]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * kernel/sched.c | |
3 | * | |
4 | * Kernel scheduler and related syscalls | |
5 | * | |
6 | * Copyright (C) 1991-2002 Linus Torvalds | |
7 | * | |
8 | * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and | |
9 | * make semaphores SMP safe | |
10 | * 1998-11-19 Implemented schedule_timeout() and related stuff | |
11 | * by Andrea Arcangeli | |
12 | * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: | |
13 | * hybrid priority-list and round-robin design with | |
14 | * an array-switch method of distributing timeslices | |
15 | * and per-CPU runqueues. Cleanups and useful suggestions | |
16 | * by Davide Libenzi, preemptible kernel bits by Robert Love. | |
17 | * 2003-09-03 Interactivity tuning by Con Kolivas. | |
18 | * 2004-04-02 Scheduler domains code by Nick Piggin | |
c31f2e8a IM |
19 | * 2007-04-15 Work begun on replacing all interactivity tuning with a |
20 | * fair scheduling design by Con Kolivas. | |
21 | * 2007-05-05 Load balancing (smp-nice) and other improvements | |
22 | * by Peter Williams | |
23 | * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith | |
24 | * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri | |
b9131769 IM |
25 | * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, |
26 | * Thomas Gleixner, Mike Kravetz | |
1da177e4 LT |
27 | */ |
28 | ||
29 | #include <linux/mm.h> | |
30 | #include <linux/module.h> | |
31 | #include <linux/nmi.h> | |
32 | #include <linux/init.h> | |
dff06c15 | 33 | #include <linux/uaccess.h> |
1da177e4 | 34 | #include <linux/highmem.h> |
1da177e4 LT |
35 | #include <asm/mmu_context.h> |
36 | #include <linux/interrupt.h> | |
c59ede7b | 37 | #include <linux/capability.h> |
1da177e4 LT |
38 | #include <linux/completion.h> |
39 | #include <linux/kernel_stat.h> | |
9a11b49a | 40 | #include <linux/debug_locks.h> |
cdd6c482 | 41 | #include <linux/perf_event.h> |
1da177e4 LT |
42 | #include <linux/security.h> |
43 | #include <linux/notifier.h> | |
44 | #include <linux/profile.h> | |
7dfb7103 | 45 | #include <linux/freezer.h> |
198e2f18 | 46 | #include <linux/vmalloc.h> |
1da177e4 LT |
47 | #include <linux/blkdev.h> |
48 | #include <linux/delay.h> | |
b488893a | 49 | #include <linux/pid_namespace.h> |
1da177e4 LT |
50 | #include <linux/smp.h> |
51 | #include <linux/threads.h> | |
52 | #include <linux/timer.h> | |
53 | #include <linux/rcupdate.h> | |
54 | #include <linux/cpu.h> | |
55 | #include <linux/cpuset.h> | |
56 | #include <linux/percpu.h> | |
b5aadf7f | 57 | #include <linux/proc_fs.h> |
1da177e4 | 58 | #include <linux/seq_file.h> |
969c7921 | 59 | #include <linux/stop_machine.h> |
e692ab53 | 60 | #include <linux/sysctl.h> |
1da177e4 LT |
61 | #include <linux/syscalls.h> |
62 | #include <linux/times.h> | |
8f0ab514 | 63 | #include <linux/tsacct_kern.h> |
c6fd91f0 | 64 | #include <linux/kprobes.h> |
0ff92245 | 65 | #include <linux/delayacct.h> |
dff06c15 | 66 | #include <linux/unistd.h> |
f5ff8422 | 67 | #include <linux/pagemap.h> |
8f4d37ec | 68 | #include <linux/hrtimer.h> |
30914a58 | 69 | #include <linux/tick.h> |
f00b45c1 PZ |
70 | #include <linux/debugfs.h> |
71 | #include <linux/ctype.h> | |
6cd8a4bb | 72 | #include <linux/ftrace.h> |
5a0e3ad6 | 73 | #include <linux/slab.h> |
1da177e4 | 74 | |
5517d86b | 75 | #include <asm/tlb.h> |
838225b4 | 76 | #include <asm/irq_regs.h> |
335d7afb | 77 | #include <asm/mutex.h> |
1da177e4 | 78 | |
6e0534f2 | 79 | #include "sched_cpupri.h" |
21aa9af0 | 80 | #include "workqueue_sched.h" |
5091faa4 | 81 | #include "sched_autogroup.h" |
6e0534f2 | 82 | |
a8d154b0 | 83 | #define CREATE_TRACE_POINTS |
ad8d75ff | 84 | #include <trace/events/sched.h> |
a8d154b0 | 85 | |
1da177e4 LT |
86 | /* |
87 | * Convert user-nice values [ -20 ... 0 ... 19 ] | |
88 | * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], | |
89 | * and back. | |
90 | */ | |
91 | #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20) | |
92 | #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20) | |
93 | #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio) | |
94 | ||
95 | /* | |
96 | * 'User priority' is the nice value converted to something we | |
97 | * can work with better when scaling various scheduler parameters, | |
98 | * it's a [ 0 ... 39 ] range. | |
99 | */ | |
100 | #define USER_PRIO(p) ((p)-MAX_RT_PRIO) | |
101 | #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio) | |
102 | #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO)) | |
103 | ||
104 | /* | |
d7876a08 | 105 | * Helpers for converting nanosecond timing to jiffy resolution |
1da177e4 | 106 | */ |
d6322faf | 107 | #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) |
1da177e4 | 108 | |
6aa645ea IM |
109 | #define NICE_0_LOAD SCHED_LOAD_SCALE |
110 | #define NICE_0_SHIFT SCHED_LOAD_SHIFT | |
111 | ||
1da177e4 LT |
112 | /* |
113 | * These are the 'tuning knobs' of the scheduler: | |
114 | * | |
a4ec24b4 | 115 | * default timeslice is 100 msecs (used only for SCHED_RR tasks). |
1da177e4 LT |
116 | * Timeslices get refilled after they expire. |
117 | */ | |
1da177e4 | 118 | #define DEF_TIMESLICE (100 * HZ / 1000) |
2dd73a4f | 119 | |
d0b27fa7 PZ |
120 | /* |
121 | * single value that denotes runtime == period, ie unlimited time. | |
122 | */ | |
123 | #define RUNTIME_INF ((u64)~0ULL) | |
124 | ||
e05606d3 IM |
125 | static inline int rt_policy(int policy) |
126 | { | |
3f33a7ce | 127 | if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR)) |
e05606d3 IM |
128 | return 1; |
129 | return 0; | |
130 | } | |
131 | ||
132 | static inline int task_has_rt_policy(struct task_struct *p) | |
133 | { | |
134 | return rt_policy(p->policy); | |
135 | } | |
136 | ||
1da177e4 | 137 | /* |
6aa645ea | 138 | * This is the priority-queue data structure of the RT scheduling class: |
1da177e4 | 139 | */ |
6aa645ea IM |
140 | struct rt_prio_array { |
141 | DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ | |
142 | struct list_head queue[MAX_RT_PRIO]; | |
143 | }; | |
144 | ||
d0b27fa7 | 145 | struct rt_bandwidth { |
ea736ed5 | 146 | /* nests inside the rq lock: */ |
0986b11b | 147 | raw_spinlock_t rt_runtime_lock; |
ea736ed5 IM |
148 | ktime_t rt_period; |
149 | u64 rt_runtime; | |
150 | struct hrtimer rt_period_timer; | |
d0b27fa7 PZ |
151 | }; |
152 | ||
153 | static struct rt_bandwidth def_rt_bandwidth; | |
154 | ||
155 | static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); | |
156 | ||
157 | static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) | |
158 | { | |
159 | struct rt_bandwidth *rt_b = | |
160 | container_of(timer, struct rt_bandwidth, rt_period_timer); | |
161 | ktime_t now; | |
162 | int overrun; | |
163 | int idle = 0; | |
164 | ||
165 | for (;;) { | |
166 | now = hrtimer_cb_get_time(timer); | |
167 | overrun = hrtimer_forward(timer, now, rt_b->rt_period); | |
168 | ||
169 | if (!overrun) | |
170 | break; | |
171 | ||
172 | idle = do_sched_rt_period_timer(rt_b, overrun); | |
173 | } | |
174 | ||
175 | return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; | |
176 | } | |
177 | ||
178 | static | |
179 | void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) | |
180 | { | |
181 | rt_b->rt_period = ns_to_ktime(period); | |
182 | rt_b->rt_runtime = runtime; | |
183 | ||
0986b11b | 184 | raw_spin_lock_init(&rt_b->rt_runtime_lock); |
ac086bc2 | 185 | |
d0b27fa7 PZ |
186 | hrtimer_init(&rt_b->rt_period_timer, |
187 | CLOCK_MONOTONIC, HRTIMER_MODE_REL); | |
188 | rt_b->rt_period_timer.function = sched_rt_period_timer; | |
d0b27fa7 PZ |
189 | } |
190 | ||
c8bfff6d KH |
191 | static inline int rt_bandwidth_enabled(void) |
192 | { | |
193 | return sysctl_sched_rt_runtime >= 0; | |
d0b27fa7 PZ |
194 | } |
195 | ||
196 | static void start_rt_bandwidth(struct rt_bandwidth *rt_b) | |
197 | { | |
198 | ktime_t now; | |
199 | ||
cac64d00 | 200 | if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) |
d0b27fa7 PZ |
201 | return; |
202 | ||
203 | if (hrtimer_active(&rt_b->rt_period_timer)) | |
204 | return; | |
205 | ||
0986b11b | 206 | raw_spin_lock(&rt_b->rt_runtime_lock); |
d0b27fa7 | 207 | for (;;) { |
7f1e2ca9 PZ |
208 | unsigned long delta; |
209 | ktime_t soft, hard; | |
210 | ||
d0b27fa7 PZ |
211 | if (hrtimer_active(&rt_b->rt_period_timer)) |
212 | break; | |
213 | ||
214 | now = hrtimer_cb_get_time(&rt_b->rt_period_timer); | |
215 | hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period); | |
7f1e2ca9 PZ |
216 | |
217 | soft = hrtimer_get_softexpires(&rt_b->rt_period_timer); | |
218 | hard = hrtimer_get_expires(&rt_b->rt_period_timer); | |
219 | delta = ktime_to_ns(ktime_sub(hard, soft)); | |
220 | __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta, | |
5c333864 | 221 | HRTIMER_MODE_ABS_PINNED, 0); |
d0b27fa7 | 222 | } |
0986b11b | 223 | raw_spin_unlock(&rt_b->rt_runtime_lock); |
d0b27fa7 PZ |
224 | } |
225 | ||
226 | #ifdef CONFIG_RT_GROUP_SCHED | |
227 | static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) | |
228 | { | |
229 | hrtimer_cancel(&rt_b->rt_period_timer); | |
230 | } | |
231 | #endif | |
232 | ||
712555ee | 233 | /* |
c4a8849a | 234 | * sched_domains_mutex serializes calls to init_sched_domains, |
712555ee HC |
235 | * detach_destroy_domains and partition_sched_domains. |
236 | */ | |
237 | static DEFINE_MUTEX(sched_domains_mutex); | |
238 | ||
7c941438 | 239 | #ifdef CONFIG_CGROUP_SCHED |
29f59db3 | 240 | |
68318b8e SV |
241 | #include <linux/cgroup.h> |
242 | ||
29f59db3 SV |
243 | struct cfs_rq; |
244 | ||
6f505b16 PZ |
245 | static LIST_HEAD(task_groups); |
246 | ||
29f59db3 | 247 | /* task group related information */ |
4cf86d77 | 248 | struct task_group { |
68318b8e | 249 | struct cgroup_subsys_state css; |
6c415b92 | 250 | |
052f1dc7 | 251 | #ifdef CONFIG_FAIR_GROUP_SCHED |
29f59db3 SV |
252 | /* schedulable entities of this group on each cpu */ |
253 | struct sched_entity **se; | |
254 | /* runqueue "owned" by this group on each cpu */ | |
255 | struct cfs_rq **cfs_rq; | |
256 | unsigned long shares; | |
2069dd75 PZ |
257 | |
258 | atomic_t load_weight; | |
052f1dc7 PZ |
259 | #endif |
260 | ||
261 | #ifdef CONFIG_RT_GROUP_SCHED | |
262 | struct sched_rt_entity **rt_se; | |
263 | struct rt_rq **rt_rq; | |
264 | ||
d0b27fa7 | 265 | struct rt_bandwidth rt_bandwidth; |
052f1dc7 | 266 | #endif |
6b2d7700 | 267 | |
ae8393e5 | 268 | struct rcu_head rcu; |
6f505b16 | 269 | struct list_head list; |
f473aa5e PZ |
270 | |
271 | struct task_group *parent; | |
272 | struct list_head siblings; | |
273 | struct list_head children; | |
5091faa4 MG |
274 | |
275 | #ifdef CONFIG_SCHED_AUTOGROUP | |
276 | struct autogroup *autogroup; | |
277 | #endif | |
29f59db3 SV |
278 | }; |
279 | ||
3d4b47b4 | 280 | /* task_group_lock serializes the addition/removal of task groups */ |
8ed36996 | 281 | static DEFINE_SPINLOCK(task_group_lock); |
ec2c507f | 282 | |
e9036b36 CG |
283 | #ifdef CONFIG_FAIR_GROUP_SCHED |
284 | ||
07e06b01 | 285 | # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD |
052f1dc7 | 286 | |
cb4ad1ff | 287 | /* |
2e084786 LJ |
288 | * A weight of 0 or 1 can cause arithmetics problems. |
289 | * A weight of a cfs_rq is the sum of weights of which entities | |
290 | * are queued on this cfs_rq, so a weight of a entity should not be | |
291 | * too large, so as the shares value of a task group. | |
cb4ad1ff MX |
292 | * (The default weight is 1024 - so there's no practical |
293 | * limitation from this.) | |
294 | */ | |
18d95a28 | 295 | #define MIN_SHARES 2 |
c8b28116 | 296 | #define MAX_SHARES (1UL << (18 + SCHED_LOAD_RESOLUTION)) |
18d95a28 | 297 | |
07e06b01 | 298 | static int root_task_group_load = ROOT_TASK_GROUP_LOAD; |
052f1dc7 PZ |
299 | #endif |
300 | ||
29f59db3 | 301 | /* Default task group. |
3a252015 | 302 | * Every task in system belong to this group at bootup. |
29f59db3 | 303 | */ |
07e06b01 | 304 | struct task_group root_task_group; |
29f59db3 | 305 | |
7c941438 | 306 | #endif /* CONFIG_CGROUP_SCHED */ |
29f59db3 | 307 | |
6aa645ea IM |
308 | /* CFS-related fields in a runqueue */ |
309 | struct cfs_rq { | |
310 | struct load_weight load; | |
311 | unsigned long nr_running; | |
312 | ||
6aa645ea | 313 | u64 exec_clock; |
e9acbff6 | 314 | u64 min_vruntime; |
3fe1698b PZ |
315 | #ifndef CONFIG_64BIT |
316 | u64 min_vruntime_copy; | |
317 | #endif | |
6aa645ea IM |
318 | |
319 | struct rb_root tasks_timeline; | |
320 | struct rb_node *rb_leftmost; | |
4a55bd5e PZ |
321 | |
322 | struct list_head tasks; | |
323 | struct list_head *balance_iterator; | |
324 | ||
325 | /* | |
326 | * 'curr' points to currently running entity on this cfs_rq. | |
6aa645ea IM |
327 | * It is set to NULL otherwise (i.e when none are currently running). |
328 | */ | |
ac53db59 | 329 | struct sched_entity *curr, *next, *last, *skip; |
ddc97297 | 330 | |
4934a4d3 | 331 | #ifdef CONFIG_SCHED_DEBUG |
5ac5c4d6 | 332 | unsigned int nr_spread_over; |
4934a4d3 | 333 | #endif |
ddc97297 | 334 | |
62160e3f | 335 | #ifdef CONFIG_FAIR_GROUP_SCHED |
6aa645ea IM |
336 | struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ |
337 | ||
41a2d6cf IM |
338 | /* |
339 | * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in | |
6aa645ea IM |
340 | * a hierarchy). Non-leaf lrqs hold other higher schedulable entities |
341 | * (like users, containers etc.) | |
342 | * | |
343 | * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This | |
344 | * list is used during load balance. | |
345 | */ | |
3d4b47b4 | 346 | int on_list; |
41a2d6cf IM |
347 | struct list_head leaf_cfs_rq_list; |
348 | struct task_group *tg; /* group that "owns" this runqueue */ | |
c09595f6 PZ |
349 | |
350 | #ifdef CONFIG_SMP | |
c09595f6 | 351 | /* |
c8cba857 | 352 | * the part of load.weight contributed by tasks |
c09595f6 | 353 | */ |
c8cba857 | 354 | unsigned long task_weight; |
c09595f6 | 355 | |
c8cba857 PZ |
356 | /* |
357 | * h_load = weight * f(tg) | |
358 | * | |
359 | * Where f(tg) is the recursive weight fraction assigned to | |
360 | * this group. | |
361 | */ | |
362 | unsigned long h_load; | |
c09595f6 | 363 | |
c8cba857 | 364 | /* |
3b3d190e PT |
365 | * Maintaining per-cpu shares distribution for group scheduling |
366 | * | |
367 | * load_stamp is the last time we updated the load average | |
368 | * load_last is the last time we updated the load average and saw load | |
369 | * load_unacc_exec_time is currently unaccounted execution time | |
c8cba857 | 370 | */ |
2069dd75 PZ |
371 | u64 load_avg; |
372 | u64 load_period; | |
3b3d190e | 373 | u64 load_stamp, load_last, load_unacc_exec_time; |
f1d239f7 | 374 | |
2069dd75 | 375 | unsigned long load_contribution; |
c09595f6 | 376 | #endif |
6aa645ea IM |
377 | #endif |
378 | }; | |
1da177e4 | 379 | |
6aa645ea IM |
380 | /* Real-Time classes' related field in a runqueue: */ |
381 | struct rt_rq { | |
382 | struct rt_prio_array active; | |
63489e45 | 383 | unsigned long rt_nr_running; |
052f1dc7 | 384 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
e864c499 GH |
385 | struct { |
386 | int curr; /* highest queued rt task prio */ | |
398a153b | 387 | #ifdef CONFIG_SMP |
e864c499 | 388 | int next; /* next highest */ |
398a153b | 389 | #endif |
e864c499 | 390 | } highest_prio; |
6f505b16 | 391 | #endif |
fa85ae24 | 392 | #ifdef CONFIG_SMP |
73fe6aae | 393 | unsigned long rt_nr_migratory; |
a1ba4d8b | 394 | unsigned long rt_nr_total; |
a22d7fc1 | 395 | int overloaded; |
917b627d | 396 | struct plist_head pushable_tasks; |
fa85ae24 | 397 | #endif |
6f505b16 | 398 | int rt_throttled; |
fa85ae24 | 399 | u64 rt_time; |
ac086bc2 | 400 | u64 rt_runtime; |
ea736ed5 | 401 | /* Nests inside the rq lock: */ |
0986b11b | 402 | raw_spinlock_t rt_runtime_lock; |
6f505b16 | 403 | |
052f1dc7 | 404 | #ifdef CONFIG_RT_GROUP_SCHED |
23b0fdfc PZ |
405 | unsigned long rt_nr_boosted; |
406 | ||
6f505b16 PZ |
407 | struct rq *rq; |
408 | struct list_head leaf_rt_rq_list; | |
409 | struct task_group *tg; | |
6f505b16 | 410 | #endif |
6aa645ea IM |
411 | }; |
412 | ||
57d885fe GH |
413 | #ifdef CONFIG_SMP |
414 | ||
415 | /* | |
416 | * We add the notion of a root-domain which will be used to define per-domain | |
0eab9146 IM |
417 | * variables. Each exclusive cpuset essentially defines an island domain by |
418 | * fully partitioning the member cpus from any other cpuset. Whenever a new | |
57d885fe GH |
419 | * exclusive cpuset is created, we also create and attach a new root-domain |
420 | * object. | |
421 | * | |
57d885fe GH |
422 | */ |
423 | struct root_domain { | |
424 | atomic_t refcount; | |
dce840a0 | 425 | struct rcu_head rcu; |
c6c4927b RR |
426 | cpumask_var_t span; |
427 | cpumask_var_t online; | |
637f5085 | 428 | |
0eab9146 | 429 | /* |
637f5085 GH |
430 | * The "RT overload" flag: it gets set if a CPU has more than |
431 | * one runnable RT task. | |
432 | */ | |
c6c4927b | 433 | cpumask_var_t rto_mask; |
0eab9146 | 434 | atomic_t rto_count; |
6e0534f2 | 435 | struct cpupri cpupri; |
57d885fe GH |
436 | }; |
437 | ||
dc938520 GH |
438 | /* |
439 | * By default the system creates a single root-domain with all cpus as | |
440 | * members (mimicking the global state we have today). | |
441 | */ | |
57d885fe GH |
442 | static struct root_domain def_root_domain; |
443 | ||
ed2d372c | 444 | #endif /* CONFIG_SMP */ |
57d885fe | 445 | |
1da177e4 LT |
446 | /* |
447 | * This is the main, per-CPU runqueue data structure. | |
448 | * | |
449 | * Locking rule: those places that want to lock multiple runqueues | |
450 | * (such as the load balancing or the thread migration code), lock | |
451 | * acquire operations must be ordered by ascending &runqueue. | |
452 | */ | |
70b97a7f | 453 | struct rq { |
d8016491 | 454 | /* runqueue lock: */ |
05fa785c | 455 | raw_spinlock_t lock; |
1da177e4 LT |
456 | |
457 | /* | |
458 | * nr_running and cpu_load should be in the same cacheline because | |
459 | * remote CPUs use both these fields when doing load calculation. | |
460 | */ | |
461 | unsigned long nr_running; | |
6aa645ea IM |
462 | #define CPU_LOAD_IDX_MAX 5 |
463 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; | |
fdf3e95d | 464 | unsigned long last_load_update_tick; |
46cb4b7c | 465 | #ifdef CONFIG_NO_HZ |
39c0cbe2 | 466 | u64 nohz_stamp; |
83cd4fe2 | 467 | unsigned char nohz_balance_kick; |
46cb4b7c | 468 | #endif |
61eadef6 | 469 | int skip_clock_update; |
a64692a3 | 470 | |
d8016491 IM |
471 | /* capture load from *all* tasks on this cpu: */ |
472 | struct load_weight load; | |
6aa645ea IM |
473 | unsigned long nr_load_updates; |
474 | u64 nr_switches; | |
475 | ||
476 | struct cfs_rq cfs; | |
6f505b16 | 477 | struct rt_rq rt; |
6f505b16 | 478 | |
6aa645ea | 479 | #ifdef CONFIG_FAIR_GROUP_SCHED |
d8016491 IM |
480 | /* list of leaf cfs_rq on this cpu: */ |
481 | struct list_head leaf_cfs_rq_list; | |
052f1dc7 PZ |
482 | #endif |
483 | #ifdef CONFIG_RT_GROUP_SCHED | |
6f505b16 | 484 | struct list_head leaf_rt_rq_list; |
1da177e4 | 485 | #endif |
1da177e4 LT |
486 | |
487 | /* | |
488 | * This is part of a global counter where only the total sum | |
489 | * over all CPUs matters. A task can increase this counter on | |
490 | * one CPU and if it got migrated afterwards it may decrease | |
491 | * it on another CPU. Always updated under the runqueue lock: | |
492 | */ | |
493 | unsigned long nr_uninterruptible; | |
494 | ||
34f971f6 | 495 | struct task_struct *curr, *idle, *stop; |
c9819f45 | 496 | unsigned long next_balance; |
1da177e4 | 497 | struct mm_struct *prev_mm; |
6aa645ea | 498 | |
3e51f33f | 499 | u64 clock; |
305e6835 | 500 | u64 clock_task; |
6aa645ea | 501 | |
1da177e4 LT |
502 | atomic_t nr_iowait; |
503 | ||
504 | #ifdef CONFIG_SMP | |
0eab9146 | 505 | struct root_domain *rd; |
1da177e4 LT |
506 | struct sched_domain *sd; |
507 | ||
e51fd5e2 PZ |
508 | unsigned long cpu_power; |
509 | ||
a0a522ce | 510 | unsigned char idle_at_tick; |
1da177e4 | 511 | /* For active balancing */ |
3f029d3c | 512 | int post_schedule; |
1da177e4 LT |
513 | int active_balance; |
514 | int push_cpu; | |
969c7921 | 515 | struct cpu_stop_work active_balance_work; |
d8016491 IM |
516 | /* cpu of this runqueue: */ |
517 | int cpu; | |
1f11eb6a | 518 | int online; |
1da177e4 | 519 | |
a8a51d5e | 520 | unsigned long avg_load_per_task; |
1da177e4 | 521 | |
e9e9250b PZ |
522 | u64 rt_avg; |
523 | u64 age_stamp; | |
1b9508f6 MG |
524 | u64 idle_stamp; |
525 | u64 avg_idle; | |
1da177e4 LT |
526 | #endif |
527 | ||
aa483808 VP |
528 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING |
529 | u64 prev_irq_time; | |
530 | #endif | |
531 | ||
dce48a84 TG |
532 | /* calc_load related fields */ |
533 | unsigned long calc_load_update; | |
534 | long calc_load_active; | |
535 | ||
8f4d37ec | 536 | #ifdef CONFIG_SCHED_HRTICK |
31656519 PZ |
537 | #ifdef CONFIG_SMP |
538 | int hrtick_csd_pending; | |
539 | struct call_single_data hrtick_csd; | |
540 | #endif | |
8f4d37ec PZ |
541 | struct hrtimer hrtick_timer; |
542 | #endif | |
543 | ||
1da177e4 LT |
544 | #ifdef CONFIG_SCHEDSTATS |
545 | /* latency stats */ | |
546 | struct sched_info rq_sched_info; | |
9c2c4802 KC |
547 | unsigned long long rq_cpu_time; |
548 | /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ | |
1da177e4 LT |
549 | |
550 | /* sys_sched_yield() stats */ | |
480b9434 | 551 | unsigned int yld_count; |
1da177e4 LT |
552 | |
553 | /* schedule() stats */ | |
480b9434 KC |
554 | unsigned int sched_switch; |
555 | unsigned int sched_count; | |
556 | unsigned int sched_goidle; | |
1da177e4 LT |
557 | |
558 | /* try_to_wake_up() stats */ | |
480b9434 KC |
559 | unsigned int ttwu_count; |
560 | unsigned int ttwu_local; | |
1da177e4 | 561 | #endif |
317f3941 PZ |
562 | |
563 | #ifdef CONFIG_SMP | |
564 | struct task_struct *wake_list; | |
565 | #endif | |
1da177e4 LT |
566 | }; |
567 | ||
f34e3b61 | 568 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); |
1da177e4 | 569 | |
a64692a3 | 570 | |
1e5a7405 | 571 | static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); |
dd41f596 | 572 | |
0a2966b4 CL |
573 | static inline int cpu_of(struct rq *rq) |
574 | { | |
575 | #ifdef CONFIG_SMP | |
576 | return rq->cpu; | |
577 | #else | |
578 | return 0; | |
579 | #endif | |
580 | } | |
581 | ||
497f0ab3 | 582 | #define rcu_dereference_check_sched_domain(p) \ |
d11c563d | 583 | rcu_dereference_check((p), \ |
dce840a0 | 584 | rcu_read_lock_held() || \ |
d11c563d PM |
585 | lockdep_is_held(&sched_domains_mutex)) |
586 | ||
674311d5 NP |
587 | /* |
588 | * The domain tree (rq->sd) is protected by RCU's quiescent state transition. | |
1a20ff27 | 589 | * See detach_destroy_domains: synchronize_sched for details. |
674311d5 NP |
590 | * |
591 | * The domain tree of any CPU may only be accessed from within | |
592 | * preempt-disabled sections. | |
593 | */ | |
48f24c4d | 594 | #define for_each_domain(cpu, __sd) \ |
497f0ab3 | 595 | for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) |
1da177e4 LT |
596 | |
597 | #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) | |
598 | #define this_rq() (&__get_cpu_var(runqueues)) | |
599 | #define task_rq(p) cpu_rq(task_cpu(p)) | |
600 | #define cpu_curr(cpu) (cpu_rq(cpu)->curr) | |
54d35f29 | 601 | #define raw_rq() (&__raw_get_cpu_var(runqueues)) |
1da177e4 | 602 | |
dc61b1d6 PZ |
603 | #ifdef CONFIG_CGROUP_SCHED |
604 | ||
605 | /* | |
606 | * Return the group to which this tasks belongs. | |
607 | * | |
608 | * We use task_subsys_state_check() and extend the RCU verification | |
0122ec5b | 609 | * with lockdep_is_held(&p->pi_lock) because cpu_cgroup_attach() |
dc61b1d6 PZ |
610 | * holds that lock for each task it moves into the cgroup. Therefore |
611 | * by holding that lock, we pin the task to the current cgroup. | |
612 | */ | |
613 | static inline struct task_group *task_group(struct task_struct *p) | |
614 | { | |
5091faa4 | 615 | struct task_group *tg; |
dc61b1d6 PZ |
616 | struct cgroup_subsys_state *css; |
617 | ||
618 | css = task_subsys_state_check(p, cpu_cgroup_subsys_id, | |
0122ec5b | 619 | lockdep_is_held(&p->pi_lock)); |
5091faa4 MG |
620 | tg = container_of(css, struct task_group, css); |
621 | ||
622 | return autogroup_task_group(p, tg); | |
dc61b1d6 PZ |
623 | } |
624 | ||
625 | /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ | |
626 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) | |
627 | { | |
628 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
629 | p->se.cfs_rq = task_group(p)->cfs_rq[cpu]; | |
630 | p->se.parent = task_group(p)->se[cpu]; | |
631 | #endif | |
632 | ||
633 | #ifdef CONFIG_RT_GROUP_SCHED | |
634 | p->rt.rt_rq = task_group(p)->rt_rq[cpu]; | |
635 | p->rt.parent = task_group(p)->rt_se[cpu]; | |
636 | #endif | |
637 | } | |
638 | ||
639 | #else /* CONFIG_CGROUP_SCHED */ | |
640 | ||
641 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } | |
642 | static inline struct task_group *task_group(struct task_struct *p) | |
643 | { | |
644 | return NULL; | |
645 | } | |
646 | ||
647 | #endif /* CONFIG_CGROUP_SCHED */ | |
648 | ||
fe44d621 | 649 | static void update_rq_clock_task(struct rq *rq, s64 delta); |
305e6835 | 650 | |
fe44d621 | 651 | static void update_rq_clock(struct rq *rq) |
3e51f33f | 652 | { |
fe44d621 | 653 | s64 delta; |
305e6835 | 654 | |
61eadef6 | 655 | if (rq->skip_clock_update > 0) |
f26f9aff | 656 | return; |
aa483808 | 657 | |
fe44d621 PZ |
658 | delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; |
659 | rq->clock += delta; | |
660 | update_rq_clock_task(rq, delta); | |
3e51f33f PZ |
661 | } |
662 | ||
bf5c91ba IM |
663 | /* |
664 | * Tunables that become constants when CONFIG_SCHED_DEBUG is off: | |
665 | */ | |
666 | #ifdef CONFIG_SCHED_DEBUG | |
667 | # define const_debug __read_mostly | |
668 | #else | |
669 | # define const_debug static const | |
670 | #endif | |
671 | ||
017730c1 | 672 | /** |
1fd06bb1 | 673 | * runqueue_is_locked - Returns true if the current cpu runqueue is locked |
e17b38bf | 674 | * @cpu: the processor in question. |
017730c1 | 675 | * |
017730c1 IM |
676 | * This interface allows printk to be called with the runqueue lock |
677 | * held and know whether or not it is OK to wake up the klogd. | |
678 | */ | |
89f19f04 | 679 | int runqueue_is_locked(int cpu) |
017730c1 | 680 | { |
05fa785c | 681 | return raw_spin_is_locked(&cpu_rq(cpu)->lock); |
017730c1 IM |
682 | } |
683 | ||
bf5c91ba IM |
684 | /* |
685 | * Debugging: various feature bits | |
686 | */ | |
f00b45c1 PZ |
687 | |
688 | #define SCHED_FEAT(name, enabled) \ | |
689 | __SCHED_FEAT_##name , | |
690 | ||
bf5c91ba | 691 | enum { |
f00b45c1 | 692 | #include "sched_features.h" |
bf5c91ba IM |
693 | }; |
694 | ||
f00b45c1 PZ |
695 | #undef SCHED_FEAT |
696 | ||
697 | #define SCHED_FEAT(name, enabled) \ | |
698 | (1UL << __SCHED_FEAT_##name) * enabled | | |
699 | ||
bf5c91ba | 700 | const_debug unsigned int sysctl_sched_features = |
f00b45c1 PZ |
701 | #include "sched_features.h" |
702 | 0; | |
703 | ||
704 | #undef SCHED_FEAT | |
705 | ||
706 | #ifdef CONFIG_SCHED_DEBUG | |
707 | #define SCHED_FEAT(name, enabled) \ | |
708 | #name , | |
709 | ||
983ed7a6 | 710 | static __read_mostly char *sched_feat_names[] = { |
f00b45c1 PZ |
711 | #include "sched_features.h" |
712 | NULL | |
713 | }; | |
714 | ||
715 | #undef SCHED_FEAT | |
716 | ||
34f3a814 | 717 | static int sched_feat_show(struct seq_file *m, void *v) |
f00b45c1 | 718 | { |
f00b45c1 PZ |
719 | int i; |
720 | ||
721 | for (i = 0; sched_feat_names[i]; i++) { | |
34f3a814 LZ |
722 | if (!(sysctl_sched_features & (1UL << i))) |
723 | seq_puts(m, "NO_"); | |
724 | seq_printf(m, "%s ", sched_feat_names[i]); | |
f00b45c1 | 725 | } |
34f3a814 | 726 | seq_puts(m, "\n"); |
f00b45c1 | 727 | |
34f3a814 | 728 | return 0; |
f00b45c1 PZ |
729 | } |
730 | ||
731 | static ssize_t | |
732 | sched_feat_write(struct file *filp, const char __user *ubuf, | |
733 | size_t cnt, loff_t *ppos) | |
734 | { | |
735 | char buf[64]; | |
7740191c | 736 | char *cmp; |
f00b45c1 PZ |
737 | int neg = 0; |
738 | int i; | |
739 | ||
740 | if (cnt > 63) | |
741 | cnt = 63; | |
742 | ||
743 | if (copy_from_user(&buf, ubuf, cnt)) | |
744 | return -EFAULT; | |
745 | ||
746 | buf[cnt] = 0; | |
7740191c | 747 | cmp = strstrip(buf); |
f00b45c1 | 748 | |
524429c3 | 749 | if (strncmp(cmp, "NO_", 3) == 0) { |
f00b45c1 PZ |
750 | neg = 1; |
751 | cmp += 3; | |
752 | } | |
753 | ||
754 | for (i = 0; sched_feat_names[i]; i++) { | |
7740191c | 755 | if (strcmp(cmp, sched_feat_names[i]) == 0) { |
f00b45c1 PZ |
756 | if (neg) |
757 | sysctl_sched_features &= ~(1UL << i); | |
758 | else | |
759 | sysctl_sched_features |= (1UL << i); | |
760 | break; | |
761 | } | |
762 | } | |
763 | ||
764 | if (!sched_feat_names[i]) | |
765 | return -EINVAL; | |
766 | ||
42994724 | 767 | *ppos += cnt; |
f00b45c1 PZ |
768 | |
769 | return cnt; | |
770 | } | |
771 | ||
34f3a814 LZ |
772 | static int sched_feat_open(struct inode *inode, struct file *filp) |
773 | { | |
774 | return single_open(filp, sched_feat_show, NULL); | |
775 | } | |
776 | ||
828c0950 | 777 | static const struct file_operations sched_feat_fops = { |
34f3a814 LZ |
778 | .open = sched_feat_open, |
779 | .write = sched_feat_write, | |
780 | .read = seq_read, | |
781 | .llseek = seq_lseek, | |
782 | .release = single_release, | |
f00b45c1 PZ |
783 | }; |
784 | ||
785 | static __init int sched_init_debug(void) | |
786 | { | |
f00b45c1 PZ |
787 | debugfs_create_file("sched_features", 0644, NULL, NULL, |
788 | &sched_feat_fops); | |
789 | ||
790 | return 0; | |
791 | } | |
792 | late_initcall(sched_init_debug); | |
793 | ||
794 | #endif | |
795 | ||
796 | #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) | |
bf5c91ba | 797 | |
b82d9fdd PZ |
798 | /* |
799 | * Number of tasks to iterate in a single balance run. | |
800 | * Limited because this is done with IRQs disabled. | |
801 | */ | |
802 | const_debug unsigned int sysctl_sched_nr_migrate = 32; | |
803 | ||
e9e9250b PZ |
804 | /* |
805 | * period over which we average the RT time consumption, measured | |
806 | * in ms. | |
807 | * | |
808 | * default: 1s | |
809 | */ | |
810 | const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; | |
811 | ||
fa85ae24 | 812 | /* |
9f0c1e56 | 813 | * period over which we measure -rt task cpu usage in us. |
fa85ae24 PZ |
814 | * default: 1s |
815 | */ | |
9f0c1e56 | 816 | unsigned int sysctl_sched_rt_period = 1000000; |
fa85ae24 | 817 | |
6892b75e IM |
818 | static __read_mostly int scheduler_running; |
819 | ||
9f0c1e56 PZ |
820 | /* |
821 | * part of the period that we allow rt tasks to run in us. | |
822 | * default: 0.95s | |
823 | */ | |
824 | int sysctl_sched_rt_runtime = 950000; | |
fa85ae24 | 825 | |
d0b27fa7 PZ |
826 | static inline u64 global_rt_period(void) |
827 | { | |
828 | return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; | |
829 | } | |
830 | ||
831 | static inline u64 global_rt_runtime(void) | |
832 | { | |
e26873bb | 833 | if (sysctl_sched_rt_runtime < 0) |
d0b27fa7 PZ |
834 | return RUNTIME_INF; |
835 | ||
836 | return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; | |
837 | } | |
fa85ae24 | 838 | |
1da177e4 | 839 | #ifndef prepare_arch_switch |
4866cde0 NP |
840 | # define prepare_arch_switch(next) do { } while (0) |
841 | #endif | |
842 | #ifndef finish_arch_switch | |
843 | # define finish_arch_switch(prev) do { } while (0) | |
844 | #endif | |
845 | ||
051a1d1a DA |
846 | static inline int task_current(struct rq *rq, struct task_struct *p) |
847 | { | |
848 | return rq->curr == p; | |
849 | } | |
850 | ||
70b97a7f | 851 | static inline int task_running(struct rq *rq, struct task_struct *p) |
4866cde0 | 852 | { |
3ca7a440 PZ |
853 | #ifdef CONFIG_SMP |
854 | return p->on_cpu; | |
855 | #else | |
051a1d1a | 856 | return task_current(rq, p); |
3ca7a440 | 857 | #endif |
4866cde0 NP |
858 | } |
859 | ||
3ca7a440 | 860 | #ifndef __ARCH_WANT_UNLOCKED_CTXSW |
70b97a7f | 861 | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) |
4866cde0 | 862 | { |
3ca7a440 PZ |
863 | #ifdef CONFIG_SMP |
864 | /* | |
865 | * We can optimise this out completely for !SMP, because the | |
866 | * SMP rebalancing from interrupt is the only thing that cares | |
867 | * here. | |
868 | */ | |
869 | next->on_cpu = 1; | |
870 | #endif | |
4866cde0 NP |
871 | } |
872 | ||
70b97a7f | 873 | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) |
4866cde0 | 874 | { |
3ca7a440 PZ |
875 | #ifdef CONFIG_SMP |
876 | /* | |
877 | * After ->on_cpu is cleared, the task can be moved to a different CPU. | |
878 | * We must ensure this doesn't happen until the switch is completely | |
879 | * finished. | |
880 | */ | |
881 | smp_wmb(); | |
882 | prev->on_cpu = 0; | |
883 | #endif | |
da04c035 IM |
884 | #ifdef CONFIG_DEBUG_SPINLOCK |
885 | /* this is a valid case when another task releases the spinlock */ | |
886 | rq->lock.owner = current; | |
887 | #endif | |
8a25d5de IM |
888 | /* |
889 | * If we are tracking spinlock dependencies then we have to | |
890 | * fix up the runqueue lock - which gets 'carried over' from | |
891 | * prev into current: | |
892 | */ | |
893 | spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); | |
894 | ||
05fa785c | 895 | raw_spin_unlock_irq(&rq->lock); |
4866cde0 NP |
896 | } |
897 | ||
898 | #else /* __ARCH_WANT_UNLOCKED_CTXSW */ | |
70b97a7f | 899 | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) |
4866cde0 NP |
900 | { |
901 | #ifdef CONFIG_SMP | |
902 | /* | |
903 | * We can optimise this out completely for !SMP, because the | |
904 | * SMP rebalancing from interrupt is the only thing that cares | |
905 | * here. | |
906 | */ | |
3ca7a440 | 907 | next->on_cpu = 1; |
4866cde0 NP |
908 | #endif |
909 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | |
05fa785c | 910 | raw_spin_unlock_irq(&rq->lock); |
4866cde0 | 911 | #else |
05fa785c | 912 | raw_spin_unlock(&rq->lock); |
4866cde0 NP |
913 | #endif |
914 | } | |
915 | ||
70b97a7f | 916 | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) |
4866cde0 NP |
917 | { |
918 | #ifdef CONFIG_SMP | |
919 | /* | |
3ca7a440 | 920 | * After ->on_cpu is cleared, the task can be moved to a different CPU. |
4866cde0 NP |
921 | * We must ensure this doesn't happen until the switch is completely |
922 | * finished. | |
923 | */ | |
924 | smp_wmb(); | |
3ca7a440 | 925 | prev->on_cpu = 0; |
4866cde0 NP |
926 | #endif |
927 | #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW | |
928 | local_irq_enable(); | |
1da177e4 | 929 | #endif |
4866cde0 NP |
930 | } |
931 | #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ | |
1da177e4 | 932 | |
0970d299 | 933 | /* |
0122ec5b | 934 | * __task_rq_lock - lock the rq @p resides on. |
b29739f9 | 935 | */ |
70b97a7f | 936 | static inline struct rq *__task_rq_lock(struct task_struct *p) |
b29739f9 IM |
937 | __acquires(rq->lock) |
938 | { | |
0970d299 PZ |
939 | struct rq *rq; |
940 | ||
0122ec5b PZ |
941 | lockdep_assert_held(&p->pi_lock); |
942 | ||
3a5c359a | 943 | for (;;) { |
0970d299 | 944 | rq = task_rq(p); |
05fa785c | 945 | raw_spin_lock(&rq->lock); |
65cc8e48 | 946 | if (likely(rq == task_rq(p))) |
3a5c359a | 947 | return rq; |
05fa785c | 948 | raw_spin_unlock(&rq->lock); |
b29739f9 | 949 | } |
b29739f9 IM |
950 | } |
951 | ||
1da177e4 | 952 | /* |
0122ec5b | 953 | * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. |
1da177e4 | 954 | */ |
70b97a7f | 955 | static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) |
0122ec5b | 956 | __acquires(p->pi_lock) |
1da177e4 LT |
957 | __acquires(rq->lock) |
958 | { | |
70b97a7f | 959 | struct rq *rq; |
1da177e4 | 960 | |
3a5c359a | 961 | for (;;) { |
0122ec5b | 962 | raw_spin_lock_irqsave(&p->pi_lock, *flags); |
3a5c359a | 963 | rq = task_rq(p); |
05fa785c | 964 | raw_spin_lock(&rq->lock); |
65cc8e48 | 965 | if (likely(rq == task_rq(p))) |
3a5c359a | 966 | return rq; |
0122ec5b PZ |
967 | raw_spin_unlock(&rq->lock); |
968 | raw_spin_unlock_irqrestore(&p->pi_lock, *flags); | |
1da177e4 | 969 | } |
1da177e4 LT |
970 | } |
971 | ||
a9957449 | 972 | static void __task_rq_unlock(struct rq *rq) |
b29739f9 IM |
973 | __releases(rq->lock) |
974 | { | |
05fa785c | 975 | raw_spin_unlock(&rq->lock); |
b29739f9 IM |
976 | } |
977 | ||
0122ec5b PZ |
978 | static inline void |
979 | task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) | |
1da177e4 | 980 | __releases(rq->lock) |
0122ec5b | 981 | __releases(p->pi_lock) |
1da177e4 | 982 | { |
0122ec5b PZ |
983 | raw_spin_unlock(&rq->lock); |
984 | raw_spin_unlock_irqrestore(&p->pi_lock, *flags); | |
1da177e4 LT |
985 | } |
986 | ||
1da177e4 | 987 | /* |
cc2a73b5 | 988 | * this_rq_lock - lock this runqueue and disable interrupts. |
1da177e4 | 989 | */ |
a9957449 | 990 | static struct rq *this_rq_lock(void) |
1da177e4 LT |
991 | __acquires(rq->lock) |
992 | { | |
70b97a7f | 993 | struct rq *rq; |
1da177e4 LT |
994 | |
995 | local_irq_disable(); | |
996 | rq = this_rq(); | |
05fa785c | 997 | raw_spin_lock(&rq->lock); |
1da177e4 LT |
998 | |
999 | return rq; | |
1000 | } | |
1001 | ||
8f4d37ec PZ |
1002 | #ifdef CONFIG_SCHED_HRTICK |
1003 | /* | |
1004 | * Use HR-timers to deliver accurate preemption points. | |
1005 | * | |
1006 | * Its all a bit involved since we cannot program an hrt while holding the | |
1007 | * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a | |
1008 | * reschedule event. | |
1009 | * | |
1010 | * When we get rescheduled we reprogram the hrtick_timer outside of the | |
1011 | * rq->lock. | |
1012 | */ | |
8f4d37ec PZ |
1013 | |
1014 | /* | |
1015 | * Use hrtick when: | |
1016 | * - enabled by features | |
1017 | * - hrtimer is actually high res | |
1018 | */ | |
1019 | static inline int hrtick_enabled(struct rq *rq) | |
1020 | { | |
1021 | if (!sched_feat(HRTICK)) | |
1022 | return 0; | |
ba42059f | 1023 | if (!cpu_active(cpu_of(rq))) |
b328ca18 | 1024 | return 0; |
8f4d37ec PZ |
1025 | return hrtimer_is_hres_active(&rq->hrtick_timer); |
1026 | } | |
1027 | ||
8f4d37ec PZ |
1028 | static void hrtick_clear(struct rq *rq) |
1029 | { | |
1030 | if (hrtimer_active(&rq->hrtick_timer)) | |
1031 | hrtimer_cancel(&rq->hrtick_timer); | |
1032 | } | |
1033 | ||
8f4d37ec PZ |
1034 | /* |
1035 | * High-resolution timer tick. | |
1036 | * Runs from hardirq context with interrupts disabled. | |
1037 | */ | |
1038 | static enum hrtimer_restart hrtick(struct hrtimer *timer) | |
1039 | { | |
1040 | struct rq *rq = container_of(timer, struct rq, hrtick_timer); | |
1041 | ||
1042 | WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); | |
1043 | ||
05fa785c | 1044 | raw_spin_lock(&rq->lock); |
3e51f33f | 1045 | update_rq_clock(rq); |
8f4d37ec | 1046 | rq->curr->sched_class->task_tick(rq, rq->curr, 1); |
05fa785c | 1047 | raw_spin_unlock(&rq->lock); |
8f4d37ec PZ |
1048 | |
1049 | return HRTIMER_NORESTART; | |
1050 | } | |
1051 | ||
95e904c7 | 1052 | #ifdef CONFIG_SMP |
31656519 PZ |
1053 | /* |
1054 | * called from hardirq (IPI) context | |
1055 | */ | |
1056 | static void __hrtick_start(void *arg) | |
b328ca18 | 1057 | { |
31656519 | 1058 | struct rq *rq = arg; |
b328ca18 | 1059 | |
05fa785c | 1060 | raw_spin_lock(&rq->lock); |
31656519 PZ |
1061 | hrtimer_restart(&rq->hrtick_timer); |
1062 | rq->hrtick_csd_pending = 0; | |
05fa785c | 1063 | raw_spin_unlock(&rq->lock); |
b328ca18 PZ |
1064 | } |
1065 | ||
31656519 PZ |
1066 | /* |
1067 | * Called to set the hrtick timer state. | |
1068 | * | |
1069 | * called with rq->lock held and irqs disabled | |
1070 | */ | |
1071 | static void hrtick_start(struct rq *rq, u64 delay) | |
b328ca18 | 1072 | { |
31656519 PZ |
1073 | struct hrtimer *timer = &rq->hrtick_timer; |
1074 | ktime_t time = ktime_add_ns(timer->base->get_time(), delay); | |
b328ca18 | 1075 | |
cc584b21 | 1076 | hrtimer_set_expires(timer, time); |
31656519 PZ |
1077 | |
1078 | if (rq == this_rq()) { | |
1079 | hrtimer_restart(timer); | |
1080 | } else if (!rq->hrtick_csd_pending) { | |
6e275637 | 1081 | __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0); |
31656519 PZ |
1082 | rq->hrtick_csd_pending = 1; |
1083 | } | |
b328ca18 PZ |
1084 | } |
1085 | ||
1086 | static int | |
1087 | hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) | |
1088 | { | |
1089 | int cpu = (int)(long)hcpu; | |
1090 | ||
1091 | switch (action) { | |
1092 | case CPU_UP_CANCELED: | |
1093 | case CPU_UP_CANCELED_FROZEN: | |
1094 | case CPU_DOWN_PREPARE: | |
1095 | case CPU_DOWN_PREPARE_FROZEN: | |
1096 | case CPU_DEAD: | |
1097 | case CPU_DEAD_FROZEN: | |
31656519 | 1098 | hrtick_clear(cpu_rq(cpu)); |
b328ca18 PZ |
1099 | return NOTIFY_OK; |
1100 | } | |
1101 | ||
1102 | return NOTIFY_DONE; | |
1103 | } | |
1104 | ||
fa748203 | 1105 | static __init void init_hrtick(void) |
b328ca18 PZ |
1106 | { |
1107 | hotcpu_notifier(hotplug_hrtick, 0); | |
1108 | } | |
31656519 PZ |
1109 | #else |
1110 | /* | |
1111 | * Called to set the hrtick timer state. | |
1112 | * | |
1113 | * called with rq->lock held and irqs disabled | |
1114 | */ | |
1115 | static void hrtick_start(struct rq *rq, u64 delay) | |
1116 | { | |
7f1e2ca9 | 1117 | __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, |
5c333864 | 1118 | HRTIMER_MODE_REL_PINNED, 0); |
31656519 | 1119 | } |
b328ca18 | 1120 | |
006c75f1 | 1121 | static inline void init_hrtick(void) |
8f4d37ec | 1122 | { |
8f4d37ec | 1123 | } |
31656519 | 1124 | #endif /* CONFIG_SMP */ |
8f4d37ec | 1125 | |
31656519 | 1126 | static void init_rq_hrtick(struct rq *rq) |
8f4d37ec | 1127 | { |
31656519 PZ |
1128 | #ifdef CONFIG_SMP |
1129 | rq->hrtick_csd_pending = 0; | |
8f4d37ec | 1130 | |
31656519 PZ |
1131 | rq->hrtick_csd.flags = 0; |
1132 | rq->hrtick_csd.func = __hrtick_start; | |
1133 | rq->hrtick_csd.info = rq; | |
1134 | #endif | |
8f4d37ec | 1135 | |
31656519 PZ |
1136 | hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
1137 | rq->hrtick_timer.function = hrtick; | |
8f4d37ec | 1138 | } |
006c75f1 | 1139 | #else /* CONFIG_SCHED_HRTICK */ |
8f4d37ec PZ |
1140 | static inline void hrtick_clear(struct rq *rq) |
1141 | { | |
1142 | } | |
1143 | ||
8f4d37ec PZ |
1144 | static inline void init_rq_hrtick(struct rq *rq) |
1145 | { | |
1146 | } | |
1147 | ||
b328ca18 PZ |
1148 | static inline void init_hrtick(void) |
1149 | { | |
1150 | } | |
006c75f1 | 1151 | #endif /* CONFIG_SCHED_HRTICK */ |
8f4d37ec | 1152 | |
c24d20db IM |
1153 | /* |
1154 | * resched_task - mark a task 'to be rescheduled now'. | |
1155 | * | |
1156 | * On UP this means the setting of the need_resched flag, on SMP it | |
1157 | * might also involve a cross-CPU call to trigger the scheduler on | |
1158 | * the target CPU. | |
1159 | */ | |
1160 | #ifdef CONFIG_SMP | |
1161 | ||
1162 | #ifndef tsk_is_polling | |
1163 | #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) | |
1164 | #endif | |
1165 | ||
31656519 | 1166 | static void resched_task(struct task_struct *p) |
c24d20db IM |
1167 | { |
1168 | int cpu; | |
1169 | ||
05fa785c | 1170 | assert_raw_spin_locked(&task_rq(p)->lock); |
c24d20db | 1171 | |
5ed0cec0 | 1172 | if (test_tsk_need_resched(p)) |
c24d20db IM |
1173 | return; |
1174 | ||
5ed0cec0 | 1175 | set_tsk_need_resched(p); |
c24d20db IM |
1176 | |
1177 | cpu = task_cpu(p); | |
1178 | if (cpu == smp_processor_id()) | |
1179 | return; | |
1180 | ||
1181 | /* NEED_RESCHED must be visible before we test polling */ | |
1182 | smp_mb(); | |
1183 | if (!tsk_is_polling(p)) | |
1184 | smp_send_reschedule(cpu); | |
1185 | } | |
1186 | ||
1187 | static void resched_cpu(int cpu) | |
1188 | { | |
1189 | struct rq *rq = cpu_rq(cpu); | |
1190 | unsigned long flags; | |
1191 | ||
05fa785c | 1192 | if (!raw_spin_trylock_irqsave(&rq->lock, flags)) |
c24d20db IM |
1193 | return; |
1194 | resched_task(cpu_curr(cpu)); | |
05fa785c | 1195 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
c24d20db | 1196 | } |
06d8308c TG |
1197 | |
1198 | #ifdef CONFIG_NO_HZ | |
83cd4fe2 VP |
1199 | /* |
1200 | * In the semi idle case, use the nearest busy cpu for migrating timers | |
1201 | * from an idle cpu. This is good for power-savings. | |
1202 | * | |
1203 | * We don't do similar optimization for completely idle system, as | |
1204 | * selecting an idle cpu will add more delays to the timers than intended | |
1205 | * (as that cpu's timer base may not be uptodate wrt jiffies etc). | |
1206 | */ | |
1207 | int get_nohz_timer_target(void) | |
1208 | { | |
1209 | int cpu = smp_processor_id(); | |
1210 | int i; | |
1211 | struct sched_domain *sd; | |
1212 | ||
057f3fad | 1213 | rcu_read_lock(); |
83cd4fe2 | 1214 | for_each_domain(cpu, sd) { |
057f3fad PZ |
1215 | for_each_cpu(i, sched_domain_span(sd)) { |
1216 | if (!idle_cpu(i)) { | |
1217 | cpu = i; | |
1218 | goto unlock; | |
1219 | } | |
1220 | } | |
83cd4fe2 | 1221 | } |
057f3fad PZ |
1222 | unlock: |
1223 | rcu_read_unlock(); | |
83cd4fe2 VP |
1224 | return cpu; |
1225 | } | |
06d8308c TG |
1226 | /* |
1227 | * When add_timer_on() enqueues a timer into the timer wheel of an | |
1228 | * idle CPU then this timer might expire before the next timer event | |
1229 | * which is scheduled to wake up that CPU. In case of a completely | |
1230 | * idle system the next event might even be infinite time into the | |
1231 | * future. wake_up_idle_cpu() ensures that the CPU is woken up and | |
1232 | * leaves the inner idle loop so the newly added timer is taken into | |
1233 | * account when the CPU goes back to idle and evaluates the timer | |
1234 | * wheel for the next timer event. | |
1235 | */ | |
1236 | void wake_up_idle_cpu(int cpu) | |
1237 | { | |
1238 | struct rq *rq = cpu_rq(cpu); | |
1239 | ||
1240 | if (cpu == smp_processor_id()) | |
1241 | return; | |
1242 | ||
1243 | /* | |
1244 | * This is safe, as this function is called with the timer | |
1245 | * wheel base lock of (cpu) held. When the CPU is on the way | |
1246 | * to idle and has not yet set rq->curr to idle then it will | |
1247 | * be serialized on the timer wheel base lock and take the new | |
1248 | * timer into account automatically. | |
1249 | */ | |
1250 | if (rq->curr != rq->idle) | |
1251 | return; | |
1252 | ||
1253 | /* | |
1254 | * We can set TIF_RESCHED on the idle task of the other CPU | |
1255 | * lockless. The worst case is that the other CPU runs the | |
1256 | * idle task through an additional NOOP schedule() | |
1257 | */ | |
5ed0cec0 | 1258 | set_tsk_need_resched(rq->idle); |
06d8308c TG |
1259 | |
1260 | /* NEED_RESCHED must be visible before we test polling */ | |
1261 | smp_mb(); | |
1262 | if (!tsk_is_polling(rq->idle)) | |
1263 | smp_send_reschedule(cpu); | |
1264 | } | |
39c0cbe2 | 1265 | |
6d6bc0ad | 1266 | #endif /* CONFIG_NO_HZ */ |
06d8308c | 1267 | |
e9e9250b PZ |
1268 | static u64 sched_avg_period(void) |
1269 | { | |
1270 | return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; | |
1271 | } | |
1272 | ||
1273 | static void sched_avg_update(struct rq *rq) | |
1274 | { | |
1275 | s64 period = sched_avg_period(); | |
1276 | ||
1277 | while ((s64)(rq->clock - rq->age_stamp) > period) { | |
0d98bb26 WD |
1278 | /* |
1279 | * Inline assembly required to prevent the compiler | |
1280 | * optimising this loop into a divmod call. | |
1281 | * See __iter_div_u64_rem() for another example of this. | |
1282 | */ | |
1283 | asm("" : "+rm" (rq->age_stamp)); | |
e9e9250b PZ |
1284 | rq->age_stamp += period; |
1285 | rq->rt_avg /= 2; | |
1286 | } | |
1287 | } | |
1288 | ||
1289 | static void sched_rt_avg_update(struct rq *rq, u64 rt_delta) | |
1290 | { | |
1291 | rq->rt_avg += rt_delta; | |
1292 | sched_avg_update(rq); | |
1293 | } | |
1294 | ||
6d6bc0ad | 1295 | #else /* !CONFIG_SMP */ |
31656519 | 1296 | static void resched_task(struct task_struct *p) |
c24d20db | 1297 | { |
05fa785c | 1298 | assert_raw_spin_locked(&task_rq(p)->lock); |
31656519 | 1299 | set_tsk_need_resched(p); |
c24d20db | 1300 | } |
e9e9250b PZ |
1301 | |
1302 | static void sched_rt_avg_update(struct rq *rq, u64 rt_delta) | |
1303 | { | |
1304 | } | |
da2b71ed SS |
1305 | |
1306 | static void sched_avg_update(struct rq *rq) | |
1307 | { | |
1308 | } | |
6d6bc0ad | 1309 | #endif /* CONFIG_SMP */ |
c24d20db | 1310 | |
45bf76df IM |
1311 | #if BITS_PER_LONG == 32 |
1312 | # define WMULT_CONST (~0UL) | |
1313 | #else | |
1314 | # define WMULT_CONST (1UL << 32) | |
1315 | #endif | |
1316 | ||
1317 | #define WMULT_SHIFT 32 | |
1318 | ||
194081eb IM |
1319 | /* |
1320 | * Shift right and round: | |
1321 | */ | |
cf2ab469 | 1322 | #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) |
194081eb | 1323 | |
a7be37ac PZ |
1324 | /* |
1325 | * delta *= weight / lw | |
1326 | */ | |
cb1c4fc9 | 1327 | static unsigned long |
45bf76df IM |
1328 | calc_delta_mine(unsigned long delta_exec, unsigned long weight, |
1329 | struct load_weight *lw) | |
1330 | { | |
1331 | u64 tmp; | |
1332 | ||
c8b28116 NR |
1333 | /* |
1334 | * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched | |
1335 | * entities since MIN_SHARES = 2. Treat weight as 1 if less than | |
1336 | * 2^SCHED_LOAD_RESOLUTION. | |
1337 | */ | |
1338 | if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION))) | |
1339 | tmp = (u64)delta_exec * scale_load_down(weight); | |
1340 | else | |
1341 | tmp = (u64)delta_exec; | |
db670dac | 1342 | |
7a232e03 | 1343 | if (!lw->inv_weight) { |
c8b28116 NR |
1344 | unsigned long w = scale_load_down(lw->weight); |
1345 | ||
1346 | if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) | |
7a232e03 | 1347 | lw->inv_weight = 1; |
c8b28116 NR |
1348 | else if (unlikely(!w)) |
1349 | lw->inv_weight = WMULT_CONST; | |
7a232e03 | 1350 | else |
c8b28116 | 1351 | lw->inv_weight = WMULT_CONST / w; |
7a232e03 | 1352 | } |
45bf76df | 1353 | |
45bf76df IM |
1354 | /* |
1355 | * Check whether we'd overflow the 64-bit multiplication: | |
1356 | */ | |
194081eb | 1357 | if (unlikely(tmp > WMULT_CONST)) |
cf2ab469 | 1358 | tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight, |
194081eb IM |
1359 | WMULT_SHIFT/2); |
1360 | else | |
cf2ab469 | 1361 | tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT); |
45bf76df | 1362 | |
ecf691da | 1363 | return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); |
45bf76df IM |
1364 | } |
1365 | ||
1091985b | 1366 | static inline void update_load_add(struct load_weight *lw, unsigned long inc) |
45bf76df IM |
1367 | { |
1368 | lw->weight += inc; | |
e89996ae | 1369 | lw->inv_weight = 0; |
45bf76df IM |
1370 | } |
1371 | ||
1091985b | 1372 | static inline void update_load_sub(struct load_weight *lw, unsigned long dec) |
45bf76df IM |
1373 | { |
1374 | lw->weight -= dec; | |
e89996ae | 1375 | lw->inv_weight = 0; |
45bf76df IM |
1376 | } |
1377 | ||
2069dd75 PZ |
1378 | static inline void update_load_set(struct load_weight *lw, unsigned long w) |
1379 | { | |
1380 | lw->weight = w; | |
1381 | lw->inv_weight = 0; | |
1382 | } | |
1383 | ||
2dd73a4f PW |
1384 | /* |
1385 | * To aid in avoiding the subversion of "niceness" due to uneven distribution | |
1386 | * of tasks with abnormal "nice" values across CPUs the contribution that | |
1387 | * each task makes to its run queue's load is weighted according to its | |
41a2d6cf | 1388 | * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a |
2dd73a4f PW |
1389 | * scaled version of the new time slice allocation that they receive on time |
1390 | * slice expiry etc. | |
1391 | */ | |
1392 | ||
cce7ade8 PZ |
1393 | #define WEIGHT_IDLEPRIO 3 |
1394 | #define WMULT_IDLEPRIO 1431655765 | |
dd41f596 IM |
1395 | |
1396 | /* | |
1397 | * Nice levels are multiplicative, with a gentle 10% change for every | |
1398 | * nice level changed. I.e. when a CPU-bound task goes from nice 0 to | |
1399 | * nice 1, it will get ~10% less CPU time than another CPU-bound task | |
1400 | * that remained on nice 0. | |
1401 | * | |
1402 | * The "10% effect" is relative and cumulative: from _any_ nice level, | |
1403 | * if you go up 1 level, it's -10% CPU usage, if you go down 1 level | |
f9153ee6 IM |
1404 | * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. |
1405 | * If a task goes up by ~10% and another task goes down by ~10% then | |
1406 | * the relative distance between them is ~25%.) | |
dd41f596 IM |
1407 | */ |
1408 | static const int prio_to_weight[40] = { | |
254753dc IM |
1409 | /* -20 */ 88761, 71755, 56483, 46273, 36291, |
1410 | /* -15 */ 29154, 23254, 18705, 14949, 11916, | |
1411 | /* -10 */ 9548, 7620, 6100, 4904, 3906, | |
1412 | /* -5 */ 3121, 2501, 1991, 1586, 1277, | |
1413 | /* 0 */ 1024, 820, 655, 526, 423, | |
1414 | /* 5 */ 335, 272, 215, 172, 137, | |
1415 | /* 10 */ 110, 87, 70, 56, 45, | |
1416 | /* 15 */ 36, 29, 23, 18, 15, | |
dd41f596 IM |
1417 | }; |
1418 | ||
5714d2de IM |
1419 | /* |
1420 | * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. | |
1421 | * | |
1422 | * In cases where the weight does not change often, we can use the | |
1423 | * precalculated inverse to speed up arithmetics by turning divisions | |
1424 | * into multiplications: | |
1425 | */ | |
dd41f596 | 1426 | static const u32 prio_to_wmult[40] = { |
254753dc IM |
1427 | /* -20 */ 48388, 59856, 76040, 92818, 118348, |
1428 | /* -15 */ 147320, 184698, 229616, 287308, 360437, | |
1429 | /* -10 */ 449829, 563644, 704093, 875809, 1099582, | |
1430 | /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, | |
1431 | /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, | |
1432 | /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, | |
1433 | /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, | |
1434 | /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, | |
dd41f596 | 1435 | }; |
2dd73a4f | 1436 | |
ef12fefa BR |
1437 | /* Time spent by the tasks of the cpu accounting group executing in ... */ |
1438 | enum cpuacct_stat_index { | |
1439 | CPUACCT_STAT_USER, /* ... user mode */ | |
1440 | CPUACCT_STAT_SYSTEM, /* ... kernel mode */ | |
1441 | ||
1442 | CPUACCT_STAT_NSTATS, | |
1443 | }; | |
1444 | ||
d842de87 SV |
1445 | #ifdef CONFIG_CGROUP_CPUACCT |
1446 | static void cpuacct_charge(struct task_struct *tsk, u64 cputime); | |
ef12fefa BR |
1447 | static void cpuacct_update_stats(struct task_struct *tsk, |
1448 | enum cpuacct_stat_index idx, cputime_t val); | |
d842de87 SV |
1449 | #else |
1450 | static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {} | |
ef12fefa BR |
1451 | static inline void cpuacct_update_stats(struct task_struct *tsk, |
1452 | enum cpuacct_stat_index idx, cputime_t val) {} | |
d842de87 SV |
1453 | #endif |
1454 | ||
18d95a28 PZ |
1455 | static inline void inc_cpu_load(struct rq *rq, unsigned long load) |
1456 | { | |
1457 | update_load_add(&rq->load, load); | |
1458 | } | |
1459 | ||
1460 | static inline void dec_cpu_load(struct rq *rq, unsigned long load) | |
1461 | { | |
1462 | update_load_sub(&rq->load, load); | |
1463 | } | |
1464 | ||
7940ca36 | 1465 | #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED) |
eb755805 | 1466 | typedef int (*tg_visitor)(struct task_group *, void *); |
c09595f6 PZ |
1467 | |
1468 | /* | |
1469 | * Iterate the full tree, calling @down when first entering a node and @up when | |
1470 | * leaving it for the final time. | |
1471 | */ | |
eb755805 | 1472 | static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) |
c09595f6 PZ |
1473 | { |
1474 | struct task_group *parent, *child; | |
eb755805 | 1475 | int ret; |
c09595f6 PZ |
1476 | |
1477 | rcu_read_lock(); | |
1478 | parent = &root_task_group; | |
1479 | down: | |
eb755805 PZ |
1480 | ret = (*down)(parent, data); |
1481 | if (ret) | |
1482 | goto out_unlock; | |
c09595f6 PZ |
1483 | list_for_each_entry_rcu(child, &parent->children, siblings) { |
1484 | parent = child; | |
1485 | goto down; | |
1486 | ||
1487 | up: | |
1488 | continue; | |
1489 | } | |
eb755805 PZ |
1490 | ret = (*up)(parent, data); |
1491 | if (ret) | |
1492 | goto out_unlock; | |
c09595f6 PZ |
1493 | |
1494 | child = parent; | |
1495 | parent = parent->parent; | |
1496 | if (parent) | |
1497 | goto up; | |
eb755805 | 1498 | out_unlock: |
c09595f6 | 1499 | rcu_read_unlock(); |
eb755805 PZ |
1500 | |
1501 | return ret; | |
c09595f6 PZ |
1502 | } |
1503 | ||
eb755805 PZ |
1504 | static int tg_nop(struct task_group *tg, void *data) |
1505 | { | |
1506 | return 0; | |
c09595f6 | 1507 | } |
eb755805 PZ |
1508 | #endif |
1509 | ||
1510 | #ifdef CONFIG_SMP | |
f5f08f39 PZ |
1511 | /* Used instead of source_load when we know the type == 0 */ |
1512 | static unsigned long weighted_cpuload(const int cpu) | |
1513 | { | |
1514 | return cpu_rq(cpu)->load.weight; | |
1515 | } | |
1516 | ||
1517 | /* | |
1518 | * Return a low guess at the load of a migration-source cpu weighted | |
1519 | * according to the scheduling class and "nice" value. | |
1520 | * | |
1521 | * We want to under-estimate the load of migration sources, to | |
1522 | * balance conservatively. | |
1523 | */ | |
1524 | static unsigned long source_load(int cpu, int type) | |
1525 | { | |
1526 | struct rq *rq = cpu_rq(cpu); | |
1527 | unsigned long total = weighted_cpuload(cpu); | |
1528 | ||
1529 | if (type == 0 || !sched_feat(LB_BIAS)) | |
1530 | return total; | |
1531 | ||
1532 | return min(rq->cpu_load[type-1], total); | |
1533 | } | |
1534 | ||
1535 | /* | |
1536 | * Return a high guess at the load of a migration-target cpu weighted | |
1537 | * according to the scheduling class and "nice" value. | |
1538 | */ | |
1539 | static unsigned long target_load(int cpu, int type) | |
1540 | { | |
1541 | struct rq *rq = cpu_rq(cpu); | |
1542 | unsigned long total = weighted_cpuload(cpu); | |
1543 | ||
1544 | if (type == 0 || !sched_feat(LB_BIAS)) | |
1545 | return total; | |
1546 | ||
1547 | return max(rq->cpu_load[type-1], total); | |
1548 | } | |
1549 | ||
ae154be1 PZ |
1550 | static unsigned long power_of(int cpu) |
1551 | { | |
e51fd5e2 | 1552 | return cpu_rq(cpu)->cpu_power; |
ae154be1 PZ |
1553 | } |
1554 | ||
eb755805 PZ |
1555 | static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd); |
1556 | ||
1557 | static unsigned long cpu_avg_load_per_task(int cpu) | |
1558 | { | |
1559 | struct rq *rq = cpu_rq(cpu); | |
af6d596f | 1560 | unsigned long nr_running = ACCESS_ONCE(rq->nr_running); |
eb755805 | 1561 | |
4cd42620 SR |
1562 | if (nr_running) |
1563 | rq->avg_load_per_task = rq->load.weight / nr_running; | |
a2d47777 BS |
1564 | else |
1565 | rq->avg_load_per_task = 0; | |
eb755805 PZ |
1566 | |
1567 | return rq->avg_load_per_task; | |
1568 | } | |
1569 | ||
1570 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
c09595f6 | 1571 | |
c09595f6 | 1572 | /* |
c8cba857 PZ |
1573 | * Compute the cpu's hierarchical load factor for each task group. |
1574 | * This needs to be done in a top-down fashion because the load of a child | |
1575 | * group is a fraction of its parents load. | |
c09595f6 | 1576 | */ |
eb755805 | 1577 | static int tg_load_down(struct task_group *tg, void *data) |
c09595f6 | 1578 | { |
c8cba857 | 1579 | unsigned long load; |
eb755805 | 1580 | long cpu = (long)data; |
c09595f6 | 1581 | |
c8cba857 PZ |
1582 | if (!tg->parent) { |
1583 | load = cpu_rq(cpu)->load.weight; | |
1584 | } else { | |
1585 | load = tg->parent->cfs_rq[cpu]->h_load; | |
2069dd75 | 1586 | load *= tg->se[cpu]->load.weight; |
c8cba857 PZ |
1587 | load /= tg->parent->cfs_rq[cpu]->load.weight + 1; |
1588 | } | |
c09595f6 | 1589 | |
c8cba857 | 1590 | tg->cfs_rq[cpu]->h_load = load; |
c09595f6 | 1591 | |
eb755805 | 1592 | return 0; |
c09595f6 PZ |
1593 | } |
1594 | ||
eb755805 | 1595 | static void update_h_load(long cpu) |
c09595f6 | 1596 | { |
eb755805 | 1597 | walk_tg_tree(tg_load_down, tg_nop, (void *)cpu); |
c09595f6 PZ |
1598 | } |
1599 | ||
18d95a28 PZ |
1600 | #endif |
1601 | ||
8f45e2b5 GH |
1602 | #ifdef CONFIG_PREEMPT |
1603 | ||
b78bb868 PZ |
1604 | static void double_rq_lock(struct rq *rq1, struct rq *rq2); |
1605 | ||
70574a99 | 1606 | /* |
8f45e2b5 GH |
1607 | * fair double_lock_balance: Safely acquires both rq->locks in a fair |
1608 | * way at the expense of forcing extra atomic operations in all | |
1609 | * invocations. This assures that the double_lock is acquired using the | |
1610 | * same underlying policy as the spinlock_t on this architecture, which | |
1611 | * reduces latency compared to the unfair variant below. However, it | |
1612 | * also adds more overhead and therefore may reduce throughput. | |
70574a99 | 1613 | */ |
8f45e2b5 GH |
1614 | static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) |
1615 | __releases(this_rq->lock) | |
1616 | __acquires(busiest->lock) | |
1617 | __acquires(this_rq->lock) | |
1618 | { | |
05fa785c | 1619 | raw_spin_unlock(&this_rq->lock); |
8f45e2b5 GH |
1620 | double_rq_lock(this_rq, busiest); |
1621 | ||
1622 | return 1; | |
1623 | } | |
1624 | ||
1625 | #else | |
1626 | /* | |
1627 | * Unfair double_lock_balance: Optimizes throughput at the expense of | |
1628 | * latency by eliminating extra atomic operations when the locks are | |
1629 | * already in proper order on entry. This favors lower cpu-ids and will | |
1630 | * grant the double lock to lower cpus over higher ids under contention, | |
1631 | * regardless of entry order into the function. | |
1632 | */ | |
1633 | static int _double_lock_balance(struct rq *this_rq, struct rq *busiest) | |
70574a99 AD |
1634 | __releases(this_rq->lock) |
1635 | __acquires(busiest->lock) | |
1636 | __acquires(this_rq->lock) | |
1637 | { | |
1638 | int ret = 0; | |
1639 | ||
05fa785c | 1640 | if (unlikely(!raw_spin_trylock(&busiest->lock))) { |
70574a99 | 1641 | if (busiest < this_rq) { |
05fa785c TG |
1642 | raw_spin_unlock(&this_rq->lock); |
1643 | raw_spin_lock(&busiest->lock); | |
1644 | raw_spin_lock_nested(&this_rq->lock, | |
1645 | SINGLE_DEPTH_NESTING); | |
70574a99 AD |
1646 | ret = 1; |
1647 | } else | |
05fa785c TG |
1648 | raw_spin_lock_nested(&busiest->lock, |
1649 | SINGLE_DEPTH_NESTING); | |
70574a99 AD |
1650 | } |
1651 | return ret; | |
1652 | } | |
1653 | ||
8f45e2b5 GH |
1654 | #endif /* CONFIG_PREEMPT */ |
1655 | ||
1656 | /* | |
1657 | * double_lock_balance - lock the busiest runqueue, this_rq is locked already. | |
1658 | */ | |
1659 | static int double_lock_balance(struct rq *this_rq, struct rq *busiest) | |
1660 | { | |
1661 | if (unlikely(!irqs_disabled())) { | |
1662 | /* printk() doesn't work good under rq->lock */ | |
05fa785c | 1663 | raw_spin_unlock(&this_rq->lock); |
8f45e2b5 GH |
1664 | BUG_ON(1); |
1665 | } | |
1666 | ||
1667 | return _double_lock_balance(this_rq, busiest); | |
1668 | } | |
1669 | ||
70574a99 AD |
1670 | static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) |
1671 | __releases(busiest->lock) | |
1672 | { | |
05fa785c | 1673 | raw_spin_unlock(&busiest->lock); |
70574a99 AD |
1674 | lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); |
1675 | } | |
1e3c88bd PZ |
1676 | |
1677 | /* | |
1678 | * double_rq_lock - safely lock two runqueues | |
1679 | * | |
1680 | * Note this does not disable interrupts like task_rq_lock, | |
1681 | * you need to do so manually before calling. | |
1682 | */ | |
1683 | static void double_rq_lock(struct rq *rq1, struct rq *rq2) | |
1684 | __acquires(rq1->lock) | |
1685 | __acquires(rq2->lock) | |
1686 | { | |
1687 | BUG_ON(!irqs_disabled()); | |
1688 | if (rq1 == rq2) { | |
1689 | raw_spin_lock(&rq1->lock); | |
1690 | __acquire(rq2->lock); /* Fake it out ;) */ | |
1691 | } else { | |
1692 | if (rq1 < rq2) { | |
1693 | raw_spin_lock(&rq1->lock); | |
1694 | raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); | |
1695 | } else { | |
1696 | raw_spin_lock(&rq2->lock); | |
1697 | raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); | |
1698 | } | |
1699 | } | |
1e3c88bd PZ |
1700 | } |
1701 | ||
1702 | /* | |
1703 | * double_rq_unlock - safely unlock two runqueues | |
1704 | * | |
1705 | * Note this does not restore interrupts like task_rq_unlock, | |
1706 | * you need to do so manually after calling. | |
1707 | */ | |
1708 | static void double_rq_unlock(struct rq *rq1, struct rq *rq2) | |
1709 | __releases(rq1->lock) | |
1710 | __releases(rq2->lock) | |
1711 | { | |
1712 | raw_spin_unlock(&rq1->lock); | |
1713 | if (rq1 != rq2) | |
1714 | raw_spin_unlock(&rq2->lock); | |
1715 | else | |
1716 | __release(rq2->lock); | |
1717 | } | |
1718 | ||
d95f4122 MG |
1719 | #else /* CONFIG_SMP */ |
1720 | ||
1721 | /* | |
1722 | * double_rq_lock - safely lock two runqueues | |
1723 | * | |
1724 | * Note this does not disable interrupts like task_rq_lock, | |
1725 | * you need to do so manually before calling. | |
1726 | */ | |
1727 | static void double_rq_lock(struct rq *rq1, struct rq *rq2) | |
1728 | __acquires(rq1->lock) | |
1729 | __acquires(rq2->lock) | |
1730 | { | |
1731 | BUG_ON(!irqs_disabled()); | |
1732 | BUG_ON(rq1 != rq2); | |
1733 | raw_spin_lock(&rq1->lock); | |
1734 | __acquire(rq2->lock); /* Fake it out ;) */ | |
1735 | } | |
1736 | ||
1737 | /* | |
1738 | * double_rq_unlock - safely unlock two runqueues | |
1739 | * | |
1740 | * Note this does not restore interrupts like task_rq_unlock, | |
1741 | * you need to do so manually after calling. | |
1742 | */ | |
1743 | static void double_rq_unlock(struct rq *rq1, struct rq *rq2) | |
1744 | __releases(rq1->lock) | |
1745 | __releases(rq2->lock) | |
1746 | { | |
1747 | BUG_ON(rq1 != rq2); | |
1748 | raw_spin_unlock(&rq1->lock); | |
1749 | __release(rq2->lock); | |
1750 | } | |
1751 | ||
18d95a28 PZ |
1752 | #endif |
1753 | ||
74f5187a | 1754 | static void calc_load_account_idle(struct rq *this_rq); |
0bcdcf28 | 1755 | static void update_sysctl(void); |
acb4a848 | 1756 | static int get_update_sysctl_factor(void); |
fdf3e95d | 1757 | static void update_cpu_load(struct rq *this_rq); |
dce48a84 | 1758 | |
cd29fe6f PZ |
1759 | static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) |
1760 | { | |
1761 | set_task_rq(p, cpu); | |
1762 | #ifdef CONFIG_SMP | |
1763 | /* | |
1764 | * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be | |
1765 | * successfuly executed on another CPU. We must ensure that updates of | |
1766 | * per-task data have been completed by this moment. | |
1767 | */ | |
1768 | smp_wmb(); | |
1769 | task_thread_info(p)->cpu = cpu; | |
1770 | #endif | |
1771 | } | |
dce48a84 | 1772 | |
1e3c88bd | 1773 | static const struct sched_class rt_sched_class; |
dd41f596 | 1774 | |
34f971f6 | 1775 | #define sched_class_highest (&stop_sched_class) |
1f11eb6a GH |
1776 | #define for_each_class(class) \ |
1777 | for (class = sched_class_highest; class; class = class->next) | |
dd41f596 | 1778 | |
1e3c88bd PZ |
1779 | #include "sched_stats.h" |
1780 | ||
c09595f6 | 1781 | static void inc_nr_running(struct rq *rq) |
9c217245 IM |
1782 | { |
1783 | rq->nr_running++; | |
9c217245 IM |
1784 | } |
1785 | ||
c09595f6 | 1786 | static void dec_nr_running(struct rq *rq) |
9c217245 IM |
1787 | { |
1788 | rq->nr_running--; | |
9c217245 IM |
1789 | } |
1790 | ||
45bf76df IM |
1791 | static void set_load_weight(struct task_struct *p) |
1792 | { | |
f05998d4 NR |
1793 | int prio = p->static_prio - MAX_RT_PRIO; |
1794 | struct load_weight *load = &p->se.load; | |
1795 | ||
dd41f596 IM |
1796 | /* |
1797 | * SCHED_IDLE tasks get minimal weight: | |
1798 | */ | |
1799 | if (p->policy == SCHED_IDLE) { | |
c8b28116 | 1800 | load->weight = scale_load(WEIGHT_IDLEPRIO); |
f05998d4 | 1801 | load->inv_weight = WMULT_IDLEPRIO; |
dd41f596 IM |
1802 | return; |
1803 | } | |
71f8bd46 | 1804 | |
c8b28116 | 1805 | load->weight = scale_load(prio_to_weight[prio]); |
f05998d4 | 1806 | load->inv_weight = prio_to_wmult[prio]; |
71f8bd46 IM |
1807 | } |
1808 | ||
371fd7e7 | 1809 | static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) |
2087a1ad | 1810 | { |
a64692a3 | 1811 | update_rq_clock(rq); |
dd41f596 | 1812 | sched_info_queued(p); |
371fd7e7 | 1813 | p->sched_class->enqueue_task(rq, p, flags); |
71f8bd46 IM |
1814 | } |
1815 | ||
371fd7e7 | 1816 | static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) |
71f8bd46 | 1817 | { |
a64692a3 | 1818 | update_rq_clock(rq); |
46ac22ba | 1819 | sched_info_dequeued(p); |
371fd7e7 | 1820 | p->sched_class->dequeue_task(rq, p, flags); |
71f8bd46 IM |
1821 | } |
1822 | ||
1e3c88bd PZ |
1823 | /* |
1824 | * activate_task - move a task to the runqueue. | |
1825 | */ | |
371fd7e7 | 1826 | static void activate_task(struct rq *rq, struct task_struct *p, int flags) |
1e3c88bd PZ |
1827 | { |
1828 | if (task_contributes_to_load(p)) | |
1829 | rq->nr_uninterruptible--; | |
1830 | ||
371fd7e7 | 1831 | enqueue_task(rq, p, flags); |
1e3c88bd PZ |
1832 | inc_nr_running(rq); |
1833 | } | |
1834 | ||
1835 | /* | |
1836 | * deactivate_task - remove a task from the runqueue. | |
1837 | */ | |
371fd7e7 | 1838 | static void deactivate_task(struct rq *rq, struct task_struct *p, int flags) |
1e3c88bd PZ |
1839 | { |
1840 | if (task_contributes_to_load(p)) | |
1841 | rq->nr_uninterruptible++; | |
1842 | ||
371fd7e7 | 1843 | dequeue_task(rq, p, flags); |
1e3c88bd PZ |
1844 | dec_nr_running(rq); |
1845 | } | |
1846 | ||
b52bfee4 VP |
1847 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING |
1848 | ||
305e6835 VP |
1849 | /* |
1850 | * There are no locks covering percpu hardirq/softirq time. | |
1851 | * They are only modified in account_system_vtime, on corresponding CPU | |
1852 | * with interrupts disabled. So, writes are safe. | |
1853 | * They are read and saved off onto struct rq in update_rq_clock(). | |
1854 | * This may result in other CPU reading this CPU's irq time and can | |
1855 | * race with irq/account_system_vtime on this CPU. We would either get old | |
8e92c201 PZ |
1856 | * or new value with a side effect of accounting a slice of irq time to wrong |
1857 | * task when irq is in progress while we read rq->clock. That is a worthy | |
1858 | * compromise in place of having locks on each irq in account_system_time. | |
305e6835 | 1859 | */ |
b52bfee4 VP |
1860 | static DEFINE_PER_CPU(u64, cpu_hardirq_time); |
1861 | static DEFINE_PER_CPU(u64, cpu_softirq_time); | |
1862 | ||
1863 | static DEFINE_PER_CPU(u64, irq_start_time); | |
1864 | static int sched_clock_irqtime; | |
1865 | ||
1866 | void enable_sched_clock_irqtime(void) | |
1867 | { | |
1868 | sched_clock_irqtime = 1; | |
1869 | } | |
1870 | ||
1871 | void disable_sched_clock_irqtime(void) | |
1872 | { | |
1873 | sched_clock_irqtime = 0; | |
1874 | } | |
1875 | ||
8e92c201 PZ |
1876 | #ifndef CONFIG_64BIT |
1877 | static DEFINE_PER_CPU(seqcount_t, irq_time_seq); | |
1878 | ||
1879 | static inline void irq_time_write_begin(void) | |
1880 | { | |
1881 | __this_cpu_inc(irq_time_seq.sequence); | |
1882 | smp_wmb(); | |
1883 | } | |
1884 | ||
1885 | static inline void irq_time_write_end(void) | |
1886 | { | |
1887 | smp_wmb(); | |
1888 | __this_cpu_inc(irq_time_seq.sequence); | |
1889 | } | |
1890 | ||
1891 | static inline u64 irq_time_read(int cpu) | |
1892 | { | |
1893 | u64 irq_time; | |
1894 | unsigned seq; | |
1895 | ||
1896 | do { | |
1897 | seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); | |
1898 | irq_time = per_cpu(cpu_softirq_time, cpu) + | |
1899 | per_cpu(cpu_hardirq_time, cpu); | |
1900 | } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); | |
1901 | ||
1902 | return irq_time; | |
1903 | } | |
1904 | #else /* CONFIG_64BIT */ | |
1905 | static inline void irq_time_write_begin(void) | |
1906 | { | |
1907 | } | |
1908 | ||
1909 | static inline void irq_time_write_end(void) | |
1910 | { | |
1911 | } | |
1912 | ||
1913 | static inline u64 irq_time_read(int cpu) | |
305e6835 | 1914 | { |
305e6835 VP |
1915 | return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); |
1916 | } | |
8e92c201 | 1917 | #endif /* CONFIG_64BIT */ |
305e6835 | 1918 | |
fe44d621 PZ |
1919 | /* |
1920 | * Called before incrementing preempt_count on {soft,}irq_enter | |
1921 | * and before decrementing preempt_count on {soft,}irq_exit. | |
1922 | */ | |
b52bfee4 VP |
1923 | void account_system_vtime(struct task_struct *curr) |
1924 | { | |
1925 | unsigned long flags; | |
fe44d621 | 1926 | s64 delta; |
b52bfee4 | 1927 | int cpu; |
b52bfee4 VP |
1928 | |
1929 | if (!sched_clock_irqtime) | |
1930 | return; | |
1931 | ||
1932 | local_irq_save(flags); | |
1933 | ||
b52bfee4 | 1934 | cpu = smp_processor_id(); |
fe44d621 PZ |
1935 | delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time); |
1936 | __this_cpu_add(irq_start_time, delta); | |
1937 | ||
8e92c201 | 1938 | irq_time_write_begin(); |
b52bfee4 VP |
1939 | /* |
1940 | * We do not account for softirq time from ksoftirqd here. | |
1941 | * We want to continue accounting softirq time to ksoftirqd thread | |
1942 | * in that case, so as not to confuse scheduler with a special task | |
1943 | * that do not consume any time, but still wants to run. | |
1944 | */ | |
1945 | if (hardirq_count()) | |
fe44d621 | 1946 | __this_cpu_add(cpu_hardirq_time, delta); |
4dd53d89 | 1947 | else if (in_serving_softirq() && curr != this_cpu_ksoftirqd()) |
fe44d621 | 1948 | __this_cpu_add(cpu_softirq_time, delta); |
b52bfee4 | 1949 | |
8e92c201 | 1950 | irq_time_write_end(); |
b52bfee4 VP |
1951 | local_irq_restore(flags); |
1952 | } | |
b7dadc38 | 1953 | EXPORT_SYMBOL_GPL(account_system_vtime); |
b52bfee4 | 1954 | |
fe44d621 | 1955 | static void update_rq_clock_task(struct rq *rq, s64 delta) |
aa483808 | 1956 | { |
fe44d621 PZ |
1957 | s64 irq_delta; |
1958 | ||
8e92c201 | 1959 | irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; |
fe44d621 PZ |
1960 | |
1961 | /* | |
1962 | * Since irq_time is only updated on {soft,}irq_exit, we might run into | |
1963 | * this case when a previous update_rq_clock() happened inside a | |
1964 | * {soft,}irq region. | |
1965 | * | |
1966 | * When this happens, we stop ->clock_task and only update the | |
1967 | * prev_irq_time stamp to account for the part that fit, so that a next | |
1968 | * update will consume the rest. This ensures ->clock_task is | |
1969 | * monotonic. | |
1970 | * | |
1971 | * It does however cause some slight miss-attribution of {soft,}irq | |
1972 | * time, a more accurate solution would be to update the irq_time using | |
1973 | * the current rq->clock timestamp, except that would require using | |
1974 | * atomic ops. | |
1975 | */ | |
1976 | if (irq_delta > delta) | |
1977 | irq_delta = delta; | |
1978 | ||
1979 | rq->prev_irq_time += irq_delta; | |
1980 | delta -= irq_delta; | |
1981 | rq->clock_task += delta; | |
1982 | ||
1983 | if (irq_delta && sched_feat(NONIRQ_POWER)) | |
1984 | sched_rt_avg_update(rq, irq_delta); | |
aa483808 VP |
1985 | } |
1986 | ||
abb74cef VP |
1987 | static int irqtime_account_hi_update(void) |
1988 | { | |
1989 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | |
1990 | unsigned long flags; | |
1991 | u64 latest_ns; | |
1992 | int ret = 0; | |
1993 | ||
1994 | local_irq_save(flags); | |
1995 | latest_ns = this_cpu_read(cpu_hardirq_time); | |
1996 | if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq)) | |
1997 | ret = 1; | |
1998 | local_irq_restore(flags); | |
1999 | return ret; | |
2000 | } | |
2001 | ||
2002 | static int irqtime_account_si_update(void) | |
2003 | { | |
2004 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | |
2005 | unsigned long flags; | |
2006 | u64 latest_ns; | |
2007 | int ret = 0; | |
2008 | ||
2009 | local_irq_save(flags); | |
2010 | latest_ns = this_cpu_read(cpu_softirq_time); | |
2011 | if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq)) | |
2012 | ret = 1; | |
2013 | local_irq_restore(flags); | |
2014 | return ret; | |
2015 | } | |
2016 | ||
fe44d621 | 2017 | #else /* CONFIG_IRQ_TIME_ACCOUNTING */ |
305e6835 | 2018 | |
abb74cef VP |
2019 | #define sched_clock_irqtime (0) |
2020 | ||
fe44d621 | 2021 | static void update_rq_clock_task(struct rq *rq, s64 delta) |
305e6835 | 2022 | { |
fe44d621 | 2023 | rq->clock_task += delta; |
305e6835 VP |
2024 | } |
2025 | ||
fe44d621 | 2026 | #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ |
b52bfee4 | 2027 | |
1e3c88bd PZ |
2028 | #include "sched_idletask.c" |
2029 | #include "sched_fair.c" | |
2030 | #include "sched_rt.c" | |
5091faa4 | 2031 | #include "sched_autogroup.c" |
34f971f6 | 2032 | #include "sched_stoptask.c" |
1e3c88bd PZ |
2033 | #ifdef CONFIG_SCHED_DEBUG |
2034 | # include "sched_debug.c" | |
2035 | #endif | |
2036 | ||
34f971f6 PZ |
2037 | void sched_set_stop_task(int cpu, struct task_struct *stop) |
2038 | { | |
2039 | struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; | |
2040 | struct task_struct *old_stop = cpu_rq(cpu)->stop; | |
2041 | ||
2042 | if (stop) { | |
2043 | /* | |
2044 | * Make it appear like a SCHED_FIFO task, its something | |
2045 | * userspace knows about and won't get confused about. | |
2046 | * | |
2047 | * Also, it will make PI more or less work without too | |
2048 | * much confusion -- but then, stop work should not | |
2049 | * rely on PI working anyway. | |
2050 | */ | |
2051 | sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); | |
2052 | ||
2053 | stop->sched_class = &stop_sched_class; | |
2054 | } | |
2055 | ||
2056 | cpu_rq(cpu)->stop = stop; | |
2057 | ||
2058 | if (old_stop) { | |
2059 | /* | |
2060 | * Reset it back to a normal scheduling class so that | |
2061 | * it can die in pieces. | |
2062 | */ | |
2063 | old_stop->sched_class = &rt_sched_class; | |
2064 | } | |
2065 | } | |
2066 | ||
14531189 | 2067 | /* |
dd41f596 | 2068 | * __normal_prio - return the priority that is based on the static prio |
14531189 | 2069 | */ |
14531189 IM |
2070 | static inline int __normal_prio(struct task_struct *p) |
2071 | { | |
dd41f596 | 2072 | return p->static_prio; |
14531189 IM |
2073 | } |
2074 | ||
b29739f9 IM |
2075 | /* |
2076 | * Calculate the expected normal priority: i.e. priority | |
2077 | * without taking RT-inheritance into account. Might be | |
2078 | * boosted by interactivity modifiers. Changes upon fork, | |
2079 | * setprio syscalls, and whenever the interactivity | |
2080 | * estimator recalculates. | |
2081 | */ | |
36c8b586 | 2082 | static inline int normal_prio(struct task_struct *p) |
b29739f9 IM |
2083 | { |
2084 | int prio; | |
2085 | ||
e05606d3 | 2086 | if (task_has_rt_policy(p)) |
b29739f9 IM |
2087 | prio = MAX_RT_PRIO-1 - p->rt_priority; |
2088 | else | |
2089 | prio = __normal_prio(p); | |
2090 | return prio; | |
2091 | } | |
2092 | ||
2093 | /* | |
2094 | * Calculate the current priority, i.e. the priority | |
2095 | * taken into account by the scheduler. This value might | |
2096 | * be boosted by RT tasks, or might be boosted by | |
2097 | * interactivity modifiers. Will be RT if the task got | |
2098 | * RT-boosted. If not then it returns p->normal_prio. | |
2099 | */ | |
36c8b586 | 2100 | static int effective_prio(struct task_struct *p) |
b29739f9 IM |
2101 | { |
2102 | p->normal_prio = normal_prio(p); | |
2103 | /* | |
2104 | * If we are RT tasks or we were boosted to RT priority, | |
2105 | * keep the priority unchanged. Otherwise, update priority | |
2106 | * to the normal priority: | |
2107 | */ | |
2108 | if (!rt_prio(p->prio)) | |
2109 | return p->normal_prio; | |
2110 | return p->prio; | |
2111 | } | |
2112 | ||
1da177e4 LT |
2113 | /** |
2114 | * task_curr - is this task currently executing on a CPU? | |
2115 | * @p: the task in question. | |
2116 | */ | |
36c8b586 | 2117 | inline int task_curr(const struct task_struct *p) |
1da177e4 LT |
2118 | { |
2119 | return cpu_curr(task_cpu(p)) == p; | |
2120 | } | |
2121 | ||
cb469845 SR |
2122 | static inline void check_class_changed(struct rq *rq, struct task_struct *p, |
2123 | const struct sched_class *prev_class, | |
da7a735e | 2124 | int oldprio) |
cb469845 SR |
2125 | { |
2126 | if (prev_class != p->sched_class) { | |
2127 | if (prev_class->switched_from) | |
da7a735e PZ |
2128 | prev_class->switched_from(rq, p); |
2129 | p->sched_class->switched_to(rq, p); | |
2130 | } else if (oldprio != p->prio) | |
2131 | p->sched_class->prio_changed(rq, p, oldprio); | |
cb469845 SR |
2132 | } |
2133 | ||
1e5a7405 PZ |
2134 | static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) |
2135 | { | |
2136 | const struct sched_class *class; | |
2137 | ||
2138 | if (p->sched_class == rq->curr->sched_class) { | |
2139 | rq->curr->sched_class->check_preempt_curr(rq, p, flags); | |
2140 | } else { | |
2141 | for_each_class(class) { | |
2142 | if (class == rq->curr->sched_class) | |
2143 | break; | |
2144 | if (class == p->sched_class) { | |
2145 | resched_task(rq->curr); | |
2146 | break; | |
2147 | } | |
2148 | } | |
2149 | } | |
2150 | ||
2151 | /* | |
2152 | * A queue event has occurred, and we're going to schedule. In | |
2153 | * this case, we can save a useless back to back clock update. | |
2154 | */ | |
fd2f4419 | 2155 | if (rq->curr->on_rq && test_tsk_need_resched(rq->curr)) |
1e5a7405 PZ |
2156 | rq->skip_clock_update = 1; |
2157 | } | |
2158 | ||
1da177e4 | 2159 | #ifdef CONFIG_SMP |
cc367732 IM |
2160 | /* |
2161 | * Is this task likely cache-hot: | |
2162 | */ | |
e7693a36 | 2163 | static int |
cc367732 IM |
2164 | task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) |
2165 | { | |
2166 | s64 delta; | |
2167 | ||
e6c8fba7 PZ |
2168 | if (p->sched_class != &fair_sched_class) |
2169 | return 0; | |
2170 | ||
ef8002f6 NR |
2171 | if (unlikely(p->policy == SCHED_IDLE)) |
2172 | return 0; | |
2173 | ||
f540a608 IM |
2174 | /* |
2175 | * Buddy candidates are cache hot: | |
2176 | */ | |
f685ceac | 2177 | if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running && |
4793241b PZ |
2178 | (&p->se == cfs_rq_of(&p->se)->next || |
2179 | &p->se == cfs_rq_of(&p->se)->last)) | |
f540a608 IM |
2180 | return 1; |
2181 | ||
6bc1665b IM |
2182 | if (sysctl_sched_migration_cost == -1) |
2183 | return 1; | |
2184 | if (sysctl_sched_migration_cost == 0) | |
2185 | return 0; | |
2186 | ||
cc367732 IM |
2187 | delta = now - p->se.exec_start; |
2188 | ||
2189 | return delta < (s64)sysctl_sched_migration_cost; | |
2190 | } | |
2191 | ||
dd41f596 | 2192 | void set_task_cpu(struct task_struct *p, unsigned int new_cpu) |
c65cc870 | 2193 | { |
e2912009 PZ |
2194 | #ifdef CONFIG_SCHED_DEBUG |
2195 | /* | |
2196 | * We should never call set_task_cpu() on a blocked task, | |
2197 | * ttwu() will sort out the placement. | |
2198 | */ | |
077614ee PZ |
2199 | WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && |
2200 | !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE)); | |
0122ec5b PZ |
2201 | |
2202 | #ifdef CONFIG_LOCKDEP | |
2203 | WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || | |
2204 | lockdep_is_held(&task_rq(p)->lock))); | |
2205 | #endif | |
e2912009 PZ |
2206 | #endif |
2207 | ||
de1d7286 | 2208 | trace_sched_migrate_task(p, new_cpu); |
cbc34ed1 | 2209 | |
0c69774e PZ |
2210 | if (task_cpu(p) != new_cpu) { |
2211 | p->se.nr_migrations++; | |
2212 | perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0); | |
2213 | } | |
dd41f596 IM |
2214 | |
2215 | __set_task_cpu(p, new_cpu); | |
c65cc870 IM |
2216 | } |
2217 | ||
969c7921 | 2218 | struct migration_arg { |
36c8b586 | 2219 | struct task_struct *task; |
1da177e4 | 2220 | int dest_cpu; |
70b97a7f | 2221 | }; |
1da177e4 | 2222 | |
969c7921 TH |
2223 | static int migration_cpu_stop(void *data); |
2224 | ||
1da177e4 LT |
2225 | /* |
2226 | * wait_task_inactive - wait for a thread to unschedule. | |
2227 | * | |
85ba2d86 RM |
2228 | * If @match_state is nonzero, it's the @p->state value just checked and |
2229 | * not expected to change. If it changes, i.e. @p might have woken up, | |
2230 | * then return zero. When we succeed in waiting for @p to be off its CPU, | |
2231 | * we return a positive number (its total switch count). If a second call | |
2232 | * a short while later returns the same number, the caller can be sure that | |
2233 | * @p has remained unscheduled the whole time. | |
2234 | * | |
1da177e4 LT |
2235 | * The caller must ensure that the task *will* unschedule sometime soon, |
2236 | * else this function might spin for a *long* time. This function can't | |
2237 | * be called with interrupts off, or it may introduce deadlock with | |
2238 | * smp_call_function() if an IPI is sent by the same process we are | |
2239 | * waiting to become inactive. | |
2240 | */ | |
85ba2d86 | 2241 | unsigned long wait_task_inactive(struct task_struct *p, long match_state) |
1da177e4 LT |
2242 | { |
2243 | unsigned long flags; | |
dd41f596 | 2244 | int running, on_rq; |
85ba2d86 | 2245 | unsigned long ncsw; |
70b97a7f | 2246 | struct rq *rq; |
1da177e4 | 2247 | |
3a5c359a AK |
2248 | for (;;) { |
2249 | /* | |
2250 | * We do the initial early heuristics without holding | |
2251 | * any task-queue locks at all. We'll only try to get | |
2252 | * the runqueue lock when things look like they will | |
2253 | * work out! | |
2254 | */ | |
2255 | rq = task_rq(p); | |
fa490cfd | 2256 | |
3a5c359a AK |
2257 | /* |
2258 | * If the task is actively running on another CPU | |
2259 | * still, just relax and busy-wait without holding | |
2260 | * any locks. | |
2261 | * | |
2262 | * NOTE! Since we don't hold any locks, it's not | |
2263 | * even sure that "rq" stays as the right runqueue! | |
2264 | * But we don't care, since "task_running()" will | |
2265 | * return false if the runqueue has changed and p | |
2266 | * is actually now running somewhere else! | |
2267 | */ | |
85ba2d86 RM |
2268 | while (task_running(rq, p)) { |
2269 | if (match_state && unlikely(p->state != match_state)) | |
2270 | return 0; | |
3a5c359a | 2271 | cpu_relax(); |
85ba2d86 | 2272 | } |
fa490cfd | 2273 | |
3a5c359a AK |
2274 | /* |
2275 | * Ok, time to look more closely! We need the rq | |
2276 | * lock now, to be *sure*. If we're wrong, we'll | |
2277 | * just go back and repeat. | |
2278 | */ | |
2279 | rq = task_rq_lock(p, &flags); | |
27a9da65 | 2280 | trace_sched_wait_task(p); |
3a5c359a | 2281 | running = task_running(rq, p); |
fd2f4419 | 2282 | on_rq = p->on_rq; |
85ba2d86 | 2283 | ncsw = 0; |
f31e11d8 | 2284 | if (!match_state || p->state == match_state) |
93dcf55f | 2285 | ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ |
0122ec5b | 2286 | task_rq_unlock(rq, p, &flags); |
fa490cfd | 2287 | |
85ba2d86 RM |
2288 | /* |
2289 | * If it changed from the expected state, bail out now. | |
2290 | */ | |
2291 | if (unlikely(!ncsw)) | |
2292 | break; | |
2293 | ||
3a5c359a AK |
2294 | /* |
2295 | * Was it really running after all now that we | |
2296 | * checked with the proper locks actually held? | |
2297 | * | |
2298 | * Oops. Go back and try again.. | |
2299 | */ | |
2300 | if (unlikely(running)) { | |
2301 | cpu_relax(); | |
2302 | continue; | |
2303 | } | |
fa490cfd | 2304 | |
3a5c359a AK |
2305 | /* |
2306 | * It's not enough that it's not actively running, | |
2307 | * it must be off the runqueue _entirely_, and not | |
2308 | * preempted! | |
2309 | * | |
80dd99b3 | 2310 | * So if it was still runnable (but just not actively |
3a5c359a AK |
2311 | * running right now), it's preempted, and we should |
2312 | * yield - it could be a while. | |
2313 | */ | |
2314 | if (unlikely(on_rq)) { | |
8eb90c30 TG |
2315 | ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); |
2316 | ||
2317 | set_current_state(TASK_UNINTERRUPTIBLE); | |
2318 | schedule_hrtimeout(&to, HRTIMER_MODE_REL); | |
3a5c359a AK |
2319 | continue; |
2320 | } | |
fa490cfd | 2321 | |
3a5c359a AK |
2322 | /* |
2323 | * Ahh, all good. It wasn't running, and it wasn't | |
2324 | * runnable, which means that it will never become | |
2325 | * running in the future either. We're all done! | |
2326 | */ | |
2327 | break; | |
2328 | } | |
85ba2d86 RM |
2329 | |
2330 | return ncsw; | |
1da177e4 LT |
2331 | } |
2332 | ||
2333 | /*** | |
2334 | * kick_process - kick a running thread to enter/exit the kernel | |
2335 | * @p: the to-be-kicked thread | |
2336 | * | |
2337 | * Cause a process which is running on another CPU to enter | |
2338 | * kernel-mode, without any delay. (to get signals handled.) | |
2339 | * | |
25985edc | 2340 | * NOTE: this function doesn't have to take the runqueue lock, |
1da177e4 LT |
2341 | * because all it wants to ensure is that the remote task enters |
2342 | * the kernel. If the IPI races and the task has been migrated | |
2343 | * to another CPU then no harm is done and the purpose has been | |
2344 | * achieved as well. | |
2345 | */ | |
36c8b586 | 2346 | void kick_process(struct task_struct *p) |
1da177e4 LT |
2347 | { |
2348 | int cpu; | |
2349 | ||
2350 | preempt_disable(); | |
2351 | cpu = task_cpu(p); | |
2352 | if ((cpu != smp_processor_id()) && task_curr(p)) | |
2353 | smp_send_reschedule(cpu); | |
2354 | preempt_enable(); | |
2355 | } | |
b43e3521 | 2356 | EXPORT_SYMBOL_GPL(kick_process); |
476d139c | 2357 | #endif /* CONFIG_SMP */ |
1da177e4 | 2358 | |
970b13ba | 2359 | #ifdef CONFIG_SMP |
30da688e | 2360 | /* |
013fdb80 | 2361 | * ->cpus_allowed is protected by both rq->lock and p->pi_lock |
30da688e | 2362 | */ |
5da9a0fb PZ |
2363 | static int select_fallback_rq(int cpu, struct task_struct *p) |
2364 | { | |
2365 | int dest_cpu; | |
2366 | const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu)); | |
2367 | ||
2368 | /* Look for allowed, online CPU in same node. */ | |
2369 | for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask) | |
2370 | if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) | |
2371 | return dest_cpu; | |
2372 | ||
2373 | /* Any allowed, online CPU? */ | |
2374 | dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask); | |
2375 | if (dest_cpu < nr_cpu_ids) | |
2376 | return dest_cpu; | |
2377 | ||
2378 | /* No more Mr. Nice Guy. */ | |
48c5ccae PZ |
2379 | dest_cpu = cpuset_cpus_allowed_fallback(p); |
2380 | /* | |
2381 | * Don't tell them about moving exiting tasks or | |
2382 | * kernel threads (both mm NULL), since they never | |
2383 | * leave kernel. | |
2384 | */ | |
2385 | if (p->mm && printk_ratelimit()) { | |
2386 | printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n", | |
2387 | task_pid_nr(p), p->comm, cpu); | |
5da9a0fb PZ |
2388 | } |
2389 | ||
2390 | return dest_cpu; | |
2391 | } | |
2392 | ||
e2912009 | 2393 | /* |
013fdb80 | 2394 | * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. |
e2912009 | 2395 | */ |
970b13ba | 2396 | static inline |
7608dec2 | 2397 | int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags) |
970b13ba | 2398 | { |
7608dec2 | 2399 | int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags); |
e2912009 PZ |
2400 | |
2401 | /* | |
2402 | * In order not to call set_task_cpu() on a blocking task we need | |
2403 | * to rely on ttwu() to place the task on a valid ->cpus_allowed | |
2404 | * cpu. | |
2405 | * | |
2406 | * Since this is common to all placement strategies, this lives here. | |
2407 | * | |
2408 | * [ this allows ->select_task() to simply return task_cpu(p) and | |
2409 | * not worry about this generic constraint ] | |
2410 | */ | |
2411 | if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) || | |
70f11205 | 2412 | !cpu_online(cpu))) |
5da9a0fb | 2413 | cpu = select_fallback_rq(task_cpu(p), p); |
e2912009 PZ |
2414 | |
2415 | return cpu; | |
970b13ba | 2416 | } |
09a40af5 MG |
2417 | |
2418 | static void update_avg(u64 *avg, u64 sample) | |
2419 | { | |
2420 | s64 diff = sample - *avg; | |
2421 | *avg += diff >> 3; | |
2422 | } | |
970b13ba PZ |
2423 | #endif |
2424 | ||
d7c01d27 | 2425 | static void |
b84cb5df | 2426 | ttwu_stat(struct task_struct *p, int cpu, int wake_flags) |
9ed3811a | 2427 | { |
d7c01d27 | 2428 | #ifdef CONFIG_SCHEDSTATS |
b84cb5df PZ |
2429 | struct rq *rq = this_rq(); |
2430 | ||
d7c01d27 PZ |
2431 | #ifdef CONFIG_SMP |
2432 | int this_cpu = smp_processor_id(); | |
2433 | ||
2434 | if (cpu == this_cpu) { | |
2435 | schedstat_inc(rq, ttwu_local); | |
2436 | schedstat_inc(p, se.statistics.nr_wakeups_local); | |
2437 | } else { | |
2438 | struct sched_domain *sd; | |
2439 | ||
2440 | schedstat_inc(p, se.statistics.nr_wakeups_remote); | |
057f3fad | 2441 | rcu_read_lock(); |
d7c01d27 PZ |
2442 | for_each_domain(this_cpu, sd) { |
2443 | if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { | |
2444 | schedstat_inc(sd, ttwu_wake_remote); | |
2445 | break; | |
2446 | } | |
2447 | } | |
057f3fad | 2448 | rcu_read_unlock(); |
d7c01d27 PZ |
2449 | } |
2450 | #endif /* CONFIG_SMP */ | |
2451 | ||
2452 | schedstat_inc(rq, ttwu_count); | |
9ed3811a | 2453 | schedstat_inc(p, se.statistics.nr_wakeups); |
d7c01d27 PZ |
2454 | |
2455 | if (wake_flags & WF_SYNC) | |
9ed3811a | 2456 | schedstat_inc(p, se.statistics.nr_wakeups_sync); |
d7c01d27 PZ |
2457 | |
2458 | if (cpu != task_cpu(p)) | |
9ed3811a | 2459 | schedstat_inc(p, se.statistics.nr_wakeups_migrate); |
9ed3811a | 2460 | |
d7c01d27 PZ |
2461 | #endif /* CONFIG_SCHEDSTATS */ |
2462 | } | |
2463 | ||
2464 | static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) | |
2465 | { | |
9ed3811a | 2466 | activate_task(rq, p, en_flags); |
fd2f4419 | 2467 | p->on_rq = 1; |
c2f7115e PZ |
2468 | |
2469 | /* if a worker is waking up, notify workqueue */ | |
2470 | if (p->flags & PF_WQ_WORKER) | |
2471 | wq_worker_waking_up(p, cpu_of(rq)); | |
9ed3811a TH |
2472 | } |
2473 | ||
23f41eeb PZ |
2474 | /* |
2475 | * Mark the task runnable and perform wakeup-preemption. | |
2476 | */ | |
89363381 | 2477 | static void |
23f41eeb | 2478 | ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) |
9ed3811a | 2479 | { |
89363381 | 2480 | trace_sched_wakeup(p, true); |
9ed3811a TH |
2481 | check_preempt_curr(rq, p, wake_flags); |
2482 | ||
2483 | p->state = TASK_RUNNING; | |
2484 | #ifdef CONFIG_SMP | |
2485 | if (p->sched_class->task_woken) | |
2486 | p->sched_class->task_woken(rq, p); | |
2487 | ||
2488 | if (unlikely(rq->idle_stamp)) { | |
2489 | u64 delta = rq->clock - rq->idle_stamp; | |
2490 | u64 max = 2*sysctl_sched_migration_cost; | |
2491 | ||
2492 | if (delta > max) | |
2493 | rq->avg_idle = max; | |
2494 | else | |
2495 | update_avg(&rq->avg_idle, delta); | |
2496 | rq->idle_stamp = 0; | |
2497 | } | |
2498 | #endif | |
2499 | } | |
2500 | ||
c05fbafb PZ |
2501 | static void |
2502 | ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) | |
2503 | { | |
2504 | #ifdef CONFIG_SMP | |
2505 | if (p->sched_contributes_to_load) | |
2506 | rq->nr_uninterruptible--; | |
2507 | #endif | |
2508 | ||
2509 | ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); | |
2510 | ttwu_do_wakeup(rq, p, wake_flags); | |
2511 | } | |
2512 | ||
2513 | /* | |
2514 | * Called in case the task @p isn't fully descheduled from its runqueue, | |
2515 | * in this case we must do a remote wakeup. Its a 'light' wakeup though, | |
2516 | * since all we need to do is flip p->state to TASK_RUNNING, since | |
2517 | * the task is still ->on_rq. | |
2518 | */ | |
2519 | static int ttwu_remote(struct task_struct *p, int wake_flags) | |
2520 | { | |
2521 | struct rq *rq; | |
2522 | int ret = 0; | |
2523 | ||
2524 | rq = __task_rq_lock(p); | |
2525 | if (p->on_rq) { | |
2526 | ttwu_do_wakeup(rq, p, wake_flags); | |
2527 | ret = 1; | |
2528 | } | |
2529 | __task_rq_unlock(rq); | |
2530 | ||
2531 | return ret; | |
2532 | } | |
2533 | ||
317f3941 PZ |
2534 | #ifdef CONFIG_SMP |
2535 | static void sched_ttwu_pending(void) | |
2536 | { | |
2537 | struct rq *rq = this_rq(); | |
2538 | struct task_struct *list = xchg(&rq->wake_list, NULL); | |
2539 | ||
2540 | if (!list) | |
2541 | return; | |
2542 | ||
2543 | raw_spin_lock(&rq->lock); | |
2544 | ||
2545 | while (list) { | |
2546 | struct task_struct *p = list; | |
2547 | list = list->wake_entry; | |
2548 | ttwu_do_activate(rq, p, 0); | |
2549 | } | |
2550 | ||
2551 | raw_spin_unlock(&rq->lock); | |
2552 | } | |
2553 | ||
2554 | void scheduler_ipi(void) | |
2555 | { | |
2556 | sched_ttwu_pending(); | |
2557 | } | |
2558 | ||
2559 | static void ttwu_queue_remote(struct task_struct *p, int cpu) | |
2560 | { | |
2561 | struct rq *rq = cpu_rq(cpu); | |
2562 | struct task_struct *next = rq->wake_list; | |
2563 | ||
2564 | for (;;) { | |
2565 | struct task_struct *old = next; | |
2566 | ||
2567 | p->wake_entry = next; | |
2568 | next = cmpxchg(&rq->wake_list, old, p); | |
2569 | if (next == old) | |
2570 | break; | |
2571 | } | |
2572 | ||
2573 | if (!next) | |
2574 | smp_send_reschedule(cpu); | |
2575 | } | |
2576 | #endif | |
2577 | ||
c05fbafb PZ |
2578 | static void ttwu_queue(struct task_struct *p, int cpu) |
2579 | { | |
2580 | struct rq *rq = cpu_rq(cpu); | |
2581 | ||
17d9f311 | 2582 | #if defined(CONFIG_SMP) |
317f3941 PZ |
2583 | if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) { |
2584 | ttwu_queue_remote(p, cpu); | |
2585 | return; | |
2586 | } | |
2587 | #endif | |
2588 | ||
c05fbafb PZ |
2589 | raw_spin_lock(&rq->lock); |
2590 | ttwu_do_activate(rq, p, 0); | |
2591 | raw_spin_unlock(&rq->lock); | |
9ed3811a TH |
2592 | } |
2593 | ||
2594 | /** | |
1da177e4 | 2595 | * try_to_wake_up - wake up a thread |
9ed3811a | 2596 | * @p: the thread to be awakened |
1da177e4 | 2597 | * @state: the mask of task states that can be woken |
9ed3811a | 2598 | * @wake_flags: wake modifier flags (WF_*) |
1da177e4 LT |
2599 | * |
2600 | * Put it on the run-queue if it's not already there. The "current" | |
2601 | * thread is always on the run-queue (except when the actual | |
2602 | * re-schedule is in progress), and as such you're allowed to do | |
2603 | * the simpler "current->state = TASK_RUNNING" to mark yourself | |
2604 | * runnable without the overhead of this. | |
2605 | * | |
9ed3811a TH |
2606 | * Returns %true if @p was woken up, %false if it was already running |
2607 | * or @state didn't match @p's state. | |
1da177e4 | 2608 | */ |
e4a52bcb PZ |
2609 | static int |
2610 | try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) | |
1da177e4 | 2611 | { |
1da177e4 | 2612 | unsigned long flags; |
c05fbafb | 2613 | int cpu, success = 0; |
2398f2c6 | 2614 | |
04e2f174 | 2615 | smp_wmb(); |
013fdb80 | 2616 | raw_spin_lock_irqsave(&p->pi_lock, flags); |
e9c84311 | 2617 | if (!(p->state & state)) |
1da177e4 LT |
2618 | goto out; |
2619 | ||
c05fbafb | 2620 | success = 1; /* we're going to change ->state */ |
1da177e4 | 2621 | cpu = task_cpu(p); |
1da177e4 | 2622 | |
c05fbafb PZ |
2623 | if (p->on_rq && ttwu_remote(p, wake_flags)) |
2624 | goto stat; | |
1da177e4 | 2625 | |
1da177e4 | 2626 | #ifdef CONFIG_SMP |
e9c84311 | 2627 | /* |
c05fbafb PZ |
2628 | * If the owning (remote) cpu is still in the middle of schedule() with |
2629 | * this task as prev, wait until its done referencing the task. | |
e9c84311 | 2630 | */ |
e4a52bcb PZ |
2631 | while (p->on_cpu) { |
2632 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | |
2633 | /* | |
2634 | * If called from interrupt context we could have landed in the | |
2635 | * middle of schedule(), in this case we should take care not | |
2636 | * to spin on ->on_cpu if p is current, since that would | |
2637 | * deadlock. | |
2638 | */ | |
c05fbafb PZ |
2639 | if (p == current) { |
2640 | ttwu_queue(p, cpu); | |
2641 | goto stat; | |
2642 | } | |
e4a52bcb PZ |
2643 | #endif |
2644 | cpu_relax(); | |
371fd7e7 | 2645 | } |
0970d299 | 2646 | /* |
e4a52bcb | 2647 | * Pairs with the smp_wmb() in finish_lock_switch(). |
0970d299 | 2648 | */ |
e4a52bcb | 2649 | smp_rmb(); |
1da177e4 | 2650 | |
a8e4f2ea | 2651 | p->sched_contributes_to_load = !!task_contributes_to_load(p); |
e9c84311 | 2652 | p->state = TASK_WAKING; |
e7693a36 | 2653 | |
e4a52bcb | 2654 | if (p->sched_class->task_waking) |
74f8e4b2 | 2655 | p->sched_class->task_waking(p); |
efbbd05a | 2656 | |
7608dec2 | 2657 | cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags); |
c05fbafb | 2658 | if (task_cpu(p) != cpu) |
e4a52bcb | 2659 | set_task_cpu(p, cpu); |
1da177e4 | 2660 | #endif /* CONFIG_SMP */ |
1da177e4 | 2661 | |
c05fbafb PZ |
2662 | ttwu_queue(p, cpu); |
2663 | stat: | |
b84cb5df | 2664 | ttwu_stat(p, cpu, wake_flags); |
1da177e4 | 2665 | out: |
013fdb80 | 2666 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); |
1da177e4 LT |
2667 | |
2668 | return success; | |
2669 | } | |
2670 | ||
21aa9af0 TH |
2671 | /** |
2672 | * try_to_wake_up_local - try to wake up a local task with rq lock held | |
2673 | * @p: the thread to be awakened | |
2674 | * | |
2acca55e | 2675 | * Put @p on the run-queue if it's not already there. The caller must |
21aa9af0 | 2676 | * ensure that this_rq() is locked, @p is bound to this_rq() and not |
2acca55e | 2677 | * the current task. |
21aa9af0 TH |
2678 | */ |
2679 | static void try_to_wake_up_local(struct task_struct *p) | |
2680 | { | |
2681 | struct rq *rq = task_rq(p); | |
21aa9af0 TH |
2682 | |
2683 | BUG_ON(rq != this_rq()); | |
2684 | BUG_ON(p == current); | |
2685 | lockdep_assert_held(&rq->lock); | |
2686 | ||
2acca55e PZ |
2687 | if (!raw_spin_trylock(&p->pi_lock)) { |
2688 | raw_spin_unlock(&rq->lock); | |
2689 | raw_spin_lock(&p->pi_lock); | |
2690 | raw_spin_lock(&rq->lock); | |
2691 | } | |
2692 | ||
21aa9af0 | 2693 | if (!(p->state & TASK_NORMAL)) |
2acca55e | 2694 | goto out; |
21aa9af0 | 2695 | |
fd2f4419 | 2696 | if (!p->on_rq) |
d7c01d27 PZ |
2697 | ttwu_activate(rq, p, ENQUEUE_WAKEUP); |
2698 | ||
23f41eeb | 2699 | ttwu_do_wakeup(rq, p, 0); |
b84cb5df | 2700 | ttwu_stat(p, smp_processor_id(), 0); |
2acca55e PZ |
2701 | out: |
2702 | raw_spin_unlock(&p->pi_lock); | |
21aa9af0 TH |
2703 | } |
2704 | ||
50fa610a DH |
2705 | /** |
2706 | * wake_up_process - Wake up a specific process | |
2707 | * @p: The process to be woken up. | |
2708 | * | |
2709 | * Attempt to wake up the nominated process and move it to the set of runnable | |
2710 | * processes. Returns 1 if the process was woken up, 0 if it was already | |
2711 | * running. | |
2712 | * | |
2713 | * It may be assumed that this function implies a write memory barrier before | |
2714 | * changing the task state if and only if any tasks are woken up. | |
2715 | */ | |
7ad5b3a5 | 2716 | int wake_up_process(struct task_struct *p) |
1da177e4 | 2717 | { |
d9514f6c | 2718 | return try_to_wake_up(p, TASK_ALL, 0); |
1da177e4 | 2719 | } |
1da177e4 LT |
2720 | EXPORT_SYMBOL(wake_up_process); |
2721 | ||
7ad5b3a5 | 2722 | int wake_up_state(struct task_struct *p, unsigned int state) |
1da177e4 LT |
2723 | { |
2724 | return try_to_wake_up(p, state, 0); | |
2725 | } | |
2726 | ||
1da177e4 LT |
2727 | /* |
2728 | * Perform scheduler related setup for a newly forked process p. | |
2729 | * p is forked by current. | |
dd41f596 IM |
2730 | * |
2731 | * __sched_fork() is basic setup used by init_idle() too: | |
2732 | */ | |
2733 | static void __sched_fork(struct task_struct *p) | |
2734 | { | |
fd2f4419 PZ |
2735 | p->on_rq = 0; |
2736 | ||
2737 | p->se.on_rq = 0; | |
dd41f596 IM |
2738 | p->se.exec_start = 0; |
2739 | p->se.sum_exec_runtime = 0; | |
f6cf891c | 2740 | p->se.prev_sum_exec_runtime = 0; |
6c594c21 | 2741 | p->se.nr_migrations = 0; |
da7a735e | 2742 | p->se.vruntime = 0; |
fd2f4419 | 2743 | INIT_LIST_HEAD(&p->se.group_node); |
6cfb0d5d IM |
2744 | |
2745 | #ifdef CONFIG_SCHEDSTATS | |
41acab88 | 2746 | memset(&p->se.statistics, 0, sizeof(p->se.statistics)); |
6cfb0d5d | 2747 | #endif |
476d139c | 2748 | |
fa717060 | 2749 | INIT_LIST_HEAD(&p->rt.run_list); |
476d139c | 2750 | |
e107be36 AK |
2751 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
2752 | INIT_HLIST_HEAD(&p->preempt_notifiers); | |
2753 | #endif | |
dd41f596 IM |
2754 | } |
2755 | ||
2756 | /* | |
2757 | * fork()/clone()-time setup: | |
2758 | */ | |
3e51e3ed | 2759 | void sched_fork(struct task_struct *p) |
dd41f596 | 2760 | { |
0122ec5b | 2761 | unsigned long flags; |
dd41f596 IM |
2762 | int cpu = get_cpu(); |
2763 | ||
2764 | __sched_fork(p); | |
06b83b5f | 2765 | /* |
0017d735 | 2766 | * We mark the process as running here. This guarantees that |
06b83b5f PZ |
2767 | * nobody will actually run it, and a signal or other external |
2768 | * event cannot wake it up and insert it on the runqueue either. | |
2769 | */ | |
0017d735 | 2770 | p->state = TASK_RUNNING; |
dd41f596 | 2771 | |
b9dc29e7 MG |
2772 | /* |
2773 | * Revert to default priority/policy on fork if requested. | |
2774 | */ | |
2775 | if (unlikely(p->sched_reset_on_fork)) { | |
f83f9ac2 | 2776 | if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) { |
b9dc29e7 | 2777 | p->policy = SCHED_NORMAL; |
f83f9ac2 PW |
2778 | p->normal_prio = p->static_prio; |
2779 | } | |
b9dc29e7 | 2780 | |
6c697bdf MG |
2781 | if (PRIO_TO_NICE(p->static_prio) < 0) { |
2782 | p->static_prio = NICE_TO_PRIO(0); | |
f83f9ac2 | 2783 | p->normal_prio = p->static_prio; |
6c697bdf MG |
2784 | set_load_weight(p); |
2785 | } | |
2786 | ||
b9dc29e7 MG |
2787 | /* |
2788 | * We don't need the reset flag anymore after the fork. It has | |
2789 | * fulfilled its duty: | |
2790 | */ | |
2791 | p->sched_reset_on_fork = 0; | |
2792 | } | |
ca94c442 | 2793 | |
f83f9ac2 PW |
2794 | /* |
2795 | * Make sure we do not leak PI boosting priority to the child. | |
2796 | */ | |
2797 | p->prio = current->normal_prio; | |
2798 | ||
2ddbf952 HS |
2799 | if (!rt_prio(p->prio)) |
2800 | p->sched_class = &fair_sched_class; | |
b29739f9 | 2801 | |
cd29fe6f PZ |
2802 | if (p->sched_class->task_fork) |
2803 | p->sched_class->task_fork(p); | |
2804 | ||
86951599 PZ |
2805 | /* |
2806 | * The child is not yet in the pid-hash so no cgroup attach races, | |
2807 | * and the cgroup is pinned to this child due to cgroup_fork() | |
2808 | * is ran before sched_fork(). | |
2809 | * | |
2810 | * Silence PROVE_RCU. | |
2811 | */ | |
0122ec5b | 2812 | raw_spin_lock_irqsave(&p->pi_lock, flags); |
5f3edc1b | 2813 | set_task_cpu(p, cpu); |
0122ec5b | 2814 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); |
5f3edc1b | 2815 | |
52f17b6c | 2816 | #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) |
dd41f596 | 2817 | if (likely(sched_info_on())) |
52f17b6c | 2818 | memset(&p->sched_info, 0, sizeof(p->sched_info)); |
1da177e4 | 2819 | #endif |
3ca7a440 PZ |
2820 | #if defined(CONFIG_SMP) |
2821 | p->on_cpu = 0; | |
4866cde0 | 2822 | #endif |
1da177e4 | 2823 | #ifdef CONFIG_PREEMPT |
4866cde0 | 2824 | /* Want to start with kernel preemption disabled. */ |
a1261f54 | 2825 | task_thread_info(p)->preempt_count = 1; |
1da177e4 | 2826 | #endif |
806c09a7 | 2827 | #ifdef CONFIG_SMP |
917b627d | 2828 | plist_node_init(&p->pushable_tasks, MAX_PRIO); |
806c09a7 | 2829 | #endif |
917b627d | 2830 | |
476d139c | 2831 | put_cpu(); |
1da177e4 LT |
2832 | } |
2833 | ||
2834 | /* | |
2835 | * wake_up_new_task - wake up a newly created task for the first time. | |
2836 | * | |
2837 | * This function will do some initial scheduler statistics housekeeping | |
2838 | * that must be done for every newly created context, then puts the task | |
2839 | * on the runqueue and wakes it. | |
2840 | */ | |
3e51e3ed | 2841 | void wake_up_new_task(struct task_struct *p) |
1da177e4 LT |
2842 | { |
2843 | unsigned long flags; | |
dd41f596 | 2844 | struct rq *rq; |
fabf318e | 2845 | |
ab2515c4 | 2846 | raw_spin_lock_irqsave(&p->pi_lock, flags); |
fabf318e PZ |
2847 | #ifdef CONFIG_SMP |
2848 | /* | |
2849 | * Fork balancing, do it here and not earlier because: | |
2850 | * - cpus_allowed can change in the fork path | |
2851 | * - any previously selected cpu might disappear through hotplug | |
fabf318e | 2852 | */ |
ab2515c4 | 2853 | set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0)); |
0017d735 PZ |
2854 | #endif |
2855 | ||
ab2515c4 | 2856 | rq = __task_rq_lock(p); |
cd29fe6f | 2857 | activate_task(rq, p, 0); |
fd2f4419 | 2858 | p->on_rq = 1; |
89363381 | 2859 | trace_sched_wakeup_new(p, true); |
a7558e01 | 2860 | check_preempt_curr(rq, p, WF_FORK); |
9a897c5a | 2861 | #ifdef CONFIG_SMP |
efbbd05a PZ |
2862 | if (p->sched_class->task_woken) |
2863 | p->sched_class->task_woken(rq, p); | |
9a897c5a | 2864 | #endif |
0122ec5b | 2865 | task_rq_unlock(rq, p, &flags); |
1da177e4 LT |
2866 | } |
2867 | ||
e107be36 AK |
2868 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
2869 | ||
2870 | /** | |
80dd99b3 | 2871 | * preempt_notifier_register - tell me when current is being preempted & rescheduled |
421cee29 | 2872 | * @notifier: notifier struct to register |
e107be36 AK |
2873 | */ |
2874 | void preempt_notifier_register(struct preempt_notifier *notifier) | |
2875 | { | |
2876 | hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); | |
2877 | } | |
2878 | EXPORT_SYMBOL_GPL(preempt_notifier_register); | |
2879 | ||
2880 | /** | |
2881 | * preempt_notifier_unregister - no longer interested in preemption notifications | |
421cee29 | 2882 | * @notifier: notifier struct to unregister |
e107be36 AK |
2883 | * |
2884 | * This is safe to call from within a preemption notifier. | |
2885 | */ | |
2886 | void preempt_notifier_unregister(struct preempt_notifier *notifier) | |
2887 | { | |
2888 | hlist_del(¬ifier->link); | |
2889 | } | |
2890 | EXPORT_SYMBOL_GPL(preempt_notifier_unregister); | |
2891 | ||
2892 | static void fire_sched_in_preempt_notifiers(struct task_struct *curr) | |
2893 | { | |
2894 | struct preempt_notifier *notifier; | |
2895 | struct hlist_node *node; | |
2896 | ||
2897 | hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) | |
2898 | notifier->ops->sched_in(notifier, raw_smp_processor_id()); | |
2899 | } | |
2900 | ||
2901 | static void | |
2902 | fire_sched_out_preempt_notifiers(struct task_struct *curr, | |
2903 | struct task_struct *next) | |
2904 | { | |
2905 | struct preempt_notifier *notifier; | |
2906 | struct hlist_node *node; | |
2907 | ||
2908 | hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) | |
2909 | notifier->ops->sched_out(notifier, next); | |
2910 | } | |
2911 | ||
6d6bc0ad | 2912 | #else /* !CONFIG_PREEMPT_NOTIFIERS */ |
e107be36 AK |
2913 | |
2914 | static void fire_sched_in_preempt_notifiers(struct task_struct *curr) | |
2915 | { | |
2916 | } | |
2917 | ||
2918 | static void | |
2919 | fire_sched_out_preempt_notifiers(struct task_struct *curr, | |
2920 | struct task_struct *next) | |
2921 | { | |
2922 | } | |
2923 | ||
6d6bc0ad | 2924 | #endif /* CONFIG_PREEMPT_NOTIFIERS */ |
e107be36 | 2925 | |
4866cde0 NP |
2926 | /** |
2927 | * prepare_task_switch - prepare to switch tasks | |
2928 | * @rq: the runqueue preparing to switch | |
421cee29 | 2929 | * @prev: the current task that is being switched out |
4866cde0 NP |
2930 | * @next: the task we are going to switch to. |
2931 | * | |
2932 | * This is called with the rq lock held and interrupts off. It must | |
2933 | * be paired with a subsequent finish_task_switch after the context | |
2934 | * switch. | |
2935 | * | |
2936 | * prepare_task_switch sets up locking and calls architecture specific | |
2937 | * hooks. | |
2938 | */ | |
e107be36 AK |
2939 | static inline void |
2940 | prepare_task_switch(struct rq *rq, struct task_struct *prev, | |
2941 | struct task_struct *next) | |
4866cde0 | 2942 | { |
fe4b04fa PZ |
2943 | sched_info_switch(prev, next); |
2944 | perf_event_task_sched_out(prev, next); | |
e107be36 | 2945 | fire_sched_out_preempt_notifiers(prev, next); |
4866cde0 NP |
2946 | prepare_lock_switch(rq, next); |
2947 | prepare_arch_switch(next); | |
fe4b04fa | 2948 | trace_sched_switch(prev, next); |
4866cde0 NP |
2949 | } |
2950 | ||
1da177e4 LT |
2951 | /** |
2952 | * finish_task_switch - clean up after a task-switch | |
344babaa | 2953 | * @rq: runqueue associated with task-switch |
1da177e4 LT |
2954 | * @prev: the thread we just switched away from. |
2955 | * | |
4866cde0 NP |
2956 | * finish_task_switch must be called after the context switch, paired |
2957 | * with a prepare_task_switch call before the context switch. | |
2958 | * finish_task_switch will reconcile locking set up by prepare_task_switch, | |
2959 | * and do any other architecture-specific cleanup actions. | |
1da177e4 LT |
2960 | * |
2961 | * Note that we may have delayed dropping an mm in context_switch(). If | |
41a2d6cf | 2962 | * so, we finish that here outside of the runqueue lock. (Doing it |
1da177e4 LT |
2963 | * with the lock held can cause deadlocks; see schedule() for |
2964 | * details.) | |
2965 | */ | |
a9957449 | 2966 | static void finish_task_switch(struct rq *rq, struct task_struct *prev) |
1da177e4 LT |
2967 | __releases(rq->lock) |
2968 | { | |
1da177e4 | 2969 | struct mm_struct *mm = rq->prev_mm; |
55a101f8 | 2970 | long prev_state; |
1da177e4 LT |
2971 | |
2972 | rq->prev_mm = NULL; | |
2973 | ||
2974 | /* | |
2975 | * A task struct has one reference for the use as "current". | |
c394cc9f | 2976 | * If a task dies, then it sets TASK_DEAD in tsk->state and calls |
55a101f8 ON |
2977 | * schedule one last time. The schedule call will never return, and |
2978 | * the scheduled task must drop that reference. | |
c394cc9f | 2979 | * The test for TASK_DEAD must occur while the runqueue locks are |
1da177e4 LT |
2980 | * still held, otherwise prev could be scheduled on another cpu, die |
2981 | * there before we look at prev->state, and then the reference would | |
2982 | * be dropped twice. | |
2983 | * Manfred Spraul <[email protected]> | |
2984 | */ | |
55a101f8 | 2985 | prev_state = prev->state; |
4866cde0 | 2986 | finish_arch_switch(prev); |
8381f65d JI |
2987 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW |
2988 | local_irq_disable(); | |
2989 | #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ | |
49f47433 | 2990 | perf_event_task_sched_in(current); |
8381f65d JI |
2991 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW |
2992 | local_irq_enable(); | |
2993 | #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ | |
4866cde0 | 2994 | finish_lock_switch(rq, prev); |
e8fa1362 | 2995 | |
e107be36 | 2996 | fire_sched_in_preempt_notifiers(current); |
1da177e4 LT |
2997 | if (mm) |
2998 | mmdrop(mm); | |
c394cc9f | 2999 | if (unlikely(prev_state == TASK_DEAD)) { |
c6fd91f0 | 3000 | /* |
3001 | * Remove function-return probe instances associated with this | |
3002 | * task and put them back on the free list. | |
9761eea8 | 3003 | */ |
c6fd91f0 | 3004 | kprobe_flush_task(prev); |
1da177e4 | 3005 | put_task_struct(prev); |
c6fd91f0 | 3006 | } |
1da177e4 LT |
3007 | } |
3008 | ||
3f029d3c GH |
3009 | #ifdef CONFIG_SMP |
3010 | ||
3011 | /* assumes rq->lock is held */ | |
3012 | static inline void pre_schedule(struct rq *rq, struct task_struct *prev) | |
3013 | { | |
3014 | if (prev->sched_class->pre_schedule) | |
3015 | prev->sched_class->pre_schedule(rq, prev); | |
3016 | } | |
3017 | ||
3018 | /* rq->lock is NOT held, but preemption is disabled */ | |
3019 | static inline void post_schedule(struct rq *rq) | |
3020 | { | |
3021 | if (rq->post_schedule) { | |
3022 | unsigned long flags; | |
3023 | ||
05fa785c | 3024 | raw_spin_lock_irqsave(&rq->lock, flags); |
3f029d3c GH |
3025 | if (rq->curr->sched_class->post_schedule) |
3026 | rq->curr->sched_class->post_schedule(rq); | |
05fa785c | 3027 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
3f029d3c GH |
3028 | |
3029 | rq->post_schedule = 0; | |
3030 | } | |
3031 | } | |
3032 | ||
3033 | #else | |
da19ab51 | 3034 | |
3f029d3c GH |
3035 | static inline void pre_schedule(struct rq *rq, struct task_struct *p) |
3036 | { | |
3037 | } | |
3038 | ||
3039 | static inline void post_schedule(struct rq *rq) | |
3040 | { | |
1da177e4 LT |
3041 | } |
3042 | ||
3f029d3c GH |
3043 | #endif |
3044 | ||
1da177e4 LT |
3045 | /** |
3046 | * schedule_tail - first thing a freshly forked thread must call. | |
3047 | * @prev: the thread we just switched away from. | |
3048 | */ | |
36c8b586 | 3049 | asmlinkage void schedule_tail(struct task_struct *prev) |
1da177e4 LT |
3050 | __releases(rq->lock) |
3051 | { | |
70b97a7f IM |
3052 | struct rq *rq = this_rq(); |
3053 | ||
4866cde0 | 3054 | finish_task_switch(rq, prev); |
da19ab51 | 3055 | |
3f029d3c GH |
3056 | /* |
3057 | * FIXME: do we need to worry about rq being invalidated by the | |
3058 | * task_switch? | |
3059 | */ | |
3060 | post_schedule(rq); | |
70b97a7f | 3061 | |
4866cde0 NP |
3062 | #ifdef __ARCH_WANT_UNLOCKED_CTXSW |
3063 | /* In this case, finish_task_switch does not reenable preemption */ | |
3064 | preempt_enable(); | |
3065 | #endif | |
1da177e4 | 3066 | if (current->set_child_tid) |
b488893a | 3067 | put_user(task_pid_vnr(current), current->set_child_tid); |
1da177e4 LT |
3068 | } |
3069 | ||
3070 | /* | |
3071 | * context_switch - switch to the new MM and the new | |
3072 | * thread's register state. | |
3073 | */ | |
dd41f596 | 3074 | static inline void |
70b97a7f | 3075 | context_switch(struct rq *rq, struct task_struct *prev, |
36c8b586 | 3076 | struct task_struct *next) |
1da177e4 | 3077 | { |
dd41f596 | 3078 | struct mm_struct *mm, *oldmm; |
1da177e4 | 3079 | |
e107be36 | 3080 | prepare_task_switch(rq, prev, next); |
fe4b04fa | 3081 | |
dd41f596 IM |
3082 | mm = next->mm; |
3083 | oldmm = prev->active_mm; | |
9226d125 ZA |
3084 | /* |
3085 | * For paravirt, this is coupled with an exit in switch_to to | |
3086 | * combine the page table reload and the switch backend into | |
3087 | * one hypercall. | |
3088 | */ | |
224101ed | 3089 | arch_start_context_switch(prev); |
9226d125 | 3090 | |
31915ab4 | 3091 | if (!mm) { |
1da177e4 LT |
3092 | next->active_mm = oldmm; |
3093 | atomic_inc(&oldmm->mm_count); | |
3094 | enter_lazy_tlb(oldmm, next); | |
3095 | } else | |
3096 | switch_mm(oldmm, mm, next); | |
3097 | ||
31915ab4 | 3098 | if (!prev->mm) { |
1da177e4 | 3099 | prev->active_mm = NULL; |
1da177e4 LT |
3100 | rq->prev_mm = oldmm; |
3101 | } | |
3a5f5e48 IM |
3102 | /* |
3103 | * Since the runqueue lock will be released by the next | |
3104 | * task (which is an invalid locking op but in the case | |
3105 | * of the scheduler it's an obvious special-case), so we | |
3106 | * do an early lockdep release here: | |
3107 | */ | |
3108 | #ifndef __ARCH_WANT_UNLOCKED_CTXSW | |
8a25d5de | 3109 | spin_release(&rq->lock.dep_map, 1, _THIS_IP_); |
3a5f5e48 | 3110 | #endif |
1da177e4 LT |
3111 | |
3112 | /* Here we just switch the register state and the stack. */ | |
3113 | switch_to(prev, next, prev); | |
3114 | ||
dd41f596 IM |
3115 | barrier(); |
3116 | /* | |
3117 | * this_rq must be evaluated again because prev may have moved | |
3118 | * CPUs since it called schedule(), thus the 'rq' on its stack | |
3119 | * frame will be invalid. | |
3120 | */ | |
3121 | finish_task_switch(this_rq(), prev); | |
1da177e4 LT |
3122 | } |
3123 | ||
3124 | /* | |
3125 | * nr_running, nr_uninterruptible and nr_context_switches: | |
3126 | * | |
3127 | * externally visible scheduler statistics: current number of runnable | |
3128 | * threads, current number of uninterruptible-sleeping threads, total | |
3129 | * number of context switches performed since bootup. | |
3130 | */ | |
3131 | unsigned long nr_running(void) | |
3132 | { | |
3133 | unsigned long i, sum = 0; | |
3134 | ||
3135 | for_each_online_cpu(i) | |
3136 | sum += cpu_rq(i)->nr_running; | |
3137 | ||
3138 | return sum; | |
f711f609 | 3139 | } |
1da177e4 LT |
3140 | |
3141 | unsigned long nr_uninterruptible(void) | |
f711f609 | 3142 | { |
1da177e4 | 3143 | unsigned long i, sum = 0; |
f711f609 | 3144 | |
0a945022 | 3145 | for_each_possible_cpu(i) |
1da177e4 | 3146 | sum += cpu_rq(i)->nr_uninterruptible; |
f711f609 GS |
3147 | |
3148 | /* | |
1da177e4 LT |
3149 | * Since we read the counters lockless, it might be slightly |
3150 | * inaccurate. Do not allow it to go below zero though: | |
f711f609 | 3151 | */ |
1da177e4 LT |
3152 | if (unlikely((long)sum < 0)) |
3153 | sum = 0; | |
f711f609 | 3154 | |
1da177e4 | 3155 | return sum; |
f711f609 | 3156 | } |
f711f609 | 3157 | |
1da177e4 | 3158 | unsigned long long nr_context_switches(void) |
46cb4b7c | 3159 | { |
cc94abfc SR |
3160 | int i; |
3161 | unsigned long long sum = 0; | |
46cb4b7c | 3162 | |
0a945022 | 3163 | for_each_possible_cpu(i) |
1da177e4 | 3164 | sum += cpu_rq(i)->nr_switches; |
46cb4b7c | 3165 | |
1da177e4 LT |
3166 | return sum; |
3167 | } | |
483b4ee6 | 3168 | |
1da177e4 LT |
3169 | unsigned long nr_iowait(void) |
3170 | { | |
3171 | unsigned long i, sum = 0; | |
483b4ee6 | 3172 | |
0a945022 | 3173 | for_each_possible_cpu(i) |
1da177e4 | 3174 | sum += atomic_read(&cpu_rq(i)->nr_iowait); |
46cb4b7c | 3175 | |
1da177e4 LT |
3176 | return sum; |
3177 | } | |
483b4ee6 | 3178 | |
8c215bd3 | 3179 | unsigned long nr_iowait_cpu(int cpu) |
69d25870 | 3180 | { |
8c215bd3 | 3181 | struct rq *this = cpu_rq(cpu); |
69d25870 AV |
3182 | return atomic_read(&this->nr_iowait); |
3183 | } | |
46cb4b7c | 3184 | |
69d25870 AV |
3185 | unsigned long this_cpu_load(void) |
3186 | { | |
3187 | struct rq *this = this_rq(); | |
3188 | return this->cpu_load[0]; | |
3189 | } | |
e790fb0b | 3190 | |
46cb4b7c | 3191 | |
dce48a84 TG |
3192 | /* Variables and functions for calc_load */ |
3193 | static atomic_long_t calc_load_tasks; | |
3194 | static unsigned long calc_load_update; | |
3195 | unsigned long avenrun[3]; | |
3196 | EXPORT_SYMBOL(avenrun); | |
46cb4b7c | 3197 | |
74f5187a PZ |
3198 | static long calc_load_fold_active(struct rq *this_rq) |
3199 | { | |
3200 | long nr_active, delta = 0; | |
3201 | ||
3202 | nr_active = this_rq->nr_running; | |
3203 | nr_active += (long) this_rq->nr_uninterruptible; | |
3204 | ||
3205 | if (nr_active != this_rq->calc_load_active) { | |
3206 | delta = nr_active - this_rq->calc_load_active; | |
3207 | this_rq->calc_load_active = nr_active; | |
3208 | } | |
3209 | ||
3210 | return delta; | |
3211 | } | |
3212 | ||
0f004f5a PZ |
3213 | static unsigned long |
3214 | calc_load(unsigned long load, unsigned long exp, unsigned long active) | |
3215 | { | |
3216 | load *= exp; | |
3217 | load += active * (FIXED_1 - exp); | |
3218 | load += 1UL << (FSHIFT - 1); | |
3219 | return load >> FSHIFT; | |
3220 | } | |
3221 | ||
74f5187a PZ |
3222 | #ifdef CONFIG_NO_HZ |
3223 | /* | |
3224 | * For NO_HZ we delay the active fold to the next LOAD_FREQ update. | |
3225 | * | |
3226 | * When making the ILB scale, we should try to pull this in as well. | |
3227 | */ | |
3228 | static atomic_long_t calc_load_tasks_idle; | |
3229 | ||
3230 | static void calc_load_account_idle(struct rq *this_rq) | |
3231 | { | |
3232 | long delta; | |
3233 | ||
3234 | delta = calc_load_fold_active(this_rq); | |
3235 | if (delta) | |
3236 | atomic_long_add(delta, &calc_load_tasks_idle); | |
3237 | } | |
3238 | ||
3239 | static long calc_load_fold_idle(void) | |
3240 | { | |
3241 | long delta = 0; | |
3242 | ||
3243 | /* | |
3244 | * Its got a race, we don't care... | |
3245 | */ | |
3246 | if (atomic_long_read(&calc_load_tasks_idle)) | |
3247 | delta = atomic_long_xchg(&calc_load_tasks_idle, 0); | |
3248 | ||
3249 | return delta; | |
3250 | } | |
0f004f5a PZ |
3251 | |
3252 | /** | |
3253 | * fixed_power_int - compute: x^n, in O(log n) time | |
3254 | * | |
3255 | * @x: base of the power | |
3256 | * @frac_bits: fractional bits of @x | |
3257 | * @n: power to raise @x to. | |
3258 | * | |
3259 | * By exploiting the relation between the definition of the natural power | |
3260 | * function: x^n := x*x*...*x (x multiplied by itself for n times), and | |
3261 | * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i, | |
3262 | * (where: n_i \elem {0, 1}, the binary vector representing n), | |
3263 | * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is | |
3264 | * of course trivially computable in O(log_2 n), the length of our binary | |
3265 | * vector. | |
3266 | */ | |
3267 | static unsigned long | |
3268 | fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n) | |
3269 | { | |
3270 | unsigned long result = 1UL << frac_bits; | |
3271 | ||
3272 | if (n) for (;;) { | |
3273 | if (n & 1) { | |
3274 | result *= x; | |
3275 | result += 1UL << (frac_bits - 1); | |
3276 | result >>= frac_bits; | |
3277 | } | |
3278 | n >>= 1; | |
3279 | if (!n) | |
3280 | break; | |
3281 | x *= x; | |
3282 | x += 1UL << (frac_bits - 1); | |
3283 | x >>= frac_bits; | |
3284 | } | |
3285 | ||
3286 | return result; | |
3287 | } | |
3288 | ||
3289 | /* | |
3290 | * a1 = a0 * e + a * (1 - e) | |
3291 | * | |
3292 | * a2 = a1 * e + a * (1 - e) | |
3293 | * = (a0 * e + a * (1 - e)) * e + a * (1 - e) | |
3294 | * = a0 * e^2 + a * (1 - e) * (1 + e) | |
3295 | * | |
3296 | * a3 = a2 * e + a * (1 - e) | |
3297 | * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e) | |
3298 | * = a0 * e^3 + a * (1 - e) * (1 + e + e^2) | |
3299 | * | |
3300 | * ... | |
3301 | * | |
3302 | * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1] | |
3303 | * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e) | |
3304 | * = a0 * e^n + a * (1 - e^n) | |
3305 | * | |
3306 | * [1] application of the geometric series: | |
3307 | * | |
3308 | * n 1 - x^(n+1) | |
3309 | * S_n := \Sum x^i = ------------- | |
3310 | * i=0 1 - x | |
3311 | */ | |
3312 | static unsigned long | |
3313 | calc_load_n(unsigned long load, unsigned long exp, | |
3314 | unsigned long active, unsigned int n) | |
3315 | { | |
3316 | ||
3317 | return calc_load(load, fixed_power_int(exp, FSHIFT, n), active); | |
3318 | } | |
3319 | ||
3320 | /* | |
3321 | * NO_HZ can leave us missing all per-cpu ticks calling | |
3322 | * calc_load_account_active(), but since an idle CPU folds its delta into | |
3323 | * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold | |
3324 | * in the pending idle delta if our idle period crossed a load cycle boundary. | |
3325 | * | |
3326 | * Once we've updated the global active value, we need to apply the exponential | |
3327 | * weights adjusted to the number of cycles missed. | |
3328 | */ | |
3329 | static void calc_global_nohz(unsigned long ticks) | |
3330 | { | |
3331 | long delta, active, n; | |
3332 | ||
3333 | if (time_before(jiffies, calc_load_update)) | |
3334 | return; | |
3335 | ||
3336 | /* | |
3337 | * If we crossed a calc_load_update boundary, make sure to fold | |
3338 | * any pending idle changes, the respective CPUs might have | |
3339 | * missed the tick driven calc_load_account_active() update | |
3340 | * due to NO_HZ. | |
3341 | */ | |
3342 | delta = calc_load_fold_idle(); | |
3343 | if (delta) | |
3344 | atomic_long_add(delta, &calc_load_tasks); | |
3345 | ||
3346 | /* | |
3347 | * If we were idle for multiple load cycles, apply them. | |
3348 | */ | |
3349 | if (ticks >= LOAD_FREQ) { | |
3350 | n = ticks / LOAD_FREQ; | |
3351 | ||
3352 | active = atomic_long_read(&calc_load_tasks); | |
3353 | active = active > 0 ? active * FIXED_1 : 0; | |
3354 | ||
3355 | avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n); | |
3356 | avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n); | |
3357 | avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n); | |
3358 | ||
3359 | calc_load_update += n * LOAD_FREQ; | |
3360 | } | |
3361 | ||
3362 | /* | |
3363 | * Its possible the remainder of the above division also crosses | |
3364 | * a LOAD_FREQ period, the regular check in calc_global_load() | |
3365 | * which comes after this will take care of that. | |
3366 | * | |
3367 | * Consider us being 11 ticks before a cycle completion, and us | |
3368 | * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will | |
3369 | * age us 4 cycles, and the test in calc_global_load() will | |
3370 | * pick up the final one. | |
3371 | */ | |
3372 | } | |
74f5187a PZ |
3373 | #else |
3374 | static void calc_load_account_idle(struct rq *this_rq) | |
3375 | { | |
3376 | } | |
3377 | ||
3378 | static inline long calc_load_fold_idle(void) | |
3379 | { | |
3380 | return 0; | |
3381 | } | |
0f004f5a PZ |
3382 | |
3383 | static void calc_global_nohz(unsigned long ticks) | |
3384 | { | |
3385 | } | |
74f5187a PZ |
3386 | #endif |
3387 | ||
2d02494f TG |
3388 | /** |
3389 | * get_avenrun - get the load average array | |
3390 | * @loads: pointer to dest load array | |
3391 | * @offset: offset to add | |
3392 | * @shift: shift count to shift the result left | |
3393 | * | |
3394 | * These values are estimates at best, so no need for locking. | |
3395 | */ | |
3396 | void get_avenrun(unsigned long *loads, unsigned long offset, int shift) | |
3397 | { | |
3398 | loads[0] = (avenrun[0] + offset) << shift; | |
3399 | loads[1] = (avenrun[1] + offset) << shift; | |
3400 | loads[2] = (avenrun[2] + offset) << shift; | |
46cb4b7c | 3401 | } |
46cb4b7c | 3402 | |
46cb4b7c | 3403 | /* |
dce48a84 TG |
3404 | * calc_load - update the avenrun load estimates 10 ticks after the |
3405 | * CPUs have updated calc_load_tasks. | |
7835b98b | 3406 | */ |
0f004f5a | 3407 | void calc_global_load(unsigned long ticks) |
7835b98b | 3408 | { |
dce48a84 | 3409 | long active; |
1da177e4 | 3410 | |
0f004f5a PZ |
3411 | calc_global_nohz(ticks); |
3412 | ||
3413 | if (time_before(jiffies, calc_load_update + 10)) | |
dce48a84 | 3414 | return; |
1da177e4 | 3415 | |
dce48a84 TG |
3416 | active = atomic_long_read(&calc_load_tasks); |
3417 | active = active > 0 ? active * FIXED_1 : 0; | |
1da177e4 | 3418 | |
dce48a84 TG |
3419 | avenrun[0] = calc_load(avenrun[0], EXP_1, active); |
3420 | avenrun[1] = calc_load(avenrun[1], EXP_5, active); | |
3421 | avenrun[2] = calc_load(avenrun[2], EXP_15, active); | |
dd41f596 | 3422 | |
dce48a84 TG |
3423 | calc_load_update += LOAD_FREQ; |
3424 | } | |
1da177e4 | 3425 | |
dce48a84 | 3426 | /* |
74f5187a PZ |
3427 | * Called from update_cpu_load() to periodically update this CPU's |
3428 | * active count. | |
dce48a84 TG |
3429 | */ |
3430 | static void calc_load_account_active(struct rq *this_rq) | |
3431 | { | |
74f5187a | 3432 | long delta; |
08c183f3 | 3433 | |
74f5187a PZ |
3434 | if (time_before(jiffies, this_rq->calc_load_update)) |
3435 | return; | |
783609c6 | 3436 | |
74f5187a PZ |
3437 | delta = calc_load_fold_active(this_rq); |
3438 | delta += calc_load_fold_idle(); | |
3439 | if (delta) | |
dce48a84 | 3440 | atomic_long_add(delta, &calc_load_tasks); |
74f5187a PZ |
3441 | |
3442 | this_rq->calc_load_update += LOAD_FREQ; | |
46cb4b7c SS |
3443 | } |
3444 | ||
fdf3e95d VP |
3445 | /* |
3446 | * The exact cpuload at various idx values, calculated at every tick would be | |
3447 | * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load | |
3448 | * | |
3449 | * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called | |
3450 | * on nth tick when cpu may be busy, then we have: | |
3451 | * load = ((2^idx - 1) / 2^idx)^(n-1) * load | |
3452 | * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load | |
3453 | * | |
3454 | * decay_load_missed() below does efficient calculation of | |
3455 | * load = ((2^idx - 1) / 2^idx)^(n-1) * load | |
3456 | * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load | |
3457 | * | |
3458 | * The calculation is approximated on a 128 point scale. | |
3459 | * degrade_zero_ticks is the number of ticks after which load at any | |
3460 | * particular idx is approximated to be zero. | |
3461 | * degrade_factor is a precomputed table, a row for each load idx. | |
3462 | * Each column corresponds to degradation factor for a power of two ticks, | |
3463 | * based on 128 point scale. | |
3464 | * Example: | |
3465 | * row 2, col 3 (=12) says that the degradation at load idx 2 after | |
3466 | * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8). | |
3467 | * | |
3468 | * With this power of 2 load factors, we can degrade the load n times | |
3469 | * by looking at 1 bits in n and doing as many mult/shift instead of | |
3470 | * n mult/shifts needed by the exact degradation. | |
3471 | */ | |
3472 | #define DEGRADE_SHIFT 7 | |
3473 | static const unsigned char | |
3474 | degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; | |
3475 | static const unsigned char | |
3476 | degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { | |
3477 | {0, 0, 0, 0, 0, 0, 0, 0}, | |
3478 | {64, 32, 8, 0, 0, 0, 0, 0}, | |
3479 | {96, 72, 40, 12, 1, 0, 0}, | |
3480 | {112, 98, 75, 43, 15, 1, 0}, | |
3481 | {120, 112, 98, 76, 45, 16, 2} }; | |
3482 | ||
3483 | /* | |
3484 | * Update cpu_load for any missed ticks, due to tickless idle. The backlog | |
3485 | * would be when CPU is idle and so we just decay the old load without | |
3486 | * adding any new load. | |
3487 | */ | |
3488 | static unsigned long | |
3489 | decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) | |
3490 | { | |
3491 | int j = 0; | |
3492 | ||
3493 | if (!missed_updates) | |
3494 | return load; | |
3495 | ||
3496 | if (missed_updates >= degrade_zero_ticks[idx]) | |
3497 | return 0; | |
3498 | ||
3499 | if (idx == 1) | |
3500 | return load >> missed_updates; | |
3501 | ||
3502 | while (missed_updates) { | |
3503 | if (missed_updates % 2) | |
3504 | load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; | |
3505 | ||
3506 | missed_updates >>= 1; | |
3507 | j++; | |
3508 | } | |
3509 | return load; | |
3510 | } | |
3511 | ||
46cb4b7c | 3512 | /* |
dd41f596 | 3513 | * Update rq->cpu_load[] statistics. This function is usually called every |
fdf3e95d VP |
3514 | * scheduler tick (TICK_NSEC). With tickless idle this will not be called |
3515 | * every tick. We fix it up based on jiffies. | |
46cb4b7c | 3516 | */ |
dd41f596 | 3517 | static void update_cpu_load(struct rq *this_rq) |
46cb4b7c | 3518 | { |
495eca49 | 3519 | unsigned long this_load = this_rq->load.weight; |
fdf3e95d VP |
3520 | unsigned long curr_jiffies = jiffies; |
3521 | unsigned long pending_updates; | |
dd41f596 | 3522 | int i, scale; |
46cb4b7c | 3523 | |
dd41f596 | 3524 | this_rq->nr_load_updates++; |
46cb4b7c | 3525 | |
fdf3e95d VP |
3526 | /* Avoid repeated calls on same jiffy, when moving in and out of idle */ |
3527 | if (curr_jiffies == this_rq->last_load_update_tick) | |
3528 | return; | |
3529 | ||
3530 | pending_updates = curr_jiffies - this_rq->last_load_update_tick; | |
3531 | this_rq->last_load_update_tick = curr_jiffies; | |
3532 | ||
dd41f596 | 3533 | /* Update our load: */ |
fdf3e95d VP |
3534 | this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ |
3535 | for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { | |
dd41f596 | 3536 | unsigned long old_load, new_load; |
7d1e6a9b | 3537 | |
dd41f596 | 3538 | /* scale is effectively 1 << i now, and >> i divides by scale */ |
46cb4b7c | 3539 | |
dd41f596 | 3540 | old_load = this_rq->cpu_load[i]; |
fdf3e95d | 3541 | old_load = decay_load_missed(old_load, pending_updates - 1, i); |
dd41f596 | 3542 | new_load = this_load; |
a25707f3 IM |
3543 | /* |
3544 | * Round up the averaging division if load is increasing. This | |
3545 | * prevents us from getting stuck on 9 if the load is 10, for | |
3546 | * example. | |
3547 | */ | |
3548 | if (new_load > old_load) | |
fdf3e95d VP |
3549 | new_load += scale - 1; |
3550 | ||
3551 | this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; | |
dd41f596 | 3552 | } |
da2b71ed SS |
3553 | |
3554 | sched_avg_update(this_rq); | |
fdf3e95d VP |
3555 | } |
3556 | ||
3557 | static void update_cpu_load_active(struct rq *this_rq) | |
3558 | { | |
3559 | update_cpu_load(this_rq); | |
46cb4b7c | 3560 | |
74f5187a | 3561 | calc_load_account_active(this_rq); |
46cb4b7c SS |
3562 | } |
3563 | ||
dd41f596 | 3564 | #ifdef CONFIG_SMP |
8a0be9ef | 3565 | |
46cb4b7c | 3566 | /* |
38022906 PZ |
3567 | * sched_exec - execve() is a valuable balancing opportunity, because at |
3568 | * this point the task has the smallest effective memory and cache footprint. | |
46cb4b7c | 3569 | */ |
38022906 | 3570 | void sched_exec(void) |
46cb4b7c | 3571 | { |
38022906 | 3572 | struct task_struct *p = current; |
1da177e4 | 3573 | unsigned long flags; |
0017d735 | 3574 | int dest_cpu; |
46cb4b7c | 3575 | |
8f42ced9 | 3576 | raw_spin_lock_irqsave(&p->pi_lock, flags); |
7608dec2 | 3577 | dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0); |
0017d735 PZ |
3578 | if (dest_cpu == smp_processor_id()) |
3579 | goto unlock; | |
38022906 | 3580 | |
8f42ced9 | 3581 | if (likely(cpu_active(dest_cpu))) { |
969c7921 | 3582 | struct migration_arg arg = { p, dest_cpu }; |
46cb4b7c | 3583 | |
8f42ced9 PZ |
3584 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); |
3585 | stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); | |
1da177e4 LT |
3586 | return; |
3587 | } | |
0017d735 | 3588 | unlock: |
8f42ced9 | 3589 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); |
1da177e4 | 3590 | } |
dd41f596 | 3591 | |
1da177e4 LT |
3592 | #endif |
3593 | ||
1da177e4 LT |
3594 | DEFINE_PER_CPU(struct kernel_stat, kstat); |
3595 | ||
3596 | EXPORT_PER_CPU_SYMBOL(kstat); | |
3597 | ||
3598 | /* | |
c5f8d995 | 3599 | * Return any ns on the sched_clock that have not yet been accounted in |
f06febc9 | 3600 | * @p in case that task is currently running. |
c5f8d995 HS |
3601 | * |
3602 | * Called with task_rq_lock() held on @rq. | |
1da177e4 | 3603 | */ |
c5f8d995 HS |
3604 | static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) |
3605 | { | |
3606 | u64 ns = 0; | |
3607 | ||
3608 | if (task_current(rq, p)) { | |
3609 | update_rq_clock(rq); | |
305e6835 | 3610 | ns = rq->clock_task - p->se.exec_start; |
c5f8d995 HS |
3611 | if ((s64)ns < 0) |
3612 | ns = 0; | |
3613 | } | |
3614 | ||
3615 | return ns; | |
3616 | } | |
3617 | ||
bb34d92f | 3618 | unsigned long long task_delta_exec(struct task_struct *p) |
1da177e4 | 3619 | { |
1da177e4 | 3620 | unsigned long flags; |
41b86e9c | 3621 | struct rq *rq; |
bb34d92f | 3622 | u64 ns = 0; |
48f24c4d | 3623 | |
41b86e9c | 3624 | rq = task_rq_lock(p, &flags); |
c5f8d995 | 3625 | ns = do_task_delta_exec(p, rq); |
0122ec5b | 3626 | task_rq_unlock(rq, p, &flags); |
1508487e | 3627 | |
c5f8d995 HS |
3628 | return ns; |
3629 | } | |
f06febc9 | 3630 | |
c5f8d995 HS |
3631 | /* |
3632 | * Return accounted runtime for the task. | |
3633 | * In case the task is currently running, return the runtime plus current's | |
3634 | * pending runtime that have not been accounted yet. | |
3635 | */ | |
3636 | unsigned long long task_sched_runtime(struct task_struct *p) | |
3637 | { | |
3638 | unsigned long flags; | |
3639 | struct rq *rq; | |
3640 | u64 ns = 0; | |
3641 | ||
3642 | rq = task_rq_lock(p, &flags); | |
3643 | ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); | |
0122ec5b | 3644 | task_rq_unlock(rq, p, &flags); |
c5f8d995 HS |
3645 | |
3646 | return ns; | |
3647 | } | |
48f24c4d | 3648 | |
c5f8d995 HS |
3649 | /* |
3650 | * Return sum_exec_runtime for the thread group. | |
3651 | * In case the task is currently running, return the sum plus current's | |
3652 | * pending runtime that have not been accounted yet. | |
3653 | * | |
3654 | * Note that the thread group might have other running tasks as well, | |
3655 | * so the return value not includes other pending runtime that other | |
3656 | * running tasks might have. | |
3657 | */ | |
3658 | unsigned long long thread_group_sched_runtime(struct task_struct *p) | |
3659 | { | |
3660 | struct task_cputime totals; | |
3661 | unsigned long flags; | |
3662 | struct rq *rq; | |
3663 | u64 ns; | |
3664 | ||
3665 | rq = task_rq_lock(p, &flags); | |
3666 | thread_group_cputime(p, &totals); | |
3667 | ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq); | |
0122ec5b | 3668 | task_rq_unlock(rq, p, &flags); |
48f24c4d | 3669 | |
1da177e4 LT |
3670 | return ns; |
3671 | } | |
3672 | ||
1da177e4 LT |
3673 | /* |
3674 | * Account user cpu time to a process. | |
3675 | * @p: the process that the cpu time gets accounted to | |
1da177e4 | 3676 | * @cputime: the cpu time spent in user space since the last update |
457533a7 | 3677 | * @cputime_scaled: cputime scaled by cpu frequency |
1da177e4 | 3678 | */ |
457533a7 MS |
3679 | void account_user_time(struct task_struct *p, cputime_t cputime, |
3680 | cputime_t cputime_scaled) | |
1da177e4 LT |
3681 | { |
3682 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | |
3683 | cputime64_t tmp; | |
3684 | ||
457533a7 | 3685 | /* Add user time to process. */ |
1da177e4 | 3686 | p->utime = cputime_add(p->utime, cputime); |
457533a7 | 3687 | p->utimescaled = cputime_add(p->utimescaled, cputime_scaled); |
f06febc9 | 3688 | account_group_user_time(p, cputime); |
1da177e4 LT |
3689 | |
3690 | /* Add user time to cpustat. */ | |
3691 | tmp = cputime_to_cputime64(cputime); | |
3692 | if (TASK_NICE(p) > 0) | |
3693 | cpustat->nice = cputime64_add(cpustat->nice, tmp); | |
3694 | else | |
3695 | cpustat->user = cputime64_add(cpustat->user, tmp); | |
ef12fefa BR |
3696 | |
3697 | cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime); | |
49b5cf34 JL |
3698 | /* Account for user time used */ |
3699 | acct_update_integrals(p); | |
1da177e4 LT |
3700 | } |
3701 | ||
94886b84 LV |
3702 | /* |
3703 | * Account guest cpu time to a process. | |
3704 | * @p: the process that the cpu time gets accounted to | |
3705 | * @cputime: the cpu time spent in virtual machine since the last update | |
457533a7 | 3706 | * @cputime_scaled: cputime scaled by cpu frequency |
94886b84 | 3707 | */ |
457533a7 MS |
3708 | static void account_guest_time(struct task_struct *p, cputime_t cputime, |
3709 | cputime_t cputime_scaled) | |
94886b84 LV |
3710 | { |
3711 | cputime64_t tmp; | |
3712 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | |
3713 | ||
3714 | tmp = cputime_to_cputime64(cputime); | |
3715 | ||
457533a7 | 3716 | /* Add guest time to process. */ |
94886b84 | 3717 | p->utime = cputime_add(p->utime, cputime); |
457533a7 | 3718 | p->utimescaled = cputime_add(p->utimescaled, cputime_scaled); |
f06febc9 | 3719 | account_group_user_time(p, cputime); |
94886b84 LV |
3720 | p->gtime = cputime_add(p->gtime, cputime); |
3721 | ||
457533a7 | 3722 | /* Add guest time to cpustat. */ |
ce0e7b28 RO |
3723 | if (TASK_NICE(p) > 0) { |
3724 | cpustat->nice = cputime64_add(cpustat->nice, tmp); | |
3725 | cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp); | |
3726 | } else { | |
3727 | cpustat->user = cputime64_add(cpustat->user, tmp); | |
3728 | cpustat->guest = cputime64_add(cpustat->guest, tmp); | |
3729 | } | |
94886b84 LV |
3730 | } |
3731 | ||
70a89a66 VP |
3732 | /* |
3733 | * Account system cpu time to a process and desired cpustat field | |
3734 | * @p: the process that the cpu time gets accounted to | |
3735 | * @cputime: the cpu time spent in kernel space since the last update | |
3736 | * @cputime_scaled: cputime scaled by cpu frequency | |
3737 | * @target_cputime64: pointer to cpustat field that has to be updated | |
3738 | */ | |
3739 | static inline | |
3740 | void __account_system_time(struct task_struct *p, cputime_t cputime, | |
3741 | cputime_t cputime_scaled, cputime64_t *target_cputime64) | |
3742 | { | |
3743 | cputime64_t tmp = cputime_to_cputime64(cputime); | |
3744 | ||
3745 | /* Add system time to process. */ | |
3746 | p->stime = cputime_add(p->stime, cputime); | |
3747 | p->stimescaled = cputime_add(p->stimescaled, cputime_scaled); | |
3748 | account_group_system_time(p, cputime); | |
3749 | ||
3750 | /* Add system time to cpustat. */ | |
3751 | *target_cputime64 = cputime64_add(*target_cputime64, tmp); | |
3752 | cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime); | |
3753 | ||
3754 | /* Account for system time used */ | |
3755 | acct_update_integrals(p); | |
3756 | } | |
3757 | ||
1da177e4 LT |
3758 | /* |
3759 | * Account system cpu time to a process. | |
3760 | * @p: the process that the cpu time gets accounted to | |
3761 | * @hardirq_offset: the offset to subtract from hardirq_count() | |
3762 | * @cputime: the cpu time spent in kernel space since the last update | |
457533a7 | 3763 | * @cputime_scaled: cputime scaled by cpu frequency |
1da177e4 LT |
3764 | */ |
3765 | void account_system_time(struct task_struct *p, int hardirq_offset, | |
457533a7 | 3766 | cputime_t cputime, cputime_t cputime_scaled) |
1da177e4 LT |
3767 | { |
3768 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | |
70a89a66 | 3769 | cputime64_t *target_cputime64; |
1da177e4 | 3770 | |
983ed7a6 | 3771 | if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { |
457533a7 | 3772 | account_guest_time(p, cputime, cputime_scaled); |
983ed7a6 HH |
3773 | return; |
3774 | } | |
94886b84 | 3775 | |
1da177e4 | 3776 | if (hardirq_count() - hardirq_offset) |
70a89a66 | 3777 | target_cputime64 = &cpustat->irq; |
75e1056f | 3778 | else if (in_serving_softirq()) |
70a89a66 | 3779 | target_cputime64 = &cpustat->softirq; |
1da177e4 | 3780 | else |
70a89a66 | 3781 | target_cputime64 = &cpustat->system; |
ef12fefa | 3782 | |
70a89a66 | 3783 | __account_system_time(p, cputime, cputime_scaled, target_cputime64); |
1da177e4 LT |
3784 | } |
3785 | ||
c66f08be | 3786 | /* |
1da177e4 | 3787 | * Account for involuntary wait time. |
544b4a1f | 3788 | * @cputime: the cpu time spent in involuntary wait |
c66f08be | 3789 | */ |
79741dd3 | 3790 | void account_steal_time(cputime_t cputime) |
c66f08be | 3791 | { |
79741dd3 MS |
3792 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; |
3793 | cputime64_t cputime64 = cputime_to_cputime64(cputime); | |
3794 | ||
3795 | cpustat->steal = cputime64_add(cpustat->steal, cputime64); | |
c66f08be MN |
3796 | } |
3797 | ||
1da177e4 | 3798 | /* |
79741dd3 MS |
3799 | * Account for idle time. |
3800 | * @cputime: the cpu time spent in idle wait | |
1da177e4 | 3801 | */ |
79741dd3 | 3802 | void account_idle_time(cputime_t cputime) |
1da177e4 LT |
3803 | { |
3804 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | |
79741dd3 | 3805 | cputime64_t cputime64 = cputime_to_cputime64(cputime); |
70b97a7f | 3806 | struct rq *rq = this_rq(); |
1da177e4 | 3807 | |
79741dd3 MS |
3808 | if (atomic_read(&rq->nr_iowait) > 0) |
3809 | cpustat->iowait = cputime64_add(cpustat->iowait, cputime64); | |
3810 | else | |
3811 | cpustat->idle = cputime64_add(cpustat->idle, cputime64); | |
1da177e4 LT |
3812 | } |
3813 | ||
79741dd3 MS |
3814 | #ifndef CONFIG_VIRT_CPU_ACCOUNTING |
3815 | ||
abb74cef VP |
3816 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING |
3817 | /* | |
3818 | * Account a tick to a process and cpustat | |
3819 | * @p: the process that the cpu time gets accounted to | |
3820 | * @user_tick: is the tick from userspace | |
3821 | * @rq: the pointer to rq | |
3822 | * | |
3823 | * Tick demultiplexing follows the order | |
3824 | * - pending hardirq update | |
3825 | * - pending softirq update | |
3826 | * - user_time | |
3827 | * - idle_time | |
3828 | * - system time | |
3829 | * - check for guest_time | |
3830 | * - else account as system_time | |
3831 | * | |
3832 | * Check for hardirq is done both for system and user time as there is | |
3833 | * no timer going off while we are on hardirq and hence we may never get an | |
3834 | * opportunity to update it solely in system time. | |
3835 | * p->stime and friends are only updated on system time and not on irq | |
3836 | * softirq as those do not count in task exec_runtime any more. | |
3837 | */ | |
3838 | static void irqtime_account_process_tick(struct task_struct *p, int user_tick, | |
3839 | struct rq *rq) | |
3840 | { | |
3841 | cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); | |
3842 | cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy); | |
3843 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | |
3844 | ||
3845 | if (irqtime_account_hi_update()) { | |
3846 | cpustat->irq = cputime64_add(cpustat->irq, tmp); | |
3847 | } else if (irqtime_account_si_update()) { | |
3848 | cpustat->softirq = cputime64_add(cpustat->softirq, tmp); | |
414bee9b VP |
3849 | } else if (this_cpu_ksoftirqd() == p) { |
3850 | /* | |
3851 | * ksoftirqd time do not get accounted in cpu_softirq_time. | |
3852 | * So, we have to handle it separately here. | |
3853 | * Also, p->stime needs to be updated for ksoftirqd. | |
3854 | */ | |
3855 | __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, | |
3856 | &cpustat->softirq); | |
abb74cef VP |
3857 | } else if (user_tick) { |
3858 | account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); | |
3859 | } else if (p == rq->idle) { | |
3860 | account_idle_time(cputime_one_jiffy); | |
3861 | } else if (p->flags & PF_VCPU) { /* System time or guest time */ | |
3862 | account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled); | |
3863 | } else { | |
3864 | __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, | |
3865 | &cpustat->system); | |
3866 | } | |
3867 | } | |
3868 | ||
3869 | static void irqtime_account_idle_ticks(int ticks) | |
3870 | { | |
3871 | int i; | |
3872 | struct rq *rq = this_rq(); | |
3873 | ||
3874 | for (i = 0; i < ticks; i++) | |
3875 | irqtime_account_process_tick(current, 0, rq); | |
3876 | } | |
544b4a1f | 3877 | #else /* CONFIG_IRQ_TIME_ACCOUNTING */ |
abb74cef VP |
3878 | static void irqtime_account_idle_ticks(int ticks) {} |
3879 | static void irqtime_account_process_tick(struct task_struct *p, int user_tick, | |
3880 | struct rq *rq) {} | |
544b4a1f | 3881 | #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ |
79741dd3 MS |
3882 | |
3883 | /* | |
3884 | * Account a single tick of cpu time. | |
3885 | * @p: the process that the cpu time gets accounted to | |
3886 | * @user_tick: indicates if the tick is a user or a system tick | |
3887 | */ | |
3888 | void account_process_tick(struct task_struct *p, int user_tick) | |
3889 | { | |
a42548a1 | 3890 | cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); |
79741dd3 MS |
3891 | struct rq *rq = this_rq(); |
3892 | ||
abb74cef VP |
3893 | if (sched_clock_irqtime) { |
3894 | irqtime_account_process_tick(p, user_tick, rq); | |
3895 | return; | |
3896 | } | |
3897 | ||
79741dd3 | 3898 | if (user_tick) |
a42548a1 | 3899 | account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); |
f5f293a4 | 3900 | else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) |
a42548a1 | 3901 | account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy, |
79741dd3 MS |
3902 | one_jiffy_scaled); |
3903 | else | |
a42548a1 | 3904 | account_idle_time(cputime_one_jiffy); |
79741dd3 MS |
3905 | } |
3906 | ||
3907 | /* | |
3908 | * Account multiple ticks of steal time. | |
3909 | * @p: the process from which the cpu time has been stolen | |
3910 | * @ticks: number of stolen ticks | |
3911 | */ | |
3912 | void account_steal_ticks(unsigned long ticks) | |
3913 | { | |
3914 | account_steal_time(jiffies_to_cputime(ticks)); | |
3915 | } | |
3916 | ||
3917 | /* | |
3918 | * Account multiple ticks of idle time. | |
3919 | * @ticks: number of stolen ticks | |
3920 | */ | |
3921 | void account_idle_ticks(unsigned long ticks) | |
3922 | { | |
abb74cef VP |
3923 | |
3924 | if (sched_clock_irqtime) { | |
3925 | irqtime_account_idle_ticks(ticks); | |
3926 | return; | |
3927 | } | |
3928 | ||
79741dd3 | 3929 | account_idle_time(jiffies_to_cputime(ticks)); |
1da177e4 LT |
3930 | } |
3931 | ||
79741dd3 MS |
3932 | #endif |
3933 | ||
49048622 BS |
3934 | /* |
3935 | * Use precise platform statistics if available: | |
3936 | */ | |
3937 | #ifdef CONFIG_VIRT_CPU_ACCOUNTING | |
d180c5bc | 3938 | void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) |
49048622 | 3939 | { |
d99ca3b9 HS |
3940 | *ut = p->utime; |
3941 | *st = p->stime; | |
49048622 BS |
3942 | } |
3943 | ||
0cf55e1e | 3944 | void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) |
49048622 | 3945 | { |
0cf55e1e HS |
3946 | struct task_cputime cputime; |
3947 | ||
3948 | thread_group_cputime(p, &cputime); | |
3949 | ||
3950 | *ut = cputime.utime; | |
3951 | *st = cputime.stime; | |
49048622 BS |
3952 | } |
3953 | #else | |
761b1d26 HS |
3954 | |
3955 | #ifndef nsecs_to_cputime | |
b7b20df9 | 3956 | # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs) |
761b1d26 HS |
3957 | #endif |
3958 | ||
d180c5bc | 3959 | void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) |
49048622 | 3960 | { |
d99ca3b9 | 3961 | cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime); |
49048622 BS |
3962 | |
3963 | /* | |
3964 | * Use CFS's precise accounting: | |
3965 | */ | |
d180c5bc | 3966 | rtime = nsecs_to_cputime(p->se.sum_exec_runtime); |
49048622 BS |
3967 | |
3968 | if (total) { | |
e75e863d | 3969 | u64 temp = rtime; |
d180c5bc | 3970 | |
e75e863d | 3971 | temp *= utime; |
49048622 | 3972 | do_div(temp, total); |
d180c5bc HS |
3973 | utime = (cputime_t)temp; |
3974 | } else | |
3975 | utime = rtime; | |
49048622 | 3976 | |
d180c5bc HS |
3977 | /* |
3978 | * Compare with previous values, to keep monotonicity: | |
3979 | */ | |
761b1d26 | 3980 | p->prev_utime = max(p->prev_utime, utime); |
d99ca3b9 | 3981 | p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime)); |
49048622 | 3982 | |
d99ca3b9 HS |
3983 | *ut = p->prev_utime; |
3984 | *st = p->prev_stime; | |
49048622 BS |
3985 | } |
3986 | ||
0cf55e1e HS |
3987 | /* |
3988 | * Must be called with siglock held. | |
3989 | */ | |
3990 | void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) | |
49048622 | 3991 | { |
0cf55e1e HS |
3992 | struct signal_struct *sig = p->signal; |
3993 | struct task_cputime cputime; | |
3994 | cputime_t rtime, utime, total; | |
49048622 | 3995 | |
0cf55e1e | 3996 | thread_group_cputime(p, &cputime); |
49048622 | 3997 | |
0cf55e1e HS |
3998 | total = cputime_add(cputime.utime, cputime.stime); |
3999 | rtime = nsecs_to_cputime(cputime.sum_exec_runtime); | |
49048622 | 4000 | |
0cf55e1e | 4001 | if (total) { |
e75e863d | 4002 | u64 temp = rtime; |
49048622 | 4003 | |
e75e863d | 4004 | temp *= cputime.utime; |
0cf55e1e HS |
4005 | do_div(temp, total); |
4006 | utime = (cputime_t)temp; | |
4007 | } else | |
4008 | utime = rtime; | |
4009 | ||
4010 | sig->prev_utime = max(sig->prev_utime, utime); | |
4011 | sig->prev_stime = max(sig->prev_stime, | |
4012 | cputime_sub(rtime, sig->prev_utime)); | |
4013 | ||
4014 | *ut = sig->prev_utime; | |
4015 | *st = sig->prev_stime; | |
49048622 | 4016 | } |
49048622 | 4017 | #endif |
49048622 | 4018 | |
7835b98b CL |
4019 | /* |
4020 | * This function gets called by the timer code, with HZ frequency. | |
4021 | * We call it with interrupts disabled. | |
7835b98b CL |
4022 | */ |
4023 | void scheduler_tick(void) | |
4024 | { | |
7835b98b CL |
4025 | int cpu = smp_processor_id(); |
4026 | struct rq *rq = cpu_rq(cpu); | |
dd41f596 | 4027 | struct task_struct *curr = rq->curr; |
3e51f33f PZ |
4028 | |
4029 | sched_clock_tick(); | |
dd41f596 | 4030 | |
05fa785c | 4031 | raw_spin_lock(&rq->lock); |
3e51f33f | 4032 | update_rq_clock(rq); |
fdf3e95d | 4033 | update_cpu_load_active(rq); |
fa85ae24 | 4034 | curr->sched_class->task_tick(rq, curr, 0); |
05fa785c | 4035 | raw_spin_unlock(&rq->lock); |
7835b98b | 4036 | |
e9d2b064 | 4037 | perf_event_task_tick(); |
e220d2dc | 4038 | |
e418e1c2 | 4039 | #ifdef CONFIG_SMP |
dd41f596 IM |
4040 | rq->idle_at_tick = idle_cpu(cpu); |
4041 | trigger_load_balance(rq, cpu); | |
e418e1c2 | 4042 | #endif |
1da177e4 LT |
4043 | } |
4044 | ||
132380a0 | 4045 | notrace unsigned long get_parent_ip(unsigned long addr) |
6cd8a4bb SR |
4046 | { |
4047 | if (in_lock_functions(addr)) { | |
4048 | addr = CALLER_ADDR2; | |
4049 | if (in_lock_functions(addr)) | |
4050 | addr = CALLER_ADDR3; | |
4051 | } | |
4052 | return addr; | |
4053 | } | |
1da177e4 | 4054 | |
7e49fcce SR |
4055 | #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ |
4056 | defined(CONFIG_PREEMPT_TRACER)) | |
4057 | ||
43627582 | 4058 | void __kprobes add_preempt_count(int val) |
1da177e4 | 4059 | { |
6cd8a4bb | 4060 | #ifdef CONFIG_DEBUG_PREEMPT |
1da177e4 LT |
4061 | /* |
4062 | * Underflow? | |
4063 | */ | |
9a11b49a IM |
4064 | if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) |
4065 | return; | |
6cd8a4bb | 4066 | #endif |
1da177e4 | 4067 | preempt_count() += val; |
6cd8a4bb | 4068 | #ifdef CONFIG_DEBUG_PREEMPT |
1da177e4 LT |
4069 | /* |
4070 | * Spinlock count overflowing soon? | |
4071 | */ | |
33859f7f MOS |
4072 | DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= |
4073 | PREEMPT_MASK - 10); | |
6cd8a4bb SR |
4074 | #endif |
4075 | if (preempt_count() == val) | |
4076 | trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); | |
1da177e4 LT |
4077 | } |
4078 | EXPORT_SYMBOL(add_preempt_count); | |
4079 | ||
43627582 | 4080 | void __kprobes sub_preempt_count(int val) |
1da177e4 | 4081 | { |
6cd8a4bb | 4082 | #ifdef CONFIG_DEBUG_PREEMPT |
1da177e4 LT |
4083 | /* |
4084 | * Underflow? | |
4085 | */ | |
01e3eb82 | 4086 | if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) |
9a11b49a | 4087 | return; |
1da177e4 LT |
4088 | /* |
4089 | * Is the spinlock portion underflowing? | |
4090 | */ | |
9a11b49a IM |
4091 | if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && |
4092 | !(preempt_count() & PREEMPT_MASK))) | |
4093 | return; | |
6cd8a4bb | 4094 | #endif |
9a11b49a | 4095 | |
6cd8a4bb SR |
4096 | if (preempt_count() == val) |
4097 | trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); | |
1da177e4 LT |
4098 | preempt_count() -= val; |
4099 | } | |
4100 | EXPORT_SYMBOL(sub_preempt_count); | |
4101 | ||
4102 | #endif | |
4103 | ||
4104 | /* | |
dd41f596 | 4105 | * Print scheduling while atomic bug: |
1da177e4 | 4106 | */ |
dd41f596 | 4107 | static noinline void __schedule_bug(struct task_struct *prev) |
1da177e4 | 4108 | { |
838225b4 SS |
4109 | struct pt_regs *regs = get_irq_regs(); |
4110 | ||
3df0fc5b PZ |
4111 | printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", |
4112 | prev->comm, prev->pid, preempt_count()); | |
838225b4 | 4113 | |
dd41f596 | 4114 | debug_show_held_locks(prev); |
e21f5b15 | 4115 | print_modules(); |
dd41f596 IM |
4116 | if (irqs_disabled()) |
4117 | print_irqtrace_events(prev); | |
838225b4 SS |
4118 | |
4119 | if (regs) | |
4120 | show_regs(regs); | |
4121 | else | |
4122 | dump_stack(); | |
dd41f596 | 4123 | } |
1da177e4 | 4124 | |
dd41f596 IM |
4125 | /* |
4126 | * Various schedule()-time debugging checks and statistics: | |
4127 | */ | |
4128 | static inline void schedule_debug(struct task_struct *prev) | |
4129 | { | |
1da177e4 | 4130 | /* |
41a2d6cf | 4131 | * Test if we are atomic. Since do_exit() needs to call into |
1da177e4 LT |
4132 | * schedule() atomically, we ignore that path for now. |
4133 | * Otherwise, whine if we are scheduling when we should not be. | |
4134 | */ | |
3f33a7ce | 4135 | if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) |
dd41f596 IM |
4136 | __schedule_bug(prev); |
4137 | ||
1da177e4 LT |
4138 | profile_hit(SCHED_PROFILING, __builtin_return_address(0)); |
4139 | ||
2d72376b | 4140 | schedstat_inc(this_rq(), sched_count); |
dd41f596 IM |
4141 | } |
4142 | ||
6cecd084 | 4143 | static void put_prev_task(struct rq *rq, struct task_struct *prev) |
df1c99d4 | 4144 | { |
61eadef6 | 4145 | if (prev->on_rq || rq->skip_clock_update < 0) |
a64692a3 | 4146 | update_rq_clock(rq); |
6cecd084 | 4147 | prev->sched_class->put_prev_task(rq, prev); |
df1c99d4 MG |
4148 | } |
4149 | ||
dd41f596 IM |
4150 | /* |
4151 | * Pick up the highest-prio task: | |
4152 | */ | |
4153 | static inline struct task_struct * | |
b67802ea | 4154 | pick_next_task(struct rq *rq) |
dd41f596 | 4155 | { |
5522d5d5 | 4156 | const struct sched_class *class; |
dd41f596 | 4157 | struct task_struct *p; |
1da177e4 LT |
4158 | |
4159 | /* | |
dd41f596 IM |
4160 | * Optimization: we know that if all tasks are in |
4161 | * the fair class we can call that function directly: | |
1da177e4 | 4162 | */ |
dd41f596 | 4163 | if (likely(rq->nr_running == rq->cfs.nr_running)) { |
fb8d4724 | 4164 | p = fair_sched_class.pick_next_task(rq); |
dd41f596 IM |
4165 | if (likely(p)) |
4166 | return p; | |
1da177e4 LT |
4167 | } |
4168 | ||
34f971f6 | 4169 | for_each_class(class) { |
fb8d4724 | 4170 | p = class->pick_next_task(rq); |
dd41f596 IM |
4171 | if (p) |
4172 | return p; | |
dd41f596 | 4173 | } |
34f971f6 PZ |
4174 | |
4175 | BUG(); /* the idle class will always have a runnable task */ | |
dd41f596 | 4176 | } |
1da177e4 | 4177 | |
dd41f596 IM |
4178 | /* |
4179 | * schedule() is the main scheduler function. | |
4180 | */ | |
ff743345 | 4181 | asmlinkage void __sched schedule(void) |
dd41f596 IM |
4182 | { |
4183 | struct task_struct *prev, *next; | |
67ca7bde | 4184 | unsigned long *switch_count; |
dd41f596 | 4185 | struct rq *rq; |
31656519 | 4186 | int cpu; |
dd41f596 | 4187 | |
ff743345 PZ |
4188 | need_resched: |
4189 | preempt_disable(); | |
dd41f596 IM |
4190 | cpu = smp_processor_id(); |
4191 | rq = cpu_rq(cpu); | |
25502a6c | 4192 | rcu_note_context_switch(cpu); |
dd41f596 | 4193 | prev = rq->curr; |
dd41f596 | 4194 | |
dd41f596 | 4195 | schedule_debug(prev); |
1da177e4 | 4196 | |
31656519 | 4197 | if (sched_feat(HRTICK)) |
f333fdc9 | 4198 | hrtick_clear(rq); |
8f4d37ec | 4199 | |
05fa785c | 4200 | raw_spin_lock_irq(&rq->lock); |
1da177e4 | 4201 | |
246d86b5 | 4202 | switch_count = &prev->nivcsw; |
1da177e4 | 4203 | if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { |
21aa9af0 | 4204 | if (unlikely(signal_pending_state(prev->state, prev))) { |
1da177e4 | 4205 | prev->state = TASK_RUNNING; |
21aa9af0 | 4206 | } else { |
2acca55e PZ |
4207 | deactivate_task(rq, prev, DEQUEUE_SLEEP); |
4208 | prev->on_rq = 0; | |
4209 | ||
21aa9af0 | 4210 | /* |
2acca55e PZ |
4211 | * If a worker went to sleep, notify and ask workqueue |
4212 | * whether it wants to wake up a task to maintain | |
4213 | * concurrency. | |
21aa9af0 TH |
4214 | */ |
4215 | if (prev->flags & PF_WQ_WORKER) { | |
4216 | struct task_struct *to_wakeup; | |
4217 | ||
4218 | to_wakeup = wq_worker_sleeping(prev, cpu); | |
4219 | if (to_wakeup) | |
4220 | try_to_wake_up_local(to_wakeup); | |
4221 | } | |
fd2f4419 | 4222 | |
6631e635 | 4223 | /* |
2acca55e PZ |
4224 | * If we are going to sleep and we have plugged IO |
4225 | * queued, make sure to submit it to avoid deadlocks. | |
6631e635 LT |
4226 | */ |
4227 | if (blk_needs_flush_plug(prev)) { | |
4228 | raw_spin_unlock(&rq->lock); | |
a237c1c5 | 4229 | blk_schedule_flush_plug(prev); |
6631e635 LT |
4230 | raw_spin_lock(&rq->lock); |
4231 | } | |
21aa9af0 | 4232 | } |
dd41f596 | 4233 | switch_count = &prev->nvcsw; |
1da177e4 LT |
4234 | } |
4235 | ||
3f029d3c | 4236 | pre_schedule(rq, prev); |
f65eda4f | 4237 | |
dd41f596 | 4238 | if (unlikely(!rq->nr_running)) |
1da177e4 | 4239 | idle_balance(cpu, rq); |
1da177e4 | 4240 | |
df1c99d4 | 4241 | put_prev_task(rq, prev); |
b67802ea | 4242 | next = pick_next_task(rq); |
f26f9aff MG |
4243 | clear_tsk_need_resched(prev); |
4244 | rq->skip_clock_update = 0; | |
1da177e4 | 4245 | |
1da177e4 | 4246 | if (likely(prev != next)) { |
1da177e4 LT |
4247 | rq->nr_switches++; |
4248 | rq->curr = next; | |
4249 | ++*switch_count; | |
4250 | ||
dd41f596 | 4251 | context_switch(rq, prev, next); /* unlocks the rq */ |
8f4d37ec | 4252 | /* |
246d86b5 ON |
4253 | * The context switch have flipped the stack from under us |
4254 | * and restored the local variables which were saved when | |
4255 | * this task called schedule() in the past. prev == current | |
4256 | * is still correct, but it can be moved to another cpu/rq. | |
8f4d37ec PZ |
4257 | */ |
4258 | cpu = smp_processor_id(); | |
4259 | rq = cpu_rq(cpu); | |
1da177e4 | 4260 | } else |
05fa785c | 4261 | raw_spin_unlock_irq(&rq->lock); |
1da177e4 | 4262 | |
3f029d3c | 4263 | post_schedule(rq); |
1da177e4 | 4264 | |
1da177e4 | 4265 | preempt_enable_no_resched(); |
ff743345 | 4266 | if (need_resched()) |
1da177e4 LT |
4267 | goto need_resched; |
4268 | } | |
1da177e4 LT |
4269 | EXPORT_SYMBOL(schedule); |
4270 | ||
c08f7829 | 4271 | #ifdef CONFIG_MUTEX_SPIN_ON_OWNER |
0d66bf6d | 4272 | |
c6eb3dda PZ |
4273 | static inline bool owner_running(struct mutex *lock, struct task_struct *owner) |
4274 | { | |
4275 | bool ret = false; | |
0d66bf6d | 4276 | |
c6eb3dda PZ |
4277 | rcu_read_lock(); |
4278 | if (lock->owner != owner) | |
4279 | goto fail; | |
0d66bf6d PZ |
4280 | |
4281 | /* | |
c6eb3dda PZ |
4282 | * Ensure we emit the owner->on_cpu, dereference _after_ checking |
4283 | * lock->owner still matches owner, if that fails, owner might | |
4284 | * point to free()d memory, if it still matches, the rcu_read_lock() | |
4285 | * ensures the memory stays valid. | |
0d66bf6d | 4286 | */ |
c6eb3dda | 4287 | barrier(); |
0d66bf6d | 4288 | |
c6eb3dda PZ |
4289 | ret = owner->on_cpu; |
4290 | fail: | |
4291 | rcu_read_unlock(); | |
0d66bf6d | 4292 | |
c6eb3dda PZ |
4293 | return ret; |
4294 | } | |
0d66bf6d | 4295 | |
c6eb3dda PZ |
4296 | /* |
4297 | * Look out! "owner" is an entirely speculative pointer | |
4298 | * access and not reliable. | |
4299 | */ | |
4300 | int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner) | |
4301 | { | |
4302 | if (!sched_feat(OWNER_SPIN)) | |
4303 | return 0; | |
0d66bf6d | 4304 | |
c6eb3dda PZ |
4305 | while (owner_running(lock, owner)) { |
4306 | if (need_resched()) | |
0d66bf6d PZ |
4307 | return 0; |
4308 | ||
335d7afb | 4309 | arch_mutex_cpu_relax(); |
0d66bf6d | 4310 | } |
4b402210 | 4311 | |
c6eb3dda PZ |
4312 | /* |
4313 | * If the owner changed to another task there is likely | |
4314 | * heavy contention, stop spinning. | |
4315 | */ | |
4316 | if (lock->owner) | |
4317 | return 0; | |
4318 | ||
0d66bf6d PZ |
4319 | return 1; |
4320 | } | |
4321 | #endif | |
4322 | ||
1da177e4 LT |
4323 | #ifdef CONFIG_PREEMPT |
4324 | /* | |
2ed6e34f | 4325 | * this is the entry point to schedule() from in-kernel preemption |
41a2d6cf | 4326 | * off of preempt_enable. Kernel preemptions off return from interrupt |
1da177e4 LT |
4327 | * occur there and call schedule directly. |
4328 | */ | |
d1f74e20 | 4329 | asmlinkage void __sched notrace preempt_schedule(void) |
1da177e4 LT |
4330 | { |
4331 | struct thread_info *ti = current_thread_info(); | |
6478d880 | 4332 | |
1da177e4 LT |
4333 | /* |
4334 | * If there is a non-zero preempt_count or interrupts are disabled, | |
41a2d6cf | 4335 | * we do not want to preempt the current task. Just return.. |
1da177e4 | 4336 | */ |
beed33a8 | 4337 | if (likely(ti->preempt_count || irqs_disabled())) |
1da177e4 LT |
4338 | return; |
4339 | ||
3a5c359a | 4340 | do { |
d1f74e20 | 4341 | add_preempt_count_notrace(PREEMPT_ACTIVE); |
3a5c359a | 4342 | schedule(); |
d1f74e20 | 4343 | sub_preempt_count_notrace(PREEMPT_ACTIVE); |
1da177e4 | 4344 | |
3a5c359a AK |
4345 | /* |
4346 | * Check again in case we missed a preemption opportunity | |
4347 | * between schedule and now. | |
4348 | */ | |
4349 | barrier(); | |
5ed0cec0 | 4350 | } while (need_resched()); |
1da177e4 | 4351 | } |
1da177e4 LT |
4352 | EXPORT_SYMBOL(preempt_schedule); |
4353 | ||
4354 | /* | |
2ed6e34f | 4355 | * this is the entry point to schedule() from kernel preemption |
1da177e4 LT |
4356 | * off of irq context. |
4357 | * Note, that this is called and return with irqs disabled. This will | |
4358 | * protect us against recursive calling from irq. | |
4359 | */ | |
4360 | asmlinkage void __sched preempt_schedule_irq(void) | |
4361 | { | |
4362 | struct thread_info *ti = current_thread_info(); | |
6478d880 | 4363 | |
2ed6e34f | 4364 | /* Catch callers which need to be fixed */ |
1da177e4 LT |
4365 | BUG_ON(ti->preempt_count || !irqs_disabled()); |
4366 | ||
3a5c359a AK |
4367 | do { |
4368 | add_preempt_count(PREEMPT_ACTIVE); | |
3a5c359a AK |
4369 | local_irq_enable(); |
4370 | schedule(); | |
4371 | local_irq_disable(); | |
3a5c359a | 4372 | sub_preempt_count(PREEMPT_ACTIVE); |
1da177e4 | 4373 | |
3a5c359a AK |
4374 | /* |
4375 | * Check again in case we missed a preemption opportunity | |
4376 | * between schedule and now. | |
4377 | */ | |
4378 | barrier(); | |
5ed0cec0 | 4379 | } while (need_resched()); |
1da177e4 LT |
4380 | } |
4381 | ||
4382 | #endif /* CONFIG_PREEMPT */ | |
4383 | ||
63859d4f | 4384 | int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, |
95cdf3b7 | 4385 | void *key) |
1da177e4 | 4386 | { |
63859d4f | 4387 | return try_to_wake_up(curr->private, mode, wake_flags); |
1da177e4 | 4388 | } |
1da177e4 LT |
4389 | EXPORT_SYMBOL(default_wake_function); |
4390 | ||
4391 | /* | |
41a2d6cf IM |
4392 | * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just |
4393 | * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve | |
1da177e4 LT |
4394 | * number) then we wake all the non-exclusive tasks and one exclusive task. |
4395 | * | |
4396 | * There are circumstances in which we can try to wake a task which has already | |
41a2d6cf | 4397 | * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns |
1da177e4 LT |
4398 | * zero in this (rare) case, and we handle it by continuing to scan the queue. |
4399 | */ | |
78ddb08f | 4400 | static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, |
63859d4f | 4401 | int nr_exclusive, int wake_flags, void *key) |
1da177e4 | 4402 | { |
2e45874c | 4403 | wait_queue_t *curr, *next; |
1da177e4 | 4404 | |
2e45874c | 4405 | list_for_each_entry_safe(curr, next, &q->task_list, task_list) { |
48f24c4d IM |
4406 | unsigned flags = curr->flags; |
4407 | ||
63859d4f | 4408 | if (curr->func(curr, mode, wake_flags, key) && |
48f24c4d | 4409 | (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) |
1da177e4 LT |
4410 | break; |
4411 | } | |
4412 | } | |
4413 | ||
4414 | /** | |
4415 | * __wake_up - wake up threads blocked on a waitqueue. | |
4416 | * @q: the waitqueue | |
4417 | * @mode: which threads | |
4418 | * @nr_exclusive: how many wake-one or wake-many threads to wake up | |
67be2dd1 | 4419 | * @key: is directly passed to the wakeup function |
50fa610a DH |
4420 | * |
4421 | * It may be assumed that this function implies a write memory barrier before | |
4422 | * changing the task state if and only if any tasks are woken up. | |
1da177e4 | 4423 | */ |
7ad5b3a5 | 4424 | void __wake_up(wait_queue_head_t *q, unsigned int mode, |
95cdf3b7 | 4425 | int nr_exclusive, void *key) |
1da177e4 LT |
4426 | { |
4427 | unsigned long flags; | |
4428 | ||
4429 | spin_lock_irqsave(&q->lock, flags); | |
4430 | __wake_up_common(q, mode, nr_exclusive, 0, key); | |
4431 | spin_unlock_irqrestore(&q->lock, flags); | |
4432 | } | |
1da177e4 LT |
4433 | EXPORT_SYMBOL(__wake_up); |
4434 | ||
4435 | /* | |
4436 | * Same as __wake_up but called with the spinlock in wait_queue_head_t held. | |
4437 | */ | |
7ad5b3a5 | 4438 | void __wake_up_locked(wait_queue_head_t *q, unsigned int mode) |
1da177e4 LT |
4439 | { |
4440 | __wake_up_common(q, mode, 1, 0, NULL); | |
4441 | } | |
22c43c81 | 4442 | EXPORT_SYMBOL_GPL(__wake_up_locked); |
1da177e4 | 4443 | |
4ede816a DL |
4444 | void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) |
4445 | { | |
4446 | __wake_up_common(q, mode, 1, 0, key); | |
4447 | } | |
bf294b41 | 4448 | EXPORT_SYMBOL_GPL(__wake_up_locked_key); |
4ede816a | 4449 | |
1da177e4 | 4450 | /** |
4ede816a | 4451 | * __wake_up_sync_key - wake up threads blocked on a waitqueue. |
1da177e4 LT |
4452 | * @q: the waitqueue |
4453 | * @mode: which threads | |
4454 | * @nr_exclusive: how many wake-one or wake-many threads to wake up | |
4ede816a | 4455 | * @key: opaque value to be passed to wakeup targets |
1da177e4 LT |
4456 | * |
4457 | * The sync wakeup differs that the waker knows that it will schedule | |
4458 | * away soon, so while the target thread will be woken up, it will not | |
4459 | * be migrated to another CPU - ie. the two threads are 'synchronized' | |
4460 | * with each other. This can prevent needless bouncing between CPUs. | |
4461 | * | |
4462 | * On UP it can prevent extra preemption. | |
50fa610a DH |
4463 | * |
4464 | * It may be assumed that this function implies a write memory barrier before | |
4465 | * changing the task state if and only if any tasks are woken up. | |
1da177e4 | 4466 | */ |
4ede816a DL |
4467 | void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, |
4468 | int nr_exclusive, void *key) | |
1da177e4 LT |
4469 | { |
4470 | unsigned long flags; | |
7d478721 | 4471 | int wake_flags = WF_SYNC; |
1da177e4 LT |
4472 | |
4473 | if (unlikely(!q)) | |
4474 | return; | |
4475 | ||
4476 | if (unlikely(!nr_exclusive)) | |
7d478721 | 4477 | wake_flags = 0; |
1da177e4 LT |
4478 | |
4479 | spin_lock_irqsave(&q->lock, flags); | |
7d478721 | 4480 | __wake_up_common(q, mode, nr_exclusive, wake_flags, key); |
1da177e4 LT |
4481 | spin_unlock_irqrestore(&q->lock, flags); |
4482 | } | |
4ede816a DL |
4483 | EXPORT_SYMBOL_GPL(__wake_up_sync_key); |
4484 | ||
4485 | /* | |
4486 | * __wake_up_sync - see __wake_up_sync_key() | |
4487 | */ | |
4488 | void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) | |
4489 | { | |
4490 | __wake_up_sync_key(q, mode, nr_exclusive, NULL); | |
4491 | } | |
1da177e4 LT |
4492 | EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ |
4493 | ||
65eb3dc6 KD |
4494 | /** |
4495 | * complete: - signals a single thread waiting on this completion | |
4496 | * @x: holds the state of this particular completion | |
4497 | * | |
4498 | * This will wake up a single thread waiting on this completion. Threads will be | |
4499 | * awakened in the same order in which they were queued. | |
4500 | * | |
4501 | * See also complete_all(), wait_for_completion() and related routines. | |
50fa610a DH |
4502 | * |
4503 | * It may be assumed that this function implies a write memory barrier before | |
4504 | * changing the task state if and only if any tasks are woken up. | |
65eb3dc6 | 4505 | */ |
b15136e9 | 4506 | void complete(struct completion *x) |
1da177e4 LT |
4507 | { |
4508 | unsigned long flags; | |
4509 | ||
4510 | spin_lock_irqsave(&x->wait.lock, flags); | |
4511 | x->done++; | |
d9514f6c | 4512 | __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); |
1da177e4 LT |
4513 | spin_unlock_irqrestore(&x->wait.lock, flags); |
4514 | } | |
4515 | EXPORT_SYMBOL(complete); | |
4516 | ||
65eb3dc6 KD |
4517 | /** |
4518 | * complete_all: - signals all threads waiting on this completion | |
4519 | * @x: holds the state of this particular completion | |
4520 | * | |
4521 | * This will wake up all threads waiting on this particular completion event. | |
50fa610a DH |
4522 | * |
4523 | * It may be assumed that this function implies a write memory barrier before | |
4524 | * changing the task state if and only if any tasks are woken up. | |
65eb3dc6 | 4525 | */ |
b15136e9 | 4526 | void complete_all(struct completion *x) |
1da177e4 LT |
4527 | { |
4528 | unsigned long flags; | |
4529 | ||
4530 | spin_lock_irqsave(&x->wait.lock, flags); | |
4531 | x->done += UINT_MAX/2; | |
d9514f6c | 4532 | __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); |
1da177e4 LT |
4533 | spin_unlock_irqrestore(&x->wait.lock, flags); |
4534 | } | |
4535 | EXPORT_SYMBOL(complete_all); | |
4536 | ||
8cbbe86d AK |
4537 | static inline long __sched |
4538 | do_wait_for_common(struct completion *x, long timeout, int state) | |
1da177e4 | 4539 | { |
1da177e4 LT |
4540 | if (!x->done) { |
4541 | DECLARE_WAITQUEUE(wait, current); | |
4542 | ||
a93d2f17 | 4543 | __add_wait_queue_tail_exclusive(&x->wait, &wait); |
1da177e4 | 4544 | do { |
94d3d824 | 4545 | if (signal_pending_state(state, current)) { |
ea71a546 ON |
4546 | timeout = -ERESTARTSYS; |
4547 | break; | |
8cbbe86d AK |
4548 | } |
4549 | __set_current_state(state); | |
1da177e4 LT |
4550 | spin_unlock_irq(&x->wait.lock); |
4551 | timeout = schedule_timeout(timeout); | |
4552 | spin_lock_irq(&x->wait.lock); | |
ea71a546 | 4553 | } while (!x->done && timeout); |
1da177e4 | 4554 | __remove_wait_queue(&x->wait, &wait); |
ea71a546 ON |
4555 | if (!x->done) |
4556 | return timeout; | |
1da177e4 LT |
4557 | } |
4558 | x->done--; | |
ea71a546 | 4559 | return timeout ?: 1; |
1da177e4 | 4560 | } |
1da177e4 | 4561 | |
8cbbe86d AK |
4562 | static long __sched |
4563 | wait_for_common(struct completion *x, long timeout, int state) | |
1da177e4 | 4564 | { |
1da177e4 LT |
4565 | might_sleep(); |
4566 | ||
4567 | spin_lock_irq(&x->wait.lock); | |
8cbbe86d | 4568 | timeout = do_wait_for_common(x, timeout, state); |
1da177e4 | 4569 | spin_unlock_irq(&x->wait.lock); |
8cbbe86d AK |
4570 | return timeout; |
4571 | } | |
1da177e4 | 4572 | |
65eb3dc6 KD |
4573 | /** |
4574 | * wait_for_completion: - waits for completion of a task | |
4575 | * @x: holds the state of this particular completion | |
4576 | * | |
4577 | * This waits to be signaled for completion of a specific task. It is NOT | |
4578 | * interruptible and there is no timeout. | |
4579 | * | |
4580 | * See also similar routines (i.e. wait_for_completion_timeout()) with timeout | |
4581 | * and interrupt capability. Also see complete(). | |
4582 | */ | |
b15136e9 | 4583 | void __sched wait_for_completion(struct completion *x) |
8cbbe86d AK |
4584 | { |
4585 | wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); | |
1da177e4 | 4586 | } |
8cbbe86d | 4587 | EXPORT_SYMBOL(wait_for_completion); |
1da177e4 | 4588 | |
65eb3dc6 KD |
4589 | /** |
4590 | * wait_for_completion_timeout: - waits for completion of a task (w/timeout) | |
4591 | * @x: holds the state of this particular completion | |
4592 | * @timeout: timeout value in jiffies | |
4593 | * | |
4594 | * This waits for either a completion of a specific task to be signaled or for a | |
4595 | * specified timeout to expire. The timeout is in jiffies. It is not | |
4596 | * interruptible. | |
4597 | */ | |
b15136e9 | 4598 | unsigned long __sched |
8cbbe86d | 4599 | wait_for_completion_timeout(struct completion *x, unsigned long timeout) |
1da177e4 | 4600 | { |
8cbbe86d | 4601 | return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); |
1da177e4 | 4602 | } |
8cbbe86d | 4603 | EXPORT_SYMBOL(wait_for_completion_timeout); |
1da177e4 | 4604 | |
65eb3dc6 KD |
4605 | /** |
4606 | * wait_for_completion_interruptible: - waits for completion of a task (w/intr) | |
4607 | * @x: holds the state of this particular completion | |
4608 | * | |
4609 | * This waits for completion of a specific task to be signaled. It is | |
4610 | * interruptible. | |
4611 | */ | |
8cbbe86d | 4612 | int __sched wait_for_completion_interruptible(struct completion *x) |
0fec171c | 4613 | { |
51e97990 AK |
4614 | long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); |
4615 | if (t == -ERESTARTSYS) | |
4616 | return t; | |
4617 | return 0; | |
0fec171c | 4618 | } |
8cbbe86d | 4619 | EXPORT_SYMBOL(wait_for_completion_interruptible); |
1da177e4 | 4620 | |
65eb3dc6 KD |
4621 | /** |
4622 | * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) | |
4623 | * @x: holds the state of this particular completion | |
4624 | * @timeout: timeout value in jiffies | |
4625 | * | |
4626 | * This waits for either a completion of a specific task to be signaled or for a | |
4627 | * specified timeout to expire. It is interruptible. The timeout is in jiffies. | |
4628 | */ | |
6bf41237 | 4629 | long __sched |
8cbbe86d AK |
4630 | wait_for_completion_interruptible_timeout(struct completion *x, |
4631 | unsigned long timeout) | |
0fec171c | 4632 | { |
8cbbe86d | 4633 | return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); |
0fec171c | 4634 | } |
8cbbe86d | 4635 | EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); |
1da177e4 | 4636 | |
65eb3dc6 KD |
4637 | /** |
4638 | * wait_for_completion_killable: - waits for completion of a task (killable) | |
4639 | * @x: holds the state of this particular completion | |
4640 | * | |
4641 | * This waits to be signaled for completion of a specific task. It can be | |
4642 | * interrupted by a kill signal. | |
4643 | */ | |
009e577e MW |
4644 | int __sched wait_for_completion_killable(struct completion *x) |
4645 | { | |
4646 | long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); | |
4647 | if (t == -ERESTARTSYS) | |
4648 | return t; | |
4649 | return 0; | |
4650 | } | |
4651 | EXPORT_SYMBOL(wait_for_completion_killable); | |
4652 | ||
0aa12fb4 SW |
4653 | /** |
4654 | * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable)) | |
4655 | * @x: holds the state of this particular completion | |
4656 | * @timeout: timeout value in jiffies | |
4657 | * | |
4658 | * This waits for either a completion of a specific task to be | |
4659 | * signaled or for a specified timeout to expire. It can be | |
4660 | * interrupted by a kill signal. The timeout is in jiffies. | |
4661 | */ | |
6bf41237 | 4662 | long __sched |
0aa12fb4 SW |
4663 | wait_for_completion_killable_timeout(struct completion *x, |
4664 | unsigned long timeout) | |
4665 | { | |
4666 | return wait_for_common(x, timeout, TASK_KILLABLE); | |
4667 | } | |
4668 | EXPORT_SYMBOL(wait_for_completion_killable_timeout); | |
4669 | ||
be4de352 DC |
4670 | /** |
4671 | * try_wait_for_completion - try to decrement a completion without blocking | |
4672 | * @x: completion structure | |
4673 | * | |
4674 | * Returns: 0 if a decrement cannot be done without blocking | |
4675 | * 1 if a decrement succeeded. | |
4676 | * | |
4677 | * If a completion is being used as a counting completion, | |
4678 | * attempt to decrement the counter without blocking. This | |
4679 | * enables us to avoid waiting if the resource the completion | |
4680 | * is protecting is not available. | |
4681 | */ | |
4682 | bool try_wait_for_completion(struct completion *x) | |
4683 | { | |
7539a3b3 | 4684 | unsigned long flags; |
be4de352 DC |
4685 | int ret = 1; |
4686 | ||
7539a3b3 | 4687 | spin_lock_irqsave(&x->wait.lock, flags); |
be4de352 DC |
4688 | if (!x->done) |
4689 | ret = 0; | |
4690 | else | |
4691 | x->done--; | |
7539a3b3 | 4692 | spin_unlock_irqrestore(&x->wait.lock, flags); |
be4de352 DC |
4693 | return ret; |
4694 | } | |
4695 | EXPORT_SYMBOL(try_wait_for_completion); | |
4696 | ||
4697 | /** | |
4698 | * completion_done - Test to see if a completion has any waiters | |
4699 | * @x: completion structure | |
4700 | * | |
4701 | * Returns: 0 if there are waiters (wait_for_completion() in progress) | |
4702 | * 1 if there are no waiters. | |
4703 | * | |
4704 | */ | |
4705 | bool completion_done(struct completion *x) | |
4706 | { | |
7539a3b3 | 4707 | unsigned long flags; |
be4de352 DC |
4708 | int ret = 1; |
4709 | ||
7539a3b3 | 4710 | spin_lock_irqsave(&x->wait.lock, flags); |
be4de352 DC |
4711 | if (!x->done) |
4712 | ret = 0; | |
7539a3b3 | 4713 | spin_unlock_irqrestore(&x->wait.lock, flags); |
be4de352 DC |
4714 | return ret; |
4715 | } | |
4716 | EXPORT_SYMBOL(completion_done); | |
4717 | ||
8cbbe86d AK |
4718 | static long __sched |
4719 | sleep_on_common(wait_queue_head_t *q, int state, long timeout) | |
1da177e4 | 4720 | { |
0fec171c IM |
4721 | unsigned long flags; |
4722 | wait_queue_t wait; | |
4723 | ||
4724 | init_waitqueue_entry(&wait, current); | |
1da177e4 | 4725 | |
8cbbe86d | 4726 | __set_current_state(state); |
1da177e4 | 4727 | |
8cbbe86d AK |
4728 | spin_lock_irqsave(&q->lock, flags); |
4729 | __add_wait_queue(q, &wait); | |
4730 | spin_unlock(&q->lock); | |
4731 | timeout = schedule_timeout(timeout); | |
4732 | spin_lock_irq(&q->lock); | |
4733 | __remove_wait_queue(q, &wait); | |
4734 | spin_unlock_irqrestore(&q->lock, flags); | |
4735 | ||
4736 | return timeout; | |
4737 | } | |
4738 | ||
4739 | void __sched interruptible_sleep_on(wait_queue_head_t *q) | |
4740 | { | |
4741 | sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); | |
1da177e4 | 4742 | } |
1da177e4 LT |
4743 | EXPORT_SYMBOL(interruptible_sleep_on); |
4744 | ||
0fec171c | 4745 | long __sched |
95cdf3b7 | 4746 | interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) |
1da177e4 | 4747 | { |
8cbbe86d | 4748 | return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); |
1da177e4 | 4749 | } |
1da177e4 LT |
4750 | EXPORT_SYMBOL(interruptible_sleep_on_timeout); |
4751 | ||
0fec171c | 4752 | void __sched sleep_on(wait_queue_head_t *q) |
1da177e4 | 4753 | { |
8cbbe86d | 4754 | sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); |
1da177e4 | 4755 | } |
1da177e4 LT |
4756 | EXPORT_SYMBOL(sleep_on); |
4757 | ||
0fec171c | 4758 | long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) |
1da177e4 | 4759 | { |
8cbbe86d | 4760 | return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); |
1da177e4 | 4761 | } |
1da177e4 LT |
4762 | EXPORT_SYMBOL(sleep_on_timeout); |
4763 | ||
b29739f9 IM |
4764 | #ifdef CONFIG_RT_MUTEXES |
4765 | ||
4766 | /* | |
4767 | * rt_mutex_setprio - set the current priority of a task | |
4768 | * @p: task | |
4769 | * @prio: prio value (kernel-internal form) | |
4770 | * | |
4771 | * This function changes the 'effective' priority of a task. It does | |
4772 | * not touch ->normal_prio like __setscheduler(). | |
4773 | * | |
4774 | * Used by the rt_mutex code to implement priority inheritance logic. | |
4775 | */ | |
36c8b586 | 4776 | void rt_mutex_setprio(struct task_struct *p, int prio) |
b29739f9 | 4777 | { |
83b699ed | 4778 | int oldprio, on_rq, running; |
70b97a7f | 4779 | struct rq *rq; |
83ab0aa0 | 4780 | const struct sched_class *prev_class; |
b29739f9 IM |
4781 | |
4782 | BUG_ON(prio < 0 || prio > MAX_PRIO); | |
4783 | ||
0122ec5b | 4784 | rq = __task_rq_lock(p); |
b29739f9 | 4785 | |
a8027073 | 4786 | trace_sched_pi_setprio(p, prio); |
d5f9f942 | 4787 | oldprio = p->prio; |
83ab0aa0 | 4788 | prev_class = p->sched_class; |
fd2f4419 | 4789 | on_rq = p->on_rq; |
051a1d1a | 4790 | running = task_current(rq, p); |
0e1f3483 | 4791 | if (on_rq) |
69be72c1 | 4792 | dequeue_task(rq, p, 0); |
0e1f3483 HS |
4793 | if (running) |
4794 | p->sched_class->put_prev_task(rq, p); | |
dd41f596 IM |
4795 | |
4796 | if (rt_prio(prio)) | |
4797 | p->sched_class = &rt_sched_class; | |
4798 | else | |
4799 | p->sched_class = &fair_sched_class; | |
4800 | ||
b29739f9 IM |
4801 | p->prio = prio; |
4802 | ||
0e1f3483 HS |
4803 | if (running) |
4804 | p->sched_class->set_curr_task(rq); | |
da7a735e | 4805 | if (on_rq) |
371fd7e7 | 4806 | enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0); |
cb469845 | 4807 | |
da7a735e | 4808 | check_class_changed(rq, p, prev_class, oldprio); |
0122ec5b | 4809 | __task_rq_unlock(rq); |
b29739f9 IM |
4810 | } |
4811 | ||
4812 | #endif | |
4813 | ||
36c8b586 | 4814 | void set_user_nice(struct task_struct *p, long nice) |
1da177e4 | 4815 | { |
dd41f596 | 4816 | int old_prio, delta, on_rq; |
1da177e4 | 4817 | unsigned long flags; |
70b97a7f | 4818 | struct rq *rq; |
1da177e4 LT |
4819 | |
4820 | if (TASK_NICE(p) == nice || nice < -20 || nice > 19) | |
4821 | return; | |
4822 | /* | |
4823 | * We have to be careful, if called from sys_setpriority(), | |
4824 | * the task might be in the middle of scheduling on another CPU. | |
4825 | */ | |
4826 | rq = task_rq_lock(p, &flags); | |
4827 | /* | |
4828 | * The RT priorities are set via sched_setscheduler(), but we still | |
4829 | * allow the 'normal' nice value to be set - but as expected | |
4830 | * it wont have any effect on scheduling until the task is | |
dd41f596 | 4831 | * SCHED_FIFO/SCHED_RR: |
1da177e4 | 4832 | */ |
e05606d3 | 4833 | if (task_has_rt_policy(p)) { |
1da177e4 LT |
4834 | p->static_prio = NICE_TO_PRIO(nice); |
4835 | goto out_unlock; | |
4836 | } | |
fd2f4419 | 4837 | on_rq = p->on_rq; |
c09595f6 | 4838 | if (on_rq) |
69be72c1 | 4839 | dequeue_task(rq, p, 0); |
1da177e4 | 4840 | |
1da177e4 | 4841 | p->static_prio = NICE_TO_PRIO(nice); |
2dd73a4f | 4842 | set_load_weight(p); |
b29739f9 IM |
4843 | old_prio = p->prio; |
4844 | p->prio = effective_prio(p); | |
4845 | delta = p->prio - old_prio; | |
1da177e4 | 4846 | |
dd41f596 | 4847 | if (on_rq) { |
371fd7e7 | 4848 | enqueue_task(rq, p, 0); |
1da177e4 | 4849 | /* |
d5f9f942 AM |
4850 | * If the task increased its priority or is running and |
4851 | * lowered its priority, then reschedule its CPU: | |
1da177e4 | 4852 | */ |
d5f9f942 | 4853 | if (delta < 0 || (delta > 0 && task_running(rq, p))) |
1da177e4 LT |
4854 | resched_task(rq->curr); |
4855 | } | |
4856 | out_unlock: | |
0122ec5b | 4857 | task_rq_unlock(rq, p, &flags); |
1da177e4 | 4858 | } |
1da177e4 LT |
4859 | EXPORT_SYMBOL(set_user_nice); |
4860 | ||
e43379f1 MM |
4861 | /* |
4862 | * can_nice - check if a task can reduce its nice value | |
4863 | * @p: task | |
4864 | * @nice: nice value | |
4865 | */ | |
36c8b586 | 4866 | int can_nice(const struct task_struct *p, const int nice) |
e43379f1 | 4867 | { |
024f4747 MM |
4868 | /* convert nice value [19,-20] to rlimit style value [1,40] */ |
4869 | int nice_rlim = 20 - nice; | |
48f24c4d | 4870 | |
78d7d407 | 4871 | return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || |
e43379f1 MM |
4872 | capable(CAP_SYS_NICE)); |
4873 | } | |
4874 | ||
1da177e4 LT |
4875 | #ifdef __ARCH_WANT_SYS_NICE |
4876 | ||
4877 | /* | |
4878 | * sys_nice - change the priority of the current process. | |
4879 | * @increment: priority increment | |
4880 | * | |
4881 | * sys_setpriority is a more generic, but much slower function that | |
4882 | * does similar things. | |
4883 | */ | |
5add95d4 | 4884 | SYSCALL_DEFINE1(nice, int, increment) |
1da177e4 | 4885 | { |
48f24c4d | 4886 | long nice, retval; |
1da177e4 LT |
4887 | |
4888 | /* | |
4889 | * Setpriority might change our priority at the same moment. | |
4890 | * We don't have to worry. Conceptually one call occurs first | |
4891 | * and we have a single winner. | |
4892 | */ | |
e43379f1 MM |
4893 | if (increment < -40) |
4894 | increment = -40; | |
1da177e4 LT |
4895 | if (increment > 40) |
4896 | increment = 40; | |
4897 | ||
2b8f836f | 4898 | nice = TASK_NICE(current) + increment; |
1da177e4 LT |
4899 | if (nice < -20) |
4900 | nice = -20; | |
4901 | if (nice > 19) | |
4902 | nice = 19; | |
4903 | ||
e43379f1 MM |
4904 | if (increment < 0 && !can_nice(current, nice)) |
4905 | return -EPERM; | |
4906 | ||
1da177e4 LT |
4907 | retval = security_task_setnice(current, nice); |
4908 | if (retval) | |
4909 | return retval; | |
4910 | ||
4911 | set_user_nice(current, nice); | |
4912 | return 0; | |
4913 | } | |
4914 | ||
4915 | #endif | |
4916 | ||
4917 | /** | |
4918 | * task_prio - return the priority value of a given task. | |
4919 | * @p: the task in question. | |
4920 | * | |
4921 | * This is the priority value as seen by users in /proc. | |
4922 | * RT tasks are offset by -200. Normal tasks are centered | |
4923 | * around 0, value goes from -16 to +15. | |
4924 | */ | |
36c8b586 | 4925 | int task_prio(const struct task_struct *p) |
1da177e4 LT |
4926 | { |
4927 | return p->prio - MAX_RT_PRIO; | |
4928 | } | |
4929 | ||
4930 | /** | |
4931 | * task_nice - return the nice value of a given task. | |
4932 | * @p: the task in question. | |
4933 | */ | |
36c8b586 | 4934 | int task_nice(const struct task_struct *p) |
1da177e4 LT |
4935 | { |
4936 | return TASK_NICE(p); | |
4937 | } | |
150d8bed | 4938 | EXPORT_SYMBOL(task_nice); |
1da177e4 LT |
4939 | |
4940 | /** | |
4941 | * idle_cpu - is a given cpu idle currently? | |
4942 | * @cpu: the processor in question. | |
4943 | */ | |
4944 | int idle_cpu(int cpu) | |
4945 | { | |
4946 | return cpu_curr(cpu) == cpu_rq(cpu)->idle; | |
4947 | } | |
4948 | ||
1da177e4 LT |
4949 | /** |
4950 | * idle_task - return the idle task for a given cpu. | |
4951 | * @cpu: the processor in question. | |
4952 | */ | |
36c8b586 | 4953 | struct task_struct *idle_task(int cpu) |
1da177e4 LT |
4954 | { |
4955 | return cpu_rq(cpu)->idle; | |
4956 | } | |
4957 | ||
4958 | /** | |
4959 | * find_process_by_pid - find a process with a matching PID value. | |
4960 | * @pid: the pid in question. | |
4961 | */ | |
a9957449 | 4962 | static struct task_struct *find_process_by_pid(pid_t pid) |
1da177e4 | 4963 | { |
228ebcbe | 4964 | return pid ? find_task_by_vpid(pid) : current; |
1da177e4 LT |
4965 | } |
4966 | ||
4967 | /* Actually do priority change: must hold rq lock. */ | |
dd41f596 IM |
4968 | static void |
4969 | __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) | |
1da177e4 | 4970 | { |
1da177e4 LT |
4971 | p->policy = policy; |
4972 | p->rt_priority = prio; | |
b29739f9 IM |
4973 | p->normal_prio = normal_prio(p); |
4974 | /* we are holding p->pi_lock already */ | |
4975 | p->prio = rt_mutex_getprio(p); | |
ffd44db5 PZ |
4976 | if (rt_prio(p->prio)) |
4977 | p->sched_class = &rt_sched_class; | |
4978 | else | |
4979 | p->sched_class = &fair_sched_class; | |
2dd73a4f | 4980 | set_load_weight(p); |
1da177e4 LT |
4981 | } |
4982 | ||
c69e8d9c DH |
4983 | /* |
4984 | * check the target process has a UID that matches the current process's | |
4985 | */ | |
4986 | static bool check_same_owner(struct task_struct *p) | |
4987 | { | |
4988 | const struct cred *cred = current_cred(), *pcred; | |
4989 | bool match; | |
4990 | ||
4991 | rcu_read_lock(); | |
4992 | pcred = __task_cred(p); | |
b0e77598 SH |
4993 | if (cred->user->user_ns == pcred->user->user_ns) |
4994 | match = (cred->euid == pcred->euid || | |
4995 | cred->euid == pcred->uid); | |
4996 | else | |
4997 | match = false; | |
c69e8d9c DH |
4998 | rcu_read_unlock(); |
4999 | return match; | |
5000 | } | |
5001 | ||
961ccddd | 5002 | static int __sched_setscheduler(struct task_struct *p, int policy, |
fe7de49f | 5003 | const struct sched_param *param, bool user) |
1da177e4 | 5004 | { |
83b699ed | 5005 | int retval, oldprio, oldpolicy = -1, on_rq, running; |
1da177e4 | 5006 | unsigned long flags; |
83ab0aa0 | 5007 | const struct sched_class *prev_class; |
70b97a7f | 5008 | struct rq *rq; |
ca94c442 | 5009 | int reset_on_fork; |
1da177e4 | 5010 | |
66e5393a SR |
5011 | /* may grab non-irq protected spin_locks */ |
5012 | BUG_ON(in_interrupt()); | |
1da177e4 LT |
5013 | recheck: |
5014 | /* double check policy once rq lock held */ | |
ca94c442 LP |
5015 | if (policy < 0) { |
5016 | reset_on_fork = p->sched_reset_on_fork; | |
1da177e4 | 5017 | policy = oldpolicy = p->policy; |
ca94c442 LP |
5018 | } else { |
5019 | reset_on_fork = !!(policy & SCHED_RESET_ON_FORK); | |
5020 | policy &= ~SCHED_RESET_ON_FORK; | |
5021 | ||
5022 | if (policy != SCHED_FIFO && policy != SCHED_RR && | |
5023 | policy != SCHED_NORMAL && policy != SCHED_BATCH && | |
5024 | policy != SCHED_IDLE) | |
5025 | return -EINVAL; | |
5026 | } | |
5027 | ||
1da177e4 LT |
5028 | /* |
5029 | * Valid priorities for SCHED_FIFO and SCHED_RR are | |
dd41f596 IM |
5030 | * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, |
5031 | * SCHED_BATCH and SCHED_IDLE is 0. | |
1da177e4 LT |
5032 | */ |
5033 | if (param->sched_priority < 0 || | |
95cdf3b7 | 5034 | (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || |
d46523ea | 5035 | (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) |
1da177e4 | 5036 | return -EINVAL; |
e05606d3 | 5037 | if (rt_policy(policy) != (param->sched_priority != 0)) |
1da177e4 LT |
5038 | return -EINVAL; |
5039 | ||
37e4ab3f OC |
5040 | /* |
5041 | * Allow unprivileged RT tasks to decrease priority: | |
5042 | */ | |
961ccddd | 5043 | if (user && !capable(CAP_SYS_NICE)) { |
e05606d3 | 5044 | if (rt_policy(policy)) { |
a44702e8 ON |
5045 | unsigned long rlim_rtprio = |
5046 | task_rlimit(p, RLIMIT_RTPRIO); | |
8dc3e909 ON |
5047 | |
5048 | /* can't set/change the rt policy */ | |
5049 | if (policy != p->policy && !rlim_rtprio) | |
5050 | return -EPERM; | |
5051 | ||
5052 | /* can't increase priority */ | |
5053 | if (param->sched_priority > p->rt_priority && | |
5054 | param->sched_priority > rlim_rtprio) | |
5055 | return -EPERM; | |
5056 | } | |
c02aa73b | 5057 | |
dd41f596 | 5058 | /* |
c02aa73b DH |
5059 | * Treat SCHED_IDLE as nice 20. Only allow a switch to |
5060 | * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. | |
dd41f596 | 5061 | */ |
c02aa73b DH |
5062 | if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { |
5063 | if (!can_nice(p, TASK_NICE(p))) | |
5064 | return -EPERM; | |
5065 | } | |
5fe1d75f | 5066 | |
37e4ab3f | 5067 | /* can't change other user's priorities */ |
c69e8d9c | 5068 | if (!check_same_owner(p)) |
37e4ab3f | 5069 | return -EPERM; |
ca94c442 LP |
5070 | |
5071 | /* Normal users shall not reset the sched_reset_on_fork flag */ | |
5072 | if (p->sched_reset_on_fork && !reset_on_fork) | |
5073 | return -EPERM; | |
37e4ab3f | 5074 | } |
1da177e4 | 5075 | |
725aad24 | 5076 | if (user) { |
b0ae1981 | 5077 | retval = security_task_setscheduler(p); |
725aad24 JF |
5078 | if (retval) |
5079 | return retval; | |
5080 | } | |
5081 | ||
b29739f9 IM |
5082 | /* |
5083 | * make sure no PI-waiters arrive (or leave) while we are | |
5084 | * changing the priority of the task: | |
0122ec5b | 5085 | * |
25985edc | 5086 | * To be able to change p->policy safely, the appropriate |
1da177e4 LT |
5087 | * runqueue lock must be held. |
5088 | */ | |
0122ec5b | 5089 | rq = task_rq_lock(p, &flags); |
dc61b1d6 | 5090 | |
34f971f6 PZ |
5091 | /* |
5092 | * Changing the policy of the stop threads its a very bad idea | |
5093 | */ | |
5094 | if (p == rq->stop) { | |
0122ec5b | 5095 | task_rq_unlock(rq, p, &flags); |
34f971f6 PZ |
5096 | return -EINVAL; |
5097 | } | |
5098 | ||
a51e9198 DF |
5099 | /* |
5100 | * If not changing anything there's no need to proceed further: | |
5101 | */ | |
5102 | if (unlikely(policy == p->policy && (!rt_policy(policy) || | |
5103 | param->sched_priority == p->rt_priority))) { | |
5104 | ||
5105 | __task_rq_unlock(rq); | |
5106 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); | |
5107 | return 0; | |
5108 | } | |
5109 | ||
dc61b1d6 PZ |
5110 | #ifdef CONFIG_RT_GROUP_SCHED |
5111 | if (user) { | |
5112 | /* | |
5113 | * Do not allow realtime tasks into groups that have no runtime | |
5114 | * assigned. | |
5115 | */ | |
5116 | if (rt_bandwidth_enabled() && rt_policy(policy) && | |
f4493771 MG |
5117 | task_group(p)->rt_bandwidth.rt_runtime == 0 && |
5118 | !task_group_is_autogroup(task_group(p))) { | |
0122ec5b | 5119 | task_rq_unlock(rq, p, &flags); |
dc61b1d6 PZ |
5120 | return -EPERM; |
5121 | } | |
5122 | } | |
5123 | #endif | |
5124 | ||
1da177e4 LT |
5125 | /* recheck policy now with rq lock held */ |
5126 | if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { | |
5127 | policy = oldpolicy = -1; | |
0122ec5b | 5128 | task_rq_unlock(rq, p, &flags); |
1da177e4 LT |
5129 | goto recheck; |
5130 | } | |
fd2f4419 | 5131 | on_rq = p->on_rq; |
051a1d1a | 5132 | running = task_current(rq, p); |
0e1f3483 | 5133 | if (on_rq) |
2e1cb74a | 5134 | deactivate_task(rq, p, 0); |
0e1f3483 HS |
5135 | if (running) |
5136 | p->sched_class->put_prev_task(rq, p); | |
f6b53205 | 5137 | |
ca94c442 LP |
5138 | p->sched_reset_on_fork = reset_on_fork; |
5139 | ||
1da177e4 | 5140 | oldprio = p->prio; |
83ab0aa0 | 5141 | prev_class = p->sched_class; |
dd41f596 | 5142 | __setscheduler(rq, p, policy, param->sched_priority); |
f6b53205 | 5143 | |
0e1f3483 HS |
5144 | if (running) |
5145 | p->sched_class->set_curr_task(rq); | |
da7a735e | 5146 | if (on_rq) |
dd41f596 | 5147 | activate_task(rq, p, 0); |
cb469845 | 5148 | |
da7a735e | 5149 | check_class_changed(rq, p, prev_class, oldprio); |
0122ec5b | 5150 | task_rq_unlock(rq, p, &flags); |
b29739f9 | 5151 | |
95e02ca9 TG |
5152 | rt_mutex_adjust_pi(p); |
5153 | ||
1da177e4 LT |
5154 | return 0; |
5155 | } | |
961ccddd RR |
5156 | |
5157 | /** | |
5158 | * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. | |
5159 | * @p: the task in question. | |
5160 | * @policy: new policy. | |
5161 | * @param: structure containing the new RT priority. | |
5162 | * | |
5163 | * NOTE that the task may be already dead. | |
5164 | */ | |
5165 | int sched_setscheduler(struct task_struct *p, int policy, | |
fe7de49f | 5166 | const struct sched_param *param) |
961ccddd RR |
5167 | { |
5168 | return __sched_setscheduler(p, policy, param, true); | |
5169 | } | |
1da177e4 LT |
5170 | EXPORT_SYMBOL_GPL(sched_setscheduler); |
5171 | ||
961ccddd RR |
5172 | /** |
5173 | * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. | |
5174 | * @p: the task in question. | |
5175 | * @policy: new policy. | |
5176 | * @param: structure containing the new RT priority. | |
5177 | * | |
5178 | * Just like sched_setscheduler, only don't bother checking if the | |
5179 | * current context has permission. For example, this is needed in | |
5180 | * stop_machine(): we create temporary high priority worker threads, | |
5181 | * but our caller might not have that capability. | |
5182 | */ | |
5183 | int sched_setscheduler_nocheck(struct task_struct *p, int policy, | |
fe7de49f | 5184 | const struct sched_param *param) |
961ccddd RR |
5185 | { |
5186 | return __sched_setscheduler(p, policy, param, false); | |
5187 | } | |
5188 | ||
95cdf3b7 IM |
5189 | static int |
5190 | do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) | |
1da177e4 | 5191 | { |
1da177e4 LT |
5192 | struct sched_param lparam; |
5193 | struct task_struct *p; | |
36c8b586 | 5194 | int retval; |
1da177e4 LT |
5195 | |
5196 | if (!param || pid < 0) | |
5197 | return -EINVAL; | |
5198 | if (copy_from_user(&lparam, param, sizeof(struct sched_param))) | |
5199 | return -EFAULT; | |
5fe1d75f ON |
5200 | |
5201 | rcu_read_lock(); | |
5202 | retval = -ESRCH; | |
1da177e4 | 5203 | p = find_process_by_pid(pid); |
5fe1d75f ON |
5204 | if (p != NULL) |
5205 | retval = sched_setscheduler(p, policy, &lparam); | |
5206 | rcu_read_unlock(); | |
36c8b586 | 5207 | |
1da177e4 LT |
5208 | return retval; |
5209 | } | |
5210 | ||
5211 | /** | |
5212 | * sys_sched_setscheduler - set/change the scheduler policy and RT priority | |
5213 | * @pid: the pid in question. | |
5214 | * @policy: new policy. | |
5215 | * @param: structure containing the new RT priority. | |
5216 | */ | |
5add95d4 HC |
5217 | SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, |
5218 | struct sched_param __user *, param) | |
1da177e4 | 5219 | { |
c21761f1 JB |
5220 | /* negative values for policy are not valid */ |
5221 | if (policy < 0) | |
5222 | return -EINVAL; | |
5223 | ||
1da177e4 LT |
5224 | return do_sched_setscheduler(pid, policy, param); |
5225 | } | |
5226 | ||
5227 | /** | |
5228 | * sys_sched_setparam - set/change the RT priority of a thread | |
5229 | * @pid: the pid in question. | |
5230 | * @param: structure containing the new RT priority. | |
5231 | */ | |
5add95d4 | 5232 | SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) |
1da177e4 LT |
5233 | { |
5234 | return do_sched_setscheduler(pid, -1, param); | |
5235 | } | |
5236 | ||
5237 | /** | |
5238 | * sys_sched_getscheduler - get the policy (scheduling class) of a thread | |
5239 | * @pid: the pid in question. | |
5240 | */ | |
5add95d4 | 5241 | SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) |
1da177e4 | 5242 | { |
36c8b586 | 5243 | struct task_struct *p; |
3a5c359a | 5244 | int retval; |
1da177e4 LT |
5245 | |
5246 | if (pid < 0) | |
3a5c359a | 5247 | return -EINVAL; |
1da177e4 LT |
5248 | |
5249 | retval = -ESRCH; | |
5fe85be0 | 5250 | rcu_read_lock(); |
1da177e4 LT |
5251 | p = find_process_by_pid(pid); |
5252 | if (p) { | |
5253 | retval = security_task_getscheduler(p); | |
5254 | if (!retval) | |
ca94c442 LP |
5255 | retval = p->policy |
5256 | | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); | |
1da177e4 | 5257 | } |
5fe85be0 | 5258 | rcu_read_unlock(); |
1da177e4 LT |
5259 | return retval; |
5260 | } | |
5261 | ||
5262 | /** | |
ca94c442 | 5263 | * sys_sched_getparam - get the RT priority of a thread |
1da177e4 LT |
5264 | * @pid: the pid in question. |
5265 | * @param: structure containing the RT priority. | |
5266 | */ | |
5add95d4 | 5267 | SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) |
1da177e4 LT |
5268 | { |
5269 | struct sched_param lp; | |
36c8b586 | 5270 | struct task_struct *p; |
3a5c359a | 5271 | int retval; |
1da177e4 LT |
5272 | |
5273 | if (!param || pid < 0) | |
3a5c359a | 5274 | return -EINVAL; |
1da177e4 | 5275 | |
5fe85be0 | 5276 | rcu_read_lock(); |
1da177e4 LT |
5277 | p = find_process_by_pid(pid); |
5278 | retval = -ESRCH; | |
5279 | if (!p) | |
5280 | goto out_unlock; | |
5281 | ||
5282 | retval = security_task_getscheduler(p); | |
5283 | if (retval) | |
5284 | goto out_unlock; | |
5285 | ||
5286 | lp.sched_priority = p->rt_priority; | |
5fe85be0 | 5287 | rcu_read_unlock(); |
1da177e4 LT |
5288 | |
5289 | /* | |
5290 | * This one might sleep, we cannot do it with a spinlock held ... | |
5291 | */ | |
5292 | retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; | |
5293 | ||
1da177e4 LT |
5294 | return retval; |
5295 | ||
5296 | out_unlock: | |
5fe85be0 | 5297 | rcu_read_unlock(); |
1da177e4 LT |
5298 | return retval; |
5299 | } | |
5300 | ||
96f874e2 | 5301 | long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) |
1da177e4 | 5302 | { |
5a16f3d3 | 5303 | cpumask_var_t cpus_allowed, new_mask; |
36c8b586 IM |
5304 | struct task_struct *p; |
5305 | int retval; | |
1da177e4 | 5306 | |
95402b38 | 5307 | get_online_cpus(); |
23f5d142 | 5308 | rcu_read_lock(); |
1da177e4 LT |
5309 | |
5310 | p = find_process_by_pid(pid); | |
5311 | if (!p) { | |
23f5d142 | 5312 | rcu_read_unlock(); |
95402b38 | 5313 | put_online_cpus(); |
1da177e4 LT |
5314 | return -ESRCH; |
5315 | } | |
5316 | ||
23f5d142 | 5317 | /* Prevent p going away */ |
1da177e4 | 5318 | get_task_struct(p); |
23f5d142 | 5319 | rcu_read_unlock(); |
1da177e4 | 5320 | |
5a16f3d3 RR |
5321 | if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { |
5322 | retval = -ENOMEM; | |
5323 | goto out_put_task; | |
5324 | } | |
5325 | if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { | |
5326 | retval = -ENOMEM; | |
5327 | goto out_free_cpus_allowed; | |
5328 | } | |
1da177e4 | 5329 | retval = -EPERM; |
b0e77598 | 5330 | if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE)) |
1da177e4 LT |
5331 | goto out_unlock; |
5332 | ||
b0ae1981 | 5333 | retval = security_task_setscheduler(p); |
e7834f8f DQ |
5334 | if (retval) |
5335 | goto out_unlock; | |
5336 | ||
5a16f3d3 RR |
5337 | cpuset_cpus_allowed(p, cpus_allowed); |
5338 | cpumask_and(new_mask, in_mask, cpus_allowed); | |
49246274 | 5339 | again: |
5a16f3d3 | 5340 | retval = set_cpus_allowed_ptr(p, new_mask); |
1da177e4 | 5341 | |
8707d8b8 | 5342 | if (!retval) { |
5a16f3d3 RR |
5343 | cpuset_cpus_allowed(p, cpus_allowed); |
5344 | if (!cpumask_subset(new_mask, cpus_allowed)) { | |
8707d8b8 PM |
5345 | /* |
5346 | * We must have raced with a concurrent cpuset | |
5347 | * update. Just reset the cpus_allowed to the | |
5348 | * cpuset's cpus_allowed | |
5349 | */ | |
5a16f3d3 | 5350 | cpumask_copy(new_mask, cpus_allowed); |
8707d8b8 PM |
5351 | goto again; |
5352 | } | |
5353 | } | |
1da177e4 | 5354 | out_unlock: |
5a16f3d3 RR |
5355 | free_cpumask_var(new_mask); |
5356 | out_free_cpus_allowed: | |
5357 | free_cpumask_var(cpus_allowed); | |
5358 | out_put_task: | |
1da177e4 | 5359 | put_task_struct(p); |
95402b38 | 5360 | put_online_cpus(); |
1da177e4 LT |
5361 | return retval; |
5362 | } | |
5363 | ||
5364 | static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, | |
96f874e2 | 5365 | struct cpumask *new_mask) |
1da177e4 | 5366 | { |
96f874e2 RR |
5367 | if (len < cpumask_size()) |
5368 | cpumask_clear(new_mask); | |
5369 | else if (len > cpumask_size()) | |
5370 | len = cpumask_size(); | |
5371 | ||
1da177e4 LT |
5372 | return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; |
5373 | } | |
5374 | ||
5375 | /** | |
5376 | * sys_sched_setaffinity - set the cpu affinity of a process | |
5377 | * @pid: pid of the process | |
5378 | * @len: length in bytes of the bitmask pointed to by user_mask_ptr | |
5379 | * @user_mask_ptr: user-space pointer to the new cpu mask | |
5380 | */ | |
5add95d4 HC |
5381 | SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, |
5382 | unsigned long __user *, user_mask_ptr) | |
1da177e4 | 5383 | { |
5a16f3d3 | 5384 | cpumask_var_t new_mask; |
1da177e4 LT |
5385 | int retval; |
5386 | ||
5a16f3d3 RR |
5387 | if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) |
5388 | return -ENOMEM; | |
1da177e4 | 5389 | |
5a16f3d3 RR |
5390 | retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); |
5391 | if (retval == 0) | |
5392 | retval = sched_setaffinity(pid, new_mask); | |
5393 | free_cpumask_var(new_mask); | |
5394 | return retval; | |
1da177e4 LT |
5395 | } |
5396 | ||
96f874e2 | 5397 | long sched_getaffinity(pid_t pid, struct cpumask *mask) |
1da177e4 | 5398 | { |
36c8b586 | 5399 | struct task_struct *p; |
31605683 | 5400 | unsigned long flags; |
1da177e4 | 5401 | int retval; |
1da177e4 | 5402 | |
95402b38 | 5403 | get_online_cpus(); |
23f5d142 | 5404 | rcu_read_lock(); |
1da177e4 LT |
5405 | |
5406 | retval = -ESRCH; | |
5407 | p = find_process_by_pid(pid); | |
5408 | if (!p) | |
5409 | goto out_unlock; | |
5410 | ||
e7834f8f DQ |
5411 | retval = security_task_getscheduler(p); |
5412 | if (retval) | |
5413 | goto out_unlock; | |
5414 | ||
013fdb80 | 5415 | raw_spin_lock_irqsave(&p->pi_lock, flags); |
96f874e2 | 5416 | cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); |
013fdb80 | 5417 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); |
1da177e4 LT |
5418 | |
5419 | out_unlock: | |
23f5d142 | 5420 | rcu_read_unlock(); |
95402b38 | 5421 | put_online_cpus(); |
1da177e4 | 5422 | |
9531b62f | 5423 | return retval; |
1da177e4 LT |
5424 | } |
5425 | ||
5426 | /** | |
5427 | * sys_sched_getaffinity - get the cpu affinity of a process | |
5428 | * @pid: pid of the process | |
5429 | * @len: length in bytes of the bitmask pointed to by user_mask_ptr | |
5430 | * @user_mask_ptr: user-space pointer to hold the current cpu mask | |
5431 | */ | |
5add95d4 HC |
5432 | SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, |
5433 | unsigned long __user *, user_mask_ptr) | |
1da177e4 LT |
5434 | { |
5435 | int ret; | |
f17c8607 | 5436 | cpumask_var_t mask; |
1da177e4 | 5437 | |
84fba5ec | 5438 | if ((len * BITS_PER_BYTE) < nr_cpu_ids) |
cd3d8031 KM |
5439 | return -EINVAL; |
5440 | if (len & (sizeof(unsigned long)-1)) | |
1da177e4 LT |
5441 | return -EINVAL; |
5442 | ||
f17c8607 RR |
5443 | if (!alloc_cpumask_var(&mask, GFP_KERNEL)) |
5444 | return -ENOMEM; | |
1da177e4 | 5445 | |
f17c8607 RR |
5446 | ret = sched_getaffinity(pid, mask); |
5447 | if (ret == 0) { | |
8bc037fb | 5448 | size_t retlen = min_t(size_t, len, cpumask_size()); |
cd3d8031 KM |
5449 | |
5450 | if (copy_to_user(user_mask_ptr, mask, retlen)) | |
f17c8607 RR |
5451 | ret = -EFAULT; |
5452 | else | |
cd3d8031 | 5453 | ret = retlen; |
f17c8607 RR |
5454 | } |
5455 | free_cpumask_var(mask); | |
1da177e4 | 5456 | |
f17c8607 | 5457 | return ret; |
1da177e4 LT |
5458 | } |
5459 | ||
5460 | /** | |
5461 | * sys_sched_yield - yield the current processor to other threads. | |
5462 | * | |
dd41f596 IM |
5463 | * This function yields the current CPU to other tasks. If there are no |
5464 | * other threads running on this CPU then this function will return. | |
1da177e4 | 5465 | */ |
5add95d4 | 5466 | SYSCALL_DEFINE0(sched_yield) |
1da177e4 | 5467 | { |
70b97a7f | 5468 | struct rq *rq = this_rq_lock(); |
1da177e4 | 5469 | |
2d72376b | 5470 | schedstat_inc(rq, yld_count); |
4530d7ab | 5471 | current->sched_class->yield_task(rq); |
1da177e4 LT |
5472 | |
5473 | /* | |
5474 | * Since we are going to call schedule() anyway, there's | |
5475 | * no need to preempt or enable interrupts: | |
5476 | */ | |
5477 | __release(rq->lock); | |
8a25d5de | 5478 | spin_release(&rq->lock.dep_map, 1, _THIS_IP_); |
9828ea9d | 5479 | do_raw_spin_unlock(&rq->lock); |
1da177e4 LT |
5480 | preempt_enable_no_resched(); |
5481 | ||
5482 | schedule(); | |
5483 | ||
5484 | return 0; | |
5485 | } | |
5486 | ||
d86ee480 PZ |
5487 | static inline int should_resched(void) |
5488 | { | |
5489 | return need_resched() && !(preempt_count() & PREEMPT_ACTIVE); | |
5490 | } | |
5491 | ||
e7b38404 | 5492 | static void __cond_resched(void) |
1da177e4 | 5493 | { |
e7aaaa69 FW |
5494 | add_preempt_count(PREEMPT_ACTIVE); |
5495 | schedule(); | |
5496 | sub_preempt_count(PREEMPT_ACTIVE); | |
1da177e4 LT |
5497 | } |
5498 | ||
02b67cc3 | 5499 | int __sched _cond_resched(void) |
1da177e4 | 5500 | { |
d86ee480 | 5501 | if (should_resched()) { |
1da177e4 LT |
5502 | __cond_resched(); |
5503 | return 1; | |
5504 | } | |
5505 | return 0; | |
5506 | } | |
02b67cc3 | 5507 | EXPORT_SYMBOL(_cond_resched); |
1da177e4 LT |
5508 | |
5509 | /* | |
613afbf8 | 5510 | * __cond_resched_lock() - if a reschedule is pending, drop the given lock, |
1da177e4 LT |
5511 | * call schedule, and on return reacquire the lock. |
5512 | * | |
41a2d6cf | 5513 | * This works OK both with and without CONFIG_PREEMPT. We do strange low-level |
1da177e4 LT |
5514 | * operations here to prevent schedule() from being called twice (once via |
5515 | * spin_unlock(), once by hand). | |
5516 | */ | |
613afbf8 | 5517 | int __cond_resched_lock(spinlock_t *lock) |
1da177e4 | 5518 | { |
d86ee480 | 5519 | int resched = should_resched(); |
6df3cecb JK |
5520 | int ret = 0; |
5521 | ||
f607c668 PZ |
5522 | lockdep_assert_held(lock); |
5523 | ||
95c354fe | 5524 | if (spin_needbreak(lock) || resched) { |
1da177e4 | 5525 | spin_unlock(lock); |
d86ee480 | 5526 | if (resched) |
95c354fe NP |
5527 | __cond_resched(); |
5528 | else | |
5529 | cpu_relax(); | |
6df3cecb | 5530 | ret = 1; |
1da177e4 | 5531 | spin_lock(lock); |
1da177e4 | 5532 | } |
6df3cecb | 5533 | return ret; |
1da177e4 | 5534 | } |
613afbf8 | 5535 | EXPORT_SYMBOL(__cond_resched_lock); |
1da177e4 | 5536 | |
613afbf8 | 5537 | int __sched __cond_resched_softirq(void) |
1da177e4 LT |
5538 | { |
5539 | BUG_ON(!in_softirq()); | |
5540 | ||
d86ee480 | 5541 | if (should_resched()) { |
98d82567 | 5542 | local_bh_enable(); |
1da177e4 LT |
5543 | __cond_resched(); |
5544 | local_bh_disable(); | |
5545 | return 1; | |
5546 | } | |
5547 | return 0; | |
5548 | } | |
613afbf8 | 5549 | EXPORT_SYMBOL(__cond_resched_softirq); |
1da177e4 | 5550 | |
1da177e4 LT |
5551 | /** |
5552 | * yield - yield the current processor to other threads. | |
5553 | * | |
72fd4a35 | 5554 | * This is a shortcut for kernel-space yielding - it marks the |
1da177e4 LT |
5555 | * thread runnable and calls sys_sched_yield(). |
5556 | */ | |
5557 | void __sched yield(void) | |
5558 | { | |
5559 | set_current_state(TASK_RUNNING); | |
5560 | sys_sched_yield(); | |
5561 | } | |
1da177e4 LT |
5562 | EXPORT_SYMBOL(yield); |
5563 | ||
d95f4122 MG |
5564 | /** |
5565 | * yield_to - yield the current processor to another thread in | |
5566 | * your thread group, or accelerate that thread toward the | |
5567 | * processor it's on. | |
16addf95 RD |
5568 | * @p: target task |
5569 | * @preempt: whether task preemption is allowed or not | |
d95f4122 MG |
5570 | * |
5571 | * It's the caller's job to ensure that the target task struct | |
5572 | * can't go away on us before we can do any checks. | |
5573 | * | |
5574 | * Returns true if we indeed boosted the target task. | |
5575 | */ | |
5576 | bool __sched yield_to(struct task_struct *p, bool preempt) | |
5577 | { | |
5578 | struct task_struct *curr = current; | |
5579 | struct rq *rq, *p_rq; | |
5580 | unsigned long flags; | |
5581 | bool yielded = 0; | |
5582 | ||
5583 | local_irq_save(flags); | |
5584 | rq = this_rq(); | |
5585 | ||
5586 | again: | |
5587 | p_rq = task_rq(p); | |
5588 | double_rq_lock(rq, p_rq); | |
5589 | while (task_rq(p) != p_rq) { | |
5590 | double_rq_unlock(rq, p_rq); | |
5591 | goto again; | |
5592 | } | |
5593 | ||
5594 | if (!curr->sched_class->yield_to_task) | |
5595 | goto out; | |
5596 | ||
5597 | if (curr->sched_class != p->sched_class) | |
5598 | goto out; | |
5599 | ||
5600 | if (task_running(p_rq, p) || p->state) | |
5601 | goto out; | |
5602 | ||
5603 | yielded = curr->sched_class->yield_to_task(rq, p, preempt); | |
6d1cafd8 | 5604 | if (yielded) { |
d95f4122 | 5605 | schedstat_inc(rq, yld_count); |
6d1cafd8 VP |
5606 | /* |
5607 | * Make p's CPU reschedule; pick_next_entity takes care of | |
5608 | * fairness. | |
5609 | */ | |
5610 | if (preempt && rq != p_rq) | |
5611 | resched_task(p_rq->curr); | |
5612 | } | |
d95f4122 MG |
5613 | |
5614 | out: | |
5615 | double_rq_unlock(rq, p_rq); | |
5616 | local_irq_restore(flags); | |
5617 | ||
5618 | if (yielded) | |
5619 | schedule(); | |
5620 | ||
5621 | return yielded; | |
5622 | } | |
5623 | EXPORT_SYMBOL_GPL(yield_to); | |
5624 | ||
1da177e4 | 5625 | /* |
41a2d6cf | 5626 | * This task is about to go to sleep on IO. Increment rq->nr_iowait so |
1da177e4 | 5627 | * that process accounting knows that this is a task in IO wait state. |
1da177e4 LT |
5628 | */ |
5629 | void __sched io_schedule(void) | |
5630 | { | |
54d35f29 | 5631 | struct rq *rq = raw_rq(); |
1da177e4 | 5632 | |
0ff92245 | 5633 | delayacct_blkio_start(); |
1da177e4 | 5634 | atomic_inc(&rq->nr_iowait); |
73c10101 | 5635 | blk_flush_plug(current); |
8f0dfc34 | 5636 | current->in_iowait = 1; |
1da177e4 | 5637 | schedule(); |
8f0dfc34 | 5638 | current->in_iowait = 0; |
1da177e4 | 5639 | atomic_dec(&rq->nr_iowait); |
0ff92245 | 5640 | delayacct_blkio_end(); |
1da177e4 | 5641 | } |
1da177e4 LT |
5642 | EXPORT_SYMBOL(io_schedule); |
5643 | ||
5644 | long __sched io_schedule_timeout(long timeout) | |
5645 | { | |
54d35f29 | 5646 | struct rq *rq = raw_rq(); |
1da177e4 LT |
5647 | long ret; |
5648 | ||
0ff92245 | 5649 | delayacct_blkio_start(); |
1da177e4 | 5650 | atomic_inc(&rq->nr_iowait); |
73c10101 | 5651 | blk_flush_plug(current); |
8f0dfc34 | 5652 | current->in_iowait = 1; |
1da177e4 | 5653 | ret = schedule_timeout(timeout); |
8f0dfc34 | 5654 | current->in_iowait = 0; |
1da177e4 | 5655 | atomic_dec(&rq->nr_iowait); |
0ff92245 | 5656 | delayacct_blkio_end(); |
1da177e4 LT |
5657 | return ret; |
5658 | } | |
5659 | ||
5660 | /** | |
5661 | * sys_sched_get_priority_max - return maximum RT priority. | |
5662 | * @policy: scheduling class. | |
5663 | * | |
5664 | * this syscall returns the maximum rt_priority that can be used | |
5665 | * by a given scheduling class. | |
5666 | */ | |
5add95d4 | 5667 | SYSCALL_DEFINE1(sched_get_priority_max, int, policy) |
1da177e4 LT |
5668 | { |
5669 | int ret = -EINVAL; | |
5670 | ||
5671 | switch (policy) { | |
5672 | case SCHED_FIFO: | |
5673 | case SCHED_RR: | |
5674 | ret = MAX_USER_RT_PRIO-1; | |
5675 | break; | |
5676 | case SCHED_NORMAL: | |
b0a9499c | 5677 | case SCHED_BATCH: |
dd41f596 | 5678 | case SCHED_IDLE: |
1da177e4 LT |
5679 | ret = 0; |
5680 | break; | |
5681 | } | |
5682 | return ret; | |
5683 | } | |
5684 | ||
5685 | /** | |
5686 | * sys_sched_get_priority_min - return minimum RT priority. | |
5687 | * @policy: scheduling class. | |
5688 | * | |
5689 | * this syscall returns the minimum rt_priority that can be used | |
5690 | * by a given scheduling class. | |
5691 | */ | |
5add95d4 | 5692 | SYSCALL_DEFINE1(sched_get_priority_min, int, policy) |
1da177e4 LT |
5693 | { |
5694 | int ret = -EINVAL; | |
5695 | ||
5696 | switch (policy) { | |
5697 | case SCHED_FIFO: | |
5698 | case SCHED_RR: | |
5699 | ret = 1; | |
5700 | break; | |
5701 | case SCHED_NORMAL: | |
b0a9499c | 5702 | case SCHED_BATCH: |
dd41f596 | 5703 | case SCHED_IDLE: |
1da177e4 LT |
5704 | ret = 0; |
5705 | } | |
5706 | return ret; | |
5707 | } | |
5708 | ||
5709 | /** | |
5710 | * sys_sched_rr_get_interval - return the default timeslice of a process. | |
5711 | * @pid: pid of the process. | |
5712 | * @interval: userspace pointer to the timeslice value. | |
5713 | * | |
5714 | * this syscall writes the default timeslice value of a given process | |
5715 | * into the user-space timespec buffer. A value of '0' means infinity. | |
5716 | */ | |
17da2bd9 | 5717 | SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, |
754fe8d2 | 5718 | struct timespec __user *, interval) |
1da177e4 | 5719 | { |
36c8b586 | 5720 | struct task_struct *p; |
a4ec24b4 | 5721 | unsigned int time_slice; |
dba091b9 TG |
5722 | unsigned long flags; |
5723 | struct rq *rq; | |
3a5c359a | 5724 | int retval; |
1da177e4 | 5725 | struct timespec t; |
1da177e4 LT |
5726 | |
5727 | if (pid < 0) | |
3a5c359a | 5728 | return -EINVAL; |
1da177e4 LT |
5729 | |
5730 | retval = -ESRCH; | |
1a551ae7 | 5731 | rcu_read_lock(); |
1da177e4 LT |
5732 | p = find_process_by_pid(pid); |
5733 | if (!p) | |
5734 | goto out_unlock; | |
5735 | ||
5736 | retval = security_task_getscheduler(p); | |
5737 | if (retval) | |
5738 | goto out_unlock; | |
5739 | ||
dba091b9 TG |
5740 | rq = task_rq_lock(p, &flags); |
5741 | time_slice = p->sched_class->get_rr_interval(rq, p); | |
0122ec5b | 5742 | task_rq_unlock(rq, p, &flags); |
a4ec24b4 | 5743 | |
1a551ae7 | 5744 | rcu_read_unlock(); |
a4ec24b4 | 5745 | jiffies_to_timespec(time_slice, &t); |
1da177e4 | 5746 | retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; |
1da177e4 | 5747 | return retval; |
3a5c359a | 5748 | |
1da177e4 | 5749 | out_unlock: |
1a551ae7 | 5750 | rcu_read_unlock(); |
1da177e4 LT |
5751 | return retval; |
5752 | } | |
5753 | ||
7c731e0a | 5754 | static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; |
36c8b586 | 5755 | |
82a1fcb9 | 5756 | void sched_show_task(struct task_struct *p) |
1da177e4 | 5757 | { |
1da177e4 | 5758 | unsigned long free = 0; |
36c8b586 | 5759 | unsigned state; |
1da177e4 | 5760 | |
1da177e4 | 5761 | state = p->state ? __ffs(p->state) + 1 : 0; |
28d0686c | 5762 | printk(KERN_INFO "%-15.15s %c", p->comm, |
2ed6e34f | 5763 | state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); |
4bd77321 | 5764 | #if BITS_PER_LONG == 32 |
1da177e4 | 5765 | if (state == TASK_RUNNING) |
3df0fc5b | 5766 | printk(KERN_CONT " running "); |
1da177e4 | 5767 | else |
3df0fc5b | 5768 | printk(KERN_CONT " %08lx ", thread_saved_pc(p)); |
1da177e4 LT |
5769 | #else |
5770 | if (state == TASK_RUNNING) | |
3df0fc5b | 5771 | printk(KERN_CONT " running task "); |
1da177e4 | 5772 | else |
3df0fc5b | 5773 | printk(KERN_CONT " %016lx ", thread_saved_pc(p)); |
1da177e4 LT |
5774 | #endif |
5775 | #ifdef CONFIG_DEBUG_STACK_USAGE | |
7c9f8861 | 5776 | free = stack_not_used(p); |
1da177e4 | 5777 | #endif |
3df0fc5b | 5778 | printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, |
aa47b7e0 DR |
5779 | task_pid_nr(p), task_pid_nr(p->real_parent), |
5780 | (unsigned long)task_thread_info(p)->flags); | |
1da177e4 | 5781 | |
5fb5e6de | 5782 | show_stack(p, NULL); |
1da177e4 LT |
5783 | } |
5784 | ||
e59e2ae2 | 5785 | void show_state_filter(unsigned long state_filter) |
1da177e4 | 5786 | { |
36c8b586 | 5787 | struct task_struct *g, *p; |
1da177e4 | 5788 | |
4bd77321 | 5789 | #if BITS_PER_LONG == 32 |
3df0fc5b PZ |
5790 | printk(KERN_INFO |
5791 | " task PC stack pid father\n"); | |
1da177e4 | 5792 | #else |
3df0fc5b PZ |
5793 | printk(KERN_INFO |
5794 | " task PC stack pid father\n"); | |
1da177e4 LT |
5795 | #endif |
5796 | read_lock(&tasklist_lock); | |
5797 | do_each_thread(g, p) { | |
5798 | /* | |
5799 | * reset the NMI-timeout, listing all files on a slow | |
25985edc | 5800 | * console might take a lot of time: |
1da177e4 LT |
5801 | */ |
5802 | touch_nmi_watchdog(); | |
39bc89fd | 5803 | if (!state_filter || (p->state & state_filter)) |
82a1fcb9 | 5804 | sched_show_task(p); |
1da177e4 LT |
5805 | } while_each_thread(g, p); |
5806 | ||
04c9167f JF |
5807 | touch_all_softlockup_watchdogs(); |
5808 | ||
dd41f596 IM |
5809 | #ifdef CONFIG_SCHED_DEBUG |
5810 | sysrq_sched_debug_show(); | |
5811 | #endif | |
1da177e4 | 5812 | read_unlock(&tasklist_lock); |
e59e2ae2 IM |
5813 | /* |
5814 | * Only show locks if all tasks are dumped: | |
5815 | */ | |
93335a21 | 5816 | if (!state_filter) |
e59e2ae2 | 5817 | debug_show_all_locks(); |
1da177e4 LT |
5818 | } |
5819 | ||
1df21055 IM |
5820 | void __cpuinit init_idle_bootup_task(struct task_struct *idle) |
5821 | { | |
dd41f596 | 5822 | idle->sched_class = &idle_sched_class; |
1df21055 IM |
5823 | } |
5824 | ||
f340c0d1 IM |
5825 | /** |
5826 | * init_idle - set up an idle thread for a given CPU | |
5827 | * @idle: task in question | |
5828 | * @cpu: cpu the idle task belongs to | |
5829 | * | |
5830 | * NOTE: this function does not set the idle thread's NEED_RESCHED | |
5831 | * flag, to make booting more robust. | |
5832 | */ | |
5c1e1767 | 5833 | void __cpuinit init_idle(struct task_struct *idle, int cpu) |
1da177e4 | 5834 | { |
70b97a7f | 5835 | struct rq *rq = cpu_rq(cpu); |
1da177e4 LT |
5836 | unsigned long flags; |
5837 | ||
05fa785c | 5838 | raw_spin_lock_irqsave(&rq->lock, flags); |
5cbd54ef | 5839 | |
dd41f596 | 5840 | __sched_fork(idle); |
06b83b5f | 5841 | idle->state = TASK_RUNNING; |
dd41f596 IM |
5842 | idle->se.exec_start = sched_clock(); |
5843 | ||
96f874e2 | 5844 | cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu)); |
6506cf6c PZ |
5845 | /* |
5846 | * We're having a chicken and egg problem, even though we are | |
5847 | * holding rq->lock, the cpu isn't yet set to this cpu so the | |
5848 | * lockdep check in task_group() will fail. | |
5849 | * | |
5850 | * Similar case to sched_fork(). / Alternatively we could | |
5851 | * use task_rq_lock() here and obtain the other rq->lock. | |
5852 | * | |
5853 | * Silence PROVE_RCU | |
5854 | */ | |
5855 | rcu_read_lock(); | |
dd41f596 | 5856 | __set_task_cpu(idle, cpu); |
6506cf6c | 5857 | rcu_read_unlock(); |
1da177e4 | 5858 | |
1da177e4 | 5859 | rq->curr = rq->idle = idle; |
3ca7a440 PZ |
5860 | #if defined(CONFIG_SMP) |
5861 | idle->on_cpu = 1; | |
4866cde0 | 5862 | #endif |
05fa785c | 5863 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
1da177e4 LT |
5864 | |
5865 | /* Set the preempt count _outside_ the spinlocks! */ | |
a1261f54 | 5866 | task_thread_info(idle)->preempt_count = 0; |
625f2a37 | 5867 | |
dd41f596 IM |
5868 | /* |
5869 | * The idle tasks have their own, simple scheduling class: | |
5870 | */ | |
5871 | idle->sched_class = &idle_sched_class; | |
868baf07 | 5872 | ftrace_graph_init_idle_task(idle, cpu); |
1da177e4 LT |
5873 | } |
5874 | ||
5875 | /* | |
5876 | * In a system that switches off the HZ timer nohz_cpu_mask | |
5877 | * indicates which cpus entered this state. This is used | |
5878 | * in the rcu update to wait only for active cpus. For system | |
5879 | * which do not switch off the HZ timer nohz_cpu_mask should | |
6a7b3dc3 | 5880 | * always be CPU_BITS_NONE. |
1da177e4 | 5881 | */ |
6a7b3dc3 | 5882 | cpumask_var_t nohz_cpu_mask; |
1da177e4 | 5883 | |
19978ca6 IM |
5884 | /* |
5885 | * Increase the granularity value when there are more CPUs, | |
5886 | * because with more CPUs the 'effective latency' as visible | |
5887 | * to users decreases. But the relationship is not linear, | |
5888 | * so pick a second-best guess by going with the log2 of the | |
5889 | * number of CPUs. | |
5890 | * | |
5891 | * This idea comes from the SD scheduler of Con Kolivas: | |
5892 | */ | |
acb4a848 | 5893 | static int get_update_sysctl_factor(void) |
19978ca6 | 5894 | { |
4ca3ef71 | 5895 | unsigned int cpus = min_t(int, num_online_cpus(), 8); |
1983a922 CE |
5896 | unsigned int factor; |
5897 | ||
5898 | switch (sysctl_sched_tunable_scaling) { | |
5899 | case SCHED_TUNABLESCALING_NONE: | |
5900 | factor = 1; | |
5901 | break; | |
5902 | case SCHED_TUNABLESCALING_LINEAR: | |
5903 | factor = cpus; | |
5904 | break; | |
5905 | case SCHED_TUNABLESCALING_LOG: | |
5906 | default: | |
5907 | factor = 1 + ilog2(cpus); | |
5908 | break; | |
5909 | } | |
19978ca6 | 5910 | |
acb4a848 CE |
5911 | return factor; |
5912 | } | |
19978ca6 | 5913 | |
acb4a848 CE |
5914 | static void update_sysctl(void) |
5915 | { | |
5916 | unsigned int factor = get_update_sysctl_factor(); | |
19978ca6 | 5917 | |
0bcdcf28 CE |
5918 | #define SET_SYSCTL(name) \ |
5919 | (sysctl_##name = (factor) * normalized_sysctl_##name) | |
5920 | SET_SYSCTL(sched_min_granularity); | |
5921 | SET_SYSCTL(sched_latency); | |
5922 | SET_SYSCTL(sched_wakeup_granularity); | |
0bcdcf28 CE |
5923 | #undef SET_SYSCTL |
5924 | } | |
55cd5340 | 5925 | |
0bcdcf28 CE |
5926 | static inline void sched_init_granularity(void) |
5927 | { | |
5928 | update_sysctl(); | |
19978ca6 IM |
5929 | } |
5930 | ||
1da177e4 LT |
5931 | #ifdef CONFIG_SMP |
5932 | /* | |
5933 | * This is how migration works: | |
5934 | * | |
969c7921 TH |
5935 | * 1) we invoke migration_cpu_stop() on the target CPU using |
5936 | * stop_one_cpu(). | |
5937 | * 2) stopper starts to run (implicitly forcing the migrated thread | |
5938 | * off the CPU) | |
5939 | * 3) it checks whether the migrated task is still in the wrong runqueue. | |
5940 | * 4) if it's in the wrong runqueue then the migration thread removes | |
1da177e4 | 5941 | * it and puts it into the right queue. |
969c7921 TH |
5942 | * 5) stopper completes and stop_one_cpu() returns and the migration |
5943 | * is done. | |
1da177e4 LT |
5944 | */ |
5945 | ||
5946 | /* | |
5947 | * Change a given task's CPU affinity. Migrate the thread to a | |
5948 | * proper CPU and schedule it away if the CPU it's executing on | |
5949 | * is removed from the allowed bitmask. | |
5950 | * | |
5951 | * NOTE: the caller must have a valid reference to the task, the | |
41a2d6cf | 5952 | * task must not exit() & deallocate itself prematurely. The |
1da177e4 LT |
5953 | * call is not atomic; no spinlocks may be held. |
5954 | */ | |
96f874e2 | 5955 | int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) |
1da177e4 LT |
5956 | { |
5957 | unsigned long flags; | |
70b97a7f | 5958 | struct rq *rq; |
969c7921 | 5959 | unsigned int dest_cpu; |
48f24c4d | 5960 | int ret = 0; |
1da177e4 LT |
5961 | |
5962 | rq = task_rq_lock(p, &flags); | |
e2912009 | 5963 | |
db44fc01 YZ |
5964 | if (cpumask_equal(&p->cpus_allowed, new_mask)) |
5965 | goto out; | |
5966 | ||
6ad4c188 | 5967 | if (!cpumask_intersects(new_mask, cpu_active_mask)) { |
1da177e4 LT |
5968 | ret = -EINVAL; |
5969 | goto out; | |
5970 | } | |
5971 | ||
db44fc01 | 5972 | if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) { |
9985b0ba DR |
5973 | ret = -EINVAL; |
5974 | goto out; | |
5975 | } | |
5976 | ||
73fe6aae | 5977 | if (p->sched_class->set_cpus_allowed) |
cd8ba7cd | 5978 | p->sched_class->set_cpus_allowed(p, new_mask); |
73fe6aae | 5979 | else { |
96f874e2 RR |
5980 | cpumask_copy(&p->cpus_allowed, new_mask); |
5981 | p->rt.nr_cpus_allowed = cpumask_weight(new_mask); | |
73fe6aae GH |
5982 | } |
5983 | ||
1da177e4 | 5984 | /* Can the task run on the task's current CPU? If so, we're done */ |
96f874e2 | 5985 | if (cpumask_test_cpu(task_cpu(p), new_mask)) |
1da177e4 LT |
5986 | goto out; |
5987 | ||
969c7921 | 5988 | dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); |
bd8e7dde | 5989 | if (p->on_rq) { |
969c7921 | 5990 | struct migration_arg arg = { p, dest_cpu }; |
1da177e4 | 5991 | /* Need help from migration thread: drop lock and wait. */ |
0122ec5b | 5992 | task_rq_unlock(rq, p, &flags); |
969c7921 | 5993 | stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); |
1da177e4 LT |
5994 | tlb_migrate_finish(p->mm); |
5995 | return 0; | |
5996 | } | |
5997 | out: | |
0122ec5b | 5998 | task_rq_unlock(rq, p, &flags); |
48f24c4d | 5999 | |
1da177e4 LT |
6000 | return ret; |
6001 | } | |
cd8ba7cd | 6002 | EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); |
1da177e4 LT |
6003 | |
6004 | /* | |
41a2d6cf | 6005 | * Move (not current) task off this cpu, onto dest cpu. We're doing |
1da177e4 LT |
6006 | * this because either it can't run here any more (set_cpus_allowed() |
6007 | * away from this CPU, or CPU going down), or because we're | |
6008 | * attempting to rebalance this task on exec (sched_exec). | |
6009 | * | |
6010 | * So we race with normal scheduler movements, but that's OK, as long | |
6011 | * as the task is no longer on this CPU. | |
efc30814 KK |
6012 | * |
6013 | * Returns non-zero if task was successfully migrated. | |
1da177e4 | 6014 | */ |
efc30814 | 6015 | static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) |
1da177e4 | 6016 | { |
70b97a7f | 6017 | struct rq *rq_dest, *rq_src; |
e2912009 | 6018 | int ret = 0; |
1da177e4 | 6019 | |
e761b772 | 6020 | if (unlikely(!cpu_active(dest_cpu))) |
efc30814 | 6021 | return ret; |
1da177e4 LT |
6022 | |
6023 | rq_src = cpu_rq(src_cpu); | |
6024 | rq_dest = cpu_rq(dest_cpu); | |
6025 | ||
0122ec5b | 6026 | raw_spin_lock(&p->pi_lock); |
1da177e4 LT |
6027 | double_rq_lock(rq_src, rq_dest); |
6028 | /* Already moved. */ | |
6029 | if (task_cpu(p) != src_cpu) | |
b1e38734 | 6030 | goto done; |
1da177e4 | 6031 | /* Affinity changed (again). */ |
96f874e2 | 6032 | if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) |
b1e38734 | 6033 | goto fail; |
1da177e4 | 6034 | |
e2912009 PZ |
6035 | /* |
6036 | * If we're not on a rq, the next wake-up will ensure we're | |
6037 | * placed properly. | |
6038 | */ | |
fd2f4419 | 6039 | if (p->on_rq) { |
2e1cb74a | 6040 | deactivate_task(rq_src, p, 0); |
e2912009 | 6041 | set_task_cpu(p, dest_cpu); |
dd41f596 | 6042 | activate_task(rq_dest, p, 0); |
15afe09b | 6043 | check_preempt_curr(rq_dest, p, 0); |
1da177e4 | 6044 | } |
b1e38734 | 6045 | done: |
efc30814 | 6046 | ret = 1; |
b1e38734 | 6047 | fail: |
1da177e4 | 6048 | double_rq_unlock(rq_src, rq_dest); |
0122ec5b | 6049 | raw_spin_unlock(&p->pi_lock); |
efc30814 | 6050 | return ret; |
1da177e4 LT |
6051 | } |
6052 | ||
6053 | /* | |
969c7921 TH |
6054 | * migration_cpu_stop - this will be executed by a highprio stopper thread |
6055 | * and performs thread migration by bumping thread off CPU then | |
6056 | * 'pushing' onto another runqueue. | |
1da177e4 | 6057 | */ |
969c7921 | 6058 | static int migration_cpu_stop(void *data) |
1da177e4 | 6059 | { |
969c7921 | 6060 | struct migration_arg *arg = data; |
f7b4cddc | 6061 | |
969c7921 TH |
6062 | /* |
6063 | * The original target cpu might have gone down and we might | |
6064 | * be on another cpu but it doesn't matter. | |
6065 | */ | |
f7b4cddc | 6066 | local_irq_disable(); |
969c7921 | 6067 | __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); |
f7b4cddc | 6068 | local_irq_enable(); |
1da177e4 | 6069 | return 0; |
f7b4cddc ON |
6070 | } |
6071 | ||
1da177e4 | 6072 | #ifdef CONFIG_HOTPLUG_CPU |
48c5ccae | 6073 | |
054b9108 | 6074 | /* |
48c5ccae PZ |
6075 | * Ensures that the idle task is using init_mm right before its cpu goes |
6076 | * offline. | |
054b9108 | 6077 | */ |
48c5ccae | 6078 | void idle_task_exit(void) |
1da177e4 | 6079 | { |
48c5ccae | 6080 | struct mm_struct *mm = current->active_mm; |
e76bd8d9 | 6081 | |
48c5ccae | 6082 | BUG_ON(cpu_online(smp_processor_id())); |
e76bd8d9 | 6083 | |
48c5ccae PZ |
6084 | if (mm != &init_mm) |
6085 | switch_mm(mm, &init_mm, current); | |
6086 | mmdrop(mm); | |
1da177e4 LT |
6087 | } |
6088 | ||
6089 | /* | |
6090 | * While a dead CPU has no uninterruptible tasks queued at this point, | |
6091 | * it might still have a nonzero ->nr_uninterruptible counter, because | |
6092 | * for performance reasons the counter is not stricly tracking tasks to | |
6093 | * their home CPUs. So we just add the counter to another CPU's counter, | |
6094 | * to keep the global sum constant after CPU-down: | |
6095 | */ | |
70b97a7f | 6096 | static void migrate_nr_uninterruptible(struct rq *rq_src) |
1da177e4 | 6097 | { |
6ad4c188 | 6098 | struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask)); |
1da177e4 | 6099 | |
1da177e4 LT |
6100 | rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible; |
6101 | rq_src->nr_uninterruptible = 0; | |
1da177e4 LT |
6102 | } |
6103 | ||
dd41f596 | 6104 | /* |
48c5ccae | 6105 | * remove the tasks which were accounted by rq from calc_load_tasks. |
1da177e4 | 6106 | */ |
48c5ccae | 6107 | static void calc_global_load_remove(struct rq *rq) |
1da177e4 | 6108 | { |
48c5ccae PZ |
6109 | atomic_long_sub(rq->calc_load_active, &calc_load_tasks); |
6110 | rq->calc_load_active = 0; | |
1da177e4 LT |
6111 | } |
6112 | ||
48f24c4d | 6113 | /* |
48c5ccae PZ |
6114 | * Migrate all tasks from the rq, sleeping tasks will be migrated by |
6115 | * try_to_wake_up()->select_task_rq(). | |
6116 | * | |
6117 | * Called with rq->lock held even though we'er in stop_machine() and | |
6118 | * there's no concurrency possible, we hold the required locks anyway | |
6119 | * because of lock validation efforts. | |
1da177e4 | 6120 | */ |
48c5ccae | 6121 | static void migrate_tasks(unsigned int dead_cpu) |
1da177e4 | 6122 | { |
70b97a7f | 6123 | struct rq *rq = cpu_rq(dead_cpu); |
48c5ccae PZ |
6124 | struct task_struct *next, *stop = rq->stop; |
6125 | int dest_cpu; | |
1da177e4 LT |
6126 | |
6127 | /* | |
48c5ccae PZ |
6128 | * Fudge the rq selection such that the below task selection loop |
6129 | * doesn't get stuck on the currently eligible stop task. | |
6130 | * | |
6131 | * We're currently inside stop_machine() and the rq is either stuck | |
6132 | * in the stop_machine_cpu_stop() loop, or we're executing this code, | |
6133 | * either way we should never end up calling schedule() until we're | |
6134 | * done here. | |
1da177e4 | 6135 | */ |
48c5ccae | 6136 | rq->stop = NULL; |
48f24c4d | 6137 | |
dd41f596 | 6138 | for ( ; ; ) { |
48c5ccae PZ |
6139 | /* |
6140 | * There's this thread running, bail when that's the only | |
6141 | * remaining thread. | |
6142 | */ | |
6143 | if (rq->nr_running == 1) | |
dd41f596 | 6144 | break; |
48c5ccae | 6145 | |
b67802ea | 6146 | next = pick_next_task(rq); |
48c5ccae | 6147 | BUG_ON(!next); |
79c53799 | 6148 | next->sched_class->put_prev_task(rq, next); |
e692ab53 | 6149 | |
48c5ccae PZ |
6150 | /* Find suitable destination for @next, with force if needed. */ |
6151 | dest_cpu = select_fallback_rq(dead_cpu, next); | |
6152 | raw_spin_unlock(&rq->lock); | |
6153 | ||
6154 | __migrate_task(next, dead_cpu, dest_cpu); | |
6155 | ||
6156 | raw_spin_lock(&rq->lock); | |
1da177e4 | 6157 | } |
dce48a84 | 6158 | |
48c5ccae | 6159 | rq->stop = stop; |
dce48a84 | 6160 | } |
48c5ccae | 6161 | |
1da177e4 LT |
6162 | #endif /* CONFIG_HOTPLUG_CPU */ |
6163 | ||
e692ab53 NP |
6164 | #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) |
6165 | ||
6166 | static struct ctl_table sd_ctl_dir[] = { | |
e0361851 AD |
6167 | { |
6168 | .procname = "sched_domain", | |
c57baf1e | 6169 | .mode = 0555, |
e0361851 | 6170 | }, |
56992309 | 6171 | {} |
e692ab53 NP |
6172 | }; |
6173 | ||
6174 | static struct ctl_table sd_ctl_root[] = { | |
e0361851 AD |
6175 | { |
6176 | .procname = "kernel", | |
c57baf1e | 6177 | .mode = 0555, |
e0361851 AD |
6178 | .child = sd_ctl_dir, |
6179 | }, | |
56992309 | 6180 | {} |
e692ab53 NP |
6181 | }; |
6182 | ||
6183 | static struct ctl_table *sd_alloc_ctl_entry(int n) | |
6184 | { | |
6185 | struct ctl_table *entry = | |
5cf9f062 | 6186 | kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); |
e692ab53 | 6187 | |
e692ab53 NP |
6188 | return entry; |
6189 | } | |
6190 | ||
6382bc90 MM |
6191 | static void sd_free_ctl_entry(struct ctl_table **tablep) |
6192 | { | |
cd790076 | 6193 | struct ctl_table *entry; |
6382bc90 | 6194 | |
cd790076 MM |
6195 | /* |
6196 | * In the intermediate directories, both the child directory and | |
6197 | * procname are dynamically allocated and could fail but the mode | |
41a2d6cf | 6198 | * will always be set. In the lowest directory the names are |
cd790076 MM |
6199 | * static strings and all have proc handlers. |
6200 | */ | |
6201 | for (entry = *tablep; entry->mode; entry++) { | |
6382bc90 MM |
6202 | if (entry->child) |
6203 | sd_free_ctl_entry(&entry->child); | |
cd790076 MM |
6204 | if (entry->proc_handler == NULL) |
6205 | kfree(entry->procname); | |
6206 | } | |
6382bc90 MM |
6207 | |
6208 | kfree(*tablep); | |
6209 | *tablep = NULL; | |
6210 | } | |
6211 | ||
e692ab53 | 6212 | static void |
e0361851 | 6213 | set_table_entry(struct ctl_table *entry, |
e692ab53 NP |
6214 | const char *procname, void *data, int maxlen, |
6215 | mode_t mode, proc_handler *proc_handler) | |
6216 | { | |
e692ab53 NP |
6217 | entry->procname = procname; |
6218 | entry->data = data; | |
6219 | entry->maxlen = maxlen; | |
6220 | entry->mode = mode; | |
6221 | entry->proc_handler = proc_handler; | |
6222 | } | |
6223 | ||
6224 | static struct ctl_table * | |
6225 | sd_alloc_ctl_domain_table(struct sched_domain *sd) | |
6226 | { | |
a5d8c348 | 6227 | struct ctl_table *table = sd_alloc_ctl_entry(13); |
e692ab53 | 6228 | |
ad1cdc1d MM |
6229 | if (table == NULL) |
6230 | return NULL; | |
6231 | ||
e0361851 | 6232 | set_table_entry(&table[0], "min_interval", &sd->min_interval, |
e692ab53 | 6233 | sizeof(long), 0644, proc_doulongvec_minmax); |
e0361851 | 6234 | set_table_entry(&table[1], "max_interval", &sd->max_interval, |
e692ab53 | 6235 | sizeof(long), 0644, proc_doulongvec_minmax); |
e0361851 | 6236 | set_table_entry(&table[2], "busy_idx", &sd->busy_idx, |
e692ab53 | 6237 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 6238 | set_table_entry(&table[3], "idle_idx", &sd->idle_idx, |
e692ab53 | 6239 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 6240 | set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, |
e692ab53 | 6241 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 6242 | set_table_entry(&table[5], "wake_idx", &sd->wake_idx, |
e692ab53 | 6243 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 6244 | set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, |
e692ab53 | 6245 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 6246 | set_table_entry(&table[7], "busy_factor", &sd->busy_factor, |
e692ab53 | 6247 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 6248 | set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, |
e692ab53 | 6249 | sizeof(int), 0644, proc_dointvec_minmax); |
ace8b3d6 | 6250 | set_table_entry(&table[9], "cache_nice_tries", |
e692ab53 NP |
6251 | &sd->cache_nice_tries, |
6252 | sizeof(int), 0644, proc_dointvec_minmax); | |
ace8b3d6 | 6253 | set_table_entry(&table[10], "flags", &sd->flags, |
e692ab53 | 6254 | sizeof(int), 0644, proc_dointvec_minmax); |
a5d8c348 IM |
6255 | set_table_entry(&table[11], "name", sd->name, |
6256 | CORENAME_MAX_SIZE, 0444, proc_dostring); | |
6257 | /* &table[12] is terminator */ | |
e692ab53 NP |
6258 | |
6259 | return table; | |
6260 | } | |
6261 | ||
9a4e7159 | 6262 | static ctl_table *sd_alloc_ctl_cpu_table(int cpu) |
e692ab53 NP |
6263 | { |
6264 | struct ctl_table *entry, *table; | |
6265 | struct sched_domain *sd; | |
6266 | int domain_num = 0, i; | |
6267 | char buf[32]; | |
6268 | ||
6269 | for_each_domain(cpu, sd) | |
6270 | domain_num++; | |
6271 | entry = table = sd_alloc_ctl_entry(domain_num + 1); | |
ad1cdc1d MM |
6272 | if (table == NULL) |
6273 | return NULL; | |
e692ab53 NP |
6274 | |
6275 | i = 0; | |
6276 | for_each_domain(cpu, sd) { | |
6277 | snprintf(buf, 32, "domain%d", i); | |
e692ab53 | 6278 | entry->procname = kstrdup(buf, GFP_KERNEL); |
c57baf1e | 6279 | entry->mode = 0555; |
e692ab53 NP |
6280 | entry->child = sd_alloc_ctl_domain_table(sd); |
6281 | entry++; | |
6282 | i++; | |
6283 | } | |
6284 | return table; | |
6285 | } | |
6286 | ||
6287 | static struct ctl_table_header *sd_sysctl_header; | |
6382bc90 | 6288 | static void register_sched_domain_sysctl(void) |
e692ab53 | 6289 | { |
6ad4c188 | 6290 | int i, cpu_num = num_possible_cpus(); |
e692ab53 NP |
6291 | struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); |
6292 | char buf[32]; | |
6293 | ||
7378547f MM |
6294 | WARN_ON(sd_ctl_dir[0].child); |
6295 | sd_ctl_dir[0].child = entry; | |
6296 | ||
ad1cdc1d MM |
6297 | if (entry == NULL) |
6298 | return; | |
6299 | ||
6ad4c188 | 6300 | for_each_possible_cpu(i) { |
e692ab53 | 6301 | snprintf(buf, 32, "cpu%d", i); |
e692ab53 | 6302 | entry->procname = kstrdup(buf, GFP_KERNEL); |
c57baf1e | 6303 | entry->mode = 0555; |
e692ab53 | 6304 | entry->child = sd_alloc_ctl_cpu_table(i); |
97b6ea7b | 6305 | entry++; |
e692ab53 | 6306 | } |
7378547f MM |
6307 | |
6308 | WARN_ON(sd_sysctl_header); | |
e692ab53 NP |
6309 | sd_sysctl_header = register_sysctl_table(sd_ctl_root); |
6310 | } | |
6382bc90 | 6311 | |
7378547f | 6312 | /* may be called multiple times per register */ |
6382bc90 MM |
6313 | static void unregister_sched_domain_sysctl(void) |
6314 | { | |
7378547f MM |
6315 | if (sd_sysctl_header) |
6316 | unregister_sysctl_table(sd_sysctl_header); | |
6382bc90 | 6317 | sd_sysctl_header = NULL; |
7378547f MM |
6318 | if (sd_ctl_dir[0].child) |
6319 | sd_free_ctl_entry(&sd_ctl_dir[0].child); | |
6382bc90 | 6320 | } |
e692ab53 | 6321 | #else |
6382bc90 MM |
6322 | static void register_sched_domain_sysctl(void) |
6323 | { | |
6324 | } | |
6325 | static void unregister_sched_domain_sysctl(void) | |
e692ab53 NP |
6326 | { |
6327 | } | |
6328 | #endif | |
6329 | ||
1f11eb6a GH |
6330 | static void set_rq_online(struct rq *rq) |
6331 | { | |
6332 | if (!rq->online) { | |
6333 | const struct sched_class *class; | |
6334 | ||
c6c4927b | 6335 | cpumask_set_cpu(rq->cpu, rq->rd->online); |
1f11eb6a GH |
6336 | rq->online = 1; |
6337 | ||
6338 | for_each_class(class) { | |
6339 | if (class->rq_online) | |
6340 | class->rq_online(rq); | |
6341 | } | |
6342 | } | |
6343 | } | |
6344 | ||
6345 | static void set_rq_offline(struct rq *rq) | |
6346 | { | |
6347 | if (rq->online) { | |
6348 | const struct sched_class *class; | |
6349 | ||
6350 | for_each_class(class) { | |
6351 | if (class->rq_offline) | |
6352 | class->rq_offline(rq); | |
6353 | } | |
6354 | ||
c6c4927b | 6355 | cpumask_clear_cpu(rq->cpu, rq->rd->online); |
1f11eb6a GH |
6356 | rq->online = 0; |
6357 | } | |
6358 | } | |
6359 | ||
1da177e4 LT |
6360 | /* |
6361 | * migration_call - callback that gets triggered when a CPU is added. | |
6362 | * Here we can start up the necessary migration thread for the new CPU. | |
6363 | */ | |
48f24c4d IM |
6364 | static int __cpuinit |
6365 | migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) | |
1da177e4 | 6366 | { |
48f24c4d | 6367 | int cpu = (long)hcpu; |
1da177e4 | 6368 | unsigned long flags; |
969c7921 | 6369 | struct rq *rq = cpu_rq(cpu); |
1da177e4 | 6370 | |
48c5ccae | 6371 | switch (action & ~CPU_TASKS_FROZEN) { |
5be9361c | 6372 | |
1da177e4 | 6373 | case CPU_UP_PREPARE: |
a468d389 | 6374 | rq->calc_load_update = calc_load_update; |
1da177e4 | 6375 | break; |
48f24c4d | 6376 | |
1da177e4 | 6377 | case CPU_ONLINE: |
1f94ef59 | 6378 | /* Update our root-domain */ |
05fa785c | 6379 | raw_spin_lock_irqsave(&rq->lock, flags); |
1f94ef59 | 6380 | if (rq->rd) { |
c6c4927b | 6381 | BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); |
1f11eb6a GH |
6382 | |
6383 | set_rq_online(rq); | |
1f94ef59 | 6384 | } |
05fa785c | 6385 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
1da177e4 | 6386 | break; |
48f24c4d | 6387 | |
1da177e4 | 6388 | #ifdef CONFIG_HOTPLUG_CPU |
08f503b0 | 6389 | case CPU_DYING: |
317f3941 | 6390 | sched_ttwu_pending(); |
57d885fe | 6391 | /* Update our root-domain */ |
05fa785c | 6392 | raw_spin_lock_irqsave(&rq->lock, flags); |
57d885fe | 6393 | if (rq->rd) { |
c6c4927b | 6394 | BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); |
1f11eb6a | 6395 | set_rq_offline(rq); |
57d885fe | 6396 | } |
48c5ccae PZ |
6397 | migrate_tasks(cpu); |
6398 | BUG_ON(rq->nr_running != 1); /* the migration thread */ | |
05fa785c | 6399 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
48c5ccae PZ |
6400 | |
6401 | migrate_nr_uninterruptible(rq); | |
6402 | calc_global_load_remove(rq); | |
57d885fe | 6403 | break; |
1da177e4 LT |
6404 | #endif |
6405 | } | |
49c022e6 PZ |
6406 | |
6407 | update_max_interval(); | |
6408 | ||
1da177e4 LT |
6409 | return NOTIFY_OK; |
6410 | } | |
6411 | ||
f38b0820 PM |
6412 | /* |
6413 | * Register at high priority so that task migration (migrate_all_tasks) | |
6414 | * happens before everything else. This has to be lower priority than | |
cdd6c482 | 6415 | * the notifier in the perf_event subsystem, though. |
1da177e4 | 6416 | */ |
26c2143b | 6417 | static struct notifier_block __cpuinitdata migration_notifier = { |
1da177e4 | 6418 | .notifier_call = migration_call, |
50a323b7 | 6419 | .priority = CPU_PRI_MIGRATION, |
1da177e4 LT |
6420 | }; |
6421 | ||
3a101d05 TH |
6422 | static int __cpuinit sched_cpu_active(struct notifier_block *nfb, |
6423 | unsigned long action, void *hcpu) | |
6424 | { | |
6425 | switch (action & ~CPU_TASKS_FROZEN) { | |
6426 | case CPU_ONLINE: | |
6427 | case CPU_DOWN_FAILED: | |
6428 | set_cpu_active((long)hcpu, true); | |
6429 | return NOTIFY_OK; | |
6430 | default: | |
6431 | return NOTIFY_DONE; | |
6432 | } | |
6433 | } | |
6434 | ||
6435 | static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb, | |
6436 | unsigned long action, void *hcpu) | |
6437 | { | |
6438 | switch (action & ~CPU_TASKS_FROZEN) { | |
6439 | case CPU_DOWN_PREPARE: | |
6440 | set_cpu_active((long)hcpu, false); | |
6441 | return NOTIFY_OK; | |
6442 | default: | |
6443 | return NOTIFY_DONE; | |
6444 | } | |
6445 | } | |
6446 | ||
7babe8db | 6447 | static int __init migration_init(void) |
1da177e4 LT |
6448 | { |
6449 | void *cpu = (void *)(long)smp_processor_id(); | |
07dccf33 | 6450 | int err; |
48f24c4d | 6451 | |
3a101d05 | 6452 | /* Initialize migration for the boot CPU */ |
07dccf33 AM |
6453 | err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); |
6454 | BUG_ON(err == NOTIFY_BAD); | |
1da177e4 LT |
6455 | migration_call(&migration_notifier, CPU_ONLINE, cpu); |
6456 | register_cpu_notifier(&migration_notifier); | |
7babe8db | 6457 | |
3a101d05 TH |
6458 | /* Register cpu active notifiers */ |
6459 | cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); | |
6460 | cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); | |
6461 | ||
a004cd42 | 6462 | return 0; |
1da177e4 | 6463 | } |
7babe8db | 6464 | early_initcall(migration_init); |
1da177e4 LT |
6465 | #endif |
6466 | ||
6467 | #ifdef CONFIG_SMP | |
476f3534 | 6468 | |
4cb98839 PZ |
6469 | static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ |
6470 | ||
3e9830dc | 6471 | #ifdef CONFIG_SCHED_DEBUG |
4dcf6aff | 6472 | |
f6630114 MT |
6473 | static __read_mostly int sched_domain_debug_enabled; |
6474 | ||
6475 | static int __init sched_domain_debug_setup(char *str) | |
6476 | { | |
6477 | sched_domain_debug_enabled = 1; | |
6478 | ||
6479 | return 0; | |
6480 | } | |
6481 | early_param("sched_debug", sched_domain_debug_setup); | |
6482 | ||
7c16ec58 | 6483 | static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, |
96f874e2 | 6484 | struct cpumask *groupmask) |
1da177e4 | 6485 | { |
4dcf6aff | 6486 | struct sched_group *group = sd->groups; |
434d53b0 | 6487 | char str[256]; |
1da177e4 | 6488 | |
968ea6d8 | 6489 | cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); |
96f874e2 | 6490 | cpumask_clear(groupmask); |
4dcf6aff IM |
6491 | |
6492 | printk(KERN_DEBUG "%*s domain %d: ", level, "", level); | |
6493 | ||
6494 | if (!(sd->flags & SD_LOAD_BALANCE)) { | |
3df0fc5b | 6495 | printk("does not load-balance\n"); |
4dcf6aff | 6496 | if (sd->parent) |
3df0fc5b PZ |
6497 | printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" |
6498 | " has parent"); | |
4dcf6aff | 6499 | return -1; |
41c7ce9a NP |
6500 | } |
6501 | ||
3df0fc5b | 6502 | printk(KERN_CONT "span %s level %s\n", str, sd->name); |
4dcf6aff | 6503 | |
758b2cdc | 6504 | if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { |
3df0fc5b PZ |
6505 | printk(KERN_ERR "ERROR: domain->span does not contain " |
6506 | "CPU%d\n", cpu); | |
4dcf6aff | 6507 | } |
758b2cdc | 6508 | if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { |
3df0fc5b PZ |
6509 | printk(KERN_ERR "ERROR: domain->groups does not contain" |
6510 | " CPU%d\n", cpu); | |
4dcf6aff | 6511 | } |
1da177e4 | 6512 | |
4dcf6aff | 6513 | printk(KERN_DEBUG "%*s groups:", level + 1, ""); |
1da177e4 | 6514 | do { |
4dcf6aff | 6515 | if (!group) { |
3df0fc5b PZ |
6516 | printk("\n"); |
6517 | printk(KERN_ERR "ERROR: group is NULL\n"); | |
1da177e4 LT |
6518 | break; |
6519 | } | |
6520 | ||
18a3885f | 6521 | if (!group->cpu_power) { |
3df0fc5b PZ |
6522 | printk(KERN_CONT "\n"); |
6523 | printk(KERN_ERR "ERROR: domain->cpu_power not " | |
6524 | "set\n"); | |
4dcf6aff IM |
6525 | break; |
6526 | } | |
1da177e4 | 6527 | |
758b2cdc | 6528 | if (!cpumask_weight(sched_group_cpus(group))) { |
3df0fc5b PZ |
6529 | printk(KERN_CONT "\n"); |
6530 | printk(KERN_ERR "ERROR: empty group\n"); | |
4dcf6aff IM |
6531 | break; |
6532 | } | |
1da177e4 | 6533 | |
758b2cdc | 6534 | if (cpumask_intersects(groupmask, sched_group_cpus(group))) { |
3df0fc5b PZ |
6535 | printk(KERN_CONT "\n"); |
6536 | printk(KERN_ERR "ERROR: repeated CPUs\n"); | |
4dcf6aff IM |
6537 | break; |
6538 | } | |
1da177e4 | 6539 | |
758b2cdc | 6540 | cpumask_or(groupmask, groupmask, sched_group_cpus(group)); |
1da177e4 | 6541 | |
968ea6d8 | 6542 | cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); |
381512cf | 6543 | |
3df0fc5b | 6544 | printk(KERN_CONT " %s", str); |
1399fa78 | 6545 | if (group->cpu_power != SCHED_POWER_SCALE) { |
3df0fc5b PZ |
6546 | printk(KERN_CONT " (cpu_power = %d)", |
6547 | group->cpu_power); | |
381512cf | 6548 | } |
1da177e4 | 6549 | |
4dcf6aff IM |
6550 | group = group->next; |
6551 | } while (group != sd->groups); | |
3df0fc5b | 6552 | printk(KERN_CONT "\n"); |
1da177e4 | 6553 | |
758b2cdc | 6554 | if (!cpumask_equal(sched_domain_span(sd), groupmask)) |
3df0fc5b | 6555 | printk(KERN_ERR "ERROR: groups don't span domain->span\n"); |
1da177e4 | 6556 | |
758b2cdc RR |
6557 | if (sd->parent && |
6558 | !cpumask_subset(groupmask, sched_domain_span(sd->parent))) | |
3df0fc5b PZ |
6559 | printk(KERN_ERR "ERROR: parent span is not a superset " |
6560 | "of domain->span\n"); | |
4dcf6aff IM |
6561 | return 0; |
6562 | } | |
1da177e4 | 6563 | |
4dcf6aff IM |
6564 | static void sched_domain_debug(struct sched_domain *sd, int cpu) |
6565 | { | |
6566 | int level = 0; | |
1da177e4 | 6567 | |
f6630114 MT |
6568 | if (!sched_domain_debug_enabled) |
6569 | return; | |
6570 | ||
4dcf6aff IM |
6571 | if (!sd) { |
6572 | printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); | |
6573 | return; | |
6574 | } | |
1da177e4 | 6575 | |
4dcf6aff IM |
6576 | printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); |
6577 | ||
6578 | for (;;) { | |
4cb98839 | 6579 | if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) |
4dcf6aff | 6580 | break; |
1da177e4 LT |
6581 | level++; |
6582 | sd = sd->parent; | |
33859f7f | 6583 | if (!sd) |
4dcf6aff IM |
6584 | break; |
6585 | } | |
1da177e4 | 6586 | } |
6d6bc0ad | 6587 | #else /* !CONFIG_SCHED_DEBUG */ |
48f24c4d | 6588 | # define sched_domain_debug(sd, cpu) do { } while (0) |
6d6bc0ad | 6589 | #endif /* CONFIG_SCHED_DEBUG */ |
1da177e4 | 6590 | |
1a20ff27 | 6591 | static int sd_degenerate(struct sched_domain *sd) |
245af2c7 | 6592 | { |
758b2cdc | 6593 | if (cpumask_weight(sched_domain_span(sd)) == 1) |
245af2c7 SS |
6594 | return 1; |
6595 | ||
6596 | /* Following flags need at least 2 groups */ | |
6597 | if (sd->flags & (SD_LOAD_BALANCE | | |
6598 | SD_BALANCE_NEWIDLE | | |
6599 | SD_BALANCE_FORK | | |
89c4710e SS |
6600 | SD_BALANCE_EXEC | |
6601 | SD_SHARE_CPUPOWER | | |
6602 | SD_SHARE_PKG_RESOURCES)) { | |
245af2c7 SS |
6603 | if (sd->groups != sd->groups->next) |
6604 | return 0; | |
6605 | } | |
6606 | ||
6607 | /* Following flags don't use groups */ | |
c88d5910 | 6608 | if (sd->flags & (SD_WAKE_AFFINE)) |
245af2c7 SS |
6609 | return 0; |
6610 | ||
6611 | return 1; | |
6612 | } | |
6613 | ||
48f24c4d IM |
6614 | static int |
6615 | sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) | |
245af2c7 SS |
6616 | { |
6617 | unsigned long cflags = sd->flags, pflags = parent->flags; | |
6618 | ||
6619 | if (sd_degenerate(parent)) | |
6620 | return 1; | |
6621 | ||
758b2cdc | 6622 | if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) |
245af2c7 SS |
6623 | return 0; |
6624 | ||
245af2c7 SS |
6625 | /* Flags needing groups don't count if only 1 group in parent */ |
6626 | if (parent->groups == parent->groups->next) { | |
6627 | pflags &= ~(SD_LOAD_BALANCE | | |
6628 | SD_BALANCE_NEWIDLE | | |
6629 | SD_BALANCE_FORK | | |
89c4710e SS |
6630 | SD_BALANCE_EXEC | |
6631 | SD_SHARE_CPUPOWER | | |
6632 | SD_SHARE_PKG_RESOURCES); | |
5436499e KC |
6633 | if (nr_node_ids == 1) |
6634 | pflags &= ~SD_SERIALIZE; | |
245af2c7 SS |
6635 | } |
6636 | if (~cflags & pflags) | |
6637 | return 0; | |
6638 | ||
6639 | return 1; | |
6640 | } | |
6641 | ||
dce840a0 | 6642 | static void free_rootdomain(struct rcu_head *rcu) |
c6c4927b | 6643 | { |
dce840a0 | 6644 | struct root_domain *rd = container_of(rcu, struct root_domain, rcu); |
047106ad | 6645 | |
68e74568 | 6646 | cpupri_cleanup(&rd->cpupri); |
c6c4927b RR |
6647 | free_cpumask_var(rd->rto_mask); |
6648 | free_cpumask_var(rd->online); | |
6649 | free_cpumask_var(rd->span); | |
6650 | kfree(rd); | |
6651 | } | |
6652 | ||
57d885fe GH |
6653 | static void rq_attach_root(struct rq *rq, struct root_domain *rd) |
6654 | { | |
a0490fa3 | 6655 | struct root_domain *old_rd = NULL; |
57d885fe | 6656 | unsigned long flags; |
57d885fe | 6657 | |
05fa785c | 6658 | raw_spin_lock_irqsave(&rq->lock, flags); |
57d885fe GH |
6659 | |
6660 | if (rq->rd) { | |
a0490fa3 | 6661 | old_rd = rq->rd; |
57d885fe | 6662 | |
c6c4927b | 6663 | if (cpumask_test_cpu(rq->cpu, old_rd->online)) |
1f11eb6a | 6664 | set_rq_offline(rq); |
57d885fe | 6665 | |
c6c4927b | 6666 | cpumask_clear_cpu(rq->cpu, old_rd->span); |
dc938520 | 6667 | |
a0490fa3 IM |
6668 | /* |
6669 | * If we dont want to free the old_rt yet then | |
6670 | * set old_rd to NULL to skip the freeing later | |
6671 | * in this function: | |
6672 | */ | |
6673 | if (!atomic_dec_and_test(&old_rd->refcount)) | |
6674 | old_rd = NULL; | |
57d885fe GH |
6675 | } |
6676 | ||
6677 | atomic_inc(&rd->refcount); | |
6678 | rq->rd = rd; | |
6679 | ||
c6c4927b | 6680 | cpumask_set_cpu(rq->cpu, rd->span); |
00aec93d | 6681 | if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) |
1f11eb6a | 6682 | set_rq_online(rq); |
57d885fe | 6683 | |
05fa785c | 6684 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
a0490fa3 IM |
6685 | |
6686 | if (old_rd) | |
dce840a0 | 6687 | call_rcu_sched(&old_rd->rcu, free_rootdomain); |
57d885fe GH |
6688 | } |
6689 | ||
68c38fc3 | 6690 | static int init_rootdomain(struct root_domain *rd) |
57d885fe GH |
6691 | { |
6692 | memset(rd, 0, sizeof(*rd)); | |
6693 | ||
68c38fc3 | 6694 | if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) |
0c910d28 | 6695 | goto out; |
68c38fc3 | 6696 | if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) |
c6c4927b | 6697 | goto free_span; |
68c38fc3 | 6698 | if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) |
c6c4927b | 6699 | goto free_online; |
6e0534f2 | 6700 | |
68c38fc3 | 6701 | if (cpupri_init(&rd->cpupri) != 0) |
68e74568 | 6702 | goto free_rto_mask; |
c6c4927b | 6703 | return 0; |
6e0534f2 | 6704 | |
68e74568 RR |
6705 | free_rto_mask: |
6706 | free_cpumask_var(rd->rto_mask); | |
c6c4927b RR |
6707 | free_online: |
6708 | free_cpumask_var(rd->online); | |
6709 | free_span: | |
6710 | free_cpumask_var(rd->span); | |
0c910d28 | 6711 | out: |
c6c4927b | 6712 | return -ENOMEM; |
57d885fe GH |
6713 | } |
6714 | ||
6715 | static void init_defrootdomain(void) | |
6716 | { | |
68c38fc3 | 6717 | init_rootdomain(&def_root_domain); |
c6c4927b | 6718 | |
57d885fe GH |
6719 | atomic_set(&def_root_domain.refcount, 1); |
6720 | } | |
6721 | ||
dc938520 | 6722 | static struct root_domain *alloc_rootdomain(void) |
57d885fe GH |
6723 | { |
6724 | struct root_domain *rd; | |
6725 | ||
6726 | rd = kmalloc(sizeof(*rd), GFP_KERNEL); | |
6727 | if (!rd) | |
6728 | return NULL; | |
6729 | ||
68c38fc3 | 6730 | if (init_rootdomain(rd) != 0) { |
c6c4927b RR |
6731 | kfree(rd); |
6732 | return NULL; | |
6733 | } | |
57d885fe GH |
6734 | |
6735 | return rd; | |
6736 | } | |
6737 | ||
dce840a0 PZ |
6738 | static void free_sched_domain(struct rcu_head *rcu) |
6739 | { | |
6740 | struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); | |
6741 | if (atomic_dec_and_test(&sd->groups->ref)) | |
6742 | kfree(sd->groups); | |
6743 | kfree(sd); | |
6744 | } | |
6745 | ||
6746 | static void destroy_sched_domain(struct sched_domain *sd, int cpu) | |
6747 | { | |
6748 | call_rcu(&sd->rcu, free_sched_domain); | |
6749 | } | |
6750 | ||
6751 | static void destroy_sched_domains(struct sched_domain *sd, int cpu) | |
6752 | { | |
6753 | for (; sd; sd = sd->parent) | |
6754 | destroy_sched_domain(sd, cpu); | |
6755 | } | |
6756 | ||
1da177e4 | 6757 | /* |
0eab9146 | 6758 | * Attach the domain 'sd' to 'cpu' as its base domain. Callers must |
1da177e4 LT |
6759 | * hold the hotplug lock. |
6760 | */ | |
0eab9146 IM |
6761 | static void |
6762 | cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) | |
1da177e4 | 6763 | { |
70b97a7f | 6764 | struct rq *rq = cpu_rq(cpu); |
245af2c7 SS |
6765 | struct sched_domain *tmp; |
6766 | ||
6767 | /* Remove the sched domains which do not contribute to scheduling. */ | |
f29c9b1c | 6768 | for (tmp = sd; tmp; ) { |
245af2c7 SS |
6769 | struct sched_domain *parent = tmp->parent; |
6770 | if (!parent) | |
6771 | break; | |
f29c9b1c | 6772 | |
1a848870 | 6773 | if (sd_parent_degenerate(tmp, parent)) { |
245af2c7 | 6774 | tmp->parent = parent->parent; |
1a848870 SS |
6775 | if (parent->parent) |
6776 | parent->parent->child = tmp; | |
dce840a0 | 6777 | destroy_sched_domain(parent, cpu); |
f29c9b1c LZ |
6778 | } else |
6779 | tmp = tmp->parent; | |
245af2c7 SS |
6780 | } |
6781 | ||
1a848870 | 6782 | if (sd && sd_degenerate(sd)) { |
dce840a0 | 6783 | tmp = sd; |
245af2c7 | 6784 | sd = sd->parent; |
dce840a0 | 6785 | destroy_sched_domain(tmp, cpu); |
1a848870 SS |
6786 | if (sd) |
6787 | sd->child = NULL; | |
6788 | } | |
1da177e4 | 6789 | |
4cb98839 | 6790 | sched_domain_debug(sd, cpu); |
1da177e4 | 6791 | |
57d885fe | 6792 | rq_attach_root(rq, rd); |
dce840a0 | 6793 | tmp = rq->sd; |
674311d5 | 6794 | rcu_assign_pointer(rq->sd, sd); |
dce840a0 | 6795 | destroy_sched_domains(tmp, cpu); |
1da177e4 LT |
6796 | } |
6797 | ||
6798 | /* cpus with isolated domains */ | |
dcc30a35 | 6799 | static cpumask_var_t cpu_isolated_map; |
1da177e4 LT |
6800 | |
6801 | /* Setup the mask of cpus configured for isolated domains */ | |
6802 | static int __init isolated_cpu_setup(char *str) | |
6803 | { | |
bdddd296 | 6804 | alloc_bootmem_cpumask_var(&cpu_isolated_map); |
968ea6d8 | 6805 | cpulist_parse(str, cpu_isolated_map); |
1da177e4 LT |
6806 | return 1; |
6807 | } | |
6808 | ||
8927f494 | 6809 | __setup("isolcpus=", isolated_cpu_setup); |
1da177e4 | 6810 | |
9c1cfda2 | 6811 | #define SD_NODES_PER_DOMAIN 16 |
1da177e4 | 6812 | |
9c1cfda2 | 6813 | #ifdef CONFIG_NUMA |
198e2f18 | 6814 | |
9c1cfda2 JH |
6815 | /** |
6816 | * find_next_best_node - find the next node to include in a sched_domain | |
6817 | * @node: node whose sched_domain we're building | |
6818 | * @used_nodes: nodes already in the sched_domain | |
6819 | * | |
41a2d6cf | 6820 | * Find the next node to include in a given scheduling domain. Simply |
9c1cfda2 JH |
6821 | * finds the closest node not already in the @used_nodes map. |
6822 | * | |
6823 | * Should use nodemask_t. | |
6824 | */ | |
c5f59f08 | 6825 | static int find_next_best_node(int node, nodemask_t *used_nodes) |
9c1cfda2 | 6826 | { |
7142d17e | 6827 | int i, n, val, min_val, best_node = -1; |
9c1cfda2 JH |
6828 | |
6829 | min_val = INT_MAX; | |
6830 | ||
076ac2af | 6831 | for (i = 0; i < nr_node_ids; i++) { |
9c1cfda2 | 6832 | /* Start at @node */ |
076ac2af | 6833 | n = (node + i) % nr_node_ids; |
9c1cfda2 JH |
6834 | |
6835 | if (!nr_cpus_node(n)) | |
6836 | continue; | |
6837 | ||
6838 | /* Skip already used nodes */ | |
c5f59f08 | 6839 | if (node_isset(n, *used_nodes)) |
9c1cfda2 JH |
6840 | continue; |
6841 | ||
6842 | /* Simple min distance search */ | |
6843 | val = node_distance(node, n); | |
6844 | ||
6845 | if (val < min_val) { | |
6846 | min_val = val; | |
6847 | best_node = n; | |
6848 | } | |
6849 | } | |
6850 | ||
7142d17e HD |
6851 | if (best_node != -1) |
6852 | node_set(best_node, *used_nodes); | |
9c1cfda2 JH |
6853 | return best_node; |
6854 | } | |
6855 | ||
6856 | /** | |
6857 | * sched_domain_node_span - get a cpumask for a node's sched_domain | |
6858 | * @node: node whose cpumask we're constructing | |
73486722 | 6859 | * @span: resulting cpumask |
9c1cfda2 | 6860 | * |
41a2d6cf | 6861 | * Given a node, construct a good cpumask for its sched_domain to span. It |
9c1cfda2 JH |
6862 | * should be one that prevents unnecessary balancing, but also spreads tasks |
6863 | * out optimally. | |
6864 | */ | |
96f874e2 | 6865 | static void sched_domain_node_span(int node, struct cpumask *span) |
9c1cfda2 | 6866 | { |
c5f59f08 | 6867 | nodemask_t used_nodes; |
48f24c4d | 6868 | int i; |
9c1cfda2 | 6869 | |
6ca09dfc | 6870 | cpumask_clear(span); |
c5f59f08 | 6871 | nodes_clear(used_nodes); |
9c1cfda2 | 6872 | |
6ca09dfc | 6873 | cpumask_or(span, span, cpumask_of_node(node)); |
c5f59f08 | 6874 | node_set(node, used_nodes); |
9c1cfda2 JH |
6875 | |
6876 | for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { | |
c5f59f08 | 6877 | int next_node = find_next_best_node(node, &used_nodes); |
7142d17e HD |
6878 | if (next_node < 0) |
6879 | break; | |
6ca09dfc | 6880 | cpumask_or(span, span, cpumask_of_node(next_node)); |
9c1cfda2 | 6881 | } |
9c1cfda2 | 6882 | } |
d3081f52 PZ |
6883 | |
6884 | static const struct cpumask *cpu_node_mask(int cpu) | |
6885 | { | |
6886 | lockdep_assert_held(&sched_domains_mutex); | |
6887 | ||
6888 | sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask); | |
6889 | ||
6890 | return sched_domains_tmpmask; | |
6891 | } | |
2c402dc3 PZ |
6892 | |
6893 | static const struct cpumask *cpu_allnodes_mask(int cpu) | |
6894 | { | |
6895 | return cpu_possible_mask; | |
6896 | } | |
6d6bc0ad | 6897 | #endif /* CONFIG_NUMA */ |
9c1cfda2 | 6898 | |
d3081f52 PZ |
6899 | static const struct cpumask *cpu_cpu_mask(int cpu) |
6900 | { | |
6901 | return cpumask_of_node(cpu_to_node(cpu)); | |
6902 | } | |
6903 | ||
5c45bf27 | 6904 | int sched_smt_power_savings = 0, sched_mc_power_savings = 0; |
48f24c4d | 6905 | |
dce840a0 PZ |
6906 | struct sd_data { |
6907 | struct sched_domain **__percpu sd; | |
6908 | struct sched_group **__percpu sg; | |
6909 | }; | |
6910 | ||
49a02c51 | 6911 | struct s_data { |
21d42ccf | 6912 | struct sched_domain ** __percpu sd; |
49a02c51 AH |
6913 | struct root_domain *rd; |
6914 | }; | |
6915 | ||
2109b99e | 6916 | enum s_alloc { |
2109b99e | 6917 | sa_rootdomain, |
21d42ccf | 6918 | sa_sd, |
dce840a0 | 6919 | sa_sd_storage, |
2109b99e AH |
6920 | sa_none, |
6921 | }; | |
6922 | ||
54ab4ff4 PZ |
6923 | struct sched_domain_topology_level; |
6924 | ||
6925 | typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu); | |
eb7a74e6 PZ |
6926 | typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); |
6927 | ||
6928 | struct sched_domain_topology_level { | |
2c402dc3 PZ |
6929 | sched_domain_init_f init; |
6930 | sched_domain_mask_f mask; | |
54ab4ff4 | 6931 | struct sd_data data; |
eb7a74e6 PZ |
6932 | }; |
6933 | ||
9c1cfda2 | 6934 | /* |
dce840a0 | 6935 | * Assumes the sched_domain tree is fully constructed |
9c1cfda2 | 6936 | */ |
dce840a0 | 6937 | static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) |
1da177e4 | 6938 | { |
dce840a0 PZ |
6939 | struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); |
6940 | struct sched_domain *child = sd->child; | |
1da177e4 | 6941 | |
dce840a0 PZ |
6942 | if (child) |
6943 | cpu = cpumask_first(sched_domain_span(child)); | |
1e9f28fa | 6944 | |
6711cab4 | 6945 | if (sg) |
dce840a0 PZ |
6946 | *sg = *per_cpu_ptr(sdd->sg, cpu); |
6947 | ||
6948 | return cpu; | |
1e9f28fa | 6949 | } |
1e9f28fa | 6950 | |
01a08546 | 6951 | /* |
dce840a0 PZ |
6952 | * build_sched_groups takes the cpumask we wish to span, and a pointer |
6953 | * to a function which identifies what group(along with sched group) a CPU | |
6954 | * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids | |
6955 | * (due to the fact that we keep track of groups covered with a struct cpumask). | |
6956 | * | |
6957 | * build_sched_groups will build a circular linked list of the groups | |
6958 | * covered by the given span, and will set each group's ->cpumask correctly, | |
6959 | * and ->cpu_power to 0. | |
01a08546 | 6960 | */ |
dce840a0 | 6961 | static void |
f96225fd | 6962 | build_sched_groups(struct sched_domain *sd) |
1da177e4 | 6963 | { |
dce840a0 PZ |
6964 | struct sched_group *first = NULL, *last = NULL; |
6965 | struct sd_data *sdd = sd->private; | |
6966 | const struct cpumask *span = sched_domain_span(sd); | |
f96225fd | 6967 | struct cpumask *covered; |
dce840a0 | 6968 | int i; |
9c1cfda2 | 6969 | |
f96225fd PZ |
6970 | lockdep_assert_held(&sched_domains_mutex); |
6971 | covered = sched_domains_tmpmask; | |
6972 | ||
dce840a0 | 6973 | cpumask_clear(covered); |
6711cab4 | 6974 | |
dce840a0 PZ |
6975 | for_each_cpu(i, span) { |
6976 | struct sched_group *sg; | |
6977 | int group = get_group(i, sdd, &sg); | |
6978 | int j; | |
6711cab4 | 6979 | |
dce840a0 PZ |
6980 | if (cpumask_test_cpu(i, covered)) |
6981 | continue; | |
6711cab4 | 6982 | |
dce840a0 PZ |
6983 | cpumask_clear(sched_group_cpus(sg)); |
6984 | sg->cpu_power = 0; | |
0601a88d | 6985 | |
dce840a0 PZ |
6986 | for_each_cpu(j, span) { |
6987 | if (get_group(j, sdd, NULL) != group) | |
6988 | continue; | |
0601a88d | 6989 | |
dce840a0 PZ |
6990 | cpumask_set_cpu(j, covered); |
6991 | cpumask_set_cpu(j, sched_group_cpus(sg)); | |
6992 | } | |
0601a88d | 6993 | |
dce840a0 PZ |
6994 | if (!first) |
6995 | first = sg; | |
6996 | if (last) | |
6997 | last->next = sg; | |
6998 | last = sg; | |
6999 | } | |
7000 | last->next = first; | |
0601a88d | 7001 | } |
51888ca2 | 7002 | |
89c4710e SS |
7003 | /* |
7004 | * Initialize sched groups cpu_power. | |
7005 | * | |
7006 | * cpu_power indicates the capacity of sched group, which is used while | |
7007 | * distributing the load between different sched groups in a sched domain. | |
7008 | * Typically cpu_power for all the groups in a sched domain will be same unless | |
7009 | * there are asymmetries in the topology. If there are asymmetries, group | |
7010 | * having more cpu_power will pickup more load compared to the group having | |
7011 | * less cpu_power. | |
89c4710e SS |
7012 | */ |
7013 | static void init_sched_groups_power(int cpu, struct sched_domain *sd) | |
7014 | { | |
89c4710e SS |
7015 | WARN_ON(!sd || !sd->groups); |
7016 | ||
13318a71 | 7017 | if (cpu != group_first_cpu(sd->groups)) |
89c4710e SS |
7018 | return; |
7019 | ||
aae6d3dd SS |
7020 | sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups)); |
7021 | ||
d274cb30 | 7022 | update_group_power(sd, cpu); |
89c4710e SS |
7023 | } |
7024 | ||
7c16ec58 MT |
7025 | /* |
7026 | * Initializers for schedule domains | |
7027 | * Non-inlined to reduce accumulated stack pressure in build_sched_domains() | |
7028 | */ | |
7029 | ||
a5d8c348 IM |
7030 | #ifdef CONFIG_SCHED_DEBUG |
7031 | # define SD_INIT_NAME(sd, type) sd->name = #type | |
7032 | #else | |
7033 | # define SD_INIT_NAME(sd, type) do { } while (0) | |
7034 | #endif | |
7035 | ||
54ab4ff4 PZ |
7036 | #define SD_INIT_FUNC(type) \ |
7037 | static noinline struct sched_domain * \ | |
7038 | sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \ | |
7039 | { \ | |
7040 | struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \ | |
7041 | *sd = SD_##type##_INIT; \ | |
54ab4ff4 PZ |
7042 | SD_INIT_NAME(sd, type); \ |
7043 | sd->private = &tl->data; \ | |
7044 | return sd; \ | |
7c16ec58 MT |
7045 | } |
7046 | ||
7047 | SD_INIT_FUNC(CPU) | |
7048 | #ifdef CONFIG_NUMA | |
7049 | SD_INIT_FUNC(ALLNODES) | |
7050 | SD_INIT_FUNC(NODE) | |
7051 | #endif | |
7052 | #ifdef CONFIG_SCHED_SMT | |
7053 | SD_INIT_FUNC(SIBLING) | |
7054 | #endif | |
7055 | #ifdef CONFIG_SCHED_MC | |
7056 | SD_INIT_FUNC(MC) | |
7057 | #endif | |
01a08546 HC |
7058 | #ifdef CONFIG_SCHED_BOOK |
7059 | SD_INIT_FUNC(BOOK) | |
7060 | #endif | |
7c16ec58 | 7061 | |
1d3504fc | 7062 | static int default_relax_domain_level = -1; |
60495e77 | 7063 | int sched_domain_level_max; |
1d3504fc HS |
7064 | |
7065 | static int __init setup_relax_domain_level(char *str) | |
7066 | { | |
30e0e178 LZ |
7067 | unsigned long val; |
7068 | ||
7069 | val = simple_strtoul(str, NULL, 0); | |
60495e77 | 7070 | if (val < sched_domain_level_max) |
30e0e178 LZ |
7071 | default_relax_domain_level = val; |
7072 | ||
1d3504fc HS |
7073 | return 1; |
7074 | } | |
7075 | __setup("relax_domain_level=", setup_relax_domain_level); | |
7076 | ||
7077 | static void set_domain_attribute(struct sched_domain *sd, | |
7078 | struct sched_domain_attr *attr) | |
7079 | { | |
7080 | int request; | |
7081 | ||
7082 | if (!attr || attr->relax_domain_level < 0) { | |
7083 | if (default_relax_domain_level < 0) | |
7084 | return; | |
7085 | else | |
7086 | request = default_relax_domain_level; | |
7087 | } else | |
7088 | request = attr->relax_domain_level; | |
7089 | if (request < sd->level) { | |
7090 | /* turn off idle balance on this domain */ | |
c88d5910 | 7091 | sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); |
1d3504fc HS |
7092 | } else { |
7093 | /* turn on idle balance on this domain */ | |
c88d5910 | 7094 | sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); |
1d3504fc HS |
7095 | } |
7096 | } | |
7097 | ||
54ab4ff4 PZ |
7098 | static void __sdt_free(const struct cpumask *cpu_map); |
7099 | static int __sdt_alloc(const struct cpumask *cpu_map); | |
7100 | ||
2109b99e AH |
7101 | static void __free_domain_allocs(struct s_data *d, enum s_alloc what, |
7102 | const struct cpumask *cpu_map) | |
7103 | { | |
7104 | switch (what) { | |
2109b99e | 7105 | case sa_rootdomain: |
822ff793 PZ |
7106 | if (!atomic_read(&d->rd->refcount)) |
7107 | free_rootdomain(&d->rd->rcu); /* fall through */ | |
21d42ccf PZ |
7108 | case sa_sd: |
7109 | free_percpu(d->sd); /* fall through */ | |
dce840a0 | 7110 | case sa_sd_storage: |
54ab4ff4 | 7111 | __sdt_free(cpu_map); /* fall through */ |
2109b99e AH |
7112 | case sa_none: |
7113 | break; | |
7114 | } | |
7115 | } | |
3404c8d9 | 7116 | |
2109b99e AH |
7117 | static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, |
7118 | const struct cpumask *cpu_map) | |
7119 | { | |
dce840a0 PZ |
7120 | memset(d, 0, sizeof(*d)); |
7121 | ||
54ab4ff4 PZ |
7122 | if (__sdt_alloc(cpu_map)) |
7123 | return sa_sd_storage; | |
dce840a0 PZ |
7124 | d->sd = alloc_percpu(struct sched_domain *); |
7125 | if (!d->sd) | |
7126 | return sa_sd_storage; | |
2109b99e | 7127 | d->rd = alloc_rootdomain(); |
dce840a0 | 7128 | if (!d->rd) |
21d42ccf | 7129 | return sa_sd; |
2109b99e AH |
7130 | return sa_rootdomain; |
7131 | } | |
57d885fe | 7132 | |
dce840a0 PZ |
7133 | /* |
7134 | * NULL the sd_data elements we've used to build the sched_domain and | |
7135 | * sched_group structure so that the subsequent __free_domain_allocs() | |
7136 | * will not free the data we're using. | |
7137 | */ | |
7138 | static void claim_allocations(int cpu, struct sched_domain *sd) | |
7139 | { | |
7140 | struct sd_data *sdd = sd->private; | |
7141 | struct sched_group *sg = sd->groups; | |
7142 | ||
7143 | WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); | |
7144 | *per_cpu_ptr(sdd->sd, cpu) = NULL; | |
7145 | ||
7146 | if (cpu == cpumask_first(sched_group_cpus(sg))) { | |
7147 | WARN_ON_ONCE(*per_cpu_ptr(sdd->sg, cpu) != sg); | |
7148 | *per_cpu_ptr(sdd->sg, cpu) = NULL; | |
7149 | } | |
7150 | } | |
7151 | ||
2c402dc3 PZ |
7152 | #ifdef CONFIG_SCHED_SMT |
7153 | static const struct cpumask *cpu_smt_mask(int cpu) | |
7f4588f3 | 7154 | { |
2c402dc3 | 7155 | return topology_thread_cpumask(cpu); |
3bd65a80 | 7156 | } |
2c402dc3 | 7157 | #endif |
7f4588f3 | 7158 | |
d069b916 PZ |
7159 | /* |
7160 | * Topology list, bottom-up. | |
7161 | */ | |
2c402dc3 | 7162 | static struct sched_domain_topology_level default_topology[] = { |
d069b916 PZ |
7163 | #ifdef CONFIG_SCHED_SMT |
7164 | { sd_init_SIBLING, cpu_smt_mask, }, | |
01a08546 | 7165 | #endif |
1e9f28fa | 7166 | #ifdef CONFIG_SCHED_MC |
2c402dc3 | 7167 | { sd_init_MC, cpu_coregroup_mask, }, |
1e9f28fa | 7168 | #endif |
d069b916 PZ |
7169 | #ifdef CONFIG_SCHED_BOOK |
7170 | { sd_init_BOOK, cpu_book_mask, }, | |
7171 | #endif | |
7172 | { sd_init_CPU, cpu_cpu_mask, }, | |
7173 | #ifdef CONFIG_NUMA | |
7174 | { sd_init_NODE, cpu_node_mask, }, | |
7175 | { sd_init_ALLNODES, cpu_allnodes_mask, }, | |
1da177e4 | 7176 | #endif |
eb7a74e6 PZ |
7177 | { NULL, }, |
7178 | }; | |
7179 | ||
7180 | static struct sched_domain_topology_level *sched_domain_topology = default_topology; | |
7181 | ||
54ab4ff4 PZ |
7182 | static int __sdt_alloc(const struct cpumask *cpu_map) |
7183 | { | |
7184 | struct sched_domain_topology_level *tl; | |
7185 | int j; | |
7186 | ||
7187 | for (tl = sched_domain_topology; tl->init; tl++) { | |
7188 | struct sd_data *sdd = &tl->data; | |
7189 | ||
7190 | sdd->sd = alloc_percpu(struct sched_domain *); | |
7191 | if (!sdd->sd) | |
7192 | return -ENOMEM; | |
7193 | ||
7194 | sdd->sg = alloc_percpu(struct sched_group *); | |
7195 | if (!sdd->sg) | |
7196 | return -ENOMEM; | |
7197 | ||
7198 | for_each_cpu(j, cpu_map) { | |
7199 | struct sched_domain *sd; | |
7200 | struct sched_group *sg; | |
7201 | ||
7202 | sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), | |
7203 | GFP_KERNEL, cpu_to_node(j)); | |
7204 | if (!sd) | |
7205 | return -ENOMEM; | |
7206 | ||
7207 | *per_cpu_ptr(sdd->sd, j) = sd; | |
7208 | ||
7209 | sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), | |
7210 | GFP_KERNEL, cpu_to_node(j)); | |
7211 | if (!sg) | |
7212 | return -ENOMEM; | |
7213 | ||
7214 | *per_cpu_ptr(sdd->sg, j) = sg; | |
7215 | } | |
7216 | } | |
7217 | ||
7218 | return 0; | |
7219 | } | |
7220 | ||
7221 | static void __sdt_free(const struct cpumask *cpu_map) | |
7222 | { | |
7223 | struct sched_domain_topology_level *tl; | |
7224 | int j; | |
7225 | ||
7226 | for (tl = sched_domain_topology; tl->init; tl++) { | |
7227 | struct sd_data *sdd = &tl->data; | |
7228 | ||
7229 | for_each_cpu(j, cpu_map) { | |
7230 | kfree(*per_cpu_ptr(sdd->sd, j)); | |
7231 | kfree(*per_cpu_ptr(sdd->sg, j)); | |
7232 | } | |
7233 | free_percpu(sdd->sd); | |
7234 | free_percpu(sdd->sg); | |
7235 | } | |
7236 | } | |
7237 | ||
2c402dc3 PZ |
7238 | struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, |
7239 | struct s_data *d, const struct cpumask *cpu_map, | |
d069b916 | 7240 | struct sched_domain_attr *attr, struct sched_domain *child, |
2c402dc3 PZ |
7241 | int cpu) |
7242 | { | |
54ab4ff4 | 7243 | struct sched_domain *sd = tl->init(tl, cpu); |
2c402dc3 | 7244 | if (!sd) |
d069b916 | 7245 | return child; |
2c402dc3 PZ |
7246 | |
7247 | set_domain_attribute(sd, attr); | |
7248 | cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); | |
60495e77 PZ |
7249 | if (child) { |
7250 | sd->level = child->level + 1; | |
7251 | sched_domain_level_max = max(sched_domain_level_max, sd->level); | |
d069b916 | 7252 | child->parent = sd; |
60495e77 | 7253 | } |
d069b916 | 7254 | sd->child = child; |
2c402dc3 PZ |
7255 | |
7256 | return sd; | |
7257 | } | |
7258 | ||
2109b99e AH |
7259 | /* |
7260 | * Build sched domains for a given set of cpus and attach the sched domains | |
7261 | * to the individual cpus | |
7262 | */ | |
dce840a0 PZ |
7263 | static int build_sched_domains(const struct cpumask *cpu_map, |
7264 | struct sched_domain_attr *attr) | |
2109b99e AH |
7265 | { |
7266 | enum s_alloc alloc_state = sa_none; | |
dce840a0 | 7267 | struct sched_domain *sd; |
2109b99e | 7268 | struct s_data d; |
822ff793 | 7269 | int i, ret = -ENOMEM; |
9c1cfda2 | 7270 | |
2109b99e AH |
7271 | alloc_state = __visit_domain_allocation_hell(&d, cpu_map); |
7272 | if (alloc_state != sa_rootdomain) | |
7273 | goto error; | |
9c1cfda2 | 7274 | |
dce840a0 | 7275 | /* Set up domains for cpus specified by the cpu_map. */ |
abcd083a | 7276 | for_each_cpu(i, cpu_map) { |
eb7a74e6 PZ |
7277 | struct sched_domain_topology_level *tl; |
7278 | ||
3bd65a80 | 7279 | sd = NULL; |
2c402dc3 PZ |
7280 | for (tl = sched_domain_topology; tl->init; tl++) |
7281 | sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i); | |
d274cb30 | 7282 | |
d069b916 PZ |
7283 | while (sd->child) |
7284 | sd = sd->child; | |
7285 | ||
21d42ccf | 7286 | *per_cpu_ptr(d.sd, i) = sd; |
dce840a0 PZ |
7287 | } |
7288 | ||
7289 | /* Build the groups for the domains */ | |
7290 | for_each_cpu(i, cpu_map) { | |
7291 | for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { | |
7292 | sd->span_weight = cpumask_weight(sched_domain_span(sd)); | |
7293 | get_group(i, sd->private, &sd->groups); | |
7294 | atomic_inc(&sd->groups->ref); | |
21d42ccf | 7295 | |
dce840a0 PZ |
7296 | if (i != cpumask_first(sched_domain_span(sd))) |
7297 | continue; | |
7298 | ||
f96225fd | 7299 | build_sched_groups(sd); |
1cf51902 | 7300 | } |
a06dadbe | 7301 | } |
9c1cfda2 | 7302 | |
1da177e4 | 7303 | /* Calculate CPU power for physical packages and nodes */ |
a9c9a9b6 PZ |
7304 | for (i = nr_cpumask_bits-1; i >= 0; i--) { |
7305 | if (!cpumask_test_cpu(i, cpu_map)) | |
7306 | continue; | |
9c1cfda2 | 7307 | |
dce840a0 PZ |
7308 | for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { |
7309 | claim_allocations(i, sd); | |
cd4ea6ae | 7310 | init_sched_groups_power(i, sd); |
dce840a0 | 7311 | } |
f712c0c7 | 7312 | } |
9c1cfda2 | 7313 | |
1da177e4 | 7314 | /* Attach the domains */ |
dce840a0 | 7315 | rcu_read_lock(); |
abcd083a | 7316 | for_each_cpu(i, cpu_map) { |
21d42ccf | 7317 | sd = *per_cpu_ptr(d.sd, i); |
49a02c51 | 7318 | cpu_attach_domain(sd, d.rd, i); |
1da177e4 | 7319 | } |
dce840a0 | 7320 | rcu_read_unlock(); |
51888ca2 | 7321 | |
822ff793 | 7322 | ret = 0; |
51888ca2 | 7323 | error: |
2109b99e | 7324 | __free_domain_allocs(&d, alloc_state, cpu_map); |
822ff793 | 7325 | return ret; |
1da177e4 | 7326 | } |
029190c5 | 7327 | |
acc3f5d7 | 7328 | static cpumask_var_t *doms_cur; /* current sched domains */ |
029190c5 | 7329 | static int ndoms_cur; /* number of sched domains in 'doms_cur' */ |
4285f594 IM |
7330 | static struct sched_domain_attr *dattr_cur; |
7331 | /* attribues of custom domains in 'doms_cur' */ | |
029190c5 PJ |
7332 | |
7333 | /* | |
7334 | * Special case: If a kmalloc of a doms_cur partition (array of | |
4212823f RR |
7335 | * cpumask) fails, then fallback to a single sched domain, |
7336 | * as determined by the single cpumask fallback_doms. | |
029190c5 | 7337 | */ |
4212823f | 7338 | static cpumask_var_t fallback_doms; |
029190c5 | 7339 | |
ee79d1bd HC |
7340 | /* |
7341 | * arch_update_cpu_topology lets virtualized architectures update the | |
7342 | * cpu core maps. It is supposed to return 1 if the topology changed | |
7343 | * or 0 if it stayed the same. | |
7344 | */ | |
7345 | int __attribute__((weak)) arch_update_cpu_topology(void) | |
22e52b07 | 7346 | { |
ee79d1bd | 7347 | return 0; |
22e52b07 HC |
7348 | } |
7349 | ||
acc3f5d7 RR |
7350 | cpumask_var_t *alloc_sched_domains(unsigned int ndoms) |
7351 | { | |
7352 | int i; | |
7353 | cpumask_var_t *doms; | |
7354 | ||
7355 | doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); | |
7356 | if (!doms) | |
7357 | return NULL; | |
7358 | for (i = 0; i < ndoms; i++) { | |
7359 | if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { | |
7360 | free_sched_domains(doms, i); | |
7361 | return NULL; | |
7362 | } | |
7363 | } | |
7364 | return doms; | |
7365 | } | |
7366 | ||
7367 | void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) | |
7368 | { | |
7369 | unsigned int i; | |
7370 | for (i = 0; i < ndoms; i++) | |
7371 | free_cpumask_var(doms[i]); | |
7372 | kfree(doms); | |
7373 | } | |
7374 | ||
1a20ff27 | 7375 | /* |
41a2d6cf | 7376 | * Set up scheduler domains and groups. Callers must hold the hotplug lock. |
029190c5 PJ |
7377 | * For now this just excludes isolated cpus, but could be used to |
7378 | * exclude other special cases in the future. | |
1a20ff27 | 7379 | */ |
c4a8849a | 7380 | static int init_sched_domains(const struct cpumask *cpu_map) |
1a20ff27 | 7381 | { |
7378547f MM |
7382 | int err; |
7383 | ||
22e52b07 | 7384 | arch_update_cpu_topology(); |
029190c5 | 7385 | ndoms_cur = 1; |
acc3f5d7 | 7386 | doms_cur = alloc_sched_domains(ndoms_cur); |
029190c5 | 7387 | if (!doms_cur) |
acc3f5d7 RR |
7388 | doms_cur = &fallback_doms; |
7389 | cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); | |
1d3504fc | 7390 | dattr_cur = NULL; |
dce840a0 | 7391 | err = build_sched_domains(doms_cur[0], NULL); |
6382bc90 | 7392 | register_sched_domain_sysctl(); |
7378547f MM |
7393 | |
7394 | return err; | |
1a20ff27 DG |
7395 | } |
7396 | ||
1a20ff27 DG |
7397 | /* |
7398 | * Detach sched domains from a group of cpus specified in cpu_map | |
7399 | * These cpus will now be attached to the NULL domain | |
7400 | */ | |
96f874e2 | 7401 | static void detach_destroy_domains(const struct cpumask *cpu_map) |
1a20ff27 DG |
7402 | { |
7403 | int i; | |
7404 | ||
dce840a0 | 7405 | rcu_read_lock(); |
abcd083a | 7406 | for_each_cpu(i, cpu_map) |
57d885fe | 7407 | cpu_attach_domain(NULL, &def_root_domain, i); |
dce840a0 | 7408 | rcu_read_unlock(); |
1a20ff27 DG |
7409 | } |
7410 | ||
1d3504fc HS |
7411 | /* handle null as "default" */ |
7412 | static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, | |
7413 | struct sched_domain_attr *new, int idx_new) | |
7414 | { | |
7415 | struct sched_domain_attr tmp; | |
7416 | ||
7417 | /* fast path */ | |
7418 | if (!new && !cur) | |
7419 | return 1; | |
7420 | ||
7421 | tmp = SD_ATTR_INIT; | |
7422 | return !memcmp(cur ? (cur + idx_cur) : &tmp, | |
7423 | new ? (new + idx_new) : &tmp, | |
7424 | sizeof(struct sched_domain_attr)); | |
7425 | } | |
7426 | ||
029190c5 PJ |
7427 | /* |
7428 | * Partition sched domains as specified by the 'ndoms_new' | |
41a2d6cf | 7429 | * cpumasks in the array doms_new[] of cpumasks. This compares |
029190c5 PJ |
7430 | * doms_new[] to the current sched domain partitioning, doms_cur[]. |
7431 | * It destroys each deleted domain and builds each new domain. | |
7432 | * | |
acc3f5d7 | 7433 | * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. |
41a2d6cf IM |
7434 | * The masks don't intersect (don't overlap.) We should setup one |
7435 | * sched domain for each mask. CPUs not in any of the cpumasks will | |
7436 | * not be load balanced. If the same cpumask appears both in the | |
029190c5 PJ |
7437 | * current 'doms_cur' domains and in the new 'doms_new', we can leave |
7438 | * it as it is. | |
7439 | * | |
acc3f5d7 RR |
7440 | * The passed in 'doms_new' should be allocated using |
7441 | * alloc_sched_domains. This routine takes ownership of it and will | |
7442 | * free_sched_domains it when done with it. If the caller failed the | |
7443 | * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, | |
7444 | * and partition_sched_domains() will fallback to the single partition | |
7445 | * 'fallback_doms', it also forces the domains to be rebuilt. | |
029190c5 | 7446 | * |
96f874e2 | 7447 | * If doms_new == NULL it will be replaced with cpu_online_mask. |
700018e0 LZ |
7448 | * ndoms_new == 0 is a special case for destroying existing domains, |
7449 | * and it will not create the default domain. | |
dfb512ec | 7450 | * |
029190c5 PJ |
7451 | * Call with hotplug lock held |
7452 | */ | |
acc3f5d7 | 7453 | void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], |
1d3504fc | 7454 | struct sched_domain_attr *dattr_new) |
029190c5 | 7455 | { |
dfb512ec | 7456 | int i, j, n; |
d65bd5ec | 7457 | int new_topology; |
029190c5 | 7458 | |
712555ee | 7459 | mutex_lock(&sched_domains_mutex); |
a1835615 | 7460 | |
7378547f MM |
7461 | /* always unregister in case we don't destroy any domains */ |
7462 | unregister_sched_domain_sysctl(); | |
7463 | ||
d65bd5ec HC |
7464 | /* Let architecture update cpu core mappings. */ |
7465 | new_topology = arch_update_cpu_topology(); | |
7466 | ||
dfb512ec | 7467 | n = doms_new ? ndoms_new : 0; |
029190c5 PJ |
7468 | |
7469 | /* Destroy deleted domains */ | |
7470 | for (i = 0; i < ndoms_cur; i++) { | |
d65bd5ec | 7471 | for (j = 0; j < n && !new_topology; j++) { |
acc3f5d7 | 7472 | if (cpumask_equal(doms_cur[i], doms_new[j]) |
1d3504fc | 7473 | && dattrs_equal(dattr_cur, i, dattr_new, j)) |
029190c5 PJ |
7474 | goto match1; |
7475 | } | |
7476 | /* no match - a current sched domain not in new doms_new[] */ | |
acc3f5d7 | 7477 | detach_destroy_domains(doms_cur[i]); |
029190c5 PJ |
7478 | match1: |
7479 | ; | |
7480 | } | |
7481 | ||
e761b772 MK |
7482 | if (doms_new == NULL) { |
7483 | ndoms_cur = 0; | |
acc3f5d7 | 7484 | doms_new = &fallback_doms; |
6ad4c188 | 7485 | cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); |
faa2f98f | 7486 | WARN_ON_ONCE(dattr_new); |
e761b772 MK |
7487 | } |
7488 | ||
029190c5 PJ |
7489 | /* Build new domains */ |
7490 | for (i = 0; i < ndoms_new; i++) { | |
d65bd5ec | 7491 | for (j = 0; j < ndoms_cur && !new_topology; j++) { |
acc3f5d7 | 7492 | if (cpumask_equal(doms_new[i], doms_cur[j]) |
1d3504fc | 7493 | && dattrs_equal(dattr_new, i, dattr_cur, j)) |
029190c5 PJ |
7494 | goto match2; |
7495 | } | |
7496 | /* no match - add a new doms_new */ | |
dce840a0 | 7497 | build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); |
029190c5 PJ |
7498 | match2: |
7499 | ; | |
7500 | } | |
7501 | ||
7502 | /* Remember the new sched domains */ | |
acc3f5d7 RR |
7503 | if (doms_cur != &fallback_doms) |
7504 | free_sched_domains(doms_cur, ndoms_cur); | |
1d3504fc | 7505 | kfree(dattr_cur); /* kfree(NULL) is safe */ |
029190c5 | 7506 | doms_cur = doms_new; |
1d3504fc | 7507 | dattr_cur = dattr_new; |
029190c5 | 7508 | ndoms_cur = ndoms_new; |
7378547f MM |
7509 | |
7510 | register_sched_domain_sysctl(); | |
a1835615 | 7511 | |
712555ee | 7512 | mutex_unlock(&sched_domains_mutex); |
029190c5 PJ |
7513 | } |
7514 | ||
5c45bf27 | 7515 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
c4a8849a | 7516 | static void reinit_sched_domains(void) |
5c45bf27 | 7517 | { |
95402b38 | 7518 | get_online_cpus(); |
dfb512ec MK |
7519 | |
7520 | /* Destroy domains first to force the rebuild */ | |
7521 | partition_sched_domains(0, NULL, NULL); | |
7522 | ||
e761b772 | 7523 | rebuild_sched_domains(); |
95402b38 | 7524 | put_online_cpus(); |
5c45bf27 SS |
7525 | } |
7526 | ||
7527 | static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) | |
7528 | { | |
afb8a9b7 | 7529 | unsigned int level = 0; |
5c45bf27 | 7530 | |
afb8a9b7 GS |
7531 | if (sscanf(buf, "%u", &level) != 1) |
7532 | return -EINVAL; | |
7533 | ||
7534 | /* | |
7535 | * level is always be positive so don't check for | |
7536 | * level < POWERSAVINGS_BALANCE_NONE which is 0 | |
7537 | * What happens on 0 or 1 byte write, | |
7538 | * need to check for count as well? | |
7539 | */ | |
7540 | ||
7541 | if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS) | |
5c45bf27 SS |
7542 | return -EINVAL; |
7543 | ||
7544 | if (smt) | |
afb8a9b7 | 7545 | sched_smt_power_savings = level; |
5c45bf27 | 7546 | else |
afb8a9b7 | 7547 | sched_mc_power_savings = level; |
5c45bf27 | 7548 | |
c4a8849a | 7549 | reinit_sched_domains(); |
5c45bf27 | 7550 | |
c70f22d2 | 7551 | return count; |
5c45bf27 SS |
7552 | } |
7553 | ||
5c45bf27 | 7554 | #ifdef CONFIG_SCHED_MC |
f718cd4a | 7555 | static ssize_t sched_mc_power_savings_show(struct sysdev_class *class, |
c9be0a36 | 7556 | struct sysdev_class_attribute *attr, |
f718cd4a | 7557 | char *page) |
5c45bf27 SS |
7558 | { |
7559 | return sprintf(page, "%u\n", sched_mc_power_savings); | |
7560 | } | |
f718cd4a | 7561 | static ssize_t sched_mc_power_savings_store(struct sysdev_class *class, |
c9be0a36 | 7562 | struct sysdev_class_attribute *attr, |
48f24c4d | 7563 | const char *buf, size_t count) |
5c45bf27 SS |
7564 | { |
7565 | return sched_power_savings_store(buf, count, 0); | |
7566 | } | |
f718cd4a AK |
7567 | static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644, |
7568 | sched_mc_power_savings_show, | |
7569 | sched_mc_power_savings_store); | |
5c45bf27 SS |
7570 | #endif |
7571 | ||
7572 | #ifdef CONFIG_SCHED_SMT | |
f718cd4a | 7573 | static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev, |
c9be0a36 | 7574 | struct sysdev_class_attribute *attr, |
f718cd4a | 7575 | char *page) |
5c45bf27 SS |
7576 | { |
7577 | return sprintf(page, "%u\n", sched_smt_power_savings); | |
7578 | } | |
f718cd4a | 7579 | static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev, |
c9be0a36 | 7580 | struct sysdev_class_attribute *attr, |
48f24c4d | 7581 | const char *buf, size_t count) |
5c45bf27 SS |
7582 | { |
7583 | return sched_power_savings_store(buf, count, 1); | |
7584 | } | |
f718cd4a AK |
7585 | static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644, |
7586 | sched_smt_power_savings_show, | |
6707de00 AB |
7587 | sched_smt_power_savings_store); |
7588 | #endif | |
7589 | ||
39aac648 | 7590 | int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls) |
6707de00 AB |
7591 | { |
7592 | int err = 0; | |
7593 | ||
7594 | #ifdef CONFIG_SCHED_SMT | |
7595 | if (smt_capable()) | |
7596 | err = sysfs_create_file(&cls->kset.kobj, | |
7597 | &attr_sched_smt_power_savings.attr); | |
7598 | #endif | |
7599 | #ifdef CONFIG_SCHED_MC | |
7600 | if (!err && mc_capable()) | |
7601 | err = sysfs_create_file(&cls->kset.kobj, | |
7602 | &attr_sched_mc_power_savings.attr); | |
7603 | #endif | |
7604 | return err; | |
7605 | } | |
6d6bc0ad | 7606 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ |
5c45bf27 | 7607 | |
1da177e4 | 7608 | /* |
3a101d05 TH |
7609 | * Update cpusets according to cpu_active mask. If cpusets are |
7610 | * disabled, cpuset_update_active_cpus() becomes a simple wrapper | |
7611 | * around partition_sched_domains(). | |
1da177e4 | 7612 | */ |
0b2e918a TH |
7613 | static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, |
7614 | void *hcpu) | |
e761b772 | 7615 | { |
3a101d05 | 7616 | switch (action & ~CPU_TASKS_FROZEN) { |
e761b772 | 7617 | case CPU_ONLINE: |
6ad4c188 | 7618 | case CPU_DOWN_FAILED: |
3a101d05 | 7619 | cpuset_update_active_cpus(); |
e761b772 | 7620 | return NOTIFY_OK; |
3a101d05 TH |
7621 | default: |
7622 | return NOTIFY_DONE; | |
7623 | } | |
7624 | } | |
e761b772 | 7625 | |
0b2e918a TH |
7626 | static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, |
7627 | void *hcpu) | |
3a101d05 TH |
7628 | { |
7629 | switch (action & ~CPU_TASKS_FROZEN) { | |
7630 | case CPU_DOWN_PREPARE: | |
7631 | cpuset_update_active_cpus(); | |
7632 | return NOTIFY_OK; | |
e761b772 MK |
7633 | default: |
7634 | return NOTIFY_DONE; | |
7635 | } | |
7636 | } | |
e761b772 MK |
7637 | |
7638 | static int update_runtime(struct notifier_block *nfb, | |
7639 | unsigned long action, void *hcpu) | |
1da177e4 | 7640 | { |
7def2be1 PZ |
7641 | int cpu = (int)(long)hcpu; |
7642 | ||
1da177e4 | 7643 | switch (action) { |
1da177e4 | 7644 | case CPU_DOWN_PREPARE: |
8bb78442 | 7645 | case CPU_DOWN_PREPARE_FROZEN: |
7def2be1 | 7646 | disable_runtime(cpu_rq(cpu)); |
1da177e4 LT |
7647 | return NOTIFY_OK; |
7648 | ||
1da177e4 | 7649 | case CPU_DOWN_FAILED: |
8bb78442 | 7650 | case CPU_DOWN_FAILED_FROZEN: |
1da177e4 | 7651 | case CPU_ONLINE: |
8bb78442 | 7652 | case CPU_ONLINE_FROZEN: |
7def2be1 | 7653 | enable_runtime(cpu_rq(cpu)); |
e761b772 MK |
7654 | return NOTIFY_OK; |
7655 | ||
1da177e4 LT |
7656 | default: |
7657 | return NOTIFY_DONE; | |
7658 | } | |
1da177e4 | 7659 | } |
1da177e4 LT |
7660 | |
7661 | void __init sched_init_smp(void) | |
7662 | { | |
dcc30a35 RR |
7663 | cpumask_var_t non_isolated_cpus; |
7664 | ||
7665 | alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); | |
cb5fd13f | 7666 | alloc_cpumask_var(&fallback_doms, GFP_KERNEL); |
5c1e1767 | 7667 | |
95402b38 | 7668 | get_online_cpus(); |
712555ee | 7669 | mutex_lock(&sched_domains_mutex); |
c4a8849a | 7670 | init_sched_domains(cpu_active_mask); |
dcc30a35 RR |
7671 | cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); |
7672 | if (cpumask_empty(non_isolated_cpus)) | |
7673 | cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); | |
712555ee | 7674 | mutex_unlock(&sched_domains_mutex); |
95402b38 | 7675 | put_online_cpus(); |
e761b772 | 7676 | |
3a101d05 TH |
7677 | hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); |
7678 | hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); | |
e761b772 MK |
7679 | |
7680 | /* RT runtime code needs to handle some hotplug events */ | |
7681 | hotcpu_notifier(update_runtime, 0); | |
7682 | ||
b328ca18 | 7683 | init_hrtick(); |
5c1e1767 NP |
7684 | |
7685 | /* Move init over to a non-isolated CPU */ | |
dcc30a35 | 7686 | if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) |
5c1e1767 | 7687 | BUG(); |
19978ca6 | 7688 | sched_init_granularity(); |
dcc30a35 | 7689 | free_cpumask_var(non_isolated_cpus); |
4212823f | 7690 | |
0e3900e6 | 7691 | init_sched_rt_class(); |
1da177e4 LT |
7692 | } |
7693 | #else | |
7694 | void __init sched_init_smp(void) | |
7695 | { | |
19978ca6 | 7696 | sched_init_granularity(); |
1da177e4 LT |
7697 | } |
7698 | #endif /* CONFIG_SMP */ | |
7699 | ||
cd1bb94b AB |
7700 | const_debug unsigned int sysctl_timer_migration = 1; |
7701 | ||
1da177e4 LT |
7702 | int in_sched_functions(unsigned long addr) |
7703 | { | |
1da177e4 LT |
7704 | return in_lock_functions(addr) || |
7705 | (addr >= (unsigned long)__sched_text_start | |
7706 | && addr < (unsigned long)__sched_text_end); | |
7707 | } | |
7708 | ||
a9957449 | 7709 | static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq) |
dd41f596 IM |
7710 | { |
7711 | cfs_rq->tasks_timeline = RB_ROOT; | |
4a55bd5e | 7712 | INIT_LIST_HEAD(&cfs_rq->tasks); |
dd41f596 IM |
7713 | #ifdef CONFIG_FAIR_GROUP_SCHED |
7714 | cfs_rq->rq = rq; | |
f07333bf | 7715 | /* allow initial update_cfs_load() to truncate */ |
6ea72f12 | 7716 | #ifdef CONFIG_SMP |
f07333bf | 7717 | cfs_rq->load_stamp = 1; |
6ea72f12 | 7718 | #endif |
dd41f596 | 7719 | #endif |
67e9fb2a | 7720 | cfs_rq->min_vruntime = (u64)(-(1LL << 20)); |
dd41f596 IM |
7721 | } |
7722 | ||
fa85ae24 PZ |
7723 | static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) |
7724 | { | |
7725 | struct rt_prio_array *array; | |
7726 | int i; | |
7727 | ||
7728 | array = &rt_rq->active; | |
7729 | for (i = 0; i < MAX_RT_PRIO; i++) { | |
7730 | INIT_LIST_HEAD(array->queue + i); | |
7731 | __clear_bit(i, array->bitmap); | |
7732 | } | |
7733 | /* delimiter for bitsearch: */ | |
7734 | __set_bit(MAX_RT_PRIO, array->bitmap); | |
7735 | ||
052f1dc7 | 7736 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
e864c499 | 7737 | rt_rq->highest_prio.curr = MAX_RT_PRIO; |
398a153b | 7738 | #ifdef CONFIG_SMP |
e864c499 | 7739 | rt_rq->highest_prio.next = MAX_RT_PRIO; |
48d5e258 | 7740 | #endif |
48d5e258 | 7741 | #endif |
fa85ae24 PZ |
7742 | #ifdef CONFIG_SMP |
7743 | rt_rq->rt_nr_migratory = 0; | |
fa85ae24 | 7744 | rt_rq->overloaded = 0; |
05fa785c | 7745 | plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock); |
fa85ae24 PZ |
7746 | #endif |
7747 | ||
7748 | rt_rq->rt_time = 0; | |
7749 | rt_rq->rt_throttled = 0; | |
ac086bc2 | 7750 | rt_rq->rt_runtime = 0; |
0986b11b | 7751 | raw_spin_lock_init(&rt_rq->rt_runtime_lock); |
6f505b16 | 7752 | |
052f1dc7 | 7753 | #ifdef CONFIG_RT_GROUP_SCHED |
23b0fdfc | 7754 | rt_rq->rt_nr_boosted = 0; |
6f505b16 PZ |
7755 | rt_rq->rq = rq; |
7756 | #endif | |
fa85ae24 PZ |
7757 | } |
7758 | ||
6f505b16 | 7759 | #ifdef CONFIG_FAIR_GROUP_SCHED |
ec7dc8ac | 7760 | static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, |
3d4b47b4 | 7761 | struct sched_entity *se, int cpu, |
ec7dc8ac | 7762 | struct sched_entity *parent) |
6f505b16 | 7763 | { |
ec7dc8ac | 7764 | struct rq *rq = cpu_rq(cpu); |
6f505b16 PZ |
7765 | tg->cfs_rq[cpu] = cfs_rq; |
7766 | init_cfs_rq(cfs_rq, rq); | |
7767 | cfs_rq->tg = tg; | |
6f505b16 PZ |
7768 | |
7769 | tg->se[cpu] = se; | |
07e06b01 | 7770 | /* se could be NULL for root_task_group */ |
354d60c2 DG |
7771 | if (!se) |
7772 | return; | |
7773 | ||
ec7dc8ac DG |
7774 | if (!parent) |
7775 | se->cfs_rq = &rq->cfs; | |
7776 | else | |
7777 | se->cfs_rq = parent->my_q; | |
7778 | ||
6f505b16 | 7779 | se->my_q = cfs_rq; |
9437178f | 7780 | update_load_set(&se->load, 0); |
ec7dc8ac | 7781 | se->parent = parent; |
6f505b16 | 7782 | } |
052f1dc7 | 7783 | #endif |
6f505b16 | 7784 | |
052f1dc7 | 7785 | #ifdef CONFIG_RT_GROUP_SCHED |
ec7dc8ac | 7786 | static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, |
3d4b47b4 | 7787 | struct sched_rt_entity *rt_se, int cpu, |
ec7dc8ac | 7788 | struct sched_rt_entity *parent) |
6f505b16 | 7789 | { |
ec7dc8ac DG |
7790 | struct rq *rq = cpu_rq(cpu); |
7791 | ||
6f505b16 PZ |
7792 | tg->rt_rq[cpu] = rt_rq; |
7793 | init_rt_rq(rt_rq, rq); | |
7794 | rt_rq->tg = tg; | |
ac086bc2 | 7795 | rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; |
6f505b16 PZ |
7796 | |
7797 | tg->rt_se[cpu] = rt_se; | |
354d60c2 DG |
7798 | if (!rt_se) |
7799 | return; | |
7800 | ||
ec7dc8ac DG |
7801 | if (!parent) |
7802 | rt_se->rt_rq = &rq->rt; | |
7803 | else | |
7804 | rt_se->rt_rq = parent->my_q; | |
7805 | ||
6f505b16 | 7806 | rt_se->my_q = rt_rq; |
ec7dc8ac | 7807 | rt_se->parent = parent; |
6f505b16 PZ |
7808 | INIT_LIST_HEAD(&rt_se->run_list); |
7809 | } | |
7810 | #endif | |
7811 | ||
1da177e4 LT |
7812 | void __init sched_init(void) |
7813 | { | |
dd41f596 | 7814 | int i, j; |
434d53b0 MT |
7815 | unsigned long alloc_size = 0, ptr; |
7816 | ||
7817 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
7818 | alloc_size += 2 * nr_cpu_ids * sizeof(void **); | |
7819 | #endif | |
7820 | #ifdef CONFIG_RT_GROUP_SCHED | |
7821 | alloc_size += 2 * nr_cpu_ids * sizeof(void **); | |
eff766a6 | 7822 | #endif |
df7c8e84 | 7823 | #ifdef CONFIG_CPUMASK_OFFSTACK |
8c083f08 | 7824 | alloc_size += num_possible_cpus() * cpumask_size(); |
434d53b0 | 7825 | #endif |
434d53b0 | 7826 | if (alloc_size) { |
36b7b6d4 | 7827 | ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); |
434d53b0 MT |
7828 | |
7829 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
07e06b01 | 7830 | root_task_group.se = (struct sched_entity **)ptr; |
434d53b0 MT |
7831 | ptr += nr_cpu_ids * sizeof(void **); |
7832 | ||
07e06b01 | 7833 | root_task_group.cfs_rq = (struct cfs_rq **)ptr; |
434d53b0 | 7834 | ptr += nr_cpu_ids * sizeof(void **); |
eff766a6 | 7835 | |
6d6bc0ad | 7836 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
434d53b0 | 7837 | #ifdef CONFIG_RT_GROUP_SCHED |
07e06b01 | 7838 | root_task_group.rt_se = (struct sched_rt_entity **)ptr; |
434d53b0 MT |
7839 | ptr += nr_cpu_ids * sizeof(void **); |
7840 | ||
07e06b01 | 7841 | root_task_group.rt_rq = (struct rt_rq **)ptr; |
eff766a6 PZ |
7842 | ptr += nr_cpu_ids * sizeof(void **); |
7843 | ||
6d6bc0ad | 7844 | #endif /* CONFIG_RT_GROUP_SCHED */ |
df7c8e84 RR |
7845 | #ifdef CONFIG_CPUMASK_OFFSTACK |
7846 | for_each_possible_cpu(i) { | |
7847 | per_cpu(load_balance_tmpmask, i) = (void *)ptr; | |
7848 | ptr += cpumask_size(); | |
7849 | } | |
7850 | #endif /* CONFIG_CPUMASK_OFFSTACK */ | |
434d53b0 | 7851 | } |
dd41f596 | 7852 | |
57d885fe GH |
7853 | #ifdef CONFIG_SMP |
7854 | init_defrootdomain(); | |
7855 | #endif | |
7856 | ||
d0b27fa7 PZ |
7857 | init_rt_bandwidth(&def_rt_bandwidth, |
7858 | global_rt_period(), global_rt_runtime()); | |
7859 | ||
7860 | #ifdef CONFIG_RT_GROUP_SCHED | |
07e06b01 | 7861 | init_rt_bandwidth(&root_task_group.rt_bandwidth, |
d0b27fa7 | 7862 | global_rt_period(), global_rt_runtime()); |
6d6bc0ad | 7863 | #endif /* CONFIG_RT_GROUP_SCHED */ |
d0b27fa7 | 7864 | |
7c941438 | 7865 | #ifdef CONFIG_CGROUP_SCHED |
07e06b01 YZ |
7866 | list_add(&root_task_group.list, &task_groups); |
7867 | INIT_LIST_HEAD(&root_task_group.children); | |
5091faa4 | 7868 | autogroup_init(&init_task); |
7c941438 | 7869 | #endif /* CONFIG_CGROUP_SCHED */ |
6f505b16 | 7870 | |
0a945022 | 7871 | for_each_possible_cpu(i) { |
70b97a7f | 7872 | struct rq *rq; |
1da177e4 LT |
7873 | |
7874 | rq = cpu_rq(i); | |
05fa785c | 7875 | raw_spin_lock_init(&rq->lock); |
7897986b | 7876 | rq->nr_running = 0; |
dce48a84 TG |
7877 | rq->calc_load_active = 0; |
7878 | rq->calc_load_update = jiffies + LOAD_FREQ; | |
dd41f596 | 7879 | init_cfs_rq(&rq->cfs, rq); |
6f505b16 | 7880 | init_rt_rq(&rq->rt, rq); |
dd41f596 | 7881 | #ifdef CONFIG_FAIR_GROUP_SCHED |
07e06b01 | 7882 | root_task_group.shares = root_task_group_load; |
6f505b16 | 7883 | INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); |
354d60c2 | 7884 | /* |
07e06b01 | 7885 | * How much cpu bandwidth does root_task_group get? |
354d60c2 DG |
7886 | * |
7887 | * In case of task-groups formed thr' the cgroup filesystem, it | |
7888 | * gets 100% of the cpu resources in the system. This overall | |
7889 | * system cpu resource is divided among the tasks of | |
07e06b01 | 7890 | * root_task_group and its child task-groups in a fair manner, |
354d60c2 DG |
7891 | * based on each entity's (task or task-group's) weight |
7892 | * (se->load.weight). | |
7893 | * | |
07e06b01 | 7894 | * In other words, if root_task_group has 10 tasks of weight |
354d60c2 DG |
7895 | * 1024) and two child groups A0 and A1 (of weight 1024 each), |
7896 | * then A0's share of the cpu resource is: | |
7897 | * | |
0d905bca | 7898 | * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% |
354d60c2 | 7899 | * |
07e06b01 YZ |
7900 | * We achieve this by letting root_task_group's tasks sit |
7901 | * directly in rq->cfs (i.e root_task_group->se[] = NULL). | |
354d60c2 | 7902 | */ |
07e06b01 | 7903 | init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); |
354d60c2 DG |
7904 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
7905 | ||
7906 | rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; | |
052f1dc7 | 7907 | #ifdef CONFIG_RT_GROUP_SCHED |
6f505b16 | 7908 | INIT_LIST_HEAD(&rq->leaf_rt_rq_list); |
07e06b01 | 7909 | init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); |
dd41f596 | 7910 | #endif |
1da177e4 | 7911 | |
dd41f596 IM |
7912 | for (j = 0; j < CPU_LOAD_IDX_MAX; j++) |
7913 | rq->cpu_load[j] = 0; | |
fdf3e95d VP |
7914 | |
7915 | rq->last_load_update_tick = jiffies; | |
7916 | ||
1da177e4 | 7917 | #ifdef CONFIG_SMP |
41c7ce9a | 7918 | rq->sd = NULL; |
57d885fe | 7919 | rq->rd = NULL; |
1399fa78 | 7920 | rq->cpu_power = SCHED_POWER_SCALE; |
3f029d3c | 7921 | rq->post_schedule = 0; |
1da177e4 | 7922 | rq->active_balance = 0; |
dd41f596 | 7923 | rq->next_balance = jiffies; |
1da177e4 | 7924 | rq->push_cpu = 0; |
0a2966b4 | 7925 | rq->cpu = i; |
1f11eb6a | 7926 | rq->online = 0; |
eae0c9df MG |
7927 | rq->idle_stamp = 0; |
7928 | rq->avg_idle = 2*sysctl_sched_migration_cost; | |
dc938520 | 7929 | rq_attach_root(rq, &def_root_domain); |
83cd4fe2 VP |
7930 | #ifdef CONFIG_NO_HZ |
7931 | rq->nohz_balance_kick = 0; | |
7932 | init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i)); | |
7933 | #endif | |
1da177e4 | 7934 | #endif |
8f4d37ec | 7935 | init_rq_hrtick(rq); |
1da177e4 | 7936 | atomic_set(&rq->nr_iowait, 0); |
1da177e4 LT |
7937 | } |
7938 | ||
2dd73a4f | 7939 | set_load_weight(&init_task); |
b50f60ce | 7940 | |
e107be36 AK |
7941 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
7942 | INIT_HLIST_HEAD(&init_task.preempt_notifiers); | |
7943 | #endif | |
7944 | ||
c9819f45 | 7945 | #ifdef CONFIG_SMP |
962cf36c | 7946 | open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); |
c9819f45 CL |
7947 | #endif |
7948 | ||
b50f60ce | 7949 | #ifdef CONFIG_RT_MUTEXES |
1d615482 | 7950 | plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock); |
b50f60ce HC |
7951 | #endif |
7952 | ||
1da177e4 LT |
7953 | /* |
7954 | * The boot idle thread does lazy MMU switching as well: | |
7955 | */ | |
7956 | atomic_inc(&init_mm.mm_count); | |
7957 | enter_lazy_tlb(&init_mm, current); | |
7958 | ||
7959 | /* | |
7960 | * Make us the idle thread. Technically, schedule() should not be | |
7961 | * called from this thread, however somewhere below it might be, | |
7962 | * but because we are the idle thread, we just pick up running again | |
7963 | * when this runqueue becomes "idle". | |
7964 | */ | |
7965 | init_idle(current, smp_processor_id()); | |
dce48a84 TG |
7966 | |
7967 | calc_load_update = jiffies + LOAD_FREQ; | |
7968 | ||
dd41f596 IM |
7969 | /* |
7970 | * During early bootup we pretend to be a normal task: | |
7971 | */ | |
7972 | current->sched_class = &fair_sched_class; | |
6892b75e | 7973 | |
6a7b3dc3 | 7974 | /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */ |
49557e62 | 7975 | zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT); |
bf4d83f6 | 7976 | #ifdef CONFIG_SMP |
4cb98839 | 7977 | zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); |
7d1e6a9b | 7978 | #ifdef CONFIG_NO_HZ |
83cd4fe2 VP |
7979 | zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); |
7980 | alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT); | |
7981 | atomic_set(&nohz.load_balancer, nr_cpu_ids); | |
7982 | atomic_set(&nohz.first_pick_cpu, nr_cpu_ids); | |
7983 | atomic_set(&nohz.second_pick_cpu, nr_cpu_ids); | |
7d1e6a9b | 7984 | #endif |
bdddd296 RR |
7985 | /* May be allocated at isolcpus cmdline parse time */ |
7986 | if (cpu_isolated_map == NULL) | |
7987 | zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); | |
bf4d83f6 | 7988 | #endif /* SMP */ |
6a7b3dc3 | 7989 | |
6892b75e | 7990 | scheduler_running = 1; |
1da177e4 LT |
7991 | } |
7992 | ||
7993 | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP | |
e4aafea2 FW |
7994 | static inline int preempt_count_equals(int preempt_offset) |
7995 | { | |
234da7bc | 7996 | int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); |
e4aafea2 | 7997 | |
4ba8216c | 7998 | return (nested == preempt_offset); |
e4aafea2 FW |
7999 | } |
8000 | ||
d894837f | 8001 | void __might_sleep(const char *file, int line, int preempt_offset) |
1da177e4 | 8002 | { |
48f24c4d | 8003 | #ifdef in_atomic |
1da177e4 LT |
8004 | static unsigned long prev_jiffy; /* ratelimiting */ |
8005 | ||
e4aafea2 FW |
8006 | if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) || |
8007 | system_state != SYSTEM_RUNNING || oops_in_progress) | |
aef745fc IM |
8008 | return; |
8009 | if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) | |
8010 | return; | |
8011 | prev_jiffy = jiffies; | |
8012 | ||
3df0fc5b PZ |
8013 | printk(KERN_ERR |
8014 | "BUG: sleeping function called from invalid context at %s:%d\n", | |
8015 | file, line); | |
8016 | printk(KERN_ERR | |
8017 | "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", | |
8018 | in_atomic(), irqs_disabled(), | |
8019 | current->pid, current->comm); | |
aef745fc IM |
8020 | |
8021 | debug_show_held_locks(current); | |
8022 | if (irqs_disabled()) | |
8023 | print_irqtrace_events(current); | |
8024 | dump_stack(); | |
1da177e4 LT |
8025 | #endif |
8026 | } | |
8027 | EXPORT_SYMBOL(__might_sleep); | |
8028 | #endif | |
8029 | ||
8030 | #ifdef CONFIG_MAGIC_SYSRQ | |
3a5e4dc1 AK |
8031 | static void normalize_task(struct rq *rq, struct task_struct *p) |
8032 | { | |
da7a735e PZ |
8033 | const struct sched_class *prev_class = p->sched_class; |
8034 | int old_prio = p->prio; | |
3a5e4dc1 | 8035 | int on_rq; |
3e51f33f | 8036 | |
fd2f4419 | 8037 | on_rq = p->on_rq; |
3a5e4dc1 AK |
8038 | if (on_rq) |
8039 | deactivate_task(rq, p, 0); | |
8040 | __setscheduler(rq, p, SCHED_NORMAL, 0); | |
8041 | if (on_rq) { | |
8042 | activate_task(rq, p, 0); | |
8043 | resched_task(rq->curr); | |
8044 | } | |
da7a735e PZ |
8045 | |
8046 | check_class_changed(rq, p, prev_class, old_prio); | |
3a5e4dc1 AK |
8047 | } |
8048 | ||
1da177e4 LT |
8049 | void normalize_rt_tasks(void) |
8050 | { | |
a0f98a1c | 8051 | struct task_struct *g, *p; |
1da177e4 | 8052 | unsigned long flags; |
70b97a7f | 8053 | struct rq *rq; |
1da177e4 | 8054 | |
4cf5d77a | 8055 | read_lock_irqsave(&tasklist_lock, flags); |
a0f98a1c | 8056 | do_each_thread(g, p) { |
178be793 IM |
8057 | /* |
8058 | * Only normalize user tasks: | |
8059 | */ | |
8060 | if (!p->mm) | |
8061 | continue; | |
8062 | ||
6cfb0d5d | 8063 | p->se.exec_start = 0; |
6cfb0d5d | 8064 | #ifdef CONFIG_SCHEDSTATS |
41acab88 LDM |
8065 | p->se.statistics.wait_start = 0; |
8066 | p->se.statistics.sleep_start = 0; | |
8067 | p->se.statistics.block_start = 0; | |
6cfb0d5d | 8068 | #endif |
dd41f596 IM |
8069 | |
8070 | if (!rt_task(p)) { | |
8071 | /* | |
8072 | * Renice negative nice level userspace | |
8073 | * tasks back to 0: | |
8074 | */ | |
8075 | if (TASK_NICE(p) < 0 && p->mm) | |
8076 | set_user_nice(p, 0); | |
1da177e4 | 8077 | continue; |
dd41f596 | 8078 | } |
1da177e4 | 8079 | |
1d615482 | 8080 | raw_spin_lock(&p->pi_lock); |
b29739f9 | 8081 | rq = __task_rq_lock(p); |
1da177e4 | 8082 | |
178be793 | 8083 | normalize_task(rq, p); |
3a5e4dc1 | 8084 | |
b29739f9 | 8085 | __task_rq_unlock(rq); |
1d615482 | 8086 | raw_spin_unlock(&p->pi_lock); |
a0f98a1c IM |
8087 | } while_each_thread(g, p); |
8088 | ||
4cf5d77a | 8089 | read_unlock_irqrestore(&tasklist_lock, flags); |
1da177e4 LT |
8090 | } |
8091 | ||
8092 | #endif /* CONFIG_MAGIC_SYSRQ */ | |
1df5c10a | 8093 | |
67fc4e0c | 8094 | #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) |
1df5c10a | 8095 | /* |
67fc4e0c | 8096 | * These functions are only useful for the IA64 MCA handling, or kdb. |
1df5c10a LT |
8097 | * |
8098 | * They can only be called when the whole system has been | |
8099 | * stopped - every CPU needs to be quiescent, and no scheduling | |
8100 | * activity can take place. Using them for anything else would | |
8101 | * be a serious bug, and as a result, they aren't even visible | |
8102 | * under any other configuration. | |
8103 | */ | |
8104 | ||
8105 | /** | |
8106 | * curr_task - return the current task for a given cpu. | |
8107 | * @cpu: the processor in question. | |
8108 | * | |
8109 | * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! | |
8110 | */ | |
36c8b586 | 8111 | struct task_struct *curr_task(int cpu) |
1df5c10a LT |
8112 | { |
8113 | return cpu_curr(cpu); | |
8114 | } | |
8115 | ||
67fc4e0c JW |
8116 | #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ |
8117 | ||
8118 | #ifdef CONFIG_IA64 | |
1df5c10a LT |
8119 | /** |
8120 | * set_curr_task - set the current task for a given cpu. | |
8121 | * @cpu: the processor in question. | |
8122 | * @p: the task pointer to set. | |
8123 | * | |
8124 | * Description: This function must only be used when non-maskable interrupts | |
41a2d6cf IM |
8125 | * are serviced on a separate stack. It allows the architecture to switch the |
8126 | * notion of the current task on a cpu in a non-blocking manner. This function | |
1df5c10a LT |
8127 | * must be called with all CPU's synchronized, and interrupts disabled, the |
8128 | * and caller must save the original value of the current task (see | |
8129 | * curr_task() above) and restore that value before reenabling interrupts and | |
8130 | * re-starting the system. | |
8131 | * | |
8132 | * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! | |
8133 | */ | |
36c8b586 | 8134 | void set_curr_task(int cpu, struct task_struct *p) |
1df5c10a LT |
8135 | { |
8136 | cpu_curr(cpu) = p; | |
8137 | } | |
8138 | ||
8139 | #endif | |
29f59db3 | 8140 | |
bccbe08a PZ |
8141 | #ifdef CONFIG_FAIR_GROUP_SCHED |
8142 | static void free_fair_sched_group(struct task_group *tg) | |
6f505b16 PZ |
8143 | { |
8144 | int i; | |
8145 | ||
8146 | for_each_possible_cpu(i) { | |
8147 | if (tg->cfs_rq) | |
8148 | kfree(tg->cfs_rq[i]); | |
8149 | if (tg->se) | |
8150 | kfree(tg->se[i]); | |
6f505b16 PZ |
8151 | } |
8152 | ||
8153 | kfree(tg->cfs_rq); | |
8154 | kfree(tg->se); | |
6f505b16 PZ |
8155 | } |
8156 | ||
ec7dc8ac DG |
8157 | static |
8158 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | |
29f59db3 | 8159 | { |
29f59db3 | 8160 | struct cfs_rq *cfs_rq; |
eab17229 | 8161 | struct sched_entity *se; |
29f59db3 SV |
8162 | int i; |
8163 | ||
434d53b0 | 8164 | tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); |
29f59db3 SV |
8165 | if (!tg->cfs_rq) |
8166 | goto err; | |
434d53b0 | 8167 | tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); |
29f59db3 SV |
8168 | if (!tg->se) |
8169 | goto err; | |
052f1dc7 PZ |
8170 | |
8171 | tg->shares = NICE_0_LOAD; | |
29f59db3 SV |
8172 | |
8173 | for_each_possible_cpu(i) { | |
eab17229 LZ |
8174 | cfs_rq = kzalloc_node(sizeof(struct cfs_rq), |
8175 | GFP_KERNEL, cpu_to_node(i)); | |
29f59db3 SV |
8176 | if (!cfs_rq) |
8177 | goto err; | |
8178 | ||
eab17229 LZ |
8179 | se = kzalloc_node(sizeof(struct sched_entity), |
8180 | GFP_KERNEL, cpu_to_node(i)); | |
29f59db3 | 8181 | if (!se) |
dfc12eb2 | 8182 | goto err_free_rq; |
29f59db3 | 8183 | |
3d4b47b4 | 8184 | init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); |
bccbe08a PZ |
8185 | } |
8186 | ||
8187 | return 1; | |
8188 | ||
49246274 | 8189 | err_free_rq: |
dfc12eb2 | 8190 | kfree(cfs_rq); |
49246274 | 8191 | err: |
bccbe08a PZ |
8192 | return 0; |
8193 | } | |
8194 | ||
bccbe08a PZ |
8195 | static inline void unregister_fair_sched_group(struct task_group *tg, int cpu) |
8196 | { | |
3d4b47b4 PZ |
8197 | struct rq *rq = cpu_rq(cpu); |
8198 | unsigned long flags; | |
3d4b47b4 PZ |
8199 | |
8200 | /* | |
8201 | * Only empty task groups can be destroyed; so we can speculatively | |
8202 | * check on_list without danger of it being re-added. | |
8203 | */ | |
8204 | if (!tg->cfs_rq[cpu]->on_list) | |
8205 | return; | |
8206 | ||
8207 | raw_spin_lock_irqsave(&rq->lock, flags); | |
822bc180 | 8208 | list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); |
3d4b47b4 | 8209 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
bccbe08a | 8210 | } |
6d6bc0ad | 8211 | #else /* !CONFG_FAIR_GROUP_SCHED */ |
bccbe08a PZ |
8212 | static inline void free_fair_sched_group(struct task_group *tg) |
8213 | { | |
8214 | } | |
8215 | ||
ec7dc8ac DG |
8216 | static inline |
8217 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | |
bccbe08a PZ |
8218 | { |
8219 | return 1; | |
8220 | } | |
8221 | ||
bccbe08a PZ |
8222 | static inline void unregister_fair_sched_group(struct task_group *tg, int cpu) |
8223 | { | |
8224 | } | |
6d6bc0ad | 8225 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
052f1dc7 PZ |
8226 | |
8227 | #ifdef CONFIG_RT_GROUP_SCHED | |
bccbe08a PZ |
8228 | static void free_rt_sched_group(struct task_group *tg) |
8229 | { | |
8230 | int i; | |
8231 | ||
d0b27fa7 PZ |
8232 | destroy_rt_bandwidth(&tg->rt_bandwidth); |
8233 | ||
bccbe08a PZ |
8234 | for_each_possible_cpu(i) { |
8235 | if (tg->rt_rq) | |
8236 | kfree(tg->rt_rq[i]); | |
8237 | if (tg->rt_se) | |
8238 | kfree(tg->rt_se[i]); | |
8239 | } | |
8240 | ||
8241 | kfree(tg->rt_rq); | |
8242 | kfree(tg->rt_se); | |
8243 | } | |
8244 | ||
ec7dc8ac DG |
8245 | static |
8246 | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) | |
bccbe08a PZ |
8247 | { |
8248 | struct rt_rq *rt_rq; | |
eab17229 | 8249 | struct sched_rt_entity *rt_se; |
bccbe08a PZ |
8250 | int i; |
8251 | ||
434d53b0 | 8252 | tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); |
bccbe08a PZ |
8253 | if (!tg->rt_rq) |
8254 | goto err; | |
434d53b0 | 8255 | tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); |
bccbe08a PZ |
8256 | if (!tg->rt_se) |
8257 | goto err; | |
8258 | ||
d0b27fa7 PZ |
8259 | init_rt_bandwidth(&tg->rt_bandwidth, |
8260 | ktime_to_ns(def_rt_bandwidth.rt_period), 0); | |
bccbe08a PZ |
8261 | |
8262 | for_each_possible_cpu(i) { | |
eab17229 LZ |
8263 | rt_rq = kzalloc_node(sizeof(struct rt_rq), |
8264 | GFP_KERNEL, cpu_to_node(i)); | |
6f505b16 PZ |
8265 | if (!rt_rq) |
8266 | goto err; | |
29f59db3 | 8267 | |
eab17229 LZ |
8268 | rt_se = kzalloc_node(sizeof(struct sched_rt_entity), |
8269 | GFP_KERNEL, cpu_to_node(i)); | |
6f505b16 | 8270 | if (!rt_se) |
dfc12eb2 | 8271 | goto err_free_rq; |
29f59db3 | 8272 | |
3d4b47b4 | 8273 | init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); |
29f59db3 SV |
8274 | } |
8275 | ||
bccbe08a PZ |
8276 | return 1; |
8277 | ||
49246274 | 8278 | err_free_rq: |
dfc12eb2 | 8279 | kfree(rt_rq); |
49246274 | 8280 | err: |
bccbe08a PZ |
8281 | return 0; |
8282 | } | |
6d6bc0ad | 8283 | #else /* !CONFIG_RT_GROUP_SCHED */ |
bccbe08a PZ |
8284 | static inline void free_rt_sched_group(struct task_group *tg) |
8285 | { | |
8286 | } | |
8287 | ||
ec7dc8ac DG |
8288 | static inline |
8289 | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) | |
bccbe08a PZ |
8290 | { |
8291 | return 1; | |
8292 | } | |
6d6bc0ad | 8293 | #endif /* CONFIG_RT_GROUP_SCHED */ |
bccbe08a | 8294 | |
7c941438 | 8295 | #ifdef CONFIG_CGROUP_SCHED |
bccbe08a PZ |
8296 | static void free_sched_group(struct task_group *tg) |
8297 | { | |
8298 | free_fair_sched_group(tg); | |
8299 | free_rt_sched_group(tg); | |
e9aa1dd1 | 8300 | autogroup_free(tg); |
bccbe08a PZ |
8301 | kfree(tg); |
8302 | } | |
8303 | ||
8304 | /* allocate runqueue etc for a new task group */ | |
ec7dc8ac | 8305 | struct task_group *sched_create_group(struct task_group *parent) |
bccbe08a PZ |
8306 | { |
8307 | struct task_group *tg; | |
8308 | unsigned long flags; | |
bccbe08a PZ |
8309 | |
8310 | tg = kzalloc(sizeof(*tg), GFP_KERNEL); | |
8311 | if (!tg) | |
8312 | return ERR_PTR(-ENOMEM); | |
8313 | ||
ec7dc8ac | 8314 | if (!alloc_fair_sched_group(tg, parent)) |
bccbe08a PZ |
8315 | goto err; |
8316 | ||
ec7dc8ac | 8317 | if (!alloc_rt_sched_group(tg, parent)) |
bccbe08a PZ |
8318 | goto err; |
8319 | ||
8ed36996 | 8320 | spin_lock_irqsave(&task_group_lock, flags); |
6f505b16 | 8321 | list_add_rcu(&tg->list, &task_groups); |
f473aa5e PZ |
8322 | |
8323 | WARN_ON(!parent); /* root should already exist */ | |
8324 | ||
8325 | tg->parent = parent; | |
f473aa5e | 8326 | INIT_LIST_HEAD(&tg->children); |
09f2724a | 8327 | list_add_rcu(&tg->siblings, &parent->children); |
8ed36996 | 8328 | spin_unlock_irqrestore(&task_group_lock, flags); |
29f59db3 | 8329 | |
9b5b7751 | 8330 | return tg; |
29f59db3 SV |
8331 | |
8332 | err: | |
6f505b16 | 8333 | free_sched_group(tg); |
29f59db3 SV |
8334 | return ERR_PTR(-ENOMEM); |
8335 | } | |
8336 | ||
9b5b7751 | 8337 | /* rcu callback to free various structures associated with a task group */ |
6f505b16 | 8338 | static void free_sched_group_rcu(struct rcu_head *rhp) |
29f59db3 | 8339 | { |
29f59db3 | 8340 | /* now it should be safe to free those cfs_rqs */ |
6f505b16 | 8341 | free_sched_group(container_of(rhp, struct task_group, rcu)); |
29f59db3 SV |
8342 | } |
8343 | ||
9b5b7751 | 8344 | /* Destroy runqueue etc associated with a task group */ |
4cf86d77 | 8345 | void sched_destroy_group(struct task_group *tg) |
29f59db3 | 8346 | { |
8ed36996 | 8347 | unsigned long flags; |
9b5b7751 | 8348 | int i; |
29f59db3 | 8349 | |
3d4b47b4 PZ |
8350 | /* end participation in shares distribution */ |
8351 | for_each_possible_cpu(i) | |
bccbe08a | 8352 | unregister_fair_sched_group(tg, i); |
3d4b47b4 PZ |
8353 | |
8354 | spin_lock_irqsave(&task_group_lock, flags); | |
6f505b16 | 8355 | list_del_rcu(&tg->list); |
f473aa5e | 8356 | list_del_rcu(&tg->siblings); |
8ed36996 | 8357 | spin_unlock_irqrestore(&task_group_lock, flags); |
9b5b7751 | 8358 | |
9b5b7751 | 8359 | /* wait for possible concurrent references to cfs_rqs complete */ |
6f505b16 | 8360 | call_rcu(&tg->rcu, free_sched_group_rcu); |
29f59db3 SV |
8361 | } |
8362 | ||
9b5b7751 | 8363 | /* change task's runqueue when it moves between groups. |
3a252015 IM |
8364 | * The caller of this function should have put the task in its new group |
8365 | * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to | |
8366 | * reflect its new group. | |
9b5b7751 SV |
8367 | */ |
8368 | void sched_move_task(struct task_struct *tsk) | |
29f59db3 SV |
8369 | { |
8370 | int on_rq, running; | |
8371 | unsigned long flags; | |
8372 | struct rq *rq; | |
8373 | ||
8374 | rq = task_rq_lock(tsk, &flags); | |
8375 | ||
051a1d1a | 8376 | running = task_current(rq, tsk); |
fd2f4419 | 8377 | on_rq = tsk->on_rq; |
29f59db3 | 8378 | |
0e1f3483 | 8379 | if (on_rq) |
29f59db3 | 8380 | dequeue_task(rq, tsk, 0); |
0e1f3483 HS |
8381 | if (unlikely(running)) |
8382 | tsk->sched_class->put_prev_task(rq, tsk); | |
29f59db3 | 8383 | |
810b3817 | 8384 | #ifdef CONFIG_FAIR_GROUP_SCHED |
b2b5ce02 PZ |
8385 | if (tsk->sched_class->task_move_group) |
8386 | tsk->sched_class->task_move_group(tsk, on_rq); | |
8387 | else | |
810b3817 | 8388 | #endif |
b2b5ce02 | 8389 | set_task_rq(tsk, task_cpu(tsk)); |
810b3817 | 8390 | |
0e1f3483 HS |
8391 | if (unlikely(running)) |
8392 | tsk->sched_class->set_curr_task(rq); | |
8393 | if (on_rq) | |
371fd7e7 | 8394 | enqueue_task(rq, tsk, 0); |
29f59db3 | 8395 | |
0122ec5b | 8396 | task_rq_unlock(rq, tsk, &flags); |
29f59db3 | 8397 | } |
7c941438 | 8398 | #endif /* CONFIG_CGROUP_SCHED */ |
29f59db3 | 8399 | |
052f1dc7 | 8400 | #ifdef CONFIG_FAIR_GROUP_SCHED |
8ed36996 PZ |
8401 | static DEFINE_MUTEX(shares_mutex); |
8402 | ||
4cf86d77 | 8403 | int sched_group_set_shares(struct task_group *tg, unsigned long shares) |
29f59db3 SV |
8404 | { |
8405 | int i; | |
8ed36996 | 8406 | unsigned long flags; |
c61935fd | 8407 | |
ec7dc8ac DG |
8408 | /* |
8409 | * We can't change the weight of the root cgroup. | |
8410 | */ | |
8411 | if (!tg->se[0]) | |
8412 | return -EINVAL; | |
8413 | ||
18d95a28 PZ |
8414 | if (shares < MIN_SHARES) |
8415 | shares = MIN_SHARES; | |
cb4ad1ff MX |
8416 | else if (shares > MAX_SHARES) |
8417 | shares = MAX_SHARES; | |
62fb1851 | 8418 | |
8ed36996 | 8419 | mutex_lock(&shares_mutex); |
9b5b7751 | 8420 | if (tg->shares == shares) |
5cb350ba | 8421 | goto done; |
29f59db3 | 8422 | |
9b5b7751 | 8423 | tg->shares = shares; |
c09595f6 | 8424 | for_each_possible_cpu(i) { |
9437178f PT |
8425 | struct rq *rq = cpu_rq(i); |
8426 | struct sched_entity *se; | |
8427 | ||
8428 | se = tg->se[i]; | |
8429 | /* Propagate contribution to hierarchy */ | |
8430 | raw_spin_lock_irqsave(&rq->lock, flags); | |
8431 | for_each_sched_entity(se) | |
6d5ab293 | 8432 | update_cfs_shares(group_cfs_rq(se)); |
9437178f | 8433 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
c09595f6 | 8434 | } |
29f59db3 | 8435 | |
5cb350ba | 8436 | done: |
8ed36996 | 8437 | mutex_unlock(&shares_mutex); |
9b5b7751 | 8438 | return 0; |
29f59db3 SV |
8439 | } |
8440 | ||
5cb350ba DG |
8441 | unsigned long sched_group_shares(struct task_group *tg) |
8442 | { | |
8443 | return tg->shares; | |
8444 | } | |
052f1dc7 | 8445 | #endif |
5cb350ba | 8446 | |
052f1dc7 | 8447 | #ifdef CONFIG_RT_GROUP_SCHED |
6f505b16 | 8448 | /* |
9f0c1e56 | 8449 | * Ensure that the real time constraints are schedulable. |
6f505b16 | 8450 | */ |
9f0c1e56 PZ |
8451 | static DEFINE_MUTEX(rt_constraints_mutex); |
8452 | ||
8453 | static unsigned long to_ratio(u64 period, u64 runtime) | |
8454 | { | |
8455 | if (runtime == RUNTIME_INF) | |
9a7e0b18 | 8456 | return 1ULL << 20; |
9f0c1e56 | 8457 | |
9a7e0b18 | 8458 | return div64_u64(runtime << 20, period); |
9f0c1e56 PZ |
8459 | } |
8460 | ||
9a7e0b18 PZ |
8461 | /* Must be called with tasklist_lock held */ |
8462 | static inline int tg_has_rt_tasks(struct task_group *tg) | |
b40b2e8e | 8463 | { |
9a7e0b18 | 8464 | struct task_struct *g, *p; |
b40b2e8e | 8465 | |
9a7e0b18 PZ |
8466 | do_each_thread(g, p) { |
8467 | if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg) | |
8468 | return 1; | |
8469 | } while_each_thread(g, p); | |
b40b2e8e | 8470 | |
9a7e0b18 PZ |
8471 | return 0; |
8472 | } | |
b40b2e8e | 8473 | |
9a7e0b18 PZ |
8474 | struct rt_schedulable_data { |
8475 | struct task_group *tg; | |
8476 | u64 rt_period; | |
8477 | u64 rt_runtime; | |
8478 | }; | |
b40b2e8e | 8479 | |
9a7e0b18 PZ |
8480 | static int tg_schedulable(struct task_group *tg, void *data) |
8481 | { | |
8482 | struct rt_schedulable_data *d = data; | |
8483 | struct task_group *child; | |
8484 | unsigned long total, sum = 0; | |
8485 | u64 period, runtime; | |
b40b2e8e | 8486 | |
9a7e0b18 PZ |
8487 | period = ktime_to_ns(tg->rt_bandwidth.rt_period); |
8488 | runtime = tg->rt_bandwidth.rt_runtime; | |
b40b2e8e | 8489 | |
9a7e0b18 PZ |
8490 | if (tg == d->tg) { |
8491 | period = d->rt_period; | |
8492 | runtime = d->rt_runtime; | |
b40b2e8e | 8493 | } |
b40b2e8e | 8494 | |
4653f803 PZ |
8495 | /* |
8496 | * Cannot have more runtime than the period. | |
8497 | */ | |
8498 | if (runtime > period && runtime != RUNTIME_INF) | |
8499 | return -EINVAL; | |
6f505b16 | 8500 | |
4653f803 PZ |
8501 | /* |
8502 | * Ensure we don't starve existing RT tasks. | |
8503 | */ | |
9a7e0b18 PZ |
8504 | if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) |
8505 | return -EBUSY; | |
6f505b16 | 8506 | |
9a7e0b18 | 8507 | total = to_ratio(period, runtime); |
6f505b16 | 8508 | |
4653f803 PZ |
8509 | /* |
8510 | * Nobody can have more than the global setting allows. | |
8511 | */ | |
8512 | if (total > to_ratio(global_rt_period(), global_rt_runtime())) | |
8513 | return -EINVAL; | |
6f505b16 | 8514 | |
4653f803 PZ |
8515 | /* |
8516 | * The sum of our children's runtime should not exceed our own. | |
8517 | */ | |
9a7e0b18 PZ |
8518 | list_for_each_entry_rcu(child, &tg->children, siblings) { |
8519 | period = ktime_to_ns(child->rt_bandwidth.rt_period); | |
8520 | runtime = child->rt_bandwidth.rt_runtime; | |
6f505b16 | 8521 | |
9a7e0b18 PZ |
8522 | if (child == d->tg) { |
8523 | period = d->rt_period; | |
8524 | runtime = d->rt_runtime; | |
8525 | } | |
6f505b16 | 8526 | |
9a7e0b18 | 8527 | sum += to_ratio(period, runtime); |
9f0c1e56 | 8528 | } |
6f505b16 | 8529 | |
9a7e0b18 PZ |
8530 | if (sum > total) |
8531 | return -EINVAL; | |
8532 | ||
8533 | return 0; | |
6f505b16 PZ |
8534 | } |
8535 | ||
9a7e0b18 | 8536 | static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) |
521f1a24 | 8537 | { |
9a7e0b18 PZ |
8538 | struct rt_schedulable_data data = { |
8539 | .tg = tg, | |
8540 | .rt_period = period, | |
8541 | .rt_runtime = runtime, | |
8542 | }; | |
8543 | ||
8544 | return walk_tg_tree(tg_schedulable, tg_nop, &data); | |
521f1a24 DG |
8545 | } |
8546 | ||
d0b27fa7 PZ |
8547 | static int tg_set_bandwidth(struct task_group *tg, |
8548 | u64 rt_period, u64 rt_runtime) | |
6f505b16 | 8549 | { |
ac086bc2 | 8550 | int i, err = 0; |
9f0c1e56 | 8551 | |
9f0c1e56 | 8552 | mutex_lock(&rt_constraints_mutex); |
521f1a24 | 8553 | read_lock(&tasklist_lock); |
9a7e0b18 PZ |
8554 | err = __rt_schedulable(tg, rt_period, rt_runtime); |
8555 | if (err) | |
9f0c1e56 | 8556 | goto unlock; |
ac086bc2 | 8557 | |
0986b11b | 8558 | raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); |
d0b27fa7 PZ |
8559 | tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); |
8560 | tg->rt_bandwidth.rt_runtime = rt_runtime; | |
ac086bc2 PZ |
8561 | |
8562 | for_each_possible_cpu(i) { | |
8563 | struct rt_rq *rt_rq = tg->rt_rq[i]; | |
8564 | ||
0986b11b | 8565 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
ac086bc2 | 8566 | rt_rq->rt_runtime = rt_runtime; |
0986b11b | 8567 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
ac086bc2 | 8568 | } |
0986b11b | 8569 | raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); |
49246274 | 8570 | unlock: |
521f1a24 | 8571 | read_unlock(&tasklist_lock); |
9f0c1e56 PZ |
8572 | mutex_unlock(&rt_constraints_mutex); |
8573 | ||
8574 | return err; | |
6f505b16 PZ |
8575 | } |
8576 | ||
d0b27fa7 PZ |
8577 | int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) |
8578 | { | |
8579 | u64 rt_runtime, rt_period; | |
8580 | ||
8581 | rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); | |
8582 | rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; | |
8583 | if (rt_runtime_us < 0) | |
8584 | rt_runtime = RUNTIME_INF; | |
8585 | ||
8586 | return tg_set_bandwidth(tg, rt_period, rt_runtime); | |
8587 | } | |
8588 | ||
9f0c1e56 PZ |
8589 | long sched_group_rt_runtime(struct task_group *tg) |
8590 | { | |
8591 | u64 rt_runtime_us; | |
8592 | ||
d0b27fa7 | 8593 | if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) |
9f0c1e56 PZ |
8594 | return -1; |
8595 | ||
d0b27fa7 | 8596 | rt_runtime_us = tg->rt_bandwidth.rt_runtime; |
9f0c1e56 PZ |
8597 | do_div(rt_runtime_us, NSEC_PER_USEC); |
8598 | return rt_runtime_us; | |
8599 | } | |
d0b27fa7 PZ |
8600 | |
8601 | int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) | |
8602 | { | |
8603 | u64 rt_runtime, rt_period; | |
8604 | ||
8605 | rt_period = (u64)rt_period_us * NSEC_PER_USEC; | |
8606 | rt_runtime = tg->rt_bandwidth.rt_runtime; | |
8607 | ||
619b0488 R |
8608 | if (rt_period == 0) |
8609 | return -EINVAL; | |
8610 | ||
d0b27fa7 PZ |
8611 | return tg_set_bandwidth(tg, rt_period, rt_runtime); |
8612 | } | |
8613 | ||
8614 | long sched_group_rt_period(struct task_group *tg) | |
8615 | { | |
8616 | u64 rt_period_us; | |
8617 | ||
8618 | rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); | |
8619 | do_div(rt_period_us, NSEC_PER_USEC); | |
8620 | return rt_period_us; | |
8621 | } | |
8622 | ||
8623 | static int sched_rt_global_constraints(void) | |
8624 | { | |
4653f803 | 8625 | u64 runtime, period; |
d0b27fa7 PZ |
8626 | int ret = 0; |
8627 | ||
ec5d4989 HS |
8628 | if (sysctl_sched_rt_period <= 0) |
8629 | return -EINVAL; | |
8630 | ||
4653f803 PZ |
8631 | runtime = global_rt_runtime(); |
8632 | period = global_rt_period(); | |
8633 | ||
8634 | /* | |
8635 | * Sanity check on the sysctl variables. | |
8636 | */ | |
8637 | if (runtime > period && runtime != RUNTIME_INF) | |
8638 | return -EINVAL; | |
10b612f4 | 8639 | |
d0b27fa7 | 8640 | mutex_lock(&rt_constraints_mutex); |
9a7e0b18 | 8641 | read_lock(&tasklist_lock); |
4653f803 | 8642 | ret = __rt_schedulable(NULL, 0, 0); |
9a7e0b18 | 8643 | read_unlock(&tasklist_lock); |
d0b27fa7 PZ |
8644 | mutex_unlock(&rt_constraints_mutex); |
8645 | ||
8646 | return ret; | |
8647 | } | |
54e99124 DG |
8648 | |
8649 | int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) | |
8650 | { | |
8651 | /* Don't accept realtime tasks when there is no way for them to run */ | |
8652 | if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) | |
8653 | return 0; | |
8654 | ||
8655 | return 1; | |
8656 | } | |
8657 | ||
6d6bc0ad | 8658 | #else /* !CONFIG_RT_GROUP_SCHED */ |
d0b27fa7 PZ |
8659 | static int sched_rt_global_constraints(void) |
8660 | { | |
ac086bc2 PZ |
8661 | unsigned long flags; |
8662 | int i; | |
8663 | ||
ec5d4989 HS |
8664 | if (sysctl_sched_rt_period <= 0) |
8665 | return -EINVAL; | |
8666 | ||
60aa605d PZ |
8667 | /* |
8668 | * There's always some RT tasks in the root group | |
8669 | * -- migration, kstopmachine etc.. | |
8670 | */ | |
8671 | if (sysctl_sched_rt_runtime == 0) | |
8672 | return -EBUSY; | |
8673 | ||
0986b11b | 8674 | raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); |
ac086bc2 PZ |
8675 | for_each_possible_cpu(i) { |
8676 | struct rt_rq *rt_rq = &cpu_rq(i)->rt; | |
8677 | ||
0986b11b | 8678 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
ac086bc2 | 8679 | rt_rq->rt_runtime = global_rt_runtime(); |
0986b11b | 8680 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
ac086bc2 | 8681 | } |
0986b11b | 8682 | raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); |
ac086bc2 | 8683 | |
d0b27fa7 PZ |
8684 | return 0; |
8685 | } | |
6d6bc0ad | 8686 | #endif /* CONFIG_RT_GROUP_SCHED */ |
d0b27fa7 PZ |
8687 | |
8688 | int sched_rt_handler(struct ctl_table *table, int write, | |
8d65af78 | 8689 | void __user *buffer, size_t *lenp, |
d0b27fa7 PZ |
8690 | loff_t *ppos) |
8691 | { | |
8692 | int ret; | |
8693 | int old_period, old_runtime; | |
8694 | static DEFINE_MUTEX(mutex); | |
8695 | ||
8696 | mutex_lock(&mutex); | |
8697 | old_period = sysctl_sched_rt_period; | |
8698 | old_runtime = sysctl_sched_rt_runtime; | |
8699 | ||
8d65af78 | 8700 | ret = proc_dointvec(table, write, buffer, lenp, ppos); |
d0b27fa7 PZ |
8701 | |
8702 | if (!ret && write) { | |
8703 | ret = sched_rt_global_constraints(); | |
8704 | if (ret) { | |
8705 | sysctl_sched_rt_period = old_period; | |
8706 | sysctl_sched_rt_runtime = old_runtime; | |
8707 | } else { | |
8708 | def_rt_bandwidth.rt_runtime = global_rt_runtime(); | |
8709 | def_rt_bandwidth.rt_period = | |
8710 | ns_to_ktime(global_rt_period()); | |
8711 | } | |
8712 | } | |
8713 | mutex_unlock(&mutex); | |
8714 | ||
8715 | return ret; | |
8716 | } | |
68318b8e | 8717 | |
052f1dc7 | 8718 | #ifdef CONFIG_CGROUP_SCHED |
68318b8e SV |
8719 | |
8720 | /* return corresponding task_group object of a cgroup */ | |
2b01dfe3 | 8721 | static inline struct task_group *cgroup_tg(struct cgroup *cgrp) |
68318b8e | 8722 | { |
2b01dfe3 PM |
8723 | return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id), |
8724 | struct task_group, css); | |
68318b8e SV |
8725 | } |
8726 | ||
8727 | static struct cgroup_subsys_state * | |
2b01dfe3 | 8728 | cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp) |
68318b8e | 8729 | { |
ec7dc8ac | 8730 | struct task_group *tg, *parent; |
68318b8e | 8731 | |
2b01dfe3 | 8732 | if (!cgrp->parent) { |
68318b8e | 8733 | /* This is early initialization for the top cgroup */ |
07e06b01 | 8734 | return &root_task_group.css; |
68318b8e SV |
8735 | } |
8736 | ||
ec7dc8ac DG |
8737 | parent = cgroup_tg(cgrp->parent); |
8738 | tg = sched_create_group(parent); | |
68318b8e SV |
8739 | if (IS_ERR(tg)) |
8740 | return ERR_PTR(-ENOMEM); | |
8741 | ||
68318b8e SV |
8742 | return &tg->css; |
8743 | } | |
8744 | ||
41a2d6cf IM |
8745 | static void |
8746 | cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) | |
68318b8e | 8747 | { |
2b01dfe3 | 8748 | struct task_group *tg = cgroup_tg(cgrp); |
68318b8e SV |
8749 | |
8750 | sched_destroy_group(tg); | |
8751 | } | |
8752 | ||
41a2d6cf | 8753 | static int |
be367d09 | 8754 | cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk) |
68318b8e | 8755 | { |
b68aa230 | 8756 | #ifdef CONFIG_RT_GROUP_SCHED |
54e99124 | 8757 | if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk)) |
b68aa230 PZ |
8758 | return -EINVAL; |
8759 | #else | |
68318b8e SV |
8760 | /* We don't support RT-tasks being in separate groups */ |
8761 | if (tsk->sched_class != &fair_sched_class) | |
8762 | return -EINVAL; | |
b68aa230 | 8763 | #endif |
be367d09 BB |
8764 | return 0; |
8765 | } | |
68318b8e | 8766 | |
68318b8e | 8767 | static void |
f780bdb7 | 8768 | cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk) |
68318b8e SV |
8769 | { |
8770 | sched_move_task(tsk); | |
8771 | } | |
8772 | ||
068c5cc5 | 8773 | static void |
d41d5a01 PZ |
8774 | cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp, |
8775 | struct cgroup *old_cgrp, struct task_struct *task) | |
068c5cc5 PZ |
8776 | { |
8777 | /* | |
8778 | * cgroup_exit() is called in the copy_process() failure path. | |
8779 | * Ignore this case since the task hasn't ran yet, this avoids | |
8780 | * trying to poke a half freed task state from generic code. | |
8781 | */ | |
8782 | if (!(task->flags & PF_EXITING)) | |
8783 | return; | |
8784 | ||
8785 | sched_move_task(task); | |
8786 | } | |
8787 | ||
052f1dc7 | 8788 | #ifdef CONFIG_FAIR_GROUP_SCHED |
f4c753b7 | 8789 | static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype, |
2b01dfe3 | 8790 | u64 shareval) |
68318b8e | 8791 | { |
c8b28116 | 8792 | return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval)); |
68318b8e SV |
8793 | } |
8794 | ||
f4c753b7 | 8795 | static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft) |
68318b8e | 8796 | { |
2b01dfe3 | 8797 | struct task_group *tg = cgroup_tg(cgrp); |
68318b8e | 8798 | |
c8b28116 | 8799 | return (u64) scale_load_down(tg->shares); |
68318b8e | 8800 | } |
6d6bc0ad | 8801 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
68318b8e | 8802 | |
052f1dc7 | 8803 | #ifdef CONFIG_RT_GROUP_SCHED |
0c70814c | 8804 | static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft, |
06ecb27c | 8805 | s64 val) |
6f505b16 | 8806 | { |
06ecb27c | 8807 | return sched_group_set_rt_runtime(cgroup_tg(cgrp), val); |
6f505b16 PZ |
8808 | } |
8809 | ||
06ecb27c | 8810 | static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft) |
6f505b16 | 8811 | { |
06ecb27c | 8812 | return sched_group_rt_runtime(cgroup_tg(cgrp)); |
6f505b16 | 8813 | } |
d0b27fa7 PZ |
8814 | |
8815 | static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype, | |
8816 | u64 rt_period_us) | |
8817 | { | |
8818 | return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us); | |
8819 | } | |
8820 | ||
8821 | static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft) | |
8822 | { | |
8823 | return sched_group_rt_period(cgroup_tg(cgrp)); | |
8824 | } | |
6d6bc0ad | 8825 | #endif /* CONFIG_RT_GROUP_SCHED */ |
6f505b16 | 8826 | |
fe5c7cc2 | 8827 | static struct cftype cpu_files[] = { |
052f1dc7 | 8828 | #ifdef CONFIG_FAIR_GROUP_SCHED |
fe5c7cc2 PM |
8829 | { |
8830 | .name = "shares", | |
f4c753b7 PM |
8831 | .read_u64 = cpu_shares_read_u64, |
8832 | .write_u64 = cpu_shares_write_u64, | |
fe5c7cc2 | 8833 | }, |
052f1dc7 PZ |
8834 | #endif |
8835 | #ifdef CONFIG_RT_GROUP_SCHED | |
6f505b16 | 8836 | { |
9f0c1e56 | 8837 | .name = "rt_runtime_us", |
06ecb27c PM |
8838 | .read_s64 = cpu_rt_runtime_read, |
8839 | .write_s64 = cpu_rt_runtime_write, | |
6f505b16 | 8840 | }, |
d0b27fa7 PZ |
8841 | { |
8842 | .name = "rt_period_us", | |
f4c753b7 PM |
8843 | .read_u64 = cpu_rt_period_read_uint, |
8844 | .write_u64 = cpu_rt_period_write_uint, | |
d0b27fa7 | 8845 | }, |
052f1dc7 | 8846 | #endif |
68318b8e SV |
8847 | }; |
8848 | ||
8849 | static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont) | |
8850 | { | |
fe5c7cc2 | 8851 | return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files)); |
68318b8e SV |
8852 | } |
8853 | ||
8854 | struct cgroup_subsys cpu_cgroup_subsys = { | |
38605cae IM |
8855 | .name = "cpu", |
8856 | .create = cpu_cgroup_create, | |
8857 | .destroy = cpu_cgroup_destroy, | |
f780bdb7 BB |
8858 | .can_attach_task = cpu_cgroup_can_attach_task, |
8859 | .attach_task = cpu_cgroup_attach_task, | |
068c5cc5 | 8860 | .exit = cpu_cgroup_exit, |
38605cae IM |
8861 | .populate = cpu_cgroup_populate, |
8862 | .subsys_id = cpu_cgroup_subsys_id, | |
68318b8e SV |
8863 | .early_init = 1, |
8864 | }; | |
8865 | ||
052f1dc7 | 8866 | #endif /* CONFIG_CGROUP_SCHED */ |
d842de87 SV |
8867 | |
8868 | #ifdef CONFIG_CGROUP_CPUACCT | |
8869 | ||
8870 | /* | |
8871 | * CPU accounting code for task groups. | |
8872 | * | |
8873 | * Based on the work by Paul Menage ([email protected]) and Balbir Singh | |
8874 | * ([email protected]). | |
8875 | */ | |
8876 | ||
934352f2 | 8877 | /* track cpu usage of a group of tasks and its child groups */ |
d842de87 SV |
8878 | struct cpuacct { |
8879 | struct cgroup_subsys_state css; | |
8880 | /* cpuusage holds pointer to a u64-type object on every cpu */ | |
43cf38eb | 8881 | u64 __percpu *cpuusage; |
ef12fefa | 8882 | struct percpu_counter cpustat[CPUACCT_STAT_NSTATS]; |
934352f2 | 8883 | struct cpuacct *parent; |
d842de87 SV |
8884 | }; |
8885 | ||
8886 | struct cgroup_subsys cpuacct_subsys; | |
8887 | ||
8888 | /* return cpu accounting group corresponding to this container */ | |
32cd756a | 8889 | static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp) |
d842de87 | 8890 | { |
32cd756a | 8891 | return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id), |
d842de87 SV |
8892 | struct cpuacct, css); |
8893 | } | |
8894 | ||
8895 | /* return cpu accounting group to which this task belongs */ | |
8896 | static inline struct cpuacct *task_ca(struct task_struct *tsk) | |
8897 | { | |
8898 | return container_of(task_subsys_state(tsk, cpuacct_subsys_id), | |
8899 | struct cpuacct, css); | |
8900 | } | |
8901 | ||
8902 | /* create a new cpu accounting group */ | |
8903 | static struct cgroup_subsys_state *cpuacct_create( | |
32cd756a | 8904 | struct cgroup_subsys *ss, struct cgroup *cgrp) |
d842de87 SV |
8905 | { |
8906 | struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL); | |
ef12fefa | 8907 | int i; |
d842de87 SV |
8908 | |
8909 | if (!ca) | |
ef12fefa | 8910 | goto out; |
d842de87 SV |
8911 | |
8912 | ca->cpuusage = alloc_percpu(u64); | |
ef12fefa BR |
8913 | if (!ca->cpuusage) |
8914 | goto out_free_ca; | |
8915 | ||
8916 | for (i = 0; i < CPUACCT_STAT_NSTATS; i++) | |
8917 | if (percpu_counter_init(&ca->cpustat[i], 0)) | |
8918 | goto out_free_counters; | |
d842de87 | 8919 | |
934352f2 BR |
8920 | if (cgrp->parent) |
8921 | ca->parent = cgroup_ca(cgrp->parent); | |
8922 | ||
d842de87 | 8923 | return &ca->css; |
ef12fefa BR |
8924 | |
8925 | out_free_counters: | |
8926 | while (--i >= 0) | |
8927 | percpu_counter_destroy(&ca->cpustat[i]); | |
8928 | free_percpu(ca->cpuusage); | |
8929 | out_free_ca: | |
8930 | kfree(ca); | |
8931 | out: | |
8932 | return ERR_PTR(-ENOMEM); | |
d842de87 SV |
8933 | } |
8934 | ||
8935 | /* destroy an existing cpu accounting group */ | |
41a2d6cf | 8936 | static void |
32cd756a | 8937 | cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) |
d842de87 | 8938 | { |
32cd756a | 8939 | struct cpuacct *ca = cgroup_ca(cgrp); |
ef12fefa | 8940 | int i; |
d842de87 | 8941 | |
ef12fefa BR |
8942 | for (i = 0; i < CPUACCT_STAT_NSTATS; i++) |
8943 | percpu_counter_destroy(&ca->cpustat[i]); | |
d842de87 SV |
8944 | free_percpu(ca->cpuusage); |
8945 | kfree(ca); | |
8946 | } | |
8947 | ||
720f5498 KC |
8948 | static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) |
8949 | { | |
b36128c8 | 8950 | u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); |
720f5498 KC |
8951 | u64 data; |
8952 | ||
8953 | #ifndef CONFIG_64BIT | |
8954 | /* | |
8955 | * Take rq->lock to make 64-bit read safe on 32-bit platforms. | |
8956 | */ | |
05fa785c | 8957 | raw_spin_lock_irq(&cpu_rq(cpu)->lock); |
720f5498 | 8958 | data = *cpuusage; |
05fa785c | 8959 | raw_spin_unlock_irq(&cpu_rq(cpu)->lock); |
720f5498 KC |
8960 | #else |
8961 | data = *cpuusage; | |
8962 | #endif | |
8963 | ||
8964 | return data; | |
8965 | } | |
8966 | ||
8967 | static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val) | |
8968 | { | |
b36128c8 | 8969 | u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); |
720f5498 KC |
8970 | |
8971 | #ifndef CONFIG_64BIT | |
8972 | /* | |
8973 | * Take rq->lock to make 64-bit write safe on 32-bit platforms. | |
8974 | */ | |
05fa785c | 8975 | raw_spin_lock_irq(&cpu_rq(cpu)->lock); |
720f5498 | 8976 | *cpuusage = val; |
05fa785c | 8977 | raw_spin_unlock_irq(&cpu_rq(cpu)->lock); |
720f5498 KC |
8978 | #else |
8979 | *cpuusage = val; | |
8980 | #endif | |
8981 | } | |
8982 | ||
d842de87 | 8983 | /* return total cpu usage (in nanoseconds) of a group */ |
32cd756a | 8984 | static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft) |
d842de87 | 8985 | { |
32cd756a | 8986 | struct cpuacct *ca = cgroup_ca(cgrp); |
d842de87 SV |
8987 | u64 totalcpuusage = 0; |
8988 | int i; | |
8989 | ||
720f5498 KC |
8990 | for_each_present_cpu(i) |
8991 | totalcpuusage += cpuacct_cpuusage_read(ca, i); | |
d842de87 SV |
8992 | |
8993 | return totalcpuusage; | |
8994 | } | |
8995 | ||
0297b803 DG |
8996 | static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype, |
8997 | u64 reset) | |
8998 | { | |
8999 | struct cpuacct *ca = cgroup_ca(cgrp); | |
9000 | int err = 0; | |
9001 | int i; | |
9002 | ||
9003 | if (reset) { | |
9004 | err = -EINVAL; | |
9005 | goto out; | |
9006 | } | |
9007 | ||
720f5498 KC |
9008 | for_each_present_cpu(i) |
9009 | cpuacct_cpuusage_write(ca, i, 0); | |
0297b803 | 9010 | |
0297b803 DG |
9011 | out: |
9012 | return err; | |
9013 | } | |
9014 | ||
e9515c3c KC |
9015 | static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft, |
9016 | struct seq_file *m) | |
9017 | { | |
9018 | struct cpuacct *ca = cgroup_ca(cgroup); | |
9019 | u64 percpu; | |
9020 | int i; | |
9021 | ||
9022 | for_each_present_cpu(i) { | |
9023 | percpu = cpuacct_cpuusage_read(ca, i); | |
9024 | seq_printf(m, "%llu ", (unsigned long long) percpu); | |
9025 | } | |
9026 | seq_printf(m, "\n"); | |
9027 | return 0; | |
9028 | } | |
9029 | ||
ef12fefa BR |
9030 | static const char *cpuacct_stat_desc[] = { |
9031 | [CPUACCT_STAT_USER] = "user", | |
9032 | [CPUACCT_STAT_SYSTEM] = "system", | |
9033 | }; | |
9034 | ||
9035 | static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft, | |
9036 | struct cgroup_map_cb *cb) | |
9037 | { | |
9038 | struct cpuacct *ca = cgroup_ca(cgrp); | |
9039 | int i; | |
9040 | ||
9041 | for (i = 0; i < CPUACCT_STAT_NSTATS; i++) { | |
9042 | s64 val = percpu_counter_read(&ca->cpustat[i]); | |
9043 | val = cputime64_to_clock_t(val); | |
9044 | cb->fill(cb, cpuacct_stat_desc[i], val); | |
9045 | } | |
9046 | return 0; | |
9047 | } | |
9048 | ||
d842de87 SV |
9049 | static struct cftype files[] = { |
9050 | { | |
9051 | .name = "usage", | |
f4c753b7 PM |
9052 | .read_u64 = cpuusage_read, |
9053 | .write_u64 = cpuusage_write, | |
d842de87 | 9054 | }, |
e9515c3c KC |
9055 | { |
9056 | .name = "usage_percpu", | |
9057 | .read_seq_string = cpuacct_percpu_seq_read, | |
9058 | }, | |
ef12fefa BR |
9059 | { |
9060 | .name = "stat", | |
9061 | .read_map = cpuacct_stats_show, | |
9062 | }, | |
d842de87 SV |
9063 | }; |
9064 | ||
32cd756a | 9065 | static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp) |
d842de87 | 9066 | { |
32cd756a | 9067 | return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files)); |
d842de87 SV |
9068 | } |
9069 | ||
9070 | /* | |
9071 | * charge this task's execution time to its accounting group. | |
9072 | * | |
9073 | * called with rq->lock held. | |
9074 | */ | |
9075 | static void cpuacct_charge(struct task_struct *tsk, u64 cputime) | |
9076 | { | |
9077 | struct cpuacct *ca; | |
934352f2 | 9078 | int cpu; |
d842de87 | 9079 | |
c40c6f85 | 9080 | if (unlikely(!cpuacct_subsys.active)) |
d842de87 SV |
9081 | return; |
9082 | ||
934352f2 | 9083 | cpu = task_cpu(tsk); |
a18b83b7 BR |
9084 | |
9085 | rcu_read_lock(); | |
9086 | ||
d842de87 | 9087 | ca = task_ca(tsk); |
d842de87 | 9088 | |
934352f2 | 9089 | for (; ca; ca = ca->parent) { |
b36128c8 | 9090 | u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); |
d842de87 SV |
9091 | *cpuusage += cputime; |
9092 | } | |
a18b83b7 BR |
9093 | |
9094 | rcu_read_unlock(); | |
d842de87 SV |
9095 | } |
9096 | ||
fa535a77 AB |
9097 | /* |
9098 | * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large | |
9099 | * in cputime_t units. As a result, cpuacct_update_stats calls | |
9100 | * percpu_counter_add with values large enough to always overflow the | |
9101 | * per cpu batch limit causing bad SMP scalability. | |
9102 | * | |
9103 | * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we | |
9104 | * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled | |
9105 | * and enabled. We cap it at INT_MAX which is the largest allowed batch value. | |
9106 | */ | |
9107 | #ifdef CONFIG_SMP | |
9108 | #define CPUACCT_BATCH \ | |
9109 | min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX) | |
9110 | #else | |
9111 | #define CPUACCT_BATCH 0 | |
9112 | #endif | |
9113 | ||
ef12fefa BR |
9114 | /* |
9115 | * Charge the system/user time to the task's accounting group. | |
9116 | */ | |
9117 | static void cpuacct_update_stats(struct task_struct *tsk, | |
9118 | enum cpuacct_stat_index idx, cputime_t val) | |
9119 | { | |
9120 | struct cpuacct *ca; | |
fa535a77 | 9121 | int batch = CPUACCT_BATCH; |
ef12fefa BR |
9122 | |
9123 | if (unlikely(!cpuacct_subsys.active)) | |
9124 | return; | |
9125 | ||
9126 | rcu_read_lock(); | |
9127 | ca = task_ca(tsk); | |
9128 | ||
9129 | do { | |
fa535a77 | 9130 | __percpu_counter_add(&ca->cpustat[idx], val, batch); |
ef12fefa BR |
9131 | ca = ca->parent; |
9132 | } while (ca); | |
9133 | rcu_read_unlock(); | |
9134 | } | |
9135 | ||
d842de87 SV |
9136 | struct cgroup_subsys cpuacct_subsys = { |
9137 | .name = "cpuacct", | |
9138 | .create = cpuacct_create, | |
9139 | .destroy = cpuacct_destroy, | |
9140 | .populate = cpuacct_populate, | |
9141 | .subsys_id = cpuacct_subsys_id, | |
9142 | }; | |
9143 | #endif /* CONFIG_CGROUP_CPUACCT */ | |
03b042bf | 9144 |