]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * kernel/sched.c | |
3 | * | |
4 | * Kernel scheduler and related syscalls | |
5 | * | |
6 | * Copyright (C) 1991-2002 Linus Torvalds | |
7 | * | |
8 | * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and | |
9 | * make semaphores SMP safe | |
10 | * 1998-11-19 Implemented schedule_timeout() and related stuff | |
11 | * by Andrea Arcangeli | |
12 | * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: | |
13 | * hybrid priority-list and round-robin design with | |
14 | * an array-switch method of distributing timeslices | |
15 | * and per-CPU runqueues. Cleanups and useful suggestions | |
16 | * by Davide Libenzi, preemptible kernel bits by Robert Love. | |
17 | * 2003-09-03 Interactivity tuning by Con Kolivas. | |
18 | * 2004-04-02 Scheduler domains code by Nick Piggin | |
c31f2e8a IM |
19 | * 2007-04-15 Work begun on replacing all interactivity tuning with a |
20 | * fair scheduling design by Con Kolivas. | |
21 | * 2007-05-05 Load balancing (smp-nice) and other improvements | |
22 | * by Peter Williams | |
23 | * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith | |
24 | * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri | |
b9131769 IM |
25 | * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, |
26 | * Thomas Gleixner, Mike Kravetz | |
1da177e4 LT |
27 | */ |
28 | ||
29 | #include <linux/mm.h> | |
30 | #include <linux/module.h> | |
31 | #include <linux/nmi.h> | |
32 | #include <linux/init.h> | |
dff06c15 | 33 | #include <linux/uaccess.h> |
1da177e4 LT |
34 | #include <linux/highmem.h> |
35 | #include <linux/smp_lock.h> | |
36 | #include <asm/mmu_context.h> | |
37 | #include <linux/interrupt.h> | |
c59ede7b | 38 | #include <linux/capability.h> |
1da177e4 LT |
39 | #include <linux/completion.h> |
40 | #include <linux/kernel_stat.h> | |
9a11b49a | 41 | #include <linux/debug_locks.h> |
0d905bca | 42 | #include <linux/perf_counter.h> |
1da177e4 LT |
43 | #include <linux/security.h> |
44 | #include <linux/notifier.h> | |
45 | #include <linux/profile.h> | |
7dfb7103 | 46 | #include <linux/freezer.h> |
198e2f18 | 47 | #include <linux/vmalloc.h> |
1da177e4 LT |
48 | #include <linux/blkdev.h> |
49 | #include <linux/delay.h> | |
b488893a | 50 | #include <linux/pid_namespace.h> |
1da177e4 LT |
51 | #include <linux/smp.h> |
52 | #include <linux/threads.h> | |
53 | #include <linux/timer.h> | |
54 | #include <linux/rcupdate.h> | |
55 | #include <linux/cpu.h> | |
56 | #include <linux/cpuset.h> | |
57 | #include <linux/percpu.h> | |
58 | #include <linux/kthread.h> | |
b5aadf7f | 59 | #include <linux/proc_fs.h> |
1da177e4 | 60 | #include <linux/seq_file.h> |
e692ab53 | 61 | #include <linux/sysctl.h> |
1da177e4 LT |
62 | #include <linux/syscalls.h> |
63 | #include <linux/times.h> | |
8f0ab514 | 64 | #include <linux/tsacct_kern.h> |
c6fd91f0 | 65 | #include <linux/kprobes.h> |
0ff92245 | 66 | #include <linux/delayacct.h> |
dff06c15 | 67 | #include <linux/unistd.h> |
f5ff8422 | 68 | #include <linux/pagemap.h> |
8f4d37ec | 69 | #include <linux/hrtimer.h> |
30914a58 | 70 | #include <linux/tick.h> |
f00b45c1 PZ |
71 | #include <linux/debugfs.h> |
72 | #include <linux/ctype.h> | |
6cd8a4bb | 73 | #include <linux/ftrace.h> |
1da177e4 | 74 | |
5517d86b | 75 | #include <asm/tlb.h> |
838225b4 | 76 | #include <asm/irq_regs.h> |
1da177e4 | 77 | |
6e0534f2 GH |
78 | #include "sched_cpupri.h" |
79 | ||
a8d154b0 | 80 | #define CREATE_TRACE_POINTS |
ad8d75ff | 81 | #include <trace/events/sched.h> |
a8d154b0 | 82 | |
1da177e4 LT |
83 | /* |
84 | * Convert user-nice values [ -20 ... 0 ... 19 ] | |
85 | * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], | |
86 | * and back. | |
87 | */ | |
88 | #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20) | |
89 | #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20) | |
90 | #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio) | |
91 | ||
92 | /* | |
93 | * 'User priority' is the nice value converted to something we | |
94 | * can work with better when scaling various scheduler parameters, | |
95 | * it's a [ 0 ... 39 ] range. | |
96 | */ | |
97 | #define USER_PRIO(p) ((p)-MAX_RT_PRIO) | |
98 | #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio) | |
99 | #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO)) | |
100 | ||
101 | /* | |
d7876a08 | 102 | * Helpers for converting nanosecond timing to jiffy resolution |
1da177e4 | 103 | */ |
d6322faf | 104 | #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) |
1da177e4 | 105 | |
6aa645ea IM |
106 | #define NICE_0_LOAD SCHED_LOAD_SCALE |
107 | #define NICE_0_SHIFT SCHED_LOAD_SHIFT | |
108 | ||
1da177e4 LT |
109 | /* |
110 | * These are the 'tuning knobs' of the scheduler: | |
111 | * | |
a4ec24b4 | 112 | * default timeslice is 100 msecs (used only for SCHED_RR tasks). |
1da177e4 LT |
113 | * Timeslices get refilled after they expire. |
114 | */ | |
1da177e4 | 115 | #define DEF_TIMESLICE (100 * HZ / 1000) |
2dd73a4f | 116 | |
d0b27fa7 PZ |
117 | /* |
118 | * single value that denotes runtime == period, ie unlimited time. | |
119 | */ | |
120 | #define RUNTIME_INF ((u64)~0ULL) | |
121 | ||
e05606d3 IM |
122 | static inline int rt_policy(int policy) |
123 | { | |
3f33a7ce | 124 | if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR)) |
e05606d3 IM |
125 | return 1; |
126 | return 0; | |
127 | } | |
128 | ||
129 | static inline int task_has_rt_policy(struct task_struct *p) | |
130 | { | |
131 | return rt_policy(p->policy); | |
132 | } | |
133 | ||
1da177e4 | 134 | /* |
6aa645ea | 135 | * This is the priority-queue data structure of the RT scheduling class: |
1da177e4 | 136 | */ |
6aa645ea IM |
137 | struct rt_prio_array { |
138 | DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ | |
139 | struct list_head queue[MAX_RT_PRIO]; | |
140 | }; | |
141 | ||
d0b27fa7 | 142 | struct rt_bandwidth { |
ea736ed5 IM |
143 | /* nests inside the rq lock: */ |
144 | spinlock_t rt_runtime_lock; | |
145 | ktime_t rt_period; | |
146 | u64 rt_runtime; | |
147 | struct hrtimer rt_period_timer; | |
d0b27fa7 PZ |
148 | }; |
149 | ||
150 | static struct rt_bandwidth def_rt_bandwidth; | |
151 | ||
152 | static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); | |
153 | ||
154 | static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) | |
155 | { | |
156 | struct rt_bandwidth *rt_b = | |
157 | container_of(timer, struct rt_bandwidth, rt_period_timer); | |
158 | ktime_t now; | |
159 | int overrun; | |
160 | int idle = 0; | |
161 | ||
162 | for (;;) { | |
163 | now = hrtimer_cb_get_time(timer); | |
164 | overrun = hrtimer_forward(timer, now, rt_b->rt_period); | |
165 | ||
166 | if (!overrun) | |
167 | break; | |
168 | ||
169 | idle = do_sched_rt_period_timer(rt_b, overrun); | |
170 | } | |
171 | ||
172 | return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; | |
173 | } | |
174 | ||
175 | static | |
176 | void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) | |
177 | { | |
178 | rt_b->rt_period = ns_to_ktime(period); | |
179 | rt_b->rt_runtime = runtime; | |
180 | ||
ac086bc2 PZ |
181 | spin_lock_init(&rt_b->rt_runtime_lock); |
182 | ||
d0b27fa7 PZ |
183 | hrtimer_init(&rt_b->rt_period_timer, |
184 | CLOCK_MONOTONIC, HRTIMER_MODE_REL); | |
185 | rt_b->rt_period_timer.function = sched_rt_period_timer; | |
d0b27fa7 PZ |
186 | } |
187 | ||
c8bfff6d KH |
188 | static inline int rt_bandwidth_enabled(void) |
189 | { | |
190 | return sysctl_sched_rt_runtime >= 0; | |
d0b27fa7 PZ |
191 | } |
192 | ||
193 | static void start_rt_bandwidth(struct rt_bandwidth *rt_b) | |
194 | { | |
195 | ktime_t now; | |
196 | ||
cac64d00 | 197 | if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) |
d0b27fa7 PZ |
198 | return; |
199 | ||
200 | if (hrtimer_active(&rt_b->rt_period_timer)) | |
201 | return; | |
202 | ||
203 | spin_lock(&rt_b->rt_runtime_lock); | |
204 | for (;;) { | |
7f1e2ca9 PZ |
205 | unsigned long delta; |
206 | ktime_t soft, hard; | |
207 | ||
d0b27fa7 PZ |
208 | if (hrtimer_active(&rt_b->rt_period_timer)) |
209 | break; | |
210 | ||
211 | now = hrtimer_cb_get_time(&rt_b->rt_period_timer); | |
212 | hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period); | |
7f1e2ca9 PZ |
213 | |
214 | soft = hrtimer_get_softexpires(&rt_b->rt_period_timer); | |
215 | hard = hrtimer_get_expires(&rt_b->rt_period_timer); | |
216 | delta = ktime_to_ns(ktime_sub(hard, soft)); | |
217 | __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta, | |
5c333864 | 218 | HRTIMER_MODE_ABS_PINNED, 0); |
d0b27fa7 PZ |
219 | } |
220 | spin_unlock(&rt_b->rt_runtime_lock); | |
221 | } | |
222 | ||
223 | #ifdef CONFIG_RT_GROUP_SCHED | |
224 | static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) | |
225 | { | |
226 | hrtimer_cancel(&rt_b->rt_period_timer); | |
227 | } | |
228 | #endif | |
229 | ||
712555ee HC |
230 | /* |
231 | * sched_domains_mutex serializes calls to arch_init_sched_domains, | |
232 | * detach_destroy_domains and partition_sched_domains. | |
233 | */ | |
234 | static DEFINE_MUTEX(sched_domains_mutex); | |
235 | ||
052f1dc7 | 236 | #ifdef CONFIG_GROUP_SCHED |
29f59db3 | 237 | |
68318b8e SV |
238 | #include <linux/cgroup.h> |
239 | ||
29f59db3 SV |
240 | struct cfs_rq; |
241 | ||
6f505b16 PZ |
242 | static LIST_HEAD(task_groups); |
243 | ||
29f59db3 | 244 | /* task group related information */ |
4cf86d77 | 245 | struct task_group { |
052f1dc7 | 246 | #ifdef CONFIG_CGROUP_SCHED |
68318b8e SV |
247 | struct cgroup_subsys_state css; |
248 | #endif | |
052f1dc7 | 249 | |
6c415b92 AB |
250 | #ifdef CONFIG_USER_SCHED |
251 | uid_t uid; | |
252 | #endif | |
253 | ||
052f1dc7 | 254 | #ifdef CONFIG_FAIR_GROUP_SCHED |
29f59db3 SV |
255 | /* schedulable entities of this group on each cpu */ |
256 | struct sched_entity **se; | |
257 | /* runqueue "owned" by this group on each cpu */ | |
258 | struct cfs_rq **cfs_rq; | |
259 | unsigned long shares; | |
052f1dc7 PZ |
260 | #endif |
261 | ||
262 | #ifdef CONFIG_RT_GROUP_SCHED | |
263 | struct sched_rt_entity **rt_se; | |
264 | struct rt_rq **rt_rq; | |
265 | ||
d0b27fa7 | 266 | struct rt_bandwidth rt_bandwidth; |
052f1dc7 | 267 | #endif |
6b2d7700 | 268 | |
ae8393e5 | 269 | struct rcu_head rcu; |
6f505b16 | 270 | struct list_head list; |
f473aa5e PZ |
271 | |
272 | struct task_group *parent; | |
273 | struct list_head siblings; | |
274 | struct list_head children; | |
29f59db3 SV |
275 | }; |
276 | ||
354d60c2 | 277 | #ifdef CONFIG_USER_SCHED |
eff766a6 | 278 | |
6c415b92 AB |
279 | /* Helper function to pass uid information to create_sched_user() */ |
280 | void set_tg_uid(struct user_struct *user) | |
281 | { | |
282 | user->tg->uid = user->uid; | |
283 | } | |
284 | ||
eff766a6 PZ |
285 | /* |
286 | * Root task group. | |
84e9dabf AS |
287 | * Every UID task group (including init_task_group aka UID-0) will |
288 | * be a child to this group. | |
eff766a6 PZ |
289 | */ |
290 | struct task_group root_task_group; | |
291 | ||
052f1dc7 | 292 | #ifdef CONFIG_FAIR_GROUP_SCHED |
29f59db3 SV |
293 | /* Default task group's sched entity on each cpu */ |
294 | static DEFINE_PER_CPU(struct sched_entity, init_sched_entity); | |
295 | /* Default task group's cfs_rq on each cpu */ | |
84e9dabf | 296 | static DEFINE_PER_CPU(struct cfs_rq, init_tg_cfs_rq) ____cacheline_aligned_in_smp; |
6d6bc0ad | 297 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
052f1dc7 PZ |
298 | |
299 | #ifdef CONFIG_RT_GROUP_SCHED | |
300 | static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity); | |
301 | static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp; | |
6d6bc0ad | 302 | #endif /* CONFIG_RT_GROUP_SCHED */ |
9a7e0b18 | 303 | #else /* !CONFIG_USER_SCHED */ |
eff766a6 | 304 | #define root_task_group init_task_group |
9a7e0b18 | 305 | #endif /* CONFIG_USER_SCHED */ |
6f505b16 | 306 | |
8ed36996 | 307 | /* task_group_lock serializes add/remove of task groups and also changes to |
ec2c507f SV |
308 | * a task group's cpu shares. |
309 | */ | |
8ed36996 | 310 | static DEFINE_SPINLOCK(task_group_lock); |
ec2c507f | 311 | |
57310a98 PZ |
312 | #ifdef CONFIG_SMP |
313 | static int root_task_group_empty(void) | |
314 | { | |
315 | return list_empty(&root_task_group.children); | |
316 | } | |
317 | #endif | |
318 | ||
052f1dc7 | 319 | #ifdef CONFIG_FAIR_GROUP_SCHED |
052f1dc7 PZ |
320 | #ifdef CONFIG_USER_SCHED |
321 | # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD) | |
6d6bc0ad | 322 | #else /* !CONFIG_USER_SCHED */ |
052f1dc7 | 323 | # define INIT_TASK_GROUP_LOAD NICE_0_LOAD |
6d6bc0ad | 324 | #endif /* CONFIG_USER_SCHED */ |
052f1dc7 | 325 | |
cb4ad1ff | 326 | /* |
2e084786 LJ |
327 | * A weight of 0 or 1 can cause arithmetics problems. |
328 | * A weight of a cfs_rq is the sum of weights of which entities | |
329 | * are queued on this cfs_rq, so a weight of a entity should not be | |
330 | * too large, so as the shares value of a task group. | |
cb4ad1ff MX |
331 | * (The default weight is 1024 - so there's no practical |
332 | * limitation from this.) | |
333 | */ | |
18d95a28 | 334 | #define MIN_SHARES 2 |
2e084786 | 335 | #define MAX_SHARES (1UL << 18) |
18d95a28 | 336 | |
052f1dc7 PZ |
337 | static int init_task_group_load = INIT_TASK_GROUP_LOAD; |
338 | #endif | |
339 | ||
29f59db3 | 340 | /* Default task group. |
3a252015 | 341 | * Every task in system belong to this group at bootup. |
29f59db3 | 342 | */ |
434d53b0 | 343 | struct task_group init_task_group; |
29f59db3 SV |
344 | |
345 | /* return group to which a task belongs */ | |
4cf86d77 | 346 | static inline struct task_group *task_group(struct task_struct *p) |
29f59db3 | 347 | { |
4cf86d77 | 348 | struct task_group *tg; |
9b5b7751 | 349 | |
052f1dc7 | 350 | #ifdef CONFIG_USER_SCHED |
c69e8d9c DH |
351 | rcu_read_lock(); |
352 | tg = __task_cred(p)->user->tg; | |
353 | rcu_read_unlock(); | |
052f1dc7 | 354 | #elif defined(CONFIG_CGROUP_SCHED) |
68318b8e SV |
355 | tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id), |
356 | struct task_group, css); | |
24e377a8 | 357 | #else |
41a2d6cf | 358 | tg = &init_task_group; |
24e377a8 | 359 | #endif |
9b5b7751 | 360 | return tg; |
29f59db3 SV |
361 | } |
362 | ||
363 | /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ | |
6f505b16 | 364 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) |
29f59db3 | 365 | { |
052f1dc7 | 366 | #ifdef CONFIG_FAIR_GROUP_SCHED |
ce96b5ac DA |
367 | p->se.cfs_rq = task_group(p)->cfs_rq[cpu]; |
368 | p->se.parent = task_group(p)->se[cpu]; | |
052f1dc7 | 369 | #endif |
6f505b16 | 370 | |
052f1dc7 | 371 | #ifdef CONFIG_RT_GROUP_SCHED |
6f505b16 PZ |
372 | p->rt.rt_rq = task_group(p)->rt_rq[cpu]; |
373 | p->rt.parent = task_group(p)->rt_se[cpu]; | |
052f1dc7 | 374 | #endif |
29f59db3 SV |
375 | } |
376 | ||
377 | #else | |
378 | ||
57310a98 PZ |
379 | #ifdef CONFIG_SMP |
380 | static int root_task_group_empty(void) | |
381 | { | |
382 | return 1; | |
383 | } | |
384 | #endif | |
385 | ||
6f505b16 | 386 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } |
83378269 PZ |
387 | static inline struct task_group *task_group(struct task_struct *p) |
388 | { | |
389 | return NULL; | |
390 | } | |
29f59db3 | 391 | |
052f1dc7 | 392 | #endif /* CONFIG_GROUP_SCHED */ |
29f59db3 | 393 | |
6aa645ea IM |
394 | /* CFS-related fields in a runqueue */ |
395 | struct cfs_rq { | |
396 | struct load_weight load; | |
397 | unsigned long nr_running; | |
398 | ||
6aa645ea | 399 | u64 exec_clock; |
e9acbff6 | 400 | u64 min_vruntime; |
6aa645ea IM |
401 | |
402 | struct rb_root tasks_timeline; | |
403 | struct rb_node *rb_leftmost; | |
4a55bd5e PZ |
404 | |
405 | struct list_head tasks; | |
406 | struct list_head *balance_iterator; | |
407 | ||
408 | /* | |
409 | * 'curr' points to currently running entity on this cfs_rq. | |
6aa645ea IM |
410 | * It is set to NULL otherwise (i.e when none are currently running). |
411 | */ | |
4793241b | 412 | struct sched_entity *curr, *next, *last; |
ddc97297 | 413 | |
5ac5c4d6 | 414 | unsigned int nr_spread_over; |
ddc97297 | 415 | |
62160e3f | 416 | #ifdef CONFIG_FAIR_GROUP_SCHED |
6aa645ea IM |
417 | struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ |
418 | ||
41a2d6cf IM |
419 | /* |
420 | * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in | |
6aa645ea IM |
421 | * a hierarchy). Non-leaf lrqs hold other higher schedulable entities |
422 | * (like users, containers etc.) | |
423 | * | |
424 | * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This | |
425 | * list is used during load balance. | |
426 | */ | |
41a2d6cf IM |
427 | struct list_head leaf_cfs_rq_list; |
428 | struct task_group *tg; /* group that "owns" this runqueue */ | |
c09595f6 PZ |
429 | |
430 | #ifdef CONFIG_SMP | |
c09595f6 | 431 | /* |
c8cba857 | 432 | * the part of load.weight contributed by tasks |
c09595f6 | 433 | */ |
c8cba857 | 434 | unsigned long task_weight; |
c09595f6 | 435 | |
c8cba857 PZ |
436 | /* |
437 | * h_load = weight * f(tg) | |
438 | * | |
439 | * Where f(tg) is the recursive weight fraction assigned to | |
440 | * this group. | |
441 | */ | |
442 | unsigned long h_load; | |
c09595f6 | 443 | |
c8cba857 PZ |
444 | /* |
445 | * this cpu's part of tg->shares | |
446 | */ | |
447 | unsigned long shares; | |
f1d239f7 PZ |
448 | |
449 | /* | |
450 | * load.weight at the time we set shares | |
451 | */ | |
452 | unsigned long rq_weight; | |
c09595f6 | 453 | #endif |
6aa645ea IM |
454 | #endif |
455 | }; | |
1da177e4 | 456 | |
6aa645ea IM |
457 | /* Real-Time classes' related field in a runqueue: */ |
458 | struct rt_rq { | |
459 | struct rt_prio_array active; | |
63489e45 | 460 | unsigned long rt_nr_running; |
052f1dc7 | 461 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
e864c499 GH |
462 | struct { |
463 | int curr; /* highest queued rt task prio */ | |
398a153b | 464 | #ifdef CONFIG_SMP |
e864c499 | 465 | int next; /* next highest */ |
398a153b | 466 | #endif |
e864c499 | 467 | } highest_prio; |
6f505b16 | 468 | #endif |
fa85ae24 | 469 | #ifdef CONFIG_SMP |
73fe6aae | 470 | unsigned long rt_nr_migratory; |
a1ba4d8b | 471 | unsigned long rt_nr_total; |
a22d7fc1 | 472 | int overloaded; |
917b627d | 473 | struct plist_head pushable_tasks; |
fa85ae24 | 474 | #endif |
6f505b16 | 475 | int rt_throttled; |
fa85ae24 | 476 | u64 rt_time; |
ac086bc2 | 477 | u64 rt_runtime; |
ea736ed5 | 478 | /* Nests inside the rq lock: */ |
ac086bc2 | 479 | spinlock_t rt_runtime_lock; |
6f505b16 | 480 | |
052f1dc7 | 481 | #ifdef CONFIG_RT_GROUP_SCHED |
23b0fdfc PZ |
482 | unsigned long rt_nr_boosted; |
483 | ||
6f505b16 PZ |
484 | struct rq *rq; |
485 | struct list_head leaf_rt_rq_list; | |
486 | struct task_group *tg; | |
487 | struct sched_rt_entity *rt_se; | |
488 | #endif | |
6aa645ea IM |
489 | }; |
490 | ||
57d885fe GH |
491 | #ifdef CONFIG_SMP |
492 | ||
493 | /* | |
494 | * We add the notion of a root-domain which will be used to define per-domain | |
0eab9146 IM |
495 | * variables. Each exclusive cpuset essentially defines an island domain by |
496 | * fully partitioning the member cpus from any other cpuset. Whenever a new | |
57d885fe GH |
497 | * exclusive cpuset is created, we also create and attach a new root-domain |
498 | * object. | |
499 | * | |
57d885fe GH |
500 | */ |
501 | struct root_domain { | |
502 | atomic_t refcount; | |
c6c4927b RR |
503 | cpumask_var_t span; |
504 | cpumask_var_t online; | |
637f5085 | 505 | |
0eab9146 | 506 | /* |
637f5085 GH |
507 | * The "RT overload" flag: it gets set if a CPU has more than |
508 | * one runnable RT task. | |
509 | */ | |
c6c4927b | 510 | cpumask_var_t rto_mask; |
0eab9146 | 511 | atomic_t rto_count; |
6e0534f2 GH |
512 | #ifdef CONFIG_SMP |
513 | struct cpupri cpupri; | |
514 | #endif | |
57d885fe GH |
515 | }; |
516 | ||
dc938520 GH |
517 | /* |
518 | * By default the system creates a single root-domain with all cpus as | |
519 | * members (mimicking the global state we have today). | |
520 | */ | |
57d885fe GH |
521 | static struct root_domain def_root_domain; |
522 | ||
523 | #endif | |
524 | ||
1da177e4 LT |
525 | /* |
526 | * This is the main, per-CPU runqueue data structure. | |
527 | * | |
528 | * Locking rule: those places that want to lock multiple runqueues | |
529 | * (such as the load balancing or the thread migration code), lock | |
530 | * acquire operations must be ordered by ascending &runqueue. | |
531 | */ | |
70b97a7f | 532 | struct rq { |
d8016491 IM |
533 | /* runqueue lock: */ |
534 | spinlock_t lock; | |
1da177e4 LT |
535 | |
536 | /* | |
537 | * nr_running and cpu_load should be in the same cacheline because | |
538 | * remote CPUs use both these fields when doing load calculation. | |
539 | */ | |
540 | unsigned long nr_running; | |
6aa645ea IM |
541 | #define CPU_LOAD_IDX_MAX 5 |
542 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; | |
46cb4b7c | 543 | #ifdef CONFIG_NO_HZ |
15934a37 | 544 | unsigned long last_tick_seen; |
46cb4b7c SS |
545 | unsigned char in_nohz_recently; |
546 | #endif | |
d8016491 IM |
547 | /* capture load from *all* tasks on this cpu: */ |
548 | struct load_weight load; | |
6aa645ea IM |
549 | unsigned long nr_load_updates; |
550 | u64 nr_switches; | |
23a185ca | 551 | u64 nr_migrations_in; |
6aa645ea IM |
552 | |
553 | struct cfs_rq cfs; | |
6f505b16 | 554 | struct rt_rq rt; |
6f505b16 | 555 | |
6aa645ea | 556 | #ifdef CONFIG_FAIR_GROUP_SCHED |
d8016491 IM |
557 | /* list of leaf cfs_rq on this cpu: */ |
558 | struct list_head leaf_cfs_rq_list; | |
052f1dc7 PZ |
559 | #endif |
560 | #ifdef CONFIG_RT_GROUP_SCHED | |
6f505b16 | 561 | struct list_head leaf_rt_rq_list; |
1da177e4 | 562 | #endif |
1da177e4 LT |
563 | |
564 | /* | |
565 | * This is part of a global counter where only the total sum | |
566 | * over all CPUs matters. A task can increase this counter on | |
567 | * one CPU and if it got migrated afterwards it may decrease | |
568 | * it on another CPU. Always updated under the runqueue lock: | |
569 | */ | |
570 | unsigned long nr_uninterruptible; | |
571 | ||
36c8b586 | 572 | struct task_struct *curr, *idle; |
c9819f45 | 573 | unsigned long next_balance; |
1da177e4 | 574 | struct mm_struct *prev_mm; |
6aa645ea | 575 | |
3e51f33f | 576 | u64 clock; |
6aa645ea | 577 | |
1da177e4 LT |
578 | atomic_t nr_iowait; |
579 | ||
580 | #ifdef CONFIG_SMP | |
0eab9146 | 581 | struct root_domain *rd; |
1da177e4 LT |
582 | struct sched_domain *sd; |
583 | ||
a0a522ce | 584 | unsigned char idle_at_tick; |
1da177e4 | 585 | /* For active balancing */ |
3f029d3c | 586 | int post_schedule; |
1da177e4 LT |
587 | int active_balance; |
588 | int push_cpu; | |
d8016491 IM |
589 | /* cpu of this runqueue: */ |
590 | int cpu; | |
1f11eb6a | 591 | int online; |
1da177e4 | 592 | |
a8a51d5e | 593 | unsigned long avg_load_per_task; |
1da177e4 | 594 | |
36c8b586 | 595 | struct task_struct *migration_thread; |
1da177e4 | 596 | struct list_head migration_queue; |
e9e9250b PZ |
597 | |
598 | u64 rt_avg; | |
599 | u64 age_stamp; | |
1da177e4 LT |
600 | #endif |
601 | ||
dce48a84 TG |
602 | /* calc_load related fields */ |
603 | unsigned long calc_load_update; | |
604 | long calc_load_active; | |
605 | ||
8f4d37ec | 606 | #ifdef CONFIG_SCHED_HRTICK |
31656519 PZ |
607 | #ifdef CONFIG_SMP |
608 | int hrtick_csd_pending; | |
609 | struct call_single_data hrtick_csd; | |
610 | #endif | |
8f4d37ec PZ |
611 | struct hrtimer hrtick_timer; |
612 | #endif | |
613 | ||
1da177e4 LT |
614 | #ifdef CONFIG_SCHEDSTATS |
615 | /* latency stats */ | |
616 | struct sched_info rq_sched_info; | |
9c2c4802 KC |
617 | unsigned long long rq_cpu_time; |
618 | /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ | |
1da177e4 LT |
619 | |
620 | /* sys_sched_yield() stats */ | |
480b9434 | 621 | unsigned int yld_count; |
1da177e4 LT |
622 | |
623 | /* schedule() stats */ | |
480b9434 KC |
624 | unsigned int sched_switch; |
625 | unsigned int sched_count; | |
626 | unsigned int sched_goidle; | |
1da177e4 LT |
627 | |
628 | /* try_to_wake_up() stats */ | |
480b9434 KC |
629 | unsigned int ttwu_count; |
630 | unsigned int ttwu_local; | |
b8efb561 IM |
631 | |
632 | /* BKL stats */ | |
480b9434 | 633 | unsigned int bkl_count; |
1da177e4 LT |
634 | #endif |
635 | }; | |
636 | ||
f34e3b61 | 637 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); |
1da177e4 | 638 | |
15afe09b | 639 | static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync) |
dd41f596 | 640 | { |
15afe09b | 641 | rq->curr->sched_class->check_preempt_curr(rq, p, sync); |
dd41f596 IM |
642 | } |
643 | ||
0a2966b4 CL |
644 | static inline int cpu_of(struct rq *rq) |
645 | { | |
646 | #ifdef CONFIG_SMP | |
647 | return rq->cpu; | |
648 | #else | |
649 | return 0; | |
650 | #endif | |
651 | } | |
652 | ||
674311d5 NP |
653 | /* |
654 | * The domain tree (rq->sd) is protected by RCU's quiescent state transition. | |
1a20ff27 | 655 | * See detach_destroy_domains: synchronize_sched for details. |
674311d5 NP |
656 | * |
657 | * The domain tree of any CPU may only be accessed from within | |
658 | * preempt-disabled sections. | |
659 | */ | |
48f24c4d IM |
660 | #define for_each_domain(cpu, __sd) \ |
661 | for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) | |
1da177e4 LT |
662 | |
663 | #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) | |
664 | #define this_rq() (&__get_cpu_var(runqueues)) | |
665 | #define task_rq(p) cpu_rq(task_cpu(p)) | |
666 | #define cpu_curr(cpu) (cpu_rq(cpu)->curr) | |
54d35f29 | 667 | #define raw_rq() (&__raw_get_cpu_var(runqueues)) |
1da177e4 | 668 | |
aa9c4c0f | 669 | inline void update_rq_clock(struct rq *rq) |
3e51f33f PZ |
670 | { |
671 | rq->clock = sched_clock_cpu(cpu_of(rq)); | |
672 | } | |
673 | ||
bf5c91ba IM |
674 | /* |
675 | * Tunables that become constants when CONFIG_SCHED_DEBUG is off: | |
676 | */ | |
677 | #ifdef CONFIG_SCHED_DEBUG | |
678 | # define const_debug __read_mostly | |
679 | #else | |
680 | # define const_debug static const | |
681 | #endif | |
682 | ||
017730c1 IM |
683 | /** |
684 | * runqueue_is_locked | |
685 | * | |
686 | * Returns true if the current cpu runqueue is locked. | |
687 | * This interface allows printk to be called with the runqueue lock | |
688 | * held and know whether or not it is OK to wake up the klogd. | |
689 | */ | |
690 | int runqueue_is_locked(void) | |
691 | { | |
692 | int cpu = get_cpu(); | |
693 | struct rq *rq = cpu_rq(cpu); | |
694 | int ret; | |
695 | ||
696 | ret = spin_is_locked(&rq->lock); | |
697 | put_cpu(); | |
698 | return ret; | |
699 | } | |
700 | ||
bf5c91ba IM |
701 | /* |
702 | * Debugging: various feature bits | |
703 | */ | |
f00b45c1 PZ |
704 | |
705 | #define SCHED_FEAT(name, enabled) \ | |
706 | __SCHED_FEAT_##name , | |
707 | ||
bf5c91ba | 708 | enum { |
f00b45c1 | 709 | #include "sched_features.h" |
bf5c91ba IM |
710 | }; |
711 | ||
f00b45c1 PZ |
712 | #undef SCHED_FEAT |
713 | ||
714 | #define SCHED_FEAT(name, enabled) \ | |
715 | (1UL << __SCHED_FEAT_##name) * enabled | | |
716 | ||
bf5c91ba | 717 | const_debug unsigned int sysctl_sched_features = |
f00b45c1 PZ |
718 | #include "sched_features.h" |
719 | 0; | |
720 | ||
721 | #undef SCHED_FEAT | |
722 | ||
723 | #ifdef CONFIG_SCHED_DEBUG | |
724 | #define SCHED_FEAT(name, enabled) \ | |
725 | #name , | |
726 | ||
983ed7a6 | 727 | static __read_mostly char *sched_feat_names[] = { |
f00b45c1 PZ |
728 | #include "sched_features.h" |
729 | NULL | |
730 | }; | |
731 | ||
732 | #undef SCHED_FEAT | |
733 | ||
34f3a814 | 734 | static int sched_feat_show(struct seq_file *m, void *v) |
f00b45c1 | 735 | { |
f00b45c1 PZ |
736 | int i; |
737 | ||
738 | for (i = 0; sched_feat_names[i]; i++) { | |
34f3a814 LZ |
739 | if (!(sysctl_sched_features & (1UL << i))) |
740 | seq_puts(m, "NO_"); | |
741 | seq_printf(m, "%s ", sched_feat_names[i]); | |
f00b45c1 | 742 | } |
34f3a814 | 743 | seq_puts(m, "\n"); |
f00b45c1 | 744 | |
34f3a814 | 745 | return 0; |
f00b45c1 PZ |
746 | } |
747 | ||
748 | static ssize_t | |
749 | sched_feat_write(struct file *filp, const char __user *ubuf, | |
750 | size_t cnt, loff_t *ppos) | |
751 | { | |
752 | char buf[64]; | |
753 | char *cmp = buf; | |
754 | int neg = 0; | |
755 | int i; | |
756 | ||
757 | if (cnt > 63) | |
758 | cnt = 63; | |
759 | ||
760 | if (copy_from_user(&buf, ubuf, cnt)) | |
761 | return -EFAULT; | |
762 | ||
763 | buf[cnt] = 0; | |
764 | ||
c24b7c52 | 765 | if (strncmp(buf, "NO_", 3) == 0) { |
f00b45c1 PZ |
766 | neg = 1; |
767 | cmp += 3; | |
768 | } | |
769 | ||
770 | for (i = 0; sched_feat_names[i]; i++) { | |
771 | int len = strlen(sched_feat_names[i]); | |
772 | ||
773 | if (strncmp(cmp, sched_feat_names[i], len) == 0) { | |
774 | if (neg) | |
775 | sysctl_sched_features &= ~(1UL << i); | |
776 | else | |
777 | sysctl_sched_features |= (1UL << i); | |
778 | break; | |
779 | } | |
780 | } | |
781 | ||
782 | if (!sched_feat_names[i]) | |
783 | return -EINVAL; | |
784 | ||
785 | filp->f_pos += cnt; | |
786 | ||
787 | return cnt; | |
788 | } | |
789 | ||
34f3a814 LZ |
790 | static int sched_feat_open(struct inode *inode, struct file *filp) |
791 | { | |
792 | return single_open(filp, sched_feat_show, NULL); | |
793 | } | |
794 | ||
f00b45c1 | 795 | static struct file_operations sched_feat_fops = { |
34f3a814 LZ |
796 | .open = sched_feat_open, |
797 | .write = sched_feat_write, | |
798 | .read = seq_read, | |
799 | .llseek = seq_lseek, | |
800 | .release = single_release, | |
f00b45c1 PZ |
801 | }; |
802 | ||
803 | static __init int sched_init_debug(void) | |
804 | { | |
f00b45c1 PZ |
805 | debugfs_create_file("sched_features", 0644, NULL, NULL, |
806 | &sched_feat_fops); | |
807 | ||
808 | return 0; | |
809 | } | |
810 | late_initcall(sched_init_debug); | |
811 | ||
812 | #endif | |
813 | ||
814 | #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) | |
bf5c91ba | 815 | |
b82d9fdd PZ |
816 | /* |
817 | * Number of tasks to iterate in a single balance run. | |
818 | * Limited because this is done with IRQs disabled. | |
819 | */ | |
820 | const_debug unsigned int sysctl_sched_nr_migrate = 32; | |
821 | ||
2398f2c6 PZ |
822 | /* |
823 | * ratelimit for updating the group shares. | |
55cd5340 | 824 | * default: 0.25ms |
2398f2c6 | 825 | */ |
55cd5340 | 826 | unsigned int sysctl_sched_shares_ratelimit = 250000; |
2398f2c6 | 827 | |
ffda12a1 PZ |
828 | /* |
829 | * Inject some fuzzyness into changing the per-cpu group shares | |
830 | * this avoids remote rq-locks at the expense of fairness. | |
831 | * default: 4 | |
832 | */ | |
833 | unsigned int sysctl_sched_shares_thresh = 4; | |
834 | ||
e9e9250b PZ |
835 | /* |
836 | * period over which we average the RT time consumption, measured | |
837 | * in ms. | |
838 | * | |
839 | * default: 1s | |
840 | */ | |
841 | const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; | |
842 | ||
fa85ae24 | 843 | /* |
9f0c1e56 | 844 | * period over which we measure -rt task cpu usage in us. |
fa85ae24 PZ |
845 | * default: 1s |
846 | */ | |
9f0c1e56 | 847 | unsigned int sysctl_sched_rt_period = 1000000; |
fa85ae24 | 848 | |
6892b75e IM |
849 | static __read_mostly int scheduler_running; |
850 | ||
9f0c1e56 PZ |
851 | /* |
852 | * part of the period that we allow rt tasks to run in us. | |
853 | * default: 0.95s | |
854 | */ | |
855 | int sysctl_sched_rt_runtime = 950000; | |
fa85ae24 | 856 | |
d0b27fa7 PZ |
857 | static inline u64 global_rt_period(void) |
858 | { | |
859 | return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; | |
860 | } | |
861 | ||
862 | static inline u64 global_rt_runtime(void) | |
863 | { | |
e26873bb | 864 | if (sysctl_sched_rt_runtime < 0) |
d0b27fa7 PZ |
865 | return RUNTIME_INF; |
866 | ||
867 | return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; | |
868 | } | |
fa85ae24 | 869 | |
1da177e4 | 870 | #ifndef prepare_arch_switch |
4866cde0 NP |
871 | # define prepare_arch_switch(next) do { } while (0) |
872 | #endif | |
873 | #ifndef finish_arch_switch | |
874 | # define finish_arch_switch(prev) do { } while (0) | |
875 | #endif | |
876 | ||
051a1d1a DA |
877 | static inline int task_current(struct rq *rq, struct task_struct *p) |
878 | { | |
879 | return rq->curr == p; | |
880 | } | |
881 | ||
4866cde0 | 882 | #ifndef __ARCH_WANT_UNLOCKED_CTXSW |
70b97a7f | 883 | static inline int task_running(struct rq *rq, struct task_struct *p) |
4866cde0 | 884 | { |
051a1d1a | 885 | return task_current(rq, p); |
4866cde0 NP |
886 | } |
887 | ||
70b97a7f | 888 | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) |
4866cde0 NP |
889 | { |
890 | } | |
891 | ||
70b97a7f | 892 | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) |
4866cde0 | 893 | { |
da04c035 IM |
894 | #ifdef CONFIG_DEBUG_SPINLOCK |
895 | /* this is a valid case when another task releases the spinlock */ | |
896 | rq->lock.owner = current; | |
897 | #endif | |
8a25d5de IM |
898 | /* |
899 | * If we are tracking spinlock dependencies then we have to | |
900 | * fix up the runqueue lock - which gets 'carried over' from | |
901 | * prev into current: | |
902 | */ | |
903 | spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); | |
904 | ||
4866cde0 NP |
905 | spin_unlock_irq(&rq->lock); |
906 | } | |
907 | ||
908 | #else /* __ARCH_WANT_UNLOCKED_CTXSW */ | |
70b97a7f | 909 | static inline int task_running(struct rq *rq, struct task_struct *p) |
4866cde0 NP |
910 | { |
911 | #ifdef CONFIG_SMP | |
912 | return p->oncpu; | |
913 | #else | |
051a1d1a | 914 | return task_current(rq, p); |
4866cde0 NP |
915 | #endif |
916 | } | |
917 | ||
70b97a7f | 918 | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) |
4866cde0 NP |
919 | { |
920 | #ifdef CONFIG_SMP | |
921 | /* | |
922 | * We can optimise this out completely for !SMP, because the | |
923 | * SMP rebalancing from interrupt is the only thing that cares | |
924 | * here. | |
925 | */ | |
926 | next->oncpu = 1; | |
927 | #endif | |
928 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | |
929 | spin_unlock_irq(&rq->lock); | |
930 | #else | |
931 | spin_unlock(&rq->lock); | |
932 | #endif | |
933 | } | |
934 | ||
70b97a7f | 935 | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) |
4866cde0 NP |
936 | { |
937 | #ifdef CONFIG_SMP | |
938 | /* | |
939 | * After ->oncpu is cleared, the task can be moved to a different CPU. | |
940 | * We must ensure this doesn't happen until the switch is completely | |
941 | * finished. | |
942 | */ | |
943 | smp_wmb(); | |
944 | prev->oncpu = 0; | |
945 | #endif | |
946 | #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW | |
947 | local_irq_enable(); | |
1da177e4 | 948 | #endif |
4866cde0 NP |
949 | } |
950 | #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ | |
1da177e4 | 951 | |
b29739f9 IM |
952 | /* |
953 | * __task_rq_lock - lock the runqueue a given task resides on. | |
954 | * Must be called interrupts disabled. | |
955 | */ | |
70b97a7f | 956 | static inline struct rq *__task_rq_lock(struct task_struct *p) |
b29739f9 IM |
957 | __acquires(rq->lock) |
958 | { | |
3a5c359a AK |
959 | for (;;) { |
960 | struct rq *rq = task_rq(p); | |
961 | spin_lock(&rq->lock); | |
962 | if (likely(rq == task_rq(p))) | |
963 | return rq; | |
b29739f9 | 964 | spin_unlock(&rq->lock); |
b29739f9 | 965 | } |
b29739f9 IM |
966 | } |
967 | ||
1da177e4 LT |
968 | /* |
969 | * task_rq_lock - lock the runqueue a given task resides on and disable | |
41a2d6cf | 970 | * interrupts. Note the ordering: we can safely lookup the task_rq without |
1da177e4 LT |
971 | * explicitly disabling preemption. |
972 | */ | |
70b97a7f | 973 | static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) |
1da177e4 LT |
974 | __acquires(rq->lock) |
975 | { | |
70b97a7f | 976 | struct rq *rq; |
1da177e4 | 977 | |
3a5c359a AK |
978 | for (;;) { |
979 | local_irq_save(*flags); | |
980 | rq = task_rq(p); | |
981 | spin_lock(&rq->lock); | |
982 | if (likely(rq == task_rq(p))) | |
983 | return rq; | |
1da177e4 | 984 | spin_unlock_irqrestore(&rq->lock, *flags); |
1da177e4 | 985 | } |
1da177e4 LT |
986 | } |
987 | ||
ad474cac ON |
988 | void task_rq_unlock_wait(struct task_struct *p) |
989 | { | |
990 | struct rq *rq = task_rq(p); | |
991 | ||
992 | smp_mb(); /* spin-unlock-wait is not a full memory barrier */ | |
993 | spin_unlock_wait(&rq->lock); | |
994 | } | |
995 | ||
a9957449 | 996 | static void __task_rq_unlock(struct rq *rq) |
b29739f9 IM |
997 | __releases(rq->lock) |
998 | { | |
999 | spin_unlock(&rq->lock); | |
1000 | } | |
1001 | ||
70b97a7f | 1002 | static inline void task_rq_unlock(struct rq *rq, unsigned long *flags) |
1da177e4 LT |
1003 | __releases(rq->lock) |
1004 | { | |
1005 | spin_unlock_irqrestore(&rq->lock, *flags); | |
1006 | } | |
1007 | ||
1da177e4 | 1008 | /* |
cc2a73b5 | 1009 | * this_rq_lock - lock this runqueue and disable interrupts. |
1da177e4 | 1010 | */ |
a9957449 | 1011 | static struct rq *this_rq_lock(void) |
1da177e4 LT |
1012 | __acquires(rq->lock) |
1013 | { | |
70b97a7f | 1014 | struct rq *rq; |
1da177e4 LT |
1015 | |
1016 | local_irq_disable(); | |
1017 | rq = this_rq(); | |
1018 | spin_lock(&rq->lock); | |
1019 | ||
1020 | return rq; | |
1021 | } | |
1022 | ||
8f4d37ec PZ |
1023 | #ifdef CONFIG_SCHED_HRTICK |
1024 | /* | |
1025 | * Use HR-timers to deliver accurate preemption points. | |
1026 | * | |
1027 | * Its all a bit involved since we cannot program an hrt while holding the | |
1028 | * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a | |
1029 | * reschedule event. | |
1030 | * | |
1031 | * When we get rescheduled we reprogram the hrtick_timer outside of the | |
1032 | * rq->lock. | |
1033 | */ | |
8f4d37ec PZ |
1034 | |
1035 | /* | |
1036 | * Use hrtick when: | |
1037 | * - enabled by features | |
1038 | * - hrtimer is actually high res | |
1039 | */ | |
1040 | static inline int hrtick_enabled(struct rq *rq) | |
1041 | { | |
1042 | if (!sched_feat(HRTICK)) | |
1043 | return 0; | |
ba42059f | 1044 | if (!cpu_active(cpu_of(rq))) |
b328ca18 | 1045 | return 0; |
8f4d37ec PZ |
1046 | return hrtimer_is_hres_active(&rq->hrtick_timer); |
1047 | } | |
1048 | ||
8f4d37ec PZ |
1049 | static void hrtick_clear(struct rq *rq) |
1050 | { | |
1051 | if (hrtimer_active(&rq->hrtick_timer)) | |
1052 | hrtimer_cancel(&rq->hrtick_timer); | |
1053 | } | |
1054 | ||
8f4d37ec PZ |
1055 | /* |
1056 | * High-resolution timer tick. | |
1057 | * Runs from hardirq context with interrupts disabled. | |
1058 | */ | |
1059 | static enum hrtimer_restart hrtick(struct hrtimer *timer) | |
1060 | { | |
1061 | struct rq *rq = container_of(timer, struct rq, hrtick_timer); | |
1062 | ||
1063 | WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); | |
1064 | ||
1065 | spin_lock(&rq->lock); | |
3e51f33f | 1066 | update_rq_clock(rq); |
8f4d37ec PZ |
1067 | rq->curr->sched_class->task_tick(rq, rq->curr, 1); |
1068 | spin_unlock(&rq->lock); | |
1069 | ||
1070 | return HRTIMER_NORESTART; | |
1071 | } | |
1072 | ||
95e904c7 | 1073 | #ifdef CONFIG_SMP |
31656519 PZ |
1074 | /* |
1075 | * called from hardirq (IPI) context | |
1076 | */ | |
1077 | static void __hrtick_start(void *arg) | |
b328ca18 | 1078 | { |
31656519 | 1079 | struct rq *rq = arg; |
b328ca18 | 1080 | |
31656519 PZ |
1081 | spin_lock(&rq->lock); |
1082 | hrtimer_restart(&rq->hrtick_timer); | |
1083 | rq->hrtick_csd_pending = 0; | |
1084 | spin_unlock(&rq->lock); | |
b328ca18 PZ |
1085 | } |
1086 | ||
31656519 PZ |
1087 | /* |
1088 | * Called to set the hrtick timer state. | |
1089 | * | |
1090 | * called with rq->lock held and irqs disabled | |
1091 | */ | |
1092 | static void hrtick_start(struct rq *rq, u64 delay) | |
b328ca18 | 1093 | { |
31656519 PZ |
1094 | struct hrtimer *timer = &rq->hrtick_timer; |
1095 | ktime_t time = ktime_add_ns(timer->base->get_time(), delay); | |
b328ca18 | 1096 | |
cc584b21 | 1097 | hrtimer_set_expires(timer, time); |
31656519 PZ |
1098 | |
1099 | if (rq == this_rq()) { | |
1100 | hrtimer_restart(timer); | |
1101 | } else if (!rq->hrtick_csd_pending) { | |
6e275637 | 1102 | __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0); |
31656519 PZ |
1103 | rq->hrtick_csd_pending = 1; |
1104 | } | |
b328ca18 PZ |
1105 | } |
1106 | ||
1107 | static int | |
1108 | hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) | |
1109 | { | |
1110 | int cpu = (int)(long)hcpu; | |
1111 | ||
1112 | switch (action) { | |
1113 | case CPU_UP_CANCELED: | |
1114 | case CPU_UP_CANCELED_FROZEN: | |
1115 | case CPU_DOWN_PREPARE: | |
1116 | case CPU_DOWN_PREPARE_FROZEN: | |
1117 | case CPU_DEAD: | |
1118 | case CPU_DEAD_FROZEN: | |
31656519 | 1119 | hrtick_clear(cpu_rq(cpu)); |
b328ca18 PZ |
1120 | return NOTIFY_OK; |
1121 | } | |
1122 | ||
1123 | return NOTIFY_DONE; | |
1124 | } | |
1125 | ||
fa748203 | 1126 | static __init void init_hrtick(void) |
b328ca18 PZ |
1127 | { |
1128 | hotcpu_notifier(hotplug_hrtick, 0); | |
1129 | } | |
31656519 PZ |
1130 | #else |
1131 | /* | |
1132 | * Called to set the hrtick timer state. | |
1133 | * | |
1134 | * called with rq->lock held and irqs disabled | |
1135 | */ | |
1136 | static void hrtick_start(struct rq *rq, u64 delay) | |
1137 | { | |
7f1e2ca9 | 1138 | __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, |
5c333864 | 1139 | HRTIMER_MODE_REL_PINNED, 0); |
31656519 | 1140 | } |
b328ca18 | 1141 | |
006c75f1 | 1142 | static inline void init_hrtick(void) |
8f4d37ec | 1143 | { |
8f4d37ec | 1144 | } |
31656519 | 1145 | #endif /* CONFIG_SMP */ |
8f4d37ec | 1146 | |
31656519 | 1147 | static void init_rq_hrtick(struct rq *rq) |
8f4d37ec | 1148 | { |
31656519 PZ |
1149 | #ifdef CONFIG_SMP |
1150 | rq->hrtick_csd_pending = 0; | |
8f4d37ec | 1151 | |
31656519 PZ |
1152 | rq->hrtick_csd.flags = 0; |
1153 | rq->hrtick_csd.func = __hrtick_start; | |
1154 | rq->hrtick_csd.info = rq; | |
1155 | #endif | |
8f4d37ec | 1156 | |
31656519 PZ |
1157 | hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
1158 | rq->hrtick_timer.function = hrtick; | |
8f4d37ec | 1159 | } |
006c75f1 | 1160 | #else /* CONFIG_SCHED_HRTICK */ |
8f4d37ec PZ |
1161 | static inline void hrtick_clear(struct rq *rq) |
1162 | { | |
1163 | } | |
1164 | ||
8f4d37ec PZ |
1165 | static inline void init_rq_hrtick(struct rq *rq) |
1166 | { | |
1167 | } | |
1168 | ||
b328ca18 PZ |
1169 | static inline void init_hrtick(void) |
1170 | { | |
1171 | } | |
006c75f1 | 1172 | #endif /* CONFIG_SCHED_HRTICK */ |
8f4d37ec | 1173 | |
c24d20db IM |
1174 | /* |
1175 | * resched_task - mark a task 'to be rescheduled now'. | |
1176 | * | |
1177 | * On UP this means the setting of the need_resched flag, on SMP it | |
1178 | * might also involve a cross-CPU call to trigger the scheduler on | |
1179 | * the target CPU. | |
1180 | */ | |
1181 | #ifdef CONFIG_SMP | |
1182 | ||
1183 | #ifndef tsk_is_polling | |
1184 | #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) | |
1185 | #endif | |
1186 | ||
31656519 | 1187 | static void resched_task(struct task_struct *p) |
c24d20db IM |
1188 | { |
1189 | int cpu; | |
1190 | ||
1191 | assert_spin_locked(&task_rq(p)->lock); | |
1192 | ||
5ed0cec0 | 1193 | if (test_tsk_need_resched(p)) |
c24d20db IM |
1194 | return; |
1195 | ||
5ed0cec0 | 1196 | set_tsk_need_resched(p); |
c24d20db IM |
1197 | |
1198 | cpu = task_cpu(p); | |
1199 | if (cpu == smp_processor_id()) | |
1200 | return; | |
1201 | ||
1202 | /* NEED_RESCHED must be visible before we test polling */ | |
1203 | smp_mb(); | |
1204 | if (!tsk_is_polling(p)) | |
1205 | smp_send_reschedule(cpu); | |
1206 | } | |
1207 | ||
1208 | static void resched_cpu(int cpu) | |
1209 | { | |
1210 | struct rq *rq = cpu_rq(cpu); | |
1211 | unsigned long flags; | |
1212 | ||
1213 | if (!spin_trylock_irqsave(&rq->lock, flags)) | |
1214 | return; | |
1215 | resched_task(cpu_curr(cpu)); | |
1216 | spin_unlock_irqrestore(&rq->lock, flags); | |
1217 | } | |
06d8308c TG |
1218 | |
1219 | #ifdef CONFIG_NO_HZ | |
1220 | /* | |
1221 | * When add_timer_on() enqueues a timer into the timer wheel of an | |
1222 | * idle CPU then this timer might expire before the next timer event | |
1223 | * which is scheduled to wake up that CPU. In case of a completely | |
1224 | * idle system the next event might even be infinite time into the | |
1225 | * future. wake_up_idle_cpu() ensures that the CPU is woken up and | |
1226 | * leaves the inner idle loop so the newly added timer is taken into | |
1227 | * account when the CPU goes back to idle and evaluates the timer | |
1228 | * wheel for the next timer event. | |
1229 | */ | |
1230 | void wake_up_idle_cpu(int cpu) | |
1231 | { | |
1232 | struct rq *rq = cpu_rq(cpu); | |
1233 | ||
1234 | if (cpu == smp_processor_id()) | |
1235 | return; | |
1236 | ||
1237 | /* | |
1238 | * This is safe, as this function is called with the timer | |
1239 | * wheel base lock of (cpu) held. When the CPU is on the way | |
1240 | * to idle and has not yet set rq->curr to idle then it will | |
1241 | * be serialized on the timer wheel base lock and take the new | |
1242 | * timer into account automatically. | |
1243 | */ | |
1244 | if (rq->curr != rq->idle) | |
1245 | return; | |
1246 | ||
1247 | /* | |
1248 | * We can set TIF_RESCHED on the idle task of the other CPU | |
1249 | * lockless. The worst case is that the other CPU runs the | |
1250 | * idle task through an additional NOOP schedule() | |
1251 | */ | |
5ed0cec0 | 1252 | set_tsk_need_resched(rq->idle); |
06d8308c TG |
1253 | |
1254 | /* NEED_RESCHED must be visible before we test polling */ | |
1255 | smp_mb(); | |
1256 | if (!tsk_is_polling(rq->idle)) | |
1257 | smp_send_reschedule(cpu); | |
1258 | } | |
6d6bc0ad | 1259 | #endif /* CONFIG_NO_HZ */ |
06d8308c | 1260 | |
e9e9250b PZ |
1261 | static u64 sched_avg_period(void) |
1262 | { | |
1263 | return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; | |
1264 | } | |
1265 | ||
1266 | static void sched_avg_update(struct rq *rq) | |
1267 | { | |
1268 | s64 period = sched_avg_period(); | |
1269 | ||
1270 | while ((s64)(rq->clock - rq->age_stamp) > period) { | |
1271 | rq->age_stamp += period; | |
1272 | rq->rt_avg /= 2; | |
1273 | } | |
1274 | } | |
1275 | ||
1276 | static void sched_rt_avg_update(struct rq *rq, u64 rt_delta) | |
1277 | { | |
1278 | rq->rt_avg += rt_delta; | |
1279 | sched_avg_update(rq); | |
1280 | } | |
1281 | ||
6d6bc0ad | 1282 | #else /* !CONFIG_SMP */ |
31656519 | 1283 | static void resched_task(struct task_struct *p) |
c24d20db IM |
1284 | { |
1285 | assert_spin_locked(&task_rq(p)->lock); | |
31656519 | 1286 | set_tsk_need_resched(p); |
c24d20db | 1287 | } |
e9e9250b PZ |
1288 | |
1289 | static void sched_rt_avg_update(struct rq *rq, u64 rt_delta) | |
1290 | { | |
1291 | } | |
6d6bc0ad | 1292 | #endif /* CONFIG_SMP */ |
c24d20db | 1293 | |
45bf76df IM |
1294 | #if BITS_PER_LONG == 32 |
1295 | # define WMULT_CONST (~0UL) | |
1296 | #else | |
1297 | # define WMULT_CONST (1UL << 32) | |
1298 | #endif | |
1299 | ||
1300 | #define WMULT_SHIFT 32 | |
1301 | ||
194081eb IM |
1302 | /* |
1303 | * Shift right and round: | |
1304 | */ | |
cf2ab469 | 1305 | #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) |
194081eb | 1306 | |
a7be37ac PZ |
1307 | /* |
1308 | * delta *= weight / lw | |
1309 | */ | |
cb1c4fc9 | 1310 | static unsigned long |
45bf76df IM |
1311 | calc_delta_mine(unsigned long delta_exec, unsigned long weight, |
1312 | struct load_weight *lw) | |
1313 | { | |
1314 | u64 tmp; | |
1315 | ||
7a232e03 LJ |
1316 | if (!lw->inv_weight) { |
1317 | if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST)) | |
1318 | lw->inv_weight = 1; | |
1319 | else | |
1320 | lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2) | |
1321 | / (lw->weight+1); | |
1322 | } | |
45bf76df IM |
1323 | |
1324 | tmp = (u64)delta_exec * weight; | |
1325 | /* | |
1326 | * Check whether we'd overflow the 64-bit multiplication: | |
1327 | */ | |
194081eb | 1328 | if (unlikely(tmp > WMULT_CONST)) |
cf2ab469 | 1329 | tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight, |
194081eb IM |
1330 | WMULT_SHIFT/2); |
1331 | else | |
cf2ab469 | 1332 | tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT); |
45bf76df | 1333 | |
ecf691da | 1334 | return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); |
45bf76df IM |
1335 | } |
1336 | ||
1091985b | 1337 | static inline void update_load_add(struct load_weight *lw, unsigned long inc) |
45bf76df IM |
1338 | { |
1339 | lw->weight += inc; | |
e89996ae | 1340 | lw->inv_weight = 0; |
45bf76df IM |
1341 | } |
1342 | ||
1091985b | 1343 | static inline void update_load_sub(struct load_weight *lw, unsigned long dec) |
45bf76df IM |
1344 | { |
1345 | lw->weight -= dec; | |
e89996ae | 1346 | lw->inv_weight = 0; |
45bf76df IM |
1347 | } |
1348 | ||
2dd73a4f PW |
1349 | /* |
1350 | * To aid in avoiding the subversion of "niceness" due to uneven distribution | |
1351 | * of tasks with abnormal "nice" values across CPUs the contribution that | |
1352 | * each task makes to its run queue's load is weighted according to its | |
41a2d6cf | 1353 | * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a |
2dd73a4f PW |
1354 | * scaled version of the new time slice allocation that they receive on time |
1355 | * slice expiry etc. | |
1356 | */ | |
1357 | ||
cce7ade8 PZ |
1358 | #define WEIGHT_IDLEPRIO 3 |
1359 | #define WMULT_IDLEPRIO 1431655765 | |
dd41f596 IM |
1360 | |
1361 | /* | |
1362 | * Nice levels are multiplicative, with a gentle 10% change for every | |
1363 | * nice level changed. I.e. when a CPU-bound task goes from nice 0 to | |
1364 | * nice 1, it will get ~10% less CPU time than another CPU-bound task | |
1365 | * that remained on nice 0. | |
1366 | * | |
1367 | * The "10% effect" is relative and cumulative: from _any_ nice level, | |
1368 | * if you go up 1 level, it's -10% CPU usage, if you go down 1 level | |
f9153ee6 IM |
1369 | * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. |
1370 | * If a task goes up by ~10% and another task goes down by ~10% then | |
1371 | * the relative distance between them is ~25%.) | |
dd41f596 IM |
1372 | */ |
1373 | static const int prio_to_weight[40] = { | |
254753dc IM |
1374 | /* -20 */ 88761, 71755, 56483, 46273, 36291, |
1375 | /* -15 */ 29154, 23254, 18705, 14949, 11916, | |
1376 | /* -10 */ 9548, 7620, 6100, 4904, 3906, | |
1377 | /* -5 */ 3121, 2501, 1991, 1586, 1277, | |
1378 | /* 0 */ 1024, 820, 655, 526, 423, | |
1379 | /* 5 */ 335, 272, 215, 172, 137, | |
1380 | /* 10 */ 110, 87, 70, 56, 45, | |
1381 | /* 15 */ 36, 29, 23, 18, 15, | |
dd41f596 IM |
1382 | }; |
1383 | ||
5714d2de IM |
1384 | /* |
1385 | * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. | |
1386 | * | |
1387 | * In cases where the weight does not change often, we can use the | |
1388 | * precalculated inverse to speed up arithmetics by turning divisions | |
1389 | * into multiplications: | |
1390 | */ | |
dd41f596 | 1391 | static const u32 prio_to_wmult[40] = { |
254753dc IM |
1392 | /* -20 */ 48388, 59856, 76040, 92818, 118348, |
1393 | /* -15 */ 147320, 184698, 229616, 287308, 360437, | |
1394 | /* -10 */ 449829, 563644, 704093, 875809, 1099582, | |
1395 | /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, | |
1396 | /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, | |
1397 | /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, | |
1398 | /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, | |
1399 | /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, | |
dd41f596 | 1400 | }; |
2dd73a4f | 1401 | |
dd41f596 IM |
1402 | static void activate_task(struct rq *rq, struct task_struct *p, int wakeup); |
1403 | ||
1404 | /* | |
1405 | * runqueue iterator, to support SMP load-balancing between different | |
1406 | * scheduling classes, without having to expose their internal data | |
1407 | * structures to the load-balancing proper: | |
1408 | */ | |
1409 | struct rq_iterator { | |
1410 | void *arg; | |
1411 | struct task_struct *(*start)(void *); | |
1412 | struct task_struct *(*next)(void *); | |
1413 | }; | |
1414 | ||
e1d1484f PW |
1415 | #ifdef CONFIG_SMP |
1416 | static unsigned long | |
1417 | balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | |
1418 | unsigned long max_load_move, struct sched_domain *sd, | |
1419 | enum cpu_idle_type idle, int *all_pinned, | |
1420 | int *this_best_prio, struct rq_iterator *iterator); | |
1421 | ||
1422 | static int | |
1423 | iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | |
1424 | struct sched_domain *sd, enum cpu_idle_type idle, | |
1425 | struct rq_iterator *iterator); | |
e1d1484f | 1426 | #endif |
dd41f596 | 1427 | |
ef12fefa BR |
1428 | /* Time spent by the tasks of the cpu accounting group executing in ... */ |
1429 | enum cpuacct_stat_index { | |
1430 | CPUACCT_STAT_USER, /* ... user mode */ | |
1431 | CPUACCT_STAT_SYSTEM, /* ... kernel mode */ | |
1432 | ||
1433 | CPUACCT_STAT_NSTATS, | |
1434 | }; | |
1435 | ||
d842de87 SV |
1436 | #ifdef CONFIG_CGROUP_CPUACCT |
1437 | static void cpuacct_charge(struct task_struct *tsk, u64 cputime); | |
ef12fefa BR |
1438 | static void cpuacct_update_stats(struct task_struct *tsk, |
1439 | enum cpuacct_stat_index idx, cputime_t val); | |
d842de87 SV |
1440 | #else |
1441 | static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {} | |
ef12fefa BR |
1442 | static inline void cpuacct_update_stats(struct task_struct *tsk, |
1443 | enum cpuacct_stat_index idx, cputime_t val) {} | |
d842de87 SV |
1444 | #endif |
1445 | ||
18d95a28 PZ |
1446 | static inline void inc_cpu_load(struct rq *rq, unsigned long load) |
1447 | { | |
1448 | update_load_add(&rq->load, load); | |
1449 | } | |
1450 | ||
1451 | static inline void dec_cpu_load(struct rq *rq, unsigned long load) | |
1452 | { | |
1453 | update_load_sub(&rq->load, load); | |
1454 | } | |
1455 | ||
7940ca36 | 1456 | #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED) |
eb755805 | 1457 | typedef int (*tg_visitor)(struct task_group *, void *); |
c09595f6 PZ |
1458 | |
1459 | /* | |
1460 | * Iterate the full tree, calling @down when first entering a node and @up when | |
1461 | * leaving it for the final time. | |
1462 | */ | |
eb755805 | 1463 | static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) |
c09595f6 PZ |
1464 | { |
1465 | struct task_group *parent, *child; | |
eb755805 | 1466 | int ret; |
c09595f6 PZ |
1467 | |
1468 | rcu_read_lock(); | |
1469 | parent = &root_task_group; | |
1470 | down: | |
eb755805 PZ |
1471 | ret = (*down)(parent, data); |
1472 | if (ret) | |
1473 | goto out_unlock; | |
c09595f6 PZ |
1474 | list_for_each_entry_rcu(child, &parent->children, siblings) { |
1475 | parent = child; | |
1476 | goto down; | |
1477 | ||
1478 | up: | |
1479 | continue; | |
1480 | } | |
eb755805 PZ |
1481 | ret = (*up)(parent, data); |
1482 | if (ret) | |
1483 | goto out_unlock; | |
c09595f6 PZ |
1484 | |
1485 | child = parent; | |
1486 | parent = parent->parent; | |
1487 | if (parent) | |
1488 | goto up; | |
eb755805 | 1489 | out_unlock: |
c09595f6 | 1490 | rcu_read_unlock(); |
eb755805 PZ |
1491 | |
1492 | return ret; | |
c09595f6 PZ |
1493 | } |
1494 | ||
eb755805 PZ |
1495 | static int tg_nop(struct task_group *tg, void *data) |
1496 | { | |
1497 | return 0; | |
c09595f6 | 1498 | } |
eb755805 PZ |
1499 | #endif |
1500 | ||
1501 | #ifdef CONFIG_SMP | |
f5f08f39 PZ |
1502 | /* Used instead of source_load when we know the type == 0 */ |
1503 | static unsigned long weighted_cpuload(const int cpu) | |
1504 | { | |
1505 | return cpu_rq(cpu)->load.weight; | |
1506 | } | |
1507 | ||
1508 | /* | |
1509 | * Return a low guess at the load of a migration-source cpu weighted | |
1510 | * according to the scheduling class and "nice" value. | |
1511 | * | |
1512 | * We want to under-estimate the load of migration sources, to | |
1513 | * balance conservatively. | |
1514 | */ | |
1515 | static unsigned long source_load(int cpu, int type) | |
1516 | { | |
1517 | struct rq *rq = cpu_rq(cpu); | |
1518 | unsigned long total = weighted_cpuload(cpu); | |
1519 | ||
1520 | if (type == 0 || !sched_feat(LB_BIAS)) | |
1521 | return total; | |
1522 | ||
1523 | return min(rq->cpu_load[type-1], total); | |
1524 | } | |
1525 | ||
1526 | /* | |
1527 | * Return a high guess at the load of a migration-target cpu weighted | |
1528 | * according to the scheduling class and "nice" value. | |
1529 | */ | |
1530 | static unsigned long target_load(int cpu, int type) | |
1531 | { | |
1532 | struct rq *rq = cpu_rq(cpu); | |
1533 | unsigned long total = weighted_cpuload(cpu); | |
1534 | ||
1535 | if (type == 0 || !sched_feat(LB_BIAS)) | |
1536 | return total; | |
1537 | ||
1538 | return max(rq->cpu_load[type-1], total); | |
1539 | } | |
1540 | ||
eb755805 PZ |
1541 | static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd); |
1542 | ||
1543 | static unsigned long cpu_avg_load_per_task(int cpu) | |
1544 | { | |
1545 | struct rq *rq = cpu_rq(cpu); | |
af6d596f | 1546 | unsigned long nr_running = ACCESS_ONCE(rq->nr_running); |
eb755805 | 1547 | |
4cd42620 SR |
1548 | if (nr_running) |
1549 | rq->avg_load_per_task = rq->load.weight / nr_running; | |
a2d47777 BS |
1550 | else |
1551 | rq->avg_load_per_task = 0; | |
eb755805 PZ |
1552 | |
1553 | return rq->avg_load_per_task; | |
1554 | } | |
1555 | ||
1556 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
c09595f6 | 1557 | |
34d76c41 PZ |
1558 | struct update_shares_data { |
1559 | unsigned long rq_weight[NR_CPUS]; | |
1560 | }; | |
1561 | ||
1562 | static DEFINE_PER_CPU(struct update_shares_data, update_shares_data); | |
1563 | ||
c09595f6 PZ |
1564 | static void __set_se_shares(struct sched_entity *se, unsigned long shares); |
1565 | ||
1566 | /* | |
1567 | * Calculate and set the cpu's group shares. | |
1568 | */ | |
34d76c41 PZ |
1569 | static void update_group_shares_cpu(struct task_group *tg, int cpu, |
1570 | unsigned long sd_shares, | |
1571 | unsigned long sd_rq_weight, | |
1572 | struct update_shares_data *usd) | |
18d95a28 | 1573 | { |
34d76c41 | 1574 | unsigned long shares, rq_weight; |
a5004278 | 1575 | int boost = 0; |
c09595f6 | 1576 | |
34d76c41 | 1577 | rq_weight = usd->rq_weight[cpu]; |
a5004278 PZ |
1578 | if (!rq_weight) { |
1579 | boost = 1; | |
1580 | rq_weight = NICE_0_LOAD; | |
1581 | } | |
c8cba857 | 1582 | |
c09595f6 | 1583 | /* |
a8af7246 PZ |
1584 | * \Sum_j shares_j * rq_weight_i |
1585 | * shares_i = ----------------------------- | |
1586 | * \Sum_j rq_weight_j | |
c09595f6 | 1587 | */ |
ec4e0e2f | 1588 | shares = (sd_shares * rq_weight) / sd_rq_weight; |
ffda12a1 | 1589 | shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES); |
c09595f6 | 1590 | |
ffda12a1 PZ |
1591 | if (abs(shares - tg->se[cpu]->load.weight) > |
1592 | sysctl_sched_shares_thresh) { | |
1593 | struct rq *rq = cpu_rq(cpu); | |
1594 | unsigned long flags; | |
c09595f6 | 1595 | |
ffda12a1 | 1596 | spin_lock_irqsave(&rq->lock, flags); |
34d76c41 | 1597 | tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight; |
a5004278 | 1598 | tg->cfs_rq[cpu]->shares = boost ? 0 : shares; |
ffda12a1 PZ |
1599 | __set_se_shares(tg->se[cpu], shares); |
1600 | spin_unlock_irqrestore(&rq->lock, flags); | |
1601 | } | |
18d95a28 | 1602 | } |
c09595f6 PZ |
1603 | |
1604 | /* | |
c8cba857 PZ |
1605 | * Re-compute the task group their per cpu shares over the given domain. |
1606 | * This needs to be done in a bottom-up fashion because the rq weight of a | |
1607 | * parent group depends on the shares of its child groups. | |
c09595f6 | 1608 | */ |
eb755805 | 1609 | static int tg_shares_up(struct task_group *tg, void *data) |
c09595f6 | 1610 | { |
34d76c41 PZ |
1611 | unsigned long weight, rq_weight = 0, shares = 0; |
1612 | struct update_shares_data *usd; | |
eb755805 | 1613 | struct sched_domain *sd = data; |
34d76c41 | 1614 | unsigned long flags; |
c8cba857 | 1615 | int i; |
c09595f6 | 1616 | |
34d76c41 PZ |
1617 | if (!tg->se[0]) |
1618 | return 0; | |
1619 | ||
1620 | local_irq_save(flags); | |
1621 | usd = &__get_cpu_var(update_shares_data); | |
1622 | ||
758b2cdc | 1623 | for_each_cpu(i, sched_domain_span(sd)) { |
34d76c41 PZ |
1624 | weight = tg->cfs_rq[i]->load.weight; |
1625 | usd->rq_weight[i] = weight; | |
1626 | ||
ec4e0e2f KC |
1627 | /* |
1628 | * If there are currently no tasks on the cpu pretend there | |
1629 | * is one of average load so that when a new task gets to | |
1630 | * run here it will not get delayed by group starvation. | |
1631 | */ | |
ec4e0e2f KC |
1632 | if (!weight) |
1633 | weight = NICE_0_LOAD; | |
1634 | ||
ec4e0e2f | 1635 | rq_weight += weight; |
c8cba857 | 1636 | shares += tg->cfs_rq[i]->shares; |
c09595f6 | 1637 | } |
c09595f6 | 1638 | |
c8cba857 PZ |
1639 | if ((!shares && rq_weight) || shares > tg->shares) |
1640 | shares = tg->shares; | |
1641 | ||
1642 | if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE)) | |
1643 | shares = tg->shares; | |
c09595f6 | 1644 | |
758b2cdc | 1645 | for_each_cpu(i, sched_domain_span(sd)) |
34d76c41 PZ |
1646 | update_group_shares_cpu(tg, i, shares, rq_weight, usd); |
1647 | ||
1648 | local_irq_restore(flags); | |
eb755805 PZ |
1649 | |
1650 | return 0; | |
c09595f6 PZ |
1651 | } |
1652 | ||
1653 | /* | |
c8cba857 PZ |
1654 | * Compute the cpu's hierarchical load factor for each task group. |
1655 | * This needs to be done in a top-down fashion because the load of a child | |
1656 | * group is a fraction of its parents load. | |
c09595f6 | 1657 | */ |
eb755805 | 1658 | static int tg_load_down(struct task_group *tg, void *data) |
c09595f6 | 1659 | { |
c8cba857 | 1660 | unsigned long load; |
eb755805 | 1661 | long cpu = (long)data; |
c09595f6 | 1662 | |
c8cba857 PZ |
1663 | if (!tg->parent) { |
1664 | load = cpu_rq(cpu)->load.weight; | |
1665 | } else { | |
1666 | load = tg->parent->cfs_rq[cpu]->h_load; | |
1667 | load *= tg->cfs_rq[cpu]->shares; | |
1668 | load /= tg->parent->cfs_rq[cpu]->load.weight + 1; | |
1669 | } | |
c09595f6 | 1670 | |
c8cba857 | 1671 | tg->cfs_rq[cpu]->h_load = load; |
c09595f6 | 1672 | |
eb755805 | 1673 | return 0; |
c09595f6 PZ |
1674 | } |
1675 | ||
c8cba857 | 1676 | static void update_shares(struct sched_domain *sd) |
4d8d595d | 1677 | { |
e7097159 PZ |
1678 | s64 elapsed; |
1679 | u64 now; | |
1680 | ||
1681 | if (root_task_group_empty()) | |
1682 | return; | |
1683 | ||
1684 | now = cpu_clock(raw_smp_processor_id()); | |
1685 | elapsed = now - sd->last_update; | |
2398f2c6 PZ |
1686 | |
1687 | if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) { | |
1688 | sd->last_update = now; | |
eb755805 | 1689 | walk_tg_tree(tg_nop, tg_shares_up, sd); |
2398f2c6 | 1690 | } |
4d8d595d PZ |
1691 | } |
1692 | ||
3e5459b4 PZ |
1693 | static void update_shares_locked(struct rq *rq, struct sched_domain *sd) |
1694 | { | |
e7097159 PZ |
1695 | if (root_task_group_empty()) |
1696 | return; | |
1697 | ||
3e5459b4 PZ |
1698 | spin_unlock(&rq->lock); |
1699 | update_shares(sd); | |
1700 | spin_lock(&rq->lock); | |
1701 | } | |
1702 | ||
eb755805 | 1703 | static void update_h_load(long cpu) |
c09595f6 | 1704 | { |
e7097159 PZ |
1705 | if (root_task_group_empty()) |
1706 | return; | |
1707 | ||
eb755805 | 1708 | walk_tg_tree(tg_load_down, tg_nop, (void *)cpu); |
c09595f6 PZ |
1709 | } |
1710 | ||
c09595f6 PZ |
1711 | #else |
1712 | ||
c8cba857 | 1713 | static inline void update_shares(struct sched_domain *sd) |
4d8d595d PZ |
1714 | { |
1715 | } | |
1716 | ||
3e5459b4 PZ |
1717 | static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd) |
1718 | { | |
1719 | } | |
1720 | ||
18d95a28 PZ |
1721 | #endif |
1722 | ||
8f45e2b5 GH |
1723 | #ifdef CONFIG_PREEMPT |
1724 | ||
b78bb868 PZ |
1725 | static void double_rq_lock(struct rq *rq1, struct rq *rq2); |
1726 | ||
70574a99 | 1727 | /* |
8f45e2b5 GH |
1728 | * fair double_lock_balance: Safely acquires both rq->locks in a fair |
1729 | * way at the expense of forcing extra atomic operations in all | |
1730 | * invocations. This assures that the double_lock is acquired using the | |
1731 | * same underlying policy as the spinlock_t on this architecture, which | |
1732 | * reduces latency compared to the unfair variant below. However, it | |
1733 | * also adds more overhead and therefore may reduce throughput. | |
70574a99 | 1734 | */ |
8f45e2b5 GH |
1735 | static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) |
1736 | __releases(this_rq->lock) | |
1737 | __acquires(busiest->lock) | |
1738 | __acquires(this_rq->lock) | |
1739 | { | |
1740 | spin_unlock(&this_rq->lock); | |
1741 | double_rq_lock(this_rq, busiest); | |
1742 | ||
1743 | return 1; | |
1744 | } | |
1745 | ||
1746 | #else | |
1747 | /* | |
1748 | * Unfair double_lock_balance: Optimizes throughput at the expense of | |
1749 | * latency by eliminating extra atomic operations when the locks are | |
1750 | * already in proper order on entry. This favors lower cpu-ids and will | |
1751 | * grant the double lock to lower cpus over higher ids under contention, | |
1752 | * regardless of entry order into the function. | |
1753 | */ | |
1754 | static int _double_lock_balance(struct rq *this_rq, struct rq *busiest) | |
70574a99 AD |
1755 | __releases(this_rq->lock) |
1756 | __acquires(busiest->lock) | |
1757 | __acquires(this_rq->lock) | |
1758 | { | |
1759 | int ret = 0; | |
1760 | ||
70574a99 AD |
1761 | if (unlikely(!spin_trylock(&busiest->lock))) { |
1762 | if (busiest < this_rq) { | |
1763 | spin_unlock(&this_rq->lock); | |
1764 | spin_lock(&busiest->lock); | |
1765 | spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING); | |
1766 | ret = 1; | |
1767 | } else | |
1768 | spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING); | |
1769 | } | |
1770 | return ret; | |
1771 | } | |
1772 | ||
8f45e2b5 GH |
1773 | #endif /* CONFIG_PREEMPT */ |
1774 | ||
1775 | /* | |
1776 | * double_lock_balance - lock the busiest runqueue, this_rq is locked already. | |
1777 | */ | |
1778 | static int double_lock_balance(struct rq *this_rq, struct rq *busiest) | |
1779 | { | |
1780 | if (unlikely(!irqs_disabled())) { | |
1781 | /* printk() doesn't work good under rq->lock */ | |
1782 | spin_unlock(&this_rq->lock); | |
1783 | BUG_ON(1); | |
1784 | } | |
1785 | ||
1786 | return _double_lock_balance(this_rq, busiest); | |
1787 | } | |
1788 | ||
70574a99 AD |
1789 | static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) |
1790 | __releases(busiest->lock) | |
1791 | { | |
1792 | spin_unlock(&busiest->lock); | |
1793 | lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); | |
1794 | } | |
18d95a28 PZ |
1795 | #endif |
1796 | ||
30432094 | 1797 | #ifdef CONFIG_FAIR_GROUP_SCHED |
34e83e85 IM |
1798 | static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares) |
1799 | { | |
30432094 | 1800 | #ifdef CONFIG_SMP |
34e83e85 IM |
1801 | cfs_rq->shares = shares; |
1802 | #endif | |
1803 | } | |
30432094 | 1804 | #endif |
e7693a36 | 1805 | |
dce48a84 TG |
1806 | static void calc_load_account_active(struct rq *this_rq); |
1807 | ||
dd41f596 | 1808 | #include "sched_stats.h" |
dd41f596 | 1809 | #include "sched_idletask.c" |
5522d5d5 IM |
1810 | #include "sched_fair.c" |
1811 | #include "sched_rt.c" | |
dd41f596 IM |
1812 | #ifdef CONFIG_SCHED_DEBUG |
1813 | # include "sched_debug.c" | |
1814 | #endif | |
1815 | ||
1816 | #define sched_class_highest (&rt_sched_class) | |
1f11eb6a GH |
1817 | #define for_each_class(class) \ |
1818 | for (class = sched_class_highest; class; class = class->next) | |
dd41f596 | 1819 | |
c09595f6 | 1820 | static void inc_nr_running(struct rq *rq) |
9c217245 IM |
1821 | { |
1822 | rq->nr_running++; | |
9c217245 IM |
1823 | } |
1824 | ||
c09595f6 | 1825 | static void dec_nr_running(struct rq *rq) |
9c217245 IM |
1826 | { |
1827 | rq->nr_running--; | |
9c217245 IM |
1828 | } |
1829 | ||
45bf76df IM |
1830 | static void set_load_weight(struct task_struct *p) |
1831 | { | |
1832 | if (task_has_rt_policy(p)) { | |
dd41f596 IM |
1833 | p->se.load.weight = prio_to_weight[0] * 2; |
1834 | p->se.load.inv_weight = prio_to_wmult[0] >> 1; | |
1835 | return; | |
1836 | } | |
45bf76df | 1837 | |
dd41f596 IM |
1838 | /* |
1839 | * SCHED_IDLE tasks get minimal weight: | |
1840 | */ | |
1841 | if (p->policy == SCHED_IDLE) { | |
1842 | p->se.load.weight = WEIGHT_IDLEPRIO; | |
1843 | p->se.load.inv_weight = WMULT_IDLEPRIO; | |
1844 | return; | |
1845 | } | |
71f8bd46 | 1846 | |
dd41f596 IM |
1847 | p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO]; |
1848 | p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO]; | |
71f8bd46 IM |
1849 | } |
1850 | ||
2087a1ad GH |
1851 | static void update_avg(u64 *avg, u64 sample) |
1852 | { | |
1853 | s64 diff = sample - *avg; | |
1854 | *avg += diff >> 3; | |
1855 | } | |
1856 | ||
8159f87e | 1857 | static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) |
71f8bd46 | 1858 | { |
831451ac PZ |
1859 | if (wakeup) |
1860 | p->se.start_runtime = p->se.sum_exec_runtime; | |
1861 | ||
dd41f596 | 1862 | sched_info_queued(p); |
fd390f6a | 1863 | p->sched_class->enqueue_task(rq, p, wakeup); |
dd41f596 | 1864 | p->se.on_rq = 1; |
71f8bd46 IM |
1865 | } |
1866 | ||
69be72c1 | 1867 | static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) |
71f8bd46 | 1868 | { |
831451ac PZ |
1869 | if (sleep) { |
1870 | if (p->se.last_wakeup) { | |
1871 | update_avg(&p->se.avg_overlap, | |
1872 | p->se.sum_exec_runtime - p->se.last_wakeup); | |
1873 | p->se.last_wakeup = 0; | |
1874 | } else { | |
1875 | update_avg(&p->se.avg_wakeup, | |
1876 | sysctl_sched_wakeup_granularity); | |
1877 | } | |
2087a1ad GH |
1878 | } |
1879 | ||
46ac22ba | 1880 | sched_info_dequeued(p); |
f02231e5 | 1881 | p->sched_class->dequeue_task(rq, p, sleep); |
dd41f596 | 1882 | p->se.on_rq = 0; |
71f8bd46 IM |
1883 | } |
1884 | ||
14531189 | 1885 | /* |
dd41f596 | 1886 | * __normal_prio - return the priority that is based on the static prio |
14531189 | 1887 | */ |
14531189 IM |
1888 | static inline int __normal_prio(struct task_struct *p) |
1889 | { | |
dd41f596 | 1890 | return p->static_prio; |
14531189 IM |
1891 | } |
1892 | ||
b29739f9 IM |
1893 | /* |
1894 | * Calculate the expected normal priority: i.e. priority | |
1895 | * without taking RT-inheritance into account. Might be | |
1896 | * boosted by interactivity modifiers. Changes upon fork, | |
1897 | * setprio syscalls, and whenever the interactivity | |
1898 | * estimator recalculates. | |
1899 | */ | |
36c8b586 | 1900 | static inline int normal_prio(struct task_struct *p) |
b29739f9 IM |
1901 | { |
1902 | int prio; | |
1903 | ||
e05606d3 | 1904 | if (task_has_rt_policy(p)) |
b29739f9 IM |
1905 | prio = MAX_RT_PRIO-1 - p->rt_priority; |
1906 | else | |
1907 | prio = __normal_prio(p); | |
1908 | return prio; | |
1909 | } | |
1910 | ||
1911 | /* | |
1912 | * Calculate the current priority, i.e. the priority | |
1913 | * taken into account by the scheduler. This value might | |
1914 | * be boosted by RT tasks, or might be boosted by | |
1915 | * interactivity modifiers. Will be RT if the task got | |
1916 | * RT-boosted. If not then it returns p->normal_prio. | |
1917 | */ | |
36c8b586 | 1918 | static int effective_prio(struct task_struct *p) |
b29739f9 IM |
1919 | { |
1920 | p->normal_prio = normal_prio(p); | |
1921 | /* | |
1922 | * If we are RT tasks or we were boosted to RT priority, | |
1923 | * keep the priority unchanged. Otherwise, update priority | |
1924 | * to the normal priority: | |
1925 | */ | |
1926 | if (!rt_prio(p->prio)) | |
1927 | return p->normal_prio; | |
1928 | return p->prio; | |
1929 | } | |
1930 | ||
1da177e4 | 1931 | /* |
dd41f596 | 1932 | * activate_task - move a task to the runqueue. |
1da177e4 | 1933 | */ |
dd41f596 | 1934 | static void activate_task(struct rq *rq, struct task_struct *p, int wakeup) |
1da177e4 | 1935 | { |
d9514f6c | 1936 | if (task_contributes_to_load(p)) |
dd41f596 | 1937 | rq->nr_uninterruptible--; |
1da177e4 | 1938 | |
8159f87e | 1939 | enqueue_task(rq, p, wakeup); |
c09595f6 | 1940 | inc_nr_running(rq); |
1da177e4 LT |
1941 | } |
1942 | ||
1da177e4 LT |
1943 | /* |
1944 | * deactivate_task - remove a task from the runqueue. | |
1945 | */ | |
2e1cb74a | 1946 | static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep) |
1da177e4 | 1947 | { |
d9514f6c | 1948 | if (task_contributes_to_load(p)) |
dd41f596 IM |
1949 | rq->nr_uninterruptible++; |
1950 | ||
69be72c1 | 1951 | dequeue_task(rq, p, sleep); |
c09595f6 | 1952 | dec_nr_running(rq); |
1da177e4 LT |
1953 | } |
1954 | ||
1da177e4 LT |
1955 | /** |
1956 | * task_curr - is this task currently executing on a CPU? | |
1957 | * @p: the task in question. | |
1958 | */ | |
36c8b586 | 1959 | inline int task_curr(const struct task_struct *p) |
1da177e4 LT |
1960 | { |
1961 | return cpu_curr(task_cpu(p)) == p; | |
1962 | } | |
1963 | ||
dd41f596 IM |
1964 | static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) |
1965 | { | |
6f505b16 | 1966 | set_task_rq(p, cpu); |
dd41f596 | 1967 | #ifdef CONFIG_SMP |
ce96b5ac DA |
1968 | /* |
1969 | * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be | |
1970 | * successfuly executed on another CPU. We must ensure that updates of | |
1971 | * per-task data have been completed by this moment. | |
1972 | */ | |
1973 | smp_wmb(); | |
dd41f596 | 1974 | task_thread_info(p)->cpu = cpu; |
dd41f596 | 1975 | #endif |
2dd73a4f PW |
1976 | } |
1977 | ||
cb469845 SR |
1978 | static inline void check_class_changed(struct rq *rq, struct task_struct *p, |
1979 | const struct sched_class *prev_class, | |
1980 | int oldprio, int running) | |
1981 | { | |
1982 | if (prev_class != p->sched_class) { | |
1983 | if (prev_class->switched_from) | |
1984 | prev_class->switched_from(rq, p, running); | |
1985 | p->sched_class->switched_to(rq, p, running); | |
1986 | } else | |
1987 | p->sched_class->prio_changed(rq, p, oldprio, running); | |
1988 | } | |
1989 | ||
1da177e4 | 1990 | #ifdef CONFIG_SMP |
cc367732 IM |
1991 | /* |
1992 | * Is this task likely cache-hot: | |
1993 | */ | |
e7693a36 | 1994 | static int |
cc367732 IM |
1995 | task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) |
1996 | { | |
1997 | s64 delta; | |
1998 | ||
f540a608 IM |
1999 | /* |
2000 | * Buddy candidates are cache hot: | |
2001 | */ | |
4793241b PZ |
2002 | if (sched_feat(CACHE_HOT_BUDDY) && |
2003 | (&p->se == cfs_rq_of(&p->se)->next || | |
2004 | &p->se == cfs_rq_of(&p->se)->last)) | |
f540a608 IM |
2005 | return 1; |
2006 | ||
cc367732 IM |
2007 | if (p->sched_class != &fair_sched_class) |
2008 | return 0; | |
2009 | ||
6bc1665b IM |
2010 | if (sysctl_sched_migration_cost == -1) |
2011 | return 1; | |
2012 | if (sysctl_sched_migration_cost == 0) | |
2013 | return 0; | |
2014 | ||
cc367732 IM |
2015 | delta = now - p->se.exec_start; |
2016 | ||
2017 | return delta < (s64)sysctl_sched_migration_cost; | |
2018 | } | |
2019 | ||
2020 | ||
dd41f596 | 2021 | void set_task_cpu(struct task_struct *p, unsigned int new_cpu) |
c65cc870 | 2022 | { |
dd41f596 IM |
2023 | int old_cpu = task_cpu(p); |
2024 | struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu); | |
2830cf8c SV |
2025 | struct cfs_rq *old_cfsrq = task_cfs_rq(p), |
2026 | *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu); | |
bbdba7c0 | 2027 | u64 clock_offset; |
dd41f596 IM |
2028 | |
2029 | clock_offset = old_rq->clock - new_rq->clock; | |
6cfb0d5d | 2030 | |
de1d7286 | 2031 | trace_sched_migrate_task(p, new_cpu); |
cbc34ed1 | 2032 | |
6cfb0d5d IM |
2033 | #ifdef CONFIG_SCHEDSTATS |
2034 | if (p->se.wait_start) | |
2035 | p->se.wait_start -= clock_offset; | |
dd41f596 IM |
2036 | if (p->se.sleep_start) |
2037 | p->se.sleep_start -= clock_offset; | |
2038 | if (p->se.block_start) | |
2039 | p->se.block_start -= clock_offset; | |
6c594c21 | 2040 | #endif |
cc367732 | 2041 | if (old_cpu != new_cpu) { |
6c594c21 | 2042 | p->se.nr_migrations++; |
23a185ca | 2043 | new_rq->nr_migrations_in++; |
6c594c21 | 2044 | #ifdef CONFIG_SCHEDSTATS |
cc367732 IM |
2045 | if (task_hot(p, old_rq->clock, NULL)) |
2046 | schedstat_inc(p, se.nr_forced2_migrations); | |
6cfb0d5d | 2047 | #endif |
e5289d4a PZ |
2048 | perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS, |
2049 | 1, 1, NULL, 0); | |
6c594c21 | 2050 | } |
2830cf8c SV |
2051 | p->se.vruntime -= old_cfsrq->min_vruntime - |
2052 | new_cfsrq->min_vruntime; | |
dd41f596 IM |
2053 | |
2054 | __set_task_cpu(p, new_cpu); | |
c65cc870 IM |
2055 | } |
2056 | ||
70b97a7f | 2057 | struct migration_req { |
1da177e4 | 2058 | struct list_head list; |
1da177e4 | 2059 | |
36c8b586 | 2060 | struct task_struct *task; |
1da177e4 LT |
2061 | int dest_cpu; |
2062 | ||
1da177e4 | 2063 | struct completion done; |
70b97a7f | 2064 | }; |
1da177e4 LT |
2065 | |
2066 | /* | |
2067 | * The task's runqueue lock must be held. | |
2068 | * Returns true if you have to wait for migration thread. | |
2069 | */ | |
36c8b586 | 2070 | static int |
70b97a7f | 2071 | migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req) |
1da177e4 | 2072 | { |
70b97a7f | 2073 | struct rq *rq = task_rq(p); |
1da177e4 LT |
2074 | |
2075 | /* | |
2076 | * If the task is not on a runqueue (and not running), then | |
2077 | * it is sufficient to simply update the task's cpu field. | |
2078 | */ | |
dd41f596 | 2079 | if (!p->se.on_rq && !task_running(rq, p)) { |
1da177e4 LT |
2080 | set_task_cpu(p, dest_cpu); |
2081 | return 0; | |
2082 | } | |
2083 | ||
2084 | init_completion(&req->done); | |
1da177e4 LT |
2085 | req->task = p; |
2086 | req->dest_cpu = dest_cpu; | |
2087 | list_add(&req->list, &rq->migration_queue); | |
48f24c4d | 2088 | |
1da177e4 LT |
2089 | return 1; |
2090 | } | |
2091 | ||
a26b89f0 MM |
2092 | /* |
2093 | * wait_task_context_switch - wait for a thread to complete at least one | |
2094 | * context switch. | |
2095 | * | |
2096 | * @p must not be current. | |
2097 | */ | |
2098 | void wait_task_context_switch(struct task_struct *p) | |
2099 | { | |
2100 | unsigned long nvcsw, nivcsw, flags; | |
2101 | int running; | |
2102 | struct rq *rq; | |
2103 | ||
2104 | nvcsw = p->nvcsw; | |
2105 | nivcsw = p->nivcsw; | |
2106 | for (;;) { | |
2107 | /* | |
2108 | * The runqueue is assigned before the actual context | |
2109 | * switch. We need to take the runqueue lock. | |
2110 | * | |
2111 | * We could check initially without the lock but it is | |
2112 | * very likely that we need to take the lock in every | |
2113 | * iteration. | |
2114 | */ | |
2115 | rq = task_rq_lock(p, &flags); | |
2116 | running = task_running(rq, p); | |
2117 | task_rq_unlock(rq, &flags); | |
2118 | ||
2119 | if (likely(!running)) | |
2120 | break; | |
2121 | /* | |
2122 | * The switch count is incremented before the actual | |
2123 | * context switch. We thus wait for two switches to be | |
2124 | * sure at least one completed. | |
2125 | */ | |
2126 | if ((p->nvcsw - nvcsw) > 1) | |
2127 | break; | |
2128 | if ((p->nivcsw - nivcsw) > 1) | |
2129 | break; | |
2130 | ||
2131 | cpu_relax(); | |
2132 | } | |
2133 | } | |
2134 | ||
1da177e4 LT |
2135 | /* |
2136 | * wait_task_inactive - wait for a thread to unschedule. | |
2137 | * | |
85ba2d86 RM |
2138 | * If @match_state is nonzero, it's the @p->state value just checked and |
2139 | * not expected to change. If it changes, i.e. @p might have woken up, | |
2140 | * then return zero. When we succeed in waiting for @p to be off its CPU, | |
2141 | * we return a positive number (its total switch count). If a second call | |
2142 | * a short while later returns the same number, the caller can be sure that | |
2143 | * @p has remained unscheduled the whole time. | |
2144 | * | |
1da177e4 LT |
2145 | * The caller must ensure that the task *will* unschedule sometime soon, |
2146 | * else this function might spin for a *long* time. This function can't | |
2147 | * be called with interrupts off, or it may introduce deadlock with | |
2148 | * smp_call_function() if an IPI is sent by the same process we are | |
2149 | * waiting to become inactive. | |
2150 | */ | |
85ba2d86 | 2151 | unsigned long wait_task_inactive(struct task_struct *p, long match_state) |
1da177e4 LT |
2152 | { |
2153 | unsigned long flags; | |
dd41f596 | 2154 | int running, on_rq; |
85ba2d86 | 2155 | unsigned long ncsw; |
70b97a7f | 2156 | struct rq *rq; |
1da177e4 | 2157 | |
3a5c359a AK |
2158 | for (;;) { |
2159 | /* | |
2160 | * We do the initial early heuristics without holding | |
2161 | * any task-queue locks at all. We'll only try to get | |
2162 | * the runqueue lock when things look like they will | |
2163 | * work out! | |
2164 | */ | |
2165 | rq = task_rq(p); | |
fa490cfd | 2166 | |
3a5c359a AK |
2167 | /* |
2168 | * If the task is actively running on another CPU | |
2169 | * still, just relax and busy-wait without holding | |
2170 | * any locks. | |
2171 | * | |
2172 | * NOTE! Since we don't hold any locks, it's not | |
2173 | * even sure that "rq" stays as the right runqueue! | |
2174 | * But we don't care, since "task_running()" will | |
2175 | * return false if the runqueue has changed and p | |
2176 | * is actually now running somewhere else! | |
2177 | */ | |
85ba2d86 RM |
2178 | while (task_running(rq, p)) { |
2179 | if (match_state && unlikely(p->state != match_state)) | |
2180 | return 0; | |
3a5c359a | 2181 | cpu_relax(); |
85ba2d86 | 2182 | } |
fa490cfd | 2183 | |
3a5c359a AK |
2184 | /* |
2185 | * Ok, time to look more closely! We need the rq | |
2186 | * lock now, to be *sure*. If we're wrong, we'll | |
2187 | * just go back and repeat. | |
2188 | */ | |
2189 | rq = task_rq_lock(p, &flags); | |
0a16b607 | 2190 | trace_sched_wait_task(rq, p); |
3a5c359a AK |
2191 | running = task_running(rq, p); |
2192 | on_rq = p->se.on_rq; | |
85ba2d86 | 2193 | ncsw = 0; |
f31e11d8 | 2194 | if (!match_state || p->state == match_state) |
93dcf55f | 2195 | ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ |
3a5c359a | 2196 | task_rq_unlock(rq, &flags); |
fa490cfd | 2197 | |
85ba2d86 RM |
2198 | /* |
2199 | * If it changed from the expected state, bail out now. | |
2200 | */ | |
2201 | if (unlikely(!ncsw)) | |
2202 | break; | |
2203 | ||
3a5c359a AK |
2204 | /* |
2205 | * Was it really running after all now that we | |
2206 | * checked with the proper locks actually held? | |
2207 | * | |
2208 | * Oops. Go back and try again.. | |
2209 | */ | |
2210 | if (unlikely(running)) { | |
2211 | cpu_relax(); | |
2212 | continue; | |
2213 | } | |
fa490cfd | 2214 | |
3a5c359a AK |
2215 | /* |
2216 | * It's not enough that it's not actively running, | |
2217 | * it must be off the runqueue _entirely_, and not | |
2218 | * preempted! | |
2219 | * | |
80dd99b3 | 2220 | * So if it was still runnable (but just not actively |
3a5c359a AK |
2221 | * running right now), it's preempted, and we should |
2222 | * yield - it could be a while. | |
2223 | */ | |
2224 | if (unlikely(on_rq)) { | |
2225 | schedule_timeout_uninterruptible(1); | |
2226 | continue; | |
2227 | } | |
fa490cfd | 2228 | |
3a5c359a AK |
2229 | /* |
2230 | * Ahh, all good. It wasn't running, and it wasn't | |
2231 | * runnable, which means that it will never become | |
2232 | * running in the future either. We're all done! | |
2233 | */ | |
2234 | break; | |
2235 | } | |
85ba2d86 RM |
2236 | |
2237 | return ncsw; | |
1da177e4 LT |
2238 | } |
2239 | ||
2240 | /*** | |
2241 | * kick_process - kick a running thread to enter/exit the kernel | |
2242 | * @p: the to-be-kicked thread | |
2243 | * | |
2244 | * Cause a process which is running on another CPU to enter | |
2245 | * kernel-mode, without any delay. (to get signals handled.) | |
2246 | * | |
2247 | * NOTE: this function doesnt have to take the runqueue lock, | |
2248 | * because all it wants to ensure is that the remote task enters | |
2249 | * the kernel. If the IPI races and the task has been migrated | |
2250 | * to another CPU then no harm is done and the purpose has been | |
2251 | * achieved as well. | |
2252 | */ | |
36c8b586 | 2253 | void kick_process(struct task_struct *p) |
1da177e4 LT |
2254 | { |
2255 | int cpu; | |
2256 | ||
2257 | preempt_disable(); | |
2258 | cpu = task_cpu(p); | |
2259 | if ((cpu != smp_processor_id()) && task_curr(p)) | |
2260 | smp_send_reschedule(cpu); | |
2261 | preempt_enable(); | |
2262 | } | |
b43e3521 | 2263 | EXPORT_SYMBOL_GPL(kick_process); |
476d139c | 2264 | #endif /* CONFIG_SMP */ |
1da177e4 | 2265 | |
0793a61d TG |
2266 | /** |
2267 | * task_oncpu_function_call - call a function on the cpu on which a task runs | |
2268 | * @p: the task to evaluate | |
2269 | * @func: the function to be called | |
2270 | * @info: the function call argument | |
2271 | * | |
2272 | * Calls the function @func when the task is currently running. This might | |
2273 | * be on the current CPU, which just calls the function directly | |
2274 | */ | |
2275 | void task_oncpu_function_call(struct task_struct *p, | |
2276 | void (*func) (void *info), void *info) | |
2277 | { | |
2278 | int cpu; | |
2279 | ||
2280 | preempt_disable(); | |
2281 | cpu = task_cpu(p); | |
2282 | if (task_curr(p)) | |
2283 | smp_call_function_single(cpu, func, info, 1); | |
2284 | preempt_enable(); | |
2285 | } | |
2286 | ||
1da177e4 LT |
2287 | /*** |
2288 | * try_to_wake_up - wake up a thread | |
2289 | * @p: the to-be-woken-up thread | |
2290 | * @state: the mask of task states that can be woken | |
2291 | * @sync: do a synchronous wakeup? | |
2292 | * | |
2293 | * Put it on the run-queue if it's not already there. The "current" | |
2294 | * thread is always on the run-queue (except when the actual | |
2295 | * re-schedule is in progress), and as such you're allowed to do | |
2296 | * the simpler "current->state = TASK_RUNNING" to mark yourself | |
2297 | * runnable without the overhead of this. | |
2298 | * | |
2299 | * returns failure only if the task is already active. | |
2300 | */ | |
36c8b586 | 2301 | static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) |
1da177e4 | 2302 | { |
cc367732 | 2303 | int cpu, orig_cpu, this_cpu, success = 0; |
1da177e4 | 2304 | unsigned long flags; |
70b97a7f | 2305 | struct rq *rq; |
1da177e4 | 2306 | |
b85d0667 IM |
2307 | if (!sched_feat(SYNC_WAKEUPS)) |
2308 | sync = 0; | |
2309 | ||
e9c84311 PZ |
2310 | this_cpu = get_cpu(); |
2311 | ||
04e2f174 | 2312 | smp_wmb(); |
1da177e4 | 2313 | rq = task_rq_lock(p, &flags); |
03e89e45 | 2314 | update_rq_clock(rq); |
e9c84311 | 2315 | if (!(p->state & state)) |
1da177e4 LT |
2316 | goto out; |
2317 | ||
dd41f596 | 2318 | if (p->se.on_rq) |
1da177e4 LT |
2319 | goto out_running; |
2320 | ||
2321 | cpu = task_cpu(p); | |
cc367732 | 2322 | orig_cpu = cpu; |
1da177e4 LT |
2323 | |
2324 | #ifdef CONFIG_SMP | |
2325 | if (unlikely(task_running(rq, p))) | |
2326 | goto out_activate; | |
2327 | ||
e9c84311 PZ |
2328 | /* |
2329 | * In order to handle concurrent wakeups and release the rq->lock | |
2330 | * we put the task in TASK_WAKING state. | |
2331 | */ | |
2332 | p->state = TASK_WAKING; | |
2333 | task_rq_unlock(rq, &flags); | |
2334 | ||
5f3edc1b | 2335 | cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, sync); |
e9c84311 | 2336 | if (cpu != orig_cpu) |
5d2f5a61 | 2337 | set_task_cpu(p, cpu); |
1da177e4 | 2338 | |
e9c84311 PZ |
2339 | rq = task_rq_lock(p, &flags); |
2340 | WARN_ON(p->state != TASK_WAKING); | |
2341 | cpu = task_cpu(p); | |
1da177e4 | 2342 | |
e7693a36 GH |
2343 | #ifdef CONFIG_SCHEDSTATS |
2344 | schedstat_inc(rq, ttwu_count); | |
2345 | if (cpu == this_cpu) | |
2346 | schedstat_inc(rq, ttwu_local); | |
2347 | else { | |
2348 | struct sched_domain *sd; | |
2349 | for_each_domain(this_cpu, sd) { | |
758b2cdc | 2350 | if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { |
e7693a36 GH |
2351 | schedstat_inc(sd, ttwu_wake_remote); |
2352 | break; | |
2353 | } | |
2354 | } | |
2355 | } | |
6d6bc0ad | 2356 | #endif /* CONFIG_SCHEDSTATS */ |
e7693a36 | 2357 | |
1da177e4 LT |
2358 | out_activate: |
2359 | #endif /* CONFIG_SMP */ | |
cc367732 IM |
2360 | schedstat_inc(p, se.nr_wakeups); |
2361 | if (sync) | |
2362 | schedstat_inc(p, se.nr_wakeups_sync); | |
2363 | if (orig_cpu != cpu) | |
2364 | schedstat_inc(p, se.nr_wakeups_migrate); | |
2365 | if (cpu == this_cpu) | |
2366 | schedstat_inc(p, se.nr_wakeups_local); | |
2367 | else | |
2368 | schedstat_inc(p, se.nr_wakeups_remote); | |
dd41f596 | 2369 | activate_task(rq, p, 1); |
1da177e4 LT |
2370 | success = 1; |
2371 | ||
831451ac PZ |
2372 | /* |
2373 | * Only attribute actual wakeups done by this task. | |
2374 | */ | |
2375 | if (!in_interrupt()) { | |
2376 | struct sched_entity *se = ¤t->se; | |
2377 | u64 sample = se->sum_exec_runtime; | |
2378 | ||
2379 | if (se->last_wakeup) | |
2380 | sample -= se->last_wakeup; | |
2381 | else | |
2382 | sample -= se->start_runtime; | |
2383 | update_avg(&se->avg_wakeup, sample); | |
2384 | ||
2385 | se->last_wakeup = se->sum_exec_runtime; | |
2386 | } | |
2387 | ||
1da177e4 | 2388 | out_running: |
468a15bb | 2389 | trace_sched_wakeup(rq, p, success); |
15afe09b | 2390 | check_preempt_curr(rq, p, sync); |
4ae7d5ce | 2391 | |
1da177e4 | 2392 | p->state = TASK_RUNNING; |
9a897c5a SR |
2393 | #ifdef CONFIG_SMP |
2394 | if (p->sched_class->task_wake_up) | |
2395 | p->sched_class->task_wake_up(rq, p); | |
2396 | #endif | |
1da177e4 LT |
2397 | out: |
2398 | task_rq_unlock(rq, &flags); | |
e9c84311 | 2399 | put_cpu(); |
1da177e4 LT |
2400 | |
2401 | return success; | |
2402 | } | |
2403 | ||
50fa610a DH |
2404 | /** |
2405 | * wake_up_process - Wake up a specific process | |
2406 | * @p: The process to be woken up. | |
2407 | * | |
2408 | * Attempt to wake up the nominated process and move it to the set of runnable | |
2409 | * processes. Returns 1 if the process was woken up, 0 if it was already | |
2410 | * running. | |
2411 | * | |
2412 | * It may be assumed that this function implies a write memory barrier before | |
2413 | * changing the task state if and only if any tasks are woken up. | |
2414 | */ | |
7ad5b3a5 | 2415 | int wake_up_process(struct task_struct *p) |
1da177e4 | 2416 | { |
d9514f6c | 2417 | return try_to_wake_up(p, TASK_ALL, 0); |
1da177e4 | 2418 | } |
1da177e4 LT |
2419 | EXPORT_SYMBOL(wake_up_process); |
2420 | ||
7ad5b3a5 | 2421 | int wake_up_state(struct task_struct *p, unsigned int state) |
1da177e4 LT |
2422 | { |
2423 | return try_to_wake_up(p, state, 0); | |
2424 | } | |
2425 | ||
1da177e4 LT |
2426 | /* |
2427 | * Perform scheduler related setup for a newly forked process p. | |
2428 | * p is forked by current. | |
dd41f596 IM |
2429 | * |
2430 | * __sched_fork() is basic setup used by init_idle() too: | |
2431 | */ | |
2432 | static void __sched_fork(struct task_struct *p) | |
2433 | { | |
dd41f596 IM |
2434 | p->se.exec_start = 0; |
2435 | p->se.sum_exec_runtime = 0; | |
f6cf891c | 2436 | p->se.prev_sum_exec_runtime = 0; |
6c594c21 | 2437 | p->se.nr_migrations = 0; |
4ae7d5ce IM |
2438 | p->se.last_wakeup = 0; |
2439 | p->se.avg_overlap = 0; | |
831451ac PZ |
2440 | p->se.start_runtime = 0; |
2441 | p->se.avg_wakeup = sysctl_sched_wakeup_granularity; | |
6cfb0d5d IM |
2442 | |
2443 | #ifdef CONFIG_SCHEDSTATS | |
7793527b LDM |
2444 | p->se.wait_start = 0; |
2445 | p->se.wait_max = 0; | |
2446 | p->se.wait_count = 0; | |
2447 | p->se.wait_sum = 0; | |
2448 | ||
2449 | p->se.sleep_start = 0; | |
2450 | p->se.sleep_max = 0; | |
2451 | p->se.sum_sleep_runtime = 0; | |
2452 | ||
2453 | p->se.block_start = 0; | |
2454 | p->se.block_max = 0; | |
2455 | p->se.exec_max = 0; | |
2456 | p->se.slice_max = 0; | |
2457 | ||
2458 | p->se.nr_migrations_cold = 0; | |
2459 | p->se.nr_failed_migrations_affine = 0; | |
2460 | p->se.nr_failed_migrations_running = 0; | |
2461 | p->se.nr_failed_migrations_hot = 0; | |
2462 | p->se.nr_forced_migrations = 0; | |
2463 | p->se.nr_forced2_migrations = 0; | |
2464 | ||
2465 | p->se.nr_wakeups = 0; | |
2466 | p->se.nr_wakeups_sync = 0; | |
2467 | p->se.nr_wakeups_migrate = 0; | |
2468 | p->se.nr_wakeups_local = 0; | |
2469 | p->se.nr_wakeups_remote = 0; | |
2470 | p->se.nr_wakeups_affine = 0; | |
2471 | p->se.nr_wakeups_affine_attempts = 0; | |
2472 | p->se.nr_wakeups_passive = 0; | |
2473 | p->se.nr_wakeups_idle = 0; | |
2474 | ||
6cfb0d5d | 2475 | #endif |
476d139c | 2476 | |
fa717060 | 2477 | INIT_LIST_HEAD(&p->rt.run_list); |
dd41f596 | 2478 | p->se.on_rq = 0; |
4a55bd5e | 2479 | INIT_LIST_HEAD(&p->se.group_node); |
476d139c | 2480 | |
e107be36 AK |
2481 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
2482 | INIT_HLIST_HEAD(&p->preempt_notifiers); | |
2483 | #endif | |
2484 | ||
1da177e4 LT |
2485 | /* |
2486 | * We mark the process as running here, but have not actually | |
2487 | * inserted it onto the runqueue yet. This guarantees that | |
2488 | * nobody will actually run it, and a signal or other external | |
2489 | * event cannot wake it up and insert it on the runqueue either. | |
2490 | */ | |
2491 | p->state = TASK_RUNNING; | |
dd41f596 IM |
2492 | } |
2493 | ||
2494 | /* | |
2495 | * fork()/clone()-time setup: | |
2496 | */ | |
2497 | void sched_fork(struct task_struct *p, int clone_flags) | |
2498 | { | |
2499 | int cpu = get_cpu(); | |
2500 | ||
2501 | __sched_fork(p); | |
2502 | ||
b29739f9 | 2503 | /* |
b9dc29e7 | 2504 | * Make sure we do not leak PI boosting priority to the child. |
b29739f9 IM |
2505 | */ |
2506 | p->prio = current->normal_prio; | |
ca94c442 | 2507 | |
b9dc29e7 MG |
2508 | /* |
2509 | * Revert to default priority/policy on fork if requested. | |
2510 | */ | |
2511 | if (unlikely(p->sched_reset_on_fork)) { | |
2512 | if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) | |
2513 | p->policy = SCHED_NORMAL; | |
2514 | ||
2515 | if (p->normal_prio < DEFAULT_PRIO) | |
2516 | p->prio = DEFAULT_PRIO; | |
2517 | ||
6c697bdf MG |
2518 | if (PRIO_TO_NICE(p->static_prio) < 0) { |
2519 | p->static_prio = NICE_TO_PRIO(0); | |
2520 | set_load_weight(p); | |
2521 | } | |
2522 | ||
b9dc29e7 MG |
2523 | /* |
2524 | * We don't need the reset flag anymore after the fork. It has | |
2525 | * fulfilled its duty: | |
2526 | */ | |
2527 | p->sched_reset_on_fork = 0; | |
2528 | } | |
ca94c442 | 2529 | |
2ddbf952 HS |
2530 | if (!rt_prio(p->prio)) |
2531 | p->sched_class = &fair_sched_class; | |
b29739f9 | 2532 | |
5f3edc1b PZ |
2533 | #ifdef CONFIG_SMP |
2534 | cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0); | |
2535 | #endif | |
2536 | set_task_cpu(p, cpu); | |
2537 | ||
52f17b6c | 2538 | #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) |
dd41f596 | 2539 | if (likely(sched_info_on())) |
52f17b6c | 2540 | memset(&p->sched_info, 0, sizeof(p->sched_info)); |
1da177e4 | 2541 | #endif |
d6077cb8 | 2542 | #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) |
4866cde0 NP |
2543 | p->oncpu = 0; |
2544 | #endif | |
1da177e4 | 2545 | #ifdef CONFIG_PREEMPT |
4866cde0 | 2546 | /* Want to start with kernel preemption disabled. */ |
a1261f54 | 2547 | task_thread_info(p)->preempt_count = 1; |
1da177e4 | 2548 | #endif |
917b627d GH |
2549 | plist_node_init(&p->pushable_tasks, MAX_PRIO); |
2550 | ||
476d139c | 2551 | put_cpu(); |
1da177e4 LT |
2552 | } |
2553 | ||
2554 | /* | |
2555 | * wake_up_new_task - wake up a newly created task for the first time. | |
2556 | * | |
2557 | * This function will do some initial scheduler statistics housekeeping | |
2558 | * that must be done for every newly created context, then puts the task | |
2559 | * on the runqueue and wakes it. | |
2560 | */ | |
7ad5b3a5 | 2561 | void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) |
1da177e4 LT |
2562 | { |
2563 | unsigned long flags; | |
dd41f596 | 2564 | struct rq *rq; |
1da177e4 LT |
2565 | |
2566 | rq = task_rq_lock(p, &flags); | |
147cbb4b | 2567 | BUG_ON(p->state != TASK_RUNNING); |
a8e504d2 | 2568 | update_rq_clock(rq); |
1da177e4 LT |
2569 | |
2570 | p->prio = effective_prio(p); | |
2571 | ||
b9dca1e0 | 2572 | if (!p->sched_class->task_new || !current->se.on_rq) { |
dd41f596 | 2573 | activate_task(rq, p, 0); |
1da177e4 | 2574 | } else { |
1da177e4 | 2575 | /* |
dd41f596 IM |
2576 | * Let the scheduling class do new task startup |
2577 | * management (if any): | |
1da177e4 | 2578 | */ |
ee0827d8 | 2579 | p->sched_class->task_new(rq, p); |
c09595f6 | 2580 | inc_nr_running(rq); |
1da177e4 | 2581 | } |
c71dd42d | 2582 | trace_sched_wakeup_new(rq, p, 1); |
15afe09b | 2583 | check_preempt_curr(rq, p, 0); |
9a897c5a SR |
2584 | #ifdef CONFIG_SMP |
2585 | if (p->sched_class->task_wake_up) | |
2586 | p->sched_class->task_wake_up(rq, p); | |
2587 | #endif | |
dd41f596 | 2588 | task_rq_unlock(rq, &flags); |
1da177e4 LT |
2589 | } |
2590 | ||
e107be36 AK |
2591 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
2592 | ||
2593 | /** | |
80dd99b3 | 2594 | * preempt_notifier_register - tell me when current is being preempted & rescheduled |
421cee29 | 2595 | * @notifier: notifier struct to register |
e107be36 AK |
2596 | */ |
2597 | void preempt_notifier_register(struct preempt_notifier *notifier) | |
2598 | { | |
2599 | hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); | |
2600 | } | |
2601 | EXPORT_SYMBOL_GPL(preempt_notifier_register); | |
2602 | ||
2603 | /** | |
2604 | * preempt_notifier_unregister - no longer interested in preemption notifications | |
421cee29 | 2605 | * @notifier: notifier struct to unregister |
e107be36 AK |
2606 | * |
2607 | * This is safe to call from within a preemption notifier. | |
2608 | */ | |
2609 | void preempt_notifier_unregister(struct preempt_notifier *notifier) | |
2610 | { | |
2611 | hlist_del(¬ifier->link); | |
2612 | } | |
2613 | EXPORT_SYMBOL_GPL(preempt_notifier_unregister); | |
2614 | ||
2615 | static void fire_sched_in_preempt_notifiers(struct task_struct *curr) | |
2616 | { | |
2617 | struct preempt_notifier *notifier; | |
2618 | struct hlist_node *node; | |
2619 | ||
2620 | hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) | |
2621 | notifier->ops->sched_in(notifier, raw_smp_processor_id()); | |
2622 | } | |
2623 | ||
2624 | static void | |
2625 | fire_sched_out_preempt_notifiers(struct task_struct *curr, | |
2626 | struct task_struct *next) | |
2627 | { | |
2628 | struct preempt_notifier *notifier; | |
2629 | struct hlist_node *node; | |
2630 | ||
2631 | hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) | |
2632 | notifier->ops->sched_out(notifier, next); | |
2633 | } | |
2634 | ||
6d6bc0ad | 2635 | #else /* !CONFIG_PREEMPT_NOTIFIERS */ |
e107be36 AK |
2636 | |
2637 | static void fire_sched_in_preempt_notifiers(struct task_struct *curr) | |
2638 | { | |
2639 | } | |
2640 | ||
2641 | static void | |
2642 | fire_sched_out_preempt_notifiers(struct task_struct *curr, | |
2643 | struct task_struct *next) | |
2644 | { | |
2645 | } | |
2646 | ||
6d6bc0ad | 2647 | #endif /* CONFIG_PREEMPT_NOTIFIERS */ |
e107be36 | 2648 | |
4866cde0 NP |
2649 | /** |
2650 | * prepare_task_switch - prepare to switch tasks | |
2651 | * @rq: the runqueue preparing to switch | |
421cee29 | 2652 | * @prev: the current task that is being switched out |
4866cde0 NP |
2653 | * @next: the task we are going to switch to. |
2654 | * | |
2655 | * This is called with the rq lock held and interrupts off. It must | |
2656 | * be paired with a subsequent finish_task_switch after the context | |
2657 | * switch. | |
2658 | * | |
2659 | * prepare_task_switch sets up locking and calls architecture specific | |
2660 | * hooks. | |
2661 | */ | |
e107be36 AK |
2662 | static inline void |
2663 | prepare_task_switch(struct rq *rq, struct task_struct *prev, | |
2664 | struct task_struct *next) | |
4866cde0 | 2665 | { |
e107be36 | 2666 | fire_sched_out_preempt_notifiers(prev, next); |
4866cde0 NP |
2667 | prepare_lock_switch(rq, next); |
2668 | prepare_arch_switch(next); | |
2669 | } | |
2670 | ||
1da177e4 LT |
2671 | /** |
2672 | * finish_task_switch - clean up after a task-switch | |
344babaa | 2673 | * @rq: runqueue associated with task-switch |
1da177e4 LT |
2674 | * @prev: the thread we just switched away from. |
2675 | * | |
4866cde0 NP |
2676 | * finish_task_switch must be called after the context switch, paired |
2677 | * with a prepare_task_switch call before the context switch. | |
2678 | * finish_task_switch will reconcile locking set up by prepare_task_switch, | |
2679 | * and do any other architecture-specific cleanup actions. | |
1da177e4 LT |
2680 | * |
2681 | * Note that we may have delayed dropping an mm in context_switch(). If | |
41a2d6cf | 2682 | * so, we finish that here outside of the runqueue lock. (Doing it |
1da177e4 LT |
2683 | * with the lock held can cause deadlocks; see schedule() for |
2684 | * details.) | |
2685 | */ | |
a9957449 | 2686 | static void finish_task_switch(struct rq *rq, struct task_struct *prev) |
1da177e4 LT |
2687 | __releases(rq->lock) |
2688 | { | |
1da177e4 | 2689 | struct mm_struct *mm = rq->prev_mm; |
55a101f8 | 2690 | long prev_state; |
1da177e4 LT |
2691 | |
2692 | rq->prev_mm = NULL; | |
2693 | ||
2694 | /* | |
2695 | * A task struct has one reference for the use as "current". | |
c394cc9f | 2696 | * If a task dies, then it sets TASK_DEAD in tsk->state and calls |
55a101f8 ON |
2697 | * schedule one last time. The schedule call will never return, and |
2698 | * the scheduled task must drop that reference. | |
c394cc9f | 2699 | * The test for TASK_DEAD must occur while the runqueue locks are |
1da177e4 LT |
2700 | * still held, otherwise prev could be scheduled on another cpu, die |
2701 | * there before we look at prev->state, and then the reference would | |
2702 | * be dropped twice. | |
2703 | * Manfred Spraul <[email protected]> | |
2704 | */ | |
55a101f8 | 2705 | prev_state = prev->state; |
4866cde0 | 2706 | finish_arch_switch(prev); |
0793a61d | 2707 | perf_counter_task_sched_in(current, cpu_of(rq)); |
4866cde0 | 2708 | finish_lock_switch(rq, prev); |
e8fa1362 | 2709 | |
e107be36 | 2710 | fire_sched_in_preempt_notifiers(current); |
1da177e4 LT |
2711 | if (mm) |
2712 | mmdrop(mm); | |
c394cc9f | 2713 | if (unlikely(prev_state == TASK_DEAD)) { |
c6fd91f0 | 2714 | /* |
2715 | * Remove function-return probe instances associated with this | |
2716 | * task and put them back on the free list. | |
9761eea8 | 2717 | */ |
c6fd91f0 | 2718 | kprobe_flush_task(prev); |
1da177e4 | 2719 | put_task_struct(prev); |
c6fd91f0 | 2720 | } |
1da177e4 LT |
2721 | } |
2722 | ||
3f029d3c GH |
2723 | #ifdef CONFIG_SMP |
2724 | ||
2725 | /* assumes rq->lock is held */ | |
2726 | static inline void pre_schedule(struct rq *rq, struct task_struct *prev) | |
2727 | { | |
2728 | if (prev->sched_class->pre_schedule) | |
2729 | prev->sched_class->pre_schedule(rq, prev); | |
2730 | } | |
2731 | ||
2732 | /* rq->lock is NOT held, but preemption is disabled */ | |
2733 | static inline void post_schedule(struct rq *rq) | |
2734 | { | |
2735 | if (rq->post_schedule) { | |
2736 | unsigned long flags; | |
2737 | ||
2738 | spin_lock_irqsave(&rq->lock, flags); | |
2739 | if (rq->curr->sched_class->post_schedule) | |
2740 | rq->curr->sched_class->post_schedule(rq); | |
2741 | spin_unlock_irqrestore(&rq->lock, flags); | |
2742 | ||
2743 | rq->post_schedule = 0; | |
2744 | } | |
2745 | } | |
2746 | ||
2747 | #else | |
da19ab51 | 2748 | |
3f029d3c GH |
2749 | static inline void pre_schedule(struct rq *rq, struct task_struct *p) |
2750 | { | |
2751 | } | |
2752 | ||
2753 | static inline void post_schedule(struct rq *rq) | |
2754 | { | |
1da177e4 LT |
2755 | } |
2756 | ||
3f029d3c GH |
2757 | #endif |
2758 | ||
1da177e4 LT |
2759 | /** |
2760 | * schedule_tail - first thing a freshly forked thread must call. | |
2761 | * @prev: the thread we just switched away from. | |
2762 | */ | |
36c8b586 | 2763 | asmlinkage void schedule_tail(struct task_struct *prev) |
1da177e4 LT |
2764 | __releases(rq->lock) |
2765 | { | |
70b97a7f IM |
2766 | struct rq *rq = this_rq(); |
2767 | ||
4866cde0 | 2768 | finish_task_switch(rq, prev); |
da19ab51 | 2769 | |
3f029d3c GH |
2770 | /* |
2771 | * FIXME: do we need to worry about rq being invalidated by the | |
2772 | * task_switch? | |
2773 | */ | |
2774 | post_schedule(rq); | |
70b97a7f | 2775 | |
4866cde0 NP |
2776 | #ifdef __ARCH_WANT_UNLOCKED_CTXSW |
2777 | /* In this case, finish_task_switch does not reenable preemption */ | |
2778 | preempt_enable(); | |
2779 | #endif | |
1da177e4 | 2780 | if (current->set_child_tid) |
b488893a | 2781 | put_user(task_pid_vnr(current), current->set_child_tid); |
1da177e4 LT |
2782 | } |
2783 | ||
2784 | /* | |
2785 | * context_switch - switch to the new MM and the new | |
2786 | * thread's register state. | |
2787 | */ | |
dd41f596 | 2788 | static inline void |
70b97a7f | 2789 | context_switch(struct rq *rq, struct task_struct *prev, |
36c8b586 | 2790 | struct task_struct *next) |
1da177e4 | 2791 | { |
dd41f596 | 2792 | struct mm_struct *mm, *oldmm; |
1da177e4 | 2793 | |
e107be36 | 2794 | prepare_task_switch(rq, prev, next); |
0a16b607 | 2795 | trace_sched_switch(rq, prev, next); |
dd41f596 IM |
2796 | mm = next->mm; |
2797 | oldmm = prev->active_mm; | |
9226d125 ZA |
2798 | /* |
2799 | * For paravirt, this is coupled with an exit in switch_to to | |
2800 | * combine the page table reload and the switch backend into | |
2801 | * one hypercall. | |
2802 | */ | |
224101ed | 2803 | arch_start_context_switch(prev); |
9226d125 | 2804 | |
dd41f596 | 2805 | if (unlikely(!mm)) { |
1da177e4 LT |
2806 | next->active_mm = oldmm; |
2807 | atomic_inc(&oldmm->mm_count); | |
2808 | enter_lazy_tlb(oldmm, next); | |
2809 | } else | |
2810 | switch_mm(oldmm, mm, next); | |
2811 | ||
dd41f596 | 2812 | if (unlikely(!prev->mm)) { |
1da177e4 | 2813 | prev->active_mm = NULL; |
1da177e4 LT |
2814 | rq->prev_mm = oldmm; |
2815 | } | |
3a5f5e48 IM |
2816 | /* |
2817 | * Since the runqueue lock will be released by the next | |
2818 | * task (which is an invalid locking op but in the case | |
2819 | * of the scheduler it's an obvious special-case), so we | |
2820 | * do an early lockdep release here: | |
2821 | */ | |
2822 | #ifndef __ARCH_WANT_UNLOCKED_CTXSW | |
8a25d5de | 2823 | spin_release(&rq->lock.dep_map, 1, _THIS_IP_); |
3a5f5e48 | 2824 | #endif |
1da177e4 LT |
2825 | |
2826 | /* Here we just switch the register state and the stack. */ | |
2827 | switch_to(prev, next, prev); | |
2828 | ||
dd41f596 IM |
2829 | barrier(); |
2830 | /* | |
2831 | * this_rq must be evaluated again because prev may have moved | |
2832 | * CPUs since it called schedule(), thus the 'rq' on its stack | |
2833 | * frame will be invalid. | |
2834 | */ | |
2835 | finish_task_switch(this_rq(), prev); | |
1da177e4 LT |
2836 | } |
2837 | ||
2838 | /* | |
2839 | * nr_running, nr_uninterruptible and nr_context_switches: | |
2840 | * | |
2841 | * externally visible scheduler statistics: current number of runnable | |
2842 | * threads, current number of uninterruptible-sleeping threads, total | |
2843 | * number of context switches performed since bootup. | |
2844 | */ | |
2845 | unsigned long nr_running(void) | |
2846 | { | |
2847 | unsigned long i, sum = 0; | |
2848 | ||
2849 | for_each_online_cpu(i) | |
2850 | sum += cpu_rq(i)->nr_running; | |
2851 | ||
2852 | return sum; | |
2853 | } | |
2854 | ||
2855 | unsigned long nr_uninterruptible(void) | |
2856 | { | |
2857 | unsigned long i, sum = 0; | |
2858 | ||
0a945022 | 2859 | for_each_possible_cpu(i) |
1da177e4 LT |
2860 | sum += cpu_rq(i)->nr_uninterruptible; |
2861 | ||
2862 | /* | |
2863 | * Since we read the counters lockless, it might be slightly | |
2864 | * inaccurate. Do not allow it to go below zero though: | |
2865 | */ | |
2866 | if (unlikely((long)sum < 0)) | |
2867 | sum = 0; | |
2868 | ||
2869 | return sum; | |
2870 | } | |
2871 | ||
2872 | unsigned long long nr_context_switches(void) | |
2873 | { | |
cc94abfc SR |
2874 | int i; |
2875 | unsigned long long sum = 0; | |
1da177e4 | 2876 | |
0a945022 | 2877 | for_each_possible_cpu(i) |
1da177e4 LT |
2878 | sum += cpu_rq(i)->nr_switches; |
2879 | ||
2880 | return sum; | |
2881 | } | |
2882 | ||
2883 | unsigned long nr_iowait(void) | |
2884 | { | |
2885 | unsigned long i, sum = 0; | |
2886 | ||
0a945022 | 2887 | for_each_possible_cpu(i) |
1da177e4 LT |
2888 | sum += atomic_read(&cpu_rq(i)->nr_iowait); |
2889 | ||
2890 | return sum; | |
2891 | } | |
2892 | ||
dce48a84 TG |
2893 | /* Variables and functions for calc_load */ |
2894 | static atomic_long_t calc_load_tasks; | |
2895 | static unsigned long calc_load_update; | |
2896 | unsigned long avenrun[3]; | |
2897 | EXPORT_SYMBOL(avenrun); | |
2898 | ||
2d02494f TG |
2899 | /** |
2900 | * get_avenrun - get the load average array | |
2901 | * @loads: pointer to dest load array | |
2902 | * @offset: offset to add | |
2903 | * @shift: shift count to shift the result left | |
2904 | * | |
2905 | * These values are estimates at best, so no need for locking. | |
2906 | */ | |
2907 | void get_avenrun(unsigned long *loads, unsigned long offset, int shift) | |
2908 | { | |
2909 | loads[0] = (avenrun[0] + offset) << shift; | |
2910 | loads[1] = (avenrun[1] + offset) << shift; | |
2911 | loads[2] = (avenrun[2] + offset) << shift; | |
2912 | } | |
2913 | ||
dce48a84 TG |
2914 | static unsigned long |
2915 | calc_load(unsigned long load, unsigned long exp, unsigned long active) | |
db1b1fef | 2916 | { |
dce48a84 TG |
2917 | load *= exp; |
2918 | load += active * (FIXED_1 - exp); | |
2919 | return load >> FSHIFT; | |
2920 | } | |
db1b1fef | 2921 | |
dce48a84 TG |
2922 | /* |
2923 | * calc_load - update the avenrun load estimates 10 ticks after the | |
2924 | * CPUs have updated calc_load_tasks. | |
2925 | */ | |
2926 | void calc_global_load(void) | |
2927 | { | |
2928 | unsigned long upd = calc_load_update + 10; | |
2929 | long active; | |
2930 | ||
2931 | if (time_before(jiffies, upd)) | |
2932 | return; | |
db1b1fef | 2933 | |
dce48a84 TG |
2934 | active = atomic_long_read(&calc_load_tasks); |
2935 | active = active > 0 ? active * FIXED_1 : 0; | |
db1b1fef | 2936 | |
dce48a84 TG |
2937 | avenrun[0] = calc_load(avenrun[0], EXP_1, active); |
2938 | avenrun[1] = calc_load(avenrun[1], EXP_5, active); | |
2939 | avenrun[2] = calc_load(avenrun[2], EXP_15, active); | |
2940 | ||
2941 | calc_load_update += LOAD_FREQ; | |
2942 | } | |
2943 | ||
2944 | /* | |
2945 | * Either called from update_cpu_load() or from a cpu going idle | |
2946 | */ | |
2947 | static void calc_load_account_active(struct rq *this_rq) | |
2948 | { | |
2949 | long nr_active, delta; | |
2950 | ||
2951 | nr_active = this_rq->nr_running; | |
2952 | nr_active += (long) this_rq->nr_uninterruptible; | |
2953 | ||
2954 | if (nr_active != this_rq->calc_load_active) { | |
2955 | delta = nr_active - this_rq->calc_load_active; | |
2956 | this_rq->calc_load_active = nr_active; | |
2957 | atomic_long_add(delta, &calc_load_tasks); | |
2958 | } | |
db1b1fef JS |
2959 | } |
2960 | ||
23a185ca PM |
2961 | /* |
2962 | * Externally visible per-cpu scheduler statistics: | |
23a185ca PM |
2963 | * cpu_nr_migrations(cpu) - number of migrations into that cpu |
2964 | */ | |
23a185ca PM |
2965 | u64 cpu_nr_migrations(int cpu) |
2966 | { | |
2967 | return cpu_rq(cpu)->nr_migrations_in; | |
2968 | } | |
2969 | ||
48f24c4d | 2970 | /* |
dd41f596 IM |
2971 | * Update rq->cpu_load[] statistics. This function is usually called every |
2972 | * scheduler tick (TICK_NSEC). | |
48f24c4d | 2973 | */ |
dd41f596 | 2974 | static void update_cpu_load(struct rq *this_rq) |
48f24c4d | 2975 | { |
495eca49 | 2976 | unsigned long this_load = this_rq->load.weight; |
dd41f596 IM |
2977 | int i, scale; |
2978 | ||
2979 | this_rq->nr_load_updates++; | |
dd41f596 IM |
2980 | |
2981 | /* Update our load: */ | |
2982 | for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { | |
2983 | unsigned long old_load, new_load; | |
2984 | ||
2985 | /* scale is effectively 1 << i now, and >> i divides by scale */ | |
2986 | ||
2987 | old_load = this_rq->cpu_load[i]; | |
2988 | new_load = this_load; | |
a25707f3 IM |
2989 | /* |
2990 | * Round up the averaging division if load is increasing. This | |
2991 | * prevents us from getting stuck on 9 if the load is 10, for | |
2992 | * example. | |
2993 | */ | |
2994 | if (new_load > old_load) | |
2995 | new_load += scale-1; | |
dd41f596 IM |
2996 | this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i; |
2997 | } | |
dce48a84 TG |
2998 | |
2999 | if (time_after_eq(jiffies, this_rq->calc_load_update)) { | |
3000 | this_rq->calc_load_update += LOAD_FREQ; | |
3001 | calc_load_account_active(this_rq); | |
3002 | } | |
48f24c4d IM |
3003 | } |
3004 | ||
dd41f596 IM |
3005 | #ifdef CONFIG_SMP |
3006 | ||
1da177e4 LT |
3007 | /* |
3008 | * double_rq_lock - safely lock two runqueues | |
3009 | * | |
3010 | * Note this does not disable interrupts like task_rq_lock, | |
3011 | * you need to do so manually before calling. | |
3012 | */ | |
70b97a7f | 3013 | static void double_rq_lock(struct rq *rq1, struct rq *rq2) |
1da177e4 LT |
3014 | __acquires(rq1->lock) |
3015 | __acquires(rq2->lock) | |
3016 | { | |
054b9108 | 3017 | BUG_ON(!irqs_disabled()); |
1da177e4 LT |
3018 | if (rq1 == rq2) { |
3019 | spin_lock(&rq1->lock); | |
3020 | __acquire(rq2->lock); /* Fake it out ;) */ | |
3021 | } else { | |
c96d145e | 3022 | if (rq1 < rq2) { |
1da177e4 | 3023 | spin_lock(&rq1->lock); |
5e710e37 | 3024 | spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); |
1da177e4 LT |
3025 | } else { |
3026 | spin_lock(&rq2->lock); | |
5e710e37 | 3027 | spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); |
1da177e4 LT |
3028 | } |
3029 | } | |
6e82a3be IM |
3030 | update_rq_clock(rq1); |
3031 | update_rq_clock(rq2); | |
1da177e4 LT |
3032 | } |
3033 | ||
3034 | /* | |
3035 | * double_rq_unlock - safely unlock two runqueues | |
3036 | * | |
3037 | * Note this does not restore interrupts like task_rq_unlock, | |
3038 | * you need to do so manually after calling. | |
3039 | */ | |
70b97a7f | 3040 | static void double_rq_unlock(struct rq *rq1, struct rq *rq2) |
1da177e4 LT |
3041 | __releases(rq1->lock) |
3042 | __releases(rq2->lock) | |
3043 | { | |
3044 | spin_unlock(&rq1->lock); | |
3045 | if (rq1 != rq2) | |
3046 | spin_unlock(&rq2->lock); | |
3047 | else | |
3048 | __release(rq2->lock); | |
3049 | } | |
3050 | ||
1da177e4 LT |
3051 | /* |
3052 | * If dest_cpu is allowed for this process, migrate the task to it. | |
3053 | * This is accomplished by forcing the cpu_allowed mask to only | |
41a2d6cf | 3054 | * allow dest_cpu, which will force the cpu onto dest_cpu. Then |
1da177e4 LT |
3055 | * the cpu_allowed mask is restored. |
3056 | */ | |
36c8b586 | 3057 | static void sched_migrate_task(struct task_struct *p, int dest_cpu) |
1da177e4 | 3058 | { |
70b97a7f | 3059 | struct migration_req req; |
1da177e4 | 3060 | unsigned long flags; |
70b97a7f | 3061 | struct rq *rq; |
1da177e4 LT |
3062 | |
3063 | rq = task_rq_lock(p, &flags); | |
96f874e2 | 3064 | if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed) |
e761b772 | 3065 | || unlikely(!cpu_active(dest_cpu))) |
1da177e4 LT |
3066 | goto out; |
3067 | ||
3068 | /* force the process onto the specified CPU */ | |
3069 | if (migrate_task(p, dest_cpu, &req)) { | |
3070 | /* Need to wait for migration thread (might exit: take ref). */ | |
3071 | struct task_struct *mt = rq->migration_thread; | |
36c8b586 | 3072 | |
1da177e4 LT |
3073 | get_task_struct(mt); |
3074 | task_rq_unlock(rq, &flags); | |
3075 | wake_up_process(mt); | |
3076 | put_task_struct(mt); | |
3077 | wait_for_completion(&req.done); | |
36c8b586 | 3078 | |
1da177e4 LT |
3079 | return; |
3080 | } | |
3081 | out: | |
3082 | task_rq_unlock(rq, &flags); | |
3083 | } | |
3084 | ||
3085 | /* | |
476d139c NP |
3086 | * sched_exec - execve() is a valuable balancing opportunity, because at |
3087 | * this point the task has the smallest effective memory and cache footprint. | |
1da177e4 LT |
3088 | */ |
3089 | void sched_exec(void) | |
3090 | { | |
1da177e4 | 3091 | int new_cpu, this_cpu = get_cpu(); |
5f3edc1b | 3092 | new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0); |
1da177e4 | 3093 | put_cpu(); |
476d139c NP |
3094 | if (new_cpu != this_cpu) |
3095 | sched_migrate_task(current, new_cpu); | |
1da177e4 LT |
3096 | } |
3097 | ||
3098 | /* | |
3099 | * pull_task - move a task from a remote runqueue to the local runqueue. | |
3100 | * Both runqueues must be locked. | |
3101 | */ | |
dd41f596 IM |
3102 | static void pull_task(struct rq *src_rq, struct task_struct *p, |
3103 | struct rq *this_rq, int this_cpu) | |
1da177e4 | 3104 | { |
2e1cb74a | 3105 | deactivate_task(src_rq, p, 0); |
1da177e4 | 3106 | set_task_cpu(p, this_cpu); |
dd41f596 | 3107 | activate_task(this_rq, p, 0); |
1da177e4 LT |
3108 | /* |
3109 | * Note that idle threads have a prio of MAX_PRIO, for this test | |
3110 | * to be always true for them. | |
3111 | */ | |
15afe09b | 3112 | check_preempt_curr(this_rq, p, 0); |
1da177e4 LT |
3113 | } |
3114 | ||
3115 | /* | |
3116 | * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? | |
3117 | */ | |
858119e1 | 3118 | static |
70b97a7f | 3119 | int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, |
d15bcfdb | 3120 | struct sched_domain *sd, enum cpu_idle_type idle, |
95cdf3b7 | 3121 | int *all_pinned) |
1da177e4 | 3122 | { |
708dc512 | 3123 | int tsk_cache_hot = 0; |
1da177e4 LT |
3124 | /* |
3125 | * We do not migrate tasks that are: | |
3126 | * 1) running (obviously), or | |
3127 | * 2) cannot be migrated to this CPU due to cpus_allowed, or | |
3128 | * 3) are cache-hot on their current CPU. | |
3129 | */ | |
96f874e2 | 3130 | if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) { |
cc367732 | 3131 | schedstat_inc(p, se.nr_failed_migrations_affine); |
1da177e4 | 3132 | return 0; |
cc367732 | 3133 | } |
81026794 NP |
3134 | *all_pinned = 0; |
3135 | ||
cc367732 IM |
3136 | if (task_running(rq, p)) { |
3137 | schedstat_inc(p, se.nr_failed_migrations_running); | |
81026794 | 3138 | return 0; |
cc367732 | 3139 | } |
1da177e4 | 3140 | |
da84d961 IM |
3141 | /* |
3142 | * Aggressive migration if: | |
3143 | * 1) task is cache cold, or | |
3144 | * 2) too many balance attempts have failed. | |
3145 | */ | |
3146 | ||
708dc512 LH |
3147 | tsk_cache_hot = task_hot(p, rq->clock, sd); |
3148 | if (!tsk_cache_hot || | |
3149 | sd->nr_balance_failed > sd->cache_nice_tries) { | |
da84d961 | 3150 | #ifdef CONFIG_SCHEDSTATS |
708dc512 | 3151 | if (tsk_cache_hot) { |
da84d961 | 3152 | schedstat_inc(sd, lb_hot_gained[idle]); |
cc367732 IM |
3153 | schedstat_inc(p, se.nr_forced_migrations); |
3154 | } | |
da84d961 IM |
3155 | #endif |
3156 | return 1; | |
3157 | } | |
3158 | ||
708dc512 | 3159 | if (tsk_cache_hot) { |
cc367732 | 3160 | schedstat_inc(p, se.nr_failed_migrations_hot); |
da84d961 | 3161 | return 0; |
cc367732 | 3162 | } |
1da177e4 LT |
3163 | return 1; |
3164 | } | |
3165 | ||
e1d1484f PW |
3166 | static unsigned long |
3167 | balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | |
3168 | unsigned long max_load_move, struct sched_domain *sd, | |
3169 | enum cpu_idle_type idle, int *all_pinned, | |
3170 | int *this_best_prio, struct rq_iterator *iterator) | |
1da177e4 | 3171 | { |
051c6764 | 3172 | int loops = 0, pulled = 0, pinned = 0; |
dd41f596 IM |
3173 | struct task_struct *p; |
3174 | long rem_load_move = max_load_move; | |
1da177e4 | 3175 | |
e1d1484f | 3176 | if (max_load_move == 0) |
1da177e4 LT |
3177 | goto out; |
3178 | ||
81026794 NP |
3179 | pinned = 1; |
3180 | ||
1da177e4 | 3181 | /* |
dd41f596 | 3182 | * Start the load-balancing iterator: |
1da177e4 | 3183 | */ |
dd41f596 IM |
3184 | p = iterator->start(iterator->arg); |
3185 | next: | |
b82d9fdd | 3186 | if (!p || loops++ > sysctl_sched_nr_migrate) |
1da177e4 | 3187 | goto out; |
051c6764 PZ |
3188 | |
3189 | if ((p->se.load.weight >> 1) > rem_load_move || | |
dd41f596 | 3190 | !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { |
dd41f596 IM |
3191 | p = iterator->next(iterator->arg); |
3192 | goto next; | |
1da177e4 LT |
3193 | } |
3194 | ||
dd41f596 | 3195 | pull_task(busiest, p, this_rq, this_cpu); |
1da177e4 | 3196 | pulled++; |
dd41f596 | 3197 | rem_load_move -= p->se.load.weight; |
1da177e4 | 3198 | |
7e96fa58 GH |
3199 | #ifdef CONFIG_PREEMPT |
3200 | /* | |
3201 | * NEWIDLE balancing is a source of latency, so preemptible kernels | |
3202 | * will stop after the first task is pulled to minimize the critical | |
3203 | * section. | |
3204 | */ | |
3205 | if (idle == CPU_NEWLY_IDLE) | |
3206 | goto out; | |
3207 | #endif | |
3208 | ||
2dd73a4f | 3209 | /* |
b82d9fdd | 3210 | * We only want to steal up to the prescribed amount of weighted load. |
2dd73a4f | 3211 | */ |
e1d1484f | 3212 | if (rem_load_move > 0) { |
a4ac01c3 PW |
3213 | if (p->prio < *this_best_prio) |
3214 | *this_best_prio = p->prio; | |
dd41f596 IM |
3215 | p = iterator->next(iterator->arg); |
3216 | goto next; | |
1da177e4 LT |
3217 | } |
3218 | out: | |
3219 | /* | |
e1d1484f | 3220 | * Right now, this is one of only two places pull_task() is called, |
1da177e4 LT |
3221 | * so we can safely collect pull_task() stats here rather than |
3222 | * inside pull_task(). | |
3223 | */ | |
3224 | schedstat_add(sd, lb_gained[idle], pulled); | |
81026794 NP |
3225 | |
3226 | if (all_pinned) | |
3227 | *all_pinned = pinned; | |
e1d1484f PW |
3228 | |
3229 | return max_load_move - rem_load_move; | |
1da177e4 LT |
3230 | } |
3231 | ||
dd41f596 | 3232 | /* |
43010659 PW |
3233 | * move_tasks tries to move up to max_load_move weighted load from busiest to |
3234 | * this_rq, as part of a balancing operation within domain "sd". | |
3235 | * Returns 1 if successful and 0 otherwise. | |
dd41f596 IM |
3236 | * |
3237 | * Called with both runqueues locked. | |
3238 | */ | |
3239 | static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | |
43010659 | 3240 | unsigned long max_load_move, |
dd41f596 IM |
3241 | struct sched_domain *sd, enum cpu_idle_type idle, |
3242 | int *all_pinned) | |
3243 | { | |
5522d5d5 | 3244 | const struct sched_class *class = sched_class_highest; |
43010659 | 3245 | unsigned long total_load_moved = 0; |
a4ac01c3 | 3246 | int this_best_prio = this_rq->curr->prio; |
dd41f596 IM |
3247 | |
3248 | do { | |
43010659 PW |
3249 | total_load_moved += |
3250 | class->load_balance(this_rq, this_cpu, busiest, | |
e1d1484f | 3251 | max_load_move - total_load_moved, |
a4ac01c3 | 3252 | sd, idle, all_pinned, &this_best_prio); |
dd41f596 | 3253 | class = class->next; |
c4acb2c0 | 3254 | |
7e96fa58 GH |
3255 | #ifdef CONFIG_PREEMPT |
3256 | /* | |
3257 | * NEWIDLE balancing is a source of latency, so preemptible | |
3258 | * kernels will stop after the first task is pulled to minimize | |
3259 | * the critical section. | |
3260 | */ | |
c4acb2c0 GH |
3261 | if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) |
3262 | break; | |
7e96fa58 | 3263 | #endif |
43010659 | 3264 | } while (class && max_load_move > total_load_moved); |
dd41f596 | 3265 | |
43010659 PW |
3266 | return total_load_moved > 0; |
3267 | } | |
3268 | ||
e1d1484f PW |
3269 | static int |
3270 | iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | |
3271 | struct sched_domain *sd, enum cpu_idle_type idle, | |
3272 | struct rq_iterator *iterator) | |
3273 | { | |
3274 | struct task_struct *p = iterator->start(iterator->arg); | |
3275 | int pinned = 0; | |
3276 | ||
3277 | while (p) { | |
3278 | if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { | |
3279 | pull_task(busiest, p, this_rq, this_cpu); | |
3280 | /* | |
3281 | * Right now, this is only the second place pull_task() | |
3282 | * is called, so we can safely collect pull_task() | |
3283 | * stats here rather than inside pull_task(). | |
3284 | */ | |
3285 | schedstat_inc(sd, lb_gained[idle]); | |
3286 | ||
3287 | return 1; | |
3288 | } | |
3289 | p = iterator->next(iterator->arg); | |
3290 | } | |
3291 | ||
3292 | return 0; | |
3293 | } | |
3294 | ||
43010659 PW |
3295 | /* |
3296 | * move_one_task tries to move exactly one task from busiest to this_rq, as | |
3297 | * part of active balancing operations within "domain". | |
3298 | * Returns 1 if successful and 0 otherwise. | |
3299 | * | |
3300 | * Called with both runqueues locked. | |
3301 | */ | |
3302 | static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | |
3303 | struct sched_domain *sd, enum cpu_idle_type idle) | |
3304 | { | |
5522d5d5 | 3305 | const struct sched_class *class; |
43010659 | 3306 | |
cde7e5ca | 3307 | for_each_class(class) { |
e1d1484f | 3308 | if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle)) |
43010659 | 3309 | return 1; |
cde7e5ca | 3310 | } |
43010659 PW |
3311 | |
3312 | return 0; | |
dd41f596 | 3313 | } |
67bb6c03 | 3314 | /********** Helpers for find_busiest_group ************************/ |
1da177e4 | 3315 | /* |
222d656d GS |
3316 | * sd_lb_stats - Structure to store the statistics of a sched_domain |
3317 | * during load balancing. | |
1da177e4 | 3318 | */ |
222d656d GS |
3319 | struct sd_lb_stats { |
3320 | struct sched_group *busiest; /* Busiest group in this sd */ | |
3321 | struct sched_group *this; /* Local group in this sd */ | |
3322 | unsigned long total_load; /* Total load of all groups in sd */ | |
3323 | unsigned long total_pwr; /* Total power of all groups in sd */ | |
3324 | unsigned long avg_load; /* Average load across all groups in sd */ | |
3325 | ||
3326 | /** Statistics of this group */ | |
3327 | unsigned long this_load; | |
3328 | unsigned long this_load_per_task; | |
3329 | unsigned long this_nr_running; | |
3330 | ||
3331 | /* Statistics of the busiest group */ | |
3332 | unsigned long max_load; | |
3333 | unsigned long busiest_load_per_task; | |
3334 | unsigned long busiest_nr_running; | |
3335 | ||
3336 | int group_imb; /* Is there imbalance in this sd */ | |
5c45bf27 | 3337 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
222d656d GS |
3338 | int power_savings_balance; /* Is powersave balance needed for this sd */ |
3339 | struct sched_group *group_min; /* Least loaded group in sd */ | |
3340 | struct sched_group *group_leader; /* Group which relieves group_min */ | |
3341 | unsigned long min_load_per_task; /* load_per_task in group_min */ | |
3342 | unsigned long leader_nr_running; /* Nr running of group_leader */ | |
3343 | unsigned long min_nr_running; /* Nr running of group_min */ | |
5c45bf27 | 3344 | #endif |
222d656d | 3345 | }; |
1da177e4 | 3346 | |
d5ac537e | 3347 | /* |
381be78f GS |
3348 | * sg_lb_stats - stats of a sched_group required for load_balancing |
3349 | */ | |
3350 | struct sg_lb_stats { | |
3351 | unsigned long avg_load; /*Avg load across the CPUs of the group */ | |
3352 | unsigned long group_load; /* Total load over the CPUs of the group */ | |
3353 | unsigned long sum_nr_running; /* Nr tasks running in the group */ | |
3354 | unsigned long sum_weighted_load; /* Weighted load of group's tasks */ | |
3355 | unsigned long group_capacity; | |
3356 | int group_imb; /* Is there an imbalance in the group ? */ | |
3357 | }; | |
408ed066 | 3358 | |
67bb6c03 GS |
3359 | /** |
3360 | * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. | |
3361 | * @group: The group whose first cpu is to be returned. | |
3362 | */ | |
3363 | static inline unsigned int group_first_cpu(struct sched_group *group) | |
3364 | { | |
3365 | return cpumask_first(sched_group_cpus(group)); | |
3366 | } | |
3367 | ||
3368 | /** | |
3369 | * get_sd_load_idx - Obtain the load index for a given sched domain. | |
3370 | * @sd: The sched_domain whose load_idx is to be obtained. | |
3371 | * @idle: The Idle status of the CPU for whose sd load_icx is obtained. | |
3372 | */ | |
3373 | static inline int get_sd_load_idx(struct sched_domain *sd, | |
3374 | enum cpu_idle_type idle) | |
3375 | { | |
3376 | int load_idx; | |
3377 | ||
3378 | switch (idle) { | |
3379 | case CPU_NOT_IDLE: | |
7897986b | 3380 | load_idx = sd->busy_idx; |
67bb6c03 GS |
3381 | break; |
3382 | ||
3383 | case CPU_NEWLY_IDLE: | |
7897986b | 3384 | load_idx = sd->newidle_idx; |
67bb6c03 GS |
3385 | break; |
3386 | default: | |
7897986b | 3387 | load_idx = sd->idle_idx; |
67bb6c03 GS |
3388 | break; |
3389 | } | |
1da177e4 | 3390 | |
67bb6c03 GS |
3391 | return load_idx; |
3392 | } | |
1da177e4 | 3393 | |
1da177e4 | 3394 | |
c071df18 GS |
3395 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
3396 | /** | |
3397 | * init_sd_power_savings_stats - Initialize power savings statistics for | |
3398 | * the given sched_domain, during load balancing. | |
3399 | * | |
3400 | * @sd: Sched domain whose power-savings statistics are to be initialized. | |
3401 | * @sds: Variable containing the statistics for sd. | |
3402 | * @idle: Idle status of the CPU at which we're performing load-balancing. | |
3403 | */ | |
3404 | static inline void init_sd_power_savings_stats(struct sched_domain *sd, | |
3405 | struct sd_lb_stats *sds, enum cpu_idle_type idle) | |
3406 | { | |
3407 | /* | |
3408 | * Busy processors will not participate in power savings | |
3409 | * balance. | |
3410 | */ | |
3411 | if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) | |
3412 | sds->power_savings_balance = 0; | |
3413 | else { | |
3414 | sds->power_savings_balance = 1; | |
3415 | sds->min_nr_running = ULONG_MAX; | |
3416 | sds->leader_nr_running = 0; | |
3417 | } | |
3418 | } | |
783609c6 | 3419 | |
c071df18 GS |
3420 | /** |
3421 | * update_sd_power_savings_stats - Update the power saving stats for a | |
3422 | * sched_domain while performing load balancing. | |
3423 | * | |
3424 | * @group: sched_group belonging to the sched_domain under consideration. | |
3425 | * @sds: Variable containing the statistics of the sched_domain | |
3426 | * @local_group: Does group contain the CPU for which we're performing | |
3427 | * load balancing ? | |
3428 | * @sgs: Variable containing the statistics of the group. | |
3429 | */ | |
3430 | static inline void update_sd_power_savings_stats(struct sched_group *group, | |
3431 | struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) | |
3432 | { | |
408ed066 | 3433 | |
c071df18 GS |
3434 | if (!sds->power_savings_balance) |
3435 | return; | |
1da177e4 | 3436 | |
c071df18 GS |
3437 | /* |
3438 | * If the local group is idle or completely loaded | |
3439 | * no need to do power savings balance at this domain | |
3440 | */ | |
3441 | if (local_group && (sds->this_nr_running >= sgs->group_capacity || | |
3442 | !sds->this_nr_running)) | |
3443 | sds->power_savings_balance = 0; | |
2dd73a4f | 3444 | |
c071df18 GS |
3445 | /* |
3446 | * If a group is already running at full capacity or idle, | |
3447 | * don't include that group in power savings calculations | |
3448 | */ | |
3449 | if (!sds->power_savings_balance || | |
3450 | sgs->sum_nr_running >= sgs->group_capacity || | |
3451 | !sgs->sum_nr_running) | |
3452 | return; | |
5969fe06 | 3453 | |
c071df18 GS |
3454 | /* |
3455 | * Calculate the group which has the least non-idle load. | |
3456 | * This is the group from where we need to pick up the load | |
3457 | * for saving power | |
3458 | */ | |
3459 | if ((sgs->sum_nr_running < sds->min_nr_running) || | |
3460 | (sgs->sum_nr_running == sds->min_nr_running && | |
3461 | group_first_cpu(group) > group_first_cpu(sds->group_min))) { | |
3462 | sds->group_min = group; | |
3463 | sds->min_nr_running = sgs->sum_nr_running; | |
3464 | sds->min_load_per_task = sgs->sum_weighted_load / | |
3465 | sgs->sum_nr_running; | |
3466 | } | |
783609c6 | 3467 | |
c071df18 GS |
3468 | /* |
3469 | * Calculate the group which is almost near its | |
3470 | * capacity but still has some space to pick up some load | |
3471 | * from other group and save more power | |
3472 | */ | |
d899a789 | 3473 | if (sgs->sum_nr_running + 1 > sgs->group_capacity) |
c071df18 | 3474 | return; |
1da177e4 | 3475 | |
c071df18 GS |
3476 | if (sgs->sum_nr_running > sds->leader_nr_running || |
3477 | (sgs->sum_nr_running == sds->leader_nr_running && | |
3478 | group_first_cpu(group) < group_first_cpu(sds->group_leader))) { | |
3479 | sds->group_leader = group; | |
3480 | sds->leader_nr_running = sgs->sum_nr_running; | |
3481 | } | |
3482 | } | |
408ed066 | 3483 | |
c071df18 | 3484 | /** |
d5ac537e | 3485 | * check_power_save_busiest_group - see if there is potential for some power-savings balance |
c071df18 GS |
3486 | * @sds: Variable containing the statistics of the sched_domain |
3487 | * under consideration. | |
3488 | * @this_cpu: Cpu at which we're currently performing load-balancing. | |
3489 | * @imbalance: Variable to store the imbalance. | |
3490 | * | |
d5ac537e RD |
3491 | * Description: |
3492 | * Check if we have potential to perform some power-savings balance. | |
3493 | * If yes, set the busiest group to be the least loaded group in the | |
3494 | * sched_domain, so that it's CPUs can be put to idle. | |
3495 | * | |
c071df18 GS |
3496 | * Returns 1 if there is potential to perform power-savings balance. |
3497 | * Else returns 0. | |
3498 | */ | |
3499 | static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | |
3500 | int this_cpu, unsigned long *imbalance) | |
3501 | { | |
3502 | if (!sds->power_savings_balance) | |
3503 | return 0; | |
1da177e4 | 3504 | |
c071df18 GS |
3505 | if (sds->this != sds->group_leader || |
3506 | sds->group_leader == sds->group_min) | |
3507 | return 0; | |
783609c6 | 3508 | |
c071df18 GS |
3509 | *imbalance = sds->min_load_per_task; |
3510 | sds->busiest = sds->group_min; | |
1da177e4 | 3511 | |
c071df18 | 3512 | return 1; |
1da177e4 | 3513 | |
c071df18 GS |
3514 | } |
3515 | #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | |
3516 | static inline void init_sd_power_savings_stats(struct sched_domain *sd, | |
3517 | struct sd_lb_stats *sds, enum cpu_idle_type idle) | |
3518 | { | |
3519 | return; | |
3520 | } | |
408ed066 | 3521 | |
c071df18 GS |
3522 | static inline void update_sd_power_savings_stats(struct sched_group *group, |
3523 | struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) | |
3524 | { | |
3525 | return; | |
3526 | } | |
3527 | ||
3528 | static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | |
3529 | int this_cpu, unsigned long *imbalance) | |
3530 | { | |
3531 | return 0; | |
3532 | } | |
3533 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | |
3534 | ||
e9e9250b | 3535 | unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) |
ab29230e PZ |
3536 | { |
3537 | unsigned long weight = cpumask_weight(sched_domain_span(sd)); | |
3538 | unsigned long smt_gain = sd->smt_gain; | |
3539 | ||
3540 | smt_gain /= weight; | |
3541 | ||
3542 | return smt_gain; | |
3543 | } | |
3544 | ||
e9e9250b PZ |
3545 | unsigned long scale_rt_power(int cpu) |
3546 | { | |
3547 | struct rq *rq = cpu_rq(cpu); | |
3548 | u64 total, available; | |
3549 | ||
3550 | sched_avg_update(rq); | |
3551 | ||
3552 | total = sched_avg_period() + (rq->clock - rq->age_stamp); | |
3553 | available = total - rq->rt_avg; | |
3554 | ||
3555 | if (unlikely((s64)total < SCHED_LOAD_SCALE)) | |
3556 | total = SCHED_LOAD_SCALE; | |
3557 | ||
3558 | total >>= SCHED_LOAD_SHIFT; | |
3559 | ||
3560 | return div_u64(available, total); | |
3561 | } | |
3562 | ||
ab29230e PZ |
3563 | static void update_cpu_power(struct sched_domain *sd, int cpu) |
3564 | { | |
3565 | unsigned long weight = cpumask_weight(sched_domain_span(sd)); | |
3566 | unsigned long power = SCHED_LOAD_SCALE; | |
3567 | struct sched_group *sdg = sd->groups; | |
ab29230e PZ |
3568 | |
3569 | /* here we could scale based on cpufreq */ | |
3570 | ||
3571 | if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { | |
e9e9250b | 3572 | power *= arch_scale_smt_power(sd, cpu); |
ab29230e PZ |
3573 | power >>= SCHED_LOAD_SHIFT; |
3574 | } | |
3575 | ||
e9e9250b PZ |
3576 | power *= scale_rt_power(cpu); |
3577 | power >>= SCHED_LOAD_SHIFT; | |
3578 | ||
3579 | if (!power) | |
3580 | power = 1; | |
ab29230e | 3581 | |
18a3885f | 3582 | sdg->cpu_power = power; |
ab29230e PZ |
3583 | } |
3584 | ||
3585 | static void update_group_power(struct sched_domain *sd, int cpu) | |
cc9fba7d PZ |
3586 | { |
3587 | struct sched_domain *child = sd->child; | |
3588 | struct sched_group *group, *sdg = sd->groups; | |
d7ea17a7 | 3589 | unsigned long power; |
cc9fba7d PZ |
3590 | |
3591 | if (!child) { | |
ab29230e | 3592 | update_cpu_power(sd, cpu); |
cc9fba7d PZ |
3593 | return; |
3594 | } | |
3595 | ||
d7ea17a7 | 3596 | power = 0; |
cc9fba7d PZ |
3597 | |
3598 | group = child->groups; | |
3599 | do { | |
d7ea17a7 | 3600 | power += group->cpu_power; |
cc9fba7d PZ |
3601 | group = group->next; |
3602 | } while (group != child->groups); | |
d7ea17a7 IM |
3603 | |
3604 | sdg->cpu_power = power; | |
cc9fba7d | 3605 | } |
c071df18 | 3606 | |
1f8c553d GS |
3607 | /** |
3608 | * update_sg_lb_stats - Update sched_group's statistics for load balancing. | |
3609 | * @group: sched_group whose statistics are to be updated. | |
3610 | * @this_cpu: Cpu for which load balance is currently performed. | |
3611 | * @idle: Idle status of this_cpu | |
3612 | * @load_idx: Load index of sched_domain of this_cpu for load calc. | |
3613 | * @sd_idle: Idle status of the sched_domain containing group. | |
3614 | * @local_group: Does group contain this_cpu. | |
3615 | * @cpus: Set of cpus considered for load balancing. | |
3616 | * @balance: Should we balance. | |
3617 | * @sgs: variable to hold the statistics for this group. | |
3618 | */ | |
cc9fba7d PZ |
3619 | static inline void update_sg_lb_stats(struct sched_domain *sd, |
3620 | struct sched_group *group, int this_cpu, | |
1f8c553d GS |
3621 | enum cpu_idle_type idle, int load_idx, int *sd_idle, |
3622 | int local_group, const struct cpumask *cpus, | |
3623 | int *balance, struct sg_lb_stats *sgs) | |
3624 | { | |
3625 | unsigned long load, max_cpu_load, min_cpu_load; | |
3626 | int i; | |
3627 | unsigned int balance_cpu = -1, first_idle_cpu = 0; | |
3628 | unsigned long sum_avg_load_per_task; | |
3629 | unsigned long avg_load_per_task; | |
3630 | ||
cc9fba7d | 3631 | if (local_group) { |
1f8c553d | 3632 | balance_cpu = group_first_cpu(group); |
cc9fba7d | 3633 | if (balance_cpu == this_cpu) |
ab29230e | 3634 | update_group_power(sd, this_cpu); |
cc9fba7d | 3635 | } |
1f8c553d GS |
3636 | |
3637 | /* Tally up the load of all CPUs in the group */ | |
3638 | sum_avg_load_per_task = avg_load_per_task = 0; | |
3639 | max_cpu_load = 0; | |
3640 | min_cpu_load = ~0UL; | |
408ed066 | 3641 | |
1f8c553d GS |
3642 | for_each_cpu_and(i, sched_group_cpus(group), cpus) { |
3643 | struct rq *rq = cpu_rq(i); | |
908a7c1b | 3644 | |
1f8c553d GS |
3645 | if (*sd_idle && rq->nr_running) |
3646 | *sd_idle = 0; | |
5c45bf27 | 3647 | |
1f8c553d | 3648 | /* Bias balancing toward cpus of our domain */ |
1da177e4 | 3649 | if (local_group) { |
1f8c553d GS |
3650 | if (idle_cpu(i) && !first_idle_cpu) { |
3651 | first_idle_cpu = 1; | |
3652 | balance_cpu = i; | |
3653 | } | |
3654 | ||
3655 | load = target_load(i, load_idx); | |
3656 | } else { | |
3657 | load = source_load(i, load_idx); | |
3658 | if (load > max_cpu_load) | |
3659 | max_cpu_load = load; | |
3660 | if (min_cpu_load > load) | |
3661 | min_cpu_load = load; | |
1da177e4 | 3662 | } |
5c45bf27 | 3663 | |
1f8c553d GS |
3664 | sgs->group_load += load; |
3665 | sgs->sum_nr_running += rq->nr_running; | |
3666 | sgs->sum_weighted_load += weighted_cpuload(i); | |
5c45bf27 | 3667 | |
1f8c553d GS |
3668 | sum_avg_load_per_task += cpu_avg_load_per_task(i); |
3669 | } | |
5c45bf27 | 3670 | |
1f8c553d GS |
3671 | /* |
3672 | * First idle cpu or the first cpu(busiest) in this sched group | |
3673 | * is eligible for doing load balancing at this and above | |
3674 | * domains. In the newly idle case, we will allow all the cpu's | |
3675 | * to do the newly idle load balance. | |
3676 | */ | |
3677 | if (idle != CPU_NEWLY_IDLE && local_group && | |
3678 | balance_cpu != this_cpu && balance) { | |
3679 | *balance = 0; | |
3680 | return; | |
3681 | } | |
5c45bf27 | 3682 | |
1f8c553d | 3683 | /* Adjust by relative CPU power of the group */ |
18a3885f | 3684 | sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power; |
5c45bf27 | 3685 | |
1f8c553d GS |
3686 | |
3687 | /* | |
3688 | * Consider the group unbalanced when the imbalance is larger | |
3689 | * than the average weight of two tasks. | |
3690 | * | |
3691 | * APZ: with cgroup the avg task weight can vary wildly and | |
3692 | * might not be a suitable number - should we keep a | |
3693 | * normalized nr_running number somewhere that negates | |
3694 | * the hierarchy? | |
3695 | */ | |
18a3885f PZ |
3696 | avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) / |
3697 | group->cpu_power; | |
1f8c553d GS |
3698 | |
3699 | if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) | |
3700 | sgs->group_imb = 1; | |
3701 | ||
bdb94aa5 | 3702 | sgs->group_capacity = |
18a3885f | 3703 | DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE); |
1f8c553d | 3704 | } |
dd41f596 | 3705 | |
37abe198 GS |
3706 | /** |
3707 | * update_sd_lb_stats - Update sched_group's statistics for load balancing. | |
3708 | * @sd: sched_domain whose statistics are to be updated. | |
3709 | * @this_cpu: Cpu for which load balance is currently performed. | |
3710 | * @idle: Idle status of this_cpu | |
3711 | * @sd_idle: Idle status of the sched_domain containing group. | |
3712 | * @cpus: Set of cpus considered for load balancing. | |
3713 | * @balance: Should we balance. | |
3714 | * @sds: variable to hold the statistics for this sched_domain. | |
1da177e4 | 3715 | */ |
37abe198 GS |
3716 | static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, |
3717 | enum cpu_idle_type idle, int *sd_idle, | |
3718 | const struct cpumask *cpus, int *balance, | |
3719 | struct sd_lb_stats *sds) | |
1da177e4 | 3720 | { |
b5d978e0 | 3721 | struct sched_domain *child = sd->child; |
222d656d | 3722 | struct sched_group *group = sd->groups; |
37abe198 | 3723 | struct sg_lb_stats sgs; |
b5d978e0 PZ |
3724 | int load_idx, prefer_sibling = 0; |
3725 | ||
3726 | if (child && child->flags & SD_PREFER_SIBLING) | |
3727 | prefer_sibling = 1; | |
222d656d | 3728 | |
c071df18 | 3729 | init_sd_power_savings_stats(sd, sds, idle); |
67bb6c03 | 3730 | load_idx = get_sd_load_idx(sd, idle); |
1da177e4 LT |
3731 | |
3732 | do { | |
1da177e4 | 3733 | int local_group; |
1da177e4 | 3734 | |
758b2cdc RR |
3735 | local_group = cpumask_test_cpu(this_cpu, |
3736 | sched_group_cpus(group)); | |
381be78f | 3737 | memset(&sgs, 0, sizeof(sgs)); |
cc9fba7d | 3738 | update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle, |
1f8c553d | 3739 | local_group, cpus, balance, &sgs); |
1da177e4 | 3740 | |
37abe198 GS |
3741 | if (local_group && balance && !(*balance)) |
3742 | return; | |
783609c6 | 3743 | |
37abe198 | 3744 | sds->total_load += sgs.group_load; |
18a3885f | 3745 | sds->total_pwr += group->cpu_power; |
1da177e4 | 3746 | |
b5d978e0 PZ |
3747 | /* |
3748 | * In case the child domain prefers tasks go to siblings | |
3749 | * first, lower the group capacity to one so that we'll try | |
3750 | * and move all the excess tasks away. | |
3751 | */ | |
3752 | if (prefer_sibling) | |
bdb94aa5 | 3753 | sgs.group_capacity = min(sgs.group_capacity, 1UL); |
1da177e4 | 3754 | |
1da177e4 | 3755 | if (local_group) { |
37abe198 GS |
3756 | sds->this_load = sgs.avg_load; |
3757 | sds->this = group; | |
3758 | sds->this_nr_running = sgs.sum_nr_running; | |
3759 | sds->this_load_per_task = sgs.sum_weighted_load; | |
3760 | } else if (sgs.avg_load > sds->max_load && | |
381be78f GS |
3761 | (sgs.sum_nr_running > sgs.group_capacity || |
3762 | sgs.group_imb)) { | |
37abe198 GS |
3763 | sds->max_load = sgs.avg_load; |
3764 | sds->busiest = group; | |
3765 | sds->busiest_nr_running = sgs.sum_nr_running; | |
3766 | sds->busiest_load_per_task = sgs.sum_weighted_load; | |
3767 | sds->group_imb = sgs.group_imb; | |
48f24c4d | 3768 | } |
5c45bf27 | 3769 | |
c071df18 | 3770 | update_sd_power_savings_stats(group, sds, local_group, &sgs); |
1da177e4 LT |
3771 | group = group->next; |
3772 | } while (group != sd->groups); | |
37abe198 | 3773 | } |
1da177e4 | 3774 | |
2e6f44ae GS |
3775 | /** |
3776 | * fix_small_imbalance - Calculate the minor imbalance that exists | |
dbc523a3 GS |
3777 | * amongst the groups of a sched_domain, during |
3778 | * load balancing. | |
2e6f44ae GS |
3779 | * @sds: Statistics of the sched_domain whose imbalance is to be calculated. |
3780 | * @this_cpu: The cpu at whose sched_domain we're performing load-balance. | |
3781 | * @imbalance: Variable to store the imbalance. | |
3782 | */ | |
3783 | static inline void fix_small_imbalance(struct sd_lb_stats *sds, | |
3784 | int this_cpu, unsigned long *imbalance) | |
3785 | { | |
3786 | unsigned long tmp, pwr_now = 0, pwr_move = 0; | |
3787 | unsigned int imbn = 2; | |
3788 | ||
3789 | if (sds->this_nr_running) { | |
3790 | sds->this_load_per_task /= sds->this_nr_running; | |
3791 | if (sds->busiest_load_per_task > | |
3792 | sds->this_load_per_task) | |
3793 | imbn = 1; | |
3794 | } else | |
3795 | sds->this_load_per_task = | |
3796 | cpu_avg_load_per_task(this_cpu); | |
1da177e4 | 3797 | |
2e6f44ae GS |
3798 | if (sds->max_load - sds->this_load + sds->busiest_load_per_task >= |
3799 | sds->busiest_load_per_task * imbn) { | |
3800 | *imbalance = sds->busiest_load_per_task; | |
3801 | return; | |
3802 | } | |
908a7c1b | 3803 | |
1da177e4 | 3804 | /* |
2e6f44ae GS |
3805 | * OK, we don't have enough imbalance to justify moving tasks, |
3806 | * however we may be able to increase total CPU power used by | |
3807 | * moving them. | |
1da177e4 | 3808 | */ |
2dd73a4f | 3809 | |
18a3885f | 3810 | pwr_now += sds->busiest->cpu_power * |
2e6f44ae | 3811 | min(sds->busiest_load_per_task, sds->max_load); |
18a3885f | 3812 | pwr_now += sds->this->cpu_power * |
2e6f44ae GS |
3813 | min(sds->this_load_per_task, sds->this_load); |
3814 | pwr_now /= SCHED_LOAD_SCALE; | |
3815 | ||
3816 | /* Amount of load we'd subtract */ | |
18a3885f PZ |
3817 | tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) / |
3818 | sds->busiest->cpu_power; | |
2e6f44ae | 3819 | if (sds->max_load > tmp) |
18a3885f | 3820 | pwr_move += sds->busiest->cpu_power * |
2e6f44ae GS |
3821 | min(sds->busiest_load_per_task, sds->max_load - tmp); |
3822 | ||
3823 | /* Amount of load we'd add */ | |
18a3885f | 3824 | if (sds->max_load * sds->busiest->cpu_power < |
2e6f44ae | 3825 | sds->busiest_load_per_task * SCHED_LOAD_SCALE) |
18a3885f PZ |
3826 | tmp = (sds->max_load * sds->busiest->cpu_power) / |
3827 | sds->this->cpu_power; | |
2e6f44ae | 3828 | else |
18a3885f PZ |
3829 | tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) / |
3830 | sds->this->cpu_power; | |
3831 | pwr_move += sds->this->cpu_power * | |
2e6f44ae GS |
3832 | min(sds->this_load_per_task, sds->this_load + tmp); |
3833 | pwr_move /= SCHED_LOAD_SCALE; | |
3834 | ||
3835 | /* Move if we gain throughput */ | |
3836 | if (pwr_move > pwr_now) | |
3837 | *imbalance = sds->busiest_load_per_task; | |
3838 | } | |
dbc523a3 GS |
3839 | |
3840 | /** | |
3841 | * calculate_imbalance - Calculate the amount of imbalance present within the | |
3842 | * groups of a given sched_domain during load balance. | |
3843 | * @sds: statistics of the sched_domain whose imbalance is to be calculated. | |
3844 | * @this_cpu: Cpu for which currently load balance is being performed. | |
3845 | * @imbalance: The variable to store the imbalance. | |
3846 | */ | |
3847 | static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu, | |
3848 | unsigned long *imbalance) | |
3849 | { | |
3850 | unsigned long max_pull; | |
2dd73a4f PW |
3851 | /* |
3852 | * In the presence of smp nice balancing, certain scenarios can have | |
3853 | * max load less than avg load(as we skip the groups at or below | |
3854 | * its cpu_power, while calculating max_load..) | |
3855 | */ | |
dbc523a3 | 3856 | if (sds->max_load < sds->avg_load) { |
2dd73a4f | 3857 | *imbalance = 0; |
dbc523a3 | 3858 | return fix_small_imbalance(sds, this_cpu, imbalance); |
2dd73a4f | 3859 | } |
0c117f1b SS |
3860 | |
3861 | /* Don't want to pull so many tasks that a group would go idle */ | |
dbc523a3 GS |
3862 | max_pull = min(sds->max_load - sds->avg_load, |
3863 | sds->max_load - sds->busiest_load_per_task); | |
0c117f1b | 3864 | |
1da177e4 | 3865 | /* How much load to actually move to equalise the imbalance */ |
18a3885f PZ |
3866 | *imbalance = min(max_pull * sds->busiest->cpu_power, |
3867 | (sds->avg_load - sds->this_load) * sds->this->cpu_power) | |
1da177e4 LT |
3868 | / SCHED_LOAD_SCALE; |
3869 | ||
2dd73a4f PW |
3870 | /* |
3871 | * if *imbalance is less than the average load per runnable task | |
3872 | * there is no gaurantee that any tasks will be moved so we'll have | |
3873 | * a think about bumping its value to force at least one task to be | |
3874 | * moved | |
3875 | */ | |
dbc523a3 GS |
3876 | if (*imbalance < sds->busiest_load_per_task) |
3877 | return fix_small_imbalance(sds, this_cpu, imbalance); | |
1da177e4 | 3878 | |
dbc523a3 | 3879 | } |
37abe198 | 3880 | /******* find_busiest_group() helpers end here *********************/ |
1da177e4 | 3881 | |
b7bb4c9b GS |
3882 | /** |
3883 | * find_busiest_group - Returns the busiest group within the sched_domain | |
3884 | * if there is an imbalance. If there isn't an imbalance, and | |
3885 | * the user has opted for power-savings, it returns a group whose | |
3886 | * CPUs can be put to idle by rebalancing those tasks elsewhere, if | |
3887 | * such a group exists. | |
3888 | * | |
3889 | * Also calculates the amount of weighted load which should be moved | |
3890 | * to restore balance. | |
3891 | * | |
3892 | * @sd: The sched_domain whose busiest group is to be returned. | |
3893 | * @this_cpu: The cpu for which load balancing is currently being performed. | |
3894 | * @imbalance: Variable which stores amount of weighted load which should | |
3895 | * be moved to restore balance/put a group to idle. | |
3896 | * @idle: The idle status of this_cpu. | |
3897 | * @sd_idle: The idleness of sd | |
3898 | * @cpus: The set of CPUs under consideration for load-balancing. | |
3899 | * @balance: Pointer to a variable indicating if this_cpu | |
3900 | * is the appropriate cpu to perform load balancing at this_level. | |
3901 | * | |
3902 | * Returns: - the busiest group if imbalance exists. | |
3903 | * - If no imbalance and user has opted for power-savings balance, | |
3904 | * return the least loaded group whose CPUs can be | |
3905 | * put to idle by rebalancing its tasks onto our group. | |
37abe198 GS |
3906 | */ |
3907 | static struct sched_group * | |
3908 | find_busiest_group(struct sched_domain *sd, int this_cpu, | |
3909 | unsigned long *imbalance, enum cpu_idle_type idle, | |
3910 | int *sd_idle, const struct cpumask *cpus, int *balance) | |
3911 | { | |
3912 | struct sd_lb_stats sds; | |
1da177e4 | 3913 | |
37abe198 | 3914 | memset(&sds, 0, sizeof(sds)); |
1da177e4 | 3915 | |
37abe198 GS |
3916 | /* |
3917 | * Compute the various statistics relavent for load balancing at | |
3918 | * this level. | |
3919 | */ | |
3920 | update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus, | |
3921 | balance, &sds); | |
3922 | ||
b7bb4c9b GS |
3923 | /* Cases where imbalance does not exist from POV of this_cpu */ |
3924 | /* 1) this_cpu is not the appropriate cpu to perform load balancing | |
3925 | * at this level. | |
3926 | * 2) There is no busy sibling group to pull from. | |
3927 | * 3) This group is the busiest group. | |
3928 | * 4) This group is more busy than the avg busieness at this | |
3929 | * sched_domain. | |
3930 | * 5) The imbalance is within the specified limit. | |
3931 | * 6) Any rebalance would lead to ping-pong | |
3932 | */ | |
37abe198 GS |
3933 | if (balance && !(*balance)) |
3934 | goto ret; | |
1da177e4 | 3935 | |
b7bb4c9b GS |
3936 | if (!sds.busiest || sds.busiest_nr_running == 0) |
3937 | goto out_balanced; | |
1da177e4 | 3938 | |
b7bb4c9b | 3939 | if (sds.this_load >= sds.max_load) |
1da177e4 | 3940 | goto out_balanced; |
1da177e4 | 3941 | |
222d656d | 3942 | sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr; |
1da177e4 | 3943 | |
b7bb4c9b GS |
3944 | if (sds.this_load >= sds.avg_load) |
3945 | goto out_balanced; | |
3946 | ||
3947 | if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load) | |
1da177e4 LT |
3948 | goto out_balanced; |
3949 | ||
222d656d GS |
3950 | sds.busiest_load_per_task /= sds.busiest_nr_running; |
3951 | if (sds.group_imb) | |
3952 | sds.busiest_load_per_task = | |
3953 | min(sds.busiest_load_per_task, sds.avg_load); | |
908a7c1b | 3954 | |
1da177e4 LT |
3955 | /* |
3956 | * We're trying to get all the cpus to the average_load, so we don't | |
3957 | * want to push ourselves above the average load, nor do we wish to | |
3958 | * reduce the max loaded cpu below the average load, as either of these | |
3959 | * actions would just result in more rebalancing later, and ping-pong | |
3960 | * tasks around. Thus we look for the minimum possible imbalance. | |
3961 | * Negative imbalances (*we* are more loaded than anyone else) will | |
3962 | * be counted as no imbalance for these purposes -- we can't fix that | |
41a2d6cf | 3963 | * by pulling tasks to us. Be careful of negative numbers as they'll |
1da177e4 LT |
3964 | * appear as very large values with unsigned longs. |
3965 | */ | |
222d656d | 3966 | if (sds.max_load <= sds.busiest_load_per_task) |
2dd73a4f PW |
3967 | goto out_balanced; |
3968 | ||
dbc523a3 GS |
3969 | /* Looks like there is an imbalance. Compute it */ |
3970 | calculate_imbalance(&sds, this_cpu, imbalance); | |
222d656d | 3971 | return sds.busiest; |
1da177e4 LT |
3972 | |
3973 | out_balanced: | |
c071df18 GS |
3974 | /* |
3975 | * There is no obvious imbalance. But check if we can do some balancing | |
3976 | * to save power. | |
3977 | */ | |
3978 | if (check_power_save_busiest_group(&sds, this_cpu, imbalance)) | |
3979 | return sds.busiest; | |
783609c6 | 3980 | ret: |
1da177e4 LT |
3981 | *imbalance = 0; |
3982 | return NULL; | |
3983 | } | |
3984 | ||
bdb94aa5 PZ |
3985 | static struct sched_group *group_of(int cpu) |
3986 | { | |
3987 | struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd); | |
3988 | ||
3989 | if (!sd) | |
3990 | return NULL; | |
3991 | ||
3992 | return sd->groups; | |
3993 | } | |
3994 | ||
3995 | static unsigned long power_of(int cpu) | |
3996 | { | |
3997 | struct sched_group *group = group_of(cpu); | |
3998 | ||
3999 | if (!group) | |
4000 | return SCHED_LOAD_SCALE; | |
4001 | ||
18a3885f | 4002 | return group->cpu_power; |
bdb94aa5 PZ |
4003 | } |
4004 | ||
1da177e4 LT |
4005 | /* |
4006 | * find_busiest_queue - find the busiest runqueue among the cpus in group. | |
4007 | */ | |
70b97a7f | 4008 | static struct rq * |
d15bcfdb | 4009 | find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle, |
96f874e2 | 4010 | unsigned long imbalance, const struct cpumask *cpus) |
1da177e4 | 4011 | { |
70b97a7f | 4012 | struct rq *busiest = NULL, *rq; |
2dd73a4f | 4013 | unsigned long max_load = 0; |
1da177e4 LT |
4014 | int i; |
4015 | ||
758b2cdc | 4016 | for_each_cpu(i, sched_group_cpus(group)) { |
bdb94aa5 PZ |
4017 | unsigned long power = power_of(i); |
4018 | unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE); | |
dd41f596 | 4019 | unsigned long wl; |
0a2966b4 | 4020 | |
96f874e2 | 4021 | if (!cpumask_test_cpu(i, cpus)) |
0a2966b4 CL |
4022 | continue; |
4023 | ||
48f24c4d | 4024 | rq = cpu_rq(i); |
bdb94aa5 PZ |
4025 | wl = weighted_cpuload(i) * SCHED_LOAD_SCALE; |
4026 | wl /= power; | |
2dd73a4f | 4027 | |
bdb94aa5 | 4028 | if (capacity && rq->nr_running == 1 && wl > imbalance) |
2dd73a4f | 4029 | continue; |
1da177e4 | 4030 | |
dd41f596 IM |
4031 | if (wl > max_load) { |
4032 | max_load = wl; | |
48f24c4d | 4033 | busiest = rq; |
1da177e4 LT |
4034 | } |
4035 | } | |
4036 | ||
4037 | return busiest; | |
4038 | } | |
4039 | ||
77391d71 NP |
4040 | /* |
4041 | * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but | |
4042 | * so long as it is large enough. | |
4043 | */ | |
4044 | #define MAX_PINNED_INTERVAL 512 | |
4045 | ||
df7c8e84 RR |
4046 | /* Working cpumask for load_balance and load_balance_newidle. */ |
4047 | static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask); | |
4048 | ||
1da177e4 LT |
4049 | /* |
4050 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | |
4051 | * tasks if there is an imbalance. | |
1da177e4 | 4052 | */ |
70b97a7f | 4053 | static int load_balance(int this_cpu, struct rq *this_rq, |
d15bcfdb | 4054 | struct sched_domain *sd, enum cpu_idle_type idle, |
df7c8e84 | 4055 | int *balance) |
1da177e4 | 4056 | { |
43010659 | 4057 | int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0; |
1da177e4 | 4058 | struct sched_group *group; |
1da177e4 | 4059 | unsigned long imbalance; |
70b97a7f | 4060 | struct rq *busiest; |
fe2eea3f | 4061 | unsigned long flags; |
df7c8e84 | 4062 | struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); |
5969fe06 | 4063 | |
96f874e2 | 4064 | cpumask_setall(cpus); |
7c16ec58 | 4065 | |
89c4710e SS |
4066 | /* |
4067 | * When power savings policy is enabled for the parent domain, idle | |
4068 | * sibling can pick up load irrespective of busy siblings. In this case, | |
dd41f596 | 4069 | * let the state of idle sibling percolate up as CPU_IDLE, instead of |
d15bcfdb | 4070 | * portraying it as CPU_NOT_IDLE. |
89c4710e | 4071 | */ |
d15bcfdb | 4072 | if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER && |
89c4710e | 4073 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) |
5969fe06 | 4074 | sd_idle = 1; |
1da177e4 | 4075 | |
2d72376b | 4076 | schedstat_inc(sd, lb_count[idle]); |
1da177e4 | 4077 | |
0a2966b4 | 4078 | redo: |
c8cba857 | 4079 | update_shares(sd); |
0a2966b4 | 4080 | group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle, |
7c16ec58 | 4081 | cpus, balance); |
783609c6 | 4082 | |
06066714 | 4083 | if (*balance == 0) |
783609c6 | 4084 | goto out_balanced; |
783609c6 | 4085 | |
1da177e4 LT |
4086 | if (!group) { |
4087 | schedstat_inc(sd, lb_nobusyg[idle]); | |
4088 | goto out_balanced; | |
4089 | } | |
4090 | ||
7c16ec58 | 4091 | busiest = find_busiest_queue(group, idle, imbalance, cpus); |
1da177e4 LT |
4092 | if (!busiest) { |
4093 | schedstat_inc(sd, lb_nobusyq[idle]); | |
4094 | goto out_balanced; | |
4095 | } | |
4096 | ||
db935dbd | 4097 | BUG_ON(busiest == this_rq); |
1da177e4 LT |
4098 | |
4099 | schedstat_add(sd, lb_imbalance[idle], imbalance); | |
4100 | ||
43010659 | 4101 | ld_moved = 0; |
1da177e4 LT |
4102 | if (busiest->nr_running > 1) { |
4103 | /* | |
4104 | * Attempt to move tasks. If find_busiest_group has found | |
4105 | * an imbalance but busiest->nr_running <= 1, the group is | |
43010659 | 4106 | * still unbalanced. ld_moved simply stays zero, so it is |
1da177e4 LT |
4107 | * correctly treated as an imbalance. |
4108 | */ | |
fe2eea3f | 4109 | local_irq_save(flags); |
e17224bf | 4110 | double_rq_lock(this_rq, busiest); |
43010659 | 4111 | ld_moved = move_tasks(this_rq, this_cpu, busiest, |
48f24c4d | 4112 | imbalance, sd, idle, &all_pinned); |
e17224bf | 4113 | double_rq_unlock(this_rq, busiest); |
fe2eea3f | 4114 | local_irq_restore(flags); |
81026794 | 4115 | |
46cb4b7c SS |
4116 | /* |
4117 | * some other cpu did the load balance for us. | |
4118 | */ | |
43010659 | 4119 | if (ld_moved && this_cpu != smp_processor_id()) |
46cb4b7c SS |
4120 | resched_cpu(this_cpu); |
4121 | ||
81026794 | 4122 | /* All tasks on this runqueue were pinned by CPU affinity */ |
0a2966b4 | 4123 | if (unlikely(all_pinned)) { |
96f874e2 RR |
4124 | cpumask_clear_cpu(cpu_of(busiest), cpus); |
4125 | if (!cpumask_empty(cpus)) | |
0a2966b4 | 4126 | goto redo; |
81026794 | 4127 | goto out_balanced; |
0a2966b4 | 4128 | } |
1da177e4 | 4129 | } |
81026794 | 4130 | |
43010659 | 4131 | if (!ld_moved) { |
1da177e4 LT |
4132 | schedstat_inc(sd, lb_failed[idle]); |
4133 | sd->nr_balance_failed++; | |
4134 | ||
4135 | if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) { | |
1da177e4 | 4136 | |
fe2eea3f | 4137 | spin_lock_irqsave(&busiest->lock, flags); |
fa3b6ddc SS |
4138 | |
4139 | /* don't kick the migration_thread, if the curr | |
4140 | * task on busiest cpu can't be moved to this_cpu | |
4141 | */ | |
96f874e2 RR |
4142 | if (!cpumask_test_cpu(this_cpu, |
4143 | &busiest->curr->cpus_allowed)) { | |
fe2eea3f | 4144 | spin_unlock_irqrestore(&busiest->lock, flags); |
fa3b6ddc SS |
4145 | all_pinned = 1; |
4146 | goto out_one_pinned; | |
4147 | } | |
4148 | ||
1da177e4 LT |
4149 | if (!busiest->active_balance) { |
4150 | busiest->active_balance = 1; | |
4151 | busiest->push_cpu = this_cpu; | |
81026794 | 4152 | active_balance = 1; |
1da177e4 | 4153 | } |
fe2eea3f | 4154 | spin_unlock_irqrestore(&busiest->lock, flags); |
81026794 | 4155 | if (active_balance) |
1da177e4 LT |
4156 | wake_up_process(busiest->migration_thread); |
4157 | ||
4158 | /* | |
4159 | * We've kicked active balancing, reset the failure | |
4160 | * counter. | |
4161 | */ | |
39507451 | 4162 | sd->nr_balance_failed = sd->cache_nice_tries+1; |
1da177e4 | 4163 | } |
81026794 | 4164 | } else |
1da177e4 LT |
4165 | sd->nr_balance_failed = 0; |
4166 | ||
81026794 | 4167 | if (likely(!active_balance)) { |
1da177e4 LT |
4168 | /* We were unbalanced, so reset the balancing interval */ |
4169 | sd->balance_interval = sd->min_interval; | |
81026794 NP |
4170 | } else { |
4171 | /* | |
4172 | * If we've begun active balancing, start to back off. This | |
4173 | * case may not be covered by the all_pinned logic if there | |
4174 | * is only 1 task on the busy runqueue (because we don't call | |
4175 | * move_tasks). | |
4176 | */ | |
4177 | if (sd->balance_interval < sd->max_interval) | |
4178 | sd->balance_interval *= 2; | |
1da177e4 LT |
4179 | } |
4180 | ||
43010659 | 4181 | if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER && |
89c4710e | 4182 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) |
c09595f6 PZ |
4183 | ld_moved = -1; |
4184 | ||
4185 | goto out; | |
1da177e4 LT |
4186 | |
4187 | out_balanced: | |
1da177e4 LT |
4188 | schedstat_inc(sd, lb_balanced[idle]); |
4189 | ||
16cfb1c0 | 4190 | sd->nr_balance_failed = 0; |
fa3b6ddc SS |
4191 | |
4192 | out_one_pinned: | |
1da177e4 | 4193 | /* tune up the balancing interval */ |
77391d71 NP |
4194 | if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) || |
4195 | (sd->balance_interval < sd->max_interval)) | |
1da177e4 LT |
4196 | sd->balance_interval *= 2; |
4197 | ||
48f24c4d | 4198 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && |
89c4710e | 4199 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) |
c09595f6 PZ |
4200 | ld_moved = -1; |
4201 | else | |
4202 | ld_moved = 0; | |
4203 | out: | |
c8cba857 PZ |
4204 | if (ld_moved) |
4205 | update_shares(sd); | |
c09595f6 | 4206 | return ld_moved; |
1da177e4 LT |
4207 | } |
4208 | ||
4209 | /* | |
4210 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | |
4211 | * tasks if there is an imbalance. | |
4212 | * | |
d15bcfdb | 4213 | * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE). |
1da177e4 LT |
4214 | * this_rq is locked. |
4215 | */ | |
48f24c4d | 4216 | static int |
df7c8e84 | 4217 | load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd) |
1da177e4 LT |
4218 | { |
4219 | struct sched_group *group; | |
70b97a7f | 4220 | struct rq *busiest = NULL; |
1da177e4 | 4221 | unsigned long imbalance; |
43010659 | 4222 | int ld_moved = 0; |
5969fe06 | 4223 | int sd_idle = 0; |
969bb4e4 | 4224 | int all_pinned = 0; |
df7c8e84 | 4225 | struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); |
7c16ec58 | 4226 | |
96f874e2 | 4227 | cpumask_setall(cpus); |
5969fe06 | 4228 | |
89c4710e SS |
4229 | /* |
4230 | * When power savings policy is enabled for the parent domain, idle | |
4231 | * sibling can pick up load irrespective of busy siblings. In this case, | |
4232 | * let the state of idle sibling percolate up as IDLE, instead of | |
d15bcfdb | 4233 | * portraying it as CPU_NOT_IDLE. |
89c4710e SS |
4234 | */ |
4235 | if (sd->flags & SD_SHARE_CPUPOWER && | |
4236 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | |
5969fe06 | 4237 | sd_idle = 1; |
1da177e4 | 4238 | |
2d72376b | 4239 | schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]); |
0a2966b4 | 4240 | redo: |
3e5459b4 | 4241 | update_shares_locked(this_rq, sd); |
d15bcfdb | 4242 | group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE, |
7c16ec58 | 4243 | &sd_idle, cpus, NULL); |
1da177e4 | 4244 | if (!group) { |
d15bcfdb | 4245 | schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]); |
16cfb1c0 | 4246 | goto out_balanced; |
1da177e4 LT |
4247 | } |
4248 | ||
7c16ec58 | 4249 | busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus); |
db935dbd | 4250 | if (!busiest) { |
d15bcfdb | 4251 | schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]); |
16cfb1c0 | 4252 | goto out_balanced; |
1da177e4 LT |
4253 | } |
4254 | ||
db935dbd NP |
4255 | BUG_ON(busiest == this_rq); |
4256 | ||
d15bcfdb | 4257 | schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance); |
d6d5cfaf | 4258 | |
43010659 | 4259 | ld_moved = 0; |
d6d5cfaf NP |
4260 | if (busiest->nr_running > 1) { |
4261 | /* Attempt to move tasks */ | |
4262 | double_lock_balance(this_rq, busiest); | |
6e82a3be IM |
4263 | /* this_rq->clock is already updated */ |
4264 | update_rq_clock(busiest); | |
43010659 | 4265 | ld_moved = move_tasks(this_rq, this_cpu, busiest, |
969bb4e4 SS |
4266 | imbalance, sd, CPU_NEWLY_IDLE, |
4267 | &all_pinned); | |
1b12bbc7 | 4268 | double_unlock_balance(this_rq, busiest); |
0a2966b4 | 4269 | |
969bb4e4 | 4270 | if (unlikely(all_pinned)) { |
96f874e2 RR |
4271 | cpumask_clear_cpu(cpu_of(busiest), cpus); |
4272 | if (!cpumask_empty(cpus)) | |
0a2966b4 CL |
4273 | goto redo; |
4274 | } | |
d6d5cfaf NP |
4275 | } |
4276 | ||
43010659 | 4277 | if (!ld_moved) { |
36dffab6 | 4278 | int active_balance = 0; |
ad273b32 | 4279 | |
d15bcfdb | 4280 | schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]); |
89c4710e SS |
4281 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && |
4282 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | |
5969fe06 | 4283 | return -1; |
ad273b32 VS |
4284 | |
4285 | if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP) | |
4286 | return -1; | |
4287 | ||
4288 | if (sd->nr_balance_failed++ < 2) | |
4289 | return -1; | |
4290 | ||
4291 | /* | |
4292 | * The only task running in a non-idle cpu can be moved to this | |
4293 | * cpu in an attempt to completely freeup the other CPU | |
4294 | * package. The same method used to move task in load_balance() | |
4295 | * have been extended for load_balance_newidle() to speedup | |
4296 | * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2) | |
4297 | * | |
4298 | * The package power saving logic comes from | |
4299 | * find_busiest_group(). If there are no imbalance, then | |
4300 | * f_b_g() will return NULL. However when sched_mc={1,2} then | |
4301 | * f_b_g() will select a group from which a running task may be | |
4302 | * pulled to this cpu in order to make the other package idle. | |
4303 | * If there is no opportunity to make a package idle and if | |
4304 | * there are no imbalance, then f_b_g() will return NULL and no | |
4305 | * action will be taken in load_balance_newidle(). | |
4306 | * | |
4307 | * Under normal task pull operation due to imbalance, there | |
4308 | * will be more than one task in the source run queue and | |
4309 | * move_tasks() will succeed. ld_moved will be true and this | |
4310 | * active balance code will not be triggered. | |
4311 | */ | |
4312 | ||
4313 | /* Lock busiest in correct order while this_rq is held */ | |
4314 | double_lock_balance(this_rq, busiest); | |
4315 | ||
4316 | /* | |
4317 | * don't kick the migration_thread, if the curr | |
4318 | * task on busiest cpu can't be moved to this_cpu | |
4319 | */ | |
6ca09dfc | 4320 | if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) { |
ad273b32 VS |
4321 | double_unlock_balance(this_rq, busiest); |
4322 | all_pinned = 1; | |
4323 | return ld_moved; | |
4324 | } | |
4325 | ||
4326 | if (!busiest->active_balance) { | |
4327 | busiest->active_balance = 1; | |
4328 | busiest->push_cpu = this_cpu; | |
4329 | active_balance = 1; | |
4330 | } | |
4331 | ||
4332 | double_unlock_balance(this_rq, busiest); | |
da8d5089 PZ |
4333 | /* |
4334 | * Should not call ttwu while holding a rq->lock | |
4335 | */ | |
4336 | spin_unlock(&this_rq->lock); | |
ad273b32 VS |
4337 | if (active_balance) |
4338 | wake_up_process(busiest->migration_thread); | |
da8d5089 | 4339 | spin_lock(&this_rq->lock); |
ad273b32 | 4340 | |
5969fe06 | 4341 | } else |
16cfb1c0 | 4342 | sd->nr_balance_failed = 0; |
1da177e4 | 4343 | |
3e5459b4 | 4344 | update_shares_locked(this_rq, sd); |
43010659 | 4345 | return ld_moved; |
16cfb1c0 NP |
4346 | |
4347 | out_balanced: | |
d15bcfdb | 4348 | schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]); |
48f24c4d | 4349 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && |
89c4710e | 4350 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) |
5969fe06 | 4351 | return -1; |
16cfb1c0 | 4352 | sd->nr_balance_failed = 0; |
48f24c4d | 4353 | |
16cfb1c0 | 4354 | return 0; |
1da177e4 LT |
4355 | } |
4356 | ||
4357 | /* | |
4358 | * idle_balance is called by schedule() if this_cpu is about to become | |
4359 | * idle. Attempts to pull tasks from other CPUs. | |
4360 | */ | |
70b97a7f | 4361 | static void idle_balance(int this_cpu, struct rq *this_rq) |
1da177e4 LT |
4362 | { |
4363 | struct sched_domain *sd; | |
efbe027e | 4364 | int pulled_task = 0; |
dd41f596 | 4365 | unsigned long next_balance = jiffies + HZ; |
1da177e4 LT |
4366 | |
4367 | for_each_domain(this_cpu, sd) { | |
92c4ca5c CL |
4368 | unsigned long interval; |
4369 | ||
4370 | if (!(sd->flags & SD_LOAD_BALANCE)) | |
4371 | continue; | |
4372 | ||
4373 | if (sd->flags & SD_BALANCE_NEWIDLE) | |
48f24c4d | 4374 | /* If we've pulled tasks over stop searching: */ |
7c16ec58 | 4375 | pulled_task = load_balance_newidle(this_cpu, this_rq, |
df7c8e84 | 4376 | sd); |
92c4ca5c CL |
4377 | |
4378 | interval = msecs_to_jiffies(sd->balance_interval); | |
4379 | if (time_after(next_balance, sd->last_balance + interval)) | |
4380 | next_balance = sd->last_balance + interval; | |
4381 | if (pulled_task) | |
4382 | break; | |
1da177e4 | 4383 | } |
dd41f596 | 4384 | if (pulled_task || time_after(jiffies, this_rq->next_balance)) { |
1bd77f2d CL |
4385 | /* |
4386 | * We are going idle. next_balance may be set based on | |
4387 | * a busy processor. So reset next_balance. | |
4388 | */ | |
4389 | this_rq->next_balance = next_balance; | |
dd41f596 | 4390 | } |
1da177e4 LT |
4391 | } |
4392 | ||
4393 | /* | |
4394 | * active_load_balance is run by migration threads. It pushes running tasks | |
4395 | * off the busiest CPU onto idle CPUs. It requires at least 1 task to be | |
4396 | * running on each physical CPU where possible, and avoids physical / | |
4397 | * logical imbalances. | |
4398 | * | |
4399 | * Called with busiest_rq locked. | |
4400 | */ | |
70b97a7f | 4401 | static void active_load_balance(struct rq *busiest_rq, int busiest_cpu) |
1da177e4 | 4402 | { |
39507451 | 4403 | int target_cpu = busiest_rq->push_cpu; |
70b97a7f IM |
4404 | struct sched_domain *sd; |
4405 | struct rq *target_rq; | |
39507451 | 4406 | |
48f24c4d | 4407 | /* Is there any task to move? */ |
39507451 | 4408 | if (busiest_rq->nr_running <= 1) |
39507451 NP |
4409 | return; |
4410 | ||
4411 | target_rq = cpu_rq(target_cpu); | |
1da177e4 LT |
4412 | |
4413 | /* | |
39507451 | 4414 | * This condition is "impossible", if it occurs |
41a2d6cf | 4415 | * we need to fix it. Originally reported by |
39507451 | 4416 | * Bjorn Helgaas on a 128-cpu setup. |
1da177e4 | 4417 | */ |
39507451 | 4418 | BUG_ON(busiest_rq == target_rq); |
1da177e4 | 4419 | |
39507451 NP |
4420 | /* move a task from busiest_rq to target_rq */ |
4421 | double_lock_balance(busiest_rq, target_rq); | |
6e82a3be IM |
4422 | update_rq_clock(busiest_rq); |
4423 | update_rq_clock(target_rq); | |
39507451 NP |
4424 | |
4425 | /* Search for an sd spanning us and the target CPU. */ | |
c96d145e | 4426 | for_each_domain(target_cpu, sd) { |
39507451 | 4427 | if ((sd->flags & SD_LOAD_BALANCE) && |
758b2cdc | 4428 | cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) |
39507451 | 4429 | break; |
c96d145e | 4430 | } |
39507451 | 4431 | |
48f24c4d | 4432 | if (likely(sd)) { |
2d72376b | 4433 | schedstat_inc(sd, alb_count); |
39507451 | 4434 | |
43010659 PW |
4435 | if (move_one_task(target_rq, target_cpu, busiest_rq, |
4436 | sd, CPU_IDLE)) | |
48f24c4d IM |
4437 | schedstat_inc(sd, alb_pushed); |
4438 | else | |
4439 | schedstat_inc(sd, alb_failed); | |
4440 | } | |
1b12bbc7 | 4441 | double_unlock_balance(busiest_rq, target_rq); |
1da177e4 LT |
4442 | } |
4443 | ||
46cb4b7c SS |
4444 | #ifdef CONFIG_NO_HZ |
4445 | static struct { | |
4446 | atomic_t load_balancer; | |
7d1e6a9b | 4447 | cpumask_var_t cpu_mask; |
f711f609 | 4448 | cpumask_var_t ilb_grp_nohz_mask; |
46cb4b7c SS |
4449 | } nohz ____cacheline_aligned = { |
4450 | .load_balancer = ATOMIC_INIT(-1), | |
46cb4b7c SS |
4451 | }; |
4452 | ||
eea08f32 AB |
4453 | int get_nohz_load_balancer(void) |
4454 | { | |
4455 | return atomic_read(&nohz.load_balancer); | |
4456 | } | |
4457 | ||
f711f609 GS |
4458 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
4459 | /** | |
4460 | * lowest_flag_domain - Return lowest sched_domain containing flag. | |
4461 | * @cpu: The cpu whose lowest level of sched domain is to | |
4462 | * be returned. | |
4463 | * @flag: The flag to check for the lowest sched_domain | |
4464 | * for the given cpu. | |
4465 | * | |
4466 | * Returns the lowest sched_domain of a cpu which contains the given flag. | |
4467 | */ | |
4468 | static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) | |
4469 | { | |
4470 | struct sched_domain *sd; | |
4471 | ||
4472 | for_each_domain(cpu, sd) | |
4473 | if (sd && (sd->flags & flag)) | |
4474 | break; | |
4475 | ||
4476 | return sd; | |
4477 | } | |
4478 | ||
4479 | /** | |
4480 | * for_each_flag_domain - Iterates over sched_domains containing the flag. | |
4481 | * @cpu: The cpu whose domains we're iterating over. | |
4482 | * @sd: variable holding the value of the power_savings_sd | |
4483 | * for cpu. | |
4484 | * @flag: The flag to filter the sched_domains to be iterated. | |
4485 | * | |
4486 | * Iterates over all the scheduler domains for a given cpu that has the 'flag' | |
4487 | * set, starting from the lowest sched_domain to the highest. | |
4488 | */ | |
4489 | #define for_each_flag_domain(cpu, sd, flag) \ | |
4490 | for (sd = lowest_flag_domain(cpu, flag); \ | |
4491 | (sd && (sd->flags & flag)); sd = sd->parent) | |
4492 | ||
4493 | /** | |
4494 | * is_semi_idle_group - Checks if the given sched_group is semi-idle. | |
4495 | * @ilb_group: group to be checked for semi-idleness | |
4496 | * | |
4497 | * Returns: 1 if the group is semi-idle. 0 otherwise. | |
4498 | * | |
4499 | * We define a sched_group to be semi idle if it has atleast one idle-CPU | |
4500 | * and atleast one non-idle CPU. This helper function checks if the given | |
4501 | * sched_group is semi-idle or not. | |
4502 | */ | |
4503 | static inline int is_semi_idle_group(struct sched_group *ilb_group) | |
4504 | { | |
4505 | cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask, | |
4506 | sched_group_cpus(ilb_group)); | |
4507 | ||
4508 | /* | |
4509 | * A sched_group is semi-idle when it has atleast one busy cpu | |
4510 | * and atleast one idle cpu. | |
4511 | */ | |
4512 | if (cpumask_empty(nohz.ilb_grp_nohz_mask)) | |
4513 | return 0; | |
4514 | ||
4515 | if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group))) | |
4516 | return 0; | |
4517 | ||
4518 | return 1; | |
4519 | } | |
4520 | /** | |
4521 | * find_new_ilb - Finds the optimum idle load balancer for nomination. | |
4522 | * @cpu: The cpu which is nominating a new idle_load_balancer. | |
4523 | * | |
4524 | * Returns: Returns the id of the idle load balancer if it exists, | |
4525 | * Else, returns >= nr_cpu_ids. | |
4526 | * | |
4527 | * This algorithm picks the idle load balancer such that it belongs to a | |
4528 | * semi-idle powersavings sched_domain. The idea is to try and avoid | |
4529 | * completely idle packages/cores just for the purpose of idle load balancing | |
4530 | * when there are other idle cpu's which are better suited for that job. | |
4531 | */ | |
4532 | static int find_new_ilb(int cpu) | |
4533 | { | |
4534 | struct sched_domain *sd; | |
4535 | struct sched_group *ilb_group; | |
4536 | ||
4537 | /* | |
4538 | * Have idle load balancer selection from semi-idle packages only | |
4539 | * when power-aware load balancing is enabled | |
4540 | */ | |
4541 | if (!(sched_smt_power_savings || sched_mc_power_savings)) | |
4542 | goto out_done; | |
4543 | ||
4544 | /* | |
4545 | * Optimize for the case when we have no idle CPUs or only one | |
4546 | * idle CPU. Don't walk the sched_domain hierarchy in such cases | |
4547 | */ | |
4548 | if (cpumask_weight(nohz.cpu_mask) < 2) | |
4549 | goto out_done; | |
4550 | ||
4551 | for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) { | |
4552 | ilb_group = sd->groups; | |
4553 | ||
4554 | do { | |
4555 | if (is_semi_idle_group(ilb_group)) | |
4556 | return cpumask_first(nohz.ilb_grp_nohz_mask); | |
4557 | ||
4558 | ilb_group = ilb_group->next; | |
4559 | ||
4560 | } while (ilb_group != sd->groups); | |
4561 | } | |
4562 | ||
4563 | out_done: | |
4564 | return cpumask_first(nohz.cpu_mask); | |
4565 | } | |
4566 | #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */ | |
4567 | static inline int find_new_ilb(int call_cpu) | |
4568 | { | |
6e29ec57 | 4569 | return cpumask_first(nohz.cpu_mask); |
f711f609 GS |
4570 | } |
4571 | #endif | |
4572 | ||
7835b98b | 4573 | /* |
46cb4b7c SS |
4574 | * This routine will try to nominate the ilb (idle load balancing) |
4575 | * owner among the cpus whose ticks are stopped. ilb owner will do the idle | |
4576 | * load balancing on behalf of all those cpus. If all the cpus in the system | |
4577 | * go into this tickless mode, then there will be no ilb owner (as there is | |
4578 | * no need for one) and all the cpus will sleep till the next wakeup event | |
4579 | * arrives... | |
4580 | * | |
4581 | * For the ilb owner, tick is not stopped. And this tick will be used | |
4582 | * for idle load balancing. ilb owner will still be part of | |
4583 | * nohz.cpu_mask.. | |
7835b98b | 4584 | * |
46cb4b7c SS |
4585 | * While stopping the tick, this cpu will become the ilb owner if there |
4586 | * is no other owner. And will be the owner till that cpu becomes busy | |
4587 | * or if all cpus in the system stop their ticks at which point | |
4588 | * there is no need for ilb owner. | |
4589 | * | |
4590 | * When the ilb owner becomes busy, it nominates another owner, during the | |
4591 | * next busy scheduler_tick() | |
4592 | */ | |
4593 | int select_nohz_load_balancer(int stop_tick) | |
4594 | { | |
4595 | int cpu = smp_processor_id(); | |
4596 | ||
4597 | if (stop_tick) { | |
46cb4b7c SS |
4598 | cpu_rq(cpu)->in_nohz_recently = 1; |
4599 | ||
483b4ee6 SS |
4600 | if (!cpu_active(cpu)) { |
4601 | if (atomic_read(&nohz.load_balancer) != cpu) | |
4602 | return 0; | |
4603 | ||
4604 | /* | |
4605 | * If we are going offline and still the leader, | |
4606 | * give up! | |
4607 | */ | |
46cb4b7c SS |
4608 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) |
4609 | BUG(); | |
483b4ee6 | 4610 | |
46cb4b7c SS |
4611 | return 0; |
4612 | } | |
4613 | ||
483b4ee6 SS |
4614 | cpumask_set_cpu(cpu, nohz.cpu_mask); |
4615 | ||
46cb4b7c | 4616 | /* time for ilb owner also to sleep */ |
7d1e6a9b | 4617 | if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) { |
46cb4b7c SS |
4618 | if (atomic_read(&nohz.load_balancer) == cpu) |
4619 | atomic_set(&nohz.load_balancer, -1); | |
4620 | return 0; | |
4621 | } | |
4622 | ||
4623 | if (atomic_read(&nohz.load_balancer) == -1) { | |
4624 | /* make me the ilb owner */ | |
4625 | if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1) | |
4626 | return 1; | |
e790fb0b GS |
4627 | } else if (atomic_read(&nohz.load_balancer) == cpu) { |
4628 | int new_ilb; | |
4629 | ||
4630 | if (!(sched_smt_power_savings || | |
4631 | sched_mc_power_savings)) | |
4632 | return 1; | |
4633 | /* | |
4634 | * Check to see if there is a more power-efficient | |
4635 | * ilb. | |
4636 | */ | |
4637 | new_ilb = find_new_ilb(cpu); | |
4638 | if (new_ilb < nr_cpu_ids && new_ilb != cpu) { | |
4639 | atomic_set(&nohz.load_balancer, -1); | |
4640 | resched_cpu(new_ilb); | |
4641 | return 0; | |
4642 | } | |
46cb4b7c | 4643 | return 1; |
e790fb0b | 4644 | } |
46cb4b7c | 4645 | } else { |
7d1e6a9b | 4646 | if (!cpumask_test_cpu(cpu, nohz.cpu_mask)) |
46cb4b7c SS |
4647 | return 0; |
4648 | ||
7d1e6a9b | 4649 | cpumask_clear_cpu(cpu, nohz.cpu_mask); |
46cb4b7c SS |
4650 | |
4651 | if (atomic_read(&nohz.load_balancer) == cpu) | |
4652 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) | |
4653 | BUG(); | |
4654 | } | |
4655 | return 0; | |
4656 | } | |
4657 | #endif | |
4658 | ||
4659 | static DEFINE_SPINLOCK(balancing); | |
4660 | ||
4661 | /* | |
7835b98b CL |
4662 | * It checks each scheduling domain to see if it is due to be balanced, |
4663 | * and initiates a balancing operation if so. | |
4664 | * | |
4665 | * Balancing parameters are set up in arch_init_sched_domains. | |
4666 | */ | |
a9957449 | 4667 | static void rebalance_domains(int cpu, enum cpu_idle_type idle) |
7835b98b | 4668 | { |
46cb4b7c SS |
4669 | int balance = 1; |
4670 | struct rq *rq = cpu_rq(cpu); | |
7835b98b CL |
4671 | unsigned long interval; |
4672 | struct sched_domain *sd; | |
46cb4b7c | 4673 | /* Earliest time when we have to do rebalance again */ |
c9819f45 | 4674 | unsigned long next_balance = jiffies + 60*HZ; |
f549da84 | 4675 | int update_next_balance = 0; |
d07355f5 | 4676 | int need_serialize; |
1da177e4 | 4677 | |
46cb4b7c | 4678 | for_each_domain(cpu, sd) { |
1da177e4 LT |
4679 | if (!(sd->flags & SD_LOAD_BALANCE)) |
4680 | continue; | |
4681 | ||
4682 | interval = sd->balance_interval; | |
d15bcfdb | 4683 | if (idle != CPU_IDLE) |
1da177e4 LT |
4684 | interval *= sd->busy_factor; |
4685 | ||
4686 | /* scale ms to jiffies */ | |
4687 | interval = msecs_to_jiffies(interval); | |
4688 | if (unlikely(!interval)) | |
4689 | interval = 1; | |
dd41f596 IM |
4690 | if (interval > HZ*NR_CPUS/10) |
4691 | interval = HZ*NR_CPUS/10; | |
4692 | ||
d07355f5 | 4693 | need_serialize = sd->flags & SD_SERIALIZE; |
1da177e4 | 4694 | |
d07355f5 | 4695 | if (need_serialize) { |
08c183f3 CL |
4696 | if (!spin_trylock(&balancing)) |
4697 | goto out; | |
4698 | } | |
4699 | ||
c9819f45 | 4700 | if (time_after_eq(jiffies, sd->last_balance + interval)) { |
df7c8e84 | 4701 | if (load_balance(cpu, rq, sd, idle, &balance)) { |
fa3b6ddc SS |
4702 | /* |
4703 | * We've pulled tasks over so either we're no | |
5969fe06 NP |
4704 | * longer idle, or one of our SMT siblings is |
4705 | * not idle. | |
4706 | */ | |
d15bcfdb | 4707 | idle = CPU_NOT_IDLE; |
1da177e4 | 4708 | } |
1bd77f2d | 4709 | sd->last_balance = jiffies; |
1da177e4 | 4710 | } |
d07355f5 | 4711 | if (need_serialize) |
08c183f3 CL |
4712 | spin_unlock(&balancing); |
4713 | out: | |
f549da84 | 4714 | if (time_after(next_balance, sd->last_balance + interval)) { |
c9819f45 | 4715 | next_balance = sd->last_balance + interval; |
f549da84 SS |
4716 | update_next_balance = 1; |
4717 | } | |
783609c6 SS |
4718 | |
4719 | /* | |
4720 | * Stop the load balance at this level. There is another | |
4721 | * CPU in our sched group which is doing load balancing more | |
4722 | * actively. | |
4723 | */ | |
4724 | if (!balance) | |
4725 | break; | |
1da177e4 | 4726 | } |
f549da84 SS |
4727 | |
4728 | /* | |
4729 | * next_balance will be updated only when there is a need. | |
4730 | * When the cpu is attached to null domain for ex, it will not be | |
4731 | * updated. | |
4732 | */ | |
4733 | if (likely(update_next_balance)) | |
4734 | rq->next_balance = next_balance; | |
46cb4b7c SS |
4735 | } |
4736 | ||
4737 | /* | |
4738 | * run_rebalance_domains is triggered when needed from the scheduler tick. | |
4739 | * In CONFIG_NO_HZ case, the idle load balance owner will do the | |
4740 | * rebalancing for all the cpus for whom scheduler ticks are stopped. | |
4741 | */ | |
4742 | static void run_rebalance_domains(struct softirq_action *h) | |
4743 | { | |
dd41f596 IM |
4744 | int this_cpu = smp_processor_id(); |
4745 | struct rq *this_rq = cpu_rq(this_cpu); | |
4746 | enum cpu_idle_type idle = this_rq->idle_at_tick ? | |
4747 | CPU_IDLE : CPU_NOT_IDLE; | |
46cb4b7c | 4748 | |
dd41f596 | 4749 | rebalance_domains(this_cpu, idle); |
46cb4b7c SS |
4750 | |
4751 | #ifdef CONFIG_NO_HZ | |
4752 | /* | |
4753 | * If this cpu is the owner for idle load balancing, then do the | |
4754 | * balancing on behalf of the other idle cpus whose ticks are | |
4755 | * stopped. | |
4756 | */ | |
dd41f596 IM |
4757 | if (this_rq->idle_at_tick && |
4758 | atomic_read(&nohz.load_balancer) == this_cpu) { | |
46cb4b7c SS |
4759 | struct rq *rq; |
4760 | int balance_cpu; | |
4761 | ||
7d1e6a9b RR |
4762 | for_each_cpu(balance_cpu, nohz.cpu_mask) { |
4763 | if (balance_cpu == this_cpu) | |
4764 | continue; | |
4765 | ||
46cb4b7c SS |
4766 | /* |
4767 | * If this cpu gets work to do, stop the load balancing | |
4768 | * work being done for other cpus. Next load | |
4769 | * balancing owner will pick it up. | |
4770 | */ | |
4771 | if (need_resched()) | |
4772 | break; | |
4773 | ||
de0cf899 | 4774 | rebalance_domains(balance_cpu, CPU_IDLE); |
46cb4b7c SS |
4775 | |
4776 | rq = cpu_rq(balance_cpu); | |
dd41f596 IM |
4777 | if (time_after(this_rq->next_balance, rq->next_balance)) |
4778 | this_rq->next_balance = rq->next_balance; | |
46cb4b7c SS |
4779 | } |
4780 | } | |
4781 | #endif | |
4782 | } | |
4783 | ||
8a0be9ef FW |
4784 | static inline int on_null_domain(int cpu) |
4785 | { | |
4786 | return !rcu_dereference(cpu_rq(cpu)->sd); | |
4787 | } | |
4788 | ||
46cb4b7c SS |
4789 | /* |
4790 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. | |
4791 | * | |
4792 | * In case of CONFIG_NO_HZ, this is the place where we nominate a new | |
4793 | * idle load balancing owner or decide to stop the periodic load balancing, | |
4794 | * if the whole system is idle. | |
4795 | */ | |
dd41f596 | 4796 | static inline void trigger_load_balance(struct rq *rq, int cpu) |
46cb4b7c | 4797 | { |
46cb4b7c SS |
4798 | #ifdef CONFIG_NO_HZ |
4799 | /* | |
4800 | * If we were in the nohz mode recently and busy at the current | |
4801 | * scheduler tick, then check if we need to nominate new idle | |
4802 | * load balancer. | |
4803 | */ | |
4804 | if (rq->in_nohz_recently && !rq->idle_at_tick) { | |
4805 | rq->in_nohz_recently = 0; | |
4806 | ||
4807 | if (atomic_read(&nohz.load_balancer) == cpu) { | |
7d1e6a9b | 4808 | cpumask_clear_cpu(cpu, nohz.cpu_mask); |
46cb4b7c SS |
4809 | atomic_set(&nohz.load_balancer, -1); |
4810 | } | |
4811 | ||
4812 | if (atomic_read(&nohz.load_balancer) == -1) { | |
f711f609 | 4813 | int ilb = find_new_ilb(cpu); |
46cb4b7c | 4814 | |
434d53b0 | 4815 | if (ilb < nr_cpu_ids) |
46cb4b7c SS |
4816 | resched_cpu(ilb); |
4817 | } | |
4818 | } | |
4819 | ||
4820 | /* | |
4821 | * If this cpu is idle and doing idle load balancing for all the | |
4822 | * cpus with ticks stopped, is it time for that to stop? | |
4823 | */ | |
4824 | if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu && | |
7d1e6a9b | 4825 | cpumask_weight(nohz.cpu_mask) == num_online_cpus()) { |
46cb4b7c SS |
4826 | resched_cpu(cpu); |
4827 | return; | |
4828 | } | |
4829 | ||
4830 | /* | |
4831 | * If this cpu is idle and the idle load balancing is done by | |
4832 | * someone else, then no need raise the SCHED_SOFTIRQ | |
4833 | */ | |
4834 | if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu && | |
7d1e6a9b | 4835 | cpumask_test_cpu(cpu, nohz.cpu_mask)) |
46cb4b7c SS |
4836 | return; |
4837 | #endif | |
8a0be9ef FW |
4838 | /* Don't need to rebalance while attached to NULL domain */ |
4839 | if (time_after_eq(jiffies, rq->next_balance) && | |
4840 | likely(!on_null_domain(cpu))) | |
46cb4b7c | 4841 | raise_softirq(SCHED_SOFTIRQ); |
1da177e4 | 4842 | } |
dd41f596 IM |
4843 | |
4844 | #else /* CONFIG_SMP */ | |
4845 | ||
1da177e4 LT |
4846 | /* |
4847 | * on UP we do not need to balance between CPUs: | |
4848 | */ | |
70b97a7f | 4849 | static inline void idle_balance(int cpu, struct rq *rq) |
1da177e4 LT |
4850 | { |
4851 | } | |
dd41f596 | 4852 | |
1da177e4 LT |
4853 | #endif |
4854 | ||
1da177e4 LT |
4855 | DEFINE_PER_CPU(struct kernel_stat, kstat); |
4856 | ||
4857 | EXPORT_PER_CPU_SYMBOL(kstat); | |
4858 | ||
4859 | /* | |
c5f8d995 | 4860 | * Return any ns on the sched_clock that have not yet been accounted in |
f06febc9 | 4861 | * @p in case that task is currently running. |
c5f8d995 HS |
4862 | * |
4863 | * Called with task_rq_lock() held on @rq. | |
1da177e4 | 4864 | */ |
c5f8d995 HS |
4865 | static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) |
4866 | { | |
4867 | u64 ns = 0; | |
4868 | ||
4869 | if (task_current(rq, p)) { | |
4870 | update_rq_clock(rq); | |
4871 | ns = rq->clock - p->se.exec_start; | |
4872 | if ((s64)ns < 0) | |
4873 | ns = 0; | |
4874 | } | |
4875 | ||
4876 | return ns; | |
4877 | } | |
4878 | ||
bb34d92f | 4879 | unsigned long long task_delta_exec(struct task_struct *p) |
1da177e4 | 4880 | { |
1da177e4 | 4881 | unsigned long flags; |
41b86e9c | 4882 | struct rq *rq; |
bb34d92f | 4883 | u64 ns = 0; |
48f24c4d | 4884 | |
41b86e9c | 4885 | rq = task_rq_lock(p, &flags); |
c5f8d995 HS |
4886 | ns = do_task_delta_exec(p, rq); |
4887 | task_rq_unlock(rq, &flags); | |
1508487e | 4888 | |
c5f8d995 HS |
4889 | return ns; |
4890 | } | |
f06febc9 | 4891 | |
c5f8d995 HS |
4892 | /* |
4893 | * Return accounted runtime for the task. | |
4894 | * In case the task is currently running, return the runtime plus current's | |
4895 | * pending runtime that have not been accounted yet. | |
4896 | */ | |
4897 | unsigned long long task_sched_runtime(struct task_struct *p) | |
4898 | { | |
4899 | unsigned long flags; | |
4900 | struct rq *rq; | |
4901 | u64 ns = 0; | |
4902 | ||
4903 | rq = task_rq_lock(p, &flags); | |
4904 | ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); | |
4905 | task_rq_unlock(rq, &flags); | |
4906 | ||
4907 | return ns; | |
4908 | } | |
48f24c4d | 4909 | |
c5f8d995 HS |
4910 | /* |
4911 | * Return sum_exec_runtime for the thread group. | |
4912 | * In case the task is currently running, return the sum plus current's | |
4913 | * pending runtime that have not been accounted yet. | |
4914 | * | |
4915 | * Note that the thread group might have other running tasks as well, | |
4916 | * so the return value not includes other pending runtime that other | |
4917 | * running tasks might have. | |
4918 | */ | |
4919 | unsigned long long thread_group_sched_runtime(struct task_struct *p) | |
4920 | { | |
4921 | struct task_cputime totals; | |
4922 | unsigned long flags; | |
4923 | struct rq *rq; | |
4924 | u64 ns; | |
4925 | ||
4926 | rq = task_rq_lock(p, &flags); | |
4927 | thread_group_cputime(p, &totals); | |
4928 | ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq); | |
41b86e9c | 4929 | task_rq_unlock(rq, &flags); |
48f24c4d | 4930 | |
1da177e4 LT |
4931 | return ns; |
4932 | } | |
4933 | ||
1da177e4 LT |
4934 | /* |
4935 | * Account user cpu time to a process. | |
4936 | * @p: the process that the cpu time gets accounted to | |
1da177e4 | 4937 | * @cputime: the cpu time spent in user space since the last update |
457533a7 | 4938 | * @cputime_scaled: cputime scaled by cpu frequency |
1da177e4 | 4939 | */ |
457533a7 MS |
4940 | void account_user_time(struct task_struct *p, cputime_t cputime, |
4941 | cputime_t cputime_scaled) | |
1da177e4 LT |
4942 | { |
4943 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | |
4944 | cputime64_t tmp; | |
4945 | ||
457533a7 | 4946 | /* Add user time to process. */ |
1da177e4 | 4947 | p->utime = cputime_add(p->utime, cputime); |
457533a7 | 4948 | p->utimescaled = cputime_add(p->utimescaled, cputime_scaled); |
f06febc9 | 4949 | account_group_user_time(p, cputime); |
1da177e4 LT |
4950 | |
4951 | /* Add user time to cpustat. */ | |
4952 | tmp = cputime_to_cputime64(cputime); | |
4953 | if (TASK_NICE(p) > 0) | |
4954 | cpustat->nice = cputime64_add(cpustat->nice, tmp); | |
4955 | else | |
4956 | cpustat->user = cputime64_add(cpustat->user, tmp); | |
ef12fefa BR |
4957 | |
4958 | cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime); | |
49b5cf34 JL |
4959 | /* Account for user time used */ |
4960 | acct_update_integrals(p); | |
1da177e4 LT |
4961 | } |
4962 | ||
94886b84 LV |
4963 | /* |
4964 | * Account guest cpu time to a process. | |
4965 | * @p: the process that the cpu time gets accounted to | |
4966 | * @cputime: the cpu time spent in virtual machine since the last update | |
457533a7 | 4967 | * @cputime_scaled: cputime scaled by cpu frequency |
94886b84 | 4968 | */ |
457533a7 MS |
4969 | static void account_guest_time(struct task_struct *p, cputime_t cputime, |
4970 | cputime_t cputime_scaled) | |
94886b84 LV |
4971 | { |
4972 | cputime64_t tmp; | |
4973 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | |
4974 | ||
4975 | tmp = cputime_to_cputime64(cputime); | |
4976 | ||
457533a7 | 4977 | /* Add guest time to process. */ |
94886b84 | 4978 | p->utime = cputime_add(p->utime, cputime); |
457533a7 | 4979 | p->utimescaled = cputime_add(p->utimescaled, cputime_scaled); |
f06febc9 | 4980 | account_group_user_time(p, cputime); |
94886b84 LV |
4981 | p->gtime = cputime_add(p->gtime, cputime); |
4982 | ||
457533a7 | 4983 | /* Add guest time to cpustat. */ |
94886b84 LV |
4984 | cpustat->user = cputime64_add(cpustat->user, tmp); |
4985 | cpustat->guest = cputime64_add(cpustat->guest, tmp); | |
4986 | } | |
4987 | ||
1da177e4 LT |
4988 | /* |
4989 | * Account system cpu time to a process. | |
4990 | * @p: the process that the cpu time gets accounted to | |
4991 | * @hardirq_offset: the offset to subtract from hardirq_count() | |
4992 | * @cputime: the cpu time spent in kernel space since the last update | |
457533a7 | 4993 | * @cputime_scaled: cputime scaled by cpu frequency |
1da177e4 LT |
4994 | */ |
4995 | void account_system_time(struct task_struct *p, int hardirq_offset, | |
457533a7 | 4996 | cputime_t cputime, cputime_t cputime_scaled) |
1da177e4 LT |
4997 | { |
4998 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | |
1da177e4 LT |
4999 | cputime64_t tmp; |
5000 | ||
983ed7a6 | 5001 | if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { |
457533a7 | 5002 | account_guest_time(p, cputime, cputime_scaled); |
983ed7a6 HH |
5003 | return; |
5004 | } | |
94886b84 | 5005 | |
457533a7 | 5006 | /* Add system time to process. */ |
1da177e4 | 5007 | p->stime = cputime_add(p->stime, cputime); |
457533a7 | 5008 | p->stimescaled = cputime_add(p->stimescaled, cputime_scaled); |
f06febc9 | 5009 | account_group_system_time(p, cputime); |
1da177e4 LT |
5010 | |
5011 | /* Add system time to cpustat. */ | |
5012 | tmp = cputime_to_cputime64(cputime); | |
5013 | if (hardirq_count() - hardirq_offset) | |
5014 | cpustat->irq = cputime64_add(cpustat->irq, tmp); | |
5015 | else if (softirq_count()) | |
5016 | cpustat->softirq = cputime64_add(cpustat->softirq, tmp); | |
1da177e4 | 5017 | else |
79741dd3 MS |
5018 | cpustat->system = cputime64_add(cpustat->system, tmp); |
5019 | ||
ef12fefa BR |
5020 | cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime); |
5021 | ||
1da177e4 LT |
5022 | /* Account for system time used */ |
5023 | acct_update_integrals(p); | |
1da177e4 LT |
5024 | } |
5025 | ||
c66f08be | 5026 | /* |
1da177e4 | 5027 | * Account for involuntary wait time. |
1da177e4 | 5028 | * @steal: the cpu time spent in involuntary wait |
c66f08be | 5029 | */ |
79741dd3 | 5030 | void account_steal_time(cputime_t cputime) |
c66f08be | 5031 | { |
79741dd3 MS |
5032 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; |
5033 | cputime64_t cputime64 = cputime_to_cputime64(cputime); | |
5034 | ||
5035 | cpustat->steal = cputime64_add(cpustat->steal, cputime64); | |
c66f08be MN |
5036 | } |
5037 | ||
1da177e4 | 5038 | /* |
79741dd3 MS |
5039 | * Account for idle time. |
5040 | * @cputime: the cpu time spent in idle wait | |
1da177e4 | 5041 | */ |
79741dd3 | 5042 | void account_idle_time(cputime_t cputime) |
1da177e4 LT |
5043 | { |
5044 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | |
79741dd3 | 5045 | cputime64_t cputime64 = cputime_to_cputime64(cputime); |
70b97a7f | 5046 | struct rq *rq = this_rq(); |
1da177e4 | 5047 | |
79741dd3 MS |
5048 | if (atomic_read(&rq->nr_iowait) > 0) |
5049 | cpustat->iowait = cputime64_add(cpustat->iowait, cputime64); | |
5050 | else | |
5051 | cpustat->idle = cputime64_add(cpustat->idle, cputime64); | |
1da177e4 LT |
5052 | } |
5053 | ||
79741dd3 MS |
5054 | #ifndef CONFIG_VIRT_CPU_ACCOUNTING |
5055 | ||
5056 | /* | |
5057 | * Account a single tick of cpu time. | |
5058 | * @p: the process that the cpu time gets accounted to | |
5059 | * @user_tick: indicates if the tick is a user or a system tick | |
5060 | */ | |
5061 | void account_process_tick(struct task_struct *p, int user_tick) | |
5062 | { | |
5063 | cputime_t one_jiffy = jiffies_to_cputime(1); | |
5064 | cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy); | |
5065 | struct rq *rq = this_rq(); | |
5066 | ||
5067 | if (user_tick) | |
5068 | account_user_time(p, one_jiffy, one_jiffy_scaled); | |
f5f293a4 | 5069 | else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) |
79741dd3 MS |
5070 | account_system_time(p, HARDIRQ_OFFSET, one_jiffy, |
5071 | one_jiffy_scaled); | |
5072 | else | |
5073 | account_idle_time(one_jiffy); | |
5074 | } | |
5075 | ||
5076 | /* | |
5077 | * Account multiple ticks of steal time. | |
5078 | * @p: the process from which the cpu time has been stolen | |
5079 | * @ticks: number of stolen ticks | |
5080 | */ | |
5081 | void account_steal_ticks(unsigned long ticks) | |
5082 | { | |
5083 | account_steal_time(jiffies_to_cputime(ticks)); | |
5084 | } | |
5085 | ||
5086 | /* | |
5087 | * Account multiple ticks of idle time. | |
5088 | * @ticks: number of stolen ticks | |
5089 | */ | |
5090 | void account_idle_ticks(unsigned long ticks) | |
5091 | { | |
5092 | account_idle_time(jiffies_to_cputime(ticks)); | |
1da177e4 LT |
5093 | } |
5094 | ||
79741dd3 MS |
5095 | #endif |
5096 | ||
49048622 BS |
5097 | /* |
5098 | * Use precise platform statistics if available: | |
5099 | */ | |
5100 | #ifdef CONFIG_VIRT_CPU_ACCOUNTING | |
5101 | cputime_t task_utime(struct task_struct *p) | |
5102 | { | |
5103 | return p->utime; | |
5104 | } | |
5105 | ||
5106 | cputime_t task_stime(struct task_struct *p) | |
5107 | { | |
5108 | return p->stime; | |
5109 | } | |
5110 | #else | |
5111 | cputime_t task_utime(struct task_struct *p) | |
5112 | { | |
5113 | clock_t utime = cputime_to_clock_t(p->utime), | |
5114 | total = utime + cputime_to_clock_t(p->stime); | |
5115 | u64 temp; | |
5116 | ||
5117 | /* | |
5118 | * Use CFS's precise accounting: | |
5119 | */ | |
5120 | temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime); | |
5121 | ||
5122 | if (total) { | |
5123 | temp *= utime; | |
5124 | do_div(temp, total); | |
5125 | } | |
5126 | utime = (clock_t)temp; | |
5127 | ||
5128 | p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime)); | |
5129 | return p->prev_utime; | |
5130 | } | |
5131 | ||
5132 | cputime_t task_stime(struct task_struct *p) | |
5133 | { | |
5134 | clock_t stime; | |
5135 | ||
5136 | /* | |
5137 | * Use CFS's precise accounting. (we subtract utime from | |
5138 | * the total, to make sure the total observed by userspace | |
5139 | * grows monotonically - apps rely on that): | |
5140 | */ | |
5141 | stime = nsec_to_clock_t(p->se.sum_exec_runtime) - | |
5142 | cputime_to_clock_t(task_utime(p)); | |
5143 | ||
5144 | if (stime >= 0) | |
5145 | p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime)); | |
5146 | ||
5147 | return p->prev_stime; | |
5148 | } | |
5149 | #endif | |
5150 | ||
5151 | inline cputime_t task_gtime(struct task_struct *p) | |
5152 | { | |
5153 | return p->gtime; | |
5154 | } | |
5155 | ||
7835b98b CL |
5156 | /* |
5157 | * This function gets called by the timer code, with HZ frequency. | |
5158 | * We call it with interrupts disabled. | |
5159 | * | |
5160 | * It also gets called by the fork code, when changing the parent's | |
5161 | * timeslices. | |
5162 | */ | |
5163 | void scheduler_tick(void) | |
5164 | { | |
7835b98b CL |
5165 | int cpu = smp_processor_id(); |
5166 | struct rq *rq = cpu_rq(cpu); | |
dd41f596 | 5167 | struct task_struct *curr = rq->curr; |
3e51f33f PZ |
5168 | |
5169 | sched_clock_tick(); | |
dd41f596 IM |
5170 | |
5171 | spin_lock(&rq->lock); | |
3e51f33f | 5172 | update_rq_clock(rq); |
f1a438d8 | 5173 | update_cpu_load(rq); |
fa85ae24 | 5174 | curr->sched_class->task_tick(rq, curr, 0); |
dd41f596 | 5175 | spin_unlock(&rq->lock); |
7835b98b | 5176 | |
e220d2dc PZ |
5177 | perf_counter_task_tick(curr, cpu); |
5178 | ||
e418e1c2 | 5179 | #ifdef CONFIG_SMP |
dd41f596 IM |
5180 | rq->idle_at_tick = idle_cpu(cpu); |
5181 | trigger_load_balance(rq, cpu); | |
e418e1c2 | 5182 | #endif |
1da177e4 LT |
5183 | } |
5184 | ||
132380a0 | 5185 | notrace unsigned long get_parent_ip(unsigned long addr) |
6cd8a4bb SR |
5186 | { |
5187 | if (in_lock_functions(addr)) { | |
5188 | addr = CALLER_ADDR2; | |
5189 | if (in_lock_functions(addr)) | |
5190 | addr = CALLER_ADDR3; | |
5191 | } | |
5192 | return addr; | |
5193 | } | |
1da177e4 | 5194 | |
7e49fcce SR |
5195 | #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ |
5196 | defined(CONFIG_PREEMPT_TRACER)) | |
5197 | ||
43627582 | 5198 | void __kprobes add_preempt_count(int val) |
1da177e4 | 5199 | { |
6cd8a4bb | 5200 | #ifdef CONFIG_DEBUG_PREEMPT |
1da177e4 LT |
5201 | /* |
5202 | * Underflow? | |
5203 | */ | |
9a11b49a IM |
5204 | if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) |
5205 | return; | |
6cd8a4bb | 5206 | #endif |
1da177e4 | 5207 | preempt_count() += val; |
6cd8a4bb | 5208 | #ifdef CONFIG_DEBUG_PREEMPT |
1da177e4 LT |
5209 | /* |
5210 | * Spinlock count overflowing soon? | |
5211 | */ | |
33859f7f MOS |
5212 | DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= |
5213 | PREEMPT_MASK - 10); | |
6cd8a4bb SR |
5214 | #endif |
5215 | if (preempt_count() == val) | |
5216 | trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); | |
1da177e4 LT |
5217 | } |
5218 | EXPORT_SYMBOL(add_preempt_count); | |
5219 | ||
43627582 | 5220 | void __kprobes sub_preempt_count(int val) |
1da177e4 | 5221 | { |
6cd8a4bb | 5222 | #ifdef CONFIG_DEBUG_PREEMPT |
1da177e4 LT |
5223 | /* |
5224 | * Underflow? | |
5225 | */ | |
01e3eb82 | 5226 | if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) |
9a11b49a | 5227 | return; |
1da177e4 LT |
5228 | /* |
5229 | * Is the spinlock portion underflowing? | |
5230 | */ | |
9a11b49a IM |
5231 | if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && |
5232 | !(preempt_count() & PREEMPT_MASK))) | |
5233 | return; | |
6cd8a4bb | 5234 | #endif |
9a11b49a | 5235 | |
6cd8a4bb SR |
5236 | if (preempt_count() == val) |
5237 | trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); | |
1da177e4 LT |
5238 | preempt_count() -= val; |
5239 | } | |
5240 | EXPORT_SYMBOL(sub_preempt_count); | |
5241 | ||
5242 | #endif | |
5243 | ||
5244 | /* | |
dd41f596 | 5245 | * Print scheduling while atomic bug: |
1da177e4 | 5246 | */ |
dd41f596 | 5247 | static noinline void __schedule_bug(struct task_struct *prev) |
1da177e4 | 5248 | { |
838225b4 SS |
5249 | struct pt_regs *regs = get_irq_regs(); |
5250 | ||
5251 | printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", | |
5252 | prev->comm, prev->pid, preempt_count()); | |
5253 | ||
dd41f596 | 5254 | debug_show_held_locks(prev); |
e21f5b15 | 5255 | print_modules(); |
dd41f596 IM |
5256 | if (irqs_disabled()) |
5257 | print_irqtrace_events(prev); | |
838225b4 SS |
5258 | |
5259 | if (regs) | |
5260 | show_regs(regs); | |
5261 | else | |
5262 | dump_stack(); | |
dd41f596 | 5263 | } |
1da177e4 | 5264 | |
dd41f596 IM |
5265 | /* |
5266 | * Various schedule()-time debugging checks and statistics: | |
5267 | */ | |
5268 | static inline void schedule_debug(struct task_struct *prev) | |
5269 | { | |
1da177e4 | 5270 | /* |
41a2d6cf | 5271 | * Test if we are atomic. Since do_exit() needs to call into |
1da177e4 LT |
5272 | * schedule() atomically, we ignore that path for now. |
5273 | * Otherwise, whine if we are scheduling when we should not be. | |
5274 | */ | |
3f33a7ce | 5275 | if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) |
dd41f596 IM |
5276 | __schedule_bug(prev); |
5277 | ||
1da177e4 LT |
5278 | profile_hit(SCHED_PROFILING, __builtin_return_address(0)); |
5279 | ||
2d72376b | 5280 | schedstat_inc(this_rq(), sched_count); |
b8efb561 IM |
5281 | #ifdef CONFIG_SCHEDSTATS |
5282 | if (unlikely(prev->lock_depth >= 0)) { | |
2d72376b IM |
5283 | schedstat_inc(this_rq(), bkl_count); |
5284 | schedstat_inc(prev, sched_info.bkl_count); | |
b8efb561 IM |
5285 | } |
5286 | #endif | |
dd41f596 IM |
5287 | } |
5288 | ||
df1c99d4 MG |
5289 | static void put_prev_task(struct rq *rq, struct task_struct *prev) |
5290 | { | |
5291 | if (prev->state == TASK_RUNNING) { | |
5292 | u64 runtime = prev->se.sum_exec_runtime; | |
5293 | ||
5294 | runtime -= prev->se.prev_sum_exec_runtime; | |
5295 | runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost); | |
5296 | ||
5297 | /* | |
5298 | * In order to avoid avg_overlap growing stale when we are | |
5299 | * indeed overlapping and hence not getting put to sleep, grow | |
5300 | * the avg_overlap on preemption. | |
5301 | * | |
5302 | * We use the average preemption runtime because that | |
5303 | * correlates to the amount of cache footprint a task can | |
5304 | * build up. | |
5305 | */ | |
5306 | update_avg(&prev->se.avg_overlap, runtime); | |
5307 | } | |
5308 | prev->sched_class->put_prev_task(rq, prev); | |
5309 | } | |
5310 | ||
dd41f596 IM |
5311 | /* |
5312 | * Pick up the highest-prio task: | |
5313 | */ | |
5314 | static inline struct task_struct * | |
b67802ea | 5315 | pick_next_task(struct rq *rq) |
dd41f596 | 5316 | { |
5522d5d5 | 5317 | const struct sched_class *class; |
dd41f596 | 5318 | struct task_struct *p; |
1da177e4 LT |
5319 | |
5320 | /* | |
dd41f596 IM |
5321 | * Optimization: we know that if all tasks are in |
5322 | * the fair class we can call that function directly: | |
1da177e4 | 5323 | */ |
dd41f596 | 5324 | if (likely(rq->nr_running == rq->cfs.nr_running)) { |
fb8d4724 | 5325 | p = fair_sched_class.pick_next_task(rq); |
dd41f596 IM |
5326 | if (likely(p)) |
5327 | return p; | |
1da177e4 LT |
5328 | } |
5329 | ||
dd41f596 IM |
5330 | class = sched_class_highest; |
5331 | for ( ; ; ) { | |
fb8d4724 | 5332 | p = class->pick_next_task(rq); |
dd41f596 IM |
5333 | if (p) |
5334 | return p; | |
5335 | /* | |
5336 | * Will never be NULL as the idle class always | |
5337 | * returns a non-NULL p: | |
5338 | */ | |
5339 | class = class->next; | |
5340 | } | |
5341 | } | |
1da177e4 | 5342 | |
dd41f596 IM |
5343 | /* |
5344 | * schedule() is the main scheduler function. | |
5345 | */ | |
ff743345 | 5346 | asmlinkage void __sched schedule(void) |
dd41f596 IM |
5347 | { |
5348 | struct task_struct *prev, *next; | |
67ca7bde | 5349 | unsigned long *switch_count; |
dd41f596 | 5350 | struct rq *rq; |
31656519 | 5351 | int cpu; |
dd41f596 | 5352 | |
ff743345 PZ |
5353 | need_resched: |
5354 | preempt_disable(); | |
dd41f596 IM |
5355 | cpu = smp_processor_id(); |
5356 | rq = cpu_rq(cpu); | |
d6714c22 | 5357 | rcu_sched_qs(cpu); |
dd41f596 IM |
5358 | prev = rq->curr; |
5359 | switch_count = &prev->nivcsw; | |
5360 | ||
5361 | release_kernel_lock(prev); | |
5362 | need_resched_nonpreemptible: | |
5363 | ||
5364 | schedule_debug(prev); | |
1da177e4 | 5365 | |
31656519 | 5366 | if (sched_feat(HRTICK)) |
f333fdc9 | 5367 | hrtick_clear(rq); |
8f4d37ec | 5368 | |
8cd162ce | 5369 | spin_lock_irq(&rq->lock); |
3e51f33f | 5370 | update_rq_clock(rq); |
1e819950 | 5371 | clear_tsk_need_resched(prev); |
1da177e4 | 5372 | |
1da177e4 | 5373 | if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { |
16882c1e | 5374 | if (unlikely(signal_pending_state(prev->state, prev))) |
1da177e4 | 5375 | prev->state = TASK_RUNNING; |
16882c1e | 5376 | else |
2e1cb74a | 5377 | deactivate_task(rq, prev, 1); |
dd41f596 | 5378 | switch_count = &prev->nvcsw; |
1da177e4 LT |
5379 | } |
5380 | ||
3f029d3c | 5381 | pre_schedule(rq, prev); |
f65eda4f | 5382 | |
dd41f596 | 5383 | if (unlikely(!rq->nr_running)) |
1da177e4 | 5384 | idle_balance(cpu, rq); |
1da177e4 | 5385 | |
df1c99d4 | 5386 | put_prev_task(rq, prev); |
b67802ea | 5387 | next = pick_next_task(rq); |
1da177e4 | 5388 | |
1da177e4 | 5389 | if (likely(prev != next)) { |
673a90a1 | 5390 | sched_info_switch(prev, next); |
564c2b21 | 5391 | perf_counter_task_sched_out(prev, next, cpu); |
673a90a1 | 5392 | |
1da177e4 LT |
5393 | rq->nr_switches++; |
5394 | rq->curr = next; | |
5395 | ++*switch_count; | |
5396 | ||
dd41f596 | 5397 | context_switch(rq, prev, next); /* unlocks the rq */ |
8f4d37ec PZ |
5398 | /* |
5399 | * the context switch might have flipped the stack from under | |
5400 | * us, hence refresh the local variables. | |
5401 | */ | |
5402 | cpu = smp_processor_id(); | |
5403 | rq = cpu_rq(cpu); | |
1da177e4 LT |
5404 | } else |
5405 | spin_unlock_irq(&rq->lock); | |
5406 | ||
3f029d3c | 5407 | post_schedule(rq); |
1da177e4 | 5408 | |
8f4d37ec | 5409 | if (unlikely(reacquire_kernel_lock(current) < 0)) |
1da177e4 | 5410 | goto need_resched_nonpreemptible; |
8f4d37ec | 5411 | |
1da177e4 | 5412 | preempt_enable_no_resched(); |
ff743345 | 5413 | if (need_resched()) |
1da177e4 LT |
5414 | goto need_resched; |
5415 | } | |
1da177e4 LT |
5416 | EXPORT_SYMBOL(schedule); |
5417 | ||
0d66bf6d PZ |
5418 | #ifdef CONFIG_SMP |
5419 | /* | |
5420 | * Look out! "owner" is an entirely speculative pointer | |
5421 | * access and not reliable. | |
5422 | */ | |
5423 | int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner) | |
5424 | { | |
5425 | unsigned int cpu; | |
5426 | struct rq *rq; | |
5427 | ||
5428 | if (!sched_feat(OWNER_SPIN)) | |
5429 | return 0; | |
5430 | ||
5431 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
5432 | /* | |
5433 | * Need to access the cpu field knowing that | |
5434 | * DEBUG_PAGEALLOC could have unmapped it if | |
5435 | * the mutex owner just released it and exited. | |
5436 | */ | |
5437 | if (probe_kernel_address(&owner->cpu, cpu)) | |
5438 | goto out; | |
5439 | #else | |
5440 | cpu = owner->cpu; | |
5441 | #endif | |
5442 | ||
5443 | /* | |
5444 | * Even if the access succeeded (likely case), | |
5445 | * the cpu field may no longer be valid. | |
5446 | */ | |
5447 | if (cpu >= nr_cpumask_bits) | |
5448 | goto out; | |
5449 | ||
5450 | /* | |
5451 | * We need to validate that we can do a | |
5452 | * get_cpu() and that we have the percpu area. | |
5453 | */ | |
5454 | if (!cpu_online(cpu)) | |
5455 | goto out; | |
5456 | ||
5457 | rq = cpu_rq(cpu); | |
5458 | ||
5459 | for (;;) { | |
5460 | /* | |
5461 | * Owner changed, break to re-assess state. | |
5462 | */ | |
5463 | if (lock->owner != owner) | |
5464 | break; | |
5465 | ||
5466 | /* | |
5467 | * Is that owner really running on that cpu? | |
5468 | */ | |
5469 | if (task_thread_info(rq->curr) != owner || need_resched()) | |
5470 | return 0; | |
5471 | ||
5472 | cpu_relax(); | |
5473 | } | |
5474 | out: | |
5475 | return 1; | |
5476 | } | |
5477 | #endif | |
5478 | ||
1da177e4 LT |
5479 | #ifdef CONFIG_PREEMPT |
5480 | /* | |
2ed6e34f | 5481 | * this is the entry point to schedule() from in-kernel preemption |
41a2d6cf | 5482 | * off of preempt_enable. Kernel preemptions off return from interrupt |
1da177e4 LT |
5483 | * occur there and call schedule directly. |
5484 | */ | |
5485 | asmlinkage void __sched preempt_schedule(void) | |
5486 | { | |
5487 | struct thread_info *ti = current_thread_info(); | |
6478d880 | 5488 | |
1da177e4 LT |
5489 | /* |
5490 | * If there is a non-zero preempt_count or interrupts are disabled, | |
41a2d6cf | 5491 | * we do not want to preempt the current task. Just return.. |
1da177e4 | 5492 | */ |
beed33a8 | 5493 | if (likely(ti->preempt_count || irqs_disabled())) |
1da177e4 LT |
5494 | return; |
5495 | ||
3a5c359a AK |
5496 | do { |
5497 | add_preempt_count(PREEMPT_ACTIVE); | |
3a5c359a | 5498 | schedule(); |
3a5c359a | 5499 | sub_preempt_count(PREEMPT_ACTIVE); |
1da177e4 | 5500 | |
3a5c359a AK |
5501 | /* |
5502 | * Check again in case we missed a preemption opportunity | |
5503 | * between schedule and now. | |
5504 | */ | |
5505 | barrier(); | |
5ed0cec0 | 5506 | } while (need_resched()); |
1da177e4 | 5507 | } |
1da177e4 LT |
5508 | EXPORT_SYMBOL(preempt_schedule); |
5509 | ||
5510 | /* | |
2ed6e34f | 5511 | * this is the entry point to schedule() from kernel preemption |
1da177e4 LT |
5512 | * off of irq context. |
5513 | * Note, that this is called and return with irqs disabled. This will | |
5514 | * protect us against recursive calling from irq. | |
5515 | */ | |
5516 | asmlinkage void __sched preempt_schedule_irq(void) | |
5517 | { | |
5518 | struct thread_info *ti = current_thread_info(); | |
6478d880 | 5519 | |
2ed6e34f | 5520 | /* Catch callers which need to be fixed */ |
1da177e4 LT |
5521 | BUG_ON(ti->preempt_count || !irqs_disabled()); |
5522 | ||
3a5c359a AK |
5523 | do { |
5524 | add_preempt_count(PREEMPT_ACTIVE); | |
3a5c359a AK |
5525 | local_irq_enable(); |
5526 | schedule(); | |
5527 | local_irq_disable(); | |
3a5c359a | 5528 | sub_preempt_count(PREEMPT_ACTIVE); |
1da177e4 | 5529 | |
3a5c359a AK |
5530 | /* |
5531 | * Check again in case we missed a preemption opportunity | |
5532 | * between schedule and now. | |
5533 | */ | |
5534 | barrier(); | |
5ed0cec0 | 5535 | } while (need_resched()); |
1da177e4 LT |
5536 | } |
5537 | ||
5538 | #endif /* CONFIG_PREEMPT */ | |
5539 | ||
95cdf3b7 IM |
5540 | int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, |
5541 | void *key) | |
1da177e4 | 5542 | { |
48f24c4d | 5543 | return try_to_wake_up(curr->private, mode, sync); |
1da177e4 | 5544 | } |
1da177e4 LT |
5545 | EXPORT_SYMBOL(default_wake_function); |
5546 | ||
5547 | /* | |
41a2d6cf IM |
5548 | * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just |
5549 | * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve | |
1da177e4 LT |
5550 | * number) then we wake all the non-exclusive tasks and one exclusive task. |
5551 | * | |
5552 | * There are circumstances in which we can try to wake a task which has already | |
41a2d6cf | 5553 | * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns |
1da177e4 LT |
5554 | * zero in this (rare) case, and we handle it by continuing to scan the queue. |
5555 | */ | |
78ddb08f | 5556 | static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, |
777c6c5f | 5557 | int nr_exclusive, int sync, void *key) |
1da177e4 | 5558 | { |
2e45874c | 5559 | wait_queue_t *curr, *next; |
1da177e4 | 5560 | |
2e45874c | 5561 | list_for_each_entry_safe(curr, next, &q->task_list, task_list) { |
48f24c4d IM |
5562 | unsigned flags = curr->flags; |
5563 | ||
1da177e4 | 5564 | if (curr->func(curr, mode, sync, key) && |
48f24c4d | 5565 | (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) |
1da177e4 LT |
5566 | break; |
5567 | } | |
5568 | } | |
5569 | ||
5570 | /** | |
5571 | * __wake_up - wake up threads blocked on a waitqueue. | |
5572 | * @q: the waitqueue | |
5573 | * @mode: which threads | |
5574 | * @nr_exclusive: how many wake-one or wake-many threads to wake up | |
67be2dd1 | 5575 | * @key: is directly passed to the wakeup function |
50fa610a DH |
5576 | * |
5577 | * It may be assumed that this function implies a write memory barrier before | |
5578 | * changing the task state if and only if any tasks are woken up. | |
1da177e4 | 5579 | */ |
7ad5b3a5 | 5580 | void __wake_up(wait_queue_head_t *q, unsigned int mode, |
95cdf3b7 | 5581 | int nr_exclusive, void *key) |
1da177e4 LT |
5582 | { |
5583 | unsigned long flags; | |
5584 | ||
5585 | spin_lock_irqsave(&q->lock, flags); | |
5586 | __wake_up_common(q, mode, nr_exclusive, 0, key); | |
5587 | spin_unlock_irqrestore(&q->lock, flags); | |
5588 | } | |
1da177e4 LT |
5589 | EXPORT_SYMBOL(__wake_up); |
5590 | ||
5591 | /* | |
5592 | * Same as __wake_up but called with the spinlock in wait_queue_head_t held. | |
5593 | */ | |
7ad5b3a5 | 5594 | void __wake_up_locked(wait_queue_head_t *q, unsigned int mode) |
1da177e4 LT |
5595 | { |
5596 | __wake_up_common(q, mode, 1, 0, NULL); | |
5597 | } | |
5598 | ||
4ede816a DL |
5599 | void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) |
5600 | { | |
5601 | __wake_up_common(q, mode, 1, 0, key); | |
5602 | } | |
5603 | ||
1da177e4 | 5604 | /** |
4ede816a | 5605 | * __wake_up_sync_key - wake up threads blocked on a waitqueue. |
1da177e4 LT |
5606 | * @q: the waitqueue |
5607 | * @mode: which threads | |
5608 | * @nr_exclusive: how many wake-one or wake-many threads to wake up | |
4ede816a | 5609 | * @key: opaque value to be passed to wakeup targets |
1da177e4 LT |
5610 | * |
5611 | * The sync wakeup differs that the waker knows that it will schedule | |
5612 | * away soon, so while the target thread will be woken up, it will not | |
5613 | * be migrated to another CPU - ie. the two threads are 'synchronized' | |
5614 | * with each other. This can prevent needless bouncing between CPUs. | |
5615 | * | |
5616 | * On UP it can prevent extra preemption. | |
50fa610a DH |
5617 | * |
5618 | * It may be assumed that this function implies a write memory barrier before | |
5619 | * changing the task state if and only if any tasks are woken up. | |
1da177e4 | 5620 | */ |
4ede816a DL |
5621 | void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, |
5622 | int nr_exclusive, void *key) | |
1da177e4 LT |
5623 | { |
5624 | unsigned long flags; | |
5625 | int sync = 1; | |
5626 | ||
5627 | if (unlikely(!q)) | |
5628 | return; | |
5629 | ||
5630 | if (unlikely(!nr_exclusive)) | |
5631 | sync = 0; | |
5632 | ||
5633 | spin_lock_irqsave(&q->lock, flags); | |
4ede816a | 5634 | __wake_up_common(q, mode, nr_exclusive, sync, key); |
1da177e4 LT |
5635 | spin_unlock_irqrestore(&q->lock, flags); |
5636 | } | |
4ede816a DL |
5637 | EXPORT_SYMBOL_GPL(__wake_up_sync_key); |
5638 | ||
5639 | /* | |
5640 | * __wake_up_sync - see __wake_up_sync_key() | |
5641 | */ | |
5642 | void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) | |
5643 | { | |
5644 | __wake_up_sync_key(q, mode, nr_exclusive, NULL); | |
5645 | } | |
1da177e4 LT |
5646 | EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ |
5647 | ||
65eb3dc6 KD |
5648 | /** |
5649 | * complete: - signals a single thread waiting on this completion | |
5650 | * @x: holds the state of this particular completion | |
5651 | * | |
5652 | * This will wake up a single thread waiting on this completion. Threads will be | |
5653 | * awakened in the same order in which they were queued. | |
5654 | * | |
5655 | * See also complete_all(), wait_for_completion() and related routines. | |
50fa610a DH |
5656 | * |
5657 | * It may be assumed that this function implies a write memory barrier before | |
5658 | * changing the task state if and only if any tasks are woken up. | |
65eb3dc6 | 5659 | */ |
b15136e9 | 5660 | void complete(struct completion *x) |
1da177e4 LT |
5661 | { |
5662 | unsigned long flags; | |
5663 | ||
5664 | spin_lock_irqsave(&x->wait.lock, flags); | |
5665 | x->done++; | |
d9514f6c | 5666 | __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); |
1da177e4 LT |
5667 | spin_unlock_irqrestore(&x->wait.lock, flags); |
5668 | } | |
5669 | EXPORT_SYMBOL(complete); | |
5670 | ||
65eb3dc6 KD |
5671 | /** |
5672 | * complete_all: - signals all threads waiting on this completion | |
5673 | * @x: holds the state of this particular completion | |
5674 | * | |
5675 | * This will wake up all threads waiting on this particular completion event. | |
50fa610a DH |
5676 | * |
5677 | * It may be assumed that this function implies a write memory barrier before | |
5678 | * changing the task state if and only if any tasks are woken up. | |
65eb3dc6 | 5679 | */ |
b15136e9 | 5680 | void complete_all(struct completion *x) |
1da177e4 LT |
5681 | { |
5682 | unsigned long flags; | |
5683 | ||
5684 | spin_lock_irqsave(&x->wait.lock, flags); | |
5685 | x->done += UINT_MAX/2; | |
d9514f6c | 5686 | __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); |
1da177e4 LT |
5687 | spin_unlock_irqrestore(&x->wait.lock, flags); |
5688 | } | |
5689 | EXPORT_SYMBOL(complete_all); | |
5690 | ||
8cbbe86d AK |
5691 | static inline long __sched |
5692 | do_wait_for_common(struct completion *x, long timeout, int state) | |
1da177e4 | 5693 | { |
1da177e4 LT |
5694 | if (!x->done) { |
5695 | DECLARE_WAITQUEUE(wait, current); | |
5696 | ||
5697 | wait.flags |= WQ_FLAG_EXCLUSIVE; | |
5698 | __add_wait_queue_tail(&x->wait, &wait); | |
5699 | do { | |
94d3d824 | 5700 | if (signal_pending_state(state, current)) { |
ea71a546 ON |
5701 | timeout = -ERESTARTSYS; |
5702 | break; | |
8cbbe86d AK |
5703 | } |
5704 | __set_current_state(state); | |
1da177e4 LT |
5705 | spin_unlock_irq(&x->wait.lock); |
5706 | timeout = schedule_timeout(timeout); | |
5707 | spin_lock_irq(&x->wait.lock); | |
ea71a546 | 5708 | } while (!x->done && timeout); |
1da177e4 | 5709 | __remove_wait_queue(&x->wait, &wait); |
ea71a546 ON |
5710 | if (!x->done) |
5711 | return timeout; | |
1da177e4 LT |
5712 | } |
5713 | x->done--; | |
ea71a546 | 5714 | return timeout ?: 1; |
1da177e4 | 5715 | } |
1da177e4 | 5716 | |
8cbbe86d AK |
5717 | static long __sched |
5718 | wait_for_common(struct completion *x, long timeout, int state) | |
1da177e4 | 5719 | { |
1da177e4 LT |
5720 | might_sleep(); |
5721 | ||
5722 | spin_lock_irq(&x->wait.lock); | |
8cbbe86d | 5723 | timeout = do_wait_for_common(x, timeout, state); |
1da177e4 | 5724 | spin_unlock_irq(&x->wait.lock); |
8cbbe86d AK |
5725 | return timeout; |
5726 | } | |
1da177e4 | 5727 | |
65eb3dc6 KD |
5728 | /** |
5729 | * wait_for_completion: - waits for completion of a task | |
5730 | * @x: holds the state of this particular completion | |
5731 | * | |
5732 | * This waits to be signaled for completion of a specific task. It is NOT | |
5733 | * interruptible and there is no timeout. | |
5734 | * | |
5735 | * See also similar routines (i.e. wait_for_completion_timeout()) with timeout | |
5736 | * and interrupt capability. Also see complete(). | |
5737 | */ | |
b15136e9 | 5738 | void __sched wait_for_completion(struct completion *x) |
8cbbe86d AK |
5739 | { |
5740 | wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); | |
1da177e4 | 5741 | } |
8cbbe86d | 5742 | EXPORT_SYMBOL(wait_for_completion); |
1da177e4 | 5743 | |
65eb3dc6 KD |
5744 | /** |
5745 | * wait_for_completion_timeout: - waits for completion of a task (w/timeout) | |
5746 | * @x: holds the state of this particular completion | |
5747 | * @timeout: timeout value in jiffies | |
5748 | * | |
5749 | * This waits for either a completion of a specific task to be signaled or for a | |
5750 | * specified timeout to expire. The timeout is in jiffies. It is not | |
5751 | * interruptible. | |
5752 | */ | |
b15136e9 | 5753 | unsigned long __sched |
8cbbe86d | 5754 | wait_for_completion_timeout(struct completion *x, unsigned long timeout) |
1da177e4 | 5755 | { |
8cbbe86d | 5756 | return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); |
1da177e4 | 5757 | } |
8cbbe86d | 5758 | EXPORT_SYMBOL(wait_for_completion_timeout); |
1da177e4 | 5759 | |
65eb3dc6 KD |
5760 | /** |
5761 | * wait_for_completion_interruptible: - waits for completion of a task (w/intr) | |
5762 | * @x: holds the state of this particular completion | |
5763 | * | |
5764 | * This waits for completion of a specific task to be signaled. It is | |
5765 | * interruptible. | |
5766 | */ | |
8cbbe86d | 5767 | int __sched wait_for_completion_interruptible(struct completion *x) |
0fec171c | 5768 | { |
51e97990 AK |
5769 | long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); |
5770 | if (t == -ERESTARTSYS) | |
5771 | return t; | |
5772 | return 0; | |
0fec171c | 5773 | } |
8cbbe86d | 5774 | EXPORT_SYMBOL(wait_for_completion_interruptible); |
1da177e4 | 5775 | |
65eb3dc6 KD |
5776 | /** |
5777 | * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) | |
5778 | * @x: holds the state of this particular completion | |
5779 | * @timeout: timeout value in jiffies | |
5780 | * | |
5781 | * This waits for either a completion of a specific task to be signaled or for a | |
5782 | * specified timeout to expire. It is interruptible. The timeout is in jiffies. | |
5783 | */ | |
b15136e9 | 5784 | unsigned long __sched |
8cbbe86d AK |
5785 | wait_for_completion_interruptible_timeout(struct completion *x, |
5786 | unsigned long timeout) | |
0fec171c | 5787 | { |
8cbbe86d | 5788 | return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); |
0fec171c | 5789 | } |
8cbbe86d | 5790 | EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); |
1da177e4 | 5791 | |
65eb3dc6 KD |
5792 | /** |
5793 | * wait_for_completion_killable: - waits for completion of a task (killable) | |
5794 | * @x: holds the state of this particular completion | |
5795 | * | |
5796 | * This waits to be signaled for completion of a specific task. It can be | |
5797 | * interrupted by a kill signal. | |
5798 | */ | |
009e577e MW |
5799 | int __sched wait_for_completion_killable(struct completion *x) |
5800 | { | |
5801 | long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); | |
5802 | if (t == -ERESTARTSYS) | |
5803 | return t; | |
5804 | return 0; | |
5805 | } | |
5806 | EXPORT_SYMBOL(wait_for_completion_killable); | |
5807 | ||
be4de352 DC |
5808 | /** |
5809 | * try_wait_for_completion - try to decrement a completion without blocking | |
5810 | * @x: completion structure | |
5811 | * | |
5812 | * Returns: 0 if a decrement cannot be done without blocking | |
5813 | * 1 if a decrement succeeded. | |
5814 | * | |
5815 | * If a completion is being used as a counting completion, | |
5816 | * attempt to decrement the counter without blocking. This | |
5817 | * enables us to avoid waiting if the resource the completion | |
5818 | * is protecting is not available. | |
5819 | */ | |
5820 | bool try_wait_for_completion(struct completion *x) | |
5821 | { | |
5822 | int ret = 1; | |
5823 | ||
5824 | spin_lock_irq(&x->wait.lock); | |
5825 | if (!x->done) | |
5826 | ret = 0; | |
5827 | else | |
5828 | x->done--; | |
5829 | spin_unlock_irq(&x->wait.lock); | |
5830 | return ret; | |
5831 | } | |
5832 | EXPORT_SYMBOL(try_wait_for_completion); | |
5833 | ||
5834 | /** | |
5835 | * completion_done - Test to see if a completion has any waiters | |
5836 | * @x: completion structure | |
5837 | * | |
5838 | * Returns: 0 if there are waiters (wait_for_completion() in progress) | |
5839 | * 1 if there are no waiters. | |
5840 | * | |
5841 | */ | |
5842 | bool completion_done(struct completion *x) | |
5843 | { | |
5844 | int ret = 1; | |
5845 | ||
5846 | spin_lock_irq(&x->wait.lock); | |
5847 | if (!x->done) | |
5848 | ret = 0; | |
5849 | spin_unlock_irq(&x->wait.lock); | |
5850 | return ret; | |
5851 | } | |
5852 | EXPORT_SYMBOL(completion_done); | |
5853 | ||
8cbbe86d AK |
5854 | static long __sched |
5855 | sleep_on_common(wait_queue_head_t *q, int state, long timeout) | |
1da177e4 | 5856 | { |
0fec171c IM |
5857 | unsigned long flags; |
5858 | wait_queue_t wait; | |
5859 | ||
5860 | init_waitqueue_entry(&wait, current); | |
1da177e4 | 5861 | |
8cbbe86d | 5862 | __set_current_state(state); |
1da177e4 | 5863 | |
8cbbe86d AK |
5864 | spin_lock_irqsave(&q->lock, flags); |
5865 | __add_wait_queue(q, &wait); | |
5866 | spin_unlock(&q->lock); | |
5867 | timeout = schedule_timeout(timeout); | |
5868 | spin_lock_irq(&q->lock); | |
5869 | __remove_wait_queue(q, &wait); | |
5870 | spin_unlock_irqrestore(&q->lock, flags); | |
5871 | ||
5872 | return timeout; | |
5873 | } | |
5874 | ||
5875 | void __sched interruptible_sleep_on(wait_queue_head_t *q) | |
5876 | { | |
5877 | sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); | |
1da177e4 | 5878 | } |
1da177e4 LT |
5879 | EXPORT_SYMBOL(interruptible_sleep_on); |
5880 | ||
0fec171c | 5881 | long __sched |
95cdf3b7 | 5882 | interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) |
1da177e4 | 5883 | { |
8cbbe86d | 5884 | return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); |
1da177e4 | 5885 | } |
1da177e4 LT |
5886 | EXPORT_SYMBOL(interruptible_sleep_on_timeout); |
5887 | ||
0fec171c | 5888 | void __sched sleep_on(wait_queue_head_t *q) |
1da177e4 | 5889 | { |
8cbbe86d | 5890 | sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); |
1da177e4 | 5891 | } |
1da177e4 LT |
5892 | EXPORT_SYMBOL(sleep_on); |
5893 | ||
0fec171c | 5894 | long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) |
1da177e4 | 5895 | { |
8cbbe86d | 5896 | return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); |
1da177e4 | 5897 | } |
1da177e4 LT |
5898 | EXPORT_SYMBOL(sleep_on_timeout); |
5899 | ||
b29739f9 IM |
5900 | #ifdef CONFIG_RT_MUTEXES |
5901 | ||
5902 | /* | |
5903 | * rt_mutex_setprio - set the current priority of a task | |
5904 | * @p: task | |
5905 | * @prio: prio value (kernel-internal form) | |
5906 | * | |
5907 | * This function changes the 'effective' priority of a task. It does | |
5908 | * not touch ->normal_prio like __setscheduler(). | |
5909 | * | |
5910 | * Used by the rt_mutex code to implement priority inheritance logic. | |
5911 | */ | |
36c8b586 | 5912 | void rt_mutex_setprio(struct task_struct *p, int prio) |
b29739f9 IM |
5913 | { |
5914 | unsigned long flags; | |
83b699ed | 5915 | int oldprio, on_rq, running; |
70b97a7f | 5916 | struct rq *rq; |
cb469845 | 5917 | const struct sched_class *prev_class = p->sched_class; |
b29739f9 IM |
5918 | |
5919 | BUG_ON(prio < 0 || prio > MAX_PRIO); | |
5920 | ||
5921 | rq = task_rq_lock(p, &flags); | |
a8e504d2 | 5922 | update_rq_clock(rq); |
b29739f9 | 5923 | |
d5f9f942 | 5924 | oldprio = p->prio; |
dd41f596 | 5925 | on_rq = p->se.on_rq; |
051a1d1a | 5926 | running = task_current(rq, p); |
0e1f3483 | 5927 | if (on_rq) |
69be72c1 | 5928 | dequeue_task(rq, p, 0); |
0e1f3483 HS |
5929 | if (running) |
5930 | p->sched_class->put_prev_task(rq, p); | |
dd41f596 IM |
5931 | |
5932 | if (rt_prio(prio)) | |
5933 | p->sched_class = &rt_sched_class; | |
5934 | else | |
5935 | p->sched_class = &fair_sched_class; | |
5936 | ||
b29739f9 IM |
5937 | p->prio = prio; |
5938 | ||
0e1f3483 HS |
5939 | if (running) |
5940 | p->sched_class->set_curr_task(rq); | |
dd41f596 | 5941 | if (on_rq) { |
8159f87e | 5942 | enqueue_task(rq, p, 0); |
cb469845 SR |
5943 | |
5944 | check_class_changed(rq, p, prev_class, oldprio, running); | |
b29739f9 IM |
5945 | } |
5946 | task_rq_unlock(rq, &flags); | |
5947 | } | |
5948 | ||
5949 | #endif | |
5950 | ||
36c8b586 | 5951 | void set_user_nice(struct task_struct *p, long nice) |
1da177e4 | 5952 | { |
dd41f596 | 5953 | int old_prio, delta, on_rq; |
1da177e4 | 5954 | unsigned long flags; |
70b97a7f | 5955 | struct rq *rq; |
1da177e4 LT |
5956 | |
5957 | if (TASK_NICE(p) == nice || nice < -20 || nice > 19) | |
5958 | return; | |
5959 | /* | |
5960 | * We have to be careful, if called from sys_setpriority(), | |
5961 | * the task might be in the middle of scheduling on another CPU. | |
5962 | */ | |
5963 | rq = task_rq_lock(p, &flags); | |
a8e504d2 | 5964 | update_rq_clock(rq); |
1da177e4 LT |
5965 | /* |
5966 | * The RT priorities are set via sched_setscheduler(), but we still | |
5967 | * allow the 'normal' nice value to be set - but as expected | |
5968 | * it wont have any effect on scheduling until the task is | |
dd41f596 | 5969 | * SCHED_FIFO/SCHED_RR: |
1da177e4 | 5970 | */ |
e05606d3 | 5971 | if (task_has_rt_policy(p)) { |
1da177e4 LT |
5972 | p->static_prio = NICE_TO_PRIO(nice); |
5973 | goto out_unlock; | |
5974 | } | |
dd41f596 | 5975 | on_rq = p->se.on_rq; |
c09595f6 | 5976 | if (on_rq) |
69be72c1 | 5977 | dequeue_task(rq, p, 0); |
1da177e4 | 5978 | |
1da177e4 | 5979 | p->static_prio = NICE_TO_PRIO(nice); |
2dd73a4f | 5980 | set_load_weight(p); |
b29739f9 IM |
5981 | old_prio = p->prio; |
5982 | p->prio = effective_prio(p); | |
5983 | delta = p->prio - old_prio; | |
1da177e4 | 5984 | |
dd41f596 | 5985 | if (on_rq) { |
8159f87e | 5986 | enqueue_task(rq, p, 0); |
1da177e4 | 5987 | /* |
d5f9f942 AM |
5988 | * If the task increased its priority or is running and |
5989 | * lowered its priority, then reschedule its CPU: | |
1da177e4 | 5990 | */ |
d5f9f942 | 5991 | if (delta < 0 || (delta > 0 && task_running(rq, p))) |
1da177e4 LT |
5992 | resched_task(rq->curr); |
5993 | } | |
5994 | out_unlock: | |
5995 | task_rq_unlock(rq, &flags); | |
5996 | } | |
1da177e4 LT |
5997 | EXPORT_SYMBOL(set_user_nice); |
5998 | ||
e43379f1 MM |
5999 | /* |
6000 | * can_nice - check if a task can reduce its nice value | |
6001 | * @p: task | |
6002 | * @nice: nice value | |
6003 | */ | |
36c8b586 | 6004 | int can_nice(const struct task_struct *p, const int nice) |
e43379f1 | 6005 | { |
024f4747 MM |
6006 | /* convert nice value [19,-20] to rlimit style value [1,40] */ |
6007 | int nice_rlim = 20 - nice; | |
48f24c4d | 6008 | |
e43379f1 MM |
6009 | return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur || |
6010 | capable(CAP_SYS_NICE)); | |
6011 | } | |
6012 | ||
1da177e4 LT |
6013 | #ifdef __ARCH_WANT_SYS_NICE |
6014 | ||
6015 | /* | |
6016 | * sys_nice - change the priority of the current process. | |
6017 | * @increment: priority increment | |
6018 | * | |
6019 | * sys_setpriority is a more generic, but much slower function that | |
6020 | * does similar things. | |
6021 | */ | |
5add95d4 | 6022 | SYSCALL_DEFINE1(nice, int, increment) |
1da177e4 | 6023 | { |
48f24c4d | 6024 | long nice, retval; |
1da177e4 LT |
6025 | |
6026 | /* | |
6027 | * Setpriority might change our priority at the same moment. | |
6028 | * We don't have to worry. Conceptually one call occurs first | |
6029 | * and we have a single winner. | |
6030 | */ | |
e43379f1 MM |
6031 | if (increment < -40) |
6032 | increment = -40; | |
1da177e4 LT |
6033 | if (increment > 40) |
6034 | increment = 40; | |
6035 | ||
2b8f836f | 6036 | nice = TASK_NICE(current) + increment; |
1da177e4 LT |
6037 | if (nice < -20) |
6038 | nice = -20; | |
6039 | if (nice > 19) | |
6040 | nice = 19; | |
6041 | ||
e43379f1 MM |
6042 | if (increment < 0 && !can_nice(current, nice)) |
6043 | return -EPERM; | |
6044 | ||
1da177e4 LT |
6045 | retval = security_task_setnice(current, nice); |
6046 | if (retval) | |
6047 | return retval; | |
6048 | ||
6049 | set_user_nice(current, nice); | |
6050 | return 0; | |
6051 | } | |
6052 | ||
6053 | #endif | |
6054 | ||
6055 | /** | |
6056 | * task_prio - return the priority value of a given task. | |
6057 | * @p: the task in question. | |
6058 | * | |
6059 | * This is the priority value as seen by users in /proc. | |
6060 | * RT tasks are offset by -200. Normal tasks are centered | |
6061 | * around 0, value goes from -16 to +15. | |
6062 | */ | |
36c8b586 | 6063 | int task_prio(const struct task_struct *p) |
1da177e4 LT |
6064 | { |
6065 | return p->prio - MAX_RT_PRIO; | |
6066 | } | |
6067 | ||
6068 | /** | |
6069 | * task_nice - return the nice value of a given task. | |
6070 | * @p: the task in question. | |
6071 | */ | |
36c8b586 | 6072 | int task_nice(const struct task_struct *p) |
1da177e4 LT |
6073 | { |
6074 | return TASK_NICE(p); | |
6075 | } | |
150d8bed | 6076 | EXPORT_SYMBOL(task_nice); |
1da177e4 LT |
6077 | |
6078 | /** | |
6079 | * idle_cpu - is a given cpu idle currently? | |
6080 | * @cpu: the processor in question. | |
6081 | */ | |
6082 | int idle_cpu(int cpu) | |
6083 | { | |
6084 | return cpu_curr(cpu) == cpu_rq(cpu)->idle; | |
6085 | } | |
6086 | ||
1da177e4 LT |
6087 | /** |
6088 | * idle_task - return the idle task for a given cpu. | |
6089 | * @cpu: the processor in question. | |
6090 | */ | |
36c8b586 | 6091 | struct task_struct *idle_task(int cpu) |
1da177e4 LT |
6092 | { |
6093 | return cpu_rq(cpu)->idle; | |
6094 | } | |
6095 | ||
6096 | /** | |
6097 | * find_process_by_pid - find a process with a matching PID value. | |
6098 | * @pid: the pid in question. | |
6099 | */ | |
a9957449 | 6100 | static struct task_struct *find_process_by_pid(pid_t pid) |
1da177e4 | 6101 | { |
228ebcbe | 6102 | return pid ? find_task_by_vpid(pid) : current; |
1da177e4 LT |
6103 | } |
6104 | ||
6105 | /* Actually do priority change: must hold rq lock. */ | |
dd41f596 IM |
6106 | static void |
6107 | __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) | |
1da177e4 | 6108 | { |
dd41f596 | 6109 | BUG_ON(p->se.on_rq); |
48f24c4d | 6110 | |
1da177e4 | 6111 | p->policy = policy; |
dd41f596 IM |
6112 | switch (p->policy) { |
6113 | case SCHED_NORMAL: | |
6114 | case SCHED_BATCH: | |
6115 | case SCHED_IDLE: | |
6116 | p->sched_class = &fair_sched_class; | |
6117 | break; | |
6118 | case SCHED_FIFO: | |
6119 | case SCHED_RR: | |
6120 | p->sched_class = &rt_sched_class; | |
6121 | break; | |
6122 | } | |
6123 | ||
1da177e4 | 6124 | p->rt_priority = prio; |
b29739f9 IM |
6125 | p->normal_prio = normal_prio(p); |
6126 | /* we are holding p->pi_lock already */ | |
6127 | p->prio = rt_mutex_getprio(p); | |
2dd73a4f | 6128 | set_load_weight(p); |
1da177e4 LT |
6129 | } |
6130 | ||
c69e8d9c DH |
6131 | /* |
6132 | * check the target process has a UID that matches the current process's | |
6133 | */ | |
6134 | static bool check_same_owner(struct task_struct *p) | |
6135 | { | |
6136 | const struct cred *cred = current_cred(), *pcred; | |
6137 | bool match; | |
6138 | ||
6139 | rcu_read_lock(); | |
6140 | pcred = __task_cred(p); | |
6141 | match = (cred->euid == pcred->euid || | |
6142 | cred->euid == pcred->uid); | |
6143 | rcu_read_unlock(); | |
6144 | return match; | |
6145 | } | |
6146 | ||
961ccddd RR |
6147 | static int __sched_setscheduler(struct task_struct *p, int policy, |
6148 | struct sched_param *param, bool user) | |
1da177e4 | 6149 | { |
83b699ed | 6150 | int retval, oldprio, oldpolicy = -1, on_rq, running; |
1da177e4 | 6151 | unsigned long flags; |
cb469845 | 6152 | const struct sched_class *prev_class = p->sched_class; |
70b97a7f | 6153 | struct rq *rq; |
ca94c442 | 6154 | int reset_on_fork; |
1da177e4 | 6155 | |
66e5393a SR |
6156 | /* may grab non-irq protected spin_locks */ |
6157 | BUG_ON(in_interrupt()); | |
1da177e4 LT |
6158 | recheck: |
6159 | /* double check policy once rq lock held */ | |
ca94c442 LP |
6160 | if (policy < 0) { |
6161 | reset_on_fork = p->sched_reset_on_fork; | |
1da177e4 | 6162 | policy = oldpolicy = p->policy; |
ca94c442 LP |
6163 | } else { |
6164 | reset_on_fork = !!(policy & SCHED_RESET_ON_FORK); | |
6165 | policy &= ~SCHED_RESET_ON_FORK; | |
6166 | ||
6167 | if (policy != SCHED_FIFO && policy != SCHED_RR && | |
6168 | policy != SCHED_NORMAL && policy != SCHED_BATCH && | |
6169 | policy != SCHED_IDLE) | |
6170 | return -EINVAL; | |
6171 | } | |
6172 | ||
1da177e4 LT |
6173 | /* |
6174 | * Valid priorities for SCHED_FIFO and SCHED_RR are | |
dd41f596 IM |
6175 | * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, |
6176 | * SCHED_BATCH and SCHED_IDLE is 0. | |
1da177e4 LT |
6177 | */ |
6178 | if (param->sched_priority < 0 || | |
95cdf3b7 | 6179 | (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || |
d46523ea | 6180 | (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) |
1da177e4 | 6181 | return -EINVAL; |
e05606d3 | 6182 | if (rt_policy(policy) != (param->sched_priority != 0)) |
1da177e4 LT |
6183 | return -EINVAL; |
6184 | ||
37e4ab3f OC |
6185 | /* |
6186 | * Allow unprivileged RT tasks to decrease priority: | |
6187 | */ | |
961ccddd | 6188 | if (user && !capable(CAP_SYS_NICE)) { |
e05606d3 | 6189 | if (rt_policy(policy)) { |
8dc3e909 | 6190 | unsigned long rlim_rtprio; |
8dc3e909 ON |
6191 | |
6192 | if (!lock_task_sighand(p, &flags)) | |
6193 | return -ESRCH; | |
6194 | rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur; | |
6195 | unlock_task_sighand(p, &flags); | |
6196 | ||
6197 | /* can't set/change the rt policy */ | |
6198 | if (policy != p->policy && !rlim_rtprio) | |
6199 | return -EPERM; | |
6200 | ||
6201 | /* can't increase priority */ | |
6202 | if (param->sched_priority > p->rt_priority && | |
6203 | param->sched_priority > rlim_rtprio) | |
6204 | return -EPERM; | |
6205 | } | |
dd41f596 IM |
6206 | /* |
6207 | * Like positive nice levels, dont allow tasks to | |
6208 | * move out of SCHED_IDLE either: | |
6209 | */ | |
6210 | if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) | |
6211 | return -EPERM; | |
5fe1d75f | 6212 | |
37e4ab3f | 6213 | /* can't change other user's priorities */ |
c69e8d9c | 6214 | if (!check_same_owner(p)) |
37e4ab3f | 6215 | return -EPERM; |
ca94c442 LP |
6216 | |
6217 | /* Normal users shall not reset the sched_reset_on_fork flag */ | |
6218 | if (p->sched_reset_on_fork && !reset_on_fork) | |
6219 | return -EPERM; | |
37e4ab3f | 6220 | } |
1da177e4 | 6221 | |
725aad24 | 6222 | if (user) { |
b68aa230 | 6223 | #ifdef CONFIG_RT_GROUP_SCHED |
725aad24 JF |
6224 | /* |
6225 | * Do not allow realtime tasks into groups that have no runtime | |
6226 | * assigned. | |
6227 | */ | |
9a7e0b18 PZ |
6228 | if (rt_bandwidth_enabled() && rt_policy(policy) && |
6229 | task_group(p)->rt_bandwidth.rt_runtime == 0) | |
725aad24 | 6230 | return -EPERM; |
b68aa230 PZ |
6231 | #endif |
6232 | ||
725aad24 JF |
6233 | retval = security_task_setscheduler(p, policy, param); |
6234 | if (retval) | |
6235 | return retval; | |
6236 | } | |
6237 | ||
b29739f9 IM |
6238 | /* |
6239 | * make sure no PI-waiters arrive (or leave) while we are | |
6240 | * changing the priority of the task: | |
6241 | */ | |
6242 | spin_lock_irqsave(&p->pi_lock, flags); | |
1da177e4 LT |
6243 | /* |
6244 | * To be able to change p->policy safely, the apropriate | |
6245 | * runqueue lock must be held. | |
6246 | */ | |
b29739f9 | 6247 | rq = __task_rq_lock(p); |
1da177e4 LT |
6248 | /* recheck policy now with rq lock held */ |
6249 | if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { | |
6250 | policy = oldpolicy = -1; | |
b29739f9 IM |
6251 | __task_rq_unlock(rq); |
6252 | spin_unlock_irqrestore(&p->pi_lock, flags); | |
1da177e4 LT |
6253 | goto recheck; |
6254 | } | |
2daa3577 | 6255 | update_rq_clock(rq); |
dd41f596 | 6256 | on_rq = p->se.on_rq; |
051a1d1a | 6257 | running = task_current(rq, p); |
0e1f3483 | 6258 | if (on_rq) |
2e1cb74a | 6259 | deactivate_task(rq, p, 0); |
0e1f3483 HS |
6260 | if (running) |
6261 | p->sched_class->put_prev_task(rq, p); | |
f6b53205 | 6262 | |
ca94c442 LP |
6263 | p->sched_reset_on_fork = reset_on_fork; |
6264 | ||
1da177e4 | 6265 | oldprio = p->prio; |
dd41f596 | 6266 | __setscheduler(rq, p, policy, param->sched_priority); |
f6b53205 | 6267 | |
0e1f3483 HS |
6268 | if (running) |
6269 | p->sched_class->set_curr_task(rq); | |
dd41f596 IM |
6270 | if (on_rq) { |
6271 | activate_task(rq, p, 0); | |
cb469845 SR |
6272 | |
6273 | check_class_changed(rq, p, prev_class, oldprio, running); | |
1da177e4 | 6274 | } |
b29739f9 IM |
6275 | __task_rq_unlock(rq); |
6276 | spin_unlock_irqrestore(&p->pi_lock, flags); | |
6277 | ||
95e02ca9 TG |
6278 | rt_mutex_adjust_pi(p); |
6279 | ||
1da177e4 LT |
6280 | return 0; |
6281 | } | |
961ccddd RR |
6282 | |
6283 | /** | |
6284 | * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. | |
6285 | * @p: the task in question. | |
6286 | * @policy: new policy. | |
6287 | * @param: structure containing the new RT priority. | |
6288 | * | |
6289 | * NOTE that the task may be already dead. | |
6290 | */ | |
6291 | int sched_setscheduler(struct task_struct *p, int policy, | |
6292 | struct sched_param *param) | |
6293 | { | |
6294 | return __sched_setscheduler(p, policy, param, true); | |
6295 | } | |
1da177e4 LT |
6296 | EXPORT_SYMBOL_GPL(sched_setscheduler); |
6297 | ||
961ccddd RR |
6298 | /** |
6299 | * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. | |
6300 | * @p: the task in question. | |
6301 | * @policy: new policy. | |
6302 | * @param: structure containing the new RT priority. | |
6303 | * | |
6304 | * Just like sched_setscheduler, only don't bother checking if the | |
6305 | * current context has permission. For example, this is needed in | |
6306 | * stop_machine(): we create temporary high priority worker threads, | |
6307 | * but our caller might not have that capability. | |
6308 | */ | |
6309 | int sched_setscheduler_nocheck(struct task_struct *p, int policy, | |
6310 | struct sched_param *param) | |
6311 | { | |
6312 | return __sched_setscheduler(p, policy, param, false); | |
6313 | } | |
6314 | ||
95cdf3b7 IM |
6315 | static int |
6316 | do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) | |
1da177e4 | 6317 | { |
1da177e4 LT |
6318 | struct sched_param lparam; |
6319 | struct task_struct *p; | |
36c8b586 | 6320 | int retval; |
1da177e4 LT |
6321 | |
6322 | if (!param || pid < 0) | |
6323 | return -EINVAL; | |
6324 | if (copy_from_user(&lparam, param, sizeof(struct sched_param))) | |
6325 | return -EFAULT; | |
5fe1d75f ON |
6326 | |
6327 | rcu_read_lock(); | |
6328 | retval = -ESRCH; | |
1da177e4 | 6329 | p = find_process_by_pid(pid); |
5fe1d75f ON |
6330 | if (p != NULL) |
6331 | retval = sched_setscheduler(p, policy, &lparam); | |
6332 | rcu_read_unlock(); | |
36c8b586 | 6333 | |
1da177e4 LT |
6334 | return retval; |
6335 | } | |
6336 | ||
6337 | /** | |
6338 | * sys_sched_setscheduler - set/change the scheduler policy and RT priority | |
6339 | * @pid: the pid in question. | |
6340 | * @policy: new policy. | |
6341 | * @param: structure containing the new RT priority. | |
6342 | */ | |
5add95d4 HC |
6343 | SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, |
6344 | struct sched_param __user *, param) | |
1da177e4 | 6345 | { |
c21761f1 JB |
6346 | /* negative values for policy are not valid */ |
6347 | if (policy < 0) | |
6348 | return -EINVAL; | |
6349 | ||
1da177e4 LT |
6350 | return do_sched_setscheduler(pid, policy, param); |
6351 | } | |
6352 | ||
6353 | /** | |
6354 | * sys_sched_setparam - set/change the RT priority of a thread | |
6355 | * @pid: the pid in question. | |
6356 | * @param: structure containing the new RT priority. | |
6357 | */ | |
5add95d4 | 6358 | SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) |
1da177e4 LT |
6359 | { |
6360 | return do_sched_setscheduler(pid, -1, param); | |
6361 | } | |
6362 | ||
6363 | /** | |
6364 | * sys_sched_getscheduler - get the policy (scheduling class) of a thread | |
6365 | * @pid: the pid in question. | |
6366 | */ | |
5add95d4 | 6367 | SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) |
1da177e4 | 6368 | { |
36c8b586 | 6369 | struct task_struct *p; |
3a5c359a | 6370 | int retval; |
1da177e4 LT |
6371 | |
6372 | if (pid < 0) | |
3a5c359a | 6373 | return -EINVAL; |
1da177e4 LT |
6374 | |
6375 | retval = -ESRCH; | |
6376 | read_lock(&tasklist_lock); | |
6377 | p = find_process_by_pid(pid); | |
6378 | if (p) { | |
6379 | retval = security_task_getscheduler(p); | |
6380 | if (!retval) | |
ca94c442 LP |
6381 | retval = p->policy |
6382 | | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); | |
1da177e4 LT |
6383 | } |
6384 | read_unlock(&tasklist_lock); | |
1da177e4 LT |
6385 | return retval; |
6386 | } | |
6387 | ||
6388 | /** | |
ca94c442 | 6389 | * sys_sched_getparam - get the RT priority of a thread |
1da177e4 LT |
6390 | * @pid: the pid in question. |
6391 | * @param: structure containing the RT priority. | |
6392 | */ | |
5add95d4 | 6393 | SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) |
1da177e4 LT |
6394 | { |
6395 | struct sched_param lp; | |
36c8b586 | 6396 | struct task_struct *p; |
3a5c359a | 6397 | int retval; |
1da177e4 LT |
6398 | |
6399 | if (!param || pid < 0) | |
3a5c359a | 6400 | return -EINVAL; |
1da177e4 LT |
6401 | |
6402 | read_lock(&tasklist_lock); | |
6403 | p = find_process_by_pid(pid); | |
6404 | retval = -ESRCH; | |
6405 | if (!p) | |
6406 | goto out_unlock; | |
6407 | ||
6408 | retval = security_task_getscheduler(p); | |
6409 | if (retval) | |
6410 | goto out_unlock; | |
6411 | ||
6412 | lp.sched_priority = p->rt_priority; | |
6413 | read_unlock(&tasklist_lock); | |
6414 | ||
6415 | /* | |
6416 | * This one might sleep, we cannot do it with a spinlock held ... | |
6417 | */ | |
6418 | retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; | |
6419 | ||
1da177e4 LT |
6420 | return retval; |
6421 | ||
6422 | out_unlock: | |
6423 | read_unlock(&tasklist_lock); | |
6424 | return retval; | |
6425 | } | |
6426 | ||
96f874e2 | 6427 | long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) |
1da177e4 | 6428 | { |
5a16f3d3 | 6429 | cpumask_var_t cpus_allowed, new_mask; |
36c8b586 IM |
6430 | struct task_struct *p; |
6431 | int retval; | |
1da177e4 | 6432 | |
95402b38 | 6433 | get_online_cpus(); |
1da177e4 LT |
6434 | read_lock(&tasklist_lock); |
6435 | ||
6436 | p = find_process_by_pid(pid); | |
6437 | if (!p) { | |
6438 | read_unlock(&tasklist_lock); | |
95402b38 | 6439 | put_online_cpus(); |
1da177e4 LT |
6440 | return -ESRCH; |
6441 | } | |
6442 | ||
6443 | /* | |
6444 | * It is not safe to call set_cpus_allowed with the | |
41a2d6cf | 6445 | * tasklist_lock held. We will bump the task_struct's |
1da177e4 LT |
6446 | * usage count and then drop tasklist_lock. |
6447 | */ | |
6448 | get_task_struct(p); | |
6449 | read_unlock(&tasklist_lock); | |
6450 | ||
5a16f3d3 RR |
6451 | if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { |
6452 | retval = -ENOMEM; | |
6453 | goto out_put_task; | |
6454 | } | |
6455 | if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { | |
6456 | retval = -ENOMEM; | |
6457 | goto out_free_cpus_allowed; | |
6458 | } | |
1da177e4 | 6459 | retval = -EPERM; |
c69e8d9c | 6460 | if (!check_same_owner(p) && !capable(CAP_SYS_NICE)) |
1da177e4 LT |
6461 | goto out_unlock; |
6462 | ||
e7834f8f DQ |
6463 | retval = security_task_setscheduler(p, 0, NULL); |
6464 | if (retval) | |
6465 | goto out_unlock; | |
6466 | ||
5a16f3d3 RR |
6467 | cpuset_cpus_allowed(p, cpus_allowed); |
6468 | cpumask_and(new_mask, in_mask, cpus_allowed); | |
8707d8b8 | 6469 | again: |
5a16f3d3 | 6470 | retval = set_cpus_allowed_ptr(p, new_mask); |
1da177e4 | 6471 | |
8707d8b8 | 6472 | if (!retval) { |
5a16f3d3 RR |
6473 | cpuset_cpus_allowed(p, cpus_allowed); |
6474 | if (!cpumask_subset(new_mask, cpus_allowed)) { | |
8707d8b8 PM |
6475 | /* |
6476 | * We must have raced with a concurrent cpuset | |
6477 | * update. Just reset the cpus_allowed to the | |
6478 | * cpuset's cpus_allowed | |
6479 | */ | |
5a16f3d3 | 6480 | cpumask_copy(new_mask, cpus_allowed); |
8707d8b8 PM |
6481 | goto again; |
6482 | } | |
6483 | } | |
1da177e4 | 6484 | out_unlock: |
5a16f3d3 RR |
6485 | free_cpumask_var(new_mask); |
6486 | out_free_cpus_allowed: | |
6487 | free_cpumask_var(cpus_allowed); | |
6488 | out_put_task: | |
1da177e4 | 6489 | put_task_struct(p); |
95402b38 | 6490 | put_online_cpus(); |
1da177e4 LT |
6491 | return retval; |
6492 | } | |
6493 | ||
6494 | static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, | |
96f874e2 | 6495 | struct cpumask *new_mask) |
1da177e4 | 6496 | { |
96f874e2 RR |
6497 | if (len < cpumask_size()) |
6498 | cpumask_clear(new_mask); | |
6499 | else if (len > cpumask_size()) | |
6500 | len = cpumask_size(); | |
6501 | ||
1da177e4 LT |
6502 | return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; |
6503 | } | |
6504 | ||
6505 | /** | |
6506 | * sys_sched_setaffinity - set the cpu affinity of a process | |
6507 | * @pid: pid of the process | |
6508 | * @len: length in bytes of the bitmask pointed to by user_mask_ptr | |
6509 | * @user_mask_ptr: user-space pointer to the new cpu mask | |
6510 | */ | |
5add95d4 HC |
6511 | SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, |
6512 | unsigned long __user *, user_mask_ptr) | |
1da177e4 | 6513 | { |
5a16f3d3 | 6514 | cpumask_var_t new_mask; |
1da177e4 LT |
6515 | int retval; |
6516 | ||
5a16f3d3 RR |
6517 | if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) |
6518 | return -ENOMEM; | |
1da177e4 | 6519 | |
5a16f3d3 RR |
6520 | retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); |
6521 | if (retval == 0) | |
6522 | retval = sched_setaffinity(pid, new_mask); | |
6523 | free_cpumask_var(new_mask); | |
6524 | return retval; | |
1da177e4 LT |
6525 | } |
6526 | ||
96f874e2 | 6527 | long sched_getaffinity(pid_t pid, struct cpumask *mask) |
1da177e4 | 6528 | { |
36c8b586 | 6529 | struct task_struct *p; |
1da177e4 | 6530 | int retval; |
1da177e4 | 6531 | |
95402b38 | 6532 | get_online_cpus(); |
1da177e4 LT |
6533 | read_lock(&tasklist_lock); |
6534 | ||
6535 | retval = -ESRCH; | |
6536 | p = find_process_by_pid(pid); | |
6537 | if (!p) | |
6538 | goto out_unlock; | |
6539 | ||
e7834f8f DQ |
6540 | retval = security_task_getscheduler(p); |
6541 | if (retval) | |
6542 | goto out_unlock; | |
6543 | ||
96f874e2 | 6544 | cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); |
1da177e4 LT |
6545 | |
6546 | out_unlock: | |
6547 | read_unlock(&tasklist_lock); | |
95402b38 | 6548 | put_online_cpus(); |
1da177e4 | 6549 | |
9531b62f | 6550 | return retval; |
1da177e4 LT |
6551 | } |
6552 | ||
6553 | /** | |
6554 | * sys_sched_getaffinity - get the cpu affinity of a process | |
6555 | * @pid: pid of the process | |
6556 | * @len: length in bytes of the bitmask pointed to by user_mask_ptr | |
6557 | * @user_mask_ptr: user-space pointer to hold the current cpu mask | |
6558 | */ | |
5add95d4 HC |
6559 | SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, |
6560 | unsigned long __user *, user_mask_ptr) | |
1da177e4 LT |
6561 | { |
6562 | int ret; | |
f17c8607 | 6563 | cpumask_var_t mask; |
1da177e4 | 6564 | |
f17c8607 | 6565 | if (len < cpumask_size()) |
1da177e4 LT |
6566 | return -EINVAL; |
6567 | ||
f17c8607 RR |
6568 | if (!alloc_cpumask_var(&mask, GFP_KERNEL)) |
6569 | return -ENOMEM; | |
1da177e4 | 6570 | |
f17c8607 RR |
6571 | ret = sched_getaffinity(pid, mask); |
6572 | if (ret == 0) { | |
6573 | if (copy_to_user(user_mask_ptr, mask, cpumask_size())) | |
6574 | ret = -EFAULT; | |
6575 | else | |
6576 | ret = cpumask_size(); | |
6577 | } | |
6578 | free_cpumask_var(mask); | |
1da177e4 | 6579 | |
f17c8607 | 6580 | return ret; |
1da177e4 LT |
6581 | } |
6582 | ||
6583 | /** | |
6584 | * sys_sched_yield - yield the current processor to other threads. | |
6585 | * | |
dd41f596 IM |
6586 | * This function yields the current CPU to other tasks. If there are no |
6587 | * other threads running on this CPU then this function will return. | |
1da177e4 | 6588 | */ |
5add95d4 | 6589 | SYSCALL_DEFINE0(sched_yield) |
1da177e4 | 6590 | { |
70b97a7f | 6591 | struct rq *rq = this_rq_lock(); |
1da177e4 | 6592 | |
2d72376b | 6593 | schedstat_inc(rq, yld_count); |
4530d7ab | 6594 | current->sched_class->yield_task(rq); |
1da177e4 LT |
6595 | |
6596 | /* | |
6597 | * Since we are going to call schedule() anyway, there's | |
6598 | * no need to preempt or enable interrupts: | |
6599 | */ | |
6600 | __release(rq->lock); | |
8a25d5de | 6601 | spin_release(&rq->lock.dep_map, 1, _THIS_IP_); |
1da177e4 LT |
6602 | _raw_spin_unlock(&rq->lock); |
6603 | preempt_enable_no_resched(); | |
6604 | ||
6605 | schedule(); | |
6606 | ||
6607 | return 0; | |
6608 | } | |
6609 | ||
d86ee480 PZ |
6610 | static inline int should_resched(void) |
6611 | { | |
6612 | return need_resched() && !(preempt_count() & PREEMPT_ACTIVE); | |
6613 | } | |
6614 | ||
e7b38404 | 6615 | static void __cond_resched(void) |
1da177e4 | 6616 | { |
e7aaaa69 FW |
6617 | add_preempt_count(PREEMPT_ACTIVE); |
6618 | schedule(); | |
6619 | sub_preempt_count(PREEMPT_ACTIVE); | |
1da177e4 LT |
6620 | } |
6621 | ||
02b67cc3 | 6622 | int __sched _cond_resched(void) |
1da177e4 | 6623 | { |
d86ee480 | 6624 | if (should_resched()) { |
1da177e4 LT |
6625 | __cond_resched(); |
6626 | return 1; | |
6627 | } | |
6628 | return 0; | |
6629 | } | |
02b67cc3 | 6630 | EXPORT_SYMBOL(_cond_resched); |
1da177e4 LT |
6631 | |
6632 | /* | |
613afbf8 | 6633 | * __cond_resched_lock() - if a reschedule is pending, drop the given lock, |
1da177e4 LT |
6634 | * call schedule, and on return reacquire the lock. |
6635 | * | |
41a2d6cf | 6636 | * This works OK both with and without CONFIG_PREEMPT. We do strange low-level |
1da177e4 LT |
6637 | * operations here to prevent schedule() from being called twice (once via |
6638 | * spin_unlock(), once by hand). | |
6639 | */ | |
613afbf8 | 6640 | int __cond_resched_lock(spinlock_t *lock) |
1da177e4 | 6641 | { |
d86ee480 | 6642 | int resched = should_resched(); |
6df3cecb JK |
6643 | int ret = 0; |
6644 | ||
f607c668 PZ |
6645 | lockdep_assert_held(lock); |
6646 | ||
95c354fe | 6647 | if (spin_needbreak(lock) || resched) { |
1da177e4 | 6648 | spin_unlock(lock); |
d86ee480 | 6649 | if (resched) |
95c354fe NP |
6650 | __cond_resched(); |
6651 | else | |
6652 | cpu_relax(); | |
6df3cecb | 6653 | ret = 1; |
1da177e4 | 6654 | spin_lock(lock); |
1da177e4 | 6655 | } |
6df3cecb | 6656 | return ret; |
1da177e4 | 6657 | } |
613afbf8 | 6658 | EXPORT_SYMBOL(__cond_resched_lock); |
1da177e4 | 6659 | |
613afbf8 | 6660 | int __sched __cond_resched_softirq(void) |
1da177e4 LT |
6661 | { |
6662 | BUG_ON(!in_softirq()); | |
6663 | ||
d86ee480 | 6664 | if (should_resched()) { |
98d82567 | 6665 | local_bh_enable(); |
1da177e4 LT |
6666 | __cond_resched(); |
6667 | local_bh_disable(); | |
6668 | return 1; | |
6669 | } | |
6670 | return 0; | |
6671 | } | |
613afbf8 | 6672 | EXPORT_SYMBOL(__cond_resched_softirq); |
1da177e4 | 6673 | |
1da177e4 LT |
6674 | /** |
6675 | * yield - yield the current processor to other threads. | |
6676 | * | |
72fd4a35 | 6677 | * This is a shortcut for kernel-space yielding - it marks the |
1da177e4 LT |
6678 | * thread runnable and calls sys_sched_yield(). |
6679 | */ | |
6680 | void __sched yield(void) | |
6681 | { | |
6682 | set_current_state(TASK_RUNNING); | |
6683 | sys_sched_yield(); | |
6684 | } | |
1da177e4 LT |
6685 | EXPORT_SYMBOL(yield); |
6686 | ||
6687 | /* | |
41a2d6cf | 6688 | * This task is about to go to sleep on IO. Increment rq->nr_iowait so |
1da177e4 LT |
6689 | * that process accounting knows that this is a task in IO wait state. |
6690 | * | |
6691 | * But don't do that if it is a deliberate, throttling IO wait (this task | |
6692 | * has set its backing_dev_info: the queue against which it should throttle) | |
6693 | */ | |
6694 | void __sched io_schedule(void) | |
6695 | { | |
54d35f29 | 6696 | struct rq *rq = raw_rq(); |
1da177e4 | 6697 | |
0ff92245 | 6698 | delayacct_blkio_start(); |
1da177e4 | 6699 | atomic_inc(&rq->nr_iowait); |
8f0dfc34 | 6700 | current->in_iowait = 1; |
1da177e4 | 6701 | schedule(); |
8f0dfc34 | 6702 | current->in_iowait = 0; |
1da177e4 | 6703 | atomic_dec(&rq->nr_iowait); |
0ff92245 | 6704 | delayacct_blkio_end(); |
1da177e4 | 6705 | } |
1da177e4 LT |
6706 | EXPORT_SYMBOL(io_schedule); |
6707 | ||
6708 | long __sched io_schedule_timeout(long timeout) | |
6709 | { | |
54d35f29 | 6710 | struct rq *rq = raw_rq(); |
1da177e4 LT |
6711 | long ret; |
6712 | ||
0ff92245 | 6713 | delayacct_blkio_start(); |
1da177e4 | 6714 | atomic_inc(&rq->nr_iowait); |
8f0dfc34 | 6715 | current->in_iowait = 1; |
1da177e4 | 6716 | ret = schedule_timeout(timeout); |
8f0dfc34 | 6717 | current->in_iowait = 0; |
1da177e4 | 6718 | atomic_dec(&rq->nr_iowait); |
0ff92245 | 6719 | delayacct_blkio_end(); |
1da177e4 LT |
6720 | return ret; |
6721 | } | |
6722 | ||
6723 | /** | |
6724 | * sys_sched_get_priority_max - return maximum RT priority. | |
6725 | * @policy: scheduling class. | |
6726 | * | |
6727 | * this syscall returns the maximum rt_priority that can be used | |
6728 | * by a given scheduling class. | |
6729 | */ | |
5add95d4 | 6730 | SYSCALL_DEFINE1(sched_get_priority_max, int, policy) |
1da177e4 LT |
6731 | { |
6732 | int ret = -EINVAL; | |
6733 | ||
6734 | switch (policy) { | |
6735 | case SCHED_FIFO: | |
6736 | case SCHED_RR: | |
6737 | ret = MAX_USER_RT_PRIO-1; | |
6738 | break; | |
6739 | case SCHED_NORMAL: | |
b0a9499c | 6740 | case SCHED_BATCH: |
dd41f596 | 6741 | case SCHED_IDLE: |
1da177e4 LT |
6742 | ret = 0; |
6743 | break; | |
6744 | } | |
6745 | return ret; | |
6746 | } | |
6747 | ||
6748 | /** | |
6749 | * sys_sched_get_priority_min - return minimum RT priority. | |
6750 | * @policy: scheduling class. | |
6751 | * | |
6752 | * this syscall returns the minimum rt_priority that can be used | |
6753 | * by a given scheduling class. | |
6754 | */ | |
5add95d4 | 6755 | SYSCALL_DEFINE1(sched_get_priority_min, int, policy) |
1da177e4 LT |
6756 | { |
6757 | int ret = -EINVAL; | |
6758 | ||
6759 | switch (policy) { | |
6760 | case SCHED_FIFO: | |
6761 | case SCHED_RR: | |
6762 | ret = 1; | |
6763 | break; | |
6764 | case SCHED_NORMAL: | |
b0a9499c | 6765 | case SCHED_BATCH: |
dd41f596 | 6766 | case SCHED_IDLE: |
1da177e4 LT |
6767 | ret = 0; |
6768 | } | |
6769 | return ret; | |
6770 | } | |
6771 | ||
6772 | /** | |
6773 | * sys_sched_rr_get_interval - return the default timeslice of a process. | |
6774 | * @pid: pid of the process. | |
6775 | * @interval: userspace pointer to the timeslice value. | |
6776 | * | |
6777 | * this syscall writes the default timeslice value of a given process | |
6778 | * into the user-space timespec buffer. A value of '0' means infinity. | |
6779 | */ | |
17da2bd9 | 6780 | SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, |
754fe8d2 | 6781 | struct timespec __user *, interval) |
1da177e4 | 6782 | { |
36c8b586 | 6783 | struct task_struct *p; |
a4ec24b4 | 6784 | unsigned int time_slice; |
3a5c359a | 6785 | int retval; |
1da177e4 | 6786 | struct timespec t; |
1da177e4 LT |
6787 | |
6788 | if (pid < 0) | |
3a5c359a | 6789 | return -EINVAL; |
1da177e4 LT |
6790 | |
6791 | retval = -ESRCH; | |
6792 | read_lock(&tasklist_lock); | |
6793 | p = find_process_by_pid(pid); | |
6794 | if (!p) | |
6795 | goto out_unlock; | |
6796 | ||
6797 | retval = security_task_getscheduler(p); | |
6798 | if (retval) | |
6799 | goto out_unlock; | |
6800 | ||
77034937 IM |
6801 | /* |
6802 | * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER | |
6803 | * tasks that are on an otherwise idle runqueue: | |
6804 | */ | |
6805 | time_slice = 0; | |
6806 | if (p->policy == SCHED_RR) { | |
a4ec24b4 | 6807 | time_slice = DEF_TIMESLICE; |
1868f958 | 6808 | } else if (p->policy != SCHED_FIFO) { |
a4ec24b4 DA |
6809 | struct sched_entity *se = &p->se; |
6810 | unsigned long flags; | |
6811 | struct rq *rq; | |
6812 | ||
6813 | rq = task_rq_lock(p, &flags); | |
77034937 IM |
6814 | if (rq->cfs.load.weight) |
6815 | time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se)); | |
a4ec24b4 DA |
6816 | task_rq_unlock(rq, &flags); |
6817 | } | |
1da177e4 | 6818 | read_unlock(&tasklist_lock); |
a4ec24b4 | 6819 | jiffies_to_timespec(time_slice, &t); |
1da177e4 | 6820 | retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; |
1da177e4 | 6821 | return retval; |
3a5c359a | 6822 | |
1da177e4 LT |
6823 | out_unlock: |
6824 | read_unlock(&tasklist_lock); | |
6825 | return retval; | |
6826 | } | |
6827 | ||
7c731e0a | 6828 | static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; |
36c8b586 | 6829 | |
82a1fcb9 | 6830 | void sched_show_task(struct task_struct *p) |
1da177e4 | 6831 | { |
1da177e4 | 6832 | unsigned long free = 0; |
36c8b586 | 6833 | unsigned state; |
1da177e4 | 6834 | |
1da177e4 | 6835 | state = p->state ? __ffs(p->state) + 1 : 0; |
cc4ea795 | 6836 | printk(KERN_INFO "%-13.13s %c", p->comm, |
2ed6e34f | 6837 | state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); |
4bd77321 | 6838 | #if BITS_PER_LONG == 32 |
1da177e4 | 6839 | if (state == TASK_RUNNING) |
cc4ea795 | 6840 | printk(KERN_CONT " running "); |
1da177e4 | 6841 | else |
cc4ea795 | 6842 | printk(KERN_CONT " %08lx ", thread_saved_pc(p)); |
1da177e4 LT |
6843 | #else |
6844 | if (state == TASK_RUNNING) | |
cc4ea795 | 6845 | printk(KERN_CONT " running task "); |
1da177e4 | 6846 | else |
cc4ea795 | 6847 | printk(KERN_CONT " %016lx ", thread_saved_pc(p)); |
1da177e4 LT |
6848 | #endif |
6849 | #ifdef CONFIG_DEBUG_STACK_USAGE | |
7c9f8861 | 6850 | free = stack_not_used(p); |
1da177e4 | 6851 | #endif |
aa47b7e0 DR |
6852 | printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, |
6853 | task_pid_nr(p), task_pid_nr(p->real_parent), | |
6854 | (unsigned long)task_thread_info(p)->flags); | |
1da177e4 | 6855 | |
5fb5e6de | 6856 | show_stack(p, NULL); |
1da177e4 LT |
6857 | } |
6858 | ||
e59e2ae2 | 6859 | void show_state_filter(unsigned long state_filter) |
1da177e4 | 6860 | { |
36c8b586 | 6861 | struct task_struct *g, *p; |
1da177e4 | 6862 | |
4bd77321 IM |
6863 | #if BITS_PER_LONG == 32 |
6864 | printk(KERN_INFO | |
6865 | " task PC stack pid father\n"); | |
1da177e4 | 6866 | #else |
4bd77321 IM |
6867 | printk(KERN_INFO |
6868 | " task PC stack pid father\n"); | |
1da177e4 LT |
6869 | #endif |
6870 | read_lock(&tasklist_lock); | |
6871 | do_each_thread(g, p) { | |
6872 | /* | |
6873 | * reset the NMI-timeout, listing all files on a slow | |
6874 | * console might take alot of time: | |
6875 | */ | |
6876 | touch_nmi_watchdog(); | |
39bc89fd | 6877 | if (!state_filter || (p->state & state_filter)) |
82a1fcb9 | 6878 | sched_show_task(p); |
1da177e4 LT |
6879 | } while_each_thread(g, p); |
6880 | ||
04c9167f JF |
6881 | touch_all_softlockup_watchdogs(); |
6882 | ||
dd41f596 IM |
6883 | #ifdef CONFIG_SCHED_DEBUG |
6884 | sysrq_sched_debug_show(); | |
6885 | #endif | |
1da177e4 | 6886 | read_unlock(&tasklist_lock); |
e59e2ae2 IM |
6887 | /* |
6888 | * Only show locks if all tasks are dumped: | |
6889 | */ | |
6890 | if (state_filter == -1) | |
6891 | debug_show_all_locks(); | |
1da177e4 LT |
6892 | } |
6893 | ||
1df21055 IM |
6894 | void __cpuinit init_idle_bootup_task(struct task_struct *idle) |
6895 | { | |
dd41f596 | 6896 | idle->sched_class = &idle_sched_class; |
1df21055 IM |
6897 | } |
6898 | ||
f340c0d1 IM |
6899 | /** |
6900 | * init_idle - set up an idle thread for a given CPU | |
6901 | * @idle: task in question | |
6902 | * @cpu: cpu the idle task belongs to | |
6903 | * | |
6904 | * NOTE: this function does not set the idle thread's NEED_RESCHED | |
6905 | * flag, to make booting more robust. | |
6906 | */ | |
5c1e1767 | 6907 | void __cpuinit init_idle(struct task_struct *idle, int cpu) |
1da177e4 | 6908 | { |
70b97a7f | 6909 | struct rq *rq = cpu_rq(cpu); |
1da177e4 LT |
6910 | unsigned long flags; |
6911 | ||
5cbd54ef IM |
6912 | spin_lock_irqsave(&rq->lock, flags); |
6913 | ||
dd41f596 IM |
6914 | __sched_fork(idle); |
6915 | idle->se.exec_start = sched_clock(); | |
6916 | ||
b29739f9 | 6917 | idle->prio = idle->normal_prio = MAX_PRIO; |
96f874e2 | 6918 | cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu)); |
dd41f596 | 6919 | __set_task_cpu(idle, cpu); |
1da177e4 | 6920 | |
1da177e4 | 6921 | rq->curr = rq->idle = idle; |
4866cde0 NP |
6922 | #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) |
6923 | idle->oncpu = 1; | |
6924 | #endif | |
1da177e4 LT |
6925 | spin_unlock_irqrestore(&rq->lock, flags); |
6926 | ||
6927 | /* Set the preempt count _outside_ the spinlocks! */ | |
8e3e076c LT |
6928 | #if defined(CONFIG_PREEMPT) |
6929 | task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0); | |
6930 | #else | |
a1261f54 | 6931 | task_thread_info(idle)->preempt_count = 0; |
8e3e076c | 6932 | #endif |
dd41f596 IM |
6933 | /* |
6934 | * The idle tasks have their own, simple scheduling class: | |
6935 | */ | |
6936 | idle->sched_class = &idle_sched_class; | |
fb52607a | 6937 | ftrace_graph_init_task(idle); |
1da177e4 LT |
6938 | } |
6939 | ||
6940 | /* | |
6941 | * In a system that switches off the HZ timer nohz_cpu_mask | |
6942 | * indicates which cpus entered this state. This is used | |
6943 | * in the rcu update to wait only for active cpus. For system | |
6944 | * which do not switch off the HZ timer nohz_cpu_mask should | |
6a7b3dc3 | 6945 | * always be CPU_BITS_NONE. |
1da177e4 | 6946 | */ |
6a7b3dc3 | 6947 | cpumask_var_t nohz_cpu_mask; |
1da177e4 | 6948 | |
19978ca6 IM |
6949 | /* |
6950 | * Increase the granularity value when there are more CPUs, | |
6951 | * because with more CPUs the 'effective latency' as visible | |
6952 | * to users decreases. But the relationship is not linear, | |
6953 | * so pick a second-best guess by going with the log2 of the | |
6954 | * number of CPUs. | |
6955 | * | |
6956 | * This idea comes from the SD scheduler of Con Kolivas: | |
6957 | */ | |
6958 | static inline void sched_init_granularity(void) | |
6959 | { | |
6960 | unsigned int factor = 1 + ilog2(num_online_cpus()); | |
6961 | const unsigned long limit = 200000000; | |
6962 | ||
6963 | sysctl_sched_min_granularity *= factor; | |
6964 | if (sysctl_sched_min_granularity > limit) | |
6965 | sysctl_sched_min_granularity = limit; | |
6966 | ||
6967 | sysctl_sched_latency *= factor; | |
6968 | if (sysctl_sched_latency > limit) | |
6969 | sysctl_sched_latency = limit; | |
6970 | ||
6971 | sysctl_sched_wakeup_granularity *= factor; | |
55cd5340 PZ |
6972 | |
6973 | sysctl_sched_shares_ratelimit *= factor; | |
19978ca6 IM |
6974 | } |
6975 | ||
1da177e4 LT |
6976 | #ifdef CONFIG_SMP |
6977 | /* | |
6978 | * This is how migration works: | |
6979 | * | |
70b97a7f | 6980 | * 1) we queue a struct migration_req structure in the source CPU's |
1da177e4 LT |
6981 | * runqueue and wake up that CPU's migration thread. |
6982 | * 2) we down() the locked semaphore => thread blocks. | |
6983 | * 3) migration thread wakes up (implicitly it forces the migrated | |
6984 | * thread off the CPU) | |
6985 | * 4) it gets the migration request and checks whether the migrated | |
6986 | * task is still in the wrong runqueue. | |
6987 | * 5) if it's in the wrong runqueue then the migration thread removes | |
6988 | * it and puts it into the right queue. | |
6989 | * 6) migration thread up()s the semaphore. | |
6990 | * 7) we wake up and the migration is done. | |
6991 | */ | |
6992 | ||
6993 | /* | |
6994 | * Change a given task's CPU affinity. Migrate the thread to a | |
6995 | * proper CPU and schedule it away if the CPU it's executing on | |
6996 | * is removed from the allowed bitmask. | |
6997 | * | |
6998 | * NOTE: the caller must have a valid reference to the task, the | |
41a2d6cf | 6999 | * task must not exit() & deallocate itself prematurely. The |
1da177e4 LT |
7000 | * call is not atomic; no spinlocks may be held. |
7001 | */ | |
96f874e2 | 7002 | int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) |
1da177e4 | 7003 | { |
70b97a7f | 7004 | struct migration_req req; |
1da177e4 | 7005 | unsigned long flags; |
70b97a7f | 7006 | struct rq *rq; |
48f24c4d | 7007 | int ret = 0; |
1da177e4 LT |
7008 | |
7009 | rq = task_rq_lock(p, &flags); | |
96f874e2 | 7010 | if (!cpumask_intersects(new_mask, cpu_online_mask)) { |
1da177e4 LT |
7011 | ret = -EINVAL; |
7012 | goto out; | |
7013 | } | |
7014 | ||
9985b0ba | 7015 | if (unlikely((p->flags & PF_THREAD_BOUND) && p != current && |
96f874e2 | 7016 | !cpumask_equal(&p->cpus_allowed, new_mask))) { |
9985b0ba DR |
7017 | ret = -EINVAL; |
7018 | goto out; | |
7019 | } | |
7020 | ||
73fe6aae | 7021 | if (p->sched_class->set_cpus_allowed) |
cd8ba7cd | 7022 | p->sched_class->set_cpus_allowed(p, new_mask); |
73fe6aae | 7023 | else { |
96f874e2 RR |
7024 | cpumask_copy(&p->cpus_allowed, new_mask); |
7025 | p->rt.nr_cpus_allowed = cpumask_weight(new_mask); | |
73fe6aae GH |
7026 | } |
7027 | ||
1da177e4 | 7028 | /* Can the task run on the task's current CPU? If so, we're done */ |
96f874e2 | 7029 | if (cpumask_test_cpu(task_cpu(p), new_mask)) |
1da177e4 LT |
7030 | goto out; |
7031 | ||
1e5ce4f4 | 7032 | if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) { |
1da177e4 | 7033 | /* Need help from migration thread: drop lock and wait. */ |
693525e3 PZ |
7034 | struct task_struct *mt = rq->migration_thread; |
7035 | ||
7036 | get_task_struct(mt); | |
1da177e4 LT |
7037 | task_rq_unlock(rq, &flags); |
7038 | wake_up_process(rq->migration_thread); | |
693525e3 | 7039 | put_task_struct(mt); |
1da177e4 LT |
7040 | wait_for_completion(&req.done); |
7041 | tlb_migrate_finish(p->mm); | |
7042 | return 0; | |
7043 | } | |
7044 | out: | |
7045 | task_rq_unlock(rq, &flags); | |
48f24c4d | 7046 | |
1da177e4 LT |
7047 | return ret; |
7048 | } | |
cd8ba7cd | 7049 | EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); |
1da177e4 LT |
7050 | |
7051 | /* | |
41a2d6cf | 7052 | * Move (not current) task off this cpu, onto dest cpu. We're doing |
1da177e4 LT |
7053 | * this because either it can't run here any more (set_cpus_allowed() |
7054 | * away from this CPU, or CPU going down), or because we're | |
7055 | * attempting to rebalance this task on exec (sched_exec). | |
7056 | * | |
7057 | * So we race with normal scheduler movements, but that's OK, as long | |
7058 | * as the task is no longer on this CPU. | |
efc30814 KK |
7059 | * |
7060 | * Returns non-zero if task was successfully migrated. | |
1da177e4 | 7061 | */ |
efc30814 | 7062 | static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) |
1da177e4 | 7063 | { |
70b97a7f | 7064 | struct rq *rq_dest, *rq_src; |
dd41f596 | 7065 | int ret = 0, on_rq; |
1da177e4 | 7066 | |
e761b772 | 7067 | if (unlikely(!cpu_active(dest_cpu))) |
efc30814 | 7068 | return ret; |
1da177e4 LT |
7069 | |
7070 | rq_src = cpu_rq(src_cpu); | |
7071 | rq_dest = cpu_rq(dest_cpu); | |
7072 | ||
7073 | double_rq_lock(rq_src, rq_dest); | |
7074 | /* Already moved. */ | |
7075 | if (task_cpu(p) != src_cpu) | |
b1e38734 | 7076 | goto done; |
1da177e4 | 7077 | /* Affinity changed (again). */ |
96f874e2 | 7078 | if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) |
b1e38734 | 7079 | goto fail; |
1da177e4 | 7080 | |
dd41f596 | 7081 | on_rq = p->se.on_rq; |
6e82a3be | 7082 | if (on_rq) |
2e1cb74a | 7083 | deactivate_task(rq_src, p, 0); |
6e82a3be | 7084 | |
1da177e4 | 7085 | set_task_cpu(p, dest_cpu); |
dd41f596 IM |
7086 | if (on_rq) { |
7087 | activate_task(rq_dest, p, 0); | |
15afe09b | 7088 | check_preempt_curr(rq_dest, p, 0); |
1da177e4 | 7089 | } |
b1e38734 | 7090 | done: |
efc30814 | 7091 | ret = 1; |
b1e38734 | 7092 | fail: |
1da177e4 | 7093 | double_rq_unlock(rq_src, rq_dest); |
efc30814 | 7094 | return ret; |
1da177e4 LT |
7095 | } |
7096 | ||
03b042bf PM |
7097 | #define RCU_MIGRATION_IDLE 0 |
7098 | #define RCU_MIGRATION_NEED_QS 1 | |
7099 | #define RCU_MIGRATION_GOT_QS 2 | |
7100 | #define RCU_MIGRATION_MUST_SYNC 3 | |
7101 | ||
1da177e4 LT |
7102 | /* |
7103 | * migration_thread - this is a highprio system thread that performs | |
7104 | * thread migration by bumping thread off CPU then 'pushing' onto | |
7105 | * another runqueue. | |
7106 | */ | |
95cdf3b7 | 7107 | static int migration_thread(void *data) |
1da177e4 | 7108 | { |
03b042bf | 7109 | int badcpu; |
1da177e4 | 7110 | int cpu = (long)data; |
70b97a7f | 7111 | struct rq *rq; |
1da177e4 LT |
7112 | |
7113 | rq = cpu_rq(cpu); | |
7114 | BUG_ON(rq->migration_thread != current); | |
7115 | ||
7116 | set_current_state(TASK_INTERRUPTIBLE); | |
7117 | while (!kthread_should_stop()) { | |
70b97a7f | 7118 | struct migration_req *req; |
1da177e4 | 7119 | struct list_head *head; |
1da177e4 | 7120 | |
1da177e4 LT |
7121 | spin_lock_irq(&rq->lock); |
7122 | ||
7123 | if (cpu_is_offline(cpu)) { | |
7124 | spin_unlock_irq(&rq->lock); | |
371cbb38 | 7125 | break; |
1da177e4 LT |
7126 | } |
7127 | ||
7128 | if (rq->active_balance) { | |
7129 | active_load_balance(rq, cpu); | |
7130 | rq->active_balance = 0; | |
7131 | } | |
7132 | ||
7133 | head = &rq->migration_queue; | |
7134 | ||
7135 | if (list_empty(head)) { | |
7136 | spin_unlock_irq(&rq->lock); | |
7137 | schedule(); | |
7138 | set_current_state(TASK_INTERRUPTIBLE); | |
7139 | continue; | |
7140 | } | |
70b97a7f | 7141 | req = list_entry(head->next, struct migration_req, list); |
1da177e4 LT |
7142 | list_del_init(head->next); |
7143 | ||
03b042bf PM |
7144 | if (req->task != NULL) { |
7145 | spin_unlock(&rq->lock); | |
7146 | __migrate_task(req->task, cpu, req->dest_cpu); | |
7147 | } else if (likely(cpu == (badcpu = smp_processor_id()))) { | |
7148 | req->dest_cpu = RCU_MIGRATION_GOT_QS; | |
7149 | spin_unlock(&rq->lock); | |
7150 | } else { | |
7151 | req->dest_cpu = RCU_MIGRATION_MUST_SYNC; | |
7152 | spin_unlock(&rq->lock); | |
7153 | WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu); | |
7154 | } | |
674311d5 | 7155 | local_irq_enable(); |
1da177e4 LT |
7156 | |
7157 | complete(&req->done); | |
7158 | } | |
7159 | __set_current_state(TASK_RUNNING); | |
1da177e4 | 7160 | |
1da177e4 LT |
7161 | return 0; |
7162 | } | |
7163 | ||
7164 | #ifdef CONFIG_HOTPLUG_CPU | |
f7b4cddc ON |
7165 | |
7166 | static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu) | |
7167 | { | |
7168 | int ret; | |
7169 | ||
7170 | local_irq_disable(); | |
7171 | ret = __migrate_task(p, src_cpu, dest_cpu); | |
7172 | local_irq_enable(); | |
7173 | return ret; | |
7174 | } | |
7175 | ||
054b9108 | 7176 | /* |
3a4fa0a2 | 7177 | * Figure out where task on dead CPU should go, use force if necessary. |
054b9108 | 7178 | */ |
48f24c4d | 7179 | static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) |
1da177e4 | 7180 | { |
70b97a7f | 7181 | int dest_cpu; |
6ca09dfc | 7182 | const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu)); |
e76bd8d9 RR |
7183 | |
7184 | again: | |
7185 | /* Look for allowed, online CPU in same node. */ | |
7186 | for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask) | |
7187 | if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) | |
7188 | goto move; | |
7189 | ||
7190 | /* Any allowed, online CPU? */ | |
7191 | dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask); | |
7192 | if (dest_cpu < nr_cpu_ids) | |
7193 | goto move; | |
7194 | ||
7195 | /* No more Mr. Nice Guy. */ | |
7196 | if (dest_cpu >= nr_cpu_ids) { | |
e76bd8d9 RR |
7197 | cpuset_cpus_allowed_locked(p, &p->cpus_allowed); |
7198 | dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed); | |
1da177e4 | 7199 | |
e76bd8d9 RR |
7200 | /* |
7201 | * Don't tell them about moving exiting tasks or | |
7202 | * kernel threads (both mm NULL), since they never | |
7203 | * leave kernel. | |
7204 | */ | |
7205 | if (p->mm && printk_ratelimit()) { | |
7206 | printk(KERN_INFO "process %d (%s) no " | |
7207 | "longer affine to cpu%d\n", | |
7208 | task_pid_nr(p), p->comm, dead_cpu); | |
3a5c359a | 7209 | } |
e76bd8d9 RR |
7210 | } |
7211 | ||
7212 | move: | |
7213 | /* It can have affinity changed while we were choosing. */ | |
7214 | if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu))) | |
7215 | goto again; | |
1da177e4 LT |
7216 | } |
7217 | ||
7218 | /* | |
7219 | * While a dead CPU has no uninterruptible tasks queued at this point, | |
7220 | * it might still have a nonzero ->nr_uninterruptible counter, because | |
7221 | * for performance reasons the counter is not stricly tracking tasks to | |
7222 | * their home CPUs. So we just add the counter to another CPU's counter, | |
7223 | * to keep the global sum constant after CPU-down: | |
7224 | */ | |
70b97a7f | 7225 | static void migrate_nr_uninterruptible(struct rq *rq_src) |
1da177e4 | 7226 | { |
1e5ce4f4 | 7227 | struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask)); |
1da177e4 LT |
7228 | unsigned long flags; |
7229 | ||
7230 | local_irq_save(flags); | |
7231 | double_rq_lock(rq_src, rq_dest); | |
7232 | rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible; | |
7233 | rq_src->nr_uninterruptible = 0; | |
7234 | double_rq_unlock(rq_src, rq_dest); | |
7235 | local_irq_restore(flags); | |
7236 | } | |
7237 | ||
7238 | /* Run through task list and migrate tasks from the dead cpu. */ | |
7239 | static void migrate_live_tasks(int src_cpu) | |
7240 | { | |
48f24c4d | 7241 | struct task_struct *p, *t; |
1da177e4 | 7242 | |
f7b4cddc | 7243 | read_lock(&tasklist_lock); |
1da177e4 | 7244 | |
48f24c4d IM |
7245 | do_each_thread(t, p) { |
7246 | if (p == current) | |
1da177e4 LT |
7247 | continue; |
7248 | ||
48f24c4d IM |
7249 | if (task_cpu(p) == src_cpu) |
7250 | move_task_off_dead_cpu(src_cpu, p); | |
7251 | } while_each_thread(t, p); | |
1da177e4 | 7252 | |
f7b4cddc | 7253 | read_unlock(&tasklist_lock); |
1da177e4 LT |
7254 | } |
7255 | ||
dd41f596 IM |
7256 | /* |
7257 | * Schedules idle task to be the next runnable task on current CPU. | |
94bc9a7b DA |
7258 | * It does so by boosting its priority to highest possible. |
7259 | * Used by CPU offline code. | |
1da177e4 LT |
7260 | */ |
7261 | void sched_idle_next(void) | |
7262 | { | |
48f24c4d | 7263 | int this_cpu = smp_processor_id(); |
70b97a7f | 7264 | struct rq *rq = cpu_rq(this_cpu); |
1da177e4 LT |
7265 | struct task_struct *p = rq->idle; |
7266 | unsigned long flags; | |
7267 | ||
7268 | /* cpu has to be offline */ | |
48f24c4d | 7269 | BUG_ON(cpu_online(this_cpu)); |
1da177e4 | 7270 | |
48f24c4d IM |
7271 | /* |
7272 | * Strictly not necessary since rest of the CPUs are stopped by now | |
7273 | * and interrupts disabled on the current cpu. | |
1da177e4 LT |
7274 | */ |
7275 | spin_lock_irqsave(&rq->lock, flags); | |
7276 | ||
dd41f596 | 7277 | __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); |
48f24c4d | 7278 | |
94bc9a7b DA |
7279 | update_rq_clock(rq); |
7280 | activate_task(rq, p, 0); | |
1da177e4 LT |
7281 | |
7282 | spin_unlock_irqrestore(&rq->lock, flags); | |
7283 | } | |
7284 | ||
48f24c4d IM |
7285 | /* |
7286 | * Ensures that the idle task is using init_mm right before its cpu goes | |
1da177e4 LT |
7287 | * offline. |
7288 | */ | |
7289 | void idle_task_exit(void) | |
7290 | { | |
7291 | struct mm_struct *mm = current->active_mm; | |
7292 | ||
7293 | BUG_ON(cpu_online(smp_processor_id())); | |
7294 | ||
7295 | if (mm != &init_mm) | |
7296 | switch_mm(mm, &init_mm, current); | |
7297 | mmdrop(mm); | |
7298 | } | |
7299 | ||
054b9108 | 7300 | /* called under rq->lock with disabled interrupts */ |
36c8b586 | 7301 | static void migrate_dead(unsigned int dead_cpu, struct task_struct *p) |
1da177e4 | 7302 | { |
70b97a7f | 7303 | struct rq *rq = cpu_rq(dead_cpu); |
1da177e4 LT |
7304 | |
7305 | /* Must be exiting, otherwise would be on tasklist. */ | |
270f722d | 7306 | BUG_ON(!p->exit_state); |
1da177e4 LT |
7307 | |
7308 | /* Cannot have done final schedule yet: would have vanished. */ | |
c394cc9f | 7309 | BUG_ON(p->state == TASK_DEAD); |
1da177e4 | 7310 | |
48f24c4d | 7311 | get_task_struct(p); |
1da177e4 LT |
7312 | |
7313 | /* | |
7314 | * Drop lock around migration; if someone else moves it, | |
41a2d6cf | 7315 | * that's OK. No task can be added to this CPU, so iteration is |
1da177e4 LT |
7316 | * fine. |
7317 | */ | |
f7b4cddc | 7318 | spin_unlock_irq(&rq->lock); |
48f24c4d | 7319 | move_task_off_dead_cpu(dead_cpu, p); |
f7b4cddc | 7320 | spin_lock_irq(&rq->lock); |
1da177e4 | 7321 | |
48f24c4d | 7322 | put_task_struct(p); |
1da177e4 LT |
7323 | } |
7324 | ||
7325 | /* release_task() removes task from tasklist, so we won't find dead tasks. */ | |
7326 | static void migrate_dead_tasks(unsigned int dead_cpu) | |
7327 | { | |
70b97a7f | 7328 | struct rq *rq = cpu_rq(dead_cpu); |
dd41f596 | 7329 | struct task_struct *next; |
48f24c4d | 7330 | |
dd41f596 IM |
7331 | for ( ; ; ) { |
7332 | if (!rq->nr_running) | |
7333 | break; | |
a8e504d2 | 7334 | update_rq_clock(rq); |
b67802ea | 7335 | next = pick_next_task(rq); |
dd41f596 IM |
7336 | if (!next) |
7337 | break; | |
79c53799 | 7338 | next->sched_class->put_prev_task(rq, next); |
dd41f596 | 7339 | migrate_dead(dead_cpu, next); |
e692ab53 | 7340 | |
1da177e4 LT |
7341 | } |
7342 | } | |
dce48a84 TG |
7343 | |
7344 | /* | |
7345 | * remove the tasks which were accounted by rq from calc_load_tasks. | |
7346 | */ | |
7347 | static void calc_global_load_remove(struct rq *rq) | |
7348 | { | |
7349 | atomic_long_sub(rq->calc_load_active, &calc_load_tasks); | |
a468d389 | 7350 | rq->calc_load_active = 0; |
dce48a84 | 7351 | } |
1da177e4 LT |
7352 | #endif /* CONFIG_HOTPLUG_CPU */ |
7353 | ||
e692ab53 NP |
7354 | #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) |
7355 | ||
7356 | static struct ctl_table sd_ctl_dir[] = { | |
e0361851 AD |
7357 | { |
7358 | .procname = "sched_domain", | |
c57baf1e | 7359 | .mode = 0555, |
e0361851 | 7360 | }, |
38605cae | 7361 | {0, }, |
e692ab53 NP |
7362 | }; |
7363 | ||
7364 | static struct ctl_table sd_ctl_root[] = { | |
e0361851 | 7365 | { |
c57baf1e | 7366 | .ctl_name = CTL_KERN, |
e0361851 | 7367 | .procname = "kernel", |
c57baf1e | 7368 | .mode = 0555, |
e0361851 AD |
7369 | .child = sd_ctl_dir, |
7370 | }, | |
38605cae | 7371 | {0, }, |
e692ab53 NP |
7372 | }; |
7373 | ||
7374 | static struct ctl_table *sd_alloc_ctl_entry(int n) | |
7375 | { | |
7376 | struct ctl_table *entry = | |
5cf9f062 | 7377 | kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); |
e692ab53 | 7378 | |
e692ab53 NP |
7379 | return entry; |
7380 | } | |
7381 | ||
6382bc90 MM |
7382 | static void sd_free_ctl_entry(struct ctl_table **tablep) |
7383 | { | |
cd790076 | 7384 | struct ctl_table *entry; |
6382bc90 | 7385 | |
cd790076 MM |
7386 | /* |
7387 | * In the intermediate directories, both the child directory and | |
7388 | * procname are dynamically allocated and could fail but the mode | |
41a2d6cf | 7389 | * will always be set. In the lowest directory the names are |
cd790076 MM |
7390 | * static strings and all have proc handlers. |
7391 | */ | |
7392 | for (entry = *tablep; entry->mode; entry++) { | |
6382bc90 MM |
7393 | if (entry->child) |
7394 | sd_free_ctl_entry(&entry->child); | |
cd790076 MM |
7395 | if (entry->proc_handler == NULL) |
7396 | kfree(entry->procname); | |
7397 | } | |
6382bc90 MM |
7398 | |
7399 | kfree(*tablep); | |
7400 | *tablep = NULL; | |
7401 | } | |
7402 | ||
e692ab53 | 7403 | static void |
e0361851 | 7404 | set_table_entry(struct ctl_table *entry, |
e692ab53 NP |
7405 | const char *procname, void *data, int maxlen, |
7406 | mode_t mode, proc_handler *proc_handler) | |
7407 | { | |
e692ab53 NP |
7408 | entry->procname = procname; |
7409 | entry->data = data; | |
7410 | entry->maxlen = maxlen; | |
7411 | entry->mode = mode; | |
7412 | entry->proc_handler = proc_handler; | |
7413 | } | |
7414 | ||
7415 | static struct ctl_table * | |
7416 | sd_alloc_ctl_domain_table(struct sched_domain *sd) | |
7417 | { | |
a5d8c348 | 7418 | struct ctl_table *table = sd_alloc_ctl_entry(13); |
e692ab53 | 7419 | |
ad1cdc1d MM |
7420 | if (table == NULL) |
7421 | return NULL; | |
7422 | ||
e0361851 | 7423 | set_table_entry(&table[0], "min_interval", &sd->min_interval, |
e692ab53 | 7424 | sizeof(long), 0644, proc_doulongvec_minmax); |
e0361851 | 7425 | set_table_entry(&table[1], "max_interval", &sd->max_interval, |
e692ab53 | 7426 | sizeof(long), 0644, proc_doulongvec_minmax); |
e0361851 | 7427 | set_table_entry(&table[2], "busy_idx", &sd->busy_idx, |
e692ab53 | 7428 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 7429 | set_table_entry(&table[3], "idle_idx", &sd->idle_idx, |
e692ab53 | 7430 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 7431 | set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, |
e692ab53 | 7432 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 7433 | set_table_entry(&table[5], "wake_idx", &sd->wake_idx, |
e692ab53 | 7434 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 7435 | set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, |
e692ab53 | 7436 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 7437 | set_table_entry(&table[7], "busy_factor", &sd->busy_factor, |
e692ab53 | 7438 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 7439 | set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, |
e692ab53 | 7440 | sizeof(int), 0644, proc_dointvec_minmax); |
ace8b3d6 | 7441 | set_table_entry(&table[9], "cache_nice_tries", |
e692ab53 NP |
7442 | &sd->cache_nice_tries, |
7443 | sizeof(int), 0644, proc_dointvec_minmax); | |
ace8b3d6 | 7444 | set_table_entry(&table[10], "flags", &sd->flags, |
e692ab53 | 7445 | sizeof(int), 0644, proc_dointvec_minmax); |
a5d8c348 IM |
7446 | set_table_entry(&table[11], "name", sd->name, |
7447 | CORENAME_MAX_SIZE, 0444, proc_dostring); | |
7448 | /* &table[12] is terminator */ | |
e692ab53 NP |
7449 | |
7450 | return table; | |
7451 | } | |
7452 | ||
9a4e7159 | 7453 | static ctl_table *sd_alloc_ctl_cpu_table(int cpu) |
e692ab53 NP |
7454 | { |
7455 | struct ctl_table *entry, *table; | |
7456 | struct sched_domain *sd; | |
7457 | int domain_num = 0, i; | |
7458 | char buf[32]; | |
7459 | ||
7460 | for_each_domain(cpu, sd) | |
7461 | domain_num++; | |
7462 | entry = table = sd_alloc_ctl_entry(domain_num + 1); | |
ad1cdc1d MM |
7463 | if (table == NULL) |
7464 | return NULL; | |
e692ab53 NP |
7465 | |
7466 | i = 0; | |
7467 | for_each_domain(cpu, sd) { | |
7468 | snprintf(buf, 32, "domain%d", i); | |
e692ab53 | 7469 | entry->procname = kstrdup(buf, GFP_KERNEL); |
c57baf1e | 7470 | entry->mode = 0555; |
e692ab53 NP |
7471 | entry->child = sd_alloc_ctl_domain_table(sd); |
7472 | entry++; | |
7473 | i++; | |
7474 | } | |
7475 | return table; | |
7476 | } | |
7477 | ||
7478 | static struct ctl_table_header *sd_sysctl_header; | |
6382bc90 | 7479 | static void register_sched_domain_sysctl(void) |
e692ab53 NP |
7480 | { |
7481 | int i, cpu_num = num_online_cpus(); | |
7482 | struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); | |
7483 | char buf[32]; | |
7484 | ||
7378547f MM |
7485 | WARN_ON(sd_ctl_dir[0].child); |
7486 | sd_ctl_dir[0].child = entry; | |
7487 | ||
ad1cdc1d MM |
7488 | if (entry == NULL) |
7489 | return; | |
7490 | ||
97b6ea7b | 7491 | for_each_online_cpu(i) { |
e692ab53 | 7492 | snprintf(buf, 32, "cpu%d", i); |
e692ab53 | 7493 | entry->procname = kstrdup(buf, GFP_KERNEL); |
c57baf1e | 7494 | entry->mode = 0555; |
e692ab53 | 7495 | entry->child = sd_alloc_ctl_cpu_table(i); |
97b6ea7b | 7496 | entry++; |
e692ab53 | 7497 | } |
7378547f MM |
7498 | |
7499 | WARN_ON(sd_sysctl_header); | |
e692ab53 NP |
7500 | sd_sysctl_header = register_sysctl_table(sd_ctl_root); |
7501 | } | |
6382bc90 | 7502 | |
7378547f | 7503 | /* may be called multiple times per register */ |
6382bc90 MM |
7504 | static void unregister_sched_domain_sysctl(void) |
7505 | { | |
7378547f MM |
7506 | if (sd_sysctl_header) |
7507 | unregister_sysctl_table(sd_sysctl_header); | |
6382bc90 | 7508 | sd_sysctl_header = NULL; |
7378547f MM |
7509 | if (sd_ctl_dir[0].child) |
7510 | sd_free_ctl_entry(&sd_ctl_dir[0].child); | |
6382bc90 | 7511 | } |
e692ab53 | 7512 | #else |
6382bc90 MM |
7513 | static void register_sched_domain_sysctl(void) |
7514 | { | |
7515 | } | |
7516 | static void unregister_sched_domain_sysctl(void) | |
e692ab53 NP |
7517 | { |
7518 | } | |
7519 | #endif | |
7520 | ||
1f11eb6a GH |
7521 | static void set_rq_online(struct rq *rq) |
7522 | { | |
7523 | if (!rq->online) { | |
7524 | const struct sched_class *class; | |
7525 | ||
c6c4927b | 7526 | cpumask_set_cpu(rq->cpu, rq->rd->online); |
1f11eb6a GH |
7527 | rq->online = 1; |
7528 | ||
7529 | for_each_class(class) { | |
7530 | if (class->rq_online) | |
7531 | class->rq_online(rq); | |
7532 | } | |
7533 | } | |
7534 | } | |
7535 | ||
7536 | static void set_rq_offline(struct rq *rq) | |
7537 | { | |
7538 | if (rq->online) { | |
7539 | const struct sched_class *class; | |
7540 | ||
7541 | for_each_class(class) { | |
7542 | if (class->rq_offline) | |
7543 | class->rq_offline(rq); | |
7544 | } | |
7545 | ||
c6c4927b | 7546 | cpumask_clear_cpu(rq->cpu, rq->rd->online); |
1f11eb6a GH |
7547 | rq->online = 0; |
7548 | } | |
7549 | } | |
7550 | ||
1da177e4 LT |
7551 | /* |
7552 | * migration_call - callback that gets triggered when a CPU is added. | |
7553 | * Here we can start up the necessary migration thread for the new CPU. | |
7554 | */ | |
48f24c4d IM |
7555 | static int __cpuinit |
7556 | migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) | |
1da177e4 | 7557 | { |
1da177e4 | 7558 | struct task_struct *p; |
48f24c4d | 7559 | int cpu = (long)hcpu; |
1da177e4 | 7560 | unsigned long flags; |
70b97a7f | 7561 | struct rq *rq; |
1da177e4 LT |
7562 | |
7563 | switch (action) { | |
5be9361c | 7564 | |
1da177e4 | 7565 | case CPU_UP_PREPARE: |
8bb78442 | 7566 | case CPU_UP_PREPARE_FROZEN: |
dd41f596 | 7567 | p = kthread_create(migration_thread, hcpu, "migration/%d", cpu); |
1da177e4 LT |
7568 | if (IS_ERR(p)) |
7569 | return NOTIFY_BAD; | |
1da177e4 LT |
7570 | kthread_bind(p, cpu); |
7571 | /* Must be high prio: stop_machine expects to yield to it. */ | |
7572 | rq = task_rq_lock(p, &flags); | |
dd41f596 | 7573 | __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); |
1da177e4 | 7574 | task_rq_unlock(rq, &flags); |
371cbb38 | 7575 | get_task_struct(p); |
1da177e4 | 7576 | cpu_rq(cpu)->migration_thread = p; |
a468d389 | 7577 | rq->calc_load_update = calc_load_update; |
1da177e4 | 7578 | break; |
48f24c4d | 7579 | |
1da177e4 | 7580 | case CPU_ONLINE: |
8bb78442 | 7581 | case CPU_ONLINE_FROZEN: |
3a4fa0a2 | 7582 | /* Strictly unnecessary, as first user will wake it. */ |
1da177e4 | 7583 | wake_up_process(cpu_rq(cpu)->migration_thread); |
1f94ef59 GH |
7584 | |
7585 | /* Update our root-domain */ | |
7586 | rq = cpu_rq(cpu); | |
7587 | spin_lock_irqsave(&rq->lock, flags); | |
7588 | if (rq->rd) { | |
c6c4927b | 7589 | BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); |
1f11eb6a GH |
7590 | |
7591 | set_rq_online(rq); | |
1f94ef59 GH |
7592 | } |
7593 | spin_unlock_irqrestore(&rq->lock, flags); | |
1da177e4 | 7594 | break; |
48f24c4d | 7595 | |
1da177e4 LT |
7596 | #ifdef CONFIG_HOTPLUG_CPU |
7597 | case CPU_UP_CANCELED: | |
8bb78442 | 7598 | case CPU_UP_CANCELED_FROZEN: |
fc75cdfa HC |
7599 | if (!cpu_rq(cpu)->migration_thread) |
7600 | break; | |
41a2d6cf | 7601 | /* Unbind it from offline cpu so it can run. Fall thru. */ |
a4c4af7c | 7602 | kthread_bind(cpu_rq(cpu)->migration_thread, |
1e5ce4f4 | 7603 | cpumask_any(cpu_online_mask)); |
1da177e4 | 7604 | kthread_stop(cpu_rq(cpu)->migration_thread); |
371cbb38 | 7605 | put_task_struct(cpu_rq(cpu)->migration_thread); |
1da177e4 LT |
7606 | cpu_rq(cpu)->migration_thread = NULL; |
7607 | break; | |
48f24c4d | 7608 | |
1da177e4 | 7609 | case CPU_DEAD: |
8bb78442 | 7610 | case CPU_DEAD_FROZEN: |
470fd646 | 7611 | cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */ |
1da177e4 LT |
7612 | migrate_live_tasks(cpu); |
7613 | rq = cpu_rq(cpu); | |
7614 | kthread_stop(rq->migration_thread); | |
371cbb38 | 7615 | put_task_struct(rq->migration_thread); |
1da177e4 LT |
7616 | rq->migration_thread = NULL; |
7617 | /* Idle task back to normal (off runqueue, low prio) */ | |
d2da272a | 7618 | spin_lock_irq(&rq->lock); |
a8e504d2 | 7619 | update_rq_clock(rq); |
2e1cb74a | 7620 | deactivate_task(rq, rq->idle, 0); |
1da177e4 | 7621 | rq->idle->static_prio = MAX_PRIO; |
dd41f596 IM |
7622 | __setscheduler(rq, rq->idle, SCHED_NORMAL, 0); |
7623 | rq->idle->sched_class = &idle_sched_class; | |
1da177e4 | 7624 | migrate_dead_tasks(cpu); |
d2da272a | 7625 | spin_unlock_irq(&rq->lock); |
470fd646 | 7626 | cpuset_unlock(); |
1da177e4 LT |
7627 | migrate_nr_uninterruptible(rq); |
7628 | BUG_ON(rq->nr_running != 0); | |
dce48a84 | 7629 | calc_global_load_remove(rq); |
41a2d6cf IM |
7630 | /* |
7631 | * No need to migrate the tasks: it was best-effort if | |
7632 | * they didn't take sched_hotcpu_mutex. Just wake up | |
7633 | * the requestors. | |
7634 | */ | |
1da177e4 LT |
7635 | spin_lock_irq(&rq->lock); |
7636 | while (!list_empty(&rq->migration_queue)) { | |
70b97a7f IM |
7637 | struct migration_req *req; |
7638 | ||
1da177e4 | 7639 | req = list_entry(rq->migration_queue.next, |
70b97a7f | 7640 | struct migration_req, list); |
1da177e4 | 7641 | list_del_init(&req->list); |
9a2bd244 | 7642 | spin_unlock_irq(&rq->lock); |
1da177e4 | 7643 | complete(&req->done); |
9a2bd244 | 7644 | spin_lock_irq(&rq->lock); |
1da177e4 LT |
7645 | } |
7646 | spin_unlock_irq(&rq->lock); | |
7647 | break; | |
57d885fe | 7648 | |
08f503b0 GH |
7649 | case CPU_DYING: |
7650 | case CPU_DYING_FROZEN: | |
57d885fe GH |
7651 | /* Update our root-domain */ |
7652 | rq = cpu_rq(cpu); | |
7653 | spin_lock_irqsave(&rq->lock, flags); | |
7654 | if (rq->rd) { | |
c6c4927b | 7655 | BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); |
1f11eb6a | 7656 | set_rq_offline(rq); |
57d885fe GH |
7657 | } |
7658 | spin_unlock_irqrestore(&rq->lock, flags); | |
7659 | break; | |
1da177e4 LT |
7660 | #endif |
7661 | } | |
7662 | return NOTIFY_OK; | |
7663 | } | |
7664 | ||
f38b0820 PM |
7665 | /* |
7666 | * Register at high priority so that task migration (migrate_all_tasks) | |
7667 | * happens before everything else. This has to be lower priority than | |
7668 | * the notifier in the perf_counter subsystem, though. | |
1da177e4 | 7669 | */ |
26c2143b | 7670 | static struct notifier_block __cpuinitdata migration_notifier = { |
1da177e4 LT |
7671 | .notifier_call = migration_call, |
7672 | .priority = 10 | |
7673 | }; | |
7674 | ||
7babe8db | 7675 | static int __init migration_init(void) |
1da177e4 LT |
7676 | { |
7677 | void *cpu = (void *)(long)smp_processor_id(); | |
07dccf33 | 7678 | int err; |
48f24c4d IM |
7679 | |
7680 | /* Start one for the boot CPU: */ | |
07dccf33 AM |
7681 | err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); |
7682 | BUG_ON(err == NOTIFY_BAD); | |
1da177e4 LT |
7683 | migration_call(&migration_notifier, CPU_ONLINE, cpu); |
7684 | register_cpu_notifier(&migration_notifier); | |
7babe8db | 7685 | |
a004cd42 | 7686 | return 0; |
1da177e4 | 7687 | } |
7babe8db | 7688 | early_initcall(migration_init); |
1da177e4 LT |
7689 | #endif |
7690 | ||
7691 | #ifdef CONFIG_SMP | |
476f3534 | 7692 | |
3e9830dc | 7693 | #ifdef CONFIG_SCHED_DEBUG |
4dcf6aff | 7694 | |
7c16ec58 | 7695 | static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, |
96f874e2 | 7696 | struct cpumask *groupmask) |
1da177e4 | 7697 | { |
4dcf6aff | 7698 | struct sched_group *group = sd->groups; |
434d53b0 | 7699 | char str[256]; |
1da177e4 | 7700 | |
968ea6d8 | 7701 | cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); |
96f874e2 | 7702 | cpumask_clear(groupmask); |
4dcf6aff IM |
7703 | |
7704 | printk(KERN_DEBUG "%*s domain %d: ", level, "", level); | |
7705 | ||
7706 | if (!(sd->flags & SD_LOAD_BALANCE)) { | |
7707 | printk("does not load-balance\n"); | |
7708 | if (sd->parent) | |
7709 | printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" | |
7710 | " has parent"); | |
7711 | return -1; | |
41c7ce9a NP |
7712 | } |
7713 | ||
eefd796a | 7714 | printk(KERN_CONT "span %s level %s\n", str, sd->name); |
4dcf6aff | 7715 | |
758b2cdc | 7716 | if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { |
4dcf6aff IM |
7717 | printk(KERN_ERR "ERROR: domain->span does not contain " |
7718 | "CPU%d\n", cpu); | |
7719 | } | |
758b2cdc | 7720 | if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { |
4dcf6aff IM |
7721 | printk(KERN_ERR "ERROR: domain->groups does not contain" |
7722 | " CPU%d\n", cpu); | |
7723 | } | |
1da177e4 | 7724 | |
4dcf6aff | 7725 | printk(KERN_DEBUG "%*s groups:", level + 1, ""); |
1da177e4 | 7726 | do { |
4dcf6aff IM |
7727 | if (!group) { |
7728 | printk("\n"); | |
7729 | printk(KERN_ERR "ERROR: group is NULL\n"); | |
1da177e4 LT |
7730 | break; |
7731 | } | |
7732 | ||
18a3885f | 7733 | if (!group->cpu_power) { |
4dcf6aff IM |
7734 | printk(KERN_CONT "\n"); |
7735 | printk(KERN_ERR "ERROR: domain->cpu_power not " | |
7736 | "set\n"); | |
7737 | break; | |
7738 | } | |
1da177e4 | 7739 | |
758b2cdc | 7740 | if (!cpumask_weight(sched_group_cpus(group))) { |
4dcf6aff IM |
7741 | printk(KERN_CONT "\n"); |
7742 | printk(KERN_ERR "ERROR: empty group\n"); | |
7743 | break; | |
7744 | } | |
1da177e4 | 7745 | |
758b2cdc | 7746 | if (cpumask_intersects(groupmask, sched_group_cpus(group))) { |
4dcf6aff IM |
7747 | printk(KERN_CONT "\n"); |
7748 | printk(KERN_ERR "ERROR: repeated CPUs\n"); | |
7749 | break; | |
7750 | } | |
1da177e4 | 7751 | |
758b2cdc | 7752 | cpumask_or(groupmask, groupmask, sched_group_cpus(group)); |
1da177e4 | 7753 | |
968ea6d8 | 7754 | cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); |
381512cf GS |
7755 | |
7756 | printk(KERN_CONT " %s", str); | |
18a3885f PZ |
7757 | if (group->cpu_power != SCHED_LOAD_SCALE) { |
7758 | printk(KERN_CONT " (cpu_power = %d)", | |
7759 | group->cpu_power); | |
381512cf | 7760 | } |
1da177e4 | 7761 | |
4dcf6aff IM |
7762 | group = group->next; |
7763 | } while (group != sd->groups); | |
7764 | printk(KERN_CONT "\n"); | |
1da177e4 | 7765 | |
758b2cdc | 7766 | if (!cpumask_equal(sched_domain_span(sd), groupmask)) |
4dcf6aff | 7767 | printk(KERN_ERR "ERROR: groups don't span domain->span\n"); |
1da177e4 | 7768 | |
758b2cdc RR |
7769 | if (sd->parent && |
7770 | !cpumask_subset(groupmask, sched_domain_span(sd->parent))) | |
4dcf6aff IM |
7771 | printk(KERN_ERR "ERROR: parent span is not a superset " |
7772 | "of domain->span\n"); | |
7773 | return 0; | |
7774 | } | |
1da177e4 | 7775 | |
4dcf6aff IM |
7776 | static void sched_domain_debug(struct sched_domain *sd, int cpu) |
7777 | { | |
d5dd3db1 | 7778 | cpumask_var_t groupmask; |
4dcf6aff | 7779 | int level = 0; |
1da177e4 | 7780 | |
4dcf6aff IM |
7781 | if (!sd) { |
7782 | printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); | |
7783 | return; | |
7784 | } | |
1da177e4 | 7785 | |
4dcf6aff IM |
7786 | printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); |
7787 | ||
d5dd3db1 | 7788 | if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) { |
7c16ec58 MT |
7789 | printk(KERN_DEBUG "Cannot load-balance (out of memory)\n"); |
7790 | return; | |
7791 | } | |
7792 | ||
4dcf6aff | 7793 | for (;;) { |
7c16ec58 | 7794 | if (sched_domain_debug_one(sd, cpu, level, groupmask)) |
4dcf6aff | 7795 | break; |
1da177e4 LT |
7796 | level++; |
7797 | sd = sd->parent; | |
33859f7f | 7798 | if (!sd) |
4dcf6aff IM |
7799 | break; |
7800 | } | |
d5dd3db1 | 7801 | free_cpumask_var(groupmask); |
1da177e4 | 7802 | } |
6d6bc0ad | 7803 | #else /* !CONFIG_SCHED_DEBUG */ |
48f24c4d | 7804 | # define sched_domain_debug(sd, cpu) do { } while (0) |
6d6bc0ad | 7805 | #endif /* CONFIG_SCHED_DEBUG */ |
1da177e4 | 7806 | |
1a20ff27 | 7807 | static int sd_degenerate(struct sched_domain *sd) |
245af2c7 | 7808 | { |
758b2cdc | 7809 | if (cpumask_weight(sched_domain_span(sd)) == 1) |
245af2c7 SS |
7810 | return 1; |
7811 | ||
7812 | /* Following flags need at least 2 groups */ | |
7813 | if (sd->flags & (SD_LOAD_BALANCE | | |
7814 | SD_BALANCE_NEWIDLE | | |
7815 | SD_BALANCE_FORK | | |
89c4710e SS |
7816 | SD_BALANCE_EXEC | |
7817 | SD_SHARE_CPUPOWER | | |
7818 | SD_SHARE_PKG_RESOURCES)) { | |
245af2c7 SS |
7819 | if (sd->groups != sd->groups->next) |
7820 | return 0; | |
7821 | } | |
7822 | ||
7823 | /* Following flags don't use groups */ | |
c88d5910 | 7824 | if (sd->flags & (SD_WAKE_AFFINE)) |
245af2c7 SS |
7825 | return 0; |
7826 | ||
7827 | return 1; | |
7828 | } | |
7829 | ||
48f24c4d IM |
7830 | static int |
7831 | sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) | |
245af2c7 SS |
7832 | { |
7833 | unsigned long cflags = sd->flags, pflags = parent->flags; | |
7834 | ||
7835 | if (sd_degenerate(parent)) | |
7836 | return 1; | |
7837 | ||
758b2cdc | 7838 | if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) |
245af2c7 SS |
7839 | return 0; |
7840 | ||
245af2c7 SS |
7841 | /* Flags needing groups don't count if only 1 group in parent */ |
7842 | if (parent->groups == parent->groups->next) { | |
7843 | pflags &= ~(SD_LOAD_BALANCE | | |
7844 | SD_BALANCE_NEWIDLE | | |
7845 | SD_BALANCE_FORK | | |
89c4710e SS |
7846 | SD_BALANCE_EXEC | |
7847 | SD_SHARE_CPUPOWER | | |
7848 | SD_SHARE_PKG_RESOURCES); | |
5436499e KC |
7849 | if (nr_node_ids == 1) |
7850 | pflags &= ~SD_SERIALIZE; | |
245af2c7 SS |
7851 | } |
7852 | if (~cflags & pflags) | |
7853 | return 0; | |
7854 | ||
7855 | return 1; | |
7856 | } | |
7857 | ||
c6c4927b RR |
7858 | static void free_rootdomain(struct root_domain *rd) |
7859 | { | |
68e74568 RR |
7860 | cpupri_cleanup(&rd->cpupri); |
7861 | ||
c6c4927b RR |
7862 | free_cpumask_var(rd->rto_mask); |
7863 | free_cpumask_var(rd->online); | |
7864 | free_cpumask_var(rd->span); | |
7865 | kfree(rd); | |
7866 | } | |
7867 | ||
57d885fe GH |
7868 | static void rq_attach_root(struct rq *rq, struct root_domain *rd) |
7869 | { | |
a0490fa3 | 7870 | struct root_domain *old_rd = NULL; |
57d885fe | 7871 | unsigned long flags; |
57d885fe GH |
7872 | |
7873 | spin_lock_irqsave(&rq->lock, flags); | |
7874 | ||
7875 | if (rq->rd) { | |
a0490fa3 | 7876 | old_rd = rq->rd; |
57d885fe | 7877 | |
c6c4927b | 7878 | if (cpumask_test_cpu(rq->cpu, old_rd->online)) |
1f11eb6a | 7879 | set_rq_offline(rq); |
57d885fe | 7880 | |
c6c4927b | 7881 | cpumask_clear_cpu(rq->cpu, old_rd->span); |
dc938520 | 7882 | |
a0490fa3 IM |
7883 | /* |
7884 | * If we dont want to free the old_rt yet then | |
7885 | * set old_rd to NULL to skip the freeing later | |
7886 | * in this function: | |
7887 | */ | |
7888 | if (!atomic_dec_and_test(&old_rd->refcount)) | |
7889 | old_rd = NULL; | |
57d885fe GH |
7890 | } |
7891 | ||
7892 | atomic_inc(&rd->refcount); | |
7893 | rq->rd = rd; | |
7894 | ||
c6c4927b | 7895 | cpumask_set_cpu(rq->cpu, rd->span); |
00aec93d | 7896 | if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) |
1f11eb6a | 7897 | set_rq_online(rq); |
57d885fe GH |
7898 | |
7899 | spin_unlock_irqrestore(&rq->lock, flags); | |
a0490fa3 IM |
7900 | |
7901 | if (old_rd) | |
7902 | free_rootdomain(old_rd); | |
57d885fe GH |
7903 | } |
7904 | ||
fd5e1b5d | 7905 | static int init_rootdomain(struct root_domain *rd, bool bootmem) |
57d885fe | 7906 | { |
36b7b6d4 PE |
7907 | gfp_t gfp = GFP_KERNEL; |
7908 | ||
57d885fe GH |
7909 | memset(rd, 0, sizeof(*rd)); |
7910 | ||
36b7b6d4 PE |
7911 | if (bootmem) |
7912 | gfp = GFP_NOWAIT; | |
c6c4927b | 7913 | |
36b7b6d4 | 7914 | if (!alloc_cpumask_var(&rd->span, gfp)) |
0c910d28 | 7915 | goto out; |
36b7b6d4 | 7916 | if (!alloc_cpumask_var(&rd->online, gfp)) |
c6c4927b | 7917 | goto free_span; |
36b7b6d4 | 7918 | if (!alloc_cpumask_var(&rd->rto_mask, gfp)) |
c6c4927b | 7919 | goto free_online; |
6e0534f2 | 7920 | |
0fb53029 | 7921 | if (cpupri_init(&rd->cpupri, bootmem) != 0) |
68e74568 | 7922 | goto free_rto_mask; |
c6c4927b | 7923 | return 0; |
6e0534f2 | 7924 | |
68e74568 RR |
7925 | free_rto_mask: |
7926 | free_cpumask_var(rd->rto_mask); | |
c6c4927b RR |
7927 | free_online: |
7928 | free_cpumask_var(rd->online); | |
7929 | free_span: | |
7930 | free_cpumask_var(rd->span); | |
0c910d28 | 7931 | out: |
c6c4927b | 7932 | return -ENOMEM; |
57d885fe GH |
7933 | } |
7934 | ||
7935 | static void init_defrootdomain(void) | |
7936 | { | |
c6c4927b RR |
7937 | init_rootdomain(&def_root_domain, true); |
7938 | ||
57d885fe GH |
7939 | atomic_set(&def_root_domain.refcount, 1); |
7940 | } | |
7941 | ||
dc938520 | 7942 | static struct root_domain *alloc_rootdomain(void) |
57d885fe GH |
7943 | { |
7944 | struct root_domain *rd; | |
7945 | ||
7946 | rd = kmalloc(sizeof(*rd), GFP_KERNEL); | |
7947 | if (!rd) | |
7948 | return NULL; | |
7949 | ||
c6c4927b RR |
7950 | if (init_rootdomain(rd, false) != 0) { |
7951 | kfree(rd); | |
7952 | return NULL; | |
7953 | } | |
57d885fe GH |
7954 | |
7955 | return rd; | |
7956 | } | |
7957 | ||
1da177e4 | 7958 | /* |
0eab9146 | 7959 | * Attach the domain 'sd' to 'cpu' as its base domain. Callers must |
1da177e4 LT |
7960 | * hold the hotplug lock. |
7961 | */ | |
0eab9146 IM |
7962 | static void |
7963 | cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) | |
1da177e4 | 7964 | { |
70b97a7f | 7965 | struct rq *rq = cpu_rq(cpu); |
245af2c7 SS |
7966 | struct sched_domain *tmp; |
7967 | ||
7968 | /* Remove the sched domains which do not contribute to scheduling. */ | |
f29c9b1c | 7969 | for (tmp = sd; tmp; ) { |
245af2c7 SS |
7970 | struct sched_domain *parent = tmp->parent; |
7971 | if (!parent) | |
7972 | break; | |
f29c9b1c | 7973 | |
1a848870 | 7974 | if (sd_parent_degenerate(tmp, parent)) { |
245af2c7 | 7975 | tmp->parent = parent->parent; |
1a848870 SS |
7976 | if (parent->parent) |
7977 | parent->parent->child = tmp; | |
f29c9b1c LZ |
7978 | } else |
7979 | tmp = tmp->parent; | |
245af2c7 SS |
7980 | } |
7981 | ||
1a848870 | 7982 | if (sd && sd_degenerate(sd)) { |
245af2c7 | 7983 | sd = sd->parent; |
1a848870 SS |
7984 | if (sd) |
7985 | sd->child = NULL; | |
7986 | } | |
1da177e4 LT |
7987 | |
7988 | sched_domain_debug(sd, cpu); | |
7989 | ||
57d885fe | 7990 | rq_attach_root(rq, rd); |
674311d5 | 7991 | rcu_assign_pointer(rq->sd, sd); |
1da177e4 LT |
7992 | } |
7993 | ||
7994 | /* cpus with isolated domains */ | |
dcc30a35 | 7995 | static cpumask_var_t cpu_isolated_map; |
1da177e4 LT |
7996 | |
7997 | /* Setup the mask of cpus configured for isolated domains */ | |
7998 | static int __init isolated_cpu_setup(char *str) | |
7999 | { | |
968ea6d8 | 8000 | cpulist_parse(str, cpu_isolated_map); |
1da177e4 LT |
8001 | return 1; |
8002 | } | |
8003 | ||
8927f494 | 8004 | __setup("isolcpus=", isolated_cpu_setup); |
1da177e4 LT |
8005 | |
8006 | /* | |
6711cab4 SS |
8007 | * init_sched_build_groups takes the cpumask we wish to span, and a pointer |
8008 | * to a function which identifies what group(along with sched group) a CPU | |
96f874e2 RR |
8009 | * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids |
8010 | * (due to the fact that we keep track of groups covered with a struct cpumask). | |
1da177e4 LT |
8011 | * |
8012 | * init_sched_build_groups will build a circular linked list of the groups | |
8013 | * covered by the given span, and will set each group's ->cpumask correctly, | |
8014 | * and ->cpu_power to 0. | |
8015 | */ | |
a616058b | 8016 | static void |
96f874e2 RR |
8017 | init_sched_build_groups(const struct cpumask *span, |
8018 | const struct cpumask *cpu_map, | |
8019 | int (*group_fn)(int cpu, const struct cpumask *cpu_map, | |
7c16ec58 | 8020 | struct sched_group **sg, |
96f874e2 RR |
8021 | struct cpumask *tmpmask), |
8022 | struct cpumask *covered, struct cpumask *tmpmask) | |
1da177e4 LT |
8023 | { |
8024 | struct sched_group *first = NULL, *last = NULL; | |
1da177e4 LT |
8025 | int i; |
8026 | ||
96f874e2 | 8027 | cpumask_clear(covered); |
7c16ec58 | 8028 | |
abcd083a | 8029 | for_each_cpu(i, span) { |
6711cab4 | 8030 | struct sched_group *sg; |
7c16ec58 | 8031 | int group = group_fn(i, cpu_map, &sg, tmpmask); |
1da177e4 LT |
8032 | int j; |
8033 | ||
758b2cdc | 8034 | if (cpumask_test_cpu(i, covered)) |
1da177e4 LT |
8035 | continue; |
8036 | ||
758b2cdc | 8037 | cpumask_clear(sched_group_cpus(sg)); |
18a3885f | 8038 | sg->cpu_power = 0; |
1da177e4 | 8039 | |
abcd083a | 8040 | for_each_cpu(j, span) { |
7c16ec58 | 8041 | if (group_fn(j, cpu_map, NULL, tmpmask) != group) |
1da177e4 LT |
8042 | continue; |
8043 | ||
96f874e2 | 8044 | cpumask_set_cpu(j, covered); |
758b2cdc | 8045 | cpumask_set_cpu(j, sched_group_cpus(sg)); |
1da177e4 LT |
8046 | } |
8047 | if (!first) | |
8048 | first = sg; | |
8049 | if (last) | |
8050 | last->next = sg; | |
8051 | last = sg; | |
8052 | } | |
8053 | last->next = first; | |
8054 | } | |
8055 | ||
9c1cfda2 | 8056 | #define SD_NODES_PER_DOMAIN 16 |
1da177e4 | 8057 | |
9c1cfda2 | 8058 | #ifdef CONFIG_NUMA |
198e2f18 | 8059 | |
9c1cfda2 JH |
8060 | /** |
8061 | * find_next_best_node - find the next node to include in a sched_domain | |
8062 | * @node: node whose sched_domain we're building | |
8063 | * @used_nodes: nodes already in the sched_domain | |
8064 | * | |
41a2d6cf | 8065 | * Find the next node to include in a given scheduling domain. Simply |
9c1cfda2 JH |
8066 | * finds the closest node not already in the @used_nodes map. |
8067 | * | |
8068 | * Should use nodemask_t. | |
8069 | */ | |
c5f59f08 | 8070 | static int find_next_best_node(int node, nodemask_t *used_nodes) |
9c1cfda2 JH |
8071 | { |
8072 | int i, n, val, min_val, best_node = 0; | |
8073 | ||
8074 | min_val = INT_MAX; | |
8075 | ||
076ac2af | 8076 | for (i = 0; i < nr_node_ids; i++) { |
9c1cfda2 | 8077 | /* Start at @node */ |
076ac2af | 8078 | n = (node + i) % nr_node_ids; |
9c1cfda2 JH |
8079 | |
8080 | if (!nr_cpus_node(n)) | |
8081 | continue; | |
8082 | ||
8083 | /* Skip already used nodes */ | |
c5f59f08 | 8084 | if (node_isset(n, *used_nodes)) |
9c1cfda2 JH |
8085 | continue; |
8086 | ||
8087 | /* Simple min distance search */ | |
8088 | val = node_distance(node, n); | |
8089 | ||
8090 | if (val < min_val) { | |
8091 | min_val = val; | |
8092 | best_node = n; | |
8093 | } | |
8094 | } | |
8095 | ||
c5f59f08 | 8096 | node_set(best_node, *used_nodes); |
9c1cfda2 JH |
8097 | return best_node; |
8098 | } | |
8099 | ||
8100 | /** | |
8101 | * sched_domain_node_span - get a cpumask for a node's sched_domain | |
8102 | * @node: node whose cpumask we're constructing | |
73486722 | 8103 | * @span: resulting cpumask |
9c1cfda2 | 8104 | * |
41a2d6cf | 8105 | * Given a node, construct a good cpumask for its sched_domain to span. It |
9c1cfda2 JH |
8106 | * should be one that prevents unnecessary balancing, but also spreads tasks |
8107 | * out optimally. | |
8108 | */ | |
96f874e2 | 8109 | static void sched_domain_node_span(int node, struct cpumask *span) |
9c1cfda2 | 8110 | { |
c5f59f08 | 8111 | nodemask_t used_nodes; |
48f24c4d | 8112 | int i; |
9c1cfda2 | 8113 | |
6ca09dfc | 8114 | cpumask_clear(span); |
c5f59f08 | 8115 | nodes_clear(used_nodes); |
9c1cfda2 | 8116 | |
6ca09dfc | 8117 | cpumask_or(span, span, cpumask_of_node(node)); |
c5f59f08 | 8118 | node_set(node, used_nodes); |
9c1cfda2 JH |
8119 | |
8120 | for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { | |
c5f59f08 | 8121 | int next_node = find_next_best_node(node, &used_nodes); |
48f24c4d | 8122 | |
6ca09dfc | 8123 | cpumask_or(span, span, cpumask_of_node(next_node)); |
9c1cfda2 | 8124 | } |
9c1cfda2 | 8125 | } |
6d6bc0ad | 8126 | #endif /* CONFIG_NUMA */ |
9c1cfda2 | 8127 | |
5c45bf27 | 8128 | int sched_smt_power_savings = 0, sched_mc_power_savings = 0; |
48f24c4d | 8129 | |
6c99e9ad RR |
8130 | /* |
8131 | * The cpus mask in sched_group and sched_domain hangs off the end. | |
4200efd9 IM |
8132 | * |
8133 | * ( See the the comments in include/linux/sched.h:struct sched_group | |
8134 | * and struct sched_domain. ) | |
6c99e9ad RR |
8135 | */ |
8136 | struct static_sched_group { | |
8137 | struct sched_group sg; | |
8138 | DECLARE_BITMAP(cpus, CONFIG_NR_CPUS); | |
8139 | }; | |
8140 | ||
8141 | struct static_sched_domain { | |
8142 | struct sched_domain sd; | |
8143 | DECLARE_BITMAP(span, CONFIG_NR_CPUS); | |
8144 | }; | |
8145 | ||
49a02c51 AH |
8146 | struct s_data { |
8147 | #ifdef CONFIG_NUMA | |
8148 | int sd_allnodes; | |
8149 | cpumask_var_t domainspan; | |
8150 | cpumask_var_t covered; | |
8151 | cpumask_var_t notcovered; | |
8152 | #endif | |
8153 | cpumask_var_t nodemask; | |
8154 | cpumask_var_t this_sibling_map; | |
8155 | cpumask_var_t this_core_map; | |
8156 | cpumask_var_t send_covered; | |
8157 | cpumask_var_t tmpmask; | |
8158 | struct sched_group **sched_group_nodes; | |
8159 | struct root_domain *rd; | |
8160 | }; | |
8161 | ||
2109b99e AH |
8162 | enum s_alloc { |
8163 | sa_sched_groups = 0, | |
8164 | sa_rootdomain, | |
8165 | sa_tmpmask, | |
8166 | sa_send_covered, | |
8167 | sa_this_core_map, | |
8168 | sa_this_sibling_map, | |
8169 | sa_nodemask, | |
8170 | sa_sched_group_nodes, | |
8171 | #ifdef CONFIG_NUMA | |
8172 | sa_notcovered, | |
8173 | sa_covered, | |
8174 | sa_domainspan, | |
8175 | #endif | |
8176 | sa_none, | |
8177 | }; | |
8178 | ||
9c1cfda2 | 8179 | /* |
48f24c4d | 8180 | * SMT sched-domains: |
9c1cfda2 | 8181 | */ |
1da177e4 | 8182 | #ifdef CONFIG_SCHED_SMT |
6c99e9ad RR |
8183 | static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains); |
8184 | static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus); | |
48f24c4d | 8185 | |
41a2d6cf | 8186 | static int |
96f874e2 RR |
8187 | cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map, |
8188 | struct sched_group **sg, struct cpumask *unused) | |
1da177e4 | 8189 | { |
6711cab4 | 8190 | if (sg) |
6c99e9ad | 8191 | *sg = &per_cpu(sched_group_cpus, cpu).sg; |
1da177e4 LT |
8192 | return cpu; |
8193 | } | |
6d6bc0ad | 8194 | #endif /* CONFIG_SCHED_SMT */ |
1da177e4 | 8195 | |
48f24c4d IM |
8196 | /* |
8197 | * multi-core sched-domains: | |
8198 | */ | |
1e9f28fa | 8199 | #ifdef CONFIG_SCHED_MC |
6c99e9ad RR |
8200 | static DEFINE_PER_CPU(struct static_sched_domain, core_domains); |
8201 | static DEFINE_PER_CPU(struct static_sched_group, sched_group_core); | |
6d6bc0ad | 8202 | #endif /* CONFIG_SCHED_MC */ |
1e9f28fa SS |
8203 | |
8204 | #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT) | |
41a2d6cf | 8205 | static int |
96f874e2 RR |
8206 | cpu_to_core_group(int cpu, const struct cpumask *cpu_map, |
8207 | struct sched_group **sg, struct cpumask *mask) | |
1e9f28fa | 8208 | { |
6711cab4 | 8209 | int group; |
7c16ec58 | 8210 | |
c69fc56d | 8211 | cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map); |
96f874e2 | 8212 | group = cpumask_first(mask); |
6711cab4 | 8213 | if (sg) |
6c99e9ad | 8214 | *sg = &per_cpu(sched_group_core, group).sg; |
6711cab4 | 8215 | return group; |
1e9f28fa SS |
8216 | } |
8217 | #elif defined(CONFIG_SCHED_MC) | |
41a2d6cf | 8218 | static int |
96f874e2 RR |
8219 | cpu_to_core_group(int cpu, const struct cpumask *cpu_map, |
8220 | struct sched_group **sg, struct cpumask *unused) | |
1e9f28fa | 8221 | { |
6711cab4 | 8222 | if (sg) |
6c99e9ad | 8223 | *sg = &per_cpu(sched_group_core, cpu).sg; |
1e9f28fa SS |
8224 | return cpu; |
8225 | } | |
8226 | #endif | |
8227 | ||
6c99e9ad RR |
8228 | static DEFINE_PER_CPU(struct static_sched_domain, phys_domains); |
8229 | static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys); | |
48f24c4d | 8230 | |
41a2d6cf | 8231 | static int |
96f874e2 RR |
8232 | cpu_to_phys_group(int cpu, const struct cpumask *cpu_map, |
8233 | struct sched_group **sg, struct cpumask *mask) | |
1da177e4 | 8234 | { |
6711cab4 | 8235 | int group; |
48f24c4d | 8236 | #ifdef CONFIG_SCHED_MC |
6ca09dfc | 8237 | cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map); |
96f874e2 | 8238 | group = cpumask_first(mask); |
1e9f28fa | 8239 | #elif defined(CONFIG_SCHED_SMT) |
c69fc56d | 8240 | cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map); |
96f874e2 | 8241 | group = cpumask_first(mask); |
1da177e4 | 8242 | #else |
6711cab4 | 8243 | group = cpu; |
1da177e4 | 8244 | #endif |
6711cab4 | 8245 | if (sg) |
6c99e9ad | 8246 | *sg = &per_cpu(sched_group_phys, group).sg; |
6711cab4 | 8247 | return group; |
1da177e4 LT |
8248 | } |
8249 | ||
8250 | #ifdef CONFIG_NUMA | |
1da177e4 | 8251 | /* |
9c1cfda2 JH |
8252 | * The init_sched_build_groups can't handle what we want to do with node |
8253 | * groups, so roll our own. Now each node has its own list of groups which | |
8254 | * gets dynamically allocated. | |
1da177e4 | 8255 | */ |
62ea9ceb | 8256 | static DEFINE_PER_CPU(struct static_sched_domain, node_domains); |
434d53b0 | 8257 | static struct sched_group ***sched_group_nodes_bycpu; |
1da177e4 | 8258 | |
62ea9ceb | 8259 | static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains); |
6c99e9ad | 8260 | static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes); |
9c1cfda2 | 8261 | |
96f874e2 RR |
8262 | static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map, |
8263 | struct sched_group **sg, | |
8264 | struct cpumask *nodemask) | |
9c1cfda2 | 8265 | { |
6711cab4 SS |
8266 | int group; |
8267 | ||
6ca09dfc | 8268 | cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map); |
96f874e2 | 8269 | group = cpumask_first(nodemask); |
6711cab4 SS |
8270 | |
8271 | if (sg) | |
6c99e9ad | 8272 | *sg = &per_cpu(sched_group_allnodes, group).sg; |
6711cab4 | 8273 | return group; |
1da177e4 | 8274 | } |
6711cab4 | 8275 | |
08069033 SS |
8276 | static void init_numa_sched_groups_power(struct sched_group *group_head) |
8277 | { | |
8278 | struct sched_group *sg = group_head; | |
8279 | int j; | |
8280 | ||
8281 | if (!sg) | |
8282 | return; | |
3a5c359a | 8283 | do { |
758b2cdc | 8284 | for_each_cpu(j, sched_group_cpus(sg)) { |
3a5c359a | 8285 | struct sched_domain *sd; |
08069033 | 8286 | |
6c99e9ad | 8287 | sd = &per_cpu(phys_domains, j).sd; |
13318a71 | 8288 | if (j != group_first_cpu(sd->groups)) { |
3a5c359a AK |
8289 | /* |
8290 | * Only add "power" once for each | |
8291 | * physical package. | |
8292 | */ | |
8293 | continue; | |
8294 | } | |
08069033 | 8295 | |
18a3885f | 8296 | sg->cpu_power += sd->groups->cpu_power; |
3a5c359a AK |
8297 | } |
8298 | sg = sg->next; | |
8299 | } while (sg != group_head); | |
08069033 | 8300 | } |
0601a88d AH |
8301 | |
8302 | static int build_numa_sched_groups(struct s_data *d, | |
8303 | const struct cpumask *cpu_map, int num) | |
8304 | { | |
8305 | struct sched_domain *sd; | |
8306 | struct sched_group *sg, *prev; | |
8307 | int n, j; | |
8308 | ||
8309 | cpumask_clear(d->covered); | |
8310 | cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map); | |
8311 | if (cpumask_empty(d->nodemask)) { | |
8312 | d->sched_group_nodes[num] = NULL; | |
8313 | goto out; | |
8314 | } | |
8315 | ||
8316 | sched_domain_node_span(num, d->domainspan); | |
8317 | cpumask_and(d->domainspan, d->domainspan, cpu_map); | |
8318 | ||
8319 | sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(), | |
8320 | GFP_KERNEL, num); | |
8321 | if (!sg) { | |
8322 | printk(KERN_WARNING "Can not alloc domain group for node %d\n", | |
8323 | num); | |
8324 | return -ENOMEM; | |
8325 | } | |
8326 | d->sched_group_nodes[num] = sg; | |
8327 | ||
8328 | for_each_cpu(j, d->nodemask) { | |
8329 | sd = &per_cpu(node_domains, j).sd; | |
8330 | sd->groups = sg; | |
8331 | } | |
8332 | ||
18a3885f | 8333 | sg->cpu_power = 0; |
0601a88d AH |
8334 | cpumask_copy(sched_group_cpus(sg), d->nodemask); |
8335 | sg->next = sg; | |
8336 | cpumask_or(d->covered, d->covered, d->nodemask); | |
8337 | ||
8338 | prev = sg; | |
8339 | for (j = 0; j < nr_node_ids; j++) { | |
8340 | n = (num + j) % nr_node_ids; | |
8341 | cpumask_complement(d->notcovered, d->covered); | |
8342 | cpumask_and(d->tmpmask, d->notcovered, cpu_map); | |
8343 | cpumask_and(d->tmpmask, d->tmpmask, d->domainspan); | |
8344 | if (cpumask_empty(d->tmpmask)) | |
8345 | break; | |
8346 | cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n)); | |
8347 | if (cpumask_empty(d->tmpmask)) | |
8348 | continue; | |
8349 | sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(), | |
8350 | GFP_KERNEL, num); | |
8351 | if (!sg) { | |
8352 | printk(KERN_WARNING | |
8353 | "Can not alloc domain group for node %d\n", j); | |
8354 | return -ENOMEM; | |
8355 | } | |
18a3885f | 8356 | sg->cpu_power = 0; |
0601a88d AH |
8357 | cpumask_copy(sched_group_cpus(sg), d->tmpmask); |
8358 | sg->next = prev->next; | |
8359 | cpumask_or(d->covered, d->covered, d->tmpmask); | |
8360 | prev->next = sg; | |
8361 | prev = sg; | |
8362 | } | |
8363 | out: | |
8364 | return 0; | |
8365 | } | |
6d6bc0ad | 8366 | #endif /* CONFIG_NUMA */ |
1da177e4 | 8367 | |
a616058b | 8368 | #ifdef CONFIG_NUMA |
51888ca2 | 8369 | /* Free memory allocated for various sched_group structures */ |
96f874e2 RR |
8370 | static void free_sched_groups(const struct cpumask *cpu_map, |
8371 | struct cpumask *nodemask) | |
51888ca2 | 8372 | { |
a616058b | 8373 | int cpu, i; |
51888ca2 | 8374 | |
abcd083a | 8375 | for_each_cpu(cpu, cpu_map) { |
51888ca2 SV |
8376 | struct sched_group **sched_group_nodes |
8377 | = sched_group_nodes_bycpu[cpu]; | |
8378 | ||
51888ca2 SV |
8379 | if (!sched_group_nodes) |
8380 | continue; | |
8381 | ||
076ac2af | 8382 | for (i = 0; i < nr_node_ids; i++) { |
51888ca2 SV |
8383 | struct sched_group *oldsg, *sg = sched_group_nodes[i]; |
8384 | ||
6ca09dfc | 8385 | cpumask_and(nodemask, cpumask_of_node(i), cpu_map); |
96f874e2 | 8386 | if (cpumask_empty(nodemask)) |
51888ca2 SV |
8387 | continue; |
8388 | ||
8389 | if (sg == NULL) | |
8390 | continue; | |
8391 | sg = sg->next; | |
8392 | next_sg: | |
8393 | oldsg = sg; | |
8394 | sg = sg->next; | |
8395 | kfree(oldsg); | |
8396 | if (oldsg != sched_group_nodes[i]) | |
8397 | goto next_sg; | |
8398 | } | |
8399 | kfree(sched_group_nodes); | |
8400 | sched_group_nodes_bycpu[cpu] = NULL; | |
8401 | } | |
51888ca2 | 8402 | } |
6d6bc0ad | 8403 | #else /* !CONFIG_NUMA */ |
96f874e2 RR |
8404 | static void free_sched_groups(const struct cpumask *cpu_map, |
8405 | struct cpumask *nodemask) | |
a616058b SS |
8406 | { |
8407 | } | |
6d6bc0ad | 8408 | #endif /* CONFIG_NUMA */ |
51888ca2 | 8409 | |
89c4710e SS |
8410 | /* |
8411 | * Initialize sched groups cpu_power. | |
8412 | * | |
8413 | * cpu_power indicates the capacity of sched group, which is used while | |
8414 | * distributing the load between different sched groups in a sched domain. | |
8415 | * Typically cpu_power for all the groups in a sched domain will be same unless | |
8416 | * there are asymmetries in the topology. If there are asymmetries, group | |
8417 | * having more cpu_power will pickup more load compared to the group having | |
8418 | * less cpu_power. | |
89c4710e SS |
8419 | */ |
8420 | static void init_sched_groups_power(int cpu, struct sched_domain *sd) | |
8421 | { | |
8422 | struct sched_domain *child; | |
8423 | struct sched_group *group; | |
f93e65c1 PZ |
8424 | long power; |
8425 | int weight; | |
89c4710e SS |
8426 | |
8427 | WARN_ON(!sd || !sd->groups); | |
8428 | ||
13318a71 | 8429 | if (cpu != group_first_cpu(sd->groups)) |
89c4710e SS |
8430 | return; |
8431 | ||
8432 | child = sd->child; | |
8433 | ||
18a3885f | 8434 | sd->groups->cpu_power = 0; |
5517d86b | 8435 | |
f93e65c1 PZ |
8436 | if (!child) { |
8437 | power = SCHED_LOAD_SCALE; | |
8438 | weight = cpumask_weight(sched_domain_span(sd)); | |
8439 | /* | |
8440 | * SMT siblings share the power of a single core. | |
a52bfd73 PZ |
8441 | * Usually multiple threads get a better yield out of |
8442 | * that one core than a single thread would have, | |
8443 | * reflect that in sd->smt_gain. | |
f93e65c1 | 8444 | */ |
a52bfd73 PZ |
8445 | if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { |
8446 | power *= sd->smt_gain; | |
f93e65c1 | 8447 | power /= weight; |
a52bfd73 PZ |
8448 | power >>= SCHED_LOAD_SHIFT; |
8449 | } | |
18a3885f | 8450 | sd->groups->cpu_power += power; |
89c4710e SS |
8451 | return; |
8452 | } | |
8453 | ||
89c4710e | 8454 | /* |
f93e65c1 | 8455 | * Add cpu_power of each child group to this groups cpu_power. |
89c4710e SS |
8456 | */ |
8457 | group = child->groups; | |
8458 | do { | |
18a3885f | 8459 | sd->groups->cpu_power += group->cpu_power; |
89c4710e SS |
8460 | group = group->next; |
8461 | } while (group != child->groups); | |
8462 | } | |
8463 | ||
7c16ec58 MT |
8464 | /* |
8465 | * Initializers for schedule domains | |
8466 | * Non-inlined to reduce accumulated stack pressure in build_sched_domains() | |
8467 | */ | |
8468 | ||
a5d8c348 IM |
8469 | #ifdef CONFIG_SCHED_DEBUG |
8470 | # define SD_INIT_NAME(sd, type) sd->name = #type | |
8471 | #else | |
8472 | # define SD_INIT_NAME(sd, type) do { } while (0) | |
8473 | #endif | |
8474 | ||
7c16ec58 | 8475 | #define SD_INIT(sd, type) sd_init_##type(sd) |
a5d8c348 | 8476 | |
7c16ec58 MT |
8477 | #define SD_INIT_FUNC(type) \ |
8478 | static noinline void sd_init_##type(struct sched_domain *sd) \ | |
8479 | { \ | |
8480 | memset(sd, 0, sizeof(*sd)); \ | |
8481 | *sd = SD_##type##_INIT; \ | |
1d3504fc | 8482 | sd->level = SD_LV_##type; \ |
a5d8c348 | 8483 | SD_INIT_NAME(sd, type); \ |
7c16ec58 MT |
8484 | } |
8485 | ||
8486 | SD_INIT_FUNC(CPU) | |
8487 | #ifdef CONFIG_NUMA | |
8488 | SD_INIT_FUNC(ALLNODES) | |
8489 | SD_INIT_FUNC(NODE) | |
8490 | #endif | |
8491 | #ifdef CONFIG_SCHED_SMT | |
8492 | SD_INIT_FUNC(SIBLING) | |
8493 | #endif | |
8494 | #ifdef CONFIG_SCHED_MC | |
8495 | SD_INIT_FUNC(MC) | |
8496 | #endif | |
8497 | ||
1d3504fc HS |
8498 | static int default_relax_domain_level = -1; |
8499 | ||
8500 | static int __init setup_relax_domain_level(char *str) | |
8501 | { | |
30e0e178 LZ |
8502 | unsigned long val; |
8503 | ||
8504 | val = simple_strtoul(str, NULL, 0); | |
8505 | if (val < SD_LV_MAX) | |
8506 | default_relax_domain_level = val; | |
8507 | ||
1d3504fc HS |
8508 | return 1; |
8509 | } | |
8510 | __setup("relax_domain_level=", setup_relax_domain_level); | |
8511 | ||
8512 | static void set_domain_attribute(struct sched_domain *sd, | |
8513 | struct sched_domain_attr *attr) | |
8514 | { | |
8515 | int request; | |
8516 | ||
8517 | if (!attr || attr->relax_domain_level < 0) { | |
8518 | if (default_relax_domain_level < 0) | |
8519 | return; | |
8520 | else | |
8521 | request = default_relax_domain_level; | |
8522 | } else | |
8523 | request = attr->relax_domain_level; | |
8524 | if (request < sd->level) { | |
8525 | /* turn off idle balance on this domain */ | |
c88d5910 | 8526 | sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); |
1d3504fc HS |
8527 | } else { |
8528 | /* turn on idle balance on this domain */ | |
c88d5910 | 8529 | sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); |
1d3504fc HS |
8530 | } |
8531 | } | |
8532 | ||
2109b99e AH |
8533 | static void __free_domain_allocs(struct s_data *d, enum s_alloc what, |
8534 | const struct cpumask *cpu_map) | |
8535 | { | |
8536 | switch (what) { | |
8537 | case sa_sched_groups: | |
8538 | free_sched_groups(cpu_map, d->tmpmask); /* fall through */ | |
8539 | d->sched_group_nodes = NULL; | |
8540 | case sa_rootdomain: | |
8541 | free_rootdomain(d->rd); /* fall through */ | |
8542 | case sa_tmpmask: | |
8543 | free_cpumask_var(d->tmpmask); /* fall through */ | |
8544 | case sa_send_covered: | |
8545 | free_cpumask_var(d->send_covered); /* fall through */ | |
8546 | case sa_this_core_map: | |
8547 | free_cpumask_var(d->this_core_map); /* fall through */ | |
8548 | case sa_this_sibling_map: | |
8549 | free_cpumask_var(d->this_sibling_map); /* fall through */ | |
8550 | case sa_nodemask: | |
8551 | free_cpumask_var(d->nodemask); /* fall through */ | |
8552 | case sa_sched_group_nodes: | |
d1b55138 | 8553 | #ifdef CONFIG_NUMA |
2109b99e AH |
8554 | kfree(d->sched_group_nodes); /* fall through */ |
8555 | case sa_notcovered: | |
8556 | free_cpumask_var(d->notcovered); /* fall through */ | |
8557 | case sa_covered: | |
8558 | free_cpumask_var(d->covered); /* fall through */ | |
8559 | case sa_domainspan: | |
8560 | free_cpumask_var(d->domainspan); /* fall through */ | |
3404c8d9 | 8561 | #endif |
2109b99e AH |
8562 | case sa_none: |
8563 | break; | |
8564 | } | |
8565 | } | |
3404c8d9 | 8566 | |
2109b99e AH |
8567 | static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, |
8568 | const struct cpumask *cpu_map) | |
8569 | { | |
3404c8d9 | 8570 | #ifdef CONFIG_NUMA |
2109b99e AH |
8571 | if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL)) |
8572 | return sa_none; | |
8573 | if (!alloc_cpumask_var(&d->covered, GFP_KERNEL)) | |
8574 | return sa_domainspan; | |
8575 | if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL)) | |
8576 | return sa_covered; | |
8577 | /* Allocate the per-node list of sched groups */ | |
8578 | d->sched_group_nodes = kcalloc(nr_node_ids, | |
8579 | sizeof(struct sched_group *), GFP_KERNEL); | |
8580 | if (!d->sched_group_nodes) { | |
d1b55138 | 8581 | printk(KERN_WARNING "Can not alloc sched group node list\n"); |
2109b99e | 8582 | return sa_notcovered; |
d1b55138 | 8583 | } |
2109b99e | 8584 | sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes; |
d1b55138 | 8585 | #endif |
2109b99e AH |
8586 | if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL)) |
8587 | return sa_sched_group_nodes; | |
8588 | if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL)) | |
8589 | return sa_nodemask; | |
8590 | if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL)) | |
8591 | return sa_this_sibling_map; | |
8592 | if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL)) | |
8593 | return sa_this_core_map; | |
8594 | if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL)) | |
8595 | return sa_send_covered; | |
8596 | d->rd = alloc_rootdomain(); | |
8597 | if (!d->rd) { | |
57d885fe | 8598 | printk(KERN_WARNING "Cannot alloc root domain\n"); |
2109b99e | 8599 | return sa_tmpmask; |
57d885fe | 8600 | } |
2109b99e AH |
8601 | return sa_rootdomain; |
8602 | } | |
57d885fe | 8603 | |
7f4588f3 AH |
8604 | static struct sched_domain *__build_numa_sched_domains(struct s_data *d, |
8605 | const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i) | |
8606 | { | |
8607 | struct sched_domain *sd = NULL; | |
7c16ec58 | 8608 | #ifdef CONFIG_NUMA |
7f4588f3 | 8609 | struct sched_domain *parent; |
1da177e4 | 8610 | |
7f4588f3 AH |
8611 | d->sd_allnodes = 0; |
8612 | if (cpumask_weight(cpu_map) > | |
8613 | SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) { | |
8614 | sd = &per_cpu(allnodes_domains, i).sd; | |
8615 | SD_INIT(sd, ALLNODES); | |
1d3504fc | 8616 | set_domain_attribute(sd, attr); |
7f4588f3 AH |
8617 | cpumask_copy(sched_domain_span(sd), cpu_map); |
8618 | cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask); | |
8619 | d->sd_allnodes = 1; | |
8620 | } | |
8621 | parent = sd; | |
8622 | ||
8623 | sd = &per_cpu(node_domains, i).sd; | |
8624 | SD_INIT(sd, NODE); | |
8625 | set_domain_attribute(sd, attr); | |
8626 | sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd)); | |
8627 | sd->parent = parent; | |
8628 | if (parent) | |
8629 | parent->child = sd; | |
8630 | cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map); | |
1da177e4 | 8631 | #endif |
7f4588f3 AH |
8632 | return sd; |
8633 | } | |
1da177e4 | 8634 | |
87cce662 AH |
8635 | static struct sched_domain *__build_cpu_sched_domain(struct s_data *d, |
8636 | const struct cpumask *cpu_map, struct sched_domain_attr *attr, | |
8637 | struct sched_domain *parent, int i) | |
8638 | { | |
8639 | struct sched_domain *sd; | |
8640 | sd = &per_cpu(phys_domains, i).sd; | |
8641 | SD_INIT(sd, CPU); | |
8642 | set_domain_attribute(sd, attr); | |
8643 | cpumask_copy(sched_domain_span(sd), d->nodemask); | |
8644 | sd->parent = parent; | |
8645 | if (parent) | |
8646 | parent->child = sd; | |
8647 | cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask); | |
8648 | return sd; | |
8649 | } | |
1da177e4 | 8650 | |
410c4081 AH |
8651 | static struct sched_domain *__build_mc_sched_domain(struct s_data *d, |
8652 | const struct cpumask *cpu_map, struct sched_domain_attr *attr, | |
8653 | struct sched_domain *parent, int i) | |
8654 | { | |
8655 | struct sched_domain *sd = parent; | |
1e9f28fa | 8656 | #ifdef CONFIG_SCHED_MC |
410c4081 AH |
8657 | sd = &per_cpu(core_domains, i).sd; |
8658 | SD_INIT(sd, MC); | |
8659 | set_domain_attribute(sd, attr); | |
8660 | cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i)); | |
8661 | sd->parent = parent; | |
8662 | parent->child = sd; | |
8663 | cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask); | |
1e9f28fa | 8664 | #endif |
410c4081 AH |
8665 | return sd; |
8666 | } | |
1e9f28fa | 8667 | |
d8173535 AH |
8668 | static struct sched_domain *__build_smt_sched_domain(struct s_data *d, |
8669 | const struct cpumask *cpu_map, struct sched_domain_attr *attr, | |
8670 | struct sched_domain *parent, int i) | |
8671 | { | |
8672 | struct sched_domain *sd = parent; | |
1da177e4 | 8673 | #ifdef CONFIG_SCHED_SMT |
d8173535 AH |
8674 | sd = &per_cpu(cpu_domains, i).sd; |
8675 | SD_INIT(sd, SIBLING); | |
8676 | set_domain_attribute(sd, attr); | |
8677 | cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i)); | |
8678 | sd->parent = parent; | |
8679 | parent->child = sd; | |
8680 | cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask); | |
1da177e4 | 8681 | #endif |
d8173535 AH |
8682 | return sd; |
8683 | } | |
1da177e4 | 8684 | |
0e8e85c9 AH |
8685 | static void build_sched_groups(struct s_data *d, enum sched_domain_level l, |
8686 | const struct cpumask *cpu_map, int cpu) | |
8687 | { | |
8688 | switch (l) { | |
1da177e4 | 8689 | #ifdef CONFIG_SCHED_SMT |
0e8e85c9 AH |
8690 | case SD_LV_SIBLING: /* set up CPU (sibling) groups */ |
8691 | cpumask_and(d->this_sibling_map, cpu_map, | |
8692 | topology_thread_cpumask(cpu)); | |
8693 | if (cpu == cpumask_first(d->this_sibling_map)) | |
8694 | init_sched_build_groups(d->this_sibling_map, cpu_map, | |
8695 | &cpu_to_cpu_group, | |
8696 | d->send_covered, d->tmpmask); | |
8697 | break; | |
1da177e4 | 8698 | #endif |
1e9f28fa | 8699 | #ifdef CONFIG_SCHED_MC |
a2af04cd AH |
8700 | case SD_LV_MC: /* set up multi-core groups */ |
8701 | cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu)); | |
8702 | if (cpu == cpumask_first(d->this_core_map)) | |
8703 | init_sched_build_groups(d->this_core_map, cpu_map, | |
8704 | &cpu_to_core_group, | |
8705 | d->send_covered, d->tmpmask); | |
8706 | break; | |
1e9f28fa | 8707 | #endif |
86548096 AH |
8708 | case SD_LV_CPU: /* set up physical groups */ |
8709 | cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map); | |
8710 | if (!cpumask_empty(d->nodemask)) | |
8711 | init_sched_build_groups(d->nodemask, cpu_map, | |
8712 | &cpu_to_phys_group, | |
8713 | d->send_covered, d->tmpmask); | |
8714 | break; | |
1da177e4 | 8715 | #ifdef CONFIG_NUMA |
de616e36 AH |
8716 | case SD_LV_ALLNODES: |
8717 | init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group, | |
8718 | d->send_covered, d->tmpmask); | |
8719 | break; | |
8720 | #endif | |
0e8e85c9 AH |
8721 | default: |
8722 | break; | |
7c16ec58 | 8723 | } |
0e8e85c9 | 8724 | } |
9c1cfda2 | 8725 | |
2109b99e AH |
8726 | /* |
8727 | * Build sched domains for a given set of cpus and attach the sched domains | |
8728 | * to the individual cpus | |
8729 | */ | |
8730 | static int __build_sched_domains(const struct cpumask *cpu_map, | |
8731 | struct sched_domain_attr *attr) | |
8732 | { | |
8733 | enum s_alloc alloc_state = sa_none; | |
8734 | struct s_data d; | |
294b0c96 | 8735 | struct sched_domain *sd; |
2109b99e | 8736 | int i; |
7c16ec58 | 8737 | #ifdef CONFIG_NUMA |
2109b99e | 8738 | d.sd_allnodes = 0; |
7c16ec58 | 8739 | #endif |
9c1cfda2 | 8740 | |
2109b99e AH |
8741 | alloc_state = __visit_domain_allocation_hell(&d, cpu_map); |
8742 | if (alloc_state != sa_rootdomain) | |
8743 | goto error; | |
8744 | alloc_state = sa_sched_groups; | |
9c1cfda2 | 8745 | |
1da177e4 | 8746 | /* |
1a20ff27 | 8747 | * Set up domains for cpus specified by the cpu_map. |
1da177e4 | 8748 | */ |
abcd083a | 8749 | for_each_cpu(i, cpu_map) { |
49a02c51 AH |
8750 | cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)), |
8751 | cpu_map); | |
9761eea8 | 8752 | |
7f4588f3 | 8753 | sd = __build_numa_sched_domains(&d, cpu_map, attr, i); |
87cce662 | 8754 | sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i); |
410c4081 | 8755 | sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i); |
d8173535 | 8756 | sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i); |
1da177e4 | 8757 | } |
9c1cfda2 | 8758 | |
abcd083a | 8759 | for_each_cpu(i, cpu_map) { |
0e8e85c9 | 8760 | build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i); |
a2af04cd | 8761 | build_sched_groups(&d, SD_LV_MC, cpu_map, i); |
1da177e4 | 8762 | } |
9c1cfda2 | 8763 | |
1da177e4 | 8764 | /* Set up physical groups */ |
86548096 AH |
8765 | for (i = 0; i < nr_node_ids; i++) |
8766 | build_sched_groups(&d, SD_LV_CPU, cpu_map, i); | |
9c1cfda2 | 8767 | |
1da177e4 LT |
8768 | #ifdef CONFIG_NUMA |
8769 | /* Set up node groups */ | |
de616e36 AH |
8770 | if (d.sd_allnodes) |
8771 | build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0); | |
9c1cfda2 | 8772 | |
0601a88d AH |
8773 | for (i = 0; i < nr_node_ids; i++) |
8774 | if (build_numa_sched_groups(&d, cpu_map, i)) | |
51888ca2 | 8775 | goto error; |
1da177e4 LT |
8776 | #endif |
8777 | ||
8778 | /* Calculate CPU power for physical packages and nodes */ | |
5c45bf27 | 8779 | #ifdef CONFIG_SCHED_SMT |
abcd083a | 8780 | for_each_cpu(i, cpu_map) { |
294b0c96 | 8781 | sd = &per_cpu(cpu_domains, i).sd; |
89c4710e | 8782 | init_sched_groups_power(i, sd); |
5c45bf27 | 8783 | } |
1da177e4 | 8784 | #endif |
1e9f28fa | 8785 | #ifdef CONFIG_SCHED_MC |
abcd083a | 8786 | for_each_cpu(i, cpu_map) { |
294b0c96 | 8787 | sd = &per_cpu(core_domains, i).sd; |
89c4710e | 8788 | init_sched_groups_power(i, sd); |
5c45bf27 SS |
8789 | } |
8790 | #endif | |
1e9f28fa | 8791 | |
abcd083a | 8792 | for_each_cpu(i, cpu_map) { |
294b0c96 | 8793 | sd = &per_cpu(phys_domains, i).sd; |
89c4710e | 8794 | init_sched_groups_power(i, sd); |
1da177e4 LT |
8795 | } |
8796 | ||
9c1cfda2 | 8797 | #ifdef CONFIG_NUMA |
076ac2af | 8798 | for (i = 0; i < nr_node_ids; i++) |
49a02c51 | 8799 | init_numa_sched_groups_power(d.sched_group_nodes[i]); |
9c1cfda2 | 8800 | |
49a02c51 | 8801 | if (d.sd_allnodes) { |
6711cab4 | 8802 | struct sched_group *sg; |
f712c0c7 | 8803 | |
96f874e2 | 8804 | cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg, |
49a02c51 | 8805 | d.tmpmask); |
f712c0c7 SS |
8806 | init_numa_sched_groups_power(sg); |
8807 | } | |
9c1cfda2 JH |
8808 | #endif |
8809 | ||
1da177e4 | 8810 | /* Attach the domains */ |
abcd083a | 8811 | for_each_cpu(i, cpu_map) { |
1da177e4 | 8812 | #ifdef CONFIG_SCHED_SMT |
6c99e9ad | 8813 | sd = &per_cpu(cpu_domains, i).sd; |
1e9f28fa | 8814 | #elif defined(CONFIG_SCHED_MC) |
6c99e9ad | 8815 | sd = &per_cpu(core_domains, i).sd; |
1da177e4 | 8816 | #else |
6c99e9ad | 8817 | sd = &per_cpu(phys_domains, i).sd; |
1da177e4 | 8818 | #endif |
49a02c51 | 8819 | cpu_attach_domain(sd, d.rd, i); |
1da177e4 | 8820 | } |
51888ca2 | 8821 | |
2109b99e AH |
8822 | d.sched_group_nodes = NULL; /* don't free this we still need it */ |
8823 | __free_domain_allocs(&d, sa_tmpmask, cpu_map); | |
8824 | return 0; | |
51888ca2 | 8825 | |
51888ca2 | 8826 | error: |
2109b99e AH |
8827 | __free_domain_allocs(&d, alloc_state, cpu_map); |
8828 | return -ENOMEM; | |
1da177e4 | 8829 | } |
029190c5 | 8830 | |
96f874e2 | 8831 | static int build_sched_domains(const struct cpumask *cpu_map) |
1d3504fc HS |
8832 | { |
8833 | return __build_sched_domains(cpu_map, NULL); | |
8834 | } | |
8835 | ||
96f874e2 | 8836 | static struct cpumask *doms_cur; /* current sched domains */ |
029190c5 | 8837 | static int ndoms_cur; /* number of sched domains in 'doms_cur' */ |
4285f594 IM |
8838 | static struct sched_domain_attr *dattr_cur; |
8839 | /* attribues of custom domains in 'doms_cur' */ | |
029190c5 PJ |
8840 | |
8841 | /* | |
8842 | * Special case: If a kmalloc of a doms_cur partition (array of | |
4212823f RR |
8843 | * cpumask) fails, then fallback to a single sched domain, |
8844 | * as determined by the single cpumask fallback_doms. | |
029190c5 | 8845 | */ |
4212823f | 8846 | static cpumask_var_t fallback_doms; |
029190c5 | 8847 | |
ee79d1bd HC |
8848 | /* |
8849 | * arch_update_cpu_topology lets virtualized architectures update the | |
8850 | * cpu core maps. It is supposed to return 1 if the topology changed | |
8851 | * or 0 if it stayed the same. | |
8852 | */ | |
8853 | int __attribute__((weak)) arch_update_cpu_topology(void) | |
22e52b07 | 8854 | { |
ee79d1bd | 8855 | return 0; |
22e52b07 HC |
8856 | } |
8857 | ||
1a20ff27 | 8858 | /* |
41a2d6cf | 8859 | * Set up scheduler domains and groups. Callers must hold the hotplug lock. |
029190c5 PJ |
8860 | * For now this just excludes isolated cpus, but could be used to |
8861 | * exclude other special cases in the future. | |
1a20ff27 | 8862 | */ |
96f874e2 | 8863 | static int arch_init_sched_domains(const struct cpumask *cpu_map) |
1a20ff27 | 8864 | { |
7378547f MM |
8865 | int err; |
8866 | ||
22e52b07 | 8867 | arch_update_cpu_topology(); |
029190c5 | 8868 | ndoms_cur = 1; |
96f874e2 | 8869 | doms_cur = kmalloc(cpumask_size(), GFP_KERNEL); |
029190c5 | 8870 | if (!doms_cur) |
4212823f | 8871 | doms_cur = fallback_doms; |
dcc30a35 | 8872 | cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map); |
1d3504fc | 8873 | dattr_cur = NULL; |
7378547f | 8874 | err = build_sched_domains(doms_cur); |
6382bc90 | 8875 | register_sched_domain_sysctl(); |
7378547f MM |
8876 | |
8877 | return err; | |
1a20ff27 DG |
8878 | } |
8879 | ||
96f874e2 RR |
8880 | static void arch_destroy_sched_domains(const struct cpumask *cpu_map, |
8881 | struct cpumask *tmpmask) | |
1da177e4 | 8882 | { |
7c16ec58 | 8883 | free_sched_groups(cpu_map, tmpmask); |
9c1cfda2 | 8884 | } |
1da177e4 | 8885 | |
1a20ff27 DG |
8886 | /* |
8887 | * Detach sched domains from a group of cpus specified in cpu_map | |
8888 | * These cpus will now be attached to the NULL domain | |
8889 | */ | |
96f874e2 | 8890 | static void detach_destroy_domains(const struct cpumask *cpu_map) |
1a20ff27 | 8891 | { |
96f874e2 RR |
8892 | /* Save because hotplug lock held. */ |
8893 | static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS); | |
1a20ff27 DG |
8894 | int i; |
8895 | ||
abcd083a | 8896 | for_each_cpu(i, cpu_map) |
57d885fe | 8897 | cpu_attach_domain(NULL, &def_root_domain, i); |
1a20ff27 | 8898 | synchronize_sched(); |
96f874e2 | 8899 | arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask)); |
1a20ff27 DG |
8900 | } |
8901 | ||
1d3504fc HS |
8902 | /* handle null as "default" */ |
8903 | static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, | |
8904 | struct sched_domain_attr *new, int idx_new) | |
8905 | { | |
8906 | struct sched_domain_attr tmp; | |
8907 | ||
8908 | /* fast path */ | |
8909 | if (!new && !cur) | |
8910 | return 1; | |
8911 | ||
8912 | tmp = SD_ATTR_INIT; | |
8913 | return !memcmp(cur ? (cur + idx_cur) : &tmp, | |
8914 | new ? (new + idx_new) : &tmp, | |
8915 | sizeof(struct sched_domain_attr)); | |
8916 | } | |
8917 | ||
029190c5 PJ |
8918 | /* |
8919 | * Partition sched domains as specified by the 'ndoms_new' | |
41a2d6cf | 8920 | * cpumasks in the array doms_new[] of cpumasks. This compares |
029190c5 PJ |
8921 | * doms_new[] to the current sched domain partitioning, doms_cur[]. |
8922 | * It destroys each deleted domain and builds each new domain. | |
8923 | * | |
96f874e2 | 8924 | * 'doms_new' is an array of cpumask's of length 'ndoms_new'. |
41a2d6cf IM |
8925 | * The masks don't intersect (don't overlap.) We should setup one |
8926 | * sched domain for each mask. CPUs not in any of the cpumasks will | |
8927 | * not be load balanced. If the same cpumask appears both in the | |
029190c5 PJ |
8928 | * current 'doms_cur' domains and in the new 'doms_new', we can leave |
8929 | * it as it is. | |
8930 | * | |
41a2d6cf IM |
8931 | * The passed in 'doms_new' should be kmalloc'd. This routine takes |
8932 | * ownership of it and will kfree it when done with it. If the caller | |
700018e0 LZ |
8933 | * failed the kmalloc call, then it can pass in doms_new == NULL && |
8934 | * ndoms_new == 1, and partition_sched_domains() will fallback to | |
8935 | * the single partition 'fallback_doms', it also forces the domains | |
8936 | * to be rebuilt. | |
029190c5 | 8937 | * |
96f874e2 | 8938 | * If doms_new == NULL it will be replaced with cpu_online_mask. |
700018e0 LZ |
8939 | * ndoms_new == 0 is a special case for destroying existing domains, |
8940 | * and it will not create the default domain. | |
dfb512ec | 8941 | * |
029190c5 PJ |
8942 | * Call with hotplug lock held |
8943 | */ | |
96f874e2 RR |
8944 | /* FIXME: Change to struct cpumask *doms_new[] */ |
8945 | void partition_sched_domains(int ndoms_new, struct cpumask *doms_new, | |
1d3504fc | 8946 | struct sched_domain_attr *dattr_new) |
029190c5 | 8947 | { |
dfb512ec | 8948 | int i, j, n; |
d65bd5ec | 8949 | int new_topology; |
029190c5 | 8950 | |
712555ee | 8951 | mutex_lock(&sched_domains_mutex); |
a1835615 | 8952 | |
7378547f MM |
8953 | /* always unregister in case we don't destroy any domains */ |
8954 | unregister_sched_domain_sysctl(); | |
8955 | ||
d65bd5ec HC |
8956 | /* Let architecture update cpu core mappings. */ |
8957 | new_topology = arch_update_cpu_topology(); | |
8958 | ||
dfb512ec | 8959 | n = doms_new ? ndoms_new : 0; |
029190c5 PJ |
8960 | |
8961 | /* Destroy deleted domains */ | |
8962 | for (i = 0; i < ndoms_cur; i++) { | |
d65bd5ec | 8963 | for (j = 0; j < n && !new_topology; j++) { |
96f874e2 | 8964 | if (cpumask_equal(&doms_cur[i], &doms_new[j]) |
1d3504fc | 8965 | && dattrs_equal(dattr_cur, i, dattr_new, j)) |
029190c5 PJ |
8966 | goto match1; |
8967 | } | |
8968 | /* no match - a current sched domain not in new doms_new[] */ | |
8969 | detach_destroy_domains(doms_cur + i); | |
8970 | match1: | |
8971 | ; | |
8972 | } | |
8973 | ||
e761b772 MK |
8974 | if (doms_new == NULL) { |
8975 | ndoms_cur = 0; | |
4212823f | 8976 | doms_new = fallback_doms; |
dcc30a35 | 8977 | cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map); |
faa2f98f | 8978 | WARN_ON_ONCE(dattr_new); |
e761b772 MK |
8979 | } |
8980 | ||
029190c5 PJ |
8981 | /* Build new domains */ |
8982 | for (i = 0; i < ndoms_new; i++) { | |
d65bd5ec | 8983 | for (j = 0; j < ndoms_cur && !new_topology; j++) { |
96f874e2 | 8984 | if (cpumask_equal(&doms_new[i], &doms_cur[j]) |
1d3504fc | 8985 | && dattrs_equal(dattr_new, i, dattr_cur, j)) |
029190c5 PJ |
8986 | goto match2; |
8987 | } | |
8988 | /* no match - add a new doms_new */ | |
1d3504fc HS |
8989 | __build_sched_domains(doms_new + i, |
8990 | dattr_new ? dattr_new + i : NULL); | |
029190c5 PJ |
8991 | match2: |
8992 | ; | |
8993 | } | |
8994 | ||
8995 | /* Remember the new sched domains */ | |
4212823f | 8996 | if (doms_cur != fallback_doms) |
029190c5 | 8997 | kfree(doms_cur); |
1d3504fc | 8998 | kfree(dattr_cur); /* kfree(NULL) is safe */ |
029190c5 | 8999 | doms_cur = doms_new; |
1d3504fc | 9000 | dattr_cur = dattr_new; |
029190c5 | 9001 | ndoms_cur = ndoms_new; |
7378547f MM |
9002 | |
9003 | register_sched_domain_sysctl(); | |
a1835615 | 9004 | |
712555ee | 9005 | mutex_unlock(&sched_domains_mutex); |
029190c5 PJ |
9006 | } |
9007 | ||
5c45bf27 | 9008 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
c70f22d2 | 9009 | static void arch_reinit_sched_domains(void) |
5c45bf27 | 9010 | { |
95402b38 | 9011 | get_online_cpus(); |
dfb512ec MK |
9012 | |
9013 | /* Destroy domains first to force the rebuild */ | |
9014 | partition_sched_domains(0, NULL, NULL); | |
9015 | ||
e761b772 | 9016 | rebuild_sched_domains(); |
95402b38 | 9017 | put_online_cpus(); |
5c45bf27 SS |
9018 | } |
9019 | ||
9020 | static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) | |
9021 | { | |
afb8a9b7 | 9022 | unsigned int level = 0; |
5c45bf27 | 9023 | |
afb8a9b7 GS |
9024 | if (sscanf(buf, "%u", &level) != 1) |
9025 | return -EINVAL; | |
9026 | ||
9027 | /* | |
9028 | * level is always be positive so don't check for | |
9029 | * level < POWERSAVINGS_BALANCE_NONE which is 0 | |
9030 | * What happens on 0 or 1 byte write, | |
9031 | * need to check for count as well? | |
9032 | */ | |
9033 | ||
9034 | if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS) | |
5c45bf27 SS |
9035 | return -EINVAL; |
9036 | ||
9037 | if (smt) | |
afb8a9b7 | 9038 | sched_smt_power_savings = level; |
5c45bf27 | 9039 | else |
afb8a9b7 | 9040 | sched_mc_power_savings = level; |
5c45bf27 | 9041 | |
c70f22d2 | 9042 | arch_reinit_sched_domains(); |
5c45bf27 | 9043 | |
c70f22d2 | 9044 | return count; |
5c45bf27 SS |
9045 | } |
9046 | ||
5c45bf27 | 9047 | #ifdef CONFIG_SCHED_MC |
f718cd4a AK |
9048 | static ssize_t sched_mc_power_savings_show(struct sysdev_class *class, |
9049 | char *page) | |
5c45bf27 SS |
9050 | { |
9051 | return sprintf(page, "%u\n", sched_mc_power_savings); | |
9052 | } | |
f718cd4a | 9053 | static ssize_t sched_mc_power_savings_store(struct sysdev_class *class, |
48f24c4d | 9054 | const char *buf, size_t count) |
5c45bf27 SS |
9055 | { |
9056 | return sched_power_savings_store(buf, count, 0); | |
9057 | } | |
f718cd4a AK |
9058 | static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644, |
9059 | sched_mc_power_savings_show, | |
9060 | sched_mc_power_savings_store); | |
5c45bf27 SS |
9061 | #endif |
9062 | ||
9063 | #ifdef CONFIG_SCHED_SMT | |
f718cd4a AK |
9064 | static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev, |
9065 | char *page) | |
5c45bf27 SS |
9066 | { |
9067 | return sprintf(page, "%u\n", sched_smt_power_savings); | |
9068 | } | |
f718cd4a | 9069 | static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev, |
48f24c4d | 9070 | const char *buf, size_t count) |
5c45bf27 SS |
9071 | { |
9072 | return sched_power_savings_store(buf, count, 1); | |
9073 | } | |
f718cd4a AK |
9074 | static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644, |
9075 | sched_smt_power_savings_show, | |
6707de00 AB |
9076 | sched_smt_power_savings_store); |
9077 | #endif | |
9078 | ||
39aac648 | 9079 | int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls) |
6707de00 AB |
9080 | { |
9081 | int err = 0; | |
9082 | ||
9083 | #ifdef CONFIG_SCHED_SMT | |
9084 | if (smt_capable()) | |
9085 | err = sysfs_create_file(&cls->kset.kobj, | |
9086 | &attr_sched_smt_power_savings.attr); | |
9087 | #endif | |
9088 | #ifdef CONFIG_SCHED_MC | |
9089 | if (!err && mc_capable()) | |
9090 | err = sysfs_create_file(&cls->kset.kobj, | |
9091 | &attr_sched_mc_power_savings.attr); | |
9092 | #endif | |
9093 | return err; | |
9094 | } | |
6d6bc0ad | 9095 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ |
5c45bf27 | 9096 | |
e761b772 | 9097 | #ifndef CONFIG_CPUSETS |
1da177e4 | 9098 | /* |
e761b772 MK |
9099 | * Add online and remove offline CPUs from the scheduler domains. |
9100 | * When cpusets are enabled they take over this function. | |
1da177e4 LT |
9101 | */ |
9102 | static int update_sched_domains(struct notifier_block *nfb, | |
9103 | unsigned long action, void *hcpu) | |
e761b772 MK |
9104 | { |
9105 | switch (action) { | |
9106 | case CPU_ONLINE: | |
9107 | case CPU_ONLINE_FROZEN: | |
9108 | case CPU_DEAD: | |
9109 | case CPU_DEAD_FROZEN: | |
dfb512ec | 9110 | partition_sched_domains(1, NULL, NULL); |
e761b772 MK |
9111 | return NOTIFY_OK; |
9112 | ||
9113 | default: | |
9114 | return NOTIFY_DONE; | |
9115 | } | |
9116 | } | |
9117 | #endif | |
9118 | ||
9119 | static int update_runtime(struct notifier_block *nfb, | |
9120 | unsigned long action, void *hcpu) | |
1da177e4 | 9121 | { |
7def2be1 PZ |
9122 | int cpu = (int)(long)hcpu; |
9123 | ||
1da177e4 | 9124 | switch (action) { |
1da177e4 | 9125 | case CPU_DOWN_PREPARE: |
8bb78442 | 9126 | case CPU_DOWN_PREPARE_FROZEN: |
7def2be1 | 9127 | disable_runtime(cpu_rq(cpu)); |
1da177e4 LT |
9128 | return NOTIFY_OK; |
9129 | ||
1da177e4 | 9130 | case CPU_DOWN_FAILED: |
8bb78442 | 9131 | case CPU_DOWN_FAILED_FROZEN: |
1da177e4 | 9132 | case CPU_ONLINE: |
8bb78442 | 9133 | case CPU_ONLINE_FROZEN: |
7def2be1 | 9134 | enable_runtime(cpu_rq(cpu)); |
e761b772 MK |
9135 | return NOTIFY_OK; |
9136 | ||
1da177e4 LT |
9137 | default: |
9138 | return NOTIFY_DONE; | |
9139 | } | |
1da177e4 | 9140 | } |
1da177e4 LT |
9141 | |
9142 | void __init sched_init_smp(void) | |
9143 | { | |
dcc30a35 RR |
9144 | cpumask_var_t non_isolated_cpus; |
9145 | ||
9146 | alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); | |
5c1e1767 | 9147 | |
434d53b0 MT |
9148 | #if defined(CONFIG_NUMA) |
9149 | sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **), | |
9150 | GFP_KERNEL); | |
9151 | BUG_ON(sched_group_nodes_bycpu == NULL); | |
9152 | #endif | |
95402b38 | 9153 | get_online_cpus(); |
712555ee | 9154 | mutex_lock(&sched_domains_mutex); |
dcc30a35 RR |
9155 | arch_init_sched_domains(cpu_online_mask); |
9156 | cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); | |
9157 | if (cpumask_empty(non_isolated_cpus)) | |
9158 | cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); | |
712555ee | 9159 | mutex_unlock(&sched_domains_mutex); |
95402b38 | 9160 | put_online_cpus(); |
e761b772 MK |
9161 | |
9162 | #ifndef CONFIG_CPUSETS | |
1da177e4 LT |
9163 | /* XXX: Theoretical race here - CPU may be hotplugged now */ |
9164 | hotcpu_notifier(update_sched_domains, 0); | |
e761b772 MK |
9165 | #endif |
9166 | ||
9167 | /* RT runtime code needs to handle some hotplug events */ | |
9168 | hotcpu_notifier(update_runtime, 0); | |
9169 | ||
b328ca18 | 9170 | init_hrtick(); |
5c1e1767 NP |
9171 | |
9172 | /* Move init over to a non-isolated CPU */ | |
dcc30a35 | 9173 | if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) |
5c1e1767 | 9174 | BUG(); |
19978ca6 | 9175 | sched_init_granularity(); |
dcc30a35 | 9176 | free_cpumask_var(non_isolated_cpus); |
4212823f RR |
9177 | |
9178 | alloc_cpumask_var(&fallback_doms, GFP_KERNEL); | |
0e3900e6 | 9179 | init_sched_rt_class(); |
1da177e4 LT |
9180 | } |
9181 | #else | |
9182 | void __init sched_init_smp(void) | |
9183 | { | |
19978ca6 | 9184 | sched_init_granularity(); |
1da177e4 LT |
9185 | } |
9186 | #endif /* CONFIG_SMP */ | |
9187 | ||
cd1bb94b AB |
9188 | const_debug unsigned int sysctl_timer_migration = 1; |
9189 | ||
1da177e4 LT |
9190 | int in_sched_functions(unsigned long addr) |
9191 | { | |
1da177e4 LT |
9192 | return in_lock_functions(addr) || |
9193 | (addr >= (unsigned long)__sched_text_start | |
9194 | && addr < (unsigned long)__sched_text_end); | |
9195 | } | |
9196 | ||
a9957449 | 9197 | static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq) |
dd41f596 IM |
9198 | { |
9199 | cfs_rq->tasks_timeline = RB_ROOT; | |
4a55bd5e | 9200 | INIT_LIST_HEAD(&cfs_rq->tasks); |
dd41f596 IM |
9201 | #ifdef CONFIG_FAIR_GROUP_SCHED |
9202 | cfs_rq->rq = rq; | |
9203 | #endif | |
67e9fb2a | 9204 | cfs_rq->min_vruntime = (u64)(-(1LL << 20)); |
dd41f596 IM |
9205 | } |
9206 | ||
fa85ae24 PZ |
9207 | static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) |
9208 | { | |
9209 | struct rt_prio_array *array; | |
9210 | int i; | |
9211 | ||
9212 | array = &rt_rq->active; | |
9213 | for (i = 0; i < MAX_RT_PRIO; i++) { | |
9214 | INIT_LIST_HEAD(array->queue + i); | |
9215 | __clear_bit(i, array->bitmap); | |
9216 | } | |
9217 | /* delimiter for bitsearch: */ | |
9218 | __set_bit(MAX_RT_PRIO, array->bitmap); | |
9219 | ||
052f1dc7 | 9220 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
e864c499 | 9221 | rt_rq->highest_prio.curr = MAX_RT_PRIO; |
398a153b | 9222 | #ifdef CONFIG_SMP |
e864c499 | 9223 | rt_rq->highest_prio.next = MAX_RT_PRIO; |
48d5e258 | 9224 | #endif |
48d5e258 | 9225 | #endif |
fa85ae24 PZ |
9226 | #ifdef CONFIG_SMP |
9227 | rt_rq->rt_nr_migratory = 0; | |
fa85ae24 | 9228 | rt_rq->overloaded = 0; |
c20b08e3 | 9229 | plist_head_init(&rt_rq->pushable_tasks, &rq->lock); |
fa85ae24 PZ |
9230 | #endif |
9231 | ||
9232 | rt_rq->rt_time = 0; | |
9233 | rt_rq->rt_throttled = 0; | |
ac086bc2 PZ |
9234 | rt_rq->rt_runtime = 0; |
9235 | spin_lock_init(&rt_rq->rt_runtime_lock); | |
6f505b16 | 9236 | |
052f1dc7 | 9237 | #ifdef CONFIG_RT_GROUP_SCHED |
23b0fdfc | 9238 | rt_rq->rt_nr_boosted = 0; |
6f505b16 PZ |
9239 | rt_rq->rq = rq; |
9240 | #endif | |
fa85ae24 PZ |
9241 | } |
9242 | ||
6f505b16 | 9243 | #ifdef CONFIG_FAIR_GROUP_SCHED |
ec7dc8ac DG |
9244 | static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, |
9245 | struct sched_entity *se, int cpu, int add, | |
9246 | struct sched_entity *parent) | |
6f505b16 | 9247 | { |
ec7dc8ac | 9248 | struct rq *rq = cpu_rq(cpu); |
6f505b16 PZ |
9249 | tg->cfs_rq[cpu] = cfs_rq; |
9250 | init_cfs_rq(cfs_rq, rq); | |
9251 | cfs_rq->tg = tg; | |
9252 | if (add) | |
9253 | list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list); | |
9254 | ||
9255 | tg->se[cpu] = se; | |
354d60c2 DG |
9256 | /* se could be NULL for init_task_group */ |
9257 | if (!se) | |
9258 | return; | |
9259 | ||
ec7dc8ac DG |
9260 | if (!parent) |
9261 | se->cfs_rq = &rq->cfs; | |
9262 | else | |
9263 | se->cfs_rq = parent->my_q; | |
9264 | ||
6f505b16 PZ |
9265 | se->my_q = cfs_rq; |
9266 | se->load.weight = tg->shares; | |
e05510d0 | 9267 | se->load.inv_weight = 0; |
ec7dc8ac | 9268 | se->parent = parent; |
6f505b16 | 9269 | } |
052f1dc7 | 9270 | #endif |
6f505b16 | 9271 | |
052f1dc7 | 9272 | #ifdef CONFIG_RT_GROUP_SCHED |
ec7dc8ac DG |
9273 | static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, |
9274 | struct sched_rt_entity *rt_se, int cpu, int add, | |
9275 | struct sched_rt_entity *parent) | |
6f505b16 | 9276 | { |
ec7dc8ac DG |
9277 | struct rq *rq = cpu_rq(cpu); |
9278 | ||
6f505b16 PZ |
9279 | tg->rt_rq[cpu] = rt_rq; |
9280 | init_rt_rq(rt_rq, rq); | |
9281 | rt_rq->tg = tg; | |
9282 | rt_rq->rt_se = rt_se; | |
ac086bc2 | 9283 | rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; |
6f505b16 PZ |
9284 | if (add) |
9285 | list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list); | |
9286 | ||
9287 | tg->rt_se[cpu] = rt_se; | |
354d60c2 DG |
9288 | if (!rt_se) |
9289 | return; | |
9290 | ||
ec7dc8ac DG |
9291 | if (!parent) |
9292 | rt_se->rt_rq = &rq->rt; | |
9293 | else | |
9294 | rt_se->rt_rq = parent->my_q; | |
9295 | ||
6f505b16 | 9296 | rt_se->my_q = rt_rq; |
ec7dc8ac | 9297 | rt_se->parent = parent; |
6f505b16 PZ |
9298 | INIT_LIST_HEAD(&rt_se->run_list); |
9299 | } | |
9300 | #endif | |
9301 | ||
1da177e4 LT |
9302 | void __init sched_init(void) |
9303 | { | |
dd41f596 | 9304 | int i, j; |
434d53b0 MT |
9305 | unsigned long alloc_size = 0, ptr; |
9306 | ||
9307 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
9308 | alloc_size += 2 * nr_cpu_ids * sizeof(void **); | |
9309 | #endif | |
9310 | #ifdef CONFIG_RT_GROUP_SCHED | |
9311 | alloc_size += 2 * nr_cpu_ids * sizeof(void **); | |
eff766a6 PZ |
9312 | #endif |
9313 | #ifdef CONFIG_USER_SCHED | |
9314 | alloc_size *= 2; | |
df7c8e84 RR |
9315 | #endif |
9316 | #ifdef CONFIG_CPUMASK_OFFSTACK | |
8c083f08 | 9317 | alloc_size += num_possible_cpus() * cpumask_size(); |
434d53b0 MT |
9318 | #endif |
9319 | /* | |
9320 | * As sched_init() is called before page_alloc is setup, | |
9321 | * we use alloc_bootmem(). | |
9322 | */ | |
9323 | if (alloc_size) { | |
36b7b6d4 | 9324 | ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); |
434d53b0 MT |
9325 | |
9326 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
9327 | init_task_group.se = (struct sched_entity **)ptr; | |
9328 | ptr += nr_cpu_ids * sizeof(void **); | |
9329 | ||
9330 | init_task_group.cfs_rq = (struct cfs_rq **)ptr; | |
9331 | ptr += nr_cpu_ids * sizeof(void **); | |
eff766a6 PZ |
9332 | |
9333 | #ifdef CONFIG_USER_SCHED | |
9334 | root_task_group.se = (struct sched_entity **)ptr; | |
9335 | ptr += nr_cpu_ids * sizeof(void **); | |
9336 | ||
9337 | root_task_group.cfs_rq = (struct cfs_rq **)ptr; | |
9338 | ptr += nr_cpu_ids * sizeof(void **); | |
6d6bc0ad DG |
9339 | #endif /* CONFIG_USER_SCHED */ |
9340 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | |
434d53b0 MT |
9341 | #ifdef CONFIG_RT_GROUP_SCHED |
9342 | init_task_group.rt_se = (struct sched_rt_entity **)ptr; | |
9343 | ptr += nr_cpu_ids * sizeof(void **); | |
9344 | ||
9345 | init_task_group.rt_rq = (struct rt_rq **)ptr; | |
eff766a6 PZ |
9346 | ptr += nr_cpu_ids * sizeof(void **); |
9347 | ||
9348 | #ifdef CONFIG_USER_SCHED | |
9349 | root_task_group.rt_se = (struct sched_rt_entity **)ptr; | |
9350 | ptr += nr_cpu_ids * sizeof(void **); | |
9351 | ||
9352 | root_task_group.rt_rq = (struct rt_rq **)ptr; | |
9353 | ptr += nr_cpu_ids * sizeof(void **); | |
6d6bc0ad DG |
9354 | #endif /* CONFIG_USER_SCHED */ |
9355 | #endif /* CONFIG_RT_GROUP_SCHED */ | |
df7c8e84 RR |
9356 | #ifdef CONFIG_CPUMASK_OFFSTACK |
9357 | for_each_possible_cpu(i) { | |
9358 | per_cpu(load_balance_tmpmask, i) = (void *)ptr; | |
9359 | ptr += cpumask_size(); | |
9360 | } | |
9361 | #endif /* CONFIG_CPUMASK_OFFSTACK */ | |
434d53b0 | 9362 | } |
dd41f596 | 9363 | |
57d885fe GH |
9364 | #ifdef CONFIG_SMP |
9365 | init_defrootdomain(); | |
9366 | #endif | |
9367 | ||
d0b27fa7 PZ |
9368 | init_rt_bandwidth(&def_rt_bandwidth, |
9369 | global_rt_period(), global_rt_runtime()); | |
9370 | ||
9371 | #ifdef CONFIG_RT_GROUP_SCHED | |
9372 | init_rt_bandwidth(&init_task_group.rt_bandwidth, | |
9373 | global_rt_period(), global_rt_runtime()); | |
eff766a6 PZ |
9374 | #ifdef CONFIG_USER_SCHED |
9375 | init_rt_bandwidth(&root_task_group.rt_bandwidth, | |
9376 | global_rt_period(), RUNTIME_INF); | |
6d6bc0ad DG |
9377 | #endif /* CONFIG_USER_SCHED */ |
9378 | #endif /* CONFIG_RT_GROUP_SCHED */ | |
d0b27fa7 | 9379 | |
052f1dc7 | 9380 | #ifdef CONFIG_GROUP_SCHED |
6f505b16 | 9381 | list_add(&init_task_group.list, &task_groups); |
f473aa5e PZ |
9382 | INIT_LIST_HEAD(&init_task_group.children); |
9383 | ||
9384 | #ifdef CONFIG_USER_SCHED | |
9385 | INIT_LIST_HEAD(&root_task_group.children); | |
9386 | init_task_group.parent = &root_task_group; | |
9387 | list_add(&init_task_group.siblings, &root_task_group.children); | |
6d6bc0ad DG |
9388 | #endif /* CONFIG_USER_SCHED */ |
9389 | #endif /* CONFIG_GROUP_SCHED */ | |
6f505b16 | 9390 | |
0a945022 | 9391 | for_each_possible_cpu(i) { |
70b97a7f | 9392 | struct rq *rq; |
1da177e4 LT |
9393 | |
9394 | rq = cpu_rq(i); | |
9395 | spin_lock_init(&rq->lock); | |
7897986b | 9396 | rq->nr_running = 0; |
dce48a84 TG |
9397 | rq->calc_load_active = 0; |
9398 | rq->calc_load_update = jiffies + LOAD_FREQ; | |
dd41f596 | 9399 | init_cfs_rq(&rq->cfs, rq); |
6f505b16 | 9400 | init_rt_rq(&rq->rt, rq); |
dd41f596 | 9401 | #ifdef CONFIG_FAIR_GROUP_SCHED |
4cf86d77 | 9402 | init_task_group.shares = init_task_group_load; |
6f505b16 | 9403 | INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); |
354d60c2 DG |
9404 | #ifdef CONFIG_CGROUP_SCHED |
9405 | /* | |
9406 | * How much cpu bandwidth does init_task_group get? | |
9407 | * | |
9408 | * In case of task-groups formed thr' the cgroup filesystem, it | |
9409 | * gets 100% of the cpu resources in the system. This overall | |
9410 | * system cpu resource is divided among the tasks of | |
9411 | * init_task_group and its child task-groups in a fair manner, | |
9412 | * based on each entity's (task or task-group's) weight | |
9413 | * (se->load.weight). | |
9414 | * | |
9415 | * In other words, if init_task_group has 10 tasks of weight | |
9416 | * 1024) and two child groups A0 and A1 (of weight 1024 each), | |
9417 | * then A0's share of the cpu resource is: | |
9418 | * | |
0d905bca | 9419 | * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% |
354d60c2 DG |
9420 | * |
9421 | * We achieve this by letting init_task_group's tasks sit | |
9422 | * directly in rq->cfs (i.e init_task_group->se[] = NULL). | |
9423 | */ | |
ec7dc8ac | 9424 | init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL); |
354d60c2 | 9425 | #elif defined CONFIG_USER_SCHED |
eff766a6 PZ |
9426 | root_task_group.shares = NICE_0_LOAD; |
9427 | init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL); | |
354d60c2 DG |
9428 | /* |
9429 | * In case of task-groups formed thr' the user id of tasks, | |
9430 | * init_task_group represents tasks belonging to root user. | |
9431 | * Hence it forms a sibling of all subsequent groups formed. | |
9432 | * In this case, init_task_group gets only a fraction of overall | |
9433 | * system cpu resource, based on the weight assigned to root | |
9434 | * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished | |
9435 | * by letting tasks of init_task_group sit in a separate cfs_rq | |
84e9dabf | 9436 | * (init_tg_cfs_rq) and having one entity represent this group of |
354d60c2 DG |
9437 | * tasks in rq->cfs (i.e init_task_group->se[] != NULL). |
9438 | */ | |
ec7dc8ac | 9439 | init_tg_cfs_entry(&init_task_group, |
84e9dabf | 9440 | &per_cpu(init_tg_cfs_rq, i), |
eff766a6 PZ |
9441 | &per_cpu(init_sched_entity, i), i, 1, |
9442 | root_task_group.se[i]); | |
6f505b16 | 9443 | |
052f1dc7 | 9444 | #endif |
354d60c2 DG |
9445 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
9446 | ||
9447 | rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; | |
052f1dc7 | 9448 | #ifdef CONFIG_RT_GROUP_SCHED |
6f505b16 | 9449 | INIT_LIST_HEAD(&rq->leaf_rt_rq_list); |
354d60c2 | 9450 | #ifdef CONFIG_CGROUP_SCHED |
ec7dc8ac | 9451 | init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL); |
354d60c2 | 9452 | #elif defined CONFIG_USER_SCHED |
eff766a6 | 9453 | init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL); |
ec7dc8ac | 9454 | init_tg_rt_entry(&init_task_group, |
6f505b16 | 9455 | &per_cpu(init_rt_rq, i), |
eff766a6 PZ |
9456 | &per_cpu(init_sched_rt_entity, i), i, 1, |
9457 | root_task_group.rt_se[i]); | |
354d60c2 | 9458 | #endif |
dd41f596 | 9459 | #endif |
1da177e4 | 9460 | |
dd41f596 IM |
9461 | for (j = 0; j < CPU_LOAD_IDX_MAX; j++) |
9462 | rq->cpu_load[j] = 0; | |
1da177e4 | 9463 | #ifdef CONFIG_SMP |
41c7ce9a | 9464 | rq->sd = NULL; |
57d885fe | 9465 | rq->rd = NULL; |
3f029d3c | 9466 | rq->post_schedule = 0; |
1da177e4 | 9467 | rq->active_balance = 0; |
dd41f596 | 9468 | rq->next_balance = jiffies; |
1da177e4 | 9469 | rq->push_cpu = 0; |
0a2966b4 | 9470 | rq->cpu = i; |
1f11eb6a | 9471 | rq->online = 0; |
1da177e4 LT |
9472 | rq->migration_thread = NULL; |
9473 | INIT_LIST_HEAD(&rq->migration_queue); | |
dc938520 | 9474 | rq_attach_root(rq, &def_root_domain); |
1da177e4 | 9475 | #endif |
8f4d37ec | 9476 | init_rq_hrtick(rq); |
1da177e4 | 9477 | atomic_set(&rq->nr_iowait, 0); |
1da177e4 LT |
9478 | } |
9479 | ||
2dd73a4f | 9480 | set_load_weight(&init_task); |
b50f60ce | 9481 | |
e107be36 AK |
9482 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
9483 | INIT_HLIST_HEAD(&init_task.preempt_notifiers); | |
9484 | #endif | |
9485 | ||
c9819f45 | 9486 | #ifdef CONFIG_SMP |
962cf36c | 9487 | open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); |
c9819f45 CL |
9488 | #endif |
9489 | ||
b50f60ce HC |
9490 | #ifdef CONFIG_RT_MUTEXES |
9491 | plist_head_init(&init_task.pi_waiters, &init_task.pi_lock); | |
9492 | #endif | |
9493 | ||
1da177e4 LT |
9494 | /* |
9495 | * The boot idle thread does lazy MMU switching as well: | |
9496 | */ | |
9497 | atomic_inc(&init_mm.mm_count); | |
9498 | enter_lazy_tlb(&init_mm, current); | |
9499 | ||
9500 | /* | |
9501 | * Make us the idle thread. Technically, schedule() should not be | |
9502 | * called from this thread, however somewhere below it might be, | |
9503 | * but because we are the idle thread, we just pick up running again | |
9504 | * when this runqueue becomes "idle". | |
9505 | */ | |
9506 | init_idle(current, smp_processor_id()); | |
dce48a84 TG |
9507 | |
9508 | calc_load_update = jiffies + LOAD_FREQ; | |
9509 | ||
dd41f596 IM |
9510 | /* |
9511 | * During early bootup we pretend to be a normal task: | |
9512 | */ | |
9513 | current->sched_class = &fair_sched_class; | |
6892b75e | 9514 | |
6a7b3dc3 | 9515 | /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */ |
4bdddf8f | 9516 | alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT); |
bf4d83f6 | 9517 | #ifdef CONFIG_SMP |
7d1e6a9b | 9518 | #ifdef CONFIG_NO_HZ |
4bdddf8f PE |
9519 | alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT); |
9520 | alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT); | |
7d1e6a9b | 9521 | #endif |
4bdddf8f | 9522 | alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); |
bf4d83f6 | 9523 | #endif /* SMP */ |
6a7b3dc3 | 9524 | |
0d905bca IM |
9525 | perf_counter_init(); |
9526 | ||
6892b75e | 9527 | scheduler_running = 1; |
1da177e4 LT |
9528 | } |
9529 | ||
9530 | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP | |
e4aafea2 FW |
9531 | static inline int preempt_count_equals(int preempt_offset) |
9532 | { | |
9533 | int nested = preempt_count() & ~PREEMPT_ACTIVE; | |
9534 | ||
9535 | return (nested == PREEMPT_INATOMIC_BASE + preempt_offset); | |
9536 | } | |
9537 | ||
9538 | void __might_sleep(char *file, int line, int preempt_offset) | |
1da177e4 | 9539 | { |
48f24c4d | 9540 | #ifdef in_atomic |
1da177e4 LT |
9541 | static unsigned long prev_jiffy; /* ratelimiting */ |
9542 | ||
e4aafea2 FW |
9543 | if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) || |
9544 | system_state != SYSTEM_RUNNING || oops_in_progress) | |
aef745fc IM |
9545 | return; |
9546 | if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) | |
9547 | return; | |
9548 | prev_jiffy = jiffies; | |
9549 | ||
9550 | printk(KERN_ERR | |
9551 | "BUG: sleeping function called from invalid context at %s:%d\n", | |
9552 | file, line); | |
9553 | printk(KERN_ERR | |
9554 | "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", | |
9555 | in_atomic(), irqs_disabled(), | |
9556 | current->pid, current->comm); | |
9557 | ||
9558 | debug_show_held_locks(current); | |
9559 | if (irqs_disabled()) | |
9560 | print_irqtrace_events(current); | |
9561 | dump_stack(); | |
1da177e4 LT |
9562 | #endif |
9563 | } | |
9564 | EXPORT_SYMBOL(__might_sleep); | |
9565 | #endif | |
9566 | ||
9567 | #ifdef CONFIG_MAGIC_SYSRQ | |
3a5e4dc1 AK |
9568 | static void normalize_task(struct rq *rq, struct task_struct *p) |
9569 | { | |
9570 | int on_rq; | |
3e51f33f | 9571 | |
3a5e4dc1 AK |
9572 | update_rq_clock(rq); |
9573 | on_rq = p->se.on_rq; | |
9574 | if (on_rq) | |
9575 | deactivate_task(rq, p, 0); | |
9576 | __setscheduler(rq, p, SCHED_NORMAL, 0); | |
9577 | if (on_rq) { | |
9578 | activate_task(rq, p, 0); | |
9579 | resched_task(rq->curr); | |
9580 | } | |
9581 | } | |
9582 | ||
1da177e4 LT |
9583 | void normalize_rt_tasks(void) |
9584 | { | |
a0f98a1c | 9585 | struct task_struct *g, *p; |
1da177e4 | 9586 | unsigned long flags; |
70b97a7f | 9587 | struct rq *rq; |
1da177e4 | 9588 | |
4cf5d77a | 9589 | read_lock_irqsave(&tasklist_lock, flags); |
a0f98a1c | 9590 | do_each_thread(g, p) { |
178be793 IM |
9591 | /* |
9592 | * Only normalize user tasks: | |
9593 | */ | |
9594 | if (!p->mm) | |
9595 | continue; | |
9596 | ||
6cfb0d5d | 9597 | p->se.exec_start = 0; |
6cfb0d5d | 9598 | #ifdef CONFIG_SCHEDSTATS |
dd41f596 | 9599 | p->se.wait_start = 0; |
dd41f596 | 9600 | p->se.sleep_start = 0; |
dd41f596 | 9601 | p->se.block_start = 0; |
6cfb0d5d | 9602 | #endif |
dd41f596 IM |
9603 | |
9604 | if (!rt_task(p)) { | |
9605 | /* | |
9606 | * Renice negative nice level userspace | |
9607 | * tasks back to 0: | |
9608 | */ | |
9609 | if (TASK_NICE(p) < 0 && p->mm) | |
9610 | set_user_nice(p, 0); | |
1da177e4 | 9611 | continue; |
dd41f596 | 9612 | } |
1da177e4 | 9613 | |
4cf5d77a | 9614 | spin_lock(&p->pi_lock); |
b29739f9 | 9615 | rq = __task_rq_lock(p); |
1da177e4 | 9616 | |
178be793 | 9617 | normalize_task(rq, p); |
3a5e4dc1 | 9618 | |
b29739f9 | 9619 | __task_rq_unlock(rq); |
4cf5d77a | 9620 | spin_unlock(&p->pi_lock); |
a0f98a1c IM |
9621 | } while_each_thread(g, p); |
9622 | ||
4cf5d77a | 9623 | read_unlock_irqrestore(&tasklist_lock, flags); |
1da177e4 LT |
9624 | } |
9625 | ||
9626 | #endif /* CONFIG_MAGIC_SYSRQ */ | |
1df5c10a LT |
9627 | |
9628 | #ifdef CONFIG_IA64 | |
9629 | /* | |
9630 | * These functions are only useful for the IA64 MCA handling. | |
9631 | * | |
9632 | * They can only be called when the whole system has been | |
9633 | * stopped - every CPU needs to be quiescent, and no scheduling | |
9634 | * activity can take place. Using them for anything else would | |
9635 | * be a serious bug, and as a result, they aren't even visible | |
9636 | * under any other configuration. | |
9637 | */ | |
9638 | ||
9639 | /** | |
9640 | * curr_task - return the current task for a given cpu. | |
9641 | * @cpu: the processor in question. | |
9642 | * | |
9643 | * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! | |
9644 | */ | |
36c8b586 | 9645 | struct task_struct *curr_task(int cpu) |
1df5c10a LT |
9646 | { |
9647 | return cpu_curr(cpu); | |
9648 | } | |
9649 | ||
9650 | /** | |
9651 | * set_curr_task - set the current task for a given cpu. | |
9652 | * @cpu: the processor in question. | |
9653 | * @p: the task pointer to set. | |
9654 | * | |
9655 | * Description: This function must only be used when non-maskable interrupts | |
41a2d6cf IM |
9656 | * are serviced on a separate stack. It allows the architecture to switch the |
9657 | * notion of the current task on a cpu in a non-blocking manner. This function | |
1df5c10a LT |
9658 | * must be called with all CPU's synchronized, and interrupts disabled, the |
9659 | * and caller must save the original value of the current task (see | |
9660 | * curr_task() above) and restore that value before reenabling interrupts and | |
9661 | * re-starting the system. | |
9662 | * | |
9663 | * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! | |
9664 | */ | |
36c8b586 | 9665 | void set_curr_task(int cpu, struct task_struct *p) |
1df5c10a LT |
9666 | { |
9667 | cpu_curr(cpu) = p; | |
9668 | } | |
9669 | ||
9670 | #endif | |
29f59db3 | 9671 | |
bccbe08a PZ |
9672 | #ifdef CONFIG_FAIR_GROUP_SCHED |
9673 | static void free_fair_sched_group(struct task_group *tg) | |
6f505b16 PZ |
9674 | { |
9675 | int i; | |
9676 | ||
9677 | for_each_possible_cpu(i) { | |
9678 | if (tg->cfs_rq) | |
9679 | kfree(tg->cfs_rq[i]); | |
9680 | if (tg->se) | |
9681 | kfree(tg->se[i]); | |
6f505b16 PZ |
9682 | } |
9683 | ||
9684 | kfree(tg->cfs_rq); | |
9685 | kfree(tg->se); | |
6f505b16 PZ |
9686 | } |
9687 | ||
ec7dc8ac DG |
9688 | static |
9689 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | |
29f59db3 | 9690 | { |
29f59db3 | 9691 | struct cfs_rq *cfs_rq; |
eab17229 | 9692 | struct sched_entity *se; |
9b5b7751 | 9693 | struct rq *rq; |
29f59db3 SV |
9694 | int i; |
9695 | ||
434d53b0 | 9696 | tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); |
29f59db3 SV |
9697 | if (!tg->cfs_rq) |
9698 | goto err; | |
434d53b0 | 9699 | tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); |
29f59db3 SV |
9700 | if (!tg->se) |
9701 | goto err; | |
052f1dc7 PZ |
9702 | |
9703 | tg->shares = NICE_0_LOAD; | |
29f59db3 SV |
9704 | |
9705 | for_each_possible_cpu(i) { | |
9b5b7751 | 9706 | rq = cpu_rq(i); |
29f59db3 | 9707 | |
eab17229 LZ |
9708 | cfs_rq = kzalloc_node(sizeof(struct cfs_rq), |
9709 | GFP_KERNEL, cpu_to_node(i)); | |
29f59db3 SV |
9710 | if (!cfs_rq) |
9711 | goto err; | |
9712 | ||
eab17229 LZ |
9713 | se = kzalloc_node(sizeof(struct sched_entity), |
9714 | GFP_KERNEL, cpu_to_node(i)); | |
29f59db3 SV |
9715 | if (!se) |
9716 | goto err; | |
9717 | ||
eab17229 | 9718 | init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]); |
bccbe08a PZ |
9719 | } |
9720 | ||
9721 | return 1; | |
9722 | ||
9723 | err: | |
9724 | return 0; | |
9725 | } | |
9726 | ||
9727 | static inline void register_fair_sched_group(struct task_group *tg, int cpu) | |
9728 | { | |
9729 | list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list, | |
9730 | &cpu_rq(cpu)->leaf_cfs_rq_list); | |
9731 | } | |
9732 | ||
9733 | static inline void unregister_fair_sched_group(struct task_group *tg, int cpu) | |
9734 | { | |
9735 | list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list); | |
9736 | } | |
6d6bc0ad | 9737 | #else /* !CONFG_FAIR_GROUP_SCHED */ |
bccbe08a PZ |
9738 | static inline void free_fair_sched_group(struct task_group *tg) |
9739 | { | |
9740 | } | |
9741 | ||
ec7dc8ac DG |
9742 | static inline |
9743 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | |
bccbe08a PZ |
9744 | { |
9745 | return 1; | |
9746 | } | |
9747 | ||
9748 | static inline void register_fair_sched_group(struct task_group *tg, int cpu) | |
9749 | { | |
9750 | } | |
9751 | ||
9752 | static inline void unregister_fair_sched_group(struct task_group *tg, int cpu) | |
9753 | { | |
9754 | } | |
6d6bc0ad | 9755 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
052f1dc7 PZ |
9756 | |
9757 | #ifdef CONFIG_RT_GROUP_SCHED | |
bccbe08a PZ |
9758 | static void free_rt_sched_group(struct task_group *tg) |
9759 | { | |
9760 | int i; | |
9761 | ||
d0b27fa7 PZ |
9762 | destroy_rt_bandwidth(&tg->rt_bandwidth); |
9763 | ||
bccbe08a PZ |
9764 | for_each_possible_cpu(i) { |
9765 | if (tg->rt_rq) | |
9766 | kfree(tg->rt_rq[i]); | |
9767 | if (tg->rt_se) | |
9768 | kfree(tg->rt_se[i]); | |
9769 | } | |
9770 | ||
9771 | kfree(tg->rt_rq); | |
9772 | kfree(tg->rt_se); | |
9773 | } | |
9774 | ||
ec7dc8ac DG |
9775 | static |
9776 | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) | |
bccbe08a PZ |
9777 | { |
9778 | struct rt_rq *rt_rq; | |
eab17229 | 9779 | struct sched_rt_entity *rt_se; |
bccbe08a PZ |
9780 | struct rq *rq; |
9781 | int i; | |
9782 | ||
434d53b0 | 9783 | tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); |
bccbe08a PZ |
9784 | if (!tg->rt_rq) |
9785 | goto err; | |
434d53b0 | 9786 | tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); |
bccbe08a PZ |
9787 | if (!tg->rt_se) |
9788 | goto err; | |
9789 | ||
d0b27fa7 PZ |
9790 | init_rt_bandwidth(&tg->rt_bandwidth, |
9791 | ktime_to_ns(def_rt_bandwidth.rt_period), 0); | |
bccbe08a PZ |
9792 | |
9793 | for_each_possible_cpu(i) { | |
9794 | rq = cpu_rq(i); | |
9795 | ||
eab17229 LZ |
9796 | rt_rq = kzalloc_node(sizeof(struct rt_rq), |
9797 | GFP_KERNEL, cpu_to_node(i)); | |
6f505b16 PZ |
9798 | if (!rt_rq) |
9799 | goto err; | |
29f59db3 | 9800 | |
eab17229 LZ |
9801 | rt_se = kzalloc_node(sizeof(struct sched_rt_entity), |
9802 | GFP_KERNEL, cpu_to_node(i)); | |
6f505b16 PZ |
9803 | if (!rt_se) |
9804 | goto err; | |
29f59db3 | 9805 | |
eab17229 | 9806 | init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]); |
29f59db3 SV |
9807 | } |
9808 | ||
bccbe08a PZ |
9809 | return 1; |
9810 | ||
9811 | err: | |
9812 | return 0; | |
9813 | } | |
9814 | ||
9815 | static inline void register_rt_sched_group(struct task_group *tg, int cpu) | |
9816 | { | |
9817 | list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list, | |
9818 | &cpu_rq(cpu)->leaf_rt_rq_list); | |
9819 | } | |
9820 | ||
9821 | static inline void unregister_rt_sched_group(struct task_group *tg, int cpu) | |
9822 | { | |
9823 | list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list); | |
9824 | } | |
6d6bc0ad | 9825 | #else /* !CONFIG_RT_GROUP_SCHED */ |
bccbe08a PZ |
9826 | static inline void free_rt_sched_group(struct task_group *tg) |
9827 | { | |
9828 | } | |
9829 | ||
ec7dc8ac DG |
9830 | static inline |
9831 | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) | |
bccbe08a PZ |
9832 | { |
9833 | return 1; | |
9834 | } | |
9835 | ||
9836 | static inline void register_rt_sched_group(struct task_group *tg, int cpu) | |
9837 | { | |
9838 | } | |
9839 | ||
9840 | static inline void unregister_rt_sched_group(struct task_group *tg, int cpu) | |
9841 | { | |
9842 | } | |
6d6bc0ad | 9843 | #endif /* CONFIG_RT_GROUP_SCHED */ |
bccbe08a | 9844 | |
d0b27fa7 | 9845 | #ifdef CONFIG_GROUP_SCHED |
bccbe08a PZ |
9846 | static void free_sched_group(struct task_group *tg) |
9847 | { | |
9848 | free_fair_sched_group(tg); | |
9849 | free_rt_sched_group(tg); | |
9850 | kfree(tg); | |
9851 | } | |
9852 | ||
9853 | /* allocate runqueue etc for a new task group */ | |
ec7dc8ac | 9854 | struct task_group *sched_create_group(struct task_group *parent) |
bccbe08a PZ |
9855 | { |
9856 | struct task_group *tg; | |
9857 | unsigned long flags; | |
9858 | int i; | |
9859 | ||
9860 | tg = kzalloc(sizeof(*tg), GFP_KERNEL); | |
9861 | if (!tg) | |
9862 | return ERR_PTR(-ENOMEM); | |
9863 | ||
ec7dc8ac | 9864 | if (!alloc_fair_sched_group(tg, parent)) |
bccbe08a PZ |
9865 | goto err; |
9866 | ||
ec7dc8ac | 9867 | if (!alloc_rt_sched_group(tg, parent)) |
bccbe08a PZ |
9868 | goto err; |
9869 | ||
8ed36996 | 9870 | spin_lock_irqsave(&task_group_lock, flags); |
9b5b7751 | 9871 | for_each_possible_cpu(i) { |
bccbe08a PZ |
9872 | register_fair_sched_group(tg, i); |
9873 | register_rt_sched_group(tg, i); | |
9b5b7751 | 9874 | } |
6f505b16 | 9875 | list_add_rcu(&tg->list, &task_groups); |
f473aa5e PZ |
9876 | |
9877 | WARN_ON(!parent); /* root should already exist */ | |
9878 | ||
9879 | tg->parent = parent; | |
f473aa5e | 9880 | INIT_LIST_HEAD(&tg->children); |
09f2724a | 9881 | list_add_rcu(&tg->siblings, &parent->children); |
8ed36996 | 9882 | spin_unlock_irqrestore(&task_group_lock, flags); |
29f59db3 | 9883 | |
9b5b7751 | 9884 | return tg; |
29f59db3 SV |
9885 | |
9886 | err: | |
6f505b16 | 9887 | free_sched_group(tg); |
29f59db3 SV |
9888 | return ERR_PTR(-ENOMEM); |
9889 | } | |
9890 | ||
9b5b7751 | 9891 | /* rcu callback to free various structures associated with a task group */ |
6f505b16 | 9892 | static void free_sched_group_rcu(struct rcu_head *rhp) |
29f59db3 | 9893 | { |
29f59db3 | 9894 | /* now it should be safe to free those cfs_rqs */ |
6f505b16 | 9895 | free_sched_group(container_of(rhp, struct task_group, rcu)); |
29f59db3 SV |
9896 | } |
9897 | ||
9b5b7751 | 9898 | /* Destroy runqueue etc associated with a task group */ |
4cf86d77 | 9899 | void sched_destroy_group(struct task_group *tg) |
29f59db3 | 9900 | { |
8ed36996 | 9901 | unsigned long flags; |
9b5b7751 | 9902 | int i; |
29f59db3 | 9903 | |
8ed36996 | 9904 | spin_lock_irqsave(&task_group_lock, flags); |
9b5b7751 | 9905 | for_each_possible_cpu(i) { |
bccbe08a PZ |
9906 | unregister_fair_sched_group(tg, i); |
9907 | unregister_rt_sched_group(tg, i); | |
9b5b7751 | 9908 | } |
6f505b16 | 9909 | list_del_rcu(&tg->list); |
f473aa5e | 9910 | list_del_rcu(&tg->siblings); |
8ed36996 | 9911 | spin_unlock_irqrestore(&task_group_lock, flags); |
9b5b7751 | 9912 | |
9b5b7751 | 9913 | /* wait for possible concurrent references to cfs_rqs complete */ |
6f505b16 | 9914 | call_rcu(&tg->rcu, free_sched_group_rcu); |
29f59db3 SV |
9915 | } |
9916 | ||
9b5b7751 | 9917 | /* change task's runqueue when it moves between groups. |
3a252015 IM |
9918 | * The caller of this function should have put the task in its new group |
9919 | * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to | |
9920 | * reflect its new group. | |
9b5b7751 SV |
9921 | */ |
9922 | void sched_move_task(struct task_struct *tsk) | |
29f59db3 SV |
9923 | { |
9924 | int on_rq, running; | |
9925 | unsigned long flags; | |
9926 | struct rq *rq; | |
9927 | ||
9928 | rq = task_rq_lock(tsk, &flags); | |
9929 | ||
29f59db3 SV |
9930 | update_rq_clock(rq); |
9931 | ||
051a1d1a | 9932 | running = task_current(rq, tsk); |
29f59db3 SV |
9933 | on_rq = tsk->se.on_rq; |
9934 | ||
0e1f3483 | 9935 | if (on_rq) |
29f59db3 | 9936 | dequeue_task(rq, tsk, 0); |
0e1f3483 HS |
9937 | if (unlikely(running)) |
9938 | tsk->sched_class->put_prev_task(rq, tsk); | |
29f59db3 | 9939 | |
6f505b16 | 9940 | set_task_rq(tsk, task_cpu(tsk)); |
29f59db3 | 9941 | |
810b3817 PZ |
9942 | #ifdef CONFIG_FAIR_GROUP_SCHED |
9943 | if (tsk->sched_class->moved_group) | |
9944 | tsk->sched_class->moved_group(tsk); | |
9945 | #endif | |
9946 | ||
0e1f3483 HS |
9947 | if (unlikely(running)) |
9948 | tsk->sched_class->set_curr_task(rq); | |
9949 | if (on_rq) | |
7074badb | 9950 | enqueue_task(rq, tsk, 0); |
29f59db3 | 9951 | |
29f59db3 SV |
9952 | task_rq_unlock(rq, &flags); |
9953 | } | |
6d6bc0ad | 9954 | #endif /* CONFIG_GROUP_SCHED */ |
29f59db3 | 9955 | |
052f1dc7 | 9956 | #ifdef CONFIG_FAIR_GROUP_SCHED |
c09595f6 | 9957 | static void __set_se_shares(struct sched_entity *se, unsigned long shares) |
29f59db3 SV |
9958 | { |
9959 | struct cfs_rq *cfs_rq = se->cfs_rq; | |
29f59db3 SV |
9960 | int on_rq; |
9961 | ||
29f59db3 | 9962 | on_rq = se->on_rq; |
62fb1851 | 9963 | if (on_rq) |
29f59db3 SV |
9964 | dequeue_entity(cfs_rq, se, 0); |
9965 | ||
9966 | se->load.weight = shares; | |
e05510d0 | 9967 | se->load.inv_weight = 0; |
29f59db3 | 9968 | |
62fb1851 | 9969 | if (on_rq) |
29f59db3 | 9970 | enqueue_entity(cfs_rq, se, 0); |
c09595f6 | 9971 | } |
62fb1851 | 9972 | |
c09595f6 PZ |
9973 | static void set_se_shares(struct sched_entity *se, unsigned long shares) |
9974 | { | |
9975 | struct cfs_rq *cfs_rq = se->cfs_rq; | |
9976 | struct rq *rq = cfs_rq->rq; | |
9977 | unsigned long flags; | |
9978 | ||
9979 | spin_lock_irqsave(&rq->lock, flags); | |
9980 | __set_se_shares(se, shares); | |
9981 | spin_unlock_irqrestore(&rq->lock, flags); | |
29f59db3 SV |
9982 | } |
9983 | ||
8ed36996 PZ |
9984 | static DEFINE_MUTEX(shares_mutex); |
9985 | ||
4cf86d77 | 9986 | int sched_group_set_shares(struct task_group *tg, unsigned long shares) |
29f59db3 SV |
9987 | { |
9988 | int i; | |
8ed36996 | 9989 | unsigned long flags; |
c61935fd | 9990 | |
ec7dc8ac DG |
9991 | /* |
9992 | * We can't change the weight of the root cgroup. | |
9993 | */ | |
9994 | if (!tg->se[0]) | |
9995 | return -EINVAL; | |
9996 | ||
18d95a28 PZ |
9997 | if (shares < MIN_SHARES) |
9998 | shares = MIN_SHARES; | |
cb4ad1ff MX |
9999 | else if (shares > MAX_SHARES) |
10000 | shares = MAX_SHARES; | |
62fb1851 | 10001 | |
8ed36996 | 10002 | mutex_lock(&shares_mutex); |
9b5b7751 | 10003 | if (tg->shares == shares) |
5cb350ba | 10004 | goto done; |
29f59db3 | 10005 | |
8ed36996 | 10006 | spin_lock_irqsave(&task_group_lock, flags); |
bccbe08a PZ |
10007 | for_each_possible_cpu(i) |
10008 | unregister_fair_sched_group(tg, i); | |
f473aa5e | 10009 | list_del_rcu(&tg->siblings); |
8ed36996 | 10010 | spin_unlock_irqrestore(&task_group_lock, flags); |
6b2d7700 SV |
10011 | |
10012 | /* wait for any ongoing reference to this group to finish */ | |
10013 | synchronize_sched(); | |
10014 | ||
10015 | /* | |
10016 | * Now we are free to modify the group's share on each cpu | |
10017 | * w/o tripping rebalance_share or load_balance_fair. | |
10018 | */ | |
9b5b7751 | 10019 | tg->shares = shares; |
c09595f6 PZ |
10020 | for_each_possible_cpu(i) { |
10021 | /* | |
10022 | * force a rebalance | |
10023 | */ | |
10024 | cfs_rq_set_shares(tg->cfs_rq[i], 0); | |
cb4ad1ff | 10025 | set_se_shares(tg->se[i], shares); |
c09595f6 | 10026 | } |
29f59db3 | 10027 | |
6b2d7700 SV |
10028 | /* |
10029 | * Enable load balance activity on this group, by inserting it back on | |
10030 | * each cpu's rq->leaf_cfs_rq_list. | |
10031 | */ | |
8ed36996 | 10032 | spin_lock_irqsave(&task_group_lock, flags); |
bccbe08a PZ |
10033 | for_each_possible_cpu(i) |
10034 | register_fair_sched_group(tg, i); | |
f473aa5e | 10035 | list_add_rcu(&tg->siblings, &tg->parent->children); |
8ed36996 | 10036 | spin_unlock_irqrestore(&task_group_lock, flags); |
5cb350ba | 10037 | done: |
8ed36996 | 10038 | mutex_unlock(&shares_mutex); |
9b5b7751 | 10039 | return 0; |
29f59db3 SV |
10040 | } |
10041 | ||
5cb350ba DG |
10042 | unsigned long sched_group_shares(struct task_group *tg) |
10043 | { | |
10044 | return tg->shares; | |
10045 | } | |
052f1dc7 | 10046 | #endif |
5cb350ba | 10047 | |
052f1dc7 | 10048 | #ifdef CONFIG_RT_GROUP_SCHED |
6f505b16 | 10049 | /* |
9f0c1e56 | 10050 | * Ensure that the real time constraints are schedulable. |
6f505b16 | 10051 | */ |
9f0c1e56 PZ |
10052 | static DEFINE_MUTEX(rt_constraints_mutex); |
10053 | ||
10054 | static unsigned long to_ratio(u64 period, u64 runtime) | |
10055 | { | |
10056 | if (runtime == RUNTIME_INF) | |
9a7e0b18 | 10057 | return 1ULL << 20; |
9f0c1e56 | 10058 | |
9a7e0b18 | 10059 | return div64_u64(runtime << 20, period); |
9f0c1e56 PZ |
10060 | } |
10061 | ||
9a7e0b18 PZ |
10062 | /* Must be called with tasklist_lock held */ |
10063 | static inline int tg_has_rt_tasks(struct task_group *tg) | |
b40b2e8e | 10064 | { |
9a7e0b18 | 10065 | struct task_struct *g, *p; |
b40b2e8e | 10066 | |
9a7e0b18 PZ |
10067 | do_each_thread(g, p) { |
10068 | if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg) | |
10069 | return 1; | |
10070 | } while_each_thread(g, p); | |
b40b2e8e | 10071 | |
9a7e0b18 PZ |
10072 | return 0; |
10073 | } | |
b40b2e8e | 10074 | |
9a7e0b18 PZ |
10075 | struct rt_schedulable_data { |
10076 | struct task_group *tg; | |
10077 | u64 rt_period; | |
10078 | u64 rt_runtime; | |
10079 | }; | |
b40b2e8e | 10080 | |
9a7e0b18 PZ |
10081 | static int tg_schedulable(struct task_group *tg, void *data) |
10082 | { | |
10083 | struct rt_schedulable_data *d = data; | |
10084 | struct task_group *child; | |
10085 | unsigned long total, sum = 0; | |
10086 | u64 period, runtime; | |
b40b2e8e | 10087 | |
9a7e0b18 PZ |
10088 | period = ktime_to_ns(tg->rt_bandwidth.rt_period); |
10089 | runtime = tg->rt_bandwidth.rt_runtime; | |
b40b2e8e | 10090 | |
9a7e0b18 PZ |
10091 | if (tg == d->tg) { |
10092 | period = d->rt_period; | |
10093 | runtime = d->rt_runtime; | |
b40b2e8e | 10094 | } |
b40b2e8e | 10095 | |
98a4826b PZ |
10096 | #ifdef CONFIG_USER_SCHED |
10097 | if (tg == &root_task_group) { | |
10098 | period = global_rt_period(); | |
10099 | runtime = global_rt_runtime(); | |
10100 | } | |
10101 | #endif | |
10102 | ||
4653f803 PZ |
10103 | /* |
10104 | * Cannot have more runtime than the period. | |
10105 | */ | |
10106 | if (runtime > period && runtime != RUNTIME_INF) | |
10107 | return -EINVAL; | |
6f505b16 | 10108 | |
4653f803 PZ |
10109 | /* |
10110 | * Ensure we don't starve existing RT tasks. | |
10111 | */ | |
9a7e0b18 PZ |
10112 | if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) |
10113 | return -EBUSY; | |
6f505b16 | 10114 | |
9a7e0b18 | 10115 | total = to_ratio(period, runtime); |
6f505b16 | 10116 | |
4653f803 PZ |
10117 | /* |
10118 | * Nobody can have more than the global setting allows. | |
10119 | */ | |
10120 | if (total > to_ratio(global_rt_period(), global_rt_runtime())) | |
10121 | return -EINVAL; | |
6f505b16 | 10122 | |
4653f803 PZ |
10123 | /* |
10124 | * The sum of our children's runtime should not exceed our own. | |
10125 | */ | |
9a7e0b18 PZ |
10126 | list_for_each_entry_rcu(child, &tg->children, siblings) { |
10127 | period = ktime_to_ns(child->rt_bandwidth.rt_period); | |
10128 | runtime = child->rt_bandwidth.rt_runtime; | |
6f505b16 | 10129 | |
9a7e0b18 PZ |
10130 | if (child == d->tg) { |
10131 | period = d->rt_period; | |
10132 | runtime = d->rt_runtime; | |
10133 | } | |
6f505b16 | 10134 | |
9a7e0b18 | 10135 | sum += to_ratio(period, runtime); |
9f0c1e56 | 10136 | } |
6f505b16 | 10137 | |
9a7e0b18 PZ |
10138 | if (sum > total) |
10139 | return -EINVAL; | |
10140 | ||
10141 | return 0; | |
6f505b16 PZ |
10142 | } |
10143 | ||
9a7e0b18 | 10144 | static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) |
521f1a24 | 10145 | { |
9a7e0b18 PZ |
10146 | struct rt_schedulable_data data = { |
10147 | .tg = tg, | |
10148 | .rt_period = period, | |
10149 | .rt_runtime = runtime, | |
10150 | }; | |
10151 | ||
10152 | return walk_tg_tree(tg_schedulable, tg_nop, &data); | |
521f1a24 DG |
10153 | } |
10154 | ||
d0b27fa7 PZ |
10155 | static int tg_set_bandwidth(struct task_group *tg, |
10156 | u64 rt_period, u64 rt_runtime) | |
6f505b16 | 10157 | { |
ac086bc2 | 10158 | int i, err = 0; |
9f0c1e56 | 10159 | |
9f0c1e56 | 10160 | mutex_lock(&rt_constraints_mutex); |
521f1a24 | 10161 | read_lock(&tasklist_lock); |
9a7e0b18 PZ |
10162 | err = __rt_schedulable(tg, rt_period, rt_runtime); |
10163 | if (err) | |
9f0c1e56 | 10164 | goto unlock; |
ac086bc2 PZ |
10165 | |
10166 | spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); | |
d0b27fa7 PZ |
10167 | tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); |
10168 | tg->rt_bandwidth.rt_runtime = rt_runtime; | |
ac086bc2 PZ |
10169 | |
10170 | for_each_possible_cpu(i) { | |
10171 | struct rt_rq *rt_rq = tg->rt_rq[i]; | |
10172 | ||
10173 | spin_lock(&rt_rq->rt_runtime_lock); | |
10174 | rt_rq->rt_runtime = rt_runtime; | |
10175 | spin_unlock(&rt_rq->rt_runtime_lock); | |
10176 | } | |
10177 | spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); | |
9f0c1e56 | 10178 | unlock: |
521f1a24 | 10179 | read_unlock(&tasklist_lock); |
9f0c1e56 PZ |
10180 | mutex_unlock(&rt_constraints_mutex); |
10181 | ||
10182 | return err; | |
6f505b16 PZ |
10183 | } |
10184 | ||
d0b27fa7 PZ |
10185 | int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) |
10186 | { | |
10187 | u64 rt_runtime, rt_period; | |
10188 | ||
10189 | rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); | |
10190 | rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; | |
10191 | if (rt_runtime_us < 0) | |
10192 | rt_runtime = RUNTIME_INF; | |
10193 | ||
10194 | return tg_set_bandwidth(tg, rt_period, rt_runtime); | |
10195 | } | |
10196 | ||
9f0c1e56 PZ |
10197 | long sched_group_rt_runtime(struct task_group *tg) |
10198 | { | |
10199 | u64 rt_runtime_us; | |
10200 | ||
d0b27fa7 | 10201 | if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) |
9f0c1e56 PZ |
10202 | return -1; |
10203 | ||
d0b27fa7 | 10204 | rt_runtime_us = tg->rt_bandwidth.rt_runtime; |
9f0c1e56 PZ |
10205 | do_div(rt_runtime_us, NSEC_PER_USEC); |
10206 | return rt_runtime_us; | |
10207 | } | |
d0b27fa7 PZ |
10208 | |
10209 | int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) | |
10210 | { | |
10211 | u64 rt_runtime, rt_period; | |
10212 | ||
10213 | rt_period = (u64)rt_period_us * NSEC_PER_USEC; | |
10214 | rt_runtime = tg->rt_bandwidth.rt_runtime; | |
10215 | ||
619b0488 R |
10216 | if (rt_period == 0) |
10217 | return -EINVAL; | |
10218 | ||
d0b27fa7 PZ |
10219 | return tg_set_bandwidth(tg, rt_period, rt_runtime); |
10220 | } | |
10221 | ||
10222 | long sched_group_rt_period(struct task_group *tg) | |
10223 | { | |
10224 | u64 rt_period_us; | |
10225 | ||
10226 | rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); | |
10227 | do_div(rt_period_us, NSEC_PER_USEC); | |
10228 | return rt_period_us; | |
10229 | } | |
10230 | ||
10231 | static int sched_rt_global_constraints(void) | |
10232 | { | |
4653f803 | 10233 | u64 runtime, period; |
d0b27fa7 PZ |
10234 | int ret = 0; |
10235 | ||
ec5d4989 HS |
10236 | if (sysctl_sched_rt_period <= 0) |
10237 | return -EINVAL; | |
10238 | ||
4653f803 PZ |
10239 | runtime = global_rt_runtime(); |
10240 | period = global_rt_period(); | |
10241 | ||
10242 | /* | |
10243 | * Sanity check on the sysctl variables. | |
10244 | */ | |
10245 | if (runtime > period && runtime != RUNTIME_INF) | |
10246 | return -EINVAL; | |
10b612f4 | 10247 | |
d0b27fa7 | 10248 | mutex_lock(&rt_constraints_mutex); |
9a7e0b18 | 10249 | read_lock(&tasklist_lock); |
4653f803 | 10250 | ret = __rt_schedulable(NULL, 0, 0); |
9a7e0b18 | 10251 | read_unlock(&tasklist_lock); |
d0b27fa7 PZ |
10252 | mutex_unlock(&rt_constraints_mutex); |
10253 | ||
10254 | return ret; | |
10255 | } | |
54e99124 DG |
10256 | |
10257 | int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) | |
10258 | { | |
10259 | /* Don't accept realtime tasks when there is no way for them to run */ | |
10260 | if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) | |
10261 | return 0; | |
10262 | ||
10263 | return 1; | |
10264 | } | |
10265 | ||
6d6bc0ad | 10266 | #else /* !CONFIG_RT_GROUP_SCHED */ |
d0b27fa7 PZ |
10267 | static int sched_rt_global_constraints(void) |
10268 | { | |
ac086bc2 PZ |
10269 | unsigned long flags; |
10270 | int i; | |
10271 | ||
ec5d4989 HS |
10272 | if (sysctl_sched_rt_period <= 0) |
10273 | return -EINVAL; | |
10274 | ||
60aa605d PZ |
10275 | /* |
10276 | * There's always some RT tasks in the root group | |
10277 | * -- migration, kstopmachine etc.. | |
10278 | */ | |
10279 | if (sysctl_sched_rt_runtime == 0) | |
10280 | return -EBUSY; | |
10281 | ||
ac086bc2 PZ |
10282 | spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); |
10283 | for_each_possible_cpu(i) { | |
10284 | struct rt_rq *rt_rq = &cpu_rq(i)->rt; | |
10285 | ||
10286 | spin_lock(&rt_rq->rt_runtime_lock); | |
10287 | rt_rq->rt_runtime = global_rt_runtime(); | |
10288 | spin_unlock(&rt_rq->rt_runtime_lock); | |
10289 | } | |
10290 | spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); | |
10291 | ||
d0b27fa7 PZ |
10292 | return 0; |
10293 | } | |
6d6bc0ad | 10294 | #endif /* CONFIG_RT_GROUP_SCHED */ |
d0b27fa7 PZ |
10295 | |
10296 | int sched_rt_handler(struct ctl_table *table, int write, | |
10297 | struct file *filp, void __user *buffer, size_t *lenp, | |
10298 | loff_t *ppos) | |
10299 | { | |
10300 | int ret; | |
10301 | int old_period, old_runtime; | |
10302 | static DEFINE_MUTEX(mutex); | |
10303 | ||
10304 | mutex_lock(&mutex); | |
10305 | old_period = sysctl_sched_rt_period; | |
10306 | old_runtime = sysctl_sched_rt_runtime; | |
10307 | ||
10308 | ret = proc_dointvec(table, write, filp, buffer, lenp, ppos); | |
10309 | ||
10310 | if (!ret && write) { | |
10311 | ret = sched_rt_global_constraints(); | |
10312 | if (ret) { | |
10313 | sysctl_sched_rt_period = old_period; | |
10314 | sysctl_sched_rt_runtime = old_runtime; | |
10315 | } else { | |
10316 | def_rt_bandwidth.rt_runtime = global_rt_runtime(); | |
10317 | def_rt_bandwidth.rt_period = | |
10318 | ns_to_ktime(global_rt_period()); | |
10319 | } | |
10320 | } | |
10321 | mutex_unlock(&mutex); | |
10322 | ||
10323 | return ret; | |
10324 | } | |
68318b8e | 10325 | |
052f1dc7 | 10326 | #ifdef CONFIG_CGROUP_SCHED |
68318b8e SV |
10327 | |
10328 | /* return corresponding task_group object of a cgroup */ | |
2b01dfe3 | 10329 | static inline struct task_group *cgroup_tg(struct cgroup *cgrp) |
68318b8e | 10330 | { |
2b01dfe3 PM |
10331 | return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id), |
10332 | struct task_group, css); | |
68318b8e SV |
10333 | } |
10334 | ||
10335 | static struct cgroup_subsys_state * | |
2b01dfe3 | 10336 | cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp) |
68318b8e | 10337 | { |
ec7dc8ac | 10338 | struct task_group *tg, *parent; |
68318b8e | 10339 | |
2b01dfe3 | 10340 | if (!cgrp->parent) { |
68318b8e | 10341 | /* This is early initialization for the top cgroup */ |
68318b8e SV |
10342 | return &init_task_group.css; |
10343 | } | |
10344 | ||
ec7dc8ac DG |
10345 | parent = cgroup_tg(cgrp->parent); |
10346 | tg = sched_create_group(parent); | |
68318b8e SV |
10347 | if (IS_ERR(tg)) |
10348 | return ERR_PTR(-ENOMEM); | |
10349 | ||
68318b8e SV |
10350 | return &tg->css; |
10351 | } | |
10352 | ||
41a2d6cf IM |
10353 | static void |
10354 | cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) | |
68318b8e | 10355 | { |
2b01dfe3 | 10356 | struct task_group *tg = cgroup_tg(cgrp); |
68318b8e SV |
10357 | |
10358 | sched_destroy_group(tg); | |
10359 | } | |
10360 | ||
41a2d6cf IM |
10361 | static int |
10362 | cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, | |
10363 | struct task_struct *tsk) | |
68318b8e | 10364 | { |
b68aa230 | 10365 | #ifdef CONFIG_RT_GROUP_SCHED |
54e99124 | 10366 | if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk)) |
b68aa230 PZ |
10367 | return -EINVAL; |
10368 | #else | |
68318b8e SV |
10369 | /* We don't support RT-tasks being in separate groups */ |
10370 | if (tsk->sched_class != &fair_sched_class) | |
10371 | return -EINVAL; | |
b68aa230 | 10372 | #endif |
68318b8e SV |
10373 | |
10374 | return 0; | |
10375 | } | |
10376 | ||
10377 | static void | |
2b01dfe3 | 10378 | cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, |
68318b8e SV |
10379 | struct cgroup *old_cont, struct task_struct *tsk) |
10380 | { | |
10381 | sched_move_task(tsk); | |
10382 | } | |
10383 | ||
052f1dc7 | 10384 | #ifdef CONFIG_FAIR_GROUP_SCHED |
f4c753b7 | 10385 | static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype, |
2b01dfe3 | 10386 | u64 shareval) |
68318b8e | 10387 | { |
2b01dfe3 | 10388 | return sched_group_set_shares(cgroup_tg(cgrp), shareval); |
68318b8e SV |
10389 | } |
10390 | ||
f4c753b7 | 10391 | static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft) |
68318b8e | 10392 | { |
2b01dfe3 | 10393 | struct task_group *tg = cgroup_tg(cgrp); |
68318b8e SV |
10394 | |
10395 | return (u64) tg->shares; | |
10396 | } | |
6d6bc0ad | 10397 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
68318b8e | 10398 | |
052f1dc7 | 10399 | #ifdef CONFIG_RT_GROUP_SCHED |
0c70814c | 10400 | static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft, |
06ecb27c | 10401 | s64 val) |
6f505b16 | 10402 | { |
06ecb27c | 10403 | return sched_group_set_rt_runtime(cgroup_tg(cgrp), val); |
6f505b16 PZ |
10404 | } |
10405 | ||
06ecb27c | 10406 | static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft) |
6f505b16 | 10407 | { |
06ecb27c | 10408 | return sched_group_rt_runtime(cgroup_tg(cgrp)); |
6f505b16 | 10409 | } |
d0b27fa7 PZ |
10410 | |
10411 | static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype, | |
10412 | u64 rt_period_us) | |
10413 | { | |
10414 | return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us); | |
10415 | } | |
10416 | ||
10417 | static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft) | |
10418 | { | |
10419 | return sched_group_rt_period(cgroup_tg(cgrp)); | |
10420 | } | |
6d6bc0ad | 10421 | #endif /* CONFIG_RT_GROUP_SCHED */ |
6f505b16 | 10422 | |
fe5c7cc2 | 10423 | static struct cftype cpu_files[] = { |
052f1dc7 | 10424 | #ifdef CONFIG_FAIR_GROUP_SCHED |
fe5c7cc2 PM |
10425 | { |
10426 | .name = "shares", | |
f4c753b7 PM |
10427 | .read_u64 = cpu_shares_read_u64, |
10428 | .write_u64 = cpu_shares_write_u64, | |
fe5c7cc2 | 10429 | }, |
052f1dc7 PZ |
10430 | #endif |
10431 | #ifdef CONFIG_RT_GROUP_SCHED | |
6f505b16 | 10432 | { |
9f0c1e56 | 10433 | .name = "rt_runtime_us", |
06ecb27c PM |
10434 | .read_s64 = cpu_rt_runtime_read, |
10435 | .write_s64 = cpu_rt_runtime_write, | |
6f505b16 | 10436 | }, |
d0b27fa7 PZ |
10437 | { |
10438 | .name = "rt_period_us", | |
f4c753b7 PM |
10439 | .read_u64 = cpu_rt_period_read_uint, |
10440 | .write_u64 = cpu_rt_period_write_uint, | |
d0b27fa7 | 10441 | }, |
052f1dc7 | 10442 | #endif |
68318b8e SV |
10443 | }; |
10444 | ||
10445 | static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont) | |
10446 | { | |
fe5c7cc2 | 10447 | return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files)); |
68318b8e SV |
10448 | } |
10449 | ||
10450 | struct cgroup_subsys cpu_cgroup_subsys = { | |
38605cae IM |
10451 | .name = "cpu", |
10452 | .create = cpu_cgroup_create, | |
10453 | .destroy = cpu_cgroup_destroy, | |
10454 | .can_attach = cpu_cgroup_can_attach, | |
10455 | .attach = cpu_cgroup_attach, | |
10456 | .populate = cpu_cgroup_populate, | |
10457 | .subsys_id = cpu_cgroup_subsys_id, | |
68318b8e SV |
10458 | .early_init = 1, |
10459 | }; | |
10460 | ||
052f1dc7 | 10461 | #endif /* CONFIG_CGROUP_SCHED */ |
d842de87 SV |
10462 | |
10463 | #ifdef CONFIG_CGROUP_CPUACCT | |
10464 | ||
10465 | /* | |
10466 | * CPU accounting code for task groups. | |
10467 | * | |
10468 | * Based on the work by Paul Menage ([email protected]) and Balbir Singh | |
10469 | * ([email protected]). | |
10470 | */ | |
10471 | ||
934352f2 | 10472 | /* track cpu usage of a group of tasks and its child groups */ |
d842de87 SV |
10473 | struct cpuacct { |
10474 | struct cgroup_subsys_state css; | |
10475 | /* cpuusage holds pointer to a u64-type object on every cpu */ | |
10476 | u64 *cpuusage; | |
ef12fefa | 10477 | struct percpu_counter cpustat[CPUACCT_STAT_NSTATS]; |
934352f2 | 10478 | struct cpuacct *parent; |
d842de87 SV |
10479 | }; |
10480 | ||
10481 | struct cgroup_subsys cpuacct_subsys; | |
10482 | ||
10483 | /* return cpu accounting group corresponding to this container */ | |
32cd756a | 10484 | static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp) |
d842de87 | 10485 | { |
32cd756a | 10486 | return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id), |
d842de87 SV |
10487 | struct cpuacct, css); |
10488 | } | |
10489 | ||
10490 | /* return cpu accounting group to which this task belongs */ | |
10491 | static inline struct cpuacct *task_ca(struct task_struct *tsk) | |
10492 | { | |
10493 | return container_of(task_subsys_state(tsk, cpuacct_subsys_id), | |
10494 | struct cpuacct, css); | |
10495 | } | |
10496 | ||
10497 | /* create a new cpu accounting group */ | |
10498 | static struct cgroup_subsys_state *cpuacct_create( | |
32cd756a | 10499 | struct cgroup_subsys *ss, struct cgroup *cgrp) |
d842de87 SV |
10500 | { |
10501 | struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL); | |
ef12fefa | 10502 | int i; |
d842de87 SV |
10503 | |
10504 | if (!ca) | |
ef12fefa | 10505 | goto out; |
d842de87 SV |
10506 | |
10507 | ca->cpuusage = alloc_percpu(u64); | |
ef12fefa BR |
10508 | if (!ca->cpuusage) |
10509 | goto out_free_ca; | |
10510 | ||
10511 | for (i = 0; i < CPUACCT_STAT_NSTATS; i++) | |
10512 | if (percpu_counter_init(&ca->cpustat[i], 0)) | |
10513 | goto out_free_counters; | |
d842de87 | 10514 | |
934352f2 BR |
10515 | if (cgrp->parent) |
10516 | ca->parent = cgroup_ca(cgrp->parent); | |
10517 | ||
d842de87 | 10518 | return &ca->css; |
ef12fefa BR |
10519 | |
10520 | out_free_counters: | |
10521 | while (--i >= 0) | |
10522 | percpu_counter_destroy(&ca->cpustat[i]); | |
10523 | free_percpu(ca->cpuusage); | |
10524 | out_free_ca: | |
10525 | kfree(ca); | |
10526 | out: | |
10527 | return ERR_PTR(-ENOMEM); | |
d842de87 SV |
10528 | } |
10529 | ||
10530 | /* destroy an existing cpu accounting group */ | |
41a2d6cf | 10531 | static void |
32cd756a | 10532 | cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) |
d842de87 | 10533 | { |
32cd756a | 10534 | struct cpuacct *ca = cgroup_ca(cgrp); |
ef12fefa | 10535 | int i; |
d842de87 | 10536 | |
ef12fefa BR |
10537 | for (i = 0; i < CPUACCT_STAT_NSTATS; i++) |
10538 | percpu_counter_destroy(&ca->cpustat[i]); | |
d842de87 SV |
10539 | free_percpu(ca->cpuusage); |
10540 | kfree(ca); | |
10541 | } | |
10542 | ||
720f5498 KC |
10543 | static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) |
10544 | { | |
b36128c8 | 10545 | u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); |
720f5498 KC |
10546 | u64 data; |
10547 | ||
10548 | #ifndef CONFIG_64BIT | |
10549 | /* | |
10550 | * Take rq->lock to make 64-bit read safe on 32-bit platforms. | |
10551 | */ | |
10552 | spin_lock_irq(&cpu_rq(cpu)->lock); | |
10553 | data = *cpuusage; | |
10554 | spin_unlock_irq(&cpu_rq(cpu)->lock); | |
10555 | #else | |
10556 | data = *cpuusage; | |
10557 | #endif | |
10558 | ||
10559 | return data; | |
10560 | } | |
10561 | ||
10562 | static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val) | |
10563 | { | |
b36128c8 | 10564 | u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); |
720f5498 KC |
10565 | |
10566 | #ifndef CONFIG_64BIT | |
10567 | /* | |
10568 | * Take rq->lock to make 64-bit write safe on 32-bit platforms. | |
10569 | */ | |
10570 | spin_lock_irq(&cpu_rq(cpu)->lock); | |
10571 | *cpuusage = val; | |
10572 | spin_unlock_irq(&cpu_rq(cpu)->lock); | |
10573 | #else | |
10574 | *cpuusage = val; | |
10575 | #endif | |
10576 | } | |
10577 | ||
d842de87 | 10578 | /* return total cpu usage (in nanoseconds) of a group */ |
32cd756a | 10579 | static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft) |
d842de87 | 10580 | { |
32cd756a | 10581 | struct cpuacct *ca = cgroup_ca(cgrp); |
d842de87 SV |
10582 | u64 totalcpuusage = 0; |
10583 | int i; | |
10584 | ||
720f5498 KC |
10585 | for_each_present_cpu(i) |
10586 | totalcpuusage += cpuacct_cpuusage_read(ca, i); | |
d842de87 SV |
10587 | |
10588 | return totalcpuusage; | |
10589 | } | |
10590 | ||
0297b803 DG |
10591 | static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype, |
10592 | u64 reset) | |
10593 | { | |
10594 | struct cpuacct *ca = cgroup_ca(cgrp); | |
10595 | int err = 0; | |
10596 | int i; | |
10597 | ||
10598 | if (reset) { | |
10599 | err = -EINVAL; | |
10600 | goto out; | |
10601 | } | |
10602 | ||
720f5498 KC |
10603 | for_each_present_cpu(i) |
10604 | cpuacct_cpuusage_write(ca, i, 0); | |
0297b803 | 10605 | |
0297b803 DG |
10606 | out: |
10607 | return err; | |
10608 | } | |
10609 | ||
e9515c3c KC |
10610 | static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft, |
10611 | struct seq_file *m) | |
10612 | { | |
10613 | struct cpuacct *ca = cgroup_ca(cgroup); | |
10614 | u64 percpu; | |
10615 | int i; | |
10616 | ||
10617 | for_each_present_cpu(i) { | |
10618 | percpu = cpuacct_cpuusage_read(ca, i); | |
10619 | seq_printf(m, "%llu ", (unsigned long long) percpu); | |
10620 | } | |
10621 | seq_printf(m, "\n"); | |
10622 | return 0; | |
10623 | } | |
10624 | ||
ef12fefa BR |
10625 | static const char *cpuacct_stat_desc[] = { |
10626 | [CPUACCT_STAT_USER] = "user", | |
10627 | [CPUACCT_STAT_SYSTEM] = "system", | |
10628 | }; | |
10629 | ||
10630 | static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft, | |
10631 | struct cgroup_map_cb *cb) | |
10632 | { | |
10633 | struct cpuacct *ca = cgroup_ca(cgrp); | |
10634 | int i; | |
10635 | ||
10636 | for (i = 0; i < CPUACCT_STAT_NSTATS; i++) { | |
10637 | s64 val = percpu_counter_read(&ca->cpustat[i]); | |
10638 | val = cputime64_to_clock_t(val); | |
10639 | cb->fill(cb, cpuacct_stat_desc[i], val); | |
10640 | } | |
10641 | return 0; | |
10642 | } | |
10643 | ||
d842de87 SV |
10644 | static struct cftype files[] = { |
10645 | { | |
10646 | .name = "usage", | |
f4c753b7 PM |
10647 | .read_u64 = cpuusage_read, |
10648 | .write_u64 = cpuusage_write, | |
d842de87 | 10649 | }, |
e9515c3c KC |
10650 | { |
10651 | .name = "usage_percpu", | |
10652 | .read_seq_string = cpuacct_percpu_seq_read, | |
10653 | }, | |
ef12fefa BR |
10654 | { |
10655 | .name = "stat", | |
10656 | .read_map = cpuacct_stats_show, | |
10657 | }, | |
d842de87 SV |
10658 | }; |
10659 | ||
32cd756a | 10660 | static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp) |
d842de87 | 10661 | { |
32cd756a | 10662 | return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files)); |
d842de87 SV |
10663 | } |
10664 | ||
10665 | /* | |
10666 | * charge this task's execution time to its accounting group. | |
10667 | * | |
10668 | * called with rq->lock held. | |
10669 | */ | |
10670 | static void cpuacct_charge(struct task_struct *tsk, u64 cputime) | |
10671 | { | |
10672 | struct cpuacct *ca; | |
934352f2 | 10673 | int cpu; |
d842de87 | 10674 | |
c40c6f85 | 10675 | if (unlikely(!cpuacct_subsys.active)) |
d842de87 SV |
10676 | return; |
10677 | ||
934352f2 | 10678 | cpu = task_cpu(tsk); |
a18b83b7 BR |
10679 | |
10680 | rcu_read_lock(); | |
10681 | ||
d842de87 | 10682 | ca = task_ca(tsk); |
d842de87 | 10683 | |
934352f2 | 10684 | for (; ca; ca = ca->parent) { |
b36128c8 | 10685 | u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); |
d842de87 SV |
10686 | *cpuusage += cputime; |
10687 | } | |
a18b83b7 BR |
10688 | |
10689 | rcu_read_unlock(); | |
d842de87 SV |
10690 | } |
10691 | ||
ef12fefa BR |
10692 | /* |
10693 | * Charge the system/user time to the task's accounting group. | |
10694 | */ | |
10695 | static void cpuacct_update_stats(struct task_struct *tsk, | |
10696 | enum cpuacct_stat_index idx, cputime_t val) | |
10697 | { | |
10698 | struct cpuacct *ca; | |
10699 | ||
10700 | if (unlikely(!cpuacct_subsys.active)) | |
10701 | return; | |
10702 | ||
10703 | rcu_read_lock(); | |
10704 | ca = task_ca(tsk); | |
10705 | ||
10706 | do { | |
10707 | percpu_counter_add(&ca->cpustat[idx], val); | |
10708 | ca = ca->parent; | |
10709 | } while (ca); | |
10710 | rcu_read_unlock(); | |
10711 | } | |
10712 | ||
d842de87 SV |
10713 | struct cgroup_subsys cpuacct_subsys = { |
10714 | .name = "cpuacct", | |
10715 | .create = cpuacct_create, | |
10716 | .destroy = cpuacct_destroy, | |
10717 | .populate = cpuacct_populate, | |
10718 | .subsys_id = cpuacct_subsys_id, | |
10719 | }; | |
10720 | #endif /* CONFIG_CGROUP_CPUACCT */ | |
03b042bf PM |
10721 | |
10722 | #ifndef CONFIG_SMP | |
10723 | ||
10724 | int rcu_expedited_torture_stats(char *page) | |
10725 | { | |
10726 | return 0; | |
10727 | } | |
10728 | EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats); | |
10729 | ||
10730 | void synchronize_sched_expedited(void) | |
10731 | { | |
10732 | } | |
10733 | EXPORT_SYMBOL_GPL(synchronize_sched_expedited); | |
10734 | ||
10735 | #else /* #ifndef CONFIG_SMP */ | |
10736 | ||
10737 | static DEFINE_PER_CPU(struct migration_req, rcu_migration_req); | |
10738 | static DEFINE_MUTEX(rcu_sched_expedited_mutex); | |
10739 | ||
10740 | #define RCU_EXPEDITED_STATE_POST -2 | |
10741 | #define RCU_EXPEDITED_STATE_IDLE -1 | |
10742 | ||
10743 | static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE; | |
10744 | ||
10745 | int rcu_expedited_torture_stats(char *page) | |
10746 | { | |
10747 | int cnt = 0; | |
10748 | int cpu; | |
10749 | ||
10750 | cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state); | |
10751 | for_each_online_cpu(cpu) { | |
10752 | cnt += sprintf(&page[cnt], " %d:%d", | |
10753 | cpu, per_cpu(rcu_migration_req, cpu).dest_cpu); | |
10754 | } | |
10755 | cnt += sprintf(&page[cnt], "\n"); | |
10756 | return cnt; | |
10757 | } | |
10758 | EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats); | |
10759 | ||
10760 | static long synchronize_sched_expedited_count; | |
10761 | ||
10762 | /* | |
10763 | * Wait for an rcu-sched grace period to elapse, but use "big hammer" | |
10764 | * approach to force grace period to end quickly. This consumes | |
10765 | * significant time on all CPUs, and is thus not recommended for | |
10766 | * any sort of common-case code. | |
10767 | * | |
10768 | * Note that it is illegal to call this function while holding any | |
10769 | * lock that is acquired by a CPU-hotplug notifier. Failing to | |
10770 | * observe this restriction will result in deadlock. | |
10771 | */ | |
10772 | void synchronize_sched_expedited(void) | |
10773 | { | |
10774 | int cpu; | |
10775 | unsigned long flags; | |
10776 | bool need_full_sync = 0; | |
10777 | struct rq *rq; | |
10778 | struct migration_req *req; | |
10779 | long snap; | |
10780 | int trycount = 0; | |
10781 | ||
10782 | smp_mb(); /* ensure prior mod happens before capturing snap. */ | |
10783 | snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1; | |
10784 | get_online_cpus(); | |
10785 | while (!mutex_trylock(&rcu_sched_expedited_mutex)) { | |
10786 | put_online_cpus(); | |
10787 | if (trycount++ < 10) | |
10788 | udelay(trycount * num_online_cpus()); | |
10789 | else { | |
10790 | synchronize_sched(); | |
10791 | return; | |
10792 | } | |
10793 | if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) { | |
10794 | smp_mb(); /* ensure test happens before caller kfree */ | |
10795 | return; | |
10796 | } | |
10797 | get_online_cpus(); | |
10798 | } | |
10799 | rcu_expedited_state = RCU_EXPEDITED_STATE_POST; | |
10800 | for_each_online_cpu(cpu) { | |
10801 | rq = cpu_rq(cpu); | |
10802 | req = &per_cpu(rcu_migration_req, cpu); | |
10803 | init_completion(&req->done); | |
10804 | req->task = NULL; | |
10805 | req->dest_cpu = RCU_MIGRATION_NEED_QS; | |
10806 | spin_lock_irqsave(&rq->lock, flags); | |
10807 | list_add(&req->list, &rq->migration_queue); | |
10808 | spin_unlock_irqrestore(&rq->lock, flags); | |
10809 | wake_up_process(rq->migration_thread); | |
10810 | } | |
10811 | for_each_online_cpu(cpu) { | |
10812 | rcu_expedited_state = cpu; | |
10813 | req = &per_cpu(rcu_migration_req, cpu); | |
10814 | rq = cpu_rq(cpu); | |
10815 | wait_for_completion(&req->done); | |
10816 | spin_lock_irqsave(&rq->lock, flags); | |
10817 | if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC)) | |
10818 | need_full_sync = 1; | |
10819 | req->dest_cpu = RCU_MIGRATION_IDLE; | |
10820 | spin_unlock_irqrestore(&rq->lock, flags); | |
10821 | } | |
10822 | rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE; | |
10823 | mutex_unlock(&rcu_sched_expedited_mutex); | |
10824 | put_online_cpus(); | |
10825 | if (need_full_sync) | |
10826 | synchronize_sched(); | |
10827 | } | |
10828 | EXPORT_SYMBOL_GPL(synchronize_sched_expedited); | |
10829 | ||
10830 | #endif /* #else #ifndef CONFIG_SMP */ |