]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * kernel/sched.c | |
3 | * | |
4 | * Kernel scheduler and related syscalls | |
5 | * | |
6 | * Copyright (C) 1991-2002 Linus Torvalds | |
7 | * | |
8 | * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and | |
9 | * make semaphores SMP safe | |
10 | * 1998-11-19 Implemented schedule_timeout() and related stuff | |
11 | * by Andrea Arcangeli | |
12 | * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: | |
13 | * hybrid priority-list and round-robin design with | |
14 | * an array-switch method of distributing timeslices | |
15 | * and per-CPU runqueues. Cleanups and useful suggestions | |
16 | * by Davide Libenzi, preemptible kernel bits by Robert Love. | |
17 | * 2003-09-03 Interactivity tuning by Con Kolivas. | |
18 | * 2004-04-02 Scheduler domains code by Nick Piggin | |
c31f2e8a IM |
19 | * 2007-04-15 Work begun on replacing all interactivity tuning with a |
20 | * fair scheduling design by Con Kolivas. | |
21 | * 2007-05-05 Load balancing (smp-nice) and other improvements | |
22 | * by Peter Williams | |
23 | * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith | |
24 | * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri | |
1da177e4 LT |
25 | */ |
26 | ||
27 | #include <linux/mm.h> | |
28 | #include <linux/module.h> | |
29 | #include <linux/nmi.h> | |
30 | #include <linux/init.h> | |
dff06c15 | 31 | #include <linux/uaccess.h> |
1da177e4 LT |
32 | #include <linux/highmem.h> |
33 | #include <linux/smp_lock.h> | |
34 | #include <asm/mmu_context.h> | |
35 | #include <linux/interrupt.h> | |
c59ede7b | 36 | #include <linux/capability.h> |
1da177e4 LT |
37 | #include <linux/completion.h> |
38 | #include <linux/kernel_stat.h> | |
9a11b49a | 39 | #include <linux/debug_locks.h> |
1da177e4 LT |
40 | #include <linux/security.h> |
41 | #include <linux/notifier.h> | |
42 | #include <linux/profile.h> | |
7dfb7103 | 43 | #include <linux/freezer.h> |
198e2f18 | 44 | #include <linux/vmalloc.h> |
1da177e4 LT |
45 | #include <linux/blkdev.h> |
46 | #include <linux/delay.h> | |
47 | #include <linux/smp.h> | |
48 | #include <linux/threads.h> | |
49 | #include <linux/timer.h> | |
50 | #include <linux/rcupdate.h> | |
51 | #include <linux/cpu.h> | |
52 | #include <linux/cpuset.h> | |
53 | #include <linux/percpu.h> | |
54 | #include <linux/kthread.h> | |
55 | #include <linux/seq_file.h> | |
e692ab53 | 56 | #include <linux/sysctl.h> |
1da177e4 LT |
57 | #include <linux/syscalls.h> |
58 | #include <linux/times.h> | |
8f0ab514 | 59 | #include <linux/tsacct_kern.h> |
c6fd91f0 | 60 | #include <linux/kprobes.h> |
0ff92245 | 61 | #include <linux/delayacct.h> |
5517d86b | 62 | #include <linux/reciprocal_div.h> |
dff06c15 | 63 | #include <linux/unistd.h> |
f5ff8422 | 64 | #include <linux/pagemap.h> |
1da177e4 | 65 | |
5517d86b | 66 | #include <asm/tlb.h> |
1da177e4 | 67 | |
b035b6de AD |
68 | /* |
69 | * Scheduler clock - returns current time in nanosec units. | |
70 | * This is default implementation. | |
71 | * Architectures and sub-architectures can override this. | |
72 | */ | |
73 | unsigned long long __attribute__((weak)) sched_clock(void) | |
74 | { | |
75 | return (unsigned long long)jiffies * (1000000000 / HZ); | |
76 | } | |
77 | ||
1da177e4 LT |
78 | /* |
79 | * Convert user-nice values [ -20 ... 0 ... 19 ] | |
80 | * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], | |
81 | * and back. | |
82 | */ | |
83 | #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20) | |
84 | #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20) | |
85 | #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio) | |
86 | ||
87 | /* | |
88 | * 'User priority' is the nice value converted to something we | |
89 | * can work with better when scaling various scheduler parameters, | |
90 | * it's a [ 0 ... 39 ] range. | |
91 | */ | |
92 | #define USER_PRIO(p) ((p)-MAX_RT_PRIO) | |
93 | #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio) | |
94 | #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO)) | |
95 | ||
96 | /* | |
97 | * Some helpers for converting nanosecond timing to jiffy resolution | |
98 | */ | |
99 | #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ)) | |
100 | #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ)) | |
101 | ||
6aa645ea IM |
102 | #define NICE_0_LOAD SCHED_LOAD_SCALE |
103 | #define NICE_0_SHIFT SCHED_LOAD_SHIFT | |
104 | ||
1da177e4 LT |
105 | /* |
106 | * These are the 'tuning knobs' of the scheduler: | |
107 | * | |
108 | * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger), | |
109 | * default timeslice is 100 msecs, maximum timeslice is 800 msecs. | |
110 | * Timeslices get refilled after they expire. | |
111 | */ | |
112 | #define MIN_TIMESLICE max(5 * HZ / 1000, 1) | |
113 | #define DEF_TIMESLICE (100 * HZ / 1000) | |
2dd73a4f | 114 | |
5517d86b ED |
115 | #ifdef CONFIG_SMP |
116 | /* | |
117 | * Divide a load by a sched group cpu_power : (load / sg->__cpu_power) | |
118 | * Since cpu_power is a 'constant', we can use a reciprocal divide. | |
119 | */ | |
120 | static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load) | |
121 | { | |
122 | return reciprocal_divide(load, sg->reciprocal_cpu_power); | |
123 | } | |
124 | ||
125 | /* | |
126 | * Each time a sched group cpu_power is changed, | |
127 | * we must compute its reciprocal value | |
128 | */ | |
129 | static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val) | |
130 | { | |
131 | sg->__cpu_power += val; | |
132 | sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power); | |
133 | } | |
134 | #endif | |
135 | ||
634fa8c9 IM |
136 | #define SCALE_PRIO(x, prio) \ |
137 | max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE) | |
138 | ||
91fcdd4e | 139 | /* |
634fa8c9 | 140 | * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ] |
91fcdd4e | 141 | * to time slice values: [800ms ... 100ms ... 5ms] |
91fcdd4e | 142 | */ |
634fa8c9 | 143 | static unsigned int static_prio_timeslice(int static_prio) |
2dd73a4f | 144 | { |
634fa8c9 IM |
145 | if (static_prio == NICE_TO_PRIO(19)) |
146 | return 1; | |
147 | ||
148 | if (static_prio < NICE_TO_PRIO(0)) | |
149 | return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio); | |
150 | else | |
151 | return SCALE_PRIO(DEF_TIMESLICE, static_prio); | |
2dd73a4f PW |
152 | } |
153 | ||
e05606d3 IM |
154 | static inline int rt_policy(int policy) |
155 | { | |
156 | if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR)) | |
157 | return 1; | |
158 | return 0; | |
159 | } | |
160 | ||
161 | static inline int task_has_rt_policy(struct task_struct *p) | |
162 | { | |
163 | return rt_policy(p->policy); | |
164 | } | |
165 | ||
1da177e4 | 166 | /* |
6aa645ea | 167 | * This is the priority-queue data structure of the RT scheduling class: |
1da177e4 | 168 | */ |
6aa645ea IM |
169 | struct rt_prio_array { |
170 | DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ | |
171 | struct list_head queue[MAX_RT_PRIO]; | |
172 | }; | |
173 | ||
29f59db3 SV |
174 | #ifdef CONFIG_FAIR_GROUP_SCHED |
175 | ||
29f59db3 SV |
176 | struct cfs_rq; |
177 | ||
178 | /* task group related information */ | |
179 | struct task_grp { | |
29f59db3 SV |
180 | /* schedulable entities of this group on each cpu */ |
181 | struct sched_entity **se; | |
182 | /* runqueue "owned" by this group on each cpu */ | |
183 | struct cfs_rq **cfs_rq; | |
184 | unsigned long shares; | |
185 | }; | |
186 | ||
187 | /* Default task group's sched entity on each cpu */ | |
188 | static DEFINE_PER_CPU(struct sched_entity, init_sched_entity); | |
189 | /* Default task group's cfs_rq on each cpu */ | |
190 | static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp; | |
191 | ||
9b5b7751 SV |
192 | static struct sched_entity *init_sched_entity_p[NR_CPUS]; |
193 | static struct cfs_rq *init_cfs_rq_p[NR_CPUS]; | |
29f59db3 SV |
194 | |
195 | /* Default task group. | |
196 | * Every task in system belong to this group at bootup. | |
197 | */ | |
9b5b7751 SV |
198 | struct task_grp init_task_grp = { |
199 | .se = init_sched_entity_p, | |
200 | .cfs_rq = init_cfs_rq_p, | |
201 | }; | |
202 | ||
24e377a8 SV |
203 | #ifdef CONFIG_FAIR_USER_SCHED |
204 | #define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD | |
205 | #else | |
9b5b7751 | 206 | #define INIT_TASK_GRP_LOAD NICE_0_LOAD |
24e377a8 SV |
207 | #endif |
208 | ||
9b5b7751 | 209 | static int init_task_grp_load = INIT_TASK_GRP_LOAD; |
29f59db3 SV |
210 | |
211 | /* return group to which a task belongs */ | |
212 | static inline struct task_grp *task_grp(struct task_struct *p) | |
213 | { | |
9b5b7751 SV |
214 | struct task_grp *tg; |
215 | ||
24e377a8 SV |
216 | #ifdef CONFIG_FAIR_USER_SCHED |
217 | tg = p->user->tg; | |
218 | #else | |
9b5b7751 | 219 | tg = &init_task_grp; |
24e377a8 | 220 | #endif |
9b5b7751 SV |
221 | |
222 | return tg; | |
29f59db3 SV |
223 | } |
224 | ||
225 | /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ | |
226 | static inline void set_task_cfs_rq(struct task_struct *p) | |
227 | { | |
228 | p->se.cfs_rq = task_grp(p)->cfs_rq[task_cpu(p)]; | |
229 | p->se.parent = task_grp(p)->se[task_cpu(p)]; | |
230 | } | |
231 | ||
232 | #else | |
233 | ||
234 | static inline void set_task_cfs_rq(struct task_struct *p) { } | |
235 | ||
236 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | |
237 | ||
6aa645ea IM |
238 | /* CFS-related fields in a runqueue */ |
239 | struct cfs_rq { | |
240 | struct load_weight load; | |
241 | unsigned long nr_running; | |
242 | ||
6aa645ea | 243 | u64 exec_clock; |
e9acbff6 | 244 | u64 min_vruntime; |
6aa645ea IM |
245 | |
246 | struct rb_root tasks_timeline; | |
247 | struct rb_node *rb_leftmost; | |
248 | struct rb_node *rb_load_balance_curr; | |
6aa645ea IM |
249 | /* 'curr' points to currently running entity on this cfs_rq. |
250 | * It is set to NULL otherwise (i.e when none are currently running). | |
251 | */ | |
252 | struct sched_entity *curr; | |
62160e3f | 253 | #ifdef CONFIG_FAIR_GROUP_SCHED |
6aa645ea IM |
254 | struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ |
255 | ||
256 | /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in | |
257 | * a hierarchy). Non-leaf lrqs hold other higher schedulable entities | |
258 | * (like users, containers etc.) | |
259 | * | |
260 | * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This | |
261 | * list is used during load balance. | |
262 | */ | |
263 | struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */ | |
29f59db3 | 264 | struct task_grp *tg; /* group that "owns" this runqueue */ |
9b5b7751 | 265 | struct rcu_head rcu; |
6aa645ea IM |
266 | #endif |
267 | }; | |
1da177e4 | 268 | |
6aa645ea IM |
269 | /* Real-Time classes' related field in a runqueue: */ |
270 | struct rt_rq { | |
271 | struct rt_prio_array active; | |
272 | int rt_load_balance_idx; | |
273 | struct list_head *rt_load_balance_head, *rt_load_balance_curr; | |
274 | }; | |
275 | ||
1da177e4 LT |
276 | /* |
277 | * This is the main, per-CPU runqueue data structure. | |
278 | * | |
279 | * Locking rule: those places that want to lock multiple runqueues | |
280 | * (such as the load balancing or the thread migration code), lock | |
281 | * acquire operations must be ordered by ascending &runqueue. | |
282 | */ | |
70b97a7f | 283 | struct rq { |
6aa645ea | 284 | spinlock_t lock; /* runqueue lock */ |
1da177e4 LT |
285 | |
286 | /* | |
287 | * nr_running and cpu_load should be in the same cacheline because | |
288 | * remote CPUs use both these fields when doing load calculation. | |
289 | */ | |
290 | unsigned long nr_running; | |
6aa645ea IM |
291 | #define CPU_LOAD_IDX_MAX 5 |
292 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; | |
bdecea3a | 293 | unsigned char idle_at_tick; |
46cb4b7c SS |
294 | #ifdef CONFIG_NO_HZ |
295 | unsigned char in_nohz_recently; | |
296 | #endif | |
495eca49 | 297 | struct load_weight load; /* capture load from *all* tasks on this cpu */ |
6aa645ea IM |
298 | unsigned long nr_load_updates; |
299 | u64 nr_switches; | |
300 | ||
301 | struct cfs_rq cfs; | |
302 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
303 | struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */ | |
1da177e4 | 304 | #endif |
6aa645ea | 305 | struct rt_rq rt; |
1da177e4 LT |
306 | |
307 | /* | |
308 | * This is part of a global counter where only the total sum | |
309 | * over all CPUs matters. A task can increase this counter on | |
310 | * one CPU and if it got migrated afterwards it may decrease | |
311 | * it on another CPU. Always updated under the runqueue lock: | |
312 | */ | |
313 | unsigned long nr_uninterruptible; | |
314 | ||
36c8b586 | 315 | struct task_struct *curr, *idle; |
c9819f45 | 316 | unsigned long next_balance; |
1da177e4 | 317 | struct mm_struct *prev_mm; |
6aa645ea | 318 | |
6aa645ea IM |
319 | u64 clock, prev_clock_raw; |
320 | s64 clock_max_delta; | |
321 | ||
322 | unsigned int clock_warps, clock_overflows; | |
2aa44d05 IM |
323 | u64 idle_clock; |
324 | unsigned int clock_deep_idle_events; | |
529c7726 | 325 | u64 tick_timestamp; |
6aa645ea | 326 | |
1da177e4 LT |
327 | atomic_t nr_iowait; |
328 | ||
329 | #ifdef CONFIG_SMP | |
330 | struct sched_domain *sd; | |
331 | ||
332 | /* For active balancing */ | |
333 | int active_balance; | |
334 | int push_cpu; | |
0a2966b4 | 335 | int cpu; /* cpu of this runqueue */ |
1da177e4 | 336 | |
36c8b586 | 337 | struct task_struct *migration_thread; |
1da177e4 LT |
338 | struct list_head migration_queue; |
339 | #endif | |
340 | ||
341 | #ifdef CONFIG_SCHEDSTATS | |
342 | /* latency stats */ | |
343 | struct sched_info rq_sched_info; | |
344 | ||
345 | /* sys_sched_yield() stats */ | |
346 | unsigned long yld_exp_empty; | |
347 | unsigned long yld_act_empty; | |
348 | unsigned long yld_both_empty; | |
349 | unsigned long yld_cnt; | |
350 | ||
351 | /* schedule() stats */ | |
352 | unsigned long sched_switch; | |
353 | unsigned long sched_cnt; | |
354 | unsigned long sched_goidle; | |
355 | ||
356 | /* try_to_wake_up() stats */ | |
357 | unsigned long ttwu_cnt; | |
358 | unsigned long ttwu_local; | |
b8efb561 IM |
359 | |
360 | /* BKL stats */ | |
361 | unsigned long bkl_cnt; | |
1da177e4 | 362 | #endif |
fcb99371 | 363 | struct lock_class_key rq_lock_key; |
1da177e4 LT |
364 | }; |
365 | ||
f34e3b61 | 366 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); |
5be9361c | 367 | static DEFINE_MUTEX(sched_hotcpu_mutex); |
1da177e4 | 368 | |
dd41f596 IM |
369 | static inline void check_preempt_curr(struct rq *rq, struct task_struct *p) |
370 | { | |
371 | rq->curr->sched_class->check_preempt_curr(rq, p); | |
372 | } | |
373 | ||
0a2966b4 CL |
374 | static inline int cpu_of(struct rq *rq) |
375 | { | |
376 | #ifdef CONFIG_SMP | |
377 | return rq->cpu; | |
378 | #else | |
379 | return 0; | |
380 | #endif | |
381 | } | |
382 | ||
20d315d4 | 383 | /* |
b04a0f4c IM |
384 | * Update the per-runqueue clock, as finegrained as the platform can give |
385 | * us, but without assuming monotonicity, etc.: | |
20d315d4 | 386 | */ |
b04a0f4c | 387 | static void __update_rq_clock(struct rq *rq) |
20d315d4 IM |
388 | { |
389 | u64 prev_raw = rq->prev_clock_raw; | |
390 | u64 now = sched_clock(); | |
391 | s64 delta = now - prev_raw; | |
392 | u64 clock = rq->clock; | |
393 | ||
b04a0f4c IM |
394 | #ifdef CONFIG_SCHED_DEBUG |
395 | WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); | |
396 | #endif | |
20d315d4 IM |
397 | /* |
398 | * Protect against sched_clock() occasionally going backwards: | |
399 | */ | |
400 | if (unlikely(delta < 0)) { | |
401 | clock++; | |
402 | rq->clock_warps++; | |
403 | } else { | |
404 | /* | |
405 | * Catch too large forward jumps too: | |
406 | */ | |
529c7726 IM |
407 | if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) { |
408 | if (clock < rq->tick_timestamp + TICK_NSEC) | |
409 | clock = rq->tick_timestamp + TICK_NSEC; | |
410 | else | |
411 | clock++; | |
20d315d4 IM |
412 | rq->clock_overflows++; |
413 | } else { | |
414 | if (unlikely(delta > rq->clock_max_delta)) | |
415 | rq->clock_max_delta = delta; | |
416 | clock += delta; | |
417 | } | |
418 | } | |
419 | ||
420 | rq->prev_clock_raw = now; | |
421 | rq->clock = clock; | |
b04a0f4c | 422 | } |
20d315d4 | 423 | |
b04a0f4c IM |
424 | static void update_rq_clock(struct rq *rq) |
425 | { | |
426 | if (likely(smp_processor_id() == cpu_of(rq))) | |
427 | __update_rq_clock(rq); | |
20d315d4 IM |
428 | } |
429 | ||
674311d5 NP |
430 | /* |
431 | * The domain tree (rq->sd) is protected by RCU's quiescent state transition. | |
1a20ff27 | 432 | * See detach_destroy_domains: synchronize_sched for details. |
674311d5 NP |
433 | * |
434 | * The domain tree of any CPU may only be accessed from within | |
435 | * preempt-disabled sections. | |
436 | */ | |
48f24c4d IM |
437 | #define for_each_domain(cpu, __sd) \ |
438 | for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) | |
1da177e4 LT |
439 | |
440 | #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) | |
441 | #define this_rq() (&__get_cpu_var(runqueues)) | |
442 | #define task_rq(p) cpu_rq(task_cpu(p)) | |
443 | #define cpu_curr(cpu) (cpu_rq(cpu)->curr) | |
444 | ||
bf5c91ba IM |
445 | /* |
446 | * Tunables that become constants when CONFIG_SCHED_DEBUG is off: | |
447 | */ | |
448 | #ifdef CONFIG_SCHED_DEBUG | |
449 | # define const_debug __read_mostly | |
450 | #else | |
451 | # define const_debug static const | |
452 | #endif | |
453 | ||
454 | /* | |
455 | * Debugging: various feature bits | |
456 | */ | |
457 | enum { | |
bbdba7c0 IM |
458 | SCHED_FEAT_NEW_FAIR_SLEEPERS = 1, |
459 | SCHED_FEAT_START_DEBIT = 2, | |
460 | SCHED_FEAT_USE_TREE_AVG = 4, | |
461 | SCHED_FEAT_APPROX_AVG = 8, | |
bf5c91ba IM |
462 | }; |
463 | ||
464 | const_debug unsigned int sysctl_sched_features = | |
bf5c91ba | 465 | SCHED_FEAT_NEW_FAIR_SLEEPERS *1 | |
94dfb5e7 PZ |
466 | SCHED_FEAT_START_DEBIT *1 | |
467 | SCHED_FEAT_USE_TREE_AVG *0 | | |
468 | SCHED_FEAT_APPROX_AVG *0; | |
bf5c91ba IM |
469 | |
470 | #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x) | |
471 | ||
e436d800 IM |
472 | /* |
473 | * For kernel-internal use: high-speed (but slightly incorrect) per-cpu | |
474 | * clock constructed from sched_clock(): | |
475 | */ | |
476 | unsigned long long cpu_clock(int cpu) | |
477 | { | |
e436d800 IM |
478 | unsigned long long now; |
479 | unsigned long flags; | |
b04a0f4c | 480 | struct rq *rq; |
e436d800 | 481 | |
2cd4d0ea | 482 | local_irq_save(flags); |
b04a0f4c IM |
483 | rq = cpu_rq(cpu); |
484 | update_rq_clock(rq); | |
485 | now = rq->clock; | |
2cd4d0ea | 486 | local_irq_restore(flags); |
e436d800 IM |
487 | |
488 | return now; | |
489 | } | |
490 | ||
1da177e4 | 491 | #ifndef prepare_arch_switch |
4866cde0 NP |
492 | # define prepare_arch_switch(next) do { } while (0) |
493 | #endif | |
494 | #ifndef finish_arch_switch | |
495 | # define finish_arch_switch(prev) do { } while (0) | |
496 | #endif | |
497 | ||
498 | #ifndef __ARCH_WANT_UNLOCKED_CTXSW | |
70b97a7f | 499 | static inline int task_running(struct rq *rq, struct task_struct *p) |
4866cde0 NP |
500 | { |
501 | return rq->curr == p; | |
502 | } | |
503 | ||
70b97a7f | 504 | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) |
4866cde0 NP |
505 | { |
506 | } | |
507 | ||
70b97a7f | 508 | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) |
4866cde0 | 509 | { |
da04c035 IM |
510 | #ifdef CONFIG_DEBUG_SPINLOCK |
511 | /* this is a valid case when another task releases the spinlock */ | |
512 | rq->lock.owner = current; | |
513 | #endif | |
8a25d5de IM |
514 | /* |
515 | * If we are tracking spinlock dependencies then we have to | |
516 | * fix up the runqueue lock - which gets 'carried over' from | |
517 | * prev into current: | |
518 | */ | |
519 | spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); | |
520 | ||
4866cde0 NP |
521 | spin_unlock_irq(&rq->lock); |
522 | } | |
523 | ||
524 | #else /* __ARCH_WANT_UNLOCKED_CTXSW */ | |
70b97a7f | 525 | static inline int task_running(struct rq *rq, struct task_struct *p) |
4866cde0 NP |
526 | { |
527 | #ifdef CONFIG_SMP | |
528 | return p->oncpu; | |
529 | #else | |
530 | return rq->curr == p; | |
531 | #endif | |
532 | } | |
533 | ||
70b97a7f | 534 | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) |
4866cde0 NP |
535 | { |
536 | #ifdef CONFIG_SMP | |
537 | /* | |
538 | * We can optimise this out completely for !SMP, because the | |
539 | * SMP rebalancing from interrupt is the only thing that cares | |
540 | * here. | |
541 | */ | |
542 | next->oncpu = 1; | |
543 | #endif | |
544 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | |
545 | spin_unlock_irq(&rq->lock); | |
546 | #else | |
547 | spin_unlock(&rq->lock); | |
548 | #endif | |
549 | } | |
550 | ||
70b97a7f | 551 | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) |
4866cde0 NP |
552 | { |
553 | #ifdef CONFIG_SMP | |
554 | /* | |
555 | * After ->oncpu is cleared, the task can be moved to a different CPU. | |
556 | * We must ensure this doesn't happen until the switch is completely | |
557 | * finished. | |
558 | */ | |
559 | smp_wmb(); | |
560 | prev->oncpu = 0; | |
561 | #endif | |
562 | #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW | |
563 | local_irq_enable(); | |
1da177e4 | 564 | #endif |
4866cde0 NP |
565 | } |
566 | #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ | |
1da177e4 | 567 | |
b29739f9 IM |
568 | /* |
569 | * __task_rq_lock - lock the runqueue a given task resides on. | |
570 | * Must be called interrupts disabled. | |
571 | */ | |
70b97a7f | 572 | static inline struct rq *__task_rq_lock(struct task_struct *p) |
b29739f9 IM |
573 | __acquires(rq->lock) |
574 | { | |
70b97a7f | 575 | struct rq *rq; |
b29739f9 IM |
576 | |
577 | repeat_lock_task: | |
578 | rq = task_rq(p); | |
579 | spin_lock(&rq->lock); | |
580 | if (unlikely(rq != task_rq(p))) { | |
581 | spin_unlock(&rq->lock); | |
582 | goto repeat_lock_task; | |
583 | } | |
584 | return rq; | |
585 | } | |
586 | ||
1da177e4 LT |
587 | /* |
588 | * task_rq_lock - lock the runqueue a given task resides on and disable | |
589 | * interrupts. Note the ordering: we can safely lookup the task_rq without | |
590 | * explicitly disabling preemption. | |
591 | */ | |
70b97a7f | 592 | static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) |
1da177e4 LT |
593 | __acquires(rq->lock) |
594 | { | |
70b97a7f | 595 | struct rq *rq; |
1da177e4 LT |
596 | |
597 | repeat_lock_task: | |
598 | local_irq_save(*flags); | |
599 | rq = task_rq(p); | |
600 | spin_lock(&rq->lock); | |
601 | if (unlikely(rq != task_rq(p))) { | |
602 | spin_unlock_irqrestore(&rq->lock, *flags); | |
603 | goto repeat_lock_task; | |
604 | } | |
605 | return rq; | |
606 | } | |
607 | ||
70b97a7f | 608 | static inline void __task_rq_unlock(struct rq *rq) |
b29739f9 IM |
609 | __releases(rq->lock) |
610 | { | |
611 | spin_unlock(&rq->lock); | |
612 | } | |
613 | ||
70b97a7f | 614 | static inline void task_rq_unlock(struct rq *rq, unsigned long *flags) |
1da177e4 LT |
615 | __releases(rq->lock) |
616 | { | |
617 | spin_unlock_irqrestore(&rq->lock, *flags); | |
618 | } | |
619 | ||
1da177e4 | 620 | /* |
cc2a73b5 | 621 | * this_rq_lock - lock this runqueue and disable interrupts. |
1da177e4 | 622 | */ |
70b97a7f | 623 | static inline struct rq *this_rq_lock(void) |
1da177e4 LT |
624 | __acquires(rq->lock) |
625 | { | |
70b97a7f | 626 | struct rq *rq; |
1da177e4 LT |
627 | |
628 | local_irq_disable(); | |
629 | rq = this_rq(); | |
630 | spin_lock(&rq->lock); | |
631 | ||
632 | return rq; | |
633 | } | |
634 | ||
1b9f19c2 | 635 | /* |
2aa44d05 | 636 | * We are going deep-idle (irqs are disabled): |
1b9f19c2 | 637 | */ |
2aa44d05 | 638 | void sched_clock_idle_sleep_event(void) |
1b9f19c2 | 639 | { |
2aa44d05 IM |
640 | struct rq *rq = cpu_rq(smp_processor_id()); |
641 | ||
642 | spin_lock(&rq->lock); | |
643 | __update_rq_clock(rq); | |
644 | spin_unlock(&rq->lock); | |
645 | rq->clock_deep_idle_events++; | |
646 | } | |
647 | EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event); | |
648 | ||
649 | /* | |
650 | * We just idled delta nanoseconds (called with irqs disabled): | |
651 | */ | |
652 | void sched_clock_idle_wakeup_event(u64 delta_ns) | |
653 | { | |
654 | struct rq *rq = cpu_rq(smp_processor_id()); | |
655 | u64 now = sched_clock(); | |
1b9f19c2 | 656 | |
2aa44d05 IM |
657 | rq->idle_clock += delta_ns; |
658 | /* | |
659 | * Override the previous timestamp and ignore all | |
660 | * sched_clock() deltas that occured while we idled, | |
661 | * and use the PM-provided delta_ns to advance the | |
662 | * rq clock: | |
663 | */ | |
664 | spin_lock(&rq->lock); | |
665 | rq->prev_clock_raw = now; | |
666 | rq->clock += delta_ns; | |
667 | spin_unlock(&rq->lock); | |
1b9f19c2 | 668 | } |
2aa44d05 | 669 | EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event); |
1b9f19c2 | 670 | |
c24d20db IM |
671 | /* |
672 | * resched_task - mark a task 'to be rescheduled now'. | |
673 | * | |
674 | * On UP this means the setting of the need_resched flag, on SMP it | |
675 | * might also involve a cross-CPU call to trigger the scheduler on | |
676 | * the target CPU. | |
677 | */ | |
678 | #ifdef CONFIG_SMP | |
679 | ||
680 | #ifndef tsk_is_polling | |
681 | #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) | |
682 | #endif | |
683 | ||
684 | static void resched_task(struct task_struct *p) | |
685 | { | |
686 | int cpu; | |
687 | ||
688 | assert_spin_locked(&task_rq(p)->lock); | |
689 | ||
690 | if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED))) | |
691 | return; | |
692 | ||
693 | set_tsk_thread_flag(p, TIF_NEED_RESCHED); | |
694 | ||
695 | cpu = task_cpu(p); | |
696 | if (cpu == smp_processor_id()) | |
697 | return; | |
698 | ||
699 | /* NEED_RESCHED must be visible before we test polling */ | |
700 | smp_mb(); | |
701 | if (!tsk_is_polling(p)) | |
702 | smp_send_reschedule(cpu); | |
703 | } | |
704 | ||
705 | static void resched_cpu(int cpu) | |
706 | { | |
707 | struct rq *rq = cpu_rq(cpu); | |
708 | unsigned long flags; | |
709 | ||
710 | if (!spin_trylock_irqsave(&rq->lock, flags)) | |
711 | return; | |
712 | resched_task(cpu_curr(cpu)); | |
713 | spin_unlock_irqrestore(&rq->lock, flags); | |
714 | } | |
715 | #else | |
716 | static inline void resched_task(struct task_struct *p) | |
717 | { | |
718 | assert_spin_locked(&task_rq(p)->lock); | |
719 | set_tsk_need_resched(p); | |
720 | } | |
721 | #endif | |
722 | ||
45bf76df IM |
723 | #if BITS_PER_LONG == 32 |
724 | # define WMULT_CONST (~0UL) | |
725 | #else | |
726 | # define WMULT_CONST (1UL << 32) | |
727 | #endif | |
728 | ||
729 | #define WMULT_SHIFT 32 | |
730 | ||
194081eb IM |
731 | /* |
732 | * Shift right and round: | |
733 | */ | |
cf2ab469 | 734 | #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) |
194081eb | 735 | |
cb1c4fc9 | 736 | static unsigned long |
45bf76df IM |
737 | calc_delta_mine(unsigned long delta_exec, unsigned long weight, |
738 | struct load_weight *lw) | |
739 | { | |
740 | u64 tmp; | |
741 | ||
742 | if (unlikely(!lw->inv_weight)) | |
194081eb | 743 | lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1; |
45bf76df IM |
744 | |
745 | tmp = (u64)delta_exec * weight; | |
746 | /* | |
747 | * Check whether we'd overflow the 64-bit multiplication: | |
748 | */ | |
194081eb | 749 | if (unlikely(tmp > WMULT_CONST)) |
cf2ab469 | 750 | tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight, |
194081eb IM |
751 | WMULT_SHIFT/2); |
752 | else | |
cf2ab469 | 753 | tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT); |
45bf76df | 754 | |
ecf691da | 755 | return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); |
45bf76df IM |
756 | } |
757 | ||
758 | static inline unsigned long | |
759 | calc_delta_fair(unsigned long delta_exec, struct load_weight *lw) | |
760 | { | |
761 | return calc_delta_mine(delta_exec, NICE_0_LOAD, lw); | |
762 | } | |
763 | ||
1091985b | 764 | static inline void update_load_add(struct load_weight *lw, unsigned long inc) |
45bf76df IM |
765 | { |
766 | lw->weight += inc; | |
45bf76df IM |
767 | } |
768 | ||
1091985b | 769 | static inline void update_load_sub(struct load_weight *lw, unsigned long dec) |
45bf76df IM |
770 | { |
771 | lw->weight -= dec; | |
45bf76df IM |
772 | } |
773 | ||
2dd73a4f PW |
774 | /* |
775 | * To aid in avoiding the subversion of "niceness" due to uneven distribution | |
776 | * of tasks with abnormal "nice" values across CPUs the contribution that | |
777 | * each task makes to its run queue's load is weighted according to its | |
778 | * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a | |
779 | * scaled version of the new time slice allocation that they receive on time | |
780 | * slice expiry etc. | |
781 | */ | |
782 | ||
dd41f596 IM |
783 | #define WEIGHT_IDLEPRIO 2 |
784 | #define WMULT_IDLEPRIO (1 << 31) | |
785 | ||
786 | /* | |
787 | * Nice levels are multiplicative, with a gentle 10% change for every | |
788 | * nice level changed. I.e. when a CPU-bound task goes from nice 0 to | |
789 | * nice 1, it will get ~10% less CPU time than another CPU-bound task | |
790 | * that remained on nice 0. | |
791 | * | |
792 | * The "10% effect" is relative and cumulative: from _any_ nice level, | |
793 | * if you go up 1 level, it's -10% CPU usage, if you go down 1 level | |
f9153ee6 IM |
794 | * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. |
795 | * If a task goes up by ~10% and another task goes down by ~10% then | |
796 | * the relative distance between them is ~25%.) | |
dd41f596 IM |
797 | */ |
798 | static const int prio_to_weight[40] = { | |
254753dc IM |
799 | /* -20 */ 88761, 71755, 56483, 46273, 36291, |
800 | /* -15 */ 29154, 23254, 18705, 14949, 11916, | |
801 | /* -10 */ 9548, 7620, 6100, 4904, 3906, | |
802 | /* -5 */ 3121, 2501, 1991, 1586, 1277, | |
803 | /* 0 */ 1024, 820, 655, 526, 423, | |
804 | /* 5 */ 335, 272, 215, 172, 137, | |
805 | /* 10 */ 110, 87, 70, 56, 45, | |
806 | /* 15 */ 36, 29, 23, 18, 15, | |
dd41f596 IM |
807 | }; |
808 | ||
5714d2de IM |
809 | /* |
810 | * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. | |
811 | * | |
812 | * In cases where the weight does not change often, we can use the | |
813 | * precalculated inverse to speed up arithmetics by turning divisions | |
814 | * into multiplications: | |
815 | */ | |
dd41f596 | 816 | static const u32 prio_to_wmult[40] = { |
254753dc IM |
817 | /* -20 */ 48388, 59856, 76040, 92818, 118348, |
818 | /* -15 */ 147320, 184698, 229616, 287308, 360437, | |
819 | /* -10 */ 449829, 563644, 704093, 875809, 1099582, | |
820 | /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, | |
821 | /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, | |
822 | /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, | |
823 | /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, | |
824 | /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, | |
dd41f596 | 825 | }; |
2dd73a4f | 826 | |
dd41f596 IM |
827 | static void activate_task(struct rq *rq, struct task_struct *p, int wakeup); |
828 | ||
829 | /* | |
830 | * runqueue iterator, to support SMP load-balancing between different | |
831 | * scheduling classes, without having to expose their internal data | |
832 | * structures to the load-balancing proper: | |
833 | */ | |
834 | struct rq_iterator { | |
835 | void *arg; | |
836 | struct task_struct *(*start)(void *); | |
837 | struct task_struct *(*next)(void *); | |
838 | }; | |
839 | ||
840 | static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | |
841 | unsigned long max_nr_move, unsigned long max_load_move, | |
842 | struct sched_domain *sd, enum cpu_idle_type idle, | |
843 | int *all_pinned, unsigned long *load_moved, | |
a4ac01c3 | 844 | int *this_best_prio, struct rq_iterator *iterator); |
dd41f596 IM |
845 | |
846 | #include "sched_stats.h" | |
847 | #include "sched_rt.c" | |
848 | #include "sched_fair.c" | |
849 | #include "sched_idletask.c" | |
850 | #ifdef CONFIG_SCHED_DEBUG | |
851 | # include "sched_debug.c" | |
852 | #endif | |
853 | ||
854 | #define sched_class_highest (&rt_sched_class) | |
855 | ||
9c217245 IM |
856 | /* |
857 | * Update delta_exec, delta_fair fields for rq. | |
858 | * | |
859 | * delta_fair clock advances at a rate inversely proportional to | |
495eca49 | 860 | * total load (rq->load.weight) on the runqueue, while |
9c217245 IM |
861 | * delta_exec advances at the same rate as wall-clock (provided |
862 | * cpu is not idle). | |
863 | * | |
864 | * delta_exec / delta_fair is a measure of the (smoothened) load on this | |
865 | * runqueue over any given interval. This (smoothened) load is used | |
866 | * during load balance. | |
867 | * | |
495eca49 | 868 | * This function is called /before/ updating rq->load |
9c217245 IM |
869 | * and when switching tasks. |
870 | */ | |
29b4b623 | 871 | static inline void inc_load(struct rq *rq, const struct task_struct *p) |
9c217245 | 872 | { |
495eca49 | 873 | update_load_add(&rq->load, p->se.load.weight); |
9c217245 IM |
874 | } |
875 | ||
79b5dddf | 876 | static inline void dec_load(struct rq *rq, const struct task_struct *p) |
9c217245 | 877 | { |
495eca49 | 878 | update_load_sub(&rq->load, p->se.load.weight); |
9c217245 IM |
879 | } |
880 | ||
e5fa2237 | 881 | static void inc_nr_running(struct task_struct *p, struct rq *rq) |
9c217245 IM |
882 | { |
883 | rq->nr_running++; | |
29b4b623 | 884 | inc_load(rq, p); |
9c217245 IM |
885 | } |
886 | ||
db53181e | 887 | static void dec_nr_running(struct task_struct *p, struct rq *rq) |
9c217245 IM |
888 | { |
889 | rq->nr_running--; | |
79b5dddf | 890 | dec_load(rq, p); |
9c217245 IM |
891 | } |
892 | ||
45bf76df IM |
893 | static void set_load_weight(struct task_struct *p) |
894 | { | |
895 | if (task_has_rt_policy(p)) { | |
dd41f596 IM |
896 | p->se.load.weight = prio_to_weight[0] * 2; |
897 | p->se.load.inv_weight = prio_to_wmult[0] >> 1; | |
898 | return; | |
899 | } | |
45bf76df | 900 | |
dd41f596 IM |
901 | /* |
902 | * SCHED_IDLE tasks get minimal weight: | |
903 | */ | |
904 | if (p->policy == SCHED_IDLE) { | |
905 | p->se.load.weight = WEIGHT_IDLEPRIO; | |
906 | p->se.load.inv_weight = WMULT_IDLEPRIO; | |
907 | return; | |
908 | } | |
71f8bd46 | 909 | |
dd41f596 IM |
910 | p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO]; |
911 | p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO]; | |
71f8bd46 IM |
912 | } |
913 | ||
8159f87e | 914 | static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) |
71f8bd46 | 915 | { |
dd41f596 | 916 | sched_info_queued(p); |
fd390f6a | 917 | p->sched_class->enqueue_task(rq, p, wakeup); |
dd41f596 | 918 | p->se.on_rq = 1; |
71f8bd46 IM |
919 | } |
920 | ||
69be72c1 | 921 | static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) |
71f8bd46 | 922 | { |
f02231e5 | 923 | p->sched_class->dequeue_task(rq, p, sleep); |
dd41f596 | 924 | p->se.on_rq = 0; |
71f8bd46 IM |
925 | } |
926 | ||
14531189 | 927 | /* |
dd41f596 | 928 | * __normal_prio - return the priority that is based on the static prio |
14531189 | 929 | */ |
14531189 IM |
930 | static inline int __normal_prio(struct task_struct *p) |
931 | { | |
dd41f596 | 932 | return p->static_prio; |
14531189 IM |
933 | } |
934 | ||
b29739f9 IM |
935 | /* |
936 | * Calculate the expected normal priority: i.e. priority | |
937 | * without taking RT-inheritance into account. Might be | |
938 | * boosted by interactivity modifiers. Changes upon fork, | |
939 | * setprio syscalls, and whenever the interactivity | |
940 | * estimator recalculates. | |
941 | */ | |
36c8b586 | 942 | static inline int normal_prio(struct task_struct *p) |
b29739f9 IM |
943 | { |
944 | int prio; | |
945 | ||
e05606d3 | 946 | if (task_has_rt_policy(p)) |
b29739f9 IM |
947 | prio = MAX_RT_PRIO-1 - p->rt_priority; |
948 | else | |
949 | prio = __normal_prio(p); | |
950 | return prio; | |
951 | } | |
952 | ||
953 | /* | |
954 | * Calculate the current priority, i.e. the priority | |
955 | * taken into account by the scheduler. This value might | |
956 | * be boosted by RT tasks, or might be boosted by | |
957 | * interactivity modifiers. Will be RT if the task got | |
958 | * RT-boosted. If not then it returns p->normal_prio. | |
959 | */ | |
36c8b586 | 960 | static int effective_prio(struct task_struct *p) |
b29739f9 IM |
961 | { |
962 | p->normal_prio = normal_prio(p); | |
963 | /* | |
964 | * If we are RT tasks or we were boosted to RT priority, | |
965 | * keep the priority unchanged. Otherwise, update priority | |
966 | * to the normal priority: | |
967 | */ | |
968 | if (!rt_prio(p->prio)) | |
969 | return p->normal_prio; | |
970 | return p->prio; | |
971 | } | |
972 | ||
1da177e4 | 973 | /* |
dd41f596 | 974 | * activate_task - move a task to the runqueue. |
1da177e4 | 975 | */ |
dd41f596 | 976 | static void activate_task(struct rq *rq, struct task_struct *p, int wakeup) |
1da177e4 | 977 | { |
dd41f596 IM |
978 | if (p->state == TASK_UNINTERRUPTIBLE) |
979 | rq->nr_uninterruptible--; | |
1da177e4 | 980 | |
8159f87e | 981 | enqueue_task(rq, p, wakeup); |
e5fa2237 | 982 | inc_nr_running(p, rq); |
1da177e4 LT |
983 | } |
984 | ||
985 | /* | |
dd41f596 | 986 | * activate_idle_task - move idle task to the _front_ of runqueue. |
1da177e4 | 987 | */ |
dd41f596 | 988 | static inline void activate_idle_task(struct task_struct *p, struct rq *rq) |
1da177e4 | 989 | { |
a8e504d2 | 990 | update_rq_clock(rq); |
1da177e4 | 991 | |
dd41f596 IM |
992 | if (p->state == TASK_UNINTERRUPTIBLE) |
993 | rq->nr_uninterruptible--; | |
ece8a684 | 994 | |
8159f87e | 995 | enqueue_task(rq, p, 0); |
e5fa2237 | 996 | inc_nr_running(p, rq); |
1da177e4 LT |
997 | } |
998 | ||
999 | /* | |
1000 | * deactivate_task - remove a task from the runqueue. | |
1001 | */ | |
2e1cb74a | 1002 | static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep) |
1da177e4 | 1003 | { |
dd41f596 IM |
1004 | if (p->state == TASK_UNINTERRUPTIBLE) |
1005 | rq->nr_uninterruptible++; | |
1006 | ||
69be72c1 | 1007 | dequeue_task(rq, p, sleep); |
db53181e | 1008 | dec_nr_running(p, rq); |
1da177e4 LT |
1009 | } |
1010 | ||
1da177e4 LT |
1011 | /** |
1012 | * task_curr - is this task currently executing on a CPU? | |
1013 | * @p: the task in question. | |
1014 | */ | |
36c8b586 | 1015 | inline int task_curr(const struct task_struct *p) |
1da177e4 LT |
1016 | { |
1017 | return cpu_curr(task_cpu(p)) == p; | |
1018 | } | |
1019 | ||
2dd73a4f PW |
1020 | /* Used instead of source_load when we know the type == 0 */ |
1021 | unsigned long weighted_cpuload(const int cpu) | |
1022 | { | |
495eca49 | 1023 | return cpu_rq(cpu)->load.weight; |
dd41f596 IM |
1024 | } |
1025 | ||
1026 | static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) | |
1027 | { | |
1028 | #ifdef CONFIG_SMP | |
1029 | task_thread_info(p)->cpu = cpu; | |
dd41f596 | 1030 | #endif |
29f59db3 | 1031 | set_task_cfs_rq(p); |
2dd73a4f PW |
1032 | } |
1033 | ||
1da177e4 | 1034 | #ifdef CONFIG_SMP |
c65cc870 | 1035 | |
dd41f596 | 1036 | void set_task_cpu(struct task_struct *p, unsigned int new_cpu) |
c65cc870 | 1037 | { |
dd41f596 IM |
1038 | int old_cpu = task_cpu(p); |
1039 | struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu); | |
bbdba7c0 | 1040 | u64 clock_offset; |
dd41f596 IM |
1041 | |
1042 | clock_offset = old_rq->clock - new_rq->clock; | |
6cfb0d5d IM |
1043 | |
1044 | #ifdef CONFIG_SCHEDSTATS | |
1045 | if (p->se.wait_start) | |
1046 | p->se.wait_start -= clock_offset; | |
dd41f596 IM |
1047 | if (p->se.sleep_start) |
1048 | p->se.sleep_start -= clock_offset; | |
1049 | if (p->se.block_start) | |
1050 | p->se.block_start -= clock_offset; | |
6cfb0d5d | 1051 | #endif |
119fe5e0 MG |
1052 | if (likely(new_rq->cfs.min_vruntime)) |
1053 | p->se.vruntime -= old_rq->cfs.min_vruntime - | |
1054 | new_rq->cfs.min_vruntime; | |
dd41f596 IM |
1055 | |
1056 | __set_task_cpu(p, new_cpu); | |
c65cc870 IM |
1057 | } |
1058 | ||
70b97a7f | 1059 | struct migration_req { |
1da177e4 | 1060 | struct list_head list; |
1da177e4 | 1061 | |
36c8b586 | 1062 | struct task_struct *task; |
1da177e4 LT |
1063 | int dest_cpu; |
1064 | ||
1da177e4 | 1065 | struct completion done; |
70b97a7f | 1066 | }; |
1da177e4 LT |
1067 | |
1068 | /* | |
1069 | * The task's runqueue lock must be held. | |
1070 | * Returns true if you have to wait for migration thread. | |
1071 | */ | |
36c8b586 | 1072 | static int |
70b97a7f | 1073 | migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req) |
1da177e4 | 1074 | { |
70b97a7f | 1075 | struct rq *rq = task_rq(p); |
1da177e4 LT |
1076 | |
1077 | /* | |
1078 | * If the task is not on a runqueue (and not running), then | |
1079 | * it is sufficient to simply update the task's cpu field. | |
1080 | */ | |
dd41f596 | 1081 | if (!p->se.on_rq && !task_running(rq, p)) { |
1da177e4 LT |
1082 | set_task_cpu(p, dest_cpu); |
1083 | return 0; | |
1084 | } | |
1085 | ||
1086 | init_completion(&req->done); | |
1da177e4 LT |
1087 | req->task = p; |
1088 | req->dest_cpu = dest_cpu; | |
1089 | list_add(&req->list, &rq->migration_queue); | |
48f24c4d | 1090 | |
1da177e4 LT |
1091 | return 1; |
1092 | } | |
1093 | ||
1094 | /* | |
1095 | * wait_task_inactive - wait for a thread to unschedule. | |
1096 | * | |
1097 | * The caller must ensure that the task *will* unschedule sometime soon, | |
1098 | * else this function might spin for a *long* time. This function can't | |
1099 | * be called with interrupts off, or it may introduce deadlock with | |
1100 | * smp_call_function() if an IPI is sent by the same process we are | |
1101 | * waiting to become inactive. | |
1102 | */ | |
36c8b586 | 1103 | void wait_task_inactive(struct task_struct *p) |
1da177e4 LT |
1104 | { |
1105 | unsigned long flags; | |
dd41f596 | 1106 | int running, on_rq; |
70b97a7f | 1107 | struct rq *rq; |
1da177e4 LT |
1108 | |
1109 | repeat: | |
fa490cfd LT |
1110 | /* |
1111 | * We do the initial early heuristics without holding | |
1112 | * any task-queue locks at all. We'll only try to get | |
1113 | * the runqueue lock when things look like they will | |
1114 | * work out! | |
1115 | */ | |
1116 | rq = task_rq(p); | |
1117 | ||
1118 | /* | |
1119 | * If the task is actively running on another CPU | |
1120 | * still, just relax and busy-wait without holding | |
1121 | * any locks. | |
1122 | * | |
1123 | * NOTE! Since we don't hold any locks, it's not | |
1124 | * even sure that "rq" stays as the right runqueue! | |
1125 | * But we don't care, since "task_running()" will | |
1126 | * return false if the runqueue has changed and p | |
1127 | * is actually now running somewhere else! | |
1128 | */ | |
1129 | while (task_running(rq, p)) | |
1130 | cpu_relax(); | |
1131 | ||
1132 | /* | |
1133 | * Ok, time to look more closely! We need the rq | |
1134 | * lock now, to be *sure*. If we're wrong, we'll | |
1135 | * just go back and repeat. | |
1136 | */ | |
1da177e4 | 1137 | rq = task_rq_lock(p, &flags); |
fa490cfd | 1138 | running = task_running(rq, p); |
dd41f596 | 1139 | on_rq = p->se.on_rq; |
fa490cfd LT |
1140 | task_rq_unlock(rq, &flags); |
1141 | ||
1142 | /* | |
1143 | * Was it really running after all now that we | |
1144 | * checked with the proper locks actually held? | |
1145 | * | |
1146 | * Oops. Go back and try again.. | |
1147 | */ | |
1148 | if (unlikely(running)) { | |
1da177e4 | 1149 | cpu_relax(); |
1da177e4 LT |
1150 | goto repeat; |
1151 | } | |
fa490cfd LT |
1152 | |
1153 | /* | |
1154 | * It's not enough that it's not actively running, | |
1155 | * it must be off the runqueue _entirely_, and not | |
1156 | * preempted! | |
1157 | * | |
1158 | * So if it wa still runnable (but just not actively | |
1159 | * running right now), it's preempted, and we should | |
1160 | * yield - it could be a while. | |
1161 | */ | |
dd41f596 | 1162 | if (unlikely(on_rq)) { |
fa490cfd LT |
1163 | yield(); |
1164 | goto repeat; | |
1165 | } | |
1166 | ||
1167 | /* | |
1168 | * Ahh, all good. It wasn't running, and it wasn't | |
1169 | * runnable, which means that it will never become | |
1170 | * running in the future either. We're all done! | |
1171 | */ | |
1da177e4 LT |
1172 | } |
1173 | ||
1174 | /*** | |
1175 | * kick_process - kick a running thread to enter/exit the kernel | |
1176 | * @p: the to-be-kicked thread | |
1177 | * | |
1178 | * Cause a process which is running on another CPU to enter | |
1179 | * kernel-mode, without any delay. (to get signals handled.) | |
1180 | * | |
1181 | * NOTE: this function doesnt have to take the runqueue lock, | |
1182 | * because all it wants to ensure is that the remote task enters | |
1183 | * the kernel. If the IPI races and the task has been migrated | |
1184 | * to another CPU then no harm is done and the purpose has been | |
1185 | * achieved as well. | |
1186 | */ | |
36c8b586 | 1187 | void kick_process(struct task_struct *p) |
1da177e4 LT |
1188 | { |
1189 | int cpu; | |
1190 | ||
1191 | preempt_disable(); | |
1192 | cpu = task_cpu(p); | |
1193 | if ((cpu != smp_processor_id()) && task_curr(p)) | |
1194 | smp_send_reschedule(cpu); | |
1195 | preempt_enable(); | |
1196 | } | |
1197 | ||
1198 | /* | |
2dd73a4f PW |
1199 | * Return a low guess at the load of a migration-source cpu weighted |
1200 | * according to the scheduling class and "nice" value. | |
1da177e4 LT |
1201 | * |
1202 | * We want to under-estimate the load of migration sources, to | |
1203 | * balance conservatively. | |
1204 | */ | |
a2000572 | 1205 | static inline unsigned long source_load(int cpu, int type) |
1da177e4 | 1206 | { |
70b97a7f | 1207 | struct rq *rq = cpu_rq(cpu); |
dd41f596 | 1208 | unsigned long total = weighted_cpuload(cpu); |
2dd73a4f | 1209 | |
3b0bd9bc | 1210 | if (type == 0) |
dd41f596 | 1211 | return total; |
b910472d | 1212 | |
dd41f596 | 1213 | return min(rq->cpu_load[type-1], total); |
1da177e4 LT |
1214 | } |
1215 | ||
1216 | /* | |
2dd73a4f PW |
1217 | * Return a high guess at the load of a migration-target cpu weighted |
1218 | * according to the scheduling class and "nice" value. | |
1da177e4 | 1219 | */ |
a2000572 | 1220 | static inline unsigned long target_load(int cpu, int type) |
1da177e4 | 1221 | { |
70b97a7f | 1222 | struct rq *rq = cpu_rq(cpu); |
dd41f596 | 1223 | unsigned long total = weighted_cpuload(cpu); |
2dd73a4f | 1224 | |
7897986b | 1225 | if (type == 0) |
dd41f596 | 1226 | return total; |
3b0bd9bc | 1227 | |
dd41f596 | 1228 | return max(rq->cpu_load[type-1], total); |
2dd73a4f PW |
1229 | } |
1230 | ||
1231 | /* | |
1232 | * Return the average load per task on the cpu's run queue | |
1233 | */ | |
1234 | static inline unsigned long cpu_avg_load_per_task(int cpu) | |
1235 | { | |
70b97a7f | 1236 | struct rq *rq = cpu_rq(cpu); |
dd41f596 | 1237 | unsigned long total = weighted_cpuload(cpu); |
2dd73a4f PW |
1238 | unsigned long n = rq->nr_running; |
1239 | ||
dd41f596 | 1240 | return n ? total / n : SCHED_LOAD_SCALE; |
1da177e4 LT |
1241 | } |
1242 | ||
147cbb4b NP |
1243 | /* |
1244 | * find_idlest_group finds and returns the least busy CPU group within the | |
1245 | * domain. | |
1246 | */ | |
1247 | static struct sched_group * | |
1248 | find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) | |
1249 | { | |
1250 | struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups; | |
1251 | unsigned long min_load = ULONG_MAX, this_load = 0; | |
1252 | int load_idx = sd->forkexec_idx; | |
1253 | int imbalance = 100 + (sd->imbalance_pct-100)/2; | |
1254 | ||
1255 | do { | |
1256 | unsigned long load, avg_load; | |
1257 | int local_group; | |
1258 | int i; | |
1259 | ||
da5a5522 BD |
1260 | /* Skip over this group if it has no CPUs allowed */ |
1261 | if (!cpus_intersects(group->cpumask, p->cpus_allowed)) | |
1262 | goto nextgroup; | |
1263 | ||
147cbb4b | 1264 | local_group = cpu_isset(this_cpu, group->cpumask); |
147cbb4b NP |
1265 | |
1266 | /* Tally up the load of all CPUs in the group */ | |
1267 | avg_load = 0; | |
1268 | ||
1269 | for_each_cpu_mask(i, group->cpumask) { | |
1270 | /* Bias balancing toward cpus of our domain */ | |
1271 | if (local_group) | |
1272 | load = source_load(i, load_idx); | |
1273 | else | |
1274 | load = target_load(i, load_idx); | |
1275 | ||
1276 | avg_load += load; | |
1277 | } | |
1278 | ||
1279 | /* Adjust by relative CPU power of the group */ | |
5517d86b ED |
1280 | avg_load = sg_div_cpu_power(group, |
1281 | avg_load * SCHED_LOAD_SCALE); | |
147cbb4b NP |
1282 | |
1283 | if (local_group) { | |
1284 | this_load = avg_load; | |
1285 | this = group; | |
1286 | } else if (avg_load < min_load) { | |
1287 | min_load = avg_load; | |
1288 | idlest = group; | |
1289 | } | |
da5a5522 | 1290 | nextgroup: |
147cbb4b NP |
1291 | group = group->next; |
1292 | } while (group != sd->groups); | |
1293 | ||
1294 | if (!idlest || 100*this_load < imbalance*min_load) | |
1295 | return NULL; | |
1296 | return idlest; | |
1297 | } | |
1298 | ||
1299 | /* | |
0feaece9 | 1300 | * find_idlest_cpu - find the idlest cpu among the cpus in group. |
147cbb4b | 1301 | */ |
95cdf3b7 IM |
1302 | static int |
1303 | find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) | |
147cbb4b | 1304 | { |
da5a5522 | 1305 | cpumask_t tmp; |
147cbb4b NP |
1306 | unsigned long load, min_load = ULONG_MAX; |
1307 | int idlest = -1; | |
1308 | int i; | |
1309 | ||
da5a5522 BD |
1310 | /* Traverse only the allowed CPUs */ |
1311 | cpus_and(tmp, group->cpumask, p->cpus_allowed); | |
1312 | ||
1313 | for_each_cpu_mask(i, tmp) { | |
2dd73a4f | 1314 | load = weighted_cpuload(i); |
147cbb4b NP |
1315 | |
1316 | if (load < min_load || (load == min_load && i == this_cpu)) { | |
1317 | min_load = load; | |
1318 | idlest = i; | |
1319 | } | |
1320 | } | |
1321 | ||
1322 | return idlest; | |
1323 | } | |
1324 | ||
476d139c NP |
1325 | /* |
1326 | * sched_balance_self: balance the current task (running on cpu) in domains | |
1327 | * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and | |
1328 | * SD_BALANCE_EXEC. | |
1329 | * | |
1330 | * Balance, ie. select the least loaded group. | |
1331 | * | |
1332 | * Returns the target CPU number, or the same CPU if no balancing is needed. | |
1333 | * | |
1334 | * preempt must be disabled. | |
1335 | */ | |
1336 | static int sched_balance_self(int cpu, int flag) | |
1337 | { | |
1338 | struct task_struct *t = current; | |
1339 | struct sched_domain *tmp, *sd = NULL; | |
147cbb4b | 1340 | |
c96d145e | 1341 | for_each_domain(cpu, tmp) { |
9761eea8 IM |
1342 | /* |
1343 | * If power savings logic is enabled for a domain, stop there. | |
1344 | */ | |
5c45bf27 SS |
1345 | if (tmp->flags & SD_POWERSAVINGS_BALANCE) |
1346 | break; | |
476d139c NP |
1347 | if (tmp->flags & flag) |
1348 | sd = tmp; | |
c96d145e | 1349 | } |
476d139c NP |
1350 | |
1351 | while (sd) { | |
1352 | cpumask_t span; | |
1353 | struct sched_group *group; | |
1a848870 SS |
1354 | int new_cpu, weight; |
1355 | ||
1356 | if (!(sd->flags & flag)) { | |
1357 | sd = sd->child; | |
1358 | continue; | |
1359 | } | |
476d139c NP |
1360 | |
1361 | span = sd->span; | |
1362 | group = find_idlest_group(sd, t, cpu); | |
1a848870 SS |
1363 | if (!group) { |
1364 | sd = sd->child; | |
1365 | continue; | |
1366 | } | |
476d139c | 1367 | |
da5a5522 | 1368 | new_cpu = find_idlest_cpu(group, t, cpu); |
1a848870 SS |
1369 | if (new_cpu == -1 || new_cpu == cpu) { |
1370 | /* Now try balancing at a lower domain level of cpu */ | |
1371 | sd = sd->child; | |
1372 | continue; | |
1373 | } | |
476d139c | 1374 | |
1a848870 | 1375 | /* Now try balancing at a lower domain level of new_cpu */ |
476d139c | 1376 | cpu = new_cpu; |
476d139c NP |
1377 | sd = NULL; |
1378 | weight = cpus_weight(span); | |
1379 | for_each_domain(cpu, tmp) { | |
1380 | if (weight <= cpus_weight(tmp->span)) | |
1381 | break; | |
1382 | if (tmp->flags & flag) | |
1383 | sd = tmp; | |
1384 | } | |
1385 | /* while loop will break here if sd == NULL */ | |
1386 | } | |
1387 | ||
1388 | return cpu; | |
1389 | } | |
1390 | ||
1391 | #endif /* CONFIG_SMP */ | |
1da177e4 LT |
1392 | |
1393 | /* | |
1394 | * wake_idle() will wake a task on an idle cpu if task->cpu is | |
1395 | * not idle and an idle cpu is available. The span of cpus to | |
1396 | * search starts with cpus closest then further out as needed, | |
1397 | * so we always favor a closer, idle cpu. | |
1398 | * | |
1399 | * Returns the CPU we should wake onto. | |
1400 | */ | |
1401 | #if defined(ARCH_HAS_SCHED_WAKE_IDLE) | |
36c8b586 | 1402 | static int wake_idle(int cpu, struct task_struct *p) |
1da177e4 LT |
1403 | { |
1404 | cpumask_t tmp; | |
1405 | struct sched_domain *sd; | |
1406 | int i; | |
1407 | ||
4953198b SS |
1408 | /* |
1409 | * If it is idle, then it is the best cpu to run this task. | |
1410 | * | |
1411 | * This cpu is also the best, if it has more than one task already. | |
1412 | * Siblings must be also busy(in most cases) as they didn't already | |
1413 | * pickup the extra load from this cpu and hence we need not check | |
1414 | * sibling runqueue info. This will avoid the checks and cache miss | |
1415 | * penalities associated with that. | |
1416 | */ | |
1417 | if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1) | |
1da177e4 LT |
1418 | return cpu; |
1419 | ||
1420 | for_each_domain(cpu, sd) { | |
1421 | if (sd->flags & SD_WAKE_IDLE) { | |
e0f364f4 | 1422 | cpus_and(tmp, sd->span, p->cpus_allowed); |
1da177e4 LT |
1423 | for_each_cpu_mask(i, tmp) { |
1424 | if (idle_cpu(i)) | |
1425 | return i; | |
1426 | } | |
9761eea8 | 1427 | } else { |
e0f364f4 | 1428 | break; |
9761eea8 | 1429 | } |
1da177e4 LT |
1430 | } |
1431 | return cpu; | |
1432 | } | |
1433 | #else | |
36c8b586 | 1434 | static inline int wake_idle(int cpu, struct task_struct *p) |
1da177e4 LT |
1435 | { |
1436 | return cpu; | |
1437 | } | |
1438 | #endif | |
1439 | ||
1440 | /*** | |
1441 | * try_to_wake_up - wake up a thread | |
1442 | * @p: the to-be-woken-up thread | |
1443 | * @state: the mask of task states that can be woken | |
1444 | * @sync: do a synchronous wakeup? | |
1445 | * | |
1446 | * Put it on the run-queue if it's not already there. The "current" | |
1447 | * thread is always on the run-queue (except when the actual | |
1448 | * re-schedule is in progress), and as such you're allowed to do | |
1449 | * the simpler "current->state = TASK_RUNNING" to mark yourself | |
1450 | * runnable without the overhead of this. | |
1451 | * | |
1452 | * returns failure only if the task is already active. | |
1453 | */ | |
36c8b586 | 1454 | static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) |
1da177e4 LT |
1455 | { |
1456 | int cpu, this_cpu, success = 0; | |
1457 | unsigned long flags; | |
1458 | long old_state; | |
70b97a7f | 1459 | struct rq *rq; |
1da177e4 | 1460 | #ifdef CONFIG_SMP |
7897986b | 1461 | struct sched_domain *sd, *this_sd = NULL; |
70b97a7f | 1462 | unsigned long load, this_load; |
1da177e4 LT |
1463 | int new_cpu; |
1464 | #endif | |
1465 | ||
1466 | rq = task_rq_lock(p, &flags); | |
1467 | old_state = p->state; | |
1468 | if (!(old_state & state)) | |
1469 | goto out; | |
1470 | ||
dd41f596 | 1471 | if (p->se.on_rq) |
1da177e4 LT |
1472 | goto out_running; |
1473 | ||
1474 | cpu = task_cpu(p); | |
1475 | this_cpu = smp_processor_id(); | |
1476 | ||
1477 | #ifdef CONFIG_SMP | |
1478 | if (unlikely(task_running(rq, p))) | |
1479 | goto out_activate; | |
1480 | ||
7897986b NP |
1481 | new_cpu = cpu; |
1482 | ||
1da177e4 LT |
1483 | schedstat_inc(rq, ttwu_cnt); |
1484 | if (cpu == this_cpu) { | |
1485 | schedstat_inc(rq, ttwu_local); | |
7897986b NP |
1486 | goto out_set_cpu; |
1487 | } | |
1488 | ||
1489 | for_each_domain(this_cpu, sd) { | |
1490 | if (cpu_isset(cpu, sd->span)) { | |
1491 | schedstat_inc(sd, ttwu_wake_remote); | |
1492 | this_sd = sd; | |
1493 | break; | |
1da177e4 LT |
1494 | } |
1495 | } | |
1da177e4 | 1496 | |
7897986b | 1497 | if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed))) |
1da177e4 LT |
1498 | goto out_set_cpu; |
1499 | ||
1da177e4 | 1500 | /* |
7897986b | 1501 | * Check for affine wakeup and passive balancing possibilities. |
1da177e4 | 1502 | */ |
7897986b NP |
1503 | if (this_sd) { |
1504 | int idx = this_sd->wake_idx; | |
1505 | unsigned int imbalance; | |
1da177e4 | 1506 | |
a3f21bce NP |
1507 | imbalance = 100 + (this_sd->imbalance_pct - 100) / 2; |
1508 | ||
7897986b NP |
1509 | load = source_load(cpu, idx); |
1510 | this_load = target_load(this_cpu, idx); | |
1da177e4 | 1511 | |
7897986b NP |
1512 | new_cpu = this_cpu; /* Wake to this CPU if we can */ |
1513 | ||
a3f21bce NP |
1514 | if (this_sd->flags & SD_WAKE_AFFINE) { |
1515 | unsigned long tl = this_load; | |
33859f7f MOS |
1516 | unsigned long tl_per_task; |
1517 | ||
1518 | tl_per_task = cpu_avg_load_per_task(this_cpu); | |
2dd73a4f | 1519 | |
1da177e4 | 1520 | /* |
a3f21bce NP |
1521 | * If sync wakeup then subtract the (maximum possible) |
1522 | * effect of the currently running task from the load | |
1523 | * of the current CPU: | |
1da177e4 | 1524 | */ |
a3f21bce | 1525 | if (sync) |
dd41f596 | 1526 | tl -= current->se.load.weight; |
a3f21bce NP |
1527 | |
1528 | if ((tl <= load && | |
2dd73a4f | 1529 | tl + target_load(cpu, idx) <= tl_per_task) || |
dd41f596 | 1530 | 100*(tl + p->se.load.weight) <= imbalance*load) { |
a3f21bce NP |
1531 | /* |
1532 | * This domain has SD_WAKE_AFFINE and | |
1533 | * p is cache cold in this domain, and | |
1534 | * there is no bad imbalance. | |
1535 | */ | |
1536 | schedstat_inc(this_sd, ttwu_move_affine); | |
1537 | goto out_set_cpu; | |
1538 | } | |
1539 | } | |
1540 | ||
1541 | /* | |
1542 | * Start passive balancing when half the imbalance_pct | |
1543 | * limit is reached. | |
1544 | */ | |
1545 | if (this_sd->flags & SD_WAKE_BALANCE) { | |
1546 | if (imbalance*this_load <= 100*load) { | |
1547 | schedstat_inc(this_sd, ttwu_move_balance); | |
1548 | goto out_set_cpu; | |
1549 | } | |
1da177e4 LT |
1550 | } |
1551 | } | |
1552 | ||
1553 | new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */ | |
1554 | out_set_cpu: | |
1555 | new_cpu = wake_idle(new_cpu, p); | |
1556 | if (new_cpu != cpu) { | |
1557 | set_task_cpu(p, new_cpu); | |
1558 | task_rq_unlock(rq, &flags); | |
1559 | /* might preempt at this point */ | |
1560 | rq = task_rq_lock(p, &flags); | |
1561 | old_state = p->state; | |
1562 | if (!(old_state & state)) | |
1563 | goto out; | |
dd41f596 | 1564 | if (p->se.on_rq) |
1da177e4 LT |
1565 | goto out_running; |
1566 | ||
1567 | this_cpu = smp_processor_id(); | |
1568 | cpu = task_cpu(p); | |
1569 | } | |
1570 | ||
1571 | out_activate: | |
1572 | #endif /* CONFIG_SMP */ | |
2daa3577 | 1573 | update_rq_clock(rq); |
dd41f596 | 1574 | activate_task(rq, p, 1); |
1da177e4 LT |
1575 | /* |
1576 | * Sync wakeups (i.e. those types of wakeups where the waker | |
1577 | * has indicated that it will leave the CPU in short order) | |
1578 | * don't trigger a preemption, if the woken up task will run on | |
1579 | * this cpu. (in this case the 'I will reschedule' promise of | |
1580 | * the waker guarantees that the freshly woken up task is going | |
1581 | * to be considered on this CPU.) | |
1582 | */ | |
dd41f596 IM |
1583 | if (!sync || cpu != this_cpu) |
1584 | check_preempt_curr(rq, p); | |
1da177e4 LT |
1585 | success = 1; |
1586 | ||
1587 | out_running: | |
1588 | p->state = TASK_RUNNING; | |
1589 | out: | |
1590 | task_rq_unlock(rq, &flags); | |
1591 | ||
1592 | return success; | |
1593 | } | |
1594 | ||
36c8b586 | 1595 | int fastcall wake_up_process(struct task_struct *p) |
1da177e4 LT |
1596 | { |
1597 | return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED | | |
1598 | TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0); | |
1599 | } | |
1da177e4 LT |
1600 | EXPORT_SYMBOL(wake_up_process); |
1601 | ||
36c8b586 | 1602 | int fastcall wake_up_state(struct task_struct *p, unsigned int state) |
1da177e4 LT |
1603 | { |
1604 | return try_to_wake_up(p, state, 0); | |
1605 | } | |
1606 | ||
1da177e4 LT |
1607 | /* |
1608 | * Perform scheduler related setup for a newly forked process p. | |
1609 | * p is forked by current. | |
dd41f596 IM |
1610 | * |
1611 | * __sched_fork() is basic setup used by init_idle() too: | |
1612 | */ | |
1613 | static void __sched_fork(struct task_struct *p) | |
1614 | { | |
dd41f596 IM |
1615 | p->se.exec_start = 0; |
1616 | p->se.sum_exec_runtime = 0; | |
f6cf891c | 1617 | p->se.prev_sum_exec_runtime = 0; |
67e9fb2a | 1618 | p->se.last_min_vruntime = 0; |
6cfb0d5d IM |
1619 | |
1620 | #ifdef CONFIG_SCHEDSTATS | |
1621 | p->se.wait_start = 0; | |
dd41f596 IM |
1622 | p->se.sum_sleep_runtime = 0; |
1623 | p->se.sleep_start = 0; | |
dd41f596 IM |
1624 | p->se.block_start = 0; |
1625 | p->se.sleep_max = 0; | |
1626 | p->se.block_max = 0; | |
1627 | p->se.exec_max = 0; | |
eba1ed4b | 1628 | p->se.slice_max = 0; |
dd41f596 | 1629 | p->se.wait_max = 0; |
6cfb0d5d | 1630 | #endif |
476d139c | 1631 | |
dd41f596 IM |
1632 | INIT_LIST_HEAD(&p->run_list); |
1633 | p->se.on_rq = 0; | |
476d139c | 1634 | |
e107be36 AK |
1635 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
1636 | INIT_HLIST_HEAD(&p->preempt_notifiers); | |
1637 | #endif | |
1638 | ||
1da177e4 LT |
1639 | /* |
1640 | * We mark the process as running here, but have not actually | |
1641 | * inserted it onto the runqueue yet. This guarantees that | |
1642 | * nobody will actually run it, and a signal or other external | |
1643 | * event cannot wake it up and insert it on the runqueue either. | |
1644 | */ | |
1645 | p->state = TASK_RUNNING; | |
dd41f596 IM |
1646 | } |
1647 | ||
1648 | /* | |
1649 | * fork()/clone()-time setup: | |
1650 | */ | |
1651 | void sched_fork(struct task_struct *p, int clone_flags) | |
1652 | { | |
1653 | int cpu = get_cpu(); | |
1654 | ||
1655 | __sched_fork(p); | |
1656 | ||
1657 | #ifdef CONFIG_SMP | |
1658 | cpu = sched_balance_self(cpu, SD_BALANCE_FORK); | |
1659 | #endif | |
1660 | __set_task_cpu(p, cpu); | |
b29739f9 IM |
1661 | |
1662 | /* | |
1663 | * Make sure we do not leak PI boosting priority to the child: | |
1664 | */ | |
1665 | p->prio = current->normal_prio; | |
1666 | ||
52f17b6c | 1667 | #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) |
dd41f596 | 1668 | if (likely(sched_info_on())) |
52f17b6c | 1669 | memset(&p->sched_info, 0, sizeof(p->sched_info)); |
1da177e4 | 1670 | #endif |
d6077cb8 | 1671 | #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) |
4866cde0 NP |
1672 | p->oncpu = 0; |
1673 | #endif | |
1da177e4 | 1674 | #ifdef CONFIG_PREEMPT |
4866cde0 | 1675 | /* Want to start with kernel preemption disabled. */ |
a1261f54 | 1676 | task_thread_info(p)->preempt_count = 1; |
1da177e4 | 1677 | #endif |
476d139c | 1678 | put_cpu(); |
1da177e4 LT |
1679 | } |
1680 | ||
1681 | /* | |
1682 | * wake_up_new_task - wake up a newly created task for the first time. | |
1683 | * | |
1684 | * This function will do some initial scheduler statistics housekeeping | |
1685 | * that must be done for every newly created context, then puts the task | |
1686 | * on the runqueue and wakes it. | |
1687 | */ | |
36c8b586 | 1688 | void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags) |
1da177e4 LT |
1689 | { |
1690 | unsigned long flags; | |
dd41f596 IM |
1691 | struct rq *rq; |
1692 | int this_cpu; | |
1da177e4 LT |
1693 | |
1694 | rq = task_rq_lock(p, &flags); | |
147cbb4b | 1695 | BUG_ON(p->state != TASK_RUNNING); |
dd41f596 | 1696 | this_cpu = smp_processor_id(); /* parent's CPU */ |
a8e504d2 | 1697 | update_rq_clock(rq); |
1da177e4 LT |
1698 | |
1699 | p->prio = effective_prio(p); | |
1700 | ||
9c95e731 HS |
1701 | if (rt_prio(p->prio)) |
1702 | p->sched_class = &rt_sched_class; | |
1703 | else | |
1704 | p->sched_class = &fair_sched_class; | |
1705 | ||
44142fac IM |
1706 | if (task_cpu(p) != this_cpu || !p->sched_class->task_new || |
1707 | !current->se.on_rq) { | |
dd41f596 | 1708 | activate_task(rq, p, 0); |
1da177e4 | 1709 | } else { |
1da177e4 | 1710 | /* |
dd41f596 IM |
1711 | * Let the scheduling class do new task startup |
1712 | * management (if any): | |
1da177e4 | 1713 | */ |
ee0827d8 | 1714 | p->sched_class->task_new(rq, p); |
e5fa2237 | 1715 | inc_nr_running(p, rq); |
1da177e4 | 1716 | } |
dd41f596 IM |
1717 | check_preempt_curr(rq, p); |
1718 | task_rq_unlock(rq, &flags); | |
1da177e4 LT |
1719 | } |
1720 | ||
e107be36 AK |
1721 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
1722 | ||
1723 | /** | |
421cee29 RD |
1724 | * preempt_notifier_register - tell me when current is being being preempted & rescheduled |
1725 | * @notifier: notifier struct to register | |
e107be36 AK |
1726 | */ |
1727 | void preempt_notifier_register(struct preempt_notifier *notifier) | |
1728 | { | |
1729 | hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); | |
1730 | } | |
1731 | EXPORT_SYMBOL_GPL(preempt_notifier_register); | |
1732 | ||
1733 | /** | |
1734 | * preempt_notifier_unregister - no longer interested in preemption notifications | |
421cee29 | 1735 | * @notifier: notifier struct to unregister |
e107be36 AK |
1736 | * |
1737 | * This is safe to call from within a preemption notifier. | |
1738 | */ | |
1739 | void preempt_notifier_unregister(struct preempt_notifier *notifier) | |
1740 | { | |
1741 | hlist_del(¬ifier->link); | |
1742 | } | |
1743 | EXPORT_SYMBOL_GPL(preempt_notifier_unregister); | |
1744 | ||
1745 | static void fire_sched_in_preempt_notifiers(struct task_struct *curr) | |
1746 | { | |
1747 | struct preempt_notifier *notifier; | |
1748 | struct hlist_node *node; | |
1749 | ||
1750 | hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) | |
1751 | notifier->ops->sched_in(notifier, raw_smp_processor_id()); | |
1752 | } | |
1753 | ||
1754 | static void | |
1755 | fire_sched_out_preempt_notifiers(struct task_struct *curr, | |
1756 | struct task_struct *next) | |
1757 | { | |
1758 | struct preempt_notifier *notifier; | |
1759 | struct hlist_node *node; | |
1760 | ||
1761 | hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) | |
1762 | notifier->ops->sched_out(notifier, next); | |
1763 | } | |
1764 | ||
1765 | #else | |
1766 | ||
1767 | static void fire_sched_in_preempt_notifiers(struct task_struct *curr) | |
1768 | { | |
1769 | } | |
1770 | ||
1771 | static void | |
1772 | fire_sched_out_preempt_notifiers(struct task_struct *curr, | |
1773 | struct task_struct *next) | |
1774 | { | |
1775 | } | |
1776 | ||
1777 | #endif | |
1778 | ||
4866cde0 NP |
1779 | /** |
1780 | * prepare_task_switch - prepare to switch tasks | |
1781 | * @rq: the runqueue preparing to switch | |
421cee29 | 1782 | * @prev: the current task that is being switched out |
4866cde0 NP |
1783 | * @next: the task we are going to switch to. |
1784 | * | |
1785 | * This is called with the rq lock held and interrupts off. It must | |
1786 | * be paired with a subsequent finish_task_switch after the context | |
1787 | * switch. | |
1788 | * | |
1789 | * prepare_task_switch sets up locking and calls architecture specific | |
1790 | * hooks. | |
1791 | */ | |
e107be36 AK |
1792 | static inline void |
1793 | prepare_task_switch(struct rq *rq, struct task_struct *prev, | |
1794 | struct task_struct *next) | |
4866cde0 | 1795 | { |
e107be36 | 1796 | fire_sched_out_preempt_notifiers(prev, next); |
4866cde0 NP |
1797 | prepare_lock_switch(rq, next); |
1798 | prepare_arch_switch(next); | |
1799 | } | |
1800 | ||
1da177e4 LT |
1801 | /** |
1802 | * finish_task_switch - clean up after a task-switch | |
344babaa | 1803 | * @rq: runqueue associated with task-switch |
1da177e4 LT |
1804 | * @prev: the thread we just switched away from. |
1805 | * | |
4866cde0 NP |
1806 | * finish_task_switch must be called after the context switch, paired |
1807 | * with a prepare_task_switch call before the context switch. | |
1808 | * finish_task_switch will reconcile locking set up by prepare_task_switch, | |
1809 | * and do any other architecture-specific cleanup actions. | |
1da177e4 LT |
1810 | * |
1811 | * Note that we may have delayed dropping an mm in context_switch(). If | |
1812 | * so, we finish that here outside of the runqueue lock. (Doing it | |
1813 | * with the lock held can cause deadlocks; see schedule() for | |
1814 | * details.) | |
1815 | */ | |
70b97a7f | 1816 | static inline void finish_task_switch(struct rq *rq, struct task_struct *prev) |
1da177e4 LT |
1817 | __releases(rq->lock) |
1818 | { | |
1da177e4 | 1819 | struct mm_struct *mm = rq->prev_mm; |
55a101f8 | 1820 | long prev_state; |
1da177e4 LT |
1821 | |
1822 | rq->prev_mm = NULL; | |
1823 | ||
1824 | /* | |
1825 | * A task struct has one reference for the use as "current". | |
c394cc9f | 1826 | * If a task dies, then it sets TASK_DEAD in tsk->state and calls |
55a101f8 ON |
1827 | * schedule one last time. The schedule call will never return, and |
1828 | * the scheduled task must drop that reference. | |
c394cc9f | 1829 | * The test for TASK_DEAD must occur while the runqueue locks are |
1da177e4 LT |
1830 | * still held, otherwise prev could be scheduled on another cpu, die |
1831 | * there before we look at prev->state, and then the reference would | |
1832 | * be dropped twice. | |
1833 | * Manfred Spraul <[email protected]> | |
1834 | */ | |
55a101f8 | 1835 | prev_state = prev->state; |
4866cde0 NP |
1836 | finish_arch_switch(prev); |
1837 | finish_lock_switch(rq, prev); | |
e107be36 | 1838 | fire_sched_in_preempt_notifiers(current); |
1da177e4 LT |
1839 | if (mm) |
1840 | mmdrop(mm); | |
c394cc9f | 1841 | if (unlikely(prev_state == TASK_DEAD)) { |
c6fd91f0 | 1842 | /* |
1843 | * Remove function-return probe instances associated with this | |
1844 | * task and put them back on the free list. | |
9761eea8 | 1845 | */ |
c6fd91f0 | 1846 | kprobe_flush_task(prev); |
1da177e4 | 1847 | put_task_struct(prev); |
c6fd91f0 | 1848 | } |
1da177e4 LT |
1849 | } |
1850 | ||
1851 | /** | |
1852 | * schedule_tail - first thing a freshly forked thread must call. | |
1853 | * @prev: the thread we just switched away from. | |
1854 | */ | |
36c8b586 | 1855 | asmlinkage void schedule_tail(struct task_struct *prev) |
1da177e4 LT |
1856 | __releases(rq->lock) |
1857 | { | |
70b97a7f IM |
1858 | struct rq *rq = this_rq(); |
1859 | ||
4866cde0 NP |
1860 | finish_task_switch(rq, prev); |
1861 | #ifdef __ARCH_WANT_UNLOCKED_CTXSW | |
1862 | /* In this case, finish_task_switch does not reenable preemption */ | |
1863 | preempt_enable(); | |
1864 | #endif | |
1da177e4 LT |
1865 | if (current->set_child_tid) |
1866 | put_user(current->pid, current->set_child_tid); | |
1867 | } | |
1868 | ||
1869 | /* | |
1870 | * context_switch - switch to the new MM and the new | |
1871 | * thread's register state. | |
1872 | */ | |
dd41f596 | 1873 | static inline void |
70b97a7f | 1874 | context_switch(struct rq *rq, struct task_struct *prev, |
36c8b586 | 1875 | struct task_struct *next) |
1da177e4 | 1876 | { |
dd41f596 | 1877 | struct mm_struct *mm, *oldmm; |
1da177e4 | 1878 | |
e107be36 | 1879 | prepare_task_switch(rq, prev, next); |
dd41f596 IM |
1880 | mm = next->mm; |
1881 | oldmm = prev->active_mm; | |
9226d125 ZA |
1882 | /* |
1883 | * For paravirt, this is coupled with an exit in switch_to to | |
1884 | * combine the page table reload and the switch backend into | |
1885 | * one hypercall. | |
1886 | */ | |
1887 | arch_enter_lazy_cpu_mode(); | |
1888 | ||
dd41f596 | 1889 | if (unlikely(!mm)) { |
1da177e4 LT |
1890 | next->active_mm = oldmm; |
1891 | atomic_inc(&oldmm->mm_count); | |
1892 | enter_lazy_tlb(oldmm, next); | |
1893 | } else | |
1894 | switch_mm(oldmm, mm, next); | |
1895 | ||
dd41f596 | 1896 | if (unlikely(!prev->mm)) { |
1da177e4 | 1897 | prev->active_mm = NULL; |
1da177e4 LT |
1898 | rq->prev_mm = oldmm; |
1899 | } | |
3a5f5e48 IM |
1900 | /* |
1901 | * Since the runqueue lock will be released by the next | |
1902 | * task (which is an invalid locking op but in the case | |
1903 | * of the scheduler it's an obvious special-case), so we | |
1904 | * do an early lockdep release here: | |
1905 | */ | |
1906 | #ifndef __ARCH_WANT_UNLOCKED_CTXSW | |
8a25d5de | 1907 | spin_release(&rq->lock.dep_map, 1, _THIS_IP_); |
3a5f5e48 | 1908 | #endif |
1da177e4 LT |
1909 | |
1910 | /* Here we just switch the register state and the stack. */ | |
1911 | switch_to(prev, next, prev); | |
1912 | ||
dd41f596 IM |
1913 | barrier(); |
1914 | /* | |
1915 | * this_rq must be evaluated again because prev may have moved | |
1916 | * CPUs since it called schedule(), thus the 'rq' on its stack | |
1917 | * frame will be invalid. | |
1918 | */ | |
1919 | finish_task_switch(this_rq(), prev); | |
1da177e4 LT |
1920 | } |
1921 | ||
1922 | /* | |
1923 | * nr_running, nr_uninterruptible and nr_context_switches: | |
1924 | * | |
1925 | * externally visible scheduler statistics: current number of runnable | |
1926 | * threads, current number of uninterruptible-sleeping threads, total | |
1927 | * number of context switches performed since bootup. | |
1928 | */ | |
1929 | unsigned long nr_running(void) | |
1930 | { | |
1931 | unsigned long i, sum = 0; | |
1932 | ||
1933 | for_each_online_cpu(i) | |
1934 | sum += cpu_rq(i)->nr_running; | |
1935 | ||
1936 | return sum; | |
1937 | } | |
1938 | ||
1939 | unsigned long nr_uninterruptible(void) | |
1940 | { | |
1941 | unsigned long i, sum = 0; | |
1942 | ||
0a945022 | 1943 | for_each_possible_cpu(i) |
1da177e4 LT |
1944 | sum += cpu_rq(i)->nr_uninterruptible; |
1945 | ||
1946 | /* | |
1947 | * Since we read the counters lockless, it might be slightly | |
1948 | * inaccurate. Do not allow it to go below zero though: | |
1949 | */ | |
1950 | if (unlikely((long)sum < 0)) | |
1951 | sum = 0; | |
1952 | ||
1953 | return sum; | |
1954 | } | |
1955 | ||
1956 | unsigned long long nr_context_switches(void) | |
1957 | { | |
cc94abfc SR |
1958 | int i; |
1959 | unsigned long long sum = 0; | |
1da177e4 | 1960 | |
0a945022 | 1961 | for_each_possible_cpu(i) |
1da177e4 LT |
1962 | sum += cpu_rq(i)->nr_switches; |
1963 | ||
1964 | return sum; | |
1965 | } | |
1966 | ||
1967 | unsigned long nr_iowait(void) | |
1968 | { | |
1969 | unsigned long i, sum = 0; | |
1970 | ||
0a945022 | 1971 | for_each_possible_cpu(i) |
1da177e4 LT |
1972 | sum += atomic_read(&cpu_rq(i)->nr_iowait); |
1973 | ||
1974 | return sum; | |
1975 | } | |
1976 | ||
db1b1fef JS |
1977 | unsigned long nr_active(void) |
1978 | { | |
1979 | unsigned long i, running = 0, uninterruptible = 0; | |
1980 | ||
1981 | for_each_online_cpu(i) { | |
1982 | running += cpu_rq(i)->nr_running; | |
1983 | uninterruptible += cpu_rq(i)->nr_uninterruptible; | |
1984 | } | |
1985 | ||
1986 | if (unlikely((long)uninterruptible < 0)) | |
1987 | uninterruptible = 0; | |
1988 | ||
1989 | return running + uninterruptible; | |
1990 | } | |
1991 | ||
48f24c4d | 1992 | /* |
dd41f596 IM |
1993 | * Update rq->cpu_load[] statistics. This function is usually called every |
1994 | * scheduler tick (TICK_NSEC). | |
48f24c4d | 1995 | */ |
dd41f596 | 1996 | static void update_cpu_load(struct rq *this_rq) |
48f24c4d | 1997 | { |
495eca49 | 1998 | unsigned long this_load = this_rq->load.weight; |
dd41f596 IM |
1999 | int i, scale; |
2000 | ||
2001 | this_rq->nr_load_updates++; | |
dd41f596 IM |
2002 | |
2003 | /* Update our load: */ | |
2004 | for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { | |
2005 | unsigned long old_load, new_load; | |
2006 | ||
2007 | /* scale is effectively 1 << i now, and >> i divides by scale */ | |
2008 | ||
2009 | old_load = this_rq->cpu_load[i]; | |
2010 | new_load = this_load; | |
a25707f3 IM |
2011 | /* |
2012 | * Round up the averaging division if load is increasing. This | |
2013 | * prevents us from getting stuck on 9 if the load is 10, for | |
2014 | * example. | |
2015 | */ | |
2016 | if (new_load > old_load) | |
2017 | new_load += scale-1; | |
dd41f596 IM |
2018 | this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i; |
2019 | } | |
48f24c4d IM |
2020 | } |
2021 | ||
dd41f596 IM |
2022 | #ifdef CONFIG_SMP |
2023 | ||
1da177e4 LT |
2024 | /* |
2025 | * double_rq_lock - safely lock two runqueues | |
2026 | * | |
2027 | * Note this does not disable interrupts like task_rq_lock, | |
2028 | * you need to do so manually before calling. | |
2029 | */ | |
70b97a7f | 2030 | static void double_rq_lock(struct rq *rq1, struct rq *rq2) |
1da177e4 LT |
2031 | __acquires(rq1->lock) |
2032 | __acquires(rq2->lock) | |
2033 | { | |
054b9108 | 2034 | BUG_ON(!irqs_disabled()); |
1da177e4 LT |
2035 | if (rq1 == rq2) { |
2036 | spin_lock(&rq1->lock); | |
2037 | __acquire(rq2->lock); /* Fake it out ;) */ | |
2038 | } else { | |
c96d145e | 2039 | if (rq1 < rq2) { |
1da177e4 LT |
2040 | spin_lock(&rq1->lock); |
2041 | spin_lock(&rq2->lock); | |
2042 | } else { | |
2043 | spin_lock(&rq2->lock); | |
2044 | spin_lock(&rq1->lock); | |
2045 | } | |
2046 | } | |
6e82a3be IM |
2047 | update_rq_clock(rq1); |
2048 | update_rq_clock(rq2); | |
1da177e4 LT |
2049 | } |
2050 | ||
2051 | /* | |
2052 | * double_rq_unlock - safely unlock two runqueues | |
2053 | * | |
2054 | * Note this does not restore interrupts like task_rq_unlock, | |
2055 | * you need to do so manually after calling. | |
2056 | */ | |
70b97a7f | 2057 | static void double_rq_unlock(struct rq *rq1, struct rq *rq2) |
1da177e4 LT |
2058 | __releases(rq1->lock) |
2059 | __releases(rq2->lock) | |
2060 | { | |
2061 | spin_unlock(&rq1->lock); | |
2062 | if (rq1 != rq2) | |
2063 | spin_unlock(&rq2->lock); | |
2064 | else | |
2065 | __release(rq2->lock); | |
2066 | } | |
2067 | ||
2068 | /* | |
2069 | * double_lock_balance - lock the busiest runqueue, this_rq is locked already. | |
2070 | */ | |
70b97a7f | 2071 | static void double_lock_balance(struct rq *this_rq, struct rq *busiest) |
1da177e4 LT |
2072 | __releases(this_rq->lock) |
2073 | __acquires(busiest->lock) | |
2074 | __acquires(this_rq->lock) | |
2075 | { | |
054b9108 KK |
2076 | if (unlikely(!irqs_disabled())) { |
2077 | /* printk() doesn't work good under rq->lock */ | |
2078 | spin_unlock(&this_rq->lock); | |
2079 | BUG_ON(1); | |
2080 | } | |
1da177e4 | 2081 | if (unlikely(!spin_trylock(&busiest->lock))) { |
c96d145e | 2082 | if (busiest < this_rq) { |
1da177e4 LT |
2083 | spin_unlock(&this_rq->lock); |
2084 | spin_lock(&busiest->lock); | |
2085 | spin_lock(&this_rq->lock); | |
2086 | } else | |
2087 | spin_lock(&busiest->lock); | |
2088 | } | |
2089 | } | |
2090 | ||
1da177e4 LT |
2091 | /* |
2092 | * If dest_cpu is allowed for this process, migrate the task to it. | |
2093 | * This is accomplished by forcing the cpu_allowed mask to only | |
2094 | * allow dest_cpu, which will force the cpu onto dest_cpu. Then | |
2095 | * the cpu_allowed mask is restored. | |
2096 | */ | |
36c8b586 | 2097 | static void sched_migrate_task(struct task_struct *p, int dest_cpu) |
1da177e4 | 2098 | { |
70b97a7f | 2099 | struct migration_req req; |
1da177e4 | 2100 | unsigned long flags; |
70b97a7f | 2101 | struct rq *rq; |
1da177e4 LT |
2102 | |
2103 | rq = task_rq_lock(p, &flags); | |
2104 | if (!cpu_isset(dest_cpu, p->cpus_allowed) | |
2105 | || unlikely(cpu_is_offline(dest_cpu))) | |
2106 | goto out; | |
2107 | ||
2108 | /* force the process onto the specified CPU */ | |
2109 | if (migrate_task(p, dest_cpu, &req)) { | |
2110 | /* Need to wait for migration thread (might exit: take ref). */ | |
2111 | struct task_struct *mt = rq->migration_thread; | |
36c8b586 | 2112 | |
1da177e4 LT |
2113 | get_task_struct(mt); |
2114 | task_rq_unlock(rq, &flags); | |
2115 | wake_up_process(mt); | |
2116 | put_task_struct(mt); | |
2117 | wait_for_completion(&req.done); | |
36c8b586 | 2118 | |
1da177e4 LT |
2119 | return; |
2120 | } | |
2121 | out: | |
2122 | task_rq_unlock(rq, &flags); | |
2123 | } | |
2124 | ||
2125 | /* | |
476d139c NP |
2126 | * sched_exec - execve() is a valuable balancing opportunity, because at |
2127 | * this point the task has the smallest effective memory and cache footprint. | |
1da177e4 LT |
2128 | */ |
2129 | void sched_exec(void) | |
2130 | { | |
1da177e4 | 2131 | int new_cpu, this_cpu = get_cpu(); |
476d139c | 2132 | new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC); |
1da177e4 | 2133 | put_cpu(); |
476d139c NP |
2134 | if (new_cpu != this_cpu) |
2135 | sched_migrate_task(current, new_cpu); | |
1da177e4 LT |
2136 | } |
2137 | ||
2138 | /* | |
2139 | * pull_task - move a task from a remote runqueue to the local runqueue. | |
2140 | * Both runqueues must be locked. | |
2141 | */ | |
dd41f596 IM |
2142 | static void pull_task(struct rq *src_rq, struct task_struct *p, |
2143 | struct rq *this_rq, int this_cpu) | |
1da177e4 | 2144 | { |
2e1cb74a | 2145 | deactivate_task(src_rq, p, 0); |
1da177e4 | 2146 | set_task_cpu(p, this_cpu); |
dd41f596 | 2147 | activate_task(this_rq, p, 0); |
1da177e4 LT |
2148 | /* |
2149 | * Note that idle threads have a prio of MAX_PRIO, for this test | |
2150 | * to be always true for them. | |
2151 | */ | |
dd41f596 | 2152 | check_preempt_curr(this_rq, p); |
1da177e4 LT |
2153 | } |
2154 | ||
2155 | /* | |
2156 | * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? | |
2157 | */ | |
858119e1 | 2158 | static |
70b97a7f | 2159 | int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, |
d15bcfdb | 2160 | struct sched_domain *sd, enum cpu_idle_type idle, |
95cdf3b7 | 2161 | int *all_pinned) |
1da177e4 LT |
2162 | { |
2163 | /* | |
2164 | * We do not migrate tasks that are: | |
2165 | * 1) running (obviously), or | |
2166 | * 2) cannot be migrated to this CPU due to cpus_allowed, or | |
2167 | * 3) are cache-hot on their current CPU. | |
2168 | */ | |
1da177e4 LT |
2169 | if (!cpu_isset(this_cpu, p->cpus_allowed)) |
2170 | return 0; | |
81026794 NP |
2171 | *all_pinned = 0; |
2172 | ||
2173 | if (task_running(rq, p)) | |
2174 | return 0; | |
1da177e4 | 2175 | |
1da177e4 LT |
2176 | return 1; |
2177 | } | |
2178 | ||
dd41f596 | 2179 | static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, |
2dd73a4f | 2180 | unsigned long max_nr_move, unsigned long max_load_move, |
d15bcfdb | 2181 | struct sched_domain *sd, enum cpu_idle_type idle, |
dd41f596 | 2182 | int *all_pinned, unsigned long *load_moved, |
a4ac01c3 | 2183 | int *this_best_prio, struct rq_iterator *iterator) |
1da177e4 | 2184 | { |
dd41f596 IM |
2185 | int pulled = 0, pinned = 0, skip_for_load; |
2186 | struct task_struct *p; | |
2187 | long rem_load_move = max_load_move; | |
1da177e4 | 2188 | |
2dd73a4f | 2189 | if (max_nr_move == 0 || max_load_move == 0) |
1da177e4 LT |
2190 | goto out; |
2191 | ||
81026794 NP |
2192 | pinned = 1; |
2193 | ||
1da177e4 | 2194 | /* |
dd41f596 | 2195 | * Start the load-balancing iterator: |
1da177e4 | 2196 | */ |
dd41f596 IM |
2197 | p = iterator->start(iterator->arg); |
2198 | next: | |
2199 | if (!p) | |
1da177e4 | 2200 | goto out; |
50ddd969 PW |
2201 | /* |
2202 | * To help distribute high priority tasks accross CPUs we don't | |
2203 | * skip a task if it will be the highest priority task (i.e. smallest | |
2204 | * prio value) on its new queue regardless of its load weight | |
2205 | */ | |
dd41f596 IM |
2206 | skip_for_load = (p->se.load.weight >> 1) > rem_load_move + |
2207 | SCHED_LOAD_SCALE_FUZZ; | |
a4ac01c3 | 2208 | if ((skip_for_load && p->prio >= *this_best_prio) || |
dd41f596 | 2209 | !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { |
dd41f596 IM |
2210 | p = iterator->next(iterator->arg); |
2211 | goto next; | |
1da177e4 LT |
2212 | } |
2213 | ||
dd41f596 | 2214 | pull_task(busiest, p, this_rq, this_cpu); |
1da177e4 | 2215 | pulled++; |
dd41f596 | 2216 | rem_load_move -= p->se.load.weight; |
1da177e4 | 2217 | |
2dd73a4f PW |
2218 | /* |
2219 | * We only want to steal up to the prescribed number of tasks | |
2220 | * and the prescribed amount of weighted load. | |
2221 | */ | |
2222 | if (pulled < max_nr_move && rem_load_move > 0) { | |
a4ac01c3 PW |
2223 | if (p->prio < *this_best_prio) |
2224 | *this_best_prio = p->prio; | |
dd41f596 IM |
2225 | p = iterator->next(iterator->arg); |
2226 | goto next; | |
1da177e4 LT |
2227 | } |
2228 | out: | |
2229 | /* | |
2230 | * Right now, this is the only place pull_task() is called, | |
2231 | * so we can safely collect pull_task() stats here rather than | |
2232 | * inside pull_task(). | |
2233 | */ | |
2234 | schedstat_add(sd, lb_gained[idle], pulled); | |
81026794 NP |
2235 | |
2236 | if (all_pinned) | |
2237 | *all_pinned = pinned; | |
dd41f596 | 2238 | *load_moved = max_load_move - rem_load_move; |
1da177e4 LT |
2239 | return pulled; |
2240 | } | |
2241 | ||
dd41f596 | 2242 | /* |
43010659 PW |
2243 | * move_tasks tries to move up to max_load_move weighted load from busiest to |
2244 | * this_rq, as part of a balancing operation within domain "sd". | |
2245 | * Returns 1 if successful and 0 otherwise. | |
dd41f596 IM |
2246 | * |
2247 | * Called with both runqueues locked. | |
2248 | */ | |
2249 | static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | |
43010659 | 2250 | unsigned long max_load_move, |
dd41f596 IM |
2251 | struct sched_domain *sd, enum cpu_idle_type idle, |
2252 | int *all_pinned) | |
2253 | { | |
2254 | struct sched_class *class = sched_class_highest; | |
43010659 | 2255 | unsigned long total_load_moved = 0; |
a4ac01c3 | 2256 | int this_best_prio = this_rq->curr->prio; |
dd41f596 IM |
2257 | |
2258 | do { | |
43010659 PW |
2259 | total_load_moved += |
2260 | class->load_balance(this_rq, this_cpu, busiest, | |
2261 | ULONG_MAX, max_load_move - total_load_moved, | |
a4ac01c3 | 2262 | sd, idle, all_pinned, &this_best_prio); |
dd41f596 | 2263 | class = class->next; |
43010659 | 2264 | } while (class && max_load_move > total_load_moved); |
dd41f596 | 2265 | |
43010659 PW |
2266 | return total_load_moved > 0; |
2267 | } | |
2268 | ||
2269 | /* | |
2270 | * move_one_task tries to move exactly one task from busiest to this_rq, as | |
2271 | * part of active balancing operations within "domain". | |
2272 | * Returns 1 if successful and 0 otherwise. | |
2273 | * | |
2274 | * Called with both runqueues locked. | |
2275 | */ | |
2276 | static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | |
2277 | struct sched_domain *sd, enum cpu_idle_type idle) | |
2278 | { | |
2279 | struct sched_class *class; | |
a4ac01c3 | 2280 | int this_best_prio = MAX_PRIO; |
43010659 PW |
2281 | |
2282 | for (class = sched_class_highest; class; class = class->next) | |
2283 | if (class->load_balance(this_rq, this_cpu, busiest, | |
a4ac01c3 PW |
2284 | 1, ULONG_MAX, sd, idle, NULL, |
2285 | &this_best_prio)) | |
43010659 PW |
2286 | return 1; |
2287 | ||
2288 | return 0; | |
dd41f596 IM |
2289 | } |
2290 | ||
1da177e4 LT |
2291 | /* |
2292 | * find_busiest_group finds and returns the busiest CPU group within the | |
48f24c4d IM |
2293 | * domain. It calculates and returns the amount of weighted load which |
2294 | * should be moved to restore balance via the imbalance parameter. | |
1da177e4 LT |
2295 | */ |
2296 | static struct sched_group * | |
2297 | find_busiest_group(struct sched_domain *sd, int this_cpu, | |
dd41f596 IM |
2298 | unsigned long *imbalance, enum cpu_idle_type idle, |
2299 | int *sd_idle, cpumask_t *cpus, int *balance) | |
1da177e4 LT |
2300 | { |
2301 | struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups; | |
2302 | unsigned long max_load, avg_load, total_load, this_load, total_pwr; | |
0c117f1b | 2303 | unsigned long max_pull; |
2dd73a4f PW |
2304 | unsigned long busiest_load_per_task, busiest_nr_running; |
2305 | unsigned long this_load_per_task, this_nr_running; | |
7897986b | 2306 | int load_idx; |
5c45bf27 SS |
2307 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
2308 | int power_savings_balance = 1; | |
2309 | unsigned long leader_nr_running = 0, min_load_per_task = 0; | |
2310 | unsigned long min_nr_running = ULONG_MAX; | |
2311 | struct sched_group *group_min = NULL, *group_leader = NULL; | |
2312 | #endif | |
1da177e4 LT |
2313 | |
2314 | max_load = this_load = total_load = total_pwr = 0; | |
2dd73a4f PW |
2315 | busiest_load_per_task = busiest_nr_running = 0; |
2316 | this_load_per_task = this_nr_running = 0; | |
d15bcfdb | 2317 | if (idle == CPU_NOT_IDLE) |
7897986b | 2318 | load_idx = sd->busy_idx; |
d15bcfdb | 2319 | else if (idle == CPU_NEWLY_IDLE) |
7897986b NP |
2320 | load_idx = sd->newidle_idx; |
2321 | else | |
2322 | load_idx = sd->idle_idx; | |
1da177e4 LT |
2323 | |
2324 | do { | |
5c45bf27 | 2325 | unsigned long load, group_capacity; |
1da177e4 LT |
2326 | int local_group; |
2327 | int i; | |
783609c6 | 2328 | unsigned int balance_cpu = -1, first_idle_cpu = 0; |
2dd73a4f | 2329 | unsigned long sum_nr_running, sum_weighted_load; |
1da177e4 LT |
2330 | |
2331 | local_group = cpu_isset(this_cpu, group->cpumask); | |
2332 | ||
783609c6 SS |
2333 | if (local_group) |
2334 | balance_cpu = first_cpu(group->cpumask); | |
2335 | ||
1da177e4 | 2336 | /* Tally up the load of all CPUs in the group */ |
2dd73a4f | 2337 | sum_weighted_load = sum_nr_running = avg_load = 0; |
1da177e4 LT |
2338 | |
2339 | for_each_cpu_mask(i, group->cpumask) { | |
0a2966b4 CL |
2340 | struct rq *rq; |
2341 | ||
2342 | if (!cpu_isset(i, *cpus)) | |
2343 | continue; | |
2344 | ||
2345 | rq = cpu_rq(i); | |
2dd73a4f | 2346 | |
9439aab8 | 2347 | if (*sd_idle && rq->nr_running) |
5969fe06 NP |
2348 | *sd_idle = 0; |
2349 | ||
1da177e4 | 2350 | /* Bias balancing toward cpus of our domain */ |
783609c6 SS |
2351 | if (local_group) { |
2352 | if (idle_cpu(i) && !first_idle_cpu) { | |
2353 | first_idle_cpu = 1; | |
2354 | balance_cpu = i; | |
2355 | } | |
2356 | ||
a2000572 | 2357 | load = target_load(i, load_idx); |
783609c6 | 2358 | } else |
a2000572 | 2359 | load = source_load(i, load_idx); |
1da177e4 LT |
2360 | |
2361 | avg_load += load; | |
2dd73a4f | 2362 | sum_nr_running += rq->nr_running; |
dd41f596 | 2363 | sum_weighted_load += weighted_cpuload(i); |
1da177e4 LT |
2364 | } |
2365 | ||
783609c6 SS |
2366 | /* |
2367 | * First idle cpu or the first cpu(busiest) in this sched group | |
2368 | * is eligible for doing load balancing at this and above | |
9439aab8 SS |
2369 | * domains. In the newly idle case, we will allow all the cpu's |
2370 | * to do the newly idle load balance. | |
783609c6 | 2371 | */ |
9439aab8 SS |
2372 | if (idle != CPU_NEWLY_IDLE && local_group && |
2373 | balance_cpu != this_cpu && balance) { | |
783609c6 SS |
2374 | *balance = 0; |
2375 | goto ret; | |
2376 | } | |
2377 | ||
1da177e4 | 2378 | total_load += avg_load; |
5517d86b | 2379 | total_pwr += group->__cpu_power; |
1da177e4 LT |
2380 | |
2381 | /* Adjust by relative CPU power of the group */ | |
5517d86b ED |
2382 | avg_load = sg_div_cpu_power(group, |
2383 | avg_load * SCHED_LOAD_SCALE); | |
1da177e4 | 2384 | |
5517d86b | 2385 | group_capacity = group->__cpu_power / SCHED_LOAD_SCALE; |
5c45bf27 | 2386 | |
1da177e4 LT |
2387 | if (local_group) { |
2388 | this_load = avg_load; | |
2389 | this = group; | |
2dd73a4f PW |
2390 | this_nr_running = sum_nr_running; |
2391 | this_load_per_task = sum_weighted_load; | |
2392 | } else if (avg_load > max_load && | |
5c45bf27 | 2393 | sum_nr_running > group_capacity) { |
1da177e4 LT |
2394 | max_load = avg_load; |
2395 | busiest = group; | |
2dd73a4f PW |
2396 | busiest_nr_running = sum_nr_running; |
2397 | busiest_load_per_task = sum_weighted_load; | |
1da177e4 | 2398 | } |
5c45bf27 SS |
2399 | |
2400 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | |
2401 | /* | |
2402 | * Busy processors will not participate in power savings | |
2403 | * balance. | |
2404 | */ | |
dd41f596 IM |
2405 | if (idle == CPU_NOT_IDLE || |
2406 | !(sd->flags & SD_POWERSAVINGS_BALANCE)) | |
2407 | goto group_next; | |
5c45bf27 SS |
2408 | |
2409 | /* | |
2410 | * If the local group is idle or completely loaded | |
2411 | * no need to do power savings balance at this domain | |
2412 | */ | |
2413 | if (local_group && (this_nr_running >= group_capacity || | |
2414 | !this_nr_running)) | |
2415 | power_savings_balance = 0; | |
2416 | ||
dd41f596 | 2417 | /* |
5c45bf27 SS |
2418 | * If a group is already running at full capacity or idle, |
2419 | * don't include that group in power savings calculations | |
dd41f596 IM |
2420 | */ |
2421 | if (!power_savings_balance || sum_nr_running >= group_capacity | |
5c45bf27 | 2422 | || !sum_nr_running) |
dd41f596 | 2423 | goto group_next; |
5c45bf27 | 2424 | |
dd41f596 | 2425 | /* |
5c45bf27 | 2426 | * Calculate the group which has the least non-idle load. |
dd41f596 IM |
2427 | * This is the group from where we need to pick up the load |
2428 | * for saving power | |
2429 | */ | |
2430 | if ((sum_nr_running < min_nr_running) || | |
2431 | (sum_nr_running == min_nr_running && | |
5c45bf27 SS |
2432 | first_cpu(group->cpumask) < |
2433 | first_cpu(group_min->cpumask))) { | |
dd41f596 IM |
2434 | group_min = group; |
2435 | min_nr_running = sum_nr_running; | |
5c45bf27 SS |
2436 | min_load_per_task = sum_weighted_load / |
2437 | sum_nr_running; | |
dd41f596 | 2438 | } |
5c45bf27 | 2439 | |
dd41f596 | 2440 | /* |
5c45bf27 | 2441 | * Calculate the group which is almost near its |
dd41f596 IM |
2442 | * capacity but still has some space to pick up some load |
2443 | * from other group and save more power | |
2444 | */ | |
2445 | if (sum_nr_running <= group_capacity - 1) { | |
2446 | if (sum_nr_running > leader_nr_running || | |
2447 | (sum_nr_running == leader_nr_running && | |
2448 | first_cpu(group->cpumask) > | |
2449 | first_cpu(group_leader->cpumask))) { | |
2450 | group_leader = group; | |
2451 | leader_nr_running = sum_nr_running; | |
2452 | } | |
48f24c4d | 2453 | } |
5c45bf27 SS |
2454 | group_next: |
2455 | #endif | |
1da177e4 LT |
2456 | group = group->next; |
2457 | } while (group != sd->groups); | |
2458 | ||
2dd73a4f | 2459 | if (!busiest || this_load >= max_load || busiest_nr_running == 0) |
1da177e4 LT |
2460 | goto out_balanced; |
2461 | ||
2462 | avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr; | |
2463 | ||
2464 | if (this_load >= avg_load || | |
2465 | 100*max_load <= sd->imbalance_pct*this_load) | |
2466 | goto out_balanced; | |
2467 | ||
2dd73a4f | 2468 | busiest_load_per_task /= busiest_nr_running; |
1da177e4 LT |
2469 | /* |
2470 | * We're trying to get all the cpus to the average_load, so we don't | |
2471 | * want to push ourselves above the average load, nor do we wish to | |
2472 | * reduce the max loaded cpu below the average load, as either of these | |
2473 | * actions would just result in more rebalancing later, and ping-pong | |
2474 | * tasks around. Thus we look for the minimum possible imbalance. | |
2475 | * Negative imbalances (*we* are more loaded than anyone else) will | |
2476 | * be counted as no imbalance for these purposes -- we can't fix that | |
2477 | * by pulling tasks to us. Be careful of negative numbers as they'll | |
2478 | * appear as very large values with unsigned longs. | |
2479 | */ | |
2dd73a4f PW |
2480 | if (max_load <= busiest_load_per_task) |
2481 | goto out_balanced; | |
2482 | ||
2483 | /* | |
2484 | * In the presence of smp nice balancing, certain scenarios can have | |
2485 | * max load less than avg load(as we skip the groups at or below | |
2486 | * its cpu_power, while calculating max_load..) | |
2487 | */ | |
2488 | if (max_load < avg_load) { | |
2489 | *imbalance = 0; | |
2490 | goto small_imbalance; | |
2491 | } | |
0c117f1b SS |
2492 | |
2493 | /* Don't want to pull so many tasks that a group would go idle */ | |
2dd73a4f | 2494 | max_pull = min(max_load - avg_load, max_load - busiest_load_per_task); |
0c117f1b | 2495 | |
1da177e4 | 2496 | /* How much load to actually move to equalise the imbalance */ |
5517d86b ED |
2497 | *imbalance = min(max_pull * busiest->__cpu_power, |
2498 | (avg_load - this_load) * this->__cpu_power) | |
1da177e4 LT |
2499 | / SCHED_LOAD_SCALE; |
2500 | ||
2dd73a4f PW |
2501 | /* |
2502 | * if *imbalance is less than the average load per runnable task | |
2503 | * there is no gaurantee that any tasks will be moved so we'll have | |
2504 | * a think about bumping its value to force at least one task to be | |
2505 | * moved | |
2506 | */ | |
7fd0d2dd | 2507 | if (*imbalance < busiest_load_per_task) { |
48f24c4d | 2508 | unsigned long tmp, pwr_now, pwr_move; |
2dd73a4f PW |
2509 | unsigned int imbn; |
2510 | ||
2511 | small_imbalance: | |
2512 | pwr_move = pwr_now = 0; | |
2513 | imbn = 2; | |
2514 | if (this_nr_running) { | |
2515 | this_load_per_task /= this_nr_running; | |
2516 | if (busiest_load_per_task > this_load_per_task) | |
2517 | imbn = 1; | |
2518 | } else | |
2519 | this_load_per_task = SCHED_LOAD_SCALE; | |
1da177e4 | 2520 | |
dd41f596 IM |
2521 | if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >= |
2522 | busiest_load_per_task * imbn) { | |
2dd73a4f | 2523 | *imbalance = busiest_load_per_task; |
1da177e4 LT |
2524 | return busiest; |
2525 | } | |
2526 | ||
2527 | /* | |
2528 | * OK, we don't have enough imbalance to justify moving tasks, | |
2529 | * however we may be able to increase total CPU power used by | |
2530 | * moving them. | |
2531 | */ | |
2532 | ||
5517d86b ED |
2533 | pwr_now += busiest->__cpu_power * |
2534 | min(busiest_load_per_task, max_load); | |
2535 | pwr_now += this->__cpu_power * | |
2536 | min(this_load_per_task, this_load); | |
1da177e4 LT |
2537 | pwr_now /= SCHED_LOAD_SCALE; |
2538 | ||
2539 | /* Amount of load we'd subtract */ | |
5517d86b ED |
2540 | tmp = sg_div_cpu_power(busiest, |
2541 | busiest_load_per_task * SCHED_LOAD_SCALE); | |
1da177e4 | 2542 | if (max_load > tmp) |
5517d86b | 2543 | pwr_move += busiest->__cpu_power * |
2dd73a4f | 2544 | min(busiest_load_per_task, max_load - tmp); |
1da177e4 LT |
2545 | |
2546 | /* Amount of load we'd add */ | |
5517d86b | 2547 | if (max_load * busiest->__cpu_power < |
33859f7f | 2548 | busiest_load_per_task * SCHED_LOAD_SCALE) |
5517d86b ED |
2549 | tmp = sg_div_cpu_power(this, |
2550 | max_load * busiest->__cpu_power); | |
1da177e4 | 2551 | else |
5517d86b ED |
2552 | tmp = sg_div_cpu_power(this, |
2553 | busiest_load_per_task * SCHED_LOAD_SCALE); | |
2554 | pwr_move += this->__cpu_power * | |
2555 | min(this_load_per_task, this_load + tmp); | |
1da177e4 LT |
2556 | pwr_move /= SCHED_LOAD_SCALE; |
2557 | ||
2558 | /* Move if we gain throughput */ | |
7fd0d2dd SS |
2559 | if (pwr_move > pwr_now) |
2560 | *imbalance = busiest_load_per_task; | |
1da177e4 LT |
2561 | } |
2562 | ||
1da177e4 LT |
2563 | return busiest; |
2564 | ||
2565 | out_balanced: | |
5c45bf27 | 2566 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
d15bcfdb | 2567 | if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) |
5c45bf27 | 2568 | goto ret; |
1da177e4 | 2569 | |
5c45bf27 SS |
2570 | if (this == group_leader && group_leader != group_min) { |
2571 | *imbalance = min_load_per_task; | |
2572 | return group_min; | |
2573 | } | |
5c45bf27 | 2574 | #endif |
783609c6 | 2575 | ret: |
1da177e4 LT |
2576 | *imbalance = 0; |
2577 | return NULL; | |
2578 | } | |
2579 | ||
2580 | /* | |
2581 | * find_busiest_queue - find the busiest runqueue among the cpus in group. | |
2582 | */ | |
70b97a7f | 2583 | static struct rq * |
d15bcfdb | 2584 | find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle, |
0a2966b4 | 2585 | unsigned long imbalance, cpumask_t *cpus) |
1da177e4 | 2586 | { |
70b97a7f | 2587 | struct rq *busiest = NULL, *rq; |
2dd73a4f | 2588 | unsigned long max_load = 0; |
1da177e4 LT |
2589 | int i; |
2590 | ||
2591 | for_each_cpu_mask(i, group->cpumask) { | |
dd41f596 | 2592 | unsigned long wl; |
0a2966b4 CL |
2593 | |
2594 | if (!cpu_isset(i, *cpus)) | |
2595 | continue; | |
2596 | ||
48f24c4d | 2597 | rq = cpu_rq(i); |
dd41f596 | 2598 | wl = weighted_cpuload(i); |
2dd73a4f | 2599 | |
dd41f596 | 2600 | if (rq->nr_running == 1 && wl > imbalance) |
2dd73a4f | 2601 | continue; |
1da177e4 | 2602 | |
dd41f596 IM |
2603 | if (wl > max_load) { |
2604 | max_load = wl; | |
48f24c4d | 2605 | busiest = rq; |
1da177e4 LT |
2606 | } |
2607 | } | |
2608 | ||
2609 | return busiest; | |
2610 | } | |
2611 | ||
77391d71 NP |
2612 | /* |
2613 | * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but | |
2614 | * so long as it is large enough. | |
2615 | */ | |
2616 | #define MAX_PINNED_INTERVAL 512 | |
2617 | ||
1da177e4 LT |
2618 | /* |
2619 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | |
2620 | * tasks if there is an imbalance. | |
1da177e4 | 2621 | */ |
70b97a7f | 2622 | static int load_balance(int this_cpu, struct rq *this_rq, |
d15bcfdb | 2623 | struct sched_domain *sd, enum cpu_idle_type idle, |
783609c6 | 2624 | int *balance) |
1da177e4 | 2625 | { |
43010659 | 2626 | int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0; |
1da177e4 | 2627 | struct sched_group *group; |
1da177e4 | 2628 | unsigned long imbalance; |
70b97a7f | 2629 | struct rq *busiest; |
0a2966b4 | 2630 | cpumask_t cpus = CPU_MASK_ALL; |
fe2eea3f | 2631 | unsigned long flags; |
5969fe06 | 2632 | |
89c4710e SS |
2633 | /* |
2634 | * When power savings policy is enabled for the parent domain, idle | |
2635 | * sibling can pick up load irrespective of busy siblings. In this case, | |
dd41f596 | 2636 | * let the state of idle sibling percolate up as CPU_IDLE, instead of |
d15bcfdb | 2637 | * portraying it as CPU_NOT_IDLE. |
89c4710e | 2638 | */ |
d15bcfdb | 2639 | if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER && |
89c4710e | 2640 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) |
5969fe06 | 2641 | sd_idle = 1; |
1da177e4 | 2642 | |
1da177e4 LT |
2643 | schedstat_inc(sd, lb_cnt[idle]); |
2644 | ||
0a2966b4 CL |
2645 | redo: |
2646 | group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle, | |
783609c6 SS |
2647 | &cpus, balance); |
2648 | ||
06066714 | 2649 | if (*balance == 0) |
783609c6 | 2650 | goto out_balanced; |
783609c6 | 2651 | |
1da177e4 LT |
2652 | if (!group) { |
2653 | schedstat_inc(sd, lb_nobusyg[idle]); | |
2654 | goto out_balanced; | |
2655 | } | |
2656 | ||
0a2966b4 | 2657 | busiest = find_busiest_queue(group, idle, imbalance, &cpus); |
1da177e4 LT |
2658 | if (!busiest) { |
2659 | schedstat_inc(sd, lb_nobusyq[idle]); | |
2660 | goto out_balanced; | |
2661 | } | |
2662 | ||
db935dbd | 2663 | BUG_ON(busiest == this_rq); |
1da177e4 LT |
2664 | |
2665 | schedstat_add(sd, lb_imbalance[idle], imbalance); | |
2666 | ||
43010659 | 2667 | ld_moved = 0; |
1da177e4 LT |
2668 | if (busiest->nr_running > 1) { |
2669 | /* | |
2670 | * Attempt to move tasks. If find_busiest_group has found | |
2671 | * an imbalance but busiest->nr_running <= 1, the group is | |
43010659 | 2672 | * still unbalanced. ld_moved simply stays zero, so it is |
1da177e4 LT |
2673 | * correctly treated as an imbalance. |
2674 | */ | |
fe2eea3f | 2675 | local_irq_save(flags); |
e17224bf | 2676 | double_rq_lock(this_rq, busiest); |
43010659 | 2677 | ld_moved = move_tasks(this_rq, this_cpu, busiest, |
48f24c4d | 2678 | imbalance, sd, idle, &all_pinned); |
e17224bf | 2679 | double_rq_unlock(this_rq, busiest); |
fe2eea3f | 2680 | local_irq_restore(flags); |
81026794 | 2681 | |
46cb4b7c SS |
2682 | /* |
2683 | * some other cpu did the load balance for us. | |
2684 | */ | |
43010659 | 2685 | if (ld_moved && this_cpu != smp_processor_id()) |
46cb4b7c SS |
2686 | resched_cpu(this_cpu); |
2687 | ||
81026794 | 2688 | /* All tasks on this runqueue were pinned by CPU affinity */ |
0a2966b4 CL |
2689 | if (unlikely(all_pinned)) { |
2690 | cpu_clear(cpu_of(busiest), cpus); | |
2691 | if (!cpus_empty(cpus)) | |
2692 | goto redo; | |
81026794 | 2693 | goto out_balanced; |
0a2966b4 | 2694 | } |
1da177e4 | 2695 | } |
81026794 | 2696 | |
43010659 | 2697 | if (!ld_moved) { |
1da177e4 LT |
2698 | schedstat_inc(sd, lb_failed[idle]); |
2699 | sd->nr_balance_failed++; | |
2700 | ||
2701 | if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) { | |
1da177e4 | 2702 | |
fe2eea3f | 2703 | spin_lock_irqsave(&busiest->lock, flags); |
fa3b6ddc SS |
2704 | |
2705 | /* don't kick the migration_thread, if the curr | |
2706 | * task on busiest cpu can't be moved to this_cpu | |
2707 | */ | |
2708 | if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) { | |
fe2eea3f | 2709 | spin_unlock_irqrestore(&busiest->lock, flags); |
fa3b6ddc SS |
2710 | all_pinned = 1; |
2711 | goto out_one_pinned; | |
2712 | } | |
2713 | ||
1da177e4 LT |
2714 | if (!busiest->active_balance) { |
2715 | busiest->active_balance = 1; | |
2716 | busiest->push_cpu = this_cpu; | |
81026794 | 2717 | active_balance = 1; |
1da177e4 | 2718 | } |
fe2eea3f | 2719 | spin_unlock_irqrestore(&busiest->lock, flags); |
81026794 | 2720 | if (active_balance) |
1da177e4 LT |
2721 | wake_up_process(busiest->migration_thread); |
2722 | ||
2723 | /* | |
2724 | * We've kicked active balancing, reset the failure | |
2725 | * counter. | |
2726 | */ | |
39507451 | 2727 | sd->nr_balance_failed = sd->cache_nice_tries+1; |
1da177e4 | 2728 | } |
81026794 | 2729 | } else |
1da177e4 LT |
2730 | sd->nr_balance_failed = 0; |
2731 | ||
81026794 | 2732 | if (likely(!active_balance)) { |
1da177e4 LT |
2733 | /* We were unbalanced, so reset the balancing interval */ |
2734 | sd->balance_interval = sd->min_interval; | |
81026794 NP |
2735 | } else { |
2736 | /* | |
2737 | * If we've begun active balancing, start to back off. This | |
2738 | * case may not be covered by the all_pinned logic if there | |
2739 | * is only 1 task on the busy runqueue (because we don't call | |
2740 | * move_tasks). | |
2741 | */ | |
2742 | if (sd->balance_interval < sd->max_interval) | |
2743 | sd->balance_interval *= 2; | |
1da177e4 LT |
2744 | } |
2745 | ||
43010659 | 2746 | if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER && |
89c4710e | 2747 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) |
5969fe06 | 2748 | return -1; |
43010659 | 2749 | return ld_moved; |
1da177e4 LT |
2750 | |
2751 | out_balanced: | |
1da177e4 LT |
2752 | schedstat_inc(sd, lb_balanced[idle]); |
2753 | ||
16cfb1c0 | 2754 | sd->nr_balance_failed = 0; |
fa3b6ddc SS |
2755 | |
2756 | out_one_pinned: | |
1da177e4 | 2757 | /* tune up the balancing interval */ |
77391d71 NP |
2758 | if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) || |
2759 | (sd->balance_interval < sd->max_interval)) | |
1da177e4 LT |
2760 | sd->balance_interval *= 2; |
2761 | ||
48f24c4d | 2762 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && |
89c4710e | 2763 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) |
5969fe06 | 2764 | return -1; |
1da177e4 LT |
2765 | return 0; |
2766 | } | |
2767 | ||
2768 | /* | |
2769 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | |
2770 | * tasks if there is an imbalance. | |
2771 | * | |
d15bcfdb | 2772 | * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE). |
1da177e4 LT |
2773 | * this_rq is locked. |
2774 | */ | |
48f24c4d | 2775 | static int |
70b97a7f | 2776 | load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd) |
1da177e4 LT |
2777 | { |
2778 | struct sched_group *group; | |
70b97a7f | 2779 | struct rq *busiest = NULL; |
1da177e4 | 2780 | unsigned long imbalance; |
43010659 | 2781 | int ld_moved = 0; |
5969fe06 | 2782 | int sd_idle = 0; |
969bb4e4 | 2783 | int all_pinned = 0; |
0a2966b4 | 2784 | cpumask_t cpus = CPU_MASK_ALL; |
5969fe06 | 2785 | |
89c4710e SS |
2786 | /* |
2787 | * When power savings policy is enabled for the parent domain, idle | |
2788 | * sibling can pick up load irrespective of busy siblings. In this case, | |
2789 | * let the state of idle sibling percolate up as IDLE, instead of | |
d15bcfdb | 2790 | * portraying it as CPU_NOT_IDLE. |
89c4710e SS |
2791 | */ |
2792 | if (sd->flags & SD_SHARE_CPUPOWER && | |
2793 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | |
5969fe06 | 2794 | sd_idle = 1; |
1da177e4 | 2795 | |
d15bcfdb | 2796 | schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]); |
0a2966b4 | 2797 | redo: |
d15bcfdb | 2798 | group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE, |
783609c6 | 2799 | &sd_idle, &cpus, NULL); |
1da177e4 | 2800 | if (!group) { |
d15bcfdb | 2801 | schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]); |
16cfb1c0 | 2802 | goto out_balanced; |
1da177e4 LT |
2803 | } |
2804 | ||
d15bcfdb | 2805 | busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, |
0a2966b4 | 2806 | &cpus); |
db935dbd | 2807 | if (!busiest) { |
d15bcfdb | 2808 | schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]); |
16cfb1c0 | 2809 | goto out_balanced; |
1da177e4 LT |
2810 | } |
2811 | ||
db935dbd NP |
2812 | BUG_ON(busiest == this_rq); |
2813 | ||
d15bcfdb | 2814 | schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance); |
d6d5cfaf | 2815 | |
43010659 | 2816 | ld_moved = 0; |
d6d5cfaf NP |
2817 | if (busiest->nr_running > 1) { |
2818 | /* Attempt to move tasks */ | |
2819 | double_lock_balance(this_rq, busiest); | |
6e82a3be IM |
2820 | /* this_rq->clock is already updated */ |
2821 | update_rq_clock(busiest); | |
43010659 | 2822 | ld_moved = move_tasks(this_rq, this_cpu, busiest, |
969bb4e4 SS |
2823 | imbalance, sd, CPU_NEWLY_IDLE, |
2824 | &all_pinned); | |
d6d5cfaf | 2825 | spin_unlock(&busiest->lock); |
0a2966b4 | 2826 | |
969bb4e4 | 2827 | if (unlikely(all_pinned)) { |
0a2966b4 CL |
2828 | cpu_clear(cpu_of(busiest), cpus); |
2829 | if (!cpus_empty(cpus)) | |
2830 | goto redo; | |
2831 | } | |
d6d5cfaf NP |
2832 | } |
2833 | ||
43010659 | 2834 | if (!ld_moved) { |
d15bcfdb | 2835 | schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]); |
89c4710e SS |
2836 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && |
2837 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | |
5969fe06 NP |
2838 | return -1; |
2839 | } else | |
16cfb1c0 | 2840 | sd->nr_balance_failed = 0; |
1da177e4 | 2841 | |
43010659 | 2842 | return ld_moved; |
16cfb1c0 NP |
2843 | |
2844 | out_balanced: | |
d15bcfdb | 2845 | schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]); |
48f24c4d | 2846 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && |
89c4710e | 2847 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) |
5969fe06 | 2848 | return -1; |
16cfb1c0 | 2849 | sd->nr_balance_failed = 0; |
48f24c4d | 2850 | |
16cfb1c0 | 2851 | return 0; |
1da177e4 LT |
2852 | } |
2853 | ||
2854 | /* | |
2855 | * idle_balance is called by schedule() if this_cpu is about to become | |
2856 | * idle. Attempts to pull tasks from other CPUs. | |
2857 | */ | |
70b97a7f | 2858 | static void idle_balance(int this_cpu, struct rq *this_rq) |
1da177e4 LT |
2859 | { |
2860 | struct sched_domain *sd; | |
dd41f596 IM |
2861 | int pulled_task = -1; |
2862 | unsigned long next_balance = jiffies + HZ; | |
1da177e4 LT |
2863 | |
2864 | for_each_domain(this_cpu, sd) { | |
92c4ca5c CL |
2865 | unsigned long interval; |
2866 | ||
2867 | if (!(sd->flags & SD_LOAD_BALANCE)) | |
2868 | continue; | |
2869 | ||
2870 | if (sd->flags & SD_BALANCE_NEWIDLE) | |
48f24c4d | 2871 | /* If we've pulled tasks over stop searching: */ |
1bd77f2d | 2872 | pulled_task = load_balance_newidle(this_cpu, |
92c4ca5c CL |
2873 | this_rq, sd); |
2874 | ||
2875 | interval = msecs_to_jiffies(sd->balance_interval); | |
2876 | if (time_after(next_balance, sd->last_balance + interval)) | |
2877 | next_balance = sd->last_balance + interval; | |
2878 | if (pulled_task) | |
2879 | break; | |
1da177e4 | 2880 | } |
dd41f596 | 2881 | if (pulled_task || time_after(jiffies, this_rq->next_balance)) { |
1bd77f2d CL |
2882 | /* |
2883 | * We are going idle. next_balance may be set based on | |
2884 | * a busy processor. So reset next_balance. | |
2885 | */ | |
2886 | this_rq->next_balance = next_balance; | |
dd41f596 | 2887 | } |
1da177e4 LT |
2888 | } |
2889 | ||
2890 | /* | |
2891 | * active_load_balance is run by migration threads. It pushes running tasks | |
2892 | * off the busiest CPU onto idle CPUs. It requires at least 1 task to be | |
2893 | * running on each physical CPU where possible, and avoids physical / | |
2894 | * logical imbalances. | |
2895 | * | |
2896 | * Called with busiest_rq locked. | |
2897 | */ | |
70b97a7f | 2898 | static void active_load_balance(struct rq *busiest_rq, int busiest_cpu) |
1da177e4 | 2899 | { |
39507451 | 2900 | int target_cpu = busiest_rq->push_cpu; |
70b97a7f IM |
2901 | struct sched_domain *sd; |
2902 | struct rq *target_rq; | |
39507451 | 2903 | |
48f24c4d | 2904 | /* Is there any task to move? */ |
39507451 | 2905 | if (busiest_rq->nr_running <= 1) |
39507451 NP |
2906 | return; |
2907 | ||
2908 | target_rq = cpu_rq(target_cpu); | |
1da177e4 LT |
2909 | |
2910 | /* | |
39507451 NP |
2911 | * This condition is "impossible", if it occurs |
2912 | * we need to fix it. Originally reported by | |
2913 | * Bjorn Helgaas on a 128-cpu setup. | |
1da177e4 | 2914 | */ |
39507451 | 2915 | BUG_ON(busiest_rq == target_rq); |
1da177e4 | 2916 | |
39507451 NP |
2917 | /* move a task from busiest_rq to target_rq */ |
2918 | double_lock_balance(busiest_rq, target_rq); | |
6e82a3be IM |
2919 | update_rq_clock(busiest_rq); |
2920 | update_rq_clock(target_rq); | |
39507451 NP |
2921 | |
2922 | /* Search for an sd spanning us and the target CPU. */ | |
c96d145e | 2923 | for_each_domain(target_cpu, sd) { |
39507451 | 2924 | if ((sd->flags & SD_LOAD_BALANCE) && |
48f24c4d | 2925 | cpu_isset(busiest_cpu, sd->span)) |
39507451 | 2926 | break; |
c96d145e | 2927 | } |
39507451 | 2928 | |
48f24c4d IM |
2929 | if (likely(sd)) { |
2930 | schedstat_inc(sd, alb_cnt); | |
39507451 | 2931 | |
43010659 PW |
2932 | if (move_one_task(target_rq, target_cpu, busiest_rq, |
2933 | sd, CPU_IDLE)) | |
48f24c4d IM |
2934 | schedstat_inc(sd, alb_pushed); |
2935 | else | |
2936 | schedstat_inc(sd, alb_failed); | |
2937 | } | |
39507451 | 2938 | spin_unlock(&target_rq->lock); |
1da177e4 LT |
2939 | } |
2940 | ||
46cb4b7c SS |
2941 | #ifdef CONFIG_NO_HZ |
2942 | static struct { | |
2943 | atomic_t load_balancer; | |
2944 | cpumask_t cpu_mask; | |
2945 | } nohz ____cacheline_aligned = { | |
2946 | .load_balancer = ATOMIC_INIT(-1), | |
2947 | .cpu_mask = CPU_MASK_NONE, | |
2948 | }; | |
2949 | ||
7835b98b | 2950 | /* |
46cb4b7c SS |
2951 | * This routine will try to nominate the ilb (idle load balancing) |
2952 | * owner among the cpus whose ticks are stopped. ilb owner will do the idle | |
2953 | * load balancing on behalf of all those cpus. If all the cpus in the system | |
2954 | * go into this tickless mode, then there will be no ilb owner (as there is | |
2955 | * no need for one) and all the cpus will sleep till the next wakeup event | |
2956 | * arrives... | |
2957 | * | |
2958 | * For the ilb owner, tick is not stopped. And this tick will be used | |
2959 | * for idle load balancing. ilb owner will still be part of | |
2960 | * nohz.cpu_mask.. | |
7835b98b | 2961 | * |
46cb4b7c SS |
2962 | * While stopping the tick, this cpu will become the ilb owner if there |
2963 | * is no other owner. And will be the owner till that cpu becomes busy | |
2964 | * or if all cpus in the system stop their ticks at which point | |
2965 | * there is no need for ilb owner. | |
2966 | * | |
2967 | * When the ilb owner becomes busy, it nominates another owner, during the | |
2968 | * next busy scheduler_tick() | |
2969 | */ | |
2970 | int select_nohz_load_balancer(int stop_tick) | |
2971 | { | |
2972 | int cpu = smp_processor_id(); | |
2973 | ||
2974 | if (stop_tick) { | |
2975 | cpu_set(cpu, nohz.cpu_mask); | |
2976 | cpu_rq(cpu)->in_nohz_recently = 1; | |
2977 | ||
2978 | /* | |
2979 | * If we are going offline and still the leader, give up! | |
2980 | */ | |
2981 | if (cpu_is_offline(cpu) && | |
2982 | atomic_read(&nohz.load_balancer) == cpu) { | |
2983 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) | |
2984 | BUG(); | |
2985 | return 0; | |
2986 | } | |
2987 | ||
2988 | /* time for ilb owner also to sleep */ | |
2989 | if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) { | |
2990 | if (atomic_read(&nohz.load_balancer) == cpu) | |
2991 | atomic_set(&nohz.load_balancer, -1); | |
2992 | return 0; | |
2993 | } | |
2994 | ||
2995 | if (atomic_read(&nohz.load_balancer) == -1) { | |
2996 | /* make me the ilb owner */ | |
2997 | if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1) | |
2998 | return 1; | |
2999 | } else if (atomic_read(&nohz.load_balancer) == cpu) | |
3000 | return 1; | |
3001 | } else { | |
3002 | if (!cpu_isset(cpu, nohz.cpu_mask)) | |
3003 | return 0; | |
3004 | ||
3005 | cpu_clear(cpu, nohz.cpu_mask); | |
3006 | ||
3007 | if (atomic_read(&nohz.load_balancer) == cpu) | |
3008 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) | |
3009 | BUG(); | |
3010 | } | |
3011 | return 0; | |
3012 | } | |
3013 | #endif | |
3014 | ||
3015 | static DEFINE_SPINLOCK(balancing); | |
3016 | ||
3017 | /* | |
7835b98b CL |
3018 | * It checks each scheduling domain to see if it is due to be balanced, |
3019 | * and initiates a balancing operation if so. | |
3020 | * | |
3021 | * Balancing parameters are set up in arch_init_sched_domains. | |
3022 | */ | |
d15bcfdb | 3023 | static inline void rebalance_domains(int cpu, enum cpu_idle_type idle) |
7835b98b | 3024 | { |
46cb4b7c SS |
3025 | int balance = 1; |
3026 | struct rq *rq = cpu_rq(cpu); | |
7835b98b CL |
3027 | unsigned long interval; |
3028 | struct sched_domain *sd; | |
46cb4b7c | 3029 | /* Earliest time when we have to do rebalance again */ |
c9819f45 | 3030 | unsigned long next_balance = jiffies + 60*HZ; |
f549da84 | 3031 | int update_next_balance = 0; |
1da177e4 | 3032 | |
46cb4b7c | 3033 | for_each_domain(cpu, sd) { |
1da177e4 LT |
3034 | if (!(sd->flags & SD_LOAD_BALANCE)) |
3035 | continue; | |
3036 | ||
3037 | interval = sd->balance_interval; | |
d15bcfdb | 3038 | if (idle != CPU_IDLE) |
1da177e4 LT |
3039 | interval *= sd->busy_factor; |
3040 | ||
3041 | /* scale ms to jiffies */ | |
3042 | interval = msecs_to_jiffies(interval); | |
3043 | if (unlikely(!interval)) | |
3044 | interval = 1; | |
dd41f596 IM |
3045 | if (interval > HZ*NR_CPUS/10) |
3046 | interval = HZ*NR_CPUS/10; | |
3047 | ||
1da177e4 | 3048 | |
08c183f3 CL |
3049 | if (sd->flags & SD_SERIALIZE) { |
3050 | if (!spin_trylock(&balancing)) | |
3051 | goto out; | |
3052 | } | |
3053 | ||
c9819f45 | 3054 | if (time_after_eq(jiffies, sd->last_balance + interval)) { |
46cb4b7c | 3055 | if (load_balance(cpu, rq, sd, idle, &balance)) { |
fa3b6ddc SS |
3056 | /* |
3057 | * We've pulled tasks over so either we're no | |
5969fe06 NP |
3058 | * longer idle, or one of our SMT siblings is |
3059 | * not idle. | |
3060 | */ | |
d15bcfdb | 3061 | idle = CPU_NOT_IDLE; |
1da177e4 | 3062 | } |
1bd77f2d | 3063 | sd->last_balance = jiffies; |
1da177e4 | 3064 | } |
08c183f3 CL |
3065 | if (sd->flags & SD_SERIALIZE) |
3066 | spin_unlock(&balancing); | |
3067 | out: | |
f549da84 | 3068 | if (time_after(next_balance, sd->last_balance + interval)) { |
c9819f45 | 3069 | next_balance = sd->last_balance + interval; |
f549da84 SS |
3070 | update_next_balance = 1; |
3071 | } | |
783609c6 SS |
3072 | |
3073 | /* | |
3074 | * Stop the load balance at this level. There is another | |
3075 | * CPU in our sched group which is doing load balancing more | |
3076 | * actively. | |
3077 | */ | |
3078 | if (!balance) | |
3079 | break; | |
1da177e4 | 3080 | } |
f549da84 SS |
3081 | |
3082 | /* | |
3083 | * next_balance will be updated only when there is a need. | |
3084 | * When the cpu is attached to null domain for ex, it will not be | |
3085 | * updated. | |
3086 | */ | |
3087 | if (likely(update_next_balance)) | |
3088 | rq->next_balance = next_balance; | |
46cb4b7c SS |
3089 | } |
3090 | ||
3091 | /* | |
3092 | * run_rebalance_domains is triggered when needed from the scheduler tick. | |
3093 | * In CONFIG_NO_HZ case, the idle load balance owner will do the | |
3094 | * rebalancing for all the cpus for whom scheduler ticks are stopped. | |
3095 | */ | |
3096 | static void run_rebalance_domains(struct softirq_action *h) | |
3097 | { | |
dd41f596 IM |
3098 | int this_cpu = smp_processor_id(); |
3099 | struct rq *this_rq = cpu_rq(this_cpu); | |
3100 | enum cpu_idle_type idle = this_rq->idle_at_tick ? | |
3101 | CPU_IDLE : CPU_NOT_IDLE; | |
46cb4b7c | 3102 | |
dd41f596 | 3103 | rebalance_domains(this_cpu, idle); |
46cb4b7c SS |
3104 | |
3105 | #ifdef CONFIG_NO_HZ | |
3106 | /* | |
3107 | * If this cpu is the owner for idle load balancing, then do the | |
3108 | * balancing on behalf of the other idle cpus whose ticks are | |
3109 | * stopped. | |
3110 | */ | |
dd41f596 IM |
3111 | if (this_rq->idle_at_tick && |
3112 | atomic_read(&nohz.load_balancer) == this_cpu) { | |
46cb4b7c SS |
3113 | cpumask_t cpus = nohz.cpu_mask; |
3114 | struct rq *rq; | |
3115 | int balance_cpu; | |
3116 | ||
dd41f596 | 3117 | cpu_clear(this_cpu, cpus); |
46cb4b7c SS |
3118 | for_each_cpu_mask(balance_cpu, cpus) { |
3119 | /* | |
3120 | * If this cpu gets work to do, stop the load balancing | |
3121 | * work being done for other cpus. Next load | |
3122 | * balancing owner will pick it up. | |
3123 | */ | |
3124 | if (need_resched()) | |
3125 | break; | |
3126 | ||
de0cf899 | 3127 | rebalance_domains(balance_cpu, CPU_IDLE); |
46cb4b7c SS |
3128 | |
3129 | rq = cpu_rq(balance_cpu); | |
dd41f596 IM |
3130 | if (time_after(this_rq->next_balance, rq->next_balance)) |
3131 | this_rq->next_balance = rq->next_balance; | |
46cb4b7c SS |
3132 | } |
3133 | } | |
3134 | #endif | |
3135 | } | |
3136 | ||
3137 | /* | |
3138 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. | |
3139 | * | |
3140 | * In case of CONFIG_NO_HZ, this is the place where we nominate a new | |
3141 | * idle load balancing owner or decide to stop the periodic load balancing, | |
3142 | * if the whole system is idle. | |
3143 | */ | |
dd41f596 | 3144 | static inline void trigger_load_balance(struct rq *rq, int cpu) |
46cb4b7c | 3145 | { |
46cb4b7c SS |
3146 | #ifdef CONFIG_NO_HZ |
3147 | /* | |
3148 | * If we were in the nohz mode recently and busy at the current | |
3149 | * scheduler tick, then check if we need to nominate new idle | |
3150 | * load balancer. | |
3151 | */ | |
3152 | if (rq->in_nohz_recently && !rq->idle_at_tick) { | |
3153 | rq->in_nohz_recently = 0; | |
3154 | ||
3155 | if (atomic_read(&nohz.load_balancer) == cpu) { | |
3156 | cpu_clear(cpu, nohz.cpu_mask); | |
3157 | atomic_set(&nohz.load_balancer, -1); | |
3158 | } | |
3159 | ||
3160 | if (atomic_read(&nohz.load_balancer) == -1) { | |
3161 | /* | |
3162 | * simple selection for now: Nominate the | |
3163 | * first cpu in the nohz list to be the next | |
3164 | * ilb owner. | |
3165 | * | |
3166 | * TBD: Traverse the sched domains and nominate | |
3167 | * the nearest cpu in the nohz.cpu_mask. | |
3168 | */ | |
3169 | int ilb = first_cpu(nohz.cpu_mask); | |
3170 | ||
3171 | if (ilb != NR_CPUS) | |
3172 | resched_cpu(ilb); | |
3173 | } | |
3174 | } | |
3175 | ||
3176 | /* | |
3177 | * If this cpu is idle and doing idle load balancing for all the | |
3178 | * cpus with ticks stopped, is it time for that to stop? | |
3179 | */ | |
3180 | if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu && | |
3181 | cpus_weight(nohz.cpu_mask) == num_online_cpus()) { | |
3182 | resched_cpu(cpu); | |
3183 | return; | |
3184 | } | |
3185 | ||
3186 | /* | |
3187 | * If this cpu is idle and the idle load balancing is done by | |
3188 | * someone else, then no need raise the SCHED_SOFTIRQ | |
3189 | */ | |
3190 | if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu && | |
3191 | cpu_isset(cpu, nohz.cpu_mask)) | |
3192 | return; | |
3193 | #endif | |
3194 | if (time_after_eq(jiffies, rq->next_balance)) | |
3195 | raise_softirq(SCHED_SOFTIRQ); | |
1da177e4 | 3196 | } |
dd41f596 IM |
3197 | |
3198 | #else /* CONFIG_SMP */ | |
3199 | ||
1da177e4 LT |
3200 | /* |
3201 | * on UP we do not need to balance between CPUs: | |
3202 | */ | |
70b97a7f | 3203 | static inline void idle_balance(int cpu, struct rq *rq) |
1da177e4 LT |
3204 | { |
3205 | } | |
dd41f596 IM |
3206 | |
3207 | /* Avoid "used but not defined" warning on UP */ | |
3208 | static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | |
3209 | unsigned long max_nr_move, unsigned long max_load_move, | |
3210 | struct sched_domain *sd, enum cpu_idle_type idle, | |
3211 | int *all_pinned, unsigned long *load_moved, | |
a4ac01c3 | 3212 | int *this_best_prio, struct rq_iterator *iterator) |
dd41f596 IM |
3213 | { |
3214 | *load_moved = 0; | |
3215 | ||
3216 | return 0; | |
3217 | } | |
3218 | ||
1da177e4 LT |
3219 | #endif |
3220 | ||
1da177e4 LT |
3221 | DEFINE_PER_CPU(struct kernel_stat, kstat); |
3222 | ||
3223 | EXPORT_PER_CPU_SYMBOL(kstat); | |
3224 | ||
3225 | /* | |
41b86e9c IM |
3226 | * Return p->sum_exec_runtime plus any more ns on the sched_clock |
3227 | * that have not yet been banked in case the task is currently running. | |
1da177e4 | 3228 | */ |
41b86e9c | 3229 | unsigned long long task_sched_runtime(struct task_struct *p) |
1da177e4 | 3230 | { |
1da177e4 | 3231 | unsigned long flags; |
41b86e9c IM |
3232 | u64 ns, delta_exec; |
3233 | struct rq *rq; | |
48f24c4d | 3234 | |
41b86e9c IM |
3235 | rq = task_rq_lock(p, &flags); |
3236 | ns = p->se.sum_exec_runtime; | |
3237 | if (rq->curr == p) { | |
a8e504d2 IM |
3238 | update_rq_clock(rq); |
3239 | delta_exec = rq->clock - p->se.exec_start; | |
41b86e9c IM |
3240 | if ((s64)delta_exec > 0) |
3241 | ns += delta_exec; | |
3242 | } | |
3243 | task_rq_unlock(rq, &flags); | |
48f24c4d | 3244 | |
1da177e4 LT |
3245 | return ns; |
3246 | } | |
3247 | ||
1da177e4 LT |
3248 | /* |
3249 | * Account user cpu time to a process. | |
3250 | * @p: the process that the cpu time gets accounted to | |
3251 | * @hardirq_offset: the offset to subtract from hardirq_count() | |
3252 | * @cputime: the cpu time spent in user space since the last update | |
3253 | */ | |
3254 | void account_user_time(struct task_struct *p, cputime_t cputime) | |
3255 | { | |
3256 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | |
3257 | cputime64_t tmp; | |
3258 | ||
3259 | p->utime = cputime_add(p->utime, cputime); | |
3260 | ||
3261 | /* Add user time to cpustat. */ | |
3262 | tmp = cputime_to_cputime64(cputime); | |
3263 | if (TASK_NICE(p) > 0) | |
3264 | cpustat->nice = cputime64_add(cpustat->nice, tmp); | |
3265 | else | |
3266 | cpustat->user = cputime64_add(cpustat->user, tmp); | |
3267 | } | |
3268 | ||
3269 | /* | |
3270 | * Account system cpu time to a process. | |
3271 | * @p: the process that the cpu time gets accounted to | |
3272 | * @hardirq_offset: the offset to subtract from hardirq_count() | |
3273 | * @cputime: the cpu time spent in kernel space since the last update | |
3274 | */ | |
3275 | void account_system_time(struct task_struct *p, int hardirq_offset, | |
3276 | cputime_t cputime) | |
3277 | { | |
3278 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | |
70b97a7f | 3279 | struct rq *rq = this_rq(); |
1da177e4 LT |
3280 | cputime64_t tmp; |
3281 | ||
3282 | p->stime = cputime_add(p->stime, cputime); | |
3283 | ||
3284 | /* Add system time to cpustat. */ | |
3285 | tmp = cputime_to_cputime64(cputime); | |
3286 | if (hardirq_count() - hardirq_offset) | |
3287 | cpustat->irq = cputime64_add(cpustat->irq, tmp); | |
3288 | else if (softirq_count()) | |
3289 | cpustat->softirq = cputime64_add(cpustat->softirq, tmp); | |
3290 | else if (p != rq->idle) | |
3291 | cpustat->system = cputime64_add(cpustat->system, tmp); | |
3292 | else if (atomic_read(&rq->nr_iowait) > 0) | |
3293 | cpustat->iowait = cputime64_add(cpustat->iowait, tmp); | |
3294 | else | |
3295 | cpustat->idle = cputime64_add(cpustat->idle, tmp); | |
3296 | /* Account for system time used */ | |
3297 | acct_update_integrals(p); | |
1da177e4 LT |
3298 | } |
3299 | ||
3300 | /* | |
3301 | * Account for involuntary wait time. | |
3302 | * @p: the process from which the cpu time has been stolen | |
3303 | * @steal: the cpu time spent in involuntary wait | |
3304 | */ | |
3305 | void account_steal_time(struct task_struct *p, cputime_t steal) | |
3306 | { | |
3307 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | |
3308 | cputime64_t tmp = cputime_to_cputime64(steal); | |
70b97a7f | 3309 | struct rq *rq = this_rq(); |
1da177e4 LT |
3310 | |
3311 | if (p == rq->idle) { | |
3312 | p->stime = cputime_add(p->stime, steal); | |
3313 | if (atomic_read(&rq->nr_iowait) > 0) | |
3314 | cpustat->iowait = cputime64_add(cpustat->iowait, tmp); | |
3315 | else | |
3316 | cpustat->idle = cputime64_add(cpustat->idle, tmp); | |
3317 | } else | |
3318 | cpustat->steal = cputime64_add(cpustat->steal, tmp); | |
3319 | } | |
3320 | ||
7835b98b CL |
3321 | /* |
3322 | * This function gets called by the timer code, with HZ frequency. | |
3323 | * We call it with interrupts disabled. | |
3324 | * | |
3325 | * It also gets called by the fork code, when changing the parent's | |
3326 | * timeslices. | |
3327 | */ | |
3328 | void scheduler_tick(void) | |
3329 | { | |
7835b98b CL |
3330 | int cpu = smp_processor_id(); |
3331 | struct rq *rq = cpu_rq(cpu); | |
dd41f596 | 3332 | struct task_struct *curr = rq->curr; |
529c7726 | 3333 | u64 next_tick = rq->tick_timestamp + TICK_NSEC; |
dd41f596 IM |
3334 | |
3335 | spin_lock(&rq->lock); | |
546fe3c9 | 3336 | __update_rq_clock(rq); |
529c7726 IM |
3337 | /* |
3338 | * Let rq->clock advance by at least TICK_NSEC: | |
3339 | */ | |
3340 | if (unlikely(rq->clock < next_tick)) | |
3341 | rq->clock = next_tick; | |
3342 | rq->tick_timestamp = rq->clock; | |
f1a438d8 | 3343 | update_cpu_load(rq); |
dd41f596 IM |
3344 | if (curr != rq->idle) /* FIXME: needed? */ |
3345 | curr->sched_class->task_tick(rq, curr); | |
dd41f596 | 3346 | spin_unlock(&rq->lock); |
7835b98b | 3347 | |
e418e1c2 | 3348 | #ifdef CONFIG_SMP |
dd41f596 IM |
3349 | rq->idle_at_tick = idle_cpu(cpu); |
3350 | trigger_load_balance(rq, cpu); | |
e418e1c2 | 3351 | #endif |
1da177e4 LT |
3352 | } |
3353 | ||
1da177e4 LT |
3354 | #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT) |
3355 | ||
3356 | void fastcall add_preempt_count(int val) | |
3357 | { | |
3358 | /* | |
3359 | * Underflow? | |
3360 | */ | |
9a11b49a IM |
3361 | if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) |
3362 | return; | |
1da177e4 LT |
3363 | preempt_count() += val; |
3364 | /* | |
3365 | * Spinlock count overflowing soon? | |
3366 | */ | |
33859f7f MOS |
3367 | DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= |
3368 | PREEMPT_MASK - 10); | |
1da177e4 LT |
3369 | } |
3370 | EXPORT_SYMBOL(add_preempt_count); | |
3371 | ||
3372 | void fastcall sub_preempt_count(int val) | |
3373 | { | |
3374 | /* | |
3375 | * Underflow? | |
3376 | */ | |
9a11b49a IM |
3377 | if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) |
3378 | return; | |
1da177e4 LT |
3379 | /* |
3380 | * Is the spinlock portion underflowing? | |
3381 | */ | |
9a11b49a IM |
3382 | if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && |
3383 | !(preempt_count() & PREEMPT_MASK))) | |
3384 | return; | |
3385 | ||
1da177e4 LT |
3386 | preempt_count() -= val; |
3387 | } | |
3388 | EXPORT_SYMBOL(sub_preempt_count); | |
3389 | ||
3390 | #endif | |
3391 | ||
3392 | /* | |
dd41f596 | 3393 | * Print scheduling while atomic bug: |
1da177e4 | 3394 | */ |
dd41f596 | 3395 | static noinline void __schedule_bug(struct task_struct *prev) |
1da177e4 | 3396 | { |
dd41f596 IM |
3397 | printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n", |
3398 | prev->comm, preempt_count(), prev->pid); | |
3399 | debug_show_held_locks(prev); | |
3400 | if (irqs_disabled()) | |
3401 | print_irqtrace_events(prev); | |
3402 | dump_stack(); | |
3403 | } | |
1da177e4 | 3404 | |
dd41f596 IM |
3405 | /* |
3406 | * Various schedule()-time debugging checks and statistics: | |
3407 | */ | |
3408 | static inline void schedule_debug(struct task_struct *prev) | |
3409 | { | |
1da177e4 LT |
3410 | /* |
3411 | * Test if we are atomic. Since do_exit() needs to call into | |
3412 | * schedule() atomically, we ignore that path for now. | |
3413 | * Otherwise, whine if we are scheduling when we should not be. | |
3414 | */ | |
dd41f596 IM |
3415 | if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state)) |
3416 | __schedule_bug(prev); | |
3417 | ||
1da177e4 LT |
3418 | profile_hit(SCHED_PROFILING, __builtin_return_address(0)); |
3419 | ||
dd41f596 | 3420 | schedstat_inc(this_rq(), sched_cnt); |
b8efb561 IM |
3421 | #ifdef CONFIG_SCHEDSTATS |
3422 | if (unlikely(prev->lock_depth >= 0)) { | |
3423 | schedstat_inc(this_rq(), bkl_cnt); | |
3424 | schedstat_inc(prev, sched_info.bkl_cnt); | |
3425 | } | |
3426 | #endif | |
dd41f596 IM |
3427 | } |
3428 | ||
3429 | /* | |
3430 | * Pick up the highest-prio task: | |
3431 | */ | |
3432 | static inline struct task_struct * | |
ff95f3df | 3433 | pick_next_task(struct rq *rq, struct task_struct *prev) |
dd41f596 IM |
3434 | { |
3435 | struct sched_class *class; | |
3436 | struct task_struct *p; | |
1da177e4 LT |
3437 | |
3438 | /* | |
dd41f596 IM |
3439 | * Optimization: we know that if all tasks are in |
3440 | * the fair class we can call that function directly: | |
1da177e4 | 3441 | */ |
dd41f596 | 3442 | if (likely(rq->nr_running == rq->cfs.nr_running)) { |
fb8d4724 | 3443 | p = fair_sched_class.pick_next_task(rq); |
dd41f596 IM |
3444 | if (likely(p)) |
3445 | return p; | |
1da177e4 LT |
3446 | } |
3447 | ||
dd41f596 IM |
3448 | class = sched_class_highest; |
3449 | for ( ; ; ) { | |
fb8d4724 | 3450 | p = class->pick_next_task(rq); |
dd41f596 IM |
3451 | if (p) |
3452 | return p; | |
3453 | /* | |
3454 | * Will never be NULL as the idle class always | |
3455 | * returns a non-NULL p: | |
3456 | */ | |
3457 | class = class->next; | |
3458 | } | |
3459 | } | |
1da177e4 | 3460 | |
dd41f596 IM |
3461 | /* |
3462 | * schedule() is the main scheduler function. | |
3463 | */ | |
3464 | asmlinkage void __sched schedule(void) | |
3465 | { | |
3466 | struct task_struct *prev, *next; | |
3467 | long *switch_count; | |
3468 | struct rq *rq; | |
dd41f596 IM |
3469 | int cpu; |
3470 | ||
3471 | need_resched: | |
3472 | preempt_disable(); | |
3473 | cpu = smp_processor_id(); | |
3474 | rq = cpu_rq(cpu); | |
3475 | rcu_qsctr_inc(cpu); | |
3476 | prev = rq->curr; | |
3477 | switch_count = &prev->nivcsw; | |
3478 | ||
3479 | release_kernel_lock(prev); | |
3480 | need_resched_nonpreemptible: | |
3481 | ||
3482 | schedule_debug(prev); | |
1da177e4 LT |
3483 | |
3484 | spin_lock_irq(&rq->lock); | |
dd41f596 | 3485 | clear_tsk_need_resched(prev); |
c1b3da3e | 3486 | __update_rq_clock(rq); |
1da177e4 | 3487 | |
1da177e4 | 3488 | if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { |
1da177e4 | 3489 | if (unlikely((prev->state & TASK_INTERRUPTIBLE) && |
dd41f596 | 3490 | unlikely(signal_pending(prev)))) { |
1da177e4 | 3491 | prev->state = TASK_RUNNING; |
dd41f596 | 3492 | } else { |
2e1cb74a | 3493 | deactivate_task(rq, prev, 1); |
1da177e4 | 3494 | } |
dd41f596 | 3495 | switch_count = &prev->nvcsw; |
1da177e4 LT |
3496 | } |
3497 | ||
dd41f596 | 3498 | if (unlikely(!rq->nr_running)) |
1da177e4 | 3499 | idle_balance(cpu, rq); |
1da177e4 | 3500 | |
31ee529c | 3501 | prev->sched_class->put_prev_task(rq, prev); |
ff95f3df | 3502 | next = pick_next_task(rq, prev); |
1da177e4 LT |
3503 | |
3504 | sched_info_switch(prev, next); | |
dd41f596 | 3505 | |
1da177e4 | 3506 | if (likely(prev != next)) { |
1da177e4 LT |
3507 | rq->nr_switches++; |
3508 | rq->curr = next; | |
3509 | ++*switch_count; | |
3510 | ||
dd41f596 | 3511 | context_switch(rq, prev, next); /* unlocks the rq */ |
1da177e4 LT |
3512 | } else |
3513 | spin_unlock_irq(&rq->lock); | |
3514 | ||
dd41f596 IM |
3515 | if (unlikely(reacquire_kernel_lock(current) < 0)) { |
3516 | cpu = smp_processor_id(); | |
3517 | rq = cpu_rq(cpu); | |
1da177e4 | 3518 | goto need_resched_nonpreemptible; |
dd41f596 | 3519 | } |
1da177e4 LT |
3520 | preempt_enable_no_resched(); |
3521 | if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) | |
3522 | goto need_resched; | |
3523 | } | |
1da177e4 LT |
3524 | EXPORT_SYMBOL(schedule); |
3525 | ||
3526 | #ifdef CONFIG_PREEMPT | |
3527 | /* | |
2ed6e34f | 3528 | * this is the entry point to schedule() from in-kernel preemption |
1da177e4 LT |
3529 | * off of preempt_enable. Kernel preemptions off return from interrupt |
3530 | * occur there and call schedule directly. | |
3531 | */ | |
3532 | asmlinkage void __sched preempt_schedule(void) | |
3533 | { | |
3534 | struct thread_info *ti = current_thread_info(); | |
3535 | #ifdef CONFIG_PREEMPT_BKL | |
3536 | struct task_struct *task = current; | |
3537 | int saved_lock_depth; | |
3538 | #endif | |
3539 | /* | |
3540 | * If there is a non-zero preempt_count or interrupts are disabled, | |
3541 | * we do not want to preempt the current task. Just return.. | |
3542 | */ | |
beed33a8 | 3543 | if (likely(ti->preempt_count || irqs_disabled())) |
1da177e4 LT |
3544 | return; |
3545 | ||
3546 | need_resched: | |
3547 | add_preempt_count(PREEMPT_ACTIVE); | |
3548 | /* | |
3549 | * We keep the big kernel semaphore locked, but we | |
3550 | * clear ->lock_depth so that schedule() doesnt | |
3551 | * auto-release the semaphore: | |
3552 | */ | |
3553 | #ifdef CONFIG_PREEMPT_BKL | |
3554 | saved_lock_depth = task->lock_depth; | |
3555 | task->lock_depth = -1; | |
3556 | #endif | |
3557 | schedule(); | |
3558 | #ifdef CONFIG_PREEMPT_BKL | |
3559 | task->lock_depth = saved_lock_depth; | |
3560 | #endif | |
3561 | sub_preempt_count(PREEMPT_ACTIVE); | |
3562 | ||
3563 | /* we could miss a preemption opportunity between schedule and now */ | |
3564 | barrier(); | |
3565 | if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) | |
3566 | goto need_resched; | |
3567 | } | |
1da177e4 LT |
3568 | EXPORT_SYMBOL(preempt_schedule); |
3569 | ||
3570 | /* | |
2ed6e34f | 3571 | * this is the entry point to schedule() from kernel preemption |
1da177e4 LT |
3572 | * off of irq context. |
3573 | * Note, that this is called and return with irqs disabled. This will | |
3574 | * protect us against recursive calling from irq. | |
3575 | */ | |
3576 | asmlinkage void __sched preempt_schedule_irq(void) | |
3577 | { | |
3578 | struct thread_info *ti = current_thread_info(); | |
3579 | #ifdef CONFIG_PREEMPT_BKL | |
3580 | struct task_struct *task = current; | |
3581 | int saved_lock_depth; | |
3582 | #endif | |
2ed6e34f | 3583 | /* Catch callers which need to be fixed */ |
1da177e4 LT |
3584 | BUG_ON(ti->preempt_count || !irqs_disabled()); |
3585 | ||
3586 | need_resched: | |
3587 | add_preempt_count(PREEMPT_ACTIVE); | |
3588 | /* | |
3589 | * We keep the big kernel semaphore locked, but we | |
3590 | * clear ->lock_depth so that schedule() doesnt | |
3591 | * auto-release the semaphore: | |
3592 | */ | |
3593 | #ifdef CONFIG_PREEMPT_BKL | |
3594 | saved_lock_depth = task->lock_depth; | |
3595 | task->lock_depth = -1; | |
3596 | #endif | |
3597 | local_irq_enable(); | |
3598 | schedule(); | |
3599 | local_irq_disable(); | |
3600 | #ifdef CONFIG_PREEMPT_BKL | |
3601 | task->lock_depth = saved_lock_depth; | |
3602 | #endif | |
3603 | sub_preempt_count(PREEMPT_ACTIVE); | |
3604 | ||
3605 | /* we could miss a preemption opportunity between schedule and now */ | |
3606 | barrier(); | |
3607 | if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) | |
3608 | goto need_resched; | |
3609 | } | |
3610 | ||
3611 | #endif /* CONFIG_PREEMPT */ | |
3612 | ||
95cdf3b7 IM |
3613 | int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, |
3614 | void *key) | |
1da177e4 | 3615 | { |
48f24c4d | 3616 | return try_to_wake_up(curr->private, mode, sync); |
1da177e4 | 3617 | } |
1da177e4 LT |
3618 | EXPORT_SYMBOL(default_wake_function); |
3619 | ||
3620 | /* | |
3621 | * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just | |
3622 | * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve | |
3623 | * number) then we wake all the non-exclusive tasks and one exclusive task. | |
3624 | * | |
3625 | * There are circumstances in which we can try to wake a task which has already | |
3626 | * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns | |
3627 | * zero in this (rare) case, and we handle it by continuing to scan the queue. | |
3628 | */ | |
3629 | static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, | |
3630 | int nr_exclusive, int sync, void *key) | |
3631 | { | |
2e45874c | 3632 | wait_queue_t *curr, *next; |
1da177e4 | 3633 | |
2e45874c | 3634 | list_for_each_entry_safe(curr, next, &q->task_list, task_list) { |
48f24c4d IM |
3635 | unsigned flags = curr->flags; |
3636 | ||
1da177e4 | 3637 | if (curr->func(curr, mode, sync, key) && |
48f24c4d | 3638 | (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) |
1da177e4 LT |
3639 | break; |
3640 | } | |
3641 | } | |
3642 | ||
3643 | /** | |
3644 | * __wake_up - wake up threads blocked on a waitqueue. | |
3645 | * @q: the waitqueue | |
3646 | * @mode: which threads | |
3647 | * @nr_exclusive: how many wake-one or wake-many threads to wake up | |
67be2dd1 | 3648 | * @key: is directly passed to the wakeup function |
1da177e4 LT |
3649 | */ |
3650 | void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode, | |
95cdf3b7 | 3651 | int nr_exclusive, void *key) |
1da177e4 LT |
3652 | { |
3653 | unsigned long flags; | |
3654 | ||
3655 | spin_lock_irqsave(&q->lock, flags); | |
3656 | __wake_up_common(q, mode, nr_exclusive, 0, key); | |
3657 | spin_unlock_irqrestore(&q->lock, flags); | |
3658 | } | |
1da177e4 LT |
3659 | EXPORT_SYMBOL(__wake_up); |
3660 | ||
3661 | /* | |
3662 | * Same as __wake_up but called with the spinlock in wait_queue_head_t held. | |
3663 | */ | |
3664 | void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode) | |
3665 | { | |
3666 | __wake_up_common(q, mode, 1, 0, NULL); | |
3667 | } | |
3668 | ||
3669 | /** | |
67be2dd1 | 3670 | * __wake_up_sync - wake up threads blocked on a waitqueue. |
1da177e4 LT |
3671 | * @q: the waitqueue |
3672 | * @mode: which threads | |
3673 | * @nr_exclusive: how many wake-one or wake-many threads to wake up | |
3674 | * | |
3675 | * The sync wakeup differs that the waker knows that it will schedule | |
3676 | * away soon, so while the target thread will be woken up, it will not | |
3677 | * be migrated to another CPU - ie. the two threads are 'synchronized' | |
3678 | * with each other. This can prevent needless bouncing between CPUs. | |
3679 | * | |
3680 | * On UP it can prevent extra preemption. | |
3681 | */ | |
95cdf3b7 IM |
3682 | void fastcall |
3683 | __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) | |
1da177e4 LT |
3684 | { |
3685 | unsigned long flags; | |
3686 | int sync = 1; | |
3687 | ||
3688 | if (unlikely(!q)) | |
3689 | return; | |
3690 | ||
3691 | if (unlikely(!nr_exclusive)) | |
3692 | sync = 0; | |
3693 | ||
3694 | spin_lock_irqsave(&q->lock, flags); | |
3695 | __wake_up_common(q, mode, nr_exclusive, sync, NULL); | |
3696 | spin_unlock_irqrestore(&q->lock, flags); | |
3697 | } | |
3698 | EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ | |
3699 | ||
3700 | void fastcall complete(struct completion *x) | |
3701 | { | |
3702 | unsigned long flags; | |
3703 | ||
3704 | spin_lock_irqsave(&x->wait.lock, flags); | |
3705 | x->done++; | |
3706 | __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, | |
3707 | 1, 0, NULL); | |
3708 | spin_unlock_irqrestore(&x->wait.lock, flags); | |
3709 | } | |
3710 | EXPORT_SYMBOL(complete); | |
3711 | ||
3712 | void fastcall complete_all(struct completion *x) | |
3713 | { | |
3714 | unsigned long flags; | |
3715 | ||
3716 | spin_lock_irqsave(&x->wait.lock, flags); | |
3717 | x->done += UINT_MAX/2; | |
3718 | __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, | |
3719 | 0, 0, NULL); | |
3720 | spin_unlock_irqrestore(&x->wait.lock, flags); | |
3721 | } | |
3722 | EXPORT_SYMBOL(complete_all); | |
3723 | ||
3724 | void fastcall __sched wait_for_completion(struct completion *x) | |
3725 | { | |
3726 | might_sleep(); | |
48f24c4d | 3727 | |
1da177e4 LT |
3728 | spin_lock_irq(&x->wait.lock); |
3729 | if (!x->done) { | |
3730 | DECLARE_WAITQUEUE(wait, current); | |
3731 | ||
3732 | wait.flags |= WQ_FLAG_EXCLUSIVE; | |
3733 | __add_wait_queue_tail(&x->wait, &wait); | |
3734 | do { | |
3735 | __set_current_state(TASK_UNINTERRUPTIBLE); | |
3736 | spin_unlock_irq(&x->wait.lock); | |
3737 | schedule(); | |
3738 | spin_lock_irq(&x->wait.lock); | |
3739 | } while (!x->done); | |
3740 | __remove_wait_queue(&x->wait, &wait); | |
3741 | } | |
3742 | x->done--; | |
3743 | spin_unlock_irq(&x->wait.lock); | |
3744 | } | |
3745 | EXPORT_SYMBOL(wait_for_completion); | |
3746 | ||
3747 | unsigned long fastcall __sched | |
3748 | wait_for_completion_timeout(struct completion *x, unsigned long timeout) | |
3749 | { | |
3750 | might_sleep(); | |
3751 | ||
3752 | spin_lock_irq(&x->wait.lock); | |
3753 | if (!x->done) { | |
3754 | DECLARE_WAITQUEUE(wait, current); | |
3755 | ||
3756 | wait.flags |= WQ_FLAG_EXCLUSIVE; | |
3757 | __add_wait_queue_tail(&x->wait, &wait); | |
3758 | do { | |
3759 | __set_current_state(TASK_UNINTERRUPTIBLE); | |
3760 | spin_unlock_irq(&x->wait.lock); | |
3761 | timeout = schedule_timeout(timeout); | |
3762 | spin_lock_irq(&x->wait.lock); | |
3763 | if (!timeout) { | |
3764 | __remove_wait_queue(&x->wait, &wait); | |
3765 | goto out; | |
3766 | } | |
3767 | } while (!x->done); | |
3768 | __remove_wait_queue(&x->wait, &wait); | |
3769 | } | |
3770 | x->done--; | |
3771 | out: | |
3772 | spin_unlock_irq(&x->wait.lock); | |
3773 | return timeout; | |
3774 | } | |
3775 | EXPORT_SYMBOL(wait_for_completion_timeout); | |
3776 | ||
3777 | int fastcall __sched wait_for_completion_interruptible(struct completion *x) | |
3778 | { | |
3779 | int ret = 0; | |
3780 | ||
3781 | might_sleep(); | |
3782 | ||
3783 | spin_lock_irq(&x->wait.lock); | |
3784 | if (!x->done) { | |
3785 | DECLARE_WAITQUEUE(wait, current); | |
3786 | ||
3787 | wait.flags |= WQ_FLAG_EXCLUSIVE; | |
3788 | __add_wait_queue_tail(&x->wait, &wait); | |
3789 | do { | |
3790 | if (signal_pending(current)) { | |
3791 | ret = -ERESTARTSYS; | |
3792 | __remove_wait_queue(&x->wait, &wait); | |
3793 | goto out; | |
3794 | } | |
3795 | __set_current_state(TASK_INTERRUPTIBLE); | |
3796 | spin_unlock_irq(&x->wait.lock); | |
3797 | schedule(); | |
3798 | spin_lock_irq(&x->wait.lock); | |
3799 | } while (!x->done); | |
3800 | __remove_wait_queue(&x->wait, &wait); | |
3801 | } | |
3802 | x->done--; | |
3803 | out: | |
3804 | spin_unlock_irq(&x->wait.lock); | |
3805 | ||
3806 | return ret; | |
3807 | } | |
3808 | EXPORT_SYMBOL(wait_for_completion_interruptible); | |
3809 | ||
3810 | unsigned long fastcall __sched | |
3811 | wait_for_completion_interruptible_timeout(struct completion *x, | |
3812 | unsigned long timeout) | |
3813 | { | |
3814 | might_sleep(); | |
3815 | ||
3816 | spin_lock_irq(&x->wait.lock); | |
3817 | if (!x->done) { | |
3818 | DECLARE_WAITQUEUE(wait, current); | |
3819 | ||
3820 | wait.flags |= WQ_FLAG_EXCLUSIVE; | |
3821 | __add_wait_queue_tail(&x->wait, &wait); | |
3822 | do { | |
3823 | if (signal_pending(current)) { | |
3824 | timeout = -ERESTARTSYS; | |
3825 | __remove_wait_queue(&x->wait, &wait); | |
3826 | goto out; | |
3827 | } | |
3828 | __set_current_state(TASK_INTERRUPTIBLE); | |
3829 | spin_unlock_irq(&x->wait.lock); | |
3830 | timeout = schedule_timeout(timeout); | |
3831 | spin_lock_irq(&x->wait.lock); | |
3832 | if (!timeout) { | |
3833 | __remove_wait_queue(&x->wait, &wait); | |
3834 | goto out; | |
3835 | } | |
3836 | } while (!x->done); | |
3837 | __remove_wait_queue(&x->wait, &wait); | |
3838 | } | |
3839 | x->done--; | |
3840 | out: | |
3841 | spin_unlock_irq(&x->wait.lock); | |
3842 | return timeout; | |
3843 | } | |
3844 | EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); | |
3845 | ||
0fec171c IM |
3846 | static inline void |
3847 | sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags) | |
3848 | { | |
3849 | spin_lock_irqsave(&q->lock, *flags); | |
3850 | __add_wait_queue(q, wait); | |
1da177e4 | 3851 | spin_unlock(&q->lock); |
0fec171c | 3852 | } |
1da177e4 | 3853 | |
0fec171c IM |
3854 | static inline void |
3855 | sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags) | |
3856 | { | |
3857 | spin_lock_irq(&q->lock); | |
3858 | __remove_wait_queue(q, wait); | |
3859 | spin_unlock_irqrestore(&q->lock, *flags); | |
3860 | } | |
1da177e4 | 3861 | |
0fec171c | 3862 | void __sched interruptible_sleep_on(wait_queue_head_t *q) |
1da177e4 | 3863 | { |
0fec171c IM |
3864 | unsigned long flags; |
3865 | wait_queue_t wait; | |
3866 | ||
3867 | init_waitqueue_entry(&wait, current); | |
1da177e4 LT |
3868 | |
3869 | current->state = TASK_INTERRUPTIBLE; | |
3870 | ||
0fec171c | 3871 | sleep_on_head(q, &wait, &flags); |
1da177e4 | 3872 | schedule(); |
0fec171c | 3873 | sleep_on_tail(q, &wait, &flags); |
1da177e4 | 3874 | } |
1da177e4 LT |
3875 | EXPORT_SYMBOL(interruptible_sleep_on); |
3876 | ||
0fec171c | 3877 | long __sched |
95cdf3b7 | 3878 | interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) |
1da177e4 | 3879 | { |
0fec171c IM |
3880 | unsigned long flags; |
3881 | wait_queue_t wait; | |
3882 | ||
3883 | init_waitqueue_entry(&wait, current); | |
1da177e4 LT |
3884 | |
3885 | current->state = TASK_INTERRUPTIBLE; | |
3886 | ||
0fec171c | 3887 | sleep_on_head(q, &wait, &flags); |
1da177e4 | 3888 | timeout = schedule_timeout(timeout); |
0fec171c | 3889 | sleep_on_tail(q, &wait, &flags); |
1da177e4 LT |
3890 | |
3891 | return timeout; | |
3892 | } | |
1da177e4 LT |
3893 | EXPORT_SYMBOL(interruptible_sleep_on_timeout); |
3894 | ||
0fec171c | 3895 | void __sched sleep_on(wait_queue_head_t *q) |
1da177e4 | 3896 | { |
0fec171c IM |
3897 | unsigned long flags; |
3898 | wait_queue_t wait; | |
3899 | ||
3900 | init_waitqueue_entry(&wait, current); | |
1da177e4 LT |
3901 | |
3902 | current->state = TASK_UNINTERRUPTIBLE; | |
3903 | ||
0fec171c | 3904 | sleep_on_head(q, &wait, &flags); |
1da177e4 | 3905 | schedule(); |
0fec171c | 3906 | sleep_on_tail(q, &wait, &flags); |
1da177e4 | 3907 | } |
1da177e4 LT |
3908 | EXPORT_SYMBOL(sleep_on); |
3909 | ||
0fec171c | 3910 | long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) |
1da177e4 | 3911 | { |
0fec171c IM |
3912 | unsigned long flags; |
3913 | wait_queue_t wait; | |
3914 | ||
3915 | init_waitqueue_entry(&wait, current); | |
1da177e4 LT |
3916 | |
3917 | current->state = TASK_UNINTERRUPTIBLE; | |
3918 | ||
0fec171c | 3919 | sleep_on_head(q, &wait, &flags); |
1da177e4 | 3920 | timeout = schedule_timeout(timeout); |
0fec171c | 3921 | sleep_on_tail(q, &wait, &flags); |
1da177e4 LT |
3922 | |
3923 | return timeout; | |
3924 | } | |
1da177e4 LT |
3925 | EXPORT_SYMBOL(sleep_on_timeout); |
3926 | ||
b29739f9 IM |
3927 | #ifdef CONFIG_RT_MUTEXES |
3928 | ||
3929 | /* | |
3930 | * rt_mutex_setprio - set the current priority of a task | |
3931 | * @p: task | |
3932 | * @prio: prio value (kernel-internal form) | |
3933 | * | |
3934 | * This function changes the 'effective' priority of a task. It does | |
3935 | * not touch ->normal_prio like __setscheduler(). | |
3936 | * | |
3937 | * Used by the rt_mutex code to implement priority inheritance logic. | |
3938 | */ | |
36c8b586 | 3939 | void rt_mutex_setprio(struct task_struct *p, int prio) |
b29739f9 IM |
3940 | { |
3941 | unsigned long flags; | |
83b699ed | 3942 | int oldprio, on_rq, running; |
70b97a7f | 3943 | struct rq *rq; |
b29739f9 IM |
3944 | |
3945 | BUG_ON(prio < 0 || prio > MAX_PRIO); | |
3946 | ||
3947 | rq = task_rq_lock(p, &flags); | |
a8e504d2 | 3948 | update_rq_clock(rq); |
b29739f9 | 3949 | |
d5f9f942 | 3950 | oldprio = p->prio; |
dd41f596 | 3951 | on_rq = p->se.on_rq; |
83b699ed SV |
3952 | running = task_running(rq, p); |
3953 | if (on_rq) { | |
69be72c1 | 3954 | dequeue_task(rq, p, 0); |
83b699ed SV |
3955 | if (running) |
3956 | p->sched_class->put_prev_task(rq, p); | |
3957 | } | |
dd41f596 IM |
3958 | |
3959 | if (rt_prio(prio)) | |
3960 | p->sched_class = &rt_sched_class; | |
3961 | else | |
3962 | p->sched_class = &fair_sched_class; | |
3963 | ||
b29739f9 IM |
3964 | p->prio = prio; |
3965 | ||
dd41f596 | 3966 | if (on_rq) { |
83b699ed SV |
3967 | if (running) |
3968 | p->sched_class->set_curr_task(rq); | |
8159f87e | 3969 | enqueue_task(rq, p, 0); |
b29739f9 IM |
3970 | /* |
3971 | * Reschedule if we are currently running on this runqueue and | |
d5f9f942 AM |
3972 | * our priority decreased, or if we are not currently running on |
3973 | * this runqueue and our priority is higher than the current's | |
b29739f9 | 3974 | */ |
83b699ed | 3975 | if (running) { |
d5f9f942 AM |
3976 | if (p->prio > oldprio) |
3977 | resched_task(rq->curr); | |
dd41f596 IM |
3978 | } else { |
3979 | check_preempt_curr(rq, p); | |
3980 | } | |
b29739f9 IM |
3981 | } |
3982 | task_rq_unlock(rq, &flags); | |
3983 | } | |
3984 | ||
3985 | #endif | |
3986 | ||
36c8b586 | 3987 | void set_user_nice(struct task_struct *p, long nice) |
1da177e4 | 3988 | { |
dd41f596 | 3989 | int old_prio, delta, on_rq; |
1da177e4 | 3990 | unsigned long flags; |
70b97a7f | 3991 | struct rq *rq; |
1da177e4 LT |
3992 | |
3993 | if (TASK_NICE(p) == nice || nice < -20 || nice > 19) | |
3994 | return; | |
3995 | /* | |
3996 | * We have to be careful, if called from sys_setpriority(), | |
3997 | * the task might be in the middle of scheduling on another CPU. | |
3998 | */ | |
3999 | rq = task_rq_lock(p, &flags); | |
a8e504d2 | 4000 | update_rq_clock(rq); |
1da177e4 LT |
4001 | /* |
4002 | * The RT priorities are set via sched_setscheduler(), but we still | |
4003 | * allow the 'normal' nice value to be set - but as expected | |
4004 | * it wont have any effect on scheduling until the task is | |
dd41f596 | 4005 | * SCHED_FIFO/SCHED_RR: |
1da177e4 | 4006 | */ |
e05606d3 | 4007 | if (task_has_rt_policy(p)) { |
1da177e4 LT |
4008 | p->static_prio = NICE_TO_PRIO(nice); |
4009 | goto out_unlock; | |
4010 | } | |
dd41f596 IM |
4011 | on_rq = p->se.on_rq; |
4012 | if (on_rq) { | |
69be72c1 | 4013 | dequeue_task(rq, p, 0); |
79b5dddf | 4014 | dec_load(rq, p); |
2dd73a4f | 4015 | } |
1da177e4 | 4016 | |
1da177e4 | 4017 | p->static_prio = NICE_TO_PRIO(nice); |
2dd73a4f | 4018 | set_load_weight(p); |
b29739f9 IM |
4019 | old_prio = p->prio; |
4020 | p->prio = effective_prio(p); | |
4021 | delta = p->prio - old_prio; | |
1da177e4 | 4022 | |
dd41f596 | 4023 | if (on_rq) { |
8159f87e | 4024 | enqueue_task(rq, p, 0); |
29b4b623 | 4025 | inc_load(rq, p); |
1da177e4 | 4026 | /* |
d5f9f942 AM |
4027 | * If the task increased its priority or is running and |
4028 | * lowered its priority, then reschedule its CPU: | |
1da177e4 | 4029 | */ |
d5f9f942 | 4030 | if (delta < 0 || (delta > 0 && task_running(rq, p))) |
1da177e4 LT |
4031 | resched_task(rq->curr); |
4032 | } | |
4033 | out_unlock: | |
4034 | task_rq_unlock(rq, &flags); | |
4035 | } | |
1da177e4 LT |
4036 | EXPORT_SYMBOL(set_user_nice); |
4037 | ||
e43379f1 MM |
4038 | /* |
4039 | * can_nice - check if a task can reduce its nice value | |
4040 | * @p: task | |
4041 | * @nice: nice value | |
4042 | */ | |
36c8b586 | 4043 | int can_nice(const struct task_struct *p, const int nice) |
e43379f1 | 4044 | { |
024f4747 MM |
4045 | /* convert nice value [19,-20] to rlimit style value [1,40] */ |
4046 | int nice_rlim = 20 - nice; | |
48f24c4d | 4047 | |
e43379f1 MM |
4048 | return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur || |
4049 | capable(CAP_SYS_NICE)); | |
4050 | } | |
4051 | ||
1da177e4 LT |
4052 | #ifdef __ARCH_WANT_SYS_NICE |
4053 | ||
4054 | /* | |
4055 | * sys_nice - change the priority of the current process. | |
4056 | * @increment: priority increment | |
4057 | * | |
4058 | * sys_setpriority is a more generic, but much slower function that | |
4059 | * does similar things. | |
4060 | */ | |
4061 | asmlinkage long sys_nice(int increment) | |
4062 | { | |
48f24c4d | 4063 | long nice, retval; |
1da177e4 LT |
4064 | |
4065 | /* | |
4066 | * Setpriority might change our priority at the same moment. | |
4067 | * We don't have to worry. Conceptually one call occurs first | |
4068 | * and we have a single winner. | |
4069 | */ | |
e43379f1 MM |
4070 | if (increment < -40) |
4071 | increment = -40; | |
1da177e4 LT |
4072 | if (increment > 40) |
4073 | increment = 40; | |
4074 | ||
4075 | nice = PRIO_TO_NICE(current->static_prio) + increment; | |
4076 | if (nice < -20) | |
4077 | nice = -20; | |
4078 | if (nice > 19) | |
4079 | nice = 19; | |
4080 | ||
e43379f1 MM |
4081 | if (increment < 0 && !can_nice(current, nice)) |
4082 | return -EPERM; | |
4083 | ||
1da177e4 LT |
4084 | retval = security_task_setnice(current, nice); |
4085 | if (retval) | |
4086 | return retval; | |
4087 | ||
4088 | set_user_nice(current, nice); | |
4089 | return 0; | |
4090 | } | |
4091 | ||
4092 | #endif | |
4093 | ||
4094 | /** | |
4095 | * task_prio - return the priority value of a given task. | |
4096 | * @p: the task in question. | |
4097 | * | |
4098 | * This is the priority value as seen by users in /proc. | |
4099 | * RT tasks are offset by -200. Normal tasks are centered | |
4100 | * around 0, value goes from -16 to +15. | |
4101 | */ | |
36c8b586 | 4102 | int task_prio(const struct task_struct *p) |
1da177e4 LT |
4103 | { |
4104 | return p->prio - MAX_RT_PRIO; | |
4105 | } | |
4106 | ||
4107 | /** | |
4108 | * task_nice - return the nice value of a given task. | |
4109 | * @p: the task in question. | |
4110 | */ | |
36c8b586 | 4111 | int task_nice(const struct task_struct *p) |
1da177e4 LT |
4112 | { |
4113 | return TASK_NICE(p); | |
4114 | } | |
1da177e4 | 4115 | EXPORT_SYMBOL_GPL(task_nice); |
1da177e4 LT |
4116 | |
4117 | /** | |
4118 | * idle_cpu - is a given cpu idle currently? | |
4119 | * @cpu: the processor in question. | |
4120 | */ | |
4121 | int idle_cpu(int cpu) | |
4122 | { | |
4123 | return cpu_curr(cpu) == cpu_rq(cpu)->idle; | |
4124 | } | |
4125 | ||
1da177e4 LT |
4126 | /** |
4127 | * idle_task - return the idle task for a given cpu. | |
4128 | * @cpu: the processor in question. | |
4129 | */ | |
36c8b586 | 4130 | struct task_struct *idle_task(int cpu) |
1da177e4 LT |
4131 | { |
4132 | return cpu_rq(cpu)->idle; | |
4133 | } | |
4134 | ||
4135 | /** | |
4136 | * find_process_by_pid - find a process with a matching PID value. | |
4137 | * @pid: the pid in question. | |
4138 | */ | |
36c8b586 | 4139 | static inline struct task_struct *find_process_by_pid(pid_t pid) |
1da177e4 LT |
4140 | { |
4141 | return pid ? find_task_by_pid(pid) : current; | |
4142 | } | |
4143 | ||
4144 | /* Actually do priority change: must hold rq lock. */ | |
dd41f596 IM |
4145 | static void |
4146 | __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) | |
1da177e4 | 4147 | { |
dd41f596 | 4148 | BUG_ON(p->se.on_rq); |
48f24c4d | 4149 | |
1da177e4 | 4150 | p->policy = policy; |
dd41f596 IM |
4151 | switch (p->policy) { |
4152 | case SCHED_NORMAL: | |
4153 | case SCHED_BATCH: | |
4154 | case SCHED_IDLE: | |
4155 | p->sched_class = &fair_sched_class; | |
4156 | break; | |
4157 | case SCHED_FIFO: | |
4158 | case SCHED_RR: | |
4159 | p->sched_class = &rt_sched_class; | |
4160 | break; | |
4161 | } | |
4162 | ||
1da177e4 | 4163 | p->rt_priority = prio; |
b29739f9 IM |
4164 | p->normal_prio = normal_prio(p); |
4165 | /* we are holding p->pi_lock already */ | |
4166 | p->prio = rt_mutex_getprio(p); | |
2dd73a4f | 4167 | set_load_weight(p); |
1da177e4 LT |
4168 | } |
4169 | ||
4170 | /** | |
72fd4a35 | 4171 | * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. |
1da177e4 LT |
4172 | * @p: the task in question. |
4173 | * @policy: new policy. | |
4174 | * @param: structure containing the new RT priority. | |
5fe1d75f | 4175 | * |
72fd4a35 | 4176 | * NOTE that the task may be already dead. |
1da177e4 | 4177 | */ |
95cdf3b7 IM |
4178 | int sched_setscheduler(struct task_struct *p, int policy, |
4179 | struct sched_param *param) | |
1da177e4 | 4180 | { |
83b699ed | 4181 | int retval, oldprio, oldpolicy = -1, on_rq, running; |
1da177e4 | 4182 | unsigned long flags; |
70b97a7f | 4183 | struct rq *rq; |
1da177e4 | 4184 | |
66e5393a SR |
4185 | /* may grab non-irq protected spin_locks */ |
4186 | BUG_ON(in_interrupt()); | |
1da177e4 LT |
4187 | recheck: |
4188 | /* double check policy once rq lock held */ | |
4189 | if (policy < 0) | |
4190 | policy = oldpolicy = p->policy; | |
4191 | else if (policy != SCHED_FIFO && policy != SCHED_RR && | |
dd41f596 IM |
4192 | policy != SCHED_NORMAL && policy != SCHED_BATCH && |
4193 | policy != SCHED_IDLE) | |
b0a9499c | 4194 | return -EINVAL; |
1da177e4 LT |
4195 | /* |
4196 | * Valid priorities for SCHED_FIFO and SCHED_RR are | |
dd41f596 IM |
4197 | * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, |
4198 | * SCHED_BATCH and SCHED_IDLE is 0. | |
1da177e4 LT |
4199 | */ |
4200 | if (param->sched_priority < 0 || | |
95cdf3b7 | 4201 | (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || |
d46523ea | 4202 | (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) |
1da177e4 | 4203 | return -EINVAL; |
e05606d3 | 4204 | if (rt_policy(policy) != (param->sched_priority != 0)) |
1da177e4 LT |
4205 | return -EINVAL; |
4206 | ||
37e4ab3f OC |
4207 | /* |
4208 | * Allow unprivileged RT tasks to decrease priority: | |
4209 | */ | |
4210 | if (!capable(CAP_SYS_NICE)) { | |
e05606d3 | 4211 | if (rt_policy(policy)) { |
8dc3e909 | 4212 | unsigned long rlim_rtprio; |
8dc3e909 ON |
4213 | |
4214 | if (!lock_task_sighand(p, &flags)) | |
4215 | return -ESRCH; | |
4216 | rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur; | |
4217 | unlock_task_sighand(p, &flags); | |
4218 | ||
4219 | /* can't set/change the rt policy */ | |
4220 | if (policy != p->policy && !rlim_rtprio) | |
4221 | return -EPERM; | |
4222 | ||
4223 | /* can't increase priority */ | |
4224 | if (param->sched_priority > p->rt_priority && | |
4225 | param->sched_priority > rlim_rtprio) | |
4226 | return -EPERM; | |
4227 | } | |
dd41f596 IM |
4228 | /* |
4229 | * Like positive nice levels, dont allow tasks to | |
4230 | * move out of SCHED_IDLE either: | |
4231 | */ | |
4232 | if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) | |
4233 | return -EPERM; | |
5fe1d75f | 4234 | |
37e4ab3f OC |
4235 | /* can't change other user's priorities */ |
4236 | if ((current->euid != p->euid) && | |
4237 | (current->euid != p->uid)) | |
4238 | return -EPERM; | |
4239 | } | |
1da177e4 LT |
4240 | |
4241 | retval = security_task_setscheduler(p, policy, param); | |
4242 | if (retval) | |
4243 | return retval; | |
b29739f9 IM |
4244 | /* |
4245 | * make sure no PI-waiters arrive (or leave) while we are | |
4246 | * changing the priority of the task: | |
4247 | */ | |
4248 | spin_lock_irqsave(&p->pi_lock, flags); | |
1da177e4 LT |
4249 | /* |
4250 | * To be able to change p->policy safely, the apropriate | |
4251 | * runqueue lock must be held. | |
4252 | */ | |
b29739f9 | 4253 | rq = __task_rq_lock(p); |
1da177e4 LT |
4254 | /* recheck policy now with rq lock held */ |
4255 | if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { | |
4256 | policy = oldpolicy = -1; | |
b29739f9 IM |
4257 | __task_rq_unlock(rq); |
4258 | spin_unlock_irqrestore(&p->pi_lock, flags); | |
1da177e4 LT |
4259 | goto recheck; |
4260 | } | |
2daa3577 | 4261 | update_rq_clock(rq); |
dd41f596 | 4262 | on_rq = p->se.on_rq; |
83b699ed SV |
4263 | running = task_running(rq, p); |
4264 | if (on_rq) { | |
2e1cb74a | 4265 | deactivate_task(rq, p, 0); |
83b699ed SV |
4266 | if (running) |
4267 | p->sched_class->put_prev_task(rq, p); | |
4268 | } | |
f6b53205 | 4269 | |
1da177e4 | 4270 | oldprio = p->prio; |
dd41f596 | 4271 | __setscheduler(rq, p, policy, param->sched_priority); |
f6b53205 | 4272 | |
dd41f596 | 4273 | if (on_rq) { |
83b699ed SV |
4274 | if (running) |
4275 | p->sched_class->set_curr_task(rq); | |
dd41f596 | 4276 | activate_task(rq, p, 0); |
1da177e4 LT |
4277 | /* |
4278 | * Reschedule if we are currently running on this runqueue and | |
d5f9f942 AM |
4279 | * our priority decreased, or if we are not currently running on |
4280 | * this runqueue and our priority is higher than the current's | |
1da177e4 | 4281 | */ |
83b699ed | 4282 | if (running) { |
d5f9f942 AM |
4283 | if (p->prio > oldprio) |
4284 | resched_task(rq->curr); | |
dd41f596 IM |
4285 | } else { |
4286 | check_preempt_curr(rq, p); | |
4287 | } | |
1da177e4 | 4288 | } |
b29739f9 IM |
4289 | __task_rq_unlock(rq); |
4290 | spin_unlock_irqrestore(&p->pi_lock, flags); | |
4291 | ||
95e02ca9 TG |
4292 | rt_mutex_adjust_pi(p); |
4293 | ||
1da177e4 LT |
4294 | return 0; |
4295 | } | |
4296 | EXPORT_SYMBOL_GPL(sched_setscheduler); | |
4297 | ||
95cdf3b7 IM |
4298 | static int |
4299 | do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) | |
1da177e4 | 4300 | { |
1da177e4 LT |
4301 | struct sched_param lparam; |
4302 | struct task_struct *p; | |
36c8b586 | 4303 | int retval; |
1da177e4 LT |
4304 | |
4305 | if (!param || pid < 0) | |
4306 | return -EINVAL; | |
4307 | if (copy_from_user(&lparam, param, sizeof(struct sched_param))) | |
4308 | return -EFAULT; | |
5fe1d75f ON |
4309 | |
4310 | rcu_read_lock(); | |
4311 | retval = -ESRCH; | |
1da177e4 | 4312 | p = find_process_by_pid(pid); |
5fe1d75f ON |
4313 | if (p != NULL) |
4314 | retval = sched_setscheduler(p, policy, &lparam); | |
4315 | rcu_read_unlock(); | |
36c8b586 | 4316 | |
1da177e4 LT |
4317 | return retval; |
4318 | } | |
4319 | ||
4320 | /** | |
4321 | * sys_sched_setscheduler - set/change the scheduler policy and RT priority | |
4322 | * @pid: the pid in question. | |
4323 | * @policy: new policy. | |
4324 | * @param: structure containing the new RT priority. | |
4325 | */ | |
4326 | asmlinkage long sys_sched_setscheduler(pid_t pid, int policy, | |
4327 | struct sched_param __user *param) | |
4328 | { | |
c21761f1 JB |
4329 | /* negative values for policy are not valid */ |
4330 | if (policy < 0) | |
4331 | return -EINVAL; | |
4332 | ||
1da177e4 LT |
4333 | return do_sched_setscheduler(pid, policy, param); |
4334 | } | |
4335 | ||
4336 | /** | |
4337 | * sys_sched_setparam - set/change the RT priority of a thread | |
4338 | * @pid: the pid in question. | |
4339 | * @param: structure containing the new RT priority. | |
4340 | */ | |
4341 | asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param) | |
4342 | { | |
4343 | return do_sched_setscheduler(pid, -1, param); | |
4344 | } | |
4345 | ||
4346 | /** | |
4347 | * sys_sched_getscheduler - get the policy (scheduling class) of a thread | |
4348 | * @pid: the pid in question. | |
4349 | */ | |
4350 | asmlinkage long sys_sched_getscheduler(pid_t pid) | |
4351 | { | |
36c8b586 | 4352 | struct task_struct *p; |
1da177e4 | 4353 | int retval = -EINVAL; |
1da177e4 LT |
4354 | |
4355 | if (pid < 0) | |
4356 | goto out_nounlock; | |
4357 | ||
4358 | retval = -ESRCH; | |
4359 | read_lock(&tasklist_lock); | |
4360 | p = find_process_by_pid(pid); | |
4361 | if (p) { | |
4362 | retval = security_task_getscheduler(p); | |
4363 | if (!retval) | |
4364 | retval = p->policy; | |
4365 | } | |
4366 | read_unlock(&tasklist_lock); | |
4367 | ||
4368 | out_nounlock: | |
4369 | return retval; | |
4370 | } | |
4371 | ||
4372 | /** | |
4373 | * sys_sched_getscheduler - get the RT priority of a thread | |
4374 | * @pid: the pid in question. | |
4375 | * @param: structure containing the RT priority. | |
4376 | */ | |
4377 | asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param) | |
4378 | { | |
4379 | struct sched_param lp; | |
36c8b586 | 4380 | struct task_struct *p; |
1da177e4 | 4381 | int retval = -EINVAL; |
1da177e4 LT |
4382 | |
4383 | if (!param || pid < 0) | |
4384 | goto out_nounlock; | |
4385 | ||
4386 | read_lock(&tasklist_lock); | |
4387 | p = find_process_by_pid(pid); | |
4388 | retval = -ESRCH; | |
4389 | if (!p) | |
4390 | goto out_unlock; | |
4391 | ||
4392 | retval = security_task_getscheduler(p); | |
4393 | if (retval) | |
4394 | goto out_unlock; | |
4395 | ||
4396 | lp.sched_priority = p->rt_priority; | |
4397 | read_unlock(&tasklist_lock); | |
4398 | ||
4399 | /* | |
4400 | * This one might sleep, we cannot do it with a spinlock held ... | |
4401 | */ | |
4402 | retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; | |
4403 | ||
4404 | out_nounlock: | |
4405 | return retval; | |
4406 | ||
4407 | out_unlock: | |
4408 | read_unlock(&tasklist_lock); | |
4409 | return retval; | |
4410 | } | |
4411 | ||
4412 | long sched_setaffinity(pid_t pid, cpumask_t new_mask) | |
4413 | { | |
1da177e4 | 4414 | cpumask_t cpus_allowed; |
36c8b586 IM |
4415 | struct task_struct *p; |
4416 | int retval; | |
1da177e4 | 4417 | |
5be9361c | 4418 | mutex_lock(&sched_hotcpu_mutex); |
1da177e4 LT |
4419 | read_lock(&tasklist_lock); |
4420 | ||
4421 | p = find_process_by_pid(pid); | |
4422 | if (!p) { | |
4423 | read_unlock(&tasklist_lock); | |
5be9361c | 4424 | mutex_unlock(&sched_hotcpu_mutex); |
1da177e4 LT |
4425 | return -ESRCH; |
4426 | } | |
4427 | ||
4428 | /* | |
4429 | * It is not safe to call set_cpus_allowed with the | |
4430 | * tasklist_lock held. We will bump the task_struct's | |
4431 | * usage count and then drop tasklist_lock. | |
4432 | */ | |
4433 | get_task_struct(p); | |
4434 | read_unlock(&tasklist_lock); | |
4435 | ||
4436 | retval = -EPERM; | |
4437 | if ((current->euid != p->euid) && (current->euid != p->uid) && | |
4438 | !capable(CAP_SYS_NICE)) | |
4439 | goto out_unlock; | |
4440 | ||
e7834f8f DQ |
4441 | retval = security_task_setscheduler(p, 0, NULL); |
4442 | if (retval) | |
4443 | goto out_unlock; | |
4444 | ||
1da177e4 LT |
4445 | cpus_allowed = cpuset_cpus_allowed(p); |
4446 | cpus_and(new_mask, new_mask, cpus_allowed); | |
4447 | retval = set_cpus_allowed(p, new_mask); | |
4448 | ||
4449 | out_unlock: | |
4450 | put_task_struct(p); | |
5be9361c | 4451 | mutex_unlock(&sched_hotcpu_mutex); |
1da177e4 LT |
4452 | return retval; |
4453 | } | |
4454 | ||
4455 | static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, | |
4456 | cpumask_t *new_mask) | |
4457 | { | |
4458 | if (len < sizeof(cpumask_t)) { | |
4459 | memset(new_mask, 0, sizeof(cpumask_t)); | |
4460 | } else if (len > sizeof(cpumask_t)) { | |
4461 | len = sizeof(cpumask_t); | |
4462 | } | |
4463 | return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; | |
4464 | } | |
4465 | ||
4466 | /** | |
4467 | * sys_sched_setaffinity - set the cpu affinity of a process | |
4468 | * @pid: pid of the process | |
4469 | * @len: length in bytes of the bitmask pointed to by user_mask_ptr | |
4470 | * @user_mask_ptr: user-space pointer to the new cpu mask | |
4471 | */ | |
4472 | asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len, | |
4473 | unsigned long __user *user_mask_ptr) | |
4474 | { | |
4475 | cpumask_t new_mask; | |
4476 | int retval; | |
4477 | ||
4478 | retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask); | |
4479 | if (retval) | |
4480 | return retval; | |
4481 | ||
4482 | return sched_setaffinity(pid, new_mask); | |
4483 | } | |
4484 | ||
4485 | /* | |
4486 | * Represents all cpu's present in the system | |
4487 | * In systems capable of hotplug, this map could dynamically grow | |
4488 | * as new cpu's are detected in the system via any platform specific | |
4489 | * method, such as ACPI for e.g. | |
4490 | */ | |
4491 | ||
4cef0c61 | 4492 | cpumask_t cpu_present_map __read_mostly; |
1da177e4 LT |
4493 | EXPORT_SYMBOL(cpu_present_map); |
4494 | ||
4495 | #ifndef CONFIG_SMP | |
4cef0c61 | 4496 | cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL; |
e16b38f7 GB |
4497 | EXPORT_SYMBOL(cpu_online_map); |
4498 | ||
4cef0c61 | 4499 | cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL; |
e16b38f7 | 4500 | EXPORT_SYMBOL(cpu_possible_map); |
1da177e4 LT |
4501 | #endif |
4502 | ||
4503 | long sched_getaffinity(pid_t pid, cpumask_t *mask) | |
4504 | { | |
36c8b586 | 4505 | struct task_struct *p; |
1da177e4 | 4506 | int retval; |
1da177e4 | 4507 | |
5be9361c | 4508 | mutex_lock(&sched_hotcpu_mutex); |
1da177e4 LT |
4509 | read_lock(&tasklist_lock); |
4510 | ||
4511 | retval = -ESRCH; | |
4512 | p = find_process_by_pid(pid); | |
4513 | if (!p) | |
4514 | goto out_unlock; | |
4515 | ||
e7834f8f DQ |
4516 | retval = security_task_getscheduler(p); |
4517 | if (retval) | |
4518 | goto out_unlock; | |
4519 | ||
2f7016d9 | 4520 | cpus_and(*mask, p->cpus_allowed, cpu_online_map); |
1da177e4 LT |
4521 | |
4522 | out_unlock: | |
4523 | read_unlock(&tasklist_lock); | |
5be9361c | 4524 | mutex_unlock(&sched_hotcpu_mutex); |
1da177e4 | 4525 | |
9531b62f | 4526 | return retval; |
1da177e4 LT |
4527 | } |
4528 | ||
4529 | /** | |
4530 | * sys_sched_getaffinity - get the cpu affinity of a process | |
4531 | * @pid: pid of the process | |
4532 | * @len: length in bytes of the bitmask pointed to by user_mask_ptr | |
4533 | * @user_mask_ptr: user-space pointer to hold the current cpu mask | |
4534 | */ | |
4535 | asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len, | |
4536 | unsigned long __user *user_mask_ptr) | |
4537 | { | |
4538 | int ret; | |
4539 | cpumask_t mask; | |
4540 | ||
4541 | if (len < sizeof(cpumask_t)) | |
4542 | return -EINVAL; | |
4543 | ||
4544 | ret = sched_getaffinity(pid, &mask); | |
4545 | if (ret < 0) | |
4546 | return ret; | |
4547 | ||
4548 | if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t))) | |
4549 | return -EFAULT; | |
4550 | ||
4551 | return sizeof(cpumask_t); | |
4552 | } | |
4553 | ||
4554 | /** | |
4555 | * sys_sched_yield - yield the current processor to other threads. | |
4556 | * | |
dd41f596 IM |
4557 | * This function yields the current CPU to other tasks. If there are no |
4558 | * other threads running on this CPU then this function will return. | |
1da177e4 LT |
4559 | */ |
4560 | asmlinkage long sys_sched_yield(void) | |
4561 | { | |
70b97a7f | 4562 | struct rq *rq = this_rq_lock(); |
1da177e4 LT |
4563 | |
4564 | schedstat_inc(rq, yld_cnt); | |
4530d7ab | 4565 | current->sched_class->yield_task(rq); |
1da177e4 LT |
4566 | |
4567 | /* | |
4568 | * Since we are going to call schedule() anyway, there's | |
4569 | * no need to preempt or enable interrupts: | |
4570 | */ | |
4571 | __release(rq->lock); | |
8a25d5de | 4572 | spin_release(&rq->lock.dep_map, 1, _THIS_IP_); |
1da177e4 LT |
4573 | _raw_spin_unlock(&rq->lock); |
4574 | preempt_enable_no_resched(); | |
4575 | ||
4576 | schedule(); | |
4577 | ||
4578 | return 0; | |
4579 | } | |
4580 | ||
e7b38404 | 4581 | static void __cond_resched(void) |
1da177e4 | 4582 | { |
8e0a43d8 IM |
4583 | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP |
4584 | __might_sleep(__FILE__, __LINE__); | |
4585 | #endif | |
5bbcfd90 IM |
4586 | /* |
4587 | * The BKS might be reacquired before we have dropped | |
4588 | * PREEMPT_ACTIVE, which could trigger a second | |
4589 | * cond_resched() call. | |
4590 | */ | |
1da177e4 LT |
4591 | do { |
4592 | add_preempt_count(PREEMPT_ACTIVE); | |
4593 | schedule(); | |
4594 | sub_preempt_count(PREEMPT_ACTIVE); | |
4595 | } while (need_resched()); | |
4596 | } | |
4597 | ||
4598 | int __sched cond_resched(void) | |
4599 | { | |
9414232f IM |
4600 | if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) && |
4601 | system_state == SYSTEM_RUNNING) { | |
1da177e4 LT |
4602 | __cond_resched(); |
4603 | return 1; | |
4604 | } | |
4605 | return 0; | |
4606 | } | |
1da177e4 LT |
4607 | EXPORT_SYMBOL(cond_resched); |
4608 | ||
4609 | /* | |
4610 | * cond_resched_lock() - if a reschedule is pending, drop the given lock, | |
4611 | * call schedule, and on return reacquire the lock. | |
4612 | * | |
4613 | * This works OK both with and without CONFIG_PREEMPT. We do strange low-level | |
4614 | * operations here to prevent schedule() from being called twice (once via | |
4615 | * spin_unlock(), once by hand). | |
4616 | */ | |
95cdf3b7 | 4617 | int cond_resched_lock(spinlock_t *lock) |
1da177e4 | 4618 | { |
6df3cecb JK |
4619 | int ret = 0; |
4620 | ||
1da177e4 LT |
4621 | if (need_lockbreak(lock)) { |
4622 | spin_unlock(lock); | |
4623 | cpu_relax(); | |
6df3cecb | 4624 | ret = 1; |
1da177e4 LT |
4625 | spin_lock(lock); |
4626 | } | |
9414232f | 4627 | if (need_resched() && system_state == SYSTEM_RUNNING) { |
8a25d5de | 4628 | spin_release(&lock->dep_map, 1, _THIS_IP_); |
1da177e4 LT |
4629 | _raw_spin_unlock(lock); |
4630 | preempt_enable_no_resched(); | |
4631 | __cond_resched(); | |
6df3cecb | 4632 | ret = 1; |
1da177e4 | 4633 | spin_lock(lock); |
1da177e4 | 4634 | } |
6df3cecb | 4635 | return ret; |
1da177e4 | 4636 | } |
1da177e4 LT |
4637 | EXPORT_SYMBOL(cond_resched_lock); |
4638 | ||
4639 | int __sched cond_resched_softirq(void) | |
4640 | { | |
4641 | BUG_ON(!in_softirq()); | |
4642 | ||
9414232f | 4643 | if (need_resched() && system_state == SYSTEM_RUNNING) { |
98d82567 | 4644 | local_bh_enable(); |
1da177e4 LT |
4645 | __cond_resched(); |
4646 | local_bh_disable(); | |
4647 | return 1; | |
4648 | } | |
4649 | return 0; | |
4650 | } | |
1da177e4 LT |
4651 | EXPORT_SYMBOL(cond_resched_softirq); |
4652 | ||
1da177e4 LT |
4653 | /** |
4654 | * yield - yield the current processor to other threads. | |
4655 | * | |
72fd4a35 | 4656 | * This is a shortcut for kernel-space yielding - it marks the |
1da177e4 LT |
4657 | * thread runnable and calls sys_sched_yield(). |
4658 | */ | |
4659 | void __sched yield(void) | |
4660 | { | |
4661 | set_current_state(TASK_RUNNING); | |
4662 | sys_sched_yield(); | |
4663 | } | |
1da177e4 LT |
4664 | EXPORT_SYMBOL(yield); |
4665 | ||
4666 | /* | |
4667 | * This task is about to go to sleep on IO. Increment rq->nr_iowait so | |
4668 | * that process accounting knows that this is a task in IO wait state. | |
4669 | * | |
4670 | * But don't do that if it is a deliberate, throttling IO wait (this task | |
4671 | * has set its backing_dev_info: the queue against which it should throttle) | |
4672 | */ | |
4673 | void __sched io_schedule(void) | |
4674 | { | |
70b97a7f | 4675 | struct rq *rq = &__raw_get_cpu_var(runqueues); |
1da177e4 | 4676 | |
0ff92245 | 4677 | delayacct_blkio_start(); |
1da177e4 LT |
4678 | atomic_inc(&rq->nr_iowait); |
4679 | schedule(); | |
4680 | atomic_dec(&rq->nr_iowait); | |
0ff92245 | 4681 | delayacct_blkio_end(); |
1da177e4 | 4682 | } |
1da177e4 LT |
4683 | EXPORT_SYMBOL(io_schedule); |
4684 | ||
4685 | long __sched io_schedule_timeout(long timeout) | |
4686 | { | |
70b97a7f | 4687 | struct rq *rq = &__raw_get_cpu_var(runqueues); |
1da177e4 LT |
4688 | long ret; |
4689 | ||
0ff92245 | 4690 | delayacct_blkio_start(); |
1da177e4 LT |
4691 | atomic_inc(&rq->nr_iowait); |
4692 | ret = schedule_timeout(timeout); | |
4693 | atomic_dec(&rq->nr_iowait); | |
0ff92245 | 4694 | delayacct_blkio_end(); |
1da177e4 LT |
4695 | return ret; |
4696 | } | |
4697 | ||
4698 | /** | |
4699 | * sys_sched_get_priority_max - return maximum RT priority. | |
4700 | * @policy: scheduling class. | |
4701 | * | |
4702 | * this syscall returns the maximum rt_priority that can be used | |
4703 | * by a given scheduling class. | |
4704 | */ | |
4705 | asmlinkage long sys_sched_get_priority_max(int policy) | |
4706 | { | |
4707 | int ret = -EINVAL; | |
4708 | ||
4709 | switch (policy) { | |
4710 | case SCHED_FIFO: | |
4711 | case SCHED_RR: | |
4712 | ret = MAX_USER_RT_PRIO-1; | |
4713 | break; | |
4714 | case SCHED_NORMAL: | |
b0a9499c | 4715 | case SCHED_BATCH: |
dd41f596 | 4716 | case SCHED_IDLE: |
1da177e4 LT |
4717 | ret = 0; |
4718 | break; | |
4719 | } | |
4720 | return ret; | |
4721 | } | |
4722 | ||
4723 | /** | |
4724 | * sys_sched_get_priority_min - return minimum RT priority. | |
4725 | * @policy: scheduling class. | |
4726 | * | |
4727 | * this syscall returns the minimum rt_priority that can be used | |
4728 | * by a given scheduling class. | |
4729 | */ | |
4730 | asmlinkage long sys_sched_get_priority_min(int policy) | |
4731 | { | |
4732 | int ret = -EINVAL; | |
4733 | ||
4734 | switch (policy) { | |
4735 | case SCHED_FIFO: | |
4736 | case SCHED_RR: | |
4737 | ret = 1; | |
4738 | break; | |
4739 | case SCHED_NORMAL: | |
b0a9499c | 4740 | case SCHED_BATCH: |
dd41f596 | 4741 | case SCHED_IDLE: |
1da177e4 LT |
4742 | ret = 0; |
4743 | } | |
4744 | return ret; | |
4745 | } | |
4746 | ||
4747 | /** | |
4748 | * sys_sched_rr_get_interval - return the default timeslice of a process. | |
4749 | * @pid: pid of the process. | |
4750 | * @interval: userspace pointer to the timeslice value. | |
4751 | * | |
4752 | * this syscall writes the default timeslice value of a given process | |
4753 | * into the user-space timespec buffer. A value of '0' means infinity. | |
4754 | */ | |
4755 | asmlinkage | |
4756 | long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval) | |
4757 | { | |
36c8b586 | 4758 | struct task_struct *p; |
1da177e4 LT |
4759 | int retval = -EINVAL; |
4760 | struct timespec t; | |
1da177e4 LT |
4761 | |
4762 | if (pid < 0) | |
4763 | goto out_nounlock; | |
4764 | ||
4765 | retval = -ESRCH; | |
4766 | read_lock(&tasklist_lock); | |
4767 | p = find_process_by_pid(pid); | |
4768 | if (!p) | |
4769 | goto out_unlock; | |
4770 | ||
4771 | retval = security_task_getscheduler(p); | |
4772 | if (retval) | |
4773 | goto out_unlock; | |
4774 | ||
b78709cf | 4775 | jiffies_to_timespec(p->policy == SCHED_FIFO ? |
dd41f596 | 4776 | 0 : static_prio_timeslice(p->static_prio), &t); |
1da177e4 LT |
4777 | read_unlock(&tasklist_lock); |
4778 | retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; | |
4779 | out_nounlock: | |
4780 | return retval; | |
4781 | out_unlock: | |
4782 | read_unlock(&tasklist_lock); | |
4783 | return retval; | |
4784 | } | |
4785 | ||
2ed6e34f | 4786 | static const char stat_nam[] = "RSDTtZX"; |
36c8b586 IM |
4787 | |
4788 | static void show_task(struct task_struct *p) | |
1da177e4 | 4789 | { |
1da177e4 | 4790 | unsigned long free = 0; |
36c8b586 | 4791 | unsigned state; |
1da177e4 | 4792 | |
1da177e4 | 4793 | state = p->state ? __ffs(p->state) + 1 : 0; |
2ed6e34f AM |
4794 | printk("%-13.13s %c", p->comm, |
4795 | state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); | |
4bd77321 | 4796 | #if BITS_PER_LONG == 32 |
1da177e4 | 4797 | if (state == TASK_RUNNING) |
4bd77321 | 4798 | printk(" running "); |
1da177e4 | 4799 | else |
4bd77321 | 4800 | printk(" %08lx ", thread_saved_pc(p)); |
1da177e4 LT |
4801 | #else |
4802 | if (state == TASK_RUNNING) | |
4bd77321 | 4803 | printk(" running task "); |
1da177e4 LT |
4804 | else |
4805 | printk(" %016lx ", thread_saved_pc(p)); | |
4806 | #endif | |
4807 | #ifdef CONFIG_DEBUG_STACK_USAGE | |
4808 | { | |
10ebffde | 4809 | unsigned long *n = end_of_stack(p); |
1da177e4 LT |
4810 | while (!*n) |
4811 | n++; | |
10ebffde | 4812 | free = (unsigned long)n - (unsigned long)end_of_stack(p); |
1da177e4 LT |
4813 | } |
4814 | #endif | |
4bd77321 | 4815 | printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid); |
1da177e4 LT |
4816 | |
4817 | if (state != TASK_RUNNING) | |
4818 | show_stack(p, NULL); | |
4819 | } | |
4820 | ||
e59e2ae2 | 4821 | void show_state_filter(unsigned long state_filter) |
1da177e4 | 4822 | { |
36c8b586 | 4823 | struct task_struct *g, *p; |
1da177e4 | 4824 | |
4bd77321 IM |
4825 | #if BITS_PER_LONG == 32 |
4826 | printk(KERN_INFO | |
4827 | " task PC stack pid father\n"); | |
1da177e4 | 4828 | #else |
4bd77321 IM |
4829 | printk(KERN_INFO |
4830 | " task PC stack pid father\n"); | |
1da177e4 LT |
4831 | #endif |
4832 | read_lock(&tasklist_lock); | |
4833 | do_each_thread(g, p) { | |
4834 | /* | |
4835 | * reset the NMI-timeout, listing all files on a slow | |
4836 | * console might take alot of time: | |
4837 | */ | |
4838 | touch_nmi_watchdog(); | |
39bc89fd | 4839 | if (!state_filter || (p->state & state_filter)) |
e59e2ae2 | 4840 | show_task(p); |
1da177e4 LT |
4841 | } while_each_thread(g, p); |
4842 | ||
04c9167f JF |
4843 | touch_all_softlockup_watchdogs(); |
4844 | ||
dd41f596 IM |
4845 | #ifdef CONFIG_SCHED_DEBUG |
4846 | sysrq_sched_debug_show(); | |
4847 | #endif | |
1da177e4 | 4848 | read_unlock(&tasklist_lock); |
e59e2ae2 IM |
4849 | /* |
4850 | * Only show locks if all tasks are dumped: | |
4851 | */ | |
4852 | if (state_filter == -1) | |
4853 | debug_show_all_locks(); | |
1da177e4 LT |
4854 | } |
4855 | ||
1df21055 IM |
4856 | void __cpuinit init_idle_bootup_task(struct task_struct *idle) |
4857 | { | |
dd41f596 | 4858 | idle->sched_class = &idle_sched_class; |
1df21055 IM |
4859 | } |
4860 | ||
f340c0d1 IM |
4861 | /** |
4862 | * init_idle - set up an idle thread for a given CPU | |
4863 | * @idle: task in question | |
4864 | * @cpu: cpu the idle task belongs to | |
4865 | * | |
4866 | * NOTE: this function does not set the idle thread's NEED_RESCHED | |
4867 | * flag, to make booting more robust. | |
4868 | */ | |
5c1e1767 | 4869 | void __cpuinit init_idle(struct task_struct *idle, int cpu) |
1da177e4 | 4870 | { |
70b97a7f | 4871 | struct rq *rq = cpu_rq(cpu); |
1da177e4 LT |
4872 | unsigned long flags; |
4873 | ||
dd41f596 IM |
4874 | __sched_fork(idle); |
4875 | idle->se.exec_start = sched_clock(); | |
4876 | ||
b29739f9 | 4877 | idle->prio = idle->normal_prio = MAX_PRIO; |
1da177e4 | 4878 | idle->cpus_allowed = cpumask_of_cpu(cpu); |
dd41f596 | 4879 | __set_task_cpu(idle, cpu); |
1da177e4 LT |
4880 | |
4881 | spin_lock_irqsave(&rq->lock, flags); | |
4882 | rq->curr = rq->idle = idle; | |
4866cde0 NP |
4883 | #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) |
4884 | idle->oncpu = 1; | |
4885 | #endif | |
1da177e4 LT |
4886 | spin_unlock_irqrestore(&rq->lock, flags); |
4887 | ||
4888 | /* Set the preempt count _outside_ the spinlocks! */ | |
4889 | #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL) | |
a1261f54 | 4890 | task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0); |
1da177e4 | 4891 | #else |
a1261f54 | 4892 | task_thread_info(idle)->preempt_count = 0; |
1da177e4 | 4893 | #endif |
dd41f596 IM |
4894 | /* |
4895 | * The idle tasks have their own, simple scheduling class: | |
4896 | */ | |
4897 | idle->sched_class = &idle_sched_class; | |
1da177e4 LT |
4898 | } |
4899 | ||
4900 | /* | |
4901 | * In a system that switches off the HZ timer nohz_cpu_mask | |
4902 | * indicates which cpus entered this state. This is used | |
4903 | * in the rcu update to wait only for active cpus. For system | |
4904 | * which do not switch off the HZ timer nohz_cpu_mask should | |
4905 | * always be CPU_MASK_NONE. | |
4906 | */ | |
4907 | cpumask_t nohz_cpu_mask = CPU_MASK_NONE; | |
4908 | ||
4909 | #ifdef CONFIG_SMP | |
4910 | /* | |
4911 | * This is how migration works: | |
4912 | * | |
70b97a7f | 4913 | * 1) we queue a struct migration_req structure in the source CPU's |
1da177e4 LT |
4914 | * runqueue and wake up that CPU's migration thread. |
4915 | * 2) we down() the locked semaphore => thread blocks. | |
4916 | * 3) migration thread wakes up (implicitly it forces the migrated | |
4917 | * thread off the CPU) | |
4918 | * 4) it gets the migration request and checks whether the migrated | |
4919 | * task is still in the wrong runqueue. | |
4920 | * 5) if it's in the wrong runqueue then the migration thread removes | |
4921 | * it and puts it into the right queue. | |
4922 | * 6) migration thread up()s the semaphore. | |
4923 | * 7) we wake up and the migration is done. | |
4924 | */ | |
4925 | ||
4926 | /* | |
4927 | * Change a given task's CPU affinity. Migrate the thread to a | |
4928 | * proper CPU and schedule it away if the CPU it's executing on | |
4929 | * is removed from the allowed bitmask. | |
4930 | * | |
4931 | * NOTE: the caller must have a valid reference to the task, the | |
4932 | * task must not exit() & deallocate itself prematurely. The | |
4933 | * call is not atomic; no spinlocks may be held. | |
4934 | */ | |
36c8b586 | 4935 | int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) |
1da177e4 | 4936 | { |
70b97a7f | 4937 | struct migration_req req; |
1da177e4 | 4938 | unsigned long flags; |
70b97a7f | 4939 | struct rq *rq; |
48f24c4d | 4940 | int ret = 0; |
1da177e4 LT |
4941 | |
4942 | rq = task_rq_lock(p, &flags); | |
4943 | if (!cpus_intersects(new_mask, cpu_online_map)) { | |
4944 | ret = -EINVAL; | |
4945 | goto out; | |
4946 | } | |
4947 | ||
4948 | p->cpus_allowed = new_mask; | |
4949 | /* Can the task run on the task's current CPU? If so, we're done */ | |
4950 | if (cpu_isset(task_cpu(p), new_mask)) | |
4951 | goto out; | |
4952 | ||
4953 | if (migrate_task(p, any_online_cpu(new_mask), &req)) { | |
4954 | /* Need help from migration thread: drop lock and wait. */ | |
4955 | task_rq_unlock(rq, &flags); | |
4956 | wake_up_process(rq->migration_thread); | |
4957 | wait_for_completion(&req.done); | |
4958 | tlb_migrate_finish(p->mm); | |
4959 | return 0; | |
4960 | } | |
4961 | out: | |
4962 | task_rq_unlock(rq, &flags); | |
48f24c4d | 4963 | |
1da177e4 LT |
4964 | return ret; |
4965 | } | |
1da177e4 LT |
4966 | EXPORT_SYMBOL_GPL(set_cpus_allowed); |
4967 | ||
4968 | /* | |
4969 | * Move (not current) task off this cpu, onto dest cpu. We're doing | |
4970 | * this because either it can't run here any more (set_cpus_allowed() | |
4971 | * away from this CPU, or CPU going down), or because we're | |
4972 | * attempting to rebalance this task on exec (sched_exec). | |
4973 | * | |
4974 | * So we race with normal scheduler movements, but that's OK, as long | |
4975 | * as the task is no longer on this CPU. | |
efc30814 KK |
4976 | * |
4977 | * Returns non-zero if task was successfully migrated. | |
1da177e4 | 4978 | */ |
efc30814 | 4979 | static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) |
1da177e4 | 4980 | { |
70b97a7f | 4981 | struct rq *rq_dest, *rq_src; |
dd41f596 | 4982 | int ret = 0, on_rq; |
1da177e4 LT |
4983 | |
4984 | if (unlikely(cpu_is_offline(dest_cpu))) | |
efc30814 | 4985 | return ret; |
1da177e4 LT |
4986 | |
4987 | rq_src = cpu_rq(src_cpu); | |
4988 | rq_dest = cpu_rq(dest_cpu); | |
4989 | ||
4990 | double_rq_lock(rq_src, rq_dest); | |
4991 | /* Already moved. */ | |
4992 | if (task_cpu(p) != src_cpu) | |
4993 | goto out; | |
4994 | /* Affinity changed (again). */ | |
4995 | if (!cpu_isset(dest_cpu, p->cpus_allowed)) | |
4996 | goto out; | |
4997 | ||
dd41f596 | 4998 | on_rq = p->se.on_rq; |
6e82a3be | 4999 | if (on_rq) |
2e1cb74a | 5000 | deactivate_task(rq_src, p, 0); |
6e82a3be | 5001 | |
1da177e4 | 5002 | set_task_cpu(p, dest_cpu); |
dd41f596 IM |
5003 | if (on_rq) { |
5004 | activate_task(rq_dest, p, 0); | |
5005 | check_preempt_curr(rq_dest, p); | |
1da177e4 | 5006 | } |
efc30814 | 5007 | ret = 1; |
1da177e4 LT |
5008 | out: |
5009 | double_rq_unlock(rq_src, rq_dest); | |
efc30814 | 5010 | return ret; |
1da177e4 LT |
5011 | } |
5012 | ||
5013 | /* | |
5014 | * migration_thread - this is a highprio system thread that performs | |
5015 | * thread migration by bumping thread off CPU then 'pushing' onto | |
5016 | * another runqueue. | |
5017 | */ | |
95cdf3b7 | 5018 | static int migration_thread(void *data) |
1da177e4 | 5019 | { |
1da177e4 | 5020 | int cpu = (long)data; |
70b97a7f | 5021 | struct rq *rq; |
1da177e4 LT |
5022 | |
5023 | rq = cpu_rq(cpu); | |
5024 | BUG_ON(rq->migration_thread != current); | |
5025 | ||
5026 | set_current_state(TASK_INTERRUPTIBLE); | |
5027 | while (!kthread_should_stop()) { | |
70b97a7f | 5028 | struct migration_req *req; |
1da177e4 | 5029 | struct list_head *head; |
1da177e4 | 5030 | |
1da177e4 LT |
5031 | spin_lock_irq(&rq->lock); |
5032 | ||
5033 | if (cpu_is_offline(cpu)) { | |
5034 | spin_unlock_irq(&rq->lock); | |
5035 | goto wait_to_die; | |
5036 | } | |
5037 | ||
5038 | if (rq->active_balance) { | |
5039 | active_load_balance(rq, cpu); | |
5040 | rq->active_balance = 0; | |
5041 | } | |
5042 | ||
5043 | head = &rq->migration_queue; | |
5044 | ||
5045 | if (list_empty(head)) { | |
5046 | spin_unlock_irq(&rq->lock); | |
5047 | schedule(); | |
5048 | set_current_state(TASK_INTERRUPTIBLE); | |
5049 | continue; | |
5050 | } | |
70b97a7f | 5051 | req = list_entry(head->next, struct migration_req, list); |
1da177e4 LT |
5052 | list_del_init(head->next); |
5053 | ||
674311d5 NP |
5054 | spin_unlock(&rq->lock); |
5055 | __migrate_task(req->task, cpu, req->dest_cpu); | |
5056 | local_irq_enable(); | |
1da177e4 LT |
5057 | |
5058 | complete(&req->done); | |
5059 | } | |
5060 | __set_current_state(TASK_RUNNING); | |
5061 | return 0; | |
5062 | ||
5063 | wait_to_die: | |
5064 | /* Wait for kthread_stop */ | |
5065 | set_current_state(TASK_INTERRUPTIBLE); | |
5066 | while (!kthread_should_stop()) { | |
5067 | schedule(); | |
5068 | set_current_state(TASK_INTERRUPTIBLE); | |
5069 | } | |
5070 | __set_current_state(TASK_RUNNING); | |
5071 | return 0; | |
5072 | } | |
5073 | ||
5074 | #ifdef CONFIG_HOTPLUG_CPU | |
054b9108 KK |
5075 | /* |
5076 | * Figure out where task on dead CPU should go, use force if neccessary. | |
5077 | * NOTE: interrupts should be disabled by the caller | |
5078 | */ | |
48f24c4d | 5079 | static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) |
1da177e4 | 5080 | { |
efc30814 | 5081 | unsigned long flags; |
1da177e4 | 5082 | cpumask_t mask; |
70b97a7f IM |
5083 | struct rq *rq; |
5084 | int dest_cpu; | |
1da177e4 | 5085 | |
efc30814 | 5086 | restart: |
1da177e4 LT |
5087 | /* On same node? */ |
5088 | mask = node_to_cpumask(cpu_to_node(dead_cpu)); | |
48f24c4d | 5089 | cpus_and(mask, mask, p->cpus_allowed); |
1da177e4 LT |
5090 | dest_cpu = any_online_cpu(mask); |
5091 | ||
5092 | /* On any allowed CPU? */ | |
5093 | if (dest_cpu == NR_CPUS) | |
48f24c4d | 5094 | dest_cpu = any_online_cpu(p->cpus_allowed); |
1da177e4 LT |
5095 | |
5096 | /* No more Mr. Nice Guy. */ | |
5097 | if (dest_cpu == NR_CPUS) { | |
48f24c4d IM |
5098 | rq = task_rq_lock(p, &flags); |
5099 | cpus_setall(p->cpus_allowed); | |
5100 | dest_cpu = any_online_cpu(p->cpus_allowed); | |
efc30814 | 5101 | task_rq_unlock(rq, &flags); |
1da177e4 LT |
5102 | |
5103 | /* | |
5104 | * Don't tell them about moving exiting tasks or | |
5105 | * kernel threads (both mm NULL), since they never | |
5106 | * leave kernel. | |
5107 | */ | |
48f24c4d | 5108 | if (p->mm && printk_ratelimit()) |
1da177e4 LT |
5109 | printk(KERN_INFO "process %d (%s) no " |
5110 | "longer affine to cpu%d\n", | |
48f24c4d | 5111 | p->pid, p->comm, dead_cpu); |
1da177e4 | 5112 | } |
48f24c4d | 5113 | if (!__migrate_task(p, dead_cpu, dest_cpu)) |
efc30814 | 5114 | goto restart; |
1da177e4 LT |
5115 | } |
5116 | ||
5117 | /* | |
5118 | * While a dead CPU has no uninterruptible tasks queued at this point, | |
5119 | * it might still have a nonzero ->nr_uninterruptible counter, because | |
5120 | * for performance reasons the counter is not stricly tracking tasks to | |
5121 | * their home CPUs. So we just add the counter to another CPU's counter, | |
5122 | * to keep the global sum constant after CPU-down: | |
5123 | */ | |
70b97a7f | 5124 | static void migrate_nr_uninterruptible(struct rq *rq_src) |
1da177e4 | 5125 | { |
70b97a7f | 5126 | struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL)); |
1da177e4 LT |
5127 | unsigned long flags; |
5128 | ||
5129 | local_irq_save(flags); | |
5130 | double_rq_lock(rq_src, rq_dest); | |
5131 | rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible; | |
5132 | rq_src->nr_uninterruptible = 0; | |
5133 | double_rq_unlock(rq_src, rq_dest); | |
5134 | local_irq_restore(flags); | |
5135 | } | |
5136 | ||
5137 | /* Run through task list and migrate tasks from the dead cpu. */ | |
5138 | static void migrate_live_tasks(int src_cpu) | |
5139 | { | |
48f24c4d | 5140 | struct task_struct *p, *t; |
1da177e4 LT |
5141 | |
5142 | write_lock_irq(&tasklist_lock); | |
5143 | ||
48f24c4d IM |
5144 | do_each_thread(t, p) { |
5145 | if (p == current) | |
1da177e4 LT |
5146 | continue; |
5147 | ||
48f24c4d IM |
5148 | if (task_cpu(p) == src_cpu) |
5149 | move_task_off_dead_cpu(src_cpu, p); | |
5150 | } while_each_thread(t, p); | |
1da177e4 LT |
5151 | |
5152 | write_unlock_irq(&tasklist_lock); | |
5153 | } | |
5154 | ||
dd41f596 IM |
5155 | /* |
5156 | * Schedules idle task to be the next runnable task on current CPU. | |
1da177e4 | 5157 | * It does so by boosting its priority to highest possible and adding it to |
48f24c4d | 5158 | * the _front_ of the runqueue. Used by CPU offline code. |
1da177e4 LT |
5159 | */ |
5160 | void sched_idle_next(void) | |
5161 | { | |
48f24c4d | 5162 | int this_cpu = smp_processor_id(); |
70b97a7f | 5163 | struct rq *rq = cpu_rq(this_cpu); |
1da177e4 LT |
5164 | struct task_struct *p = rq->idle; |
5165 | unsigned long flags; | |
5166 | ||
5167 | /* cpu has to be offline */ | |
48f24c4d | 5168 | BUG_ON(cpu_online(this_cpu)); |
1da177e4 | 5169 | |
48f24c4d IM |
5170 | /* |
5171 | * Strictly not necessary since rest of the CPUs are stopped by now | |
5172 | * and interrupts disabled on the current cpu. | |
1da177e4 LT |
5173 | */ |
5174 | spin_lock_irqsave(&rq->lock, flags); | |
5175 | ||
dd41f596 | 5176 | __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); |
48f24c4d IM |
5177 | |
5178 | /* Add idle task to the _front_ of its priority queue: */ | |
dd41f596 | 5179 | activate_idle_task(p, rq); |
1da177e4 LT |
5180 | |
5181 | spin_unlock_irqrestore(&rq->lock, flags); | |
5182 | } | |
5183 | ||
48f24c4d IM |
5184 | /* |
5185 | * Ensures that the idle task is using init_mm right before its cpu goes | |
1da177e4 LT |
5186 | * offline. |
5187 | */ | |
5188 | void idle_task_exit(void) | |
5189 | { | |
5190 | struct mm_struct *mm = current->active_mm; | |
5191 | ||
5192 | BUG_ON(cpu_online(smp_processor_id())); | |
5193 | ||
5194 | if (mm != &init_mm) | |
5195 | switch_mm(mm, &init_mm, current); | |
5196 | mmdrop(mm); | |
5197 | } | |
5198 | ||
054b9108 | 5199 | /* called under rq->lock with disabled interrupts */ |
36c8b586 | 5200 | static void migrate_dead(unsigned int dead_cpu, struct task_struct *p) |
1da177e4 | 5201 | { |
70b97a7f | 5202 | struct rq *rq = cpu_rq(dead_cpu); |
1da177e4 LT |
5203 | |
5204 | /* Must be exiting, otherwise would be on tasklist. */ | |
48f24c4d | 5205 | BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD); |
1da177e4 LT |
5206 | |
5207 | /* Cannot have done final schedule yet: would have vanished. */ | |
c394cc9f | 5208 | BUG_ON(p->state == TASK_DEAD); |
1da177e4 | 5209 | |
48f24c4d | 5210 | get_task_struct(p); |
1da177e4 LT |
5211 | |
5212 | /* | |
5213 | * Drop lock around migration; if someone else moves it, | |
5214 | * that's OK. No task can be added to this CPU, so iteration is | |
5215 | * fine. | |
054b9108 | 5216 | * NOTE: interrupts should be left disabled --dev@ |
1da177e4 | 5217 | */ |
054b9108 | 5218 | spin_unlock(&rq->lock); |
48f24c4d | 5219 | move_task_off_dead_cpu(dead_cpu, p); |
054b9108 | 5220 | spin_lock(&rq->lock); |
1da177e4 | 5221 | |
48f24c4d | 5222 | put_task_struct(p); |
1da177e4 LT |
5223 | } |
5224 | ||
5225 | /* release_task() removes task from tasklist, so we won't find dead tasks. */ | |
5226 | static void migrate_dead_tasks(unsigned int dead_cpu) | |
5227 | { | |
70b97a7f | 5228 | struct rq *rq = cpu_rq(dead_cpu); |
dd41f596 | 5229 | struct task_struct *next; |
48f24c4d | 5230 | |
dd41f596 IM |
5231 | for ( ; ; ) { |
5232 | if (!rq->nr_running) | |
5233 | break; | |
a8e504d2 | 5234 | update_rq_clock(rq); |
ff95f3df | 5235 | next = pick_next_task(rq, rq->curr); |
dd41f596 IM |
5236 | if (!next) |
5237 | break; | |
5238 | migrate_dead(dead_cpu, next); | |
e692ab53 | 5239 | |
1da177e4 LT |
5240 | } |
5241 | } | |
5242 | #endif /* CONFIG_HOTPLUG_CPU */ | |
5243 | ||
e692ab53 NP |
5244 | #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) |
5245 | ||
5246 | static struct ctl_table sd_ctl_dir[] = { | |
e0361851 AD |
5247 | { |
5248 | .procname = "sched_domain", | |
c57baf1e | 5249 | .mode = 0555, |
e0361851 | 5250 | }, |
e692ab53 NP |
5251 | {0,}, |
5252 | }; | |
5253 | ||
5254 | static struct ctl_table sd_ctl_root[] = { | |
e0361851 | 5255 | { |
c57baf1e | 5256 | .ctl_name = CTL_KERN, |
e0361851 | 5257 | .procname = "kernel", |
c57baf1e | 5258 | .mode = 0555, |
e0361851 AD |
5259 | .child = sd_ctl_dir, |
5260 | }, | |
e692ab53 NP |
5261 | {0,}, |
5262 | }; | |
5263 | ||
5264 | static struct ctl_table *sd_alloc_ctl_entry(int n) | |
5265 | { | |
5266 | struct ctl_table *entry = | |
5267 | kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL); | |
5268 | ||
5269 | BUG_ON(!entry); | |
5270 | memset(entry, 0, n * sizeof(struct ctl_table)); | |
5271 | ||
5272 | return entry; | |
5273 | } | |
5274 | ||
5275 | static void | |
e0361851 | 5276 | set_table_entry(struct ctl_table *entry, |
e692ab53 NP |
5277 | const char *procname, void *data, int maxlen, |
5278 | mode_t mode, proc_handler *proc_handler) | |
5279 | { | |
e692ab53 NP |
5280 | entry->procname = procname; |
5281 | entry->data = data; | |
5282 | entry->maxlen = maxlen; | |
5283 | entry->mode = mode; | |
5284 | entry->proc_handler = proc_handler; | |
5285 | } | |
5286 | ||
5287 | static struct ctl_table * | |
5288 | sd_alloc_ctl_domain_table(struct sched_domain *sd) | |
5289 | { | |
5290 | struct ctl_table *table = sd_alloc_ctl_entry(14); | |
5291 | ||
e0361851 | 5292 | set_table_entry(&table[0], "min_interval", &sd->min_interval, |
e692ab53 | 5293 | sizeof(long), 0644, proc_doulongvec_minmax); |
e0361851 | 5294 | set_table_entry(&table[1], "max_interval", &sd->max_interval, |
e692ab53 | 5295 | sizeof(long), 0644, proc_doulongvec_minmax); |
e0361851 | 5296 | set_table_entry(&table[2], "busy_idx", &sd->busy_idx, |
e692ab53 | 5297 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 5298 | set_table_entry(&table[3], "idle_idx", &sd->idle_idx, |
e692ab53 | 5299 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 5300 | set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, |
e692ab53 | 5301 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 5302 | set_table_entry(&table[5], "wake_idx", &sd->wake_idx, |
e692ab53 | 5303 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 5304 | set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, |
e692ab53 | 5305 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 5306 | set_table_entry(&table[7], "busy_factor", &sd->busy_factor, |
e692ab53 | 5307 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 5308 | set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, |
e692ab53 | 5309 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 5310 | set_table_entry(&table[10], "cache_nice_tries", |
e692ab53 NP |
5311 | &sd->cache_nice_tries, |
5312 | sizeof(int), 0644, proc_dointvec_minmax); | |
e0361851 | 5313 | set_table_entry(&table[12], "flags", &sd->flags, |
e692ab53 NP |
5314 | sizeof(int), 0644, proc_dointvec_minmax); |
5315 | ||
5316 | return table; | |
5317 | } | |
5318 | ||
5319 | static ctl_table *sd_alloc_ctl_cpu_table(int cpu) | |
5320 | { | |
5321 | struct ctl_table *entry, *table; | |
5322 | struct sched_domain *sd; | |
5323 | int domain_num = 0, i; | |
5324 | char buf[32]; | |
5325 | ||
5326 | for_each_domain(cpu, sd) | |
5327 | domain_num++; | |
5328 | entry = table = sd_alloc_ctl_entry(domain_num + 1); | |
5329 | ||
5330 | i = 0; | |
5331 | for_each_domain(cpu, sd) { | |
5332 | snprintf(buf, 32, "domain%d", i); | |
e692ab53 | 5333 | entry->procname = kstrdup(buf, GFP_KERNEL); |
c57baf1e | 5334 | entry->mode = 0555; |
e692ab53 NP |
5335 | entry->child = sd_alloc_ctl_domain_table(sd); |
5336 | entry++; | |
5337 | i++; | |
5338 | } | |
5339 | return table; | |
5340 | } | |
5341 | ||
5342 | static struct ctl_table_header *sd_sysctl_header; | |
5343 | static void init_sched_domain_sysctl(void) | |
5344 | { | |
5345 | int i, cpu_num = num_online_cpus(); | |
5346 | struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); | |
5347 | char buf[32]; | |
5348 | ||
5349 | sd_ctl_dir[0].child = entry; | |
5350 | ||
5351 | for (i = 0; i < cpu_num; i++, entry++) { | |
5352 | snprintf(buf, 32, "cpu%d", i); | |
e692ab53 | 5353 | entry->procname = kstrdup(buf, GFP_KERNEL); |
c57baf1e | 5354 | entry->mode = 0555; |
e692ab53 NP |
5355 | entry->child = sd_alloc_ctl_cpu_table(i); |
5356 | } | |
5357 | sd_sysctl_header = register_sysctl_table(sd_ctl_root); | |
5358 | } | |
5359 | #else | |
5360 | static void init_sched_domain_sysctl(void) | |
5361 | { | |
5362 | } | |
5363 | #endif | |
5364 | ||
1da177e4 LT |
5365 | /* |
5366 | * migration_call - callback that gets triggered when a CPU is added. | |
5367 | * Here we can start up the necessary migration thread for the new CPU. | |
5368 | */ | |
48f24c4d IM |
5369 | static int __cpuinit |
5370 | migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) | |
1da177e4 | 5371 | { |
1da177e4 | 5372 | struct task_struct *p; |
48f24c4d | 5373 | int cpu = (long)hcpu; |
1da177e4 | 5374 | unsigned long flags; |
70b97a7f | 5375 | struct rq *rq; |
1da177e4 LT |
5376 | |
5377 | switch (action) { | |
5be9361c GS |
5378 | case CPU_LOCK_ACQUIRE: |
5379 | mutex_lock(&sched_hotcpu_mutex); | |
5380 | break; | |
5381 | ||
1da177e4 | 5382 | case CPU_UP_PREPARE: |
8bb78442 | 5383 | case CPU_UP_PREPARE_FROZEN: |
dd41f596 | 5384 | p = kthread_create(migration_thread, hcpu, "migration/%d", cpu); |
1da177e4 LT |
5385 | if (IS_ERR(p)) |
5386 | return NOTIFY_BAD; | |
1da177e4 LT |
5387 | kthread_bind(p, cpu); |
5388 | /* Must be high prio: stop_machine expects to yield to it. */ | |
5389 | rq = task_rq_lock(p, &flags); | |
dd41f596 | 5390 | __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); |
1da177e4 LT |
5391 | task_rq_unlock(rq, &flags); |
5392 | cpu_rq(cpu)->migration_thread = p; | |
5393 | break; | |
48f24c4d | 5394 | |
1da177e4 | 5395 | case CPU_ONLINE: |
8bb78442 | 5396 | case CPU_ONLINE_FROZEN: |
1da177e4 LT |
5397 | /* Strictly unneccessary, as first user will wake it. */ |
5398 | wake_up_process(cpu_rq(cpu)->migration_thread); | |
5399 | break; | |
48f24c4d | 5400 | |
1da177e4 LT |
5401 | #ifdef CONFIG_HOTPLUG_CPU |
5402 | case CPU_UP_CANCELED: | |
8bb78442 | 5403 | case CPU_UP_CANCELED_FROZEN: |
fc75cdfa HC |
5404 | if (!cpu_rq(cpu)->migration_thread) |
5405 | break; | |
1da177e4 | 5406 | /* Unbind it from offline cpu so it can run. Fall thru. */ |
a4c4af7c HC |
5407 | kthread_bind(cpu_rq(cpu)->migration_thread, |
5408 | any_online_cpu(cpu_online_map)); | |
1da177e4 LT |
5409 | kthread_stop(cpu_rq(cpu)->migration_thread); |
5410 | cpu_rq(cpu)->migration_thread = NULL; | |
5411 | break; | |
48f24c4d | 5412 | |
1da177e4 | 5413 | case CPU_DEAD: |
8bb78442 | 5414 | case CPU_DEAD_FROZEN: |
1da177e4 LT |
5415 | migrate_live_tasks(cpu); |
5416 | rq = cpu_rq(cpu); | |
5417 | kthread_stop(rq->migration_thread); | |
5418 | rq->migration_thread = NULL; | |
5419 | /* Idle task back to normal (off runqueue, low prio) */ | |
5420 | rq = task_rq_lock(rq->idle, &flags); | |
a8e504d2 | 5421 | update_rq_clock(rq); |
2e1cb74a | 5422 | deactivate_task(rq, rq->idle, 0); |
1da177e4 | 5423 | rq->idle->static_prio = MAX_PRIO; |
dd41f596 IM |
5424 | __setscheduler(rq, rq->idle, SCHED_NORMAL, 0); |
5425 | rq->idle->sched_class = &idle_sched_class; | |
1da177e4 LT |
5426 | migrate_dead_tasks(cpu); |
5427 | task_rq_unlock(rq, &flags); | |
5428 | migrate_nr_uninterruptible(rq); | |
5429 | BUG_ON(rq->nr_running != 0); | |
5430 | ||
5431 | /* No need to migrate the tasks: it was best-effort if | |
5be9361c | 5432 | * they didn't take sched_hotcpu_mutex. Just wake up |
1da177e4 LT |
5433 | * the requestors. */ |
5434 | spin_lock_irq(&rq->lock); | |
5435 | while (!list_empty(&rq->migration_queue)) { | |
70b97a7f IM |
5436 | struct migration_req *req; |
5437 | ||
1da177e4 | 5438 | req = list_entry(rq->migration_queue.next, |
70b97a7f | 5439 | struct migration_req, list); |
1da177e4 LT |
5440 | list_del_init(&req->list); |
5441 | complete(&req->done); | |
5442 | } | |
5443 | spin_unlock_irq(&rq->lock); | |
5444 | break; | |
5445 | #endif | |
5be9361c GS |
5446 | case CPU_LOCK_RELEASE: |
5447 | mutex_unlock(&sched_hotcpu_mutex); | |
5448 | break; | |
1da177e4 LT |
5449 | } |
5450 | return NOTIFY_OK; | |
5451 | } | |
5452 | ||
5453 | /* Register at highest priority so that task migration (migrate_all_tasks) | |
5454 | * happens before everything else. | |
5455 | */ | |
26c2143b | 5456 | static struct notifier_block __cpuinitdata migration_notifier = { |
1da177e4 LT |
5457 | .notifier_call = migration_call, |
5458 | .priority = 10 | |
5459 | }; | |
5460 | ||
5461 | int __init migration_init(void) | |
5462 | { | |
5463 | void *cpu = (void *)(long)smp_processor_id(); | |
07dccf33 | 5464 | int err; |
48f24c4d IM |
5465 | |
5466 | /* Start one for the boot CPU: */ | |
07dccf33 AM |
5467 | err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); |
5468 | BUG_ON(err == NOTIFY_BAD); | |
1da177e4 LT |
5469 | migration_call(&migration_notifier, CPU_ONLINE, cpu); |
5470 | register_cpu_notifier(&migration_notifier); | |
48f24c4d | 5471 | |
1da177e4 LT |
5472 | return 0; |
5473 | } | |
5474 | #endif | |
5475 | ||
5476 | #ifdef CONFIG_SMP | |
476f3534 CL |
5477 | |
5478 | /* Number of possible processor ids */ | |
5479 | int nr_cpu_ids __read_mostly = NR_CPUS; | |
5480 | EXPORT_SYMBOL(nr_cpu_ids); | |
5481 | ||
1a20ff27 | 5482 | #undef SCHED_DOMAIN_DEBUG |
1da177e4 LT |
5483 | #ifdef SCHED_DOMAIN_DEBUG |
5484 | static void sched_domain_debug(struct sched_domain *sd, int cpu) | |
5485 | { | |
5486 | int level = 0; | |
5487 | ||
41c7ce9a NP |
5488 | if (!sd) { |
5489 | printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); | |
5490 | return; | |
5491 | } | |
5492 | ||
1da177e4 LT |
5493 | printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); |
5494 | ||
5495 | do { | |
5496 | int i; | |
5497 | char str[NR_CPUS]; | |
5498 | struct sched_group *group = sd->groups; | |
5499 | cpumask_t groupmask; | |
5500 | ||
5501 | cpumask_scnprintf(str, NR_CPUS, sd->span); | |
5502 | cpus_clear(groupmask); | |
5503 | ||
5504 | printk(KERN_DEBUG); | |
5505 | for (i = 0; i < level + 1; i++) | |
5506 | printk(" "); | |
5507 | printk("domain %d: ", level); | |
5508 | ||
5509 | if (!(sd->flags & SD_LOAD_BALANCE)) { | |
5510 | printk("does not load-balance\n"); | |
5511 | if (sd->parent) | |
33859f7f MOS |
5512 | printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" |
5513 | " has parent"); | |
1da177e4 LT |
5514 | break; |
5515 | } | |
5516 | ||
5517 | printk("span %s\n", str); | |
5518 | ||
5519 | if (!cpu_isset(cpu, sd->span)) | |
33859f7f MOS |
5520 | printk(KERN_ERR "ERROR: domain->span does not contain " |
5521 | "CPU%d\n", cpu); | |
1da177e4 | 5522 | if (!cpu_isset(cpu, group->cpumask)) |
33859f7f MOS |
5523 | printk(KERN_ERR "ERROR: domain->groups does not contain" |
5524 | " CPU%d\n", cpu); | |
1da177e4 LT |
5525 | |
5526 | printk(KERN_DEBUG); | |
5527 | for (i = 0; i < level + 2; i++) | |
5528 | printk(" "); | |
5529 | printk("groups:"); | |
5530 | do { | |
5531 | if (!group) { | |
5532 | printk("\n"); | |
5533 | printk(KERN_ERR "ERROR: group is NULL\n"); | |
5534 | break; | |
5535 | } | |
5536 | ||
5517d86b | 5537 | if (!group->__cpu_power) { |
1da177e4 | 5538 | printk("\n"); |
33859f7f MOS |
5539 | printk(KERN_ERR "ERROR: domain->cpu_power not " |
5540 | "set\n"); | |
1da177e4 LT |
5541 | } |
5542 | ||
5543 | if (!cpus_weight(group->cpumask)) { | |
5544 | printk("\n"); | |
5545 | printk(KERN_ERR "ERROR: empty group\n"); | |
5546 | } | |
5547 | ||
5548 | if (cpus_intersects(groupmask, group->cpumask)) { | |
5549 | printk("\n"); | |
5550 | printk(KERN_ERR "ERROR: repeated CPUs\n"); | |
5551 | } | |
5552 | ||
5553 | cpus_or(groupmask, groupmask, group->cpumask); | |
5554 | ||
5555 | cpumask_scnprintf(str, NR_CPUS, group->cpumask); | |
5556 | printk(" %s", str); | |
5557 | ||
5558 | group = group->next; | |
5559 | } while (group != sd->groups); | |
5560 | printk("\n"); | |
5561 | ||
5562 | if (!cpus_equal(sd->span, groupmask)) | |
33859f7f MOS |
5563 | printk(KERN_ERR "ERROR: groups don't span " |
5564 | "domain->span\n"); | |
1da177e4 LT |
5565 | |
5566 | level++; | |
5567 | sd = sd->parent; | |
33859f7f MOS |
5568 | if (!sd) |
5569 | continue; | |
1da177e4 | 5570 | |
33859f7f MOS |
5571 | if (!cpus_subset(groupmask, sd->span)) |
5572 | printk(KERN_ERR "ERROR: parent span is not a superset " | |
5573 | "of domain->span\n"); | |
1da177e4 LT |
5574 | |
5575 | } while (sd); | |
5576 | } | |
5577 | #else | |
48f24c4d | 5578 | # define sched_domain_debug(sd, cpu) do { } while (0) |
1da177e4 LT |
5579 | #endif |
5580 | ||
1a20ff27 | 5581 | static int sd_degenerate(struct sched_domain *sd) |
245af2c7 SS |
5582 | { |
5583 | if (cpus_weight(sd->span) == 1) | |
5584 | return 1; | |
5585 | ||
5586 | /* Following flags need at least 2 groups */ | |
5587 | if (sd->flags & (SD_LOAD_BALANCE | | |
5588 | SD_BALANCE_NEWIDLE | | |
5589 | SD_BALANCE_FORK | | |
89c4710e SS |
5590 | SD_BALANCE_EXEC | |
5591 | SD_SHARE_CPUPOWER | | |
5592 | SD_SHARE_PKG_RESOURCES)) { | |
245af2c7 SS |
5593 | if (sd->groups != sd->groups->next) |
5594 | return 0; | |
5595 | } | |
5596 | ||
5597 | /* Following flags don't use groups */ | |
5598 | if (sd->flags & (SD_WAKE_IDLE | | |
5599 | SD_WAKE_AFFINE | | |
5600 | SD_WAKE_BALANCE)) | |
5601 | return 0; | |
5602 | ||
5603 | return 1; | |
5604 | } | |
5605 | ||
48f24c4d IM |
5606 | static int |
5607 | sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) | |
245af2c7 SS |
5608 | { |
5609 | unsigned long cflags = sd->flags, pflags = parent->flags; | |
5610 | ||
5611 | if (sd_degenerate(parent)) | |
5612 | return 1; | |
5613 | ||
5614 | if (!cpus_equal(sd->span, parent->span)) | |
5615 | return 0; | |
5616 | ||
5617 | /* Does parent contain flags not in child? */ | |
5618 | /* WAKE_BALANCE is a subset of WAKE_AFFINE */ | |
5619 | if (cflags & SD_WAKE_AFFINE) | |
5620 | pflags &= ~SD_WAKE_BALANCE; | |
5621 | /* Flags needing groups don't count if only 1 group in parent */ | |
5622 | if (parent->groups == parent->groups->next) { | |
5623 | pflags &= ~(SD_LOAD_BALANCE | | |
5624 | SD_BALANCE_NEWIDLE | | |
5625 | SD_BALANCE_FORK | | |
89c4710e SS |
5626 | SD_BALANCE_EXEC | |
5627 | SD_SHARE_CPUPOWER | | |
5628 | SD_SHARE_PKG_RESOURCES); | |
245af2c7 SS |
5629 | } |
5630 | if (~cflags & pflags) | |
5631 | return 0; | |
5632 | ||
5633 | return 1; | |
5634 | } | |
5635 | ||
1da177e4 LT |
5636 | /* |
5637 | * Attach the domain 'sd' to 'cpu' as its base domain. Callers must | |
5638 | * hold the hotplug lock. | |
5639 | */ | |
9c1cfda2 | 5640 | static void cpu_attach_domain(struct sched_domain *sd, int cpu) |
1da177e4 | 5641 | { |
70b97a7f | 5642 | struct rq *rq = cpu_rq(cpu); |
245af2c7 SS |
5643 | struct sched_domain *tmp; |
5644 | ||
5645 | /* Remove the sched domains which do not contribute to scheduling. */ | |
5646 | for (tmp = sd; tmp; tmp = tmp->parent) { | |
5647 | struct sched_domain *parent = tmp->parent; | |
5648 | if (!parent) | |
5649 | break; | |
1a848870 | 5650 | if (sd_parent_degenerate(tmp, parent)) { |
245af2c7 | 5651 | tmp->parent = parent->parent; |
1a848870 SS |
5652 | if (parent->parent) |
5653 | parent->parent->child = tmp; | |
5654 | } | |
245af2c7 SS |
5655 | } |
5656 | ||
1a848870 | 5657 | if (sd && sd_degenerate(sd)) { |
245af2c7 | 5658 | sd = sd->parent; |
1a848870 SS |
5659 | if (sd) |
5660 | sd->child = NULL; | |
5661 | } | |
1da177e4 LT |
5662 | |
5663 | sched_domain_debug(sd, cpu); | |
5664 | ||
674311d5 | 5665 | rcu_assign_pointer(rq->sd, sd); |
1da177e4 LT |
5666 | } |
5667 | ||
5668 | /* cpus with isolated domains */ | |
67af63a6 | 5669 | static cpumask_t cpu_isolated_map = CPU_MASK_NONE; |
1da177e4 LT |
5670 | |
5671 | /* Setup the mask of cpus configured for isolated domains */ | |
5672 | static int __init isolated_cpu_setup(char *str) | |
5673 | { | |
5674 | int ints[NR_CPUS], i; | |
5675 | ||
5676 | str = get_options(str, ARRAY_SIZE(ints), ints); | |
5677 | cpus_clear(cpu_isolated_map); | |
5678 | for (i = 1; i <= ints[0]; i++) | |
5679 | if (ints[i] < NR_CPUS) | |
5680 | cpu_set(ints[i], cpu_isolated_map); | |
5681 | return 1; | |
5682 | } | |
5683 | ||
5684 | __setup ("isolcpus=", isolated_cpu_setup); | |
5685 | ||
5686 | /* | |
6711cab4 SS |
5687 | * init_sched_build_groups takes the cpumask we wish to span, and a pointer |
5688 | * to a function which identifies what group(along with sched group) a CPU | |
5689 | * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS | |
5690 | * (due to the fact that we keep track of groups covered with a cpumask_t). | |
1da177e4 LT |
5691 | * |
5692 | * init_sched_build_groups will build a circular linked list of the groups | |
5693 | * covered by the given span, and will set each group's ->cpumask correctly, | |
5694 | * and ->cpu_power to 0. | |
5695 | */ | |
a616058b | 5696 | static void |
6711cab4 SS |
5697 | init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map, |
5698 | int (*group_fn)(int cpu, const cpumask_t *cpu_map, | |
5699 | struct sched_group **sg)) | |
1da177e4 LT |
5700 | { |
5701 | struct sched_group *first = NULL, *last = NULL; | |
5702 | cpumask_t covered = CPU_MASK_NONE; | |
5703 | int i; | |
5704 | ||
5705 | for_each_cpu_mask(i, span) { | |
6711cab4 SS |
5706 | struct sched_group *sg; |
5707 | int group = group_fn(i, cpu_map, &sg); | |
1da177e4 LT |
5708 | int j; |
5709 | ||
5710 | if (cpu_isset(i, covered)) | |
5711 | continue; | |
5712 | ||
5713 | sg->cpumask = CPU_MASK_NONE; | |
5517d86b | 5714 | sg->__cpu_power = 0; |
1da177e4 LT |
5715 | |
5716 | for_each_cpu_mask(j, span) { | |
6711cab4 | 5717 | if (group_fn(j, cpu_map, NULL) != group) |
1da177e4 LT |
5718 | continue; |
5719 | ||
5720 | cpu_set(j, covered); | |
5721 | cpu_set(j, sg->cpumask); | |
5722 | } | |
5723 | if (!first) | |
5724 | first = sg; | |
5725 | if (last) | |
5726 | last->next = sg; | |
5727 | last = sg; | |
5728 | } | |
5729 | last->next = first; | |
5730 | } | |
5731 | ||
9c1cfda2 | 5732 | #define SD_NODES_PER_DOMAIN 16 |
1da177e4 | 5733 | |
9c1cfda2 | 5734 | #ifdef CONFIG_NUMA |
198e2f18 | 5735 | |
9c1cfda2 JH |
5736 | /** |
5737 | * find_next_best_node - find the next node to include in a sched_domain | |
5738 | * @node: node whose sched_domain we're building | |
5739 | * @used_nodes: nodes already in the sched_domain | |
5740 | * | |
5741 | * Find the next node to include in a given scheduling domain. Simply | |
5742 | * finds the closest node not already in the @used_nodes map. | |
5743 | * | |
5744 | * Should use nodemask_t. | |
5745 | */ | |
5746 | static int find_next_best_node(int node, unsigned long *used_nodes) | |
5747 | { | |
5748 | int i, n, val, min_val, best_node = 0; | |
5749 | ||
5750 | min_val = INT_MAX; | |
5751 | ||
5752 | for (i = 0; i < MAX_NUMNODES; i++) { | |
5753 | /* Start at @node */ | |
5754 | n = (node + i) % MAX_NUMNODES; | |
5755 | ||
5756 | if (!nr_cpus_node(n)) | |
5757 | continue; | |
5758 | ||
5759 | /* Skip already used nodes */ | |
5760 | if (test_bit(n, used_nodes)) | |
5761 | continue; | |
5762 | ||
5763 | /* Simple min distance search */ | |
5764 | val = node_distance(node, n); | |
5765 | ||
5766 | if (val < min_val) { | |
5767 | min_val = val; | |
5768 | best_node = n; | |
5769 | } | |
5770 | } | |
5771 | ||
5772 | set_bit(best_node, used_nodes); | |
5773 | return best_node; | |
5774 | } | |
5775 | ||
5776 | /** | |
5777 | * sched_domain_node_span - get a cpumask for a node's sched_domain | |
5778 | * @node: node whose cpumask we're constructing | |
5779 | * @size: number of nodes to include in this span | |
5780 | * | |
5781 | * Given a node, construct a good cpumask for its sched_domain to span. It | |
5782 | * should be one that prevents unnecessary balancing, but also spreads tasks | |
5783 | * out optimally. | |
5784 | */ | |
5785 | static cpumask_t sched_domain_node_span(int node) | |
5786 | { | |
9c1cfda2 | 5787 | DECLARE_BITMAP(used_nodes, MAX_NUMNODES); |
48f24c4d IM |
5788 | cpumask_t span, nodemask; |
5789 | int i; | |
9c1cfda2 JH |
5790 | |
5791 | cpus_clear(span); | |
5792 | bitmap_zero(used_nodes, MAX_NUMNODES); | |
5793 | ||
5794 | nodemask = node_to_cpumask(node); | |
5795 | cpus_or(span, span, nodemask); | |
5796 | set_bit(node, used_nodes); | |
5797 | ||
5798 | for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { | |
5799 | int next_node = find_next_best_node(node, used_nodes); | |
48f24c4d | 5800 | |
9c1cfda2 JH |
5801 | nodemask = node_to_cpumask(next_node); |
5802 | cpus_or(span, span, nodemask); | |
5803 | } | |
5804 | ||
5805 | return span; | |
5806 | } | |
5807 | #endif | |
5808 | ||
5c45bf27 | 5809 | int sched_smt_power_savings = 0, sched_mc_power_savings = 0; |
48f24c4d | 5810 | |
9c1cfda2 | 5811 | /* |
48f24c4d | 5812 | * SMT sched-domains: |
9c1cfda2 | 5813 | */ |
1da177e4 LT |
5814 | #ifdef CONFIG_SCHED_SMT |
5815 | static DEFINE_PER_CPU(struct sched_domain, cpu_domains); | |
6711cab4 | 5816 | static DEFINE_PER_CPU(struct sched_group, sched_group_cpus); |
48f24c4d | 5817 | |
6711cab4 SS |
5818 | static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, |
5819 | struct sched_group **sg) | |
1da177e4 | 5820 | { |
6711cab4 SS |
5821 | if (sg) |
5822 | *sg = &per_cpu(sched_group_cpus, cpu); | |
1da177e4 LT |
5823 | return cpu; |
5824 | } | |
5825 | #endif | |
5826 | ||
48f24c4d IM |
5827 | /* |
5828 | * multi-core sched-domains: | |
5829 | */ | |
1e9f28fa SS |
5830 | #ifdef CONFIG_SCHED_MC |
5831 | static DEFINE_PER_CPU(struct sched_domain, core_domains); | |
6711cab4 | 5832 | static DEFINE_PER_CPU(struct sched_group, sched_group_core); |
1e9f28fa SS |
5833 | #endif |
5834 | ||
5835 | #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT) | |
6711cab4 SS |
5836 | static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map, |
5837 | struct sched_group **sg) | |
1e9f28fa | 5838 | { |
6711cab4 | 5839 | int group; |
a616058b SS |
5840 | cpumask_t mask = cpu_sibling_map[cpu]; |
5841 | cpus_and(mask, mask, *cpu_map); | |
6711cab4 SS |
5842 | group = first_cpu(mask); |
5843 | if (sg) | |
5844 | *sg = &per_cpu(sched_group_core, group); | |
5845 | return group; | |
1e9f28fa SS |
5846 | } |
5847 | #elif defined(CONFIG_SCHED_MC) | |
6711cab4 SS |
5848 | static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map, |
5849 | struct sched_group **sg) | |
1e9f28fa | 5850 | { |
6711cab4 SS |
5851 | if (sg) |
5852 | *sg = &per_cpu(sched_group_core, cpu); | |
1e9f28fa SS |
5853 | return cpu; |
5854 | } | |
5855 | #endif | |
5856 | ||
1da177e4 | 5857 | static DEFINE_PER_CPU(struct sched_domain, phys_domains); |
6711cab4 | 5858 | static DEFINE_PER_CPU(struct sched_group, sched_group_phys); |
48f24c4d | 5859 | |
6711cab4 SS |
5860 | static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, |
5861 | struct sched_group **sg) | |
1da177e4 | 5862 | { |
6711cab4 | 5863 | int group; |
48f24c4d | 5864 | #ifdef CONFIG_SCHED_MC |
1e9f28fa | 5865 | cpumask_t mask = cpu_coregroup_map(cpu); |
a616058b | 5866 | cpus_and(mask, mask, *cpu_map); |
6711cab4 | 5867 | group = first_cpu(mask); |
1e9f28fa | 5868 | #elif defined(CONFIG_SCHED_SMT) |
a616058b SS |
5869 | cpumask_t mask = cpu_sibling_map[cpu]; |
5870 | cpus_and(mask, mask, *cpu_map); | |
6711cab4 | 5871 | group = first_cpu(mask); |
1da177e4 | 5872 | #else |
6711cab4 | 5873 | group = cpu; |
1da177e4 | 5874 | #endif |
6711cab4 SS |
5875 | if (sg) |
5876 | *sg = &per_cpu(sched_group_phys, group); | |
5877 | return group; | |
1da177e4 LT |
5878 | } |
5879 | ||
5880 | #ifdef CONFIG_NUMA | |
1da177e4 | 5881 | /* |
9c1cfda2 JH |
5882 | * The init_sched_build_groups can't handle what we want to do with node |
5883 | * groups, so roll our own. Now each node has its own list of groups which | |
5884 | * gets dynamically allocated. | |
1da177e4 | 5885 | */ |
9c1cfda2 | 5886 | static DEFINE_PER_CPU(struct sched_domain, node_domains); |
d1b55138 | 5887 | static struct sched_group **sched_group_nodes_bycpu[NR_CPUS]; |
1da177e4 | 5888 | |
9c1cfda2 | 5889 | static DEFINE_PER_CPU(struct sched_domain, allnodes_domains); |
6711cab4 | 5890 | static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes); |
9c1cfda2 | 5891 | |
6711cab4 SS |
5892 | static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map, |
5893 | struct sched_group **sg) | |
9c1cfda2 | 5894 | { |
6711cab4 SS |
5895 | cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu)); |
5896 | int group; | |
5897 | ||
5898 | cpus_and(nodemask, nodemask, *cpu_map); | |
5899 | group = first_cpu(nodemask); | |
5900 | ||
5901 | if (sg) | |
5902 | *sg = &per_cpu(sched_group_allnodes, group); | |
5903 | return group; | |
1da177e4 | 5904 | } |
6711cab4 | 5905 | |
08069033 SS |
5906 | static void init_numa_sched_groups_power(struct sched_group *group_head) |
5907 | { | |
5908 | struct sched_group *sg = group_head; | |
5909 | int j; | |
5910 | ||
5911 | if (!sg) | |
5912 | return; | |
5913 | next_sg: | |
5914 | for_each_cpu_mask(j, sg->cpumask) { | |
5915 | struct sched_domain *sd; | |
5916 | ||
5917 | sd = &per_cpu(phys_domains, j); | |
5918 | if (j != first_cpu(sd->groups->cpumask)) { | |
5919 | /* | |
5920 | * Only add "power" once for each | |
5921 | * physical package. | |
5922 | */ | |
5923 | continue; | |
5924 | } | |
5925 | ||
5517d86b | 5926 | sg_inc_cpu_power(sg, sd->groups->__cpu_power); |
08069033 SS |
5927 | } |
5928 | sg = sg->next; | |
5929 | if (sg != group_head) | |
5930 | goto next_sg; | |
5931 | } | |
1da177e4 LT |
5932 | #endif |
5933 | ||
a616058b | 5934 | #ifdef CONFIG_NUMA |
51888ca2 SV |
5935 | /* Free memory allocated for various sched_group structures */ |
5936 | static void free_sched_groups(const cpumask_t *cpu_map) | |
5937 | { | |
a616058b | 5938 | int cpu, i; |
51888ca2 SV |
5939 | |
5940 | for_each_cpu_mask(cpu, *cpu_map) { | |
51888ca2 SV |
5941 | struct sched_group **sched_group_nodes |
5942 | = sched_group_nodes_bycpu[cpu]; | |
5943 | ||
51888ca2 SV |
5944 | if (!sched_group_nodes) |
5945 | continue; | |
5946 | ||
5947 | for (i = 0; i < MAX_NUMNODES; i++) { | |
5948 | cpumask_t nodemask = node_to_cpumask(i); | |
5949 | struct sched_group *oldsg, *sg = sched_group_nodes[i]; | |
5950 | ||
5951 | cpus_and(nodemask, nodemask, *cpu_map); | |
5952 | if (cpus_empty(nodemask)) | |
5953 | continue; | |
5954 | ||
5955 | if (sg == NULL) | |
5956 | continue; | |
5957 | sg = sg->next; | |
5958 | next_sg: | |
5959 | oldsg = sg; | |
5960 | sg = sg->next; | |
5961 | kfree(oldsg); | |
5962 | if (oldsg != sched_group_nodes[i]) | |
5963 | goto next_sg; | |
5964 | } | |
5965 | kfree(sched_group_nodes); | |
5966 | sched_group_nodes_bycpu[cpu] = NULL; | |
5967 | } | |
51888ca2 | 5968 | } |
a616058b SS |
5969 | #else |
5970 | static void free_sched_groups(const cpumask_t *cpu_map) | |
5971 | { | |
5972 | } | |
5973 | #endif | |
51888ca2 | 5974 | |
89c4710e SS |
5975 | /* |
5976 | * Initialize sched groups cpu_power. | |
5977 | * | |
5978 | * cpu_power indicates the capacity of sched group, which is used while | |
5979 | * distributing the load between different sched groups in a sched domain. | |
5980 | * Typically cpu_power for all the groups in a sched domain will be same unless | |
5981 | * there are asymmetries in the topology. If there are asymmetries, group | |
5982 | * having more cpu_power will pickup more load compared to the group having | |
5983 | * less cpu_power. | |
5984 | * | |
5985 | * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents | |
5986 | * the maximum number of tasks a group can handle in the presence of other idle | |
5987 | * or lightly loaded groups in the same sched domain. | |
5988 | */ | |
5989 | static void init_sched_groups_power(int cpu, struct sched_domain *sd) | |
5990 | { | |
5991 | struct sched_domain *child; | |
5992 | struct sched_group *group; | |
5993 | ||
5994 | WARN_ON(!sd || !sd->groups); | |
5995 | ||
5996 | if (cpu != first_cpu(sd->groups->cpumask)) | |
5997 | return; | |
5998 | ||
5999 | child = sd->child; | |
6000 | ||
5517d86b ED |
6001 | sd->groups->__cpu_power = 0; |
6002 | ||
89c4710e SS |
6003 | /* |
6004 | * For perf policy, if the groups in child domain share resources | |
6005 | * (for example cores sharing some portions of the cache hierarchy | |
6006 | * or SMT), then set this domain groups cpu_power such that each group | |
6007 | * can handle only one task, when there are other idle groups in the | |
6008 | * same sched domain. | |
6009 | */ | |
6010 | if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) && | |
6011 | (child->flags & | |
6012 | (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) { | |
5517d86b | 6013 | sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE); |
89c4710e SS |
6014 | return; |
6015 | } | |
6016 | ||
89c4710e SS |
6017 | /* |
6018 | * add cpu_power of each child group to this groups cpu_power | |
6019 | */ | |
6020 | group = child->groups; | |
6021 | do { | |
5517d86b | 6022 | sg_inc_cpu_power(sd->groups, group->__cpu_power); |
89c4710e SS |
6023 | group = group->next; |
6024 | } while (group != child->groups); | |
6025 | } | |
6026 | ||
1da177e4 | 6027 | /* |
1a20ff27 DG |
6028 | * Build sched domains for a given set of cpus and attach the sched domains |
6029 | * to the individual cpus | |
1da177e4 | 6030 | */ |
51888ca2 | 6031 | static int build_sched_domains(const cpumask_t *cpu_map) |
1da177e4 LT |
6032 | { |
6033 | int i; | |
d1b55138 JH |
6034 | #ifdef CONFIG_NUMA |
6035 | struct sched_group **sched_group_nodes = NULL; | |
6711cab4 | 6036 | int sd_allnodes = 0; |
d1b55138 JH |
6037 | |
6038 | /* | |
6039 | * Allocate the per-node list of sched groups | |
6040 | */ | |
dd41f596 | 6041 | sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES, |
d3a5aa98 | 6042 | GFP_KERNEL); |
d1b55138 JH |
6043 | if (!sched_group_nodes) { |
6044 | printk(KERN_WARNING "Can not alloc sched group node list\n"); | |
51888ca2 | 6045 | return -ENOMEM; |
d1b55138 JH |
6046 | } |
6047 | sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes; | |
6048 | #endif | |
1da177e4 LT |
6049 | |
6050 | /* | |
1a20ff27 | 6051 | * Set up domains for cpus specified by the cpu_map. |
1da177e4 | 6052 | */ |
1a20ff27 | 6053 | for_each_cpu_mask(i, *cpu_map) { |
1da177e4 LT |
6054 | struct sched_domain *sd = NULL, *p; |
6055 | cpumask_t nodemask = node_to_cpumask(cpu_to_node(i)); | |
6056 | ||
1a20ff27 | 6057 | cpus_and(nodemask, nodemask, *cpu_map); |
1da177e4 LT |
6058 | |
6059 | #ifdef CONFIG_NUMA | |
dd41f596 IM |
6060 | if (cpus_weight(*cpu_map) > |
6061 | SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) { | |
9c1cfda2 JH |
6062 | sd = &per_cpu(allnodes_domains, i); |
6063 | *sd = SD_ALLNODES_INIT; | |
6064 | sd->span = *cpu_map; | |
6711cab4 | 6065 | cpu_to_allnodes_group(i, cpu_map, &sd->groups); |
9c1cfda2 | 6066 | p = sd; |
6711cab4 | 6067 | sd_allnodes = 1; |
9c1cfda2 JH |
6068 | } else |
6069 | p = NULL; | |
6070 | ||
1da177e4 | 6071 | sd = &per_cpu(node_domains, i); |
1da177e4 | 6072 | *sd = SD_NODE_INIT; |
9c1cfda2 JH |
6073 | sd->span = sched_domain_node_span(cpu_to_node(i)); |
6074 | sd->parent = p; | |
1a848870 SS |
6075 | if (p) |
6076 | p->child = sd; | |
9c1cfda2 | 6077 | cpus_and(sd->span, sd->span, *cpu_map); |
1da177e4 LT |
6078 | #endif |
6079 | ||
6080 | p = sd; | |
6081 | sd = &per_cpu(phys_domains, i); | |
1da177e4 LT |
6082 | *sd = SD_CPU_INIT; |
6083 | sd->span = nodemask; | |
6084 | sd->parent = p; | |
1a848870 SS |
6085 | if (p) |
6086 | p->child = sd; | |
6711cab4 | 6087 | cpu_to_phys_group(i, cpu_map, &sd->groups); |
1da177e4 | 6088 | |
1e9f28fa SS |
6089 | #ifdef CONFIG_SCHED_MC |
6090 | p = sd; | |
6091 | sd = &per_cpu(core_domains, i); | |
1e9f28fa SS |
6092 | *sd = SD_MC_INIT; |
6093 | sd->span = cpu_coregroup_map(i); | |
6094 | cpus_and(sd->span, sd->span, *cpu_map); | |
6095 | sd->parent = p; | |
1a848870 | 6096 | p->child = sd; |
6711cab4 | 6097 | cpu_to_core_group(i, cpu_map, &sd->groups); |
1e9f28fa SS |
6098 | #endif |
6099 | ||
1da177e4 LT |
6100 | #ifdef CONFIG_SCHED_SMT |
6101 | p = sd; | |
6102 | sd = &per_cpu(cpu_domains, i); | |
1da177e4 LT |
6103 | *sd = SD_SIBLING_INIT; |
6104 | sd->span = cpu_sibling_map[i]; | |
1a20ff27 | 6105 | cpus_and(sd->span, sd->span, *cpu_map); |
1da177e4 | 6106 | sd->parent = p; |
1a848870 | 6107 | p->child = sd; |
6711cab4 | 6108 | cpu_to_cpu_group(i, cpu_map, &sd->groups); |
1da177e4 LT |
6109 | #endif |
6110 | } | |
6111 | ||
6112 | #ifdef CONFIG_SCHED_SMT | |
6113 | /* Set up CPU (sibling) groups */ | |
9c1cfda2 | 6114 | for_each_cpu_mask(i, *cpu_map) { |
1da177e4 | 6115 | cpumask_t this_sibling_map = cpu_sibling_map[i]; |
1a20ff27 | 6116 | cpus_and(this_sibling_map, this_sibling_map, *cpu_map); |
1da177e4 LT |
6117 | if (i != first_cpu(this_sibling_map)) |
6118 | continue; | |
6119 | ||
dd41f596 IM |
6120 | init_sched_build_groups(this_sibling_map, cpu_map, |
6121 | &cpu_to_cpu_group); | |
1da177e4 LT |
6122 | } |
6123 | #endif | |
6124 | ||
1e9f28fa SS |
6125 | #ifdef CONFIG_SCHED_MC |
6126 | /* Set up multi-core groups */ | |
6127 | for_each_cpu_mask(i, *cpu_map) { | |
6128 | cpumask_t this_core_map = cpu_coregroup_map(i); | |
6129 | cpus_and(this_core_map, this_core_map, *cpu_map); | |
6130 | if (i != first_cpu(this_core_map)) | |
6131 | continue; | |
dd41f596 IM |
6132 | init_sched_build_groups(this_core_map, cpu_map, |
6133 | &cpu_to_core_group); | |
1e9f28fa SS |
6134 | } |
6135 | #endif | |
6136 | ||
1da177e4 LT |
6137 | /* Set up physical groups */ |
6138 | for (i = 0; i < MAX_NUMNODES; i++) { | |
6139 | cpumask_t nodemask = node_to_cpumask(i); | |
6140 | ||
1a20ff27 | 6141 | cpus_and(nodemask, nodemask, *cpu_map); |
1da177e4 LT |
6142 | if (cpus_empty(nodemask)) |
6143 | continue; | |
6144 | ||
6711cab4 | 6145 | init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group); |
1da177e4 LT |
6146 | } |
6147 | ||
6148 | #ifdef CONFIG_NUMA | |
6149 | /* Set up node groups */ | |
6711cab4 | 6150 | if (sd_allnodes) |
dd41f596 IM |
6151 | init_sched_build_groups(*cpu_map, cpu_map, |
6152 | &cpu_to_allnodes_group); | |
9c1cfda2 JH |
6153 | |
6154 | for (i = 0; i < MAX_NUMNODES; i++) { | |
6155 | /* Set up node groups */ | |
6156 | struct sched_group *sg, *prev; | |
6157 | cpumask_t nodemask = node_to_cpumask(i); | |
6158 | cpumask_t domainspan; | |
6159 | cpumask_t covered = CPU_MASK_NONE; | |
6160 | int j; | |
6161 | ||
6162 | cpus_and(nodemask, nodemask, *cpu_map); | |
d1b55138 JH |
6163 | if (cpus_empty(nodemask)) { |
6164 | sched_group_nodes[i] = NULL; | |
9c1cfda2 | 6165 | continue; |
d1b55138 | 6166 | } |
9c1cfda2 JH |
6167 | |
6168 | domainspan = sched_domain_node_span(i); | |
6169 | cpus_and(domainspan, domainspan, *cpu_map); | |
6170 | ||
15f0b676 | 6171 | sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i); |
51888ca2 SV |
6172 | if (!sg) { |
6173 | printk(KERN_WARNING "Can not alloc domain group for " | |
6174 | "node %d\n", i); | |
6175 | goto error; | |
6176 | } | |
9c1cfda2 JH |
6177 | sched_group_nodes[i] = sg; |
6178 | for_each_cpu_mask(j, nodemask) { | |
6179 | struct sched_domain *sd; | |
9761eea8 | 6180 | |
9c1cfda2 JH |
6181 | sd = &per_cpu(node_domains, j); |
6182 | sd->groups = sg; | |
9c1cfda2 | 6183 | } |
5517d86b | 6184 | sg->__cpu_power = 0; |
9c1cfda2 | 6185 | sg->cpumask = nodemask; |
51888ca2 | 6186 | sg->next = sg; |
9c1cfda2 JH |
6187 | cpus_or(covered, covered, nodemask); |
6188 | prev = sg; | |
6189 | ||
6190 | for (j = 0; j < MAX_NUMNODES; j++) { | |
6191 | cpumask_t tmp, notcovered; | |
6192 | int n = (i + j) % MAX_NUMNODES; | |
6193 | ||
6194 | cpus_complement(notcovered, covered); | |
6195 | cpus_and(tmp, notcovered, *cpu_map); | |
6196 | cpus_and(tmp, tmp, domainspan); | |
6197 | if (cpus_empty(tmp)) | |
6198 | break; | |
6199 | ||
6200 | nodemask = node_to_cpumask(n); | |
6201 | cpus_and(tmp, tmp, nodemask); | |
6202 | if (cpus_empty(tmp)) | |
6203 | continue; | |
6204 | ||
15f0b676 SV |
6205 | sg = kmalloc_node(sizeof(struct sched_group), |
6206 | GFP_KERNEL, i); | |
9c1cfda2 JH |
6207 | if (!sg) { |
6208 | printk(KERN_WARNING | |
6209 | "Can not alloc domain group for node %d\n", j); | |
51888ca2 | 6210 | goto error; |
9c1cfda2 | 6211 | } |
5517d86b | 6212 | sg->__cpu_power = 0; |
9c1cfda2 | 6213 | sg->cpumask = tmp; |
51888ca2 | 6214 | sg->next = prev->next; |
9c1cfda2 JH |
6215 | cpus_or(covered, covered, tmp); |
6216 | prev->next = sg; | |
6217 | prev = sg; | |
6218 | } | |
9c1cfda2 | 6219 | } |
1da177e4 LT |
6220 | #endif |
6221 | ||
6222 | /* Calculate CPU power for physical packages and nodes */ | |
5c45bf27 | 6223 | #ifdef CONFIG_SCHED_SMT |
1a20ff27 | 6224 | for_each_cpu_mask(i, *cpu_map) { |
dd41f596 IM |
6225 | struct sched_domain *sd = &per_cpu(cpu_domains, i); |
6226 | ||
89c4710e | 6227 | init_sched_groups_power(i, sd); |
5c45bf27 | 6228 | } |
1da177e4 | 6229 | #endif |
1e9f28fa | 6230 | #ifdef CONFIG_SCHED_MC |
5c45bf27 | 6231 | for_each_cpu_mask(i, *cpu_map) { |
dd41f596 IM |
6232 | struct sched_domain *sd = &per_cpu(core_domains, i); |
6233 | ||
89c4710e | 6234 | init_sched_groups_power(i, sd); |
5c45bf27 SS |
6235 | } |
6236 | #endif | |
1e9f28fa | 6237 | |
5c45bf27 | 6238 | for_each_cpu_mask(i, *cpu_map) { |
dd41f596 IM |
6239 | struct sched_domain *sd = &per_cpu(phys_domains, i); |
6240 | ||
89c4710e | 6241 | init_sched_groups_power(i, sd); |
1da177e4 LT |
6242 | } |
6243 | ||
9c1cfda2 | 6244 | #ifdef CONFIG_NUMA |
08069033 SS |
6245 | for (i = 0; i < MAX_NUMNODES; i++) |
6246 | init_numa_sched_groups_power(sched_group_nodes[i]); | |
9c1cfda2 | 6247 | |
6711cab4 SS |
6248 | if (sd_allnodes) { |
6249 | struct sched_group *sg; | |
f712c0c7 | 6250 | |
6711cab4 | 6251 | cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg); |
f712c0c7 SS |
6252 | init_numa_sched_groups_power(sg); |
6253 | } | |
9c1cfda2 JH |
6254 | #endif |
6255 | ||
1da177e4 | 6256 | /* Attach the domains */ |
1a20ff27 | 6257 | for_each_cpu_mask(i, *cpu_map) { |
1da177e4 LT |
6258 | struct sched_domain *sd; |
6259 | #ifdef CONFIG_SCHED_SMT | |
6260 | sd = &per_cpu(cpu_domains, i); | |
1e9f28fa SS |
6261 | #elif defined(CONFIG_SCHED_MC) |
6262 | sd = &per_cpu(core_domains, i); | |
1da177e4 LT |
6263 | #else |
6264 | sd = &per_cpu(phys_domains, i); | |
6265 | #endif | |
6266 | cpu_attach_domain(sd, i); | |
6267 | } | |
51888ca2 SV |
6268 | |
6269 | return 0; | |
6270 | ||
a616058b | 6271 | #ifdef CONFIG_NUMA |
51888ca2 SV |
6272 | error: |
6273 | free_sched_groups(cpu_map); | |
6274 | return -ENOMEM; | |
a616058b | 6275 | #endif |
1da177e4 | 6276 | } |
1a20ff27 DG |
6277 | /* |
6278 | * Set up scheduler domains and groups. Callers must hold the hotplug lock. | |
6279 | */ | |
51888ca2 | 6280 | static int arch_init_sched_domains(const cpumask_t *cpu_map) |
1a20ff27 DG |
6281 | { |
6282 | cpumask_t cpu_default_map; | |
51888ca2 | 6283 | int err; |
1da177e4 | 6284 | |
1a20ff27 DG |
6285 | /* |
6286 | * Setup mask for cpus without special case scheduling requirements. | |
6287 | * For now this just excludes isolated cpus, but could be used to | |
6288 | * exclude other special cases in the future. | |
6289 | */ | |
6290 | cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map); | |
6291 | ||
51888ca2 SV |
6292 | err = build_sched_domains(&cpu_default_map); |
6293 | ||
6294 | return err; | |
1a20ff27 DG |
6295 | } |
6296 | ||
6297 | static void arch_destroy_sched_domains(const cpumask_t *cpu_map) | |
1da177e4 | 6298 | { |
51888ca2 | 6299 | free_sched_groups(cpu_map); |
9c1cfda2 | 6300 | } |
1da177e4 | 6301 | |
1a20ff27 DG |
6302 | /* |
6303 | * Detach sched domains from a group of cpus specified in cpu_map | |
6304 | * These cpus will now be attached to the NULL domain | |
6305 | */ | |
858119e1 | 6306 | static void detach_destroy_domains(const cpumask_t *cpu_map) |
1a20ff27 DG |
6307 | { |
6308 | int i; | |
6309 | ||
6310 | for_each_cpu_mask(i, *cpu_map) | |
6311 | cpu_attach_domain(NULL, i); | |
6312 | synchronize_sched(); | |
6313 | arch_destroy_sched_domains(cpu_map); | |
6314 | } | |
6315 | ||
6316 | /* | |
6317 | * Partition sched domains as specified by the cpumasks below. | |
6318 | * This attaches all cpus from the cpumasks to the NULL domain, | |
6319 | * waits for a RCU quiescent period, recalculates sched | |
6320 | * domain information and then attaches them back to the | |
6321 | * correct sched domains | |
6322 | * Call with hotplug lock held | |
6323 | */ | |
51888ca2 | 6324 | int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2) |
1a20ff27 DG |
6325 | { |
6326 | cpumask_t change_map; | |
51888ca2 | 6327 | int err = 0; |
1a20ff27 DG |
6328 | |
6329 | cpus_and(*partition1, *partition1, cpu_online_map); | |
6330 | cpus_and(*partition2, *partition2, cpu_online_map); | |
6331 | cpus_or(change_map, *partition1, *partition2); | |
6332 | ||
6333 | /* Detach sched domains from all of the affected cpus */ | |
6334 | detach_destroy_domains(&change_map); | |
6335 | if (!cpus_empty(*partition1)) | |
51888ca2 SV |
6336 | err = build_sched_domains(partition1); |
6337 | if (!err && !cpus_empty(*partition2)) | |
6338 | err = build_sched_domains(partition2); | |
6339 | ||
6340 | return err; | |
1a20ff27 DG |
6341 | } |
6342 | ||
5c45bf27 | 6343 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
6707de00 | 6344 | static int arch_reinit_sched_domains(void) |
5c45bf27 SS |
6345 | { |
6346 | int err; | |
6347 | ||
5be9361c | 6348 | mutex_lock(&sched_hotcpu_mutex); |
5c45bf27 SS |
6349 | detach_destroy_domains(&cpu_online_map); |
6350 | err = arch_init_sched_domains(&cpu_online_map); | |
5be9361c | 6351 | mutex_unlock(&sched_hotcpu_mutex); |
5c45bf27 SS |
6352 | |
6353 | return err; | |
6354 | } | |
6355 | ||
6356 | static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) | |
6357 | { | |
6358 | int ret; | |
6359 | ||
6360 | if (buf[0] != '0' && buf[0] != '1') | |
6361 | return -EINVAL; | |
6362 | ||
6363 | if (smt) | |
6364 | sched_smt_power_savings = (buf[0] == '1'); | |
6365 | else | |
6366 | sched_mc_power_savings = (buf[0] == '1'); | |
6367 | ||
6368 | ret = arch_reinit_sched_domains(); | |
6369 | ||
6370 | return ret ? ret : count; | |
6371 | } | |
6372 | ||
5c45bf27 SS |
6373 | #ifdef CONFIG_SCHED_MC |
6374 | static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page) | |
6375 | { | |
6376 | return sprintf(page, "%u\n", sched_mc_power_savings); | |
6377 | } | |
48f24c4d IM |
6378 | static ssize_t sched_mc_power_savings_store(struct sys_device *dev, |
6379 | const char *buf, size_t count) | |
5c45bf27 SS |
6380 | { |
6381 | return sched_power_savings_store(buf, count, 0); | |
6382 | } | |
6707de00 AB |
6383 | static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show, |
6384 | sched_mc_power_savings_store); | |
5c45bf27 SS |
6385 | #endif |
6386 | ||
6387 | #ifdef CONFIG_SCHED_SMT | |
6388 | static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page) | |
6389 | { | |
6390 | return sprintf(page, "%u\n", sched_smt_power_savings); | |
6391 | } | |
48f24c4d IM |
6392 | static ssize_t sched_smt_power_savings_store(struct sys_device *dev, |
6393 | const char *buf, size_t count) | |
5c45bf27 SS |
6394 | { |
6395 | return sched_power_savings_store(buf, count, 1); | |
6396 | } | |
6707de00 AB |
6397 | static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show, |
6398 | sched_smt_power_savings_store); | |
6399 | #endif | |
6400 | ||
6401 | int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls) | |
6402 | { | |
6403 | int err = 0; | |
6404 | ||
6405 | #ifdef CONFIG_SCHED_SMT | |
6406 | if (smt_capable()) | |
6407 | err = sysfs_create_file(&cls->kset.kobj, | |
6408 | &attr_sched_smt_power_savings.attr); | |
6409 | #endif | |
6410 | #ifdef CONFIG_SCHED_MC | |
6411 | if (!err && mc_capable()) | |
6412 | err = sysfs_create_file(&cls->kset.kobj, | |
6413 | &attr_sched_mc_power_savings.attr); | |
6414 | #endif | |
6415 | return err; | |
6416 | } | |
5c45bf27 SS |
6417 | #endif |
6418 | ||
1da177e4 LT |
6419 | /* |
6420 | * Force a reinitialization of the sched domains hierarchy. The domains | |
6421 | * and groups cannot be updated in place without racing with the balancing | |
41c7ce9a | 6422 | * code, so we temporarily attach all running cpus to the NULL domain |
1da177e4 LT |
6423 | * which will prevent rebalancing while the sched domains are recalculated. |
6424 | */ | |
6425 | static int update_sched_domains(struct notifier_block *nfb, | |
6426 | unsigned long action, void *hcpu) | |
6427 | { | |
1da177e4 LT |
6428 | switch (action) { |
6429 | case CPU_UP_PREPARE: | |
8bb78442 | 6430 | case CPU_UP_PREPARE_FROZEN: |
1da177e4 | 6431 | case CPU_DOWN_PREPARE: |
8bb78442 | 6432 | case CPU_DOWN_PREPARE_FROZEN: |
1a20ff27 | 6433 | detach_destroy_domains(&cpu_online_map); |
1da177e4 LT |
6434 | return NOTIFY_OK; |
6435 | ||
6436 | case CPU_UP_CANCELED: | |
8bb78442 | 6437 | case CPU_UP_CANCELED_FROZEN: |
1da177e4 | 6438 | case CPU_DOWN_FAILED: |
8bb78442 | 6439 | case CPU_DOWN_FAILED_FROZEN: |
1da177e4 | 6440 | case CPU_ONLINE: |
8bb78442 | 6441 | case CPU_ONLINE_FROZEN: |
1da177e4 | 6442 | case CPU_DEAD: |
8bb78442 | 6443 | case CPU_DEAD_FROZEN: |
1da177e4 LT |
6444 | /* |
6445 | * Fall through and re-initialise the domains. | |
6446 | */ | |
6447 | break; | |
6448 | default: | |
6449 | return NOTIFY_DONE; | |
6450 | } | |
6451 | ||
6452 | /* The hotplug lock is already held by cpu_up/cpu_down */ | |
1a20ff27 | 6453 | arch_init_sched_domains(&cpu_online_map); |
1da177e4 LT |
6454 | |
6455 | return NOTIFY_OK; | |
6456 | } | |
1da177e4 LT |
6457 | |
6458 | void __init sched_init_smp(void) | |
6459 | { | |
5c1e1767 NP |
6460 | cpumask_t non_isolated_cpus; |
6461 | ||
5be9361c | 6462 | mutex_lock(&sched_hotcpu_mutex); |
1a20ff27 | 6463 | arch_init_sched_domains(&cpu_online_map); |
e5e5673f | 6464 | cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map); |
5c1e1767 NP |
6465 | if (cpus_empty(non_isolated_cpus)) |
6466 | cpu_set(smp_processor_id(), non_isolated_cpus); | |
5be9361c | 6467 | mutex_unlock(&sched_hotcpu_mutex); |
1da177e4 LT |
6468 | /* XXX: Theoretical race here - CPU may be hotplugged now */ |
6469 | hotcpu_notifier(update_sched_domains, 0); | |
5c1e1767 | 6470 | |
e692ab53 NP |
6471 | init_sched_domain_sysctl(); |
6472 | ||
5c1e1767 NP |
6473 | /* Move init over to a non-isolated CPU */ |
6474 | if (set_cpus_allowed(current, non_isolated_cpus) < 0) | |
6475 | BUG(); | |
1da177e4 LT |
6476 | } |
6477 | #else | |
6478 | void __init sched_init_smp(void) | |
6479 | { | |
6480 | } | |
6481 | #endif /* CONFIG_SMP */ | |
6482 | ||
6483 | int in_sched_functions(unsigned long addr) | |
6484 | { | |
6485 | /* Linker adds these: start and end of __sched functions */ | |
6486 | extern char __sched_text_start[], __sched_text_end[]; | |
48f24c4d | 6487 | |
1da177e4 LT |
6488 | return in_lock_functions(addr) || |
6489 | (addr >= (unsigned long)__sched_text_start | |
6490 | && addr < (unsigned long)__sched_text_end); | |
6491 | } | |
6492 | ||
dd41f596 IM |
6493 | static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq) |
6494 | { | |
6495 | cfs_rq->tasks_timeline = RB_ROOT; | |
dd41f596 IM |
6496 | #ifdef CONFIG_FAIR_GROUP_SCHED |
6497 | cfs_rq->rq = rq; | |
6498 | #endif | |
67e9fb2a | 6499 | cfs_rq->min_vruntime = (u64)(-(1LL << 20)); |
dd41f596 IM |
6500 | } |
6501 | ||
1da177e4 LT |
6502 | void __init sched_init(void) |
6503 | { | |
476f3534 | 6504 | int highest_cpu = 0; |
dd41f596 IM |
6505 | int i, j; |
6506 | ||
6507 | /* | |
6508 | * Link up the scheduling class hierarchy: | |
6509 | */ | |
6510 | rt_sched_class.next = &fair_sched_class; | |
6511 | fair_sched_class.next = &idle_sched_class; | |
6512 | idle_sched_class.next = NULL; | |
1da177e4 | 6513 | |
0a945022 | 6514 | for_each_possible_cpu(i) { |
dd41f596 | 6515 | struct rt_prio_array *array; |
70b97a7f | 6516 | struct rq *rq; |
1da177e4 LT |
6517 | |
6518 | rq = cpu_rq(i); | |
6519 | spin_lock_init(&rq->lock); | |
fcb99371 | 6520 | lockdep_set_class(&rq->lock, &rq->rq_lock_key); |
7897986b | 6521 | rq->nr_running = 0; |
dd41f596 IM |
6522 | rq->clock = 1; |
6523 | init_cfs_rq(&rq->cfs, rq); | |
6524 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
6525 | INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); | |
29f59db3 SV |
6526 | { |
6527 | struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i); | |
6528 | struct sched_entity *se = | |
6529 | &per_cpu(init_sched_entity, i); | |
6530 | ||
6531 | init_cfs_rq_p[i] = cfs_rq; | |
6532 | init_cfs_rq(cfs_rq, rq); | |
6533 | cfs_rq->tg = &init_task_grp; | |
6534 | list_add(&cfs_rq->leaf_cfs_rq_list, | |
6535 | &rq->leaf_cfs_rq_list); | |
6536 | ||
6537 | init_sched_entity_p[i] = se; | |
6538 | se->cfs_rq = &rq->cfs; | |
6539 | se->my_q = cfs_rq; | |
9b5b7751 SV |
6540 | se->load.weight = init_task_grp_load; |
6541 | se->load.inv_weight = | |
6542 | div64_64(1ULL<<32, init_task_grp_load); | |
29f59db3 SV |
6543 | se->parent = NULL; |
6544 | } | |
9b5b7751 | 6545 | init_task_grp.shares = init_task_grp_load; |
dd41f596 | 6546 | #endif |
1da177e4 | 6547 | |
dd41f596 IM |
6548 | for (j = 0; j < CPU_LOAD_IDX_MAX; j++) |
6549 | rq->cpu_load[j] = 0; | |
1da177e4 | 6550 | #ifdef CONFIG_SMP |
41c7ce9a | 6551 | rq->sd = NULL; |
1da177e4 | 6552 | rq->active_balance = 0; |
dd41f596 | 6553 | rq->next_balance = jiffies; |
1da177e4 | 6554 | rq->push_cpu = 0; |
0a2966b4 | 6555 | rq->cpu = i; |
1da177e4 LT |
6556 | rq->migration_thread = NULL; |
6557 | INIT_LIST_HEAD(&rq->migration_queue); | |
6558 | #endif | |
6559 | atomic_set(&rq->nr_iowait, 0); | |
6560 | ||
dd41f596 IM |
6561 | array = &rq->rt.active; |
6562 | for (j = 0; j < MAX_RT_PRIO; j++) { | |
6563 | INIT_LIST_HEAD(array->queue + j); | |
6564 | __clear_bit(j, array->bitmap); | |
1da177e4 | 6565 | } |
476f3534 | 6566 | highest_cpu = i; |
dd41f596 IM |
6567 | /* delimiter for bitsearch: */ |
6568 | __set_bit(MAX_RT_PRIO, array->bitmap); | |
1da177e4 LT |
6569 | } |
6570 | ||
2dd73a4f | 6571 | set_load_weight(&init_task); |
b50f60ce | 6572 | |
e107be36 AK |
6573 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
6574 | INIT_HLIST_HEAD(&init_task.preempt_notifiers); | |
6575 | #endif | |
6576 | ||
c9819f45 | 6577 | #ifdef CONFIG_SMP |
476f3534 | 6578 | nr_cpu_ids = highest_cpu + 1; |
c9819f45 CL |
6579 | open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL); |
6580 | #endif | |
6581 | ||
b50f60ce HC |
6582 | #ifdef CONFIG_RT_MUTEXES |
6583 | plist_head_init(&init_task.pi_waiters, &init_task.pi_lock); | |
6584 | #endif | |
6585 | ||
1da177e4 LT |
6586 | /* |
6587 | * The boot idle thread does lazy MMU switching as well: | |
6588 | */ | |
6589 | atomic_inc(&init_mm.mm_count); | |
6590 | enter_lazy_tlb(&init_mm, current); | |
6591 | ||
6592 | /* | |
6593 | * Make us the idle thread. Technically, schedule() should not be | |
6594 | * called from this thread, however somewhere below it might be, | |
6595 | * but because we are the idle thread, we just pick up running again | |
6596 | * when this runqueue becomes "idle". | |
6597 | */ | |
6598 | init_idle(current, smp_processor_id()); | |
dd41f596 IM |
6599 | /* |
6600 | * During early bootup we pretend to be a normal task: | |
6601 | */ | |
6602 | current->sched_class = &fair_sched_class; | |
1da177e4 LT |
6603 | } |
6604 | ||
6605 | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP | |
6606 | void __might_sleep(char *file, int line) | |
6607 | { | |
48f24c4d | 6608 | #ifdef in_atomic |
1da177e4 LT |
6609 | static unsigned long prev_jiffy; /* ratelimiting */ |
6610 | ||
6611 | if ((in_atomic() || irqs_disabled()) && | |
6612 | system_state == SYSTEM_RUNNING && !oops_in_progress) { | |
6613 | if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) | |
6614 | return; | |
6615 | prev_jiffy = jiffies; | |
91368d73 | 6616 | printk(KERN_ERR "BUG: sleeping function called from invalid" |
1da177e4 LT |
6617 | " context at %s:%d\n", file, line); |
6618 | printk("in_atomic():%d, irqs_disabled():%d\n", | |
6619 | in_atomic(), irqs_disabled()); | |
a4c410f0 | 6620 | debug_show_held_locks(current); |
3117df04 IM |
6621 | if (irqs_disabled()) |
6622 | print_irqtrace_events(current); | |
1da177e4 LT |
6623 | dump_stack(); |
6624 | } | |
6625 | #endif | |
6626 | } | |
6627 | EXPORT_SYMBOL(__might_sleep); | |
6628 | #endif | |
6629 | ||
6630 | #ifdef CONFIG_MAGIC_SYSRQ | |
6631 | void normalize_rt_tasks(void) | |
6632 | { | |
a0f98a1c | 6633 | struct task_struct *g, *p; |
1da177e4 | 6634 | unsigned long flags; |
70b97a7f | 6635 | struct rq *rq; |
dd41f596 | 6636 | int on_rq; |
1da177e4 LT |
6637 | |
6638 | read_lock_irq(&tasklist_lock); | |
a0f98a1c | 6639 | do_each_thread(g, p) { |
6cfb0d5d | 6640 | p->se.exec_start = 0; |
6cfb0d5d | 6641 | #ifdef CONFIG_SCHEDSTATS |
dd41f596 | 6642 | p->se.wait_start = 0; |
dd41f596 | 6643 | p->se.sleep_start = 0; |
dd41f596 | 6644 | p->se.block_start = 0; |
6cfb0d5d | 6645 | #endif |
dd41f596 IM |
6646 | task_rq(p)->clock = 0; |
6647 | ||
6648 | if (!rt_task(p)) { | |
6649 | /* | |
6650 | * Renice negative nice level userspace | |
6651 | * tasks back to 0: | |
6652 | */ | |
6653 | if (TASK_NICE(p) < 0 && p->mm) | |
6654 | set_user_nice(p, 0); | |
1da177e4 | 6655 | continue; |
dd41f596 | 6656 | } |
1da177e4 | 6657 | |
b29739f9 IM |
6658 | spin_lock_irqsave(&p->pi_lock, flags); |
6659 | rq = __task_rq_lock(p); | |
dd41f596 IM |
6660 | #ifdef CONFIG_SMP |
6661 | /* | |
6662 | * Do not touch the migration thread: | |
6663 | */ | |
6664 | if (p == rq->migration_thread) | |
6665 | goto out_unlock; | |
6666 | #endif | |
1da177e4 | 6667 | |
2daa3577 | 6668 | update_rq_clock(rq); |
dd41f596 | 6669 | on_rq = p->se.on_rq; |
2daa3577 IM |
6670 | if (on_rq) |
6671 | deactivate_task(rq, p, 0); | |
dd41f596 IM |
6672 | __setscheduler(rq, p, SCHED_NORMAL, 0); |
6673 | if (on_rq) { | |
2daa3577 | 6674 | activate_task(rq, p, 0); |
1da177e4 LT |
6675 | resched_task(rq->curr); |
6676 | } | |
dd41f596 IM |
6677 | #ifdef CONFIG_SMP |
6678 | out_unlock: | |
6679 | #endif | |
b29739f9 IM |
6680 | __task_rq_unlock(rq); |
6681 | spin_unlock_irqrestore(&p->pi_lock, flags); | |
a0f98a1c IM |
6682 | } while_each_thread(g, p); |
6683 | ||
1da177e4 LT |
6684 | read_unlock_irq(&tasklist_lock); |
6685 | } | |
6686 | ||
6687 | #endif /* CONFIG_MAGIC_SYSRQ */ | |
1df5c10a LT |
6688 | |
6689 | #ifdef CONFIG_IA64 | |
6690 | /* | |
6691 | * These functions are only useful for the IA64 MCA handling. | |
6692 | * | |
6693 | * They can only be called when the whole system has been | |
6694 | * stopped - every CPU needs to be quiescent, and no scheduling | |
6695 | * activity can take place. Using them for anything else would | |
6696 | * be a serious bug, and as a result, they aren't even visible | |
6697 | * under any other configuration. | |
6698 | */ | |
6699 | ||
6700 | /** | |
6701 | * curr_task - return the current task for a given cpu. | |
6702 | * @cpu: the processor in question. | |
6703 | * | |
6704 | * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! | |
6705 | */ | |
36c8b586 | 6706 | struct task_struct *curr_task(int cpu) |
1df5c10a LT |
6707 | { |
6708 | return cpu_curr(cpu); | |
6709 | } | |
6710 | ||
6711 | /** | |
6712 | * set_curr_task - set the current task for a given cpu. | |
6713 | * @cpu: the processor in question. | |
6714 | * @p: the task pointer to set. | |
6715 | * | |
6716 | * Description: This function must only be used when non-maskable interrupts | |
6717 | * are serviced on a separate stack. It allows the architecture to switch the | |
6718 | * notion of the current task on a cpu in a non-blocking manner. This function | |
6719 | * must be called with all CPU's synchronized, and interrupts disabled, the | |
6720 | * and caller must save the original value of the current task (see | |
6721 | * curr_task() above) and restore that value before reenabling interrupts and | |
6722 | * re-starting the system. | |
6723 | * | |
6724 | * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! | |
6725 | */ | |
36c8b586 | 6726 | void set_curr_task(int cpu, struct task_struct *p) |
1df5c10a LT |
6727 | { |
6728 | cpu_curr(cpu) = p; | |
6729 | } | |
6730 | ||
6731 | #endif | |
29f59db3 SV |
6732 | |
6733 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
6734 | ||
29f59db3 | 6735 | /* allocate runqueue etc for a new task group */ |
9b5b7751 | 6736 | struct task_grp *sched_create_group(void) |
29f59db3 SV |
6737 | { |
6738 | struct task_grp *tg; | |
6739 | struct cfs_rq *cfs_rq; | |
6740 | struct sched_entity *se; | |
9b5b7751 | 6741 | struct rq *rq; |
29f59db3 SV |
6742 | int i; |
6743 | ||
29f59db3 SV |
6744 | tg = kzalloc(sizeof(*tg), GFP_KERNEL); |
6745 | if (!tg) | |
6746 | return ERR_PTR(-ENOMEM); | |
6747 | ||
9b5b7751 | 6748 | tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL); |
29f59db3 SV |
6749 | if (!tg->cfs_rq) |
6750 | goto err; | |
9b5b7751 | 6751 | tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL); |
29f59db3 SV |
6752 | if (!tg->se) |
6753 | goto err; | |
6754 | ||
6755 | for_each_possible_cpu(i) { | |
9b5b7751 | 6756 | rq = cpu_rq(i); |
29f59db3 SV |
6757 | |
6758 | cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL, | |
6759 | cpu_to_node(i)); | |
6760 | if (!cfs_rq) | |
6761 | goto err; | |
6762 | ||
6763 | se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL, | |
6764 | cpu_to_node(i)); | |
6765 | if (!se) | |
6766 | goto err; | |
6767 | ||
6768 | memset(cfs_rq, 0, sizeof(struct cfs_rq)); | |
6769 | memset(se, 0, sizeof(struct sched_entity)); | |
6770 | ||
6771 | tg->cfs_rq[i] = cfs_rq; | |
6772 | init_cfs_rq(cfs_rq, rq); | |
6773 | cfs_rq->tg = tg; | |
29f59db3 SV |
6774 | |
6775 | tg->se[i] = se; | |
6776 | se->cfs_rq = &rq->cfs; | |
6777 | se->my_q = cfs_rq; | |
6778 | se->load.weight = NICE_0_LOAD; | |
6779 | se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD); | |
6780 | se->parent = NULL; | |
6781 | } | |
6782 | ||
9b5b7751 SV |
6783 | for_each_possible_cpu(i) { |
6784 | rq = cpu_rq(i); | |
6785 | cfs_rq = tg->cfs_rq[i]; | |
6786 | list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list); | |
6787 | } | |
29f59db3 | 6788 | |
9b5b7751 | 6789 | tg->shares = NICE_0_LOAD; |
29f59db3 | 6790 | |
9b5b7751 | 6791 | return tg; |
29f59db3 SV |
6792 | |
6793 | err: | |
6794 | for_each_possible_cpu(i) { | |
6795 | if (tg->cfs_rq && tg->cfs_rq[i]) | |
6796 | kfree(tg->cfs_rq[i]); | |
6797 | if (tg->se && tg->se[i]) | |
6798 | kfree(tg->se[i]); | |
6799 | } | |
6800 | if (tg->cfs_rq) | |
6801 | kfree(tg->cfs_rq); | |
6802 | if (tg->se) | |
6803 | kfree(tg->se); | |
6804 | if (tg) | |
6805 | kfree(tg); | |
6806 | ||
6807 | return ERR_PTR(-ENOMEM); | |
6808 | } | |
6809 | ||
9b5b7751 SV |
6810 | /* rcu callback to free various structures associated with a task group */ |
6811 | static void free_sched_group(struct rcu_head *rhp) | |
29f59db3 | 6812 | { |
9b5b7751 SV |
6813 | struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu); |
6814 | struct task_grp *tg = cfs_rq->tg; | |
29f59db3 SV |
6815 | struct sched_entity *se; |
6816 | int i; | |
6817 | ||
29f59db3 SV |
6818 | /* now it should be safe to free those cfs_rqs */ |
6819 | for_each_possible_cpu(i) { | |
6820 | cfs_rq = tg->cfs_rq[i]; | |
6821 | kfree(cfs_rq); | |
6822 | ||
6823 | se = tg->se[i]; | |
6824 | kfree(se); | |
6825 | } | |
6826 | ||
6827 | kfree(tg->cfs_rq); | |
6828 | kfree(tg->se); | |
6829 | kfree(tg); | |
6830 | } | |
6831 | ||
9b5b7751 SV |
6832 | /* Destroy runqueue etc associated with a task group */ |
6833 | void sched_destroy_group(struct task_grp *tg) | |
29f59db3 | 6834 | { |
9b5b7751 SV |
6835 | struct cfs_rq *cfs_rq; |
6836 | int i; | |
29f59db3 | 6837 | |
9b5b7751 SV |
6838 | for_each_possible_cpu(i) { |
6839 | cfs_rq = tg->cfs_rq[i]; | |
6840 | list_del_rcu(&cfs_rq->leaf_cfs_rq_list); | |
6841 | } | |
6842 | ||
6843 | cfs_rq = tg->cfs_rq[0]; | |
6844 | ||
6845 | /* wait for possible concurrent references to cfs_rqs complete */ | |
6846 | call_rcu(&cfs_rq->rcu, free_sched_group); | |
29f59db3 SV |
6847 | } |
6848 | ||
9b5b7751 SV |
6849 | /* change task's runqueue when it moves between groups. |
6850 | * The caller of this function should have put the task in its new group | |
6851 | * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to | |
6852 | * reflect its new group. | |
6853 | */ | |
6854 | void sched_move_task(struct task_struct *tsk) | |
29f59db3 SV |
6855 | { |
6856 | int on_rq, running; | |
6857 | unsigned long flags; | |
6858 | struct rq *rq; | |
6859 | ||
6860 | rq = task_rq_lock(tsk, &flags); | |
6861 | ||
6862 | if (tsk->sched_class != &fair_sched_class) | |
6863 | goto done; | |
6864 | ||
6865 | update_rq_clock(rq); | |
6866 | ||
6867 | running = task_running(rq, tsk); | |
6868 | on_rq = tsk->se.on_rq; | |
6869 | ||
83b699ed | 6870 | if (on_rq) { |
29f59db3 | 6871 | dequeue_task(rq, tsk, 0); |
83b699ed SV |
6872 | if (unlikely(running)) |
6873 | tsk->sched_class->put_prev_task(rq, tsk); | |
6874 | } | |
29f59db3 SV |
6875 | |
6876 | set_task_cfs_rq(tsk); | |
6877 | ||
83b699ed SV |
6878 | if (on_rq) { |
6879 | if (unlikely(running)) | |
6880 | tsk->sched_class->set_curr_task(rq); | |
7074badb | 6881 | enqueue_task(rq, tsk, 0); |
83b699ed | 6882 | } |
29f59db3 SV |
6883 | |
6884 | done: | |
6885 | task_rq_unlock(rq, &flags); | |
6886 | } | |
6887 | ||
6888 | static void set_se_shares(struct sched_entity *se, unsigned long shares) | |
6889 | { | |
6890 | struct cfs_rq *cfs_rq = se->cfs_rq; | |
6891 | struct rq *rq = cfs_rq->rq; | |
6892 | int on_rq; | |
6893 | ||
6894 | spin_lock_irq(&rq->lock); | |
6895 | ||
6896 | on_rq = se->on_rq; | |
6897 | if (on_rq) | |
6898 | dequeue_entity(cfs_rq, se, 0); | |
6899 | ||
6900 | se->load.weight = shares; | |
6901 | se->load.inv_weight = div64_64((1ULL<<32), shares); | |
6902 | ||
6903 | if (on_rq) | |
6904 | enqueue_entity(cfs_rq, se, 0); | |
6905 | ||
6906 | spin_unlock_irq(&rq->lock); | |
6907 | } | |
6908 | ||
9b5b7751 | 6909 | int sched_group_set_shares(struct task_grp *tg, unsigned long shares) |
29f59db3 SV |
6910 | { |
6911 | int i; | |
29f59db3 | 6912 | |
9b5b7751 SV |
6913 | if (tg->shares == shares) |
6914 | return 0; | |
29f59db3 | 6915 | |
9b5b7751 | 6916 | /* return -EINVAL if the new value is not sane */ |
29f59db3 | 6917 | |
9b5b7751 | 6918 | tg->shares = shares; |
29f59db3 | 6919 | for_each_possible_cpu(i) |
9b5b7751 | 6920 | set_se_shares(tg->se[i], shares); |
29f59db3 | 6921 | |
9b5b7751 | 6922 | return 0; |
29f59db3 SV |
6923 | } |
6924 | ||
9b5b7751 | 6925 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |