu_node_entry == rnp->exp_tasks) | |
612 | rnp_root->exp_tasks = rnp->exp_tasks; | |
27f4d280 PM |
613 | #ifdef CONFIG_RCU_BOOST |
614 | if (&t->rcu_node_entry == rnp->boost_tasks) | |
615 | rnp_root->boost_tasks = rnp->boost_tasks; | |
616 | #endif /* #ifdef CONFIG_RCU_BOOST */ | |
12f5f524 | 617 | raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */ |
dd5d19ba | 618 | } |
27f4d280 | 619 | |
1e3fd2b3 PM |
620 | rnp->gp_tasks = NULL; |
621 | rnp->exp_tasks = NULL; | |
27f4d280 | 622 | #ifdef CONFIG_RCU_BOOST |
1e3fd2b3 | 623 | rnp->boost_tasks = NULL; |
5cc900cf PM |
624 | /* |
625 | * In case root is being boosted and leaf was not. Make sure | |
626 | * that we boost the tasks blocking the current grace period | |
627 | * in this case. | |
628 | */ | |
27f4d280 PM |
629 | raw_spin_lock(&rnp_root->lock); /* irqs already disabled */ |
630 | if (rnp_root->boost_tasks != NULL && | |
5cc900cf PM |
631 | rnp_root->boost_tasks != rnp_root->gp_tasks && |
632 | rnp_root->boost_tasks != rnp_root->exp_tasks) | |
27f4d280 PM |
633 | rnp_root->boost_tasks = rnp_root->gp_tasks; |
634 | raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */ | |
635 | #endif /* #ifdef CONFIG_RCU_BOOST */ | |
636 | ||
237c80c5 | 637 | return retval; |
dd5d19ba PM |
638 | } |
639 | ||
e5601400 PM |
640 | #endif /* #ifdef CONFIG_HOTPLUG_CPU */ |
641 | ||
f41d911f PM |
642 | /* |
643 | * Check for a quiescent state from the current CPU. When a task blocks, | |
644 | * the task is recorded in the corresponding CPU's rcu_node structure, | |
645 | * which is checked elsewhere. | |
646 | * | |
647 | * Caller must disable hard irqs. | |
648 | */ | |
649 | static void rcu_preempt_check_callbacks(int cpu) | |
650 | { | |
651 | struct task_struct *t = current; | |
652 | ||
653 | if (t->rcu_read_lock_nesting == 0) { | |
c3422bea | 654 | rcu_preempt_qs(cpu); |
f41d911f PM |
655 | return; |
656 | } | |
10f39bb1 PM |
657 | if (t->rcu_read_lock_nesting > 0 && |
658 | per_cpu(rcu_preempt_data, cpu).qs_pending) | |
c3422bea | 659 | t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS; |
f41d911f PM |
660 | } |
661 | ||
a46e0899 PM |
662 | #ifdef CONFIG_RCU_BOOST |
663 | ||
09223371 SL |
664 | static void rcu_preempt_do_callbacks(void) |
665 | { | |
666 | rcu_do_batch(&rcu_preempt_state, &__get_cpu_var(rcu_preempt_data)); | |
667 | } | |
668 | ||
a46e0899 PM |
669 | #endif /* #ifdef CONFIG_RCU_BOOST */ |
670 | ||
f41d911f | 671 | /* |
6cc68793 | 672 | * Queue a preemptible-RCU callback for invocation after a grace period. |
f41d911f PM |
673 | */ |
674 | void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) | |
675 | { | |
3fbfbf7a | 676 | __call_rcu(head, func, &rcu_preempt_state, -1, 0); |
f41d911f PM |
677 | } |
678 | EXPORT_SYMBOL_GPL(call_rcu); | |
679 | ||
486e2593 PM |
680 | /* |
681 | * Queue an RCU callback for lazy invocation after a grace period. | |
682 | * This will likely be later named something like "call_rcu_lazy()", | |
683 | * but this change will require some way of tagging the lazy RCU | |
684 | * callbacks in the list of pending callbacks. Until then, this | |
685 | * function may only be called from __kfree_rcu(). | |
686 | */ | |
687 | void kfree_call_rcu(struct rcu_head *head, | |
688 | void (*func)(struct rcu_head *rcu)) | |
689 | { | |
3fbfbf7a | 690 | __call_rcu(head, func, &rcu_preempt_state, -1, 1); |
486e2593 PM |
691 | } |
692 | EXPORT_SYMBOL_GPL(kfree_call_rcu); | |
693 | ||
6ebb237b PM |
694 | /** |
695 | * synchronize_rcu - wait until a grace period has elapsed. | |
696 | * | |
697 | * Control will return to the caller some time after a full grace | |
698 | * period has elapsed, in other words after all currently executing RCU | |
77d8485a PM |
699 | * read-side critical sections have completed. Note, however, that |
700 | * upon return from synchronize_rcu(), the caller might well be executing | |
701 | * concurrently with new RCU read-side critical sections that began while | |
702 | * synchronize_rcu() was waiting. RCU read-side critical sections are | |
703 | * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested. | |
f0a0e6f2 PM |
704 | * |
705 | * See the description of synchronize_sched() for more detailed information | |
706 | * on memory ordering guarantees. | |
6ebb237b PM |
707 | */ |
708 | void synchronize_rcu(void) | |
709 | { | |
fe15d706 PM |
710 | rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) && |
711 | !lock_is_held(&rcu_lock_map) && | |
712 | !lock_is_held(&rcu_sched_lock_map), | |
713 | "Illegal synchronize_rcu() in RCU read-side critical section"); | |
6ebb237b PM |
714 | if (!rcu_scheduler_active) |
715 | return; | |
3705b88d AM |
716 | if (rcu_expedited) |
717 | synchronize_rcu_expedited(); | |
718 | else | |
719 | wait_rcu_gp(call_rcu); | |
6ebb237b PM |
720 | } |
721 | EXPORT_SYMBOL_GPL(synchronize_rcu); | |
722 | ||
d9a3da06 | 723 | static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq); |
bcfa57ce | 724 | static unsigned long sync_rcu_preempt_exp_count; |
d9a3da06 PM |
725 | static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex); |
726 | ||
727 | /* | |
728 | * Return non-zero if there are any tasks in RCU read-side critical | |
729 | * sections blocking the current preemptible-RCU expedited grace period. | |
730 | * If there is no preemptible-RCU expedited grace period currently in | |
731 | * progress, returns zero unconditionally. | |
732 | */ | |
733 | static int rcu_preempted_readers_exp(struct rcu_node *rnp) | |
734 | { | |
12f5f524 | 735 | return rnp->exp_tasks != NULL; |
d9a3da06 PM |
736 | } |
737 | ||
738 | /* | |
739 | * return non-zero if there is no RCU expedited grace period in progress | |
740 | * for the specified rcu_node structure, in other words, if all CPUs and | |
741 | * tasks covered by the specified rcu_node structure have done their bit | |
742 | * for the current expedited grace period. Works only for preemptible | |
743 | * RCU -- other RCU implementation use other means. | |
744 | * | |
745 | * Caller must hold sync_rcu_preempt_exp_mutex. | |
746 | */ | |
747 | static int sync_rcu_preempt_exp_done(struct rcu_node *rnp) | |
748 | { | |
749 | return !rcu_preempted_readers_exp(rnp) && | |
750 | ACCESS_ONCE(rnp->expmask) == 0; | |
751 | } | |
752 | ||
753 | /* | |
754 | * Report the exit from RCU read-side critical section for the last task | |
755 | * that queued itself during or before the current expedited preemptible-RCU | |
756 | * grace period. This event is reported either to the rcu_node structure on | |
757 | * which the task was queued or to one of that rcu_node structure's ancestors, | |
758 | * recursively up the tree. (Calm down, calm down, we do the recursion | |
759 | * iteratively!) | |
760 | * | |
b40d293e TG |
761 | * Most callers will set the "wake" flag, but the task initiating the |
762 | * expedited grace period need not wake itself. | |
763 | * | |
d9a3da06 PM |
764 | * Caller must hold sync_rcu_preempt_exp_mutex. |
765 | */ | |
b40d293e TG |
766 | static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp, |
767 | bool wake) | |
d9a3da06 PM |
768 | { |
769 | unsigned long flags; | |
770 | unsigned long mask; | |
771 | ||
1304afb2 | 772 | raw_spin_lock_irqsave(&rnp->lock, flags); |
d9a3da06 | 773 | for (;;) { |
131906b0 PM |
774 | if (!sync_rcu_preempt_exp_done(rnp)) { |
775 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | |
d9a3da06 | 776 | break; |
131906b0 | 777 | } |
d9a3da06 | 778 | if (rnp->parent == NULL) { |
131906b0 | 779 | raw_spin_unlock_irqrestore(&rnp->lock, flags); |
b40d293e TG |
780 | if (wake) |
781 | wake_up(&sync_rcu_preempt_exp_wq); | |
d9a3da06 PM |
782 | break; |
783 | } | |
784 | mask = rnp->grpmask; | |
1304afb2 | 785 | raw_spin_unlock(&rnp->lock); /* irqs remain disabled */ |
d9a3da06 | 786 | rnp = rnp->parent; |
1304afb2 | 787 | raw_spin_lock(&rnp->lock); /* irqs already disabled */ |
d9a3da06 PM |
788 | rnp->expmask &= ~mask; |
789 | } | |
d9a3da06 PM |
790 | } |
791 | ||
792 | /* | |
793 | * Snapshot the tasks blocking the newly started preemptible-RCU expedited | |
794 | * grace period for the specified rcu_node structure. If there are no such | |
795 | * tasks, report it up the rcu_node hierarchy. | |
796 | * | |
7b2e6011 PM |
797 | * Caller must hold sync_rcu_preempt_exp_mutex and must exclude |
798 | * CPU hotplug operations. | |
d9a3da06 PM |
799 | */ |
800 | static void | |
801 | sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp) | |
802 | { | |
1217ed1b | 803 | unsigned long flags; |
12f5f524 | 804 | int must_wait = 0; |
d9a3da06 | 805 | |
1217ed1b | 806 | raw_spin_lock_irqsave(&rnp->lock, flags); |
c701d5d9 | 807 | if (list_empty(&rnp->blkd_tasks)) { |
1217ed1b | 808 | raw_spin_unlock_irqrestore(&rnp->lock, flags); |
c701d5d9 | 809 | } else { |
12f5f524 | 810 | rnp->exp_tasks = rnp->blkd_tasks.next; |
1217ed1b | 811 | rcu_initiate_boost(rnp, flags); /* releases rnp->lock */ |
12f5f524 PM |
812 | must_wait = 1; |
813 | } | |
d9a3da06 | 814 | if (!must_wait) |
b40d293e | 815 | rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */ |
d9a3da06 PM |
816 | } |
817 | ||
236fefaf PM |
818 | /** |
819 | * synchronize_rcu_expedited - Brute-force RCU grace period | |
820 | * | |
821 | * Wait for an RCU-preempt grace period, but expedite it. The basic | |
822 | * idea is to invoke synchronize_sched_expedited() to push all the tasks to | |
823 | * the ->blkd_tasks lists and wait for this list to drain. This consumes | |
824 | * significant time on all CPUs and is unfriendly to real-time workloads, | |
825 | * so is thus not recommended for any sort of common-case code. | |
826 | * In fact, if you are using synchronize_rcu_expedited() in a loop, | |
827 | * please restructure your code to batch your updates, and then Use a | |
828 | * single synchronize_rcu() instead. | |
829 | * | |
830 | * Note that it is illegal to call this function while holding any lock | |
831 | * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal | |
832 | * to call this function from a CPU-hotplug notifier. Failing to observe | |
833 | * these restriction will result in deadlock. | |
019129d5 PM |
834 | */ |
835 | void synchronize_rcu_expedited(void) | |
836 | { | |
d9a3da06 PM |
837 | unsigned long flags; |
838 | struct rcu_node *rnp; | |
839 | struct rcu_state *rsp = &rcu_preempt_state; | |
bcfa57ce | 840 | unsigned long snap; |
d9a3da06 PM |
841 | int trycount = 0; |
842 | ||
843 | smp_mb(); /* Caller's modifications seen first by other CPUs. */ | |
844 | snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1; | |
845 | smp_mb(); /* Above access cannot bleed into critical section. */ | |
846 | ||
1943c89d PM |
847 | /* |
848 | * Block CPU-hotplug operations. This means that any CPU-hotplug | |
849 | * operation that finds an rcu_node structure with tasks in the | |
850 | * process of being boosted will know that all tasks blocking | |
851 | * this expedited grace period will already be in the process of | |
852 | * being boosted. This simplifies the process of moving tasks | |
853 | * from leaf to root rcu_node structures. | |
854 | */ | |
855 | get_online_cpus(); | |
856 | ||
d9a3da06 PM |
857 | /* |
858 | * Acquire lock, falling back to synchronize_rcu() if too many | |
859 | * lock-acquisition failures. Of course, if someone does the | |
860 | * expedited grace period for us, just leave. | |
861 | */ | |
862 | while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) { | |
1943c89d PM |
863 | if (ULONG_CMP_LT(snap, |
864 | ACCESS_ONCE(sync_rcu_preempt_exp_count))) { | |
865 | put_online_cpus(); | |
866 | goto mb_ret; /* Others did our work for us. */ | |
867 | } | |
c701d5d9 | 868 | if (trycount++ < 10) { |
d9a3da06 | 869 | udelay(trycount * num_online_cpus()); |
c701d5d9 | 870 | } else { |
1943c89d | 871 | put_online_cpus(); |
3705b88d | 872 | wait_rcu_gp(call_rcu); |
d9a3da06 PM |
873 | return; |
874 | } | |
d9a3da06 | 875 | } |
1943c89d PM |
876 | if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) { |
877 | put_online_cpus(); | |
d9a3da06 | 878 | goto unlock_mb_ret; /* Others did our work for us. */ |
1943c89d | 879 | } |
d9a3da06 | 880 | |
12f5f524 | 881 | /* force all RCU readers onto ->blkd_tasks lists. */ |
d9a3da06 PM |
882 | synchronize_sched_expedited(); |
883 | ||
d9a3da06 PM |
884 | /* Initialize ->expmask for all non-leaf rcu_node structures. */ |
885 | rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) { | |
1943c89d | 886 | raw_spin_lock_irqsave(&rnp->lock, flags); |
d9a3da06 | 887 | rnp->expmask = rnp->qsmaskinit; |
1943c89d | 888 | raw_spin_unlock_irqrestore(&rnp->lock, flags); |
d9a3da06 PM |
889 | } |
890 | ||
12f5f524 | 891 | /* Snapshot current state of ->blkd_tasks lists. */ |
d9a3da06 PM |
892 | rcu_for_each_leaf_node(rsp, rnp) |
893 | sync_rcu_preempt_exp_init(rsp, rnp); | |
894 | if (NUM_RCU_NODES > 1) | |
895 | sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp)); | |
896 | ||
1943c89d | 897 | put_online_cpus(); |
d9a3da06 | 898 | |
12f5f524 | 899 | /* Wait for snapshotted ->blkd_tasks lists to drain. */ |
d9a3da06 PM |
900 | rnp = rcu_get_root(rsp); |
901 | wait_event(sync_rcu_preempt_exp_wq, | |
902 | sync_rcu_preempt_exp_done(rnp)); | |
903 | ||
904 | /* Clean up and exit. */ | |
905 | smp_mb(); /* ensure expedited GP seen before counter increment. */ | |
906 | ACCESS_ONCE(sync_rcu_preempt_exp_count)++; | |
907 | unlock_mb_ret: | |
908 | mutex_unlock(&sync_rcu_preempt_exp_mutex); | |
909 | mb_ret: | |
910 | smp_mb(); /* ensure subsequent action seen after grace period. */ | |
019129d5 PM |
911 | } |
912 | EXPORT_SYMBOL_GPL(synchronize_rcu_expedited); | |
913 | ||
e74f4c45 PM |
914 | /** |
915 | * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. | |
f0a0e6f2 PM |
916 | * |
917 | * Note that this primitive does not necessarily wait for an RCU grace period | |
918 | * to complete. For example, if there are no RCU callbacks queued anywhere | |
919 | * in the system, then rcu_barrier() is within its rights to return | |
920 | * immediately, without waiting for anything, much less an RCU grace period. | |
e74f4c45 PM |
921 | */ |
922 | void rcu_barrier(void) | |
923 | { | |
037b64ed | 924 | _rcu_barrier(&rcu_preempt_state); |
e74f4c45 PM |
925 | } |
926 | EXPORT_SYMBOL_GPL(rcu_barrier); | |
927 | ||
1eba8f84 | 928 | /* |
6cc68793 | 929 | * Initialize preemptible RCU's state structures. |
1eba8f84 PM |
930 | */ |
931 | static void __init __rcu_init_preempt(void) | |
932 | { | |
394f99a9 | 933 | rcu_init_one(&rcu_preempt_state, &rcu_preempt_data); |
1eba8f84 PM |
934 | } |
935 | ||
f41d911f PM |
936 | #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */ |
937 | ||
27f4d280 PM |
938 | static struct rcu_state *rcu_state = &rcu_sched_state; |
939 | ||
f41d911f PM |
940 | /* |
941 | * Tell them what RCU they are running. | |
942 | */ | |
0e0fc1c2 | 943 | static void __init rcu_bootup_announce(void) |
f41d911f PM |
944 | { |
945 | printk(KERN_INFO "Hierarchical RCU implementation.\n"); | |
26845c28 | 946 | rcu_bootup_announce_oddness(); |
f41d911f PM |
947 | } |
948 | ||
949 | /* | |
950 | * Return the number of RCU batches processed thus far for debug & stats. | |
951 | */ | |
952 | long rcu_batches_completed(void) | |
953 | { | |
954 | return rcu_batches_completed_sched(); | |
955 | } | |
956 | EXPORT_SYMBOL_GPL(rcu_batches_completed); | |
957 | ||
bf66f18e PM |
958 | /* |
959 | * Force a quiescent state for RCU, which, because there is no preemptible | |
960 | * RCU, becomes the same as rcu-sched. | |
961 | */ | |
962 | void rcu_force_quiescent_state(void) | |
963 | { | |
964 | rcu_sched_force_quiescent_state(); | |
965 | } | |
966 | EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); | |
967 | ||
cba6d0d6 PM |
968 | /* |
969 | * Because preemptible RCU does not exist, we never have to check for | |
970 | * CPUs being in quiescent states. | |
971 | */ | |
972 | static void rcu_preempt_note_context_switch(int cpu) | |
973 | { | |
974 | } | |
975 | ||
fc2219d4 | 976 | /* |
6cc68793 | 977 | * Because preemptible RCU does not exist, there are never any preempted |
fc2219d4 PM |
978 | * RCU readers. |
979 | */ | |
27f4d280 | 980 | static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) |
fc2219d4 PM |
981 | { |
982 | return 0; | |
983 | } | |
984 | ||
b668c9cf PM |
985 | #ifdef CONFIG_HOTPLUG_CPU |
986 | ||
987 | /* Because preemptible RCU does not exist, no quieting of tasks. */ | |
d3f6bad3 | 988 | static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) |
b668c9cf | 989 | { |
1304afb2 | 990 | raw_spin_unlock_irqrestore(&rnp->lock, flags); |
b668c9cf PM |
991 | } |
992 | ||
993 | #endif /* #ifdef CONFIG_HOTPLUG_CPU */ | |
994 | ||
1ed509a2 | 995 | /* |
6cc68793 | 996 | * Because preemptible RCU does not exist, we never have to check for |
1ed509a2 PM |
997 | * tasks blocked within RCU read-side critical sections. |
998 | */ | |
999 | static void rcu_print_detail_task_stall(struct rcu_state *rsp) | |
1000 | { | |
1001 | } | |
1002 | ||
f41d911f | 1003 | /* |
6cc68793 | 1004 | * Because preemptible RCU does not exist, we never have to check for |
f41d911f PM |
1005 | * tasks blocked within RCU read-side critical sections. |
1006 | */ | |
9bc8b558 | 1007 | static int rcu_print_task_stall(struct rcu_node *rnp) |
f41d911f | 1008 | { |
9bc8b558 | 1009 | return 0; |
f41d911f PM |
1010 | } |
1011 | ||
b0e165c0 | 1012 | /* |
6cc68793 | 1013 | * Because there is no preemptible RCU, there can be no readers blocked, |
49e29126 PM |
1014 | * so there is no need to check for blocked tasks. So check only for |
1015 | * bogus qsmask values. | |
b0e165c0 PM |
1016 | */ |
1017 | static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) | |
1018 | { | |
49e29126 | 1019 | WARN_ON_ONCE(rnp->qsmask); |
b0e165c0 PM |
1020 | } |
1021 | ||
33f76148 PM |
1022 | #ifdef CONFIG_HOTPLUG_CPU |
1023 | ||
dd5d19ba | 1024 | /* |
6cc68793 | 1025 | * Because preemptible RCU does not exist, it never needs to migrate |
237c80c5 PM |
1026 | * tasks that were blocked within RCU read-side critical sections, and |
1027 | * such non-existent tasks cannot possibly have been blocking the current | |
1028 | * grace period. | |
dd5d19ba | 1029 | */ |
237c80c5 PM |
1030 | static int rcu_preempt_offline_tasks(struct rcu_state *rsp, |
1031 | struct rcu_node *rnp, | |
1032 | struct rcu_data *rdp) | |
dd5d19ba | 1033 | { |
237c80c5 | 1034 | return 0; |
dd5d19ba PM |
1035 | } |
1036 | ||
e5601400 PM |
1037 | #endif /* #ifdef CONFIG_HOTPLUG_CPU */ |
1038 | ||
f41d911f | 1039 | /* |
6cc68793 | 1040 | * Because preemptible RCU does not exist, it never has any callbacks |
f41d911f PM |
1041 | * to check. |
1042 | */ | |
1eba8f84 | 1043 | static void rcu_preempt_check_callbacks(int cpu) |
f41d911f PM |
1044 | { |
1045 | } | |
1046 | ||
486e2593 PM |
1047 | /* |
1048 | * Queue an RCU callback for lazy invocation after a grace period. | |
1049 | * This will likely be later named something like "call_rcu_lazy()", | |
1050 | * but this change will require some way of tagging the lazy RCU | |
1051 | * callbacks in the list of pending callbacks. Until then, this | |
1052 | * function may only be called from __kfree_rcu(). | |
1053 | * | |
1054 | * Because there is no preemptible RCU, we use RCU-sched instead. | |
1055 | */ | |
1056 | void kfree_call_rcu(struct rcu_head *head, | |
1057 | void (*func)(struct rcu_head *rcu)) | |
1058 | { | |
3fbfbf7a | 1059 | __call_rcu(head, func, &rcu_sched_state, -1, 1); |
486e2593 PM |
1060 | } |
1061 | EXPORT_SYMBOL_GPL(kfree_call_rcu); | |
1062 | ||
019129d5 PM |
1063 | /* |
1064 | * Wait for an rcu-preempt grace period, but make it happen quickly. | |
6cc68793 | 1065 | * But because preemptible RCU does not exist, map to rcu-sched. |
019129d5 PM |
1066 | */ |
1067 | void synchronize_rcu_expedited(void) | |
1068 | { | |
1069 | synchronize_sched_expedited(); | |
1070 | } | |
1071 | EXPORT_SYMBOL_GPL(synchronize_rcu_expedited); | |
1072 | ||
d9a3da06 PM |
1073 | #ifdef CONFIG_HOTPLUG_CPU |
1074 | ||
1075 | /* | |
6cc68793 | 1076 | * Because preemptible RCU does not exist, there is never any need to |
d9a3da06 PM |
1077 | * report on tasks preempted in RCU read-side critical sections during |
1078 | * expedited RCU grace periods. | |
1079 | */ | |
b40d293e TG |
1080 | static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp, |
1081 | bool wake) | |
d9a3da06 | 1082 | { |
d9a3da06 PM |
1083 | } |
1084 | ||
1085 | #endif /* #ifdef CONFIG_HOTPLUG_CPU */ | |
1086 | ||
e74f4c45 | 1087 | /* |
6cc68793 | 1088 | * Because preemptible RCU does not exist, rcu_barrier() is just |
e74f4c45 PM |
1089 | * another name for rcu_barrier_sched(). |
1090 | */ | |
1091 | void rcu_barrier(void) | |
1092 | { | |
1093 | rcu_barrier_sched(); | |
1094 | } | |
1095 | EXPORT_SYMBOL_GPL(rcu_barrier); | |
1096 | ||
1eba8f84 | 1097 | /* |
6cc68793 | 1098 | * Because preemptible RCU does not exist, it need not be initialized. |
1eba8f84 PM |
1099 | */ |
1100 | static void __init __rcu_init_preempt(void) | |
1101 | { | |
1102 | } | |
1103 | ||
f41d911f | 1104 | #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */ |
8bd93a2c | 1105 | |
27f4d280 PM |
1106 | #ifdef CONFIG_RCU_BOOST |
1107 | ||
1108 | #include "rtmutex_common.h" | |
1109 | ||
0ea1f2eb PM |
1110 | #ifdef CONFIG_RCU_TRACE |
1111 | ||
1112 | static void rcu_initiate_boost_trace(struct rcu_node *rnp) | |
1113 | { | |
1114 | if (list_empty(&rnp->blkd_tasks)) | |
1115 | rnp->n_balk_blkd_tasks++; | |
1116 | else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL) | |
1117 | rnp->n_balk_exp_gp_tasks++; | |
1118 | else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL) | |
1119 | rnp->n_balk_boost_tasks++; | |
1120 | else if (rnp->gp_tasks != NULL && rnp->qsmask != 0) | |
1121 | rnp->n_balk_notblocked++; | |
1122 | else if (rnp->gp_tasks != NULL && | |
a9f4793d | 1123 | ULONG_CMP_LT(jiffies, rnp->boost_time)) |
0ea1f2eb PM |
1124 | rnp->n_balk_notyet++; |
1125 | else | |
1126 | rnp->n_balk_nos++; | |
1127 | } | |
1128 | ||
1129 | #else /* #ifdef CONFIG_RCU_TRACE */ | |
1130 | ||
1131 | static void rcu_initiate_boost_trace(struct rcu_node *rnp) | |
1132 | { | |
1133 | } | |
1134 | ||
1135 | #endif /* #else #ifdef CONFIG_RCU_TRACE */ | |
1136 | ||
5d01bbd1 TG |
1137 | static void rcu_wake_cond(struct task_struct *t, int status) |
1138 | { | |
1139 | /* | |
1140 | * If the thread is yielding, only wake it when this | |
1141 | * is invoked from idle | |
1142 | */ | |
1143 | if (status != RCU_KTHREAD_YIELDING || is_idle_task(current)) | |
1144 | wake_up_process(t); | |
1145 | } | |
1146 | ||
27f4d280 PM |
1147 | /* |
1148 | * Carry out RCU priority boosting on the task indicated by ->exp_tasks | |
1149 | * or ->boost_tasks, advancing the pointer to the next task in the | |
1150 | * ->blkd_tasks list. | |
1151 | * | |
1152 | * Note that irqs must be enabled: boosting the task can block. | |
1153 | * Returns 1 if there are more tasks needing to be boosted. | |
1154 | */ | |
1155 | static int rcu_boost(struct rcu_node *rnp) | |
1156 | { | |
1157 | unsigned long flags; | |
1158 | struct rt_mutex mtx; | |
1159 | struct task_struct *t; | |
1160 | struct list_head *tb; | |
1161 | ||
1162 | if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) | |
1163 | return 0; /* Nothing left to boost. */ | |
1164 | ||
1165 | raw_spin_lock_irqsave(&rnp->lock, flags); | |
1166 | ||
1167 | /* | |
1168 | * Recheck under the lock: all tasks in need of boosting | |
1169 | * might exit their RCU read-side critical sections on their own. | |
1170 | */ | |
1171 | if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { | |
1172 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | |
1173 | return 0; | |
1174 | } | |
1175 | ||
1176 | /* | |
1177 | * Preferentially boost tasks blocking expedited grace periods. | |
1178 | * This cannot starve the normal grace periods because a second | |
1179 | * expedited grace period must boost all blocked tasks, including | |
1180 | * those blocking the pre-existing normal grace period. | |
1181 | */ | |
0ea1f2eb | 1182 | if (rnp->exp_tasks != NULL) { |
27f4d280 | 1183 | tb = rnp->exp_tasks; |
0ea1f2eb PM |
1184 | rnp->n_exp_boosts++; |
1185 | } else { | |
27f4d280 | 1186 | tb = rnp->boost_tasks; |
0ea1f2eb PM |
1187 | rnp->n_normal_boosts++; |
1188 | } | |
1189 | rnp->n_tasks_boosted++; | |
27f4d280 PM |
1190 | |
1191 | /* | |
1192 | * We boost task t by manufacturing an rt_mutex that appears to | |
1193 | * be held by task t. We leave a pointer to that rt_mutex where | |
1194 | * task t can find it, and task t will release the mutex when it | |
1195 | * exits its outermost RCU read-side critical section. Then | |
1196 | * simply acquiring this artificial rt_mutex will boost task | |
1197 | * t's priority. (Thanks to tglx for suggesting this approach!) | |
1198 | * | |
1199 | * Note that task t must acquire rnp->lock to remove itself from | |
1200 | * the ->blkd_tasks list, which it will do from exit() if from | |
1201 | * nowhere else. We therefore are guaranteed that task t will | |
1202 | * stay around at least until we drop rnp->lock. Note that | |
1203 | * rnp->lock also resolves races between our priority boosting | |
1204 | * and task t's exiting its outermost RCU read-side critical | |
1205 | * section. | |
1206 | */ | |
1207 | t = container_of(tb, struct task_struct, rcu_node_entry); | |
1208 | rt_mutex_init_proxy_locked(&mtx, t); | |
1209 | t->rcu_boost_mutex = &mtx; | |
27f4d280 PM |
1210 | raw_spin_unlock_irqrestore(&rnp->lock, flags); |
1211 | rt_mutex_lock(&mtx); /* Side effect: boosts task t's priority. */ | |
1212 | rt_mutex_unlock(&mtx); /* Keep lockdep happy. */ | |
1213 | ||
4f89b336 PM |
1214 | return ACCESS_ONCE(rnp->exp_tasks) != NULL || |
1215 | ACCESS_ONCE(rnp->boost_tasks) != NULL; | |
27f4d280 PM |
1216 | } |
1217 | ||
27f4d280 PM |
1218 | /* |
1219 | * Priority-boosting kthread. One per leaf rcu_node and one for the | |
1220 | * root rcu_node. | |
1221 | */ | |
1222 | static int rcu_boost_kthread(void *arg) | |
1223 | { | |
1224 | struct rcu_node *rnp = (struct rcu_node *)arg; | |
1225 | int spincnt = 0; | |
1226 | int more2boost; | |
1227 | ||
385680a9 | 1228 | trace_rcu_utilization("Start boost kthread@init"); |
27f4d280 | 1229 | for (;;) { |
d71df90e | 1230 | rnp->boost_kthread_status = RCU_KTHREAD_WAITING; |
385680a9 | 1231 | trace_rcu_utilization("End boost kthread@rcu_wait"); |
08bca60a | 1232 | rcu_wait(rnp->boost_tasks || rnp->exp_tasks); |
385680a9 | 1233 | trace_rcu_utilization("Start boost kthread@rcu_wait"); |
d71df90e | 1234 | rnp->boost_kthread_status = RCU_KTHREAD_RUNNING; |
27f4d280 PM |
1235 | more2boost = rcu_boost(rnp); |
1236 | if (more2boost) | |
1237 | spincnt++; | |
1238 | else | |
1239 | spincnt = 0; | |
1240 | if (spincnt > 10) { | |
5d01bbd1 | 1241 | rnp->boost_kthread_status = RCU_KTHREAD_YIELDING; |
385680a9 | 1242 | trace_rcu_utilization("End boost kthread@rcu_yield"); |
5d01bbd1 | 1243 | schedule_timeout_interruptible(2); |
385680a9 | 1244 | trace_rcu_utilization("Start boost kthread@rcu_yield"); |
27f4d280 PM |
1245 | spincnt = 0; |
1246 | } | |
1247 | } | |
1217ed1b | 1248 | /* NOTREACHED */ |
385680a9 | 1249 | trace_rcu_utilization("End boost kthread@notreached"); |
27f4d280 PM |
1250 | return 0; |
1251 | } | |
1252 | ||
1253 | /* | |
1254 | * Check to see if it is time to start boosting RCU readers that are | |
1255 | * blocking the current grace period, and, if so, tell the per-rcu_node | |
1256 | * kthread to start boosting them. If there is an expedited grace | |
1257 | * period in progress, it is always time to boost. | |
1258 | * | |
b065a853 PM |
1259 | * The caller must hold rnp->lock, which this function releases. |
1260 | * The ->boost_kthread_task is immortal, so we don't need to worry | |
1261 | * about it going away. | |
27f4d280 | 1262 | */ |
1217ed1b | 1263 | static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) |
27f4d280 PM |
1264 | { |
1265 | struct task_struct *t; | |
1266 | ||
0ea1f2eb PM |
1267 | if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) { |
1268 | rnp->n_balk_exp_gp_tasks++; | |
1217ed1b | 1269 | raw_spin_unlock_irqrestore(&rnp->lock, flags); |
27f4d280 | 1270 | return; |
0ea1f2eb | 1271 | } |
27f4d280 PM |
1272 | if (rnp->exp_tasks != NULL || |
1273 | (rnp->gp_tasks != NULL && | |
1274 | rnp->boost_tasks == NULL && | |
1275 | rnp->qsmask == 0 && | |
1276 | ULONG_CMP_GE(jiffies, rnp->boost_time))) { | |
1277 | if (rnp->exp_tasks == NULL) | |
1278 | rnp->boost_tasks = rnp->gp_tasks; | |
1217ed1b | 1279 | raw_spin_unlock_irqrestore(&rnp->lock, flags); |
27f4d280 | 1280 | t = rnp->boost_kthread_task; |
5d01bbd1 TG |
1281 | if (t) |
1282 | rcu_wake_cond(t, rnp->boost_kthread_status); | |
1217ed1b | 1283 | } else { |
0ea1f2eb | 1284 | rcu_initiate_boost_trace(rnp); |
1217ed1b PM |
1285 | raw_spin_unlock_irqrestore(&rnp->lock, flags); |
1286 | } | |
27f4d280 PM |
1287 | } |
1288 | ||
a46e0899 PM |
1289 | /* |
1290 | * Wake up the per-CPU kthread to invoke RCU callbacks. | |
1291 | */ | |
1292 | static void invoke_rcu_callbacks_kthread(void) | |
1293 | { | |
1294 | unsigned long flags; | |
1295 | ||
1296 | local_irq_save(flags); | |
1297 | __this_cpu_write(rcu_cpu_has_work, 1); | |
1eb52121 | 1298 | if (__this_cpu_read(rcu_cpu_kthread_task) != NULL && |
5d01bbd1 TG |
1299 | current != __this_cpu_read(rcu_cpu_kthread_task)) { |
1300 | rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task), | |
1301 | __this_cpu_read(rcu_cpu_kthread_status)); | |
1302 | } | |
a46e0899 PM |
1303 | local_irq_restore(flags); |
1304 | } | |
1305 | ||
dff1672d PM |
1306 | /* |
1307 | * Is the current CPU running the RCU-callbacks kthread? | |
1308 | * Caller must have preemption disabled. | |
1309 | */ | |
1310 | static bool rcu_is_callbacks_kthread(void) | |
1311 | { | |
1312 | return __get_cpu_var(rcu_cpu_kthread_task) == current; | |
1313 | } | |
1314 | ||
27f4d280 PM |
1315 | #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) |
1316 | ||
1317 | /* | |
1318 | * Do priority-boost accounting for the start of a new grace period. | |
1319 | */ | |
1320 | static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) | |
1321 | { | |
1322 | rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; | |
1323 | } | |
1324 | ||
27f4d280 PM |
1325 | /* |
1326 | * Create an RCU-boost kthread for the specified node if one does not | |
1327 | * already exist. We only create this kthread for preemptible RCU. | |
1328 | * Returns zero if all is well, a negated errno otherwise. | |
1329 | */ | |
1330 | static int __cpuinit rcu_spawn_one_boost_kthread(struct rcu_state *rsp, | |
5d01bbd1 | 1331 | struct rcu_node *rnp) |
27f4d280 | 1332 | { |
5d01bbd1 | 1333 | int rnp_index = rnp - &rsp->node[0]; |
27f4d280 PM |
1334 | unsigned long flags; |
1335 | struct sched_param sp; | |
1336 | struct task_struct *t; | |
1337 | ||
1338 | if (&rcu_preempt_state != rsp) | |
1339 | return 0; | |
5d01bbd1 TG |
1340 | |
1341 | if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0) | |
1342 | return 0; | |
1343 | ||
a46e0899 | 1344 | rsp->boost = 1; |
27f4d280 PM |
1345 | if (rnp->boost_kthread_task != NULL) |
1346 | return 0; | |
1347 | t = kthread_create(rcu_boost_kthread, (void *)rnp, | |
5b61b0ba | 1348 | "rcub/%d", rnp_index); |
27f4d280 PM |
1349 | if (IS_ERR(t)) |
1350 | return PTR_ERR(t); | |
1351 | raw_spin_lock_irqsave(&rnp->lock, flags); | |
1352 | rnp->boost_kthread_task = t; | |
1353 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | |
5b61b0ba | 1354 | sp.sched_priority = RCU_BOOST_PRIO; |
27f4d280 | 1355 | sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); |
9a432736 | 1356 | wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ |
27f4d280 PM |
1357 | return 0; |
1358 | } | |
1359 | ||
f8b7fc6b PM |
1360 | static void rcu_kthread_do_work(void) |
1361 | { | |
1362 | rcu_do_batch(&rcu_sched_state, &__get_cpu_var(rcu_sched_data)); | |
1363 | rcu_do_batch(&rcu_bh_state, &__get_cpu_var(rcu_bh_data)); | |
1364 | rcu_preempt_do_callbacks(); | |
1365 | } | |
1366 | ||
62ab7072 | 1367 | static void rcu_cpu_kthread_setup(unsigned int cpu) |
f8b7fc6b | 1368 | { |
f8b7fc6b | 1369 | struct sched_param sp; |
f8b7fc6b | 1370 | |
62ab7072 PM |
1371 | sp.sched_priority = RCU_KTHREAD_PRIO; |
1372 | sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); | |
f8b7fc6b PM |
1373 | } |
1374 | ||
62ab7072 | 1375 | static void rcu_cpu_kthread_park(unsigned int cpu) |
f8b7fc6b | 1376 | { |
62ab7072 | 1377 | per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; |
f8b7fc6b PM |
1378 | } |
1379 | ||
62ab7072 | 1380 | static int rcu_cpu_kthread_should_run(unsigned int cpu) |
f8b7fc6b | 1381 | { |
62ab7072 | 1382 | return __get_cpu_var(rcu_cpu_has_work); |
f8b7fc6b PM |
1383 | } |
1384 | ||
1385 | /* | |
1386 | * Per-CPU kernel thread that invokes RCU callbacks. This replaces the | |
e0f23060 PM |
1387 | * RCU softirq used in flavors and configurations of RCU that do not |
1388 | * support RCU priority boosting. | |
f8b7fc6b | 1389 | */ |
62ab7072 | 1390 | static void rcu_cpu_kthread(unsigned int cpu) |
f8b7fc6b | 1391 | { |
62ab7072 PM |
1392 | unsigned int *statusp = &__get_cpu_var(rcu_cpu_kthread_status); |
1393 | char work, *workp = &__get_cpu_var(rcu_cpu_has_work); | |
1394 | int spincnt; | |
f8b7fc6b | 1395 | |
62ab7072 | 1396 | for (spincnt = 0; spincnt < 10; spincnt++) { |
385680a9 | 1397 | trace_rcu_utilization("Start CPU kthread@rcu_wait"); |
f8b7fc6b | 1398 | local_bh_disable(); |
f8b7fc6b | 1399 | *statusp = RCU_KTHREAD_RUNNING; |
62ab7072 PM |
1400 | this_cpu_inc(rcu_cpu_kthread_loops); |
1401 | local_irq_disable(); | |
f8b7fc6b PM |
1402 | work = *workp; |
1403 | *workp = 0; | |
62ab7072 | 1404 | local_irq_enable(); |
f8b7fc6b PM |
1405 | if (work) |
1406 | rcu_kthread_do_work(); | |
1407 | local_bh_enable(); | |
62ab7072 PM |
1408 | if (*workp == 0) { |
1409 | trace_rcu_utilization("End CPU kthread@rcu_wait"); | |
1410 | *statusp = RCU_KTHREAD_WAITING; | |
1411 | return; | |
f8b7fc6b PM |
1412 | } |
1413 | } | |
62ab7072 PM |
1414 | *statusp = RCU_KTHREAD_YIELDING; |
1415 | trace_rcu_utilization("Start CPU kthread@rcu_yield"); | |
1416 | schedule_timeout_interruptible(2); | |
1417 | trace_rcu_utilization("End CPU kthread@rcu_yield"); | |
1418 | *statusp = RCU_KTHREAD_WAITING; | |
f8b7fc6b PM |
1419 | } |
1420 | ||
1421 | /* | |
1422 | * Set the per-rcu_node kthread's affinity to cover all CPUs that are | |
1423 | * served by the rcu_node in question. The CPU hotplug lock is still | |
1424 | * held, so the value of rnp->qsmaskinit will be stable. | |
1425 | * | |
1426 | * We don't include outgoingcpu in the affinity set, use -1 if there is | |
1427 | * no outgoing CPU. If there are no CPUs left in the affinity set, | |
1428 | * this function allows the kthread to execute on any CPU. | |
1429 | */ | |
5d01bbd1 | 1430 | static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) |
f8b7fc6b | 1431 | { |
5d01bbd1 TG |
1432 | struct task_struct *t = rnp->boost_kthread_task; |
1433 | unsigned long mask = rnp->qsmaskinit; | |
f8b7fc6b PM |
1434 | cpumask_var_t cm; |
1435 | int cpu; | |
f8b7fc6b | 1436 | |
5d01bbd1 | 1437 | if (!t) |
f8b7fc6b | 1438 | return; |
5d01bbd1 | 1439 | if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) |
f8b7fc6b | 1440 | return; |
f8b7fc6b PM |
1441 | for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) |
1442 | if ((mask & 0x1) && cpu != outgoingcpu) | |
1443 | cpumask_set_cpu(cpu, cm); | |
1444 | if (cpumask_weight(cm) == 0) { | |
1445 | cpumask_setall(cm); | |
1446 | for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) | |
1447 | cpumask_clear_cpu(cpu, cm); | |
1448 | WARN_ON_ONCE(cpumask_weight(cm) == 0); | |
1449 | } | |
5d01bbd1 | 1450 | set_cpus_allowed_ptr(t, cm); |
f8b7fc6b PM |
1451 | free_cpumask_var(cm); |
1452 | } | |
1453 | ||
62ab7072 PM |
1454 | static struct smp_hotplug_thread rcu_cpu_thread_spec = { |
1455 | .store = &rcu_cpu_kthread_task, | |
1456 | .thread_should_run = rcu_cpu_kthread_should_run, | |
1457 | .thread_fn = rcu_cpu_kthread, | |
1458 | .thread_comm = "rcuc/%u", | |
1459 | .setup = rcu_cpu_kthread_setup, | |
1460 | .park = rcu_cpu_kthread_park, | |
1461 | }; | |
f8b7fc6b PM |
1462 | |
1463 | /* | |
1464 | * Spawn all kthreads -- called as soon as the scheduler is running. | |
1465 | */ | |
1466 | static int __init rcu_spawn_kthreads(void) | |
1467 | { | |
f8b7fc6b | 1468 | struct rcu_node *rnp; |
5d01bbd1 | 1469 | int cpu; |
f8b7fc6b | 1470 | |
b0d30417 | 1471 | rcu_scheduler_fully_active = 1; |
62ab7072 | 1472 | for_each_possible_cpu(cpu) |
f8b7fc6b | 1473 | per_cpu(rcu_cpu_has_work, cpu) = 0; |
62ab7072 | 1474 | BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec)); |
f8b7fc6b | 1475 | rnp = rcu_get_root(rcu_state); |
5d01bbd1 | 1476 | (void)rcu_spawn_one_boost_kthread(rcu_state, rnp); |
f8b7fc6b PM |
1477 | if (NUM_RCU_NODES > 1) { |
1478 | rcu_for_each_leaf_node(rcu_state, rnp) | |
5d01bbd1 | 1479 | (void)rcu_spawn_one_boost_kthread(rcu_state, rnp); |
f8b7fc6b PM |
1480 | } |
1481 | return 0; | |
1482 | } | |
1483 | early_initcall(rcu_spawn_kthreads); | |
1484 | ||
1485 | static void __cpuinit rcu_prepare_kthreads(int cpu) | |
1486 | { | |
1487 | struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu); | |
1488 | struct rcu_node *rnp = rdp->mynode; | |
1489 | ||
1490 | /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */ | |
62ab7072 | 1491 | if (rcu_scheduler_fully_active) |
5d01bbd1 | 1492 | (void)rcu_spawn_one_boost_kthread(rcu_state, rnp); |
f8b7fc6b PM |
1493 | } |
1494 | ||
27f4d280 PM |
1495 | #else /* #ifdef CONFIG_RCU_BOOST */ |
1496 | ||
1217ed1b | 1497 | static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) |
27f4d280 | 1498 | { |
1217ed1b | 1499 | raw_spin_unlock_irqrestore(&rnp->lock, flags); |
27f4d280 PM |
1500 | } |
1501 | ||
a46e0899 | 1502 | static void invoke_rcu_callbacks_kthread(void) |
27f4d280 | 1503 | { |
a46e0899 | 1504 | WARN_ON_ONCE(1); |
27f4d280 PM |
1505 | } |
1506 | ||
dff1672d PM |
1507 | static bool rcu_is_callbacks_kthread(void) |
1508 | { | |
1509 | return false; | |
1510 | } | |
1511 | ||
27f4d280 PM |
1512 | static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) |
1513 | { | |
1514 | } | |
1515 | ||
5d01bbd1 | 1516 | static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) |
f8b7fc6b PM |
1517 | { |
1518 | } | |
1519 | ||
b0d30417 PM |
1520 | static int __init rcu_scheduler_really_started(void) |
1521 | { | |
1522 | rcu_scheduler_fully_active = 1; | |
1523 | return 0; | |
1524 | } | |
1525 | early_initcall(rcu_scheduler_really_started); | |
1526 | ||
f8b7fc6b PM |
1527 | static void __cpuinit rcu_prepare_kthreads(int cpu) |
1528 | { | |
1529 | } | |
1530 | ||
27f4d280 PM |
1531 | #endif /* #else #ifdef CONFIG_RCU_BOOST */ |
1532 | ||
8bd93a2c PM |
1533 | #if !defined(CONFIG_RCU_FAST_NO_HZ) |
1534 | ||
1535 | /* | |
1536 | * Check to see if any future RCU-related work will need to be done | |
1537 | * by the current CPU, even if none need be done immediately, returning | |
1538 | * 1 if so. This function is part of the RCU implementation; it is -not- | |
1539 | * an exported member of the RCU API. | |
1540 | * | |
7cb92499 PM |
1541 | * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs |
1542 | * any flavor of RCU. | |
8bd93a2c | 1543 | */ |
aa9b1630 | 1544 | int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies) |
8bd93a2c | 1545 | { |
aa9b1630 | 1546 | *delta_jiffies = ULONG_MAX; |
c0f4dfd4 | 1547 | return rcu_cpu_has_callbacks(cpu, NULL); |
7cb92499 PM |
1548 | } |
1549 | ||
1550 | /* | |
1551 | * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up | |
1552 | * after it. | |
1553 | */ | |
1554 | static void rcu_cleanup_after_idle(int cpu) | |
1555 | { | |
1556 | } | |
1557 | ||
aea1b35e | 1558 | /* |
a858af28 | 1559 | * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n, |
aea1b35e PM |
1560 | * is nothing. |
1561 | */ | |
1562 | static void rcu_prepare_for_idle(int cpu) | |
1563 | { | |
1564 | } | |
1565 | ||
c57afe80 PM |
1566 | /* |
1567 | * Don't bother keeping a running count of the number of RCU callbacks | |
1568 | * posted because CONFIG_RCU_FAST_NO_HZ=n. | |
1569 | */ | |
1570 | static void rcu_idle_count_callbacks_posted(void) | |
1571 | { | |
1572 | } | |
1573 | ||
8bd93a2c PM |
1574 | #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */ |
1575 | ||
f23f7fa1 PM |
1576 | /* |
1577 | * This code is invoked when a CPU goes idle, at which point we want | |
1578 | * to have the CPU do everything required for RCU so that it can enter | |
1579 | * the energy-efficient dyntick-idle mode. This is handled by a | |
1580 | * state machine implemented by rcu_prepare_for_idle() below. | |
1581 | * | |
1582 | * The following three proprocessor symbols control this state machine: | |
1583 | * | |
f23f7fa1 PM |
1584 | * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted |
1585 | * to sleep in dyntick-idle mode with RCU callbacks pending. This | |
1586 | * is sized to be roughly one RCU grace period. Those energy-efficiency | |
1587 | * benchmarkers who might otherwise be tempted to set this to a large | |
1588 | * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your | |
1589 | * system. And if you are -that- concerned about energy efficiency, | |
1590 | * just power the system down and be done with it! | |
778d250a PM |
1591 | * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is |
1592 | * permitted to sleep in dyntick-idle mode with only lazy RCU | |
1593 | * callbacks pending. Setting this too high can OOM your system. | |
f23f7fa1 PM |
1594 | * |
1595 | * The values below work well in practice. If future workloads require | |
1596 | * adjustment, they can be converted into kernel config parameters, though | |
1597 | * making the state machine smarter might be a better option. | |
1598 | */ | |
e84c48ae | 1599 | #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */ |
778d250a | 1600 | #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */ |
f23f7fa1 | 1601 | |
5e44ce35 PM |
1602 | static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY; |
1603 | module_param(rcu_idle_gp_delay, int, 0644); | |
1604 | static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY; | |
1605 | module_param(rcu_idle_lazy_gp_delay, int, 0644); | |
486e2593 | 1606 | |
9d2ad243 | 1607 | extern int tick_nohz_enabled; |
486e2593 PM |
1608 | |
1609 | /* | |
c0f4dfd4 PM |
1610 | * Try to advance callbacks for all flavors of RCU on the current CPU. |
1611 | * Afterwards, if there are any callbacks ready for immediate invocation, | |
1612 | * return true. | |
486e2593 | 1613 | */ |
c0f4dfd4 | 1614 | static bool rcu_try_advance_all_cbs(void) |
486e2593 | 1615 | { |
c0f4dfd4 PM |
1616 | bool cbs_ready = false; |
1617 | struct rcu_data *rdp; | |
1618 | struct rcu_node *rnp; | |
1619 | struct rcu_state *rsp; | |
486e2593 | 1620 | |
c0f4dfd4 PM |
1621 | for_each_rcu_flavor(rsp) { |
1622 | rdp = this_cpu_ptr(rsp->rda); | |
1623 | rnp = rdp->mynode; | |
486e2593 | 1624 | |
c0f4dfd4 PM |
1625 | /* |
1626 | * Don't bother checking unless a grace period has | |
1627 | * completed since we last checked and there are | |
1628 | * callbacks not yet ready to invoke. | |
1629 | */ | |
1630 | if (rdp->completed != rnp->completed && | |
1631 | rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL]) | |
1632 | rcu_process_gp_end(rsp, rdp); | |
486e2593 | 1633 | |
c0f4dfd4 PM |
1634 | if (cpu_has_callbacks_ready_to_invoke(rdp)) |
1635 | cbs_ready = true; | |
1636 | } | |
1637 | return cbs_ready; | |
486e2593 PM |
1638 | } |
1639 | ||
aa9b1630 | 1640 | /* |
c0f4dfd4 PM |
1641 | * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready |
1642 | * to invoke. If the CPU has callbacks, try to advance them. Tell the | |
1643 | * caller to set the timeout based on whether or not there are non-lazy | |
1644 | * callbacks. | |
aa9b1630 | 1645 | * |
c0f4dfd4 | 1646 | * The caller must have disabled interrupts. |
aa9b1630 | 1647 | */ |
c0f4dfd4 | 1648 | int rcu_needs_cpu(int cpu, unsigned long *dj) |
aa9b1630 PM |
1649 | { |
1650 | struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); | |
1651 | ||
c0f4dfd4 PM |
1652 | /* Snapshot to detect later posting of non-lazy callback. */ |
1653 | rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; | |
1654 | ||
aa9b1630 | 1655 | /* If no callbacks, RCU doesn't need the CPU. */ |
c0f4dfd4 PM |
1656 | if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) { |
1657 | *dj = ULONG_MAX; | |
aa9b1630 PM |
1658 | return 0; |
1659 | } | |
c0f4dfd4 PM |
1660 | |
1661 | /* Attempt to advance callbacks. */ | |
1662 | if (rcu_try_advance_all_cbs()) { | |
1663 | /* Some ready to invoke, so initiate later invocation. */ | |
1664 | invoke_rcu_core(); | |
aa9b1630 PM |
1665 | return 1; |
1666 | } | |
c0f4dfd4 PM |
1667 | rdtp->last_accelerate = jiffies; |
1668 | ||
1669 | /* Request timer delay depending on laziness, and round. */ | |
6faf7283 | 1670 | if (!rdtp->all_lazy) { |
c0f4dfd4 PM |
1671 | *dj = round_up(rcu_idle_gp_delay + jiffies, |
1672 | rcu_idle_gp_delay) - jiffies; | |
e84c48ae | 1673 | } else { |
c0f4dfd4 | 1674 | *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies; |
e84c48ae | 1675 | } |
aa9b1630 PM |
1676 | return 0; |
1677 | } | |
1678 | ||
21e52e15 | 1679 | /* |
c0f4dfd4 PM |
1680 | * Prepare a CPU for idle from an RCU perspective. The first major task |
1681 | * is to sense whether nohz mode has been enabled or disabled via sysfs. | |
1682 | * The second major task is to check to see if a non-lazy callback has | |
1683 | * arrived at a CPU that previously had only lazy callbacks. The third | |
1684 | * major task is to accelerate (that is, assign grace-period numbers to) | |
1685 | * any recently arrived callbacks. | |
aea1b35e PM |
1686 | * |
1687 | * The caller must have disabled interrupts. | |
8bd93a2c | 1688 | */ |
aea1b35e | 1689 | static void rcu_prepare_for_idle(int cpu) |
8bd93a2c | 1690 | { |
c0f4dfd4 | 1691 | struct rcu_data *rdp; |
5955f7ee | 1692 | struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); |
c0f4dfd4 PM |
1693 | struct rcu_node *rnp; |
1694 | struct rcu_state *rsp; | |
9d2ad243 PM |
1695 | int tne; |
1696 | ||
1697 | /* Handle nohz enablement switches conservatively. */ | |
1698 | tne = ACCESS_ONCE(tick_nohz_enabled); | |
1699 | if (tne != rdtp->tick_nohz_enabled_snap) { | |
c0f4dfd4 | 1700 | if (rcu_cpu_has_callbacks(cpu, NULL)) |
9d2ad243 PM |
1701 | invoke_rcu_core(); /* force nohz to see update. */ |
1702 | rdtp->tick_nohz_enabled_snap = tne; | |
1703 | return; | |
1704 | } | |
1705 | if (!tne) | |
1706 | return; | |
f511fc62 | 1707 | |
c0f4dfd4 | 1708 | /* If this is a no-CBs CPU, no callbacks, just return. */ |
534c97b0 | 1709 | if (rcu_is_nocb_cpu(cpu)) |
9a0c6fef | 1710 | return; |
9a0c6fef | 1711 | |
c57afe80 | 1712 | /* |
c0f4dfd4 PM |
1713 | * If a non-lazy callback arrived at a CPU having only lazy |
1714 | * callbacks, invoke RCU core for the side-effect of recalculating | |
1715 | * idle duration on re-entry to idle. | |
c57afe80 | 1716 | */ |
c0f4dfd4 PM |
1717 | if (rdtp->all_lazy && |
1718 | rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) { | |
1719 | invoke_rcu_core(); | |
c57afe80 PM |
1720 | return; |
1721 | } | |
c57afe80 | 1722 | |
3084f2f8 | 1723 | /* |
c0f4dfd4 PM |
1724 | * If we have not yet accelerated this jiffy, accelerate all |
1725 | * callbacks on this CPU. | |
3084f2f8 | 1726 | */ |
c0f4dfd4 | 1727 | if (rdtp->last_accelerate == jiffies) |
aea1b35e | 1728 | return; |
c0f4dfd4 PM |
1729 | rdtp->last_accelerate = jiffies; |
1730 | for_each_rcu_flavor(rsp) { | |
1731 | rdp = per_cpu_ptr(rsp->rda, cpu); | |
1732 | if (!*rdp->nxttail[RCU_DONE_TAIL]) | |
1733 | continue; | |
1734 | rnp = rdp->mynode; | |
1735 | raw_spin_lock(&rnp->lock); /* irqs already disabled. */ | |
1736 | rcu_accelerate_cbs(rsp, rnp, rdp); | |
1737 | raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ | |
77e38ed3 | 1738 | } |
c0f4dfd4 | 1739 | } |
3084f2f8 | 1740 | |
c0f4dfd4 PM |
1741 | /* |
1742 | * Clean up for exit from idle. Attempt to advance callbacks based on | |
1743 | * any grace periods that elapsed while the CPU was idle, and if any | |
1744 | * callbacks are now ready to invoke, initiate invocation. | |
1745 | */ | |
1746 | static void rcu_cleanup_after_idle(int cpu) | |
1747 | { | |
1748 | struct rcu_data *rdp; | |
1749 | struct rcu_state *rsp; | |
a47cd880 | 1750 | |
534c97b0 | 1751 | if (rcu_is_nocb_cpu(cpu)) |
aea1b35e | 1752 | return; |
c0f4dfd4 PM |
1753 | rcu_try_advance_all_cbs(); |
1754 | for_each_rcu_flavor(rsp) { | |
1755 | rdp = per_cpu_ptr(rsp->rda, cpu); | |
1756 | if (cpu_has_callbacks_ready_to_invoke(rdp)) | |
1757 | invoke_rcu_core(); | |
c701d5d9 | 1758 | } |
8bd93a2c PM |
1759 | } |
1760 | ||
c57afe80 | 1761 | /* |
98248a0e PM |
1762 | * Keep a running count of the number of non-lazy callbacks posted |
1763 | * on this CPU. This running counter (which is never decremented) allows | |
1764 | * rcu_prepare_for_idle() to detect when something out of the idle loop | |
1765 | * posts a callback, even if an equal number of callbacks are invoked. | |
1766 | * Of course, callbacks should only be posted from within a trace event | |
1767 | * designed to be called from idle or from within RCU_NONIDLE(). | |
c57afe80 PM |
1768 | */ |
1769 | static void rcu_idle_count_callbacks_posted(void) | |
1770 | { | |
5955f7ee | 1771 | __this_cpu_add(rcu_dynticks.nonlazy_posted, 1); |
c57afe80 PM |
1772 | } |
1773 | ||
b626c1b6 PM |
1774 | /* |
1775 | * Data for flushing lazy RCU callbacks at OOM time. | |
1776 | */ | |
1777 | static atomic_t oom_callback_count; | |
1778 | static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq); | |
1779 | ||
1780 | /* | |
1781 | * RCU OOM callback -- decrement the outstanding count and deliver the | |
1782 | * wake-up if we are the last one. | |
1783 | */ | |
1784 | static void rcu_oom_callback(struct rcu_head *rhp) | |
1785 | { | |
1786 | if (atomic_dec_and_test(&oom_callback_count)) | |
1787 | wake_up(&oom_callback_wq); | |
1788 | } | |
1789 | ||
1790 | /* | |
1791 | * Post an rcu_oom_notify callback on the current CPU if it has at | |
1792 | * least one lazy callback. This will unnecessarily post callbacks | |
1793 | * to CPUs that already have a non-lazy callback at the end of their | |
1794 | * callback list, but this is an infrequent operation, so accept some | |
1795 | * extra overhead to keep things simple. | |
1796 | */ | |
1797 | static void rcu_oom_notify_cpu(void *unused) | |
1798 | { | |
1799 | struct rcu_state *rsp; | |
1800 | struct rcu_data *rdp; | |
1801 | ||
1802 | for_each_rcu_flavor(rsp) { | |
1803 | rdp = __this_cpu_ptr(rsp->rda); | |
1804 | if (rdp->qlen_lazy != 0) { | |
1805 | atomic_inc(&oom_callback_count); | |
1806 | rsp->call(&rdp->oom_head, rcu_oom_callback); | |
1807 | } | |
1808 | } | |
1809 | } | |
1810 | ||
1811 | /* | |
1812 | * If low on memory, ensure that each CPU has a non-lazy callback. | |
1813 | * This will wake up CPUs that have only lazy callbacks, in turn | |
1814 | * ensuring that they free up the corresponding memory in a timely manner. | |
1815 | * Because an uncertain amount of memory will be freed in some uncertain | |
1816 | * timeframe, we do not claim to have freed anything. | |
1817 | */ | |
1818 | static int rcu_oom_notify(struct notifier_block *self, | |
1819 | unsigned long notused, void *nfreed) | |
1820 | { | |
1821 | int cpu; | |
1822 | ||
1823 | /* Wait for callbacks from earlier instance to complete. */ | |
1824 | wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0); | |
1825 | ||
1826 | /* | |
1827 | * Prevent premature wakeup: ensure that all increments happen | |
1828 | * before there is a chance of the counter reaching zero. | |
1829 | */ | |
1830 | atomic_set(&oom_callback_count, 1); | |
1831 | ||
1832 | get_online_cpus(); | |
1833 | for_each_online_cpu(cpu) { | |
1834 | smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1); | |
1835 | cond_resched(); | |
1836 | } | |
1837 | put_online_cpus(); | |
1838 | ||
1839 | /* Unconditionally decrement: no need to wake ourselves up. */ | |
1840 | atomic_dec(&oom_callback_count); | |
1841 | ||
1842 | return NOTIFY_OK; | |
1843 | } | |
1844 | ||
1845 | static struct notifier_block rcu_oom_nb = { | |
1846 | .notifier_call = rcu_oom_notify | |
1847 | }; | |
1848 | ||
1849 | static int __init rcu_register_oom_notifier(void) | |
1850 | { | |
1851 | register_oom_notifier(&rcu_oom_nb); | |
1852 | return 0; | |
1853 | } | |
1854 | early_initcall(rcu_register_oom_notifier); | |
1855 | ||
8bd93a2c | 1856 | #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */ |
a858af28 PM |
1857 | |
1858 | #ifdef CONFIG_RCU_CPU_STALL_INFO | |
1859 | ||
1860 | #ifdef CONFIG_RCU_FAST_NO_HZ | |
1861 | ||
1862 | static void print_cpu_stall_fast_no_hz(char *cp, int cpu) | |
1863 | { | |
5955f7ee | 1864 | struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); |
c0f4dfd4 | 1865 | unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap; |
a858af28 | 1866 | |
c0f4dfd4 PM |
1867 | sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c", |
1868 | rdtp->last_accelerate & 0xffff, jiffies & 0xffff, | |
1869 | ulong2long(nlpd), | |
1870 | rdtp->all_lazy ? 'L' : '.', | |
1871 | rdtp->tick_nohz_enabled_snap ? '.' : 'D'); | |
a858af28 PM |
1872 | } |
1873 | ||
1874 | #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */ | |
1875 | ||
1876 | static void print_cpu_stall_fast_no_hz(char *cp, int cpu) | |
1877 | { | |
1c17e4d4 | 1878 | *cp = '\0'; |
a858af28 PM |
1879 | } |
1880 | ||
1881 | #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */ | |
1882 | ||
1883 | /* Initiate the stall-info list. */ | |
1884 | static void print_cpu_stall_info_begin(void) | |
1885 | { | |
1886 | printk(KERN_CONT "\n"); | |
1887 | } | |
1888 | ||
1889 | /* | |
1890 | * Print out diagnostic information for the specified stalled CPU. | |
1891 | * | |
1892 | * If the specified CPU is aware of the current RCU grace period | |
1893 | * (flavor specified by rsp), then print the number of scheduling | |
1894 | * clock interrupts the CPU has taken during the time that it has | |
1895 | * been aware. Otherwise, print the number of RCU grace periods | |
1896 | * that this CPU is ignorant of, for example, "1" if the CPU was | |
1897 | * aware of the previous grace period. | |
1898 | * | |
1899 | * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info. | |
1900 | */ | |
1901 | static void print_cpu_stall_info(struct rcu_state *rsp, int cpu) | |
1902 | { | |
1903 | char fast_no_hz[72]; | |
1904 | struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); | |
1905 | struct rcu_dynticks *rdtp = rdp->dynticks; | |
1906 | char *ticks_title; | |
1907 | unsigned long ticks_value; | |
1908 | ||
1909 | if (rsp->gpnum == rdp->gpnum) { | |
1910 | ticks_title = "ticks this GP"; | |
1911 | ticks_value = rdp->ticks_this_gp; | |
1912 | } else { | |
1913 | ticks_title = "GPs behind"; | |
1914 | ticks_value = rsp->gpnum - rdp->gpnum; | |
1915 | } | |
1916 | print_cpu_stall_fast_no_hz(fast_no_hz, cpu); | |
6231069b | 1917 | printk(KERN_ERR "\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n", |
a858af28 PM |
1918 | cpu, ticks_value, ticks_title, |
1919 | atomic_read(&rdtp->dynticks) & 0xfff, | |
1920 | rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting, | |
6231069b | 1921 | rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu), |
a858af28 PM |
1922 | fast_no_hz); |
1923 | } | |
1924 | ||
1925 | /* Terminate the stall-info list. */ | |
1926 | static void print_cpu_stall_info_end(void) | |
1927 | { | |
1928 | printk(KERN_ERR "\t"); | |
1929 | } | |
1930 | ||
1931 | /* Zero ->ticks_this_gp for all flavors of RCU. */ | |
1932 | static void zero_cpu_stall_ticks(struct rcu_data *rdp) | |
1933 | { | |
1934 | rdp->ticks_this_gp = 0; | |
6231069b | 1935 | rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id()); |
a858af28 PM |
1936 | } |
1937 | ||
1938 | /* Increment ->ticks_this_gp for all flavors of RCU. */ | |
1939 | static void increment_cpu_stall_ticks(void) | |
1940 | { | |
115f7a7c PM |
1941 | struct rcu_state *rsp; |
1942 | ||
1943 | for_each_rcu_flavor(rsp) | |
1944 | __this_cpu_ptr(rsp->rda)->ticks_this_gp++; | |
a858af28 PM |
1945 | } |
1946 | ||
1947 | #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */ | |
1948 | ||
1949 | static void print_cpu_stall_info_begin(void) | |
1950 | { | |
1951 | printk(KERN_CONT " {"); | |
1952 | } | |
1953 | ||
1954 | static void print_cpu_stall_info(struct rcu_state *rsp, int cpu) | |
1955 | { | |
1956 | printk(KERN_CONT " %d", cpu); | |
1957 | } | |
1958 | ||
1959 | static void print_cpu_stall_info_end(void) | |
1960 | { | |
1961 | printk(KERN_CONT "} "); | |
1962 | } | |
1963 | ||
1964 | static void zero_cpu_stall_ticks(struct rcu_data *rdp) | |
1965 | { | |
1966 | } | |
1967 | ||
1968 | static void increment_cpu_stall_ticks(void) | |
1969 | { | |
1970 | } | |
1971 | ||
1972 | #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */ | |
3fbfbf7a PM |
1973 | |
1974 | #ifdef CONFIG_RCU_NOCB_CPU | |
1975 | ||
1976 | /* | |
1977 | * Offload callback processing from the boot-time-specified set of CPUs | |
1978 | * specified by rcu_nocb_mask. For each CPU in the set, there is a | |
1979 | * kthread created that pulls the callbacks from the corresponding CPU, | |
1980 | * waits for a grace period to elapse, and invokes the callbacks. | |
1981 | * The no-CBs CPUs do a wake_up() on their kthread when they insert | |
1982 | * a callback into any empty list, unless the rcu_nocb_poll boot parameter | |
1983 | * has been specified, in which case each kthread actively polls its | |
1984 | * CPU. (Which isn't so great for energy efficiency, but which does | |
1985 | * reduce RCU's overhead on that CPU.) | |
1986 | * | |
1987 | * This is intended to be used in conjunction with Frederic Weisbecker's | |
1988 | * adaptive-idle work, which would seriously reduce OS jitter on CPUs | |
1989 | * running CPU-bound user-mode computations. | |
1990 | * | |
1991 | * Offloading of callback processing could also in theory be used as | |
1992 | * an energy-efficiency measure because CPUs with no RCU callbacks | |
1993 | * queued are more aggressive about entering dyntick-idle mode. | |
1994 | */ | |
1995 | ||
1996 | ||
1997 | /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */ | |
1998 | static int __init rcu_nocb_setup(char *str) | |
1999 | { | |
2000 | alloc_bootmem_cpumask_var(&rcu_nocb_mask); | |
2001 | have_rcu_nocb_mask = true; | |
2002 | cpulist_parse(str, rcu_nocb_mask); | |
2003 | return 1; | |
2004 | } | |
2005 | __setup("rcu_nocbs=", rcu_nocb_setup); | |
2006 | ||
1b0048a4 PG |
2007 | static int __init parse_rcu_nocb_poll(char *arg) |
2008 | { | |
2009 | rcu_nocb_poll = 1; | |
2010 | return 0; | |
2011 | } | |
2012 | early_param("rcu_nocb_poll", parse_rcu_nocb_poll); | |
2013 | ||
34ed6246 | 2014 | /* |
dae6e64d PM |
2015 | * Do any no-CBs CPUs need another grace period? |
2016 | * | |
2017 | * Interrupts must be disabled. If the caller does not hold the root | |
2018 | * rnp_node structure's ->lock, the results are advisory only. | |
2019 | */ | |
2020 | static int rcu_nocb_needs_gp(struct rcu_state *rsp) | |
2021 | { | |
2022 | struct rcu_node *rnp = rcu_get_root(rsp); | |
2023 | ||
8b425aa8 | 2024 | return rnp->need_future_gp[(ACCESS_ONCE(rnp->completed) + 1) & 0x1]; |
dae6e64d PM |
2025 | } |
2026 | ||
2027 | /* | |
0446be48 PM |
2028 | * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended |
2029 | * grace period. | |
dae6e64d | 2030 | */ |
0446be48 | 2031 | static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) |
dae6e64d | 2032 | { |
0446be48 | 2033 | wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]); |
dae6e64d PM |
2034 | } |
2035 | ||
2036 | /* | |
8b425aa8 | 2037 | * Set the root rcu_node structure's ->need_future_gp field |
dae6e64d PM |
2038 | * based on the sum of those of all rcu_node structures. This does |
2039 | * double-count the root rcu_node structure's requests, but this | |
2040 | * is necessary to handle the possibility of a rcu_nocb_kthread() | |
2041 | * having awakened during the time that the rcu_node structures | |
2042 | * were being updated for the end of the previous grace period. | |
34ed6246 | 2043 | */ |
dae6e64d PM |
2044 | static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq) |
2045 | { | |
8b425aa8 | 2046 | rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq; |
dae6e64d PM |
2047 | } |
2048 | ||
2049 | static void rcu_init_one_nocb(struct rcu_node *rnp) | |
34ed6246 | 2050 | { |
dae6e64d PM |
2051 | init_waitqueue_head(&rnp->nocb_gp_wq[0]); |
2052 | init_waitqueue_head(&rnp->nocb_gp_wq[1]); | |
34ed6246 PM |
2053 | } |
2054 | ||
3fbfbf7a | 2055 | /* Is the specified CPU a no-CPUs CPU? */ |
d1e43fa5 | 2056 | bool rcu_is_nocb_cpu(int cpu) |
3fbfbf7a PM |
2057 | { |
2058 | if (have_rcu_nocb_mask) | |
2059 | return cpumask_test_cpu(cpu, rcu_nocb_mask); | |
2060 | return false; | |
2061 | } | |
2062 | ||
2063 | /* | |
2064 | * Enqueue the specified string of rcu_head structures onto the specified | |
2065 | * CPU's no-CBs lists. The CPU is specified by rdp, the head of the | |
2066 | * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy | |
2067 | * counts are supplied by rhcount and rhcount_lazy. | |
2068 | * | |
2069 | * If warranted, also wake up the kthread servicing this CPUs queues. | |
2070 | */ | |
2071 | static void __call_rcu_nocb_enqueue(struct rcu_data *rdp, | |
2072 | struct rcu_head *rhp, | |
2073 | struct rcu_head **rhtp, | |
2074 | int rhcount, int rhcount_lazy) | |
2075 | { | |
2076 | int len; | |
2077 | struct rcu_head **old_rhpp; | |
2078 | struct task_struct *t; | |
2079 | ||
2080 | /* Enqueue the callback on the nocb list and update counts. */ | |
2081 | old_rhpp = xchg(&rdp->nocb_tail, rhtp); | |
2082 | ACCESS_ONCE(*old_rhpp) = rhp; | |
2083 | atomic_long_add(rhcount, &rdp->nocb_q_count); | |
2084 | atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy); | |
2085 | ||
2086 | /* If we are not being polled and there is a kthread, awaken it ... */ | |
2087 | t = ACCESS_ONCE(rdp->nocb_kthread); | |
2088 | if (rcu_nocb_poll | !t) | |
2089 | return; | |
2090 | len = atomic_long_read(&rdp->nocb_q_count); | |
2091 | if (old_rhpp == &rdp->nocb_head) { | |
2092 | wake_up(&rdp->nocb_wq); /* ... only if queue was empty ... */ | |
2093 | rdp->qlen_last_fqs_check = 0; | |
2094 | } else if (len > rdp->qlen_last_fqs_check + qhimark) { | |
2095 | wake_up_process(t); /* ... or if many callbacks queued. */ | |
2096 | rdp->qlen_last_fqs_check = LONG_MAX / 2; | |
2097 | } | |
2098 | return; | |
2099 | } | |
2100 | ||
2101 | /* | |
2102 | * This is a helper for __call_rcu(), which invokes this when the normal | |
2103 | * callback queue is inoperable. If this is not a no-CBs CPU, this | |
2104 | * function returns failure back to __call_rcu(), which can complain | |
2105 | * appropriately. | |
2106 | * | |
2107 | * Otherwise, this function queues the callback where the corresponding | |
2108 | * "rcuo" kthread can find it. | |
2109 | */ | |
2110 | static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, | |
2111 | bool lazy) | |
2112 | { | |
2113 | ||
d1e43fa5 | 2114 | if (!rcu_is_nocb_cpu(rdp->cpu)) |
3fbfbf7a PM |
2115 | return 0; |
2116 | __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy); | |
21e7a608 PM |
2117 | if (__is_kfree_rcu_offset((unsigned long)rhp->func)) |
2118 | trace_rcu_kfree_callback(rdp->rsp->name, rhp, | |
2119 | (unsigned long)rhp->func, | |
2120 | rdp->qlen_lazy, rdp->qlen); | |
2121 | else | |
2122 | trace_rcu_callback(rdp->rsp->name, rhp, | |
2123 | rdp->qlen_lazy, rdp->qlen); | |
3fbfbf7a PM |
2124 | return 1; |
2125 | } | |
2126 | ||
2127 | /* | |
2128 | * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is | |
2129 | * not a no-CBs CPU. | |
2130 | */ | |
2131 | static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp, | |
2132 | struct rcu_data *rdp) | |
2133 | { | |
2134 | long ql = rsp->qlen; | |
2135 | long qll = rsp->qlen_lazy; | |
2136 | ||
2137 | /* If this is not a no-CBs CPU, tell the caller to do it the old way. */ | |
d1e43fa5 | 2138 | if (!rcu_is_nocb_cpu(smp_processor_id())) |
3fbfbf7a PM |
2139 | return 0; |
2140 | rsp->qlen = 0; | |
2141 | rsp->qlen_lazy = 0; | |
2142 | ||
2143 | /* First, enqueue the donelist, if any. This preserves CB ordering. */ | |
2144 | if (rsp->orphan_donelist != NULL) { | |
2145 | __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist, | |
2146 | rsp->orphan_donetail, ql, qll); | |
2147 | ql = qll = 0; | |
2148 | rsp->orphan_donelist = NULL; | |
2149 | rsp->orphan_donetail = &rsp->orphan_donelist; | |
2150 | } | |
2151 | if (rsp->orphan_nxtlist != NULL) { | |
2152 | __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist, | |
2153 | rsp->orphan_nxttail, ql, qll); | |
2154 | ql = qll = 0; | |
2155 | rsp->orphan_nxtlist = NULL; | |
2156 | rsp->orphan_nxttail = &rsp->orphan_nxtlist; | |
2157 | } | |
2158 | return 1; | |
2159 | } | |
2160 | ||
2161 | /* | |
34ed6246 PM |
2162 | * If necessary, kick off a new grace period, and either way wait |
2163 | * for a subsequent grace period to complete. | |
3fbfbf7a | 2164 | */ |
34ed6246 | 2165 | static void rcu_nocb_wait_gp(struct rcu_data *rdp) |
3fbfbf7a | 2166 | { |
34ed6246 | 2167 | unsigned long c; |
dae6e64d | 2168 | bool d; |
34ed6246 | 2169 | unsigned long flags; |
34ed6246 PM |
2170 | struct rcu_node *rnp = rdp->mynode; |
2171 | ||
2172 | raw_spin_lock_irqsave(&rnp->lock, flags); | |
0446be48 PM |
2173 | c = rcu_start_future_gp(rnp, rdp); |
2174 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | |
3fbfbf7a PM |
2175 | |
2176 | /* | |
34ed6246 PM |
2177 | * Wait for the grace period. Do so interruptibly to avoid messing |
2178 | * up the load average. | |
3fbfbf7a | 2179 | */ |
0446be48 | 2180 | trace_rcu_future_gp(rnp, rdp, c, "StartWait"); |
34ed6246 | 2181 | for (;;) { |
dae6e64d PM |
2182 | wait_event_interruptible( |
2183 | rnp->nocb_gp_wq[c & 0x1], | |
2184 | (d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c))); | |
2185 | if (likely(d)) | |
34ed6246 | 2186 | break; |
dae6e64d | 2187 | flush_signals(current); |
0446be48 | 2188 | trace_rcu_future_gp(rnp, rdp, c, "ResumeWait"); |
34ed6246 | 2189 | } |
0446be48 | 2190 | trace_rcu_future_gp(rnp, rdp, c, "EndWait"); |
34ed6246 | 2191 | smp_mb(); /* Ensure that CB invocation happens after GP end. */ |
3fbfbf7a PM |
2192 | } |
2193 | ||
2194 | /* | |
2195 | * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes | |
2196 | * callbacks queued by the corresponding no-CBs CPU. | |
2197 | */ | |
2198 | static int rcu_nocb_kthread(void *arg) | |
2199 | { | |
2200 | int c, cl; | |
2201 | struct rcu_head *list; | |
2202 | struct rcu_head *next; | |
2203 | struct rcu_head **tail; | |
2204 | struct rcu_data *rdp = arg; | |
2205 | ||
2206 | /* Each pass through this loop invokes one batch of callbacks */ | |
2207 | for (;;) { | |
2208 | /* If not polling, wait for next batch of callbacks. */ | |
2209 | if (!rcu_nocb_poll) | |
353af9c9 | 2210 | wait_event_interruptible(rdp->nocb_wq, rdp->nocb_head); |
3fbfbf7a PM |
2211 | list = ACCESS_ONCE(rdp->nocb_head); |
2212 | if (!list) { | |
2213 | schedule_timeout_interruptible(1); | |
353af9c9 | 2214 | flush_signals(current); |
3fbfbf7a PM |
2215 | continue; |
2216 | } | |
2217 | ||
2218 | /* | |
2219 | * Extract queued callbacks, update counts, and wait | |
2220 | * for a grace period to elapse. | |
2221 | */ | |
2222 | ACCESS_ONCE(rdp->nocb_head) = NULL; | |
2223 | tail = xchg(&rdp->nocb_tail, &rdp->nocb_head); | |
2224 | c = atomic_long_xchg(&rdp->nocb_q_count, 0); | |
2225 | cl = atomic_long_xchg(&rdp->nocb_q_count_lazy, 0); | |
2226 | ACCESS_ONCE(rdp->nocb_p_count) += c; | |
2227 | ACCESS_ONCE(rdp->nocb_p_count_lazy) += cl; | |
34ed6246 | 2228 | rcu_nocb_wait_gp(rdp); |
3fbfbf7a PM |
2229 | |
2230 | /* Each pass through the following loop invokes a callback. */ | |
2231 | trace_rcu_batch_start(rdp->rsp->name, cl, c, -1); | |
2232 | c = cl = 0; | |
2233 | while (list) { | |
2234 | next = list->next; | |
2235 | /* Wait for enqueuing to complete, if needed. */ | |
2236 | while (next == NULL && &list->next != tail) { | |
2237 | schedule_timeout_interruptible(1); | |
2238 | next = list->next; | |
2239 | } | |
2240 | debug_rcu_head_unqueue(list); | |
2241 | local_bh_disable(); | |
2242 | if (__rcu_reclaim(rdp->rsp->name, list)) | |
2243 | cl++; | |
2244 | c++; | |
2245 | local_bh_enable(); | |
2246 | list = next; | |
2247 | } | |
2248 | trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1); | |
2249 | ACCESS_ONCE(rdp->nocb_p_count) -= c; | |
2250 | ACCESS_ONCE(rdp->nocb_p_count_lazy) -= cl; | |
c635a4e1 | 2251 | rdp->n_nocbs_invoked += c; |
3fbfbf7a PM |
2252 | } |
2253 | return 0; | |
2254 | } | |
2255 | ||
2256 | /* Initialize per-rcu_data variables for no-CBs CPUs. */ | |
2257 | static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) | |
2258 | { | |
2259 | rdp->nocb_tail = &rdp->nocb_head; | |
2260 | init_waitqueue_head(&rdp->nocb_wq); | |
2261 | } | |
2262 | ||
2263 | /* Create a kthread for each RCU flavor for each no-CBs CPU. */ | |
2264 | static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp) | |
2265 | { | |
2266 | int cpu; | |
2267 | struct rcu_data *rdp; | |
2268 | struct task_struct *t; | |
2269 | ||
2270 | if (rcu_nocb_mask == NULL) | |
2271 | return; | |
2272 | for_each_cpu(cpu, rcu_nocb_mask) { | |
2273 | rdp = per_cpu_ptr(rsp->rda, cpu); | |
a4889858 PM |
2274 | t = kthread_run(rcu_nocb_kthread, rdp, |
2275 | "rcuo%c/%d", rsp->abbr, cpu); | |
3fbfbf7a PM |
2276 | BUG_ON(IS_ERR(t)); |
2277 | ACCESS_ONCE(rdp->nocb_kthread) = t; | |
2278 | } | |
2279 | } | |
2280 | ||
2281 | /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */ | |
34ed6246 | 2282 | static bool init_nocb_callback_list(struct rcu_data *rdp) |
3fbfbf7a PM |
2283 | { |
2284 | if (rcu_nocb_mask == NULL || | |
2285 | !cpumask_test_cpu(rdp->cpu, rcu_nocb_mask)) | |
34ed6246 | 2286 | return false; |
3fbfbf7a | 2287 | rdp->nxttail[RCU_NEXT_TAIL] = NULL; |
34ed6246 | 2288 | return true; |
3fbfbf7a PM |
2289 | } |
2290 | ||
34ed6246 PM |
2291 | #else /* #ifdef CONFIG_RCU_NOCB_CPU */ |
2292 | ||
dae6e64d PM |
2293 | static int rcu_nocb_needs_gp(struct rcu_state *rsp) |
2294 | { | |
2295 | return 0; | |
3fbfbf7a PM |
2296 | } |
2297 | ||
0446be48 | 2298 | static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) |
3fbfbf7a | 2299 | { |
3fbfbf7a PM |
2300 | } |
2301 | ||
dae6e64d PM |
2302 | static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq) |
2303 | { | |
2304 | } | |
2305 | ||
2306 | static void rcu_init_one_nocb(struct rcu_node *rnp) | |
2307 | { | |
2308 | } | |
3fbfbf7a | 2309 | |
3fbfbf7a PM |
2310 | static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, |
2311 | bool lazy) | |
2312 | { | |
2313 | return 0; | |
2314 | } | |
2315 | ||
2316 | static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp, | |
2317 | struct rcu_data *rdp) | |
2318 | { | |
2319 | return 0; | |
2320 | } | |
2321 | ||
3fbfbf7a PM |
2322 | static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) |
2323 | { | |
2324 | } | |
2325 | ||
2326 | static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp) | |
2327 | { | |
2328 | } | |
2329 | ||
34ed6246 | 2330 | static bool init_nocb_callback_list(struct rcu_data *rdp) |
3fbfbf7a | 2331 | { |
34ed6246 | 2332 | return false; |
3fbfbf7a PM |
2333 | } |
2334 | ||
2335 | #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ | |
65d798f0 PM |
2336 | |
2337 | /* | |
2338 | * An adaptive-ticks CPU can potentially execute in kernel mode for an | |
2339 | * arbitrarily long period of time with the scheduling-clock tick turned | |
2340 | * off. RCU will be paying attention to this CPU because it is in the | |
2341 | * kernel, but the CPU cannot be guaranteed to be executing the RCU state | |
2342 | * machine because the scheduling-clock tick has been disabled. Therefore, | |
2343 | * if an adaptive-ticks CPU is failing to respond to the current grace | |
2344 | * period and has not be idle from an RCU perspective, kick it. | |
2345 | */ | |
2346 | static void rcu_kick_nohz_cpu(int cpu) | |
2347 | { | |
2348 | #ifdef CONFIG_NO_HZ_FULL | |
2349 | if (tick_nohz_full_cpu(cpu)) | |
2350 | smp_send_reschedule(cpu); | |
2351 | #endif /* #ifdef CONFIG_NO_HZ_FULL */ | |
2352 | } |