]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * kernel/sched.c | |
3 | * | |
4 | * Kernel scheduler and related syscalls | |
5 | * | |
6 | * Copyright (C) 1991-2002 Linus Torvalds | |
7 | * | |
8 | * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and | |
9 | * make semaphores SMP safe | |
10 | * 1998-11-19 Implemented schedule_timeout() and related stuff | |
11 | * by Andrea Arcangeli | |
12 | * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: | |
13 | * hybrid priority-list and round-robin design with | |
14 | * an array-switch method of distributing timeslices | |
15 | * and per-CPU runqueues. Cleanups and useful suggestions | |
16 | * by Davide Libenzi, preemptible kernel bits by Robert Love. | |
17 | * 2003-09-03 Interactivity tuning by Con Kolivas. | |
18 | * 2004-04-02 Scheduler domains code by Nick Piggin | |
c31f2e8a IM |
19 | * 2007-04-15 Work begun on replacing all interactivity tuning with a |
20 | * fair scheduling design by Con Kolivas. | |
21 | * 2007-05-05 Load balancing (smp-nice) and other improvements | |
22 | * by Peter Williams | |
23 | * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith | |
24 | * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri | |
b9131769 IM |
25 | * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, |
26 | * Thomas Gleixner, Mike Kravetz | |
1da177e4 LT |
27 | */ |
28 | ||
29 | #include <linux/mm.h> | |
30 | #include <linux/module.h> | |
31 | #include <linux/nmi.h> | |
32 | #include <linux/init.h> | |
dff06c15 | 33 | #include <linux/uaccess.h> |
1da177e4 LT |
34 | #include <linux/highmem.h> |
35 | #include <linux/smp_lock.h> | |
36 | #include <asm/mmu_context.h> | |
37 | #include <linux/interrupt.h> | |
c59ede7b | 38 | #include <linux/capability.h> |
1da177e4 LT |
39 | #include <linux/completion.h> |
40 | #include <linux/kernel_stat.h> | |
9a11b49a | 41 | #include <linux/debug_locks.h> |
1da177e4 LT |
42 | #include <linux/security.h> |
43 | #include <linux/notifier.h> | |
44 | #include <linux/profile.h> | |
7dfb7103 | 45 | #include <linux/freezer.h> |
198e2f18 | 46 | #include <linux/vmalloc.h> |
1da177e4 LT |
47 | #include <linux/blkdev.h> |
48 | #include <linux/delay.h> | |
b488893a | 49 | #include <linux/pid_namespace.h> |
1da177e4 LT |
50 | #include <linux/smp.h> |
51 | #include <linux/threads.h> | |
52 | #include <linux/timer.h> | |
53 | #include <linux/rcupdate.h> | |
54 | #include <linux/cpu.h> | |
55 | #include <linux/cpuset.h> | |
56 | #include <linux/percpu.h> | |
57 | #include <linux/kthread.h> | |
b5aadf7f | 58 | #include <linux/proc_fs.h> |
1da177e4 | 59 | #include <linux/seq_file.h> |
e692ab53 | 60 | #include <linux/sysctl.h> |
1da177e4 LT |
61 | #include <linux/syscalls.h> |
62 | #include <linux/times.h> | |
8f0ab514 | 63 | #include <linux/tsacct_kern.h> |
c6fd91f0 | 64 | #include <linux/kprobes.h> |
0ff92245 | 65 | #include <linux/delayacct.h> |
5517d86b | 66 | #include <linux/reciprocal_div.h> |
dff06c15 | 67 | #include <linux/unistd.h> |
f5ff8422 | 68 | #include <linux/pagemap.h> |
8f4d37ec | 69 | #include <linux/hrtimer.h> |
30914a58 | 70 | #include <linux/tick.h> |
434d53b0 | 71 | #include <linux/bootmem.h> |
f00b45c1 PZ |
72 | #include <linux/debugfs.h> |
73 | #include <linux/ctype.h> | |
6cd8a4bb | 74 | #include <linux/ftrace.h> |
0a16b607 | 75 | #include <trace/sched.h> |
1da177e4 | 76 | |
5517d86b | 77 | #include <asm/tlb.h> |
838225b4 | 78 | #include <asm/irq_regs.h> |
1da177e4 | 79 | |
6e0534f2 GH |
80 | #include "sched_cpupri.h" |
81 | ||
1da177e4 LT |
82 | /* |
83 | * Convert user-nice values [ -20 ... 0 ... 19 ] | |
84 | * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], | |
85 | * and back. | |
86 | */ | |
87 | #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20) | |
88 | #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20) | |
89 | #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio) | |
90 | ||
91 | /* | |
92 | * 'User priority' is the nice value converted to something we | |
93 | * can work with better when scaling various scheduler parameters, | |
94 | * it's a [ 0 ... 39 ] range. | |
95 | */ | |
96 | #define USER_PRIO(p) ((p)-MAX_RT_PRIO) | |
97 | #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio) | |
98 | #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO)) | |
99 | ||
100 | /* | |
d7876a08 | 101 | * Helpers for converting nanosecond timing to jiffy resolution |
1da177e4 | 102 | */ |
d6322faf | 103 | #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) |
1da177e4 | 104 | |
6aa645ea IM |
105 | #define NICE_0_LOAD SCHED_LOAD_SCALE |
106 | #define NICE_0_SHIFT SCHED_LOAD_SHIFT | |
107 | ||
1da177e4 LT |
108 | /* |
109 | * These are the 'tuning knobs' of the scheduler: | |
110 | * | |
a4ec24b4 | 111 | * default timeslice is 100 msecs (used only for SCHED_RR tasks). |
1da177e4 LT |
112 | * Timeslices get refilled after they expire. |
113 | */ | |
1da177e4 | 114 | #define DEF_TIMESLICE (100 * HZ / 1000) |
2dd73a4f | 115 | |
d0b27fa7 PZ |
116 | /* |
117 | * single value that denotes runtime == period, ie unlimited time. | |
118 | */ | |
119 | #define RUNTIME_INF ((u64)~0ULL) | |
120 | ||
7e066fb8 MD |
121 | DEFINE_TRACE(sched_wait_task); |
122 | DEFINE_TRACE(sched_wakeup); | |
123 | DEFINE_TRACE(sched_wakeup_new); | |
124 | DEFINE_TRACE(sched_switch); | |
125 | DEFINE_TRACE(sched_migrate_task); | |
126 | ||
5517d86b | 127 | #ifdef CONFIG_SMP |
fd2ab30b SN |
128 | |
129 | static void double_rq_lock(struct rq *rq1, struct rq *rq2); | |
130 | ||
5517d86b ED |
131 | /* |
132 | * Divide a load by a sched group cpu_power : (load / sg->__cpu_power) | |
133 | * Since cpu_power is a 'constant', we can use a reciprocal divide. | |
134 | */ | |
135 | static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load) | |
136 | { | |
137 | return reciprocal_divide(load, sg->reciprocal_cpu_power); | |
138 | } | |
139 | ||
140 | /* | |
141 | * Each time a sched group cpu_power is changed, | |
142 | * we must compute its reciprocal value | |
143 | */ | |
144 | static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val) | |
145 | { | |
146 | sg->__cpu_power += val; | |
147 | sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power); | |
148 | } | |
149 | #endif | |
150 | ||
e05606d3 IM |
151 | static inline int rt_policy(int policy) |
152 | { | |
3f33a7ce | 153 | if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR)) |
e05606d3 IM |
154 | return 1; |
155 | return 0; | |
156 | } | |
157 | ||
158 | static inline int task_has_rt_policy(struct task_struct *p) | |
159 | { | |
160 | return rt_policy(p->policy); | |
161 | } | |
162 | ||
1da177e4 | 163 | /* |
6aa645ea | 164 | * This is the priority-queue data structure of the RT scheduling class: |
1da177e4 | 165 | */ |
6aa645ea IM |
166 | struct rt_prio_array { |
167 | DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ | |
168 | struct list_head queue[MAX_RT_PRIO]; | |
169 | }; | |
170 | ||
d0b27fa7 | 171 | struct rt_bandwidth { |
ea736ed5 IM |
172 | /* nests inside the rq lock: */ |
173 | spinlock_t rt_runtime_lock; | |
174 | ktime_t rt_period; | |
175 | u64 rt_runtime; | |
176 | struct hrtimer rt_period_timer; | |
d0b27fa7 PZ |
177 | }; |
178 | ||
179 | static struct rt_bandwidth def_rt_bandwidth; | |
180 | ||
181 | static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); | |
182 | ||
183 | static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) | |
184 | { | |
185 | struct rt_bandwidth *rt_b = | |
186 | container_of(timer, struct rt_bandwidth, rt_period_timer); | |
187 | ktime_t now; | |
188 | int overrun; | |
189 | int idle = 0; | |
190 | ||
191 | for (;;) { | |
192 | now = hrtimer_cb_get_time(timer); | |
193 | overrun = hrtimer_forward(timer, now, rt_b->rt_period); | |
194 | ||
195 | if (!overrun) | |
196 | break; | |
197 | ||
198 | idle = do_sched_rt_period_timer(rt_b, overrun); | |
199 | } | |
200 | ||
201 | return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; | |
202 | } | |
203 | ||
204 | static | |
205 | void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) | |
206 | { | |
207 | rt_b->rt_period = ns_to_ktime(period); | |
208 | rt_b->rt_runtime = runtime; | |
209 | ||
ac086bc2 PZ |
210 | spin_lock_init(&rt_b->rt_runtime_lock); |
211 | ||
d0b27fa7 PZ |
212 | hrtimer_init(&rt_b->rt_period_timer, |
213 | CLOCK_MONOTONIC, HRTIMER_MODE_REL); | |
214 | rt_b->rt_period_timer.function = sched_rt_period_timer; | |
d0b27fa7 PZ |
215 | } |
216 | ||
c8bfff6d KH |
217 | static inline int rt_bandwidth_enabled(void) |
218 | { | |
219 | return sysctl_sched_rt_runtime >= 0; | |
d0b27fa7 PZ |
220 | } |
221 | ||
222 | static void start_rt_bandwidth(struct rt_bandwidth *rt_b) | |
223 | { | |
224 | ktime_t now; | |
225 | ||
cac64d00 | 226 | if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) |
d0b27fa7 PZ |
227 | return; |
228 | ||
229 | if (hrtimer_active(&rt_b->rt_period_timer)) | |
230 | return; | |
231 | ||
232 | spin_lock(&rt_b->rt_runtime_lock); | |
233 | for (;;) { | |
234 | if (hrtimer_active(&rt_b->rt_period_timer)) | |
235 | break; | |
236 | ||
237 | now = hrtimer_cb_get_time(&rt_b->rt_period_timer); | |
238 | hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period); | |
cc584b21 AV |
239 | hrtimer_start_expires(&rt_b->rt_period_timer, |
240 | HRTIMER_MODE_ABS); | |
d0b27fa7 PZ |
241 | } |
242 | spin_unlock(&rt_b->rt_runtime_lock); | |
243 | } | |
244 | ||
245 | #ifdef CONFIG_RT_GROUP_SCHED | |
246 | static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) | |
247 | { | |
248 | hrtimer_cancel(&rt_b->rt_period_timer); | |
249 | } | |
250 | #endif | |
251 | ||
712555ee HC |
252 | /* |
253 | * sched_domains_mutex serializes calls to arch_init_sched_domains, | |
254 | * detach_destroy_domains and partition_sched_domains. | |
255 | */ | |
256 | static DEFINE_MUTEX(sched_domains_mutex); | |
257 | ||
052f1dc7 | 258 | #ifdef CONFIG_GROUP_SCHED |
29f59db3 | 259 | |
68318b8e SV |
260 | #include <linux/cgroup.h> |
261 | ||
29f59db3 SV |
262 | struct cfs_rq; |
263 | ||
6f505b16 PZ |
264 | static LIST_HEAD(task_groups); |
265 | ||
29f59db3 | 266 | /* task group related information */ |
4cf86d77 | 267 | struct task_group { |
052f1dc7 | 268 | #ifdef CONFIG_CGROUP_SCHED |
68318b8e SV |
269 | struct cgroup_subsys_state css; |
270 | #endif | |
052f1dc7 | 271 | |
6c415b92 AB |
272 | #ifdef CONFIG_USER_SCHED |
273 | uid_t uid; | |
274 | #endif | |
275 | ||
052f1dc7 | 276 | #ifdef CONFIG_FAIR_GROUP_SCHED |
29f59db3 SV |
277 | /* schedulable entities of this group on each cpu */ |
278 | struct sched_entity **se; | |
279 | /* runqueue "owned" by this group on each cpu */ | |
280 | struct cfs_rq **cfs_rq; | |
281 | unsigned long shares; | |
052f1dc7 PZ |
282 | #endif |
283 | ||
284 | #ifdef CONFIG_RT_GROUP_SCHED | |
285 | struct sched_rt_entity **rt_se; | |
286 | struct rt_rq **rt_rq; | |
287 | ||
d0b27fa7 | 288 | struct rt_bandwidth rt_bandwidth; |
052f1dc7 | 289 | #endif |
6b2d7700 | 290 | |
ae8393e5 | 291 | struct rcu_head rcu; |
6f505b16 | 292 | struct list_head list; |
f473aa5e PZ |
293 | |
294 | struct task_group *parent; | |
295 | struct list_head siblings; | |
296 | struct list_head children; | |
29f59db3 SV |
297 | }; |
298 | ||
354d60c2 | 299 | #ifdef CONFIG_USER_SCHED |
eff766a6 | 300 | |
6c415b92 AB |
301 | /* Helper function to pass uid information to create_sched_user() */ |
302 | void set_tg_uid(struct user_struct *user) | |
303 | { | |
304 | user->tg->uid = user->uid; | |
305 | } | |
306 | ||
eff766a6 PZ |
307 | /* |
308 | * Root task group. | |
309 | * Every UID task group (including init_task_group aka UID-0) will | |
310 | * be a child to this group. | |
311 | */ | |
312 | struct task_group root_task_group; | |
313 | ||
052f1dc7 | 314 | #ifdef CONFIG_FAIR_GROUP_SCHED |
29f59db3 SV |
315 | /* Default task group's sched entity on each cpu */ |
316 | static DEFINE_PER_CPU(struct sched_entity, init_sched_entity); | |
317 | /* Default task group's cfs_rq on each cpu */ | |
318 | static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp; | |
6d6bc0ad | 319 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
052f1dc7 PZ |
320 | |
321 | #ifdef CONFIG_RT_GROUP_SCHED | |
322 | static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity); | |
323 | static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp; | |
6d6bc0ad | 324 | #endif /* CONFIG_RT_GROUP_SCHED */ |
9a7e0b18 | 325 | #else /* !CONFIG_USER_SCHED */ |
eff766a6 | 326 | #define root_task_group init_task_group |
9a7e0b18 | 327 | #endif /* CONFIG_USER_SCHED */ |
6f505b16 | 328 | |
8ed36996 | 329 | /* task_group_lock serializes add/remove of task groups and also changes to |
ec2c507f SV |
330 | * a task group's cpu shares. |
331 | */ | |
8ed36996 | 332 | static DEFINE_SPINLOCK(task_group_lock); |
ec2c507f | 333 | |
57310a98 PZ |
334 | #ifdef CONFIG_SMP |
335 | static int root_task_group_empty(void) | |
336 | { | |
337 | return list_empty(&root_task_group.children); | |
338 | } | |
339 | #endif | |
340 | ||
052f1dc7 | 341 | #ifdef CONFIG_FAIR_GROUP_SCHED |
052f1dc7 PZ |
342 | #ifdef CONFIG_USER_SCHED |
343 | # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD) | |
6d6bc0ad | 344 | #else /* !CONFIG_USER_SCHED */ |
052f1dc7 | 345 | # define INIT_TASK_GROUP_LOAD NICE_0_LOAD |
6d6bc0ad | 346 | #endif /* CONFIG_USER_SCHED */ |
052f1dc7 | 347 | |
cb4ad1ff | 348 | /* |
2e084786 LJ |
349 | * A weight of 0 or 1 can cause arithmetics problems. |
350 | * A weight of a cfs_rq is the sum of weights of which entities | |
351 | * are queued on this cfs_rq, so a weight of a entity should not be | |
352 | * too large, so as the shares value of a task group. | |
cb4ad1ff MX |
353 | * (The default weight is 1024 - so there's no practical |
354 | * limitation from this.) | |
355 | */ | |
18d95a28 | 356 | #define MIN_SHARES 2 |
2e084786 | 357 | #define MAX_SHARES (1UL << 18) |
18d95a28 | 358 | |
052f1dc7 PZ |
359 | static int init_task_group_load = INIT_TASK_GROUP_LOAD; |
360 | #endif | |
361 | ||
29f59db3 | 362 | /* Default task group. |
3a252015 | 363 | * Every task in system belong to this group at bootup. |
29f59db3 | 364 | */ |
434d53b0 | 365 | struct task_group init_task_group; |
29f59db3 SV |
366 | |
367 | /* return group to which a task belongs */ | |
4cf86d77 | 368 | static inline struct task_group *task_group(struct task_struct *p) |
29f59db3 | 369 | { |
4cf86d77 | 370 | struct task_group *tg; |
9b5b7751 | 371 | |
052f1dc7 | 372 | #ifdef CONFIG_USER_SCHED |
c69e8d9c DH |
373 | rcu_read_lock(); |
374 | tg = __task_cred(p)->user->tg; | |
375 | rcu_read_unlock(); | |
052f1dc7 | 376 | #elif defined(CONFIG_CGROUP_SCHED) |
68318b8e SV |
377 | tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id), |
378 | struct task_group, css); | |
24e377a8 | 379 | #else |
41a2d6cf | 380 | tg = &init_task_group; |
24e377a8 | 381 | #endif |
9b5b7751 | 382 | return tg; |
29f59db3 SV |
383 | } |
384 | ||
385 | /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ | |
6f505b16 | 386 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) |
29f59db3 | 387 | { |
052f1dc7 | 388 | #ifdef CONFIG_FAIR_GROUP_SCHED |
ce96b5ac DA |
389 | p->se.cfs_rq = task_group(p)->cfs_rq[cpu]; |
390 | p->se.parent = task_group(p)->se[cpu]; | |
052f1dc7 | 391 | #endif |
6f505b16 | 392 | |
052f1dc7 | 393 | #ifdef CONFIG_RT_GROUP_SCHED |
6f505b16 PZ |
394 | p->rt.rt_rq = task_group(p)->rt_rq[cpu]; |
395 | p->rt.parent = task_group(p)->rt_se[cpu]; | |
052f1dc7 | 396 | #endif |
29f59db3 SV |
397 | } |
398 | ||
399 | #else | |
400 | ||
57310a98 PZ |
401 | #ifdef CONFIG_SMP |
402 | static int root_task_group_empty(void) | |
403 | { | |
404 | return 1; | |
405 | } | |
406 | #endif | |
407 | ||
6f505b16 | 408 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } |
83378269 PZ |
409 | static inline struct task_group *task_group(struct task_struct *p) |
410 | { | |
411 | return NULL; | |
412 | } | |
29f59db3 | 413 | |
052f1dc7 | 414 | #endif /* CONFIG_GROUP_SCHED */ |
29f59db3 | 415 | |
6aa645ea IM |
416 | /* CFS-related fields in a runqueue */ |
417 | struct cfs_rq { | |
418 | struct load_weight load; | |
419 | unsigned long nr_running; | |
420 | ||
6aa645ea | 421 | u64 exec_clock; |
e9acbff6 | 422 | u64 min_vruntime; |
6aa645ea IM |
423 | |
424 | struct rb_root tasks_timeline; | |
425 | struct rb_node *rb_leftmost; | |
4a55bd5e PZ |
426 | |
427 | struct list_head tasks; | |
428 | struct list_head *balance_iterator; | |
429 | ||
430 | /* | |
431 | * 'curr' points to currently running entity on this cfs_rq. | |
6aa645ea IM |
432 | * It is set to NULL otherwise (i.e when none are currently running). |
433 | */ | |
4793241b | 434 | struct sched_entity *curr, *next, *last; |
ddc97297 | 435 | |
5ac5c4d6 | 436 | unsigned int nr_spread_over; |
ddc97297 | 437 | |
62160e3f | 438 | #ifdef CONFIG_FAIR_GROUP_SCHED |
6aa645ea IM |
439 | struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ |
440 | ||
41a2d6cf IM |
441 | /* |
442 | * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in | |
6aa645ea IM |
443 | * a hierarchy). Non-leaf lrqs hold other higher schedulable entities |
444 | * (like users, containers etc.) | |
445 | * | |
446 | * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This | |
447 | * list is used during load balance. | |
448 | */ | |
41a2d6cf IM |
449 | struct list_head leaf_cfs_rq_list; |
450 | struct task_group *tg; /* group that "owns" this runqueue */ | |
c09595f6 PZ |
451 | |
452 | #ifdef CONFIG_SMP | |
c09595f6 | 453 | /* |
c8cba857 | 454 | * the part of load.weight contributed by tasks |
c09595f6 | 455 | */ |
c8cba857 | 456 | unsigned long task_weight; |
c09595f6 | 457 | |
c8cba857 PZ |
458 | /* |
459 | * h_load = weight * f(tg) | |
460 | * | |
461 | * Where f(tg) is the recursive weight fraction assigned to | |
462 | * this group. | |
463 | */ | |
464 | unsigned long h_load; | |
c09595f6 | 465 | |
c8cba857 PZ |
466 | /* |
467 | * this cpu's part of tg->shares | |
468 | */ | |
469 | unsigned long shares; | |
f1d239f7 PZ |
470 | |
471 | /* | |
472 | * load.weight at the time we set shares | |
473 | */ | |
474 | unsigned long rq_weight; | |
c09595f6 | 475 | #endif |
6aa645ea IM |
476 | #endif |
477 | }; | |
1da177e4 | 478 | |
6aa645ea IM |
479 | /* Real-Time classes' related field in a runqueue: */ |
480 | struct rt_rq { | |
481 | struct rt_prio_array active; | |
63489e45 | 482 | unsigned long rt_nr_running; |
052f1dc7 | 483 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
e864c499 GH |
484 | struct { |
485 | int curr; /* highest queued rt task prio */ | |
398a153b | 486 | #ifdef CONFIG_SMP |
e864c499 | 487 | int next; /* next highest */ |
398a153b | 488 | #endif |
e864c499 | 489 | } highest_prio; |
6f505b16 | 490 | #endif |
fa85ae24 | 491 | #ifdef CONFIG_SMP |
73fe6aae | 492 | unsigned long rt_nr_migratory; |
a22d7fc1 | 493 | int overloaded; |
917b627d | 494 | struct plist_head pushable_tasks; |
fa85ae24 | 495 | #endif |
6f505b16 | 496 | int rt_throttled; |
fa85ae24 | 497 | u64 rt_time; |
ac086bc2 | 498 | u64 rt_runtime; |
ea736ed5 | 499 | /* Nests inside the rq lock: */ |
ac086bc2 | 500 | spinlock_t rt_runtime_lock; |
6f505b16 | 501 | |
052f1dc7 | 502 | #ifdef CONFIG_RT_GROUP_SCHED |
23b0fdfc PZ |
503 | unsigned long rt_nr_boosted; |
504 | ||
6f505b16 PZ |
505 | struct rq *rq; |
506 | struct list_head leaf_rt_rq_list; | |
507 | struct task_group *tg; | |
508 | struct sched_rt_entity *rt_se; | |
509 | #endif | |
6aa645ea IM |
510 | }; |
511 | ||
57d885fe GH |
512 | #ifdef CONFIG_SMP |
513 | ||
514 | /* | |
515 | * We add the notion of a root-domain which will be used to define per-domain | |
0eab9146 IM |
516 | * variables. Each exclusive cpuset essentially defines an island domain by |
517 | * fully partitioning the member cpus from any other cpuset. Whenever a new | |
57d885fe GH |
518 | * exclusive cpuset is created, we also create and attach a new root-domain |
519 | * object. | |
520 | * | |
57d885fe GH |
521 | */ |
522 | struct root_domain { | |
523 | atomic_t refcount; | |
c6c4927b RR |
524 | cpumask_var_t span; |
525 | cpumask_var_t online; | |
637f5085 | 526 | |
0eab9146 | 527 | /* |
637f5085 GH |
528 | * The "RT overload" flag: it gets set if a CPU has more than |
529 | * one runnable RT task. | |
530 | */ | |
c6c4927b | 531 | cpumask_var_t rto_mask; |
0eab9146 | 532 | atomic_t rto_count; |
6e0534f2 GH |
533 | #ifdef CONFIG_SMP |
534 | struct cpupri cpupri; | |
535 | #endif | |
7a09b1a2 VS |
536 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
537 | /* | |
538 | * Preferred wake up cpu nominated by sched_mc balance that will be | |
539 | * used when most cpus are idle in the system indicating overall very | |
540 | * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2) | |
541 | */ | |
542 | unsigned int sched_mc_preferred_wakeup_cpu; | |
543 | #endif | |
57d885fe GH |
544 | }; |
545 | ||
dc938520 GH |
546 | /* |
547 | * By default the system creates a single root-domain with all cpus as | |
548 | * members (mimicking the global state we have today). | |
549 | */ | |
57d885fe GH |
550 | static struct root_domain def_root_domain; |
551 | ||
552 | #endif | |
553 | ||
1da177e4 LT |
554 | /* |
555 | * This is the main, per-CPU runqueue data structure. | |
556 | * | |
557 | * Locking rule: those places that want to lock multiple runqueues | |
558 | * (such as the load balancing or the thread migration code), lock | |
559 | * acquire operations must be ordered by ascending &runqueue. | |
560 | */ | |
70b97a7f | 561 | struct rq { |
d8016491 IM |
562 | /* runqueue lock: */ |
563 | spinlock_t lock; | |
1da177e4 LT |
564 | |
565 | /* | |
566 | * nr_running and cpu_load should be in the same cacheline because | |
567 | * remote CPUs use both these fields when doing load calculation. | |
568 | */ | |
569 | unsigned long nr_running; | |
6aa645ea IM |
570 | #define CPU_LOAD_IDX_MAX 5 |
571 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; | |
46cb4b7c | 572 | #ifdef CONFIG_NO_HZ |
15934a37 | 573 | unsigned long last_tick_seen; |
46cb4b7c SS |
574 | unsigned char in_nohz_recently; |
575 | #endif | |
d8016491 IM |
576 | /* capture load from *all* tasks on this cpu: */ |
577 | struct load_weight load; | |
6aa645ea IM |
578 | unsigned long nr_load_updates; |
579 | u64 nr_switches; | |
580 | ||
581 | struct cfs_rq cfs; | |
6f505b16 | 582 | struct rt_rq rt; |
6f505b16 | 583 | |
6aa645ea | 584 | #ifdef CONFIG_FAIR_GROUP_SCHED |
d8016491 IM |
585 | /* list of leaf cfs_rq on this cpu: */ |
586 | struct list_head leaf_cfs_rq_list; | |
052f1dc7 PZ |
587 | #endif |
588 | #ifdef CONFIG_RT_GROUP_SCHED | |
6f505b16 | 589 | struct list_head leaf_rt_rq_list; |
1da177e4 | 590 | #endif |
1da177e4 LT |
591 | |
592 | /* | |
593 | * This is part of a global counter where only the total sum | |
594 | * over all CPUs matters. A task can increase this counter on | |
595 | * one CPU and if it got migrated afterwards it may decrease | |
596 | * it on another CPU. Always updated under the runqueue lock: | |
597 | */ | |
598 | unsigned long nr_uninterruptible; | |
599 | ||
36c8b586 | 600 | struct task_struct *curr, *idle; |
c9819f45 | 601 | unsigned long next_balance; |
1da177e4 | 602 | struct mm_struct *prev_mm; |
6aa645ea | 603 | |
3e51f33f | 604 | u64 clock; |
6aa645ea | 605 | |
1da177e4 LT |
606 | atomic_t nr_iowait; |
607 | ||
608 | #ifdef CONFIG_SMP | |
0eab9146 | 609 | struct root_domain *rd; |
1da177e4 LT |
610 | struct sched_domain *sd; |
611 | ||
a0a522ce | 612 | unsigned char idle_at_tick; |
1da177e4 LT |
613 | /* For active balancing */ |
614 | int active_balance; | |
615 | int push_cpu; | |
d8016491 IM |
616 | /* cpu of this runqueue: */ |
617 | int cpu; | |
1f11eb6a | 618 | int online; |
1da177e4 | 619 | |
a8a51d5e | 620 | unsigned long avg_load_per_task; |
1da177e4 | 621 | |
36c8b586 | 622 | struct task_struct *migration_thread; |
1da177e4 LT |
623 | struct list_head migration_queue; |
624 | #endif | |
625 | ||
8f4d37ec | 626 | #ifdef CONFIG_SCHED_HRTICK |
31656519 PZ |
627 | #ifdef CONFIG_SMP |
628 | int hrtick_csd_pending; | |
629 | struct call_single_data hrtick_csd; | |
630 | #endif | |
8f4d37ec PZ |
631 | struct hrtimer hrtick_timer; |
632 | #endif | |
633 | ||
1da177e4 LT |
634 | #ifdef CONFIG_SCHEDSTATS |
635 | /* latency stats */ | |
636 | struct sched_info rq_sched_info; | |
9c2c4802 KC |
637 | unsigned long long rq_cpu_time; |
638 | /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ | |
1da177e4 LT |
639 | |
640 | /* sys_sched_yield() stats */ | |
480b9434 KC |
641 | unsigned int yld_exp_empty; |
642 | unsigned int yld_act_empty; | |
643 | unsigned int yld_both_empty; | |
644 | unsigned int yld_count; | |
1da177e4 LT |
645 | |
646 | /* schedule() stats */ | |
480b9434 KC |
647 | unsigned int sched_switch; |
648 | unsigned int sched_count; | |
649 | unsigned int sched_goidle; | |
1da177e4 LT |
650 | |
651 | /* try_to_wake_up() stats */ | |
480b9434 KC |
652 | unsigned int ttwu_count; |
653 | unsigned int ttwu_local; | |
b8efb561 IM |
654 | |
655 | /* BKL stats */ | |
480b9434 | 656 | unsigned int bkl_count; |
1da177e4 LT |
657 | #endif |
658 | }; | |
659 | ||
f34e3b61 | 660 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); |
1da177e4 | 661 | |
15afe09b | 662 | static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync) |
dd41f596 | 663 | { |
15afe09b | 664 | rq->curr->sched_class->check_preempt_curr(rq, p, sync); |
dd41f596 IM |
665 | } |
666 | ||
0a2966b4 CL |
667 | static inline int cpu_of(struct rq *rq) |
668 | { | |
669 | #ifdef CONFIG_SMP | |
670 | return rq->cpu; | |
671 | #else | |
672 | return 0; | |
673 | #endif | |
674 | } | |
675 | ||
674311d5 NP |
676 | /* |
677 | * The domain tree (rq->sd) is protected by RCU's quiescent state transition. | |
1a20ff27 | 678 | * See detach_destroy_domains: synchronize_sched for details. |
674311d5 NP |
679 | * |
680 | * The domain tree of any CPU may only be accessed from within | |
681 | * preempt-disabled sections. | |
682 | */ | |
48f24c4d IM |
683 | #define for_each_domain(cpu, __sd) \ |
684 | for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) | |
1da177e4 LT |
685 | |
686 | #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) | |
687 | #define this_rq() (&__get_cpu_var(runqueues)) | |
688 | #define task_rq(p) cpu_rq(task_cpu(p)) | |
689 | #define cpu_curr(cpu) (cpu_rq(cpu)->curr) | |
690 | ||
3e51f33f PZ |
691 | static inline void update_rq_clock(struct rq *rq) |
692 | { | |
693 | rq->clock = sched_clock_cpu(cpu_of(rq)); | |
694 | } | |
695 | ||
bf5c91ba IM |
696 | /* |
697 | * Tunables that become constants when CONFIG_SCHED_DEBUG is off: | |
698 | */ | |
699 | #ifdef CONFIG_SCHED_DEBUG | |
700 | # define const_debug __read_mostly | |
701 | #else | |
702 | # define const_debug static const | |
703 | #endif | |
704 | ||
017730c1 IM |
705 | /** |
706 | * runqueue_is_locked | |
707 | * | |
708 | * Returns true if the current cpu runqueue is locked. | |
709 | * This interface allows printk to be called with the runqueue lock | |
710 | * held and know whether or not it is OK to wake up the klogd. | |
711 | */ | |
712 | int runqueue_is_locked(void) | |
713 | { | |
714 | int cpu = get_cpu(); | |
715 | struct rq *rq = cpu_rq(cpu); | |
716 | int ret; | |
717 | ||
718 | ret = spin_is_locked(&rq->lock); | |
719 | put_cpu(); | |
720 | return ret; | |
721 | } | |
722 | ||
bf5c91ba IM |
723 | /* |
724 | * Debugging: various feature bits | |
725 | */ | |
f00b45c1 PZ |
726 | |
727 | #define SCHED_FEAT(name, enabled) \ | |
728 | __SCHED_FEAT_##name , | |
729 | ||
bf5c91ba | 730 | enum { |
f00b45c1 | 731 | #include "sched_features.h" |
bf5c91ba IM |
732 | }; |
733 | ||
f00b45c1 PZ |
734 | #undef SCHED_FEAT |
735 | ||
736 | #define SCHED_FEAT(name, enabled) \ | |
737 | (1UL << __SCHED_FEAT_##name) * enabled | | |
738 | ||
bf5c91ba | 739 | const_debug unsigned int sysctl_sched_features = |
f00b45c1 PZ |
740 | #include "sched_features.h" |
741 | 0; | |
742 | ||
743 | #undef SCHED_FEAT | |
744 | ||
745 | #ifdef CONFIG_SCHED_DEBUG | |
746 | #define SCHED_FEAT(name, enabled) \ | |
747 | #name , | |
748 | ||
983ed7a6 | 749 | static __read_mostly char *sched_feat_names[] = { |
f00b45c1 PZ |
750 | #include "sched_features.h" |
751 | NULL | |
752 | }; | |
753 | ||
754 | #undef SCHED_FEAT | |
755 | ||
34f3a814 | 756 | static int sched_feat_show(struct seq_file *m, void *v) |
f00b45c1 | 757 | { |
f00b45c1 PZ |
758 | int i; |
759 | ||
760 | for (i = 0; sched_feat_names[i]; i++) { | |
34f3a814 LZ |
761 | if (!(sysctl_sched_features & (1UL << i))) |
762 | seq_puts(m, "NO_"); | |
763 | seq_printf(m, "%s ", sched_feat_names[i]); | |
f00b45c1 | 764 | } |
34f3a814 | 765 | seq_puts(m, "\n"); |
f00b45c1 | 766 | |
34f3a814 | 767 | return 0; |
f00b45c1 PZ |
768 | } |
769 | ||
770 | static ssize_t | |
771 | sched_feat_write(struct file *filp, const char __user *ubuf, | |
772 | size_t cnt, loff_t *ppos) | |
773 | { | |
774 | char buf[64]; | |
775 | char *cmp = buf; | |
776 | int neg = 0; | |
777 | int i; | |
778 | ||
779 | if (cnt > 63) | |
780 | cnt = 63; | |
781 | ||
782 | if (copy_from_user(&buf, ubuf, cnt)) | |
783 | return -EFAULT; | |
784 | ||
785 | buf[cnt] = 0; | |
786 | ||
c24b7c52 | 787 | if (strncmp(buf, "NO_", 3) == 0) { |
f00b45c1 PZ |
788 | neg = 1; |
789 | cmp += 3; | |
790 | } | |
791 | ||
792 | for (i = 0; sched_feat_names[i]; i++) { | |
793 | int len = strlen(sched_feat_names[i]); | |
794 | ||
795 | if (strncmp(cmp, sched_feat_names[i], len) == 0) { | |
796 | if (neg) | |
797 | sysctl_sched_features &= ~(1UL << i); | |
798 | else | |
799 | sysctl_sched_features |= (1UL << i); | |
800 | break; | |
801 | } | |
802 | } | |
803 | ||
804 | if (!sched_feat_names[i]) | |
805 | return -EINVAL; | |
806 | ||
807 | filp->f_pos += cnt; | |
808 | ||
809 | return cnt; | |
810 | } | |
811 | ||
34f3a814 LZ |
812 | static int sched_feat_open(struct inode *inode, struct file *filp) |
813 | { | |
814 | return single_open(filp, sched_feat_show, NULL); | |
815 | } | |
816 | ||
f00b45c1 | 817 | static struct file_operations sched_feat_fops = { |
34f3a814 LZ |
818 | .open = sched_feat_open, |
819 | .write = sched_feat_write, | |
820 | .read = seq_read, | |
821 | .llseek = seq_lseek, | |
822 | .release = single_release, | |
f00b45c1 PZ |
823 | }; |
824 | ||
825 | static __init int sched_init_debug(void) | |
826 | { | |
f00b45c1 PZ |
827 | debugfs_create_file("sched_features", 0644, NULL, NULL, |
828 | &sched_feat_fops); | |
829 | ||
830 | return 0; | |
831 | } | |
832 | late_initcall(sched_init_debug); | |
833 | ||
834 | #endif | |
835 | ||
836 | #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) | |
bf5c91ba | 837 | |
b82d9fdd PZ |
838 | /* |
839 | * Number of tasks to iterate in a single balance run. | |
840 | * Limited because this is done with IRQs disabled. | |
841 | */ | |
842 | const_debug unsigned int sysctl_sched_nr_migrate = 32; | |
843 | ||
2398f2c6 PZ |
844 | /* |
845 | * ratelimit for updating the group shares. | |
55cd5340 | 846 | * default: 0.25ms |
2398f2c6 | 847 | */ |
55cd5340 | 848 | unsigned int sysctl_sched_shares_ratelimit = 250000; |
2398f2c6 | 849 | |
ffda12a1 PZ |
850 | /* |
851 | * Inject some fuzzyness into changing the per-cpu group shares | |
852 | * this avoids remote rq-locks at the expense of fairness. | |
853 | * default: 4 | |
854 | */ | |
855 | unsigned int sysctl_sched_shares_thresh = 4; | |
856 | ||
fa85ae24 | 857 | /* |
9f0c1e56 | 858 | * period over which we measure -rt task cpu usage in us. |
fa85ae24 PZ |
859 | * default: 1s |
860 | */ | |
9f0c1e56 | 861 | unsigned int sysctl_sched_rt_period = 1000000; |
fa85ae24 | 862 | |
6892b75e IM |
863 | static __read_mostly int scheduler_running; |
864 | ||
9f0c1e56 PZ |
865 | /* |
866 | * part of the period that we allow rt tasks to run in us. | |
867 | * default: 0.95s | |
868 | */ | |
869 | int sysctl_sched_rt_runtime = 950000; | |
fa85ae24 | 870 | |
d0b27fa7 PZ |
871 | static inline u64 global_rt_period(void) |
872 | { | |
873 | return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; | |
874 | } | |
875 | ||
876 | static inline u64 global_rt_runtime(void) | |
877 | { | |
e26873bb | 878 | if (sysctl_sched_rt_runtime < 0) |
d0b27fa7 PZ |
879 | return RUNTIME_INF; |
880 | ||
881 | return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; | |
882 | } | |
fa85ae24 | 883 | |
1da177e4 | 884 | #ifndef prepare_arch_switch |
4866cde0 NP |
885 | # define prepare_arch_switch(next) do { } while (0) |
886 | #endif | |
887 | #ifndef finish_arch_switch | |
888 | # define finish_arch_switch(prev) do { } while (0) | |
889 | #endif | |
890 | ||
051a1d1a DA |
891 | static inline int task_current(struct rq *rq, struct task_struct *p) |
892 | { | |
893 | return rq->curr == p; | |
894 | } | |
895 | ||
4866cde0 | 896 | #ifndef __ARCH_WANT_UNLOCKED_CTXSW |
70b97a7f | 897 | static inline int task_running(struct rq *rq, struct task_struct *p) |
4866cde0 | 898 | { |
051a1d1a | 899 | return task_current(rq, p); |
4866cde0 NP |
900 | } |
901 | ||
70b97a7f | 902 | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) |
4866cde0 NP |
903 | { |
904 | } | |
905 | ||
70b97a7f | 906 | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) |
4866cde0 | 907 | { |
da04c035 IM |
908 | #ifdef CONFIG_DEBUG_SPINLOCK |
909 | /* this is a valid case when another task releases the spinlock */ | |
910 | rq->lock.owner = current; | |
911 | #endif | |
8a25d5de IM |
912 | /* |
913 | * If we are tracking spinlock dependencies then we have to | |
914 | * fix up the runqueue lock - which gets 'carried over' from | |
915 | * prev into current: | |
916 | */ | |
917 | spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); | |
918 | ||
4866cde0 NP |
919 | spin_unlock_irq(&rq->lock); |
920 | } | |
921 | ||
922 | #else /* __ARCH_WANT_UNLOCKED_CTXSW */ | |
70b97a7f | 923 | static inline int task_running(struct rq *rq, struct task_struct *p) |
4866cde0 NP |
924 | { |
925 | #ifdef CONFIG_SMP | |
926 | return p->oncpu; | |
927 | #else | |
051a1d1a | 928 | return task_current(rq, p); |
4866cde0 NP |
929 | #endif |
930 | } | |
931 | ||
70b97a7f | 932 | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) |
4866cde0 NP |
933 | { |
934 | #ifdef CONFIG_SMP | |
935 | /* | |
936 | * We can optimise this out completely for !SMP, because the | |
937 | * SMP rebalancing from interrupt is the only thing that cares | |
938 | * here. | |
939 | */ | |
940 | next->oncpu = 1; | |
941 | #endif | |
942 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | |
943 | spin_unlock_irq(&rq->lock); | |
944 | #else | |
945 | spin_unlock(&rq->lock); | |
946 | #endif | |
947 | } | |
948 | ||
70b97a7f | 949 | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) |
4866cde0 NP |
950 | { |
951 | #ifdef CONFIG_SMP | |
952 | /* | |
953 | * After ->oncpu is cleared, the task can be moved to a different CPU. | |
954 | * We must ensure this doesn't happen until the switch is completely | |
955 | * finished. | |
956 | */ | |
957 | smp_wmb(); | |
958 | prev->oncpu = 0; | |
959 | #endif | |
960 | #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW | |
961 | local_irq_enable(); | |
1da177e4 | 962 | #endif |
4866cde0 NP |
963 | } |
964 | #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ | |
1da177e4 | 965 | |
b29739f9 IM |
966 | /* |
967 | * __task_rq_lock - lock the runqueue a given task resides on. | |
968 | * Must be called interrupts disabled. | |
969 | */ | |
70b97a7f | 970 | static inline struct rq *__task_rq_lock(struct task_struct *p) |
b29739f9 IM |
971 | __acquires(rq->lock) |
972 | { | |
3a5c359a AK |
973 | for (;;) { |
974 | struct rq *rq = task_rq(p); | |
975 | spin_lock(&rq->lock); | |
976 | if (likely(rq == task_rq(p))) | |
977 | return rq; | |
b29739f9 | 978 | spin_unlock(&rq->lock); |
b29739f9 | 979 | } |
b29739f9 IM |
980 | } |
981 | ||
1da177e4 LT |
982 | /* |
983 | * task_rq_lock - lock the runqueue a given task resides on and disable | |
41a2d6cf | 984 | * interrupts. Note the ordering: we can safely lookup the task_rq without |
1da177e4 LT |
985 | * explicitly disabling preemption. |
986 | */ | |
70b97a7f | 987 | static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) |
1da177e4 LT |
988 | __acquires(rq->lock) |
989 | { | |
70b97a7f | 990 | struct rq *rq; |
1da177e4 | 991 | |
3a5c359a AK |
992 | for (;;) { |
993 | local_irq_save(*flags); | |
994 | rq = task_rq(p); | |
995 | spin_lock(&rq->lock); | |
996 | if (likely(rq == task_rq(p))) | |
997 | return rq; | |
1da177e4 | 998 | spin_unlock_irqrestore(&rq->lock, *flags); |
1da177e4 | 999 | } |
1da177e4 LT |
1000 | } |
1001 | ||
ad474cac ON |
1002 | void task_rq_unlock_wait(struct task_struct *p) |
1003 | { | |
1004 | struct rq *rq = task_rq(p); | |
1005 | ||
1006 | smp_mb(); /* spin-unlock-wait is not a full memory barrier */ | |
1007 | spin_unlock_wait(&rq->lock); | |
1008 | } | |
1009 | ||
a9957449 | 1010 | static void __task_rq_unlock(struct rq *rq) |
b29739f9 IM |
1011 | __releases(rq->lock) |
1012 | { | |
1013 | spin_unlock(&rq->lock); | |
1014 | } | |
1015 | ||
70b97a7f | 1016 | static inline void task_rq_unlock(struct rq *rq, unsigned long *flags) |
1da177e4 LT |
1017 | __releases(rq->lock) |
1018 | { | |
1019 | spin_unlock_irqrestore(&rq->lock, *flags); | |
1020 | } | |
1021 | ||
1da177e4 | 1022 | /* |
cc2a73b5 | 1023 | * this_rq_lock - lock this runqueue and disable interrupts. |
1da177e4 | 1024 | */ |
a9957449 | 1025 | static struct rq *this_rq_lock(void) |
1da177e4 LT |
1026 | __acquires(rq->lock) |
1027 | { | |
70b97a7f | 1028 | struct rq *rq; |
1da177e4 LT |
1029 | |
1030 | local_irq_disable(); | |
1031 | rq = this_rq(); | |
1032 | spin_lock(&rq->lock); | |
1033 | ||
1034 | return rq; | |
1035 | } | |
1036 | ||
8f4d37ec PZ |
1037 | #ifdef CONFIG_SCHED_HRTICK |
1038 | /* | |
1039 | * Use HR-timers to deliver accurate preemption points. | |
1040 | * | |
1041 | * Its all a bit involved since we cannot program an hrt while holding the | |
1042 | * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a | |
1043 | * reschedule event. | |
1044 | * | |
1045 | * When we get rescheduled we reprogram the hrtick_timer outside of the | |
1046 | * rq->lock. | |
1047 | */ | |
8f4d37ec PZ |
1048 | |
1049 | /* | |
1050 | * Use hrtick when: | |
1051 | * - enabled by features | |
1052 | * - hrtimer is actually high res | |
1053 | */ | |
1054 | static inline int hrtick_enabled(struct rq *rq) | |
1055 | { | |
1056 | if (!sched_feat(HRTICK)) | |
1057 | return 0; | |
ba42059f | 1058 | if (!cpu_active(cpu_of(rq))) |
b328ca18 | 1059 | return 0; |
8f4d37ec PZ |
1060 | return hrtimer_is_hres_active(&rq->hrtick_timer); |
1061 | } | |
1062 | ||
8f4d37ec PZ |
1063 | static void hrtick_clear(struct rq *rq) |
1064 | { | |
1065 | if (hrtimer_active(&rq->hrtick_timer)) | |
1066 | hrtimer_cancel(&rq->hrtick_timer); | |
1067 | } | |
1068 | ||
8f4d37ec PZ |
1069 | /* |
1070 | * High-resolution timer tick. | |
1071 | * Runs from hardirq context with interrupts disabled. | |
1072 | */ | |
1073 | static enum hrtimer_restart hrtick(struct hrtimer *timer) | |
1074 | { | |
1075 | struct rq *rq = container_of(timer, struct rq, hrtick_timer); | |
1076 | ||
1077 | WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); | |
1078 | ||
1079 | spin_lock(&rq->lock); | |
3e51f33f | 1080 | update_rq_clock(rq); |
8f4d37ec PZ |
1081 | rq->curr->sched_class->task_tick(rq, rq->curr, 1); |
1082 | spin_unlock(&rq->lock); | |
1083 | ||
1084 | return HRTIMER_NORESTART; | |
1085 | } | |
1086 | ||
95e904c7 | 1087 | #ifdef CONFIG_SMP |
31656519 PZ |
1088 | /* |
1089 | * called from hardirq (IPI) context | |
1090 | */ | |
1091 | static void __hrtick_start(void *arg) | |
b328ca18 | 1092 | { |
31656519 | 1093 | struct rq *rq = arg; |
b328ca18 | 1094 | |
31656519 PZ |
1095 | spin_lock(&rq->lock); |
1096 | hrtimer_restart(&rq->hrtick_timer); | |
1097 | rq->hrtick_csd_pending = 0; | |
1098 | spin_unlock(&rq->lock); | |
b328ca18 PZ |
1099 | } |
1100 | ||
31656519 PZ |
1101 | /* |
1102 | * Called to set the hrtick timer state. | |
1103 | * | |
1104 | * called with rq->lock held and irqs disabled | |
1105 | */ | |
1106 | static void hrtick_start(struct rq *rq, u64 delay) | |
b328ca18 | 1107 | { |
31656519 PZ |
1108 | struct hrtimer *timer = &rq->hrtick_timer; |
1109 | ktime_t time = ktime_add_ns(timer->base->get_time(), delay); | |
b328ca18 | 1110 | |
cc584b21 | 1111 | hrtimer_set_expires(timer, time); |
31656519 PZ |
1112 | |
1113 | if (rq == this_rq()) { | |
1114 | hrtimer_restart(timer); | |
1115 | } else if (!rq->hrtick_csd_pending) { | |
1116 | __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd); | |
1117 | rq->hrtick_csd_pending = 1; | |
1118 | } | |
b328ca18 PZ |
1119 | } |
1120 | ||
1121 | static int | |
1122 | hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) | |
1123 | { | |
1124 | int cpu = (int)(long)hcpu; | |
1125 | ||
1126 | switch (action) { | |
1127 | case CPU_UP_CANCELED: | |
1128 | case CPU_UP_CANCELED_FROZEN: | |
1129 | case CPU_DOWN_PREPARE: | |
1130 | case CPU_DOWN_PREPARE_FROZEN: | |
1131 | case CPU_DEAD: | |
1132 | case CPU_DEAD_FROZEN: | |
31656519 | 1133 | hrtick_clear(cpu_rq(cpu)); |
b328ca18 PZ |
1134 | return NOTIFY_OK; |
1135 | } | |
1136 | ||
1137 | return NOTIFY_DONE; | |
1138 | } | |
1139 | ||
fa748203 | 1140 | static __init void init_hrtick(void) |
b328ca18 PZ |
1141 | { |
1142 | hotcpu_notifier(hotplug_hrtick, 0); | |
1143 | } | |
31656519 PZ |
1144 | #else |
1145 | /* | |
1146 | * Called to set the hrtick timer state. | |
1147 | * | |
1148 | * called with rq->lock held and irqs disabled | |
1149 | */ | |
1150 | static void hrtick_start(struct rq *rq, u64 delay) | |
1151 | { | |
1152 | hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL); | |
1153 | } | |
b328ca18 | 1154 | |
006c75f1 | 1155 | static inline void init_hrtick(void) |
8f4d37ec | 1156 | { |
8f4d37ec | 1157 | } |
31656519 | 1158 | #endif /* CONFIG_SMP */ |
8f4d37ec | 1159 | |
31656519 | 1160 | static void init_rq_hrtick(struct rq *rq) |
8f4d37ec | 1161 | { |
31656519 PZ |
1162 | #ifdef CONFIG_SMP |
1163 | rq->hrtick_csd_pending = 0; | |
8f4d37ec | 1164 | |
31656519 PZ |
1165 | rq->hrtick_csd.flags = 0; |
1166 | rq->hrtick_csd.func = __hrtick_start; | |
1167 | rq->hrtick_csd.info = rq; | |
1168 | #endif | |
8f4d37ec | 1169 | |
31656519 PZ |
1170 | hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
1171 | rq->hrtick_timer.function = hrtick; | |
8f4d37ec | 1172 | } |
006c75f1 | 1173 | #else /* CONFIG_SCHED_HRTICK */ |
8f4d37ec PZ |
1174 | static inline void hrtick_clear(struct rq *rq) |
1175 | { | |
1176 | } | |
1177 | ||
8f4d37ec PZ |
1178 | static inline void init_rq_hrtick(struct rq *rq) |
1179 | { | |
1180 | } | |
1181 | ||
b328ca18 PZ |
1182 | static inline void init_hrtick(void) |
1183 | { | |
1184 | } | |
006c75f1 | 1185 | #endif /* CONFIG_SCHED_HRTICK */ |
8f4d37ec | 1186 | |
c24d20db IM |
1187 | /* |
1188 | * resched_task - mark a task 'to be rescheduled now'. | |
1189 | * | |
1190 | * On UP this means the setting of the need_resched flag, on SMP it | |
1191 | * might also involve a cross-CPU call to trigger the scheduler on | |
1192 | * the target CPU. | |
1193 | */ | |
1194 | #ifdef CONFIG_SMP | |
1195 | ||
1196 | #ifndef tsk_is_polling | |
1197 | #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) | |
1198 | #endif | |
1199 | ||
31656519 | 1200 | static void resched_task(struct task_struct *p) |
c24d20db IM |
1201 | { |
1202 | int cpu; | |
1203 | ||
1204 | assert_spin_locked(&task_rq(p)->lock); | |
1205 | ||
5ed0cec0 | 1206 | if (test_tsk_need_resched(p)) |
c24d20db IM |
1207 | return; |
1208 | ||
5ed0cec0 | 1209 | set_tsk_need_resched(p); |
c24d20db IM |
1210 | |
1211 | cpu = task_cpu(p); | |
1212 | if (cpu == smp_processor_id()) | |
1213 | return; | |
1214 | ||
1215 | /* NEED_RESCHED must be visible before we test polling */ | |
1216 | smp_mb(); | |
1217 | if (!tsk_is_polling(p)) | |
1218 | smp_send_reschedule(cpu); | |
1219 | } | |
1220 | ||
1221 | static void resched_cpu(int cpu) | |
1222 | { | |
1223 | struct rq *rq = cpu_rq(cpu); | |
1224 | unsigned long flags; | |
1225 | ||
1226 | if (!spin_trylock_irqsave(&rq->lock, flags)) | |
1227 | return; | |
1228 | resched_task(cpu_curr(cpu)); | |
1229 | spin_unlock_irqrestore(&rq->lock, flags); | |
1230 | } | |
06d8308c TG |
1231 | |
1232 | #ifdef CONFIG_NO_HZ | |
1233 | /* | |
1234 | * When add_timer_on() enqueues a timer into the timer wheel of an | |
1235 | * idle CPU then this timer might expire before the next timer event | |
1236 | * which is scheduled to wake up that CPU. In case of a completely | |
1237 | * idle system the next event might even be infinite time into the | |
1238 | * future. wake_up_idle_cpu() ensures that the CPU is woken up and | |
1239 | * leaves the inner idle loop so the newly added timer is taken into | |
1240 | * account when the CPU goes back to idle and evaluates the timer | |
1241 | * wheel for the next timer event. | |
1242 | */ | |
1243 | void wake_up_idle_cpu(int cpu) | |
1244 | { | |
1245 | struct rq *rq = cpu_rq(cpu); | |
1246 | ||
1247 | if (cpu == smp_processor_id()) | |
1248 | return; | |
1249 | ||
1250 | /* | |
1251 | * This is safe, as this function is called with the timer | |
1252 | * wheel base lock of (cpu) held. When the CPU is on the way | |
1253 | * to idle and has not yet set rq->curr to idle then it will | |
1254 | * be serialized on the timer wheel base lock and take the new | |
1255 | * timer into account automatically. | |
1256 | */ | |
1257 | if (rq->curr != rq->idle) | |
1258 | return; | |
1259 | ||
1260 | /* | |
1261 | * We can set TIF_RESCHED on the idle task of the other CPU | |
1262 | * lockless. The worst case is that the other CPU runs the | |
1263 | * idle task through an additional NOOP schedule() | |
1264 | */ | |
5ed0cec0 | 1265 | set_tsk_need_resched(rq->idle); |
06d8308c TG |
1266 | |
1267 | /* NEED_RESCHED must be visible before we test polling */ | |
1268 | smp_mb(); | |
1269 | if (!tsk_is_polling(rq->idle)) | |
1270 | smp_send_reschedule(cpu); | |
1271 | } | |
6d6bc0ad | 1272 | #endif /* CONFIG_NO_HZ */ |
06d8308c | 1273 | |
6d6bc0ad | 1274 | #else /* !CONFIG_SMP */ |
31656519 | 1275 | static void resched_task(struct task_struct *p) |
c24d20db IM |
1276 | { |
1277 | assert_spin_locked(&task_rq(p)->lock); | |
31656519 | 1278 | set_tsk_need_resched(p); |
c24d20db | 1279 | } |
6d6bc0ad | 1280 | #endif /* CONFIG_SMP */ |
c24d20db | 1281 | |
45bf76df IM |
1282 | #if BITS_PER_LONG == 32 |
1283 | # define WMULT_CONST (~0UL) | |
1284 | #else | |
1285 | # define WMULT_CONST (1UL << 32) | |
1286 | #endif | |
1287 | ||
1288 | #define WMULT_SHIFT 32 | |
1289 | ||
194081eb IM |
1290 | /* |
1291 | * Shift right and round: | |
1292 | */ | |
cf2ab469 | 1293 | #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) |
194081eb | 1294 | |
a7be37ac PZ |
1295 | /* |
1296 | * delta *= weight / lw | |
1297 | */ | |
cb1c4fc9 | 1298 | static unsigned long |
45bf76df IM |
1299 | calc_delta_mine(unsigned long delta_exec, unsigned long weight, |
1300 | struct load_weight *lw) | |
1301 | { | |
1302 | u64 tmp; | |
1303 | ||
7a232e03 LJ |
1304 | if (!lw->inv_weight) { |
1305 | if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST)) | |
1306 | lw->inv_weight = 1; | |
1307 | else | |
1308 | lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2) | |
1309 | / (lw->weight+1); | |
1310 | } | |
45bf76df IM |
1311 | |
1312 | tmp = (u64)delta_exec * weight; | |
1313 | /* | |
1314 | * Check whether we'd overflow the 64-bit multiplication: | |
1315 | */ | |
194081eb | 1316 | if (unlikely(tmp > WMULT_CONST)) |
cf2ab469 | 1317 | tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight, |
194081eb IM |
1318 | WMULT_SHIFT/2); |
1319 | else | |
cf2ab469 | 1320 | tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT); |
45bf76df | 1321 | |
ecf691da | 1322 | return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); |
45bf76df IM |
1323 | } |
1324 | ||
1091985b | 1325 | static inline void update_load_add(struct load_weight *lw, unsigned long inc) |
45bf76df IM |
1326 | { |
1327 | lw->weight += inc; | |
e89996ae | 1328 | lw->inv_weight = 0; |
45bf76df IM |
1329 | } |
1330 | ||
1091985b | 1331 | static inline void update_load_sub(struct load_weight *lw, unsigned long dec) |
45bf76df IM |
1332 | { |
1333 | lw->weight -= dec; | |
e89996ae | 1334 | lw->inv_weight = 0; |
45bf76df IM |
1335 | } |
1336 | ||
2dd73a4f PW |
1337 | /* |
1338 | * To aid in avoiding the subversion of "niceness" due to uneven distribution | |
1339 | * of tasks with abnormal "nice" values across CPUs the contribution that | |
1340 | * each task makes to its run queue's load is weighted according to its | |
41a2d6cf | 1341 | * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a |
2dd73a4f PW |
1342 | * scaled version of the new time slice allocation that they receive on time |
1343 | * slice expiry etc. | |
1344 | */ | |
1345 | ||
cce7ade8 PZ |
1346 | #define WEIGHT_IDLEPRIO 3 |
1347 | #define WMULT_IDLEPRIO 1431655765 | |
dd41f596 IM |
1348 | |
1349 | /* | |
1350 | * Nice levels are multiplicative, with a gentle 10% change for every | |
1351 | * nice level changed. I.e. when a CPU-bound task goes from nice 0 to | |
1352 | * nice 1, it will get ~10% less CPU time than another CPU-bound task | |
1353 | * that remained on nice 0. | |
1354 | * | |
1355 | * The "10% effect" is relative and cumulative: from _any_ nice level, | |
1356 | * if you go up 1 level, it's -10% CPU usage, if you go down 1 level | |
f9153ee6 IM |
1357 | * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. |
1358 | * If a task goes up by ~10% and another task goes down by ~10% then | |
1359 | * the relative distance between them is ~25%.) | |
dd41f596 IM |
1360 | */ |
1361 | static const int prio_to_weight[40] = { | |
254753dc IM |
1362 | /* -20 */ 88761, 71755, 56483, 46273, 36291, |
1363 | /* -15 */ 29154, 23254, 18705, 14949, 11916, | |
1364 | /* -10 */ 9548, 7620, 6100, 4904, 3906, | |
1365 | /* -5 */ 3121, 2501, 1991, 1586, 1277, | |
1366 | /* 0 */ 1024, 820, 655, 526, 423, | |
1367 | /* 5 */ 335, 272, 215, 172, 137, | |
1368 | /* 10 */ 110, 87, 70, 56, 45, | |
1369 | /* 15 */ 36, 29, 23, 18, 15, | |
dd41f596 IM |
1370 | }; |
1371 | ||
5714d2de IM |
1372 | /* |
1373 | * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. | |
1374 | * | |
1375 | * In cases where the weight does not change often, we can use the | |
1376 | * precalculated inverse to speed up arithmetics by turning divisions | |
1377 | * into multiplications: | |
1378 | */ | |
dd41f596 | 1379 | static const u32 prio_to_wmult[40] = { |
254753dc IM |
1380 | /* -20 */ 48388, 59856, 76040, 92818, 118348, |
1381 | /* -15 */ 147320, 184698, 229616, 287308, 360437, | |
1382 | /* -10 */ 449829, 563644, 704093, 875809, 1099582, | |
1383 | /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, | |
1384 | /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, | |
1385 | /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, | |
1386 | /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, | |
1387 | /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, | |
dd41f596 | 1388 | }; |
2dd73a4f | 1389 | |
dd41f596 IM |
1390 | static void activate_task(struct rq *rq, struct task_struct *p, int wakeup); |
1391 | ||
1392 | /* | |
1393 | * runqueue iterator, to support SMP load-balancing between different | |
1394 | * scheduling classes, without having to expose their internal data | |
1395 | * structures to the load-balancing proper: | |
1396 | */ | |
1397 | struct rq_iterator { | |
1398 | void *arg; | |
1399 | struct task_struct *(*start)(void *); | |
1400 | struct task_struct *(*next)(void *); | |
1401 | }; | |
1402 | ||
e1d1484f PW |
1403 | #ifdef CONFIG_SMP |
1404 | static unsigned long | |
1405 | balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | |
1406 | unsigned long max_load_move, struct sched_domain *sd, | |
1407 | enum cpu_idle_type idle, int *all_pinned, | |
1408 | int *this_best_prio, struct rq_iterator *iterator); | |
1409 | ||
1410 | static int | |
1411 | iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | |
1412 | struct sched_domain *sd, enum cpu_idle_type idle, | |
1413 | struct rq_iterator *iterator); | |
e1d1484f | 1414 | #endif |
dd41f596 | 1415 | |
d842de87 SV |
1416 | #ifdef CONFIG_CGROUP_CPUACCT |
1417 | static void cpuacct_charge(struct task_struct *tsk, u64 cputime); | |
1418 | #else | |
1419 | static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {} | |
1420 | #endif | |
1421 | ||
18d95a28 PZ |
1422 | static inline void inc_cpu_load(struct rq *rq, unsigned long load) |
1423 | { | |
1424 | update_load_add(&rq->load, load); | |
1425 | } | |
1426 | ||
1427 | static inline void dec_cpu_load(struct rq *rq, unsigned long load) | |
1428 | { | |
1429 | update_load_sub(&rq->load, load); | |
1430 | } | |
1431 | ||
7940ca36 | 1432 | #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED) |
eb755805 | 1433 | typedef int (*tg_visitor)(struct task_group *, void *); |
c09595f6 PZ |
1434 | |
1435 | /* | |
1436 | * Iterate the full tree, calling @down when first entering a node and @up when | |
1437 | * leaving it for the final time. | |
1438 | */ | |
eb755805 | 1439 | static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) |
c09595f6 PZ |
1440 | { |
1441 | struct task_group *parent, *child; | |
eb755805 | 1442 | int ret; |
c09595f6 PZ |
1443 | |
1444 | rcu_read_lock(); | |
1445 | parent = &root_task_group; | |
1446 | down: | |
eb755805 PZ |
1447 | ret = (*down)(parent, data); |
1448 | if (ret) | |
1449 | goto out_unlock; | |
c09595f6 PZ |
1450 | list_for_each_entry_rcu(child, &parent->children, siblings) { |
1451 | parent = child; | |
1452 | goto down; | |
1453 | ||
1454 | up: | |
1455 | continue; | |
1456 | } | |
eb755805 PZ |
1457 | ret = (*up)(parent, data); |
1458 | if (ret) | |
1459 | goto out_unlock; | |
c09595f6 PZ |
1460 | |
1461 | child = parent; | |
1462 | parent = parent->parent; | |
1463 | if (parent) | |
1464 | goto up; | |
eb755805 | 1465 | out_unlock: |
c09595f6 | 1466 | rcu_read_unlock(); |
eb755805 PZ |
1467 | |
1468 | return ret; | |
c09595f6 PZ |
1469 | } |
1470 | ||
eb755805 PZ |
1471 | static int tg_nop(struct task_group *tg, void *data) |
1472 | { | |
1473 | return 0; | |
c09595f6 | 1474 | } |
eb755805 PZ |
1475 | #endif |
1476 | ||
1477 | #ifdef CONFIG_SMP | |
1478 | static unsigned long source_load(int cpu, int type); | |
1479 | static unsigned long target_load(int cpu, int type); | |
1480 | static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd); | |
1481 | ||
1482 | static unsigned long cpu_avg_load_per_task(int cpu) | |
1483 | { | |
1484 | struct rq *rq = cpu_rq(cpu); | |
af6d596f | 1485 | unsigned long nr_running = ACCESS_ONCE(rq->nr_running); |
eb755805 | 1486 | |
4cd42620 SR |
1487 | if (nr_running) |
1488 | rq->avg_load_per_task = rq->load.weight / nr_running; | |
a2d47777 BS |
1489 | else |
1490 | rq->avg_load_per_task = 0; | |
eb755805 PZ |
1491 | |
1492 | return rq->avg_load_per_task; | |
1493 | } | |
1494 | ||
1495 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
c09595f6 | 1496 | |
c09595f6 PZ |
1497 | static void __set_se_shares(struct sched_entity *se, unsigned long shares); |
1498 | ||
1499 | /* | |
1500 | * Calculate and set the cpu's group shares. | |
1501 | */ | |
1502 | static void | |
ffda12a1 PZ |
1503 | update_group_shares_cpu(struct task_group *tg, int cpu, |
1504 | unsigned long sd_shares, unsigned long sd_rq_weight) | |
18d95a28 | 1505 | { |
c09595f6 PZ |
1506 | unsigned long shares; |
1507 | unsigned long rq_weight; | |
1508 | ||
c8cba857 | 1509 | if (!tg->se[cpu]) |
c09595f6 PZ |
1510 | return; |
1511 | ||
ec4e0e2f | 1512 | rq_weight = tg->cfs_rq[cpu]->rq_weight; |
c8cba857 | 1513 | |
c09595f6 PZ |
1514 | /* |
1515 | * \Sum shares * rq_weight | |
1516 | * shares = ----------------------- | |
1517 | * \Sum rq_weight | |
1518 | * | |
1519 | */ | |
ec4e0e2f | 1520 | shares = (sd_shares * rq_weight) / sd_rq_weight; |
ffda12a1 | 1521 | shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES); |
c09595f6 | 1522 | |
ffda12a1 PZ |
1523 | if (abs(shares - tg->se[cpu]->load.weight) > |
1524 | sysctl_sched_shares_thresh) { | |
1525 | struct rq *rq = cpu_rq(cpu); | |
1526 | unsigned long flags; | |
c09595f6 | 1527 | |
ffda12a1 | 1528 | spin_lock_irqsave(&rq->lock, flags); |
ec4e0e2f | 1529 | tg->cfs_rq[cpu]->shares = shares; |
c09595f6 | 1530 | |
ffda12a1 PZ |
1531 | __set_se_shares(tg->se[cpu], shares); |
1532 | spin_unlock_irqrestore(&rq->lock, flags); | |
1533 | } | |
18d95a28 | 1534 | } |
c09595f6 PZ |
1535 | |
1536 | /* | |
c8cba857 PZ |
1537 | * Re-compute the task group their per cpu shares over the given domain. |
1538 | * This needs to be done in a bottom-up fashion because the rq weight of a | |
1539 | * parent group depends on the shares of its child groups. | |
c09595f6 | 1540 | */ |
eb755805 | 1541 | static int tg_shares_up(struct task_group *tg, void *data) |
c09595f6 | 1542 | { |
ec4e0e2f | 1543 | unsigned long weight, rq_weight = 0; |
c8cba857 | 1544 | unsigned long shares = 0; |
eb755805 | 1545 | struct sched_domain *sd = data; |
c8cba857 | 1546 | int i; |
c09595f6 | 1547 | |
758b2cdc | 1548 | for_each_cpu(i, sched_domain_span(sd)) { |
ec4e0e2f KC |
1549 | /* |
1550 | * If there are currently no tasks on the cpu pretend there | |
1551 | * is one of average load so that when a new task gets to | |
1552 | * run here it will not get delayed by group starvation. | |
1553 | */ | |
1554 | weight = tg->cfs_rq[i]->load.weight; | |
1555 | if (!weight) | |
1556 | weight = NICE_0_LOAD; | |
1557 | ||
1558 | tg->cfs_rq[i]->rq_weight = weight; | |
1559 | rq_weight += weight; | |
c8cba857 | 1560 | shares += tg->cfs_rq[i]->shares; |
c09595f6 | 1561 | } |
c09595f6 | 1562 | |
c8cba857 PZ |
1563 | if ((!shares && rq_weight) || shares > tg->shares) |
1564 | shares = tg->shares; | |
1565 | ||
1566 | if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE)) | |
1567 | shares = tg->shares; | |
c09595f6 | 1568 | |
758b2cdc | 1569 | for_each_cpu(i, sched_domain_span(sd)) |
ffda12a1 | 1570 | update_group_shares_cpu(tg, i, shares, rq_weight); |
eb755805 PZ |
1571 | |
1572 | return 0; | |
c09595f6 PZ |
1573 | } |
1574 | ||
1575 | /* | |
c8cba857 PZ |
1576 | * Compute the cpu's hierarchical load factor for each task group. |
1577 | * This needs to be done in a top-down fashion because the load of a child | |
1578 | * group is a fraction of its parents load. | |
c09595f6 | 1579 | */ |
eb755805 | 1580 | static int tg_load_down(struct task_group *tg, void *data) |
c09595f6 | 1581 | { |
c8cba857 | 1582 | unsigned long load; |
eb755805 | 1583 | long cpu = (long)data; |
c09595f6 | 1584 | |
c8cba857 PZ |
1585 | if (!tg->parent) { |
1586 | load = cpu_rq(cpu)->load.weight; | |
1587 | } else { | |
1588 | load = tg->parent->cfs_rq[cpu]->h_load; | |
1589 | load *= tg->cfs_rq[cpu]->shares; | |
1590 | load /= tg->parent->cfs_rq[cpu]->load.weight + 1; | |
1591 | } | |
c09595f6 | 1592 | |
c8cba857 | 1593 | tg->cfs_rq[cpu]->h_load = load; |
c09595f6 | 1594 | |
eb755805 | 1595 | return 0; |
c09595f6 PZ |
1596 | } |
1597 | ||
c8cba857 | 1598 | static void update_shares(struct sched_domain *sd) |
4d8d595d | 1599 | { |
2398f2c6 PZ |
1600 | u64 now = cpu_clock(raw_smp_processor_id()); |
1601 | s64 elapsed = now - sd->last_update; | |
1602 | ||
1603 | if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) { | |
1604 | sd->last_update = now; | |
eb755805 | 1605 | walk_tg_tree(tg_nop, tg_shares_up, sd); |
2398f2c6 | 1606 | } |
4d8d595d PZ |
1607 | } |
1608 | ||
3e5459b4 PZ |
1609 | static void update_shares_locked(struct rq *rq, struct sched_domain *sd) |
1610 | { | |
1611 | spin_unlock(&rq->lock); | |
1612 | update_shares(sd); | |
1613 | spin_lock(&rq->lock); | |
1614 | } | |
1615 | ||
eb755805 | 1616 | static void update_h_load(long cpu) |
c09595f6 | 1617 | { |
eb755805 | 1618 | walk_tg_tree(tg_load_down, tg_nop, (void *)cpu); |
c09595f6 PZ |
1619 | } |
1620 | ||
c09595f6 PZ |
1621 | #else |
1622 | ||
c8cba857 | 1623 | static inline void update_shares(struct sched_domain *sd) |
4d8d595d PZ |
1624 | { |
1625 | } | |
1626 | ||
3e5459b4 PZ |
1627 | static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd) |
1628 | { | |
1629 | } | |
1630 | ||
18d95a28 PZ |
1631 | #endif |
1632 | ||
8f45e2b5 GH |
1633 | #ifdef CONFIG_PREEMPT |
1634 | ||
70574a99 | 1635 | /* |
8f45e2b5 GH |
1636 | * fair double_lock_balance: Safely acquires both rq->locks in a fair |
1637 | * way at the expense of forcing extra atomic operations in all | |
1638 | * invocations. This assures that the double_lock is acquired using the | |
1639 | * same underlying policy as the spinlock_t on this architecture, which | |
1640 | * reduces latency compared to the unfair variant below. However, it | |
1641 | * also adds more overhead and therefore may reduce throughput. | |
70574a99 | 1642 | */ |
8f45e2b5 GH |
1643 | static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) |
1644 | __releases(this_rq->lock) | |
1645 | __acquires(busiest->lock) | |
1646 | __acquires(this_rq->lock) | |
1647 | { | |
1648 | spin_unlock(&this_rq->lock); | |
1649 | double_rq_lock(this_rq, busiest); | |
1650 | ||
1651 | return 1; | |
1652 | } | |
1653 | ||
1654 | #else | |
1655 | /* | |
1656 | * Unfair double_lock_balance: Optimizes throughput at the expense of | |
1657 | * latency by eliminating extra atomic operations when the locks are | |
1658 | * already in proper order on entry. This favors lower cpu-ids and will | |
1659 | * grant the double lock to lower cpus over higher ids under contention, | |
1660 | * regardless of entry order into the function. | |
1661 | */ | |
1662 | static int _double_lock_balance(struct rq *this_rq, struct rq *busiest) | |
70574a99 AD |
1663 | __releases(this_rq->lock) |
1664 | __acquires(busiest->lock) | |
1665 | __acquires(this_rq->lock) | |
1666 | { | |
1667 | int ret = 0; | |
1668 | ||
70574a99 AD |
1669 | if (unlikely(!spin_trylock(&busiest->lock))) { |
1670 | if (busiest < this_rq) { | |
1671 | spin_unlock(&this_rq->lock); | |
1672 | spin_lock(&busiest->lock); | |
1673 | spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING); | |
1674 | ret = 1; | |
1675 | } else | |
1676 | spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING); | |
1677 | } | |
1678 | return ret; | |
1679 | } | |
1680 | ||
8f45e2b5 GH |
1681 | #endif /* CONFIG_PREEMPT */ |
1682 | ||
1683 | /* | |
1684 | * double_lock_balance - lock the busiest runqueue, this_rq is locked already. | |
1685 | */ | |
1686 | static int double_lock_balance(struct rq *this_rq, struct rq *busiest) | |
1687 | { | |
1688 | if (unlikely(!irqs_disabled())) { | |
1689 | /* printk() doesn't work good under rq->lock */ | |
1690 | spin_unlock(&this_rq->lock); | |
1691 | BUG_ON(1); | |
1692 | } | |
1693 | ||
1694 | return _double_lock_balance(this_rq, busiest); | |
1695 | } | |
1696 | ||
70574a99 AD |
1697 | static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) |
1698 | __releases(busiest->lock) | |
1699 | { | |
1700 | spin_unlock(&busiest->lock); | |
1701 | lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); | |
1702 | } | |
18d95a28 PZ |
1703 | #endif |
1704 | ||
30432094 | 1705 | #ifdef CONFIG_FAIR_GROUP_SCHED |
34e83e85 IM |
1706 | static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares) |
1707 | { | |
30432094 | 1708 | #ifdef CONFIG_SMP |
34e83e85 IM |
1709 | cfs_rq->shares = shares; |
1710 | #endif | |
1711 | } | |
30432094 | 1712 | #endif |
e7693a36 | 1713 | |
dd41f596 | 1714 | #include "sched_stats.h" |
dd41f596 | 1715 | #include "sched_idletask.c" |
5522d5d5 IM |
1716 | #include "sched_fair.c" |
1717 | #include "sched_rt.c" | |
dd41f596 IM |
1718 | #ifdef CONFIG_SCHED_DEBUG |
1719 | # include "sched_debug.c" | |
1720 | #endif | |
1721 | ||
1722 | #define sched_class_highest (&rt_sched_class) | |
1f11eb6a GH |
1723 | #define for_each_class(class) \ |
1724 | for (class = sched_class_highest; class; class = class->next) | |
dd41f596 | 1725 | |
c09595f6 | 1726 | static void inc_nr_running(struct rq *rq) |
9c217245 IM |
1727 | { |
1728 | rq->nr_running++; | |
9c217245 IM |
1729 | } |
1730 | ||
c09595f6 | 1731 | static void dec_nr_running(struct rq *rq) |
9c217245 IM |
1732 | { |
1733 | rq->nr_running--; | |
9c217245 IM |
1734 | } |
1735 | ||
45bf76df IM |
1736 | static void set_load_weight(struct task_struct *p) |
1737 | { | |
1738 | if (task_has_rt_policy(p)) { | |
dd41f596 IM |
1739 | p->se.load.weight = prio_to_weight[0] * 2; |
1740 | p->se.load.inv_weight = prio_to_wmult[0] >> 1; | |
1741 | return; | |
1742 | } | |
45bf76df | 1743 | |
dd41f596 IM |
1744 | /* |
1745 | * SCHED_IDLE tasks get minimal weight: | |
1746 | */ | |
1747 | if (p->policy == SCHED_IDLE) { | |
1748 | p->se.load.weight = WEIGHT_IDLEPRIO; | |
1749 | p->se.load.inv_weight = WMULT_IDLEPRIO; | |
1750 | return; | |
1751 | } | |
71f8bd46 | 1752 | |
dd41f596 IM |
1753 | p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO]; |
1754 | p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO]; | |
71f8bd46 IM |
1755 | } |
1756 | ||
2087a1ad GH |
1757 | static void update_avg(u64 *avg, u64 sample) |
1758 | { | |
1759 | s64 diff = sample - *avg; | |
1760 | *avg += diff >> 3; | |
1761 | } | |
1762 | ||
8159f87e | 1763 | static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) |
71f8bd46 | 1764 | { |
831451ac PZ |
1765 | if (wakeup) |
1766 | p->se.start_runtime = p->se.sum_exec_runtime; | |
1767 | ||
dd41f596 | 1768 | sched_info_queued(p); |
fd390f6a | 1769 | p->sched_class->enqueue_task(rq, p, wakeup); |
dd41f596 | 1770 | p->se.on_rq = 1; |
71f8bd46 IM |
1771 | } |
1772 | ||
69be72c1 | 1773 | static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) |
71f8bd46 | 1774 | { |
831451ac PZ |
1775 | if (sleep) { |
1776 | if (p->se.last_wakeup) { | |
1777 | update_avg(&p->se.avg_overlap, | |
1778 | p->se.sum_exec_runtime - p->se.last_wakeup); | |
1779 | p->se.last_wakeup = 0; | |
1780 | } else { | |
1781 | update_avg(&p->se.avg_wakeup, | |
1782 | sysctl_sched_wakeup_granularity); | |
1783 | } | |
2087a1ad GH |
1784 | } |
1785 | ||
46ac22ba | 1786 | sched_info_dequeued(p); |
f02231e5 | 1787 | p->sched_class->dequeue_task(rq, p, sleep); |
dd41f596 | 1788 | p->se.on_rq = 0; |
71f8bd46 IM |
1789 | } |
1790 | ||
14531189 | 1791 | /* |
dd41f596 | 1792 | * __normal_prio - return the priority that is based on the static prio |
14531189 | 1793 | */ |
14531189 IM |
1794 | static inline int __normal_prio(struct task_struct *p) |
1795 | { | |
dd41f596 | 1796 | return p->static_prio; |
14531189 IM |
1797 | } |
1798 | ||
b29739f9 IM |
1799 | /* |
1800 | * Calculate the expected normal priority: i.e. priority | |
1801 | * without taking RT-inheritance into account. Might be | |
1802 | * boosted by interactivity modifiers. Changes upon fork, | |
1803 | * setprio syscalls, and whenever the interactivity | |
1804 | * estimator recalculates. | |
1805 | */ | |
36c8b586 | 1806 | static inline int normal_prio(struct task_struct *p) |
b29739f9 IM |
1807 | { |
1808 | int prio; | |
1809 | ||
e05606d3 | 1810 | if (task_has_rt_policy(p)) |
b29739f9 IM |
1811 | prio = MAX_RT_PRIO-1 - p->rt_priority; |
1812 | else | |
1813 | prio = __normal_prio(p); | |
1814 | return prio; | |
1815 | } | |
1816 | ||
1817 | /* | |
1818 | * Calculate the current priority, i.e. the priority | |
1819 | * taken into account by the scheduler. This value might | |
1820 | * be boosted by RT tasks, or might be boosted by | |
1821 | * interactivity modifiers. Will be RT if the task got | |
1822 | * RT-boosted. If not then it returns p->normal_prio. | |
1823 | */ | |
36c8b586 | 1824 | static int effective_prio(struct task_struct *p) |
b29739f9 IM |
1825 | { |
1826 | p->normal_prio = normal_prio(p); | |
1827 | /* | |
1828 | * If we are RT tasks or we were boosted to RT priority, | |
1829 | * keep the priority unchanged. Otherwise, update priority | |
1830 | * to the normal priority: | |
1831 | */ | |
1832 | if (!rt_prio(p->prio)) | |
1833 | return p->normal_prio; | |
1834 | return p->prio; | |
1835 | } | |
1836 | ||
1da177e4 | 1837 | /* |
dd41f596 | 1838 | * activate_task - move a task to the runqueue. |
1da177e4 | 1839 | */ |
dd41f596 | 1840 | static void activate_task(struct rq *rq, struct task_struct *p, int wakeup) |
1da177e4 | 1841 | { |
d9514f6c | 1842 | if (task_contributes_to_load(p)) |
dd41f596 | 1843 | rq->nr_uninterruptible--; |
1da177e4 | 1844 | |
8159f87e | 1845 | enqueue_task(rq, p, wakeup); |
c09595f6 | 1846 | inc_nr_running(rq); |
1da177e4 LT |
1847 | } |
1848 | ||
1da177e4 LT |
1849 | /* |
1850 | * deactivate_task - remove a task from the runqueue. | |
1851 | */ | |
2e1cb74a | 1852 | static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep) |
1da177e4 | 1853 | { |
d9514f6c | 1854 | if (task_contributes_to_load(p)) |
dd41f596 IM |
1855 | rq->nr_uninterruptible++; |
1856 | ||
69be72c1 | 1857 | dequeue_task(rq, p, sleep); |
c09595f6 | 1858 | dec_nr_running(rq); |
1da177e4 LT |
1859 | } |
1860 | ||
1da177e4 LT |
1861 | /** |
1862 | * task_curr - is this task currently executing on a CPU? | |
1863 | * @p: the task in question. | |
1864 | */ | |
36c8b586 | 1865 | inline int task_curr(const struct task_struct *p) |
1da177e4 LT |
1866 | { |
1867 | return cpu_curr(task_cpu(p)) == p; | |
1868 | } | |
1869 | ||
dd41f596 IM |
1870 | static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) |
1871 | { | |
6f505b16 | 1872 | set_task_rq(p, cpu); |
dd41f596 | 1873 | #ifdef CONFIG_SMP |
ce96b5ac DA |
1874 | /* |
1875 | * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be | |
1876 | * successfuly executed on another CPU. We must ensure that updates of | |
1877 | * per-task data have been completed by this moment. | |
1878 | */ | |
1879 | smp_wmb(); | |
dd41f596 | 1880 | task_thread_info(p)->cpu = cpu; |
dd41f596 | 1881 | #endif |
2dd73a4f PW |
1882 | } |
1883 | ||
cb469845 SR |
1884 | static inline void check_class_changed(struct rq *rq, struct task_struct *p, |
1885 | const struct sched_class *prev_class, | |
1886 | int oldprio, int running) | |
1887 | { | |
1888 | if (prev_class != p->sched_class) { | |
1889 | if (prev_class->switched_from) | |
1890 | prev_class->switched_from(rq, p, running); | |
1891 | p->sched_class->switched_to(rq, p, running); | |
1892 | } else | |
1893 | p->sched_class->prio_changed(rq, p, oldprio, running); | |
1894 | } | |
1895 | ||
1da177e4 | 1896 | #ifdef CONFIG_SMP |
c65cc870 | 1897 | |
e958b360 TG |
1898 | /* Used instead of source_load when we know the type == 0 */ |
1899 | static unsigned long weighted_cpuload(const int cpu) | |
1900 | { | |
1901 | return cpu_rq(cpu)->load.weight; | |
1902 | } | |
1903 | ||
cc367732 IM |
1904 | /* |
1905 | * Is this task likely cache-hot: | |
1906 | */ | |
e7693a36 | 1907 | static int |
cc367732 IM |
1908 | task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) |
1909 | { | |
1910 | s64 delta; | |
1911 | ||
f540a608 IM |
1912 | /* |
1913 | * Buddy candidates are cache hot: | |
1914 | */ | |
4793241b PZ |
1915 | if (sched_feat(CACHE_HOT_BUDDY) && |
1916 | (&p->se == cfs_rq_of(&p->se)->next || | |
1917 | &p->se == cfs_rq_of(&p->se)->last)) | |
f540a608 IM |
1918 | return 1; |
1919 | ||
cc367732 IM |
1920 | if (p->sched_class != &fair_sched_class) |
1921 | return 0; | |
1922 | ||
6bc1665b IM |
1923 | if (sysctl_sched_migration_cost == -1) |
1924 | return 1; | |
1925 | if (sysctl_sched_migration_cost == 0) | |
1926 | return 0; | |
1927 | ||
cc367732 IM |
1928 | delta = now - p->se.exec_start; |
1929 | ||
1930 | return delta < (s64)sysctl_sched_migration_cost; | |
1931 | } | |
1932 | ||
1933 | ||
dd41f596 | 1934 | void set_task_cpu(struct task_struct *p, unsigned int new_cpu) |
c65cc870 | 1935 | { |
dd41f596 IM |
1936 | int old_cpu = task_cpu(p); |
1937 | struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu); | |
2830cf8c SV |
1938 | struct cfs_rq *old_cfsrq = task_cfs_rq(p), |
1939 | *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu); | |
bbdba7c0 | 1940 | u64 clock_offset; |
dd41f596 IM |
1941 | |
1942 | clock_offset = old_rq->clock - new_rq->clock; | |
6cfb0d5d | 1943 | |
cbc34ed1 PZ |
1944 | trace_sched_migrate_task(p, task_cpu(p), new_cpu); |
1945 | ||
6cfb0d5d IM |
1946 | #ifdef CONFIG_SCHEDSTATS |
1947 | if (p->se.wait_start) | |
1948 | p->se.wait_start -= clock_offset; | |
dd41f596 IM |
1949 | if (p->se.sleep_start) |
1950 | p->se.sleep_start -= clock_offset; | |
1951 | if (p->se.block_start) | |
1952 | p->se.block_start -= clock_offset; | |
cc367732 IM |
1953 | if (old_cpu != new_cpu) { |
1954 | schedstat_inc(p, se.nr_migrations); | |
1955 | if (task_hot(p, old_rq->clock, NULL)) | |
1956 | schedstat_inc(p, se.nr_forced2_migrations); | |
1957 | } | |
6cfb0d5d | 1958 | #endif |
2830cf8c SV |
1959 | p->se.vruntime -= old_cfsrq->min_vruntime - |
1960 | new_cfsrq->min_vruntime; | |
dd41f596 IM |
1961 | |
1962 | __set_task_cpu(p, new_cpu); | |
c65cc870 IM |
1963 | } |
1964 | ||
70b97a7f | 1965 | struct migration_req { |
1da177e4 | 1966 | struct list_head list; |
1da177e4 | 1967 | |
36c8b586 | 1968 | struct task_struct *task; |
1da177e4 LT |
1969 | int dest_cpu; |
1970 | ||
1da177e4 | 1971 | struct completion done; |
70b97a7f | 1972 | }; |
1da177e4 LT |
1973 | |
1974 | /* | |
1975 | * The task's runqueue lock must be held. | |
1976 | * Returns true if you have to wait for migration thread. | |
1977 | */ | |
36c8b586 | 1978 | static int |
70b97a7f | 1979 | migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req) |
1da177e4 | 1980 | { |
70b97a7f | 1981 | struct rq *rq = task_rq(p); |
1da177e4 LT |
1982 | |
1983 | /* | |
1984 | * If the task is not on a runqueue (and not running), then | |
1985 | * it is sufficient to simply update the task's cpu field. | |
1986 | */ | |
dd41f596 | 1987 | if (!p->se.on_rq && !task_running(rq, p)) { |
1da177e4 LT |
1988 | set_task_cpu(p, dest_cpu); |
1989 | return 0; | |
1990 | } | |
1991 | ||
1992 | init_completion(&req->done); | |
1da177e4 LT |
1993 | req->task = p; |
1994 | req->dest_cpu = dest_cpu; | |
1995 | list_add(&req->list, &rq->migration_queue); | |
48f24c4d | 1996 | |
1da177e4 LT |
1997 | return 1; |
1998 | } | |
1999 | ||
2000 | /* | |
2001 | * wait_task_inactive - wait for a thread to unschedule. | |
2002 | * | |
85ba2d86 RM |
2003 | * If @match_state is nonzero, it's the @p->state value just checked and |
2004 | * not expected to change. If it changes, i.e. @p might have woken up, | |
2005 | * then return zero. When we succeed in waiting for @p to be off its CPU, | |
2006 | * we return a positive number (its total switch count). If a second call | |
2007 | * a short while later returns the same number, the caller can be sure that | |
2008 | * @p has remained unscheduled the whole time. | |
2009 | * | |
1da177e4 LT |
2010 | * The caller must ensure that the task *will* unschedule sometime soon, |
2011 | * else this function might spin for a *long* time. This function can't | |
2012 | * be called with interrupts off, or it may introduce deadlock with | |
2013 | * smp_call_function() if an IPI is sent by the same process we are | |
2014 | * waiting to become inactive. | |
2015 | */ | |
85ba2d86 | 2016 | unsigned long wait_task_inactive(struct task_struct *p, long match_state) |
1da177e4 LT |
2017 | { |
2018 | unsigned long flags; | |
dd41f596 | 2019 | int running, on_rq; |
85ba2d86 | 2020 | unsigned long ncsw; |
70b97a7f | 2021 | struct rq *rq; |
1da177e4 | 2022 | |
3a5c359a AK |
2023 | for (;;) { |
2024 | /* | |
2025 | * We do the initial early heuristics without holding | |
2026 | * any task-queue locks at all. We'll only try to get | |
2027 | * the runqueue lock when things look like they will | |
2028 | * work out! | |
2029 | */ | |
2030 | rq = task_rq(p); | |
fa490cfd | 2031 | |
3a5c359a AK |
2032 | /* |
2033 | * If the task is actively running on another CPU | |
2034 | * still, just relax and busy-wait without holding | |
2035 | * any locks. | |
2036 | * | |
2037 | * NOTE! Since we don't hold any locks, it's not | |
2038 | * even sure that "rq" stays as the right runqueue! | |
2039 | * But we don't care, since "task_running()" will | |
2040 | * return false if the runqueue has changed and p | |
2041 | * is actually now running somewhere else! | |
2042 | */ | |
85ba2d86 RM |
2043 | while (task_running(rq, p)) { |
2044 | if (match_state && unlikely(p->state != match_state)) | |
2045 | return 0; | |
3a5c359a | 2046 | cpu_relax(); |
85ba2d86 | 2047 | } |
fa490cfd | 2048 | |
3a5c359a AK |
2049 | /* |
2050 | * Ok, time to look more closely! We need the rq | |
2051 | * lock now, to be *sure*. If we're wrong, we'll | |
2052 | * just go back and repeat. | |
2053 | */ | |
2054 | rq = task_rq_lock(p, &flags); | |
0a16b607 | 2055 | trace_sched_wait_task(rq, p); |
3a5c359a AK |
2056 | running = task_running(rq, p); |
2057 | on_rq = p->se.on_rq; | |
85ba2d86 | 2058 | ncsw = 0; |
f31e11d8 | 2059 | if (!match_state || p->state == match_state) |
93dcf55f | 2060 | ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ |
3a5c359a | 2061 | task_rq_unlock(rq, &flags); |
fa490cfd | 2062 | |
85ba2d86 RM |
2063 | /* |
2064 | * If it changed from the expected state, bail out now. | |
2065 | */ | |
2066 | if (unlikely(!ncsw)) | |
2067 | break; | |
2068 | ||
3a5c359a AK |
2069 | /* |
2070 | * Was it really running after all now that we | |
2071 | * checked with the proper locks actually held? | |
2072 | * | |
2073 | * Oops. Go back and try again.. | |
2074 | */ | |
2075 | if (unlikely(running)) { | |
2076 | cpu_relax(); | |
2077 | continue; | |
2078 | } | |
fa490cfd | 2079 | |
3a5c359a AK |
2080 | /* |
2081 | * It's not enough that it's not actively running, | |
2082 | * it must be off the runqueue _entirely_, and not | |
2083 | * preempted! | |
2084 | * | |
2085 | * So if it wa still runnable (but just not actively | |
2086 | * running right now), it's preempted, and we should | |
2087 | * yield - it could be a while. | |
2088 | */ | |
2089 | if (unlikely(on_rq)) { | |
2090 | schedule_timeout_uninterruptible(1); | |
2091 | continue; | |
2092 | } | |
fa490cfd | 2093 | |
3a5c359a AK |
2094 | /* |
2095 | * Ahh, all good. It wasn't running, and it wasn't | |
2096 | * runnable, which means that it will never become | |
2097 | * running in the future either. We're all done! | |
2098 | */ | |
2099 | break; | |
2100 | } | |
85ba2d86 RM |
2101 | |
2102 | return ncsw; | |
1da177e4 LT |
2103 | } |
2104 | ||
2105 | /*** | |
2106 | * kick_process - kick a running thread to enter/exit the kernel | |
2107 | * @p: the to-be-kicked thread | |
2108 | * | |
2109 | * Cause a process which is running on another CPU to enter | |
2110 | * kernel-mode, without any delay. (to get signals handled.) | |
2111 | * | |
2112 | * NOTE: this function doesnt have to take the runqueue lock, | |
2113 | * because all it wants to ensure is that the remote task enters | |
2114 | * the kernel. If the IPI races and the task has been migrated | |
2115 | * to another CPU then no harm is done and the purpose has been | |
2116 | * achieved as well. | |
2117 | */ | |
36c8b586 | 2118 | void kick_process(struct task_struct *p) |
1da177e4 LT |
2119 | { |
2120 | int cpu; | |
2121 | ||
2122 | preempt_disable(); | |
2123 | cpu = task_cpu(p); | |
2124 | if ((cpu != smp_processor_id()) && task_curr(p)) | |
2125 | smp_send_reschedule(cpu); | |
2126 | preempt_enable(); | |
2127 | } | |
2128 | ||
2129 | /* | |
2dd73a4f PW |
2130 | * Return a low guess at the load of a migration-source cpu weighted |
2131 | * according to the scheduling class and "nice" value. | |
1da177e4 LT |
2132 | * |
2133 | * We want to under-estimate the load of migration sources, to | |
2134 | * balance conservatively. | |
2135 | */ | |
a9957449 | 2136 | static unsigned long source_load(int cpu, int type) |
1da177e4 | 2137 | { |
70b97a7f | 2138 | struct rq *rq = cpu_rq(cpu); |
dd41f596 | 2139 | unsigned long total = weighted_cpuload(cpu); |
2dd73a4f | 2140 | |
93b75217 | 2141 | if (type == 0 || !sched_feat(LB_BIAS)) |
dd41f596 | 2142 | return total; |
b910472d | 2143 | |
dd41f596 | 2144 | return min(rq->cpu_load[type-1], total); |
1da177e4 LT |
2145 | } |
2146 | ||
2147 | /* | |
2dd73a4f PW |
2148 | * Return a high guess at the load of a migration-target cpu weighted |
2149 | * according to the scheduling class and "nice" value. | |
1da177e4 | 2150 | */ |
a9957449 | 2151 | static unsigned long target_load(int cpu, int type) |
1da177e4 | 2152 | { |
70b97a7f | 2153 | struct rq *rq = cpu_rq(cpu); |
dd41f596 | 2154 | unsigned long total = weighted_cpuload(cpu); |
2dd73a4f | 2155 | |
93b75217 | 2156 | if (type == 0 || !sched_feat(LB_BIAS)) |
dd41f596 | 2157 | return total; |
3b0bd9bc | 2158 | |
dd41f596 | 2159 | return max(rq->cpu_load[type-1], total); |
2dd73a4f PW |
2160 | } |
2161 | ||
147cbb4b NP |
2162 | /* |
2163 | * find_idlest_group finds and returns the least busy CPU group within the | |
2164 | * domain. | |
2165 | */ | |
2166 | static struct sched_group * | |
2167 | find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) | |
2168 | { | |
2169 | struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups; | |
2170 | unsigned long min_load = ULONG_MAX, this_load = 0; | |
2171 | int load_idx = sd->forkexec_idx; | |
2172 | int imbalance = 100 + (sd->imbalance_pct-100)/2; | |
2173 | ||
2174 | do { | |
2175 | unsigned long load, avg_load; | |
2176 | int local_group; | |
2177 | int i; | |
2178 | ||
da5a5522 | 2179 | /* Skip over this group if it has no CPUs allowed */ |
758b2cdc RR |
2180 | if (!cpumask_intersects(sched_group_cpus(group), |
2181 | &p->cpus_allowed)) | |
3a5c359a | 2182 | continue; |
da5a5522 | 2183 | |
758b2cdc RR |
2184 | local_group = cpumask_test_cpu(this_cpu, |
2185 | sched_group_cpus(group)); | |
147cbb4b NP |
2186 | |
2187 | /* Tally up the load of all CPUs in the group */ | |
2188 | avg_load = 0; | |
2189 | ||
758b2cdc | 2190 | for_each_cpu(i, sched_group_cpus(group)) { |
147cbb4b NP |
2191 | /* Bias balancing toward cpus of our domain */ |
2192 | if (local_group) | |
2193 | load = source_load(i, load_idx); | |
2194 | else | |
2195 | load = target_load(i, load_idx); | |
2196 | ||
2197 | avg_load += load; | |
2198 | } | |
2199 | ||
2200 | /* Adjust by relative CPU power of the group */ | |
5517d86b ED |
2201 | avg_load = sg_div_cpu_power(group, |
2202 | avg_load * SCHED_LOAD_SCALE); | |
147cbb4b NP |
2203 | |
2204 | if (local_group) { | |
2205 | this_load = avg_load; | |
2206 | this = group; | |
2207 | } else if (avg_load < min_load) { | |
2208 | min_load = avg_load; | |
2209 | idlest = group; | |
2210 | } | |
3a5c359a | 2211 | } while (group = group->next, group != sd->groups); |
147cbb4b NP |
2212 | |
2213 | if (!idlest || 100*this_load < imbalance*min_load) | |
2214 | return NULL; | |
2215 | return idlest; | |
2216 | } | |
2217 | ||
2218 | /* | |
0feaece9 | 2219 | * find_idlest_cpu - find the idlest cpu among the cpus in group. |
147cbb4b | 2220 | */ |
95cdf3b7 | 2221 | static int |
758b2cdc | 2222 | find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) |
147cbb4b NP |
2223 | { |
2224 | unsigned long load, min_load = ULONG_MAX; | |
2225 | int idlest = -1; | |
2226 | int i; | |
2227 | ||
da5a5522 | 2228 | /* Traverse only the allowed CPUs */ |
758b2cdc | 2229 | for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) { |
2dd73a4f | 2230 | load = weighted_cpuload(i); |
147cbb4b NP |
2231 | |
2232 | if (load < min_load || (load == min_load && i == this_cpu)) { | |
2233 | min_load = load; | |
2234 | idlest = i; | |
2235 | } | |
2236 | } | |
2237 | ||
2238 | return idlest; | |
2239 | } | |
2240 | ||
476d139c NP |
2241 | /* |
2242 | * sched_balance_self: balance the current task (running on cpu) in domains | |
2243 | * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and | |
2244 | * SD_BALANCE_EXEC. | |
2245 | * | |
2246 | * Balance, ie. select the least loaded group. | |
2247 | * | |
2248 | * Returns the target CPU number, or the same CPU if no balancing is needed. | |
2249 | * | |
2250 | * preempt must be disabled. | |
2251 | */ | |
2252 | static int sched_balance_self(int cpu, int flag) | |
2253 | { | |
2254 | struct task_struct *t = current; | |
2255 | struct sched_domain *tmp, *sd = NULL; | |
147cbb4b | 2256 | |
c96d145e | 2257 | for_each_domain(cpu, tmp) { |
9761eea8 IM |
2258 | /* |
2259 | * If power savings logic is enabled for a domain, stop there. | |
2260 | */ | |
5c45bf27 SS |
2261 | if (tmp->flags & SD_POWERSAVINGS_BALANCE) |
2262 | break; | |
476d139c NP |
2263 | if (tmp->flags & flag) |
2264 | sd = tmp; | |
c96d145e | 2265 | } |
476d139c | 2266 | |
039a1c41 PZ |
2267 | if (sd) |
2268 | update_shares(sd); | |
2269 | ||
476d139c | 2270 | while (sd) { |
476d139c | 2271 | struct sched_group *group; |
1a848870 SS |
2272 | int new_cpu, weight; |
2273 | ||
2274 | if (!(sd->flags & flag)) { | |
2275 | sd = sd->child; | |
2276 | continue; | |
2277 | } | |
476d139c | 2278 | |
476d139c | 2279 | group = find_idlest_group(sd, t, cpu); |
1a848870 SS |
2280 | if (!group) { |
2281 | sd = sd->child; | |
2282 | continue; | |
2283 | } | |
476d139c | 2284 | |
758b2cdc | 2285 | new_cpu = find_idlest_cpu(group, t, cpu); |
1a848870 SS |
2286 | if (new_cpu == -1 || new_cpu == cpu) { |
2287 | /* Now try balancing at a lower domain level of cpu */ | |
2288 | sd = sd->child; | |
2289 | continue; | |
2290 | } | |
476d139c | 2291 | |
1a848870 | 2292 | /* Now try balancing at a lower domain level of new_cpu */ |
476d139c | 2293 | cpu = new_cpu; |
758b2cdc | 2294 | weight = cpumask_weight(sched_domain_span(sd)); |
476d139c | 2295 | sd = NULL; |
476d139c | 2296 | for_each_domain(cpu, tmp) { |
758b2cdc | 2297 | if (weight <= cpumask_weight(sched_domain_span(tmp))) |
476d139c NP |
2298 | break; |
2299 | if (tmp->flags & flag) | |
2300 | sd = tmp; | |
2301 | } | |
2302 | /* while loop will break here if sd == NULL */ | |
2303 | } | |
2304 | ||
2305 | return cpu; | |
2306 | } | |
2307 | ||
2308 | #endif /* CONFIG_SMP */ | |
1da177e4 | 2309 | |
1da177e4 LT |
2310 | /*** |
2311 | * try_to_wake_up - wake up a thread | |
2312 | * @p: the to-be-woken-up thread | |
2313 | * @state: the mask of task states that can be woken | |
2314 | * @sync: do a synchronous wakeup? | |
2315 | * | |
2316 | * Put it on the run-queue if it's not already there. The "current" | |
2317 | * thread is always on the run-queue (except when the actual | |
2318 | * re-schedule is in progress), and as such you're allowed to do | |
2319 | * the simpler "current->state = TASK_RUNNING" to mark yourself | |
2320 | * runnable without the overhead of this. | |
2321 | * | |
2322 | * returns failure only if the task is already active. | |
2323 | */ | |
36c8b586 | 2324 | static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) |
1da177e4 | 2325 | { |
cc367732 | 2326 | int cpu, orig_cpu, this_cpu, success = 0; |
1da177e4 LT |
2327 | unsigned long flags; |
2328 | long old_state; | |
70b97a7f | 2329 | struct rq *rq; |
1da177e4 | 2330 | |
b85d0667 IM |
2331 | if (!sched_feat(SYNC_WAKEUPS)) |
2332 | sync = 0; | |
2333 | ||
2398f2c6 | 2334 | #ifdef CONFIG_SMP |
57310a98 | 2335 | if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) { |
2398f2c6 PZ |
2336 | struct sched_domain *sd; |
2337 | ||
2338 | this_cpu = raw_smp_processor_id(); | |
2339 | cpu = task_cpu(p); | |
2340 | ||
2341 | for_each_domain(this_cpu, sd) { | |
758b2cdc | 2342 | if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { |
2398f2c6 PZ |
2343 | update_shares(sd); |
2344 | break; | |
2345 | } | |
2346 | } | |
2347 | } | |
2348 | #endif | |
2349 | ||
04e2f174 | 2350 | smp_wmb(); |
1da177e4 | 2351 | rq = task_rq_lock(p, &flags); |
03e89e45 | 2352 | update_rq_clock(rq); |
1da177e4 LT |
2353 | old_state = p->state; |
2354 | if (!(old_state & state)) | |
2355 | goto out; | |
2356 | ||
dd41f596 | 2357 | if (p->se.on_rq) |
1da177e4 LT |
2358 | goto out_running; |
2359 | ||
2360 | cpu = task_cpu(p); | |
cc367732 | 2361 | orig_cpu = cpu; |
1da177e4 LT |
2362 | this_cpu = smp_processor_id(); |
2363 | ||
2364 | #ifdef CONFIG_SMP | |
2365 | if (unlikely(task_running(rq, p))) | |
2366 | goto out_activate; | |
2367 | ||
5d2f5a61 DA |
2368 | cpu = p->sched_class->select_task_rq(p, sync); |
2369 | if (cpu != orig_cpu) { | |
2370 | set_task_cpu(p, cpu); | |
1da177e4 LT |
2371 | task_rq_unlock(rq, &flags); |
2372 | /* might preempt at this point */ | |
2373 | rq = task_rq_lock(p, &flags); | |
2374 | old_state = p->state; | |
2375 | if (!(old_state & state)) | |
2376 | goto out; | |
dd41f596 | 2377 | if (p->se.on_rq) |
1da177e4 LT |
2378 | goto out_running; |
2379 | ||
2380 | this_cpu = smp_processor_id(); | |
2381 | cpu = task_cpu(p); | |
2382 | } | |
2383 | ||
e7693a36 GH |
2384 | #ifdef CONFIG_SCHEDSTATS |
2385 | schedstat_inc(rq, ttwu_count); | |
2386 | if (cpu == this_cpu) | |
2387 | schedstat_inc(rq, ttwu_local); | |
2388 | else { | |
2389 | struct sched_domain *sd; | |
2390 | for_each_domain(this_cpu, sd) { | |
758b2cdc | 2391 | if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { |
e7693a36 GH |
2392 | schedstat_inc(sd, ttwu_wake_remote); |
2393 | break; | |
2394 | } | |
2395 | } | |
2396 | } | |
6d6bc0ad | 2397 | #endif /* CONFIG_SCHEDSTATS */ |
e7693a36 | 2398 | |
1da177e4 LT |
2399 | out_activate: |
2400 | #endif /* CONFIG_SMP */ | |
cc367732 IM |
2401 | schedstat_inc(p, se.nr_wakeups); |
2402 | if (sync) | |
2403 | schedstat_inc(p, se.nr_wakeups_sync); | |
2404 | if (orig_cpu != cpu) | |
2405 | schedstat_inc(p, se.nr_wakeups_migrate); | |
2406 | if (cpu == this_cpu) | |
2407 | schedstat_inc(p, se.nr_wakeups_local); | |
2408 | else | |
2409 | schedstat_inc(p, se.nr_wakeups_remote); | |
dd41f596 | 2410 | activate_task(rq, p, 1); |
1da177e4 LT |
2411 | success = 1; |
2412 | ||
831451ac PZ |
2413 | /* |
2414 | * Only attribute actual wakeups done by this task. | |
2415 | */ | |
2416 | if (!in_interrupt()) { | |
2417 | struct sched_entity *se = ¤t->se; | |
2418 | u64 sample = se->sum_exec_runtime; | |
2419 | ||
2420 | if (se->last_wakeup) | |
2421 | sample -= se->last_wakeup; | |
2422 | else | |
2423 | sample -= se->start_runtime; | |
2424 | update_avg(&se->avg_wakeup, sample); | |
2425 | ||
2426 | se->last_wakeup = se->sum_exec_runtime; | |
2427 | } | |
2428 | ||
1da177e4 | 2429 | out_running: |
468a15bb | 2430 | trace_sched_wakeup(rq, p, success); |
15afe09b | 2431 | check_preempt_curr(rq, p, sync); |
4ae7d5ce | 2432 | |
1da177e4 | 2433 | p->state = TASK_RUNNING; |
9a897c5a SR |
2434 | #ifdef CONFIG_SMP |
2435 | if (p->sched_class->task_wake_up) | |
2436 | p->sched_class->task_wake_up(rq, p); | |
2437 | #endif | |
1da177e4 LT |
2438 | out: |
2439 | task_rq_unlock(rq, &flags); | |
2440 | ||
2441 | return success; | |
2442 | } | |
2443 | ||
7ad5b3a5 | 2444 | int wake_up_process(struct task_struct *p) |
1da177e4 | 2445 | { |
d9514f6c | 2446 | return try_to_wake_up(p, TASK_ALL, 0); |
1da177e4 | 2447 | } |
1da177e4 LT |
2448 | EXPORT_SYMBOL(wake_up_process); |
2449 | ||
7ad5b3a5 | 2450 | int wake_up_state(struct task_struct *p, unsigned int state) |
1da177e4 LT |
2451 | { |
2452 | return try_to_wake_up(p, state, 0); | |
2453 | } | |
2454 | ||
1da177e4 LT |
2455 | /* |
2456 | * Perform scheduler related setup for a newly forked process p. | |
2457 | * p is forked by current. | |
dd41f596 IM |
2458 | * |
2459 | * __sched_fork() is basic setup used by init_idle() too: | |
2460 | */ | |
2461 | static void __sched_fork(struct task_struct *p) | |
2462 | { | |
dd41f596 IM |
2463 | p->se.exec_start = 0; |
2464 | p->se.sum_exec_runtime = 0; | |
f6cf891c | 2465 | p->se.prev_sum_exec_runtime = 0; |
4ae7d5ce IM |
2466 | p->se.last_wakeup = 0; |
2467 | p->se.avg_overlap = 0; | |
831451ac PZ |
2468 | p->se.start_runtime = 0; |
2469 | p->se.avg_wakeup = sysctl_sched_wakeup_granularity; | |
6cfb0d5d IM |
2470 | |
2471 | #ifdef CONFIG_SCHEDSTATS | |
2472 | p->se.wait_start = 0; | |
dd41f596 IM |
2473 | p->se.sum_sleep_runtime = 0; |
2474 | p->se.sleep_start = 0; | |
dd41f596 IM |
2475 | p->se.block_start = 0; |
2476 | p->se.sleep_max = 0; | |
2477 | p->se.block_max = 0; | |
2478 | p->se.exec_max = 0; | |
eba1ed4b | 2479 | p->se.slice_max = 0; |
dd41f596 | 2480 | p->se.wait_max = 0; |
6cfb0d5d | 2481 | #endif |
476d139c | 2482 | |
fa717060 | 2483 | INIT_LIST_HEAD(&p->rt.run_list); |
dd41f596 | 2484 | p->se.on_rq = 0; |
4a55bd5e | 2485 | INIT_LIST_HEAD(&p->se.group_node); |
476d139c | 2486 | |
e107be36 AK |
2487 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
2488 | INIT_HLIST_HEAD(&p->preempt_notifiers); | |
2489 | #endif | |
2490 | ||
1da177e4 LT |
2491 | /* |
2492 | * We mark the process as running here, but have not actually | |
2493 | * inserted it onto the runqueue yet. This guarantees that | |
2494 | * nobody will actually run it, and a signal or other external | |
2495 | * event cannot wake it up and insert it on the runqueue either. | |
2496 | */ | |
2497 | p->state = TASK_RUNNING; | |
dd41f596 IM |
2498 | } |
2499 | ||
2500 | /* | |
2501 | * fork()/clone()-time setup: | |
2502 | */ | |
2503 | void sched_fork(struct task_struct *p, int clone_flags) | |
2504 | { | |
2505 | int cpu = get_cpu(); | |
2506 | ||
2507 | __sched_fork(p); | |
2508 | ||
2509 | #ifdef CONFIG_SMP | |
2510 | cpu = sched_balance_self(cpu, SD_BALANCE_FORK); | |
2511 | #endif | |
02e4bac2 | 2512 | set_task_cpu(p, cpu); |
b29739f9 IM |
2513 | |
2514 | /* | |
2515 | * Make sure we do not leak PI boosting priority to the child: | |
2516 | */ | |
2517 | p->prio = current->normal_prio; | |
2ddbf952 HS |
2518 | if (!rt_prio(p->prio)) |
2519 | p->sched_class = &fair_sched_class; | |
b29739f9 | 2520 | |
52f17b6c | 2521 | #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) |
dd41f596 | 2522 | if (likely(sched_info_on())) |
52f17b6c | 2523 | memset(&p->sched_info, 0, sizeof(p->sched_info)); |
1da177e4 | 2524 | #endif |
d6077cb8 | 2525 | #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) |
4866cde0 NP |
2526 | p->oncpu = 0; |
2527 | #endif | |
1da177e4 | 2528 | #ifdef CONFIG_PREEMPT |
4866cde0 | 2529 | /* Want to start with kernel preemption disabled. */ |
a1261f54 | 2530 | task_thread_info(p)->preempt_count = 1; |
1da177e4 | 2531 | #endif |
917b627d GH |
2532 | plist_node_init(&p->pushable_tasks, MAX_PRIO); |
2533 | ||
476d139c | 2534 | put_cpu(); |
1da177e4 LT |
2535 | } |
2536 | ||
2537 | /* | |
2538 | * wake_up_new_task - wake up a newly created task for the first time. | |
2539 | * | |
2540 | * This function will do some initial scheduler statistics housekeeping | |
2541 | * that must be done for every newly created context, then puts the task | |
2542 | * on the runqueue and wakes it. | |
2543 | */ | |
7ad5b3a5 | 2544 | void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) |
1da177e4 LT |
2545 | { |
2546 | unsigned long flags; | |
dd41f596 | 2547 | struct rq *rq; |
1da177e4 LT |
2548 | |
2549 | rq = task_rq_lock(p, &flags); | |
147cbb4b | 2550 | BUG_ON(p->state != TASK_RUNNING); |
a8e504d2 | 2551 | update_rq_clock(rq); |
1da177e4 LT |
2552 | |
2553 | p->prio = effective_prio(p); | |
2554 | ||
b9dca1e0 | 2555 | if (!p->sched_class->task_new || !current->se.on_rq) { |
dd41f596 | 2556 | activate_task(rq, p, 0); |
1da177e4 | 2557 | } else { |
1da177e4 | 2558 | /* |
dd41f596 IM |
2559 | * Let the scheduling class do new task startup |
2560 | * management (if any): | |
1da177e4 | 2561 | */ |
ee0827d8 | 2562 | p->sched_class->task_new(rq, p); |
c09595f6 | 2563 | inc_nr_running(rq); |
1da177e4 | 2564 | } |
c71dd42d | 2565 | trace_sched_wakeup_new(rq, p, 1); |
15afe09b | 2566 | check_preempt_curr(rq, p, 0); |
9a897c5a SR |
2567 | #ifdef CONFIG_SMP |
2568 | if (p->sched_class->task_wake_up) | |
2569 | p->sched_class->task_wake_up(rq, p); | |
2570 | #endif | |
dd41f596 | 2571 | task_rq_unlock(rq, &flags); |
1da177e4 LT |
2572 | } |
2573 | ||
e107be36 AK |
2574 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
2575 | ||
2576 | /** | |
421cee29 RD |
2577 | * preempt_notifier_register - tell me when current is being being preempted & rescheduled |
2578 | * @notifier: notifier struct to register | |
e107be36 AK |
2579 | */ |
2580 | void preempt_notifier_register(struct preempt_notifier *notifier) | |
2581 | { | |
2582 | hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); | |
2583 | } | |
2584 | EXPORT_SYMBOL_GPL(preempt_notifier_register); | |
2585 | ||
2586 | /** | |
2587 | * preempt_notifier_unregister - no longer interested in preemption notifications | |
421cee29 | 2588 | * @notifier: notifier struct to unregister |
e107be36 AK |
2589 | * |
2590 | * This is safe to call from within a preemption notifier. | |
2591 | */ | |
2592 | void preempt_notifier_unregister(struct preempt_notifier *notifier) | |
2593 | { | |
2594 | hlist_del(¬ifier->link); | |
2595 | } | |
2596 | EXPORT_SYMBOL_GPL(preempt_notifier_unregister); | |
2597 | ||
2598 | static void fire_sched_in_preempt_notifiers(struct task_struct *curr) | |
2599 | { | |
2600 | struct preempt_notifier *notifier; | |
2601 | struct hlist_node *node; | |
2602 | ||
2603 | hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) | |
2604 | notifier->ops->sched_in(notifier, raw_smp_processor_id()); | |
2605 | } | |
2606 | ||
2607 | static void | |
2608 | fire_sched_out_preempt_notifiers(struct task_struct *curr, | |
2609 | struct task_struct *next) | |
2610 | { | |
2611 | struct preempt_notifier *notifier; | |
2612 | struct hlist_node *node; | |
2613 | ||
2614 | hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) | |
2615 | notifier->ops->sched_out(notifier, next); | |
2616 | } | |
2617 | ||
6d6bc0ad | 2618 | #else /* !CONFIG_PREEMPT_NOTIFIERS */ |
e107be36 AK |
2619 | |
2620 | static void fire_sched_in_preempt_notifiers(struct task_struct *curr) | |
2621 | { | |
2622 | } | |
2623 | ||
2624 | static void | |
2625 | fire_sched_out_preempt_notifiers(struct task_struct *curr, | |
2626 | struct task_struct *next) | |
2627 | { | |
2628 | } | |
2629 | ||
6d6bc0ad | 2630 | #endif /* CONFIG_PREEMPT_NOTIFIERS */ |
e107be36 | 2631 | |
4866cde0 NP |
2632 | /** |
2633 | * prepare_task_switch - prepare to switch tasks | |
2634 | * @rq: the runqueue preparing to switch | |
421cee29 | 2635 | * @prev: the current task that is being switched out |
4866cde0 NP |
2636 | * @next: the task we are going to switch to. |
2637 | * | |
2638 | * This is called with the rq lock held and interrupts off. It must | |
2639 | * be paired with a subsequent finish_task_switch after the context | |
2640 | * switch. | |
2641 | * | |
2642 | * prepare_task_switch sets up locking and calls architecture specific | |
2643 | * hooks. | |
2644 | */ | |
e107be36 AK |
2645 | static inline void |
2646 | prepare_task_switch(struct rq *rq, struct task_struct *prev, | |
2647 | struct task_struct *next) | |
4866cde0 | 2648 | { |
e107be36 | 2649 | fire_sched_out_preempt_notifiers(prev, next); |
4866cde0 NP |
2650 | prepare_lock_switch(rq, next); |
2651 | prepare_arch_switch(next); | |
2652 | } | |
2653 | ||
1da177e4 LT |
2654 | /** |
2655 | * finish_task_switch - clean up after a task-switch | |
344babaa | 2656 | * @rq: runqueue associated with task-switch |
1da177e4 LT |
2657 | * @prev: the thread we just switched away from. |
2658 | * | |
4866cde0 NP |
2659 | * finish_task_switch must be called after the context switch, paired |
2660 | * with a prepare_task_switch call before the context switch. | |
2661 | * finish_task_switch will reconcile locking set up by prepare_task_switch, | |
2662 | * and do any other architecture-specific cleanup actions. | |
1da177e4 LT |
2663 | * |
2664 | * Note that we may have delayed dropping an mm in context_switch(). If | |
41a2d6cf | 2665 | * so, we finish that here outside of the runqueue lock. (Doing it |
1da177e4 LT |
2666 | * with the lock held can cause deadlocks; see schedule() for |
2667 | * details.) | |
2668 | */ | |
a9957449 | 2669 | static void finish_task_switch(struct rq *rq, struct task_struct *prev) |
1da177e4 LT |
2670 | __releases(rq->lock) |
2671 | { | |
1da177e4 | 2672 | struct mm_struct *mm = rq->prev_mm; |
55a101f8 | 2673 | long prev_state; |
967fc046 GH |
2674 | #ifdef CONFIG_SMP |
2675 | int post_schedule = 0; | |
2676 | ||
2677 | if (current->sched_class->needs_post_schedule) | |
2678 | post_schedule = current->sched_class->needs_post_schedule(rq); | |
2679 | #endif | |
1da177e4 LT |
2680 | |
2681 | rq->prev_mm = NULL; | |
2682 | ||
2683 | /* | |
2684 | * A task struct has one reference for the use as "current". | |
c394cc9f | 2685 | * If a task dies, then it sets TASK_DEAD in tsk->state and calls |
55a101f8 ON |
2686 | * schedule one last time. The schedule call will never return, and |
2687 | * the scheduled task must drop that reference. | |
c394cc9f | 2688 | * The test for TASK_DEAD must occur while the runqueue locks are |
1da177e4 LT |
2689 | * still held, otherwise prev could be scheduled on another cpu, die |
2690 | * there before we look at prev->state, and then the reference would | |
2691 | * be dropped twice. | |
2692 | * Manfred Spraul <[email protected]> | |
2693 | */ | |
55a101f8 | 2694 | prev_state = prev->state; |
4866cde0 NP |
2695 | finish_arch_switch(prev); |
2696 | finish_lock_switch(rq, prev); | |
9a897c5a | 2697 | #ifdef CONFIG_SMP |
967fc046 | 2698 | if (post_schedule) |
9a897c5a SR |
2699 | current->sched_class->post_schedule(rq); |
2700 | #endif | |
e8fa1362 | 2701 | |
e107be36 | 2702 | fire_sched_in_preempt_notifiers(current); |
1da177e4 LT |
2703 | if (mm) |
2704 | mmdrop(mm); | |
c394cc9f | 2705 | if (unlikely(prev_state == TASK_DEAD)) { |
c6fd91f0 | 2706 | /* |
2707 | * Remove function-return probe instances associated with this | |
2708 | * task and put them back on the free list. | |
9761eea8 | 2709 | */ |
c6fd91f0 | 2710 | kprobe_flush_task(prev); |
1da177e4 | 2711 | put_task_struct(prev); |
c6fd91f0 | 2712 | } |
1da177e4 LT |
2713 | } |
2714 | ||
2715 | /** | |
2716 | * schedule_tail - first thing a freshly forked thread must call. | |
2717 | * @prev: the thread we just switched away from. | |
2718 | */ | |
36c8b586 | 2719 | asmlinkage void schedule_tail(struct task_struct *prev) |
1da177e4 LT |
2720 | __releases(rq->lock) |
2721 | { | |
70b97a7f IM |
2722 | struct rq *rq = this_rq(); |
2723 | ||
4866cde0 NP |
2724 | finish_task_switch(rq, prev); |
2725 | #ifdef __ARCH_WANT_UNLOCKED_CTXSW | |
2726 | /* In this case, finish_task_switch does not reenable preemption */ | |
2727 | preempt_enable(); | |
2728 | #endif | |
1da177e4 | 2729 | if (current->set_child_tid) |
b488893a | 2730 | put_user(task_pid_vnr(current), current->set_child_tid); |
1da177e4 LT |
2731 | } |
2732 | ||
2733 | /* | |
2734 | * context_switch - switch to the new MM and the new | |
2735 | * thread's register state. | |
2736 | */ | |
dd41f596 | 2737 | static inline void |
70b97a7f | 2738 | context_switch(struct rq *rq, struct task_struct *prev, |
36c8b586 | 2739 | struct task_struct *next) |
1da177e4 | 2740 | { |
dd41f596 | 2741 | struct mm_struct *mm, *oldmm; |
1da177e4 | 2742 | |
e107be36 | 2743 | prepare_task_switch(rq, prev, next); |
0a16b607 | 2744 | trace_sched_switch(rq, prev, next); |
dd41f596 IM |
2745 | mm = next->mm; |
2746 | oldmm = prev->active_mm; | |
9226d125 ZA |
2747 | /* |
2748 | * For paravirt, this is coupled with an exit in switch_to to | |
2749 | * combine the page table reload and the switch backend into | |
2750 | * one hypercall. | |
2751 | */ | |
2752 | arch_enter_lazy_cpu_mode(); | |
2753 | ||
dd41f596 | 2754 | if (unlikely(!mm)) { |
1da177e4 LT |
2755 | next->active_mm = oldmm; |
2756 | atomic_inc(&oldmm->mm_count); | |
2757 | enter_lazy_tlb(oldmm, next); | |
2758 | } else | |
2759 | switch_mm(oldmm, mm, next); | |
2760 | ||
dd41f596 | 2761 | if (unlikely(!prev->mm)) { |
1da177e4 | 2762 | prev->active_mm = NULL; |
1da177e4 LT |
2763 | rq->prev_mm = oldmm; |
2764 | } | |
3a5f5e48 IM |
2765 | /* |
2766 | * Since the runqueue lock will be released by the next | |
2767 | * task (which is an invalid locking op but in the case | |
2768 | * of the scheduler it's an obvious special-case), so we | |
2769 | * do an early lockdep release here: | |
2770 | */ | |
2771 | #ifndef __ARCH_WANT_UNLOCKED_CTXSW | |
8a25d5de | 2772 | spin_release(&rq->lock.dep_map, 1, _THIS_IP_); |
3a5f5e48 | 2773 | #endif |
1da177e4 LT |
2774 | |
2775 | /* Here we just switch the register state and the stack. */ | |
2776 | switch_to(prev, next, prev); | |
2777 | ||
dd41f596 IM |
2778 | barrier(); |
2779 | /* | |
2780 | * this_rq must be evaluated again because prev may have moved | |
2781 | * CPUs since it called schedule(), thus the 'rq' on its stack | |
2782 | * frame will be invalid. | |
2783 | */ | |
2784 | finish_task_switch(this_rq(), prev); | |
1da177e4 LT |
2785 | } |
2786 | ||
2787 | /* | |
2788 | * nr_running, nr_uninterruptible and nr_context_switches: | |
2789 | * | |
2790 | * externally visible scheduler statistics: current number of runnable | |
2791 | * threads, current number of uninterruptible-sleeping threads, total | |
2792 | * number of context switches performed since bootup. | |
2793 | */ | |
2794 | unsigned long nr_running(void) | |
2795 | { | |
2796 | unsigned long i, sum = 0; | |
2797 | ||
2798 | for_each_online_cpu(i) | |
2799 | sum += cpu_rq(i)->nr_running; | |
2800 | ||
2801 | return sum; | |
2802 | } | |
2803 | ||
2804 | unsigned long nr_uninterruptible(void) | |
2805 | { | |
2806 | unsigned long i, sum = 0; | |
2807 | ||
0a945022 | 2808 | for_each_possible_cpu(i) |
1da177e4 LT |
2809 | sum += cpu_rq(i)->nr_uninterruptible; |
2810 | ||
2811 | /* | |
2812 | * Since we read the counters lockless, it might be slightly | |
2813 | * inaccurate. Do not allow it to go below zero though: | |
2814 | */ | |
2815 | if (unlikely((long)sum < 0)) | |
2816 | sum = 0; | |
2817 | ||
2818 | return sum; | |
2819 | } | |
2820 | ||
2821 | unsigned long long nr_context_switches(void) | |
2822 | { | |
cc94abfc SR |
2823 | int i; |
2824 | unsigned long long sum = 0; | |
1da177e4 | 2825 | |
0a945022 | 2826 | for_each_possible_cpu(i) |
1da177e4 LT |
2827 | sum += cpu_rq(i)->nr_switches; |
2828 | ||
2829 | return sum; | |
2830 | } | |
2831 | ||
2832 | unsigned long nr_iowait(void) | |
2833 | { | |
2834 | unsigned long i, sum = 0; | |
2835 | ||
0a945022 | 2836 | for_each_possible_cpu(i) |
1da177e4 LT |
2837 | sum += atomic_read(&cpu_rq(i)->nr_iowait); |
2838 | ||
2839 | return sum; | |
2840 | } | |
2841 | ||
db1b1fef JS |
2842 | unsigned long nr_active(void) |
2843 | { | |
2844 | unsigned long i, running = 0, uninterruptible = 0; | |
2845 | ||
2846 | for_each_online_cpu(i) { | |
2847 | running += cpu_rq(i)->nr_running; | |
2848 | uninterruptible += cpu_rq(i)->nr_uninterruptible; | |
2849 | } | |
2850 | ||
2851 | if (unlikely((long)uninterruptible < 0)) | |
2852 | uninterruptible = 0; | |
2853 | ||
2854 | return running + uninterruptible; | |
2855 | } | |
2856 | ||
48f24c4d | 2857 | /* |
dd41f596 IM |
2858 | * Update rq->cpu_load[] statistics. This function is usually called every |
2859 | * scheduler tick (TICK_NSEC). | |
48f24c4d | 2860 | */ |
dd41f596 | 2861 | static void update_cpu_load(struct rq *this_rq) |
48f24c4d | 2862 | { |
495eca49 | 2863 | unsigned long this_load = this_rq->load.weight; |
dd41f596 IM |
2864 | int i, scale; |
2865 | ||
2866 | this_rq->nr_load_updates++; | |
dd41f596 IM |
2867 | |
2868 | /* Update our load: */ | |
2869 | for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { | |
2870 | unsigned long old_load, new_load; | |
2871 | ||
2872 | /* scale is effectively 1 << i now, and >> i divides by scale */ | |
2873 | ||
2874 | old_load = this_rq->cpu_load[i]; | |
2875 | new_load = this_load; | |
a25707f3 IM |
2876 | /* |
2877 | * Round up the averaging division if load is increasing. This | |
2878 | * prevents us from getting stuck on 9 if the load is 10, for | |
2879 | * example. | |
2880 | */ | |
2881 | if (new_load > old_load) | |
2882 | new_load += scale-1; | |
dd41f596 IM |
2883 | this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i; |
2884 | } | |
48f24c4d IM |
2885 | } |
2886 | ||
dd41f596 IM |
2887 | #ifdef CONFIG_SMP |
2888 | ||
1da177e4 LT |
2889 | /* |
2890 | * double_rq_lock - safely lock two runqueues | |
2891 | * | |
2892 | * Note this does not disable interrupts like task_rq_lock, | |
2893 | * you need to do so manually before calling. | |
2894 | */ | |
70b97a7f | 2895 | static void double_rq_lock(struct rq *rq1, struct rq *rq2) |
1da177e4 LT |
2896 | __acquires(rq1->lock) |
2897 | __acquires(rq2->lock) | |
2898 | { | |
054b9108 | 2899 | BUG_ON(!irqs_disabled()); |
1da177e4 LT |
2900 | if (rq1 == rq2) { |
2901 | spin_lock(&rq1->lock); | |
2902 | __acquire(rq2->lock); /* Fake it out ;) */ | |
2903 | } else { | |
c96d145e | 2904 | if (rq1 < rq2) { |
1da177e4 | 2905 | spin_lock(&rq1->lock); |
5e710e37 | 2906 | spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); |
1da177e4 LT |
2907 | } else { |
2908 | spin_lock(&rq2->lock); | |
5e710e37 | 2909 | spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); |
1da177e4 LT |
2910 | } |
2911 | } | |
6e82a3be IM |
2912 | update_rq_clock(rq1); |
2913 | update_rq_clock(rq2); | |
1da177e4 LT |
2914 | } |
2915 | ||
2916 | /* | |
2917 | * double_rq_unlock - safely unlock two runqueues | |
2918 | * | |
2919 | * Note this does not restore interrupts like task_rq_unlock, | |
2920 | * you need to do so manually after calling. | |
2921 | */ | |
70b97a7f | 2922 | static void double_rq_unlock(struct rq *rq1, struct rq *rq2) |
1da177e4 LT |
2923 | __releases(rq1->lock) |
2924 | __releases(rq2->lock) | |
2925 | { | |
2926 | spin_unlock(&rq1->lock); | |
2927 | if (rq1 != rq2) | |
2928 | spin_unlock(&rq2->lock); | |
2929 | else | |
2930 | __release(rq2->lock); | |
2931 | } | |
2932 | ||
1da177e4 LT |
2933 | /* |
2934 | * If dest_cpu is allowed for this process, migrate the task to it. | |
2935 | * This is accomplished by forcing the cpu_allowed mask to only | |
41a2d6cf | 2936 | * allow dest_cpu, which will force the cpu onto dest_cpu. Then |
1da177e4 LT |
2937 | * the cpu_allowed mask is restored. |
2938 | */ | |
36c8b586 | 2939 | static void sched_migrate_task(struct task_struct *p, int dest_cpu) |
1da177e4 | 2940 | { |
70b97a7f | 2941 | struct migration_req req; |
1da177e4 | 2942 | unsigned long flags; |
70b97a7f | 2943 | struct rq *rq; |
1da177e4 LT |
2944 | |
2945 | rq = task_rq_lock(p, &flags); | |
96f874e2 | 2946 | if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed) |
e761b772 | 2947 | || unlikely(!cpu_active(dest_cpu))) |
1da177e4 LT |
2948 | goto out; |
2949 | ||
2950 | /* force the process onto the specified CPU */ | |
2951 | if (migrate_task(p, dest_cpu, &req)) { | |
2952 | /* Need to wait for migration thread (might exit: take ref). */ | |
2953 | struct task_struct *mt = rq->migration_thread; | |
36c8b586 | 2954 | |
1da177e4 LT |
2955 | get_task_struct(mt); |
2956 | task_rq_unlock(rq, &flags); | |
2957 | wake_up_process(mt); | |
2958 | put_task_struct(mt); | |
2959 | wait_for_completion(&req.done); | |
36c8b586 | 2960 | |
1da177e4 LT |
2961 | return; |
2962 | } | |
2963 | out: | |
2964 | task_rq_unlock(rq, &flags); | |
2965 | } | |
2966 | ||
2967 | /* | |
476d139c NP |
2968 | * sched_exec - execve() is a valuable balancing opportunity, because at |
2969 | * this point the task has the smallest effective memory and cache footprint. | |
1da177e4 LT |
2970 | */ |
2971 | void sched_exec(void) | |
2972 | { | |
1da177e4 | 2973 | int new_cpu, this_cpu = get_cpu(); |
476d139c | 2974 | new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC); |
1da177e4 | 2975 | put_cpu(); |
476d139c NP |
2976 | if (new_cpu != this_cpu) |
2977 | sched_migrate_task(current, new_cpu); | |
1da177e4 LT |
2978 | } |
2979 | ||
2980 | /* | |
2981 | * pull_task - move a task from a remote runqueue to the local runqueue. | |
2982 | * Both runqueues must be locked. | |
2983 | */ | |
dd41f596 IM |
2984 | static void pull_task(struct rq *src_rq, struct task_struct *p, |
2985 | struct rq *this_rq, int this_cpu) | |
1da177e4 | 2986 | { |
2e1cb74a | 2987 | deactivate_task(src_rq, p, 0); |
1da177e4 | 2988 | set_task_cpu(p, this_cpu); |
dd41f596 | 2989 | activate_task(this_rq, p, 0); |
1da177e4 LT |
2990 | /* |
2991 | * Note that idle threads have a prio of MAX_PRIO, for this test | |
2992 | * to be always true for them. | |
2993 | */ | |
15afe09b | 2994 | check_preempt_curr(this_rq, p, 0); |
1da177e4 LT |
2995 | } |
2996 | ||
2997 | /* | |
2998 | * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? | |
2999 | */ | |
858119e1 | 3000 | static |
70b97a7f | 3001 | int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, |
d15bcfdb | 3002 | struct sched_domain *sd, enum cpu_idle_type idle, |
95cdf3b7 | 3003 | int *all_pinned) |
1da177e4 LT |
3004 | { |
3005 | /* | |
3006 | * We do not migrate tasks that are: | |
3007 | * 1) running (obviously), or | |
3008 | * 2) cannot be migrated to this CPU due to cpus_allowed, or | |
3009 | * 3) are cache-hot on their current CPU. | |
3010 | */ | |
96f874e2 | 3011 | if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) { |
cc367732 | 3012 | schedstat_inc(p, se.nr_failed_migrations_affine); |
1da177e4 | 3013 | return 0; |
cc367732 | 3014 | } |
81026794 NP |
3015 | *all_pinned = 0; |
3016 | ||
cc367732 IM |
3017 | if (task_running(rq, p)) { |
3018 | schedstat_inc(p, se.nr_failed_migrations_running); | |
81026794 | 3019 | return 0; |
cc367732 | 3020 | } |
1da177e4 | 3021 | |
da84d961 IM |
3022 | /* |
3023 | * Aggressive migration if: | |
3024 | * 1) task is cache cold, or | |
3025 | * 2) too many balance attempts have failed. | |
3026 | */ | |
3027 | ||
6bc1665b IM |
3028 | if (!task_hot(p, rq->clock, sd) || |
3029 | sd->nr_balance_failed > sd->cache_nice_tries) { | |
da84d961 | 3030 | #ifdef CONFIG_SCHEDSTATS |
cc367732 | 3031 | if (task_hot(p, rq->clock, sd)) { |
da84d961 | 3032 | schedstat_inc(sd, lb_hot_gained[idle]); |
cc367732 IM |
3033 | schedstat_inc(p, se.nr_forced_migrations); |
3034 | } | |
da84d961 IM |
3035 | #endif |
3036 | return 1; | |
3037 | } | |
3038 | ||
cc367732 IM |
3039 | if (task_hot(p, rq->clock, sd)) { |
3040 | schedstat_inc(p, se.nr_failed_migrations_hot); | |
da84d961 | 3041 | return 0; |
cc367732 | 3042 | } |
1da177e4 LT |
3043 | return 1; |
3044 | } | |
3045 | ||
e1d1484f PW |
3046 | static unsigned long |
3047 | balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | |
3048 | unsigned long max_load_move, struct sched_domain *sd, | |
3049 | enum cpu_idle_type idle, int *all_pinned, | |
3050 | int *this_best_prio, struct rq_iterator *iterator) | |
1da177e4 | 3051 | { |
051c6764 | 3052 | int loops = 0, pulled = 0, pinned = 0; |
dd41f596 IM |
3053 | struct task_struct *p; |
3054 | long rem_load_move = max_load_move; | |
1da177e4 | 3055 | |
e1d1484f | 3056 | if (max_load_move == 0) |
1da177e4 LT |
3057 | goto out; |
3058 | ||
81026794 NP |
3059 | pinned = 1; |
3060 | ||
1da177e4 | 3061 | /* |
dd41f596 | 3062 | * Start the load-balancing iterator: |
1da177e4 | 3063 | */ |
dd41f596 IM |
3064 | p = iterator->start(iterator->arg); |
3065 | next: | |
b82d9fdd | 3066 | if (!p || loops++ > sysctl_sched_nr_migrate) |
1da177e4 | 3067 | goto out; |
051c6764 PZ |
3068 | |
3069 | if ((p->se.load.weight >> 1) > rem_load_move || | |
dd41f596 | 3070 | !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { |
dd41f596 IM |
3071 | p = iterator->next(iterator->arg); |
3072 | goto next; | |
1da177e4 LT |
3073 | } |
3074 | ||
dd41f596 | 3075 | pull_task(busiest, p, this_rq, this_cpu); |
1da177e4 | 3076 | pulled++; |
dd41f596 | 3077 | rem_load_move -= p->se.load.weight; |
1da177e4 | 3078 | |
7e96fa58 GH |
3079 | #ifdef CONFIG_PREEMPT |
3080 | /* | |
3081 | * NEWIDLE balancing is a source of latency, so preemptible kernels | |
3082 | * will stop after the first task is pulled to minimize the critical | |
3083 | * section. | |
3084 | */ | |
3085 | if (idle == CPU_NEWLY_IDLE) | |
3086 | goto out; | |
3087 | #endif | |
3088 | ||
2dd73a4f | 3089 | /* |
b82d9fdd | 3090 | * We only want to steal up to the prescribed amount of weighted load. |
2dd73a4f | 3091 | */ |
e1d1484f | 3092 | if (rem_load_move > 0) { |
a4ac01c3 PW |
3093 | if (p->prio < *this_best_prio) |
3094 | *this_best_prio = p->prio; | |
dd41f596 IM |
3095 | p = iterator->next(iterator->arg); |
3096 | goto next; | |
1da177e4 LT |
3097 | } |
3098 | out: | |
3099 | /* | |
e1d1484f | 3100 | * Right now, this is one of only two places pull_task() is called, |
1da177e4 LT |
3101 | * so we can safely collect pull_task() stats here rather than |
3102 | * inside pull_task(). | |
3103 | */ | |
3104 | schedstat_add(sd, lb_gained[idle], pulled); | |
81026794 NP |
3105 | |
3106 | if (all_pinned) | |
3107 | *all_pinned = pinned; | |
e1d1484f PW |
3108 | |
3109 | return max_load_move - rem_load_move; | |
1da177e4 LT |
3110 | } |
3111 | ||
dd41f596 | 3112 | /* |
43010659 PW |
3113 | * move_tasks tries to move up to max_load_move weighted load from busiest to |
3114 | * this_rq, as part of a balancing operation within domain "sd". | |
3115 | * Returns 1 if successful and 0 otherwise. | |
dd41f596 IM |
3116 | * |
3117 | * Called with both runqueues locked. | |
3118 | */ | |
3119 | static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | |
43010659 | 3120 | unsigned long max_load_move, |
dd41f596 IM |
3121 | struct sched_domain *sd, enum cpu_idle_type idle, |
3122 | int *all_pinned) | |
3123 | { | |
5522d5d5 | 3124 | const struct sched_class *class = sched_class_highest; |
43010659 | 3125 | unsigned long total_load_moved = 0; |
a4ac01c3 | 3126 | int this_best_prio = this_rq->curr->prio; |
dd41f596 IM |
3127 | |
3128 | do { | |
43010659 PW |
3129 | total_load_moved += |
3130 | class->load_balance(this_rq, this_cpu, busiest, | |
e1d1484f | 3131 | max_load_move - total_load_moved, |
a4ac01c3 | 3132 | sd, idle, all_pinned, &this_best_prio); |
dd41f596 | 3133 | class = class->next; |
c4acb2c0 | 3134 | |
7e96fa58 GH |
3135 | #ifdef CONFIG_PREEMPT |
3136 | /* | |
3137 | * NEWIDLE balancing is a source of latency, so preemptible | |
3138 | * kernels will stop after the first task is pulled to minimize | |
3139 | * the critical section. | |
3140 | */ | |
c4acb2c0 GH |
3141 | if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) |
3142 | break; | |
7e96fa58 | 3143 | #endif |
43010659 | 3144 | } while (class && max_load_move > total_load_moved); |
dd41f596 | 3145 | |
43010659 PW |
3146 | return total_load_moved > 0; |
3147 | } | |
3148 | ||
e1d1484f PW |
3149 | static int |
3150 | iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | |
3151 | struct sched_domain *sd, enum cpu_idle_type idle, | |
3152 | struct rq_iterator *iterator) | |
3153 | { | |
3154 | struct task_struct *p = iterator->start(iterator->arg); | |
3155 | int pinned = 0; | |
3156 | ||
3157 | while (p) { | |
3158 | if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { | |
3159 | pull_task(busiest, p, this_rq, this_cpu); | |
3160 | /* | |
3161 | * Right now, this is only the second place pull_task() | |
3162 | * is called, so we can safely collect pull_task() | |
3163 | * stats here rather than inside pull_task(). | |
3164 | */ | |
3165 | schedstat_inc(sd, lb_gained[idle]); | |
3166 | ||
3167 | return 1; | |
3168 | } | |
3169 | p = iterator->next(iterator->arg); | |
3170 | } | |
3171 | ||
3172 | return 0; | |
3173 | } | |
3174 | ||
43010659 PW |
3175 | /* |
3176 | * move_one_task tries to move exactly one task from busiest to this_rq, as | |
3177 | * part of active balancing operations within "domain". | |
3178 | * Returns 1 if successful and 0 otherwise. | |
3179 | * | |
3180 | * Called with both runqueues locked. | |
3181 | */ | |
3182 | static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | |
3183 | struct sched_domain *sd, enum cpu_idle_type idle) | |
3184 | { | |
5522d5d5 | 3185 | const struct sched_class *class; |
43010659 PW |
3186 | |
3187 | for (class = sched_class_highest; class; class = class->next) | |
e1d1484f | 3188 | if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle)) |
43010659 PW |
3189 | return 1; |
3190 | ||
3191 | return 0; | |
dd41f596 IM |
3192 | } |
3193 | ||
1da177e4 LT |
3194 | /* |
3195 | * find_busiest_group finds and returns the busiest CPU group within the | |
48f24c4d IM |
3196 | * domain. It calculates and returns the amount of weighted load which |
3197 | * should be moved to restore balance via the imbalance parameter. | |
1da177e4 LT |
3198 | */ |
3199 | static struct sched_group * | |
3200 | find_busiest_group(struct sched_domain *sd, int this_cpu, | |
dd41f596 | 3201 | unsigned long *imbalance, enum cpu_idle_type idle, |
96f874e2 | 3202 | int *sd_idle, const struct cpumask *cpus, int *balance) |
1da177e4 LT |
3203 | { |
3204 | struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups; | |
3205 | unsigned long max_load, avg_load, total_load, this_load, total_pwr; | |
0c117f1b | 3206 | unsigned long max_pull; |
2dd73a4f PW |
3207 | unsigned long busiest_load_per_task, busiest_nr_running; |
3208 | unsigned long this_load_per_task, this_nr_running; | |
908a7c1b | 3209 | int load_idx, group_imb = 0; |
5c45bf27 SS |
3210 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
3211 | int power_savings_balance = 1; | |
3212 | unsigned long leader_nr_running = 0, min_load_per_task = 0; | |
3213 | unsigned long min_nr_running = ULONG_MAX; | |
3214 | struct sched_group *group_min = NULL, *group_leader = NULL; | |
3215 | #endif | |
1da177e4 LT |
3216 | |
3217 | max_load = this_load = total_load = total_pwr = 0; | |
2dd73a4f PW |
3218 | busiest_load_per_task = busiest_nr_running = 0; |
3219 | this_load_per_task = this_nr_running = 0; | |
408ed066 | 3220 | |
d15bcfdb | 3221 | if (idle == CPU_NOT_IDLE) |
7897986b | 3222 | load_idx = sd->busy_idx; |
d15bcfdb | 3223 | else if (idle == CPU_NEWLY_IDLE) |
7897986b NP |
3224 | load_idx = sd->newidle_idx; |
3225 | else | |
3226 | load_idx = sd->idle_idx; | |
1da177e4 LT |
3227 | |
3228 | do { | |
908a7c1b | 3229 | unsigned long load, group_capacity, max_cpu_load, min_cpu_load; |
1da177e4 LT |
3230 | int local_group; |
3231 | int i; | |
908a7c1b | 3232 | int __group_imb = 0; |
783609c6 | 3233 | unsigned int balance_cpu = -1, first_idle_cpu = 0; |
2dd73a4f | 3234 | unsigned long sum_nr_running, sum_weighted_load; |
408ed066 PZ |
3235 | unsigned long sum_avg_load_per_task; |
3236 | unsigned long avg_load_per_task; | |
1da177e4 | 3237 | |
758b2cdc RR |
3238 | local_group = cpumask_test_cpu(this_cpu, |
3239 | sched_group_cpus(group)); | |
1da177e4 | 3240 | |
783609c6 | 3241 | if (local_group) |
758b2cdc | 3242 | balance_cpu = cpumask_first(sched_group_cpus(group)); |
783609c6 | 3243 | |
1da177e4 | 3244 | /* Tally up the load of all CPUs in the group */ |
2dd73a4f | 3245 | sum_weighted_load = sum_nr_running = avg_load = 0; |
408ed066 PZ |
3246 | sum_avg_load_per_task = avg_load_per_task = 0; |
3247 | ||
908a7c1b KC |
3248 | max_cpu_load = 0; |
3249 | min_cpu_load = ~0UL; | |
1da177e4 | 3250 | |
758b2cdc RR |
3251 | for_each_cpu_and(i, sched_group_cpus(group), cpus) { |
3252 | struct rq *rq = cpu_rq(i); | |
2dd73a4f | 3253 | |
9439aab8 | 3254 | if (*sd_idle && rq->nr_running) |
5969fe06 NP |
3255 | *sd_idle = 0; |
3256 | ||
1da177e4 | 3257 | /* Bias balancing toward cpus of our domain */ |
783609c6 SS |
3258 | if (local_group) { |
3259 | if (idle_cpu(i) && !first_idle_cpu) { | |
3260 | first_idle_cpu = 1; | |
3261 | balance_cpu = i; | |
3262 | } | |
3263 | ||
a2000572 | 3264 | load = target_load(i, load_idx); |
908a7c1b | 3265 | } else { |
a2000572 | 3266 | load = source_load(i, load_idx); |
908a7c1b KC |
3267 | if (load > max_cpu_load) |
3268 | max_cpu_load = load; | |
3269 | if (min_cpu_load > load) | |
3270 | min_cpu_load = load; | |
3271 | } | |
1da177e4 LT |
3272 | |
3273 | avg_load += load; | |
2dd73a4f | 3274 | sum_nr_running += rq->nr_running; |
dd41f596 | 3275 | sum_weighted_load += weighted_cpuload(i); |
408ed066 PZ |
3276 | |
3277 | sum_avg_load_per_task += cpu_avg_load_per_task(i); | |
1da177e4 LT |
3278 | } |
3279 | ||
783609c6 SS |
3280 | /* |
3281 | * First idle cpu or the first cpu(busiest) in this sched group | |
3282 | * is eligible for doing load balancing at this and above | |
9439aab8 SS |
3283 | * domains. In the newly idle case, we will allow all the cpu's |
3284 | * to do the newly idle load balance. | |
783609c6 | 3285 | */ |
9439aab8 SS |
3286 | if (idle != CPU_NEWLY_IDLE && local_group && |
3287 | balance_cpu != this_cpu && balance) { | |
783609c6 SS |
3288 | *balance = 0; |
3289 | goto ret; | |
3290 | } | |
3291 | ||
1da177e4 | 3292 | total_load += avg_load; |
5517d86b | 3293 | total_pwr += group->__cpu_power; |
1da177e4 LT |
3294 | |
3295 | /* Adjust by relative CPU power of the group */ | |
5517d86b ED |
3296 | avg_load = sg_div_cpu_power(group, |
3297 | avg_load * SCHED_LOAD_SCALE); | |
1da177e4 | 3298 | |
408ed066 PZ |
3299 | |
3300 | /* | |
3301 | * Consider the group unbalanced when the imbalance is larger | |
3302 | * than the average weight of two tasks. | |
3303 | * | |
3304 | * APZ: with cgroup the avg task weight can vary wildly and | |
3305 | * might not be a suitable number - should we keep a | |
3306 | * normalized nr_running number somewhere that negates | |
3307 | * the hierarchy? | |
3308 | */ | |
3309 | avg_load_per_task = sg_div_cpu_power(group, | |
3310 | sum_avg_load_per_task * SCHED_LOAD_SCALE); | |
3311 | ||
3312 | if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) | |
908a7c1b KC |
3313 | __group_imb = 1; |
3314 | ||
5517d86b | 3315 | group_capacity = group->__cpu_power / SCHED_LOAD_SCALE; |
5c45bf27 | 3316 | |
1da177e4 LT |
3317 | if (local_group) { |
3318 | this_load = avg_load; | |
3319 | this = group; | |
2dd73a4f PW |
3320 | this_nr_running = sum_nr_running; |
3321 | this_load_per_task = sum_weighted_load; | |
3322 | } else if (avg_load > max_load && | |
908a7c1b | 3323 | (sum_nr_running > group_capacity || __group_imb)) { |
1da177e4 LT |
3324 | max_load = avg_load; |
3325 | busiest = group; | |
2dd73a4f PW |
3326 | busiest_nr_running = sum_nr_running; |
3327 | busiest_load_per_task = sum_weighted_load; | |
908a7c1b | 3328 | group_imb = __group_imb; |
1da177e4 | 3329 | } |
5c45bf27 SS |
3330 | |
3331 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | |
3332 | /* | |
3333 | * Busy processors will not participate in power savings | |
3334 | * balance. | |
3335 | */ | |
dd41f596 IM |
3336 | if (idle == CPU_NOT_IDLE || |
3337 | !(sd->flags & SD_POWERSAVINGS_BALANCE)) | |
3338 | goto group_next; | |
5c45bf27 SS |
3339 | |
3340 | /* | |
3341 | * If the local group is idle or completely loaded | |
3342 | * no need to do power savings balance at this domain | |
3343 | */ | |
3344 | if (local_group && (this_nr_running >= group_capacity || | |
3345 | !this_nr_running)) | |
3346 | power_savings_balance = 0; | |
3347 | ||
dd41f596 | 3348 | /* |
5c45bf27 SS |
3349 | * If a group is already running at full capacity or idle, |
3350 | * don't include that group in power savings calculations | |
dd41f596 IM |
3351 | */ |
3352 | if (!power_savings_balance || sum_nr_running >= group_capacity | |
5c45bf27 | 3353 | || !sum_nr_running) |
dd41f596 | 3354 | goto group_next; |
5c45bf27 | 3355 | |
dd41f596 | 3356 | /* |
5c45bf27 | 3357 | * Calculate the group which has the least non-idle load. |
dd41f596 IM |
3358 | * This is the group from where we need to pick up the load |
3359 | * for saving power | |
3360 | */ | |
3361 | if ((sum_nr_running < min_nr_running) || | |
3362 | (sum_nr_running == min_nr_running && | |
d5679bd1 | 3363 | cpumask_first(sched_group_cpus(group)) > |
758b2cdc | 3364 | cpumask_first(sched_group_cpus(group_min)))) { |
dd41f596 IM |
3365 | group_min = group; |
3366 | min_nr_running = sum_nr_running; | |
5c45bf27 SS |
3367 | min_load_per_task = sum_weighted_load / |
3368 | sum_nr_running; | |
dd41f596 | 3369 | } |
5c45bf27 | 3370 | |
dd41f596 | 3371 | /* |
5c45bf27 | 3372 | * Calculate the group which is almost near its |
dd41f596 IM |
3373 | * capacity but still has some space to pick up some load |
3374 | * from other group and save more power | |
3375 | */ | |
3376 | if (sum_nr_running <= group_capacity - 1) { | |
3377 | if (sum_nr_running > leader_nr_running || | |
3378 | (sum_nr_running == leader_nr_running && | |
d5679bd1 | 3379 | cpumask_first(sched_group_cpus(group)) < |
758b2cdc | 3380 | cpumask_first(sched_group_cpus(group_leader)))) { |
dd41f596 IM |
3381 | group_leader = group; |
3382 | leader_nr_running = sum_nr_running; | |
3383 | } | |
48f24c4d | 3384 | } |
5c45bf27 SS |
3385 | group_next: |
3386 | #endif | |
1da177e4 LT |
3387 | group = group->next; |
3388 | } while (group != sd->groups); | |
3389 | ||
2dd73a4f | 3390 | if (!busiest || this_load >= max_load || busiest_nr_running == 0) |
1da177e4 LT |
3391 | goto out_balanced; |
3392 | ||
3393 | avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr; | |
3394 | ||
3395 | if (this_load >= avg_load || | |
3396 | 100*max_load <= sd->imbalance_pct*this_load) | |
3397 | goto out_balanced; | |
3398 | ||
2dd73a4f | 3399 | busiest_load_per_task /= busiest_nr_running; |
908a7c1b KC |
3400 | if (group_imb) |
3401 | busiest_load_per_task = min(busiest_load_per_task, avg_load); | |
3402 | ||
1da177e4 LT |
3403 | /* |
3404 | * We're trying to get all the cpus to the average_load, so we don't | |
3405 | * want to push ourselves above the average load, nor do we wish to | |
3406 | * reduce the max loaded cpu below the average load, as either of these | |
3407 | * actions would just result in more rebalancing later, and ping-pong | |
3408 | * tasks around. Thus we look for the minimum possible imbalance. | |
3409 | * Negative imbalances (*we* are more loaded than anyone else) will | |
3410 | * be counted as no imbalance for these purposes -- we can't fix that | |
41a2d6cf | 3411 | * by pulling tasks to us. Be careful of negative numbers as they'll |
1da177e4 LT |
3412 | * appear as very large values with unsigned longs. |
3413 | */ | |
2dd73a4f PW |
3414 | if (max_load <= busiest_load_per_task) |
3415 | goto out_balanced; | |
3416 | ||
3417 | /* | |
3418 | * In the presence of smp nice balancing, certain scenarios can have | |
3419 | * max load less than avg load(as we skip the groups at or below | |
3420 | * its cpu_power, while calculating max_load..) | |
3421 | */ | |
3422 | if (max_load < avg_load) { | |
3423 | *imbalance = 0; | |
3424 | goto small_imbalance; | |
3425 | } | |
0c117f1b SS |
3426 | |
3427 | /* Don't want to pull so many tasks that a group would go idle */ | |
2dd73a4f | 3428 | max_pull = min(max_load - avg_load, max_load - busiest_load_per_task); |
0c117f1b | 3429 | |
1da177e4 | 3430 | /* How much load to actually move to equalise the imbalance */ |
5517d86b ED |
3431 | *imbalance = min(max_pull * busiest->__cpu_power, |
3432 | (avg_load - this_load) * this->__cpu_power) | |
1da177e4 LT |
3433 | / SCHED_LOAD_SCALE; |
3434 | ||
2dd73a4f PW |
3435 | /* |
3436 | * if *imbalance is less than the average load per runnable task | |
3437 | * there is no gaurantee that any tasks will be moved so we'll have | |
3438 | * a think about bumping its value to force at least one task to be | |
3439 | * moved | |
3440 | */ | |
7fd0d2dd | 3441 | if (*imbalance < busiest_load_per_task) { |
48f24c4d | 3442 | unsigned long tmp, pwr_now, pwr_move; |
2dd73a4f PW |
3443 | unsigned int imbn; |
3444 | ||
3445 | small_imbalance: | |
3446 | pwr_move = pwr_now = 0; | |
3447 | imbn = 2; | |
3448 | if (this_nr_running) { | |
3449 | this_load_per_task /= this_nr_running; | |
3450 | if (busiest_load_per_task > this_load_per_task) | |
3451 | imbn = 1; | |
3452 | } else | |
408ed066 | 3453 | this_load_per_task = cpu_avg_load_per_task(this_cpu); |
1da177e4 | 3454 | |
01c8c57d | 3455 | if (max_load - this_load + busiest_load_per_task >= |
dd41f596 | 3456 | busiest_load_per_task * imbn) { |
2dd73a4f | 3457 | *imbalance = busiest_load_per_task; |
1da177e4 LT |
3458 | return busiest; |
3459 | } | |
3460 | ||
3461 | /* | |
3462 | * OK, we don't have enough imbalance to justify moving tasks, | |
3463 | * however we may be able to increase total CPU power used by | |
3464 | * moving them. | |
3465 | */ | |
3466 | ||
5517d86b ED |
3467 | pwr_now += busiest->__cpu_power * |
3468 | min(busiest_load_per_task, max_load); | |
3469 | pwr_now += this->__cpu_power * | |
3470 | min(this_load_per_task, this_load); | |
1da177e4 LT |
3471 | pwr_now /= SCHED_LOAD_SCALE; |
3472 | ||
3473 | /* Amount of load we'd subtract */ | |
5517d86b ED |
3474 | tmp = sg_div_cpu_power(busiest, |
3475 | busiest_load_per_task * SCHED_LOAD_SCALE); | |
1da177e4 | 3476 | if (max_load > tmp) |
5517d86b | 3477 | pwr_move += busiest->__cpu_power * |
2dd73a4f | 3478 | min(busiest_load_per_task, max_load - tmp); |
1da177e4 LT |
3479 | |
3480 | /* Amount of load we'd add */ | |
5517d86b | 3481 | if (max_load * busiest->__cpu_power < |
33859f7f | 3482 | busiest_load_per_task * SCHED_LOAD_SCALE) |
5517d86b ED |
3483 | tmp = sg_div_cpu_power(this, |
3484 | max_load * busiest->__cpu_power); | |
1da177e4 | 3485 | else |
5517d86b ED |
3486 | tmp = sg_div_cpu_power(this, |
3487 | busiest_load_per_task * SCHED_LOAD_SCALE); | |
3488 | pwr_move += this->__cpu_power * | |
3489 | min(this_load_per_task, this_load + tmp); | |
1da177e4 LT |
3490 | pwr_move /= SCHED_LOAD_SCALE; |
3491 | ||
3492 | /* Move if we gain throughput */ | |
7fd0d2dd SS |
3493 | if (pwr_move > pwr_now) |
3494 | *imbalance = busiest_load_per_task; | |
1da177e4 LT |
3495 | } |
3496 | ||
1da177e4 LT |
3497 | return busiest; |
3498 | ||
3499 | out_balanced: | |
5c45bf27 | 3500 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
d15bcfdb | 3501 | if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) |
5c45bf27 | 3502 | goto ret; |
1da177e4 | 3503 | |
5c45bf27 SS |
3504 | if (this == group_leader && group_leader != group_min) { |
3505 | *imbalance = min_load_per_task; | |
7a09b1a2 VS |
3506 | if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) { |
3507 | cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu = | |
9924da43 | 3508 | cpumask_first(sched_group_cpus(group_leader)); |
7a09b1a2 | 3509 | } |
5c45bf27 SS |
3510 | return group_min; |
3511 | } | |
5c45bf27 | 3512 | #endif |
783609c6 | 3513 | ret: |
1da177e4 LT |
3514 | *imbalance = 0; |
3515 | return NULL; | |
3516 | } | |
3517 | ||
3518 | /* | |
3519 | * find_busiest_queue - find the busiest runqueue among the cpus in group. | |
3520 | */ | |
70b97a7f | 3521 | static struct rq * |
d15bcfdb | 3522 | find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle, |
96f874e2 | 3523 | unsigned long imbalance, const struct cpumask *cpus) |
1da177e4 | 3524 | { |
70b97a7f | 3525 | struct rq *busiest = NULL, *rq; |
2dd73a4f | 3526 | unsigned long max_load = 0; |
1da177e4 LT |
3527 | int i; |
3528 | ||
758b2cdc | 3529 | for_each_cpu(i, sched_group_cpus(group)) { |
dd41f596 | 3530 | unsigned long wl; |
0a2966b4 | 3531 | |
96f874e2 | 3532 | if (!cpumask_test_cpu(i, cpus)) |
0a2966b4 CL |
3533 | continue; |
3534 | ||
48f24c4d | 3535 | rq = cpu_rq(i); |
dd41f596 | 3536 | wl = weighted_cpuload(i); |
2dd73a4f | 3537 | |
dd41f596 | 3538 | if (rq->nr_running == 1 && wl > imbalance) |
2dd73a4f | 3539 | continue; |
1da177e4 | 3540 | |
dd41f596 IM |
3541 | if (wl > max_load) { |
3542 | max_load = wl; | |
48f24c4d | 3543 | busiest = rq; |
1da177e4 LT |
3544 | } |
3545 | } | |
3546 | ||
3547 | return busiest; | |
3548 | } | |
3549 | ||
77391d71 NP |
3550 | /* |
3551 | * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but | |
3552 | * so long as it is large enough. | |
3553 | */ | |
3554 | #define MAX_PINNED_INTERVAL 512 | |
3555 | ||
1da177e4 LT |
3556 | /* |
3557 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | |
3558 | * tasks if there is an imbalance. | |
1da177e4 | 3559 | */ |
70b97a7f | 3560 | static int load_balance(int this_cpu, struct rq *this_rq, |
d15bcfdb | 3561 | struct sched_domain *sd, enum cpu_idle_type idle, |
96f874e2 | 3562 | int *balance, struct cpumask *cpus) |
1da177e4 | 3563 | { |
43010659 | 3564 | int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0; |
1da177e4 | 3565 | struct sched_group *group; |
1da177e4 | 3566 | unsigned long imbalance; |
70b97a7f | 3567 | struct rq *busiest; |
fe2eea3f | 3568 | unsigned long flags; |
5969fe06 | 3569 | |
96f874e2 | 3570 | cpumask_setall(cpus); |
7c16ec58 | 3571 | |
89c4710e SS |
3572 | /* |
3573 | * When power savings policy is enabled for the parent domain, idle | |
3574 | * sibling can pick up load irrespective of busy siblings. In this case, | |
dd41f596 | 3575 | * let the state of idle sibling percolate up as CPU_IDLE, instead of |
d15bcfdb | 3576 | * portraying it as CPU_NOT_IDLE. |
89c4710e | 3577 | */ |
d15bcfdb | 3578 | if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER && |
89c4710e | 3579 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) |
5969fe06 | 3580 | sd_idle = 1; |
1da177e4 | 3581 | |
2d72376b | 3582 | schedstat_inc(sd, lb_count[idle]); |
1da177e4 | 3583 | |
0a2966b4 | 3584 | redo: |
c8cba857 | 3585 | update_shares(sd); |
0a2966b4 | 3586 | group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle, |
7c16ec58 | 3587 | cpus, balance); |
783609c6 | 3588 | |
06066714 | 3589 | if (*balance == 0) |
783609c6 | 3590 | goto out_balanced; |
783609c6 | 3591 | |
1da177e4 LT |
3592 | if (!group) { |
3593 | schedstat_inc(sd, lb_nobusyg[idle]); | |
3594 | goto out_balanced; | |
3595 | } | |
3596 | ||
7c16ec58 | 3597 | busiest = find_busiest_queue(group, idle, imbalance, cpus); |
1da177e4 LT |
3598 | if (!busiest) { |
3599 | schedstat_inc(sd, lb_nobusyq[idle]); | |
3600 | goto out_balanced; | |
3601 | } | |
3602 | ||
db935dbd | 3603 | BUG_ON(busiest == this_rq); |
1da177e4 LT |
3604 | |
3605 | schedstat_add(sd, lb_imbalance[idle], imbalance); | |
3606 | ||
43010659 | 3607 | ld_moved = 0; |
1da177e4 LT |
3608 | if (busiest->nr_running > 1) { |
3609 | /* | |
3610 | * Attempt to move tasks. If find_busiest_group has found | |
3611 | * an imbalance but busiest->nr_running <= 1, the group is | |
43010659 | 3612 | * still unbalanced. ld_moved simply stays zero, so it is |
1da177e4 LT |
3613 | * correctly treated as an imbalance. |
3614 | */ | |
fe2eea3f | 3615 | local_irq_save(flags); |
e17224bf | 3616 | double_rq_lock(this_rq, busiest); |
43010659 | 3617 | ld_moved = move_tasks(this_rq, this_cpu, busiest, |
48f24c4d | 3618 | imbalance, sd, idle, &all_pinned); |
e17224bf | 3619 | double_rq_unlock(this_rq, busiest); |
fe2eea3f | 3620 | local_irq_restore(flags); |
81026794 | 3621 | |
46cb4b7c SS |
3622 | /* |
3623 | * some other cpu did the load balance for us. | |
3624 | */ | |
43010659 | 3625 | if (ld_moved && this_cpu != smp_processor_id()) |
46cb4b7c SS |
3626 | resched_cpu(this_cpu); |
3627 | ||
81026794 | 3628 | /* All tasks on this runqueue were pinned by CPU affinity */ |
0a2966b4 | 3629 | if (unlikely(all_pinned)) { |
96f874e2 RR |
3630 | cpumask_clear_cpu(cpu_of(busiest), cpus); |
3631 | if (!cpumask_empty(cpus)) | |
0a2966b4 | 3632 | goto redo; |
81026794 | 3633 | goto out_balanced; |
0a2966b4 | 3634 | } |
1da177e4 | 3635 | } |
81026794 | 3636 | |
43010659 | 3637 | if (!ld_moved) { |
1da177e4 LT |
3638 | schedstat_inc(sd, lb_failed[idle]); |
3639 | sd->nr_balance_failed++; | |
3640 | ||
3641 | if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) { | |
1da177e4 | 3642 | |
fe2eea3f | 3643 | spin_lock_irqsave(&busiest->lock, flags); |
fa3b6ddc SS |
3644 | |
3645 | /* don't kick the migration_thread, if the curr | |
3646 | * task on busiest cpu can't be moved to this_cpu | |
3647 | */ | |
96f874e2 RR |
3648 | if (!cpumask_test_cpu(this_cpu, |
3649 | &busiest->curr->cpus_allowed)) { | |
fe2eea3f | 3650 | spin_unlock_irqrestore(&busiest->lock, flags); |
fa3b6ddc SS |
3651 | all_pinned = 1; |
3652 | goto out_one_pinned; | |
3653 | } | |
3654 | ||
1da177e4 LT |
3655 | if (!busiest->active_balance) { |
3656 | busiest->active_balance = 1; | |
3657 | busiest->push_cpu = this_cpu; | |
81026794 | 3658 | active_balance = 1; |
1da177e4 | 3659 | } |
fe2eea3f | 3660 | spin_unlock_irqrestore(&busiest->lock, flags); |
81026794 | 3661 | if (active_balance) |
1da177e4 LT |
3662 | wake_up_process(busiest->migration_thread); |
3663 | ||
3664 | /* | |
3665 | * We've kicked active balancing, reset the failure | |
3666 | * counter. | |
3667 | */ | |
39507451 | 3668 | sd->nr_balance_failed = sd->cache_nice_tries+1; |
1da177e4 | 3669 | } |
81026794 | 3670 | } else |
1da177e4 LT |
3671 | sd->nr_balance_failed = 0; |
3672 | ||
81026794 | 3673 | if (likely(!active_balance)) { |
1da177e4 LT |
3674 | /* We were unbalanced, so reset the balancing interval */ |
3675 | sd->balance_interval = sd->min_interval; | |
81026794 NP |
3676 | } else { |
3677 | /* | |
3678 | * If we've begun active balancing, start to back off. This | |
3679 | * case may not be covered by the all_pinned logic if there | |
3680 | * is only 1 task on the busy runqueue (because we don't call | |
3681 | * move_tasks). | |
3682 | */ | |
3683 | if (sd->balance_interval < sd->max_interval) | |
3684 | sd->balance_interval *= 2; | |
1da177e4 LT |
3685 | } |
3686 | ||
43010659 | 3687 | if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER && |
89c4710e | 3688 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) |
c09595f6 PZ |
3689 | ld_moved = -1; |
3690 | ||
3691 | goto out; | |
1da177e4 LT |
3692 | |
3693 | out_balanced: | |
1da177e4 LT |
3694 | schedstat_inc(sd, lb_balanced[idle]); |
3695 | ||
16cfb1c0 | 3696 | sd->nr_balance_failed = 0; |
fa3b6ddc SS |
3697 | |
3698 | out_one_pinned: | |
1da177e4 | 3699 | /* tune up the balancing interval */ |
77391d71 NP |
3700 | if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) || |
3701 | (sd->balance_interval < sd->max_interval)) | |
1da177e4 LT |
3702 | sd->balance_interval *= 2; |
3703 | ||
48f24c4d | 3704 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && |
89c4710e | 3705 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) |
c09595f6 PZ |
3706 | ld_moved = -1; |
3707 | else | |
3708 | ld_moved = 0; | |
3709 | out: | |
c8cba857 PZ |
3710 | if (ld_moved) |
3711 | update_shares(sd); | |
c09595f6 | 3712 | return ld_moved; |
1da177e4 LT |
3713 | } |
3714 | ||
3715 | /* | |
3716 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | |
3717 | * tasks if there is an imbalance. | |
3718 | * | |
d15bcfdb | 3719 | * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE). |
1da177e4 LT |
3720 | * this_rq is locked. |
3721 | */ | |
48f24c4d | 3722 | static int |
7c16ec58 | 3723 | load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd, |
96f874e2 | 3724 | struct cpumask *cpus) |
1da177e4 LT |
3725 | { |
3726 | struct sched_group *group; | |
70b97a7f | 3727 | struct rq *busiest = NULL; |
1da177e4 | 3728 | unsigned long imbalance; |
43010659 | 3729 | int ld_moved = 0; |
5969fe06 | 3730 | int sd_idle = 0; |
969bb4e4 | 3731 | int all_pinned = 0; |
7c16ec58 | 3732 | |
96f874e2 | 3733 | cpumask_setall(cpus); |
5969fe06 | 3734 | |
89c4710e SS |
3735 | /* |
3736 | * When power savings policy is enabled for the parent domain, idle | |
3737 | * sibling can pick up load irrespective of busy siblings. In this case, | |
3738 | * let the state of idle sibling percolate up as IDLE, instead of | |
d15bcfdb | 3739 | * portraying it as CPU_NOT_IDLE. |
89c4710e SS |
3740 | */ |
3741 | if (sd->flags & SD_SHARE_CPUPOWER && | |
3742 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | |
5969fe06 | 3743 | sd_idle = 1; |
1da177e4 | 3744 | |
2d72376b | 3745 | schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]); |
0a2966b4 | 3746 | redo: |
3e5459b4 | 3747 | update_shares_locked(this_rq, sd); |
d15bcfdb | 3748 | group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE, |
7c16ec58 | 3749 | &sd_idle, cpus, NULL); |
1da177e4 | 3750 | if (!group) { |
d15bcfdb | 3751 | schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]); |
16cfb1c0 | 3752 | goto out_balanced; |
1da177e4 LT |
3753 | } |
3754 | ||
7c16ec58 | 3755 | busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus); |
db935dbd | 3756 | if (!busiest) { |
d15bcfdb | 3757 | schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]); |
16cfb1c0 | 3758 | goto out_balanced; |
1da177e4 LT |
3759 | } |
3760 | ||
db935dbd NP |
3761 | BUG_ON(busiest == this_rq); |
3762 | ||
d15bcfdb | 3763 | schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance); |
d6d5cfaf | 3764 | |
43010659 | 3765 | ld_moved = 0; |
d6d5cfaf NP |
3766 | if (busiest->nr_running > 1) { |
3767 | /* Attempt to move tasks */ | |
3768 | double_lock_balance(this_rq, busiest); | |
6e82a3be IM |
3769 | /* this_rq->clock is already updated */ |
3770 | update_rq_clock(busiest); | |
43010659 | 3771 | ld_moved = move_tasks(this_rq, this_cpu, busiest, |
969bb4e4 SS |
3772 | imbalance, sd, CPU_NEWLY_IDLE, |
3773 | &all_pinned); | |
1b12bbc7 | 3774 | double_unlock_balance(this_rq, busiest); |
0a2966b4 | 3775 | |
969bb4e4 | 3776 | if (unlikely(all_pinned)) { |
96f874e2 RR |
3777 | cpumask_clear_cpu(cpu_of(busiest), cpus); |
3778 | if (!cpumask_empty(cpus)) | |
0a2966b4 CL |
3779 | goto redo; |
3780 | } | |
d6d5cfaf NP |
3781 | } |
3782 | ||
43010659 | 3783 | if (!ld_moved) { |
36dffab6 | 3784 | int active_balance = 0; |
ad273b32 | 3785 | |
d15bcfdb | 3786 | schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]); |
89c4710e SS |
3787 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && |
3788 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | |
5969fe06 | 3789 | return -1; |
ad273b32 VS |
3790 | |
3791 | if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP) | |
3792 | return -1; | |
3793 | ||
3794 | if (sd->nr_balance_failed++ < 2) | |
3795 | return -1; | |
3796 | ||
3797 | /* | |
3798 | * The only task running in a non-idle cpu can be moved to this | |
3799 | * cpu in an attempt to completely freeup the other CPU | |
3800 | * package. The same method used to move task in load_balance() | |
3801 | * have been extended for load_balance_newidle() to speedup | |
3802 | * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2) | |
3803 | * | |
3804 | * The package power saving logic comes from | |
3805 | * find_busiest_group(). If there are no imbalance, then | |
3806 | * f_b_g() will return NULL. However when sched_mc={1,2} then | |
3807 | * f_b_g() will select a group from which a running task may be | |
3808 | * pulled to this cpu in order to make the other package idle. | |
3809 | * If there is no opportunity to make a package idle and if | |
3810 | * there are no imbalance, then f_b_g() will return NULL and no | |
3811 | * action will be taken in load_balance_newidle(). | |
3812 | * | |
3813 | * Under normal task pull operation due to imbalance, there | |
3814 | * will be more than one task in the source run queue and | |
3815 | * move_tasks() will succeed. ld_moved will be true and this | |
3816 | * active balance code will not be triggered. | |
3817 | */ | |
3818 | ||
3819 | /* Lock busiest in correct order while this_rq is held */ | |
3820 | double_lock_balance(this_rq, busiest); | |
3821 | ||
3822 | /* | |
3823 | * don't kick the migration_thread, if the curr | |
3824 | * task on busiest cpu can't be moved to this_cpu | |
3825 | */ | |
6ca09dfc | 3826 | if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) { |
ad273b32 VS |
3827 | double_unlock_balance(this_rq, busiest); |
3828 | all_pinned = 1; | |
3829 | return ld_moved; | |
3830 | } | |
3831 | ||
3832 | if (!busiest->active_balance) { | |
3833 | busiest->active_balance = 1; | |
3834 | busiest->push_cpu = this_cpu; | |
3835 | active_balance = 1; | |
3836 | } | |
3837 | ||
3838 | double_unlock_balance(this_rq, busiest); | |
da8d5089 PZ |
3839 | /* |
3840 | * Should not call ttwu while holding a rq->lock | |
3841 | */ | |
3842 | spin_unlock(&this_rq->lock); | |
ad273b32 VS |
3843 | if (active_balance) |
3844 | wake_up_process(busiest->migration_thread); | |
da8d5089 | 3845 | spin_lock(&this_rq->lock); |
ad273b32 | 3846 | |
5969fe06 | 3847 | } else |
16cfb1c0 | 3848 | sd->nr_balance_failed = 0; |
1da177e4 | 3849 | |
3e5459b4 | 3850 | update_shares_locked(this_rq, sd); |
43010659 | 3851 | return ld_moved; |
16cfb1c0 NP |
3852 | |
3853 | out_balanced: | |
d15bcfdb | 3854 | schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]); |
48f24c4d | 3855 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && |
89c4710e | 3856 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) |
5969fe06 | 3857 | return -1; |
16cfb1c0 | 3858 | sd->nr_balance_failed = 0; |
48f24c4d | 3859 | |
16cfb1c0 | 3860 | return 0; |
1da177e4 LT |
3861 | } |
3862 | ||
3863 | /* | |
3864 | * idle_balance is called by schedule() if this_cpu is about to become | |
3865 | * idle. Attempts to pull tasks from other CPUs. | |
3866 | */ | |
70b97a7f | 3867 | static void idle_balance(int this_cpu, struct rq *this_rq) |
1da177e4 LT |
3868 | { |
3869 | struct sched_domain *sd; | |
efbe027e | 3870 | int pulled_task = 0; |
dd41f596 | 3871 | unsigned long next_balance = jiffies + HZ; |
4d2732c6 RR |
3872 | cpumask_var_t tmpmask; |
3873 | ||
3874 | if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC)) | |
3875 | return; | |
1da177e4 LT |
3876 | |
3877 | for_each_domain(this_cpu, sd) { | |
92c4ca5c CL |
3878 | unsigned long interval; |
3879 | ||
3880 | if (!(sd->flags & SD_LOAD_BALANCE)) | |
3881 | continue; | |
3882 | ||
3883 | if (sd->flags & SD_BALANCE_NEWIDLE) | |
48f24c4d | 3884 | /* If we've pulled tasks over stop searching: */ |
7c16ec58 | 3885 | pulled_task = load_balance_newidle(this_cpu, this_rq, |
4d2732c6 | 3886 | sd, tmpmask); |
92c4ca5c CL |
3887 | |
3888 | interval = msecs_to_jiffies(sd->balance_interval); | |
3889 | if (time_after(next_balance, sd->last_balance + interval)) | |
3890 | next_balance = sd->last_balance + interval; | |
3891 | if (pulled_task) | |
3892 | break; | |
1da177e4 | 3893 | } |
dd41f596 | 3894 | if (pulled_task || time_after(jiffies, this_rq->next_balance)) { |
1bd77f2d CL |
3895 | /* |
3896 | * We are going idle. next_balance may be set based on | |
3897 | * a busy processor. So reset next_balance. | |
3898 | */ | |
3899 | this_rq->next_balance = next_balance; | |
dd41f596 | 3900 | } |
4d2732c6 | 3901 | free_cpumask_var(tmpmask); |
1da177e4 LT |
3902 | } |
3903 | ||
3904 | /* | |
3905 | * active_load_balance is run by migration threads. It pushes running tasks | |
3906 | * off the busiest CPU onto idle CPUs. It requires at least 1 task to be | |
3907 | * running on each physical CPU where possible, and avoids physical / | |
3908 | * logical imbalances. | |
3909 | * | |
3910 | * Called with busiest_rq locked. | |
3911 | */ | |
70b97a7f | 3912 | static void active_load_balance(struct rq *busiest_rq, int busiest_cpu) |
1da177e4 | 3913 | { |
39507451 | 3914 | int target_cpu = busiest_rq->push_cpu; |
70b97a7f IM |
3915 | struct sched_domain *sd; |
3916 | struct rq *target_rq; | |
39507451 | 3917 | |
48f24c4d | 3918 | /* Is there any task to move? */ |
39507451 | 3919 | if (busiest_rq->nr_running <= 1) |
39507451 NP |
3920 | return; |
3921 | ||
3922 | target_rq = cpu_rq(target_cpu); | |
1da177e4 LT |
3923 | |
3924 | /* | |
39507451 | 3925 | * This condition is "impossible", if it occurs |
41a2d6cf | 3926 | * we need to fix it. Originally reported by |
39507451 | 3927 | * Bjorn Helgaas on a 128-cpu setup. |
1da177e4 | 3928 | */ |
39507451 | 3929 | BUG_ON(busiest_rq == target_rq); |
1da177e4 | 3930 | |
39507451 NP |
3931 | /* move a task from busiest_rq to target_rq */ |
3932 | double_lock_balance(busiest_rq, target_rq); | |
6e82a3be IM |
3933 | update_rq_clock(busiest_rq); |
3934 | update_rq_clock(target_rq); | |
39507451 NP |
3935 | |
3936 | /* Search for an sd spanning us and the target CPU. */ | |
c96d145e | 3937 | for_each_domain(target_cpu, sd) { |
39507451 | 3938 | if ((sd->flags & SD_LOAD_BALANCE) && |
758b2cdc | 3939 | cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) |
39507451 | 3940 | break; |
c96d145e | 3941 | } |
39507451 | 3942 | |
48f24c4d | 3943 | if (likely(sd)) { |
2d72376b | 3944 | schedstat_inc(sd, alb_count); |
39507451 | 3945 | |
43010659 PW |
3946 | if (move_one_task(target_rq, target_cpu, busiest_rq, |
3947 | sd, CPU_IDLE)) | |
48f24c4d IM |
3948 | schedstat_inc(sd, alb_pushed); |
3949 | else | |
3950 | schedstat_inc(sd, alb_failed); | |
3951 | } | |
1b12bbc7 | 3952 | double_unlock_balance(busiest_rq, target_rq); |
1da177e4 LT |
3953 | } |
3954 | ||
46cb4b7c SS |
3955 | #ifdef CONFIG_NO_HZ |
3956 | static struct { | |
3957 | atomic_t load_balancer; | |
7d1e6a9b | 3958 | cpumask_var_t cpu_mask; |
46cb4b7c SS |
3959 | } nohz ____cacheline_aligned = { |
3960 | .load_balancer = ATOMIC_INIT(-1), | |
46cb4b7c SS |
3961 | }; |
3962 | ||
7835b98b | 3963 | /* |
46cb4b7c SS |
3964 | * This routine will try to nominate the ilb (idle load balancing) |
3965 | * owner among the cpus whose ticks are stopped. ilb owner will do the idle | |
3966 | * load balancing on behalf of all those cpus. If all the cpus in the system | |
3967 | * go into this tickless mode, then there will be no ilb owner (as there is | |
3968 | * no need for one) and all the cpus will sleep till the next wakeup event | |
3969 | * arrives... | |
3970 | * | |
3971 | * For the ilb owner, tick is not stopped. And this tick will be used | |
3972 | * for idle load balancing. ilb owner will still be part of | |
3973 | * nohz.cpu_mask.. | |
7835b98b | 3974 | * |
46cb4b7c SS |
3975 | * While stopping the tick, this cpu will become the ilb owner if there |
3976 | * is no other owner. And will be the owner till that cpu becomes busy | |
3977 | * or if all cpus in the system stop their ticks at which point | |
3978 | * there is no need for ilb owner. | |
3979 | * | |
3980 | * When the ilb owner becomes busy, it nominates another owner, during the | |
3981 | * next busy scheduler_tick() | |
3982 | */ | |
3983 | int select_nohz_load_balancer(int stop_tick) | |
3984 | { | |
3985 | int cpu = smp_processor_id(); | |
3986 | ||
3987 | if (stop_tick) { | |
46cb4b7c SS |
3988 | cpu_rq(cpu)->in_nohz_recently = 1; |
3989 | ||
483b4ee6 SS |
3990 | if (!cpu_active(cpu)) { |
3991 | if (atomic_read(&nohz.load_balancer) != cpu) | |
3992 | return 0; | |
3993 | ||
3994 | /* | |
3995 | * If we are going offline and still the leader, | |
3996 | * give up! | |
3997 | */ | |
46cb4b7c SS |
3998 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) |
3999 | BUG(); | |
483b4ee6 | 4000 | |
46cb4b7c SS |
4001 | return 0; |
4002 | } | |
4003 | ||
483b4ee6 SS |
4004 | cpumask_set_cpu(cpu, nohz.cpu_mask); |
4005 | ||
46cb4b7c | 4006 | /* time for ilb owner also to sleep */ |
7d1e6a9b | 4007 | if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) { |
46cb4b7c SS |
4008 | if (atomic_read(&nohz.load_balancer) == cpu) |
4009 | atomic_set(&nohz.load_balancer, -1); | |
4010 | return 0; | |
4011 | } | |
4012 | ||
4013 | if (atomic_read(&nohz.load_balancer) == -1) { | |
4014 | /* make me the ilb owner */ | |
4015 | if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1) | |
4016 | return 1; | |
4017 | } else if (atomic_read(&nohz.load_balancer) == cpu) | |
4018 | return 1; | |
4019 | } else { | |
7d1e6a9b | 4020 | if (!cpumask_test_cpu(cpu, nohz.cpu_mask)) |
46cb4b7c SS |
4021 | return 0; |
4022 | ||
7d1e6a9b | 4023 | cpumask_clear_cpu(cpu, nohz.cpu_mask); |
46cb4b7c SS |
4024 | |
4025 | if (atomic_read(&nohz.load_balancer) == cpu) | |
4026 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) | |
4027 | BUG(); | |
4028 | } | |
4029 | return 0; | |
4030 | } | |
4031 | #endif | |
4032 | ||
4033 | static DEFINE_SPINLOCK(balancing); | |
4034 | ||
4035 | /* | |
7835b98b CL |
4036 | * It checks each scheduling domain to see if it is due to be balanced, |
4037 | * and initiates a balancing operation if so. | |
4038 | * | |
4039 | * Balancing parameters are set up in arch_init_sched_domains. | |
4040 | */ | |
a9957449 | 4041 | static void rebalance_domains(int cpu, enum cpu_idle_type idle) |
7835b98b | 4042 | { |
46cb4b7c SS |
4043 | int balance = 1; |
4044 | struct rq *rq = cpu_rq(cpu); | |
7835b98b CL |
4045 | unsigned long interval; |
4046 | struct sched_domain *sd; | |
46cb4b7c | 4047 | /* Earliest time when we have to do rebalance again */ |
c9819f45 | 4048 | unsigned long next_balance = jiffies + 60*HZ; |
f549da84 | 4049 | int update_next_balance = 0; |
d07355f5 | 4050 | int need_serialize; |
a0e90245 RR |
4051 | cpumask_var_t tmp; |
4052 | ||
4053 | /* Fails alloc? Rebalancing probably not a priority right now. */ | |
4054 | if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) | |
4055 | return; | |
1da177e4 | 4056 | |
46cb4b7c | 4057 | for_each_domain(cpu, sd) { |
1da177e4 LT |
4058 | if (!(sd->flags & SD_LOAD_BALANCE)) |
4059 | continue; | |
4060 | ||
4061 | interval = sd->balance_interval; | |
d15bcfdb | 4062 | if (idle != CPU_IDLE) |
1da177e4 LT |
4063 | interval *= sd->busy_factor; |
4064 | ||
4065 | /* scale ms to jiffies */ | |
4066 | interval = msecs_to_jiffies(interval); | |
4067 | if (unlikely(!interval)) | |
4068 | interval = 1; | |
dd41f596 IM |
4069 | if (interval > HZ*NR_CPUS/10) |
4070 | interval = HZ*NR_CPUS/10; | |
4071 | ||
d07355f5 | 4072 | need_serialize = sd->flags & SD_SERIALIZE; |
1da177e4 | 4073 | |
d07355f5 | 4074 | if (need_serialize) { |
08c183f3 CL |
4075 | if (!spin_trylock(&balancing)) |
4076 | goto out; | |
4077 | } | |
4078 | ||
c9819f45 | 4079 | if (time_after_eq(jiffies, sd->last_balance + interval)) { |
a0e90245 | 4080 | if (load_balance(cpu, rq, sd, idle, &balance, tmp)) { |
fa3b6ddc SS |
4081 | /* |
4082 | * We've pulled tasks over so either we're no | |
5969fe06 NP |
4083 | * longer idle, or one of our SMT siblings is |
4084 | * not idle. | |
4085 | */ | |
d15bcfdb | 4086 | idle = CPU_NOT_IDLE; |
1da177e4 | 4087 | } |
1bd77f2d | 4088 | sd->last_balance = jiffies; |
1da177e4 | 4089 | } |
d07355f5 | 4090 | if (need_serialize) |
08c183f3 CL |
4091 | spin_unlock(&balancing); |
4092 | out: | |
f549da84 | 4093 | if (time_after(next_balance, sd->last_balance + interval)) { |
c9819f45 | 4094 | next_balance = sd->last_balance + interval; |
f549da84 SS |
4095 | update_next_balance = 1; |
4096 | } | |
783609c6 SS |
4097 | |
4098 | /* | |
4099 | * Stop the load balance at this level. There is another | |
4100 | * CPU in our sched group which is doing load balancing more | |
4101 | * actively. | |
4102 | */ | |
4103 | if (!balance) | |
4104 | break; | |
1da177e4 | 4105 | } |
f549da84 SS |
4106 | |
4107 | /* | |
4108 | * next_balance will be updated only when there is a need. | |
4109 | * When the cpu is attached to null domain for ex, it will not be | |
4110 | * updated. | |
4111 | */ | |
4112 | if (likely(update_next_balance)) | |
4113 | rq->next_balance = next_balance; | |
a0e90245 RR |
4114 | |
4115 | free_cpumask_var(tmp); | |
46cb4b7c SS |
4116 | } |
4117 | ||
4118 | /* | |
4119 | * run_rebalance_domains is triggered when needed from the scheduler tick. | |
4120 | * In CONFIG_NO_HZ case, the idle load balance owner will do the | |
4121 | * rebalancing for all the cpus for whom scheduler ticks are stopped. | |
4122 | */ | |
4123 | static void run_rebalance_domains(struct softirq_action *h) | |
4124 | { | |
dd41f596 IM |
4125 | int this_cpu = smp_processor_id(); |
4126 | struct rq *this_rq = cpu_rq(this_cpu); | |
4127 | enum cpu_idle_type idle = this_rq->idle_at_tick ? | |
4128 | CPU_IDLE : CPU_NOT_IDLE; | |
46cb4b7c | 4129 | |
dd41f596 | 4130 | rebalance_domains(this_cpu, idle); |
46cb4b7c SS |
4131 | |
4132 | #ifdef CONFIG_NO_HZ | |
4133 | /* | |
4134 | * If this cpu is the owner for idle load balancing, then do the | |
4135 | * balancing on behalf of the other idle cpus whose ticks are | |
4136 | * stopped. | |
4137 | */ | |
dd41f596 IM |
4138 | if (this_rq->idle_at_tick && |
4139 | atomic_read(&nohz.load_balancer) == this_cpu) { | |
46cb4b7c SS |
4140 | struct rq *rq; |
4141 | int balance_cpu; | |
4142 | ||
7d1e6a9b RR |
4143 | for_each_cpu(balance_cpu, nohz.cpu_mask) { |
4144 | if (balance_cpu == this_cpu) | |
4145 | continue; | |
4146 | ||
46cb4b7c SS |
4147 | /* |
4148 | * If this cpu gets work to do, stop the load balancing | |
4149 | * work being done for other cpus. Next load | |
4150 | * balancing owner will pick it up. | |
4151 | */ | |
4152 | if (need_resched()) | |
4153 | break; | |
4154 | ||
de0cf899 | 4155 | rebalance_domains(balance_cpu, CPU_IDLE); |
46cb4b7c SS |
4156 | |
4157 | rq = cpu_rq(balance_cpu); | |
dd41f596 IM |
4158 | if (time_after(this_rq->next_balance, rq->next_balance)) |
4159 | this_rq->next_balance = rq->next_balance; | |
46cb4b7c SS |
4160 | } |
4161 | } | |
4162 | #endif | |
4163 | } | |
4164 | ||
8a0be9ef FW |
4165 | static inline int on_null_domain(int cpu) |
4166 | { | |
4167 | return !rcu_dereference(cpu_rq(cpu)->sd); | |
4168 | } | |
4169 | ||
46cb4b7c SS |
4170 | /* |
4171 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. | |
4172 | * | |
4173 | * In case of CONFIG_NO_HZ, this is the place where we nominate a new | |
4174 | * idle load balancing owner or decide to stop the periodic load balancing, | |
4175 | * if the whole system is idle. | |
4176 | */ | |
dd41f596 | 4177 | static inline void trigger_load_balance(struct rq *rq, int cpu) |
46cb4b7c | 4178 | { |
46cb4b7c SS |
4179 | #ifdef CONFIG_NO_HZ |
4180 | /* | |
4181 | * If we were in the nohz mode recently and busy at the current | |
4182 | * scheduler tick, then check if we need to nominate new idle | |
4183 | * load balancer. | |
4184 | */ | |
4185 | if (rq->in_nohz_recently && !rq->idle_at_tick) { | |
4186 | rq->in_nohz_recently = 0; | |
4187 | ||
4188 | if (atomic_read(&nohz.load_balancer) == cpu) { | |
7d1e6a9b | 4189 | cpumask_clear_cpu(cpu, nohz.cpu_mask); |
46cb4b7c SS |
4190 | atomic_set(&nohz.load_balancer, -1); |
4191 | } | |
4192 | ||
4193 | if (atomic_read(&nohz.load_balancer) == -1) { | |
4194 | /* | |
4195 | * simple selection for now: Nominate the | |
4196 | * first cpu in the nohz list to be the next | |
4197 | * ilb owner. | |
4198 | * | |
4199 | * TBD: Traverse the sched domains and nominate | |
4200 | * the nearest cpu in the nohz.cpu_mask. | |
4201 | */ | |
7d1e6a9b | 4202 | int ilb = cpumask_first(nohz.cpu_mask); |
46cb4b7c | 4203 | |
434d53b0 | 4204 | if (ilb < nr_cpu_ids) |
46cb4b7c SS |
4205 | resched_cpu(ilb); |
4206 | } | |
4207 | } | |
4208 | ||
4209 | /* | |
4210 | * If this cpu is idle and doing idle load balancing for all the | |
4211 | * cpus with ticks stopped, is it time for that to stop? | |
4212 | */ | |
4213 | if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu && | |
7d1e6a9b | 4214 | cpumask_weight(nohz.cpu_mask) == num_online_cpus()) { |
46cb4b7c SS |
4215 | resched_cpu(cpu); |
4216 | return; | |
4217 | } | |
4218 | ||
4219 | /* | |
4220 | * If this cpu is idle and the idle load balancing is done by | |
4221 | * someone else, then no need raise the SCHED_SOFTIRQ | |
4222 | */ | |
4223 | if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu && | |
7d1e6a9b | 4224 | cpumask_test_cpu(cpu, nohz.cpu_mask)) |
46cb4b7c SS |
4225 | return; |
4226 | #endif | |
8a0be9ef FW |
4227 | /* Don't need to rebalance while attached to NULL domain */ |
4228 | if (time_after_eq(jiffies, rq->next_balance) && | |
4229 | likely(!on_null_domain(cpu))) | |
46cb4b7c | 4230 | raise_softirq(SCHED_SOFTIRQ); |
1da177e4 | 4231 | } |
dd41f596 IM |
4232 | |
4233 | #else /* CONFIG_SMP */ | |
4234 | ||
1da177e4 LT |
4235 | /* |
4236 | * on UP we do not need to balance between CPUs: | |
4237 | */ | |
70b97a7f | 4238 | static inline void idle_balance(int cpu, struct rq *rq) |
1da177e4 LT |
4239 | { |
4240 | } | |
dd41f596 | 4241 | |
1da177e4 LT |
4242 | #endif |
4243 | ||
1da177e4 LT |
4244 | DEFINE_PER_CPU(struct kernel_stat, kstat); |
4245 | ||
4246 | EXPORT_PER_CPU_SYMBOL(kstat); | |
4247 | ||
4248 | /* | |
f06febc9 FM |
4249 | * Return any ns on the sched_clock that have not yet been banked in |
4250 | * @p in case that task is currently running. | |
1da177e4 | 4251 | */ |
bb34d92f | 4252 | unsigned long long task_delta_exec(struct task_struct *p) |
1da177e4 | 4253 | { |
1da177e4 | 4254 | unsigned long flags; |
41b86e9c | 4255 | struct rq *rq; |
bb34d92f | 4256 | u64 ns = 0; |
48f24c4d | 4257 | |
41b86e9c | 4258 | rq = task_rq_lock(p, &flags); |
1508487e | 4259 | |
051a1d1a | 4260 | if (task_current(rq, p)) { |
f06febc9 FM |
4261 | u64 delta_exec; |
4262 | ||
a8e504d2 IM |
4263 | update_rq_clock(rq); |
4264 | delta_exec = rq->clock - p->se.exec_start; | |
41b86e9c | 4265 | if ((s64)delta_exec > 0) |
bb34d92f | 4266 | ns = delta_exec; |
41b86e9c | 4267 | } |
48f24c4d | 4268 | |
41b86e9c | 4269 | task_rq_unlock(rq, &flags); |
48f24c4d | 4270 | |
1da177e4 LT |
4271 | return ns; |
4272 | } | |
4273 | ||
1da177e4 LT |
4274 | /* |
4275 | * Account user cpu time to a process. | |
4276 | * @p: the process that the cpu time gets accounted to | |
1da177e4 | 4277 | * @cputime: the cpu time spent in user space since the last update |
457533a7 | 4278 | * @cputime_scaled: cputime scaled by cpu frequency |
1da177e4 | 4279 | */ |
457533a7 MS |
4280 | void account_user_time(struct task_struct *p, cputime_t cputime, |
4281 | cputime_t cputime_scaled) | |
1da177e4 LT |
4282 | { |
4283 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | |
4284 | cputime64_t tmp; | |
4285 | ||
457533a7 | 4286 | /* Add user time to process. */ |
1da177e4 | 4287 | p->utime = cputime_add(p->utime, cputime); |
457533a7 | 4288 | p->utimescaled = cputime_add(p->utimescaled, cputime_scaled); |
f06febc9 | 4289 | account_group_user_time(p, cputime); |
1da177e4 LT |
4290 | |
4291 | /* Add user time to cpustat. */ | |
4292 | tmp = cputime_to_cputime64(cputime); | |
4293 | if (TASK_NICE(p) > 0) | |
4294 | cpustat->nice = cputime64_add(cpustat->nice, tmp); | |
4295 | else | |
4296 | cpustat->user = cputime64_add(cpustat->user, tmp); | |
49b5cf34 JL |
4297 | /* Account for user time used */ |
4298 | acct_update_integrals(p); | |
1da177e4 LT |
4299 | } |
4300 | ||
94886b84 LV |
4301 | /* |
4302 | * Account guest cpu time to a process. | |
4303 | * @p: the process that the cpu time gets accounted to | |
4304 | * @cputime: the cpu time spent in virtual machine since the last update | |
457533a7 | 4305 | * @cputime_scaled: cputime scaled by cpu frequency |
94886b84 | 4306 | */ |
457533a7 MS |
4307 | static void account_guest_time(struct task_struct *p, cputime_t cputime, |
4308 | cputime_t cputime_scaled) | |
94886b84 LV |
4309 | { |
4310 | cputime64_t tmp; | |
4311 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | |
4312 | ||
4313 | tmp = cputime_to_cputime64(cputime); | |
4314 | ||
457533a7 | 4315 | /* Add guest time to process. */ |
94886b84 | 4316 | p->utime = cputime_add(p->utime, cputime); |
457533a7 | 4317 | p->utimescaled = cputime_add(p->utimescaled, cputime_scaled); |
f06febc9 | 4318 | account_group_user_time(p, cputime); |
94886b84 LV |
4319 | p->gtime = cputime_add(p->gtime, cputime); |
4320 | ||
457533a7 | 4321 | /* Add guest time to cpustat. */ |
94886b84 LV |
4322 | cpustat->user = cputime64_add(cpustat->user, tmp); |
4323 | cpustat->guest = cputime64_add(cpustat->guest, tmp); | |
4324 | } | |
4325 | ||
1da177e4 LT |
4326 | /* |
4327 | * Account system cpu time to a process. | |
4328 | * @p: the process that the cpu time gets accounted to | |
4329 | * @hardirq_offset: the offset to subtract from hardirq_count() | |
4330 | * @cputime: the cpu time spent in kernel space since the last update | |
457533a7 | 4331 | * @cputime_scaled: cputime scaled by cpu frequency |
1da177e4 LT |
4332 | */ |
4333 | void account_system_time(struct task_struct *p, int hardirq_offset, | |
457533a7 | 4334 | cputime_t cputime, cputime_t cputime_scaled) |
1da177e4 LT |
4335 | { |
4336 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | |
1da177e4 LT |
4337 | cputime64_t tmp; |
4338 | ||
983ed7a6 | 4339 | if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { |
457533a7 | 4340 | account_guest_time(p, cputime, cputime_scaled); |
983ed7a6 HH |
4341 | return; |
4342 | } | |
94886b84 | 4343 | |
457533a7 | 4344 | /* Add system time to process. */ |
1da177e4 | 4345 | p->stime = cputime_add(p->stime, cputime); |
457533a7 | 4346 | p->stimescaled = cputime_add(p->stimescaled, cputime_scaled); |
f06febc9 | 4347 | account_group_system_time(p, cputime); |
1da177e4 LT |
4348 | |
4349 | /* Add system time to cpustat. */ | |
4350 | tmp = cputime_to_cputime64(cputime); | |
4351 | if (hardirq_count() - hardirq_offset) | |
4352 | cpustat->irq = cputime64_add(cpustat->irq, tmp); | |
4353 | else if (softirq_count()) | |
4354 | cpustat->softirq = cputime64_add(cpustat->softirq, tmp); | |
1da177e4 | 4355 | else |
79741dd3 MS |
4356 | cpustat->system = cputime64_add(cpustat->system, tmp); |
4357 | ||
1da177e4 LT |
4358 | /* Account for system time used */ |
4359 | acct_update_integrals(p); | |
1da177e4 LT |
4360 | } |
4361 | ||
c66f08be | 4362 | /* |
1da177e4 | 4363 | * Account for involuntary wait time. |
1da177e4 | 4364 | * @steal: the cpu time spent in involuntary wait |
c66f08be | 4365 | */ |
79741dd3 | 4366 | void account_steal_time(cputime_t cputime) |
c66f08be | 4367 | { |
79741dd3 MS |
4368 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; |
4369 | cputime64_t cputime64 = cputime_to_cputime64(cputime); | |
4370 | ||
4371 | cpustat->steal = cputime64_add(cpustat->steal, cputime64); | |
c66f08be MN |
4372 | } |
4373 | ||
1da177e4 | 4374 | /* |
79741dd3 MS |
4375 | * Account for idle time. |
4376 | * @cputime: the cpu time spent in idle wait | |
1da177e4 | 4377 | */ |
79741dd3 | 4378 | void account_idle_time(cputime_t cputime) |
1da177e4 LT |
4379 | { |
4380 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | |
79741dd3 | 4381 | cputime64_t cputime64 = cputime_to_cputime64(cputime); |
70b97a7f | 4382 | struct rq *rq = this_rq(); |
1da177e4 | 4383 | |
79741dd3 MS |
4384 | if (atomic_read(&rq->nr_iowait) > 0) |
4385 | cpustat->iowait = cputime64_add(cpustat->iowait, cputime64); | |
4386 | else | |
4387 | cpustat->idle = cputime64_add(cpustat->idle, cputime64); | |
1da177e4 LT |
4388 | } |
4389 | ||
79741dd3 MS |
4390 | #ifndef CONFIG_VIRT_CPU_ACCOUNTING |
4391 | ||
4392 | /* | |
4393 | * Account a single tick of cpu time. | |
4394 | * @p: the process that the cpu time gets accounted to | |
4395 | * @user_tick: indicates if the tick is a user or a system tick | |
4396 | */ | |
4397 | void account_process_tick(struct task_struct *p, int user_tick) | |
4398 | { | |
4399 | cputime_t one_jiffy = jiffies_to_cputime(1); | |
4400 | cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy); | |
4401 | struct rq *rq = this_rq(); | |
4402 | ||
4403 | if (user_tick) | |
4404 | account_user_time(p, one_jiffy, one_jiffy_scaled); | |
4405 | else if (p != rq->idle) | |
4406 | account_system_time(p, HARDIRQ_OFFSET, one_jiffy, | |
4407 | one_jiffy_scaled); | |
4408 | else | |
4409 | account_idle_time(one_jiffy); | |
4410 | } | |
4411 | ||
4412 | /* | |
4413 | * Account multiple ticks of steal time. | |
4414 | * @p: the process from which the cpu time has been stolen | |
4415 | * @ticks: number of stolen ticks | |
4416 | */ | |
4417 | void account_steal_ticks(unsigned long ticks) | |
4418 | { | |
4419 | account_steal_time(jiffies_to_cputime(ticks)); | |
4420 | } | |
4421 | ||
4422 | /* | |
4423 | * Account multiple ticks of idle time. | |
4424 | * @ticks: number of stolen ticks | |
4425 | */ | |
4426 | void account_idle_ticks(unsigned long ticks) | |
4427 | { | |
4428 | account_idle_time(jiffies_to_cputime(ticks)); | |
1da177e4 LT |
4429 | } |
4430 | ||
79741dd3 MS |
4431 | #endif |
4432 | ||
49048622 BS |
4433 | /* |
4434 | * Use precise platform statistics if available: | |
4435 | */ | |
4436 | #ifdef CONFIG_VIRT_CPU_ACCOUNTING | |
4437 | cputime_t task_utime(struct task_struct *p) | |
4438 | { | |
4439 | return p->utime; | |
4440 | } | |
4441 | ||
4442 | cputime_t task_stime(struct task_struct *p) | |
4443 | { | |
4444 | return p->stime; | |
4445 | } | |
4446 | #else | |
4447 | cputime_t task_utime(struct task_struct *p) | |
4448 | { | |
4449 | clock_t utime = cputime_to_clock_t(p->utime), | |
4450 | total = utime + cputime_to_clock_t(p->stime); | |
4451 | u64 temp; | |
4452 | ||
4453 | /* | |
4454 | * Use CFS's precise accounting: | |
4455 | */ | |
4456 | temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime); | |
4457 | ||
4458 | if (total) { | |
4459 | temp *= utime; | |
4460 | do_div(temp, total); | |
4461 | } | |
4462 | utime = (clock_t)temp; | |
4463 | ||
4464 | p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime)); | |
4465 | return p->prev_utime; | |
4466 | } | |
4467 | ||
4468 | cputime_t task_stime(struct task_struct *p) | |
4469 | { | |
4470 | clock_t stime; | |
4471 | ||
4472 | /* | |
4473 | * Use CFS's precise accounting. (we subtract utime from | |
4474 | * the total, to make sure the total observed by userspace | |
4475 | * grows monotonically - apps rely on that): | |
4476 | */ | |
4477 | stime = nsec_to_clock_t(p->se.sum_exec_runtime) - | |
4478 | cputime_to_clock_t(task_utime(p)); | |
4479 | ||
4480 | if (stime >= 0) | |
4481 | p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime)); | |
4482 | ||
4483 | return p->prev_stime; | |
4484 | } | |
4485 | #endif | |
4486 | ||
4487 | inline cputime_t task_gtime(struct task_struct *p) | |
4488 | { | |
4489 | return p->gtime; | |
4490 | } | |
4491 | ||
7835b98b CL |
4492 | /* |
4493 | * This function gets called by the timer code, with HZ frequency. | |
4494 | * We call it with interrupts disabled. | |
4495 | * | |
4496 | * It also gets called by the fork code, when changing the parent's | |
4497 | * timeslices. | |
4498 | */ | |
4499 | void scheduler_tick(void) | |
4500 | { | |
7835b98b CL |
4501 | int cpu = smp_processor_id(); |
4502 | struct rq *rq = cpu_rq(cpu); | |
dd41f596 | 4503 | struct task_struct *curr = rq->curr; |
3e51f33f PZ |
4504 | |
4505 | sched_clock_tick(); | |
dd41f596 IM |
4506 | |
4507 | spin_lock(&rq->lock); | |
3e51f33f | 4508 | update_rq_clock(rq); |
f1a438d8 | 4509 | update_cpu_load(rq); |
fa85ae24 | 4510 | curr->sched_class->task_tick(rq, curr, 0); |
dd41f596 | 4511 | spin_unlock(&rq->lock); |
7835b98b | 4512 | |
e418e1c2 | 4513 | #ifdef CONFIG_SMP |
dd41f596 IM |
4514 | rq->idle_at_tick = idle_cpu(cpu); |
4515 | trigger_load_balance(rq, cpu); | |
e418e1c2 | 4516 | #endif |
1da177e4 LT |
4517 | } |
4518 | ||
6cd8a4bb SR |
4519 | #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ |
4520 | defined(CONFIG_PREEMPT_TRACER)) | |
4521 | ||
4522 | static inline unsigned long get_parent_ip(unsigned long addr) | |
4523 | { | |
4524 | if (in_lock_functions(addr)) { | |
4525 | addr = CALLER_ADDR2; | |
4526 | if (in_lock_functions(addr)) | |
4527 | addr = CALLER_ADDR3; | |
4528 | } | |
4529 | return addr; | |
4530 | } | |
1da177e4 | 4531 | |
43627582 | 4532 | void __kprobes add_preempt_count(int val) |
1da177e4 | 4533 | { |
6cd8a4bb | 4534 | #ifdef CONFIG_DEBUG_PREEMPT |
1da177e4 LT |
4535 | /* |
4536 | * Underflow? | |
4537 | */ | |
9a11b49a IM |
4538 | if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) |
4539 | return; | |
6cd8a4bb | 4540 | #endif |
1da177e4 | 4541 | preempt_count() += val; |
6cd8a4bb | 4542 | #ifdef CONFIG_DEBUG_PREEMPT |
1da177e4 LT |
4543 | /* |
4544 | * Spinlock count overflowing soon? | |
4545 | */ | |
33859f7f MOS |
4546 | DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= |
4547 | PREEMPT_MASK - 10); | |
6cd8a4bb SR |
4548 | #endif |
4549 | if (preempt_count() == val) | |
4550 | trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); | |
1da177e4 LT |
4551 | } |
4552 | EXPORT_SYMBOL(add_preempt_count); | |
4553 | ||
43627582 | 4554 | void __kprobes sub_preempt_count(int val) |
1da177e4 | 4555 | { |
6cd8a4bb | 4556 | #ifdef CONFIG_DEBUG_PREEMPT |
1da177e4 LT |
4557 | /* |
4558 | * Underflow? | |
4559 | */ | |
01e3eb82 | 4560 | if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) |
9a11b49a | 4561 | return; |
1da177e4 LT |
4562 | /* |
4563 | * Is the spinlock portion underflowing? | |
4564 | */ | |
9a11b49a IM |
4565 | if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && |
4566 | !(preempt_count() & PREEMPT_MASK))) | |
4567 | return; | |
6cd8a4bb | 4568 | #endif |
9a11b49a | 4569 | |
6cd8a4bb SR |
4570 | if (preempt_count() == val) |
4571 | trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); | |
1da177e4 LT |
4572 | preempt_count() -= val; |
4573 | } | |
4574 | EXPORT_SYMBOL(sub_preempt_count); | |
4575 | ||
4576 | #endif | |
4577 | ||
4578 | /* | |
dd41f596 | 4579 | * Print scheduling while atomic bug: |
1da177e4 | 4580 | */ |
dd41f596 | 4581 | static noinline void __schedule_bug(struct task_struct *prev) |
1da177e4 | 4582 | { |
838225b4 SS |
4583 | struct pt_regs *regs = get_irq_regs(); |
4584 | ||
4585 | printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", | |
4586 | prev->comm, prev->pid, preempt_count()); | |
4587 | ||
dd41f596 | 4588 | debug_show_held_locks(prev); |
e21f5b15 | 4589 | print_modules(); |
dd41f596 IM |
4590 | if (irqs_disabled()) |
4591 | print_irqtrace_events(prev); | |
838225b4 SS |
4592 | |
4593 | if (regs) | |
4594 | show_regs(regs); | |
4595 | else | |
4596 | dump_stack(); | |
dd41f596 | 4597 | } |
1da177e4 | 4598 | |
dd41f596 IM |
4599 | /* |
4600 | * Various schedule()-time debugging checks and statistics: | |
4601 | */ | |
4602 | static inline void schedule_debug(struct task_struct *prev) | |
4603 | { | |
1da177e4 | 4604 | /* |
41a2d6cf | 4605 | * Test if we are atomic. Since do_exit() needs to call into |
1da177e4 LT |
4606 | * schedule() atomically, we ignore that path for now. |
4607 | * Otherwise, whine if we are scheduling when we should not be. | |
4608 | */ | |
3f33a7ce | 4609 | if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) |
dd41f596 IM |
4610 | __schedule_bug(prev); |
4611 | ||
1da177e4 LT |
4612 | profile_hit(SCHED_PROFILING, __builtin_return_address(0)); |
4613 | ||
2d72376b | 4614 | schedstat_inc(this_rq(), sched_count); |
b8efb561 IM |
4615 | #ifdef CONFIG_SCHEDSTATS |
4616 | if (unlikely(prev->lock_depth >= 0)) { | |
2d72376b IM |
4617 | schedstat_inc(this_rq(), bkl_count); |
4618 | schedstat_inc(prev, sched_info.bkl_count); | |
b8efb561 IM |
4619 | } |
4620 | #endif | |
dd41f596 IM |
4621 | } |
4622 | ||
4623 | /* | |
4624 | * Pick up the highest-prio task: | |
4625 | */ | |
4626 | static inline struct task_struct * | |
b67802ea | 4627 | pick_next_task(struct rq *rq) |
dd41f596 | 4628 | { |
5522d5d5 | 4629 | const struct sched_class *class; |
dd41f596 | 4630 | struct task_struct *p; |
1da177e4 LT |
4631 | |
4632 | /* | |
dd41f596 IM |
4633 | * Optimization: we know that if all tasks are in |
4634 | * the fair class we can call that function directly: | |
1da177e4 | 4635 | */ |
dd41f596 | 4636 | if (likely(rq->nr_running == rq->cfs.nr_running)) { |
fb8d4724 | 4637 | p = fair_sched_class.pick_next_task(rq); |
dd41f596 IM |
4638 | if (likely(p)) |
4639 | return p; | |
1da177e4 LT |
4640 | } |
4641 | ||
dd41f596 IM |
4642 | class = sched_class_highest; |
4643 | for ( ; ; ) { | |
fb8d4724 | 4644 | p = class->pick_next_task(rq); |
dd41f596 IM |
4645 | if (p) |
4646 | return p; | |
4647 | /* | |
4648 | * Will never be NULL as the idle class always | |
4649 | * returns a non-NULL p: | |
4650 | */ | |
4651 | class = class->next; | |
4652 | } | |
4653 | } | |
1da177e4 | 4654 | |
dd41f596 IM |
4655 | /* |
4656 | * schedule() is the main scheduler function. | |
4657 | */ | |
4658 | asmlinkage void __sched schedule(void) | |
4659 | { | |
4660 | struct task_struct *prev, *next; | |
67ca7bde | 4661 | unsigned long *switch_count; |
dd41f596 | 4662 | struct rq *rq; |
31656519 | 4663 | int cpu; |
dd41f596 IM |
4664 | |
4665 | need_resched: | |
4666 | preempt_disable(); | |
4667 | cpu = smp_processor_id(); | |
4668 | rq = cpu_rq(cpu); | |
4669 | rcu_qsctr_inc(cpu); | |
4670 | prev = rq->curr; | |
4671 | switch_count = &prev->nivcsw; | |
4672 | ||
4673 | release_kernel_lock(prev); | |
4674 | need_resched_nonpreemptible: | |
4675 | ||
4676 | schedule_debug(prev); | |
1da177e4 | 4677 | |
31656519 | 4678 | if (sched_feat(HRTICK)) |
f333fdc9 | 4679 | hrtick_clear(rq); |
8f4d37ec | 4680 | |
8cd162ce | 4681 | spin_lock_irq(&rq->lock); |
3e51f33f | 4682 | update_rq_clock(rq); |
1e819950 | 4683 | clear_tsk_need_resched(prev); |
1da177e4 | 4684 | |
1da177e4 | 4685 | if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { |
16882c1e | 4686 | if (unlikely(signal_pending_state(prev->state, prev))) |
1da177e4 | 4687 | prev->state = TASK_RUNNING; |
16882c1e | 4688 | else |
2e1cb74a | 4689 | deactivate_task(rq, prev, 1); |
dd41f596 | 4690 | switch_count = &prev->nvcsw; |
1da177e4 LT |
4691 | } |
4692 | ||
9a897c5a SR |
4693 | #ifdef CONFIG_SMP |
4694 | if (prev->sched_class->pre_schedule) | |
4695 | prev->sched_class->pre_schedule(rq, prev); | |
4696 | #endif | |
f65eda4f | 4697 | |
dd41f596 | 4698 | if (unlikely(!rq->nr_running)) |
1da177e4 | 4699 | idle_balance(cpu, rq); |
1da177e4 | 4700 | |
31ee529c | 4701 | prev->sched_class->put_prev_task(rq, prev); |
b67802ea | 4702 | next = pick_next_task(rq); |
1da177e4 | 4703 | |
1da177e4 | 4704 | if (likely(prev != next)) { |
673a90a1 DS |
4705 | sched_info_switch(prev, next); |
4706 | ||
1da177e4 LT |
4707 | rq->nr_switches++; |
4708 | rq->curr = next; | |
4709 | ++*switch_count; | |
4710 | ||
dd41f596 | 4711 | context_switch(rq, prev, next); /* unlocks the rq */ |
8f4d37ec PZ |
4712 | /* |
4713 | * the context switch might have flipped the stack from under | |
4714 | * us, hence refresh the local variables. | |
4715 | */ | |
4716 | cpu = smp_processor_id(); | |
4717 | rq = cpu_rq(cpu); | |
1da177e4 LT |
4718 | } else |
4719 | spin_unlock_irq(&rq->lock); | |
4720 | ||
8f4d37ec | 4721 | if (unlikely(reacquire_kernel_lock(current) < 0)) |
1da177e4 | 4722 | goto need_resched_nonpreemptible; |
8f4d37ec | 4723 | |
1da177e4 LT |
4724 | preempt_enable_no_resched(); |
4725 | if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) | |
4726 | goto need_resched; | |
4727 | } | |
1da177e4 LT |
4728 | EXPORT_SYMBOL(schedule); |
4729 | ||
4730 | #ifdef CONFIG_PREEMPT | |
4731 | /* | |
2ed6e34f | 4732 | * this is the entry point to schedule() from in-kernel preemption |
41a2d6cf | 4733 | * off of preempt_enable. Kernel preemptions off return from interrupt |
1da177e4 LT |
4734 | * occur there and call schedule directly. |
4735 | */ | |
4736 | asmlinkage void __sched preempt_schedule(void) | |
4737 | { | |
4738 | struct thread_info *ti = current_thread_info(); | |
6478d880 | 4739 | |
1da177e4 LT |
4740 | /* |
4741 | * If there is a non-zero preempt_count or interrupts are disabled, | |
41a2d6cf | 4742 | * we do not want to preempt the current task. Just return.. |
1da177e4 | 4743 | */ |
beed33a8 | 4744 | if (likely(ti->preempt_count || irqs_disabled())) |
1da177e4 LT |
4745 | return; |
4746 | ||
3a5c359a AK |
4747 | do { |
4748 | add_preempt_count(PREEMPT_ACTIVE); | |
3a5c359a | 4749 | schedule(); |
3a5c359a | 4750 | sub_preempt_count(PREEMPT_ACTIVE); |
1da177e4 | 4751 | |
3a5c359a AK |
4752 | /* |
4753 | * Check again in case we missed a preemption opportunity | |
4754 | * between schedule and now. | |
4755 | */ | |
4756 | barrier(); | |
5ed0cec0 | 4757 | } while (need_resched()); |
1da177e4 | 4758 | } |
1da177e4 LT |
4759 | EXPORT_SYMBOL(preempt_schedule); |
4760 | ||
4761 | /* | |
2ed6e34f | 4762 | * this is the entry point to schedule() from kernel preemption |
1da177e4 LT |
4763 | * off of irq context. |
4764 | * Note, that this is called and return with irqs disabled. This will | |
4765 | * protect us against recursive calling from irq. | |
4766 | */ | |
4767 | asmlinkage void __sched preempt_schedule_irq(void) | |
4768 | { | |
4769 | struct thread_info *ti = current_thread_info(); | |
6478d880 | 4770 | |
2ed6e34f | 4771 | /* Catch callers which need to be fixed */ |
1da177e4 LT |
4772 | BUG_ON(ti->preempt_count || !irqs_disabled()); |
4773 | ||
3a5c359a AK |
4774 | do { |
4775 | add_preempt_count(PREEMPT_ACTIVE); | |
3a5c359a AK |
4776 | local_irq_enable(); |
4777 | schedule(); | |
4778 | local_irq_disable(); | |
3a5c359a | 4779 | sub_preempt_count(PREEMPT_ACTIVE); |
1da177e4 | 4780 | |
3a5c359a AK |
4781 | /* |
4782 | * Check again in case we missed a preemption opportunity | |
4783 | * between schedule and now. | |
4784 | */ | |
4785 | barrier(); | |
5ed0cec0 | 4786 | } while (need_resched()); |
1da177e4 LT |
4787 | } |
4788 | ||
4789 | #endif /* CONFIG_PREEMPT */ | |
4790 | ||
95cdf3b7 IM |
4791 | int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, |
4792 | void *key) | |
1da177e4 | 4793 | { |
48f24c4d | 4794 | return try_to_wake_up(curr->private, mode, sync); |
1da177e4 | 4795 | } |
1da177e4 LT |
4796 | EXPORT_SYMBOL(default_wake_function); |
4797 | ||
4798 | /* | |
41a2d6cf IM |
4799 | * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just |
4800 | * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve | |
1da177e4 LT |
4801 | * number) then we wake all the non-exclusive tasks and one exclusive task. |
4802 | * | |
4803 | * There are circumstances in which we can try to wake a task which has already | |
41a2d6cf | 4804 | * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns |
1da177e4 LT |
4805 | * zero in this (rare) case, and we handle it by continuing to scan the queue. |
4806 | */ | |
777c6c5f JW |
4807 | void __wake_up_common(wait_queue_head_t *q, unsigned int mode, |
4808 | int nr_exclusive, int sync, void *key) | |
1da177e4 | 4809 | { |
2e45874c | 4810 | wait_queue_t *curr, *next; |
1da177e4 | 4811 | |
2e45874c | 4812 | list_for_each_entry_safe(curr, next, &q->task_list, task_list) { |
48f24c4d IM |
4813 | unsigned flags = curr->flags; |
4814 | ||
1da177e4 | 4815 | if (curr->func(curr, mode, sync, key) && |
48f24c4d | 4816 | (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) |
1da177e4 LT |
4817 | break; |
4818 | } | |
4819 | } | |
4820 | ||
4821 | /** | |
4822 | * __wake_up - wake up threads blocked on a waitqueue. | |
4823 | * @q: the waitqueue | |
4824 | * @mode: which threads | |
4825 | * @nr_exclusive: how many wake-one or wake-many threads to wake up | |
67be2dd1 | 4826 | * @key: is directly passed to the wakeup function |
1da177e4 | 4827 | */ |
7ad5b3a5 | 4828 | void __wake_up(wait_queue_head_t *q, unsigned int mode, |
95cdf3b7 | 4829 | int nr_exclusive, void *key) |
1da177e4 LT |
4830 | { |
4831 | unsigned long flags; | |
4832 | ||
4833 | spin_lock_irqsave(&q->lock, flags); | |
4834 | __wake_up_common(q, mode, nr_exclusive, 0, key); | |
4835 | spin_unlock_irqrestore(&q->lock, flags); | |
4836 | } | |
1da177e4 LT |
4837 | EXPORT_SYMBOL(__wake_up); |
4838 | ||
4839 | /* | |
4840 | * Same as __wake_up but called with the spinlock in wait_queue_head_t held. | |
4841 | */ | |
7ad5b3a5 | 4842 | void __wake_up_locked(wait_queue_head_t *q, unsigned int mode) |
1da177e4 LT |
4843 | { |
4844 | __wake_up_common(q, mode, 1, 0, NULL); | |
4845 | } | |
4846 | ||
4847 | /** | |
67be2dd1 | 4848 | * __wake_up_sync - wake up threads blocked on a waitqueue. |
1da177e4 LT |
4849 | * @q: the waitqueue |
4850 | * @mode: which threads | |
4851 | * @nr_exclusive: how many wake-one or wake-many threads to wake up | |
4852 | * | |
4853 | * The sync wakeup differs that the waker knows that it will schedule | |
4854 | * away soon, so while the target thread will be woken up, it will not | |
4855 | * be migrated to another CPU - ie. the two threads are 'synchronized' | |
4856 | * with each other. This can prevent needless bouncing between CPUs. | |
4857 | * | |
4858 | * On UP it can prevent extra preemption. | |
4859 | */ | |
7ad5b3a5 | 4860 | void |
95cdf3b7 | 4861 | __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) |
1da177e4 LT |
4862 | { |
4863 | unsigned long flags; | |
4864 | int sync = 1; | |
4865 | ||
4866 | if (unlikely(!q)) | |
4867 | return; | |
4868 | ||
4869 | if (unlikely(!nr_exclusive)) | |
4870 | sync = 0; | |
4871 | ||
4872 | spin_lock_irqsave(&q->lock, flags); | |
4873 | __wake_up_common(q, mode, nr_exclusive, sync, NULL); | |
4874 | spin_unlock_irqrestore(&q->lock, flags); | |
4875 | } | |
4876 | EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ | |
4877 | ||
65eb3dc6 KD |
4878 | /** |
4879 | * complete: - signals a single thread waiting on this completion | |
4880 | * @x: holds the state of this particular completion | |
4881 | * | |
4882 | * This will wake up a single thread waiting on this completion. Threads will be | |
4883 | * awakened in the same order in which they were queued. | |
4884 | * | |
4885 | * See also complete_all(), wait_for_completion() and related routines. | |
4886 | */ | |
b15136e9 | 4887 | void complete(struct completion *x) |
1da177e4 LT |
4888 | { |
4889 | unsigned long flags; | |
4890 | ||
4891 | spin_lock_irqsave(&x->wait.lock, flags); | |
4892 | x->done++; | |
d9514f6c | 4893 | __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); |
1da177e4 LT |
4894 | spin_unlock_irqrestore(&x->wait.lock, flags); |
4895 | } | |
4896 | EXPORT_SYMBOL(complete); | |
4897 | ||
65eb3dc6 KD |
4898 | /** |
4899 | * complete_all: - signals all threads waiting on this completion | |
4900 | * @x: holds the state of this particular completion | |
4901 | * | |
4902 | * This will wake up all threads waiting on this particular completion event. | |
4903 | */ | |
b15136e9 | 4904 | void complete_all(struct completion *x) |
1da177e4 LT |
4905 | { |
4906 | unsigned long flags; | |
4907 | ||
4908 | spin_lock_irqsave(&x->wait.lock, flags); | |
4909 | x->done += UINT_MAX/2; | |
d9514f6c | 4910 | __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); |
1da177e4 LT |
4911 | spin_unlock_irqrestore(&x->wait.lock, flags); |
4912 | } | |
4913 | EXPORT_SYMBOL(complete_all); | |
4914 | ||
8cbbe86d AK |
4915 | static inline long __sched |
4916 | do_wait_for_common(struct completion *x, long timeout, int state) | |
1da177e4 | 4917 | { |
1da177e4 LT |
4918 | if (!x->done) { |
4919 | DECLARE_WAITQUEUE(wait, current); | |
4920 | ||
4921 | wait.flags |= WQ_FLAG_EXCLUSIVE; | |
4922 | __add_wait_queue_tail(&x->wait, &wait); | |
4923 | do { | |
94d3d824 | 4924 | if (signal_pending_state(state, current)) { |
ea71a546 ON |
4925 | timeout = -ERESTARTSYS; |
4926 | break; | |
8cbbe86d AK |
4927 | } |
4928 | __set_current_state(state); | |
1da177e4 LT |
4929 | spin_unlock_irq(&x->wait.lock); |
4930 | timeout = schedule_timeout(timeout); | |
4931 | spin_lock_irq(&x->wait.lock); | |
ea71a546 | 4932 | } while (!x->done && timeout); |
1da177e4 | 4933 | __remove_wait_queue(&x->wait, &wait); |
ea71a546 ON |
4934 | if (!x->done) |
4935 | return timeout; | |
1da177e4 LT |
4936 | } |
4937 | x->done--; | |
ea71a546 | 4938 | return timeout ?: 1; |
1da177e4 | 4939 | } |
1da177e4 | 4940 | |
8cbbe86d AK |
4941 | static long __sched |
4942 | wait_for_common(struct completion *x, long timeout, int state) | |
1da177e4 | 4943 | { |
1da177e4 LT |
4944 | might_sleep(); |
4945 | ||
4946 | spin_lock_irq(&x->wait.lock); | |
8cbbe86d | 4947 | timeout = do_wait_for_common(x, timeout, state); |
1da177e4 | 4948 | spin_unlock_irq(&x->wait.lock); |
8cbbe86d AK |
4949 | return timeout; |
4950 | } | |
1da177e4 | 4951 | |
65eb3dc6 KD |
4952 | /** |
4953 | * wait_for_completion: - waits for completion of a task | |
4954 | * @x: holds the state of this particular completion | |
4955 | * | |
4956 | * This waits to be signaled for completion of a specific task. It is NOT | |
4957 | * interruptible and there is no timeout. | |
4958 | * | |
4959 | * See also similar routines (i.e. wait_for_completion_timeout()) with timeout | |
4960 | * and interrupt capability. Also see complete(). | |
4961 | */ | |
b15136e9 | 4962 | void __sched wait_for_completion(struct completion *x) |
8cbbe86d AK |
4963 | { |
4964 | wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); | |
1da177e4 | 4965 | } |
8cbbe86d | 4966 | EXPORT_SYMBOL(wait_for_completion); |
1da177e4 | 4967 | |
65eb3dc6 KD |
4968 | /** |
4969 | * wait_for_completion_timeout: - waits for completion of a task (w/timeout) | |
4970 | * @x: holds the state of this particular completion | |
4971 | * @timeout: timeout value in jiffies | |
4972 | * | |
4973 | * This waits for either a completion of a specific task to be signaled or for a | |
4974 | * specified timeout to expire. The timeout is in jiffies. It is not | |
4975 | * interruptible. | |
4976 | */ | |
b15136e9 | 4977 | unsigned long __sched |
8cbbe86d | 4978 | wait_for_completion_timeout(struct completion *x, unsigned long timeout) |
1da177e4 | 4979 | { |
8cbbe86d | 4980 | return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); |
1da177e4 | 4981 | } |
8cbbe86d | 4982 | EXPORT_SYMBOL(wait_for_completion_timeout); |
1da177e4 | 4983 | |
65eb3dc6 KD |
4984 | /** |
4985 | * wait_for_completion_interruptible: - waits for completion of a task (w/intr) | |
4986 | * @x: holds the state of this particular completion | |
4987 | * | |
4988 | * This waits for completion of a specific task to be signaled. It is | |
4989 | * interruptible. | |
4990 | */ | |
8cbbe86d | 4991 | int __sched wait_for_completion_interruptible(struct completion *x) |
0fec171c | 4992 | { |
51e97990 AK |
4993 | long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); |
4994 | if (t == -ERESTARTSYS) | |
4995 | return t; | |
4996 | return 0; | |
0fec171c | 4997 | } |
8cbbe86d | 4998 | EXPORT_SYMBOL(wait_for_completion_interruptible); |
1da177e4 | 4999 | |
65eb3dc6 KD |
5000 | /** |
5001 | * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) | |
5002 | * @x: holds the state of this particular completion | |
5003 | * @timeout: timeout value in jiffies | |
5004 | * | |
5005 | * This waits for either a completion of a specific task to be signaled or for a | |
5006 | * specified timeout to expire. It is interruptible. The timeout is in jiffies. | |
5007 | */ | |
b15136e9 | 5008 | unsigned long __sched |
8cbbe86d AK |
5009 | wait_for_completion_interruptible_timeout(struct completion *x, |
5010 | unsigned long timeout) | |
0fec171c | 5011 | { |
8cbbe86d | 5012 | return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); |
0fec171c | 5013 | } |
8cbbe86d | 5014 | EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); |
1da177e4 | 5015 | |
65eb3dc6 KD |
5016 | /** |
5017 | * wait_for_completion_killable: - waits for completion of a task (killable) | |
5018 | * @x: holds the state of this particular completion | |
5019 | * | |
5020 | * This waits to be signaled for completion of a specific task. It can be | |
5021 | * interrupted by a kill signal. | |
5022 | */ | |
009e577e MW |
5023 | int __sched wait_for_completion_killable(struct completion *x) |
5024 | { | |
5025 | long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); | |
5026 | if (t == -ERESTARTSYS) | |
5027 | return t; | |
5028 | return 0; | |
5029 | } | |
5030 | EXPORT_SYMBOL(wait_for_completion_killable); | |
5031 | ||
be4de352 DC |
5032 | /** |
5033 | * try_wait_for_completion - try to decrement a completion without blocking | |
5034 | * @x: completion structure | |
5035 | * | |
5036 | * Returns: 0 if a decrement cannot be done without blocking | |
5037 | * 1 if a decrement succeeded. | |
5038 | * | |
5039 | * If a completion is being used as a counting completion, | |
5040 | * attempt to decrement the counter without blocking. This | |
5041 | * enables us to avoid waiting if the resource the completion | |
5042 | * is protecting is not available. | |
5043 | */ | |
5044 | bool try_wait_for_completion(struct completion *x) | |
5045 | { | |
5046 | int ret = 1; | |
5047 | ||
5048 | spin_lock_irq(&x->wait.lock); | |
5049 | if (!x->done) | |
5050 | ret = 0; | |
5051 | else | |
5052 | x->done--; | |
5053 | spin_unlock_irq(&x->wait.lock); | |
5054 | return ret; | |
5055 | } | |
5056 | EXPORT_SYMBOL(try_wait_for_completion); | |
5057 | ||
5058 | /** | |
5059 | * completion_done - Test to see if a completion has any waiters | |
5060 | * @x: completion structure | |
5061 | * | |
5062 | * Returns: 0 if there are waiters (wait_for_completion() in progress) | |
5063 | * 1 if there are no waiters. | |
5064 | * | |
5065 | */ | |
5066 | bool completion_done(struct completion *x) | |
5067 | { | |
5068 | int ret = 1; | |
5069 | ||
5070 | spin_lock_irq(&x->wait.lock); | |
5071 | if (!x->done) | |
5072 | ret = 0; | |
5073 | spin_unlock_irq(&x->wait.lock); | |
5074 | return ret; | |
5075 | } | |
5076 | EXPORT_SYMBOL(completion_done); | |
5077 | ||
8cbbe86d AK |
5078 | static long __sched |
5079 | sleep_on_common(wait_queue_head_t *q, int state, long timeout) | |
1da177e4 | 5080 | { |
0fec171c IM |
5081 | unsigned long flags; |
5082 | wait_queue_t wait; | |
5083 | ||
5084 | init_waitqueue_entry(&wait, current); | |
1da177e4 | 5085 | |
8cbbe86d | 5086 | __set_current_state(state); |
1da177e4 | 5087 | |
8cbbe86d AK |
5088 | spin_lock_irqsave(&q->lock, flags); |
5089 | __add_wait_queue(q, &wait); | |
5090 | spin_unlock(&q->lock); | |
5091 | timeout = schedule_timeout(timeout); | |
5092 | spin_lock_irq(&q->lock); | |
5093 | __remove_wait_queue(q, &wait); | |
5094 | spin_unlock_irqrestore(&q->lock, flags); | |
5095 | ||
5096 | return timeout; | |
5097 | } | |
5098 | ||
5099 | void __sched interruptible_sleep_on(wait_queue_head_t *q) | |
5100 | { | |
5101 | sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); | |
1da177e4 | 5102 | } |
1da177e4 LT |
5103 | EXPORT_SYMBOL(interruptible_sleep_on); |
5104 | ||
0fec171c | 5105 | long __sched |
95cdf3b7 | 5106 | interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) |
1da177e4 | 5107 | { |
8cbbe86d | 5108 | return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); |
1da177e4 | 5109 | } |
1da177e4 LT |
5110 | EXPORT_SYMBOL(interruptible_sleep_on_timeout); |
5111 | ||
0fec171c | 5112 | void __sched sleep_on(wait_queue_head_t *q) |
1da177e4 | 5113 | { |
8cbbe86d | 5114 | sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); |
1da177e4 | 5115 | } |
1da177e4 LT |
5116 | EXPORT_SYMBOL(sleep_on); |
5117 | ||
0fec171c | 5118 | long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) |
1da177e4 | 5119 | { |
8cbbe86d | 5120 | return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); |
1da177e4 | 5121 | } |
1da177e4 LT |
5122 | EXPORT_SYMBOL(sleep_on_timeout); |
5123 | ||
b29739f9 IM |
5124 | #ifdef CONFIG_RT_MUTEXES |
5125 | ||
5126 | /* | |
5127 | * rt_mutex_setprio - set the current priority of a task | |
5128 | * @p: task | |
5129 | * @prio: prio value (kernel-internal form) | |
5130 | * | |
5131 | * This function changes the 'effective' priority of a task. It does | |
5132 | * not touch ->normal_prio like __setscheduler(). | |
5133 | * | |
5134 | * Used by the rt_mutex code to implement priority inheritance logic. | |
5135 | */ | |
36c8b586 | 5136 | void rt_mutex_setprio(struct task_struct *p, int prio) |
b29739f9 IM |
5137 | { |
5138 | unsigned long flags; | |
83b699ed | 5139 | int oldprio, on_rq, running; |
70b97a7f | 5140 | struct rq *rq; |
cb469845 | 5141 | const struct sched_class *prev_class = p->sched_class; |
b29739f9 IM |
5142 | |
5143 | BUG_ON(prio < 0 || prio > MAX_PRIO); | |
5144 | ||
5145 | rq = task_rq_lock(p, &flags); | |
a8e504d2 | 5146 | update_rq_clock(rq); |
b29739f9 | 5147 | |
d5f9f942 | 5148 | oldprio = p->prio; |
dd41f596 | 5149 | on_rq = p->se.on_rq; |
051a1d1a | 5150 | running = task_current(rq, p); |
0e1f3483 | 5151 | if (on_rq) |
69be72c1 | 5152 | dequeue_task(rq, p, 0); |
0e1f3483 HS |
5153 | if (running) |
5154 | p->sched_class->put_prev_task(rq, p); | |
dd41f596 IM |
5155 | |
5156 | if (rt_prio(prio)) | |
5157 | p->sched_class = &rt_sched_class; | |
5158 | else | |
5159 | p->sched_class = &fair_sched_class; | |
5160 | ||
b29739f9 IM |
5161 | p->prio = prio; |
5162 | ||
0e1f3483 HS |
5163 | if (running) |
5164 | p->sched_class->set_curr_task(rq); | |
dd41f596 | 5165 | if (on_rq) { |
8159f87e | 5166 | enqueue_task(rq, p, 0); |
cb469845 SR |
5167 | |
5168 | check_class_changed(rq, p, prev_class, oldprio, running); | |
b29739f9 IM |
5169 | } |
5170 | task_rq_unlock(rq, &flags); | |
5171 | } | |
5172 | ||
5173 | #endif | |
5174 | ||
36c8b586 | 5175 | void set_user_nice(struct task_struct *p, long nice) |
1da177e4 | 5176 | { |
dd41f596 | 5177 | int old_prio, delta, on_rq; |
1da177e4 | 5178 | unsigned long flags; |
70b97a7f | 5179 | struct rq *rq; |
1da177e4 LT |
5180 | |
5181 | if (TASK_NICE(p) == nice || nice < -20 || nice > 19) | |
5182 | return; | |
5183 | /* | |
5184 | * We have to be careful, if called from sys_setpriority(), | |
5185 | * the task might be in the middle of scheduling on another CPU. | |
5186 | */ | |
5187 | rq = task_rq_lock(p, &flags); | |
a8e504d2 | 5188 | update_rq_clock(rq); |
1da177e4 LT |
5189 | /* |
5190 | * The RT priorities are set via sched_setscheduler(), but we still | |
5191 | * allow the 'normal' nice value to be set - but as expected | |
5192 | * it wont have any effect on scheduling until the task is | |
dd41f596 | 5193 | * SCHED_FIFO/SCHED_RR: |
1da177e4 | 5194 | */ |
e05606d3 | 5195 | if (task_has_rt_policy(p)) { |
1da177e4 LT |
5196 | p->static_prio = NICE_TO_PRIO(nice); |
5197 | goto out_unlock; | |
5198 | } | |
dd41f596 | 5199 | on_rq = p->se.on_rq; |
c09595f6 | 5200 | if (on_rq) |
69be72c1 | 5201 | dequeue_task(rq, p, 0); |
1da177e4 | 5202 | |
1da177e4 | 5203 | p->static_prio = NICE_TO_PRIO(nice); |
2dd73a4f | 5204 | set_load_weight(p); |
b29739f9 IM |
5205 | old_prio = p->prio; |
5206 | p->prio = effective_prio(p); | |
5207 | delta = p->prio - old_prio; | |
1da177e4 | 5208 | |
dd41f596 | 5209 | if (on_rq) { |
8159f87e | 5210 | enqueue_task(rq, p, 0); |
1da177e4 | 5211 | /* |
d5f9f942 AM |
5212 | * If the task increased its priority or is running and |
5213 | * lowered its priority, then reschedule its CPU: | |
1da177e4 | 5214 | */ |
d5f9f942 | 5215 | if (delta < 0 || (delta > 0 && task_running(rq, p))) |
1da177e4 LT |
5216 | resched_task(rq->curr); |
5217 | } | |
5218 | out_unlock: | |
5219 | task_rq_unlock(rq, &flags); | |
5220 | } | |
1da177e4 LT |
5221 | EXPORT_SYMBOL(set_user_nice); |
5222 | ||
e43379f1 MM |
5223 | /* |
5224 | * can_nice - check if a task can reduce its nice value | |
5225 | * @p: task | |
5226 | * @nice: nice value | |
5227 | */ | |
36c8b586 | 5228 | int can_nice(const struct task_struct *p, const int nice) |
e43379f1 | 5229 | { |
024f4747 MM |
5230 | /* convert nice value [19,-20] to rlimit style value [1,40] */ |
5231 | int nice_rlim = 20 - nice; | |
48f24c4d | 5232 | |
e43379f1 MM |
5233 | return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur || |
5234 | capable(CAP_SYS_NICE)); | |
5235 | } | |
5236 | ||
1da177e4 LT |
5237 | #ifdef __ARCH_WANT_SYS_NICE |
5238 | ||
5239 | /* | |
5240 | * sys_nice - change the priority of the current process. | |
5241 | * @increment: priority increment | |
5242 | * | |
5243 | * sys_setpriority is a more generic, but much slower function that | |
5244 | * does similar things. | |
5245 | */ | |
5add95d4 | 5246 | SYSCALL_DEFINE1(nice, int, increment) |
1da177e4 | 5247 | { |
48f24c4d | 5248 | long nice, retval; |
1da177e4 LT |
5249 | |
5250 | /* | |
5251 | * Setpriority might change our priority at the same moment. | |
5252 | * We don't have to worry. Conceptually one call occurs first | |
5253 | * and we have a single winner. | |
5254 | */ | |
e43379f1 MM |
5255 | if (increment < -40) |
5256 | increment = -40; | |
1da177e4 LT |
5257 | if (increment > 40) |
5258 | increment = 40; | |
5259 | ||
2b8f836f | 5260 | nice = TASK_NICE(current) + increment; |
1da177e4 LT |
5261 | if (nice < -20) |
5262 | nice = -20; | |
5263 | if (nice > 19) | |
5264 | nice = 19; | |
5265 | ||
e43379f1 MM |
5266 | if (increment < 0 && !can_nice(current, nice)) |
5267 | return -EPERM; | |
5268 | ||
1da177e4 LT |
5269 | retval = security_task_setnice(current, nice); |
5270 | if (retval) | |
5271 | return retval; | |
5272 | ||
5273 | set_user_nice(current, nice); | |
5274 | return 0; | |
5275 | } | |
5276 | ||
5277 | #endif | |
5278 | ||
5279 | /** | |
5280 | * task_prio - return the priority value of a given task. | |
5281 | * @p: the task in question. | |
5282 | * | |
5283 | * This is the priority value as seen by users in /proc. | |
5284 | * RT tasks are offset by -200. Normal tasks are centered | |
5285 | * around 0, value goes from -16 to +15. | |
5286 | */ | |
36c8b586 | 5287 | int task_prio(const struct task_struct *p) |
1da177e4 LT |
5288 | { |
5289 | return p->prio - MAX_RT_PRIO; | |
5290 | } | |
5291 | ||
5292 | /** | |
5293 | * task_nice - return the nice value of a given task. | |
5294 | * @p: the task in question. | |
5295 | */ | |
36c8b586 | 5296 | int task_nice(const struct task_struct *p) |
1da177e4 LT |
5297 | { |
5298 | return TASK_NICE(p); | |
5299 | } | |
150d8bed | 5300 | EXPORT_SYMBOL(task_nice); |
1da177e4 LT |
5301 | |
5302 | /** | |
5303 | * idle_cpu - is a given cpu idle currently? | |
5304 | * @cpu: the processor in question. | |
5305 | */ | |
5306 | int idle_cpu(int cpu) | |
5307 | { | |
5308 | return cpu_curr(cpu) == cpu_rq(cpu)->idle; | |
5309 | } | |
5310 | ||
1da177e4 LT |
5311 | /** |
5312 | * idle_task - return the idle task for a given cpu. | |
5313 | * @cpu: the processor in question. | |
5314 | */ | |
36c8b586 | 5315 | struct task_struct *idle_task(int cpu) |
1da177e4 LT |
5316 | { |
5317 | return cpu_rq(cpu)->idle; | |
5318 | } | |
5319 | ||
5320 | /** | |
5321 | * find_process_by_pid - find a process with a matching PID value. | |
5322 | * @pid: the pid in question. | |
5323 | */ | |
a9957449 | 5324 | static struct task_struct *find_process_by_pid(pid_t pid) |
1da177e4 | 5325 | { |
228ebcbe | 5326 | return pid ? find_task_by_vpid(pid) : current; |
1da177e4 LT |
5327 | } |
5328 | ||
5329 | /* Actually do priority change: must hold rq lock. */ | |
dd41f596 IM |
5330 | static void |
5331 | __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) | |
1da177e4 | 5332 | { |
dd41f596 | 5333 | BUG_ON(p->se.on_rq); |
48f24c4d | 5334 | |
1da177e4 | 5335 | p->policy = policy; |
dd41f596 IM |
5336 | switch (p->policy) { |
5337 | case SCHED_NORMAL: | |
5338 | case SCHED_BATCH: | |
5339 | case SCHED_IDLE: | |
5340 | p->sched_class = &fair_sched_class; | |
5341 | break; | |
5342 | case SCHED_FIFO: | |
5343 | case SCHED_RR: | |
5344 | p->sched_class = &rt_sched_class; | |
5345 | break; | |
5346 | } | |
5347 | ||
1da177e4 | 5348 | p->rt_priority = prio; |
b29739f9 IM |
5349 | p->normal_prio = normal_prio(p); |
5350 | /* we are holding p->pi_lock already */ | |
5351 | p->prio = rt_mutex_getprio(p); | |
2dd73a4f | 5352 | set_load_weight(p); |
1da177e4 LT |
5353 | } |
5354 | ||
c69e8d9c DH |
5355 | /* |
5356 | * check the target process has a UID that matches the current process's | |
5357 | */ | |
5358 | static bool check_same_owner(struct task_struct *p) | |
5359 | { | |
5360 | const struct cred *cred = current_cred(), *pcred; | |
5361 | bool match; | |
5362 | ||
5363 | rcu_read_lock(); | |
5364 | pcred = __task_cred(p); | |
5365 | match = (cred->euid == pcred->euid || | |
5366 | cred->euid == pcred->uid); | |
5367 | rcu_read_unlock(); | |
5368 | return match; | |
5369 | } | |
5370 | ||
961ccddd RR |
5371 | static int __sched_setscheduler(struct task_struct *p, int policy, |
5372 | struct sched_param *param, bool user) | |
1da177e4 | 5373 | { |
83b699ed | 5374 | int retval, oldprio, oldpolicy = -1, on_rq, running; |
1da177e4 | 5375 | unsigned long flags; |
cb469845 | 5376 | const struct sched_class *prev_class = p->sched_class; |
70b97a7f | 5377 | struct rq *rq; |
1da177e4 | 5378 | |
66e5393a SR |
5379 | /* may grab non-irq protected spin_locks */ |
5380 | BUG_ON(in_interrupt()); | |
1da177e4 LT |
5381 | recheck: |
5382 | /* double check policy once rq lock held */ | |
5383 | if (policy < 0) | |
5384 | policy = oldpolicy = p->policy; | |
5385 | else if (policy != SCHED_FIFO && policy != SCHED_RR && | |
dd41f596 IM |
5386 | policy != SCHED_NORMAL && policy != SCHED_BATCH && |
5387 | policy != SCHED_IDLE) | |
b0a9499c | 5388 | return -EINVAL; |
1da177e4 LT |
5389 | /* |
5390 | * Valid priorities for SCHED_FIFO and SCHED_RR are | |
dd41f596 IM |
5391 | * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, |
5392 | * SCHED_BATCH and SCHED_IDLE is 0. | |
1da177e4 LT |
5393 | */ |
5394 | if (param->sched_priority < 0 || | |
95cdf3b7 | 5395 | (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || |
d46523ea | 5396 | (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) |
1da177e4 | 5397 | return -EINVAL; |
e05606d3 | 5398 | if (rt_policy(policy) != (param->sched_priority != 0)) |
1da177e4 LT |
5399 | return -EINVAL; |
5400 | ||
37e4ab3f OC |
5401 | /* |
5402 | * Allow unprivileged RT tasks to decrease priority: | |
5403 | */ | |
961ccddd | 5404 | if (user && !capable(CAP_SYS_NICE)) { |
e05606d3 | 5405 | if (rt_policy(policy)) { |
8dc3e909 | 5406 | unsigned long rlim_rtprio; |
8dc3e909 ON |
5407 | |
5408 | if (!lock_task_sighand(p, &flags)) | |
5409 | return -ESRCH; | |
5410 | rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur; | |
5411 | unlock_task_sighand(p, &flags); | |
5412 | ||
5413 | /* can't set/change the rt policy */ | |
5414 | if (policy != p->policy && !rlim_rtprio) | |
5415 | return -EPERM; | |
5416 | ||
5417 | /* can't increase priority */ | |
5418 | if (param->sched_priority > p->rt_priority && | |
5419 | param->sched_priority > rlim_rtprio) | |
5420 | return -EPERM; | |
5421 | } | |
dd41f596 IM |
5422 | /* |
5423 | * Like positive nice levels, dont allow tasks to | |
5424 | * move out of SCHED_IDLE either: | |
5425 | */ | |
5426 | if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) | |
5427 | return -EPERM; | |
5fe1d75f | 5428 | |
37e4ab3f | 5429 | /* can't change other user's priorities */ |
c69e8d9c | 5430 | if (!check_same_owner(p)) |
37e4ab3f OC |
5431 | return -EPERM; |
5432 | } | |
1da177e4 | 5433 | |
725aad24 | 5434 | if (user) { |
b68aa230 | 5435 | #ifdef CONFIG_RT_GROUP_SCHED |
725aad24 JF |
5436 | /* |
5437 | * Do not allow realtime tasks into groups that have no runtime | |
5438 | * assigned. | |
5439 | */ | |
9a7e0b18 PZ |
5440 | if (rt_bandwidth_enabled() && rt_policy(policy) && |
5441 | task_group(p)->rt_bandwidth.rt_runtime == 0) | |
725aad24 | 5442 | return -EPERM; |
b68aa230 PZ |
5443 | #endif |
5444 | ||
725aad24 JF |
5445 | retval = security_task_setscheduler(p, policy, param); |
5446 | if (retval) | |
5447 | return retval; | |
5448 | } | |
5449 | ||
b29739f9 IM |
5450 | /* |
5451 | * make sure no PI-waiters arrive (or leave) while we are | |
5452 | * changing the priority of the task: | |
5453 | */ | |
5454 | spin_lock_irqsave(&p->pi_lock, flags); | |
1da177e4 LT |
5455 | /* |
5456 | * To be able to change p->policy safely, the apropriate | |
5457 | * runqueue lock must be held. | |
5458 | */ | |
b29739f9 | 5459 | rq = __task_rq_lock(p); |
1da177e4 LT |
5460 | /* recheck policy now with rq lock held */ |
5461 | if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { | |
5462 | policy = oldpolicy = -1; | |
b29739f9 IM |
5463 | __task_rq_unlock(rq); |
5464 | spin_unlock_irqrestore(&p->pi_lock, flags); | |
1da177e4 LT |
5465 | goto recheck; |
5466 | } | |
2daa3577 | 5467 | update_rq_clock(rq); |
dd41f596 | 5468 | on_rq = p->se.on_rq; |
051a1d1a | 5469 | running = task_current(rq, p); |
0e1f3483 | 5470 | if (on_rq) |
2e1cb74a | 5471 | deactivate_task(rq, p, 0); |
0e1f3483 HS |
5472 | if (running) |
5473 | p->sched_class->put_prev_task(rq, p); | |
f6b53205 | 5474 | |
1da177e4 | 5475 | oldprio = p->prio; |
dd41f596 | 5476 | __setscheduler(rq, p, policy, param->sched_priority); |
f6b53205 | 5477 | |
0e1f3483 HS |
5478 | if (running) |
5479 | p->sched_class->set_curr_task(rq); | |
dd41f596 IM |
5480 | if (on_rq) { |
5481 | activate_task(rq, p, 0); | |
cb469845 SR |
5482 | |
5483 | check_class_changed(rq, p, prev_class, oldprio, running); | |
1da177e4 | 5484 | } |
b29739f9 IM |
5485 | __task_rq_unlock(rq); |
5486 | spin_unlock_irqrestore(&p->pi_lock, flags); | |
5487 | ||
95e02ca9 TG |
5488 | rt_mutex_adjust_pi(p); |
5489 | ||
1da177e4 LT |
5490 | return 0; |
5491 | } | |
961ccddd RR |
5492 | |
5493 | /** | |
5494 | * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. | |
5495 | * @p: the task in question. | |
5496 | * @policy: new policy. | |
5497 | * @param: structure containing the new RT priority. | |
5498 | * | |
5499 | * NOTE that the task may be already dead. | |
5500 | */ | |
5501 | int sched_setscheduler(struct task_struct *p, int policy, | |
5502 | struct sched_param *param) | |
5503 | { | |
5504 | return __sched_setscheduler(p, policy, param, true); | |
5505 | } | |
1da177e4 LT |
5506 | EXPORT_SYMBOL_GPL(sched_setscheduler); |
5507 | ||
961ccddd RR |
5508 | /** |
5509 | * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. | |
5510 | * @p: the task in question. | |
5511 | * @policy: new policy. | |
5512 | * @param: structure containing the new RT priority. | |
5513 | * | |
5514 | * Just like sched_setscheduler, only don't bother checking if the | |
5515 | * current context has permission. For example, this is needed in | |
5516 | * stop_machine(): we create temporary high priority worker threads, | |
5517 | * but our caller might not have that capability. | |
5518 | */ | |
5519 | int sched_setscheduler_nocheck(struct task_struct *p, int policy, | |
5520 | struct sched_param *param) | |
5521 | { | |
5522 | return __sched_setscheduler(p, policy, param, false); | |
5523 | } | |
5524 | ||
95cdf3b7 IM |
5525 | static int |
5526 | do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) | |
1da177e4 | 5527 | { |
1da177e4 LT |
5528 | struct sched_param lparam; |
5529 | struct task_struct *p; | |
36c8b586 | 5530 | int retval; |
1da177e4 LT |
5531 | |
5532 | if (!param || pid < 0) | |
5533 | return -EINVAL; | |
5534 | if (copy_from_user(&lparam, param, sizeof(struct sched_param))) | |
5535 | return -EFAULT; | |
5fe1d75f ON |
5536 | |
5537 | rcu_read_lock(); | |
5538 | retval = -ESRCH; | |
1da177e4 | 5539 | p = find_process_by_pid(pid); |
5fe1d75f ON |
5540 | if (p != NULL) |
5541 | retval = sched_setscheduler(p, policy, &lparam); | |
5542 | rcu_read_unlock(); | |
36c8b586 | 5543 | |
1da177e4 LT |
5544 | return retval; |
5545 | } | |
5546 | ||
5547 | /** | |
5548 | * sys_sched_setscheduler - set/change the scheduler policy and RT priority | |
5549 | * @pid: the pid in question. | |
5550 | * @policy: new policy. | |
5551 | * @param: structure containing the new RT priority. | |
5552 | */ | |
5add95d4 HC |
5553 | SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, |
5554 | struct sched_param __user *, param) | |
1da177e4 | 5555 | { |
c21761f1 JB |
5556 | /* negative values for policy are not valid */ |
5557 | if (policy < 0) | |
5558 | return -EINVAL; | |
5559 | ||
1da177e4 LT |
5560 | return do_sched_setscheduler(pid, policy, param); |
5561 | } | |
5562 | ||
5563 | /** | |
5564 | * sys_sched_setparam - set/change the RT priority of a thread | |
5565 | * @pid: the pid in question. | |
5566 | * @param: structure containing the new RT priority. | |
5567 | */ | |
5add95d4 | 5568 | SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) |
1da177e4 LT |
5569 | { |
5570 | return do_sched_setscheduler(pid, -1, param); | |
5571 | } | |
5572 | ||
5573 | /** | |
5574 | * sys_sched_getscheduler - get the policy (scheduling class) of a thread | |
5575 | * @pid: the pid in question. | |
5576 | */ | |
5add95d4 | 5577 | SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) |
1da177e4 | 5578 | { |
36c8b586 | 5579 | struct task_struct *p; |
3a5c359a | 5580 | int retval; |
1da177e4 LT |
5581 | |
5582 | if (pid < 0) | |
3a5c359a | 5583 | return -EINVAL; |
1da177e4 LT |
5584 | |
5585 | retval = -ESRCH; | |
5586 | read_lock(&tasklist_lock); | |
5587 | p = find_process_by_pid(pid); | |
5588 | if (p) { | |
5589 | retval = security_task_getscheduler(p); | |
5590 | if (!retval) | |
5591 | retval = p->policy; | |
5592 | } | |
5593 | read_unlock(&tasklist_lock); | |
1da177e4 LT |
5594 | return retval; |
5595 | } | |
5596 | ||
5597 | /** | |
5598 | * sys_sched_getscheduler - get the RT priority of a thread | |
5599 | * @pid: the pid in question. | |
5600 | * @param: structure containing the RT priority. | |
5601 | */ | |
5add95d4 | 5602 | SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) |
1da177e4 LT |
5603 | { |
5604 | struct sched_param lp; | |
36c8b586 | 5605 | struct task_struct *p; |
3a5c359a | 5606 | int retval; |
1da177e4 LT |
5607 | |
5608 | if (!param || pid < 0) | |
3a5c359a | 5609 | return -EINVAL; |
1da177e4 LT |
5610 | |
5611 | read_lock(&tasklist_lock); | |
5612 | p = find_process_by_pid(pid); | |
5613 | retval = -ESRCH; | |
5614 | if (!p) | |
5615 | goto out_unlock; | |
5616 | ||
5617 | retval = security_task_getscheduler(p); | |
5618 | if (retval) | |
5619 | goto out_unlock; | |
5620 | ||
5621 | lp.sched_priority = p->rt_priority; | |
5622 | read_unlock(&tasklist_lock); | |
5623 | ||
5624 | /* | |
5625 | * This one might sleep, we cannot do it with a spinlock held ... | |
5626 | */ | |
5627 | retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; | |
5628 | ||
1da177e4 LT |
5629 | return retval; |
5630 | ||
5631 | out_unlock: | |
5632 | read_unlock(&tasklist_lock); | |
5633 | return retval; | |
5634 | } | |
5635 | ||
96f874e2 | 5636 | long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) |
1da177e4 | 5637 | { |
5a16f3d3 | 5638 | cpumask_var_t cpus_allowed, new_mask; |
36c8b586 IM |
5639 | struct task_struct *p; |
5640 | int retval; | |
1da177e4 | 5641 | |
95402b38 | 5642 | get_online_cpus(); |
1da177e4 LT |
5643 | read_lock(&tasklist_lock); |
5644 | ||
5645 | p = find_process_by_pid(pid); | |
5646 | if (!p) { | |
5647 | read_unlock(&tasklist_lock); | |
95402b38 | 5648 | put_online_cpus(); |
1da177e4 LT |
5649 | return -ESRCH; |
5650 | } | |
5651 | ||
5652 | /* | |
5653 | * It is not safe to call set_cpus_allowed with the | |
41a2d6cf | 5654 | * tasklist_lock held. We will bump the task_struct's |
1da177e4 LT |
5655 | * usage count and then drop tasklist_lock. |
5656 | */ | |
5657 | get_task_struct(p); | |
5658 | read_unlock(&tasklist_lock); | |
5659 | ||
5a16f3d3 RR |
5660 | if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { |
5661 | retval = -ENOMEM; | |
5662 | goto out_put_task; | |
5663 | } | |
5664 | if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { | |
5665 | retval = -ENOMEM; | |
5666 | goto out_free_cpus_allowed; | |
5667 | } | |
1da177e4 | 5668 | retval = -EPERM; |
c69e8d9c | 5669 | if (!check_same_owner(p) && !capable(CAP_SYS_NICE)) |
1da177e4 LT |
5670 | goto out_unlock; |
5671 | ||
e7834f8f DQ |
5672 | retval = security_task_setscheduler(p, 0, NULL); |
5673 | if (retval) | |
5674 | goto out_unlock; | |
5675 | ||
5a16f3d3 RR |
5676 | cpuset_cpus_allowed(p, cpus_allowed); |
5677 | cpumask_and(new_mask, in_mask, cpus_allowed); | |
8707d8b8 | 5678 | again: |
5a16f3d3 | 5679 | retval = set_cpus_allowed_ptr(p, new_mask); |
1da177e4 | 5680 | |
8707d8b8 | 5681 | if (!retval) { |
5a16f3d3 RR |
5682 | cpuset_cpus_allowed(p, cpus_allowed); |
5683 | if (!cpumask_subset(new_mask, cpus_allowed)) { | |
8707d8b8 PM |
5684 | /* |
5685 | * We must have raced with a concurrent cpuset | |
5686 | * update. Just reset the cpus_allowed to the | |
5687 | * cpuset's cpus_allowed | |
5688 | */ | |
5a16f3d3 | 5689 | cpumask_copy(new_mask, cpus_allowed); |
8707d8b8 PM |
5690 | goto again; |
5691 | } | |
5692 | } | |
1da177e4 | 5693 | out_unlock: |
5a16f3d3 RR |
5694 | free_cpumask_var(new_mask); |
5695 | out_free_cpus_allowed: | |
5696 | free_cpumask_var(cpus_allowed); | |
5697 | out_put_task: | |
1da177e4 | 5698 | put_task_struct(p); |
95402b38 | 5699 | put_online_cpus(); |
1da177e4 LT |
5700 | return retval; |
5701 | } | |
5702 | ||
5703 | static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, | |
96f874e2 | 5704 | struct cpumask *new_mask) |
1da177e4 | 5705 | { |
96f874e2 RR |
5706 | if (len < cpumask_size()) |
5707 | cpumask_clear(new_mask); | |
5708 | else if (len > cpumask_size()) | |
5709 | len = cpumask_size(); | |
5710 | ||
1da177e4 LT |
5711 | return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; |
5712 | } | |
5713 | ||
5714 | /** | |
5715 | * sys_sched_setaffinity - set the cpu affinity of a process | |
5716 | * @pid: pid of the process | |
5717 | * @len: length in bytes of the bitmask pointed to by user_mask_ptr | |
5718 | * @user_mask_ptr: user-space pointer to the new cpu mask | |
5719 | */ | |
5add95d4 HC |
5720 | SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, |
5721 | unsigned long __user *, user_mask_ptr) | |
1da177e4 | 5722 | { |
5a16f3d3 | 5723 | cpumask_var_t new_mask; |
1da177e4 LT |
5724 | int retval; |
5725 | ||
5a16f3d3 RR |
5726 | if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) |
5727 | return -ENOMEM; | |
1da177e4 | 5728 | |
5a16f3d3 RR |
5729 | retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); |
5730 | if (retval == 0) | |
5731 | retval = sched_setaffinity(pid, new_mask); | |
5732 | free_cpumask_var(new_mask); | |
5733 | return retval; | |
1da177e4 LT |
5734 | } |
5735 | ||
96f874e2 | 5736 | long sched_getaffinity(pid_t pid, struct cpumask *mask) |
1da177e4 | 5737 | { |
36c8b586 | 5738 | struct task_struct *p; |
1da177e4 | 5739 | int retval; |
1da177e4 | 5740 | |
95402b38 | 5741 | get_online_cpus(); |
1da177e4 LT |
5742 | read_lock(&tasklist_lock); |
5743 | ||
5744 | retval = -ESRCH; | |
5745 | p = find_process_by_pid(pid); | |
5746 | if (!p) | |
5747 | goto out_unlock; | |
5748 | ||
e7834f8f DQ |
5749 | retval = security_task_getscheduler(p); |
5750 | if (retval) | |
5751 | goto out_unlock; | |
5752 | ||
96f874e2 | 5753 | cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); |
1da177e4 LT |
5754 | |
5755 | out_unlock: | |
5756 | read_unlock(&tasklist_lock); | |
95402b38 | 5757 | put_online_cpus(); |
1da177e4 | 5758 | |
9531b62f | 5759 | return retval; |
1da177e4 LT |
5760 | } |
5761 | ||
5762 | /** | |
5763 | * sys_sched_getaffinity - get the cpu affinity of a process | |
5764 | * @pid: pid of the process | |
5765 | * @len: length in bytes of the bitmask pointed to by user_mask_ptr | |
5766 | * @user_mask_ptr: user-space pointer to hold the current cpu mask | |
5767 | */ | |
5add95d4 HC |
5768 | SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, |
5769 | unsigned long __user *, user_mask_ptr) | |
1da177e4 LT |
5770 | { |
5771 | int ret; | |
f17c8607 | 5772 | cpumask_var_t mask; |
1da177e4 | 5773 | |
f17c8607 | 5774 | if (len < cpumask_size()) |
1da177e4 LT |
5775 | return -EINVAL; |
5776 | ||
f17c8607 RR |
5777 | if (!alloc_cpumask_var(&mask, GFP_KERNEL)) |
5778 | return -ENOMEM; | |
1da177e4 | 5779 | |
f17c8607 RR |
5780 | ret = sched_getaffinity(pid, mask); |
5781 | if (ret == 0) { | |
5782 | if (copy_to_user(user_mask_ptr, mask, cpumask_size())) | |
5783 | ret = -EFAULT; | |
5784 | else | |
5785 | ret = cpumask_size(); | |
5786 | } | |
5787 | free_cpumask_var(mask); | |
1da177e4 | 5788 | |
f17c8607 | 5789 | return ret; |
1da177e4 LT |
5790 | } |
5791 | ||
5792 | /** | |
5793 | * sys_sched_yield - yield the current processor to other threads. | |
5794 | * | |
dd41f596 IM |
5795 | * This function yields the current CPU to other tasks. If there are no |
5796 | * other threads running on this CPU then this function will return. | |
1da177e4 | 5797 | */ |
5add95d4 | 5798 | SYSCALL_DEFINE0(sched_yield) |
1da177e4 | 5799 | { |
70b97a7f | 5800 | struct rq *rq = this_rq_lock(); |
1da177e4 | 5801 | |
2d72376b | 5802 | schedstat_inc(rq, yld_count); |
4530d7ab | 5803 | current->sched_class->yield_task(rq); |
1da177e4 LT |
5804 | |
5805 | /* | |
5806 | * Since we are going to call schedule() anyway, there's | |
5807 | * no need to preempt or enable interrupts: | |
5808 | */ | |
5809 | __release(rq->lock); | |
8a25d5de | 5810 | spin_release(&rq->lock.dep_map, 1, _THIS_IP_); |
1da177e4 LT |
5811 | _raw_spin_unlock(&rq->lock); |
5812 | preempt_enable_no_resched(); | |
5813 | ||
5814 | schedule(); | |
5815 | ||
5816 | return 0; | |
5817 | } | |
5818 | ||
e7b38404 | 5819 | static void __cond_resched(void) |
1da177e4 | 5820 | { |
8e0a43d8 IM |
5821 | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP |
5822 | __might_sleep(__FILE__, __LINE__); | |
5823 | #endif | |
5bbcfd90 IM |
5824 | /* |
5825 | * The BKS might be reacquired before we have dropped | |
5826 | * PREEMPT_ACTIVE, which could trigger a second | |
5827 | * cond_resched() call. | |
5828 | */ | |
1da177e4 LT |
5829 | do { |
5830 | add_preempt_count(PREEMPT_ACTIVE); | |
5831 | schedule(); | |
5832 | sub_preempt_count(PREEMPT_ACTIVE); | |
5833 | } while (need_resched()); | |
5834 | } | |
5835 | ||
02b67cc3 | 5836 | int __sched _cond_resched(void) |
1da177e4 | 5837 | { |
9414232f IM |
5838 | if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) && |
5839 | system_state == SYSTEM_RUNNING) { | |
1da177e4 LT |
5840 | __cond_resched(); |
5841 | return 1; | |
5842 | } | |
5843 | return 0; | |
5844 | } | |
02b67cc3 | 5845 | EXPORT_SYMBOL(_cond_resched); |
1da177e4 LT |
5846 | |
5847 | /* | |
5848 | * cond_resched_lock() - if a reschedule is pending, drop the given lock, | |
5849 | * call schedule, and on return reacquire the lock. | |
5850 | * | |
41a2d6cf | 5851 | * This works OK both with and without CONFIG_PREEMPT. We do strange low-level |
1da177e4 LT |
5852 | * operations here to prevent schedule() from being called twice (once via |
5853 | * spin_unlock(), once by hand). | |
5854 | */ | |
95cdf3b7 | 5855 | int cond_resched_lock(spinlock_t *lock) |
1da177e4 | 5856 | { |
95c354fe | 5857 | int resched = need_resched() && system_state == SYSTEM_RUNNING; |
6df3cecb JK |
5858 | int ret = 0; |
5859 | ||
95c354fe | 5860 | if (spin_needbreak(lock) || resched) { |
1da177e4 | 5861 | spin_unlock(lock); |
95c354fe NP |
5862 | if (resched && need_resched()) |
5863 | __cond_resched(); | |
5864 | else | |
5865 | cpu_relax(); | |
6df3cecb | 5866 | ret = 1; |
1da177e4 | 5867 | spin_lock(lock); |
1da177e4 | 5868 | } |
6df3cecb | 5869 | return ret; |
1da177e4 | 5870 | } |
1da177e4 LT |
5871 | EXPORT_SYMBOL(cond_resched_lock); |
5872 | ||
5873 | int __sched cond_resched_softirq(void) | |
5874 | { | |
5875 | BUG_ON(!in_softirq()); | |
5876 | ||
9414232f | 5877 | if (need_resched() && system_state == SYSTEM_RUNNING) { |
98d82567 | 5878 | local_bh_enable(); |
1da177e4 LT |
5879 | __cond_resched(); |
5880 | local_bh_disable(); | |
5881 | return 1; | |
5882 | } | |
5883 | return 0; | |
5884 | } | |
1da177e4 LT |
5885 | EXPORT_SYMBOL(cond_resched_softirq); |
5886 | ||
1da177e4 LT |
5887 | /** |
5888 | * yield - yield the current processor to other threads. | |
5889 | * | |
72fd4a35 | 5890 | * This is a shortcut for kernel-space yielding - it marks the |
1da177e4 LT |
5891 | * thread runnable and calls sys_sched_yield(). |
5892 | */ | |
5893 | void __sched yield(void) | |
5894 | { | |
5895 | set_current_state(TASK_RUNNING); | |
5896 | sys_sched_yield(); | |
5897 | } | |
1da177e4 LT |
5898 | EXPORT_SYMBOL(yield); |
5899 | ||
5900 | /* | |
41a2d6cf | 5901 | * This task is about to go to sleep on IO. Increment rq->nr_iowait so |
1da177e4 LT |
5902 | * that process accounting knows that this is a task in IO wait state. |
5903 | * | |
5904 | * But don't do that if it is a deliberate, throttling IO wait (this task | |
5905 | * has set its backing_dev_info: the queue against which it should throttle) | |
5906 | */ | |
5907 | void __sched io_schedule(void) | |
5908 | { | |
70b97a7f | 5909 | struct rq *rq = &__raw_get_cpu_var(runqueues); |
1da177e4 | 5910 | |
0ff92245 | 5911 | delayacct_blkio_start(); |
1da177e4 LT |
5912 | atomic_inc(&rq->nr_iowait); |
5913 | schedule(); | |
5914 | atomic_dec(&rq->nr_iowait); | |
0ff92245 | 5915 | delayacct_blkio_end(); |
1da177e4 | 5916 | } |
1da177e4 LT |
5917 | EXPORT_SYMBOL(io_schedule); |
5918 | ||
5919 | long __sched io_schedule_timeout(long timeout) | |
5920 | { | |
70b97a7f | 5921 | struct rq *rq = &__raw_get_cpu_var(runqueues); |
1da177e4 LT |
5922 | long ret; |
5923 | ||
0ff92245 | 5924 | delayacct_blkio_start(); |
1da177e4 LT |
5925 | atomic_inc(&rq->nr_iowait); |
5926 | ret = schedule_timeout(timeout); | |
5927 | atomic_dec(&rq->nr_iowait); | |
0ff92245 | 5928 | delayacct_blkio_end(); |
1da177e4 LT |
5929 | return ret; |
5930 | } | |
5931 | ||
5932 | /** | |
5933 | * sys_sched_get_priority_max - return maximum RT priority. | |
5934 | * @policy: scheduling class. | |
5935 | * | |
5936 | * this syscall returns the maximum rt_priority that can be used | |
5937 | * by a given scheduling class. | |
5938 | */ | |
5add95d4 | 5939 | SYSCALL_DEFINE1(sched_get_priority_max, int, policy) |
1da177e4 LT |
5940 | { |
5941 | int ret = -EINVAL; | |
5942 | ||
5943 | switch (policy) { | |
5944 | case SCHED_FIFO: | |
5945 | case SCHED_RR: | |
5946 | ret = MAX_USER_RT_PRIO-1; | |
5947 | break; | |
5948 | case SCHED_NORMAL: | |
b0a9499c | 5949 | case SCHED_BATCH: |
dd41f596 | 5950 | case SCHED_IDLE: |
1da177e4 LT |
5951 | ret = 0; |
5952 | break; | |
5953 | } | |
5954 | return ret; | |
5955 | } | |
5956 | ||
5957 | /** | |
5958 | * sys_sched_get_priority_min - return minimum RT priority. | |
5959 | * @policy: scheduling class. | |
5960 | * | |
5961 | * this syscall returns the minimum rt_priority that can be used | |
5962 | * by a given scheduling class. | |
5963 | */ | |
5add95d4 | 5964 | SYSCALL_DEFINE1(sched_get_priority_min, int, policy) |
1da177e4 LT |
5965 | { |
5966 | int ret = -EINVAL; | |
5967 | ||
5968 | switch (policy) { | |
5969 | case SCHED_FIFO: | |
5970 | case SCHED_RR: | |
5971 | ret = 1; | |
5972 | break; | |
5973 | case SCHED_NORMAL: | |
b0a9499c | 5974 | case SCHED_BATCH: |
dd41f596 | 5975 | case SCHED_IDLE: |
1da177e4 LT |
5976 | ret = 0; |
5977 | } | |
5978 | return ret; | |
5979 | } | |
5980 | ||
5981 | /** | |
5982 | * sys_sched_rr_get_interval - return the default timeslice of a process. | |
5983 | * @pid: pid of the process. | |
5984 | * @interval: userspace pointer to the timeslice value. | |
5985 | * | |
5986 | * this syscall writes the default timeslice value of a given process | |
5987 | * into the user-space timespec buffer. A value of '0' means infinity. | |
5988 | */ | |
17da2bd9 | 5989 | SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, |
754fe8d2 | 5990 | struct timespec __user *, interval) |
1da177e4 | 5991 | { |
36c8b586 | 5992 | struct task_struct *p; |
a4ec24b4 | 5993 | unsigned int time_slice; |
3a5c359a | 5994 | int retval; |
1da177e4 | 5995 | struct timespec t; |
1da177e4 LT |
5996 | |
5997 | if (pid < 0) | |
3a5c359a | 5998 | return -EINVAL; |
1da177e4 LT |
5999 | |
6000 | retval = -ESRCH; | |
6001 | read_lock(&tasklist_lock); | |
6002 | p = find_process_by_pid(pid); | |
6003 | if (!p) | |
6004 | goto out_unlock; | |
6005 | ||
6006 | retval = security_task_getscheduler(p); | |
6007 | if (retval) | |
6008 | goto out_unlock; | |
6009 | ||
77034937 IM |
6010 | /* |
6011 | * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER | |
6012 | * tasks that are on an otherwise idle runqueue: | |
6013 | */ | |
6014 | time_slice = 0; | |
6015 | if (p->policy == SCHED_RR) { | |
a4ec24b4 | 6016 | time_slice = DEF_TIMESLICE; |
1868f958 | 6017 | } else if (p->policy != SCHED_FIFO) { |
a4ec24b4 DA |
6018 | struct sched_entity *se = &p->se; |
6019 | unsigned long flags; | |
6020 | struct rq *rq; | |
6021 | ||
6022 | rq = task_rq_lock(p, &flags); | |
77034937 IM |
6023 | if (rq->cfs.load.weight) |
6024 | time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se)); | |
a4ec24b4 DA |
6025 | task_rq_unlock(rq, &flags); |
6026 | } | |
1da177e4 | 6027 | read_unlock(&tasklist_lock); |
a4ec24b4 | 6028 | jiffies_to_timespec(time_slice, &t); |
1da177e4 | 6029 | retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; |
1da177e4 | 6030 | return retval; |
3a5c359a | 6031 | |
1da177e4 LT |
6032 | out_unlock: |
6033 | read_unlock(&tasklist_lock); | |
6034 | return retval; | |
6035 | } | |
6036 | ||
7c731e0a | 6037 | static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; |
36c8b586 | 6038 | |
82a1fcb9 | 6039 | void sched_show_task(struct task_struct *p) |
1da177e4 | 6040 | { |
1da177e4 | 6041 | unsigned long free = 0; |
36c8b586 | 6042 | unsigned state; |
1da177e4 | 6043 | |
1da177e4 | 6044 | state = p->state ? __ffs(p->state) + 1 : 0; |
cc4ea795 | 6045 | printk(KERN_INFO "%-13.13s %c", p->comm, |
2ed6e34f | 6046 | state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); |
4bd77321 | 6047 | #if BITS_PER_LONG == 32 |
1da177e4 | 6048 | if (state == TASK_RUNNING) |
cc4ea795 | 6049 | printk(KERN_CONT " running "); |
1da177e4 | 6050 | else |
cc4ea795 | 6051 | printk(KERN_CONT " %08lx ", thread_saved_pc(p)); |
1da177e4 LT |
6052 | #else |
6053 | if (state == TASK_RUNNING) | |
cc4ea795 | 6054 | printk(KERN_CONT " running task "); |
1da177e4 | 6055 | else |
cc4ea795 | 6056 | printk(KERN_CONT " %016lx ", thread_saved_pc(p)); |
1da177e4 LT |
6057 | #endif |
6058 | #ifdef CONFIG_DEBUG_STACK_USAGE | |
6059 | { | |
10ebffde | 6060 | unsigned long *n = end_of_stack(p); |
1da177e4 LT |
6061 | while (!*n) |
6062 | n++; | |
10ebffde | 6063 | free = (unsigned long)n - (unsigned long)end_of_stack(p); |
1da177e4 LT |
6064 | } |
6065 | #endif | |
ba25f9dc | 6066 | printk(KERN_CONT "%5lu %5d %6d\n", free, |
fcfd50af | 6067 | task_pid_nr(p), task_pid_nr(p->real_parent)); |
1da177e4 | 6068 | |
5fb5e6de | 6069 | show_stack(p, NULL); |
1da177e4 LT |
6070 | } |
6071 | ||
e59e2ae2 | 6072 | void show_state_filter(unsigned long state_filter) |
1da177e4 | 6073 | { |
36c8b586 | 6074 | struct task_struct *g, *p; |
1da177e4 | 6075 | |
4bd77321 IM |
6076 | #if BITS_PER_LONG == 32 |
6077 | printk(KERN_INFO | |
6078 | " task PC stack pid father\n"); | |
1da177e4 | 6079 | #else |
4bd77321 IM |
6080 | printk(KERN_INFO |
6081 | " task PC stack pid father\n"); | |
1da177e4 LT |
6082 | #endif |
6083 | read_lock(&tasklist_lock); | |
6084 | do_each_thread(g, p) { | |
6085 | /* | |
6086 | * reset the NMI-timeout, listing all files on a slow | |
6087 | * console might take alot of time: | |
6088 | */ | |
6089 | touch_nmi_watchdog(); | |
39bc89fd | 6090 | if (!state_filter || (p->state & state_filter)) |
82a1fcb9 | 6091 | sched_show_task(p); |
1da177e4 LT |
6092 | } while_each_thread(g, p); |
6093 | ||
04c9167f JF |
6094 | touch_all_softlockup_watchdogs(); |
6095 | ||
dd41f596 IM |
6096 | #ifdef CONFIG_SCHED_DEBUG |
6097 | sysrq_sched_debug_show(); | |
6098 | #endif | |
1da177e4 | 6099 | read_unlock(&tasklist_lock); |
e59e2ae2 IM |
6100 | /* |
6101 | * Only show locks if all tasks are dumped: | |
6102 | */ | |
6103 | if (state_filter == -1) | |
6104 | debug_show_all_locks(); | |
1da177e4 LT |
6105 | } |
6106 | ||
1df21055 IM |
6107 | void __cpuinit init_idle_bootup_task(struct task_struct *idle) |
6108 | { | |
dd41f596 | 6109 | idle->sched_class = &idle_sched_class; |
1df21055 IM |
6110 | } |
6111 | ||
f340c0d1 IM |
6112 | /** |
6113 | * init_idle - set up an idle thread for a given CPU | |
6114 | * @idle: task in question | |
6115 | * @cpu: cpu the idle task belongs to | |
6116 | * | |
6117 | * NOTE: this function does not set the idle thread's NEED_RESCHED | |
6118 | * flag, to make booting more robust. | |
6119 | */ | |
5c1e1767 | 6120 | void __cpuinit init_idle(struct task_struct *idle, int cpu) |
1da177e4 | 6121 | { |
70b97a7f | 6122 | struct rq *rq = cpu_rq(cpu); |
1da177e4 LT |
6123 | unsigned long flags; |
6124 | ||
5cbd54ef IM |
6125 | spin_lock_irqsave(&rq->lock, flags); |
6126 | ||
dd41f596 IM |
6127 | __sched_fork(idle); |
6128 | idle->se.exec_start = sched_clock(); | |
6129 | ||
b29739f9 | 6130 | idle->prio = idle->normal_prio = MAX_PRIO; |
96f874e2 | 6131 | cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu)); |
dd41f596 | 6132 | __set_task_cpu(idle, cpu); |
1da177e4 | 6133 | |
1da177e4 | 6134 | rq->curr = rq->idle = idle; |
4866cde0 NP |
6135 | #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) |
6136 | idle->oncpu = 1; | |
6137 | #endif | |
1da177e4 LT |
6138 | spin_unlock_irqrestore(&rq->lock, flags); |
6139 | ||
6140 | /* Set the preempt count _outside_ the spinlocks! */ | |
8e3e076c LT |
6141 | #if defined(CONFIG_PREEMPT) |
6142 | task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0); | |
6143 | #else | |
a1261f54 | 6144 | task_thread_info(idle)->preempt_count = 0; |
8e3e076c | 6145 | #endif |
dd41f596 IM |
6146 | /* |
6147 | * The idle tasks have their own, simple scheduling class: | |
6148 | */ | |
6149 | idle->sched_class = &idle_sched_class; | |
fb52607a | 6150 | ftrace_graph_init_task(idle); |
1da177e4 LT |
6151 | } |
6152 | ||
6153 | /* | |
6154 | * In a system that switches off the HZ timer nohz_cpu_mask | |
6155 | * indicates which cpus entered this state. This is used | |
6156 | * in the rcu update to wait only for active cpus. For system | |
6157 | * which do not switch off the HZ timer nohz_cpu_mask should | |
6a7b3dc3 | 6158 | * always be CPU_BITS_NONE. |
1da177e4 | 6159 | */ |
6a7b3dc3 | 6160 | cpumask_var_t nohz_cpu_mask; |
1da177e4 | 6161 | |
19978ca6 IM |
6162 | /* |
6163 | * Increase the granularity value when there are more CPUs, | |
6164 | * because with more CPUs the 'effective latency' as visible | |
6165 | * to users decreases. But the relationship is not linear, | |
6166 | * so pick a second-best guess by going with the log2 of the | |
6167 | * number of CPUs. | |
6168 | * | |
6169 | * This idea comes from the SD scheduler of Con Kolivas: | |
6170 | */ | |
6171 | static inline void sched_init_granularity(void) | |
6172 | { | |
6173 | unsigned int factor = 1 + ilog2(num_online_cpus()); | |
6174 | const unsigned long limit = 200000000; | |
6175 | ||
6176 | sysctl_sched_min_granularity *= factor; | |
6177 | if (sysctl_sched_min_granularity > limit) | |
6178 | sysctl_sched_min_granularity = limit; | |
6179 | ||
6180 | sysctl_sched_latency *= factor; | |
6181 | if (sysctl_sched_latency > limit) | |
6182 | sysctl_sched_latency = limit; | |
6183 | ||
6184 | sysctl_sched_wakeup_granularity *= factor; | |
55cd5340 PZ |
6185 | |
6186 | sysctl_sched_shares_ratelimit *= factor; | |
19978ca6 IM |
6187 | } |
6188 | ||
1da177e4 LT |
6189 | #ifdef CONFIG_SMP |
6190 | /* | |
6191 | * This is how migration works: | |
6192 | * | |
70b97a7f | 6193 | * 1) we queue a struct migration_req structure in the source CPU's |
1da177e4 LT |
6194 | * runqueue and wake up that CPU's migration thread. |
6195 | * 2) we down() the locked semaphore => thread blocks. | |
6196 | * 3) migration thread wakes up (implicitly it forces the migrated | |
6197 | * thread off the CPU) | |
6198 | * 4) it gets the migration request and checks whether the migrated | |
6199 | * task is still in the wrong runqueue. | |
6200 | * 5) if it's in the wrong runqueue then the migration thread removes | |
6201 | * it and puts it into the right queue. | |
6202 | * 6) migration thread up()s the semaphore. | |
6203 | * 7) we wake up and the migration is done. | |
6204 | */ | |
6205 | ||
6206 | /* | |
6207 | * Change a given task's CPU affinity. Migrate the thread to a | |
6208 | * proper CPU and schedule it away if the CPU it's executing on | |
6209 | * is removed from the allowed bitmask. | |
6210 | * | |
6211 | * NOTE: the caller must have a valid reference to the task, the | |
41a2d6cf | 6212 | * task must not exit() & deallocate itself prematurely. The |
1da177e4 LT |
6213 | * call is not atomic; no spinlocks may be held. |
6214 | */ | |
96f874e2 | 6215 | int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) |
1da177e4 | 6216 | { |
70b97a7f | 6217 | struct migration_req req; |
1da177e4 | 6218 | unsigned long flags; |
70b97a7f | 6219 | struct rq *rq; |
48f24c4d | 6220 | int ret = 0; |
1da177e4 LT |
6221 | |
6222 | rq = task_rq_lock(p, &flags); | |
96f874e2 | 6223 | if (!cpumask_intersects(new_mask, cpu_online_mask)) { |
1da177e4 LT |
6224 | ret = -EINVAL; |
6225 | goto out; | |
6226 | } | |
6227 | ||
9985b0ba | 6228 | if (unlikely((p->flags & PF_THREAD_BOUND) && p != current && |
96f874e2 | 6229 | !cpumask_equal(&p->cpus_allowed, new_mask))) { |
9985b0ba DR |
6230 | ret = -EINVAL; |
6231 | goto out; | |
6232 | } | |
6233 | ||
73fe6aae | 6234 | if (p->sched_class->set_cpus_allowed) |
cd8ba7cd | 6235 | p->sched_class->set_cpus_allowed(p, new_mask); |
73fe6aae | 6236 | else { |
96f874e2 RR |
6237 | cpumask_copy(&p->cpus_allowed, new_mask); |
6238 | p->rt.nr_cpus_allowed = cpumask_weight(new_mask); | |
73fe6aae GH |
6239 | } |
6240 | ||
1da177e4 | 6241 | /* Can the task run on the task's current CPU? If so, we're done */ |
96f874e2 | 6242 | if (cpumask_test_cpu(task_cpu(p), new_mask)) |
1da177e4 LT |
6243 | goto out; |
6244 | ||
1e5ce4f4 | 6245 | if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) { |
1da177e4 LT |
6246 | /* Need help from migration thread: drop lock and wait. */ |
6247 | task_rq_unlock(rq, &flags); | |
6248 | wake_up_process(rq->migration_thread); | |
6249 | wait_for_completion(&req.done); | |
6250 | tlb_migrate_finish(p->mm); | |
6251 | return 0; | |
6252 | } | |
6253 | out: | |
6254 | task_rq_unlock(rq, &flags); | |
48f24c4d | 6255 | |
1da177e4 LT |
6256 | return ret; |
6257 | } | |
cd8ba7cd | 6258 | EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); |
1da177e4 LT |
6259 | |
6260 | /* | |
41a2d6cf | 6261 | * Move (not current) task off this cpu, onto dest cpu. We're doing |
1da177e4 LT |
6262 | * this because either it can't run here any more (set_cpus_allowed() |
6263 | * away from this CPU, or CPU going down), or because we're | |
6264 | * attempting to rebalance this task on exec (sched_exec). | |
6265 | * | |
6266 | * So we race with normal scheduler movements, but that's OK, as long | |
6267 | * as the task is no longer on this CPU. | |
efc30814 KK |
6268 | * |
6269 | * Returns non-zero if task was successfully migrated. | |
1da177e4 | 6270 | */ |
efc30814 | 6271 | static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) |
1da177e4 | 6272 | { |
70b97a7f | 6273 | struct rq *rq_dest, *rq_src; |
dd41f596 | 6274 | int ret = 0, on_rq; |
1da177e4 | 6275 | |
e761b772 | 6276 | if (unlikely(!cpu_active(dest_cpu))) |
efc30814 | 6277 | return ret; |
1da177e4 LT |
6278 | |
6279 | rq_src = cpu_rq(src_cpu); | |
6280 | rq_dest = cpu_rq(dest_cpu); | |
6281 | ||
6282 | double_rq_lock(rq_src, rq_dest); | |
6283 | /* Already moved. */ | |
6284 | if (task_cpu(p) != src_cpu) | |
b1e38734 | 6285 | goto done; |
1da177e4 | 6286 | /* Affinity changed (again). */ |
96f874e2 | 6287 | if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) |
b1e38734 | 6288 | goto fail; |
1da177e4 | 6289 | |
dd41f596 | 6290 | on_rq = p->se.on_rq; |
6e82a3be | 6291 | if (on_rq) |
2e1cb74a | 6292 | deactivate_task(rq_src, p, 0); |
6e82a3be | 6293 | |
1da177e4 | 6294 | set_task_cpu(p, dest_cpu); |
dd41f596 IM |
6295 | if (on_rq) { |
6296 | activate_task(rq_dest, p, 0); | |
15afe09b | 6297 | check_preempt_curr(rq_dest, p, 0); |
1da177e4 | 6298 | } |
b1e38734 | 6299 | done: |
efc30814 | 6300 | ret = 1; |
b1e38734 | 6301 | fail: |
1da177e4 | 6302 | double_rq_unlock(rq_src, rq_dest); |
efc30814 | 6303 | return ret; |
1da177e4 LT |
6304 | } |
6305 | ||
6306 | /* | |
6307 | * migration_thread - this is a highprio system thread that performs | |
6308 | * thread migration by bumping thread off CPU then 'pushing' onto | |
6309 | * another runqueue. | |
6310 | */ | |
95cdf3b7 | 6311 | static int migration_thread(void *data) |
1da177e4 | 6312 | { |
1da177e4 | 6313 | int cpu = (long)data; |
70b97a7f | 6314 | struct rq *rq; |
1da177e4 LT |
6315 | |
6316 | rq = cpu_rq(cpu); | |
6317 | BUG_ON(rq->migration_thread != current); | |
6318 | ||
6319 | set_current_state(TASK_INTERRUPTIBLE); | |
6320 | while (!kthread_should_stop()) { | |
70b97a7f | 6321 | struct migration_req *req; |
1da177e4 | 6322 | struct list_head *head; |
1da177e4 | 6323 | |
1da177e4 LT |
6324 | spin_lock_irq(&rq->lock); |
6325 | ||
6326 | if (cpu_is_offline(cpu)) { | |
6327 | spin_unlock_irq(&rq->lock); | |
6328 | goto wait_to_die; | |
6329 | } | |
6330 | ||
6331 | if (rq->active_balance) { | |
6332 | active_load_balance(rq, cpu); | |
6333 | rq->active_balance = 0; | |
6334 | } | |
6335 | ||
6336 | head = &rq->migration_queue; | |
6337 | ||
6338 | if (list_empty(head)) { | |
6339 | spin_unlock_irq(&rq->lock); | |
6340 | schedule(); | |
6341 | set_current_state(TASK_INTERRUPTIBLE); | |
6342 | continue; | |
6343 | } | |
70b97a7f | 6344 | req = list_entry(head->next, struct migration_req, list); |
1da177e4 LT |
6345 | list_del_init(head->next); |
6346 | ||
674311d5 NP |
6347 | spin_unlock(&rq->lock); |
6348 | __migrate_task(req->task, cpu, req->dest_cpu); | |
6349 | local_irq_enable(); | |
1da177e4 LT |
6350 | |
6351 | complete(&req->done); | |
6352 | } | |
6353 | __set_current_state(TASK_RUNNING); | |
6354 | return 0; | |
6355 | ||
6356 | wait_to_die: | |
6357 | /* Wait for kthread_stop */ | |
6358 | set_current_state(TASK_INTERRUPTIBLE); | |
6359 | while (!kthread_should_stop()) { | |
6360 | schedule(); | |
6361 | set_current_state(TASK_INTERRUPTIBLE); | |
6362 | } | |
6363 | __set_current_state(TASK_RUNNING); | |
6364 | return 0; | |
6365 | } | |
6366 | ||
6367 | #ifdef CONFIG_HOTPLUG_CPU | |
f7b4cddc ON |
6368 | |
6369 | static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu) | |
6370 | { | |
6371 | int ret; | |
6372 | ||
6373 | local_irq_disable(); | |
6374 | ret = __migrate_task(p, src_cpu, dest_cpu); | |
6375 | local_irq_enable(); | |
6376 | return ret; | |
6377 | } | |
6378 | ||
054b9108 | 6379 | /* |
3a4fa0a2 | 6380 | * Figure out where task on dead CPU should go, use force if necessary. |
054b9108 | 6381 | */ |
48f24c4d | 6382 | static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) |
1da177e4 | 6383 | { |
70b97a7f | 6384 | int dest_cpu; |
6ca09dfc | 6385 | const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu)); |
e76bd8d9 RR |
6386 | |
6387 | again: | |
6388 | /* Look for allowed, online CPU in same node. */ | |
6389 | for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask) | |
6390 | if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) | |
6391 | goto move; | |
6392 | ||
6393 | /* Any allowed, online CPU? */ | |
6394 | dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask); | |
6395 | if (dest_cpu < nr_cpu_ids) | |
6396 | goto move; | |
6397 | ||
6398 | /* No more Mr. Nice Guy. */ | |
6399 | if (dest_cpu >= nr_cpu_ids) { | |
e76bd8d9 RR |
6400 | cpuset_cpus_allowed_locked(p, &p->cpus_allowed); |
6401 | dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed); | |
1da177e4 | 6402 | |
e76bd8d9 RR |
6403 | /* |
6404 | * Don't tell them about moving exiting tasks or | |
6405 | * kernel threads (both mm NULL), since they never | |
6406 | * leave kernel. | |
6407 | */ | |
6408 | if (p->mm && printk_ratelimit()) { | |
6409 | printk(KERN_INFO "process %d (%s) no " | |
6410 | "longer affine to cpu%d\n", | |
6411 | task_pid_nr(p), p->comm, dead_cpu); | |
3a5c359a | 6412 | } |
e76bd8d9 RR |
6413 | } |
6414 | ||
6415 | move: | |
6416 | /* It can have affinity changed while we were choosing. */ | |
6417 | if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu))) | |
6418 | goto again; | |
1da177e4 LT |
6419 | } |
6420 | ||
6421 | /* | |
6422 | * While a dead CPU has no uninterruptible tasks queued at this point, | |
6423 | * it might still have a nonzero ->nr_uninterruptible counter, because | |
6424 | * for performance reasons the counter is not stricly tracking tasks to | |
6425 | * their home CPUs. So we just add the counter to another CPU's counter, | |
6426 | * to keep the global sum constant after CPU-down: | |
6427 | */ | |
70b97a7f | 6428 | static void migrate_nr_uninterruptible(struct rq *rq_src) |
1da177e4 | 6429 | { |
1e5ce4f4 | 6430 | struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask)); |
1da177e4 LT |
6431 | unsigned long flags; |
6432 | ||
6433 | local_irq_save(flags); | |
6434 | double_rq_lock(rq_src, rq_dest); | |
6435 | rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible; | |
6436 | rq_src->nr_uninterruptible = 0; | |
6437 | double_rq_unlock(rq_src, rq_dest); | |
6438 | local_irq_restore(flags); | |
6439 | } | |
6440 | ||
6441 | /* Run through task list and migrate tasks from the dead cpu. */ | |
6442 | static void migrate_live_tasks(int src_cpu) | |
6443 | { | |
48f24c4d | 6444 | struct task_struct *p, *t; |
1da177e4 | 6445 | |
f7b4cddc | 6446 | read_lock(&tasklist_lock); |
1da177e4 | 6447 | |
48f24c4d IM |
6448 | do_each_thread(t, p) { |
6449 | if (p == current) | |
1da177e4 LT |
6450 | continue; |
6451 | ||
48f24c4d IM |
6452 | if (task_cpu(p) == src_cpu) |
6453 | move_task_off_dead_cpu(src_cpu, p); | |
6454 | } while_each_thread(t, p); | |
1da177e4 | 6455 | |
f7b4cddc | 6456 | read_unlock(&tasklist_lock); |
1da177e4 LT |
6457 | } |
6458 | ||
dd41f596 IM |
6459 | /* |
6460 | * Schedules idle task to be the next runnable task on current CPU. | |
94bc9a7b DA |
6461 | * It does so by boosting its priority to highest possible. |
6462 | * Used by CPU offline code. | |
1da177e4 LT |
6463 | */ |
6464 | void sched_idle_next(void) | |
6465 | { | |
48f24c4d | 6466 | int this_cpu = smp_processor_id(); |
70b97a7f | 6467 | struct rq *rq = cpu_rq(this_cpu); |
1da177e4 LT |
6468 | struct task_struct *p = rq->idle; |
6469 | unsigned long flags; | |
6470 | ||
6471 | /* cpu has to be offline */ | |
48f24c4d | 6472 | BUG_ON(cpu_online(this_cpu)); |
1da177e4 | 6473 | |
48f24c4d IM |
6474 | /* |
6475 | * Strictly not necessary since rest of the CPUs are stopped by now | |
6476 | * and interrupts disabled on the current cpu. | |
1da177e4 LT |
6477 | */ |
6478 | spin_lock_irqsave(&rq->lock, flags); | |
6479 | ||
dd41f596 | 6480 | __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); |
48f24c4d | 6481 | |
94bc9a7b DA |
6482 | update_rq_clock(rq); |
6483 | activate_task(rq, p, 0); | |
1da177e4 LT |
6484 | |
6485 | spin_unlock_irqrestore(&rq->lock, flags); | |
6486 | } | |
6487 | ||
48f24c4d IM |
6488 | /* |
6489 | * Ensures that the idle task is using init_mm right before its cpu goes | |
1da177e4 LT |
6490 | * offline. |
6491 | */ | |
6492 | void idle_task_exit(void) | |
6493 | { | |
6494 | struct mm_struct *mm = current->active_mm; | |
6495 | ||
6496 | BUG_ON(cpu_online(smp_processor_id())); | |
6497 | ||
6498 | if (mm != &init_mm) | |
6499 | switch_mm(mm, &init_mm, current); | |
6500 | mmdrop(mm); | |
6501 | } | |
6502 | ||
054b9108 | 6503 | /* called under rq->lock with disabled interrupts */ |
36c8b586 | 6504 | static void migrate_dead(unsigned int dead_cpu, struct task_struct *p) |
1da177e4 | 6505 | { |
70b97a7f | 6506 | struct rq *rq = cpu_rq(dead_cpu); |
1da177e4 LT |
6507 | |
6508 | /* Must be exiting, otherwise would be on tasklist. */ | |
270f722d | 6509 | BUG_ON(!p->exit_state); |
1da177e4 LT |
6510 | |
6511 | /* Cannot have done final schedule yet: would have vanished. */ | |
c394cc9f | 6512 | BUG_ON(p->state == TASK_DEAD); |
1da177e4 | 6513 | |
48f24c4d | 6514 | get_task_struct(p); |
1da177e4 LT |
6515 | |
6516 | /* | |
6517 | * Drop lock around migration; if someone else moves it, | |
41a2d6cf | 6518 | * that's OK. No task can be added to this CPU, so iteration is |
1da177e4 LT |
6519 | * fine. |
6520 | */ | |
f7b4cddc | 6521 | spin_unlock_irq(&rq->lock); |
48f24c4d | 6522 | move_task_off_dead_cpu(dead_cpu, p); |
f7b4cddc | 6523 | spin_lock_irq(&rq->lock); |
1da177e4 | 6524 | |
48f24c4d | 6525 | put_task_struct(p); |
1da177e4 LT |
6526 | } |
6527 | ||
6528 | /* release_task() removes task from tasklist, so we won't find dead tasks. */ | |
6529 | static void migrate_dead_tasks(unsigned int dead_cpu) | |
6530 | { | |
70b97a7f | 6531 | struct rq *rq = cpu_rq(dead_cpu); |
dd41f596 | 6532 | struct task_struct *next; |
48f24c4d | 6533 | |
dd41f596 IM |
6534 | for ( ; ; ) { |
6535 | if (!rq->nr_running) | |
6536 | break; | |
a8e504d2 | 6537 | update_rq_clock(rq); |
b67802ea | 6538 | next = pick_next_task(rq); |
dd41f596 IM |
6539 | if (!next) |
6540 | break; | |
79c53799 | 6541 | next->sched_class->put_prev_task(rq, next); |
dd41f596 | 6542 | migrate_dead(dead_cpu, next); |
e692ab53 | 6543 | |
1da177e4 LT |
6544 | } |
6545 | } | |
6546 | #endif /* CONFIG_HOTPLUG_CPU */ | |
6547 | ||
e692ab53 NP |
6548 | #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) |
6549 | ||
6550 | static struct ctl_table sd_ctl_dir[] = { | |
e0361851 AD |
6551 | { |
6552 | .procname = "sched_domain", | |
c57baf1e | 6553 | .mode = 0555, |
e0361851 | 6554 | }, |
38605cae | 6555 | {0, }, |
e692ab53 NP |
6556 | }; |
6557 | ||
6558 | static struct ctl_table sd_ctl_root[] = { | |
e0361851 | 6559 | { |
c57baf1e | 6560 | .ctl_name = CTL_KERN, |
e0361851 | 6561 | .procname = "kernel", |
c57baf1e | 6562 | .mode = 0555, |
e0361851 AD |
6563 | .child = sd_ctl_dir, |
6564 | }, | |
38605cae | 6565 | {0, }, |
e692ab53 NP |
6566 | }; |
6567 | ||
6568 | static struct ctl_table *sd_alloc_ctl_entry(int n) | |
6569 | { | |
6570 | struct ctl_table *entry = | |
5cf9f062 | 6571 | kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); |
e692ab53 | 6572 | |
e692ab53 NP |
6573 | return entry; |
6574 | } | |
6575 | ||
6382bc90 MM |
6576 | static void sd_free_ctl_entry(struct ctl_table **tablep) |
6577 | { | |
cd790076 | 6578 | struct ctl_table *entry; |
6382bc90 | 6579 | |
cd790076 MM |
6580 | /* |
6581 | * In the intermediate directories, both the child directory and | |
6582 | * procname are dynamically allocated and could fail but the mode | |
41a2d6cf | 6583 | * will always be set. In the lowest directory the names are |
cd790076 MM |
6584 | * static strings and all have proc handlers. |
6585 | */ | |
6586 | for (entry = *tablep; entry->mode; entry++) { | |
6382bc90 MM |
6587 | if (entry->child) |
6588 | sd_free_ctl_entry(&entry->child); | |
cd790076 MM |
6589 | if (entry->proc_handler == NULL) |
6590 | kfree(entry->procname); | |
6591 | } | |
6382bc90 MM |
6592 | |
6593 | kfree(*tablep); | |
6594 | *tablep = NULL; | |
6595 | } | |
6596 | ||
e692ab53 | 6597 | static void |
e0361851 | 6598 | set_table_entry(struct ctl_table *entry, |
e692ab53 NP |
6599 | const char *procname, void *data, int maxlen, |
6600 | mode_t mode, proc_handler *proc_handler) | |
6601 | { | |
e692ab53 NP |
6602 | entry->procname = procname; |
6603 | entry->data = data; | |
6604 | entry->maxlen = maxlen; | |
6605 | entry->mode = mode; | |
6606 | entry->proc_handler = proc_handler; | |
6607 | } | |
6608 | ||
6609 | static struct ctl_table * | |
6610 | sd_alloc_ctl_domain_table(struct sched_domain *sd) | |
6611 | { | |
a5d8c348 | 6612 | struct ctl_table *table = sd_alloc_ctl_entry(13); |
e692ab53 | 6613 | |
ad1cdc1d MM |
6614 | if (table == NULL) |
6615 | return NULL; | |
6616 | ||
e0361851 | 6617 | set_table_entry(&table[0], "min_interval", &sd->min_interval, |
e692ab53 | 6618 | sizeof(long), 0644, proc_doulongvec_minmax); |
e0361851 | 6619 | set_table_entry(&table[1], "max_interval", &sd->max_interval, |
e692ab53 | 6620 | sizeof(long), 0644, proc_doulongvec_minmax); |
e0361851 | 6621 | set_table_entry(&table[2], "busy_idx", &sd->busy_idx, |
e692ab53 | 6622 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 6623 | set_table_entry(&table[3], "idle_idx", &sd->idle_idx, |
e692ab53 | 6624 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 6625 | set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, |
e692ab53 | 6626 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 6627 | set_table_entry(&table[5], "wake_idx", &sd->wake_idx, |
e692ab53 | 6628 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 6629 | set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, |
e692ab53 | 6630 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 6631 | set_table_entry(&table[7], "busy_factor", &sd->busy_factor, |
e692ab53 | 6632 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 6633 | set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, |
e692ab53 | 6634 | sizeof(int), 0644, proc_dointvec_minmax); |
ace8b3d6 | 6635 | set_table_entry(&table[9], "cache_nice_tries", |
e692ab53 NP |
6636 | &sd->cache_nice_tries, |
6637 | sizeof(int), 0644, proc_dointvec_minmax); | |
ace8b3d6 | 6638 | set_table_entry(&table[10], "flags", &sd->flags, |
e692ab53 | 6639 | sizeof(int), 0644, proc_dointvec_minmax); |
a5d8c348 IM |
6640 | set_table_entry(&table[11], "name", sd->name, |
6641 | CORENAME_MAX_SIZE, 0444, proc_dostring); | |
6642 | /* &table[12] is terminator */ | |
e692ab53 NP |
6643 | |
6644 | return table; | |
6645 | } | |
6646 | ||
9a4e7159 | 6647 | static ctl_table *sd_alloc_ctl_cpu_table(int cpu) |
e692ab53 NP |
6648 | { |
6649 | struct ctl_table *entry, *table; | |
6650 | struct sched_domain *sd; | |
6651 | int domain_num = 0, i; | |
6652 | char buf[32]; | |
6653 | ||
6654 | for_each_domain(cpu, sd) | |
6655 | domain_num++; | |
6656 | entry = table = sd_alloc_ctl_entry(domain_num + 1); | |
ad1cdc1d MM |
6657 | if (table == NULL) |
6658 | return NULL; | |
e692ab53 NP |
6659 | |
6660 | i = 0; | |
6661 | for_each_domain(cpu, sd) { | |
6662 | snprintf(buf, 32, "domain%d", i); | |
e692ab53 | 6663 | entry->procname = kstrdup(buf, GFP_KERNEL); |
c57baf1e | 6664 | entry->mode = 0555; |
e692ab53 NP |
6665 | entry->child = sd_alloc_ctl_domain_table(sd); |
6666 | entry++; | |
6667 | i++; | |
6668 | } | |
6669 | return table; | |
6670 | } | |
6671 | ||
6672 | static struct ctl_table_header *sd_sysctl_header; | |
6382bc90 | 6673 | static void register_sched_domain_sysctl(void) |
e692ab53 NP |
6674 | { |
6675 | int i, cpu_num = num_online_cpus(); | |
6676 | struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); | |
6677 | char buf[32]; | |
6678 | ||
7378547f MM |
6679 | WARN_ON(sd_ctl_dir[0].child); |
6680 | sd_ctl_dir[0].child = entry; | |
6681 | ||
ad1cdc1d MM |
6682 | if (entry == NULL) |
6683 | return; | |
6684 | ||
97b6ea7b | 6685 | for_each_online_cpu(i) { |
e692ab53 | 6686 | snprintf(buf, 32, "cpu%d", i); |
e692ab53 | 6687 | entry->procname = kstrdup(buf, GFP_KERNEL); |
c57baf1e | 6688 | entry->mode = 0555; |
e692ab53 | 6689 | entry->child = sd_alloc_ctl_cpu_table(i); |
97b6ea7b | 6690 | entry++; |
e692ab53 | 6691 | } |
7378547f MM |
6692 | |
6693 | WARN_ON(sd_sysctl_header); | |
e692ab53 NP |
6694 | sd_sysctl_header = register_sysctl_table(sd_ctl_root); |
6695 | } | |
6382bc90 | 6696 | |
7378547f | 6697 | /* may be called multiple times per register */ |
6382bc90 MM |
6698 | static void unregister_sched_domain_sysctl(void) |
6699 | { | |
7378547f MM |
6700 | if (sd_sysctl_header) |
6701 | unregister_sysctl_table(sd_sysctl_header); | |
6382bc90 | 6702 | sd_sysctl_header = NULL; |
7378547f MM |
6703 | if (sd_ctl_dir[0].child) |
6704 | sd_free_ctl_entry(&sd_ctl_dir[0].child); | |
6382bc90 | 6705 | } |
e692ab53 | 6706 | #else |
6382bc90 MM |
6707 | static void register_sched_domain_sysctl(void) |
6708 | { | |
6709 | } | |
6710 | static void unregister_sched_domain_sysctl(void) | |
e692ab53 NP |
6711 | { |
6712 | } | |
6713 | #endif | |
6714 | ||
1f11eb6a GH |
6715 | static void set_rq_online(struct rq *rq) |
6716 | { | |
6717 | if (!rq->online) { | |
6718 | const struct sched_class *class; | |
6719 | ||
c6c4927b | 6720 | cpumask_set_cpu(rq->cpu, rq->rd->online); |
1f11eb6a GH |
6721 | rq->online = 1; |
6722 | ||
6723 | for_each_class(class) { | |
6724 | if (class->rq_online) | |
6725 | class->rq_online(rq); | |
6726 | } | |
6727 | } | |
6728 | } | |
6729 | ||
6730 | static void set_rq_offline(struct rq *rq) | |
6731 | { | |
6732 | if (rq->online) { | |
6733 | const struct sched_class *class; | |
6734 | ||
6735 | for_each_class(class) { | |
6736 | if (class->rq_offline) | |
6737 | class->rq_offline(rq); | |
6738 | } | |
6739 | ||
c6c4927b | 6740 | cpumask_clear_cpu(rq->cpu, rq->rd->online); |
1f11eb6a GH |
6741 | rq->online = 0; |
6742 | } | |
6743 | } | |
6744 | ||
1da177e4 LT |
6745 | /* |
6746 | * migration_call - callback that gets triggered when a CPU is added. | |
6747 | * Here we can start up the necessary migration thread for the new CPU. | |
6748 | */ | |
48f24c4d IM |
6749 | static int __cpuinit |
6750 | migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) | |
1da177e4 | 6751 | { |
1da177e4 | 6752 | struct task_struct *p; |
48f24c4d | 6753 | int cpu = (long)hcpu; |
1da177e4 | 6754 | unsigned long flags; |
70b97a7f | 6755 | struct rq *rq; |
1da177e4 LT |
6756 | |
6757 | switch (action) { | |
5be9361c | 6758 | |
1da177e4 | 6759 | case CPU_UP_PREPARE: |
8bb78442 | 6760 | case CPU_UP_PREPARE_FROZEN: |
dd41f596 | 6761 | p = kthread_create(migration_thread, hcpu, "migration/%d", cpu); |
1da177e4 LT |
6762 | if (IS_ERR(p)) |
6763 | return NOTIFY_BAD; | |
1da177e4 LT |
6764 | kthread_bind(p, cpu); |
6765 | /* Must be high prio: stop_machine expects to yield to it. */ | |
6766 | rq = task_rq_lock(p, &flags); | |
dd41f596 | 6767 | __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); |
1da177e4 LT |
6768 | task_rq_unlock(rq, &flags); |
6769 | cpu_rq(cpu)->migration_thread = p; | |
6770 | break; | |
48f24c4d | 6771 | |
1da177e4 | 6772 | case CPU_ONLINE: |
8bb78442 | 6773 | case CPU_ONLINE_FROZEN: |
3a4fa0a2 | 6774 | /* Strictly unnecessary, as first user will wake it. */ |
1da177e4 | 6775 | wake_up_process(cpu_rq(cpu)->migration_thread); |
1f94ef59 GH |
6776 | |
6777 | /* Update our root-domain */ | |
6778 | rq = cpu_rq(cpu); | |
6779 | spin_lock_irqsave(&rq->lock, flags); | |
6780 | if (rq->rd) { | |
c6c4927b | 6781 | BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); |
1f11eb6a GH |
6782 | |
6783 | set_rq_online(rq); | |
1f94ef59 GH |
6784 | } |
6785 | spin_unlock_irqrestore(&rq->lock, flags); | |
1da177e4 | 6786 | break; |
48f24c4d | 6787 | |
1da177e4 LT |
6788 | #ifdef CONFIG_HOTPLUG_CPU |
6789 | case CPU_UP_CANCELED: | |
8bb78442 | 6790 | case CPU_UP_CANCELED_FROZEN: |
fc75cdfa HC |
6791 | if (!cpu_rq(cpu)->migration_thread) |
6792 | break; | |
41a2d6cf | 6793 | /* Unbind it from offline cpu so it can run. Fall thru. */ |
a4c4af7c | 6794 | kthread_bind(cpu_rq(cpu)->migration_thread, |
1e5ce4f4 | 6795 | cpumask_any(cpu_online_mask)); |
1da177e4 LT |
6796 | kthread_stop(cpu_rq(cpu)->migration_thread); |
6797 | cpu_rq(cpu)->migration_thread = NULL; | |
6798 | break; | |
48f24c4d | 6799 | |
1da177e4 | 6800 | case CPU_DEAD: |
8bb78442 | 6801 | case CPU_DEAD_FROZEN: |
470fd646 | 6802 | cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */ |
1da177e4 LT |
6803 | migrate_live_tasks(cpu); |
6804 | rq = cpu_rq(cpu); | |
6805 | kthread_stop(rq->migration_thread); | |
6806 | rq->migration_thread = NULL; | |
6807 | /* Idle task back to normal (off runqueue, low prio) */ | |
d2da272a | 6808 | spin_lock_irq(&rq->lock); |
a8e504d2 | 6809 | update_rq_clock(rq); |
2e1cb74a | 6810 | deactivate_task(rq, rq->idle, 0); |
1da177e4 | 6811 | rq->idle->static_prio = MAX_PRIO; |
dd41f596 IM |
6812 | __setscheduler(rq, rq->idle, SCHED_NORMAL, 0); |
6813 | rq->idle->sched_class = &idle_sched_class; | |
1da177e4 | 6814 | migrate_dead_tasks(cpu); |
d2da272a | 6815 | spin_unlock_irq(&rq->lock); |
470fd646 | 6816 | cpuset_unlock(); |
1da177e4 LT |
6817 | migrate_nr_uninterruptible(rq); |
6818 | BUG_ON(rq->nr_running != 0); | |
6819 | ||
41a2d6cf IM |
6820 | /* |
6821 | * No need to migrate the tasks: it was best-effort if | |
6822 | * they didn't take sched_hotcpu_mutex. Just wake up | |
6823 | * the requestors. | |
6824 | */ | |
1da177e4 LT |
6825 | spin_lock_irq(&rq->lock); |
6826 | while (!list_empty(&rq->migration_queue)) { | |
70b97a7f IM |
6827 | struct migration_req *req; |
6828 | ||
1da177e4 | 6829 | req = list_entry(rq->migration_queue.next, |
70b97a7f | 6830 | struct migration_req, list); |
1da177e4 | 6831 | list_del_init(&req->list); |
9a2bd244 | 6832 | spin_unlock_irq(&rq->lock); |
1da177e4 | 6833 | complete(&req->done); |
9a2bd244 | 6834 | spin_lock_irq(&rq->lock); |
1da177e4 LT |
6835 | } |
6836 | spin_unlock_irq(&rq->lock); | |
6837 | break; | |
57d885fe | 6838 | |
08f503b0 GH |
6839 | case CPU_DYING: |
6840 | case CPU_DYING_FROZEN: | |
57d885fe GH |
6841 | /* Update our root-domain */ |
6842 | rq = cpu_rq(cpu); | |
6843 | spin_lock_irqsave(&rq->lock, flags); | |
6844 | if (rq->rd) { | |
c6c4927b | 6845 | BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); |
1f11eb6a | 6846 | set_rq_offline(rq); |
57d885fe GH |
6847 | } |
6848 | spin_unlock_irqrestore(&rq->lock, flags); | |
6849 | break; | |
1da177e4 LT |
6850 | #endif |
6851 | } | |
6852 | return NOTIFY_OK; | |
6853 | } | |
6854 | ||
6855 | /* Register at highest priority so that task migration (migrate_all_tasks) | |
6856 | * happens before everything else. | |
6857 | */ | |
26c2143b | 6858 | static struct notifier_block __cpuinitdata migration_notifier = { |
1da177e4 LT |
6859 | .notifier_call = migration_call, |
6860 | .priority = 10 | |
6861 | }; | |
6862 | ||
7babe8db | 6863 | static int __init migration_init(void) |
1da177e4 LT |
6864 | { |
6865 | void *cpu = (void *)(long)smp_processor_id(); | |
07dccf33 | 6866 | int err; |
48f24c4d IM |
6867 | |
6868 | /* Start one for the boot CPU: */ | |
07dccf33 AM |
6869 | err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); |
6870 | BUG_ON(err == NOTIFY_BAD); | |
1da177e4 LT |
6871 | migration_call(&migration_notifier, CPU_ONLINE, cpu); |
6872 | register_cpu_notifier(&migration_notifier); | |
7babe8db EGM |
6873 | |
6874 | return err; | |
1da177e4 | 6875 | } |
7babe8db | 6876 | early_initcall(migration_init); |
1da177e4 LT |
6877 | #endif |
6878 | ||
6879 | #ifdef CONFIG_SMP | |
476f3534 | 6880 | |
3e9830dc | 6881 | #ifdef CONFIG_SCHED_DEBUG |
4dcf6aff | 6882 | |
7c16ec58 | 6883 | static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, |
96f874e2 | 6884 | struct cpumask *groupmask) |
1da177e4 | 6885 | { |
4dcf6aff | 6886 | struct sched_group *group = sd->groups; |
434d53b0 | 6887 | char str[256]; |
1da177e4 | 6888 | |
968ea6d8 | 6889 | cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); |
96f874e2 | 6890 | cpumask_clear(groupmask); |
4dcf6aff IM |
6891 | |
6892 | printk(KERN_DEBUG "%*s domain %d: ", level, "", level); | |
6893 | ||
6894 | if (!(sd->flags & SD_LOAD_BALANCE)) { | |
6895 | printk("does not load-balance\n"); | |
6896 | if (sd->parent) | |
6897 | printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" | |
6898 | " has parent"); | |
6899 | return -1; | |
41c7ce9a NP |
6900 | } |
6901 | ||
eefd796a | 6902 | printk(KERN_CONT "span %s level %s\n", str, sd->name); |
4dcf6aff | 6903 | |
758b2cdc | 6904 | if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { |
4dcf6aff IM |
6905 | printk(KERN_ERR "ERROR: domain->span does not contain " |
6906 | "CPU%d\n", cpu); | |
6907 | } | |
758b2cdc | 6908 | if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { |
4dcf6aff IM |
6909 | printk(KERN_ERR "ERROR: domain->groups does not contain" |
6910 | " CPU%d\n", cpu); | |
6911 | } | |
1da177e4 | 6912 | |
4dcf6aff | 6913 | printk(KERN_DEBUG "%*s groups:", level + 1, ""); |
1da177e4 | 6914 | do { |
4dcf6aff IM |
6915 | if (!group) { |
6916 | printk("\n"); | |
6917 | printk(KERN_ERR "ERROR: group is NULL\n"); | |
1da177e4 LT |
6918 | break; |
6919 | } | |
6920 | ||
4dcf6aff IM |
6921 | if (!group->__cpu_power) { |
6922 | printk(KERN_CONT "\n"); | |
6923 | printk(KERN_ERR "ERROR: domain->cpu_power not " | |
6924 | "set\n"); | |
6925 | break; | |
6926 | } | |
1da177e4 | 6927 | |
758b2cdc | 6928 | if (!cpumask_weight(sched_group_cpus(group))) { |
4dcf6aff IM |
6929 | printk(KERN_CONT "\n"); |
6930 | printk(KERN_ERR "ERROR: empty group\n"); | |
6931 | break; | |
6932 | } | |
1da177e4 | 6933 | |
758b2cdc | 6934 | if (cpumask_intersects(groupmask, sched_group_cpus(group))) { |
4dcf6aff IM |
6935 | printk(KERN_CONT "\n"); |
6936 | printk(KERN_ERR "ERROR: repeated CPUs\n"); | |
6937 | break; | |
6938 | } | |
1da177e4 | 6939 | |
758b2cdc | 6940 | cpumask_or(groupmask, groupmask, sched_group_cpus(group)); |
1da177e4 | 6941 | |
968ea6d8 | 6942 | cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); |
4dcf6aff | 6943 | printk(KERN_CONT " %s", str); |
1da177e4 | 6944 | |
4dcf6aff IM |
6945 | group = group->next; |
6946 | } while (group != sd->groups); | |
6947 | printk(KERN_CONT "\n"); | |
1da177e4 | 6948 | |
758b2cdc | 6949 | if (!cpumask_equal(sched_domain_span(sd), groupmask)) |
4dcf6aff | 6950 | printk(KERN_ERR "ERROR: groups don't span domain->span\n"); |
1da177e4 | 6951 | |
758b2cdc RR |
6952 | if (sd->parent && |
6953 | !cpumask_subset(groupmask, sched_domain_span(sd->parent))) | |
4dcf6aff IM |
6954 | printk(KERN_ERR "ERROR: parent span is not a superset " |
6955 | "of domain->span\n"); | |
6956 | return 0; | |
6957 | } | |
1da177e4 | 6958 | |
4dcf6aff IM |
6959 | static void sched_domain_debug(struct sched_domain *sd, int cpu) |
6960 | { | |
d5dd3db1 | 6961 | cpumask_var_t groupmask; |
4dcf6aff | 6962 | int level = 0; |
1da177e4 | 6963 | |
4dcf6aff IM |
6964 | if (!sd) { |
6965 | printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); | |
6966 | return; | |
6967 | } | |
1da177e4 | 6968 | |
4dcf6aff IM |
6969 | printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); |
6970 | ||
d5dd3db1 | 6971 | if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) { |
7c16ec58 MT |
6972 | printk(KERN_DEBUG "Cannot load-balance (out of memory)\n"); |
6973 | return; | |
6974 | } | |
6975 | ||
4dcf6aff | 6976 | for (;;) { |
7c16ec58 | 6977 | if (sched_domain_debug_one(sd, cpu, level, groupmask)) |
4dcf6aff | 6978 | break; |
1da177e4 LT |
6979 | level++; |
6980 | sd = sd->parent; | |
33859f7f | 6981 | if (!sd) |
4dcf6aff IM |
6982 | break; |
6983 | } | |
d5dd3db1 | 6984 | free_cpumask_var(groupmask); |
1da177e4 | 6985 | } |
6d6bc0ad | 6986 | #else /* !CONFIG_SCHED_DEBUG */ |
48f24c4d | 6987 | # define sched_domain_debug(sd, cpu) do { } while (0) |
6d6bc0ad | 6988 | #endif /* CONFIG_SCHED_DEBUG */ |
1da177e4 | 6989 | |
1a20ff27 | 6990 | static int sd_degenerate(struct sched_domain *sd) |
245af2c7 | 6991 | { |
758b2cdc | 6992 | if (cpumask_weight(sched_domain_span(sd)) == 1) |
245af2c7 SS |
6993 | return 1; |
6994 | ||
6995 | /* Following flags need at least 2 groups */ | |
6996 | if (sd->flags & (SD_LOAD_BALANCE | | |
6997 | SD_BALANCE_NEWIDLE | | |
6998 | SD_BALANCE_FORK | | |
89c4710e SS |
6999 | SD_BALANCE_EXEC | |
7000 | SD_SHARE_CPUPOWER | | |
7001 | SD_SHARE_PKG_RESOURCES)) { | |
245af2c7 SS |
7002 | if (sd->groups != sd->groups->next) |
7003 | return 0; | |
7004 | } | |
7005 | ||
7006 | /* Following flags don't use groups */ | |
7007 | if (sd->flags & (SD_WAKE_IDLE | | |
7008 | SD_WAKE_AFFINE | | |
7009 | SD_WAKE_BALANCE)) | |
7010 | return 0; | |
7011 | ||
7012 | return 1; | |
7013 | } | |
7014 | ||
48f24c4d IM |
7015 | static int |
7016 | sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) | |
245af2c7 SS |
7017 | { |
7018 | unsigned long cflags = sd->flags, pflags = parent->flags; | |
7019 | ||
7020 | if (sd_degenerate(parent)) | |
7021 | return 1; | |
7022 | ||
758b2cdc | 7023 | if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) |
245af2c7 SS |
7024 | return 0; |
7025 | ||
7026 | /* Does parent contain flags not in child? */ | |
7027 | /* WAKE_BALANCE is a subset of WAKE_AFFINE */ | |
7028 | if (cflags & SD_WAKE_AFFINE) | |
7029 | pflags &= ~SD_WAKE_BALANCE; | |
7030 | /* Flags needing groups don't count if only 1 group in parent */ | |
7031 | if (parent->groups == parent->groups->next) { | |
7032 | pflags &= ~(SD_LOAD_BALANCE | | |
7033 | SD_BALANCE_NEWIDLE | | |
7034 | SD_BALANCE_FORK | | |
89c4710e SS |
7035 | SD_BALANCE_EXEC | |
7036 | SD_SHARE_CPUPOWER | | |
7037 | SD_SHARE_PKG_RESOURCES); | |
5436499e KC |
7038 | if (nr_node_ids == 1) |
7039 | pflags &= ~SD_SERIALIZE; | |
245af2c7 SS |
7040 | } |
7041 | if (~cflags & pflags) | |
7042 | return 0; | |
7043 | ||
7044 | return 1; | |
7045 | } | |
7046 | ||
c6c4927b RR |
7047 | static void free_rootdomain(struct root_domain *rd) |
7048 | { | |
68e74568 RR |
7049 | cpupri_cleanup(&rd->cpupri); |
7050 | ||
c6c4927b RR |
7051 | free_cpumask_var(rd->rto_mask); |
7052 | free_cpumask_var(rd->online); | |
7053 | free_cpumask_var(rd->span); | |
7054 | kfree(rd); | |
7055 | } | |
7056 | ||
57d885fe GH |
7057 | static void rq_attach_root(struct rq *rq, struct root_domain *rd) |
7058 | { | |
a0490fa3 | 7059 | struct root_domain *old_rd = NULL; |
57d885fe | 7060 | unsigned long flags; |
57d885fe GH |
7061 | |
7062 | spin_lock_irqsave(&rq->lock, flags); | |
7063 | ||
7064 | if (rq->rd) { | |
a0490fa3 | 7065 | old_rd = rq->rd; |
57d885fe | 7066 | |
c6c4927b | 7067 | if (cpumask_test_cpu(rq->cpu, old_rd->online)) |
1f11eb6a | 7068 | set_rq_offline(rq); |
57d885fe | 7069 | |
c6c4927b | 7070 | cpumask_clear_cpu(rq->cpu, old_rd->span); |
dc938520 | 7071 | |
a0490fa3 IM |
7072 | /* |
7073 | * If we dont want to free the old_rt yet then | |
7074 | * set old_rd to NULL to skip the freeing later | |
7075 | * in this function: | |
7076 | */ | |
7077 | if (!atomic_dec_and_test(&old_rd->refcount)) | |
7078 | old_rd = NULL; | |
57d885fe GH |
7079 | } |
7080 | ||
7081 | atomic_inc(&rd->refcount); | |
7082 | rq->rd = rd; | |
7083 | ||
c6c4927b RR |
7084 | cpumask_set_cpu(rq->cpu, rd->span); |
7085 | if (cpumask_test_cpu(rq->cpu, cpu_online_mask)) | |
1f11eb6a | 7086 | set_rq_online(rq); |
57d885fe GH |
7087 | |
7088 | spin_unlock_irqrestore(&rq->lock, flags); | |
a0490fa3 IM |
7089 | |
7090 | if (old_rd) | |
7091 | free_rootdomain(old_rd); | |
57d885fe GH |
7092 | } |
7093 | ||
db2f59c8 | 7094 | static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem) |
57d885fe GH |
7095 | { |
7096 | memset(rd, 0, sizeof(*rd)); | |
7097 | ||
c6c4927b RR |
7098 | if (bootmem) { |
7099 | alloc_bootmem_cpumask_var(&def_root_domain.span); | |
7100 | alloc_bootmem_cpumask_var(&def_root_domain.online); | |
7101 | alloc_bootmem_cpumask_var(&def_root_domain.rto_mask); | |
68e74568 | 7102 | cpupri_init(&rd->cpupri, true); |
c6c4927b RR |
7103 | return 0; |
7104 | } | |
7105 | ||
7106 | if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) | |
0c910d28 | 7107 | goto out; |
c6c4927b RR |
7108 | if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) |
7109 | goto free_span; | |
7110 | if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) | |
7111 | goto free_online; | |
6e0534f2 | 7112 | |
68e74568 RR |
7113 | if (cpupri_init(&rd->cpupri, false) != 0) |
7114 | goto free_rto_mask; | |
c6c4927b | 7115 | return 0; |
6e0534f2 | 7116 | |
68e74568 RR |
7117 | free_rto_mask: |
7118 | free_cpumask_var(rd->rto_mask); | |
c6c4927b RR |
7119 | free_online: |
7120 | free_cpumask_var(rd->online); | |
7121 | free_span: | |
7122 | free_cpumask_var(rd->span); | |
0c910d28 | 7123 | out: |
c6c4927b | 7124 | return -ENOMEM; |
57d885fe GH |
7125 | } |
7126 | ||
7127 | static void init_defrootdomain(void) | |
7128 | { | |
c6c4927b RR |
7129 | init_rootdomain(&def_root_domain, true); |
7130 | ||
57d885fe GH |
7131 | atomic_set(&def_root_domain.refcount, 1); |
7132 | } | |
7133 | ||
dc938520 | 7134 | static struct root_domain *alloc_rootdomain(void) |
57d885fe GH |
7135 | { |
7136 | struct root_domain *rd; | |
7137 | ||
7138 | rd = kmalloc(sizeof(*rd), GFP_KERNEL); | |
7139 | if (!rd) | |
7140 | return NULL; | |
7141 | ||
c6c4927b RR |
7142 | if (init_rootdomain(rd, false) != 0) { |
7143 | kfree(rd); | |
7144 | return NULL; | |
7145 | } | |
57d885fe GH |
7146 | |
7147 | return rd; | |
7148 | } | |
7149 | ||
1da177e4 | 7150 | /* |
0eab9146 | 7151 | * Attach the domain 'sd' to 'cpu' as its base domain. Callers must |
1da177e4 LT |
7152 | * hold the hotplug lock. |
7153 | */ | |
0eab9146 IM |
7154 | static void |
7155 | cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) | |
1da177e4 | 7156 | { |
70b97a7f | 7157 | struct rq *rq = cpu_rq(cpu); |
245af2c7 SS |
7158 | struct sched_domain *tmp; |
7159 | ||
7160 | /* Remove the sched domains which do not contribute to scheduling. */ | |
f29c9b1c | 7161 | for (tmp = sd; tmp; ) { |
245af2c7 SS |
7162 | struct sched_domain *parent = tmp->parent; |
7163 | if (!parent) | |
7164 | break; | |
f29c9b1c | 7165 | |
1a848870 | 7166 | if (sd_parent_degenerate(tmp, parent)) { |
245af2c7 | 7167 | tmp->parent = parent->parent; |
1a848870 SS |
7168 | if (parent->parent) |
7169 | parent->parent->child = tmp; | |
f29c9b1c LZ |
7170 | } else |
7171 | tmp = tmp->parent; | |
245af2c7 SS |
7172 | } |
7173 | ||
1a848870 | 7174 | if (sd && sd_degenerate(sd)) { |
245af2c7 | 7175 | sd = sd->parent; |
1a848870 SS |
7176 | if (sd) |
7177 | sd->child = NULL; | |
7178 | } | |
1da177e4 LT |
7179 | |
7180 | sched_domain_debug(sd, cpu); | |
7181 | ||
57d885fe | 7182 | rq_attach_root(rq, rd); |
674311d5 | 7183 | rcu_assign_pointer(rq->sd, sd); |
1da177e4 LT |
7184 | } |
7185 | ||
7186 | /* cpus with isolated domains */ | |
dcc30a35 | 7187 | static cpumask_var_t cpu_isolated_map; |
1da177e4 LT |
7188 | |
7189 | /* Setup the mask of cpus configured for isolated domains */ | |
7190 | static int __init isolated_cpu_setup(char *str) | |
7191 | { | |
968ea6d8 | 7192 | cpulist_parse(str, cpu_isolated_map); |
1da177e4 LT |
7193 | return 1; |
7194 | } | |
7195 | ||
8927f494 | 7196 | __setup("isolcpus=", isolated_cpu_setup); |
1da177e4 LT |
7197 | |
7198 | /* | |
6711cab4 SS |
7199 | * init_sched_build_groups takes the cpumask we wish to span, and a pointer |
7200 | * to a function which identifies what group(along with sched group) a CPU | |
96f874e2 RR |
7201 | * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids |
7202 | * (due to the fact that we keep track of groups covered with a struct cpumask). | |
1da177e4 LT |
7203 | * |
7204 | * init_sched_build_groups will build a circular linked list of the groups | |
7205 | * covered by the given span, and will set each group's ->cpumask correctly, | |
7206 | * and ->cpu_power to 0. | |
7207 | */ | |
a616058b | 7208 | static void |
96f874e2 RR |
7209 | init_sched_build_groups(const struct cpumask *span, |
7210 | const struct cpumask *cpu_map, | |
7211 | int (*group_fn)(int cpu, const struct cpumask *cpu_map, | |
7c16ec58 | 7212 | struct sched_group **sg, |
96f874e2 RR |
7213 | struct cpumask *tmpmask), |
7214 | struct cpumask *covered, struct cpumask *tmpmask) | |
1da177e4 LT |
7215 | { |
7216 | struct sched_group *first = NULL, *last = NULL; | |
1da177e4 LT |
7217 | int i; |
7218 | ||
96f874e2 | 7219 | cpumask_clear(covered); |
7c16ec58 | 7220 | |
abcd083a | 7221 | for_each_cpu(i, span) { |
6711cab4 | 7222 | struct sched_group *sg; |
7c16ec58 | 7223 | int group = group_fn(i, cpu_map, &sg, tmpmask); |
1da177e4 LT |
7224 | int j; |
7225 | ||
758b2cdc | 7226 | if (cpumask_test_cpu(i, covered)) |
1da177e4 LT |
7227 | continue; |
7228 | ||
758b2cdc | 7229 | cpumask_clear(sched_group_cpus(sg)); |
5517d86b | 7230 | sg->__cpu_power = 0; |
1da177e4 | 7231 | |
abcd083a | 7232 | for_each_cpu(j, span) { |
7c16ec58 | 7233 | if (group_fn(j, cpu_map, NULL, tmpmask) != group) |
1da177e4 LT |
7234 | continue; |
7235 | ||
96f874e2 | 7236 | cpumask_set_cpu(j, covered); |
758b2cdc | 7237 | cpumask_set_cpu(j, sched_group_cpus(sg)); |
1da177e4 LT |
7238 | } |
7239 | if (!first) | |
7240 | first = sg; | |
7241 | if (last) | |
7242 | last->next = sg; | |
7243 | last = sg; | |
7244 | } | |
7245 | last->next = first; | |
7246 | } | |
7247 | ||
9c1cfda2 | 7248 | #define SD_NODES_PER_DOMAIN 16 |
1da177e4 | 7249 | |
9c1cfda2 | 7250 | #ifdef CONFIG_NUMA |
198e2f18 | 7251 | |
9c1cfda2 JH |
7252 | /** |
7253 | * find_next_best_node - find the next node to include in a sched_domain | |
7254 | * @node: node whose sched_domain we're building | |
7255 | * @used_nodes: nodes already in the sched_domain | |
7256 | * | |
41a2d6cf | 7257 | * Find the next node to include in a given scheduling domain. Simply |
9c1cfda2 JH |
7258 | * finds the closest node not already in the @used_nodes map. |
7259 | * | |
7260 | * Should use nodemask_t. | |
7261 | */ | |
c5f59f08 | 7262 | static int find_next_best_node(int node, nodemask_t *used_nodes) |
9c1cfda2 JH |
7263 | { |
7264 | int i, n, val, min_val, best_node = 0; | |
7265 | ||
7266 | min_val = INT_MAX; | |
7267 | ||
076ac2af | 7268 | for (i = 0; i < nr_node_ids; i++) { |
9c1cfda2 | 7269 | /* Start at @node */ |
076ac2af | 7270 | n = (node + i) % nr_node_ids; |
9c1cfda2 JH |
7271 | |
7272 | if (!nr_cpus_node(n)) | |
7273 | continue; | |
7274 | ||
7275 | /* Skip already used nodes */ | |
c5f59f08 | 7276 | if (node_isset(n, *used_nodes)) |
9c1cfda2 JH |
7277 | continue; |
7278 | ||
7279 | /* Simple min distance search */ | |
7280 | val = node_distance(node, n); | |
7281 | ||
7282 | if (val < min_val) { | |
7283 | min_val = val; | |
7284 | best_node = n; | |
7285 | } | |
7286 | } | |
7287 | ||
c5f59f08 | 7288 | node_set(best_node, *used_nodes); |
9c1cfda2 JH |
7289 | return best_node; |
7290 | } | |
7291 | ||
7292 | /** | |
7293 | * sched_domain_node_span - get a cpumask for a node's sched_domain | |
7294 | * @node: node whose cpumask we're constructing | |
73486722 | 7295 | * @span: resulting cpumask |
9c1cfda2 | 7296 | * |
41a2d6cf | 7297 | * Given a node, construct a good cpumask for its sched_domain to span. It |
9c1cfda2 JH |
7298 | * should be one that prevents unnecessary balancing, but also spreads tasks |
7299 | * out optimally. | |
7300 | */ | |
96f874e2 | 7301 | static void sched_domain_node_span(int node, struct cpumask *span) |
9c1cfda2 | 7302 | { |
c5f59f08 | 7303 | nodemask_t used_nodes; |
48f24c4d | 7304 | int i; |
9c1cfda2 | 7305 | |
6ca09dfc | 7306 | cpumask_clear(span); |
c5f59f08 | 7307 | nodes_clear(used_nodes); |
9c1cfda2 | 7308 | |
6ca09dfc | 7309 | cpumask_or(span, span, cpumask_of_node(node)); |
c5f59f08 | 7310 | node_set(node, used_nodes); |
9c1cfda2 JH |
7311 | |
7312 | for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { | |
c5f59f08 | 7313 | int next_node = find_next_best_node(node, &used_nodes); |
48f24c4d | 7314 | |
6ca09dfc | 7315 | cpumask_or(span, span, cpumask_of_node(next_node)); |
9c1cfda2 | 7316 | } |
9c1cfda2 | 7317 | } |
6d6bc0ad | 7318 | #endif /* CONFIG_NUMA */ |
9c1cfda2 | 7319 | |
5c45bf27 | 7320 | int sched_smt_power_savings = 0, sched_mc_power_savings = 0; |
48f24c4d | 7321 | |
6c99e9ad RR |
7322 | /* |
7323 | * The cpus mask in sched_group and sched_domain hangs off the end. | |
7324 | * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space | |
7325 | * for nr_cpu_ids < CONFIG_NR_CPUS. | |
7326 | */ | |
7327 | struct static_sched_group { | |
7328 | struct sched_group sg; | |
7329 | DECLARE_BITMAP(cpus, CONFIG_NR_CPUS); | |
7330 | }; | |
7331 | ||
7332 | struct static_sched_domain { | |
7333 | struct sched_domain sd; | |
7334 | DECLARE_BITMAP(span, CONFIG_NR_CPUS); | |
7335 | }; | |
7336 | ||
9c1cfda2 | 7337 | /* |
48f24c4d | 7338 | * SMT sched-domains: |
9c1cfda2 | 7339 | */ |
1da177e4 | 7340 | #ifdef CONFIG_SCHED_SMT |
6c99e9ad RR |
7341 | static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains); |
7342 | static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus); | |
48f24c4d | 7343 | |
41a2d6cf | 7344 | static int |
96f874e2 RR |
7345 | cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map, |
7346 | struct sched_group **sg, struct cpumask *unused) | |
1da177e4 | 7347 | { |
6711cab4 | 7348 | if (sg) |
6c99e9ad | 7349 | *sg = &per_cpu(sched_group_cpus, cpu).sg; |
1da177e4 LT |
7350 | return cpu; |
7351 | } | |
6d6bc0ad | 7352 | #endif /* CONFIG_SCHED_SMT */ |
1da177e4 | 7353 | |
48f24c4d IM |
7354 | /* |
7355 | * multi-core sched-domains: | |
7356 | */ | |
1e9f28fa | 7357 | #ifdef CONFIG_SCHED_MC |
6c99e9ad RR |
7358 | static DEFINE_PER_CPU(struct static_sched_domain, core_domains); |
7359 | static DEFINE_PER_CPU(struct static_sched_group, sched_group_core); | |
6d6bc0ad | 7360 | #endif /* CONFIG_SCHED_MC */ |
1e9f28fa SS |
7361 | |
7362 | #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT) | |
41a2d6cf | 7363 | static int |
96f874e2 RR |
7364 | cpu_to_core_group(int cpu, const struct cpumask *cpu_map, |
7365 | struct sched_group **sg, struct cpumask *mask) | |
1e9f28fa | 7366 | { |
6711cab4 | 7367 | int group; |
7c16ec58 | 7368 | |
96f874e2 RR |
7369 | cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map); |
7370 | group = cpumask_first(mask); | |
6711cab4 | 7371 | if (sg) |
6c99e9ad | 7372 | *sg = &per_cpu(sched_group_core, group).sg; |
6711cab4 | 7373 | return group; |
1e9f28fa SS |
7374 | } |
7375 | #elif defined(CONFIG_SCHED_MC) | |
41a2d6cf | 7376 | static int |
96f874e2 RR |
7377 | cpu_to_core_group(int cpu, const struct cpumask *cpu_map, |
7378 | struct sched_group **sg, struct cpumask *unused) | |
1e9f28fa | 7379 | { |
6711cab4 | 7380 | if (sg) |
6c99e9ad | 7381 | *sg = &per_cpu(sched_group_core, cpu).sg; |
1e9f28fa SS |
7382 | return cpu; |
7383 | } | |
7384 | #endif | |
7385 | ||
6c99e9ad RR |
7386 | static DEFINE_PER_CPU(struct static_sched_domain, phys_domains); |
7387 | static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys); | |
48f24c4d | 7388 | |
41a2d6cf | 7389 | static int |
96f874e2 RR |
7390 | cpu_to_phys_group(int cpu, const struct cpumask *cpu_map, |
7391 | struct sched_group **sg, struct cpumask *mask) | |
1da177e4 | 7392 | { |
6711cab4 | 7393 | int group; |
48f24c4d | 7394 | #ifdef CONFIG_SCHED_MC |
6ca09dfc | 7395 | cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map); |
96f874e2 | 7396 | group = cpumask_first(mask); |
1e9f28fa | 7397 | #elif defined(CONFIG_SCHED_SMT) |
96f874e2 RR |
7398 | cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map); |
7399 | group = cpumask_first(mask); | |
1da177e4 | 7400 | #else |
6711cab4 | 7401 | group = cpu; |
1da177e4 | 7402 | #endif |
6711cab4 | 7403 | if (sg) |
6c99e9ad | 7404 | *sg = &per_cpu(sched_group_phys, group).sg; |
6711cab4 | 7405 | return group; |
1da177e4 LT |
7406 | } |
7407 | ||
7408 | #ifdef CONFIG_NUMA | |
1da177e4 | 7409 | /* |
9c1cfda2 JH |
7410 | * The init_sched_build_groups can't handle what we want to do with node |
7411 | * groups, so roll our own. Now each node has its own list of groups which | |
7412 | * gets dynamically allocated. | |
1da177e4 | 7413 | */ |
62ea9ceb | 7414 | static DEFINE_PER_CPU(struct static_sched_domain, node_domains); |
434d53b0 | 7415 | static struct sched_group ***sched_group_nodes_bycpu; |
1da177e4 | 7416 | |
62ea9ceb | 7417 | static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains); |
6c99e9ad | 7418 | static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes); |
9c1cfda2 | 7419 | |
96f874e2 RR |
7420 | static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map, |
7421 | struct sched_group **sg, | |
7422 | struct cpumask *nodemask) | |
9c1cfda2 | 7423 | { |
6711cab4 SS |
7424 | int group; |
7425 | ||
6ca09dfc | 7426 | cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map); |
96f874e2 | 7427 | group = cpumask_first(nodemask); |
6711cab4 SS |
7428 | |
7429 | if (sg) | |
6c99e9ad | 7430 | *sg = &per_cpu(sched_group_allnodes, group).sg; |
6711cab4 | 7431 | return group; |
1da177e4 | 7432 | } |
6711cab4 | 7433 | |
08069033 SS |
7434 | static void init_numa_sched_groups_power(struct sched_group *group_head) |
7435 | { | |
7436 | struct sched_group *sg = group_head; | |
7437 | int j; | |
7438 | ||
7439 | if (!sg) | |
7440 | return; | |
3a5c359a | 7441 | do { |
758b2cdc | 7442 | for_each_cpu(j, sched_group_cpus(sg)) { |
3a5c359a | 7443 | struct sched_domain *sd; |
08069033 | 7444 | |
6c99e9ad | 7445 | sd = &per_cpu(phys_domains, j).sd; |
758b2cdc | 7446 | if (j != cpumask_first(sched_group_cpus(sd->groups))) { |
3a5c359a AK |
7447 | /* |
7448 | * Only add "power" once for each | |
7449 | * physical package. | |
7450 | */ | |
7451 | continue; | |
7452 | } | |
08069033 | 7453 | |
3a5c359a AK |
7454 | sg_inc_cpu_power(sg, sd->groups->__cpu_power); |
7455 | } | |
7456 | sg = sg->next; | |
7457 | } while (sg != group_head); | |
08069033 | 7458 | } |
6d6bc0ad | 7459 | #endif /* CONFIG_NUMA */ |
1da177e4 | 7460 | |
a616058b | 7461 | #ifdef CONFIG_NUMA |
51888ca2 | 7462 | /* Free memory allocated for various sched_group structures */ |
96f874e2 RR |
7463 | static void free_sched_groups(const struct cpumask *cpu_map, |
7464 | struct cpumask *nodemask) | |
51888ca2 | 7465 | { |
a616058b | 7466 | int cpu, i; |
51888ca2 | 7467 | |
abcd083a | 7468 | for_each_cpu(cpu, cpu_map) { |
51888ca2 SV |
7469 | struct sched_group **sched_group_nodes |
7470 | = sched_group_nodes_bycpu[cpu]; | |
7471 | ||
51888ca2 SV |
7472 | if (!sched_group_nodes) |
7473 | continue; | |
7474 | ||
076ac2af | 7475 | for (i = 0; i < nr_node_ids; i++) { |
51888ca2 SV |
7476 | struct sched_group *oldsg, *sg = sched_group_nodes[i]; |
7477 | ||
6ca09dfc | 7478 | cpumask_and(nodemask, cpumask_of_node(i), cpu_map); |
96f874e2 | 7479 | if (cpumask_empty(nodemask)) |
51888ca2 SV |
7480 | continue; |
7481 | ||
7482 | if (sg == NULL) | |
7483 | continue; | |
7484 | sg = sg->next; | |
7485 | next_sg: | |
7486 | oldsg = sg; | |
7487 | sg = sg->next; | |
7488 | kfree(oldsg); | |
7489 | if (oldsg != sched_group_nodes[i]) | |
7490 | goto next_sg; | |
7491 | } | |
7492 | kfree(sched_group_nodes); | |
7493 | sched_group_nodes_bycpu[cpu] = NULL; | |
7494 | } | |
51888ca2 | 7495 | } |
6d6bc0ad | 7496 | #else /* !CONFIG_NUMA */ |
96f874e2 RR |
7497 | static void free_sched_groups(const struct cpumask *cpu_map, |
7498 | struct cpumask *nodemask) | |
a616058b SS |
7499 | { |
7500 | } | |
6d6bc0ad | 7501 | #endif /* CONFIG_NUMA */ |
51888ca2 | 7502 | |
89c4710e SS |
7503 | /* |
7504 | * Initialize sched groups cpu_power. | |
7505 | * | |
7506 | * cpu_power indicates the capacity of sched group, which is used while | |
7507 | * distributing the load between different sched groups in a sched domain. | |
7508 | * Typically cpu_power for all the groups in a sched domain will be same unless | |
7509 | * there are asymmetries in the topology. If there are asymmetries, group | |
7510 | * having more cpu_power will pickup more load compared to the group having | |
7511 | * less cpu_power. | |
7512 | * | |
7513 | * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents | |
7514 | * the maximum number of tasks a group can handle in the presence of other idle | |
7515 | * or lightly loaded groups in the same sched domain. | |
7516 | */ | |
7517 | static void init_sched_groups_power(int cpu, struct sched_domain *sd) | |
7518 | { | |
7519 | struct sched_domain *child; | |
7520 | struct sched_group *group; | |
7521 | ||
7522 | WARN_ON(!sd || !sd->groups); | |
7523 | ||
758b2cdc | 7524 | if (cpu != cpumask_first(sched_group_cpus(sd->groups))) |
89c4710e SS |
7525 | return; |
7526 | ||
7527 | child = sd->child; | |
7528 | ||
5517d86b ED |
7529 | sd->groups->__cpu_power = 0; |
7530 | ||
89c4710e SS |
7531 | /* |
7532 | * For perf policy, if the groups in child domain share resources | |
7533 | * (for example cores sharing some portions of the cache hierarchy | |
7534 | * or SMT), then set this domain groups cpu_power such that each group | |
7535 | * can handle only one task, when there are other idle groups in the | |
7536 | * same sched domain. | |
7537 | */ | |
7538 | if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) && | |
7539 | (child->flags & | |
7540 | (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) { | |
5517d86b | 7541 | sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE); |
89c4710e SS |
7542 | return; |
7543 | } | |
7544 | ||
89c4710e SS |
7545 | /* |
7546 | * add cpu_power of each child group to this groups cpu_power | |
7547 | */ | |
7548 | group = child->groups; | |
7549 | do { | |
5517d86b | 7550 | sg_inc_cpu_power(sd->groups, group->__cpu_power); |
89c4710e SS |
7551 | group = group->next; |
7552 | } while (group != child->groups); | |
7553 | } | |
7554 | ||
7c16ec58 MT |
7555 | /* |
7556 | * Initializers for schedule domains | |
7557 | * Non-inlined to reduce accumulated stack pressure in build_sched_domains() | |
7558 | */ | |
7559 | ||
a5d8c348 IM |
7560 | #ifdef CONFIG_SCHED_DEBUG |
7561 | # define SD_INIT_NAME(sd, type) sd->name = #type | |
7562 | #else | |
7563 | # define SD_INIT_NAME(sd, type) do { } while (0) | |
7564 | #endif | |
7565 | ||
7c16ec58 | 7566 | #define SD_INIT(sd, type) sd_init_##type(sd) |
a5d8c348 | 7567 | |
7c16ec58 MT |
7568 | #define SD_INIT_FUNC(type) \ |
7569 | static noinline void sd_init_##type(struct sched_domain *sd) \ | |
7570 | { \ | |
7571 | memset(sd, 0, sizeof(*sd)); \ | |
7572 | *sd = SD_##type##_INIT; \ | |
1d3504fc | 7573 | sd->level = SD_LV_##type; \ |
a5d8c348 | 7574 | SD_INIT_NAME(sd, type); \ |
7c16ec58 MT |
7575 | } |
7576 | ||
7577 | SD_INIT_FUNC(CPU) | |
7578 | #ifdef CONFIG_NUMA | |
7579 | SD_INIT_FUNC(ALLNODES) | |
7580 | SD_INIT_FUNC(NODE) | |
7581 | #endif | |
7582 | #ifdef CONFIG_SCHED_SMT | |
7583 | SD_INIT_FUNC(SIBLING) | |
7584 | #endif | |
7585 | #ifdef CONFIG_SCHED_MC | |
7586 | SD_INIT_FUNC(MC) | |
7587 | #endif | |
7588 | ||
1d3504fc HS |
7589 | static int default_relax_domain_level = -1; |
7590 | ||
7591 | static int __init setup_relax_domain_level(char *str) | |
7592 | { | |
30e0e178 LZ |
7593 | unsigned long val; |
7594 | ||
7595 | val = simple_strtoul(str, NULL, 0); | |
7596 | if (val < SD_LV_MAX) | |
7597 | default_relax_domain_level = val; | |
7598 | ||
1d3504fc HS |
7599 | return 1; |
7600 | } | |
7601 | __setup("relax_domain_level=", setup_relax_domain_level); | |
7602 | ||
7603 | static void set_domain_attribute(struct sched_domain *sd, | |
7604 | struct sched_domain_attr *attr) | |
7605 | { | |
7606 | int request; | |
7607 | ||
7608 | if (!attr || attr->relax_domain_level < 0) { | |
7609 | if (default_relax_domain_level < 0) | |
7610 | return; | |
7611 | else | |
7612 | request = default_relax_domain_level; | |
7613 | } else | |
7614 | request = attr->relax_domain_level; | |
7615 | if (request < sd->level) { | |
7616 | /* turn off idle balance on this domain */ | |
7617 | sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE); | |
7618 | } else { | |
7619 | /* turn on idle balance on this domain */ | |
7620 | sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE); | |
7621 | } | |
7622 | } | |
7623 | ||
1da177e4 | 7624 | /* |
1a20ff27 DG |
7625 | * Build sched domains for a given set of cpus and attach the sched domains |
7626 | * to the individual cpus | |
1da177e4 | 7627 | */ |
96f874e2 | 7628 | static int __build_sched_domains(const struct cpumask *cpu_map, |
1d3504fc | 7629 | struct sched_domain_attr *attr) |
1da177e4 | 7630 | { |
3404c8d9 | 7631 | int i, err = -ENOMEM; |
57d885fe | 7632 | struct root_domain *rd; |
3404c8d9 RR |
7633 | cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered, |
7634 | tmpmask; | |
d1b55138 | 7635 | #ifdef CONFIG_NUMA |
3404c8d9 | 7636 | cpumask_var_t domainspan, covered, notcovered; |
d1b55138 | 7637 | struct sched_group **sched_group_nodes = NULL; |
6711cab4 | 7638 | int sd_allnodes = 0; |
d1b55138 | 7639 | |
3404c8d9 RR |
7640 | if (!alloc_cpumask_var(&domainspan, GFP_KERNEL)) |
7641 | goto out; | |
7642 | if (!alloc_cpumask_var(&covered, GFP_KERNEL)) | |
7643 | goto free_domainspan; | |
7644 | if (!alloc_cpumask_var(¬covered, GFP_KERNEL)) | |
7645 | goto free_covered; | |
7646 | #endif | |
7647 | ||
7648 | if (!alloc_cpumask_var(&nodemask, GFP_KERNEL)) | |
7649 | goto free_notcovered; | |
7650 | if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL)) | |
7651 | goto free_nodemask; | |
7652 | if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL)) | |
7653 | goto free_this_sibling_map; | |
7654 | if (!alloc_cpumask_var(&send_covered, GFP_KERNEL)) | |
7655 | goto free_this_core_map; | |
7656 | if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL)) | |
7657 | goto free_send_covered; | |
7658 | ||
7659 | #ifdef CONFIG_NUMA | |
d1b55138 JH |
7660 | /* |
7661 | * Allocate the per-node list of sched groups | |
7662 | */ | |
076ac2af | 7663 | sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *), |
41a2d6cf | 7664 | GFP_KERNEL); |
d1b55138 JH |
7665 | if (!sched_group_nodes) { |
7666 | printk(KERN_WARNING "Can not alloc sched group node list\n"); | |
3404c8d9 | 7667 | goto free_tmpmask; |
d1b55138 | 7668 | } |
d1b55138 | 7669 | #endif |
1da177e4 | 7670 | |
dc938520 | 7671 | rd = alloc_rootdomain(); |
57d885fe GH |
7672 | if (!rd) { |
7673 | printk(KERN_WARNING "Cannot alloc root domain\n"); | |
3404c8d9 | 7674 | goto free_sched_groups; |
57d885fe GH |
7675 | } |
7676 | ||
7c16ec58 | 7677 | #ifdef CONFIG_NUMA |
96f874e2 | 7678 | sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes; |
7c16ec58 MT |
7679 | #endif |
7680 | ||
1da177e4 | 7681 | /* |
1a20ff27 | 7682 | * Set up domains for cpus specified by the cpu_map. |
1da177e4 | 7683 | */ |
abcd083a | 7684 | for_each_cpu(i, cpu_map) { |
1da177e4 | 7685 | struct sched_domain *sd = NULL, *p; |
1da177e4 | 7686 | |
6ca09dfc | 7687 | cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map); |
1da177e4 LT |
7688 | |
7689 | #ifdef CONFIG_NUMA | |
96f874e2 RR |
7690 | if (cpumask_weight(cpu_map) > |
7691 | SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) { | |
62ea9ceb | 7692 | sd = &per_cpu(allnodes_domains, i).sd; |
7c16ec58 | 7693 | SD_INIT(sd, ALLNODES); |
1d3504fc | 7694 | set_domain_attribute(sd, attr); |
758b2cdc | 7695 | cpumask_copy(sched_domain_span(sd), cpu_map); |
7c16ec58 | 7696 | cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask); |
9c1cfda2 | 7697 | p = sd; |
6711cab4 | 7698 | sd_allnodes = 1; |
9c1cfda2 JH |
7699 | } else |
7700 | p = NULL; | |
7701 | ||
62ea9ceb | 7702 | sd = &per_cpu(node_domains, i).sd; |
7c16ec58 | 7703 | SD_INIT(sd, NODE); |
1d3504fc | 7704 | set_domain_attribute(sd, attr); |
758b2cdc | 7705 | sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd)); |
9c1cfda2 | 7706 | sd->parent = p; |
1a848870 SS |
7707 | if (p) |
7708 | p->child = sd; | |
758b2cdc RR |
7709 | cpumask_and(sched_domain_span(sd), |
7710 | sched_domain_span(sd), cpu_map); | |
1da177e4 LT |
7711 | #endif |
7712 | ||
7713 | p = sd; | |
6c99e9ad | 7714 | sd = &per_cpu(phys_domains, i).sd; |
7c16ec58 | 7715 | SD_INIT(sd, CPU); |
1d3504fc | 7716 | set_domain_attribute(sd, attr); |
758b2cdc | 7717 | cpumask_copy(sched_domain_span(sd), nodemask); |
1da177e4 | 7718 | sd->parent = p; |
1a848870 SS |
7719 | if (p) |
7720 | p->child = sd; | |
7c16ec58 | 7721 | cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask); |
1da177e4 | 7722 | |
1e9f28fa SS |
7723 | #ifdef CONFIG_SCHED_MC |
7724 | p = sd; | |
6c99e9ad | 7725 | sd = &per_cpu(core_domains, i).sd; |
7c16ec58 | 7726 | SD_INIT(sd, MC); |
1d3504fc | 7727 | set_domain_attribute(sd, attr); |
6ca09dfc MT |
7728 | cpumask_and(sched_domain_span(sd), cpu_map, |
7729 | cpu_coregroup_mask(i)); | |
1e9f28fa | 7730 | sd->parent = p; |
1a848870 | 7731 | p->child = sd; |
7c16ec58 | 7732 | cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask); |
1e9f28fa SS |
7733 | #endif |
7734 | ||
1da177e4 LT |
7735 | #ifdef CONFIG_SCHED_SMT |
7736 | p = sd; | |
6c99e9ad | 7737 | sd = &per_cpu(cpu_domains, i).sd; |
7c16ec58 | 7738 | SD_INIT(sd, SIBLING); |
1d3504fc | 7739 | set_domain_attribute(sd, attr); |
758b2cdc RR |
7740 | cpumask_and(sched_domain_span(sd), |
7741 | &per_cpu(cpu_sibling_map, i), cpu_map); | |
1da177e4 | 7742 | sd->parent = p; |
1a848870 | 7743 | p->child = sd; |
7c16ec58 | 7744 | cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask); |
1da177e4 LT |
7745 | #endif |
7746 | } | |
7747 | ||
7748 | #ifdef CONFIG_SCHED_SMT | |
7749 | /* Set up CPU (sibling) groups */ | |
abcd083a | 7750 | for_each_cpu(i, cpu_map) { |
96f874e2 RR |
7751 | cpumask_and(this_sibling_map, |
7752 | &per_cpu(cpu_sibling_map, i), cpu_map); | |
7753 | if (i != cpumask_first(this_sibling_map)) | |
1da177e4 LT |
7754 | continue; |
7755 | ||
dd41f596 | 7756 | init_sched_build_groups(this_sibling_map, cpu_map, |
7c16ec58 MT |
7757 | &cpu_to_cpu_group, |
7758 | send_covered, tmpmask); | |
1da177e4 LT |
7759 | } |
7760 | #endif | |
7761 | ||
1e9f28fa SS |
7762 | #ifdef CONFIG_SCHED_MC |
7763 | /* Set up multi-core groups */ | |
abcd083a | 7764 | for_each_cpu(i, cpu_map) { |
6ca09dfc | 7765 | cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map); |
96f874e2 | 7766 | if (i != cpumask_first(this_core_map)) |
1e9f28fa | 7767 | continue; |
7c16ec58 | 7768 | |
dd41f596 | 7769 | init_sched_build_groups(this_core_map, cpu_map, |
7c16ec58 MT |
7770 | &cpu_to_core_group, |
7771 | send_covered, tmpmask); | |
1e9f28fa SS |
7772 | } |
7773 | #endif | |
7774 | ||
1da177e4 | 7775 | /* Set up physical groups */ |
076ac2af | 7776 | for (i = 0; i < nr_node_ids; i++) { |
6ca09dfc | 7777 | cpumask_and(nodemask, cpumask_of_node(i), cpu_map); |
96f874e2 | 7778 | if (cpumask_empty(nodemask)) |
1da177e4 LT |
7779 | continue; |
7780 | ||
7c16ec58 MT |
7781 | init_sched_build_groups(nodemask, cpu_map, |
7782 | &cpu_to_phys_group, | |
7783 | send_covered, tmpmask); | |
1da177e4 LT |
7784 | } |
7785 | ||
7786 | #ifdef CONFIG_NUMA | |
7787 | /* Set up node groups */ | |
7c16ec58 | 7788 | if (sd_allnodes) { |
7c16ec58 MT |
7789 | init_sched_build_groups(cpu_map, cpu_map, |
7790 | &cpu_to_allnodes_group, | |
7791 | send_covered, tmpmask); | |
7792 | } | |
9c1cfda2 | 7793 | |
076ac2af | 7794 | for (i = 0; i < nr_node_ids; i++) { |
9c1cfda2 JH |
7795 | /* Set up node groups */ |
7796 | struct sched_group *sg, *prev; | |
9c1cfda2 JH |
7797 | int j; |
7798 | ||
96f874e2 | 7799 | cpumask_clear(covered); |
6ca09dfc | 7800 | cpumask_and(nodemask, cpumask_of_node(i), cpu_map); |
96f874e2 | 7801 | if (cpumask_empty(nodemask)) { |
d1b55138 | 7802 | sched_group_nodes[i] = NULL; |
9c1cfda2 | 7803 | continue; |
d1b55138 | 7804 | } |
9c1cfda2 | 7805 | |
4bdbaad3 | 7806 | sched_domain_node_span(i, domainspan); |
96f874e2 | 7807 | cpumask_and(domainspan, domainspan, cpu_map); |
9c1cfda2 | 7808 | |
6c99e9ad RR |
7809 | sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(), |
7810 | GFP_KERNEL, i); | |
51888ca2 SV |
7811 | if (!sg) { |
7812 | printk(KERN_WARNING "Can not alloc domain group for " | |
7813 | "node %d\n", i); | |
7814 | goto error; | |
7815 | } | |
9c1cfda2 | 7816 | sched_group_nodes[i] = sg; |
abcd083a | 7817 | for_each_cpu(j, nodemask) { |
9c1cfda2 | 7818 | struct sched_domain *sd; |
9761eea8 | 7819 | |
62ea9ceb | 7820 | sd = &per_cpu(node_domains, j).sd; |
9c1cfda2 | 7821 | sd->groups = sg; |
9c1cfda2 | 7822 | } |
5517d86b | 7823 | sg->__cpu_power = 0; |
758b2cdc | 7824 | cpumask_copy(sched_group_cpus(sg), nodemask); |
51888ca2 | 7825 | sg->next = sg; |
96f874e2 | 7826 | cpumask_or(covered, covered, nodemask); |
9c1cfda2 JH |
7827 | prev = sg; |
7828 | ||
076ac2af | 7829 | for (j = 0; j < nr_node_ids; j++) { |
076ac2af | 7830 | int n = (i + j) % nr_node_ids; |
9c1cfda2 | 7831 | |
96f874e2 RR |
7832 | cpumask_complement(notcovered, covered); |
7833 | cpumask_and(tmpmask, notcovered, cpu_map); | |
7834 | cpumask_and(tmpmask, tmpmask, domainspan); | |
7835 | if (cpumask_empty(tmpmask)) | |
9c1cfda2 JH |
7836 | break; |
7837 | ||
6ca09dfc | 7838 | cpumask_and(tmpmask, tmpmask, cpumask_of_node(n)); |
96f874e2 | 7839 | if (cpumask_empty(tmpmask)) |
9c1cfda2 JH |
7840 | continue; |
7841 | ||
6c99e9ad RR |
7842 | sg = kmalloc_node(sizeof(struct sched_group) + |
7843 | cpumask_size(), | |
15f0b676 | 7844 | GFP_KERNEL, i); |
9c1cfda2 JH |
7845 | if (!sg) { |
7846 | printk(KERN_WARNING | |
7847 | "Can not alloc domain group for node %d\n", j); | |
51888ca2 | 7848 | goto error; |
9c1cfda2 | 7849 | } |
5517d86b | 7850 | sg->__cpu_power = 0; |
758b2cdc | 7851 | cpumask_copy(sched_group_cpus(sg), tmpmask); |
51888ca2 | 7852 | sg->next = prev->next; |
96f874e2 | 7853 | cpumask_or(covered, covered, tmpmask); |
9c1cfda2 JH |
7854 | prev->next = sg; |
7855 | prev = sg; | |
7856 | } | |
9c1cfda2 | 7857 | } |
1da177e4 LT |
7858 | #endif |
7859 | ||
7860 | /* Calculate CPU power for physical packages and nodes */ | |
5c45bf27 | 7861 | #ifdef CONFIG_SCHED_SMT |
abcd083a | 7862 | for_each_cpu(i, cpu_map) { |
6c99e9ad | 7863 | struct sched_domain *sd = &per_cpu(cpu_domains, i).sd; |
dd41f596 | 7864 | |
89c4710e | 7865 | init_sched_groups_power(i, sd); |
5c45bf27 | 7866 | } |
1da177e4 | 7867 | #endif |
1e9f28fa | 7868 | #ifdef CONFIG_SCHED_MC |
abcd083a | 7869 | for_each_cpu(i, cpu_map) { |
6c99e9ad | 7870 | struct sched_domain *sd = &per_cpu(core_domains, i).sd; |
dd41f596 | 7871 | |
89c4710e | 7872 | init_sched_groups_power(i, sd); |
5c45bf27 SS |
7873 | } |
7874 | #endif | |
1e9f28fa | 7875 | |
abcd083a | 7876 | for_each_cpu(i, cpu_map) { |
6c99e9ad | 7877 | struct sched_domain *sd = &per_cpu(phys_domains, i).sd; |
dd41f596 | 7878 | |
89c4710e | 7879 | init_sched_groups_power(i, sd); |
1da177e4 LT |
7880 | } |
7881 | ||
9c1cfda2 | 7882 | #ifdef CONFIG_NUMA |
076ac2af | 7883 | for (i = 0; i < nr_node_ids; i++) |
08069033 | 7884 | init_numa_sched_groups_power(sched_group_nodes[i]); |
9c1cfda2 | 7885 | |
6711cab4 SS |
7886 | if (sd_allnodes) { |
7887 | struct sched_group *sg; | |
f712c0c7 | 7888 | |
96f874e2 | 7889 | cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg, |
7c16ec58 | 7890 | tmpmask); |
f712c0c7 SS |
7891 | init_numa_sched_groups_power(sg); |
7892 | } | |
9c1cfda2 JH |
7893 | #endif |
7894 | ||
1da177e4 | 7895 | /* Attach the domains */ |
abcd083a | 7896 | for_each_cpu(i, cpu_map) { |
1da177e4 LT |
7897 | struct sched_domain *sd; |
7898 | #ifdef CONFIG_SCHED_SMT | |
6c99e9ad | 7899 | sd = &per_cpu(cpu_domains, i).sd; |
1e9f28fa | 7900 | #elif defined(CONFIG_SCHED_MC) |
6c99e9ad | 7901 | sd = &per_cpu(core_domains, i).sd; |
1da177e4 | 7902 | #else |
6c99e9ad | 7903 | sd = &per_cpu(phys_domains, i).sd; |
1da177e4 | 7904 | #endif |
57d885fe | 7905 | cpu_attach_domain(sd, rd, i); |
1da177e4 | 7906 | } |
51888ca2 | 7907 | |
3404c8d9 RR |
7908 | err = 0; |
7909 | ||
7910 | free_tmpmask: | |
7911 | free_cpumask_var(tmpmask); | |
7912 | free_send_covered: | |
7913 | free_cpumask_var(send_covered); | |
7914 | free_this_core_map: | |
7915 | free_cpumask_var(this_core_map); | |
7916 | free_this_sibling_map: | |
7917 | free_cpumask_var(this_sibling_map); | |
7918 | free_nodemask: | |
7919 | free_cpumask_var(nodemask); | |
7920 | free_notcovered: | |
7921 | #ifdef CONFIG_NUMA | |
7922 | free_cpumask_var(notcovered); | |
7923 | free_covered: | |
7924 | free_cpumask_var(covered); | |
7925 | free_domainspan: | |
7926 | free_cpumask_var(domainspan); | |
7927 | out: | |
7928 | #endif | |
7929 | return err; | |
7930 | ||
7931 | free_sched_groups: | |
7932 | #ifdef CONFIG_NUMA | |
7933 | kfree(sched_group_nodes); | |
7934 | #endif | |
7935 | goto free_tmpmask; | |
51888ca2 | 7936 | |
a616058b | 7937 | #ifdef CONFIG_NUMA |
51888ca2 | 7938 | error: |
7c16ec58 | 7939 | free_sched_groups(cpu_map, tmpmask); |
c6c4927b | 7940 | free_rootdomain(rd); |
3404c8d9 | 7941 | goto free_tmpmask; |
a616058b | 7942 | #endif |
1da177e4 | 7943 | } |
029190c5 | 7944 | |
96f874e2 | 7945 | static int build_sched_domains(const struct cpumask *cpu_map) |
1d3504fc HS |
7946 | { |
7947 | return __build_sched_domains(cpu_map, NULL); | |
7948 | } | |
7949 | ||
96f874e2 | 7950 | static struct cpumask *doms_cur; /* current sched domains */ |
029190c5 | 7951 | static int ndoms_cur; /* number of sched domains in 'doms_cur' */ |
4285f594 IM |
7952 | static struct sched_domain_attr *dattr_cur; |
7953 | /* attribues of custom domains in 'doms_cur' */ | |
029190c5 PJ |
7954 | |
7955 | /* | |
7956 | * Special case: If a kmalloc of a doms_cur partition (array of | |
4212823f RR |
7957 | * cpumask) fails, then fallback to a single sched domain, |
7958 | * as determined by the single cpumask fallback_doms. | |
029190c5 | 7959 | */ |
4212823f | 7960 | static cpumask_var_t fallback_doms; |
029190c5 | 7961 | |
ee79d1bd HC |
7962 | /* |
7963 | * arch_update_cpu_topology lets virtualized architectures update the | |
7964 | * cpu core maps. It is supposed to return 1 if the topology changed | |
7965 | * or 0 if it stayed the same. | |
7966 | */ | |
7967 | int __attribute__((weak)) arch_update_cpu_topology(void) | |
22e52b07 | 7968 | { |
ee79d1bd | 7969 | return 0; |
22e52b07 HC |
7970 | } |
7971 | ||
1a20ff27 | 7972 | /* |
41a2d6cf | 7973 | * Set up scheduler domains and groups. Callers must hold the hotplug lock. |
029190c5 PJ |
7974 | * For now this just excludes isolated cpus, but could be used to |
7975 | * exclude other special cases in the future. | |
1a20ff27 | 7976 | */ |
96f874e2 | 7977 | static int arch_init_sched_domains(const struct cpumask *cpu_map) |
1a20ff27 | 7978 | { |
7378547f MM |
7979 | int err; |
7980 | ||
22e52b07 | 7981 | arch_update_cpu_topology(); |
029190c5 | 7982 | ndoms_cur = 1; |
96f874e2 | 7983 | doms_cur = kmalloc(cpumask_size(), GFP_KERNEL); |
029190c5 | 7984 | if (!doms_cur) |
4212823f | 7985 | doms_cur = fallback_doms; |
dcc30a35 | 7986 | cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map); |
1d3504fc | 7987 | dattr_cur = NULL; |
7378547f | 7988 | err = build_sched_domains(doms_cur); |
6382bc90 | 7989 | register_sched_domain_sysctl(); |
7378547f MM |
7990 | |
7991 | return err; | |
1a20ff27 DG |
7992 | } |
7993 | ||
96f874e2 RR |
7994 | static void arch_destroy_sched_domains(const struct cpumask *cpu_map, |
7995 | struct cpumask *tmpmask) | |
1da177e4 | 7996 | { |
7c16ec58 | 7997 | free_sched_groups(cpu_map, tmpmask); |
9c1cfda2 | 7998 | } |
1da177e4 | 7999 | |
1a20ff27 DG |
8000 | /* |
8001 | * Detach sched domains from a group of cpus specified in cpu_map | |
8002 | * These cpus will now be attached to the NULL domain | |
8003 | */ | |
96f874e2 | 8004 | static void detach_destroy_domains(const struct cpumask *cpu_map) |
1a20ff27 | 8005 | { |
96f874e2 RR |
8006 | /* Save because hotplug lock held. */ |
8007 | static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS); | |
1a20ff27 DG |
8008 | int i; |
8009 | ||
abcd083a | 8010 | for_each_cpu(i, cpu_map) |
57d885fe | 8011 | cpu_attach_domain(NULL, &def_root_domain, i); |
1a20ff27 | 8012 | synchronize_sched(); |
96f874e2 | 8013 | arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask)); |
1a20ff27 DG |
8014 | } |
8015 | ||
1d3504fc HS |
8016 | /* handle null as "default" */ |
8017 | static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, | |
8018 | struct sched_domain_attr *new, int idx_new) | |
8019 | { | |
8020 | struct sched_domain_attr tmp; | |
8021 | ||
8022 | /* fast path */ | |
8023 | if (!new && !cur) | |
8024 | return 1; | |
8025 | ||
8026 | tmp = SD_ATTR_INIT; | |
8027 | return !memcmp(cur ? (cur + idx_cur) : &tmp, | |
8028 | new ? (new + idx_new) : &tmp, | |
8029 | sizeof(struct sched_domain_attr)); | |
8030 | } | |
8031 | ||
029190c5 PJ |
8032 | /* |
8033 | * Partition sched domains as specified by the 'ndoms_new' | |
41a2d6cf | 8034 | * cpumasks in the array doms_new[] of cpumasks. This compares |
029190c5 PJ |
8035 | * doms_new[] to the current sched domain partitioning, doms_cur[]. |
8036 | * It destroys each deleted domain and builds each new domain. | |
8037 | * | |
96f874e2 | 8038 | * 'doms_new' is an array of cpumask's of length 'ndoms_new'. |
41a2d6cf IM |
8039 | * The masks don't intersect (don't overlap.) We should setup one |
8040 | * sched domain for each mask. CPUs not in any of the cpumasks will | |
8041 | * not be load balanced. If the same cpumask appears both in the | |
029190c5 PJ |
8042 | * current 'doms_cur' domains and in the new 'doms_new', we can leave |
8043 | * it as it is. | |
8044 | * | |
41a2d6cf IM |
8045 | * The passed in 'doms_new' should be kmalloc'd. This routine takes |
8046 | * ownership of it and will kfree it when done with it. If the caller | |
700018e0 LZ |
8047 | * failed the kmalloc call, then it can pass in doms_new == NULL && |
8048 | * ndoms_new == 1, and partition_sched_domains() will fallback to | |
8049 | * the single partition 'fallback_doms', it also forces the domains | |
8050 | * to be rebuilt. | |
029190c5 | 8051 | * |
96f874e2 | 8052 | * If doms_new == NULL it will be replaced with cpu_online_mask. |
700018e0 LZ |
8053 | * ndoms_new == 0 is a special case for destroying existing domains, |
8054 | * and it will not create the default domain. | |
dfb512ec | 8055 | * |
029190c5 PJ |
8056 | * Call with hotplug lock held |
8057 | */ | |
96f874e2 RR |
8058 | /* FIXME: Change to struct cpumask *doms_new[] */ |
8059 | void partition_sched_domains(int ndoms_new, struct cpumask *doms_new, | |
1d3504fc | 8060 | struct sched_domain_attr *dattr_new) |
029190c5 | 8061 | { |
dfb512ec | 8062 | int i, j, n; |
d65bd5ec | 8063 | int new_topology; |
029190c5 | 8064 | |
712555ee | 8065 | mutex_lock(&sched_domains_mutex); |
a1835615 | 8066 | |
7378547f MM |
8067 | /* always unregister in case we don't destroy any domains */ |
8068 | unregister_sched_domain_sysctl(); | |
8069 | ||
d65bd5ec HC |
8070 | /* Let architecture update cpu core mappings. */ |
8071 | new_topology = arch_update_cpu_topology(); | |
8072 | ||
dfb512ec | 8073 | n = doms_new ? ndoms_new : 0; |
029190c5 PJ |
8074 | |
8075 | /* Destroy deleted domains */ | |
8076 | for (i = 0; i < ndoms_cur; i++) { | |
d65bd5ec | 8077 | for (j = 0; j < n && !new_topology; j++) { |
96f874e2 | 8078 | if (cpumask_equal(&doms_cur[i], &doms_new[j]) |
1d3504fc | 8079 | && dattrs_equal(dattr_cur, i, dattr_new, j)) |
029190c5 PJ |
8080 | goto match1; |
8081 | } | |
8082 | /* no match - a current sched domain not in new doms_new[] */ | |
8083 | detach_destroy_domains(doms_cur + i); | |
8084 | match1: | |
8085 | ; | |
8086 | } | |
8087 | ||
e761b772 MK |
8088 | if (doms_new == NULL) { |
8089 | ndoms_cur = 0; | |
4212823f | 8090 | doms_new = fallback_doms; |
dcc30a35 | 8091 | cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map); |
faa2f98f | 8092 | WARN_ON_ONCE(dattr_new); |
e761b772 MK |
8093 | } |
8094 | ||
029190c5 PJ |
8095 | /* Build new domains */ |
8096 | for (i = 0; i < ndoms_new; i++) { | |
d65bd5ec | 8097 | for (j = 0; j < ndoms_cur && !new_topology; j++) { |
96f874e2 | 8098 | if (cpumask_equal(&doms_new[i], &doms_cur[j]) |
1d3504fc | 8099 | && dattrs_equal(dattr_new, i, dattr_cur, j)) |
029190c5 PJ |
8100 | goto match2; |
8101 | } | |
8102 | /* no match - add a new doms_new */ | |
1d3504fc HS |
8103 | __build_sched_domains(doms_new + i, |
8104 | dattr_new ? dattr_new + i : NULL); | |
029190c5 PJ |
8105 | match2: |
8106 | ; | |
8107 | } | |
8108 | ||
8109 | /* Remember the new sched domains */ | |
4212823f | 8110 | if (doms_cur != fallback_doms) |
029190c5 | 8111 | kfree(doms_cur); |
1d3504fc | 8112 | kfree(dattr_cur); /* kfree(NULL) is safe */ |
029190c5 | 8113 | doms_cur = doms_new; |
1d3504fc | 8114 | dattr_cur = dattr_new; |
029190c5 | 8115 | ndoms_cur = ndoms_new; |
7378547f MM |
8116 | |
8117 | register_sched_domain_sysctl(); | |
a1835615 | 8118 | |
712555ee | 8119 | mutex_unlock(&sched_domains_mutex); |
029190c5 PJ |
8120 | } |
8121 | ||
5c45bf27 | 8122 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
c70f22d2 | 8123 | static void arch_reinit_sched_domains(void) |
5c45bf27 | 8124 | { |
95402b38 | 8125 | get_online_cpus(); |
dfb512ec MK |
8126 | |
8127 | /* Destroy domains first to force the rebuild */ | |
8128 | partition_sched_domains(0, NULL, NULL); | |
8129 | ||
e761b772 | 8130 | rebuild_sched_domains(); |
95402b38 | 8131 | put_online_cpus(); |
5c45bf27 SS |
8132 | } |
8133 | ||
8134 | static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) | |
8135 | { | |
afb8a9b7 | 8136 | unsigned int level = 0; |
5c45bf27 | 8137 | |
afb8a9b7 GS |
8138 | if (sscanf(buf, "%u", &level) != 1) |
8139 | return -EINVAL; | |
8140 | ||
8141 | /* | |
8142 | * level is always be positive so don't check for | |
8143 | * level < POWERSAVINGS_BALANCE_NONE which is 0 | |
8144 | * What happens on 0 or 1 byte write, | |
8145 | * need to check for count as well? | |
8146 | */ | |
8147 | ||
8148 | if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS) | |
5c45bf27 SS |
8149 | return -EINVAL; |
8150 | ||
8151 | if (smt) | |
afb8a9b7 | 8152 | sched_smt_power_savings = level; |
5c45bf27 | 8153 | else |
afb8a9b7 | 8154 | sched_mc_power_savings = level; |
5c45bf27 | 8155 | |
c70f22d2 | 8156 | arch_reinit_sched_domains(); |
5c45bf27 | 8157 | |
c70f22d2 | 8158 | return count; |
5c45bf27 SS |
8159 | } |
8160 | ||
5c45bf27 | 8161 | #ifdef CONFIG_SCHED_MC |
f718cd4a AK |
8162 | static ssize_t sched_mc_power_savings_show(struct sysdev_class *class, |
8163 | char *page) | |
5c45bf27 SS |
8164 | { |
8165 | return sprintf(page, "%u\n", sched_mc_power_savings); | |
8166 | } | |
f718cd4a | 8167 | static ssize_t sched_mc_power_savings_store(struct sysdev_class *class, |
48f24c4d | 8168 | const char *buf, size_t count) |
5c45bf27 SS |
8169 | { |
8170 | return sched_power_savings_store(buf, count, 0); | |
8171 | } | |
f718cd4a AK |
8172 | static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644, |
8173 | sched_mc_power_savings_show, | |
8174 | sched_mc_power_savings_store); | |
5c45bf27 SS |
8175 | #endif |
8176 | ||
8177 | #ifdef CONFIG_SCHED_SMT | |
f718cd4a AK |
8178 | static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev, |
8179 | char *page) | |
5c45bf27 SS |
8180 | { |
8181 | return sprintf(page, "%u\n", sched_smt_power_savings); | |
8182 | } | |
f718cd4a | 8183 | static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev, |
48f24c4d | 8184 | const char *buf, size_t count) |
5c45bf27 SS |
8185 | { |
8186 | return sched_power_savings_store(buf, count, 1); | |
8187 | } | |
f718cd4a AK |
8188 | static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644, |
8189 | sched_smt_power_savings_show, | |
6707de00 AB |
8190 | sched_smt_power_savings_store); |
8191 | #endif | |
8192 | ||
39aac648 | 8193 | int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls) |
6707de00 AB |
8194 | { |
8195 | int err = 0; | |
8196 | ||
8197 | #ifdef CONFIG_SCHED_SMT | |
8198 | if (smt_capable()) | |
8199 | err = sysfs_create_file(&cls->kset.kobj, | |
8200 | &attr_sched_smt_power_savings.attr); | |
8201 | #endif | |
8202 | #ifdef CONFIG_SCHED_MC | |
8203 | if (!err && mc_capable()) | |
8204 | err = sysfs_create_file(&cls->kset.kobj, | |
8205 | &attr_sched_mc_power_savings.attr); | |
8206 | #endif | |
8207 | return err; | |
8208 | } | |
6d6bc0ad | 8209 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ |
5c45bf27 | 8210 | |
e761b772 | 8211 | #ifndef CONFIG_CPUSETS |
1da177e4 | 8212 | /* |
e761b772 MK |
8213 | * Add online and remove offline CPUs from the scheduler domains. |
8214 | * When cpusets are enabled they take over this function. | |
1da177e4 LT |
8215 | */ |
8216 | static int update_sched_domains(struct notifier_block *nfb, | |
8217 | unsigned long action, void *hcpu) | |
e761b772 MK |
8218 | { |
8219 | switch (action) { | |
8220 | case CPU_ONLINE: | |
8221 | case CPU_ONLINE_FROZEN: | |
8222 | case CPU_DEAD: | |
8223 | case CPU_DEAD_FROZEN: | |
dfb512ec | 8224 | partition_sched_domains(1, NULL, NULL); |
e761b772 MK |
8225 | return NOTIFY_OK; |
8226 | ||
8227 | default: | |
8228 | return NOTIFY_DONE; | |
8229 | } | |
8230 | } | |
8231 | #endif | |
8232 | ||
8233 | static int update_runtime(struct notifier_block *nfb, | |
8234 | unsigned long action, void *hcpu) | |
1da177e4 | 8235 | { |
7def2be1 PZ |
8236 | int cpu = (int)(long)hcpu; |
8237 | ||
1da177e4 | 8238 | switch (action) { |
1da177e4 | 8239 | case CPU_DOWN_PREPARE: |
8bb78442 | 8240 | case CPU_DOWN_PREPARE_FROZEN: |
7def2be1 | 8241 | disable_runtime(cpu_rq(cpu)); |
1da177e4 LT |
8242 | return NOTIFY_OK; |
8243 | ||
1da177e4 | 8244 | case CPU_DOWN_FAILED: |
8bb78442 | 8245 | case CPU_DOWN_FAILED_FROZEN: |
1da177e4 | 8246 | case CPU_ONLINE: |
8bb78442 | 8247 | case CPU_ONLINE_FROZEN: |
7def2be1 | 8248 | enable_runtime(cpu_rq(cpu)); |
e761b772 MK |
8249 | return NOTIFY_OK; |
8250 | ||
1da177e4 LT |
8251 | default: |
8252 | return NOTIFY_DONE; | |
8253 | } | |
1da177e4 | 8254 | } |
1da177e4 LT |
8255 | |
8256 | void __init sched_init_smp(void) | |
8257 | { | |
dcc30a35 RR |
8258 | cpumask_var_t non_isolated_cpus; |
8259 | ||
8260 | alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); | |
5c1e1767 | 8261 | |
434d53b0 MT |
8262 | #if defined(CONFIG_NUMA) |
8263 | sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **), | |
8264 | GFP_KERNEL); | |
8265 | BUG_ON(sched_group_nodes_bycpu == NULL); | |
8266 | #endif | |
95402b38 | 8267 | get_online_cpus(); |
712555ee | 8268 | mutex_lock(&sched_domains_mutex); |
dcc30a35 RR |
8269 | arch_init_sched_domains(cpu_online_mask); |
8270 | cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); | |
8271 | if (cpumask_empty(non_isolated_cpus)) | |
8272 | cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); | |
712555ee | 8273 | mutex_unlock(&sched_domains_mutex); |
95402b38 | 8274 | put_online_cpus(); |
e761b772 MK |
8275 | |
8276 | #ifndef CONFIG_CPUSETS | |
1da177e4 LT |
8277 | /* XXX: Theoretical race here - CPU may be hotplugged now */ |
8278 | hotcpu_notifier(update_sched_domains, 0); | |
e761b772 MK |
8279 | #endif |
8280 | ||
8281 | /* RT runtime code needs to handle some hotplug events */ | |
8282 | hotcpu_notifier(update_runtime, 0); | |
8283 | ||
b328ca18 | 8284 | init_hrtick(); |
5c1e1767 NP |
8285 | |
8286 | /* Move init over to a non-isolated CPU */ | |
dcc30a35 | 8287 | if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) |
5c1e1767 | 8288 | BUG(); |
19978ca6 | 8289 | sched_init_granularity(); |
dcc30a35 | 8290 | free_cpumask_var(non_isolated_cpus); |
4212823f RR |
8291 | |
8292 | alloc_cpumask_var(&fallback_doms, GFP_KERNEL); | |
0e3900e6 | 8293 | init_sched_rt_class(); |
1da177e4 LT |
8294 | } |
8295 | #else | |
8296 | void __init sched_init_smp(void) | |
8297 | { | |
19978ca6 | 8298 | sched_init_granularity(); |
1da177e4 LT |
8299 | } |
8300 | #endif /* CONFIG_SMP */ | |
8301 | ||
8302 | int in_sched_functions(unsigned long addr) | |
8303 | { | |
1da177e4 LT |
8304 | return in_lock_functions(addr) || |
8305 | (addr >= (unsigned long)__sched_text_start | |
8306 | && addr < (unsigned long)__sched_text_end); | |
8307 | } | |
8308 | ||
a9957449 | 8309 | static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq) |
dd41f596 IM |
8310 | { |
8311 | cfs_rq->tasks_timeline = RB_ROOT; | |
4a55bd5e | 8312 | INIT_LIST_HEAD(&cfs_rq->tasks); |
dd41f596 IM |
8313 | #ifdef CONFIG_FAIR_GROUP_SCHED |
8314 | cfs_rq->rq = rq; | |
8315 | #endif | |
67e9fb2a | 8316 | cfs_rq->min_vruntime = (u64)(-(1LL << 20)); |
dd41f596 IM |
8317 | } |
8318 | ||
fa85ae24 PZ |
8319 | static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) |
8320 | { | |
8321 | struct rt_prio_array *array; | |
8322 | int i; | |
8323 | ||
8324 | array = &rt_rq->active; | |
8325 | for (i = 0; i < MAX_RT_PRIO; i++) { | |
8326 | INIT_LIST_HEAD(array->queue + i); | |
8327 | __clear_bit(i, array->bitmap); | |
8328 | } | |
8329 | /* delimiter for bitsearch: */ | |
8330 | __set_bit(MAX_RT_PRIO, array->bitmap); | |
8331 | ||
052f1dc7 | 8332 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
e864c499 | 8333 | rt_rq->highest_prio.curr = MAX_RT_PRIO; |
398a153b | 8334 | #ifdef CONFIG_SMP |
e864c499 | 8335 | rt_rq->highest_prio.next = MAX_RT_PRIO; |
48d5e258 | 8336 | #endif |
48d5e258 | 8337 | #endif |
fa85ae24 PZ |
8338 | #ifdef CONFIG_SMP |
8339 | rt_rq->rt_nr_migratory = 0; | |
fa85ae24 | 8340 | rt_rq->overloaded = 0; |
917b627d | 8341 | plist_head_init(&rq->rt.pushable_tasks, &rq->lock); |
fa85ae24 PZ |
8342 | #endif |
8343 | ||
8344 | rt_rq->rt_time = 0; | |
8345 | rt_rq->rt_throttled = 0; | |
ac086bc2 PZ |
8346 | rt_rq->rt_runtime = 0; |
8347 | spin_lock_init(&rt_rq->rt_runtime_lock); | |
6f505b16 | 8348 | |
052f1dc7 | 8349 | #ifdef CONFIG_RT_GROUP_SCHED |
23b0fdfc | 8350 | rt_rq->rt_nr_boosted = 0; |
6f505b16 PZ |
8351 | rt_rq->rq = rq; |
8352 | #endif | |
fa85ae24 PZ |
8353 | } |
8354 | ||
6f505b16 | 8355 | #ifdef CONFIG_FAIR_GROUP_SCHED |
ec7dc8ac DG |
8356 | static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, |
8357 | struct sched_entity *se, int cpu, int add, | |
8358 | struct sched_entity *parent) | |
6f505b16 | 8359 | { |
ec7dc8ac | 8360 | struct rq *rq = cpu_rq(cpu); |
6f505b16 PZ |
8361 | tg->cfs_rq[cpu] = cfs_rq; |
8362 | init_cfs_rq(cfs_rq, rq); | |
8363 | cfs_rq->tg = tg; | |
8364 | if (add) | |
8365 | list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list); | |
8366 | ||
8367 | tg->se[cpu] = se; | |
354d60c2 DG |
8368 | /* se could be NULL for init_task_group */ |
8369 | if (!se) | |
8370 | return; | |
8371 | ||
ec7dc8ac DG |
8372 | if (!parent) |
8373 | se->cfs_rq = &rq->cfs; | |
8374 | else | |
8375 | se->cfs_rq = parent->my_q; | |
8376 | ||
6f505b16 PZ |
8377 | se->my_q = cfs_rq; |
8378 | se->load.weight = tg->shares; | |
e05510d0 | 8379 | se->load.inv_weight = 0; |
ec7dc8ac | 8380 | se->parent = parent; |
6f505b16 | 8381 | } |
052f1dc7 | 8382 | #endif |
6f505b16 | 8383 | |
052f1dc7 | 8384 | #ifdef CONFIG_RT_GROUP_SCHED |
ec7dc8ac DG |
8385 | static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, |
8386 | struct sched_rt_entity *rt_se, int cpu, int add, | |
8387 | struct sched_rt_entity *parent) | |
6f505b16 | 8388 | { |
ec7dc8ac DG |
8389 | struct rq *rq = cpu_rq(cpu); |
8390 | ||
6f505b16 PZ |
8391 | tg->rt_rq[cpu] = rt_rq; |
8392 | init_rt_rq(rt_rq, rq); | |
8393 | rt_rq->tg = tg; | |
8394 | rt_rq->rt_se = rt_se; | |
ac086bc2 | 8395 | rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; |
6f505b16 PZ |
8396 | if (add) |
8397 | list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list); | |
8398 | ||
8399 | tg->rt_se[cpu] = rt_se; | |
354d60c2 DG |
8400 | if (!rt_se) |
8401 | return; | |
8402 | ||
ec7dc8ac DG |
8403 | if (!parent) |
8404 | rt_se->rt_rq = &rq->rt; | |
8405 | else | |
8406 | rt_se->rt_rq = parent->my_q; | |
8407 | ||
6f505b16 | 8408 | rt_se->my_q = rt_rq; |
ec7dc8ac | 8409 | rt_se->parent = parent; |
6f505b16 PZ |
8410 | INIT_LIST_HEAD(&rt_se->run_list); |
8411 | } | |
8412 | #endif | |
8413 | ||
1da177e4 LT |
8414 | void __init sched_init(void) |
8415 | { | |
dd41f596 | 8416 | int i, j; |
434d53b0 MT |
8417 | unsigned long alloc_size = 0, ptr; |
8418 | ||
8419 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
8420 | alloc_size += 2 * nr_cpu_ids * sizeof(void **); | |
8421 | #endif | |
8422 | #ifdef CONFIG_RT_GROUP_SCHED | |
8423 | alloc_size += 2 * nr_cpu_ids * sizeof(void **); | |
eff766a6 PZ |
8424 | #endif |
8425 | #ifdef CONFIG_USER_SCHED | |
8426 | alloc_size *= 2; | |
434d53b0 MT |
8427 | #endif |
8428 | /* | |
8429 | * As sched_init() is called before page_alloc is setup, | |
8430 | * we use alloc_bootmem(). | |
8431 | */ | |
8432 | if (alloc_size) { | |
5a9d3225 | 8433 | ptr = (unsigned long)alloc_bootmem(alloc_size); |
434d53b0 MT |
8434 | |
8435 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
8436 | init_task_group.se = (struct sched_entity **)ptr; | |
8437 | ptr += nr_cpu_ids * sizeof(void **); | |
8438 | ||
8439 | init_task_group.cfs_rq = (struct cfs_rq **)ptr; | |
8440 | ptr += nr_cpu_ids * sizeof(void **); | |
eff766a6 PZ |
8441 | |
8442 | #ifdef CONFIG_USER_SCHED | |
8443 | root_task_group.se = (struct sched_entity **)ptr; | |
8444 | ptr += nr_cpu_ids * sizeof(void **); | |
8445 | ||
8446 | root_task_group.cfs_rq = (struct cfs_rq **)ptr; | |
8447 | ptr += nr_cpu_ids * sizeof(void **); | |
6d6bc0ad DG |
8448 | #endif /* CONFIG_USER_SCHED */ |
8449 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | |
434d53b0 MT |
8450 | #ifdef CONFIG_RT_GROUP_SCHED |
8451 | init_task_group.rt_se = (struct sched_rt_entity **)ptr; | |
8452 | ptr += nr_cpu_ids * sizeof(void **); | |
8453 | ||
8454 | init_task_group.rt_rq = (struct rt_rq **)ptr; | |
eff766a6 PZ |
8455 | ptr += nr_cpu_ids * sizeof(void **); |
8456 | ||
8457 | #ifdef CONFIG_USER_SCHED | |
8458 | root_task_group.rt_se = (struct sched_rt_entity **)ptr; | |
8459 | ptr += nr_cpu_ids * sizeof(void **); | |
8460 | ||
8461 | root_task_group.rt_rq = (struct rt_rq **)ptr; | |
8462 | ptr += nr_cpu_ids * sizeof(void **); | |
6d6bc0ad DG |
8463 | #endif /* CONFIG_USER_SCHED */ |
8464 | #endif /* CONFIG_RT_GROUP_SCHED */ | |
434d53b0 | 8465 | } |
dd41f596 | 8466 | |
57d885fe GH |
8467 | #ifdef CONFIG_SMP |
8468 | init_defrootdomain(); | |
8469 | #endif | |
8470 | ||
d0b27fa7 PZ |
8471 | init_rt_bandwidth(&def_rt_bandwidth, |
8472 | global_rt_period(), global_rt_runtime()); | |
8473 | ||
8474 | #ifdef CONFIG_RT_GROUP_SCHED | |
8475 | init_rt_bandwidth(&init_task_group.rt_bandwidth, | |
8476 | global_rt_period(), global_rt_runtime()); | |
eff766a6 PZ |
8477 | #ifdef CONFIG_USER_SCHED |
8478 | init_rt_bandwidth(&root_task_group.rt_bandwidth, | |
8479 | global_rt_period(), RUNTIME_INF); | |
6d6bc0ad DG |
8480 | #endif /* CONFIG_USER_SCHED */ |
8481 | #endif /* CONFIG_RT_GROUP_SCHED */ | |
d0b27fa7 | 8482 | |
052f1dc7 | 8483 | #ifdef CONFIG_GROUP_SCHED |
6f505b16 | 8484 | list_add(&init_task_group.list, &task_groups); |
f473aa5e PZ |
8485 | INIT_LIST_HEAD(&init_task_group.children); |
8486 | ||
8487 | #ifdef CONFIG_USER_SCHED | |
8488 | INIT_LIST_HEAD(&root_task_group.children); | |
8489 | init_task_group.parent = &root_task_group; | |
8490 | list_add(&init_task_group.siblings, &root_task_group.children); | |
6d6bc0ad DG |
8491 | #endif /* CONFIG_USER_SCHED */ |
8492 | #endif /* CONFIG_GROUP_SCHED */ | |
6f505b16 | 8493 | |
0a945022 | 8494 | for_each_possible_cpu(i) { |
70b97a7f | 8495 | struct rq *rq; |
1da177e4 LT |
8496 | |
8497 | rq = cpu_rq(i); | |
8498 | spin_lock_init(&rq->lock); | |
7897986b | 8499 | rq->nr_running = 0; |
dd41f596 | 8500 | init_cfs_rq(&rq->cfs, rq); |
6f505b16 | 8501 | init_rt_rq(&rq->rt, rq); |
dd41f596 | 8502 | #ifdef CONFIG_FAIR_GROUP_SCHED |
4cf86d77 | 8503 | init_task_group.shares = init_task_group_load; |
6f505b16 | 8504 | INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); |
354d60c2 DG |
8505 | #ifdef CONFIG_CGROUP_SCHED |
8506 | /* | |
8507 | * How much cpu bandwidth does init_task_group get? | |
8508 | * | |
8509 | * In case of task-groups formed thr' the cgroup filesystem, it | |
8510 | * gets 100% of the cpu resources in the system. This overall | |
8511 | * system cpu resource is divided among the tasks of | |
8512 | * init_task_group and its child task-groups in a fair manner, | |
8513 | * based on each entity's (task or task-group's) weight | |
8514 | * (se->load.weight). | |
8515 | * | |
8516 | * In other words, if init_task_group has 10 tasks of weight | |
8517 | * 1024) and two child groups A0 and A1 (of weight 1024 each), | |
8518 | * then A0's share of the cpu resource is: | |
8519 | * | |
8520 | * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% | |
8521 | * | |
8522 | * We achieve this by letting init_task_group's tasks sit | |
8523 | * directly in rq->cfs (i.e init_task_group->se[] = NULL). | |
8524 | */ | |
ec7dc8ac | 8525 | init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL); |
354d60c2 | 8526 | #elif defined CONFIG_USER_SCHED |
eff766a6 PZ |
8527 | root_task_group.shares = NICE_0_LOAD; |
8528 | init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL); | |
354d60c2 DG |
8529 | /* |
8530 | * In case of task-groups formed thr' the user id of tasks, | |
8531 | * init_task_group represents tasks belonging to root user. | |
8532 | * Hence it forms a sibling of all subsequent groups formed. | |
8533 | * In this case, init_task_group gets only a fraction of overall | |
8534 | * system cpu resource, based on the weight assigned to root | |
8535 | * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished | |
8536 | * by letting tasks of init_task_group sit in a separate cfs_rq | |
8537 | * (init_cfs_rq) and having one entity represent this group of | |
8538 | * tasks in rq->cfs (i.e init_task_group->se[] != NULL). | |
8539 | */ | |
ec7dc8ac | 8540 | init_tg_cfs_entry(&init_task_group, |
6f505b16 | 8541 | &per_cpu(init_cfs_rq, i), |
eff766a6 PZ |
8542 | &per_cpu(init_sched_entity, i), i, 1, |
8543 | root_task_group.se[i]); | |
6f505b16 | 8544 | |
052f1dc7 | 8545 | #endif |
354d60c2 DG |
8546 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
8547 | ||
8548 | rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; | |
052f1dc7 | 8549 | #ifdef CONFIG_RT_GROUP_SCHED |
6f505b16 | 8550 | INIT_LIST_HEAD(&rq->leaf_rt_rq_list); |
354d60c2 | 8551 | #ifdef CONFIG_CGROUP_SCHED |
ec7dc8ac | 8552 | init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL); |
354d60c2 | 8553 | #elif defined CONFIG_USER_SCHED |
eff766a6 | 8554 | init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL); |
ec7dc8ac | 8555 | init_tg_rt_entry(&init_task_group, |
6f505b16 | 8556 | &per_cpu(init_rt_rq, i), |
eff766a6 PZ |
8557 | &per_cpu(init_sched_rt_entity, i), i, 1, |
8558 | root_task_group.rt_se[i]); | |
354d60c2 | 8559 | #endif |
dd41f596 | 8560 | #endif |
1da177e4 | 8561 | |
dd41f596 IM |
8562 | for (j = 0; j < CPU_LOAD_IDX_MAX; j++) |
8563 | rq->cpu_load[j] = 0; | |
1da177e4 | 8564 | #ifdef CONFIG_SMP |
41c7ce9a | 8565 | rq->sd = NULL; |
57d885fe | 8566 | rq->rd = NULL; |
1da177e4 | 8567 | rq->active_balance = 0; |
dd41f596 | 8568 | rq->next_balance = jiffies; |
1da177e4 | 8569 | rq->push_cpu = 0; |
0a2966b4 | 8570 | rq->cpu = i; |
1f11eb6a | 8571 | rq->online = 0; |
1da177e4 LT |
8572 | rq->migration_thread = NULL; |
8573 | INIT_LIST_HEAD(&rq->migration_queue); | |
dc938520 | 8574 | rq_attach_root(rq, &def_root_domain); |
1da177e4 | 8575 | #endif |
8f4d37ec | 8576 | init_rq_hrtick(rq); |
1da177e4 | 8577 | atomic_set(&rq->nr_iowait, 0); |
1da177e4 LT |
8578 | } |
8579 | ||
2dd73a4f | 8580 | set_load_weight(&init_task); |
b50f60ce | 8581 | |
e107be36 AK |
8582 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
8583 | INIT_HLIST_HEAD(&init_task.preempt_notifiers); | |
8584 | #endif | |
8585 | ||
c9819f45 | 8586 | #ifdef CONFIG_SMP |
962cf36c | 8587 | open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); |
c9819f45 CL |
8588 | #endif |
8589 | ||
b50f60ce HC |
8590 | #ifdef CONFIG_RT_MUTEXES |
8591 | plist_head_init(&init_task.pi_waiters, &init_task.pi_lock); | |
8592 | #endif | |
8593 | ||
1da177e4 LT |
8594 | /* |
8595 | * The boot idle thread does lazy MMU switching as well: | |
8596 | */ | |
8597 | atomic_inc(&init_mm.mm_count); | |
8598 | enter_lazy_tlb(&init_mm, current); | |
8599 | ||
8600 | /* | |
8601 | * Make us the idle thread. Technically, schedule() should not be | |
8602 | * called from this thread, however somewhere below it might be, | |
8603 | * but because we are the idle thread, we just pick up running again | |
8604 | * when this runqueue becomes "idle". | |
8605 | */ | |
8606 | init_idle(current, smp_processor_id()); | |
dd41f596 IM |
8607 | /* |
8608 | * During early bootup we pretend to be a normal task: | |
8609 | */ | |
8610 | current->sched_class = &fair_sched_class; | |
6892b75e | 8611 | |
6a7b3dc3 RR |
8612 | /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */ |
8613 | alloc_bootmem_cpumask_var(&nohz_cpu_mask); | |
bf4d83f6 | 8614 | #ifdef CONFIG_SMP |
7d1e6a9b RR |
8615 | #ifdef CONFIG_NO_HZ |
8616 | alloc_bootmem_cpumask_var(&nohz.cpu_mask); | |
8617 | #endif | |
dcc30a35 | 8618 | alloc_bootmem_cpumask_var(&cpu_isolated_map); |
bf4d83f6 | 8619 | #endif /* SMP */ |
6a7b3dc3 | 8620 | |
6892b75e | 8621 | scheduler_running = 1; |
1da177e4 LT |
8622 | } |
8623 | ||
8624 | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP | |
8625 | void __might_sleep(char *file, int line) | |
8626 | { | |
48f24c4d | 8627 | #ifdef in_atomic |
1da177e4 LT |
8628 | static unsigned long prev_jiffy; /* ratelimiting */ |
8629 | ||
aef745fc IM |
8630 | if ((!in_atomic() && !irqs_disabled()) || |
8631 | system_state != SYSTEM_RUNNING || oops_in_progress) | |
8632 | return; | |
8633 | if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) | |
8634 | return; | |
8635 | prev_jiffy = jiffies; | |
8636 | ||
8637 | printk(KERN_ERR | |
8638 | "BUG: sleeping function called from invalid context at %s:%d\n", | |
8639 | file, line); | |
8640 | printk(KERN_ERR | |
8641 | "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", | |
8642 | in_atomic(), irqs_disabled(), | |
8643 | current->pid, current->comm); | |
8644 | ||
8645 | debug_show_held_locks(current); | |
8646 | if (irqs_disabled()) | |
8647 | print_irqtrace_events(current); | |
8648 | dump_stack(); | |
1da177e4 LT |
8649 | #endif |
8650 | } | |
8651 | EXPORT_SYMBOL(__might_sleep); | |
8652 | #endif | |
8653 | ||
8654 | #ifdef CONFIG_MAGIC_SYSRQ | |
3a5e4dc1 AK |
8655 | static void normalize_task(struct rq *rq, struct task_struct *p) |
8656 | { | |
8657 | int on_rq; | |
3e51f33f | 8658 | |
3a5e4dc1 AK |
8659 | update_rq_clock(rq); |
8660 | on_rq = p->se.on_rq; | |
8661 | if (on_rq) | |
8662 | deactivate_task(rq, p, 0); | |
8663 | __setscheduler(rq, p, SCHED_NORMAL, 0); | |
8664 | if (on_rq) { | |
8665 | activate_task(rq, p, 0); | |
8666 | resched_task(rq->curr); | |
8667 | } | |
8668 | } | |
8669 | ||
1da177e4 LT |
8670 | void normalize_rt_tasks(void) |
8671 | { | |
a0f98a1c | 8672 | struct task_struct *g, *p; |
1da177e4 | 8673 | unsigned long flags; |
70b97a7f | 8674 | struct rq *rq; |
1da177e4 | 8675 | |
4cf5d77a | 8676 | read_lock_irqsave(&tasklist_lock, flags); |
a0f98a1c | 8677 | do_each_thread(g, p) { |
178be793 IM |
8678 | /* |
8679 | * Only normalize user tasks: | |
8680 | */ | |
8681 | if (!p->mm) | |
8682 | continue; | |
8683 | ||
6cfb0d5d | 8684 | p->se.exec_start = 0; |
6cfb0d5d | 8685 | #ifdef CONFIG_SCHEDSTATS |
dd41f596 | 8686 | p->se.wait_start = 0; |
dd41f596 | 8687 | p->se.sleep_start = 0; |
dd41f596 | 8688 | p->se.block_start = 0; |
6cfb0d5d | 8689 | #endif |
dd41f596 IM |
8690 | |
8691 | if (!rt_task(p)) { | |
8692 | /* | |
8693 | * Renice negative nice level userspace | |
8694 | * tasks back to 0: | |
8695 | */ | |
8696 | if (TASK_NICE(p) < 0 && p->mm) | |
8697 | set_user_nice(p, 0); | |
1da177e4 | 8698 | continue; |
dd41f596 | 8699 | } |
1da177e4 | 8700 | |
4cf5d77a | 8701 | spin_lock(&p->pi_lock); |
b29739f9 | 8702 | rq = __task_rq_lock(p); |
1da177e4 | 8703 | |
178be793 | 8704 | normalize_task(rq, p); |
3a5e4dc1 | 8705 | |
b29739f9 | 8706 | __task_rq_unlock(rq); |
4cf5d77a | 8707 | spin_unlock(&p->pi_lock); |
a0f98a1c IM |
8708 | } while_each_thread(g, p); |
8709 | ||
4cf5d77a | 8710 | read_unlock_irqrestore(&tasklist_lock, flags); |
1da177e4 LT |
8711 | } |
8712 | ||
8713 | #endif /* CONFIG_MAGIC_SYSRQ */ | |
1df5c10a LT |
8714 | |
8715 | #ifdef CONFIG_IA64 | |
8716 | /* | |
8717 | * These functions are only useful for the IA64 MCA handling. | |
8718 | * | |
8719 | * They can only be called when the whole system has been | |
8720 | * stopped - every CPU needs to be quiescent, and no scheduling | |
8721 | * activity can take place. Using them for anything else would | |
8722 | * be a serious bug, and as a result, they aren't even visible | |
8723 | * under any other configuration. | |
8724 | */ | |
8725 | ||
8726 | /** | |
8727 | * curr_task - return the current task for a given cpu. | |
8728 | * @cpu: the processor in question. | |
8729 | * | |
8730 | * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! | |
8731 | */ | |
36c8b586 | 8732 | struct task_struct *curr_task(int cpu) |
1df5c10a LT |
8733 | { |
8734 | return cpu_curr(cpu); | |
8735 | } | |
8736 | ||
8737 | /** | |
8738 | * set_curr_task - set the current task for a given cpu. | |
8739 | * @cpu: the processor in question. | |
8740 | * @p: the task pointer to set. | |
8741 | * | |
8742 | * Description: This function must only be used when non-maskable interrupts | |
41a2d6cf IM |
8743 | * are serviced on a separate stack. It allows the architecture to switch the |
8744 | * notion of the current task on a cpu in a non-blocking manner. This function | |
1df5c10a LT |
8745 | * must be called with all CPU's synchronized, and interrupts disabled, the |
8746 | * and caller must save the original value of the current task (see | |
8747 | * curr_task() above) and restore that value before reenabling interrupts and | |
8748 | * re-starting the system. | |
8749 | * | |
8750 | * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! | |
8751 | */ | |
36c8b586 | 8752 | void set_curr_task(int cpu, struct task_struct *p) |
1df5c10a LT |
8753 | { |
8754 | cpu_curr(cpu) = p; | |
8755 | } | |
8756 | ||
8757 | #endif | |
29f59db3 | 8758 | |
bccbe08a PZ |
8759 | #ifdef CONFIG_FAIR_GROUP_SCHED |
8760 | static void free_fair_sched_group(struct task_group *tg) | |
6f505b16 PZ |
8761 | { |
8762 | int i; | |
8763 | ||
8764 | for_each_possible_cpu(i) { | |
8765 | if (tg->cfs_rq) | |
8766 | kfree(tg->cfs_rq[i]); | |
8767 | if (tg->se) | |
8768 | kfree(tg->se[i]); | |
6f505b16 PZ |
8769 | } |
8770 | ||
8771 | kfree(tg->cfs_rq); | |
8772 | kfree(tg->se); | |
6f505b16 PZ |
8773 | } |
8774 | ||
ec7dc8ac DG |
8775 | static |
8776 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | |
29f59db3 | 8777 | { |
29f59db3 | 8778 | struct cfs_rq *cfs_rq; |
eab17229 | 8779 | struct sched_entity *se; |
9b5b7751 | 8780 | struct rq *rq; |
29f59db3 SV |
8781 | int i; |
8782 | ||
434d53b0 | 8783 | tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); |
29f59db3 SV |
8784 | if (!tg->cfs_rq) |
8785 | goto err; | |
434d53b0 | 8786 | tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); |
29f59db3 SV |
8787 | if (!tg->se) |
8788 | goto err; | |
052f1dc7 PZ |
8789 | |
8790 | tg->shares = NICE_0_LOAD; | |
29f59db3 SV |
8791 | |
8792 | for_each_possible_cpu(i) { | |
9b5b7751 | 8793 | rq = cpu_rq(i); |
29f59db3 | 8794 | |
eab17229 LZ |
8795 | cfs_rq = kzalloc_node(sizeof(struct cfs_rq), |
8796 | GFP_KERNEL, cpu_to_node(i)); | |
29f59db3 SV |
8797 | if (!cfs_rq) |
8798 | goto err; | |
8799 | ||
eab17229 LZ |
8800 | se = kzalloc_node(sizeof(struct sched_entity), |
8801 | GFP_KERNEL, cpu_to_node(i)); | |
29f59db3 SV |
8802 | if (!se) |
8803 | goto err; | |
8804 | ||
eab17229 | 8805 | init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]); |
bccbe08a PZ |
8806 | } |
8807 | ||
8808 | return 1; | |
8809 | ||
8810 | err: | |
8811 | return 0; | |
8812 | } | |
8813 | ||
8814 | static inline void register_fair_sched_group(struct task_group *tg, int cpu) | |
8815 | { | |
8816 | list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list, | |
8817 | &cpu_rq(cpu)->leaf_cfs_rq_list); | |
8818 | } | |
8819 | ||
8820 | static inline void unregister_fair_sched_group(struct task_group *tg, int cpu) | |
8821 | { | |
8822 | list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list); | |
8823 | } | |
6d6bc0ad | 8824 | #else /* !CONFG_FAIR_GROUP_SCHED */ |
bccbe08a PZ |
8825 | static inline void free_fair_sched_group(struct task_group *tg) |
8826 | { | |
8827 | } | |
8828 | ||
ec7dc8ac DG |
8829 | static inline |
8830 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | |
bccbe08a PZ |
8831 | { |
8832 | return 1; | |
8833 | } | |
8834 | ||
8835 | static inline void register_fair_sched_group(struct task_group *tg, int cpu) | |
8836 | { | |
8837 | } | |
8838 | ||
8839 | static inline void unregister_fair_sched_group(struct task_group *tg, int cpu) | |
8840 | { | |
8841 | } | |
6d6bc0ad | 8842 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
052f1dc7 PZ |
8843 | |
8844 | #ifdef CONFIG_RT_GROUP_SCHED | |
bccbe08a PZ |
8845 | static void free_rt_sched_group(struct task_group *tg) |
8846 | { | |
8847 | int i; | |
8848 | ||
d0b27fa7 PZ |
8849 | destroy_rt_bandwidth(&tg->rt_bandwidth); |
8850 | ||
bccbe08a PZ |
8851 | for_each_possible_cpu(i) { |
8852 | if (tg->rt_rq) | |
8853 | kfree(tg->rt_rq[i]); | |
8854 | if (tg->rt_se) | |
8855 | kfree(tg->rt_se[i]); | |
8856 | } | |
8857 | ||
8858 | kfree(tg->rt_rq); | |
8859 | kfree(tg->rt_se); | |
8860 | } | |
8861 | ||
ec7dc8ac DG |
8862 | static |
8863 | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) | |
bccbe08a PZ |
8864 | { |
8865 | struct rt_rq *rt_rq; | |
eab17229 | 8866 | struct sched_rt_entity *rt_se; |
bccbe08a PZ |
8867 | struct rq *rq; |
8868 | int i; | |
8869 | ||
434d53b0 | 8870 | tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); |
bccbe08a PZ |
8871 | if (!tg->rt_rq) |
8872 | goto err; | |
434d53b0 | 8873 | tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); |
bccbe08a PZ |
8874 | if (!tg->rt_se) |
8875 | goto err; | |
8876 | ||
d0b27fa7 PZ |
8877 | init_rt_bandwidth(&tg->rt_bandwidth, |
8878 | ktime_to_ns(def_rt_bandwidth.rt_period), 0); | |
bccbe08a PZ |
8879 | |
8880 | for_each_possible_cpu(i) { | |
8881 | rq = cpu_rq(i); | |
8882 | ||
eab17229 LZ |
8883 | rt_rq = kzalloc_node(sizeof(struct rt_rq), |
8884 | GFP_KERNEL, cpu_to_node(i)); | |
6f505b16 PZ |
8885 | if (!rt_rq) |
8886 | goto err; | |
29f59db3 | 8887 | |
eab17229 LZ |
8888 | rt_se = kzalloc_node(sizeof(struct sched_rt_entity), |
8889 | GFP_KERNEL, cpu_to_node(i)); | |
6f505b16 PZ |
8890 | if (!rt_se) |
8891 | goto err; | |
29f59db3 | 8892 | |
eab17229 | 8893 | init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]); |
29f59db3 SV |
8894 | } |
8895 | ||
bccbe08a PZ |
8896 | return 1; |
8897 | ||
8898 | err: | |
8899 | return 0; | |
8900 | } | |
8901 | ||
8902 | static inline void register_rt_sched_group(struct task_group *tg, int cpu) | |
8903 | { | |
8904 | list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list, | |
8905 | &cpu_rq(cpu)->leaf_rt_rq_list); | |
8906 | } | |
8907 | ||
8908 | static inline void unregister_rt_sched_group(struct task_group *tg, int cpu) | |
8909 | { | |
8910 | list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list); | |
8911 | } | |
6d6bc0ad | 8912 | #else /* !CONFIG_RT_GROUP_SCHED */ |
bccbe08a PZ |
8913 | static inline void free_rt_sched_group(struct task_group *tg) |
8914 | { | |
8915 | } | |
8916 | ||
ec7dc8ac DG |
8917 | static inline |
8918 | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) | |
bccbe08a PZ |
8919 | { |
8920 | return 1; | |
8921 | } | |
8922 | ||
8923 | static inline void register_rt_sched_group(struct task_group *tg, int cpu) | |
8924 | { | |
8925 | } | |
8926 | ||
8927 | static inline void unregister_rt_sched_group(struct task_group *tg, int cpu) | |
8928 | { | |
8929 | } | |
6d6bc0ad | 8930 | #endif /* CONFIG_RT_GROUP_SCHED */ |
bccbe08a | 8931 | |
d0b27fa7 | 8932 | #ifdef CONFIG_GROUP_SCHED |
bccbe08a PZ |
8933 | static void free_sched_group(struct task_group *tg) |
8934 | { | |
8935 | free_fair_sched_group(tg); | |
8936 | free_rt_sched_group(tg); | |
8937 | kfree(tg); | |
8938 | } | |
8939 | ||
8940 | /* allocate runqueue etc for a new task group */ | |
ec7dc8ac | 8941 | struct task_group *sched_create_group(struct task_group *parent) |
bccbe08a PZ |
8942 | { |
8943 | struct task_group *tg; | |
8944 | unsigned long flags; | |
8945 | int i; | |
8946 | ||
8947 | tg = kzalloc(sizeof(*tg), GFP_KERNEL); | |
8948 | if (!tg) | |
8949 | return ERR_PTR(-ENOMEM); | |
8950 | ||
ec7dc8ac | 8951 | if (!alloc_fair_sched_group(tg, parent)) |
bccbe08a PZ |
8952 | goto err; |
8953 | ||
ec7dc8ac | 8954 | if (!alloc_rt_sched_group(tg, parent)) |
bccbe08a PZ |
8955 | goto err; |
8956 | ||
8ed36996 | 8957 | spin_lock_irqsave(&task_group_lock, flags); |
9b5b7751 | 8958 | for_each_possible_cpu(i) { |
bccbe08a PZ |
8959 | register_fair_sched_group(tg, i); |
8960 | register_rt_sched_group(tg, i); | |
9b5b7751 | 8961 | } |
6f505b16 | 8962 | list_add_rcu(&tg->list, &task_groups); |
f473aa5e PZ |
8963 | |
8964 | WARN_ON(!parent); /* root should already exist */ | |
8965 | ||
8966 | tg->parent = parent; | |
f473aa5e | 8967 | INIT_LIST_HEAD(&tg->children); |
09f2724a | 8968 | list_add_rcu(&tg->siblings, &parent->children); |
8ed36996 | 8969 | spin_unlock_irqrestore(&task_group_lock, flags); |
29f59db3 | 8970 | |
9b5b7751 | 8971 | return tg; |
29f59db3 SV |
8972 | |
8973 | err: | |
6f505b16 | 8974 | free_sched_group(tg); |
29f59db3 SV |
8975 | return ERR_PTR(-ENOMEM); |
8976 | } | |
8977 | ||
9b5b7751 | 8978 | /* rcu callback to free various structures associated with a task group */ |
6f505b16 | 8979 | static void free_sched_group_rcu(struct rcu_head *rhp) |
29f59db3 | 8980 | { |
29f59db3 | 8981 | /* now it should be safe to free those cfs_rqs */ |
6f505b16 | 8982 | free_sched_group(container_of(rhp, struct task_group, rcu)); |
29f59db3 SV |
8983 | } |
8984 | ||
9b5b7751 | 8985 | /* Destroy runqueue etc associated with a task group */ |
4cf86d77 | 8986 | void sched_destroy_group(struct task_group *tg) |
29f59db3 | 8987 | { |
8ed36996 | 8988 | unsigned long flags; |
9b5b7751 | 8989 | int i; |
29f59db3 | 8990 | |
8ed36996 | 8991 | spin_lock_irqsave(&task_group_lock, flags); |
9b5b7751 | 8992 | for_each_possible_cpu(i) { |
bccbe08a PZ |
8993 | unregister_fair_sched_group(tg, i); |
8994 | unregister_rt_sched_group(tg, i); | |
9b5b7751 | 8995 | } |
6f505b16 | 8996 | list_del_rcu(&tg->list); |
f473aa5e | 8997 | list_del_rcu(&tg->siblings); |
8ed36996 | 8998 | spin_unlock_irqrestore(&task_group_lock, flags); |
9b5b7751 | 8999 | |
9b5b7751 | 9000 | /* wait for possible concurrent references to cfs_rqs complete */ |
6f505b16 | 9001 | call_rcu(&tg->rcu, free_sched_group_rcu); |
29f59db3 SV |
9002 | } |
9003 | ||
9b5b7751 | 9004 | /* change task's runqueue when it moves between groups. |
3a252015 IM |
9005 | * The caller of this function should have put the task in its new group |
9006 | * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to | |
9007 | * reflect its new group. | |
9b5b7751 SV |
9008 | */ |
9009 | void sched_move_task(struct task_struct *tsk) | |
29f59db3 SV |
9010 | { |
9011 | int on_rq, running; | |
9012 | unsigned long flags; | |
9013 | struct rq *rq; | |
9014 | ||
9015 | rq = task_rq_lock(tsk, &flags); | |
9016 | ||
29f59db3 SV |
9017 | update_rq_clock(rq); |
9018 | ||
051a1d1a | 9019 | running = task_current(rq, tsk); |
29f59db3 SV |
9020 | on_rq = tsk->se.on_rq; |
9021 | ||
0e1f3483 | 9022 | if (on_rq) |
29f59db3 | 9023 | dequeue_task(rq, tsk, 0); |
0e1f3483 HS |
9024 | if (unlikely(running)) |
9025 | tsk->sched_class->put_prev_task(rq, tsk); | |
29f59db3 | 9026 | |
6f505b16 | 9027 | set_task_rq(tsk, task_cpu(tsk)); |
29f59db3 | 9028 | |
810b3817 PZ |
9029 | #ifdef CONFIG_FAIR_GROUP_SCHED |
9030 | if (tsk->sched_class->moved_group) | |
9031 | tsk->sched_class->moved_group(tsk); | |
9032 | #endif | |
9033 | ||
0e1f3483 HS |
9034 | if (unlikely(running)) |
9035 | tsk->sched_class->set_curr_task(rq); | |
9036 | if (on_rq) | |
7074badb | 9037 | enqueue_task(rq, tsk, 0); |
29f59db3 | 9038 | |
29f59db3 SV |
9039 | task_rq_unlock(rq, &flags); |
9040 | } | |
6d6bc0ad | 9041 | #endif /* CONFIG_GROUP_SCHED */ |
29f59db3 | 9042 | |
052f1dc7 | 9043 | #ifdef CONFIG_FAIR_GROUP_SCHED |
c09595f6 | 9044 | static void __set_se_shares(struct sched_entity *se, unsigned long shares) |
29f59db3 SV |
9045 | { |
9046 | struct cfs_rq *cfs_rq = se->cfs_rq; | |
29f59db3 SV |
9047 | int on_rq; |
9048 | ||
29f59db3 | 9049 | on_rq = se->on_rq; |
62fb1851 | 9050 | if (on_rq) |
29f59db3 SV |
9051 | dequeue_entity(cfs_rq, se, 0); |
9052 | ||
9053 | se->load.weight = shares; | |
e05510d0 | 9054 | se->load.inv_weight = 0; |
29f59db3 | 9055 | |
62fb1851 | 9056 | if (on_rq) |
29f59db3 | 9057 | enqueue_entity(cfs_rq, se, 0); |
c09595f6 | 9058 | } |
62fb1851 | 9059 | |
c09595f6 PZ |
9060 | static void set_se_shares(struct sched_entity *se, unsigned long shares) |
9061 | { | |
9062 | struct cfs_rq *cfs_rq = se->cfs_rq; | |
9063 | struct rq *rq = cfs_rq->rq; | |
9064 | unsigned long flags; | |
9065 | ||
9066 | spin_lock_irqsave(&rq->lock, flags); | |
9067 | __set_se_shares(se, shares); | |
9068 | spin_unlock_irqrestore(&rq->lock, flags); | |
29f59db3 SV |
9069 | } |
9070 | ||
8ed36996 PZ |
9071 | static DEFINE_MUTEX(shares_mutex); |
9072 | ||
4cf86d77 | 9073 | int sched_group_set_shares(struct task_group *tg, unsigned long shares) |
29f59db3 SV |
9074 | { |
9075 | int i; | |
8ed36996 | 9076 | unsigned long flags; |
c61935fd | 9077 | |
ec7dc8ac DG |
9078 | /* |
9079 | * We can't change the weight of the root cgroup. | |
9080 | */ | |
9081 | if (!tg->se[0]) | |
9082 | return -EINVAL; | |
9083 | ||
18d95a28 PZ |
9084 | if (shares < MIN_SHARES) |
9085 | shares = MIN_SHARES; | |
cb4ad1ff MX |
9086 | else if (shares > MAX_SHARES) |
9087 | shares = MAX_SHARES; | |
62fb1851 | 9088 | |
8ed36996 | 9089 | mutex_lock(&shares_mutex); |
9b5b7751 | 9090 | if (tg->shares == shares) |
5cb350ba | 9091 | goto done; |
29f59db3 | 9092 | |
8ed36996 | 9093 | spin_lock_irqsave(&task_group_lock, flags); |
bccbe08a PZ |
9094 | for_each_possible_cpu(i) |
9095 | unregister_fair_sched_group(tg, i); | |
f473aa5e | 9096 | list_del_rcu(&tg->siblings); |
8ed36996 | 9097 | spin_unlock_irqrestore(&task_group_lock, flags); |
6b2d7700 SV |
9098 | |
9099 | /* wait for any ongoing reference to this group to finish */ | |
9100 | synchronize_sched(); | |
9101 | ||
9102 | /* | |
9103 | * Now we are free to modify the group's share on each cpu | |
9104 | * w/o tripping rebalance_share or load_balance_fair. | |
9105 | */ | |
9b5b7751 | 9106 | tg->shares = shares; |
c09595f6 PZ |
9107 | for_each_possible_cpu(i) { |
9108 | /* | |
9109 | * force a rebalance | |
9110 | */ | |
9111 | cfs_rq_set_shares(tg->cfs_rq[i], 0); | |
cb4ad1ff | 9112 | set_se_shares(tg->se[i], shares); |
c09595f6 | 9113 | } |
29f59db3 | 9114 | |
6b2d7700 SV |
9115 | /* |
9116 | * Enable load balance activity on this group, by inserting it back on | |
9117 | * each cpu's rq->leaf_cfs_rq_list. | |
9118 | */ | |
8ed36996 | 9119 | spin_lock_irqsave(&task_group_lock, flags); |
bccbe08a PZ |
9120 | for_each_possible_cpu(i) |
9121 | register_fair_sched_group(tg, i); | |
f473aa5e | 9122 | list_add_rcu(&tg->siblings, &tg->parent->children); |
8ed36996 | 9123 | spin_unlock_irqrestore(&task_group_lock, flags); |
5cb350ba | 9124 | done: |
8ed36996 | 9125 | mutex_unlock(&shares_mutex); |
9b5b7751 | 9126 | return 0; |
29f59db3 SV |
9127 | } |
9128 | ||
5cb350ba DG |
9129 | unsigned long sched_group_shares(struct task_group *tg) |
9130 | { | |
9131 | return tg->shares; | |
9132 | } | |
052f1dc7 | 9133 | #endif |
5cb350ba | 9134 | |
052f1dc7 | 9135 | #ifdef CONFIG_RT_GROUP_SCHED |
6f505b16 | 9136 | /* |
9f0c1e56 | 9137 | * Ensure that the real time constraints are schedulable. |
6f505b16 | 9138 | */ |
9f0c1e56 PZ |
9139 | static DEFINE_MUTEX(rt_constraints_mutex); |
9140 | ||
9141 | static unsigned long to_ratio(u64 period, u64 runtime) | |
9142 | { | |
9143 | if (runtime == RUNTIME_INF) | |
9a7e0b18 | 9144 | return 1ULL << 20; |
9f0c1e56 | 9145 | |
9a7e0b18 | 9146 | return div64_u64(runtime << 20, period); |
9f0c1e56 PZ |
9147 | } |
9148 | ||
9a7e0b18 PZ |
9149 | /* Must be called with tasklist_lock held */ |
9150 | static inline int tg_has_rt_tasks(struct task_group *tg) | |
b40b2e8e | 9151 | { |
9a7e0b18 | 9152 | struct task_struct *g, *p; |
b40b2e8e | 9153 | |
9a7e0b18 PZ |
9154 | do_each_thread(g, p) { |
9155 | if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg) | |
9156 | return 1; | |
9157 | } while_each_thread(g, p); | |
b40b2e8e | 9158 | |
9a7e0b18 PZ |
9159 | return 0; |
9160 | } | |
b40b2e8e | 9161 | |
9a7e0b18 PZ |
9162 | struct rt_schedulable_data { |
9163 | struct task_group *tg; | |
9164 | u64 rt_period; | |
9165 | u64 rt_runtime; | |
9166 | }; | |
b40b2e8e | 9167 | |
9a7e0b18 PZ |
9168 | static int tg_schedulable(struct task_group *tg, void *data) |
9169 | { | |
9170 | struct rt_schedulable_data *d = data; | |
9171 | struct task_group *child; | |
9172 | unsigned long total, sum = 0; | |
9173 | u64 period, runtime; | |
b40b2e8e | 9174 | |
9a7e0b18 PZ |
9175 | period = ktime_to_ns(tg->rt_bandwidth.rt_period); |
9176 | runtime = tg->rt_bandwidth.rt_runtime; | |
b40b2e8e | 9177 | |
9a7e0b18 PZ |
9178 | if (tg == d->tg) { |
9179 | period = d->rt_period; | |
9180 | runtime = d->rt_runtime; | |
b40b2e8e | 9181 | } |
b40b2e8e | 9182 | |
98a4826b PZ |
9183 | #ifdef CONFIG_USER_SCHED |
9184 | if (tg == &root_task_group) { | |
9185 | period = global_rt_period(); | |
9186 | runtime = global_rt_runtime(); | |
9187 | } | |
9188 | #endif | |
9189 | ||
4653f803 PZ |
9190 | /* |
9191 | * Cannot have more runtime than the period. | |
9192 | */ | |
9193 | if (runtime > period && runtime != RUNTIME_INF) | |
9194 | return -EINVAL; | |
6f505b16 | 9195 | |
4653f803 PZ |
9196 | /* |
9197 | * Ensure we don't starve existing RT tasks. | |
9198 | */ | |
9a7e0b18 PZ |
9199 | if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) |
9200 | return -EBUSY; | |
6f505b16 | 9201 | |
9a7e0b18 | 9202 | total = to_ratio(period, runtime); |
6f505b16 | 9203 | |
4653f803 PZ |
9204 | /* |
9205 | * Nobody can have more than the global setting allows. | |
9206 | */ | |
9207 | if (total > to_ratio(global_rt_period(), global_rt_runtime())) | |
9208 | return -EINVAL; | |
6f505b16 | 9209 | |
4653f803 PZ |
9210 | /* |
9211 | * The sum of our children's runtime should not exceed our own. | |
9212 | */ | |
9a7e0b18 PZ |
9213 | list_for_each_entry_rcu(child, &tg->children, siblings) { |
9214 | period = ktime_to_ns(child->rt_bandwidth.rt_period); | |
9215 | runtime = child->rt_bandwidth.rt_runtime; | |
6f505b16 | 9216 | |
9a7e0b18 PZ |
9217 | if (child == d->tg) { |
9218 | period = d->rt_period; | |
9219 | runtime = d->rt_runtime; | |
9220 | } | |
6f505b16 | 9221 | |
9a7e0b18 | 9222 | sum += to_ratio(period, runtime); |
9f0c1e56 | 9223 | } |
6f505b16 | 9224 | |
9a7e0b18 PZ |
9225 | if (sum > total) |
9226 | return -EINVAL; | |
9227 | ||
9228 | return 0; | |
6f505b16 PZ |
9229 | } |
9230 | ||
9a7e0b18 | 9231 | static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) |
521f1a24 | 9232 | { |
9a7e0b18 PZ |
9233 | struct rt_schedulable_data data = { |
9234 | .tg = tg, | |
9235 | .rt_period = period, | |
9236 | .rt_runtime = runtime, | |
9237 | }; | |
9238 | ||
9239 | return walk_tg_tree(tg_schedulable, tg_nop, &data); | |
521f1a24 DG |
9240 | } |
9241 | ||
d0b27fa7 PZ |
9242 | static int tg_set_bandwidth(struct task_group *tg, |
9243 | u64 rt_period, u64 rt_runtime) | |
6f505b16 | 9244 | { |
ac086bc2 | 9245 | int i, err = 0; |
9f0c1e56 | 9246 | |
9f0c1e56 | 9247 | mutex_lock(&rt_constraints_mutex); |
521f1a24 | 9248 | read_lock(&tasklist_lock); |
9a7e0b18 PZ |
9249 | err = __rt_schedulable(tg, rt_period, rt_runtime); |
9250 | if (err) | |
9f0c1e56 | 9251 | goto unlock; |
ac086bc2 PZ |
9252 | |
9253 | spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); | |
d0b27fa7 PZ |
9254 | tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); |
9255 | tg->rt_bandwidth.rt_runtime = rt_runtime; | |
ac086bc2 PZ |
9256 | |
9257 | for_each_possible_cpu(i) { | |
9258 | struct rt_rq *rt_rq = tg->rt_rq[i]; | |
9259 | ||
9260 | spin_lock(&rt_rq->rt_runtime_lock); | |
9261 | rt_rq->rt_runtime = rt_runtime; | |
9262 | spin_unlock(&rt_rq->rt_runtime_lock); | |
9263 | } | |
9264 | spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); | |
9f0c1e56 | 9265 | unlock: |
521f1a24 | 9266 | read_unlock(&tasklist_lock); |
9f0c1e56 PZ |
9267 | mutex_unlock(&rt_constraints_mutex); |
9268 | ||
9269 | return err; | |
6f505b16 PZ |
9270 | } |
9271 | ||
d0b27fa7 PZ |
9272 | int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) |
9273 | { | |
9274 | u64 rt_runtime, rt_period; | |
9275 | ||
9276 | rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); | |
9277 | rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; | |
9278 | if (rt_runtime_us < 0) | |
9279 | rt_runtime = RUNTIME_INF; | |
9280 | ||
9281 | return tg_set_bandwidth(tg, rt_period, rt_runtime); | |
9282 | } | |
9283 | ||
9f0c1e56 PZ |
9284 | long sched_group_rt_runtime(struct task_group *tg) |
9285 | { | |
9286 | u64 rt_runtime_us; | |
9287 | ||
d0b27fa7 | 9288 | if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) |
9f0c1e56 PZ |
9289 | return -1; |
9290 | ||
d0b27fa7 | 9291 | rt_runtime_us = tg->rt_bandwidth.rt_runtime; |
9f0c1e56 PZ |
9292 | do_div(rt_runtime_us, NSEC_PER_USEC); |
9293 | return rt_runtime_us; | |
9294 | } | |
d0b27fa7 PZ |
9295 | |
9296 | int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) | |
9297 | { | |
9298 | u64 rt_runtime, rt_period; | |
9299 | ||
9300 | rt_period = (u64)rt_period_us * NSEC_PER_USEC; | |
9301 | rt_runtime = tg->rt_bandwidth.rt_runtime; | |
9302 | ||
619b0488 R |
9303 | if (rt_period == 0) |
9304 | return -EINVAL; | |
9305 | ||
d0b27fa7 PZ |
9306 | return tg_set_bandwidth(tg, rt_period, rt_runtime); |
9307 | } | |
9308 | ||
9309 | long sched_group_rt_period(struct task_group *tg) | |
9310 | { | |
9311 | u64 rt_period_us; | |
9312 | ||
9313 | rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); | |
9314 | do_div(rt_period_us, NSEC_PER_USEC); | |
9315 | return rt_period_us; | |
9316 | } | |
9317 | ||
9318 | static int sched_rt_global_constraints(void) | |
9319 | { | |
4653f803 | 9320 | u64 runtime, period; |
d0b27fa7 PZ |
9321 | int ret = 0; |
9322 | ||
ec5d4989 HS |
9323 | if (sysctl_sched_rt_period <= 0) |
9324 | return -EINVAL; | |
9325 | ||
4653f803 PZ |
9326 | runtime = global_rt_runtime(); |
9327 | period = global_rt_period(); | |
9328 | ||
9329 | /* | |
9330 | * Sanity check on the sysctl variables. | |
9331 | */ | |
9332 | if (runtime > period && runtime != RUNTIME_INF) | |
9333 | return -EINVAL; | |
10b612f4 | 9334 | |
d0b27fa7 | 9335 | mutex_lock(&rt_constraints_mutex); |
9a7e0b18 | 9336 | read_lock(&tasklist_lock); |
4653f803 | 9337 | ret = __rt_schedulable(NULL, 0, 0); |
9a7e0b18 | 9338 | read_unlock(&tasklist_lock); |
d0b27fa7 PZ |
9339 | mutex_unlock(&rt_constraints_mutex); |
9340 | ||
9341 | return ret; | |
9342 | } | |
54e99124 DG |
9343 | |
9344 | int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) | |
9345 | { | |
9346 | /* Don't accept realtime tasks when there is no way for them to run */ | |
9347 | if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) | |
9348 | return 0; | |
9349 | ||
9350 | return 1; | |
9351 | } | |
9352 | ||
6d6bc0ad | 9353 | #else /* !CONFIG_RT_GROUP_SCHED */ |
d0b27fa7 PZ |
9354 | static int sched_rt_global_constraints(void) |
9355 | { | |
ac086bc2 PZ |
9356 | unsigned long flags; |
9357 | int i; | |
9358 | ||
ec5d4989 HS |
9359 | if (sysctl_sched_rt_period <= 0) |
9360 | return -EINVAL; | |
9361 | ||
ac086bc2 PZ |
9362 | spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); |
9363 | for_each_possible_cpu(i) { | |
9364 | struct rt_rq *rt_rq = &cpu_rq(i)->rt; | |
9365 | ||
9366 | spin_lock(&rt_rq->rt_runtime_lock); | |
9367 | rt_rq->rt_runtime = global_rt_runtime(); | |
9368 | spin_unlock(&rt_rq->rt_runtime_lock); | |
9369 | } | |
9370 | spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); | |
9371 | ||
d0b27fa7 PZ |
9372 | return 0; |
9373 | } | |
6d6bc0ad | 9374 | #endif /* CONFIG_RT_GROUP_SCHED */ |
d0b27fa7 PZ |
9375 | |
9376 | int sched_rt_handler(struct ctl_table *table, int write, | |
9377 | struct file *filp, void __user *buffer, size_t *lenp, | |
9378 | loff_t *ppos) | |
9379 | { | |
9380 | int ret; | |
9381 | int old_period, old_runtime; | |
9382 | static DEFINE_MUTEX(mutex); | |
9383 | ||
9384 | mutex_lock(&mutex); | |
9385 | old_period = sysctl_sched_rt_period; | |
9386 | old_runtime = sysctl_sched_rt_runtime; | |
9387 | ||
9388 | ret = proc_dointvec(table, write, filp, buffer, lenp, ppos); | |
9389 | ||
9390 | if (!ret && write) { | |
9391 | ret = sched_rt_global_constraints(); | |
9392 | if (ret) { | |
9393 | sysctl_sched_rt_period = old_period; | |
9394 | sysctl_sched_rt_runtime = old_runtime; | |
9395 | } else { | |
9396 | def_rt_bandwidth.rt_runtime = global_rt_runtime(); | |
9397 | def_rt_bandwidth.rt_period = | |
9398 | ns_to_ktime(global_rt_period()); | |
9399 | } | |
9400 | } | |
9401 | mutex_unlock(&mutex); | |
9402 | ||
9403 | return ret; | |
9404 | } | |
68318b8e | 9405 | |
052f1dc7 | 9406 | #ifdef CONFIG_CGROUP_SCHED |
68318b8e SV |
9407 | |
9408 | /* return corresponding task_group object of a cgroup */ | |
2b01dfe3 | 9409 | static inline struct task_group *cgroup_tg(struct cgroup *cgrp) |
68318b8e | 9410 | { |
2b01dfe3 PM |
9411 | return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id), |
9412 | struct task_group, css); | |
68318b8e SV |
9413 | } |
9414 | ||
9415 | static struct cgroup_subsys_state * | |
2b01dfe3 | 9416 | cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp) |
68318b8e | 9417 | { |
ec7dc8ac | 9418 | struct task_group *tg, *parent; |
68318b8e | 9419 | |
2b01dfe3 | 9420 | if (!cgrp->parent) { |
68318b8e | 9421 | /* This is early initialization for the top cgroup */ |
68318b8e SV |
9422 | return &init_task_group.css; |
9423 | } | |
9424 | ||
ec7dc8ac DG |
9425 | parent = cgroup_tg(cgrp->parent); |
9426 | tg = sched_create_group(parent); | |
68318b8e SV |
9427 | if (IS_ERR(tg)) |
9428 | return ERR_PTR(-ENOMEM); | |
9429 | ||
68318b8e SV |
9430 | return &tg->css; |
9431 | } | |
9432 | ||
41a2d6cf IM |
9433 | static void |
9434 | cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) | |
68318b8e | 9435 | { |
2b01dfe3 | 9436 | struct task_group *tg = cgroup_tg(cgrp); |
68318b8e SV |
9437 | |
9438 | sched_destroy_group(tg); | |
9439 | } | |
9440 | ||
41a2d6cf IM |
9441 | static int |
9442 | cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, | |
9443 | struct task_struct *tsk) | |
68318b8e | 9444 | { |
b68aa230 | 9445 | #ifdef CONFIG_RT_GROUP_SCHED |
54e99124 | 9446 | if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk)) |
b68aa230 PZ |
9447 | return -EINVAL; |
9448 | #else | |
68318b8e SV |
9449 | /* We don't support RT-tasks being in separate groups */ |
9450 | if (tsk->sched_class != &fair_sched_class) | |
9451 | return -EINVAL; | |
b68aa230 | 9452 | #endif |
68318b8e SV |
9453 | |
9454 | return 0; | |
9455 | } | |
9456 | ||
9457 | static void | |
2b01dfe3 | 9458 | cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, |
68318b8e SV |
9459 | struct cgroup *old_cont, struct task_struct *tsk) |
9460 | { | |
9461 | sched_move_task(tsk); | |
9462 | } | |
9463 | ||
052f1dc7 | 9464 | #ifdef CONFIG_FAIR_GROUP_SCHED |
f4c753b7 | 9465 | static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype, |
2b01dfe3 | 9466 | u64 shareval) |
68318b8e | 9467 | { |
2b01dfe3 | 9468 | return sched_group_set_shares(cgroup_tg(cgrp), shareval); |
68318b8e SV |
9469 | } |
9470 | ||
f4c753b7 | 9471 | static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft) |
68318b8e | 9472 | { |
2b01dfe3 | 9473 | struct task_group *tg = cgroup_tg(cgrp); |
68318b8e SV |
9474 | |
9475 | return (u64) tg->shares; | |
9476 | } | |
6d6bc0ad | 9477 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
68318b8e | 9478 | |
052f1dc7 | 9479 | #ifdef CONFIG_RT_GROUP_SCHED |
0c70814c | 9480 | static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft, |
06ecb27c | 9481 | s64 val) |
6f505b16 | 9482 | { |
06ecb27c | 9483 | return sched_group_set_rt_runtime(cgroup_tg(cgrp), val); |
6f505b16 PZ |
9484 | } |
9485 | ||
06ecb27c | 9486 | static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft) |
6f505b16 | 9487 | { |
06ecb27c | 9488 | return sched_group_rt_runtime(cgroup_tg(cgrp)); |
6f505b16 | 9489 | } |
d0b27fa7 PZ |
9490 | |
9491 | static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype, | |
9492 | u64 rt_period_us) | |
9493 | { | |
9494 | return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us); | |
9495 | } | |
9496 | ||
9497 | static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft) | |
9498 | { | |
9499 | return sched_group_rt_period(cgroup_tg(cgrp)); | |
9500 | } | |
6d6bc0ad | 9501 | #endif /* CONFIG_RT_GROUP_SCHED */ |
6f505b16 | 9502 | |
fe5c7cc2 | 9503 | static struct cftype cpu_files[] = { |
052f1dc7 | 9504 | #ifdef CONFIG_FAIR_GROUP_SCHED |
fe5c7cc2 PM |
9505 | { |
9506 | .name = "shares", | |
f4c753b7 PM |
9507 | .read_u64 = cpu_shares_read_u64, |
9508 | .write_u64 = cpu_shares_write_u64, | |
fe5c7cc2 | 9509 | }, |
052f1dc7 PZ |
9510 | #endif |
9511 | #ifdef CONFIG_RT_GROUP_SCHED | |
6f505b16 | 9512 | { |
9f0c1e56 | 9513 | .name = "rt_runtime_us", |
06ecb27c PM |
9514 | .read_s64 = cpu_rt_runtime_read, |
9515 | .write_s64 = cpu_rt_runtime_write, | |
6f505b16 | 9516 | }, |
d0b27fa7 PZ |
9517 | { |
9518 | .name = "rt_period_us", | |
f4c753b7 PM |
9519 | .read_u64 = cpu_rt_period_read_uint, |
9520 | .write_u64 = cpu_rt_period_write_uint, | |
d0b27fa7 | 9521 | }, |
052f1dc7 | 9522 | #endif |
68318b8e SV |
9523 | }; |
9524 | ||
9525 | static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont) | |
9526 | { | |
fe5c7cc2 | 9527 | return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files)); |
68318b8e SV |
9528 | } |
9529 | ||
9530 | struct cgroup_subsys cpu_cgroup_subsys = { | |
38605cae IM |
9531 | .name = "cpu", |
9532 | .create = cpu_cgroup_create, | |
9533 | .destroy = cpu_cgroup_destroy, | |
9534 | .can_attach = cpu_cgroup_can_attach, | |
9535 | .attach = cpu_cgroup_attach, | |
9536 | .populate = cpu_cgroup_populate, | |
9537 | .subsys_id = cpu_cgroup_subsys_id, | |
68318b8e SV |
9538 | .early_init = 1, |
9539 | }; | |
9540 | ||
052f1dc7 | 9541 | #endif /* CONFIG_CGROUP_SCHED */ |
d842de87 SV |
9542 | |
9543 | #ifdef CONFIG_CGROUP_CPUACCT | |
9544 | ||
9545 | /* | |
9546 | * CPU accounting code for task groups. | |
9547 | * | |
9548 | * Based on the work by Paul Menage ([email protected]) and Balbir Singh | |
9549 | * ([email protected]). | |
9550 | */ | |
9551 | ||
934352f2 | 9552 | /* track cpu usage of a group of tasks and its child groups */ |
d842de87 SV |
9553 | struct cpuacct { |
9554 | struct cgroup_subsys_state css; | |
9555 | /* cpuusage holds pointer to a u64-type object on every cpu */ | |
9556 | u64 *cpuusage; | |
934352f2 | 9557 | struct cpuacct *parent; |
d842de87 SV |
9558 | }; |
9559 | ||
9560 | struct cgroup_subsys cpuacct_subsys; | |
9561 | ||
9562 | /* return cpu accounting group corresponding to this container */ | |
32cd756a | 9563 | static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp) |
d842de87 | 9564 | { |
32cd756a | 9565 | return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id), |
d842de87 SV |
9566 | struct cpuacct, css); |
9567 | } | |
9568 | ||
9569 | /* return cpu accounting group to which this task belongs */ | |
9570 | static inline struct cpuacct *task_ca(struct task_struct *tsk) | |
9571 | { | |
9572 | return container_of(task_subsys_state(tsk, cpuacct_subsys_id), | |
9573 | struct cpuacct, css); | |
9574 | } | |
9575 | ||
9576 | /* create a new cpu accounting group */ | |
9577 | static struct cgroup_subsys_state *cpuacct_create( | |
32cd756a | 9578 | struct cgroup_subsys *ss, struct cgroup *cgrp) |
d842de87 SV |
9579 | { |
9580 | struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL); | |
9581 | ||
9582 | if (!ca) | |
9583 | return ERR_PTR(-ENOMEM); | |
9584 | ||
9585 | ca->cpuusage = alloc_percpu(u64); | |
9586 | if (!ca->cpuusage) { | |
9587 | kfree(ca); | |
9588 | return ERR_PTR(-ENOMEM); | |
9589 | } | |
9590 | ||
934352f2 BR |
9591 | if (cgrp->parent) |
9592 | ca->parent = cgroup_ca(cgrp->parent); | |
9593 | ||
d842de87 SV |
9594 | return &ca->css; |
9595 | } | |
9596 | ||
9597 | /* destroy an existing cpu accounting group */ | |
41a2d6cf | 9598 | static void |
32cd756a | 9599 | cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) |
d842de87 | 9600 | { |
32cd756a | 9601 | struct cpuacct *ca = cgroup_ca(cgrp); |
d842de87 SV |
9602 | |
9603 | free_percpu(ca->cpuusage); | |
9604 | kfree(ca); | |
9605 | } | |
9606 | ||
720f5498 KC |
9607 | static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) |
9608 | { | |
9609 | u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu); | |
9610 | u64 data; | |
9611 | ||
9612 | #ifndef CONFIG_64BIT | |
9613 | /* | |
9614 | * Take rq->lock to make 64-bit read safe on 32-bit platforms. | |
9615 | */ | |
9616 | spin_lock_irq(&cpu_rq(cpu)->lock); | |
9617 | data = *cpuusage; | |
9618 | spin_unlock_irq(&cpu_rq(cpu)->lock); | |
9619 | #else | |
9620 | data = *cpuusage; | |
9621 | #endif | |
9622 | ||
9623 | return data; | |
9624 | } | |
9625 | ||
9626 | static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val) | |
9627 | { | |
9628 | u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu); | |
9629 | ||
9630 | #ifndef CONFIG_64BIT | |
9631 | /* | |
9632 | * Take rq->lock to make 64-bit write safe on 32-bit platforms. | |
9633 | */ | |
9634 | spin_lock_irq(&cpu_rq(cpu)->lock); | |
9635 | *cpuusage = val; | |
9636 | spin_unlock_irq(&cpu_rq(cpu)->lock); | |
9637 | #else | |
9638 | *cpuusage = val; | |
9639 | #endif | |
9640 | } | |
9641 | ||
d842de87 | 9642 | /* return total cpu usage (in nanoseconds) of a group */ |
32cd756a | 9643 | static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft) |
d842de87 | 9644 | { |
32cd756a | 9645 | struct cpuacct *ca = cgroup_ca(cgrp); |
d842de87 SV |
9646 | u64 totalcpuusage = 0; |
9647 | int i; | |
9648 | ||
720f5498 KC |
9649 | for_each_present_cpu(i) |
9650 | totalcpuusage += cpuacct_cpuusage_read(ca, i); | |
d842de87 SV |
9651 | |
9652 | return totalcpuusage; | |
9653 | } | |
9654 | ||
0297b803 DG |
9655 | static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype, |
9656 | u64 reset) | |
9657 | { | |
9658 | struct cpuacct *ca = cgroup_ca(cgrp); | |
9659 | int err = 0; | |
9660 | int i; | |
9661 | ||
9662 | if (reset) { | |
9663 | err = -EINVAL; | |
9664 | goto out; | |
9665 | } | |
9666 | ||
720f5498 KC |
9667 | for_each_present_cpu(i) |
9668 | cpuacct_cpuusage_write(ca, i, 0); | |
0297b803 | 9669 | |
0297b803 DG |
9670 | out: |
9671 | return err; | |
9672 | } | |
9673 | ||
e9515c3c KC |
9674 | static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft, |
9675 | struct seq_file *m) | |
9676 | { | |
9677 | struct cpuacct *ca = cgroup_ca(cgroup); | |
9678 | u64 percpu; | |
9679 | int i; | |
9680 | ||
9681 | for_each_present_cpu(i) { | |
9682 | percpu = cpuacct_cpuusage_read(ca, i); | |
9683 | seq_printf(m, "%llu ", (unsigned long long) percpu); | |
9684 | } | |
9685 | seq_printf(m, "\n"); | |
9686 | return 0; | |
9687 | } | |
9688 | ||
d842de87 SV |
9689 | static struct cftype files[] = { |
9690 | { | |
9691 | .name = "usage", | |
f4c753b7 PM |
9692 | .read_u64 = cpuusage_read, |
9693 | .write_u64 = cpuusage_write, | |
d842de87 | 9694 | }, |
e9515c3c KC |
9695 | { |
9696 | .name = "usage_percpu", | |
9697 | .read_seq_string = cpuacct_percpu_seq_read, | |
9698 | }, | |
9699 | ||
d842de87 SV |
9700 | }; |
9701 | ||
32cd756a | 9702 | static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp) |
d842de87 | 9703 | { |
32cd756a | 9704 | return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files)); |
d842de87 SV |
9705 | } |
9706 | ||
9707 | /* | |
9708 | * charge this task's execution time to its accounting group. | |
9709 | * | |
9710 | * called with rq->lock held. | |
9711 | */ | |
9712 | static void cpuacct_charge(struct task_struct *tsk, u64 cputime) | |
9713 | { | |
9714 | struct cpuacct *ca; | |
934352f2 | 9715 | int cpu; |
d842de87 | 9716 | |
c40c6f85 | 9717 | if (unlikely(!cpuacct_subsys.active)) |
d842de87 SV |
9718 | return; |
9719 | ||
934352f2 | 9720 | cpu = task_cpu(tsk); |
d842de87 | 9721 | ca = task_ca(tsk); |
d842de87 | 9722 | |
934352f2 BR |
9723 | for (; ca; ca = ca->parent) { |
9724 | u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu); | |
d842de87 SV |
9725 | *cpuusage += cputime; |
9726 | } | |
9727 | } | |
9728 | ||
9729 | struct cgroup_subsys cpuacct_subsys = { | |
9730 | .name = "cpuacct", | |
9731 | .create = cpuacct_create, | |
9732 | .destroy = cpuacct_destroy, | |
9733 | .populate = cpuacct_populate, | |
9734 | .subsys_id = cpuacct_subsys_id, | |
9735 | }; | |
9736 | #endif /* CONFIG_CGROUP_CPUACCT */ |