]> Git Repo - linux.git/blame - kernel/sched.c
sched: optimize ttwu vs group scheduling
[linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
5517d86b 66#include <linux/reciprocal_div.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
434d53b0 71#include <linux/bootmem.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
0a16b607 75#include <trace/sched.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
1da177e4
LT
82/*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91/*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100/*
d7876a08 101 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 102 */
d6322faf 103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
d0b27fa7
PZ
116/*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119#define RUNTIME_INF ((u64)~0ULL)
120
7e066fb8
MD
121DEFINE_TRACE(sched_wait_task);
122DEFINE_TRACE(sched_wakeup);
123DEFINE_TRACE(sched_wakeup_new);
124DEFINE_TRACE(sched_switch);
125DEFINE_TRACE(sched_migrate_task);
126
5517d86b 127#ifdef CONFIG_SMP
fd2ab30b
SN
128
129static void double_rq_lock(struct rq *rq1, struct rq *rq2);
130
5517d86b
ED
131/*
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
134 */
135static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
136{
137 return reciprocal_divide(load, sg->reciprocal_cpu_power);
138}
139
140/*
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
143 */
144static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
145{
146 sg->__cpu_power += val;
147 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
148}
149#endif
150
e05606d3
IM
151static inline int rt_policy(int policy)
152{
3f33a7ce 153 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
154 return 1;
155 return 0;
156}
157
158static inline int task_has_rt_policy(struct task_struct *p)
159{
160 return rt_policy(p->policy);
161}
162
1da177e4 163/*
6aa645ea 164 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 165 */
6aa645ea
IM
166struct rt_prio_array {
167 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 struct list_head queue[MAX_RT_PRIO];
169};
170
d0b27fa7 171struct rt_bandwidth {
ea736ed5
IM
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock;
174 ktime_t rt_period;
175 u64 rt_runtime;
176 struct hrtimer rt_period_timer;
d0b27fa7
PZ
177};
178
179static struct rt_bandwidth def_rt_bandwidth;
180
181static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
182
183static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
184{
185 struct rt_bandwidth *rt_b =
186 container_of(timer, struct rt_bandwidth, rt_period_timer);
187 ktime_t now;
188 int overrun;
189 int idle = 0;
190
191 for (;;) {
192 now = hrtimer_cb_get_time(timer);
193 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
194
195 if (!overrun)
196 break;
197
198 idle = do_sched_rt_period_timer(rt_b, overrun);
199 }
200
201 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
202}
203
204static
205void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
206{
207 rt_b->rt_period = ns_to_ktime(period);
208 rt_b->rt_runtime = runtime;
209
ac086bc2
PZ
210 spin_lock_init(&rt_b->rt_runtime_lock);
211
d0b27fa7
PZ
212 hrtimer_init(&rt_b->rt_period_timer,
213 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
214 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
215}
216
c8bfff6d
KH
217static inline int rt_bandwidth_enabled(void)
218{
219 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
220}
221
222static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
223{
224 ktime_t now;
225
cac64d00 226 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
227 return;
228
229 if (hrtimer_active(&rt_b->rt_period_timer))
230 return;
231
232 spin_lock(&rt_b->rt_runtime_lock);
233 for (;;) {
234 if (hrtimer_active(&rt_b->rt_period_timer))
235 break;
236
237 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
238 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
cc584b21
AV
239 hrtimer_start_expires(&rt_b->rt_period_timer,
240 HRTIMER_MODE_ABS);
d0b27fa7
PZ
241 }
242 spin_unlock(&rt_b->rt_runtime_lock);
243}
244
245#ifdef CONFIG_RT_GROUP_SCHED
246static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
247{
248 hrtimer_cancel(&rt_b->rt_period_timer);
249}
250#endif
251
712555ee
HC
252/*
253 * sched_domains_mutex serializes calls to arch_init_sched_domains,
254 * detach_destroy_domains and partition_sched_domains.
255 */
256static DEFINE_MUTEX(sched_domains_mutex);
257
052f1dc7 258#ifdef CONFIG_GROUP_SCHED
29f59db3 259
68318b8e
SV
260#include <linux/cgroup.h>
261
29f59db3
SV
262struct cfs_rq;
263
6f505b16
PZ
264static LIST_HEAD(task_groups);
265
29f59db3 266/* task group related information */
4cf86d77 267struct task_group {
052f1dc7 268#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
269 struct cgroup_subsys_state css;
270#endif
052f1dc7 271
6c415b92
AB
272#ifdef CONFIG_USER_SCHED
273 uid_t uid;
274#endif
275
052f1dc7 276#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
277 /* schedulable entities of this group on each cpu */
278 struct sched_entity **se;
279 /* runqueue "owned" by this group on each cpu */
280 struct cfs_rq **cfs_rq;
281 unsigned long shares;
052f1dc7
PZ
282#endif
283
284#ifdef CONFIG_RT_GROUP_SCHED
285 struct sched_rt_entity **rt_se;
286 struct rt_rq **rt_rq;
287
d0b27fa7 288 struct rt_bandwidth rt_bandwidth;
052f1dc7 289#endif
6b2d7700 290
ae8393e5 291 struct rcu_head rcu;
6f505b16 292 struct list_head list;
f473aa5e
PZ
293
294 struct task_group *parent;
295 struct list_head siblings;
296 struct list_head children;
29f59db3
SV
297};
298
354d60c2 299#ifdef CONFIG_USER_SCHED
eff766a6 300
6c415b92
AB
301/* Helper function to pass uid information to create_sched_user() */
302void set_tg_uid(struct user_struct *user)
303{
304 user->tg->uid = user->uid;
305}
306
eff766a6
PZ
307/*
308 * Root task group.
309 * Every UID task group (including init_task_group aka UID-0) will
310 * be a child to this group.
311 */
312struct task_group root_task_group;
313
052f1dc7 314#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
315/* Default task group's sched entity on each cpu */
316static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
317/* Default task group's cfs_rq on each cpu */
318static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 319#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
320
321#ifdef CONFIG_RT_GROUP_SCHED
322static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
323static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 324#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 325#else /* !CONFIG_USER_SCHED */
eff766a6 326#define root_task_group init_task_group
9a7e0b18 327#endif /* CONFIG_USER_SCHED */
6f505b16 328
8ed36996 329/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
330 * a task group's cpu shares.
331 */
8ed36996 332static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 333
57310a98
PZ
334#ifdef CONFIG_SMP
335static int root_task_group_empty(void)
336{
337 return list_empty(&root_task_group.children);
338}
339#endif
340
052f1dc7 341#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
342#ifdef CONFIG_USER_SCHED
343# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 344#else /* !CONFIG_USER_SCHED */
052f1dc7 345# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 346#endif /* CONFIG_USER_SCHED */
052f1dc7 347
cb4ad1ff 348/*
2e084786
LJ
349 * A weight of 0 or 1 can cause arithmetics problems.
350 * A weight of a cfs_rq is the sum of weights of which entities
351 * are queued on this cfs_rq, so a weight of a entity should not be
352 * too large, so as the shares value of a task group.
cb4ad1ff
MX
353 * (The default weight is 1024 - so there's no practical
354 * limitation from this.)
355 */
18d95a28 356#define MIN_SHARES 2
2e084786 357#define MAX_SHARES (1UL << 18)
18d95a28 358
052f1dc7
PZ
359static int init_task_group_load = INIT_TASK_GROUP_LOAD;
360#endif
361
29f59db3 362/* Default task group.
3a252015 363 * Every task in system belong to this group at bootup.
29f59db3 364 */
434d53b0 365struct task_group init_task_group;
29f59db3
SV
366
367/* return group to which a task belongs */
4cf86d77 368static inline struct task_group *task_group(struct task_struct *p)
29f59db3 369{
4cf86d77 370 struct task_group *tg;
9b5b7751 371
052f1dc7 372#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
373 rcu_read_lock();
374 tg = __task_cred(p)->user->tg;
375 rcu_read_unlock();
052f1dc7 376#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
377 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
378 struct task_group, css);
24e377a8 379#else
41a2d6cf 380 tg = &init_task_group;
24e377a8 381#endif
9b5b7751 382 return tg;
29f59db3
SV
383}
384
385/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 386static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 387{
052f1dc7 388#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
389 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
390 p->se.parent = task_group(p)->se[cpu];
052f1dc7 391#endif
6f505b16 392
052f1dc7 393#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
394 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
395 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 396#endif
29f59db3
SV
397}
398
399#else
400
57310a98
PZ
401#ifdef CONFIG_SMP
402static int root_task_group_empty(void)
403{
404 return 1;
405}
406#endif
407
6f505b16 408static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
409static inline struct task_group *task_group(struct task_struct *p)
410{
411 return NULL;
412}
29f59db3 413
052f1dc7 414#endif /* CONFIG_GROUP_SCHED */
29f59db3 415
6aa645ea
IM
416/* CFS-related fields in a runqueue */
417struct cfs_rq {
418 struct load_weight load;
419 unsigned long nr_running;
420
6aa645ea 421 u64 exec_clock;
e9acbff6 422 u64 min_vruntime;
6aa645ea
IM
423
424 struct rb_root tasks_timeline;
425 struct rb_node *rb_leftmost;
4a55bd5e
PZ
426
427 struct list_head tasks;
428 struct list_head *balance_iterator;
429
430 /*
431 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
432 * It is set to NULL otherwise (i.e when none are currently running).
433 */
4793241b 434 struct sched_entity *curr, *next, *last;
ddc97297 435
5ac5c4d6 436 unsigned int nr_spread_over;
ddc97297 437
62160e3f 438#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
439 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
440
41a2d6cf
IM
441 /*
442 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
443 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
444 * (like users, containers etc.)
445 *
446 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
447 * list is used during load balance.
448 */
41a2d6cf
IM
449 struct list_head leaf_cfs_rq_list;
450 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
451
452#ifdef CONFIG_SMP
c09595f6 453 /*
c8cba857 454 * the part of load.weight contributed by tasks
c09595f6 455 */
c8cba857 456 unsigned long task_weight;
c09595f6 457
c8cba857
PZ
458 /*
459 * h_load = weight * f(tg)
460 *
461 * Where f(tg) is the recursive weight fraction assigned to
462 * this group.
463 */
464 unsigned long h_load;
c09595f6 465
c8cba857
PZ
466 /*
467 * this cpu's part of tg->shares
468 */
469 unsigned long shares;
f1d239f7
PZ
470
471 /*
472 * load.weight at the time we set shares
473 */
474 unsigned long rq_weight;
c09595f6 475#endif
6aa645ea
IM
476#endif
477};
1da177e4 478
6aa645ea
IM
479/* Real-Time classes' related field in a runqueue: */
480struct rt_rq {
481 struct rt_prio_array active;
63489e45 482 unsigned long rt_nr_running;
052f1dc7 483#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
484 struct {
485 int curr; /* highest queued rt task prio */
398a153b 486#ifdef CONFIG_SMP
e864c499 487 int next; /* next highest */
398a153b 488#endif
e864c499 489 } highest_prio;
6f505b16 490#endif
fa85ae24 491#ifdef CONFIG_SMP
73fe6aae 492 unsigned long rt_nr_migratory;
a22d7fc1 493 int overloaded;
917b627d 494 struct plist_head pushable_tasks;
fa85ae24 495#endif
6f505b16 496 int rt_throttled;
fa85ae24 497 u64 rt_time;
ac086bc2 498 u64 rt_runtime;
ea736ed5 499 /* Nests inside the rq lock: */
ac086bc2 500 spinlock_t rt_runtime_lock;
6f505b16 501
052f1dc7 502#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
503 unsigned long rt_nr_boosted;
504
6f505b16
PZ
505 struct rq *rq;
506 struct list_head leaf_rt_rq_list;
507 struct task_group *tg;
508 struct sched_rt_entity *rt_se;
509#endif
6aa645ea
IM
510};
511
57d885fe
GH
512#ifdef CONFIG_SMP
513
514/*
515 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
516 * variables. Each exclusive cpuset essentially defines an island domain by
517 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
518 * exclusive cpuset is created, we also create and attach a new root-domain
519 * object.
520 *
57d885fe
GH
521 */
522struct root_domain {
523 atomic_t refcount;
c6c4927b
RR
524 cpumask_var_t span;
525 cpumask_var_t online;
637f5085 526
0eab9146 527 /*
637f5085
GH
528 * The "RT overload" flag: it gets set if a CPU has more than
529 * one runnable RT task.
530 */
c6c4927b 531 cpumask_var_t rto_mask;
0eab9146 532 atomic_t rto_count;
6e0534f2
GH
533#ifdef CONFIG_SMP
534 struct cpupri cpupri;
535#endif
7a09b1a2
VS
536#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
537 /*
538 * Preferred wake up cpu nominated by sched_mc balance that will be
539 * used when most cpus are idle in the system indicating overall very
540 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
541 */
542 unsigned int sched_mc_preferred_wakeup_cpu;
543#endif
57d885fe
GH
544};
545
dc938520
GH
546/*
547 * By default the system creates a single root-domain with all cpus as
548 * members (mimicking the global state we have today).
549 */
57d885fe
GH
550static struct root_domain def_root_domain;
551
552#endif
553
1da177e4
LT
554/*
555 * This is the main, per-CPU runqueue data structure.
556 *
557 * Locking rule: those places that want to lock multiple runqueues
558 * (such as the load balancing or the thread migration code), lock
559 * acquire operations must be ordered by ascending &runqueue.
560 */
70b97a7f 561struct rq {
d8016491
IM
562 /* runqueue lock: */
563 spinlock_t lock;
1da177e4
LT
564
565 /*
566 * nr_running and cpu_load should be in the same cacheline because
567 * remote CPUs use both these fields when doing load calculation.
568 */
569 unsigned long nr_running;
6aa645ea
IM
570 #define CPU_LOAD_IDX_MAX 5
571 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 572#ifdef CONFIG_NO_HZ
15934a37 573 unsigned long last_tick_seen;
46cb4b7c
SS
574 unsigned char in_nohz_recently;
575#endif
d8016491
IM
576 /* capture load from *all* tasks on this cpu: */
577 struct load_weight load;
6aa645ea
IM
578 unsigned long nr_load_updates;
579 u64 nr_switches;
580
581 struct cfs_rq cfs;
6f505b16 582 struct rt_rq rt;
6f505b16 583
6aa645ea 584#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
585 /* list of leaf cfs_rq on this cpu: */
586 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
587#endif
588#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 589 struct list_head leaf_rt_rq_list;
1da177e4 590#endif
1da177e4
LT
591
592 /*
593 * This is part of a global counter where only the total sum
594 * over all CPUs matters. A task can increase this counter on
595 * one CPU and if it got migrated afterwards it may decrease
596 * it on another CPU. Always updated under the runqueue lock:
597 */
598 unsigned long nr_uninterruptible;
599
36c8b586 600 struct task_struct *curr, *idle;
c9819f45 601 unsigned long next_balance;
1da177e4 602 struct mm_struct *prev_mm;
6aa645ea 603
3e51f33f 604 u64 clock;
6aa645ea 605
1da177e4
LT
606 atomic_t nr_iowait;
607
608#ifdef CONFIG_SMP
0eab9146 609 struct root_domain *rd;
1da177e4
LT
610 struct sched_domain *sd;
611
a0a522ce 612 unsigned char idle_at_tick;
1da177e4
LT
613 /* For active balancing */
614 int active_balance;
615 int push_cpu;
d8016491
IM
616 /* cpu of this runqueue: */
617 int cpu;
1f11eb6a 618 int online;
1da177e4 619
a8a51d5e 620 unsigned long avg_load_per_task;
1da177e4 621
36c8b586 622 struct task_struct *migration_thread;
1da177e4
LT
623 struct list_head migration_queue;
624#endif
625
8f4d37ec 626#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
627#ifdef CONFIG_SMP
628 int hrtick_csd_pending;
629 struct call_single_data hrtick_csd;
630#endif
8f4d37ec
PZ
631 struct hrtimer hrtick_timer;
632#endif
633
1da177e4
LT
634#ifdef CONFIG_SCHEDSTATS
635 /* latency stats */
636 struct sched_info rq_sched_info;
9c2c4802
KC
637 unsigned long long rq_cpu_time;
638 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
639
640 /* sys_sched_yield() stats */
480b9434
KC
641 unsigned int yld_exp_empty;
642 unsigned int yld_act_empty;
643 unsigned int yld_both_empty;
644 unsigned int yld_count;
1da177e4
LT
645
646 /* schedule() stats */
480b9434
KC
647 unsigned int sched_switch;
648 unsigned int sched_count;
649 unsigned int sched_goidle;
1da177e4
LT
650
651 /* try_to_wake_up() stats */
480b9434
KC
652 unsigned int ttwu_count;
653 unsigned int ttwu_local;
b8efb561
IM
654
655 /* BKL stats */
480b9434 656 unsigned int bkl_count;
1da177e4
LT
657#endif
658};
659
f34e3b61 660static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 661
15afe09b 662static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 663{
15afe09b 664 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
665}
666
0a2966b4
CL
667static inline int cpu_of(struct rq *rq)
668{
669#ifdef CONFIG_SMP
670 return rq->cpu;
671#else
672 return 0;
673#endif
674}
675
674311d5
NP
676/*
677 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 678 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
679 *
680 * The domain tree of any CPU may only be accessed from within
681 * preempt-disabled sections.
682 */
48f24c4d
IM
683#define for_each_domain(cpu, __sd) \
684 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
685
686#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
687#define this_rq() (&__get_cpu_var(runqueues))
688#define task_rq(p) cpu_rq(task_cpu(p))
689#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
690
3e51f33f
PZ
691static inline void update_rq_clock(struct rq *rq)
692{
693 rq->clock = sched_clock_cpu(cpu_of(rq));
694}
695
bf5c91ba
IM
696/*
697 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
698 */
699#ifdef CONFIG_SCHED_DEBUG
700# define const_debug __read_mostly
701#else
702# define const_debug static const
703#endif
704
017730c1
IM
705/**
706 * runqueue_is_locked
707 *
708 * Returns true if the current cpu runqueue is locked.
709 * This interface allows printk to be called with the runqueue lock
710 * held and know whether or not it is OK to wake up the klogd.
711 */
712int runqueue_is_locked(void)
713{
714 int cpu = get_cpu();
715 struct rq *rq = cpu_rq(cpu);
716 int ret;
717
718 ret = spin_is_locked(&rq->lock);
719 put_cpu();
720 return ret;
721}
722
bf5c91ba
IM
723/*
724 * Debugging: various feature bits
725 */
f00b45c1
PZ
726
727#define SCHED_FEAT(name, enabled) \
728 __SCHED_FEAT_##name ,
729
bf5c91ba 730enum {
f00b45c1 731#include "sched_features.h"
bf5c91ba
IM
732};
733
f00b45c1
PZ
734#undef SCHED_FEAT
735
736#define SCHED_FEAT(name, enabled) \
737 (1UL << __SCHED_FEAT_##name) * enabled |
738
bf5c91ba 739const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
740#include "sched_features.h"
741 0;
742
743#undef SCHED_FEAT
744
745#ifdef CONFIG_SCHED_DEBUG
746#define SCHED_FEAT(name, enabled) \
747 #name ,
748
983ed7a6 749static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
750#include "sched_features.h"
751 NULL
752};
753
754#undef SCHED_FEAT
755
34f3a814 756static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 757{
f00b45c1
PZ
758 int i;
759
760 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
761 if (!(sysctl_sched_features & (1UL << i)))
762 seq_puts(m, "NO_");
763 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 764 }
34f3a814 765 seq_puts(m, "\n");
f00b45c1 766
34f3a814 767 return 0;
f00b45c1
PZ
768}
769
770static ssize_t
771sched_feat_write(struct file *filp, const char __user *ubuf,
772 size_t cnt, loff_t *ppos)
773{
774 char buf[64];
775 char *cmp = buf;
776 int neg = 0;
777 int i;
778
779 if (cnt > 63)
780 cnt = 63;
781
782 if (copy_from_user(&buf, ubuf, cnt))
783 return -EFAULT;
784
785 buf[cnt] = 0;
786
c24b7c52 787 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
788 neg = 1;
789 cmp += 3;
790 }
791
792 for (i = 0; sched_feat_names[i]; i++) {
793 int len = strlen(sched_feat_names[i]);
794
795 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
796 if (neg)
797 sysctl_sched_features &= ~(1UL << i);
798 else
799 sysctl_sched_features |= (1UL << i);
800 break;
801 }
802 }
803
804 if (!sched_feat_names[i])
805 return -EINVAL;
806
807 filp->f_pos += cnt;
808
809 return cnt;
810}
811
34f3a814
LZ
812static int sched_feat_open(struct inode *inode, struct file *filp)
813{
814 return single_open(filp, sched_feat_show, NULL);
815}
816
f00b45c1 817static struct file_operations sched_feat_fops = {
34f3a814
LZ
818 .open = sched_feat_open,
819 .write = sched_feat_write,
820 .read = seq_read,
821 .llseek = seq_lseek,
822 .release = single_release,
f00b45c1
PZ
823};
824
825static __init int sched_init_debug(void)
826{
f00b45c1
PZ
827 debugfs_create_file("sched_features", 0644, NULL, NULL,
828 &sched_feat_fops);
829
830 return 0;
831}
832late_initcall(sched_init_debug);
833
834#endif
835
836#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 837
b82d9fdd
PZ
838/*
839 * Number of tasks to iterate in a single balance run.
840 * Limited because this is done with IRQs disabled.
841 */
842const_debug unsigned int sysctl_sched_nr_migrate = 32;
843
2398f2c6
PZ
844/*
845 * ratelimit for updating the group shares.
55cd5340 846 * default: 0.25ms
2398f2c6 847 */
55cd5340 848unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 849
ffda12a1
PZ
850/*
851 * Inject some fuzzyness into changing the per-cpu group shares
852 * this avoids remote rq-locks at the expense of fairness.
853 * default: 4
854 */
855unsigned int sysctl_sched_shares_thresh = 4;
856
fa85ae24 857/*
9f0c1e56 858 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
859 * default: 1s
860 */
9f0c1e56 861unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 862
6892b75e
IM
863static __read_mostly int scheduler_running;
864
9f0c1e56
PZ
865/*
866 * part of the period that we allow rt tasks to run in us.
867 * default: 0.95s
868 */
869int sysctl_sched_rt_runtime = 950000;
fa85ae24 870
d0b27fa7
PZ
871static inline u64 global_rt_period(void)
872{
873 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
874}
875
876static inline u64 global_rt_runtime(void)
877{
e26873bb 878 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
879 return RUNTIME_INF;
880
881 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
882}
fa85ae24 883
1da177e4 884#ifndef prepare_arch_switch
4866cde0
NP
885# define prepare_arch_switch(next) do { } while (0)
886#endif
887#ifndef finish_arch_switch
888# define finish_arch_switch(prev) do { } while (0)
889#endif
890
051a1d1a
DA
891static inline int task_current(struct rq *rq, struct task_struct *p)
892{
893 return rq->curr == p;
894}
895
4866cde0 896#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 897static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 898{
051a1d1a 899 return task_current(rq, p);
4866cde0
NP
900}
901
70b97a7f 902static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
903{
904}
905
70b97a7f 906static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 907{
da04c035
IM
908#ifdef CONFIG_DEBUG_SPINLOCK
909 /* this is a valid case when another task releases the spinlock */
910 rq->lock.owner = current;
911#endif
8a25d5de
IM
912 /*
913 * If we are tracking spinlock dependencies then we have to
914 * fix up the runqueue lock - which gets 'carried over' from
915 * prev into current:
916 */
917 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
918
4866cde0
NP
919 spin_unlock_irq(&rq->lock);
920}
921
922#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 923static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
924{
925#ifdef CONFIG_SMP
926 return p->oncpu;
927#else
051a1d1a 928 return task_current(rq, p);
4866cde0
NP
929#endif
930}
931
70b97a7f 932static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
933{
934#ifdef CONFIG_SMP
935 /*
936 * We can optimise this out completely for !SMP, because the
937 * SMP rebalancing from interrupt is the only thing that cares
938 * here.
939 */
940 next->oncpu = 1;
941#endif
942#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
943 spin_unlock_irq(&rq->lock);
944#else
945 spin_unlock(&rq->lock);
946#endif
947}
948
70b97a7f 949static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
950{
951#ifdef CONFIG_SMP
952 /*
953 * After ->oncpu is cleared, the task can be moved to a different CPU.
954 * We must ensure this doesn't happen until the switch is completely
955 * finished.
956 */
957 smp_wmb();
958 prev->oncpu = 0;
959#endif
960#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
961 local_irq_enable();
1da177e4 962#endif
4866cde0
NP
963}
964#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 965
b29739f9
IM
966/*
967 * __task_rq_lock - lock the runqueue a given task resides on.
968 * Must be called interrupts disabled.
969 */
70b97a7f 970static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
971 __acquires(rq->lock)
972{
3a5c359a
AK
973 for (;;) {
974 struct rq *rq = task_rq(p);
975 spin_lock(&rq->lock);
976 if (likely(rq == task_rq(p)))
977 return rq;
b29739f9 978 spin_unlock(&rq->lock);
b29739f9 979 }
b29739f9
IM
980}
981
1da177e4
LT
982/*
983 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 984 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
985 * explicitly disabling preemption.
986 */
70b97a7f 987static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
988 __acquires(rq->lock)
989{
70b97a7f 990 struct rq *rq;
1da177e4 991
3a5c359a
AK
992 for (;;) {
993 local_irq_save(*flags);
994 rq = task_rq(p);
995 spin_lock(&rq->lock);
996 if (likely(rq == task_rq(p)))
997 return rq;
1da177e4 998 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 999 }
1da177e4
LT
1000}
1001
ad474cac
ON
1002void task_rq_unlock_wait(struct task_struct *p)
1003{
1004 struct rq *rq = task_rq(p);
1005
1006 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1007 spin_unlock_wait(&rq->lock);
1008}
1009
a9957449 1010static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1011 __releases(rq->lock)
1012{
1013 spin_unlock(&rq->lock);
1014}
1015
70b97a7f 1016static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
1017 __releases(rq->lock)
1018{
1019 spin_unlock_irqrestore(&rq->lock, *flags);
1020}
1021
1da177e4 1022/*
cc2a73b5 1023 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1024 */
a9957449 1025static struct rq *this_rq_lock(void)
1da177e4
LT
1026 __acquires(rq->lock)
1027{
70b97a7f 1028 struct rq *rq;
1da177e4
LT
1029
1030 local_irq_disable();
1031 rq = this_rq();
1032 spin_lock(&rq->lock);
1033
1034 return rq;
1035}
1036
8f4d37ec
PZ
1037#ifdef CONFIG_SCHED_HRTICK
1038/*
1039 * Use HR-timers to deliver accurate preemption points.
1040 *
1041 * Its all a bit involved since we cannot program an hrt while holding the
1042 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1043 * reschedule event.
1044 *
1045 * When we get rescheduled we reprogram the hrtick_timer outside of the
1046 * rq->lock.
1047 */
8f4d37ec
PZ
1048
1049/*
1050 * Use hrtick when:
1051 * - enabled by features
1052 * - hrtimer is actually high res
1053 */
1054static inline int hrtick_enabled(struct rq *rq)
1055{
1056 if (!sched_feat(HRTICK))
1057 return 0;
ba42059f 1058 if (!cpu_active(cpu_of(rq)))
b328ca18 1059 return 0;
8f4d37ec
PZ
1060 return hrtimer_is_hres_active(&rq->hrtick_timer);
1061}
1062
8f4d37ec
PZ
1063static void hrtick_clear(struct rq *rq)
1064{
1065 if (hrtimer_active(&rq->hrtick_timer))
1066 hrtimer_cancel(&rq->hrtick_timer);
1067}
1068
8f4d37ec
PZ
1069/*
1070 * High-resolution timer tick.
1071 * Runs from hardirq context with interrupts disabled.
1072 */
1073static enum hrtimer_restart hrtick(struct hrtimer *timer)
1074{
1075 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1076
1077 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1078
1079 spin_lock(&rq->lock);
3e51f33f 1080 update_rq_clock(rq);
8f4d37ec
PZ
1081 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1082 spin_unlock(&rq->lock);
1083
1084 return HRTIMER_NORESTART;
1085}
1086
95e904c7 1087#ifdef CONFIG_SMP
31656519
PZ
1088/*
1089 * called from hardirq (IPI) context
1090 */
1091static void __hrtick_start(void *arg)
b328ca18 1092{
31656519 1093 struct rq *rq = arg;
b328ca18 1094
31656519
PZ
1095 spin_lock(&rq->lock);
1096 hrtimer_restart(&rq->hrtick_timer);
1097 rq->hrtick_csd_pending = 0;
1098 spin_unlock(&rq->lock);
b328ca18
PZ
1099}
1100
31656519
PZ
1101/*
1102 * Called to set the hrtick timer state.
1103 *
1104 * called with rq->lock held and irqs disabled
1105 */
1106static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1107{
31656519
PZ
1108 struct hrtimer *timer = &rq->hrtick_timer;
1109 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1110
cc584b21 1111 hrtimer_set_expires(timer, time);
31656519
PZ
1112
1113 if (rq == this_rq()) {
1114 hrtimer_restart(timer);
1115 } else if (!rq->hrtick_csd_pending) {
1116 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1117 rq->hrtick_csd_pending = 1;
1118 }
b328ca18
PZ
1119}
1120
1121static int
1122hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1123{
1124 int cpu = (int)(long)hcpu;
1125
1126 switch (action) {
1127 case CPU_UP_CANCELED:
1128 case CPU_UP_CANCELED_FROZEN:
1129 case CPU_DOWN_PREPARE:
1130 case CPU_DOWN_PREPARE_FROZEN:
1131 case CPU_DEAD:
1132 case CPU_DEAD_FROZEN:
31656519 1133 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1134 return NOTIFY_OK;
1135 }
1136
1137 return NOTIFY_DONE;
1138}
1139
fa748203 1140static __init void init_hrtick(void)
b328ca18
PZ
1141{
1142 hotcpu_notifier(hotplug_hrtick, 0);
1143}
31656519
PZ
1144#else
1145/*
1146 * Called to set the hrtick timer state.
1147 *
1148 * called with rq->lock held and irqs disabled
1149 */
1150static void hrtick_start(struct rq *rq, u64 delay)
1151{
1152 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1153}
b328ca18 1154
006c75f1 1155static inline void init_hrtick(void)
8f4d37ec 1156{
8f4d37ec 1157}
31656519 1158#endif /* CONFIG_SMP */
8f4d37ec 1159
31656519 1160static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1161{
31656519
PZ
1162#ifdef CONFIG_SMP
1163 rq->hrtick_csd_pending = 0;
8f4d37ec 1164
31656519
PZ
1165 rq->hrtick_csd.flags = 0;
1166 rq->hrtick_csd.func = __hrtick_start;
1167 rq->hrtick_csd.info = rq;
1168#endif
8f4d37ec 1169
31656519
PZ
1170 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1171 rq->hrtick_timer.function = hrtick;
8f4d37ec 1172}
006c75f1 1173#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1174static inline void hrtick_clear(struct rq *rq)
1175{
1176}
1177
8f4d37ec
PZ
1178static inline void init_rq_hrtick(struct rq *rq)
1179{
1180}
1181
b328ca18
PZ
1182static inline void init_hrtick(void)
1183{
1184}
006c75f1 1185#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1186
c24d20db
IM
1187/*
1188 * resched_task - mark a task 'to be rescheduled now'.
1189 *
1190 * On UP this means the setting of the need_resched flag, on SMP it
1191 * might also involve a cross-CPU call to trigger the scheduler on
1192 * the target CPU.
1193 */
1194#ifdef CONFIG_SMP
1195
1196#ifndef tsk_is_polling
1197#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1198#endif
1199
31656519 1200static void resched_task(struct task_struct *p)
c24d20db
IM
1201{
1202 int cpu;
1203
1204 assert_spin_locked(&task_rq(p)->lock);
1205
5ed0cec0 1206 if (test_tsk_need_resched(p))
c24d20db
IM
1207 return;
1208
5ed0cec0 1209 set_tsk_need_resched(p);
c24d20db
IM
1210
1211 cpu = task_cpu(p);
1212 if (cpu == smp_processor_id())
1213 return;
1214
1215 /* NEED_RESCHED must be visible before we test polling */
1216 smp_mb();
1217 if (!tsk_is_polling(p))
1218 smp_send_reschedule(cpu);
1219}
1220
1221static void resched_cpu(int cpu)
1222{
1223 struct rq *rq = cpu_rq(cpu);
1224 unsigned long flags;
1225
1226 if (!spin_trylock_irqsave(&rq->lock, flags))
1227 return;
1228 resched_task(cpu_curr(cpu));
1229 spin_unlock_irqrestore(&rq->lock, flags);
1230}
06d8308c
TG
1231
1232#ifdef CONFIG_NO_HZ
1233/*
1234 * When add_timer_on() enqueues a timer into the timer wheel of an
1235 * idle CPU then this timer might expire before the next timer event
1236 * which is scheduled to wake up that CPU. In case of a completely
1237 * idle system the next event might even be infinite time into the
1238 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1239 * leaves the inner idle loop so the newly added timer is taken into
1240 * account when the CPU goes back to idle and evaluates the timer
1241 * wheel for the next timer event.
1242 */
1243void wake_up_idle_cpu(int cpu)
1244{
1245 struct rq *rq = cpu_rq(cpu);
1246
1247 if (cpu == smp_processor_id())
1248 return;
1249
1250 /*
1251 * This is safe, as this function is called with the timer
1252 * wheel base lock of (cpu) held. When the CPU is on the way
1253 * to idle and has not yet set rq->curr to idle then it will
1254 * be serialized on the timer wheel base lock and take the new
1255 * timer into account automatically.
1256 */
1257 if (rq->curr != rq->idle)
1258 return;
1259
1260 /*
1261 * We can set TIF_RESCHED on the idle task of the other CPU
1262 * lockless. The worst case is that the other CPU runs the
1263 * idle task through an additional NOOP schedule()
1264 */
5ed0cec0 1265 set_tsk_need_resched(rq->idle);
06d8308c
TG
1266
1267 /* NEED_RESCHED must be visible before we test polling */
1268 smp_mb();
1269 if (!tsk_is_polling(rq->idle))
1270 smp_send_reschedule(cpu);
1271}
6d6bc0ad 1272#endif /* CONFIG_NO_HZ */
06d8308c 1273
6d6bc0ad 1274#else /* !CONFIG_SMP */
31656519 1275static void resched_task(struct task_struct *p)
c24d20db
IM
1276{
1277 assert_spin_locked(&task_rq(p)->lock);
31656519 1278 set_tsk_need_resched(p);
c24d20db 1279}
6d6bc0ad 1280#endif /* CONFIG_SMP */
c24d20db 1281
45bf76df
IM
1282#if BITS_PER_LONG == 32
1283# define WMULT_CONST (~0UL)
1284#else
1285# define WMULT_CONST (1UL << 32)
1286#endif
1287
1288#define WMULT_SHIFT 32
1289
194081eb
IM
1290/*
1291 * Shift right and round:
1292 */
cf2ab469 1293#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1294
a7be37ac
PZ
1295/*
1296 * delta *= weight / lw
1297 */
cb1c4fc9 1298static unsigned long
45bf76df
IM
1299calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1300 struct load_weight *lw)
1301{
1302 u64 tmp;
1303
7a232e03
LJ
1304 if (!lw->inv_weight) {
1305 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1306 lw->inv_weight = 1;
1307 else
1308 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1309 / (lw->weight+1);
1310 }
45bf76df
IM
1311
1312 tmp = (u64)delta_exec * weight;
1313 /*
1314 * Check whether we'd overflow the 64-bit multiplication:
1315 */
194081eb 1316 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1317 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1318 WMULT_SHIFT/2);
1319 else
cf2ab469 1320 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1321
ecf691da 1322 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1323}
1324
1091985b 1325static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1326{
1327 lw->weight += inc;
e89996ae 1328 lw->inv_weight = 0;
45bf76df
IM
1329}
1330
1091985b 1331static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1332{
1333 lw->weight -= dec;
e89996ae 1334 lw->inv_weight = 0;
45bf76df
IM
1335}
1336
2dd73a4f
PW
1337/*
1338 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1339 * of tasks with abnormal "nice" values across CPUs the contribution that
1340 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1341 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1342 * scaled version of the new time slice allocation that they receive on time
1343 * slice expiry etc.
1344 */
1345
cce7ade8
PZ
1346#define WEIGHT_IDLEPRIO 3
1347#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1348
1349/*
1350 * Nice levels are multiplicative, with a gentle 10% change for every
1351 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1352 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1353 * that remained on nice 0.
1354 *
1355 * The "10% effect" is relative and cumulative: from _any_ nice level,
1356 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1357 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1358 * If a task goes up by ~10% and another task goes down by ~10% then
1359 * the relative distance between them is ~25%.)
dd41f596
IM
1360 */
1361static const int prio_to_weight[40] = {
254753dc
IM
1362 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1363 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1364 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1365 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1366 /* 0 */ 1024, 820, 655, 526, 423,
1367 /* 5 */ 335, 272, 215, 172, 137,
1368 /* 10 */ 110, 87, 70, 56, 45,
1369 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1370};
1371
5714d2de
IM
1372/*
1373 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1374 *
1375 * In cases where the weight does not change often, we can use the
1376 * precalculated inverse to speed up arithmetics by turning divisions
1377 * into multiplications:
1378 */
dd41f596 1379static const u32 prio_to_wmult[40] = {
254753dc
IM
1380 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1381 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1382 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1383 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1384 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1385 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1386 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1387 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1388};
2dd73a4f 1389
dd41f596
IM
1390static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1391
1392/*
1393 * runqueue iterator, to support SMP load-balancing between different
1394 * scheduling classes, without having to expose their internal data
1395 * structures to the load-balancing proper:
1396 */
1397struct rq_iterator {
1398 void *arg;
1399 struct task_struct *(*start)(void *);
1400 struct task_struct *(*next)(void *);
1401};
1402
e1d1484f
PW
1403#ifdef CONFIG_SMP
1404static unsigned long
1405balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1406 unsigned long max_load_move, struct sched_domain *sd,
1407 enum cpu_idle_type idle, int *all_pinned,
1408 int *this_best_prio, struct rq_iterator *iterator);
1409
1410static int
1411iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1412 struct sched_domain *sd, enum cpu_idle_type idle,
1413 struct rq_iterator *iterator);
e1d1484f 1414#endif
dd41f596 1415
d842de87
SV
1416#ifdef CONFIG_CGROUP_CPUACCT
1417static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1418#else
1419static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1420#endif
1421
18d95a28
PZ
1422static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1423{
1424 update_load_add(&rq->load, load);
1425}
1426
1427static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1428{
1429 update_load_sub(&rq->load, load);
1430}
1431
7940ca36 1432#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1433typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1434
1435/*
1436 * Iterate the full tree, calling @down when first entering a node and @up when
1437 * leaving it for the final time.
1438 */
eb755805 1439static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1440{
1441 struct task_group *parent, *child;
eb755805 1442 int ret;
c09595f6
PZ
1443
1444 rcu_read_lock();
1445 parent = &root_task_group;
1446down:
eb755805
PZ
1447 ret = (*down)(parent, data);
1448 if (ret)
1449 goto out_unlock;
c09595f6
PZ
1450 list_for_each_entry_rcu(child, &parent->children, siblings) {
1451 parent = child;
1452 goto down;
1453
1454up:
1455 continue;
1456 }
eb755805
PZ
1457 ret = (*up)(parent, data);
1458 if (ret)
1459 goto out_unlock;
c09595f6
PZ
1460
1461 child = parent;
1462 parent = parent->parent;
1463 if (parent)
1464 goto up;
eb755805 1465out_unlock:
c09595f6 1466 rcu_read_unlock();
eb755805
PZ
1467
1468 return ret;
c09595f6
PZ
1469}
1470
eb755805
PZ
1471static int tg_nop(struct task_group *tg, void *data)
1472{
1473 return 0;
c09595f6 1474}
eb755805
PZ
1475#endif
1476
1477#ifdef CONFIG_SMP
1478static unsigned long source_load(int cpu, int type);
1479static unsigned long target_load(int cpu, int type);
1480static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1481
1482static unsigned long cpu_avg_load_per_task(int cpu)
1483{
1484 struct rq *rq = cpu_rq(cpu);
af6d596f 1485 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1486
4cd42620
SR
1487 if (nr_running)
1488 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1489 else
1490 rq->avg_load_per_task = 0;
eb755805
PZ
1491
1492 return rq->avg_load_per_task;
1493}
1494
1495#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1496
c09595f6
PZ
1497static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1498
1499/*
1500 * Calculate and set the cpu's group shares.
1501 */
1502static void
ffda12a1
PZ
1503update_group_shares_cpu(struct task_group *tg, int cpu,
1504 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1505{
c09595f6
PZ
1506 unsigned long shares;
1507 unsigned long rq_weight;
1508
c8cba857 1509 if (!tg->se[cpu])
c09595f6
PZ
1510 return;
1511
ec4e0e2f 1512 rq_weight = tg->cfs_rq[cpu]->rq_weight;
c8cba857 1513
c09595f6
PZ
1514 /*
1515 * \Sum shares * rq_weight
1516 * shares = -----------------------
1517 * \Sum rq_weight
1518 *
1519 */
ec4e0e2f 1520 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1521 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1522
ffda12a1
PZ
1523 if (abs(shares - tg->se[cpu]->load.weight) >
1524 sysctl_sched_shares_thresh) {
1525 struct rq *rq = cpu_rq(cpu);
1526 unsigned long flags;
c09595f6 1527
ffda12a1 1528 spin_lock_irqsave(&rq->lock, flags);
ec4e0e2f 1529 tg->cfs_rq[cpu]->shares = shares;
c09595f6 1530
ffda12a1
PZ
1531 __set_se_shares(tg->se[cpu], shares);
1532 spin_unlock_irqrestore(&rq->lock, flags);
1533 }
18d95a28 1534}
c09595f6
PZ
1535
1536/*
c8cba857
PZ
1537 * Re-compute the task group their per cpu shares over the given domain.
1538 * This needs to be done in a bottom-up fashion because the rq weight of a
1539 * parent group depends on the shares of its child groups.
c09595f6 1540 */
eb755805 1541static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1542{
ec4e0e2f 1543 unsigned long weight, rq_weight = 0;
c8cba857 1544 unsigned long shares = 0;
eb755805 1545 struct sched_domain *sd = data;
c8cba857 1546 int i;
c09595f6 1547
758b2cdc 1548 for_each_cpu(i, sched_domain_span(sd)) {
ec4e0e2f
KC
1549 /*
1550 * If there are currently no tasks on the cpu pretend there
1551 * is one of average load so that when a new task gets to
1552 * run here it will not get delayed by group starvation.
1553 */
1554 weight = tg->cfs_rq[i]->load.weight;
1555 if (!weight)
1556 weight = NICE_0_LOAD;
1557
1558 tg->cfs_rq[i]->rq_weight = weight;
1559 rq_weight += weight;
c8cba857 1560 shares += tg->cfs_rq[i]->shares;
c09595f6 1561 }
c09595f6 1562
c8cba857
PZ
1563 if ((!shares && rq_weight) || shares > tg->shares)
1564 shares = tg->shares;
1565
1566 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1567 shares = tg->shares;
c09595f6 1568
758b2cdc 1569 for_each_cpu(i, sched_domain_span(sd))
ffda12a1 1570 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1571
1572 return 0;
c09595f6
PZ
1573}
1574
1575/*
c8cba857
PZ
1576 * Compute the cpu's hierarchical load factor for each task group.
1577 * This needs to be done in a top-down fashion because the load of a child
1578 * group is a fraction of its parents load.
c09595f6 1579 */
eb755805 1580static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1581{
c8cba857 1582 unsigned long load;
eb755805 1583 long cpu = (long)data;
c09595f6 1584
c8cba857
PZ
1585 if (!tg->parent) {
1586 load = cpu_rq(cpu)->load.weight;
1587 } else {
1588 load = tg->parent->cfs_rq[cpu]->h_load;
1589 load *= tg->cfs_rq[cpu]->shares;
1590 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1591 }
c09595f6 1592
c8cba857 1593 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1594
eb755805 1595 return 0;
c09595f6
PZ
1596}
1597
c8cba857 1598static void update_shares(struct sched_domain *sd)
4d8d595d 1599{
2398f2c6
PZ
1600 u64 now = cpu_clock(raw_smp_processor_id());
1601 s64 elapsed = now - sd->last_update;
1602
1603 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1604 sd->last_update = now;
eb755805 1605 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1606 }
4d8d595d
PZ
1607}
1608
3e5459b4
PZ
1609static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1610{
1611 spin_unlock(&rq->lock);
1612 update_shares(sd);
1613 spin_lock(&rq->lock);
1614}
1615
eb755805 1616static void update_h_load(long cpu)
c09595f6 1617{
eb755805 1618 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1619}
1620
c09595f6
PZ
1621#else
1622
c8cba857 1623static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1624{
1625}
1626
3e5459b4
PZ
1627static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1628{
1629}
1630
18d95a28
PZ
1631#endif
1632
8f45e2b5
GH
1633#ifdef CONFIG_PREEMPT
1634
70574a99 1635/*
8f45e2b5
GH
1636 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1637 * way at the expense of forcing extra atomic operations in all
1638 * invocations. This assures that the double_lock is acquired using the
1639 * same underlying policy as the spinlock_t on this architecture, which
1640 * reduces latency compared to the unfair variant below. However, it
1641 * also adds more overhead and therefore may reduce throughput.
70574a99 1642 */
8f45e2b5
GH
1643static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1644 __releases(this_rq->lock)
1645 __acquires(busiest->lock)
1646 __acquires(this_rq->lock)
1647{
1648 spin_unlock(&this_rq->lock);
1649 double_rq_lock(this_rq, busiest);
1650
1651 return 1;
1652}
1653
1654#else
1655/*
1656 * Unfair double_lock_balance: Optimizes throughput at the expense of
1657 * latency by eliminating extra atomic operations when the locks are
1658 * already in proper order on entry. This favors lower cpu-ids and will
1659 * grant the double lock to lower cpus over higher ids under contention,
1660 * regardless of entry order into the function.
1661 */
1662static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1663 __releases(this_rq->lock)
1664 __acquires(busiest->lock)
1665 __acquires(this_rq->lock)
1666{
1667 int ret = 0;
1668
70574a99
AD
1669 if (unlikely(!spin_trylock(&busiest->lock))) {
1670 if (busiest < this_rq) {
1671 spin_unlock(&this_rq->lock);
1672 spin_lock(&busiest->lock);
1673 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1674 ret = 1;
1675 } else
1676 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1677 }
1678 return ret;
1679}
1680
8f45e2b5
GH
1681#endif /* CONFIG_PREEMPT */
1682
1683/*
1684 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1685 */
1686static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1687{
1688 if (unlikely(!irqs_disabled())) {
1689 /* printk() doesn't work good under rq->lock */
1690 spin_unlock(&this_rq->lock);
1691 BUG_ON(1);
1692 }
1693
1694 return _double_lock_balance(this_rq, busiest);
1695}
1696
70574a99
AD
1697static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1698 __releases(busiest->lock)
1699{
1700 spin_unlock(&busiest->lock);
1701 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1702}
18d95a28
PZ
1703#endif
1704
30432094 1705#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1706static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1707{
30432094 1708#ifdef CONFIG_SMP
34e83e85
IM
1709 cfs_rq->shares = shares;
1710#endif
1711}
30432094 1712#endif
e7693a36 1713
dd41f596 1714#include "sched_stats.h"
dd41f596 1715#include "sched_idletask.c"
5522d5d5
IM
1716#include "sched_fair.c"
1717#include "sched_rt.c"
dd41f596
IM
1718#ifdef CONFIG_SCHED_DEBUG
1719# include "sched_debug.c"
1720#endif
1721
1722#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1723#define for_each_class(class) \
1724 for (class = sched_class_highest; class; class = class->next)
dd41f596 1725
c09595f6 1726static void inc_nr_running(struct rq *rq)
9c217245
IM
1727{
1728 rq->nr_running++;
9c217245
IM
1729}
1730
c09595f6 1731static void dec_nr_running(struct rq *rq)
9c217245
IM
1732{
1733 rq->nr_running--;
9c217245
IM
1734}
1735
45bf76df
IM
1736static void set_load_weight(struct task_struct *p)
1737{
1738 if (task_has_rt_policy(p)) {
dd41f596
IM
1739 p->se.load.weight = prio_to_weight[0] * 2;
1740 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1741 return;
1742 }
45bf76df 1743
dd41f596
IM
1744 /*
1745 * SCHED_IDLE tasks get minimal weight:
1746 */
1747 if (p->policy == SCHED_IDLE) {
1748 p->se.load.weight = WEIGHT_IDLEPRIO;
1749 p->se.load.inv_weight = WMULT_IDLEPRIO;
1750 return;
1751 }
71f8bd46 1752
dd41f596
IM
1753 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1754 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1755}
1756
2087a1ad
GH
1757static void update_avg(u64 *avg, u64 sample)
1758{
1759 s64 diff = sample - *avg;
1760 *avg += diff >> 3;
1761}
1762
8159f87e 1763static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1764{
831451ac
PZ
1765 if (wakeup)
1766 p->se.start_runtime = p->se.sum_exec_runtime;
1767
dd41f596 1768 sched_info_queued(p);
fd390f6a 1769 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1770 p->se.on_rq = 1;
71f8bd46
IM
1771}
1772
69be72c1 1773static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1774{
831451ac
PZ
1775 if (sleep) {
1776 if (p->se.last_wakeup) {
1777 update_avg(&p->se.avg_overlap,
1778 p->se.sum_exec_runtime - p->se.last_wakeup);
1779 p->se.last_wakeup = 0;
1780 } else {
1781 update_avg(&p->se.avg_wakeup,
1782 sysctl_sched_wakeup_granularity);
1783 }
2087a1ad
GH
1784 }
1785
46ac22ba 1786 sched_info_dequeued(p);
f02231e5 1787 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1788 p->se.on_rq = 0;
71f8bd46
IM
1789}
1790
14531189 1791/*
dd41f596 1792 * __normal_prio - return the priority that is based on the static prio
14531189 1793 */
14531189
IM
1794static inline int __normal_prio(struct task_struct *p)
1795{
dd41f596 1796 return p->static_prio;
14531189
IM
1797}
1798
b29739f9
IM
1799/*
1800 * Calculate the expected normal priority: i.e. priority
1801 * without taking RT-inheritance into account. Might be
1802 * boosted by interactivity modifiers. Changes upon fork,
1803 * setprio syscalls, and whenever the interactivity
1804 * estimator recalculates.
1805 */
36c8b586 1806static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1807{
1808 int prio;
1809
e05606d3 1810 if (task_has_rt_policy(p))
b29739f9
IM
1811 prio = MAX_RT_PRIO-1 - p->rt_priority;
1812 else
1813 prio = __normal_prio(p);
1814 return prio;
1815}
1816
1817/*
1818 * Calculate the current priority, i.e. the priority
1819 * taken into account by the scheduler. This value might
1820 * be boosted by RT tasks, or might be boosted by
1821 * interactivity modifiers. Will be RT if the task got
1822 * RT-boosted. If not then it returns p->normal_prio.
1823 */
36c8b586 1824static int effective_prio(struct task_struct *p)
b29739f9
IM
1825{
1826 p->normal_prio = normal_prio(p);
1827 /*
1828 * If we are RT tasks or we were boosted to RT priority,
1829 * keep the priority unchanged. Otherwise, update priority
1830 * to the normal priority:
1831 */
1832 if (!rt_prio(p->prio))
1833 return p->normal_prio;
1834 return p->prio;
1835}
1836
1da177e4 1837/*
dd41f596 1838 * activate_task - move a task to the runqueue.
1da177e4 1839 */
dd41f596 1840static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1841{
d9514f6c 1842 if (task_contributes_to_load(p))
dd41f596 1843 rq->nr_uninterruptible--;
1da177e4 1844
8159f87e 1845 enqueue_task(rq, p, wakeup);
c09595f6 1846 inc_nr_running(rq);
1da177e4
LT
1847}
1848
1da177e4
LT
1849/*
1850 * deactivate_task - remove a task from the runqueue.
1851 */
2e1cb74a 1852static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1853{
d9514f6c 1854 if (task_contributes_to_load(p))
dd41f596
IM
1855 rq->nr_uninterruptible++;
1856
69be72c1 1857 dequeue_task(rq, p, sleep);
c09595f6 1858 dec_nr_running(rq);
1da177e4
LT
1859}
1860
1da177e4
LT
1861/**
1862 * task_curr - is this task currently executing on a CPU?
1863 * @p: the task in question.
1864 */
36c8b586 1865inline int task_curr(const struct task_struct *p)
1da177e4
LT
1866{
1867 return cpu_curr(task_cpu(p)) == p;
1868}
1869
dd41f596
IM
1870static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1871{
6f505b16 1872 set_task_rq(p, cpu);
dd41f596 1873#ifdef CONFIG_SMP
ce96b5ac
DA
1874 /*
1875 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1876 * successfuly executed on another CPU. We must ensure that updates of
1877 * per-task data have been completed by this moment.
1878 */
1879 smp_wmb();
dd41f596 1880 task_thread_info(p)->cpu = cpu;
dd41f596 1881#endif
2dd73a4f
PW
1882}
1883
cb469845
SR
1884static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1885 const struct sched_class *prev_class,
1886 int oldprio, int running)
1887{
1888 if (prev_class != p->sched_class) {
1889 if (prev_class->switched_from)
1890 prev_class->switched_from(rq, p, running);
1891 p->sched_class->switched_to(rq, p, running);
1892 } else
1893 p->sched_class->prio_changed(rq, p, oldprio, running);
1894}
1895
1da177e4 1896#ifdef CONFIG_SMP
c65cc870 1897
e958b360
TG
1898/* Used instead of source_load when we know the type == 0 */
1899static unsigned long weighted_cpuload(const int cpu)
1900{
1901 return cpu_rq(cpu)->load.weight;
1902}
1903
cc367732
IM
1904/*
1905 * Is this task likely cache-hot:
1906 */
e7693a36 1907static int
cc367732
IM
1908task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1909{
1910 s64 delta;
1911
f540a608
IM
1912 /*
1913 * Buddy candidates are cache hot:
1914 */
4793241b
PZ
1915 if (sched_feat(CACHE_HOT_BUDDY) &&
1916 (&p->se == cfs_rq_of(&p->se)->next ||
1917 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1918 return 1;
1919
cc367732
IM
1920 if (p->sched_class != &fair_sched_class)
1921 return 0;
1922
6bc1665b
IM
1923 if (sysctl_sched_migration_cost == -1)
1924 return 1;
1925 if (sysctl_sched_migration_cost == 0)
1926 return 0;
1927
cc367732
IM
1928 delta = now - p->se.exec_start;
1929
1930 return delta < (s64)sysctl_sched_migration_cost;
1931}
1932
1933
dd41f596 1934void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1935{
dd41f596
IM
1936 int old_cpu = task_cpu(p);
1937 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1938 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1939 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1940 u64 clock_offset;
dd41f596
IM
1941
1942 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 1943
cbc34ed1
PZ
1944 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1945
6cfb0d5d
IM
1946#ifdef CONFIG_SCHEDSTATS
1947 if (p->se.wait_start)
1948 p->se.wait_start -= clock_offset;
dd41f596
IM
1949 if (p->se.sleep_start)
1950 p->se.sleep_start -= clock_offset;
1951 if (p->se.block_start)
1952 p->se.block_start -= clock_offset;
cc367732
IM
1953 if (old_cpu != new_cpu) {
1954 schedstat_inc(p, se.nr_migrations);
1955 if (task_hot(p, old_rq->clock, NULL))
1956 schedstat_inc(p, se.nr_forced2_migrations);
1957 }
6cfb0d5d 1958#endif
2830cf8c
SV
1959 p->se.vruntime -= old_cfsrq->min_vruntime -
1960 new_cfsrq->min_vruntime;
dd41f596
IM
1961
1962 __set_task_cpu(p, new_cpu);
c65cc870
IM
1963}
1964
70b97a7f 1965struct migration_req {
1da177e4 1966 struct list_head list;
1da177e4 1967
36c8b586 1968 struct task_struct *task;
1da177e4
LT
1969 int dest_cpu;
1970
1da177e4 1971 struct completion done;
70b97a7f 1972};
1da177e4
LT
1973
1974/*
1975 * The task's runqueue lock must be held.
1976 * Returns true if you have to wait for migration thread.
1977 */
36c8b586 1978static int
70b97a7f 1979migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1980{
70b97a7f 1981 struct rq *rq = task_rq(p);
1da177e4
LT
1982
1983 /*
1984 * If the task is not on a runqueue (and not running), then
1985 * it is sufficient to simply update the task's cpu field.
1986 */
dd41f596 1987 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1988 set_task_cpu(p, dest_cpu);
1989 return 0;
1990 }
1991
1992 init_completion(&req->done);
1da177e4
LT
1993 req->task = p;
1994 req->dest_cpu = dest_cpu;
1995 list_add(&req->list, &rq->migration_queue);
48f24c4d 1996
1da177e4
LT
1997 return 1;
1998}
1999
2000/*
2001 * wait_task_inactive - wait for a thread to unschedule.
2002 *
85ba2d86
RM
2003 * If @match_state is nonzero, it's the @p->state value just checked and
2004 * not expected to change. If it changes, i.e. @p might have woken up,
2005 * then return zero. When we succeed in waiting for @p to be off its CPU,
2006 * we return a positive number (its total switch count). If a second call
2007 * a short while later returns the same number, the caller can be sure that
2008 * @p has remained unscheduled the whole time.
2009 *
1da177e4
LT
2010 * The caller must ensure that the task *will* unschedule sometime soon,
2011 * else this function might spin for a *long* time. This function can't
2012 * be called with interrupts off, or it may introduce deadlock with
2013 * smp_call_function() if an IPI is sent by the same process we are
2014 * waiting to become inactive.
2015 */
85ba2d86 2016unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2017{
2018 unsigned long flags;
dd41f596 2019 int running, on_rq;
85ba2d86 2020 unsigned long ncsw;
70b97a7f 2021 struct rq *rq;
1da177e4 2022
3a5c359a
AK
2023 for (;;) {
2024 /*
2025 * We do the initial early heuristics without holding
2026 * any task-queue locks at all. We'll only try to get
2027 * the runqueue lock when things look like they will
2028 * work out!
2029 */
2030 rq = task_rq(p);
fa490cfd 2031
3a5c359a
AK
2032 /*
2033 * If the task is actively running on another CPU
2034 * still, just relax and busy-wait without holding
2035 * any locks.
2036 *
2037 * NOTE! Since we don't hold any locks, it's not
2038 * even sure that "rq" stays as the right runqueue!
2039 * But we don't care, since "task_running()" will
2040 * return false if the runqueue has changed and p
2041 * is actually now running somewhere else!
2042 */
85ba2d86
RM
2043 while (task_running(rq, p)) {
2044 if (match_state && unlikely(p->state != match_state))
2045 return 0;
3a5c359a 2046 cpu_relax();
85ba2d86 2047 }
fa490cfd 2048
3a5c359a
AK
2049 /*
2050 * Ok, time to look more closely! We need the rq
2051 * lock now, to be *sure*. If we're wrong, we'll
2052 * just go back and repeat.
2053 */
2054 rq = task_rq_lock(p, &flags);
0a16b607 2055 trace_sched_wait_task(rq, p);
3a5c359a
AK
2056 running = task_running(rq, p);
2057 on_rq = p->se.on_rq;
85ba2d86 2058 ncsw = 0;
f31e11d8 2059 if (!match_state || p->state == match_state)
93dcf55f 2060 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2061 task_rq_unlock(rq, &flags);
fa490cfd 2062
85ba2d86
RM
2063 /*
2064 * If it changed from the expected state, bail out now.
2065 */
2066 if (unlikely(!ncsw))
2067 break;
2068
3a5c359a
AK
2069 /*
2070 * Was it really running after all now that we
2071 * checked with the proper locks actually held?
2072 *
2073 * Oops. Go back and try again..
2074 */
2075 if (unlikely(running)) {
2076 cpu_relax();
2077 continue;
2078 }
fa490cfd 2079
3a5c359a
AK
2080 /*
2081 * It's not enough that it's not actively running,
2082 * it must be off the runqueue _entirely_, and not
2083 * preempted!
2084 *
2085 * So if it wa still runnable (but just not actively
2086 * running right now), it's preempted, and we should
2087 * yield - it could be a while.
2088 */
2089 if (unlikely(on_rq)) {
2090 schedule_timeout_uninterruptible(1);
2091 continue;
2092 }
fa490cfd 2093
3a5c359a
AK
2094 /*
2095 * Ahh, all good. It wasn't running, and it wasn't
2096 * runnable, which means that it will never become
2097 * running in the future either. We're all done!
2098 */
2099 break;
2100 }
85ba2d86
RM
2101
2102 return ncsw;
1da177e4
LT
2103}
2104
2105/***
2106 * kick_process - kick a running thread to enter/exit the kernel
2107 * @p: the to-be-kicked thread
2108 *
2109 * Cause a process which is running on another CPU to enter
2110 * kernel-mode, without any delay. (to get signals handled.)
2111 *
2112 * NOTE: this function doesnt have to take the runqueue lock,
2113 * because all it wants to ensure is that the remote task enters
2114 * the kernel. If the IPI races and the task has been migrated
2115 * to another CPU then no harm is done and the purpose has been
2116 * achieved as well.
2117 */
36c8b586 2118void kick_process(struct task_struct *p)
1da177e4
LT
2119{
2120 int cpu;
2121
2122 preempt_disable();
2123 cpu = task_cpu(p);
2124 if ((cpu != smp_processor_id()) && task_curr(p))
2125 smp_send_reschedule(cpu);
2126 preempt_enable();
2127}
2128
2129/*
2dd73a4f
PW
2130 * Return a low guess at the load of a migration-source cpu weighted
2131 * according to the scheduling class and "nice" value.
1da177e4
LT
2132 *
2133 * We want to under-estimate the load of migration sources, to
2134 * balance conservatively.
2135 */
a9957449 2136static unsigned long source_load(int cpu, int type)
1da177e4 2137{
70b97a7f 2138 struct rq *rq = cpu_rq(cpu);
dd41f596 2139 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2140
93b75217 2141 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2142 return total;
b910472d 2143
dd41f596 2144 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2145}
2146
2147/*
2dd73a4f
PW
2148 * Return a high guess at the load of a migration-target cpu weighted
2149 * according to the scheduling class and "nice" value.
1da177e4 2150 */
a9957449 2151static unsigned long target_load(int cpu, int type)
1da177e4 2152{
70b97a7f 2153 struct rq *rq = cpu_rq(cpu);
dd41f596 2154 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2155
93b75217 2156 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2157 return total;
3b0bd9bc 2158
dd41f596 2159 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2160}
2161
147cbb4b
NP
2162/*
2163 * find_idlest_group finds and returns the least busy CPU group within the
2164 * domain.
2165 */
2166static struct sched_group *
2167find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2168{
2169 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2170 unsigned long min_load = ULONG_MAX, this_load = 0;
2171 int load_idx = sd->forkexec_idx;
2172 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2173
2174 do {
2175 unsigned long load, avg_load;
2176 int local_group;
2177 int i;
2178
da5a5522 2179 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2180 if (!cpumask_intersects(sched_group_cpus(group),
2181 &p->cpus_allowed))
3a5c359a 2182 continue;
da5a5522 2183
758b2cdc
RR
2184 local_group = cpumask_test_cpu(this_cpu,
2185 sched_group_cpus(group));
147cbb4b
NP
2186
2187 /* Tally up the load of all CPUs in the group */
2188 avg_load = 0;
2189
758b2cdc 2190 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2191 /* Bias balancing toward cpus of our domain */
2192 if (local_group)
2193 load = source_load(i, load_idx);
2194 else
2195 load = target_load(i, load_idx);
2196
2197 avg_load += load;
2198 }
2199
2200 /* Adjust by relative CPU power of the group */
5517d86b
ED
2201 avg_load = sg_div_cpu_power(group,
2202 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2203
2204 if (local_group) {
2205 this_load = avg_load;
2206 this = group;
2207 } else if (avg_load < min_load) {
2208 min_load = avg_load;
2209 idlest = group;
2210 }
3a5c359a 2211 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2212
2213 if (!idlest || 100*this_load < imbalance*min_load)
2214 return NULL;
2215 return idlest;
2216}
2217
2218/*
0feaece9 2219 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2220 */
95cdf3b7 2221static int
758b2cdc 2222find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2223{
2224 unsigned long load, min_load = ULONG_MAX;
2225 int idlest = -1;
2226 int i;
2227
da5a5522 2228 /* Traverse only the allowed CPUs */
758b2cdc 2229 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2230 load = weighted_cpuload(i);
147cbb4b
NP
2231
2232 if (load < min_load || (load == min_load && i == this_cpu)) {
2233 min_load = load;
2234 idlest = i;
2235 }
2236 }
2237
2238 return idlest;
2239}
2240
476d139c
NP
2241/*
2242 * sched_balance_self: balance the current task (running on cpu) in domains
2243 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2244 * SD_BALANCE_EXEC.
2245 *
2246 * Balance, ie. select the least loaded group.
2247 *
2248 * Returns the target CPU number, or the same CPU if no balancing is needed.
2249 *
2250 * preempt must be disabled.
2251 */
2252static int sched_balance_self(int cpu, int flag)
2253{
2254 struct task_struct *t = current;
2255 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2256
c96d145e 2257 for_each_domain(cpu, tmp) {
9761eea8
IM
2258 /*
2259 * If power savings logic is enabled for a domain, stop there.
2260 */
5c45bf27
SS
2261 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2262 break;
476d139c
NP
2263 if (tmp->flags & flag)
2264 sd = tmp;
c96d145e 2265 }
476d139c 2266
039a1c41
PZ
2267 if (sd)
2268 update_shares(sd);
2269
476d139c 2270 while (sd) {
476d139c 2271 struct sched_group *group;
1a848870
SS
2272 int new_cpu, weight;
2273
2274 if (!(sd->flags & flag)) {
2275 sd = sd->child;
2276 continue;
2277 }
476d139c 2278
476d139c 2279 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2280 if (!group) {
2281 sd = sd->child;
2282 continue;
2283 }
476d139c 2284
758b2cdc 2285 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2286 if (new_cpu == -1 || new_cpu == cpu) {
2287 /* Now try balancing at a lower domain level of cpu */
2288 sd = sd->child;
2289 continue;
2290 }
476d139c 2291
1a848870 2292 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2293 cpu = new_cpu;
758b2cdc 2294 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2295 sd = NULL;
476d139c 2296 for_each_domain(cpu, tmp) {
758b2cdc 2297 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2298 break;
2299 if (tmp->flags & flag)
2300 sd = tmp;
2301 }
2302 /* while loop will break here if sd == NULL */
2303 }
2304
2305 return cpu;
2306}
2307
2308#endif /* CONFIG_SMP */
1da177e4 2309
1da177e4
LT
2310/***
2311 * try_to_wake_up - wake up a thread
2312 * @p: the to-be-woken-up thread
2313 * @state: the mask of task states that can be woken
2314 * @sync: do a synchronous wakeup?
2315 *
2316 * Put it on the run-queue if it's not already there. The "current"
2317 * thread is always on the run-queue (except when the actual
2318 * re-schedule is in progress), and as such you're allowed to do
2319 * the simpler "current->state = TASK_RUNNING" to mark yourself
2320 * runnable without the overhead of this.
2321 *
2322 * returns failure only if the task is already active.
2323 */
36c8b586 2324static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2325{
cc367732 2326 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2327 unsigned long flags;
2328 long old_state;
70b97a7f 2329 struct rq *rq;
1da177e4 2330
b85d0667
IM
2331 if (!sched_feat(SYNC_WAKEUPS))
2332 sync = 0;
2333
2398f2c6 2334#ifdef CONFIG_SMP
57310a98 2335 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2398f2c6
PZ
2336 struct sched_domain *sd;
2337
2338 this_cpu = raw_smp_processor_id();
2339 cpu = task_cpu(p);
2340
2341 for_each_domain(this_cpu, sd) {
758b2cdc 2342 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2343 update_shares(sd);
2344 break;
2345 }
2346 }
2347 }
2348#endif
2349
04e2f174 2350 smp_wmb();
1da177e4 2351 rq = task_rq_lock(p, &flags);
03e89e45 2352 update_rq_clock(rq);
1da177e4
LT
2353 old_state = p->state;
2354 if (!(old_state & state))
2355 goto out;
2356
dd41f596 2357 if (p->se.on_rq)
1da177e4
LT
2358 goto out_running;
2359
2360 cpu = task_cpu(p);
cc367732 2361 orig_cpu = cpu;
1da177e4
LT
2362 this_cpu = smp_processor_id();
2363
2364#ifdef CONFIG_SMP
2365 if (unlikely(task_running(rq, p)))
2366 goto out_activate;
2367
5d2f5a61
DA
2368 cpu = p->sched_class->select_task_rq(p, sync);
2369 if (cpu != orig_cpu) {
2370 set_task_cpu(p, cpu);
1da177e4
LT
2371 task_rq_unlock(rq, &flags);
2372 /* might preempt at this point */
2373 rq = task_rq_lock(p, &flags);
2374 old_state = p->state;
2375 if (!(old_state & state))
2376 goto out;
dd41f596 2377 if (p->se.on_rq)
1da177e4
LT
2378 goto out_running;
2379
2380 this_cpu = smp_processor_id();
2381 cpu = task_cpu(p);
2382 }
2383
e7693a36
GH
2384#ifdef CONFIG_SCHEDSTATS
2385 schedstat_inc(rq, ttwu_count);
2386 if (cpu == this_cpu)
2387 schedstat_inc(rq, ttwu_local);
2388 else {
2389 struct sched_domain *sd;
2390 for_each_domain(this_cpu, sd) {
758b2cdc 2391 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2392 schedstat_inc(sd, ttwu_wake_remote);
2393 break;
2394 }
2395 }
2396 }
6d6bc0ad 2397#endif /* CONFIG_SCHEDSTATS */
e7693a36 2398
1da177e4
LT
2399out_activate:
2400#endif /* CONFIG_SMP */
cc367732
IM
2401 schedstat_inc(p, se.nr_wakeups);
2402 if (sync)
2403 schedstat_inc(p, se.nr_wakeups_sync);
2404 if (orig_cpu != cpu)
2405 schedstat_inc(p, se.nr_wakeups_migrate);
2406 if (cpu == this_cpu)
2407 schedstat_inc(p, se.nr_wakeups_local);
2408 else
2409 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2410 activate_task(rq, p, 1);
1da177e4
LT
2411 success = 1;
2412
831451ac
PZ
2413 /*
2414 * Only attribute actual wakeups done by this task.
2415 */
2416 if (!in_interrupt()) {
2417 struct sched_entity *se = &current->se;
2418 u64 sample = se->sum_exec_runtime;
2419
2420 if (se->last_wakeup)
2421 sample -= se->last_wakeup;
2422 else
2423 sample -= se->start_runtime;
2424 update_avg(&se->avg_wakeup, sample);
2425
2426 se->last_wakeup = se->sum_exec_runtime;
2427 }
2428
1da177e4 2429out_running:
468a15bb 2430 trace_sched_wakeup(rq, p, success);
15afe09b 2431 check_preempt_curr(rq, p, sync);
4ae7d5ce 2432
1da177e4 2433 p->state = TASK_RUNNING;
9a897c5a
SR
2434#ifdef CONFIG_SMP
2435 if (p->sched_class->task_wake_up)
2436 p->sched_class->task_wake_up(rq, p);
2437#endif
1da177e4
LT
2438out:
2439 task_rq_unlock(rq, &flags);
2440
2441 return success;
2442}
2443
7ad5b3a5 2444int wake_up_process(struct task_struct *p)
1da177e4 2445{
d9514f6c 2446 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2447}
1da177e4
LT
2448EXPORT_SYMBOL(wake_up_process);
2449
7ad5b3a5 2450int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2451{
2452 return try_to_wake_up(p, state, 0);
2453}
2454
1da177e4
LT
2455/*
2456 * Perform scheduler related setup for a newly forked process p.
2457 * p is forked by current.
dd41f596
IM
2458 *
2459 * __sched_fork() is basic setup used by init_idle() too:
2460 */
2461static void __sched_fork(struct task_struct *p)
2462{
dd41f596
IM
2463 p->se.exec_start = 0;
2464 p->se.sum_exec_runtime = 0;
f6cf891c 2465 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2466 p->se.last_wakeup = 0;
2467 p->se.avg_overlap = 0;
831451ac
PZ
2468 p->se.start_runtime = 0;
2469 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2470
2471#ifdef CONFIG_SCHEDSTATS
2472 p->se.wait_start = 0;
dd41f596
IM
2473 p->se.sum_sleep_runtime = 0;
2474 p->se.sleep_start = 0;
dd41f596
IM
2475 p->se.block_start = 0;
2476 p->se.sleep_max = 0;
2477 p->se.block_max = 0;
2478 p->se.exec_max = 0;
eba1ed4b 2479 p->se.slice_max = 0;
dd41f596 2480 p->se.wait_max = 0;
6cfb0d5d 2481#endif
476d139c 2482
fa717060 2483 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2484 p->se.on_rq = 0;
4a55bd5e 2485 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2486
e107be36
AK
2487#ifdef CONFIG_PREEMPT_NOTIFIERS
2488 INIT_HLIST_HEAD(&p->preempt_notifiers);
2489#endif
2490
1da177e4
LT
2491 /*
2492 * We mark the process as running here, but have not actually
2493 * inserted it onto the runqueue yet. This guarantees that
2494 * nobody will actually run it, and a signal or other external
2495 * event cannot wake it up and insert it on the runqueue either.
2496 */
2497 p->state = TASK_RUNNING;
dd41f596
IM
2498}
2499
2500/*
2501 * fork()/clone()-time setup:
2502 */
2503void sched_fork(struct task_struct *p, int clone_flags)
2504{
2505 int cpu = get_cpu();
2506
2507 __sched_fork(p);
2508
2509#ifdef CONFIG_SMP
2510 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2511#endif
02e4bac2 2512 set_task_cpu(p, cpu);
b29739f9
IM
2513
2514 /*
2515 * Make sure we do not leak PI boosting priority to the child:
2516 */
2517 p->prio = current->normal_prio;
2ddbf952
HS
2518 if (!rt_prio(p->prio))
2519 p->sched_class = &fair_sched_class;
b29739f9 2520
52f17b6c 2521#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2522 if (likely(sched_info_on()))
52f17b6c 2523 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2524#endif
d6077cb8 2525#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2526 p->oncpu = 0;
2527#endif
1da177e4 2528#ifdef CONFIG_PREEMPT
4866cde0 2529 /* Want to start with kernel preemption disabled. */
a1261f54 2530 task_thread_info(p)->preempt_count = 1;
1da177e4 2531#endif
917b627d
GH
2532 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2533
476d139c 2534 put_cpu();
1da177e4
LT
2535}
2536
2537/*
2538 * wake_up_new_task - wake up a newly created task for the first time.
2539 *
2540 * This function will do some initial scheduler statistics housekeeping
2541 * that must be done for every newly created context, then puts the task
2542 * on the runqueue and wakes it.
2543 */
7ad5b3a5 2544void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2545{
2546 unsigned long flags;
dd41f596 2547 struct rq *rq;
1da177e4
LT
2548
2549 rq = task_rq_lock(p, &flags);
147cbb4b 2550 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2551 update_rq_clock(rq);
1da177e4
LT
2552
2553 p->prio = effective_prio(p);
2554
b9dca1e0 2555 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2556 activate_task(rq, p, 0);
1da177e4 2557 } else {
1da177e4 2558 /*
dd41f596
IM
2559 * Let the scheduling class do new task startup
2560 * management (if any):
1da177e4 2561 */
ee0827d8 2562 p->sched_class->task_new(rq, p);
c09595f6 2563 inc_nr_running(rq);
1da177e4 2564 }
c71dd42d 2565 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2566 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2567#ifdef CONFIG_SMP
2568 if (p->sched_class->task_wake_up)
2569 p->sched_class->task_wake_up(rq, p);
2570#endif
dd41f596 2571 task_rq_unlock(rq, &flags);
1da177e4
LT
2572}
2573
e107be36
AK
2574#ifdef CONFIG_PREEMPT_NOTIFIERS
2575
2576/**
421cee29
RD
2577 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2578 * @notifier: notifier struct to register
e107be36
AK
2579 */
2580void preempt_notifier_register(struct preempt_notifier *notifier)
2581{
2582 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2583}
2584EXPORT_SYMBOL_GPL(preempt_notifier_register);
2585
2586/**
2587 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2588 * @notifier: notifier struct to unregister
e107be36
AK
2589 *
2590 * This is safe to call from within a preemption notifier.
2591 */
2592void preempt_notifier_unregister(struct preempt_notifier *notifier)
2593{
2594 hlist_del(&notifier->link);
2595}
2596EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2597
2598static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2599{
2600 struct preempt_notifier *notifier;
2601 struct hlist_node *node;
2602
2603 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2604 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2605}
2606
2607static void
2608fire_sched_out_preempt_notifiers(struct task_struct *curr,
2609 struct task_struct *next)
2610{
2611 struct preempt_notifier *notifier;
2612 struct hlist_node *node;
2613
2614 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2615 notifier->ops->sched_out(notifier, next);
2616}
2617
6d6bc0ad 2618#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2619
2620static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2621{
2622}
2623
2624static void
2625fire_sched_out_preempt_notifiers(struct task_struct *curr,
2626 struct task_struct *next)
2627{
2628}
2629
6d6bc0ad 2630#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2631
4866cde0
NP
2632/**
2633 * prepare_task_switch - prepare to switch tasks
2634 * @rq: the runqueue preparing to switch
421cee29 2635 * @prev: the current task that is being switched out
4866cde0
NP
2636 * @next: the task we are going to switch to.
2637 *
2638 * This is called with the rq lock held and interrupts off. It must
2639 * be paired with a subsequent finish_task_switch after the context
2640 * switch.
2641 *
2642 * prepare_task_switch sets up locking and calls architecture specific
2643 * hooks.
2644 */
e107be36
AK
2645static inline void
2646prepare_task_switch(struct rq *rq, struct task_struct *prev,
2647 struct task_struct *next)
4866cde0 2648{
e107be36 2649 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2650 prepare_lock_switch(rq, next);
2651 prepare_arch_switch(next);
2652}
2653
1da177e4
LT
2654/**
2655 * finish_task_switch - clean up after a task-switch
344babaa 2656 * @rq: runqueue associated with task-switch
1da177e4
LT
2657 * @prev: the thread we just switched away from.
2658 *
4866cde0
NP
2659 * finish_task_switch must be called after the context switch, paired
2660 * with a prepare_task_switch call before the context switch.
2661 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2662 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2663 *
2664 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2665 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2666 * with the lock held can cause deadlocks; see schedule() for
2667 * details.)
2668 */
a9957449 2669static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2670 __releases(rq->lock)
2671{
1da177e4 2672 struct mm_struct *mm = rq->prev_mm;
55a101f8 2673 long prev_state;
967fc046
GH
2674#ifdef CONFIG_SMP
2675 int post_schedule = 0;
2676
2677 if (current->sched_class->needs_post_schedule)
2678 post_schedule = current->sched_class->needs_post_schedule(rq);
2679#endif
1da177e4
LT
2680
2681 rq->prev_mm = NULL;
2682
2683 /*
2684 * A task struct has one reference for the use as "current".
c394cc9f 2685 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2686 * schedule one last time. The schedule call will never return, and
2687 * the scheduled task must drop that reference.
c394cc9f 2688 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2689 * still held, otherwise prev could be scheduled on another cpu, die
2690 * there before we look at prev->state, and then the reference would
2691 * be dropped twice.
2692 * Manfred Spraul <[email protected]>
2693 */
55a101f8 2694 prev_state = prev->state;
4866cde0
NP
2695 finish_arch_switch(prev);
2696 finish_lock_switch(rq, prev);
9a897c5a 2697#ifdef CONFIG_SMP
967fc046 2698 if (post_schedule)
9a897c5a
SR
2699 current->sched_class->post_schedule(rq);
2700#endif
e8fa1362 2701
e107be36 2702 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2703 if (mm)
2704 mmdrop(mm);
c394cc9f 2705 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2706 /*
2707 * Remove function-return probe instances associated with this
2708 * task and put them back on the free list.
9761eea8 2709 */
c6fd91f0 2710 kprobe_flush_task(prev);
1da177e4 2711 put_task_struct(prev);
c6fd91f0 2712 }
1da177e4
LT
2713}
2714
2715/**
2716 * schedule_tail - first thing a freshly forked thread must call.
2717 * @prev: the thread we just switched away from.
2718 */
36c8b586 2719asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2720 __releases(rq->lock)
2721{
70b97a7f
IM
2722 struct rq *rq = this_rq();
2723
4866cde0
NP
2724 finish_task_switch(rq, prev);
2725#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2726 /* In this case, finish_task_switch does not reenable preemption */
2727 preempt_enable();
2728#endif
1da177e4 2729 if (current->set_child_tid)
b488893a 2730 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2731}
2732
2733/*
2734 * context_switch - switch to the new MM and the new
2735 * thread's register state.
2736 */
dd41f596 2737static inline void
70b97a7f 2738context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2739 struct task_struct *next)
1da177e4 2740{
dd41f596 2741 struct mm_struct *mm, *oldmm;
1da177e4 2742
e107be36 2743 prepare_task_switch(rq, prev, next);
0a16b607 2744 trace_sched_switch(rq, prev, next);
dd41f596
IM
2745 mm = next->mm;
2746 oldmm = prev->active_mm;
9226d125
ZA
2747 /*
2748 * For paravirt, this is coupled with an exit in switch_to to
2749 * combine the page table reload and the switch backend into
2750 * one hypercall.
2751 */
2752 arch_enter_lazy_cpu_mode();
2753
dd41f596 2754 if (unlikely(!mm)) {
1da177e4
LT
2755 next->active_mm = oldmm;
2756 atomic_inc(&oldmm->mm_count);
2757 enter_lazy_tlb(oldmm, next);
2758 } else
2759 switch_mm(oldmm, mm, next);
2760
dd41f596 2761 if (unlikely(!prev->mm)) {
1da177e4 2762 prev->active_mm = NULL;
1da177e4
LT
2763 rq->prev_mm = oldmm;
2764 }
3a5f5e48
IM
2765 /*
2766 * Since the runqueue lock will be released by the next
2767 * task (which is an invalid locking op but in the case
2768 * of the scheduler it's an obvious special-case), so we
2769 * do an early lockdep release here:
2770 */
2771#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2772 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2773#endif
1da177e4
LT
2774
2775 /* Here we just switch the register state and the stack. */
2776 switch_to(prev, next, prev);
2777
dd41f596
IM
2778 barrier();
2779 /*
2780 * this_rq must be evaluated again because prev may have moved
2781 * CPUs since it called schedule(), thus the 'rq' on its stack
2782 * frame will be invalid.
2783 */
2784 finish_task_switch(this_rq(), prev);
1da177e4
LT
2785}
2786
2787/*
2788 * nr_running, nr_uninterruptible and nr_context_switches:
2789 *
2790 * externally visible scheduler statistics: current number of runnable
2791 * threads, current number of uninterruptible-sleeping threads, total
2792 * number of context switches performed since bootup.
2793 */
2794unsigned long nr_running(void)
2795{
2796 unsigned long i, sum = 0;
2797
2798 for_each_online_cpu(i)
2799 sum += cpu_rq(i)->nr_running;
2800
2801 return sum;
2802}
2803
2804unsigned long nr_uninterruptible(void)
2805{
2806 unsigned long i, sum = 0;
2807
0a945022 2808 for_each_possible_cpu(i)
1da177e4
LT
2809 sum += cpu_rq(i)->nr_uninterruptible;
2810
2811 /*
2812 * Since we read the counters lockless, it might be slightly
2813 * inaccurate. Do not allow it to go below zero though:
2814 */
2815 if (unlikely((long)sum < 0))
2816 sum = 0;
2817
2818 return sum;
2819}
2820
2821unsigned long long nr_context_switches(void)
2822{
cc94abfc
SR
2823 int i;
2824 unsigned long long sum = 0;
1da177e4 2825
0a945022 2826 for_each_possible_cpu(i)
1da177e4
LT
2827 sum += cpu_rq(i)->nr_switches;
2828
2829 return sum;
2830}
2831
2832unsigned long nr_iowait(void)
2833{
2834 unsigned long i, sum = 0;
2835
0a945022 2836 for_each_possible_cpu(i)
1da177e4
LT
2837 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2838
2839 return sum;
2840}
2841
db1b1fef
JS
2842unsigned long nr_active(void)
2843{
2844 unsigned long i, running = 0, uninterruptible = 0;
2845
2846 for_each_online_cpu(i) {
2847 running += cpu_rq(i)->nr_running;
2848 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2849 }
2850
2851 if (unlikely((long)uninterruptible < 0))
2852 uninterruptible = 0;
2853
2854 return running + uninterruptible;
2855}
2856
48f24c4d 2857/*
dd41f596
IM
2858 * Update rq->cpu_load[] statistics. This function is usually called every
2859 * scheduler tick (TICK_NSEC).
48f24c4d 2860 */
dd41f596 2861static void update_cpu_load(struct rq *this_rq)
48f24c4d 2862{
495eca49 2863 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2864 int i, scale;
2865
2866 this_rq->nr_load_updates++;
dd41f596
IM
2867
2868 /* Update our load: */
2869 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2870 unsigned long old_load, new_load;
2871
2872 /* scale is effectively 1 << i now, and >> i divides by scale */
2873
2874 old_load = this_rq->cpu_load[i];
2875 new_load = this_load;
a25707f3
IM
2876 /*
2877 * Round up the averaging division if load is increasing. This
2878 * prevents us from getting stuck on 9 if the load is 10, for
2879 * example.
2880 */
2881 if (new_load > old_load)
2882 new_load += scale-1;
dd41f596
IM
2883 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2884 }
48f24c4d
IM
2885}
2886
dd41f596
IM
2887#ifdef CONFIG_SMP
2888
1da177e4
LT
2889/*
2890 * double_rq_lock - safely lock two runqueues
2891 *
2892 * Note this does not disable interrupts like task_rq_lock,
2893 * you need to do so manually before calling.
2894 */
70b97a7f 2895static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2896 __acquires(rq1->lock)
2897 __acquires(rq2->lock)
2898{
054b9108 2899 BUG_ON(!irqs_disabled());
1da177e4
LT
2900 if (rq1 == rq2) {
2901 spin_lock(&rq1->lock);
2902 __acquire(rq2->lock); /* Fake it out ;) */
2903 } else {
c96d145e 2904 if (rq1 < rq2) {
1da177e4 2905 spin_lock(&rq1->lock);
5e710e37 2906 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2907 } else {
2908 spin_lock(&rq2->lock);
5e710e37 2909 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2910 }
2911 }
6e82a3be
IM
2912 update_rq_clock(rq1);
2913 update_rq_clock(rq2);
1da177e4
LT
2914}
2915
2916/*
2917 * double_rq_unlock - safely unlock two runqueues
2918 *
2919 * Note this does not restore interrupts like task_rq_unlock,
2920 * you need to do so manually after calling.
2921 */
70b97a7f 2922static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2923 __releases(rq1->lock)
2924 __releases(rq2->lock)
2925{
2926 spin_unlock(&rq1->lock);
2927 if (rq1 != rq2)
2928 spin_unlock(&rq2->lock);
2929 else
2930 __release(rq2->lock);
2931}
2932
1da177e4
LT
2933/*
2934 * If dest_cpu is allowed for this process, migrate the task to it.
2935 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2936 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2937 * the cpu_allowed mask is restored.
2938 */
36c8b586 2939static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2940{
70b97a7f 2941 struct migration_req req;
1da177e4 2942 unsigned long flags;
70b97a7f 2943 struct rq *rq;
1da177e4
LT
2944
2945 rq = task_rq_lock(p, &flags);
96f874e2 2946 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 2947 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2948 goto out;
2949
2950 /* force the process onto the specified CPU */
2951 if (migrate_task(p, dest_cpu, &req)) {
2952 /* Need to wait for migration thread (might exit: take ref). */
2953 struct task_struct *mt = rq->migration_thread;
36c8b586 2954
1da177e4
LT
2955 get_task_struct(mt);
2956 task_rq_unlock(rq, &flags);
2957 wake_up_process(mt);
2958 put_task_struct(mt);
2959 wait_for_completion(&req.done);
36c8b586 2960
1da177e4
LT
2961 return;
2962 }
2963out:
2964 task_rq_unlock(rq, &flags);
2965}
2966
2967/*
476d139c
NP
2968 * sched_exec - execve() is a valuable balancing opportunity, because at
2969 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2970 */
2971void sched_exec(void)
2972{
1da177e4 2973 int new_cpu, this_cpu = get_cpu();
476d139c 2974 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2975 put_cpu();
476d139c
NP
2976 if (new_cpu != this_cpu)
2977 sched_migrate_task(current, new_cpu);
1da177e4
LT
2978}
2979
2980/*
2981 * pull_task - move a task from a remote runqueue to the local runqueue.
2982 * Both runqueues must be locked.
2983 */
dd41f596
IM
2984static void pull_task(struct rq *src_rq, struct task_struct *p,
2985 struct rq *this_rq, int this_cpu)
1da177e4 2986{
2e1cb74a 2987 deactivate_task(src_rq, p, 0);
1da177e4 2988 set_task_cpu(p, this_cpu);
dd41f596 2989 activate_task(this_rq, p, 0);
1da177e4
LT
2990 /*
2991 * Note that idle threads have a prio of MAX_PRIO, for this test
2992 * to be always true for them.
2993 */
15afe09b 2994 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
2995}
2996
2997/*
2998 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2999 */
858119e1 3000static
70b97a7f 3001int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3002 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3003 int *all_pinned)
1da177e4
LT
3004{
3005 /*
3006 * We do not migrate tasks that are:
3007 * 1) running (obviously), or
3008 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3009 * 3) are cache-hot on their current CPU.
3010 */
96f874e2 3011 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3012 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3013 return 0;
cc367732 3014 }
81026794
NP
3015 *all_pinned = 0;
3016
cc367732
IM
3017 if (task_running(rq, p)) {
3018 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3019 return 0;
cc367732 3020 }
1da177e4 3021
da84d961
IM
3022 /*
3023 * Aggressive migration if:
3024 * 1) task is cache cold, or
3025 * 2) too many balance attempts have failed.
3026 */
3027
6bc1665b
IM
3028 if (!task_hot(p, rq->clock, sd) ||
3029 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3030#ifdef CONFIG_SCHEDSTATS
cc367732 3031 if (task_hot(p, rq->clock, sd)) {
da84d961 3032 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3033 schedstat_inc(p, se.nr_forced_migrations);
3034 }
da84d961
IM
3035#endif
3036 return 1;
3037 }
3038
cc367732
IM
3039 if (task_hot(p, rq->clock, sd)) {
3040 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3041 return 0;
cc367732 3042 }
1da177e4
LT
3043 return 1;
3044}
3045
e1d1484f
PW
3046static unsigned long
3047balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3048 unsigned long max_load_move, struct sched_domain *sd,
3049 enum cpu_idle_type idle, int *all_pinned,
3050 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3051{
051c6764 3052 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3053 struct task_struct *p;
3054 long rem_load_move = max_load_move;
1da177e4 3055
e1d1484f 3056 if (max_load_move == 0)
1da177e4
LT
3057 goto out;
3058
81026794
NP
3059 pinned = 1;
3060
1da177e4 3061 /*
dd41f596 3062 * Start the load-balancing iterator:
1da177e4 3063 */
dd41f596
IM
3064 p = iterator->start(iterator->arg);
3065next:
b82d9fdd 3066 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3067 goto out;
051c6764
PZ
3068
3069 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3070 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3071 p = iterator->next(iterator->arg);
3072 goto next;
1da177e4
LT
3073 }
3074
dd41f596 3075 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3076 pulled++;
dd41f596 3077 rem_load_move -= p->se.load.weight;
1da177e4 3078
7e96fa58
GH
3079#ifdef CONFIG_PREEMPT
3080 /*
3081 * NEWIDLE balancing is a source of latency, so preemptible kernels
3082 * will stop after the first task is pulled to minimize the critical
3083 * section.
3084 */
3085 if (idle == CPU_NEWLY_IDLE)
3086 goto out;
3087#endif
3088
2dd73a4f 3089 /*
b82d9fdd 3090 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3091 */
e1d1484f 3092 if (rem_load_move > 0) {
a4ac01c3
PW
3093 if (p->prio < *this_best_prio)
3094 *this_best_prio = p->prio;
dd41f596
IM
3095 p = iterator->next(iterator->arg);
3096 goto next;
1da177e4
LT
3097 }
3098out:
3099 /*
e1d1484f 3100 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3101 * so we can safely collect pull_task() stats here rather than
3102 * inside pull_task().
3103 */
3104 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3105
3106 if (all_pinned)
3107 *all_pinned = pinned;
e1d1484f
PW
3108
3109 return max_load_move - rem_load_move;
1da177e4
LT
3110}
3111
dd41f596 3112/*
43010659
PW
3113 * move_tasks tries to move up to max_load_move weighted load from busiest to
3114 * this_rq, as part of a balancing operation within domain "sd".
3115 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3116 *
3117 * Called with both runqueues locked.
3118 */
3119static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3120 unsigned long max_load_move,
dd41f596
IM
3121 struct sched_domain *sd, enum cpu_idle_type idle,
3122 int *all_pinned)
3123{
5522d5d5 3124 const struct sched_class *class = sched_class_highest;
43010659 3125 unsigned long total_load_moved = 0;
a4ac01c3 3126 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3127
3128 do {
43010659
PW
3129 total_load_moved +=
3130 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3131 max_load_move - total_load_moved,
a4ac01c3 3132 sd, idle, all_pinned, &this_best_prio);
dd41f596 3133 class = class->next;
c4acb2c0 3134
7e96fa58
GH
3135#ifdef CONFIG_PREEMPT
3136 /*
3137 * NEWIDLE balancing is a source of latency, so preemptible
3138 * kernels will stop after the first task is pulled to minimize
3139 * the critical section.
3140 */
c4acb2c0
GH
3141 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3142 break;
7e96fa58 3143#endif
43010659 3144 } while (class && max_load_move > total_load_moved);
dd41f596 3145
43010659
PW
3146 return total_load_moved > 0;
3147}
3148
e1d1484f
PW
3149static int
3150iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3151 struct sched_domain *sd, enum cpu_idle_type idle,
3152 struct rq_iterator *iterator)
3153{
3154 struct task_struct *p = iterator->start(iterator->arg);
3155 int pinned = 0;
3156
3157 while (p) {
3158 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3159 pull_task(busiest, p, this_rq, this_cpu);
3160 /*
3161 * Right now, this is only the second place pull_task()
3162 * is called, so we can safely collect pull_task()
3163 * stats here rather than inside pull_task().
3164 */
3165 schedstat_inc(sd, lb_gained[idle]);
3166
3167 return 1;
3168 }
3169 p = iterator->next(iterator->arg);
3170 }
3171
3172 return 0;
3173}
3174
43010659
PW
3175/*
3176 * move_one_task tries to move exactly one task from busiest to this_rq, as
3177 * part of active balancing operations within "domain".
3178 * Returns 1 if successful and 0 otherwise.
3179 *
3180 * Called with both runqueues locked.
3181 */
3182static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3183 struct sched_domain *sd, enum cpu_idle_type idle)
3184{
5522d5d5 3185 const struct sched_class *class;
43010659
PW
3186
3187 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3188 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3189 return 1;
3190
3191 return 0;
dd41f596
IM
3192}
3193
1da177e4
LT
3194/*
3195 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3196 * domain. It calculates and returns the amount of weighted load which
3197 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3198 */
3199static struct sched_group *
3200find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3201 unsigned long *imbalance, enum cpu_idle_type idle,
96f874e2 3202 int *sd_idle, const struct cpumask *cpus, int *balance)
1da177e4
LT
3203{
3204 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3205 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3206 unsigned long max_pull;
2dd73a4f
PW
3207 unsigned long busiest_load_per_task, busiest_nr_running;
3208 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3209 int load_idx, group_imb = 0;
5c45bf27
SS
3210#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3211 int power_savings_balance = 1;
3212 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3213 unsigned long min_nr_running = ULONG_MAX;
3214 struct sched_group *group_min = NULL, *group_leader = NULL;
3215#endif
1da177e4
LT
3216
3217 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3218 busiest_load_per_task = busiest_nr_running = 0;
3219 this_load_per_task = this_nr_running = 0;
408ed066 3220
d15bcfdb 3221 if (idle == CPU_NOT_IDLE)
7897986b 3222 load_idx = sd->busy_idx;
d15bcfdb 3223 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3224 load_idx = sd->newidle_idx;
3225 else
3226 load_idx = sd->idle_idx;
1da177e4
LT
3227
3228 do {
908a7c1b 3229 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3230 int local_group;
3231 int i;
908a7c1b 3232 int __group_imb = 0;
783609c6 3233 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3234 unsigned long sum_nr_running, sum_weighted_load;
408ed066
PZ
3235 unsigned long sum_avg_load_per_task;
3236 unsigned long avg_load_per_task;
1da177e4 3237
758b2cdc
RR
3238 local_group = cpumask_test_cpu(this_cpu,
3239 sched_group_cpus(group));
1da177e4 3240
783609c6 3241 if (local_group)
758b2cdc 3242 balance_cpu = cpumask_first(sched_group_cpus(group));
783609c6 3243
1da177e4 3244 /* Tally up the load of all CPUs in the group */
2dd73a4f 3245 sum_weighted_load = sum_nr_running = avg_load = 0;
408ed066
PZ
3246 sum_avg_load_per_task = avg_load_per_task = 0;
3247
908a7c1b
KC
3248 max_cpu_load = 0;
3249 min_cpu_load = ~0UL;
1da177e4 3250
758b2cdc
RR
3251 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3252 struct rq *rq = cpu_rq(i);
2dd73a4f 3253
9439aab8 3254 if (*sd_idle && rq->nr_running)
5969fe06
NP
3255 *sd_idle = 0;
3256
1da177e4 3257 /* Bias balancing toward cpus of our domain */
783609c6
SS
3258 if (local_group) {
3259 if (idle_cpu(i) && !first_idle_cpu) {
3260 first_idle_cpu = 1;
3261 balance_cpu = i;
3262 }
3263
a2000572 3264 load = target_load(i, load_idx);
908a7c1b 3265 } else {
a2000572 3266 load = source_load(i, load_idx);
908a7c1b
KC
3267 if (load > max_cpu_load)
3268 max_cpu_load = load;
3269 if (min_cpu_load > load)
3270 min_cpu_load = load;
3271 }
1da177e4
LT
3272
3273 avg_load += load;
2dd73a4f 3274 sum_nr_running += rq->nr_running;
dd41f596 3275 sum_weighted_load += weighted_cpuload(i);
408ed066
PZ
3276
3277 sum_avg_load_per_task += cpu_avg_load_per_task(i);
1da177e4
LT
3278 }
3279
783609c6
SS
3280 /*
3281 * First idle cpu or the first cpu(busiest) in this sched group
3282 * is eligible for doing load balancing at this and above
9439aab8
SS
3283 * domains. In the newly idle case, we will allow all the cpu's
3284 * to do the newly idle load balance.
783609c6 3285 */
9439aab8
SS
3286 if (idle != CPU_NEWLY_IDLE && local_group &&
3287 balance_cpu != this_cpu && balance) {
783609c6
SS
3288 *balance = 0;
3289 goto ret;
3290 }
3291
1da177e4 3292 total_load += avg_load;
5517d86b 3293 total_pwr += group->__cpu_power;
1da177e4
LT
3294
3295 /* Adjust by relative CPU power of the group */
5517d86b
ED
3296 avg_load = sg_div_cpu_power(group,
3297 avg_load * SCHED_LOAD_SCALE);
1da177e4 3298
408ed066
PZ
3299
3300 /*
3301 * Consider the group unbalanced when the imbalance is larger
3302 * than the average weight of two tasks.
3303 *
3304 * APZ: with cgroup the avg task weight can vary wildly and
3305 * might not be a suitable number - should we keep a
3306 * normalized nr_running number somewhere that negates
3307 * the hierarchy?
3308 */
3309 avg_load_per_task = sg_div_cpu_power(group,
3310 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3311
3312 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
908a7c1b
KC
3313 __group_imb = 1;
3314
5517d86b 3315 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3316
1da177e4
LT
3317 if (local_group) {
3318 this_load = avg_load;
3319 this = group;
2dd73a4f
PW
3320 this_nr_running = sum_nr_running;
3321 this_load_per_task = sum_weighted_load;
3322 } else if (avg_load > max_load &&
908a7c1b 3323 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3324 max_load = avg_load;
3325 busiest = group;
2dd73a4f
PW
3326 busiest_nr_running = sum_nr_running;
3327 busiest_load_per_task = sum_weighted_load;
908a7c1b 3328 group_imb = __group_imb;
1da177e4 3329 }
5c45bf27
SS
3330
3331#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3332 /*
3333 * Busy processors will not participate in power savings
3334 * balance.
3335 */
dd41f596
IM
3336 if (idle == CPU_NOT_IDLE ||
3337 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3338 goto group_next;
5c45bf27
SS
3339
3340 /*
3341 * If the local group is idle or completely loaded
3342 * no need to do power savings balance at this domain
3343 */
3344 if (local_group && (this_nr_running >= group_capacity ||
3345 !this_nr_running))
3346 power_savings_balance = 0;
3347
dd41f596 3348 /*
5c45bf27
SS
3349 * If a group is already running at full capacity or idle,
3350 * don't include that group in power savings calculations
dd41f596
IM
3351 */
3352 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3353 || !sum_nr_running)
dd41f596 3354 goto group_next;
5c45bf27 3355
dd41f596 3356 /*
5c45bf27 3357 * Calculate the group which has the least non-idle load.
dd41f596
IM
3358 * This is the group from where we need to pick up the load
3359 * for saving power
3360 */
3361 if ((sum_nr_running < min_nr_running) ||
3362 (sum_nr_running == min_nr_running &&
d5679bd1 3363 cpumask_first(sched_group_cpus(group)) >
758b2cdc 3364 cpumask_first(sched_group_cpus(group_min)))) {
dd41f596
IM
3365 group_min = group;
3366 min_nr_running = sum_nr_running;
5c45bf27
SS
3367 min_load_per_task = sum_weighted_load /
3368 sum_nr_running;
dd41f596 3369 }
5c45bf27 3370
dd41f596 3371 /*
5c45bf27 3372 * Calculate the group which is almost near its
dd41f596
IM
3373 * capacity but still has some space to pick up some load
3374 * from other group and save more power
3375 */
3376 if (sum_nr_running <= group_capacity - 1) {
3377 if (sum_nr_running > leader_nr_running ||
3378 (sum_nr_running == leader_nr_running &&
d5679bd1 3379 cpumask_first(sched_group_cpus(group)) <
758b2cdc 3380 cpumask_first(sched_group_cpus(group_leader)))) {
dd41f596
IM
3381 group_leader = group;
3382 leader_nr_running = sum_nr_running;
3383 }
48f24c4d 3384 }
5c45bf27
SS
3385group_next:
3386#endif
1da177e4
LT
3387 group = group->next;
3388 } while (group != sd->groups);
3389
2dd73a4f 3390 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3391 goto out_balanced;
3392
3393 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3394
3395 if (this_load >= avg_load ||
3396 100*max_load <= sd->imbalance_pct*this_load)
3397 goto out_balanced;
3398
2dd73a4f 3399 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3400 if (group_imb)
3401 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3402
1da177e4
LT
3403 /*
3404 * We're trying to get all the cpus to the average_load, so we don't
3405 * want to push ourselves above the average load, nor do we wish to
3406 * reduce the max loaded cpu below the average load, as either of these
3407 * actions would just result in more rebalancing later, and ping-pong
3408 * tasks around. Thus we look for the minimum possible imbalance.
3409 * Negative imbalances (*we* are more loaded than anyone else) will
3410 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3411 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3412 * appear as very large values with unsigned longs.
3413 */
2dd73a4f
PW
3414 if (max_load <= busiest_load_per_task)
3415 goto out_balanced;
3416
3417 /*
3418 * In the presence of smp nice balancing, certain scenarios can have
3419 * max load less than avg load(as we skip the groups at or below
3420 * its cpu_power, while calculating max_load..)
3421 */
3422 if (max_load < avg_load) {
3423 *imbalance = 0;
3424 goto small_imbalance;
3425 }
0c117f1b
SS
3426
3427 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3428 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3429
1da177e4 3430 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3431 *imbalance = min(max_pull * busiest->__cpu_power,
3432 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3433 / SCHED_LOAD_SCALE;
3434
2dd73a4f
PW
3435 /*
3436 * if *imbalance is less than the average load per runnable task
3437 * there is no gaurantee that any tasks will be moved so we'll have
3438 * a think about bumping its value to force at least one task to be
3439 * moved
3440 */
7fd0d2dd 3441 if (*imbalance < busiest_load_per_task) {
48f24c4d 3442 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3443 unsigned int imbn;
3444
3445small_imbalance:
3446 pwr_move = pwr_now = 0;
3447 imbn = 2;
3448 if (this_nr_running) {
3449 this_load_per_task /= this_nr_running;
3450 if (busiest_load_per_task > this_load_per_task)
3451 imbn = 1;
3452 } else
408ed066 3453 this_load_per_task = cpu_avg_load_per_task(this_cpu);
1da177e4 3454
01c8c57d 3455 if (max_load - this_load + busiest_load_per_task >=
dd41f596 3456 busiest_load_per_task * imbn) {
2dd73a4f 3457 *imbalance = busiest_load_per_task;
1da177e4
LT
3458 return busiest;
3459 }
3460
3461 /*
3462 * OK, we don't have enough imbalance to justify moving tasks,
3463 * however we may be able to increase total CPU power used by
3464 * moving them.
3465 */
3466
5517d86b
ED
3467 pwr_now += busiest->__cpu_power *
3468 min(busiest_load_per_task, max_load);
3469 pwr_now += this->__cpu_power *
3470 min(this_load_per_task, this_load);
1da177e4
LT
3471 pwr_now /= SCHED_LOAD_SCALE;
3472
3473 /* Amount of load we'd subtract */
5517d86b
ED
3474 tmp = sg_div_cpu_power(busiest,
3475 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3476 if (max_load > tmp)
5517d86b 3477 pwr_move += busiest->__cpu_power *
2dd73a4f 3478 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3479
3480 /* Amount of load we'd add */
5517d86b 3481 if (max_load * busiest->__cpu_power <
33859f7f 3482 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3483 tmp = sg_div_cpu_power(this,
3484 max_load * busiest->__cpu_power);
1da177e4 3485 else
5517d86b
ED
3486 tmp = sg_div_cpu_power(this,
3487 busiest_load_per_task * SCHED_LOAD_SCALE);
3488 pwr_move += this->__cpu_power *
3489 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3490 pwr_move /= SCHED_LOAD_SCALE;
3491
3492 /* Move if we gain throughput */
7fd0d2dd
SS
3493 if (pwr_move > pwr_now)
3494 *imbalance = busiest_load_per_task;
1da177e4
LT
3495 }
3496
1da177e4
LT
3497 return busiest;
3498
3499out_balanced:
5c45bf27 3500#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3501 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3502 goto ret;
1da177e4 3503
5c45bf27
SS
3504 if (this == group_leader && group_leader != group_min) {
3505 *imbalance = min_load_per_task;
7a09b1a2
VS
3506 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3507 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
9924da43 3508 cpumask_first(sched_group_cpus(group_leader));
7a09b1a2 3509 }
5c45bf27
SS
3510 return group_min;
3511 }
5c45bf27 3512#endif
783609c6 3513ret:
1da177e4
LT
3514 *imbalance = 0;
3515 return NULL;
3516}
3517
3518/*
3519 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3520 */
70b97a7f 3521static struct rq *
d15bcfdb 3522find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 3523 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 3524{
70b97a7f 3525 struct rq *busiest = NULL, *rq;
2dd73a4f 3526 unsigned long max_load = 0;
1da177e4
LT
3527 int i;
3528
758b2cdc 3529 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 3530 unsigned long wl;
0a2966b4 3531
96f874e2 3532 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
3533 continue;
3534
48f24c4d 3535 rq = cpu_rq(i);
dd41f596 3536 wl = weighted_cpuload(i);
2dd73a4f 3537
dd41f596 3538 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3539 continue;
1da177e4 3540
dd41f596
IM
3541 if (wl > max_load) {
3542 max_load = wl;
48f24c4d 3543 busiest = rq;
1da177e4
LT
3544 }
3545 }
3546
3547 return busiest;
3548}
3549
77391d71
NP
3550/*
3551 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3552 * so long as it is large enough.
3553 */
3554#define MAX_PINNED_INTERVAL 512
3555
1da177e4
LT
3556/*
3557 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3558 * tasks if there is an imbalance.
1da177e4 3559 */
70b97a7f 3560static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3561 struct sched_domain *sd, enum cpu_idle_type idle,
96f874e2 3562 int *balance, struct cpumask *cpus)
1da177e4 3563{
43010659 3564 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3565 struct sched_group *group;
1da177e4 3566 unsigned long imbalance;
70b97a7f 3567 struct rq *busiest;
fe2eea3f 3568 unsigned long flags;
5969fe06 3569
96f874e2 3570 cpumask_setall(cpus);
7c16ec58 3571
89c4710e
SS
3572 /*
3573 * When power savings policy is enabled for the parent domain, idle
3574 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3575 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3576 * portraying it as CPU_NOT_IDLE.
89c4710e 3577 */
d15bcfdb 3578 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3579 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3580 sd_idle = 1;
1da177e4 3581
2d72376b 3582 schedstat_inc(sd, lb_count[idle]);
1da177e4 3583
0a2966b4 3584redo:
c8cba857 3585 update_shares(sd);
0a2966b4 3586 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3587 cpus, balance);
783609c6 3588
06066714 3589 if (*balance == 0)
783609c6 3590 goto out_balanced;
783609c6 3591
1da177e4
LT
3592 if (!group) {
3593 schedstat_inc(sd, lb_nobusyg[idle]);
3594 goto out_balanced;
3595 }
3596
7c16ec58 3597 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3598 if (!busiest) {
3599 schedstat_inc(sd, lb_nobusyq[idle]);
3600 goto out_balanced;
3601 }
3602
db935dbd 3603 BUG_ON(busiest == this_rq);
1da177e4
LT
3604
3605 schedstat_add(sd, lb_imbalance[idle], imbalance);
3606
43010659 3607 ld_moved = 0;
1da177e4
LT
3608 if (busiest->nr_running > 1) {
3609 /*
3610 * Attempt to move tasks. If find_busiest_group has found
3611 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3612 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3613 * correctly treated as an imbalance.
3614 */
fe2eea3f 3615 local_irq_save(flags);
e17224bf 3616 double_rq_lock(this_rq, busiest);
43010659 3617 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3618 imbalance, sd, idle, &all_pinned);
e17224bf 3619 double_rq_unlock(this_rq, busiest);
fe2eea3f 3620 local_irq_restore(flags);
81026794 3621
46cb4b7c
SS
3622 /*
3623 * some other cpu did the load balance for us.
3624 */
43010659 3625 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3626 resched_cpu(this_cpu);
3627
81026794 3628 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3629 if (unlikely(all_pinned)) {
96f874e2
RR
3630 cpumask_clear_cpu(cpu_of(busiest), cpus);
3631 if (!cpumask_empty(cpus))
0a2966b4 3632 goto redo;
81026794 3633 goto out_balanced;
0a2966b4 3634 }
1da177e4 3635 }
81026794 3636
43010659 3637 if (!ld_moved) {
1da177e4
LT
3638 schedstat_inc(sd, lb_failed[idle]);
3639 sd->nr_balance_failed++;
3640
3641 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3642
fe2eea3f 3643 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3644
3645 /* don't kick the migration_thread, if the curr
3646 * task on busiest cpu can't be moved to this_cpu
3647 */
96f874e2
RR
3648 if (!cpumask_test_cpu(this_cpu,
3649 &busiest->curr->cpus_allowed)) {
fe2eea3f 3650 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3651 all_pinned = 1;
3652 goto out_one_pinned;
3653 }
3654
1da177e4
LT
3655 if (!busiest->active_balance) {
3656 busiest->active_balance = 1;
3657 busiest->push_cpu = this_cpu;
81026794 3658 active_balance = 1;
1da177e4 3659 }
fe2eea3f 3660 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3661 if (active_balance)
1da177e4
LT
3662 wake_up_process(busiest->migration_thread);
3663
3664 /*
3665 * We've kicked active balancing, reset the failure
3666 * counter.
3667 */
39507451 3668 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3669 }
81026794 3670 } else
1da177e4
LT
3671 sd->nr_balance_failed = 0;
3672
81026794 3673 if (likely(!active_balance)) {
1da177e4
LT
3674 /* We were unbalanced, so reset the balancing interval */
3675 sd->balance_interval = sd->min_interval;
81026794
NP
3676 } else {
3677 /*
3678 * If we've begun active balancing, start to back off. This
3679 * case may not be covered by the all_pinned logic if there
3680 * is only 1 task on the busy runqueue (because we don't call
3681 * move_tasks).
3682 */
3683 if (sd->balance_interval < sd->max_interval)
3684 sd->balance_interval *= 2;
1da177e4
LT
3685 }
3686
43010659 3687 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3688 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3689 ld_moved = -1;
3690
3691 goto out;
1da177e4
LT
3692
3693out_balanced:
1da177e4
LT
3694 schedstat_inc(sd, lb_balanced[idle]);
3695
16cfb1c0 3696 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3697
3698out_one_pinned:
1da177e4 3699 /* tune up the balancing interval */
77391d71
NP
3700 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3701 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3702 sd->balance_interval *= 2;
3703
48f24c4d 3704 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3705 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3706 ld_moved = -1;
3707 else
3708 ld_moved = 0;
3709out:
c8cba857
PZ
3710 if (ld_moved)
3711 update_shares(sd);
c09595f6 3712 return ld_moved;
1da177e4
LT
3713}
3714
3715/*
3716 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3717 * tasks if there is an imbalance.
3718 *
d15bcfdb 3719 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3720 * this_rq is locked.
3721 */
48f24c4d 3722static int
7c16ec58 3723load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
96f874e2 3724 struct cpumask *cpus)
1da177e4
LT
3725{
3726 struct sched_group *group;
70b97a7f 3727 struct rq *busiest = NULL;
1da177e4 3728 unsigned long imbalance;
43010659 3729 int ld_moved = 0;
5969fe06 3730 int sd_idle = 0;
969bb4e4 3731 int all_pinned = 0;
7c16ec58 3732
96f874e2 3733 cpumask_setall(cpus);
5969fe06 3734
89c4710e
SS
3735 /*
3736 * When power savings policy is enabled for the parent domain, idle
3737 * sibling can pick up load irrespective of busy siblings. In this case,
3738 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3739 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3740 */
3741 if (sd->flags & SD_SHARE_CPUPOWER &&
3742 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3743 sd_idle = 1;
1da177e4 3744
2d72376b 3745 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3746redo:
3e5459b4 3747 update_shares_locked(this_rq, sd);
d15bcfdb 3748 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3749 &sd_idle, cpus, NULL);
1da177e4 3750 if (!group) {
d15bcfdb 3751 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3752 goto out_balanced;
1da177e4
LT
3753 }
3754
7c16ec58 3755 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3756 if (!busiest) {
d15bcfdb 3757 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3758 goto out_balanced;
1da177e4
LT
3759 }
3760
db935dbd
NP
3761 BUG_ON(busiest == this_rq);
3762
d15bcfdb 3763 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3764
43010659 3765 ld_moved = 0;
d6d5cfaf
NP
3766 if (busiest->nr_running > 1) {
3767 /* Attempt to move tasks */
3768 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3769 /* this_rq->clock is already updated */
3770 update_rq_clock(busiest);
43010659 3771 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3772 imbalance, sd, CPU_NEWLY_IDLE,
3773 &all_pinned);
1b12bbc7 3774 double_unlock_balance(this_rq, busiest);
0a2966b4 3775
969bb4e4 3776 if (unlikely(all_pinned)) {
96f874e2
RR
3777 cpumask_clear_cpu(cpu_of(busiest), cpus);
3778 if (!cpumask_empty(cpus))
0a2966b4
CL
3779 goto redo;
3780 }
d6d5cfaf
NP
3781 }
3782
43010659 3783 if (!ld_moved) {
36dffab6 3784 int active_balance = 0;
ad273b32 3785
d15bcfdb 3786 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3787 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3788 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3789 return -1;
ad273b32
VS
3790
3791 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3792 return -1;
3793
3794 if (sd->nr_balance_failed++ < 2)
3795 return -1;
3796
3797 /*
3798 * The only task running in a non-idle cpu can be moved to this
3799 * cpu in an attempt to completely freeup the other CPU
3800 * package. The same method used to move task in load_balance()
3801 * have been extended for load_balance_newidle() to speedup
3802 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3803 *
3804 * The package power saving logic comes from
3805 * find_busiest_group(). If there are no imbalance, then
3806 * f_b_g() will return NULL. However when sched_mc={1,2} then
3807 * f_b_g() will select a group from which a running task may be
3808 * pulled to this cpu in order to make the other package idle.
3809 * If there is no opportunity to make a package idle and if
3810 * there are no imbalance, then f_b_g() will return NULL and no
3811 * action will be taken in load_balance_newidle().
3812 *
3813 * Under normal task pull operation due to imbalance, there
3814 * will be more than one task in the source run queue and
3815 * move_tasks() will succeed. ld_moved will be true and this
3816 * active balance code will not be triggered.
3817 */
3818
3819 /* Lock busiest in correct order while this_rq is held */
3820 double_lock_balance(this_rq, busiest);
3821
3822 /*
3823 * don't kick the migration_thread, if the curr
3824 * task on busiest cpu can't be moved to this_cpu
3825 */
6ca09dfc 3826 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
3827 double_unlock_balance(this_rq, busiest);
3828 all_pinned = 1;
3829 return ld_moved;
3830 }
3831
3832 if (!busiest->active_balance) {
3833 busiest->active_balance = 1;
3834 busiest->push_cpu = this_cpu;
3835 active_balance = 1;
3836 }
3837
3838 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
3839 /*
3840 * Should not call ttwu while holding a rq->lock
3841 */
3842 spin_unlock(&this_rq->lock);
ad273b32
VS
3843 if (active_balance)
3844 wake_up_process(busiest->migration_thread);
da8d5089 3845 spin_lock(&this_rq->lock);
ad273b32 3846
5969fe06 3847 } else
16cfb1c0 3848 sd->nr_balance_failed = 0;
1da177e4 3849
3e5459b4 3850 update_shares_locked(this_rq, sd);
43010659 3851 return ld_moved;
16cfb1c0
NP
3852
3853out_balanced:
d15bcfdb 3854 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3855 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3856 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3857 return -1;
16cfb1c0 3858 sd->nr_balance_failed = 0;
48f24c4d 3859
16cfb1c0 3860 return 0;
1da177e4
LT
3861}
3862
3863/*
3864 * idle_balance is called by schedule() if this_cpu is about to become
3865 * idle. Attempts to pull tasks from other CPUs.
3866 */
70b97a7f 3867static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3868{
3869 struct sched_domain *sd;
efbe027e 3870 int pulled_task = 0;
dd41f596 3871 unsigned long next_balance = jiffies + HZ;
4d2732c6
RR
3872 cpumask_var_t tmpmask;
3873
3874 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
3875 return;
1da177e4
LT
3876
3877 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3878 unsigned long interval;
3879
3880 if (!(sd->flags & SD_LOAD_BALANCE))
3881 continue;
3882
3883 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3884 /* If we've pulled tasks over stop searching: */
7c16ec58 3885 pulled_task = load_balance_newidle(this_cpu, this_rq,
4d2732c6 3886 sd, tmpmask);
92c4ca5c
CL
3887
3888 interval = msecs_to_jiffies(sd->balance_interval);
3889 if (time_after(next_balance, sd->last_balance + interval))
3890 next_balance = sd->last_balance + interval;
3891 if (pulled_task)
3892 break;
1da177e4 3893 }
dd41f596 3894 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3895 /*
3896 * We are going idle. next_balance may be set based on
3897 * a busy processor. So reset next_balance.
3898 */
3899 this_rq->next_balance = next_balance;
dd41f596 3900 }
4d2732c6 3901 free_cpumask_var(tmpmask);
1da177e4
LT
3902}
3903
3904/*
3905 * active_load_balance is run by migration threads. It pushes running tasks
3906 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3907 * running on each physical CPU where possible, and avoids physical /
3908 * logical imbalances.
3909 *
3910 * Called with busiest_rq locked.
3911 */
70b97a7f 3912static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3913{
39507451 3914 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3915 struct sched_domain *sd;
3916 struct rq *target_rq;
39507451 3917
48f24c4d 3918 /* Is there any task to move? */
39507451 3919 if (busiest_rq->nr_running <= 1)
39507451
NP
3920 return;
3921
3922 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3923
3924 /*
39507451 3925 * This condition is "impossible", if it occurs
41a2d6cf 3926 * we need to fix it. Originally reported by
39507451 3927 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3928 */
39507451 3929 BUG_ON(busiest_rq == target_rq);
1da177e4 3930
39507451
NP
3931 /* move a task from busiest_rq to target_rq */
3932 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3933 update_rq_clock(busiest_rq);
3934 update_rq_clock(target_rq);
39507451
NP
3935
3936 /* Search for an sd spanning us and the target CPU. */
c96d145e 3937 for_each_domain(target_cpu, sd) {
39507451 3938 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 3939 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 3940 break;
c96d145e 3941 }
39507451 3942
48f24c4d 3943 if (likely(sd)) {
2d72376b 3944 schedstat_inc(sd, alb_count);
39507451 3945
43010659
PW
3946 if (move_one_task(target_rq, target_cpu, busiest_rq,
3947 sd, CPU_IDLE))
48f24c4d
IM
3948 schedstat_inc(sd, alb_pushed);
3949 else
3950 schedstat_inc(sd, alb_failed);
3951 }
1b12bbc7 3952 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
3953}
3954
46cb4b7c
SS
3955#ifdef CONFIG_NO_HZ
3956static struct {
3957 atomic_t load_balancer;
7d1e6a9b 3958 cpumask_var_t cpu_mask;
46cb4b7c
SS
3959} nohz ____cacheline_aligned = {
3960 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
3961};
3962
7835b98b 3963/*
46cb4b7c
SS
3964 * This routine will try to nominate the ilb (idle load balancing)
3965 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3966 * load balancing on behalf of all those cpus. If all the cpus in the system
3967 * go into this tickless mode, then there will be no ilb owner (as there is
3968 * no need for one) and all the cpus will sleep till the next wakeup event
3969 * arrives...
3970 *
3971 * For the ilb owner, tick is not stopped. And this tick will be used
3972 * for idle load balancing. ilb owner will still be part of
3973 * nohz.cpu_mask..
7835b98b 3974 *
46cb4b7c
SS
3975 * While stopping the tick, this cpu will become the ilb owner if there
3976 * is no other owner. And will be the owner till that cpu becomes busy
3977 * or if all cpus in the system stop their ticks at which point
3978 * there is no need for ilb owner.
3979 *
3980 * When the ilb owner becomes busy, it nominates another owner, during the
3981 * next busy scheduler_tick()
3982 */
3983int select_nohz_load_balancer(int stop_tick)
3984{
3985 int cpu = smp_processor_id();
3986
3987 if (stop_tick) {
46cb4b7c
SS
3988 cpu_rq(cpu)->in_nohz_recently = 1;
3989
483b4ee6
SS
3990 if (!cpu_active(cpu)) {
3991 if (atomic_read(&nohz.load_balancer) != cpu)
3992 return 0;
3993
3994 /*
3995 * If we are going offline and still the leader,
3996 * give up!
3997 */
46cb4b7c
SS
3998 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3999 BUG();
483b4ee6 4000
46cb4b7c
SS
4001 return 0;
4002 }
4003
483b4ee6
SS
4004 cpumask_set_cpu(cpu, nohz.cpu_mask);
4005
46cb4b7c 4006 /* time for ilb owner also to sleep */
7d1e6a9b 4007 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4008 if (atomic_read(&nohz.load_balancer) == cpu)
4009 atomic_set(&nohz.load_balancer, -1);
4010 return 0;
4011 }
4012
4013 if (atomic_read(&nohz.load_balancer) == -1) {
4014 /* make me the ilb owner */
4015 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4016 return 1;
4017 } else if (atomic_read(&nohz.load_balancer) == cpu)
4018 return 1;
4019 } else {
7d1e6a9b 4020 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4021 return 0;
4022
7d1e6a9b 4023 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4024
4025 if (atomic_read(&nohz.load_balancer) == cpu)
4026 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4027 BUG();
4028 }
4029 return 0;
4030}
4031#endif
4032
4033static DEFINE_SPINLOCK(balancing);
4034
4035/*
7835b98b
CL
4036 * It checks each scheduling domain to see if it is due to be balanced,
4037 * and initiates a balancing operation if so.
4038 *
4039 * Balancing parameters are set up in arch_init_sched_domains.
4040 */
a9957449 4041static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4042{
46cb4b7c
SS
4043 int balance = 1;
4044 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4045 unsigned long interval;
4046 struct sched_domain *sd;
46cb4b7c 4047 /* Earliest time when we have to do rebalance again */
c9819f45 4048 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4049 int update_next_balance = 0;
d07355f5 4050 int need_serialize;
a0e90245
RR
4051 cpumask_var_t tmp;
4052
4053 /* Fails alloc? Rebalancing probably not a priority right now. */
4054 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
4055 return;
1da177e4 4056
46cb4b7c 4057 for_each_domain(cpu, sd) {
1da177e4
LT
4058 if (!(sd->flags & SD_LOAD_BALANCE))
4059 continue;
4060
4061 interval = sd->balance_interval;
d15bcfdb 4062 if (idle != CPU_IDLE)
1da177e4
LT
4063 interval *= sd->busy_factor;
4064
4065 /* scale ms to jiffies */
4066 interval = msecs_to_jiffies(interval);
4067 if (unlikely(!interval))
4068 interval = 1;
dd41f596
IM
4069 if (interval > HZ*NR_CPUS/10)
4070 interval = HZ*NR_CPUS/10;
4071
d07355f5 4072 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4073
d07355f5 4074 if (need_serialize) {
08c183f3
CL
4075 if (!spin_trylock(&balancing))
4076 goto out;
4077 }
4078
c9819f45 4079 if (time_after_eq(jiffies, sd->last_balance + interval)) {
a0e90245 4080 if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
fa3b6ddc
SS
4081 /*
4082 * We've pulled tasks over so either we're no
5969fe06
NP
4083 * longer idle, or one of our SMT siblings is
4084 * not idle.
4085 */
d15bcfdb 4086 idle = CPU_NOT_IDLE;
1da177e4 4087 }
1bd77f2d 4088 sd->last_balance = jiffies;
1da177e4 4089 }
d07355f5 4090 if (need_serialize)
08c183f3
CL
4091 spin_unlock(&balancing);
4092out:
f549da84 4093 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4094 next_balance = sd->last_balance + interval;
f549da84
SS
4095 update_next_balance = 1;
4096 }
783609c6
SS
4097
4098 /*
4099 * Stop the load balance at this level. There is another
4100 * CPU in our sched group which is doing load balancing more
4101 * actively.
4102 */
4103 if (!balance)
4104 break;
1da177e4 4105 }
f549da84
SS
4106
4107 /*
4108 * next_balance will be updated only when there is a need.
4109 * When the cpu is attached to null domain for ex, it will not be
4110 * updated.
4111 */
4112 if (likely(update_next_balance))
4113 rq->next_balance = next_balance;
a0e90245
RR
4114
4115 free_cpumask_var(tmp);
46cb4b7c
SS
4116}
4117
4118/*
4119 * run_rebalance_domains is triggered when needed from the scheduler tick.
4120 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4121 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4122 */
4123static void run_rebalance_domains(struct softirq_action *h)
4124{
dd41f596
IM
4125 int this_cpu = smp_processor_id();
4126 struct rq *this_rq = cpu_rq(this_cpu);
4127 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4128 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4129
dd41f596 4130 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4131
4132#ifdef CONFIG_NO_HZ
4133 /*
4134 * If this cpu is the owner for idle load balancing, then do the
4135 * balancing on behalf of the other idle cpus whose ticks are
4136 * stopped.
4137 */
dd41f596
IM
4138 if (this_rq->idle_at_tick &&
4139 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4140 struct rq *rq;
4141 int balance_cpu;
4142
7d1e6a9b
RR
4143 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4144 if (balance_cpu == this_cpu)
4145 continue;
4146
46cb4b7c
SS
4147 /*
4148 * If this cpu gets work to do, stop the load balancing
4149 * work being done for other cpus. Next load
4150 * balancing owner will pick it up.
4151 */
4152 if (need_resched())
4153 break;
4154
de0cf899 4155 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4156
4157 rq = cpu_rq(balance_cpu);
dd41f596
IM
4158 if (time_after(this_rq->next_balance, rq->next_balance))
4159 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4160 }
4161 }
4162#endif
4163}
4164
8a0be9ef
FW
4165static inline int on_null_domain(int cpu)
4166{
4167 return !rcu_dereference(cpu_rq(cpu)->sd);
4168}
4169
46cb4b7c
SS
4170/*
4171 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4172 *
4173 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4174 * idle load balancing owner or decide to stop the periodic load balancing,
4175 * if the whole system is idle.
4176 */
dd41f596 4177static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4178{
46cb4b7c
SS
4179#ifdef CONFIG_NO_HZ
4180 /*
4181 * If we were in the nohz mode recently and busy at the current
4182 * scheduler tick, then check if we need to nominate new idle
4183 * load balancer.
4184 */
4185 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4186 rq->in_nohz_recently = 0;
4187
4188 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4189 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4190 atomic_set(&nohz.load_balancer, -1);
4191 }
4192
4193 if (atomic_read(&nohz.load_balancer) == -1) {
4194 /*
4195 * simple selection for now: Nominate the
4196 * first cpu in the nohz list to be the next
4197 * ilb owner.
4198 *
4199 * TBD: Traverse the sched domains and nominate
4200 * the nearest cpu in the nohz.cpu_mask.
4201 */
7d1e6a9b 4202 int ilb = cpumask_first(nohz.cpu_mask);
46cb4b7c 4203
434d53b0 4204 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4205 resched_cpu(ilb);
4206 }
4207 }
4208
4209 /*
4210 * If this cpu is idle and doing idle load balancing for all the
4211 * cpus with ticks stopped, is it time for that to stop?
4212 */
4213 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4214 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4215 resched_cpu(cpu);
4216 return;
4217 }
4218
4219 /*
4220 * If this cpu is idle and the idle load balancing is done by
4221 * someone else, then no need raise the SCHED_SOFTIRQ
4222 */
4223 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4224 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4225 return;
4226#endif
8a0be9ef
FW
4227 /* Don't need to rebalance while attached to NULL domain */
4228 if (time_after_eq(jiffies, rq->next_balance) &&
4229 likely(!on_null_domain(cpu)))
46cb4b7c 4230 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4231}
dd41f596
IM
4232
4233#else /* CONFIG_SMP */
4234
1da177e4
LT
4235/*
4236 * on UP we do not need to balance between CPUs:
4237 */
70b97a7f 4238static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4239{
4240}
dd41f596 4241
1da177e4
LT
4242#endif
4243
1da177e4
LT
4244DEFINE_PER_CPU(struct kernel_stat, kstat);
4245
4246EXPORT_PER_CPU_SYMBOL(kstat);
4247
4248/*
f06febc9
FM
4249 * Return any ns on the sched_clock that have not yet been banked in
4250 * @p in case that task is currently running.
1da177e4 4251 */
bb34d92f 4252unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4253{
1da177e4 4254 unsigned long flags;
41b86e9c 4255 struct rq *rq;
bb34d92f 4256 u64 ns = 0;
48f24c4d 4257
41b86e9c 4258 rq = task_rq_lock(p, &flags);
1508487e 4259
051a1d1a 4260 if (task_current(rq, p)) {
f06febc9
FM
4261 u64 delta_exec;
4262
a8e504d2
IM
4263 update_rq_clock(rq);
4264 delta_exec = rq->clock - p->se.exec_start;
41b86e9c 4265 if ((s64)delta_exec > 0)
bb34d92f 4266 ns = delta_exec;
41b86e9c 4267 }
48f24c4d 4268
41b86e9c 4269 task_rq_unlock(rq, &flags);
48f24c4d 4270
1da177e4
LT
4271 return ns;
4272}
4273
1da177e4
LT
4274/*
4275 * Account user cpu time to a process.
4276 * @p: the process that the cpu time gets accounted to
1da177e4 4277 * @cputime: the cpu time spent in user space since the last update
457533a7 4278 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4279 */
457533a7
MS
4280void account_user_time(struct task_struct *p, cputime_t cputime,
4281 cputime_t cputime_scaled)
1da177e4
LT
4282{
4283 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4284 cputime64_t tmp;
4285
457533a7 4286 /* Add user time to process. */
1da177e4 4287 p->utime = cputime_add(p->utime, cputime);
457533a7 4288 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4289 account_group_user_time(p, cputime);
1da177e4
LT
4290
4291 /* Add user time to cpustat. */
4292 tmp = cputime_to_cputime64(cputime);
4293 if (TASK_NICE(p) > 0)
4294 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4295 else
4296 cpustat->user = cputime64_add(cpustat->user, tmp);
49b5cf34
JL
4297 /* Account for user time used */
4298 acct_update_integrals(p);
1da177e4
LT
4299}
4300
94886b84
LV
4301/*
4302 * Account guest cpu time to a process.
4303 * @p: the process that the cpu time gets accounted to
4304 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 4305 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 4306 */
457533a7
MS
4307static void account_guest_time(struct task_struct *p, cputime_t cputime,
4308 cputime_t cputime_scaled)
94886b84
LV
4309{
4310 cputime64_t tmp;
4311 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4312
4313 tmp = cputime_to_cputime64(cputime);
4314
457533a7 4315 /* Add guest time to process. */
94886b84 4316 p->utime = cputime_add(p->utime, cputime);
457533a7 4317 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4318 account_group_user_time(p, cputime);
94886b84
LV
4319 p->gtime = cputime_add(p->gtime, cputime);
4320
457533a7 4321 /* Add guest time to cpustat. */
94886b84
LV
4322 cpustat->user = cputime64_add(cpustat->user, tmp);
4323 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4324}
4325
1da177e4
LT
4326/*
4327 * Account system cpu time to a process.
4328 * @p: the process that the cpu time gets accounted to
4329 * @hardirq_offset: the offset to subtract from hardirq_count()
4330 * @cputime: the cpu time spent in kernel space since the last update
457533a7 4331 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
4332 */
4333void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 4334 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
4335{
4336 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
4337 cputime64_t tmp;
4338
983ed7a6 4339 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 4340 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
4341 return;
4342 }
94886b84 4343
457533a7 4344 /* Add system time to process. */
1da177e4 4345 p->stime = cputime_add(p->stime, cputime);
457533a7 4346 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 4347 account_group_system_time(p, cputime);
1da177e4
LT
4348
4349 /* Add system time to cpustat. */
4350 tmp = cputime_to_cputime64(cputime);
4351 if (hardirq_count() - hardirq_offset)
4352 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4353 else if (softirq_count())
4354 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 4355 else
79741dd3
MS
4356 cpustat->system = cputime64_add(cpustat->system, tmp);
4357
1da177e4
LT
4358 /* Account for system time used */
4359 acct_update_integrals(p);
1da177e4
LT
4360}
4361
c66f08be 4362/*
1da177e4 4363 * Account for involuntary wait time.
1da177e4 4364 * @steal: the cpu time spent in involuntary wait
c66f08be 4365 */
79741dd3 4366void account_steal_time(cputime_t cputime)
c66f08be 4367{
79741dd3
MS
4368 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4369 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4370
4371 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
4372}
4373
1da177e4 4374/*
79741dd3
MS
4375 * Account for idle time.
4376 * @cputime: the cpu time spent in idle wait
1da177e4 4377 */
79741dd3 4378void account_idle_time(cputime_t cputime)
1da177e4
LT
4379{
4380 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 4381 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 4382 struct rq *rq = this_rq();
1da177e4 4383
79741dd3
MS
4384 if (atomic_read(&rq->nr_iowait) > 0)
4385 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4386 else
4387 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
4388}
4389
79741dd3
MS
4390#ifndef CONFIG_VIRT_CPU_ACCOUNTING
4391
4392/*
4393 * Account a single tick of cpu time.
4394 * @p: the process that the cpu time gets accounted to
4395 * @user_tick: indicates if the tick is a user or a system tick
4396 */
4397void account_process_tick(struct task_struct *p, int user_tick)
4398{
4399 cputime_t one_jiffy = jiffies_to_cputime(1);
4400 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4401 struct rq *rq = this_rq();
4402
4403 if (user_tick)
4404 account_user_time(p, one_jiffy, one_jiffy_scaled);
4405 else if (p != rq->idle)
4406 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4407 one_jiffy_scaled);
4408 else
4409 account_idle_time(one_jiffy);
4410}
4411
4412/*
4413 * Account multiple ticks of steal time.
4414 * @p: the process from which the cpu time has been stolen
4415 * @ticks: number of stolen ticks
4416 */
4417void account_steal_ticks(unsigned long ticks)
4418{
4419 account_steal_time(jiffies_to_cputime(ticks));
4420}
4421
4422/*
4423 * Account multiple ticks of idle time.
4424 * @ticks: number of stolen ticks
4425 */
4426void account_idle_ticks(unsigned long ticks)
4427{
4428 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
4429}
4430
79741dd3
MS
4431#endif
4432
49048622
BS
4433/*
4434 * Use precise platform statistics if available:
4435 */
4436#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4437cputime_t task_utime(struct task_struct *p)
4438{
4439 return p->utime;
4440}
4441
4442cputime_t task_stime(struct task_struct *p)
4443{
4444 return p->stime;
4445}
4446#else
4447cputime_t task_utime(struct task_struct *p)
4448{
4449 clock_t utime = cputime_to_clock_t(p->utime),
4450 total = utime + cputime_to_clock_t(p->stime);
4451 u64 temp;
4452
4453 /*
4454 * Use CFS's precise accounting:
4455 */
4456 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4457
4458 if (total) {
4459 temp *= utime;
4460 do_div(temp, total);
4461 }
4462 utime = (clock_t)temp;
4463
4464 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4465 return p->prev_utime;
4466}
4467
4468cputime_t task_stime(struct task_struct *p)
4469{
4470 clock_t stime;
4471
4472 /*
4473 * Use CFS's precise accounting. (we subtract utime from
4474 * the total, to make sure the total observed by userspace
4475 * grows monotonically - apps rely on that):
4476 */
4477 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4478 cputime_to_clock_t(task_utime(p));
4479
4480 if (stime >= 0)
4481 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4482
4483 return p->prev_stime;
4484}
4485#endif
4486
4487inline cputime_t task_gtime(struct task_struct *p)
4488{
4489 return p->gtime;
4490}
4491
7835b98b
CL
4492/*
4493 * This function gets called by the timer code, with HZ frequency.
4494 * We call it with interrupts disabled.
4495 *
4496 * It also gets called by the fork code, when changing the parent's
4497 * timeslices.
4498 */
4499void scheduler_tick(void)
4500{
7835b98b
CL
4501 int cpu = smp_processor_id();
4502 struct rq *rq = cpu_rq(cpu);
dd41f596 4503 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4504
4505 sched_clock_tick();
dd41f596
IM
4506
4507 spin_lock(&rq->lock);
3e51f33f 4508 update_rq_clock(rq);
f1a438d8 4509 update_cpu_load(rq);
fa85ae24 4510 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4511 spin_unlock(&rq->lock);
7835b98b 4512
e418e1c2 4513#ifdef CONFIG_SMP
dd41f596
IM
4514 rq->idle_at_tick = idle_cpu(cpu);
4515 trigger_load_balance(rq, cpu);
e418e1c2 4516#endif
1da177e4
LT
4517}
4518
6cd8a4bb
SR
4519#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4520 defined(CONFIG_PREEMPT_TRACER))
4521
4522static inline unsigned long get_parent_ip(unsigned long addr)
4523{
4524 if (in_lock_functions(addr)) {
4525 addr = CALLER_ADDR2;
4526 if (in_lock_functions(addr))
4527 addr = CALLER_ADDR3;
4528 }
4529 return addr;
4530}
1da177e4 4531
43627582 4532void __kprobes add_preempt_count(int val)
1da177e4 4533{
6cd8a4bb 4534#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4535 /*
4536 * Underflow?
4537 */
9a11b49a
IM
4538 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4539 return;
6cd8a4bb 4540#endif
1da177e4 4541 preempt_count() += val;
6cd8a4bb 4542#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4543 /*
4544 * Spinlock count overflowing soon?
4545 */
33859f7f
MOS
4546 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4547 PREEMPT_MASK - 10);
6cd8a4bb
SR
4548#endif
4549 if (preempt_count() == val)
4550 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4551}
4552EXPORT_SYMBOL(add_preempt_count);
4553
43627582 4554void __kprobes sub_preempt_count(int val)
1da177e4 4555{
6cd8a4bb 4556#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4557 /*
4558 * Underflow?
4559 */
01e3eb82 4560 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4561 return;
1da177e4
LT
4562 /*
4563 * Is the spinlock portion underflowing?
4564 */
9a11b49a
IM
4565 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4566 !(preempt_count() & PREEMPT_MASK)))
4567 return;
6cd8a4bb 4568#endif
9a11b49a 4569
6cd8a4bb
SR
4570 if (preempt_count() == val)
4571 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4572 preempt_count() -= val;
4573}
4574EXPORT_SYMBOL(sub_preempt_count);
4575
4576#endif
4577
4578/*
dd41f596 4579 * Print scheduling while atomic bug:
1da177e4 4580 */
dd41f596 4581static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4582{
838225b4
SS
4583 struct pt_regs *regs = get_irq_regs();
4584
4585 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4586 prev->comm, prev->pid, preempt_count());
4587
dd41f596 4588 debug_show_held_locks(prev);
e21f5b15 4589 print_modules();
dd41f596
IM
4590 if (irqs_disabled())
4591 print_irqtrace_events(prev);
838225b4
SS
4592
4593 if (regs)
4594 show_regs(regs);
4595 else
4596 dump_stack();
dd41f596 4597}
1da177e4 4598
dd41f596
IM
4599/*
4600 * Various schedule()-time debugging checks and statistics:
4601 */
4602static inline void schedule_debug(struct task_struct *prev)
4603{
1da177e4 4604 /*
41a2d6cf 4605 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4606 * schedule() atomically, we ignore that path for now.
4607 * Otherwise, whine if we are scheduling when we should not be.
4608 */
3f33a7ce 4609 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4610 __schedule_bug(prev);
4611
1da177e4
LT
4612 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4613
2d72376b 4614 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4615#ifdef CONFIG_SCHEDSTATS
4616 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4617 schedstat_inc(this_rq(), bkl_count);
4618 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4619 }
4620#endif
dd41f596
IM
4621}
4622
4623/*
4624 * Pick up the highest-prio task:
4625 */
4626static inline struct task_struct *
b67802ea 4627pick_next_task(struct rq *rq)
dd41f596 4628{
5522d5d5 4629 const struct sched_class *class;
dd41f596 4630 struct task_struct *p;
1da177e4
LT
4631
4632 /*
dd41f596
IM
4633 * Optimization: we know that if all tasks are in
4634 * the fair class we can call that function directly:
1da177e4 4635 */
dd41f596 4636 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4637 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4638 if (likely(p))
4639 return p;
1da177e4
LT
4640 }
4641
dd41f596
IM
4642 class = sched_class_highest;
4643 for ( ; ; ) {
fb8d4724 4644 p = class->pick_next_task(rq);
dd41f596
IM
4645 if (p)
4646 return p;
4647 /*
4648 * Will never be NULL as the idle class always
4649 * returns a non-NULL p:
4650 */
4651 class = class->next;
4652 }
4653}
1da177e4 4654
dd41f596
IM
4655/*
4656 * schedule() is the main scheduler function.
4657 */
4658asmlinkage void __sched schedule(void)
4659{
4660 struct task_struct *prev, *next;
67ca7bde 4661 unsigned long *switch_count;
dd41f596 4662 struct rq *rq;
31656519 4663 int cpu;
dd41f596
IM
4664
4665need_resched:
4666 preempt_disable();
4667 cpu = smp_processor_id();
4668 rq = cpu_rq(cpu);
4669 rcu_qsctr_inc(cpu);
4670 prev = rq->curr;
4671 switch_count = &prev->nivcsw;
4672
4673 release_kernel_lock(prev);
4674need_resched_nonpreemptible:
4675
4676 schedule_debug(prev);
1da177e4 4677
31656519 4678 if (sched_feat(HRTICK))
f333fdc9 4679 hrtick_clear(rq);
8f4d37ec 4680
8cd162ce 4681 spin_lock_irq(&rq->lock);
3e51f33f 4682 update_rq_clock(rq);
1e819950 4683 clear_tsk_need_resched(prev);
1da177e4 4684
1da177e4 4685 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4686 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4687 prev->state = TASK_RUNNING;
16882c1e 4688 else
2e1cb74a 4689 deactivate_task(rq, prev, 1);
dd41f596 4690 switch_count = &prev->nvcsw;
1da177e4
LT
4691 }
4692
9a897c5a
SR
4693#ifdef CONFIG_SMP
4694 if (prev->sched_class->pre_schedule)
4695 prev->sched_class->pre_schedule(rq, prev);
4696#endif
f65eda4f 4697
dd41f596 4698 if (unlikely(!rq->nr_running))
1da177e4 4699 idle_balance(cpu, rq);
1da177e4 4700
31ee529c 4701 prev->sched_class->put_prev_task(rq, prev);
b67802ea 4702 next = pick_next_task(rq);
1da177e4 4703
1da177e4 4704 if (likely(prev != next)) {
673a90a1
DS
4705 sched_info_switch(prev, next);
4706
1da177e4
LT
4707 rq->nr_switches++;
4708 rq->curr = next;
4709 ++*switch_count;
4710
dd41f596 4711 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4712 /*
4713 * the context switch might have flipped the stack from under
4714 * us, hence refresh the local variables.
4715 */
4716 cpu = smp_processor_id();
4717 rq = cpu_rq(cpu);
1da177e4
LT
4718 } else
4719 spin_unlock_irq(&rq->lock);
4720
8f4d37ec 4721 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4722 goto need_resched_nonpreemptible;
8f4d37ec 4723
1da177e4
LT
4724 preempt_enable_no_resched();
4725 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4726 goto need_resched;
4727}
1da177e4
LT
4728EXPORT_SYMBOL(schedule);
4729
4730#ifdef CONFIG_PREEMPT
4731/*
2ed6e34f 4732 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4733 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4734 * occur there and call schedule directly.
4735 */
4736asmlinkage void __sched preempt_schedule(void)
4737{
4738 struct thread_info *ti = current_thread_info();
6478d880 4739
1da177e4
LT
4740 /*
4741 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4742 * we do not want to preempt the current task. Just return..
1da177e4 4743 */
beed33a8 4744 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4745 return;
4746
3a5c359a
AK
4747 do {
4748 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4749 schedule();
3a5c359a 4750 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4751
3a5c359a
AK
4752 /*
4753 * Check again in case we missed a preemption opportunity
4754 * between schedule and now.
4755 */
4756 barrier();
5ed0cec0 4757 } while (need_resched());
1da177e4 4758}
1da177e4
LT
4759EXPORT_SYMBOL(preempt_schedule);
4760
4761/*
2ed6e34f 4762 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4763 * off of irq context.
4764 * Note, that this is called and return with irqs disabled. This will
4765 * protect us against recursive calling from irq.
4766 */
4767asmlinkage void __sched preempt_schedule_irq(void)
4768{
4769 struct thread_info *ti = current_thread_info();
6478d880 4770
2ed6e34f 4771 /* Catch callers which need to be fixed */
1da177e4
LT
4772 BUG_ON(ti->preempt_count || !irqs_disabled());
4773
3a5c359a
AK
4774 do {
4775 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4776 local_irq_enable();
4777 schedule();
4778 local_irq_disable();
3a5c359a 4779 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4780
3a5c359a
AK
4781 /*
4782 * Check again in case we missed a preemption opportunity
4783 * between schedule and now.
4784 */
4785 barrier();
5ed0cec0 4786 } while (need_resched());
1da177e4
LT
4787}
4788
4789#endif /* CONFIG_PREEMPT */
4790
95cdf3b7
IM
4791int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4792 void *key)
1da177e4 4793{
48f24c4d 4794 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4795}
1da177e4
LT
4796EXPORT_SYMBOL(default_wake_function);
4797
4798/*
41a2d6cf
IM
4799 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4800 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4801 * number) then we wake all the non-exclusive tasks and one exclusive task.
4802 *
4803 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4804 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4805 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4806 */
777c6c5f
JW
4807void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4808 int nr_exclusive, int sync, void *key)
1da177e4 4809{
2e45874c 4810 wait_queue_t *curr, *next;
1da177e4 4811
2e45874c 4812 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4813 unsigned flags = curr->flags;
4814
1da177e4 4815 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4816 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4817 break;
4818 }
4819}
4820
4821/**
4822 * __wake_up - wake up threads blocked on a waitqueue.
4823 * @q: the waitqueue
4824 * @mode: which threads
4825 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4826 * @key: is directly passed to the wakeup function
1da177e4 4827 */
7ad5b3a5 4828void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4829 int nr_exclusive, void *key)
1da177e4
LT
4830{
4831 unsigned long flags;
4832
4833 spin_lock_irqsave(&q->lock, flags);
4834 __wake_up_common(q, mode, nr_exclusive, 0, key);
4835 spin_unlock_irqrestore(&q->lock, flags);
4836}
1da177e4
LT
4837EXPORT_SYMBOL(__wake_up);
4838
4839/*
4840 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4841 */
7ad5b3a5 4842void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4843{
4844 __wake_up_common(q, mode, 1, 0, NULL);
4845}
4846
4847/**
67be2dd1 4848 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4849 * @q: the waitqueue
4850 * @mode: which threads
4851 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4852 *
4853 * The sync wakeup differs that the waker knows that it will schedule
4854 * away soon, so while the target thread will be woken up, it will not
4855 * be migrated to another CPU - ie. the two threads are 'synchronized'
4856 * with each other. This can prevent needless bouncing between CPUs.
4857 *
4858 * On UP it can prevent extra preemption.
4859 */
7ad5b3a5 4860void
95cdf3b7 4861__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4862{
4863 unsigned long flags;
4864 int sync = 1;
4865
4866 if (unlikely(!q))
4867 return;
4868
4869 if (unlikely(!nr_exclusive))
4870 sync = 0;
4871
4872 spin_lock_irqsave(&q->lock, flags);
4873 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4874 spin_unlock_irqrestore(&q->lock, flags);
4875}
4876EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4877
65eb3dc6
KD
4878/**
4879 * complete: - signals a single thread waiting on this completion
4880 * @x: holds the state of this particular completion
4881 *
4882 * This will wake up a single thread waiting on this completion. Threads will be
4883 * awakened in the same order in which they were queued.
4884 *
4885 * See also complete_all(), wait_for_completion() and related routines.
4886 */
b15136e9 4887void complete(struct completion *x)
1da177e4
LT
4888{
4889 unsigned long flags;
4890
4891 spin_lock_irqsave(&x->wait.lock, flags);
4892 x->done++;
d9514f6c 4893 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4894 spin_unlock_irqrestore(&x->wait.lock, flags);
4895}
4896EXPORT_SYMBOL(complete);
4897
65eb3dc6
KD
4898/**
4899 * complete_all: - signals all threads waiting on this completion
4900 * @x: holds the state of this particular completion
4901 *
4902 * This will wake up all threads waiting on this particular completion event.
4903 */
b15136e9 4904void complete_all(struct completion *x)
1da177e4
LT
4905{
4906 unsigned long flags;
4907
4908 spin_lock_irqsave(&x->wait.lock, flags);
4909 x->done += UINT_MAX/2;
d9514f6c 4910 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4911 spin_unlock_irqrestore(&x->wait.lock, flags);
4912}
4913EXPORT_SYMBOL(complete_all);
4914
8cbbe86d
AK
4915static inline long __sched
4916do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4917{
1da177e4
LT
4918 if (!x->done) {
4919 DECLARE_WAITQUEUE(wait, current);
4920
4921 wait.flags |= WQ_FLAG_EXCLUSIVE;
4922 __add_wait_queue_tail(&x->wait, &wait);
4923 do {
94d3d824 4924 if (signal_pending_state(state, current)) {
ea71a546
ON
4925 timeout = -ERESTARTSYS;
4926 break;
8cbbe86d
AK
4927 }
4928 __set_current_state(state);
1da177e4
LT
4929 spin_unlock_irq(&x->wait.lock);
4930 timeout = schedule_timeout(timeout);
4931 spin_lock_irq(&x->wait.lock);
ea71a546 4932 } while (!x->done && timeout);
1da177e4 4933 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4934 if (!x->done)
4935 return timeout;
1da177e4
LT
4936 }
4937 x->done--;
ea71a546 4938 return timeout ?: 1;
1da177e4 4939}
1da177e4 4940
8cbbe86d
AK
4941static long __sched
4942wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4943{
1da177e4
LT
4944 might_sleep();
4945
4946 spin_lock_irq(&x->wait.lock);
8cbbe86d 4947 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4948 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4949 return timeout;
4950}
1da177e4 4951
65eb3dc6
KD
4952/**
4953 * wait_for_completion: - waits for completion of a task
4954 * @x: holds the state of this particular completion
4955 *
4956 * This waits to be signaled for completion of a specific task. It is NOT
4957 * interruptible and there is no timeout.
4958 *
4959 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4960 * and interrupt capability. Also see complete().
4961 */
b15136e9 4962void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4963{
4964 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4965}
8cbbe86d 4966EXPORT_SYMBOL(wait_for_completion);
1da177e4 4967
65eb3dc6
KD
4968/**
4969 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4970 * @x: holds the state of this particular completion
4971 * @timeout: timeout value in jiffies
4972 *
4973 * This waits for either a completion of a specific task to be signaled or for a
4974 * specified timeout to expire. The timeout is in jiffies. It is not
4975 * interruptible.
4976 */
b15136e9 4977unsigned long __sched
8cbbe86d 4978wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4979{
8cbbe86d 4980 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4981}
8cbbe86d 4982EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4983
65eb3dc6
KD
4984/**
4985 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4986 * @x: holds the state of this particular completion
4987 *
4988 * This waits for completion of a specific task to be signaled. It is
4989 * interruptible.
4990 */
8cbbe86d 4991int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4992{
51e97990
AK
4993 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4994 if (t == -ERESTARTSYS)
4995 return t;
4996 return 0;
0fec171c 4997}
8cbbe86d 4998EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4999
65eb3dc6
KD
5000/**
5001 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5002 * @x: holds the state of this particular completion
5003 * @timeout: timeout value in jiffies
5004 *
5005 * This waits for either a completion of a specific task to be signaled or for a
5006 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5007 */
b15136e9 5008unsigned long __sched
8cbbe86d
AK
5009wait_for_completion_interruptible_timeout(struct completion *x,
5010 unsigned long timeout)
0fec171c 5011{
8cbbe86d 5012 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5013}
8cbbe86d 5014EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5015
65eb3dc6
KD
5016/**
5017 * wait_for_completion_killable: - waits for completion of a task (killable)
5018 * @x: holds the state of this particular completion
5019 *
5020 * This waits to be signaled for completion of a specific task. It can be
5021 * interrupted by a kill signal.
5022 */
009e577e
MW
5023int __sched wait_for_completion_killable(struct completion *x)
5024{
5025 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5026 if (t == -ERESTARTSYS)
5027 return t;
5028 return 0;
5029}
5030EXPORT_SYMBOL(wait_for_completion_killable);
5031
be4de352
DC
5032/**
5033 * try_wait_for_completion - try to decrement a completion without blocking
5034 * @x: completion structure
5035 *
5036 * Returns: 0 if a decrement cannot be done without blocking
5037 * 1 if a decrement succeeded.
5038 *
5039 * If a completion is being used as a counting completion,
5040 * attempt to decrement the counter without blocking. This
5041 * enables us to avoid waiting if the resource the completion
5042 * is protecting is not available.
5043 */
5044bool try_wait_for_completion(struct completion *x)
5045{
5046 int ret = 1;
5047
5048 spin_lock_irq(&x->wait.lock);
5049 if (!x->done)
5050 ret = 0;
5051 else
5052 x->done--;
5053 spin_unlock_irq(&x->wait.lock);
5054 return ret;
5055}
5056EXPORT_SYMBOL(try_wait_for_completion);
5057
5058/**
5059 * completion_done - Test to see if a completion has any waiters
5060 * @x: completion structure
5061 *
5062 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5063 * 1 if there are no waiters.
5064 *
5065 */
5066bool completion_done(struct completion *x)
5067{
5068 int ret = 1;
5069
5070 spin_lock_irq(&x->wait.lock);
5071 if (!x->done)
5072 ret = 0;
5073 spin_unlock_irq(&x->wait.lock);
5074 return ret;
5075}
5076EXPORT_SYMBOL(completion_done);
5077
8cbbe86d
AK
5078static long __sched
5079sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5080{
0fec171c
IM
5081 unsigned long flags;
5082 wait_queue_t wait;
5083
5084 init_waitqueue_entry(&wait, current);
1da177e4 5085
8cbbe86d 5086 __set_current_state(state);
1da177e4 5087
8cbbe86d
AK
5088 spin_lock_irqsave(&q->lock, flags);
5089 __add_wait_queue(q, &wait);
5090 spin_unlock(&q->lock);
5091 timeout = schedule_timeout(timeout);
5092 spin_lock_irq(&q->lock);
5093 __remove_wait_queue(q, &wait);
5094 spin_unlock_irqrestore(&q->lock, flags);
5095
5096 return timeout;
5097}
5098
5099void __sched interruptible_sleep_on(wait_queue_head_t *q)
5100{
5101 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5102}
1da177e4
LT
5103EXPORT_SYMBOL(interruptible_sleep_on);
5104
0fec171c 5105long __sched
95cdf3b7 5106interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5107{
8cbbe86d 5108 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5109}
1da177e4
LT
5110EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5111
0fec171c 5112void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5113{
8cbbe86d 5114 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5115}
1da177e4
LT
5116EXPORT_SYMBOL(sleep_on);
5117
0fec171c 5118long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5119{
8cbbe86d 5120 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5121}
1da177e4
LT
5122EXPORT_SYMBOL(sleep_on_timeout);
5123
b29739f9
IM
5124#ifdef CONFIG_RT_MUTEXES
5125
5126/*
5127 * rt_mutex_setprio - set the current priority of a task
5128 * @p: task
5129 * @prio: prio value (kernel-internal form)
5130 *
5131 * This function changes the 'effective' priority of a task. It does
5132 * not touch ->normal_prio like __setscheduler().
5133 *
5134 * Used by the rt_mutex code to implement priority inheritance logic.
5135 */
36c8b586 5136void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5137{
5138 unsigned long flags;
83b699ed 5139 int oldprio, on_rq, running;
70b97a7f 5140 struct rq *rq;
cb469845 5141 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5142
5143 BUG_ON(prio < 0 || prio > MAX_PRIO);
5144
5145 rq = task_rq_lock(p, &flags);
a8e504d2 5146 update_rq_clock(rq);
b29739f9 5147
d5f9f942 5148 oldprio = p->prio;
dd41f596 5149 on_rq = p->se.on_rq;
051a1d1a 5150 running = task_current(rq, p);
0e1f3483 5151 if (on_rq)
69be72c1 5152 dequeue_task(rq, p, 0);
0e1f3483
HS
5153 if (running)
5154 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5155
5156 if (rt_prio(prio))
5157 p->sched_class = &rt_sched_class;
5158 else
5159 p->sched_class = &fair_sched_class;
5160
b29739f9
IM
5161 p->prio = prio;
5162
0e1f3483
HS
5163 if (running)
5164 p->sched_class->set_curr_task(rq);
dd41f596 5165 if (on_rq) {
8159f87e 5166 enqueue_task(rq, p, 0);
cb469845
SR
5167
5168 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5169 }
5170 task_rq_unlock(rq, &flags);
5171}
5172
5173#endif
5174
36c8b586 5175void set_user_nice(struct task_struct *p, long nice)
1da177e4 5176{
dd41f596 5177 int old_prio, delta, on_rq;
1da177e4 5178 unsigned long flags;
70b97a7f 5179 struct rq *rq;
1da177e4
LT
5180
5181 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5182 return;
5183 /*
5184 * We have to be careful, if called from sys_setpriority(),
5185 * the task might be in the middle of scheduling on another CPU.
5186 */
5187 rq = task_rq_lock(p, &flags);
a8e504d2 5188 update_rq_clock(rq);
1da177e4
LT
5189 /*
5190 * The RT priorities are set via sched_setscheduler(), but we still
5191 * allow the 'normal' nice value to be set - but as expected
5192 * it wont have any effect on scheduling until the task is
dd41f596 5193 * SCHED_FIFO/SCHED_RR:
1da177e4 5194 */
e05606d3 5195 if (task_has_rt_policy(p)) {
1da177e4
LT
5196 p->static_prio = NICE_TO_PRIO(nice);
5197 goto out_unlock;
5198 }
dd41f596 5199 on_rq = p->se.on_rq;
c09595f6 5200 if (on_rq)
69be72c1 5201 dequeue_task(rq, p, 0);
1da177e4 5202
1da177e4 5203 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5204 set_load_weight(p);
b29739f9
IM
5205 old_prio = p->prio;
5206 p->prio = effective_prio(p);
5207 delta = p->prio - old_prio;
1da177e4 5208
dd41f596 5209 if (on_rq) {
8159f87e 5210 enqueue_task(rq, p, 0);
1da177e4 5211 /*
d5f9f942
AM
5212 * If the task increased its priority or is running and
5213 * lowered its priority, then reschedule its CPU:
1da177e4 5214 */
d5f9f942 5215 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5216 resched_task(rq->curr);
5217 }
5218out_unlock:
5219 task_rq_unlock(rq, &flags);
5220}
1da177e4
LT
5221EXPORT_SYMBOL(set_user_nice);
5222
e43379f1
MM
5223/*
5224 * can_nice - check if a task can reduce its nice value
5225 * @p: task
5226 * @nice: nice value
5227 */
36c8b586 5228int can_nice(const struct task_struct *p, const int nice)
e43379f1 5229{
024f4747
MM
5230 /* convert nice value [19,-20] to rlimit style value [1,40] */
5231 int nice_rlim = 20 - nice;
48f24c4d 5232
e43379f1
MM
5233 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5234 capable(CAP_SYS_NICE));
5235}
5236
1da177e4
LT
5237#ifdef __ARCH_WANT_SYS_NICE
5238
5239/*
5240 * sys_nice - change the priority of the current process.
5241 * @increment: priority increment
5242 *
5243 * sys_setpriority is a more generic, but much slower function that
5244 * does similar things.
5245 */
5add95d4 5246SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5247{
48f24c4d 5248 long nice, retval;
1da177e4
LT
5249
5250 /*
5251 * Setpriority might change our priority at the same moment.
5252 * We don't have to worry. Conceptually one call occurs first
5253 * and we have a single winner.
5254 */
e43379f1
MM
5255 if (increment < -40)
5256 increment = -40;
1da177e4
LT
5257 if (increment > 40)
5258 increment = 40;
5259
2b8f836f 5260 nice = TASK_NICE(current) + increment;
1da177e4
LT
5261 if (nice < -20)
5262 nice = -20;
5263 if (nice > 19)
5264 nice = 19;
5265
e43379f1
MM
5266 if (increment < 0 && !can_nice(current, nice))
5267 return -EPERM;
5268
1da177e4
LT
5269 retval = security_task_setnice(current, nice);
5270 if (retval)
5271 return retval;
5272
5273 set_user_nice(current, nice);
5274 return 0;
5275}
5276
5277#endif
5278
5279/**
5280 * task_prio - return the priority value of a given task.
5281 * @p: the task in question.
5282 *
5283 * This is the priority value as seen by users in /proc.
5284 * RT tasks are offset by -200. Normal tasks are centered
5285 * around 0, value goes from -16 to +15.
5286 */
36c8b586 5287int task_prio(const struct task_struct *p)
1da177e4
LT
5288{
5289 return p->prio - MAX_RT_PRIO;
5290}
5291
5292/**
5293 * task_nice - return the nice value of a given task.
5294 * @p: the task in question.
5295 */
36c8b586 5296int task_nice(const struct task_struct *p)
1da177e4
LT
5297{
5298 return TASK_NICE(p);
5299}
150d8bed 5300EXPORT_SYMBOL(task_nice);
1da177e4
LT
5301
5302/**
5303 * idle_cpu - is a given cpu idle currently?
5304 * @cpu: the processor in question.
5305 */
5306int idle_cpu(int cpu)
5307{
5308 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5309}
5310
1da177e4
LT
5311/**
5312 * idle_task - return the idle task for a given cpu.
5313 * @cpu: the processor in question.
5314 */
36c8b586 5315struct task_struct *idle_task(int cpu)
1da177e4
LT
5316{
5317 return cpu_rq(cpu)->idle;
5318}
5319
5320/**
5321 * find_process_by_pid - find a process with a matching PID value.
5322 * @pid: the pid in question.
5323 */
a9957449 5324static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5325{
228ebcbe 5326 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5327}
5328
5329/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5330static void
5331__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5332{
dd41f596 5333 BUG_ON(p->se.on_rq);
48f24c4d 5334
1da177e4 5335 p->policy = policy;
dd41f596
IM
5336 switch (p->policy) {
5337 case SCHED_NORMAL:
5338 case SCHED_BATCH:
5339 case SCHED_IDLE:
5340 p->sched_class = &fair_sched_class;
5341 break;
5342 case SCHED_FIFO:
5343 case SCHED_RR:
5344 p->sched_class = &rt_sched_class;
5345 break;
5346 }
5347
1da177e4 5348 p->rt_priority = prio;
b29739f9
IM
5349 p->normal_prio = normal_prio(p);
5350 /* we are holding p->pi_lock already */
5351 p->prio = rt_mutex_getprio(p);
2dd73a4f 5352 set_load_weight(p);
1da177e4
LT
5353}
5354
c69e8d9c
DH
5355/*
5356 * check the target process has a UID that matches the current process's
5357 */
5358static bool check_same_owner(struct task_struct *p)
5359{
5360 const struct cred *cred = current_cred(), *pcred;
5361 bool match;
5362
5363 rcu_read_lock();
5364 pcred = __task_cred(p);
5365 match = (cred->euid == pcred->euid ||
5366 cred->euid == pcred->uid);
5367 rcu_read_unlock();
5368 return match;
5369}
5370
961ccddd
RR
5371static int __sched_setscheduler(struct task_struct *p, int policy,
5372 struct sched_param *param, bool user)
1da177e4 5373{
83b699ed 5374 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5375 unsigned long flags;
cb469845 5376 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5377 struct rq *rq;
1da177e4 5378
66e5393a
SR
5379 /* may grab non-irq protected spin_locks */
5380 BUG_ON(in_interrupt());
1da177e4
LT
5381recheck:
5382 /* double check policy once rq lock held */
5383 if (policy < 0)
5384 policy = oldpolicy = p->policy;
5385 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5386 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5387 policy != SCHED_IDLE)
b0a9499c 5388 return -EINVAL;
1da177e4
LT
5389 /*
5390 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5391 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5392 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5393 */
5394 if (param->sched_priority < 0 ||
95cdf3b7 5395 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5396 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5397 return -EINVAL;
e05606d3 5398 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5399 return -EINVAL;
5400
37e4ab3f
OC
5401 /*
5402 * Allow unprivileged RT tasks to decrease priority:
5403 */
961ccddd 5404 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5405 if (rt_policy(policy)) {
8dc3e909 5406 unsigned long rlim_rtprio;
8dc3e909
ON
5407
5408 if (!lock_task_sighand(p, &flags))
5409 return -ESRCH;
5410 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5411 unlock_task_sighand(p, &flags);
5412
5413 /* can't set/change the rt policy */
5414 if (policy != p->policy && !rlim_rtprio)
5415 return -EPERM;
5416
5417 /* can't increase priority */
5418 if (param->sched_priority > p->rt_priority &&
5419 param->sched_priority > rlim_rtprio)
5420 return -EPERM;
5421 }
dd41f596
IM
5422 /*
5423 * Like positive nice levels, dont allow tasks to
5424 * move out of SCHED_IDLE either:
5425 */
5426 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5427 return -EPERM;
5fe1d75f 5428
37e4ab3f 5429 /* can't change other user's priorities */
c69e8d9c 5430 if (!check_same_owner(p))
37e4ab3f
OC
5431 return -EPERM;
5432 }
1da177e4 5433
725aad24 5434 if (user) {
b68aa230 5435#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5436 /*
5437 * Do not allow realtime tasks into groups that have no runtime
5438 * assigned.
5439 */
9a7e0b18
PZ
5440 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5441 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 5442 return -EPERM;
b68aa230
PZ
5443#endif
5444
725aad24
JF
5445 retval = security_task_setscheduler(p, policy, param);
5446 if (retval)
5447 return retval;
5448 }
5449
b29739f9
IM
5450 /*
5451 * make sure no PI-waiters arrive (or leave) while we are
5452 * changing the priority of the task:
5453 */
5454 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5455 /*
5456 * To be able to change p->policy safely, the apropriate
5457 * runqueue lock must be held.
5458 */
b29739f9 5459 rq = __task_rq_lock(p);
1da177e4
LT
5460 /* recheck policy now with rq lock held */
5461 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5462 policy = oldpolicy = -1;
b29739f9
IM
5463 __task_rq_unlock(rq);
5464 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5465 goto recheck;
5466 }
2daa3577 5467 update_rq_clock(rq);
dd41f596 5468 on_rq = p->se.on_rq;
051a1d1a 5469 running = task_current(rq, p);
0e1f3483 5470 if (on_rq)
2e1cb74a 5471 deactivate_task(rq, p, 0);
0e1f3483
HS
5472 if (running)
5473 p->sched_class->put_prev_task(rq, p);
f6b53205 5474
1da177e4 5475 oldprio = p->prio;
dd41f596 5476 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5477
0e1f3483
HS
5478 if (running)
5479 p->sched_class->set_curr_task(rq);
dd41f596
IM
5480 if (on_rq) {
5481 activate_task(rq, p, 0);
cb469845
SR
5482
5483 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5484 }
b29739f9
IM
5485 __task_rq_unlock(rq);
5486 spin_unlock_irqrestore(&p->pi_lock, flags);
5487
95e02ca9
TG
5488 rt_mutex_adjust_pi(p);
5489
1da177e4
LT
5490 return 0;
5491}
961ccddd
RR
5492
5493/**
5494 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5495 * @p: the task in question.
5496 * @policy: new policy.
5497 * @param: structure containing the new RT priority.
5498 *
5499 * NOTE that the task may be already dead.
5500 */
5501int sched_setscheduler(struct task_struct *p, int policy,
5502 struct sched_param *param)
5503{
5504 return __sched_setscheduler(p, policy, param, true);
5505}
1da177e4
LT
5506EXPORT_SYMBOL_GPL(sched_setscheduler);
5507
961ccddd
RR
5508/**
5509 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5510 * @p: the task in question.
5511 * @policy: new policy.
5512 * @param: structure containing the new RT priority.
5513 *
5514 * Just like sched_setscheduler, only don't bother checking if the
5515 * current context has permission. For example, this is needed in
5516 * stop_machine(): we create temporary high priority worker threads,
5517 * but our caller might not have that capability.
5518 */
5519int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5520 struct sched_param *param)
5521{
5522 return __sched_setscheduler(p, policy, param, false);
5523}
5524
95cdf3b7
IM
5525static int
5526do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5527{
1da177e4
LT
5528 struct sched_param lparam;
5529 struct task_struct *p;
36c8b586 5530 int retval;
1da177e4
LT
5531
5532 if (!param || pid < 0)
5533 return -EINVAL;
5534 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5535 return -EFAULT;
5fe1d75f
ON
5536
5537 rcu_read_lock();
5538 retval = -ESRCH;
1da177e4 5539 p = find_process_by_pid(pid);
5fe1d75f
ON
5540 if (p != NULL)
5541 retval = sched_setscheduler(p, policy, &lparam);
5542 rcu_read_unlock();
36c8b586 5543
1da177e4
LT
5544 return retval;
5545}
5546
5547/**
5548 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5549 * @pid: the pid in question.
5550 * @policy: new policy.
5551 * @param: structure containing the new RT priority.
5552 */
5add95d4
HC
5553SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5554 struct sched_param __user *, param)
1da177e4 5555{
c21761f1
JB
5556 /* negative values for policy are not valid */
5557 if (policy < 0)
5558 return -EINVAL;
5559
1da177e4
LT
5560 return do_sched_setscheduler(pid, policy, param);
5561}
5562
5563/**
5564 * sys_sched_setparam - set/change the RT priority of a thread
5565 * @pid: the pid in question.
5566 * @param: structure containing the new RT priority.
5567 */
5add95d4 5568SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5569{
5570 return do_sched_setscheduler(pid, -1, param);
5571}
5572
5573/**
5574 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5575 * @pid: the pid in question.
5576 */
5add95d4 5577SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5578{
36c8b586 5579 struct task_struct *p;
3a5c359a 5580 int retval;
1da177e4
LT
5581
5582 if (pid < 0)
3a5c359a 5583 return -EINVAL;
1da177e4
LT
5584
5585 retval = -ESRCH;
5586 read_lock(&tasklist_lock);
5587 p = find_process_by_pid(pid);
5588 if (p) {
5589 retval = security_task_getscheduler(p);
5590 if (!retval)
5591 retval = p->policy;
5592 }
5593 read_unlock(&tasklist_lock);
1da177e4
LT
5594 return retval;
5595}
5596
5597/**
5598 * sys_sched_getscheduler - get the RT priority of a thread
5599 * @pid: the pid in question.
5600 * @param: structure containing the RT priority.
5601 */
5add95d4 5602SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5603{
5604 struct sched_param lp;
36c8b586 5605 struct task_struct *p;
3a5c359a 5606 int retval;
1da177e4
LT
5607
5608 if (!param || pid < 0)
3a5c359a 5609 return -EINVAL;
1da177e4
LT
5610
5611 read_lock(&tasklist_lock);
5612 p = find_process_by_pid(pid);
5613 retval = -ESRCH;
5614 if (!p)
5615 goto out_unlock;
5616
5617 retval = security_task_getscheduler(p);
5618 if (retval)
5619 goto out_unlock;
5620
5621 lp.sched_priority = p->rt_priority;
5622 read_unlock(&tasklist_lock);
5623
5624 /*
5625 * This one might sleep, we cannot do it with a spinlock held ...
5626 */
5627 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5628
1da177e4
LT
5629 return retval;
5630
5631out_unlock:
5632 read_unlock(&tasklist_lock);
5633 return retval;
5634}
5635
96f874e2 5636long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5637{
5a16f3d3 5638 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5639 struct task_struct *p;
5640 int retval;
1da177e4 5641
95402b38 5642 get_online_cpus();
1da177e4
LT
5643 read_lock(&tasklist_lock);
5644
5645 p = find_process_by_pid(pid);
5646 if (!p) {
5647 read_unlock(&tasklist_lock);
95402b38 5648 put_online_cpus();
1da177e4
LT
5649 return -ESRCH;
5650 }
5651
5652 /*
5653 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5654 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5655 * usage count and then drop tasklist_lock.
5656 */
5657 get_task_struct(p);
5658 read_unlock(&tasklist_lock);
5659
5a16f3d3
RR
5660 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5661 retval = -ENOMEM;
5662 goto out_put_task;
5663 }
5664 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5665 retval = -ENOMEM;
5666 goto out_free_cpus_allowed;
5667 }
1da177e4 5668 retval = -EPERM;
c69e8d9c 5669 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
5670 goto out_unlock;
5671
e7834f8f
DQ
5672 retval = security_task_setscheduler(p, 0, NULL);
5673 if (retval)
5674 goto out_unlock;
5675
5a16f3d3
RR
5676 cpuset_cpus_allowed(p, cpus_allowed);
5677 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 5678 again:
5a16f3d3 5679 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5680
8707d8b8 5681 if (!retval) {
5a16f3d3
RR
5682 cpuset_cpus_allowed(p, cpus_allowed);
5683 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5684 /*
5685 * We must have raced with a concurrent cpuset
5686 * update. Just reset the cpus_allowed to the
5687 * cpuset's cpus_allowed
5688 */
5a16f3d3 5689 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5690 goto again;
5691 }
5692 }
1da177e4 5693out_unlock:
5a16f3d3
RR
5694 free_cpumask_var(new_mask);
5695out_free_cpus_allowed:
5696 free_cpumask_var(cpus_allowed);
5697out_put_task:
1da177e4 5698 put_task_struct(p);
95402b38 5699 put_online_cpus();
1da177e4
LT
5700 return retval;
5701}
5702
5703static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5704 struct cpumask *new_mask)
1da177e4 5705{
96f874e2
RR
5706 if (len < cpumask_size())
5707 cpumask_clear(new_mask);
5708 else if (len > cpumask_size())
5709 len = cpumask_size();
5710
1da177e4
LT
5711 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5712}
5713
5714/**
5715 * sys_sched_setaffinity - set the cpu affinity of a process
5716 * @pid: pid of the process
5717 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5718 * @user_mask_ptr: user-space pointer to the new cpu mask
5719 */
5add95d4
HC
5720SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5721 unsigned long __user *, user_mask_ptr)
1da177e4 5722{
5a16f3d3 5723 cpumask_var_t new_mask;
1da177e4
LT
5724 int retval;
5725
5a16f3d3
RR
5726 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5727 return -ENOMEM;
1da177e4 5728
5a16f3d3
RR
5729 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5730 if (retval == 0)
5731 retval = sched_setaffinity(pid, new_mask);
5732 free_cpumask_var(new_mask);
5733 return retval;
1da177e4
LT
5734}
5735
96f874e2 5736long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5737{
36c8b586 5738 struct task_struct *p;
1da177e4 5739 int retval;
1da177e4 5740
95402b38 5741 get_online_cpus();
1da177e4
LT
5742 read_lock(&tasklist_lock);
5743
5744 retval = -ESRCH;
5745 p = find_process_by_pid(pid);
5746 if (!p)
5747 goto out_unlock;
5748
e7834f8f
DQ
5749 retval = security_task_getscheduler(p);
5750 if (retval)
5751 goto out_unlock;
5752
96f874e2 5753 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
5754
5755out_unlock:
5756 read_unlock(&tasklist_lock);
95402b38 5757 put_online_cpus();
1da177e4 5758
9531b62f 5759 return retval;
1da177e4
LT
5760}
5761
5762/**
5763 * sys_sched_getaffinity - get the cpu affinity of a process
5764 * @pid: pid of the process
5765 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5766 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5767 */
5add95d4
HC
5768SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5769 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5770{
5771 int ret;
f17c8607 5772 cpumask_var_t mask;
1da177e4 5773
f17c8607 5774 if (len < cpumask_size())
1da177e4
LT
5775 return -EINVAL;
5776
f17c8607
RR
5777 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5778 return -ENOMEM;
1da177e4 5779
f17c8607
RR
5780 ret = sched_getaffinity(pid, mask);
5781 if (ret == 0) {
5782 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
5783 ret = -EFAULT;
5784 else
5785 ret = cpumask_size();
5786 }
5787 free_cpumask_var(mask);
1da177e4 5788
f17c8607 5789 return ret;
1da177e4
LT
5790}
5791
5792/**
5793 * sys_sched_yield - yield the current processor to other threads.
5794 *
dd41f596
IM
5795 * This function yields the current CPU to other tasks. If there are no
5796 * other threads running on this CPU then this function will return.
1da177e4 5797 */
5add95d4 5798SYSCALL_DEFINE0(sched_yield)
1da177e4 5799{
70b97a7f 5800 struct rq *rq = this_rq_lock();
1da177e4 5801
2d72376b 5802 schedstat_inc(rq, yld_count);
4530d7ab 5803 current->sched_class->yield_task(rq);
1da177e4
LT
5804
5805 /*
5806 * Since we are going to call schedule() anyway, there's
5807 * no need to preempt or enable interrupts:
5808 */
5809 __release(rq->lock);
8a25d5de 5810 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5811 _raw_spin_unlock(&rq->lock);
5812 preempt_enable_no_resched();
5813
5814 schedule();
5815
5816 return 0;
5817}
5818
e7b38404 5819static void __cond_resched(void)
1da177e4 5820{
8e0a43d8
IM
5821#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5822 __might_sleep(__FILE__, __LINE__);
5823#endif
5bbcfd90
IM
5824 /*
5825 * The BKS might be reacquired before we have dropped
5826 * PREEMPT_ACTIVE, which could trigger a second
5827 * cond_resched() call.
5828 */
1da177e4
LT
5829 do {
5830 add_preempt_count(PREEMPT_ACTIVE);
5831 schedule();
5832 sub_preempt_count(PREEMPT_ACTIVE);
5833 } while (need_resched());
5834}
5835
02b67cc3 5836int __sched _cond_resched(void)
1da177e4 5837{
9414232f
IM
5838 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5839 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5840 __cond_resched();
5841 return 1;
5842 }
5843 return 0;
5844}
02b67cc3 5845EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5846
5847/*
5848 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5849 * call schedule, and on return reacquire the lock.
5850 *
41a2d6cf 5851 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5852 * operations here to prevent schedule() from being called twice (once via
5853 * spin_unlock(), once by hand).
5854 */
95cdf3b7 5855int cond_resched_lock(spinlock_t *lock)
1da177e4 5856{
95c354fe 5857 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5858 int ret = 0;
5859
95c354fe 5860 if (spin_needbreak(lock) || resched) {
1da177e4 5861 spin_unlock(lock);
95c354fe
NP
5862 if (resched && need_resched())
5863 __cond_resched();
5864 else
5865 cpu_relax();
6df3cecb 5866 ret = 1;
1da177e4 5867 spin_lock(lock);
1da177e4 5868 }
6df3cecb 5869 return ret;
1da177e4 5870}
1da177e4
LT
5871EXPORT_SYMBOL(cond_resched_lock);
5872
5873int __sched cond_resched_softirq(void)
5874{
5875 BUG_ON(!in_softirq());
5876
9414232f 5877 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5878 local_bh_enable();
1da177e4
LT
5879 __cond_resched();
5880 local_bh_disable();
5881 return 1;
5882 }
5883 return 0;
5884}
1da177e4
LT
5885EXPORT_SYMBOL(cond_resched_softirq);
5886
1da177e4
LT
5887/**
5888 * yield - yield the current processor to other threads.
5889 *
72fd4a35 5890 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5891 * thread runnable and calls sys_sched_yield().
5892 */
5893void __sched yield(void)
5894{
5895 set_current_state(TASK_RUNNING);
5896 sys_sched_yield();
5897}
1da177e4
LT
5898EXPORT_SYMBOL(yield);
5899
5900/*
41a2d6cf 5901 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5902 * that process accounting knows that this is a task in IO wait state.
5903 *
5904 * But don't do that if it is a deliberate, throttling IO wait (this task
5905 * has set its backing_dev_info: the queue against which it should throttle)
5906 */
5907void __sched io_schedule(void)
5908{
70b97a7f 5909 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5910
0ff92245 5911 delayacct_blkio_start();
1da177e4
LT
5912 atomic_inc(&rq->nr_iowait);
5913 schedule();
5914 atomic_dec(&rq->nr_iowait);
0ff92245 5915 delayacct_blkio_end();
1da177e4 5916}
1da177e4
LT
5917EXPORT_SYMBOL(io_schedule);
5918
5919long __sched io_schedule_timeout(long timeout)
5920{
70b97a7f 5921 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5922 long ret;
5923
0ff92245 5924 delayacct_blkio_start();
1da177e4
LT
5925 atomic_inc(&rq->nr_iowait);
5926 ret = schedule_timeout(timeout);
5927 atomic_dec(&rq->nr_iowait);
0ff92245 5928 delayacct_blkio_end();
1da177e4
LT
5929 return ret;
5930}
5931
5932/**
5933 * sys_sched_get_priority_max - return maximum RT priority.
5934 * @policy: scheduling class.
5935 *
5936 * this syscall returns the maximum rt_priority that can be used
5937 * by a given scheduling class.
5938 */
5add95d4 5939SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5940{
5941 int ret = -EINVAL;
5942
5943 switch (policy) {
5944 case SCHED_FIFO:
5945 case SCHED_RR:
5946 ret = MAX_USER_RT_PRIO-1;
5947 break;
5948 case SCHED_NORMAL:
b0a9499c 5949 case SCHED_BATCH:
dd41f596 5950 case SCHED_IDLE:
1da177e4
LT
5951 ret = 0;
5952 break;
5953 }
5954 return ret;
5955}
5956
5957/**
5958 * sys_sched_get_priority_min - return minimum RT priority.
5959 * @policy: scheduling class.
5960 *
5961 * this syscall returns the minimum rt_priority that can be used
5962 * by a given scheduling class.
5963 */
5add95d4 5964SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5965{
5966 int ret = -EINVAL;
5967
5968 switch (policy) {
5969 case SCHED_FIFO:
5970 case SCHED_RR:
5971 ret = 1;
5972 break;
5973 case SCHED_NORMAL:
b0a9499c 5974 case SCHED_BATCH:
dd41f596 5975 case SCHED_IDLE:
1da177e4
LT
5976 ret = 0;
5977 }
5978 return ret;
5979}
5980
5981/**
5982 * sys_sched_rr_get_interval - return the default timeslice of a process.
5983 * @pid: pid of the process.
5984 * @interval: userspace pointer to the timeslice value.
5985 *
5986 * this syscall writes the default timeslice value of a given process
5987 * into the user-space timespec buffer. A value of '0' means infinity.
5988 */
17da2bd9 5989SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5990 struct timespec __user *, interval)
1da177e4 5991{
36c8b586 5992 struct task_struct *p;
a4ec24b4 5993 unsigned int time_slice;
3a5c359a 5994 int retval;
1da177e4 5995 struct timespec t;
1da177e4
LT
5996
5997 if (pid < 0)
3a5c359a 5998 return -EINVAL;
1da177e4
LT
5999
6000 retval = -ESRCH;
6001 read_lock(&tasklist_lock);
6002 p = find_process_by_pid(pid);
6003 if (!p)
6004 goto out_unlock;
6005
6006 retval = security_task_getscheduler(p);
6007 if (retval)
6008 goto out_unlock;
6009
77034937
IM
6010 /*
6011 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6012 * tasks that are on an otherwise idle runqueue:
6013 */
6014 time_slice = 0;
6015 if (p->policy == SCHED_RR) {
a4ec24b4 6016 time_slice = DEF_TIMESLICE;
1868f958 6017 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
6018 struct sched_entity *se = &p->se;
6019 unsigned long flags;
6020 struct rq *rq;
6021
6022 rq = task_rq_lock(p, &flags);
77034937
IM
6023 if (rq->cfs.load.weight)
6024 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
6025 task_rq_unlock(rq, &flags);
6026 }
1da177e4 6027 read_unlock(&tasklist_lock);
a4ec24b4 6028 jiffies_to_timespec(time_slice, &t);
1da177e4 6029 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6030 return retval;
3a5c359a 6031
1da177e4
LT
6032out_unlock:
6033 read_unlock(&tasklist_lock);
6034 return retval;
6035}
6036
7c731e0a 6037static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6038
82a1fcb9 6039void sched_show_task(struct task_struct *p)
1da177e4 6040{
1da177e4 6041 unsigned long free = 0;
36c8b586 6042 unsigned state;
1da177e4 6043
1da177e4 6044 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6045 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6046 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6047#if BITS_PER_LONG == 32
1da177e4 6048 if (state == TASK_RUNNING)
cc4ea795 6049 printk(KERN_CONT " running ");
1da177e4 6050 else
cc4ea795 6051 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6052#else
6053 if (state == TASK_RUNNING)
cc4ea795 6054 printk(KERN_CONT " running task ");
1da177e4 6055 else
cc4ea795 6056 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6057#endif
6058#ifdef CONFIG_DEBUG_STACK_USAGE
6059 {
10ebffde 6060 unsigned long *n = end_of_stack(p);
1da177e4
LT
6061 while (!*n)
6062 n++;
10ebffde 6063 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
6064 }
6065#endif
ba25f9dc 6066 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 6067 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 6068
5fb5e6de 6069 show_stack(p, NULL);
1da177e4
LT
6070}
6071
e59e2ae2 6072void show_state_filter(unsigned long state_filter)
1da177e4 6073{
36c8b586 6074 struct task_struct *g, *p;
1da177e4 6075
4bd77321
IM
6076#if BITS_PER_LONG == 32
6077 printk(KERN_INFO
6078 " task PC stack pid father\n");
1da177e4 6079#else
4bd77321
IM
6080 printk(KERN_INFO
6081 " task PC stack pid father\n");
1da177e4
LT
6082#endif
6083 read_lock(&tasklist_lock);
6084 do_each_thread(g, p) {
6085 /*
6086 * reset the NMI-timeout, listing all files on a slow
6087 * console might take alot of time:
6088 */
6089 touch_nmi_watchdog();
39bc89fd 6090 if (!state_filter || (p->state & state_filter))
82a1fcb9 6091 sched_show_task(p);
1da177e4
LT
6092 } while_each_thread(g, p);
6093
04c9167f
JF
6094 touch_all_softlockup_watchdogs();
6095
dd41f596
IM
6096#ifdef CONFIG_SCHED_DEBUG
6097 sysrq_sched_debug_show();
6098#endif
1da177e4 6099 read_unlock(&tasklist_lock);
e59e2ae2
IM
6100 /*
6101 * Only show locks if all tasks are dumped:
6102 */
6103 if (state_filter == -1)
6104 debug_show_all_locks();
1da177e4
LT
6105}
6106
1df21055
IM
6107void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6108{
dd41f596 6109 idle->sched_class = &idle_sched_class;
1df21055
IM
6110}
6111
f340c0d1
IM
6112/**
6113 * init_idle - set up an idle thread for a given CPU
6114 * @idle: task in question
6115 * @cpu: cpu the idle task belongs to
6116 *
6117 * NOTE: this function does not set the idle thread's NEED_RESCHED
6118 * flag, to make booting more robust.
6119 */
5c1e1767 6120void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6121{
70b97a7f 6122 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6123 unsigned long flags;
6124
5cbd54ef
IM
6125 spin_lock_irqsave(&rq->lock, flags);
6126
dd41f596
IM
6127 __sched_fork(idle);
6128 idle->se.exec_start = sched_clock();
6129
b29739f9 6130 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6131 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6132 __set_task_cpu(idle, cpu);
1da177e4 6133
1da177e4 6134 rq->curr = rq->idle = idle;
4866cde0
NP
6135#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6136 idle->oncpu = 1;
6137#endif
1da177e4
LT
6138 spin_unlock_irqrestore(&rq->lock, flags);
6139
6140 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6141#if defined(CONFIG_PREEMPT)
6142 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6143#else
a1261f54 6144 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6145#endif
dd41f596
IM
6146 /*
6147 * The idle tasks have their own, simple scheduling class:
6148 */
6149 idle->sched_class = &idle_sched_class;
fb52607a 6150 ftrace_graph_init_task(idle);
1da177e4
LT
6151}
6152
6153/*
6154 * In a system that switches off the HZ timer nohz_cpu_mask
6155 * indicates which cpus entered this state. This is used
6156 * in the rcu update to wait only for active cpus. For system
6157 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6158 * always be CPU_BITS_NONE.
1da177e4 6159 */
6a7b3dc3 6160cpumask_var_t nohz_cpu_mask;
1da177e4 6161
19978ca6
IM
6162/*
6163 * Increase the granularity value when there are more CPUs,
6164 * because with more CPUs the 'effective latency' as visible
6165 * to users decreases. But the relationship is not linear,
6166 * so pick a second-best guess by going with the log2 of the
6167 * number of CPUs.
6168 *
6169 * This idea comes from the SD scheduler of Con Kolivas:
6170 */
6171static inline void sched_init_granularity(void)
6172{
6173 unsigned int factor = 1 + ilog2(num_online_cpus());
6174 const unsigned long limit = 200000000;
6175
6176 sysctl_sched_min_granularity *= factor;
6177 if (sysctl_sched_min_granularity > limit)
6178 sysctl_sched_min_granularity = limit;
6179
6180 sysctl_sched_latency *= factor;
6181 if (sysctl_sched_latency > limit)
6182 sysctl_sched_latency = limit;
6183
6184 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6185
6186 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6187}
6188
1da177e4
LT
6189#ifdef CONFIG_SMP
6190/*
6191 * This is how migration works:
6192 *
70b97a7f 6193 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6194 * runqueue and wake up that CPU's migration thread.
6195 * 2) we down() the locked semaphore => thread blocks.
6196 * 3) migration thread wakes up (implicitly it forces the migrated
6197 * thread off the CPU)
6198 * 4) it gets the migration request and checks whether the migrated
6199 * task is still in the wrong runqueue.
6200 * 5) if it's in the wrong runqueue then the migration thread removes
6201 * it and puts it into the right queue.
6202 * 6) migration thread up()s the semaphore.
6203 * 7) we wake up and the migration is done.
6204 */
6205
6206/*
6207 * Change a given task's CPU affinity. Migrate the thread to a
6208 * proper CPU and schedule it away if the CPU it's executing on
6209 * is removed from the allowed bitmask.
6210 *
6211 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6212 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6213 * call is not atomic; no spinlocks may be held.
6214 */
96f874e2 6215int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 6216{
70b97a7f 6217 struct migration_req req;
1da177e4 6218 unsigned long flags;
70b97a7f 6219 struct rq *rq;
48f24c4d 6220 int ret = 0;
1da177e4
LT
6221
6222 rq = task_rq_lock(p, &flags);
96f874e2 6223 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
6224 ret = -EINVAL;
6225 goto out;
6226 }
6227
9985b0ba 6228 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 6229 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
6230 ret = -EINVAL;
6231 goto out;
6232 }
6233
73fe6aae 6234 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 6235 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 6236 else {
96f874e2
RR
6237 cpumask_copy(&p->cpus_allowed, new_mask);
6238 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
6239 }
6240
1da177e4 6241 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6242 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6243 goto out;
6244
1e5ce4f4 6245 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4
LT
6246 /* Need help from migration thread: drop lock and wait. */
6247 task_rq_unlock(rq, &flags);
6248 wake_up_process(rq->migration_thread);
6249 wait_for_completion(&req.done);
6250 tlb_migrate_finish(p->mm);
6251 return 0;
6252 }
6253out:
6254 task_rq_unlock(rq, &flags);
48f24c4d 6255
1da177e4
LT
6256 return ret;
6257}
cd8ba7cd 6258EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6259
6260/*
41a2d6cf 6261 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6262 * this because either it can't run here any more (set_cpus_allowed()
6263 * away from this CPU, or CPU going down), or because we're
6264 * attempting to rebalance this task on exec (sched_exec).
6265 *
6266 * So we race with normal scheduler movements, but that's OK, as long
6267 * as the task is no longer on this CPU.
efc30814
KK
6268 *
6269 * Returns non-zero if task was successfully migrated.
1da177e4 6270 */
efc30814 6271static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6272{
70b97a7f 6273 struct rq *rq_dest, *rq_src;
dd41f596 6274 int ret = 0, on_rq;
1da177e4 6275
e761b772 6276 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6277 return ret;
1da177e4
LT
6278
6279 rq_src = cpu_rq(src_cpu);
6280 rq_dest = cpu_rq(dest_cpu);
6281
6282 double_rq_lock(rq_src, rq_dest);
6283 /* Already moved. */
6284 if (task_cpu(p) != src_cpu)
b1e38734 6285 goto done;
1da177e4 6286 /* Affinity changed (again). */
96f874e2 6287 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6288 goto fail;
1da177e4 6289
dd41f596 6290 on_rq = p->se.on_rq;
6e82a3be 6291 if (on_rq)
2e1cb74a 6292 deactivate_task(rq_src, p, 0);
6e82a3be 6293
1da177e4 6294 set_task_cpu(p, dest_cpu);
dd41f596
IM
6295 if (on_rq) {
6296 activate_task(rq_dest, p, 0);
15afe09b 6297 check_preempt_curr(rq_dest, p, 0);
1da177e4 6298 }
b1e38734 6299done:
efc30814 6300 ret = 1;
b1e38734 6301fail:
1da177e4 6302 double_rq_unlock(rq_src, rq_dest);
efc30814 6303 return ret;
1da177e4
LT
6304}
6305
6306/*
6307 * migration_thread - this is a highprio system thread that performs
6308 * thread migration by bumping thread off CPU then 'pushing' onto
6309 * another runqueue.
6310 */
95cdf3b7 6311static int migration_thread(void *data)
1da177e4 6312{
1da177e4 6313 int cpu = (long)data;
70b97a7f 6314 struct rq *rq;
1da177e4
LT
6315
6316 rq = cpu_rq(cpu);
6317 BUG_ON(rq->migration_thread != current);
6318
6319 set_current_state(TASK_INTERRUPTIBLE);
6320 while (!kthread_should_stop()) {
70b97a7f 6321 struct migration_req *req;
1da177e4 6322 struct list_head *head;
1da177e4 6323
1da177e4
LT
6324 spin_lock_irq(&rq->lock);
6325
6326 if (cpu_is_offline(cpu)) {
6327 spin_unlock_irq(&rq->lock);
6328 goto wait_to_die;
6329 }
6330
6331 if (rq->active_balance) {
6332 active_load_balance(rq, cpu);
6333 rq->active_balance = 0;
6334 }
6335
6336 head = &rq->migration_queue;
6337
6338 if (list_empty(head)) {
6339 spin_unlock_irq(&rq->lock);
6340 schedule();
6341 set_current_state(TASK_INTERRUPTIBLE);
6342 continue;
6343 }
70b97a7f 6344 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6345 list_del_init(head->next);
6346
674311d5
NP
6347 spin_unlock(&rq->lock);
6348 __migrate_task(req->task, cpu, req->dest_cpu);
6349 local_irq_enable();
1da177e4
LT
6350
6351 complete(&req->done);
6352 }
6353 __set_current_state(TASK_RUNNING);
6354 return 0;
6355
6356wait_to_die:
6357 /* Wait for kthread_stop */
6358 set_current_state(TASK_INTERRUPTIBLE);
6359 while (!kthread_should_stop()) {
6360 schedule();
6361 set_current_state(TASK_INTERRUPTIBLE);
6362 }
6363 __set_current_state(TASK_RUNNING);
6364 return 0;
6365}
6366
6367#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6368
6369static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6370{
6371 int ret;
6372
6373 local_irq_disable();
6374 ret = __migrate_task(p, src_cpu, dest_cpu);
6375 local_irq_enable();
6376 return ret;
6377}
6378
054b9108 6379/*
3a4fa0a2 6380 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 6381 */
48f24c4d 6382static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6383{
70b97a7f 6384 int dest_cpu;
6ca09dfc 6385 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
6386
6387again:
6388 /* Look for allowed, online CPU in same node. */
6389 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6390 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6391 goto move;
6392
6393 /* Any allowed, online CPU? */
6394 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6395 if (dest_cpu < nr_cpu_ids)
6396 goto move;
6397
6398 /* No more Mr. Nice Guy. */
6399 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
6400 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6401 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 6402
e76bd8d9
RR
6403 /*
6404 * Don't tell them about moving exiting tasks or
6405 * kernel threads (both mm NULL), since they never
6406 * leave kernel.
6407 */
6408 if (p->mm && printk_ratelimit()) {
6409 printk(KERN_INFO "process %d (%s) no "
6410 "longer affine to cpu%d\n",
6411 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 6412 }
e76bd8d9
RR
6413 }
6414
6415move:
6416 /* It can have affinity changed while we were choosing. */
6417 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6418 goto again;
1da177e4
LT
6419}
6420
6421/*
6422 * While a dead CPU has no uninterruptible tasks queued at this point,
6423 * it might still have a nonzero ->nr_uninterruptible counter, because
6424 * for performance reasons the counter is not stricly tracking tasks to
6425 * their home CPUs. So we just add the counter to another CPU's counter,
6426 * to keep the global sum constant after CPU-down:
6427 */
70b97a7f 6428static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6429{
1e5ce4f4 6430 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
6431 unsigned long flags;
6432
6433 local_irq_save(flags);
6434 double_rq_lock(rq_src, rq_dest);
6435 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6436 rq_src->nr_uninterruptible = 0;
6437 double_rq_unlock(rq_src, rq_dest);
6438 local_irq_restore(flags);
6439}
6440
6441/* Run through task list and migrate tasks from the dead cpu. */
6442static void migrate_live_tasks(int src_cpu)
6443{
48f24c4d 6444 struct task_struct *p, *t;
1da177e4 6445
f7b4cddc 6446 read_lock(&tasklist_lock);
1da177e4 6447
48f24c4d
IM
6448 do_each_thread(t, p) {
6449 if (p == current)
1da177e4
LT
6450 continue;
6451
48f24c4d
IM
6452 if (task_cpu(p) == src_cpu)
6453 move_task_off_dead_cpu(src_cpu, p);
6454 } while_each_thread(t, p);
1da177e4 6455
f7b4cddc 6456 read_unlock(&tasklist_lock);
1da177e4
LT
6457}
6458
dd41f596
IM
6459/*
6460 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6461 * It does so by boosting its priority to highest possible.
6462 * Used by CPU offline code.
1da177e4
LT
6463 */
6464void sched_idle_next(void)
6465{
48f24c4d 6466 int this_cpu = smp_processor_id();
70b97a7f 6467 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6468 struct task_struct *p = rq->idle;
6469 unsigned long flags;
6470
6471 /* cpu has to be offline */
48f24c4d 6472 BUG_ON(cpu_online(this_cpu));
1da177e4 6473
48f24c4d
IM
6474 /*
6475 * Strictly not necessary since rest of the CPUs are stopped by now
6476 * and interrupts disabled on the current cpu.
1da177e4
LT
6477 */
6478 spin_lock_irqsave(&rq->lock, flags);
6479
dd41f596 6480 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6481
94bc9a7b
DA
6482 update_rq_clock(rq);
6483 activate_task(rq, p, 0);
1da177e4
LT
6484
6485 spin_unlock_irqrestore(&rq->lock, flags);
6486}
6487
48f24c4d
IM
6488/*
6489 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6490 * offline.
6491 */
6492void idle_task_exit(void)
6493{
6494 struct mm_struct *mm = current->active_mm;
6495
6496 BUG_ON(cpu_online(smp_processor_id()));
6497
6498 if (mm != &init_mm)
6499 switch_mm(mm, &init_mm, current);
6500 mmdrop(mm);
6501}
6502
054b9108 6503/* called under rq->lock with disabled interrupts */
36c8b586 6504static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6505{
70b97a7f 6506 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6507
6508 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6509 BUG_ON(!p->exit_state);
1da177e4
LT
6510
6511 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6512 BUG_ON(p->state == TASK_DEAD);
1da177e4 6513
48f24c4d 6514 get_task_struct(p);
1da177e4
LT
6515
6516 /*
6517 * Drop lock around migration; if someone else moves it,
41a2d6cf 6518 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6519 * fine.
6520 */
f7b4cddc 6521 spin_unlock_irq(&rq->lock);
48f24c4d 6522 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6523 spin_lock_irq(&rq->lock);
1da177e4 6524
48f24c4d 6525 put_task_struct(p);
1da177e4
LT
6526}
6527
6528/* release_task() removes task from tasklist, so we won't find dead tasks. */
6529static void migrate_dead_tasks(unsigned int dead_cpu)
6530{
70b97a7f 6531 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6532 struct task_struct *next;
48f24c4d 6533
dd41f596
IM
6534 for ( ; ; ) {
6535 if (!rq->nr_running)
6536 break;
a8e504d2 6537 update_rq_clock(rq);
b67802ea 6538 next = pick_next_task(rq);
dd41f596
IM
6539 if (!next)
6540 break;
79c53799 6541 next->sched_class->put_prev_task(rq, next);
dd41f596 6542 migrate_dead(dead_cpu, next);
e692ab53 6543
1da177e4
LT
6544 }
6545}
6546#endif /* CONFIG_HOTPLUG_CPU */
6547
e692ab53
NP
6548#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6549
6550static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6551 {
6552 .procname = "sched_domain",
c57baf1e 6553 .mode = 0555,
e0361851 6554 },
38605cae 6555 {0, },
e692ab53
NP
6556};
6557
6558static struct ctl_table sd_ctl_root[] = {
e0361851 6559 {
c57baf1e 6560 .ctl_name = CTL_KERN,
e0361851 6561 .procname = "kernel",
c57baf1e 6562 .mode = 0555,
e0361851
AD
6563 .child = sd_ctl_dir,
6564 },
38605cae 6565 {0, },
e692ab53
NP
6566};
6567
6568static struct ctl_table *sd_alloc_ctl_entry(int n)
6569{
6570 struct ctl_table *entry =
5cf9f062 6571 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6572
e692ab53
NP
6573 return entry;
6574}
6575
6382bc90
MM
6576static void sd_free_ctl_entry(struct ctl_table **tablep)
6577{
cd790076 6578 struct ctl_table *entry;
6382bc90 6579
cd790076
MM
6580 /*
6581 * In the intermediate directories, both the child directory and
6582 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6583 * will always be set. In the lowest directory the names are
cd790076
MM
6584 * static strings and all have proc handlers.
6585 */
6586 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6587 if (entry->child)
6588 sd_free_ctl_entry(&entry->child);
cd790076
MM
6589 if (entry->proc_handler == NULL)
6590 kfree(entry->procname);
6591 }
6382bc90
MM
6592
6593 kfree(*tablep);
6594 *tablep = NULL;
6595}
6596
e692ab53 6597static void
e0361851 6598set_table_entry(struct ctl_table *entry,
e692ab53
NP
6599 const char *procname, void *data, int maxlen,
6600 mode_t mode, proc_handler *proc_handler)
6601{
e692ab53
NP
6602 entry->procname = procname;
6603 entry->data = data;
6604 entry->maxlen = maxlen;
6605 entry->mode = mode;
6606 entry->proc_handler = proc_handler;
6607}
6608
6609static struct ctl_table *
6610sd_alloc_ctl_domain_table(struct sched_domain *sd)
6611{
a5d8c348 6612 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6613
ad1cdc1d
MM
6614 if (table == NULL)
6615 return NULL;
6616
e0361851 6617 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6618 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6619 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6620 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6621 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6622 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6623 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6624 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6625 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6626 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6627 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6628 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6629 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6630 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6631 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6632 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6633 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6634 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6635 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6636 &sd->cache_nice_tries,
6637 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6638 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6639 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6640 set_table_entry(&table[11], "name", sd->name,
6641 CORENAME_MAX_SIZE, 0444, proc_dostring);
6642 /* &table[12] is terminator */
e692ab53
NP
6643
6644 return table;
6645}
6646
9a4e7159 6647static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6648{
6649 struct ctl_table *entry, *table;
6650 struct sched_domain *sd;
6651 int domain_num = 0, i;
6652 char buf[32];
6653
6654 for_each_domain(cpu, sd)
6655 domain_num++;
6656 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6657 if (table == NULL)
6658 return NULL;
e692ab53
NP
6659
6660 i = 0;
6661 for_each_domain(cpu, sd) {
6662 snprintf(buf, 32, "domain%d", i);
e692ab53 6663 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6664 entry->mode = 0555;
e692ab53
NP
6665 entry->child = sd_alloc_ctl_domain_table(sd);
6666 entry++;
6667 i++;
6668 }
6669 return table;
6670}
6671
6672static struct ctl_table_header *sd_sysctl_header;
6382bc90 6673static void register_sched_domain_sysctl(void)
e692ab53
NP
6674{
6675 int i, cpu_num = num_online_cpus();
6676 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6677 char buf[32];
6678
7378547f
MM
6679 WARN_ON(sd_ctl_dir[0].child);
6680 sd_ctl_dir[0].child = entry;
6681
ad1cdc1d
MM
6682 if (entry == NULL)
6683 return;
6684
97b6ea7b 6685 for_each_online_cpu(i) {
e692ab53 6686 snprintf(buf, 32, "cpu%d", i);
e692ab53 6687 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6688 entry->mode = 0555;
e692ab53 6689 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6690 entry++;
e692ab53 6691 }
7378547f
MM
6692
6693 WARN_ON(sd_sysctl_header);
e692ab53
NP
6694 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6695}
6382bc90 6696
7378547f 6697/* may be called multiple times per register */
6382bc90
MM
6698static void unregister_sched_domain_sysctl(void)
6699{
7378547f
MM
6700 if (sd_sysctl_header)
6701 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6702 sd_sysctl_header = NULL;
7378547f
MM
6703 if (sd_ctl_dir[0].child)
6704 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6705}
e692ab53 6706#else
6382bc90
MM
6707static void register_sched_domain_sysctl(void)
6708{
6709}
6710static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6711{
6712}
6713#endif
6714
1f11eb6a
GH
6715static void set_rq_online(struct rq *rq)
6716{
6717 if (!rq->online) {
6718 const struct sched_class *class;
6719
c6c4927b 6720 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6721 rq->online = 1;
6722
6723 for_each_class(class) {
6724 if (class->rq_online)
6725 class->rq_online(rq);
6726 }
6727 }
6728}
6729
6730static void set_rq_offline(struct rq *rq)
6731{
6732 if (rq->online) {
6733 const struct sched_class *class;
6734
6735 for_each_class(class) {
6736 if (class->rq_offline)
6737 class->rq_offline(rq);
6738 }
6739
c6c4927b 6740 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6741 rq->online = 0;
6742 }
6743}
6744
1da177e4
LT
6745/*
6746 * migration_call - callback that gets triggered when a CPU is added.
6747 * Here we can start up the necessary migration thread for the new CPU.
6748 */
48f24c4d
IM
6749static int __cpuinit
6750migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6751{
1da177e4 6752 struct task_struct *p;
48f24c4d 6753 int cpu = (long)hcpu;
1da177e4 6754 unsigned long flags;
70b97a7f 6755 struct rq *rq;
1da177e4
LT
6756
6757 switch (action) {
5be9361c 6758
1da177e4 6759 case CPU_UP_PREPARE:
8bb78442 6760 case CPU_UP_PREPARE_FROZEN:
dd41f596 6761 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6762 if (IS_ERR(p))
6763 return NOTIFY_BAD;
1da177e4
LT
6764 kthread_bind(p, cpu);
6765 /* Must be high prio: stop_machine expects to yield to it. */
6766 rq = task_rq_lock(p, &flags);
dd41f596 6767 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6768 task_rq_unlock(rq, &flags);
6769 cpu_rq(cpu)->migration_thread = p;
6770 break;
48f24c4d 6771
1da177e4 6772 case CPU_ONLINE:
8bb78442 6773 case CPU_ONLINE_FROZEN:
3a4fa0a2 6774 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6775 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6776
6777 /* Update our root-domain */
6778 rq = cpu_rq(cpu);
6779 spin_lock_irqsave(&rq->lock, flags);
6780 if (rq->rd) {
c6c4927b 6781 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6782
6783 set_rq_online(rq);
1f94ef59
GH
6784 }
6785 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6786 break;
48f24c4d 6787
1da177e4
LT
6788#ifdef CONFIG_HOTPLUG_CPU
6789 case CPU_UP_CANCELED:
8bb78442 6790 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6791 if (!cpu_rq(cpu)->migration_thread)
6792 break;
41a2d6cf 6793 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 6794 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 6795 cpumask_any(cpu_online_mask));
1da177e4
LT
6796 kthread_stop(cpu_rq(cpu)->migration_thread);
6797 cpu_rq(cpu)->migration_thread = NULL;
6798 break;
48f24c4d 6799
1da177e4 6800 case CPU_DEAD:
8bb78442 6801 case CPU_DEAD_FROZEN:
470fd646 6802 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6803 migrate_live_tasks(cpu);
6804 rq = cpu_rq(cpu);
6805 kthread_stop(rq->migration_thread);
6806 rq->migration_thread = NULL;
6807 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6808 spin_lock_irq(&rq->lock);
a8e504d2 6809 update_rq_clock(rq);
2e1cb74a 6810 deactivate_task(rq, rq->idle, 0);
1da177e4 6811 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6812 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6813 rq->idle->sched_class = &idle_sched_class;
1da177e4 6814 migrate_dead_tasks(cpu);
d2da272a 6815 spin_unlock_irq(&rq->lock);
470fd646 6816 cpuset_unlock();
1da177e4
LT
6817 migrate_nr_uninterruptible(rq);
6818 BUG_ON(rq->nr_running != 0);
6819
41a2d6cf
IM
6820 /*
6821 * No need to migrate the tasks: it was best-effort if
6822 * they didn't take sched_hotcpu_mutex. Just wake up
6823 * the requestors.
6824 */
1da177e4
LT
6825 spin_lock_irq(&rq->lock);
6826 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6827 struct migration_req *req;
6828
1da177e4 6829 req = list_entry(rq->migration_queue.next,
70b97a7f 6830 struct migration_req, list);
1da177e4 6831 list_del_init(&req->list);
9a2bd244 6832 spin_unlock_irq(&rq->lock);
1da177e4 6833 complete(&req->done);
9a2bd244 6834 spin_lock_irq(&rq->lock);
1da177e4
LT
6835 }
6836 spin_unlock_irq(&rq->lock);
6837 break;
57d885fe 6838
08f503b0
GH
6839 case CPU_DYING:
6840 case CPU_DYING_FROZEN:
57d885fe
GH
6841 /* Update our root-domain */
6842 rq = cpu_rq(cpu);
6843 spin_lock_irqsave(&rq->lock, flags);
6844 if (rq->rd) {
c6c4927b 6845 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6846 set_rq_offline(rq);
57d885fe
GH
6847 }
6848 spin_unlock_irqrestore(&rq->lock, flags);
6849 break;
1da177e4
LT
6850#endif
6851 }
6852 return NOTIFY_OK;
6853}
6854
6855/* Register at highest priority so that task migration (migrate_all_tasks)
6856 * happens before everything else.
6857 */
26c2143b 6858static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6859 .notifier_call = migration_call,
6860 .priority = 10
6861};
6862
7babe8db 6863static int __init migration_init(void)
1da177e4
LT
6864{
6865 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6866 int err;
48f24c4d
IM
6867
6868 /* Start one for the boot CPU: */
07dccf33
AM
6869 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6870 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6871 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6872 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
6873
6874 return err;
1da177e4 6875}
7babe8db 6876early_initcall(migration_init);
1da177e4
LT
6877#endif
6878
6879#ifdef CONFIG_SMP
476f3534 6880
3e9830dc 6881#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6882
7c16ec58 6883static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6884 struct cpumask *groupmask)
1da177e4 6885{
4dcf6aff 6886 struct sched_group *group = sd->groups;
434d53b0 6887 char str[256];
1da177e4 6888
968ea6d8 6889 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6890 cpumask_clear(groupmask);
4dcf6aff
IM
6891
6892 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6893
6894 if (!(sd->flags & SD_LOAD_BALANCE)) {
6895 printk("does not load-balance\n");
6896 if (sd->parent)
6897 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6898 " has parent");
6899 return -1;
41c7ce9a
NP
6900 }
6901
eefd796a 6902 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6903
758b2cdc 6904 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
6905 printk(KERN_ERR "ERROR: domain->span does not contain "
6906 "CPU%d\n", cpu);
6907 }
758b2cdc 6908 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
6909 printk(KERN_ERR "ERROR: domain->groups does not contain"
6910 " CPU%d\n", cpu);
6911 }
1da177e4 6912
4dcf6aff 6913 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6914 do {
4dcf6aff
IM
6915 if (!group) {
6916 printk("\n");
6917 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6918 break;
6919 }
6920
4dcf6aff
IM
6921 if (!group->__cpu_power) {
6922 printk(KERN_CONT "\n");
6923 printk(KERN_ERR "ERROR: domain->cpu_power not "
6924 "set\n");
6925 break;
6926 }
1da177e4 6927
758b2cdc 6928 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
6929 printk(KERN_CONT "\n");
6930 printk(KERN_ERR "ERROR: empty group\n");
6931 break;
6932 }
1da177e4 6933
758b2cdc 6934 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
6935 printk(KERN_CONT "\n");
6936 printk(KERN_ERR "ERROR: repeated CPUs\n");
6937 break;
6938 }
1da177e4 6939
758b2cdc 6940 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6941
968ea6d8 6942 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4dcf6aff 6943 printk(KERN_CONT " %s", str);
1da177e4 6944
4dcf6aff
IM
6945 group = group->next;
6946 } while (group != sd->groups);
6947 printk(KERN_CONT "\n");
1da177e4 6948
758b2cdc 6949 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 6950 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6951
758b2cdc
RR
6952 if (sd->parent &&
6953 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
6954 printk(KERN_ERR "ERROR: parent span is not a superset "
6955 "of domain->span\n");
6956 return 0;
6957}
1da177e4 6958
4dcf6aff
IM
6959static void sched_domain_debug(struct sched_domain *sd, int cpu)
6960{
d5dd3db1 6961 cpumask_var_t groupmask;
4dcf6aff 6962 int level = 0;
1da177e4 6963
4dcf6aff
IM
6964 if (!sd) {
6965 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6966 return;
6967 }
1da177e4 6968
4dcf6aff
IM
6969 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6970
d5dd3db1 6971 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6972 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6973 return;
6974 }
6975
4dcf6aff 6976 for (;;) {
7c16ec58 6977 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6978 break;
1da177e4
LT
6979 level++;
6980 sd = sd->parent;
33859f7f 6981 if (!sd)
4dcf6aff
IM
6982 break;
6983 }
d5dd3db1 6984 free_cpumask_var(groupmask);
1da177e4 6985}
6d6bc0ad 6986#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6987# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6988#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6989
1a20ff27 6990static int sd_degenerate(struct sched_domain *sd)
245af2c7 6991{
758b2cdc 6992 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6993 return 1;
6994
6995 /* Following flags need at least 2 groups */
6996 if (sd->flags & (SD_LOAD_BALANCE |
6997 SD_BALANCE_NEWIDLE |
6998 SD_BALANCE_FORK |
89c4710e
SS
6999 SD_BALANCE_EXEC |
7000 SD_SHARE_CPUPOWER |
7001 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7002 if (sd->groups != sd->groups->next)
7003 return 0;
7004 }
7005
7006 /* Following flags don't use groups */
7007 if (sd->flags & (SD_WAKE_IDLE |
7008 SD_WAKE_AFFINE |
7009 SD_WAKE_BALANCE))
7010 return 0;
7011
7012 return 1;
7013}
7014
48f24c4d
IM
7015static int
7016sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7017{
7018 unsigned long cflags = sd->flags, pflags = parent->flags;
7019
7020 if (sd_degenerate(parent))
7021 return 1;
7022
758b2cdc 7023 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7024 return 0;
7025
7026 /* Does parent contain flags not in child? */
7027 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7028 if (cflags & SD_WAKE_AFFINE)
7029 pflags &= ~SD_WAKE_BALANCE;
7030 /* Flags needing groups don't count if only 1 group in parent */
7031 if (parent->groups == parent->groups->next) {
7032 pflags &= ~(SD_LOAD_BALANCE |
7033 SD_BALANCE_NEWIDLE |
7034 SD_BALANCE_FORK |
89c4710e
SS
7035 SD_BALANCE_EXEC |
7036 SD_SHARE_CPUPOWER |
7037 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7038 if (nr_node_ids == 1)
7039 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7040 }
7041 if (~cflags & pflags)
7042 return 0;
7043
7044 return 1;
7045}
7046
c6c4927b
RR
7047static void free_rootdomain(struct root_domain *rd)
7048{
68e74568
RR
7049 cpupri_cleanup(&rd->cpupri);
7050
c6c4927b
RR
7051 free_cpumask_var(rd->rto_mask);
7052 free_cpumask_var(rd->online);
7053 free_cpumask_var(rd->span);
7054 kfree(rd);
7055}
7056
57d885fe
GH
7057static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7058{
a0490fa3 7059 struct root_domain *old_rd = NULL;
57d885fe 7060 unsigned long flags;
57d885fe
GH
7061
7062 spin_lock_irqsave(&rq->lock, flags);
7063
7064 if (rq->rd) {
a0490fa3 7065 old_rd = rq->rd;
57d885fe 7066
c6c4927b 7067 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7068 set_rq_offline(rq);
57d885fe 7069
c6c4927b 7070 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7071
a0490fa3
IM
7072 /*
7073 * If we dont want to free the old_rt yet then
7074 * set old_rd to NULL to skip the freeing later
7075 * in this function:
7076 */
7077 if (!atomic_dec_and_test(&old_rd->refcount))
7078 old_rd = NULL;
57d885fe
GH
7079 }
7080
7081 atomic_inc(&rd->refcount);
7082 rq->rd = rd;
7083
c6c4927b
RR
7084 cpumask_set_cpu(rq->cpu, rd->span);
7085 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
1f11eb6a 7086 set_rq_online(rq);
57d885fe
GH
7087
7088 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7089
7090 if (old_rd)
7091 free_rootdomain(old_rd);
57d885fe
GH
7092}
7093
db2f59c8 7094static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe
GH
7095{
7096 memset(rd, 0, sizeof(*rd));
7097
c6c4927b
RR
7098 if (bootmem) {
7099 alloc_bootmem_cpumask_var(&def_root_domain.span);
7100 alloc_bootmem_cpumask_var(&def_root_domain.online);
7101 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
68e74568 7102 cpupri_init(&rd->cpupri, true);
c6c4927b
RR
7103 return 0;
7104 }
7105
7106 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 7107 goto out;
c6c4927b
RR
7108 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
7109 goto free_span;
7110 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
7111 goto free_online;
6e0534f2 7112
68e74568
RR
7113 if (cpupri_init(&rd->cpupri, false) != 0)
7114 goto free_rto_mask;
c6c4927b 7115 return 0;
6e0534f2 7116
68e74568
RR
7117free_rto_mask:
7118 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7119free_online:
7120 free_cpumask_var(rd->online);
7121free_span:
7122 free_cpumask_var(rd->span);
0c910d28 7123out:
c6c4927b 7124 return -ENOMEM;
57d885fe
GH
7125}
7126
7127static void init_defrootdomain(void)
7128{
c6c4927b
RR
7129 init_rootdomain(&def_root_domain, true);
7130
57d885fe
GH
7131 atomic_set(&def_root_domain.refcount, 1);
7132}
7133
dc938520 7134static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7135{
7136 struct root_domain *rd;
7137
7138 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7139 if (!rd)
7140 return NULL;
7141
c6c4927b
RR
7142 if (init_rootdomain(rd, false) != 0) {
7143 kfree(rd);
7144 return NULL;
7145 }
57d885fe
GH
7146
7147 return rd;
7148}
7149
1da177e4 7150/*
0eab9146 7151 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7152 * hold the hotplug lock.
7153 */
0eab9146
IM
7154static void
7155cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7156{
70b97a7f 7157 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7158 struct sched_domain *tmp;
7159
7160 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7161 for (tmp = sd; tmp; ) {
245af2c7
SS
7162 struct sched_domain *parent = tmp->parent;
7163 if (!parent)
7164 break;
f29c9b1c 7165
1a848870 7166 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7167 tmp->parent = parent->parent;
1a848870
SS
7168 if (parent->parent)
7169 parent->parent->child = tmp;
f29c9b1c
LZ
7170 } else
7171 tmp = tmp->parent;
245af2c7
SS
7172 }
7173
1a848870 7174 if (sd && sd_degenerate(sd)) {
245af2c7 7175 sd = sd->parent;
1a848870
SS
7176 if (sd)
7177 sd->child = NULL;
7178 }
1da177e4
LT
7179
7180 sched_domain_debug(sd, cpu);
7181
57d885fe 7182 rq_attach_root(rq, rd);
674311d5 7183 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
7184}
7185
7186/* cpus with isolated domains */
dcc30a35 7187static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7188
7189/* Setup the mask of cpus configured for isolated domains */
7190static int __init isolated_cpu_setup(char *str)
7191{
968ea6d8 7192 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7193 return 1;
7194}
7195
8927f494 7196__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
7197
7198/*
6711cab4
SS
7199 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7200 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
7201 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7202 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
7203 *
7204 * init_sched_build_groups will build a circular linked list of the groups
7205 * covered by the given span, and will set each group's ->cpumask correctly,
7206 * and ->cpu_power to 0.
7207 */
a616058b 7208static void
96f874e2
RR
7209init_sched_build_groups(const struct cpumask *span,
7210 const struct cpumask *cpu_map,
7211 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 7212 struct sched_group **sg,
96f874e2
RR
7213 struct cpumask *tmpmask),
7214 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
7215{
7216 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
7217 int i;
7218
96f874e2 7219 cpumask_clear(covered);
7c16ec58 7220
abcd083a 7221 for_each_cpu(i, span) {
6711cab4 7222 struct sched_group *sg;
7c16ec58 7223 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
7224 int j;
7225
758b2cdc 7226 if (cpumask_test_cpu(i, covered))
1da177e4
LT
7227 continue;
7228
758b2cdc 7229 cpumask_clear(sched_group_cpus(sg));
5517d86b 7230 sg->__cpu_power = 0;
1da177e4 7231
abcd083a 7232 for_each_cpu(j, span) {
7c16ec58 7233 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
7234 continue;
7235
96f874e2 7236 cpumask_set_cpu(j, covered);
758b2cdc 7237 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
7238 }
7239 if (!first)
7240 first = sg;
7241 if (last)
7242 last->next = sg;
7243 last = sg;
7244 }
7245 last->next = first;
7246}
7247
9c1cfda2 7248#define SD_NODES_PER_DOMAIN 16
1da177e4 7249
9c1cfda2 7250#ifdef CONFIG_NUMA
198e2f18 7251
9c1cfda2
JH
7252/**
7253 * find_next_best_node - find the next node to include in a sched_domain
7254 * @node: node whose sched_domain we're building
7255 * @used_nodes: nodes already in the sched_domain
7256 *
41a2d6cf 7257 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7258 * finds the closest node not already in the @used_nodes map.
7259 *
7260 * Should use nodemask_t.
7261 */
c5f59f08 7262static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
7263{
7264 int i, n, val, min_val, best_node = 0;
7265
7266 min_val = INT_MAX;
7267
076ac2af 7268 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7269 /* Start at @node */
076ac2af 7270 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7271
7272 if (!nr_cpus_node(n))
7273 continue;
7274
7275 /* Skip already used nodes */
c5f59f08 7276 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7277 continue;
7278
7279 /* Simple min distance search */
7280 val = node_distance(node, n);
7281
7282 if (val < min_val) {
7283 min_val = val;
7284 best_node = n;
7285 }
7286 }
7287
c5f59f08 7288 node_set(best_node, *used_nodes);
9c1cfda2
JH
7289 return best_node;
7290}
7291
7292/**
7293 * sched_domain_node_span - get a cpumask for a node's sched_domain
7294 * @node: node whose cpumask we're constructing
73486722 7295 * @span: resulting cpumask
9c1cfda2 7296 *
41a2d6cf 7297 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7298 * should be one that prevents unnecessary balancing, but also spreads tasks
7299 * out optimally.
7300 */
96f874e2 7301static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 7302{
c5f59f08 7303 nodemask_t used_nodes;
48f24c4d 7304 int i;
9c1cfda2 7305
6ca09dfc 7306 cpumask_clear(span);
c5f59f08 7307 nodes_clear(used_nodes);
9c1cfda2 7308
6ca09dfc 7309 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 7310 node_set(node, used_nodes);
9c1cfda2
JH
7311
7312 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7313 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 7314
6ca09dfc 7315 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 7316 }
9c1cfda2 7317}
6d6bc0ad 7318#endif /* CONFIG_NUMA */
9c1cfda2 7319
5c45bf27 7320int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7321
6c99e9ad
RR
7322/*
7323 * The cpus mask in sched_group and sched_domain hangs off the end.
7324 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7325 * for nr_cpu_ids < CONFIG_NR_CPUS.
7326 */
7327struct static_sched_group {
7328 struct sched_group sg;
7329 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7330};
7331
7332struct static_sched_domain {
7333 struct sched_domain sd;
7334 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7335};
7336
9c1cfda2 7337/*
48f24c4d 7338 * SMT sched-domains:
9c1cfda2 7339 */
1da177e4 7340#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
7341static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7342static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 7343
41a2d6cf 7344static int
96f874e2
RR
7345cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7346 struct sched_group **sg, struct cpumask *unused)
1da177e4 7347{
6711cab4 7348 if (sg)
6c99e9ad 7349 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
7350 return cpu;
7351}
6d6bc0ad 7352#endif /* CONFIG_SCHED_SMT */
1da177e4 7353
48f24c4d
IM
7354/*
7355 * multi-core sched-domains:
7356 */
1e9f28fa 7357#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
7358static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7359static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 7360#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
7361
7362#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7363static int
96f874e2
RR
7364cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7365 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 7366{
6711cab4 7367 int group;
7c16ec58 7368
96f874e2
RR
7369 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7370 group = cpumask_first(mask);
6711cab4 7371 if (sg)
6c99e9ad 7372 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 7373 return group;
1e9f28fa
SS
7374}
7375#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7376static int
96f874e2
RR
7377cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7378 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 7379{
6711cab4 7380 if (sg)
6c99e9ad 7381 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
7382 return cpu;
7383}
7384#endif
7385
6c99e9ad
RR
7386static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7387static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 7388
41a2d6cf 7389static int
96f874e2
RR
7390cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7391 struct sched_group **sg, struct cpumask *mask)
1da177e4 7392{
6711cab4 7393 int group;
48f24c4d 7394#ifdef CONFIG_SCHED_MC
6ca09dfc 7395 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 7396 group = cpumask_first(mask);
1e9f28fa 7397#elif defined(CONFIG_SCHED_SMT)
96f874e2
RR
7398 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7399 group = cpumask_first(mask);
1da177e4 7400#else
6711cab4 7401 group = cpu;
1da177e4 7402#endif
6711cab4 7403 if (sg)
6c99e9ad 7404 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 7405 return group;
1da177e4
LT
7406}
7407
7408#ifdef CONFIG_NUMA
1da177e4 7409/*
9c1cfda2
JH
7410 * The init_sched_build_groups can't handle what we want to do with node
7411 * groups, so roll our own. Now each node has its own list of groups which
7412 * gets dynamically allocated.
1da177e4 7413 */
62ea9ceb 7414static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 7415static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7416
62ea9ceb 7417static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 7418static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 7419
96f874e2
RR
7420static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7421 struct sched_group **sg,
7422 struct cpumask *nodemask)
9c1cfda2 7423{
6711cab4
SS
7424 int group;
7425
6ca09dfc 7426 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 7427 group = cpumask_first(nodemask);
6711cab4
SS
7428
7429 if (sg)
6c99e9ad 7430 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 7431 return group;
1da177e4 7432}
6711cab4 7433
08069033
SS
7434static void init_numa_sched_groups_power(struct sched_group *group_head)
7435{
7436 struct sched_group *sg = group_head;
7437 int j;
7438
7439 if (!sg)
7440 return;
3a5c359a 7441 do {
758b2cdc 7442 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 7443 struct sched_domain *sd;
08069033 7444
6c99e9ad 7445 sd = &per_cpu(phys_domains, j).sd;
758b2cdc 7446 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
3a5c359a
AK
7447 /*
7448 * Only add "power" once for each
7449 * physical package.
7450 */
7451 continue;
7452 }
08069033 7453
3a5c359a
AK
7454 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7455 }
7456 sg = sg->next;
7457 } while (sg != group_head);
08069033 7458}
6d6bc0ad 7459#endif /* CONFIG_NUMA */
1da177e4 7460
a616058b 7461#ifdef CONFIG_NUMA
51888ca2 7462/* Free memory allocated for various sched_group structures */
96f874e2
RR
7463static void free_sched_groups(const struct cpumask *cpu_map,
7464 struct cpumask *nodemask)
51888ca2 7465{
a616058b 7466 int cpu, i;
51888ca2 7467
abcd083a 7468 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7469 struct sched_group **sched_group_nodes
7470 = sched_group_nodes_bycpu[cpu];
7471
51888ca2
SV
7472 if (!sched_group_nodes)
7473 continue;
7474
076ac2af 7475 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7476 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7477
6ca09dfc 7478 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7479 if (cpumask_empty(nodemask))
51888ca2
SV
7480 continue;
7481
7482 if (sg == NULL)
7483 continue;
7484 sg = sg->next;
7485next_sg:
7486 oldsg = sg;
7487 sg = sg->next;
7488 kfree(oldsg);
7489 if (oldsg != sched_group_nodes[i])
7490 goto next_sg;
7491 }
7492 kfree(sched_group_nodes);
7493 sched_group_nodes_bycpu[cpu] = NULL;
7494 }
51888ca2 7495}
6d6bc0ad 7496#else /* !CONFIG_NUMA */
96f874e2
RR
7497static void free_sched_groups(const struct cpumask *cpu_map,
7498 struct cpumask *nodemask)
a616058b
SS
7499{
7500}
6d6bc0ad 7501#endif /* CONFIG_NUMA */
51888ca2 7502
89c4710e
SS
7503/*
7504 * Initialize sched groups cpu_power.
7505 *
7506 * cpu_power indicates the capacity of sched group, which is used while
7507 * distributing the load between different sched groups in a sched domain.
7508 * Typically cpu_power for all the groups in a sched domain will be same unless
7509 * there are asymmetries in the topology. If there are asymmetries, group
7510 * having more cpu_power will pickup more load compared to the group having
7511 * less cpu_power.
7512 *
7513 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7514 * the maximum number of tasks a group can handle in the presence of other idle
7515 * or lightly loaded groups in the same sched domain.
7516 */
7517static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7518{
7519 struct sched_domain *child;
7520 struct sched_group *group;
7521
7522 WARN_ON(!sd || !sd->groups);
7523
758b2cdc 7524 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
89c4710e
SS
7525 return;
7526
7527 child = sd->child;
7528
5517d86b
ED
7529 sd->groups->__cpu_power = 0;
7530
89c4710e
SS
7531 /*
7532 * For perf policy, if the groups in child domain share resources
7533 * (for example cores sharing some portions of the cache hierarchy
7534 * or SMT), then set this domain groups cpu_power such that each group
7535 * can handle only one task, when there are other idle groups in the
7536 * same sched domain.
7537 */
7538 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7539 (child->flags &
7540 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7541 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7542 return;
7543 }
7544
89c4710e
SS
7545 /*
7546 * add cpu_power of each child group to this groups cpu_power
7547 */
7548 group = child->groups;
7549 do {
5517d86b 7550 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7551 group = group->next;
7552 } while (group != child->groups);
7553}
7554
7c16ec58
MT
7555/*
7556 * Initializers for schedule domains
7557 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7558 */
7559
a5d8c348
IM
7560#ifdef CONFIG_SCHED_DEBUG
7561# define SD_INIT_NAME(sd, type) sd->name = #type
7562#else
7563# define SD_INIT_NAME(sd, type) do { } while (0)
7564#endif
7565
7c16ec58 7566#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7567
7c16ec58
MT
7568#define SD_INIT_FUNC(type) \
7569static noinline void sd_init_##type(struct sched_domain *sd) \
7570{ \
7571 memset(sd, 0, sizeof(*sd)); \
7572 *sd = SD_##type##_INIT; \
1d3504fc 7573 sd->level = SD_LV_##type; \
a5d8c348 7574 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7575}
7576
7577SD_INIT_FUNC(CPU)
7578#ifdef CONFIG_NUMA
7579 SD_INIT_FUNC(ALLNODES)
7580 SD_INIT_FUNC(NODE)
7581#endif
7582#ifdef CONFIG_SCHED_SMT
7583 SD_INIT_FUNC(SIBLING)
7584#endif
7585#ifdef CONFIG_SCHED_MC
7586 SD_INIT_FUNC(MC)
7587#endif
7588
1d3504fc
HS
7589static int default_relax_domain_level = -1;
7590
7591static int __init setup_relax_domain_level(char *str)
7592{
30e0e178
LZ
7593 unsigned long val;
7594
7595 val = simple_strtoul(str, NULL, 0);
7596 if (val < SD_LV_MAX)
7597 default_relax_domain_level = val;
7598
1d3504fc
HS
7599 return 1;
7600}
7601__setup("relax_domain_level=", setup_relax_domain_level);
7602
7603static void set_domain_attribute(struct sched_domain *sd,
7604 struct sched_domain_attr *attr)
7605{
7606 int request;
7607
7608 if (!attr || attr->relax_domain_level < 0) {
7609 if (default_relax_domain_level < 0)
7610 return;
7611 else
7612 request = default_relax_domain_level;
7613 } else
7614 request = attr->relax_domain_level;
7615 if (request < sd->level) {
7616 /* turn off idle balance on this domain */
7617 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7618 } else {
7619 /* turn on idle balance on this domain */
7620 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7621 }
7622}
7623
1da177e4 7624/*
1a20ff27
DG
7625 * Build sched domains for a given set of cpus and attach the sched domains
7626 * to the individual cpus
1da177e4 7627 */
96f874e2 7628static int __build_sched_domains(const struct cpumask *cpu_map,
1d3504fc 7629 struct sched_domain_attr *attr)
1da177e4 7630{
3404c8d9 7631 int i, err = -ENOMEM;
57d885fe 7632 struct root_domain *rd;
3404c8d9
RR
7633 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7634 tmpmask;
d1b55138 7635#ifdef CONFIG_NUMA
3404c8d9 7636 cpumask_var_t domainspan, covered, notcovered;
d1b55138 7637 struct sched_group **sched_group_nodes = NULL;
6711cab4 7638 int sd_allnodes = 0;
d1b55138 7639
3404c8d9
RR
7640 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7641 goto out;
7642 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7643 goto free_domainspan;
7644 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7645 goto free_covered;
7646#endif
7647
7648 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7649 goto free_notcovered;
7650 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7651 goto free_nodemask;
7652 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7653 goto free_this_sibling_map;
7654 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7655 goto free_this_core_map;
7656 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7657 goto free_send_covered;
7658
7659#ifdef CONFIG_NUMA
d1b55138
JH
7660 /*
7661 * Allocate the per-node list of sched groups
7662 */
076ac2af 7663 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 7664 GFP_KERNEL);
d1b55138
JH
7665 if (!sched_group_nodes) {
7666 printk(KERN_WARNING "Can not alloc sched group node list\n");
3404c8d9 7667 goto free_tmpmask;
d1b55138 7668 }
d1b55138 7669#endif
1da177e4 7670
dc938520 7671 rd = alloc_rootdomain();
57d885fe
GH
7672 if (!rd) {
7673 printk(KERN_WARNING "Cannot alloc root domain\n");
3404c8d9 7674 goto free_sched_groups;
57d885fe
GH
7675 }
7676
7c16ec58 7677#ifdef CONFIG_NUMA
96f874e2 7678 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7c16ec58
MT
7679#endif
7680
1da177e4 7681 /*
1a20ff27 7682 * Set up domains for cpus specified by the cpu_map.
1da177e4 7683 */
abcd083a 7684 for_each_cpu(i, cpu_map) {
1da177e4 7685 struct sched_domain *sd = NULL, *p;
1da177e4 7686
6ca09dfc 7687 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
1da177e4
LT
7688
7689#ifdef CONFIG_NUMA
96f874e2
RR
7690 if (cpumask_weight(cpu_map) >
7691 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
62ea9ceb 7692 sd = &per_cpu(allnodes_domains, i).sd;
7c16ec58 7693 SD_INIT(sd, ALLNODES);
1d3504fc 7694 set_domain_attribute(sd, attr);
758b2cdc 7695 cpumask_copy(sched_domain_span(sd), cpu_map);
7c16ec58 7696 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7697 p = sd;
6711cab4 7698 sd_allnodes = 1;
9c1cfda2
JH
7699 } else
7700 p = NULL;
7701
62ea9ceb 7702 sd = &per_cpu(node_domains, i).sd;
7c16ec58 7703 SD_INIT(sd, NODE);
1d3504fc 7704 set_domain_attribute(sd, attr);
758b2cdc 7705 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
9c1cfda2 7706 sd->parent = p;
1a848870
SS
7707 if (p)
7708 p->child = sd;
758b2cdc
RR
7709 cpumask_and(sched_domain_span(sd),
7710 sched_domain_span(sd), cpu_map);
1da177e4
LT
7711#endif
7712
7713 p = sd;
6c99e9ad 7714 sd = &per_cpu(phys_domains, i).sd;
7c16ec58 7715 SD_INIT(sd, CPU);
1d3504fc 7716 set_domain_attribute(sd, attr);
758b2cdc 7717 cpumask_copy(sched_domain_span(sd), nodemask);
1da177e4 7718 sd->parent = p;
1a848870
SS
7719 if (p)
7720 p->child = sd;
7c16ec58 7721 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7722
1e9f28fa
SS
7723#ifdef CONFIG_SCHED_MC
7724 p = sd;
6c99e9ad 7725 sd = &per_cpu(core_domains, i).sd;
7c16ec58 7726 SD_INIT(sd, MC);
1d3504fc 7727 set_domain_attribute(sd, attr);
6ca09dfc
MT
7728 cpumask_and(sched_domain_span(sd), cpu_map,
7729 cpu_coregroup_mask(i));
1e9f28fa 7730 sd->parent = p;
1a848870 7731 p->child = sd;
7c16ec58 7732 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7733#endif
7734
1da177e4
LT
7735#ifdef CONFIG_SCHED_SMT
7736 p = sd;
6c99e9ad 7737 sd = &per_cpu(cpu_domains, i).sd;
7c16ec58 7738 SD_INIT(sd, SIBLING);
1d3504fc 7739 set_domain_attribute(sd, attr);
758b2cdc
RR
7740 cpumask_and(sched_domain_span(sd),
7741 &per_cpu(cpu_sibling_map, i), cpu_map);
1da177e4 7742 sd->parent = p;
1a848870 7743 p->child = sd;
7c16ec58 7744 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7745#endif
7746 }
7747
7748#ifdef CONFIG_SCHED_SMT
7749 /* Set up CPU (sibling) groups */
abcd083a 7750 for_each_cpu(i, cpu_map) {
96f874e2
RR
7751 cpumask_and(this_sibling_map,
7752 &per_cpu(cpu_sibling_map, i), cpu_map);
7753 if (i != cpumask_first(this_sibling_map))
1da177e4
LT
7754 continue;
7755
dd41f596 7756 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7757 &cpu_to_cpu_group,
7758 send_covered, tmpmask);
1da177e4
LT
7759 }
7760#endif
7761
1e9f28fa
SS
7762#ifdef CONFIG_SCHED_MC
7763 /* Set up multi-core groups */
abcd083a 7764 for_each_cpu(i, cpu_map) {
6ca09dfc 7765 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
96f874e2 7766 if (i != cpumask_first(this_core_map))
1e9f28fa 7767 continue;
7c16ec58 7768
dd41f596 7769 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7770 &cpu_to_core_group,
7771 send_covered, tmpmask);
1e9f28fa
SS
7772 }
7773#endif
7774
1da177e4 7775 /* Set up physical groups */
076ac2af 7776 for (i = 0; i < nr_node_ids; i++) {
6ca09dfc 7777 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7778 if (cpumask_empty(nodemask))
1da177e4
LT
7779 continue;
7780
7c16ec58
MT
7781 init_sched_build_groups(nodemask, cpu_map,
7782 &cpu_to_phys_group,
7783 send_covered, tmpmask);
1da177e4
LT
7784 }
7785
7786#ifdef CONFIG_NUMA
7787 /* Set up node groups */
7c16ec58 7788 if (sd_allnodes) {
7c16ec58
MT
7789 init_sched_build_groups(cpu_map, cpu_map,
7790 &cpu_to_allnodes_group,
7791 send_covered, tmpmask);
7792 }
9c1cfda2 7793
076ac2af 7794 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
7795 /* Set up node groups */
7796 struct sched_group *sg, *prev;
9c1cfda2
JH
7797 int j;
7798
96f874e2 7799 cpumask_clear(covered);
6ca09dfc 7800 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7801 if (cpumask_empty(nodemask)) {
d1b55138 7802 sched_group_nodes[i] = NULL;
9c1cfda2 7803 continue;
d1b55138 7804 }
9c1cfda2 7805
4bdbaad3 7806 sched_domain_node_span(i, domainspan);
96f874e2 7807 cpumask_and(domainspan, domainspan, cpu_map);
9c1cfda2 7808
6c99e9ad
RR
7809 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7810 GFP_KERNEL, i);
51888ca2
SV
7811 if (!sg) {
7812 printk(KERN_WARNING "Can not alloc domain group for "
7813 "node %d\n", i);
7814 goto error;
7815 }
9c1cfda2 7816 sched_group_nodes[i] = sg;
abcd083a 7817 for_each_cpu(j, nodemask) {
9c1cfda2 7818 struct sched_domain *sd;
9761eea8 7819
62ea9ceb 7820 sd = &per_cpu(node_domains, j).sd;
9c1cfda2 7821 sd->groups = sg;
9c1cfda2 7822 }
5517d86b 7823 sg->__cpu_power = 0;
758b2cdc 7824 cpumask_copy(sched_group_cpus(sg), nodemask);
51888ca2 7825 sg->next = sg;
96f874e2 7826 cpumask_or(covered, covered, nodemask);
9c1cfda2
JH
7827 prev = sg;
7828
076ac2af 7829 for (j = 0; j < nr_node_ids; j++) {
076ac2af 7830 int n = (i + j) % nr_node_ids;
9c1cfda2 7831
96f874e2
RR
7832 cpumask_complement(notcovered, covered);
7833 cpumask_and(tmpmask, notcovered, cpu_map);
7834 cpumask_and(tmpmask, tmpmask, domainspan);
7835 if (cpumask_empty(tmpmask))
9c1cfda2
JH
7836 break;
7837
6ca09dfc 7838 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
96f874e2 7839 if (cpumask_empty(tmpmask))
9c1cfda2
JH
7840 continue;
7841
6c99e9ad
RR
7842 sg = kmalloc_node(sizeof(struct sched_group) +
7843 cpumask_size(),
15f0b676 7844 GFP_KERNEL, i);
9c1cfda2
JH
7845 if (!sg) {
7846 printk(KERN_WARNING
7847 "Can not alloc domain group for node %d\n", j);
51888ca2 7848 goto error;
9c1cfda2 7849 }
5517d86b 7850 sg->__cpu_power = 0;
758b2cdc 7851 cpumask_copy(sched_group_cpus(sg), tmpmask);
51888ca2 7852 sg->next = prev->next;
96f874e2 7853 cpumask_or(covered, covered, tmpmask);
9c1cfda2
JH
7854 prev->next = sg;
7855 prev = sg;
7856 }
9c1cfda2 7857 }
1da177e4
LT
7858#endif
7859
7860 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7861#ifdef CONFIG_SCHED_SMT
abcd083a 7862 for_each_cpu(i, cpu_map) {
6c99e9ad 7863 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
dd41f596 7864
89c4710e 7865 init_sched_groups_power(i, sd);
5c45bf27 7866 }
1da177e4 7867#endif
1e9f28fa 7868#ifdef CONFIG_SCHED_MC
abcd083a 7869 for_each_cpu(i, cpu_map) {
6c99e9ad 7870 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
dd41f596 7871
89c4710e 7872 init_sched_groups_power(i, sd);
5c45bf27
SS
7873 }
7874#endif
1e9f28fa 7875
abcd083a 7876 for_each_cpu(i, cpu_map) {
6c99e9ad 7877 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
dd41f596 7878
89c4710e 7879 init_sched_groups_power(i, sd);
1da177e4
LT
7880 }
7881
9c1cfda2 7882#ifdef CONFIG_NUMA
076ac2af 7883 for (i = 0; i < nr_node_ids; i++)
08069033 7884 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7885
6711cab4
SS
7886 if (sd_allnodes) {
7887 struct sched_group *sg;
f712c0c7 7888
96f874e2 7889 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7c16ec58 7890 tmpmask);
f712c0c7
SS
7891 init_numa_sched_groups_power(sg);
7892 }
9c1cfda2
JH
7893#endif
7894
1da177e4 7895 /* Attach the domains */
abcd083a 7896 for_each_cpu(i, cpu_map) {
1da177e4
LT
7897 struct sched_domain *sd;
7898#ifdef CONFIG_SCHED_SMT
6c99e9ad 7899 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7900#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7901 sd = &per_cpu(core_domains, i).sd;
1da177e4 7902#else
6c99e9ad 7903 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7904#endif
57d885fe 7905 cpu_attach_domain(sd, rd, i);
1da177e4 7906 }
51888ca2 7907
3404c8d9
RR
7908 err = 0;
7909
7910free_tmpmask:
7911 free_cpumask_var(tmpmask);
7912free_send_covered:
7913 free_cpumask_var(send_covered);
7914free_this_core_map:
7915 free_cpumask_var(this_core_map);
7916free_this_sibling_map:
7917 free_cpumask_var(this_sibling_map);
7918free_nodemask:
7919 free_cpumask_var(nodemask);
7920free_notcovered:
7921#ifdef CONFIG_NUMA
7922 free_cpumask_var(notcovered);
7923free_covered:
7924 free_cpumask_var(covered);
7925free_domainspan:
7926 free_cpumask_var(domainspan);
7927out:
7928#endif
7929 return err;
7930
7931free_sched_groups:
7932#ifdef CONFIG_NUMA
7933 kfree(sched_group_nodes);
7934#endif
7935 goto free_tmpmask;
51888ca2 7936
a616058b 7937#ifdef CONFIG_NUMA
51888ca2 7938error:
7c16ec58 7939 free_sched_groups(cpu_map, tmpmask);
c6c4927b 7940 free_rootdomain(rd);
3404c8d9 7941 goto free_tmpmask;
a616058b 7942#endif
1da177e4 7943}
029190c5 7944
96f874e2 7945static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7946{
7947 return __build_sched_domains(cpu_map, NULL);
7948}
7949
96f874e2 7950static struct cpumask *doms_cur; /* current sched domains */
029190c5 7951static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7952static struct sched_domain_attr *dattr_cur;
7953 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7954
7955/*
7956 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7957 * cpumask) fails, then fallback to a single sched domain,
7958 * as determined by the single cpumask fallback_doms.
029190c5 7959 */
4212823f 7960static cpumask_var_t fallback_doms;
029190c5 7961
ee79d1bd
HC
7962/*
7963 * arch_update_cpu_topology lets virtualized architectures update the
7964 * cpu core maps. It is supposed to return 1 if the topology changed
7965 * or 0 if it stayed the same.
7966 */
7967int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7968{
ee79d1bd 7969 return 0;
22e52b07
HC
7970}
7971
1a20ff27 7972/*
41a2d6cf 7973 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7974 * For now this just excludes isolated cpus, but could be used to
7975 * exclude other special cases in the future.
1a20ff27 7976 */
96f874e2 7977static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7978{
7378547f
MM
7979 int err;
7980
22e52b07 7981 arch_update_cpu_topology();
029190c5 7982 ndoms_cur = 1;
96f874e2 7983 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 7984 if (!doms_cur)
4212823f 7985 doms_cur = fallback_doms;
dcc30a35 7986 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 7987 dattr_cur = NULL;
7378547f 7988 err = build_sched_domains(doms_cur);
6382bc90 7989 register_sched_domain_sysctl();
7378547f
MM
7990
7991 return err;
1a20ff27
DG
7992}
7993
96f874e2
RR
7994static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7995 struct cpumask *tmpmask)
1da177e4 7996{
7c16ec58 7997 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7998}
1da177e4 7999
1a20ff27
DG
8000/*
8001 * Detach sched domains from a group of cpus specified in cpu_map
8002 * These cpus will now be attached to the NULL domain
8003 */
96f874e2 8004static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 8005{
96f874e2
RR
8006 /* Save because hotplug lock held. */
8007 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
8008 int i;
8009
abcd083a 8010 for_each_cpu(i, cpu_map)
57d885fe 8011 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 8012 synchronize_sched();
96f874e2 8013 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8014}
8015
1d3504fc
HS
8016/* handle null as "default" */
8017static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8018 struct sched_domain_attr *new, int idx_new)
8019{
8020 struct sched_domain_attr tmp;
8021
8022 /* fast path */
8023 if (!new && !cur)
8024 return 1;
8025
8026 tmp = SD_ATTR_INIT;
8027 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8028 new ? (new + idx_new) : &tmp,
8029 sizeof(struct sched_domain_attr));
8030}
8031
029190c5
PJ
8032/*
8033 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8034 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8035 * doms_new[] to the current sched domain partitioning, doms_cur[].
8036 * It destroys each deleted domain and builds each new domain.
8037 *
96f874e2 8038 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
8039 * The masks don't intersect (don't overlap.) We should setup one
8040 * sched domain for each mask. CPUs not in any of the cpumasks will
8041 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8042 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8043 * it as it is.
8044 *
41a2d6cf
IM
8045 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8046 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
8047 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8048 * ndoms_new == 1, and partition_sched_domains() will fallback to
8049 * the single partition 'fallback_doms', it also forces the domains
8050 * to be rebuilt.
029190c5 8051 *
96f874e2 8052 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8053 * ndoms_new == 0 is a special case for destroying existing domains,
8054 * and it will not create the default domain.
dfb512ec 8055 *
029190c5
PJ
8056 * Call with hotplug lock held
8057 */
96f874e2
RR
8058/* FIXME: Change to struct cpumask *doms_new[] */
8059void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 8060 struct sched_domain_attr *dattr_new)
029190c5 8061{
dfb512ec 8062 int i, j, n;
d65bd5ec 8063 int new_topology;
029190c5 8064
712555ee 8065 mutex_lock(&sched_domains_mutex);
a1835615 8066
7378547f
MM
8067 /* always unregister in case we don't destroy any domains */
8068 unregister_sched_domain_sysctl();
8069
d65bd5ec
HC
8070 /* Let architecture update cpu core mappings. */
8071 new_topology = arch_update_cpu_topology();
8072
dfb512ec 8073 n = doms_new ? ndoms_new : 0;
029190c5
PJ
8074
8075 /* Destroy deleted domains */
8076 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 8077 for (j = 0; j < n && !new_topology; j++) {
96f874e2 8078 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 8079 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
8080 goto match1;
8081 }
8082 /* no match - a current sched domain not in new doms_new[] */
8083 detach_destroy_domains(doms_cur + i);
8084match1:
8085 ;
8086 }
8087
e761b772
MK
8088 if (doms_new == NULL) {
8089 ndoms_cur = 0;
4212823f 8090 doms_new = fallback_doms;
dcc30a35 8091 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 8092 WARN_ON_ONCE(dattr_new);
e761b772
MK
8093 }
8094
029190c5
PJ
8095 /* Build new domains */
8096 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 8097 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 8098 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 8099 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
8100 goto match2;
8101 }
8102 /* no match - add a new doms_new */
1d3504fc
HS
8103 __build_sched_domains(doms_new + i,
8104 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
8105match2:
8106 ;
8107 }
8108
8109 /* Remember the new sched domains */
4212823f 8110 if (doms_cur != fallback_doms)
029190c5 8111 kfree(doms_cur);
1d3504fc 8112 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 8113 doms_cur = doms_new;
1d3504fc 8114 dattr_cur = dattr_new;
029190c5 8115 ndoms_cur = ndoms_new;
7378547f
MM
8116
8117 register_sched_domain_sysctl();
a1835615 8118
712555ee 8119 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
8120}
8121
5c45bf27 8122#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 8123static void arch_reinit_sched_domains(void)
5c45bf27 8124{
95402b38 8125 get_online_cpus();
dfb512ec
MK
8126
8127 /* Destroy domains first to force the rebuild */
8128 partition_sched_domains(0, NULL, NULL);
8129
e761b772 8130 rebuild_sched_domains();
95402b38 8131 put_online_cpus();
5c45bf27
SS
8132}
8133
8134static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8135{
afb8a9b7 8136 unsigned int level = 0;
5c45bf27 8137
afb8a9b7
GS
8138 if (sscanf(buf, "%u", &level) != 1)
8139 return -EINVAL;
8140
8141 /*
8142 * level is always be positive so don't check for
8143 * level < POWERSAVINGS_BALANCE_NONE which is 0
8144 * What happens on 0 or 1 byte write,
8145 * need to check for count as well?
8146 */
8147
8148 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
8149 return -EINVAL;
8150
8151 if (smt)
afb8a9b7 8152 sched_smt_power_savings = level;
5c45bf27 8153 else
afb8a9b7 8154 sched_mc_power_savings = level;
5c45bf27 8155
c70f22d2 8156 arch_reinit_sched_domains();
5c45bf27 8157
c70f22d2 8158 return count;
5c45bf27
SS
8159}
8160
5c45bf27 8161#ifdef CONFIG_SCHED_MC
f718cd4a
AK
8162static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8163 char *page)
5c45bf27
SS
8164{
8165 return sprintf(page, "%u\n", sched_mc_power_savings);
8166}
f718cd4a 8167static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 8168 const char *buf, size_t count)
5c45bf27
SS
8169{
8170 return sched_power_savings_store(buf, count, 0);
8171}
f718cd4a
AK
8172static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8173 sched_mc_power_savings_show,
8174 sched_mc_power_savings_store);
5c45bf27
SS
8175#endif
8176
8177#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
8178static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8179 char *page)
5c45bf27
SS
8180{
8181 return sprintf(page, "%u\n", sched_smt_power_savings);
8182}
f718cd4a 8183static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 8184 const char *buf, size_t count)
5c45bf27
SS
8185{
8186 return sched_power_savings_store(buf, count, 1);
8187}
f718cd4a
AK
8188static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8189 sched_smt_power_savings_show,
6707de00
AB
8190 sched_smt_power_savings_store);
8191#endif
8192
39aac648 8193int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
8194{
8195 int err = 0;
8196
8197#ifdef CONFIG_SCHED_SMT
8198 if (smt_capable())
8199 err = sysfs_create_file(&cls->kset.kobj,
8200 &attr_sched_smt_power_savings.attr);
8201#endif
8202#ifdef CONFIG_SCHED_MC
8203 if (!err && mc_capable())
8204 err = sysfs_create_file(&cls->kset.kobj,
8205 &attr_sched_mc_power_savings.attr);
8206#endif
8207 return err;
8208}
6d6bc0ad 8209#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 8210
e761b772 8211#ifndef CONFIG_CPUSETS
1da177e4 8212/*
e761b772
MK
8213 * Add online and remove offline CPUs from the scheduler domains.
8214 * When cpusets are enabled they take over this function.
1da177e4
LT
8215 */
8216static int update_sched_domains(struct notifier_block *nfb,
8217 unsigned long action, void *hcpu)
e761b772
MK
8218{
8219 switch (action) {
8220 case CPU_ONLINE:
8221 case CPU_ONLINE_FROZEN:
8222 case CPU_DEAD:
8223 case CPU_DEAD_FROZEN:
dfb512ec 8224 partition_sched_domains(1, NULL, NULL);
e761b772
MK
8225 return NOTIFY_OK;
8226
8227 default:
8228 return NOTIFY_DONE;
8229 }
8230}
8231#endif
8232
8233static int update_runtime(struct notifier_block *nfb,
8234 unsigned long action, void *hcpu)
1da177e4 8235{
7def2be1
PZ
8236 int cpu = (int)(long)hcpu;
8237
1da177e4 8238 switch (action) {
1da177e4 8239 case CPU_DOWN_PREPARE:
8bb78442 8240 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 8241 disable_runtime(cpu_rq(cpu));
1da177e4
LT
8242 return NOTIFY_OK;
8243
1da177e4 8244 case CPU_DOWN_FAILED:
8bb78442 8245 case CPU_DOWN_FAILED_FROZEN:
1da177e4 8246 case CPU_ONLINE:
8bb78442 8247 case CPU_ONLINE_FROZEN:
7def2be1 8248 enable_runtime(cpu_rq(cpu));
e761b772
MK
8249 return NOTIFY_OK;
8250
1da177e4
LT
8251 default:
8252 return NOTIFY_DONE;
8253 }
1da177e4 8254}
1da177e4
LT
8255
8256void __init sched_init_smp(void)
8257{
dcc30a35
RR
8258 cpumask_var_t non_isolated_cpus;
8259
8260 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 8261
434d53b0
MT
8262#if defined(CONFIG_NUMA)
8263 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8264 GFP_KERNEL);
8265 BUG_ON(sched_group_nodes_bycpu == NULL);
8266#endif
95402b38 8267 get_online_cpus();
712555ee 8268 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
8269 arch_init_sched_domains(cpu_online_mask);
8270 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8271 if (cpumask_empty(non_isolated_cpus))
8272 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 8273 mutex_unlock(&sched_domains_mutex);
95402b38 8274 put_online_cpus();
e761b772
MK
8275
8276#ifndef CONFIG_CPUSETS
1da177e4
LT
8277 /* XXX: Theoretical race here - CPU may be hotplugged now */
8278 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
8279#endif
8280
8281 /* RT runtime code needs to handle some hotplug events */
8282 hotcpu_notifier(update_runtime, 0);
8283
b328ca18 8284 init_hrtick();
5c1e1767
NP
8285
8286 /* Move init over to a non-isolated CPU */
dcc30a35 8287 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 8288 BUG();
19978ca6 8289 sched_init_granularity();
dcc30a35 8290 free_cpumask_var(non_isolated_cpus);
4212823f
RR
8291
8292 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 8293 init_sched_rt_class();
1da177e4
LT
8294}
8295#else
8296void __init sched_init_smp(void)
8297{
19978ca6 8298 sched_init_granularity();
1da177e4
LT
8299}
8300#endif /* CONFIG_SMP */
8301
8302int in_sched_functions(unsigned long addr)
8303{
1da177e4
LT
8304 return in_lock_functions(addr) ||
8305 (addr >= (unsigned long)__sched_text_start
8306 && addr < (unsigned long)__sched_text_end);
8307}
8308
a9957449 8309static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8310{
8311 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8312 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8313#ifdef CONFIG_FAIR_GROUP_SCHED
8314 cfs_rq->rq = rq;
8315#endif
67e9fb2a 8316 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8317}
8318
fa85ae24
PZ
8319static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8320{
8321 struct rt_prio_array *array;
8322 int i;
8323
8324 array = &rt_rq->active;
8325 for (i = 0; i < MAX_RT_PRIO; i++) {
8326 INIT_LIST_HEAD(array->queue + i);
8327 __clear_bit(i, array->bitmap);
8328 }
8329 /* delimiter for bitsearch: */
8330 __set_bit(MAX_RT_PRIO, array->bitmap);
8331
052f1dc7 8332#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 8333 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 8334#ifdef CONFIG_SMP
e864c499 8335 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 8336#endif
48d5e258 8337#endif
fa85ae24
PZ
8338#ifdef CONFIG_SMP
8339 rt_rq->rt_nr_migratory = 0;
fa85ae24 8340 rt_rq->overloaded = 0;
917b627d 8341 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
fa85ae24
PZ
8342#endif
8343
8344 rt_rq->rt_time = 0;
8345 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8346 rt_rq->rt_runtime = 0;
8347 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8348
052f1dc7 8349#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8350 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8351 rt_rq->rq = rq;
8352#endif
fa85ae24
PZ
8353}
8354
6f505b16 8355#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8356static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8357 struct sched_entity *se, int cpu, int add,
8358 struct sched_entity *parent)
6f505b16 8359{
ec7dc8ac 8360 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8361 tg->cfs_rq[cpu] = cfs_rq;
8362 init_cfs_rq(cfs_rq, rq);
8363 cfs_rq->tg = tg;
8364 if (add)
8365 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8366
8367 tg->se[cpu] = se;
354d60c2
DG
8368 /* se could be NULL for init_task_group */
8369 if (!se)
8370 return;
8371
ec7dc8ac
DG
8372 if (!parent)
8373 se->cfs_rq = &rq->cfs;
8374 else
8375 se->cfs_rq = parent->my_q;
8376
6f505b16
PZ
8377 se->my_q = cfs_rq;
8378 se->load.weight = tg->shares;
e05510d0 8379 se->load.inv_weight = 0;
ec7dc8ac 8380 se->parent = parent;
6f505b16 8381}
052f1dc7 8382#endif
6f505b16 8383
052f1dc7 8384#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8385static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8386 struct sched_rt_entity *rt_se, int cpu, int add,
8387 struct sched_rt_entity *parent)
6f505b16 8388{
ec7dc8ac
DG
8389 struct rq *rq = cpu_rq(cpu);
8390
6f505b16
PZ
8391 tg->rt_rq[cpu] = rt_rq;
8392 init_rt_rq(rt_rq, rq);
8393 rt_rq->tg = tg;
8394 rt_rq->rt_se = rt_se;
ac086bc2 8395 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8396 if (add)
8397 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8398
8399 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8400 if (!rt_se)
8401 return;
8402
ec7dc8ac
DG
8403 if (!parent)
8404 rt_se->rt_rq = &rq->rt;
8405 else
8406 rt_se->rt_rq = parent->my_q;
8407
6f505b16 8408 rt_se->my_q = rt_rq;
ec7dc8ac 8409 rt_se->parent = parent;
6f505b16
PZ
8410 INIT_LIST_HEAD(&rt_se->run_list);
8411}
8412#endif
8413
1da177e4
LT
8414void __init sched_init(void)
8415{
dd41f596 8416 int i, j;
434d53b0
MT
8417 unsigned long alloc_size = 0, ptr;
8418
8419#ifdef CONFIG_FAIR_GROUP_SCHED
8420 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8421#endif
8422#ifdef CONFIG_RT_GROUP_SCHED
8423 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8424#endif
8425#ifdef CONFIG_USER_SCHED
8426 alloc_size *= 2;
434d53b0
MT
8427#endif
8428 /*
8429 * As sched_init() is called before page_alloc is setup,
8430 * we use alloc_bootmem().
8431 */
8432 if (alloc_size) {
5a9d3225 8433 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8434
8435#ifdef CONFIG_FAIR_GROUP_SCHED
8436 init_task_group.se = (struct sched_entity **)ptr;
8437 ptr += nr_cpu_ids * sizeof(void **);
8438
8439 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8440 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8441
8442#ifdef CONFIG_USER_SCHED
8443 root_task_group.se = (struct sched_entity **)ptr;
8444 ptr += nr_cpu_ids * sizeof(void **);
8445
8446 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8447 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8448#endif /* CONFIG_USER_SCHED */
8449#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8450#ifdef CONFIG_RT_GROUP_SCHED
8451 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8452 ptr += nr_cpu_ids * sizeof(void **);
8453
8454 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8455 ptr += nr_cpu_ids * sizeof(void **);
8456
8457#ifdef CONFIG_USER_SCHED
8458 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8459 ptr += nr_cpu_ids * sizeof(void **);
8460
8461 root_task_group.rt_rq = (struct rt_rq **)ptr;
8462 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8463#endif /* CONFIG_USER_SCHED */
8464#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 8465 }
dd41f596 8466
57d885fe
GH
8467#ifdef CONFIG_SMP
8468 init_defrootdomain();
8469#endif
8470
d0b27fa7
PZ
8471 init_rt_bandwidth(&def_rt_bandwidth,
8472 global_rt_period(), global_rt_runtime());
8473
8474#ifdef CONFIG_RT_GROUP_SCHED
8475 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8476 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8477#ifdef CONFIG_USER_SCHED
8478 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8479 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8480#endif /* CONFIG_USER_SCHED */
8481#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8482
052f1dc7 8483#ifdef CONFIG_GROUP_SCHED
6f505b16 8484 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8485 INIT_LIST_HEAD(&init_task_group.children);
8486
8487#ifdef CONFIG_USER_SCHED
8488 INIT_LIST_HEAD(&root_task_group.children);
8489 init_task_group.parent = &root_task_group;
8490 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8491#endif /* CONFIG_USER_SCHED */
8492#endif /* CONFIG_GROUP_SCHED */
6f505b16 8493
0a945022 8494 for_each_possible_cpu(i) {
70b97a7f 8495 struct rq *rq;
1da177e4
LT
8496
8497 rq = cpu_rq(i);
8498 spin_lock_init(&rq->lock);
7897986b 8499 rq->nr_running = 0;
dd41f596 8500 init_cfs_rq(&rq->cfs, rq);
6f505b16 8501 init_rt_rq(&rq->rt, rq);
dd41f596 8502#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8503 init_task_group.shares = init_task_group_load;
6f505b16 8504 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8505#ifdef CONFIG_CGROUP_SCHED
8506 /*
8507 * How much cpu bandwidth does init_task_group get?
8508 *
8509 * In case of task-groups formed thr' the cgroup filesystem, it
8510 * gets 100% of the cpu resources in the system. This overall
8511 * system cpu resource is divided among the tasks of
8512 * init_task_group and its child task-groups in a fair manner,
8513 * based on each entity's (task or task-group's) weight
8514 * (se->load.weight).
8515 *
8516 * In other words, if init_task_group has 10 tasks of weight
8517 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8518 * then A0's share of the cpu resource is:
8519 *
8520 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8521 *
8522 * We achieve this by letting init_task_group's tasks sit
8523 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8524 */
ec7dc8ac 8525 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8526#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8527 root_task_group.shares = NICE_0_LOAD;
8528 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8529 /*
8530 * In case of task-groups formed thr' the user id of tasks,
8531 * init_task_group represents tasks belonging to root user.
8532 * Hence it forms a sibling of all subsequent groups formed.
8533 * In this case, init_task_group gets only a fraction of overall
8534 * system cpu resource, based on the weight assigned to root
8535 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8536 * by letting tasks of init_task_group sit in a separate cfs_rq
8537 * (init_cfs_rq) and having one entity represent this group of
8538 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8539 */
ec7dc8ac 8540 init_tg_cfs_entry(&init_task_group,
6f505b16 8541 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8542 &per_cpu(init_sched_entity, i), i, 1,
8543 root_task_group.se[i]);
6f505b16 8544
052f1dc7 8545#endif
354d60c2
DG
8546#endif /* CONFIG_FAIR_GROUP_SCHED */
8547
8548 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8549#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8550 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8551#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8552 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8553#elif defined CONFIG_USER_SCHED
eff766a6 8554 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8555 init_tg_rt_entry(&init_task_group,
6f505b16 8556 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8557 &per_cpu(init_sched_rt_entity, i), i, 1,
8558 root_task_group.rt_se[i]);
354d60c2 8559#endif
dd41f596 8560#endif
1da177e4 8561
dd41f596
IM
8562 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8563 rq->cpu_load[j] = 0;
1da177e4 8564#ifdef CONFIG_SMP
41c7ce9a 8565 rq->sd = NULL;
57d885fe 8566 rq->rd = NULL;
1da177e4 8567 rq->active_balance = 0;
dd41f596 8568 rq->next_balance = jiffies;
1da177e4 8569 rq->push_cpu = 0;
0a2966b4 8570 rq->cpu = i;
1f11eb6a 8571 rq->online = 0;
1da177e4
LT
8572 rq->migration_thread = NULL;
8573 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8574 rq_attach_root(rq, &def_root_domain);
1da177e4 8575#endif
8f4d37ec 8576 init_rq_hrtick(rq);
1da177e4 8577 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8578 }
8579
2dd73a4f 8580 set_load_weight(&init_task);
b50f60ce 8581
e107be36
AK
8582#ifdef CONFIG_PREEMPT_NOTIFIERS
8583 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8584#endif
8585
c9819f45 8586#ifdef CONFIG_SMP
962cf36c 8587 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8588#endif
8589
b50f60ce
HC
8590#ifdef CONFIG_RT_MUTEXES
8591 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8592#endif
8593
1da177e4
LT
8594 /*
8595 * The boot idle thread does lazy MMU switching as well:
8596 */
8597 atomic_inc(&init_mm.mm_count);
8598 enter_lazy_tlb(&init_mm, current);
8599
8600 /*
8601 * Make us the idle thread. Technically, schedule() should not be
8602 * called from this thread, however somewhere below it might be,
8603 * but because we are the idle thread, we just pick up running again
8604 * when this runqueue becomes "idle".
8605 */
8606 init_idle(current, smp_processor_id());
dd41f596
IM
8607 /*
8608 * During early bootup we pretend to be a normal task:
8609 */
8610 current->sched_class = &fair_sched_class;
6892b75e 8611
6a7b3dc3
RR
8612 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8613 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
bf4d83f6 8614#ifdef CONFIG_SMP
7d1e6a9b
RR
8615#ifdef CONFIG_NO_HZ
8616 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8617#endif
dcc30a35 8618 alloc_bootmem_cpumask_var(&cpu_isolated_map);
bf4d83f6 8619#endif /* SMP */
6a7b3dc3 8620
6892b75e 8621 scheduler_running = 1;
1da177e4
LT
8622}
8623
8624#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8625void __might_sleep(char *file, int line)
8626{
48f24c4d 8627#ifdef in_atomic
1da177e4
LT
8628 static unsigned long prev_jiffy; /* ratelimiting */
8629
aef745fc
IM
8630 if ((!in_atomic() && !irqs_disabled()) ||
8631 system_state != SYSTEM_RUNNING || oops_in_progress)
8632 return;
8633 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8634 return;
8635 prev_jiffy = jiffies;
8636
8637 printk(KERN_ERR
8638 "BUG: sleeping function called from invalid context at %s:%d\n",
8639 file, line);
8640 printk(KERN_ERR
8641 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8642 in_atomic(), irqs_disabled(),
8643 current->pid, current->comm);
8644
8645 debug_show_held_locks(current);
8646 if (irqs_disabled())
8647 print_irqtrace_events(current);
8648 dump_stack();
1da177e4
LT
8649#endif
8650}
8651EXPORT_SYMBOL(__might_sleep);
8652#endif
8653
8654#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8655static void normalize_task(struct rq *rq, struct task_struct *p)
8656{
8657 int on_rq;
3e51f33f 8658
3a5e4dc1
AK
8659 update_rq_clock(rq);
8660 on_rq = p->se.on_rq;
8661 if (on_rq)
8662 deactivate_task(rq, p, 0);
8663 __setscheduler(rq, p, SCHED_NORMAL, 0);
8664 if (on_rq) {
8665 activate_task(rq, p, 0);
8666 resched_task(rq->curr);
8667 }
8668}
8669
1da177e4
LT
8670void normalize_rt_tasks(void)
8671{
a0f98a1c 8672 struct task_struct *g, *p;
1da177e4 8673 unsigned long flags;
70b97a7f 8674 struct rq *rq;
1da177e4 8675
4cf5d77a 8676 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8677 do_each_thread(g, p) {
178be793
IM
8678 /*
8679 * Only normalize user tasks:
8680 */
8681 if (!p->mm)
8682 continue;
8683
6cfb0d5d 8684 p->se.exec_start = 0;
6cfb0d5d 8685#ifdef CONFIG_SCHEDSTATS
dd41f596 8686 p->se.wait_start = 0;
dd41f596 8687 p->se.sleep_start = 0;
dd41f596 8688 p->se.block_start = 0;
6cfb0d5d 8689#endif
dd41f596
IM
8690
8691 if (!rt_task(p)) {
8692 /*
8693 * Renice negative nice level userspace
8694 * tasks back to 0:
8695 */
8696 if (TASK_NICE(p) < 0 && p->mm)
8697 set_user_nice(p, 0);
1da177e4 8698 continue;
dd41f596 8699 }
1da177e4 8700
4cf5d77a 8701 spin_lock(&p->pi_lock);
b29739f9 8702 rq = __task_rq_lock(p);
1da177e4 8703
178be793 8704 normalize_task(rq, p);
3a5e4dc1 8705
b29739f9 8706 __task_rq_unlock(rq);
4cf5d77a 8707 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8708 } while_each_thread(g, p);
8709
4cf5d77a 8710 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8711}
8712
8713#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8714
8715#ifdef CONFIG_IA64
8716/*
8717 * These functions are only useful for the IA64 MCA handling.
8718 *
8719 * They can only be called when the whole system has been
8720 * stopped - every CPU needs to be quiescent, and no scheduling
8721 * activity can take place. Using them for anything else would
8722 * be a serious bug, and as a result, they aren't even visible
8723 * under any other configuration.
8724 */
8725
8726/**
8727 * curr_task - return the current task for a given cpu.
8728 * @cpu: the processor in question.
8729 *
8730 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8731 */
36c8b586 8732struct task_struct *curr_task(int cpu)
1df5c10a
LT
8733{
8734 return cpu_curr(cpu);
8735}
8736
8737/**
8738 * set_curr_task - set the current task for a given cpu.
8739 * @cpu: the processor in question.
8740 * @p: the task pointer to set.
8741 *
8742 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8743 * are serviced on a separate stack. It allows the architecture to switch the
8744 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8745 * must be called with all CPU's synchronized, and interrupts disabled, the
8746 * and caller must save the original value of the current task (see
8747 * curr_task() above) and restore that value before reenabling interrupts and
8748 * re-starting the system.
8749 *
8750 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8751 */
36c8b586 8752void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8753{
8754 cpu_curr(cpu) = p;
8755}
8756
8757#endif
29f59db3 8758
bccbe08a
PZ
8759#ifdef CONFIG_FAIR_GROUP_SCHED
8760static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8761{
8762 int i;
8763
8764 for_each_possible_cpu(i) {
8765 if (tg->cfs_rq)
8766 kfree(tg->cfs_rq[i]);
8767 if (tg->se)
8768 kfree(tg->se[i]);
6f505b16
PZ
8769 }
8770
8771 kfree(tg->cfs_rq);
8772 kfree(tg->se);
6f505b16
PZ
8773}
8774
ec7dc8ac
DG
8775static
8776int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8777{
29f59db3 8778 struct cfs_rq *cfs_rq;
eab17229 8779 struct sched_entity *se;
9b5b7751 8780 struct rq *rq;
29f59db3
SV
8781 int i;
8782
434d53b0 8783 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8784 if (!tg->cfs_rq)
8785 goto err;
434d53b0 8786 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8787 if (!tg->se)
8788 goto err;
052f1dc7
PZ
8789
8790 tg->shares = NICE_0_LOAD;
29f59db3
SV
8791
8792 for_each_possible_cpu(i) {
9b5b7751 8793 rq = cpu_rq(i);
29f59db3 8794
eab17229
LZ
8795 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8796 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8797 if (!cfs_rq)
8798 goto err;
8799
eab17229
LZ
8800 se = kzalloc_node(sizeof(struct sched_entity),
8801 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8802 if (!se)
8803 goto err;
8804
eab17229 8805 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
8806 }
8807
8808 return 1;
8809
8810 err:
8811 return 0;
8812}
8813
8814static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8815{
8816 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8817 &cpu_rq(cpu)->leaf_cfs_rq_list);
8818}
8819
8820static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8821{
8822 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8823}
6d6bc0ad 8824#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8825static inline void free_fair_sched_group(struct task_group *tg)
8826{
8827}
8828
ec7dc8ac
DG
8829static inline
8830int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8831{
8832 return 1;
8833}
8834
8835static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8836{
8837}
8838
8839static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8840{
8841}
6d6bc0ad 8842#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8843
8844#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8845static void free_rt_sched_group(struct task_group *tg)
8846{
8847 int i;
8848
d0b27fa7
PZ
8849 destroy_rt_bandwidth(&tg->rt_bandwidth);
8850
bccbe08a
PZ
8851 for_each_possible_cpu(i) {
8852 if (tg->rt_rq)
8853 kfree(tg->rt_rq[i]);
8854 if (tg->rt_se)
8855 kfree(tg->rt_se[i]);
8856 }
8857
8858 kfree(tg->rt_rq);
8859 kfree(tg->rt_se);
8860}
8861
ec7dc8ac
DG
8862static
8863int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8864{
8865 struct rt_rq *rt_rq;
eab17229 8866 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8867 struct rq *rq;
8868 int i;
8869
434d53b0 8870 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8871 if (!tg->rt_rq)
8872 goto err;
434d53b0 8873 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8874 if (!tg->rt_se)
8875 goto err;
8876
d0b27fa7
PZ
8877 init_rt_bandwidth(&tg->rt_bandwidth,
8878 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8879
8880 for_each_possible_cpu(i) {
8881 rq = cpu_rq(i);
8882
eab17229
LZ
8883 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8884 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8885 if (!rt_rq)
8886 goto err;
29f59db3 8887
eab17229
LZ
8888 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8889 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8890 if (!rt_se)
8891 goto err;
29f59db3 8892
eab17229 8893 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8894 }
8895
bccbe08a
PZ
8896 return 1;
8897
8898 err:
8899 return 0;
8900}
8901
8902static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8903{
8904 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8905 &cpu_rq(cpu)->leaf_rt_rq_list);
8906}
8907
8908static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8909{
8910 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8911}
6d6bc0ad 8912#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8913static inline void free_rt_sched_group(struct task_group *tg)
8914{
8915}
8916
ec7dc8ac
DG
8917static inline
8918int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8919{
8920 return 1;
8921}
8922
8923static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8924{
8925}
8926
8927static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8928{
8929}
6d6bc0ad 8930#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8931
d0b27fa7 8932#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8933static void free_sched_group(struct task_group *tg)
8934{
8935 free_fair_sched_group(tg);
8936 free_rt_sched_group(tg);
8937 kfree(tg);
8938}
8939
8940/* allocate runqueue etc for a new task group */
ec7dc8ac 8941struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8942{
8943 struct task_group *tg;
8944 unsigned long flags;
8945 int i;
8946
8947 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8948 if (!tg)
8949 return ERR_PTR(-ENOMEM);
8950
ec7dc8ac 8951 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8952 goto err;
8953
ec7dc8ac 8954 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8955 goto err;
8956
8ed36996 8957 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8958 for_each_possible_cpu(i) {
bccbe08a
PZ
8959 register_fair_sched_group(tg, i);
8960 register_rt_sched_group(tg, i);
9b5b7751 8961 }
6f505b16 8962 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8963
8964 WARN_ON(!parent); /* root should already exist */
8965
8966 tg->parent = parent;
f473aa5e 8967 INIT_LIST_HEAD(&tg->children);
09f2724a 8968 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8969 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8970
9b5b7751 8971 return tg;
29f59db3
SV
8972
8973err:
6f505b16 8974 free_sched_group(tg);
29f59db3
SV
8975 return ERR_PTR(-ENOMEM);
8976}
8977
9b5b7751 8978/* rcu callback to free various structures associated with a task group */
6f505b16 8979static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8980{
29f59db3 8981 /* now it should be safe to free those cfs_rqs */
6f505b16 8982 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8983}
8984
9b5b7751 8985/* Destroy runqueue etc associated with a task group */
4cf86d77 8986void sched_destroy_group(struct task_group *tg)
29f59db3 8987{
8ed36996 8988 unsigned long flags;
9b5b7751 8989 int i;
29f59db3 8990
8ed36996 8991 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8992 for_each_possible_cpu(i) {
bccbe08a
PZ
8993 unregister_fair_sched_group(tg, i);
8994 unregister_rt_sched_group(tg, i);
9b5b7751 8995 }
6f505b16 8996 list_del_rcu(&tg->list);
f473aa5e 8997 list_del_rcu(&tg->siblings);
8ed36996 8998 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8999
9b5b7751 9000 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 9001 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
9002}
9003
9b5b7751 9004/* change task's runqueue when it moves between groups.
3a252015
IM
9005 * The caller of this function should have put the task in its new group
9006 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9007 * reflect its new group.
9b5b7751
SV
9008 */
9009void sched_move_task(struct task_struct *tsk)
29f59db3
SV
9010{
9011 int on_rq, running;
9012 unsigned long flags;
9013 struct rq *rq;
9014
9015 rq = task_rq_lock(tsk, &flags);
9016
29f59db3
SV
9017 update_rq_clock(rq);
9018
051a1d1a 9019 running = task_current(rq, tsk);
29f59db3
SV
9020 on_rq = tsk->se.on_rq;
9021
0e1f3483 9022 if (on_rq)
29f59db3 9023 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9024 if (unlikely(running))
9025 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9026
6f505b16 9027 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9028
810b3817
PZ
9029#ifdef CONFIG_FAIR_GROUP_SCHED
9030 if (tsk->sched_class->moved_group)
9031 tsk->sched_class->moved_group(tsk);
9032#endif
9033
0e1f3483
HS
9034 if (unlikely(running))
9035 tsk->sched_class->set_curr_task(rq);
9036 if (on_rq)
7074badb 9037 enqueue_task(rq, tsk, 0);
29f59db3 9038
29f59db3
SV
9039 task_rq_unlock(rq, &flags);
9040}
6d6bc0ad 9041#endif /* CONFIG_GROUP_SCHED */
29f59db3 9042
052f1dc7 9043#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 9044static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
9045{
9046 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
9047 int on_rq;
9048
29f59db3 9049 on_rq = se->on_rq;
62fb1851 9050 if (on_rq)
29f59db3
SV
9051 dequeue_entity(cfs_rq, se, 0);
9052
9053 se->load.weight = shares;
e05510d0 9054 se->load.inv_weight = 0;
29f59db3 9055
62fb1851 9056 if (on_rq)
29f59db3 9057 enqueue_entity(cfs_rq, se, 0);
c09595f6 9058}
62fb1851 9059
c09595f6
PZ
9060static void set_se_shares(struct sched_entity *se, unsigned long shares)
9061{
9062 struct cfs_rq *cfs_rq = se->cfs_rq;
9063 struct rq *rq = cfs_rq->rq;
9064 unsigned long flags;
9065
9066 spin_lock_irqsave(&rq->lock, flags);
9067 __set_se_shares(se, shares);
9068 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
9069}
9070
8ed36996
PZ
9071static DEFINE_MUTEX(shares_mutex);
9072
4cf86d77 9073int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
9074{
9075 int i;
8ed36996 9076 unsigned long flags;
c61935fd 9077
ec7dc8ac
DG
9078 /*
9079 * We can't change the weight of the root cgroup.
9080 */
9081 if (!tg->se[0])
9082 return -EINVAL;
9083
18d95a28
PZ
9084 if (shares < MIN_SHARES)
9085 shares = MIN_SHARES;
cb4ad1ff
MX
9086 else if (shares > MAX_SHARES)
9087 shares = MAX_SHARES;
62fb1851 9088
8ed36996 9089 mutex_lock(&shares_mutex);
9b5b7751 9090 if (tg->shares == shares)
5cb350ba 9091 goto done;
29f59db3 9092
8ed36996 9093 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9094 for_each_possible_cpu(i)
9095 unregister_fair_sched_group(tg, i);
f473aa5e 9096 list_del_rcu(&tg->siblings);
8ed36996 9097 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
9098
9099 /* wait for any ongoing reference to this group to finish */
9100 synchronize_sched();
9101
9102 /*
9103 * Now we are free to modify the group's share on each cpu
9104 * w/o tripping rebalance_share or load_balance_fair.
9105 */
9b5b7751 9106 tg->shares = shares;
c09595f6
PZ
9107 for_each_possible_cpu(i) {
9108 /*
9109 * force a rebalance
9110 */
9111 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 9112 set_se_shares(tg->se[i], shares);
c09595f6 9113 }
29f59db3 9114
6b2d7700
SV
9115 /*
9116 * Enable load balance activity on this group, by inserting it back on
9117 * each cpu's rq->leaf_cfs_rq_list.
9118 */
8ed36996 9119 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9120 for_each_possible_cpu(i)
9121 register_fair_sched_group(tg, i);
f473aa5e 9122 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 9123 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 9124done:
8ed36996 9125 mutex_unlock(&shares_mutex);
9b5b7751 9126 return 0;
29f59db3
SV
9127}
9128
5cb350ba
DG
9129unsigned long sched_group_shares(struct task_group *tg)
9130{
9131 return tg->shares;
9132}
052f1dc7 9133#endif
5cb350ba 9134
052f1dc7 9135#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9136/*
9f0c1e56 9137 * Ensure that the real time constraints are schedulable.
6f505b16 9138 */
9f0c1e56
PZ
9139static DEFINE_MUTEX(rt_constraints_mutex);
9140
9141static unsigned long to_ratio(u64 period, u64 runtime)
9142{
9143 if (runtime == RUNTIME_INF)
9a7e0b18 9144 return 1ULL << 20;
9f0c1e56 9145
9a7e0b18 9146 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
9147}
9148
9a7e0b18
PZ
9149/* Must be called with tasklist_lock held */
9150static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 9151{
9a7e0b18 9152 struct task_struct *g, *p;
b40b2e8e 9153
9a7e0b18
PZ
9154 do_each_thread(g, p) {
9155 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9156 return 1;
9157 } while_each_thread(g, p);
b40b2e8e 9158
9a7e0b18
PZ
9159 return 0;
9160}
b40b2e8e 9161
9a7e0b18
PZ
9162struct rt_schedulable_data {
9163 struct task_group *tg;
9164 u64 rt_period;
9165 u64 rt_runtime;
9166};
b40b2e8e 9167
9a7e0b18
PZ
9168static int tg_schedulable(struct task_group *tg, void *data)
9169{
9170 struct rt_schedulable_data *d = data;
9171 struct task_group *child;
9172 unsigned long total, sum = 0;
9173 u64 period, runtime;
b40b2e8e 9174
9a7e0b18
PZ
9175 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9176 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 9177
9a7e0b18
PZ
9178 if (tg == d->tg) {
9179 period = d->rt_period;
9180 runtime = d->rt_runtime;
b40b2e8e 9181 }
b40b2e8e 9182
98a4826b
PZ
9183#ifdef CONFIG_USER_SCHED
9184 if (tg == &root_task_group) {
9185 period = global_rt_period();
9186 runtime = global_rt_runtime();
9187 }
9188#endif
9189
4653f803
PZ
9190 /*
9191 * Cannot have more runtime than the period.
9192 */
9193 if (runtime > period && runtime != RUNTIME_INF)
9194 return -EINVAL;
6f505b16 9195
4653f803
PZ
9196 /*
9197 * Ensure we don't starve existing RT tasks.
9198 */
9a7e0b18
PZ
9199 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9200 return -EBUSY;
6f505b16 9201
9a7e0b18 9202 total = to_ratio(period, runtime);
6f505b16 9203
4653f803
PZ
9204 /*
9205 * Nobody can have more than the global setting allows.
9206 */
9207 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9208 return -EINVAL;
6f505b16 9209
4653f803
PZ
9210 /*
9211 * The sum of our children's runtime should not exceed our own.
9212 */
9a7e0b18
PZ
9213 list_for_each_entry_rcu(child, &tg->children, siblings) {
9214 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9215 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 9216
9a7e0b18
PZ
9217 if (child == d->tg) {
9218 period = d->rt_period;
9219 runtime = d->rt_runtime;
9220 }
6f505b16 9221
9a7e0b18 9222 sum += to_ratio(period, runtime);
9f0c1e56 9223 }
6f505b16 9224
9a7e0b18
PZ
9225 if (sum > total)
9226 return -EINVAL;
9227
9228 return 0;
6f505b16
PZ
9229}
9230
9a7e0b18 9231static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 9232{
9a7e0b18
PZ
9233 struct rt_schedulable_data data = {
9234 .tg = tg,
9235 .rt_period = period,
9236 .rt_runtime = runtime,
9237 };
9238
9239 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
9240}
9241
d0b27fa7
PZ
9242static int tg_set_bandwidth(struct task_group *tg,
9243 u64 rt_period, u64 rt_runtime)
6f505b16 9244{
ac086bc2 9245 int i, err = 0;
9f0c1e56 9246
9f0c1e56 9247 mutex_lock(&rt_constraints_mutex);
521f1a24 9248 read_lock(&tasklist_lock);
9a7e0b18
PZ
9249 err = __rt_schedulable(tg, rt_period, rt_runtime);
9250 if (err)
9f0c1e56 9251 goto unlock;
ac086bc2
PZ
9252
9253 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
9254 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9255 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
9256
9257 for_each_possible_cpu(i) {
9258 struct rt_rq *rt_rq = tg->rt_rq[i];
9259
9260 spin_lock(&rt_rq->rt_runtime_lock);
9261 rt_rq->rt_runtime = rt_runtime;
9262 spin_unlock(&rt_rq->rt_runtime_lock);
9263 }
9264 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 9265 unlock:
521f1a24 9266 read_unlock(&tasklist_lock);
9f0c1e56
PZ
9267 mutex_unlock(&rt_constraints_mutex);
9268
9269 return err;
6f505b16
PZ
9270}
9271
d0b27fa7
PZ
9272int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9273{
9274 u64 rt_runtime, rt_period;
9275
9276 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9277 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9278 if (rt_runtime_us < 0)
9279 rt_runtime = RUNTIME_INF;
9280
9281 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9282}
9283
9f0c1e56
PZ
9284long sched_group_rt_runtime(struct task_group *tg)
9285{
9286 u64 rt_runtime_us;
9287
d0b27fa7 9288 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
9289 return -1;
9290
d0b27fa7 9291 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
9292 do_div(rt_runtime_us, NSEC_PER_USEC);
9293 return rt_runtime_us;
9294}
d0b27fa7
PZ
9295
9296int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9297{
9298 u64 rt_runtime, rt_period;
9299
9300 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9301 rt_runtime = tg->rt_bandwidth.rt_runtime;
9302
619b0488
R
9303 if (rt_period == 0)
9304 return -EINVAL;
9305
d0b27fa7
PZ
9306 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9307}
9308
9309long sched_group_rt_period(struct task_group *tg)
9310{
9311 u64 rt_period_us;
9312
9313 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9314 do_div(rt_period_us, NSEC_PER_USEC);
9315 return rt_period_us;
9316}
9317
9318static int sched_rt_global_constraints(void)
9319{
4653f803 9320 u64 runtime, period;
d0b27fa7
PZ
9321 int ret = 0;
9322
ec5d4989
HS
9323 if (sysctl_sched_rt_period <= 0)
9324 return -EINVAL;
9325
4653f803
PZ
9326 runtime = global_rt_runtime();
9327 period = global_rt_period();
9328
9329 /*
9330 * Sanity check on the sysctl variables.
9331 */
9332 if (runtime > period && runtime != RUNTIME_INF)
9333 return -EINVAL;
10b612f4 9334
d0b27fa7 9335 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9336 read_lock(&tasklist_lock);
4653f803 9337 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9338 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9339 mutex_unlock(&rt_constraints_mutex);
9340
9341 return ret;
9342}
54e99124
DG
9343
9344int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9345{
9346 /* Don't accept realtime tasks when there is no way for them to run */
9347 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9348 return 0;
9349
9350 return 1;
9351}
9352
6d6bc0ad 9353#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9354static int sched_rt_global_constraints(void)
9355{
ac086bc2
PZ
9356 unsigned long flags;
9357 int i;
9358
ec5d4989
HS
9359 if (sysctl_sched_rt_period <= 0)
9360 return -EINVAL;
9361
ac086bc2
PZ
9362 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9363 for_each_possible_cpu(i) {
9364 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9365
9366 spin_lock(&rt_rq->rt_runtime_lock);
9367 rt_rq->rt_runtime = global_rt_runtime();
9368 spin_unlock(&rt_rq->rt_runtime_lock);
9369 }
9370 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9371
d0b27fa7
PZ
9372 return 0;
9373}
6d6bc0ad 9374#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9375
9376int sched_rt_handler(struct ctl_table *table, int write,
9377 struct file *filp, void __user *buffer, size_t *lenp,
9378 loff_t *ppos)
9379{
9380 int ret;
9381 int old_period, old_runtime;
9382 static DEFINE_MUTEX(mutex);
9383
9384 mutex_lock(&mutex);
9385 old_period = sysctl_sched_rt_period;
9386 old_runtime = sysctl_sched_rt_runtime;
9387
9388 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9389
9390 if (!ret && write) {
9391 ret = sched_rt_global_constraints();
9392 if (ret) {
9393 sysctl_sched_rt_period = old_period;
9394 sysctl_sched_rt_runtime = old_runtime;
9395 } else {
9396 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9397 def_rt_bandwidth.rt_period =
9398 ns_to_ktime(global_rt_period());
9399 }
9400 }
9401 mutex_unlock(&mutex);
9402
9403 return ret;
9404}
68318b8e 9405
052f1dc7 9406#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9407
9408/* return corresponding task_group object of a cgroup */
2b01dfe3 9409static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9410{
2b01dfe3
PM
9411 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9412 struct task_group, css);
68318b8e
SV
9413}
9414
9415static struct cgroup_subsys_state *
2b01dfe3 9416cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9417{
ec7dc8ac 9418 struct task_group *tg, *parent;
68318b8e 9419
2b01dfe3 9420 if (!cgrp->parent) {
68318b8e 9421 /* This is early initialization for the top cgroup */
68318b8e
SV
9422 return &init_task_group.css;
9423 }
9424
ec7dc8ac
DG
9425 parent = cgroup_tg(cgrp->parent);
9426 tg = sched_create_group(parent);
68318b8e
SV
9427 if (IS_ERR(tg))
9428 return ERR_PTR(-ENOMEM);
9429
68318b8e
SV
9430 return &tg->css;
9431}
9432
41a2d6cf
IM
9433static void
9434cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9435{
2b01dfe3 9436 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9437
9438 sched_destroy_group(tg);
9439}
9440
41a2d6cf
IM
9441static int
9442cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9443 struct task_struct *tsk)
68318b8e 9444{
b68aa230 9445#ifdef CONFIG_RT_GROUP_SCHED
54e99124 9446 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
9447 return -EINVAL;
9448#else
68318b8e
SV
9449 /* We don't support RT-tasks being in separate groups */
9450 if (tsk->sched_class != &fair_sched_class)
9451 return -EINVAL;
b68aa230 9452#endif
68318b8e
SV
9453
9454 return 0;
9455}
9456
9457static void
2b01dfe3 9458cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
9459 struct cgroup *old_cont, struct task_struct *tsk)
9460{
9461 sched_move_task(tsk);
9462}
9463
052f1dc7 9464#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9465static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9466 u64 shareval)
68318b8e 9467{
2b01dfe3 9468 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9469}
9470
f4c753b7 9471static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9472{
2b01dfe3 9473 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9474
9475 return (u64) tg->shares;
9476}
6d6bc0ad 9477#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9478
052f1dc7 9479#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9480static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9481 s64 val)
6f505b16 9482{
06ecb27c 9483 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9484}
9485
06ecb27c 9486static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9487{
06ecb27c 9488 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9489}
d0b27fa7
PZ
9490
9491static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9492 u64 rt_period_us)
9493{
9494 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9495}
9496
9497static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9498{
9499 return sched_group_rt_period(cgroup_tg(cgrp));
9500}
6d6bc0ad 9501#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9502
fe5c7cc2 9503static struct cftype cpu_files[] = {
052f1dc7 9504#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9505 {
9506 .name = "shares",
f4c753b7
PM
9507 .read_u64 = cpu_shares_read_u64,
9508 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9509 },
052f1dc7
PZ
9510#endif
9511#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9512 {
9f0c1e56 9513 .name = "rt_runtime_us",
06ecb27c
PM
9514 .read_s64 = cpu_rt_runtime_read,
9515 .write_s64 = cpu_rt_runtime_write,
6f505b16 9516 },
d0b27fa7
PZ
9517 {
9518 .name = "rt_period_us",
f4c753b7
PM
9519 .read_u64 = cpu_rt_period_read_uint,
9520 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9521 },
052f1dc7 9522#endif
68318b8e
SV
9523};
9524
9525static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9526{
fe5c7cc2 9527 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9528}
9529
9530struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9531 .name = "cpu",
9532 .create = cpu_cgroup_create,
9533 .destroy = cpu_cgroup_destroy,
9534 .can_attach = cpu_cgroup_can_attach,
9535 .attach = cpu_cgroup_attach,
9536 .populate = cpu_cgroup_populate,
9537 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9538 .early_init = 1,
9539};
9540
052f1dc7 9541#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9542
9543#ifdef CONFIG_CGROUP_CPUACCT
9544
9545/*
9546 * CPU accounting code for task groups.
9547 *
9548 * Based on the work by Paul Menage ([email protected]) and Balbir Singh
9549 * ([email protected]).
9550 */
9551
934352f2 9552/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9553struct cpuacct {
9554 struct cgroup_subsys_state css;
9555 /* cpuusage holds pointer to a u64-type object on every cpu */
9556 u64 *cpuusage;
934352f2 9557 struct cpuacct *parent;
d842de87
SV
9558};
9559
9560struct cgroup_subsys cpuacct_subsys;
9561
9562/* return cpu accounting group corresponding to this container */
32cd756a 9563static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9564{
32cd756a 9565 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9566 struct cpuacct, css);
9567}
9568
9569/* return cpu accounting group to which this task belongs */
9570static inline struct cpuacct *task_ca(struct task_struct *tsk)
9571{
9572 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9573 struct cpuacct, css);
9574}
9575
9576/* create a new cpu accounting group */
9577static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9578 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9579{
9580 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9581
9582 if (!ca)
9583 return ERR_PTR(-ENOMEM);
9584
9585 ca->cpuusage = alloc_percpu(u64);
9586 if (!ca->cpuusage) {
9587 kfree(ca);
9588 return ERR_PTR(-ENOMEM);
9589 }
9590
934352f2
BR
9591 if (cgrp->parent)
9592 ca->parent = cgroup_ca(cgrp->parent);
9593
d842de87
SV
9594 return &ca->css;
9595}
9596
9597/* destroy an existing cpu accounting group */
41a2d6cf 9598static void
32cd756a 9599cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9600{
32cd756a 9601 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9602
9603 free_percpu(ca->cpuusage);
9604 kfree(ca);
9605}
9606
720f5498
KC
9607static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9608{
9609 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9610 u64 data;
9611
9612#ifndef CONFIG_64BIT
9613 /*
9614 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9615 */
9616 spin_lock_irq(&cpu_rq(cpu)->lock);
9617 data = *cpuusage;
9618 spin_unlock_irq(&cpu_rq(cpu)->lock);
9619#else
9620 data = *cpuusage;
9621#endif
9622
9623 return data;
9624}
9625
9626static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9627{
9628 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9629
9630#ifndef CONFIG_64BIT
9631 /*
9632 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9633 */
9634 spin_lock_irq(&cpu_rq(cpu)->lock);
9635 *cpuusage = val;
9636 spin_unlock_irq(&cpu_rq(cpu)->lock);
9637#else
9638 *cpuusage = val;
9639#endif
9640}
9641
d842de87 9642/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9643static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9644{
32cd756a 9645 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9646 u64 totalcpuusage = 0;
9647 int i;
9648
720f5498
KC
9649 for_each_present_cpu(i)
9650 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9651
9652 return totalcpuusage;
9653}
9654
0297b803
DG
9655static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9656 u64 reset)
9657{
9658 struct cpuacct *ca = cgroup_ca(cgrp);
9659 int err = 0;
9660 int i;
9661
9662 if (reset) {
9663 err = -EINVAL;
9664 goto out;
9665 }
9666
720f5498
KC
9667 for_each_present_cpu(i)
9668 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9669
0297b803
DG
9670out:
9671 return err;
9672}
9673
e9515c3c
KC
9674static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9675 struct seq_file *m)
9676{
9677 struct cpuacct *ca = cgroup_ca(cgroup);
9678 u64 percpu;
9679 int i;
9680
9681 for_each_present_cpu(i) {
9682 percpu = cpuacct_cpuusage_read(ca, i);
9683 seq_printf(m, "%llu ", (unsigned long long) percpu);
9684 }
9685 seq_printf(m, "\n");
9686 return 0;
9687}
9688
d842de87
SV
9689static struct cftype files[] = {
9690 {
9691 .name = "usage",
f4c753b7
PM
9692 .read_u64 = cpuusage_read,
9693 .write_u64 = cpuusage_write,
d842de87 9694 },
e9515c3c
KC
9695 {
9696 .name = "usage_percpu",
9697 .read_seq_string = cpuacct_percpu_seq_read,
9698 },
9699
d842de87
SV
9700};
9701
32cd756a 9702static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9703{
32cd756a 9704 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9705}
9706
9707/*
9708 * charge this task's execution time to its accounting group.
9709 *
9710 * called with rq->lock held.
9711 */
9712static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9713{
9714 struct cpuacct *ca;
934352f2 9715 int cpu;
d842de87 9716
c40c6f85 9717 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9718 return;
9719
934352f2 9720 cpu = task_cpu(tsk);
d842de87 9721 ca = task_ca(tsk);
d842de87 9722
934352f2
BR
9723 for (; ca; ca = ca->parent) {
9724 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9725 *cpuusage += cputime;
9726 }
9727}
9728
9729struct cgroup_subsys cpuacct_subsys = {
9730 .name = "cpuacct",
9731 .create = cpuacct_create,
9732 .destroy = cpuacct_destroy,
9733 .populate = cpuacct_populate,
9734 .subsys_id = cpuacct_subsys_id,
9735};
9736#endif /* CONFIG_CGROUP_CPUACCT */
This page took 2.962321 seconds and 4 git commands to generate.