]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * kernel/sched.c | |
3 | * | |
4 | * Kernel scheduler and related syscalls | |
5 | * | |
6 | * Copyright (C) 1991-2002 Linus Torvalds | |
7 | * | |
8 | * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and | |
9 | * make semaphores SMP safe | |
10 | * 1998-11-19 Implemented schedule_timeout() and related stuff | |
11 | * by Andrea Arcangeli | |
12 | * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: | |
13 | * hybrid priority-list and round-robin design with | |
14 | * an array-switch method of distributing timeslices | |
15 | * and per-CPU runqueues. Cleanups and useful suggestions | |
16 | * by Davide Libenzi, preemptible kernel bits by Robert Love. | |
17 | * 2003-09-03 Interactivity tuning by Con Kolivas. | |
18 | * 2004-04-02 Scheduler domains code by Nick Piggin | |
c31f2e8a IM |
19 | * 2007-04-15 Work begun on replacing all interactivity tuning with a |
20 | * fair scheduling design by Con Kolivas. | |
21 | * 2007-05-05 Load balancing (smp-nice) and other improvements | |
22 | * by Peter Williams | |
23 | * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith | |
24 | * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri | |
b9131769 IM |
25 | * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, |
26 | * Thomas Gleixner, Mike Kravetz | |
1da177e4 LT |
27 | */ |
28 | ||
29 | #include <linux/mm.h> | |
30 | #include <linux/module.h> | |
31 | #include <linux/nmi.h> | |
32 | #include <linux/init.h> | |
dff06c15 | 33 | #include <linux/uaccess.h> |
1da177e4 LT |
34 | #include <linux/highmem.h> |
35 | #include <linux/smp_lock.h> | |
36 | #include <asm/mmu_context.h> | |
37 | #include <linux/interrupt.h> | |
c59ede7b | 38 | #include <linux/capability.h> |
1da177e4 LT |
39 | #include <linux/completion.h> |
40 | #include <linux/kernel_stat.h> | |
9a11b49a | 41 | #include <linux/debug_locks.h> |
1da177e4 LT |
42 | #include <linux/security.h> |
43 | #include <linux/notifier.h> | |
44 | #include <linux/profile.h> | |
7dfb7103 | 45 | #include <linux/freezer.h> |
198e2f18 | 46 | #include <linux/vmalloc.h> |
1da177e4 LT |
47 | #include <linux/blkdev.h> |
48 | #include <linux/delay.h> | |
b488893a | 49 | #include <linux/pid_namespace.h> |
1da177e4 LT |
50 | #include <linux/smp.h> |
51 | #include <linux/threads.h> | |
52 | #include <linux/timer.h> | |
53 | #include <linux/rcupdate.h> | |
54 | #include <linux/cpu.h> | |
55 | #include <linux/cpuset.h> | |
56 | #include <linux/percpu.h> | |
57 | #include <linux/kthread.h> | |
b5aadf7f | 58 | #include <linux/proc_fs.h> |
1da177e4 | 59 | #include <linux/seq_file.h> |
e692ab53 | 60 | #include <linux/sysctl.h> |
1da177e4 LT |
61 | #include <linux/syscalls.h> |
62 | #include <linux/times.h> | |
8f0ab514 | 63 | #include <linux/tsacct_kern.h> |
c6fd91f0 | 64 | #include <linux/kprobes.h> |
0ff92245 | 65 | #include <linux/delayacct.h> |
5517d86b | 66 | #include <linux/reciprocal_div.h> |
dff06c15 | 67 | #include <linux/unistd.h> |
f5ff8422 | 68 | #include <linux/pagemap.h> |
8f4d37ec | 69 | #include <linux/hrtimer.h> |
30914a58 | 70 | #include <linux/tick.h> |
434d53b0 | 71 | #include <linux/bootmem.h> |
f00b45c1 PZ |
72 | #include <linux/debugfs.h> |
73 | #include <linux/ctype.h> | |
6cd8a4bb | 74 | #include <linux/ftrace.h> |
0a16b607 | 75 | #include <trace/sched.h> |
1da177e4 | 76 | |
5517d86b | 77 | #include <asm/tlb.h> |
838225b4 | 78 | #include <asm/irq_regs.h> |
1da177e4 | 79 | |
6e0534f2 GH |
80 | #include "sched_cpupri.h" |
81 | ||
1da177e4 LT |
82 | /* |
83 | * Convert user-nice values [ -20 ... 0 ... 19 ] | |
84 | * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], | |
85 | * and back. | |
86 | */ | |
87 | #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20) | |
88 | #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20) | |
89 | #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio) | |
90 | ||
91 | /* | |
92 | * 'User priority' is the nice value converted to something we | |
93 | * can work with better when scaling various scheduler parameters, | |
94 | * it's a [ 0 ... 39 ] range. | |
95 | */ | |
96 | #define USER_PRIO(p) ((p)-MAX_RT_PRIO) | |
97 | #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio) | |
98 | #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO)) | |
99 | ||
100 | /* | |
d7876a08 | 101 | * Helpers for converting nanosecond timing to jiffy resolution |
1da177e4 | 102 | */ |
d6322faf | 103 | #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) |
1da177e4 | 104 | |
6aa645ea IM |
105 | #define NICE_0_LOAD SCHED_LOAD_SCALE |
106 | #define NICE_0_SHIFT SCHED_LOAD_SHIFT | |
107 | ||
1da177e4 LT |
108 | /* |
109 | * These are the 'tuning knobs' of the scheduler: | |
110 | * | |
a4ec24b4 | 111 | * default timeslice is 100 msecs (used only for SCHED_RR tasks). |
1da177e4 LT |
112 | * Timeslices get refilled after they expire. |
113 | */ | |
1da177e4 | 114 | #define DEF_TIMESLICE (100 * HZ / 1000) |
2dd73a4f | 115 | |
d0b27fa7 PZ |
116 | /* |
117 | * single value that denotes runtime == period, ie unlimited time. | |
118 | */ | |
119 | #define RUNTIME_INF ((u64)~0ULL) | |
120 | ||
7e066fb8 MD |
121 | DEFINE_TRACE(sched_wait_task); |
122 | DEFINE_TRACE(sched_wakeup); | |
123 | DEFINE_TRACE(sched_wakeup_new); | |
124 | DEFINE_TRACE(sched_switch); | |
125 | DEFINE_TRACE(sched_migrate_task); | |
126 | ||
5517d86b ED |
127 | #ifdef CONFIG_SMP |
128 | /* | |
129 | * Divide a load by a sched group cpu_power : (load / sg->__cpu_power) | |
130 | * Since cpu_power is a 'constant', we can use a reciprocal divide. | |
131 | */ | |
132 | static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load) | |
133 | { | |
134 | return reciprocal_divide(load, sg->reciprocal_cpu_power); | |
135 | } | |
136 | ||
137 | /* | |
138 | * Each time a sched group cpu_power is changed, | |
139 | * we must compute its reciprocal value | |
140 | */ | |
141 | static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val) | |
142 | { | |
143 | sg->__cpu_power += val; | |
144 | sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power); | |
145 | } | |
146 | #endif | |
147 | ||
e05606d3 IM |
148 | static inline int rt_policy(int policy) |
149 | { | |
3f33a7ce | 150 | if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR)) |
e05606d3 IM |
151 | return 1; |
152 | return 0; | |
153 | } | |
154 | ||
155 | static inline int task_has_rt_policy(struct task_struct *p) | |
156 | { | |
157 | return rt_policy(p->policy); | |
158 | } | |
159 | ||
1da177e4 | 160 | /* |
6aa645ea | 161 | * This is the priority-queue data structure of the RT scheduling class: |
1da177e4 | 162 | */ |
6aa645ea IM |
163 | struct rt_prio_array { |
164 | DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ | |
165 | struct list_head queue[MAX_RT_PRIO]; | |
166 | }; | |
167 | ||
d0b27fa7 | 168 | struct rt_bandwidth { |
ea736ed5 IM |
169 | /* nests inside the rq lock: */ |
170 | spinlock_t rt_runtime_lock; | |
171 | ktime_t rt_period; | |
172 | u64 rt_runtime; | |
173 | struct hrtimer rt_period_timer; | |
d0b27fa7 PZ |
174 | }; |
175 | ||
176 | static struct rt_bandwidth def_rt_bandwidth; | |
177 | ||
178 | static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); | |
179 | ||
180 | static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) | |
181 | { | |
182 | struct rt_bandwidth *rt_b = | |
183 | container_of(timer, struct rt_bandwidth, rt_period_timer); | |
184 | ktime_t now; | |
185 | int overrun; | |
186 | int idle = 0; | |
187 | ||
188 | for (;;) { | |
189 | now = hrtimer_cb_get_time(timer); | |
190 | overrun = hrtimer_forward(timer, now, rt_b->rt_period); | |
191 | ||
192 | if (!overrun) | |
193 | break; | |
194 | ||
195 | idle = do_sched_rt_period_timer(rt_b, overrun); | |
196 | } | |
197 | ||
198 | return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; | |
199 | } | |
200 | ||
201 | static | |
202 | void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) | |
203 | { | |
204 | rt_b->rt_period = ns_to_ktime(period); | |
205 | rt_b->rt_runtime = runtime; | |
206 | ||
ac086bc2 PZ |
207 | spin_lock_init(&rt_b->rt_runtime_lock); |
208 | ||
d0b27fa7 PZ |
209 | hrtimer_init(&rt_b->rt_period_timer, |
210 | CLOCK_MONOTONIC, HRTIMER_MODE_REL); | |
211 | rt_b->rt_period_timer.function = sched_rt_period_timer; | |
d0b27fa7 PZ |
212 | } |
213 | ||
c8bfff6d KH |
214 | static inline int rt_bandwidth_enabled(void) |
215 | { | |
216 | return sysctl_sched_rt_runtime >= 0; | |
d0b27fa7 PZ |
217 | } |
218 | ||
219 | static void start_rt_bandwidth(struct rt_bandwidth *rt_b) | |
220 | { | |
221 | ktime_t now; | |
222 | ||
0b148fa0 | 223 | if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF) |
d0b27fa7 PZ |
224 | return; |
225 | ||
226 | if (hrtimer_active(&rt_b->rt_period_timer)) | |
227 | return; | |
228 | ||
229 | spin_lock(&rt_b->rt_runtime_lock); | |
230 | for (;;) { | |
231 | if (hrtimer_active(&rt_b->rt_period_timer)) | |
232 | break; | |
233 | ||
234 | now = hrtimer_cb_get_time(&rt_b->rt_period_timer); | |
235 | hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period); | |
cc584b21 AV |
236 | hrtimer_start_expires(&rt_b->rt_period_timer, |
237 | HRTIMER_MODE_ABS); | |
d0b27fa7 PZ |
238 | } |
239 | spin_unlock(&rt_b->rt_runtime_lock); | |
240 | } | |
241 | ||
242 | #ifdef CONFIG_RT_GROUP_SCHED | |
243 | static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) | |
244 | { | |
245 | hrtimer_cancel(&rt_b->rt_period_timer); | |
246 | } | |
247 | #endif | |
248 | ||
712555ee HC |
249 | /* |
250 | * sched_domains_mutex serializes calls to arch_init_sched_domains, | |
251 | * detach_destroy_domains and partition_sched_domains. | |
252 | */ | |
253 | static DEFINE_MUTEX(sched_domains_mutex); | |
254 | ||
052f1dc7 | 255 | #ifdef CONFIG_GROUP_SCHED |
29f59db3 | 256 | |
68318b8e SV |
257 | #include <linux/cgroup.h> |
258 | ||
29f59db3 SV |
259 | struct cfs_rq; |
260 | ||
6f505b16 PZ |
261 | static LIST_HEAD(task_groups); |
262 | ||
29f59db3 | 263 | /* task group related information */ |
4cf86d77 | 264 | struct task_group { |
052f1dc7 | 265 | #ifdef CONFIG_CGROUP_SCHED |
68318b8e SV |
266 | struct cgroup_subsys_state css; |
267 | #endif | |
052f1dc7 | 268 | |
6c415b92 AB |
269 | #ifdef CONFIG_USER_SCHED |
270 | uid_t uid; | |
271 | #endif | |
272 | ||
052f1dc7 | 273 | #ifdef CONFIG_FAIR_GROUP_SCHED |
29f59db3 SV |
274 | /* schedulable entities of this group on each cpu */ |
275 | struct sched_entity **se; | |
276 | /* runqueue "owned" by this group on each cpu */ | |
277 | struct cfs_rq **cfs_rq; | |
278 | unsigned long shares; | |
052f1dc7 PZ |
279 | #endif |
280 | ||
281 | #ifdef CONFIG_RT_GROUP_SCHED | |
282 | struct sched_rt_entity **rt_se; | |
283 | struct rt_rq **rt_rq; | |
284 | ||
d0b27fa7 | 285 | struct rt_bandwidth rt_bandwidth; |
052f1dc7 | 286 | #endif |
6b2d7700 | 287 | |
ae8393e5 | 288 | struct rcu_head rcu; |
6f505b16 | 289 | struct list_head list; |
f473aa5e PZ |
290 | |
291 | struct task_group *parent; | |
292 | struct list_head siblings; | |
293 | struct list_head children; | |
29f59db3 SV |
294 | }; |
295 | ||
354d60c2 | 296 | #ifdef CONFIG_USER_SCHED |
eff766a6 | 297 | |
6c415b92 AB |
298 | /* Helper function to pass uid information to create_sched_user() */ |
299 | void set_tg_uid(struct user_struct *user) | |
300 | { | |
301 | user->tg->uid = user->uid; | |
302 | } | |
303 | ||
eff766a6 PZ |
304 | /* |
305 | * Root task group. | |
306 | * Every UID task group (including init_task_group aka UID-0) will | |
307 | * be a child to this group. | |
308 | */ | |
309 | struct task_group root_task_group; | |
310 | ||
052f1dc7 | 311 | #ifdef CONFIG_FAIR_GROUP_SCHED |
29f59db3 SV |
312 | /* Default task group's sched entity on each cpu */ |
313 | static DEFINE_PER_CPU(struct sched_entity, init_sched_entity); | |
314 | /* Default task group's cfs_rq on each cpu */ | |
315 | static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp; | |
6d6bc0ad | 316 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
052f1dc7 PZ |
317 | |
318 | #ifdef CONFIG_RT_GROUP_SCHED | |
319 | static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity); | |
320 | static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp; | |
6d6bc0ad | 321 | #endif /* CONFIG_RT_GROUP_SCHED */ |
9a7e0b18 | 322 | #else /* !CONFIG_USER_SCHED */ |
eff766a6 | 323 | #define root_task_group init_task_group |
9a7e0b18 | 324 | #endif /* CONFIG_USER_SCHED */ |
6f505b16 | 325 | |
8ed36996 | 326 | /* task_group_lock serializes add/remove of task groups and also changes to |
ec2c507f SV |
327 | * a task group's cpu shares. |
328 | */ | |
8ed36996 | 329 | static DEFINE_SPINLOCK(task_group_lock); |
ec2c507f | 330 | |
052f1dc7 | 331 | #ifdef CONFIG_FAIR_GROUP_SCHED |
052f1dc7 PZ |
332 | #ifdef CONFIG_USER_SCHED |
333 | # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD) | |
6d6bc0ad | 334 | #else /* !CONFIG_USER_SCHED */ |
052f1dc7 | 335 | # define INIT_TASK_GROUP_LOAD NICE_0_LOAD |
6d6bc0ad | 336 | #endif /* CONFIG_USER_SCHED */ |
052f1dc7 | 337 | |
cb4ad1ff | 338 | /* |
2e084786 LJ |
339 | * A weight of 0 or 1 can cause arithmetics problems. |
340 | * A weight of a cfs_rq is the sum of weights of which entities | |
341 | * are queued on this cfs_rq, so a weight of a entity should not be | |
342 | * too large, so as the shares value of a task group. | |
cb4ad1ff MX |
343 | * (The default weight is 1024 - so there's no practical |
344 | * limitation from this.) | |
345 | */ | |
18d95a28 | 346 | #define MIN_SHARES 2 |
2e084786 | 347 | #define MAX_SHARES (1UL << 18) |
18d95a28 | 348 | |
052f1dc7 PZ |
349 | static int init_task_group_load = INIT_TASK_GROUP_LOAD; |
350 | #endif | |
351 | ||
29f59db3 | 352 | /* Default task group. |
3a252015 | 353 | * Every task in system belong to this group at bootup. |
29f59db3 | 354 | */ |
434d53b0 | 355 | struct task_group init_task_group; |
29f59db3 SV |
356 | |
357 | /* return group to which a task belongs */ | |
4cf86d77 | 358 | static inline struct task_group *task_group(struct task_struct *p) |
29f59db3 | 359 | { |
4cf86d77 | 360 | struct task_group *tg; |
9b5b7751 | 361 | |
052f1dc7 | 362 | #ifdef CONFIG_USER_SCHED |
c69e8d9c DH |
363 | rcu_read_lock(); |
364 | tg = __task_cred(p)->user->tg; | |
365 | rcu_read_unlock(); | |
052f1dc7 | 366 | #elif defined(CONFIG_CGROUP_SCHED) |
68318b8e SV |
367 | tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id), |
368 | struct task_group, css); | |
24e377a8 | 369 | #else |
41a2d6cf | 370 | tg = &init_task_group; |
24e377a8 | 371 | #endif |
9b5b7751 | 372 | return tg; |
29f59db3 SV |
373 | } |
374 | ||
375 | /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ | |
6f505b16 | 376 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) |
29f59db3 | 377 | { |
052f1dc7 | 378 | #ifdef CONFIG_FAIR_GROUP_SCHED |
ce96b5ac DA |
379 | p->se.cfs_rq = task_group(p)->cfs_rq[cpu]; |
380 | p->se.parent = task_group(p)->se[cpu]; | |
052f1dc7 | 381 | #endif |
6f505b16 | 382 | |
052f1dc7 | 383 | #ifdef CONFIG_RT_GROUP_SCHED |
6f505b16 PZ |
384 | p->rt.rt_rq = task_group(p)->rt_rq[cpu]; |
385 | p->rt.parent = task_group(p)->rt_se[cpu]; | |
052f1dc7 | 386 | #endif |
29f59db3 SV |
387 | } |
388 | ||
389 | #else | |
390 | ||
6f505b16 | 391 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } |
83378269 PZ |
392 | static inline struct task_group *task_group(struct task_struct *p) |
393 | { | |
394 | return NULL; | |
395 | } | |
29f59db3 | 396 | |
052f1dc7 | 397 | #endif /* CONFIG_GROUP_SCHED */ |
29f59db3 | 398 | |
6aa645ea IM |
399 | /* CFS-related fields in a runqueue */ |
400 | struct cfs_rq { | |
401 | struct load_weight load; | |
402 | unsigned long nr_running; | |
403 | ||
6aa645ea | 404 | u64 exec_clock; |
e9acbff6 | 405 | u64 min_vruntime; |
6aa645ea IM |
406 | |
407 | struct rb_root tasks_timeline; | |
408 | struct rb_node *rb_leftmost; | |
4a55bd5e PZ |
409 | |
410 | struct list_head tasks; | |
411 | struct list_head *balance_iterator; | |
412 | ||
413 | /* | |
414 | * 'curr' points to currently running entity on this cfs_rq. | |
6aa645ea IM |
415 | * It is set to NULL otherwise (i.e when none are currently running). |
416 | */ | |
4793241b | 417 | struct sched_entity *curr, *next, *last; |
ddc97297 | 418 | |
5ac5c4d6 | 419 | unsigned int nr_spread_over; |
ddc97297 | 420 | |
62160e3f | 421 | #ifdef CONFIG_FAIR_GROUP_SCHED |
6aa645ea IM |
422 | struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ |
423 | ||
41a2d6cf IM |
424 | /* |
425 | * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in | |
6aa645ea IM |
426 | * a hierarchy). Non-leaf lrqs hold other higher schedulable entities |
427 | * (like users, containers etc.) | |
428 | * | |
429 | * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This | |
430 | * list is used during load balance. | |
431 | */ | |
41a2d6cf IM |
432 | struct list_head leaf_cfs_rq_list; |
433 | struct task_group *tg; /* group that "owns" this runqueue */ | |
c09595f6 PZ |
434 | |
435 | #ifdef CONFIG_SMP | |
c09595f6 | 436 | /* |
c8cba857 | 437 | * the part of load.weight contributed by tasks |
c09595f6 | 438 | */ |
c8cba857 | 439 | unsigned long task_weight; |
c09595f6 | 440 | |
c8cba857 PZ |
441 | /* |
442 | * h_load = weight * f(tg) | |
443 | * | |
444 | * Where f(tg) is the recursive weight fraction assigned to | |
445 | * this group. | |
446 | */ | |
447 | unsigned long h_load; | |
c09595f6 | 448 | |
c8cba857 PZ |
449 | /* |
450 | * this cpu's part of tg->shares | |
451 | */ | |
452 | unsigned long shares; | |
f1d239f7 PZ |
453 | |
454 | /* | |
455 | * load.weight at the time we set shares | |
456 | */ | |
457 | unsigned long rq_weight; | |
c09595f6 | 458 | #endif |
6aa645ea IM |
459 | #endif |
460 | }; | |
1da177e4 | 461 | |
6aa645ea IM |
462 | /* Real-Time classes' related field in a runqueue: */ |
463 | struct rt_rq { | |
464 | struct rt_prio_array active; | |
63489e45 | 465 | unsigned long rt_nr_running; |
052f1dc7 | 466 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
6f505b16 PZ |
467 | int highest_prio; /* highest queued rt task prio */ |
468 | #endif | |
fa85ae24 | 469 | #ifdef CONFIG_SMP |
73fe6aae | 470 | unsigned long rt_nr_migratory; |
a22d7fc1 | 471 | int overloaded; |
fa85ae24 | 472 | #endif |
6f505b16 | 473 | int rt_throttled; |
fa85ae24 | 474 | u64 rt_time; |
ac086bc2 | 475 | u64 rt_runtime; |
ea736ed5 | 476 | /* Nests inside the rq lock: */ |
ac086bc2 | 477 | spinlock_t rt_runtime_lock; |
6f505b16 | 478 | |
052f1dc7 | 479 | #ifdef CONFIG_RT_GROUP_SCHED |
23b0fdfc PZ |
480 | unsigned long rt_nr_boosted; |
481 | ||
6f505b16 PZ |
482 | struct rq *rq; |
483 | struct list_head leaf_rt_rq_list; | |
484 | struct task_group *tg; | |
485 | struct sched_rt_entity *rt_se; | |
486 | #endif | |
6aa645ea IM |
487 | }; |
488 | ||
57d885fe GH |
489 | #ifdef CONFIG_SMP |
490 | ||
491 | /* | |
492 | * We add the notion of a root-domain which will be used to define per-domain | |
0eab9146 IM |
493 | * variables. Each exclusive cpuset essentially defines an island domain by |
494 | * fully partitioning the member cpus from any other cpuset. Whenever a new | |
57d885fe GH |
495 | * exclusive cpuset is created, we also create and attach a new root-domain |
496 | * object. | |
497 | * | |
57d885fe GH |
498 | */ |
499 | struct root_domain { | |
500 | atomic_t refcount; | |
501 | cpumask_t span; | |
502 | cpumask_t online; | |
637f5085 | 503 | |
0eab9146 | 504 | /* |
637f5085 GH |
505 | * The "RT overload" flag: it gets set if a CPU has more than |
506 | * one runnable RT task. | |
507 | */ | |
508 | cpumask_t rto_mask; | |
0eab9146 | 509 | atomic_t rto_count; |
6e0534f2 GH |
510 | #ifdef CONFIG_SMP |
511 | struct cpupri cpupri; | |
512 | #endif | |
57d885fe GH |
513 | }; |
514 | ||
dc938520 GH |
515 | /* |
516 | * By default the system creates a single root-domain with all cpus as | |
517 | * members (mimicking the global state we have today). | |
518 | */ | |
57d885fe GH |
519 | static struct root_domain def_root_domain; |
520 | ||
521 | #endif | |
522 | ||
1da177e4 LT |
523 | /* |
524 | * This is the main, per-CPU runqueue data structure. | |
525 | * | |
526 | * Locking rule: those places that want to lock multiple runqueues | |
527 | * (such as the load balancing or the thread migration code), lock | |
528 | * acquire operations must be ordered by ascending &runqueue. | |
529 | */ | |
70b97a7f | 530 | struct rq { |
d8016491 IM |
531 | /* runqueue lock: */ |
532 | spinlock_t lock; | |
1da177e4 LT |
533 | |
534 | /* | |
535 | * nr_running and cpu_load should be in the same cacheline because | |
536 | * remote CPUs use both these fields when doing load calculation. | |
537 | */ | |
538 | unsigned long nr_running; | |
6aa645ea IM |
539 | #define CPU_LOAD_IDX_MAX 5 |
540 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; | |
bdecea3a | 541 | unsigned char idle_at_tick; |
46cb4b7c | 542 | #ifdef CONFIG_NO_HZ |
15934a37 | 543 | unsigned long last_tick_seen; |
46cb4b7c SS |
544 | unsigned char in_nohz_recently; |
545 | #endif | |
d8016491 IM |
546 | /* capture load from *all* tasks on this cpu: */ |
547 | struct load_weight load; | |
6aa645ea IM |
548 | unsigned long nr_load_updates; |
549 | u64 nr_switches; | |
550 | ||
551 | struct cfs_rq cfs; | |
6f505b16 | 552 | struct rt_rq rt; |
6f505b16 | 553 | |
6aa645ea | 554 | #ifdef CONFIG_FAIR_GROUP_SCHED |
d8016491 IM |
555 | /* list of leaf cfs_rq on this cpu: */ |
556 | struct list_head leaf_cfs_rq_list; | |
052f1dc7 PZ |
557 | #endif |
558 | #ifdef CONFIG_RT_GROUP_SCHED | |
6f505b16 | 559 | struct list_head leaf_rt_rq_list; |
1da177e4 | 560 | #endif |
1da177e4 LT |
561 | |
562 | /* | |
563 | * This is part of a global counter where only the total sum | |
564 | * over all CPUs matters. A task can increase this counter on | |
565 | * one CPU and if it got migrated afterwards it may decrease | |
566 | * it on another CPU. Always updated under the runqueue lock: | |
567 | */ | |
568 | unsigned long nr_uninterruptible; | |
569 | ||
36c8b586 | 570 | struct task_struct *curr, *idle; |
c9819f45 | 571 | unsigned long next_balance; |
1da177e4 | 572 | struct mm_struct *prev_mm; |
6aa645ea | 573 | |
3e51f33f | 574 | u64 clock; |
6aa645ea | 575 | |
1da177e4 LT |
576 | atomic_t nr_iowait; |
577 | ||
578 | #ifdef CONFIG_SMP | |
0eab9146 | 579 | struct root_domain *rd; |
1da177e4 LT |
580 | struct sched_domain *sd; |
581 | ||
582 | /* For active balancing */ | |
583 | int active_balance; | |
584 | int push_cpu; | |
d8016491 IM |
585 | /* cpu of this runqueue: */ |
586 | int cpu; | |
1f11eb6a | 587 | int online; |
1da177e4 | 588 | |
a8a51d5e | 589 | unsigned long avg_load_per_task; |
1da177e4 | 590 | |
36c8b586 | 591 | struct task_struct *migration_thread; |
1da177e4 LT |
592 | struct list_head migration_queue; |
593 | #endif | |
594 | ||
8f4d37ec | 595 | #ifdef CONFIG_SCHED_HRTICK |
31656519 PZ |
596 | #ifdef CONFIG_SMP |
597 | int hrtick_csd_pending; | |
598 | struct call_single_data hrtick_csd; | |
599 | #endif | |
8f4d37ec PZ |
600 | struct hrtimer hrtick_timer; |
601 | #endif | |
602 | ||
1da177e4 LT |
603 | #ifdef CONFIG_SCHEDSTATS |
604 | /* latency stats */ | |
605 | struct sched_info rq_sched_info; | |
9c2c4802 KC |
606 | unsigned long long rq_cpu_time; |
607 | /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ | |
1da177e4 LT |
608 | |
609 | /* sys_sched_yield() stats */ | |
480b9434 KC |
610 | unsigned int yld_exp_empty; |
611 | unsigned int yld_act_empty; | |
612 | unsigned int yld_both_empty; | |
613 | unsigned int yld_count; | |
1da177e4 LT |
614 | |
615 | /* schedule() stats */ | |
480b9434 KC |
616 | unsigned int sched_switch; |
617 | unsigned int sched_count; | |
618 | unsigned int sched_goidle; | |
1da177e4 LT |
619 | |
620 | /* try_to_wake_up() stats */ | |
480b9434 KC |
621 | unsigned int ttwu_count; |
622 | unsigned int ttwu_local; | |
b8efb561 IM |
623 | |
624 | /* BKL stats */ | |
480b9434 | 625 | unsigned int bkl_count; |
1da177e4 LT |
626 | #endif |
627 | }; | |
628 | ||
f34e3b61 | 629 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); |
1da177e4 | 630 | |
15afe09b | 631 | static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync) |
dd41f596 | 632 | { |
15afe09b | 633 | rq->curr->sched_class->check_preempt_curr(rq, p, sync); |
dd41f596 IM |
634 | } |
635 | ||
0a2966b4 CL |
636 | static inline int cpu_of(struct rq *rq) |
637 | { | |
638 | #ifdef CONFIG_SMP | |
639 | return rq->cpu; | |
640 | #else | |
641 | return 0; | |
642 | #endif | |
643 | } | |
644 | ||
674311d5 NP |
645 | /* |
646 | * The domain tree (rq->sd) is protected by RCU's quiescent state transition. | |
1a20ff27 | 647 | * See detach_destroy_domains: synchronize_sched for details. |
674311d5 NP |
648 | * |
649 | * The domain tree of any CPU may only be accessed from within | |
650 | * preempt-disabled sections. | |
651 | */ | |
48f24c4d IM |
652 | #define for_each_domain(cpu, __sd) \ |
653 | for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) | |
1da177e4 LT |
654 | |
655 | #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) | |
656 | #define this_rq() (&__get_cpu_var(runqueues)) | |
657 | #define task_rq(p) cpu_rq(task_cpu(p)) | |
658 | #define cpu_curr(cpu) (cpu_rq(cpu)->curr) | |
659 | ||
3e51f33f PZ |
660 | static inline void update_rq_clock(struct rq *rq) |
661 | { | |
662 | rq->clock = sched_clock_cpu(cpu_of(rq)); | |
663 | } | |
664 | ||
bf5c91ba IM |
665 | /* |
666 | * Tunables that become constants when CONFIG_SCHED_DEBUG is off: | |
667 | */ | |
668 | #ifdef CONFIG_SCHED_DEBUG | |
669 | # define const_debug __read_mostly | |
670 | #else | |
671 | # define const_debug static const | |
672 | #endif | |
673 | ||
017730c1 IM |
674 | /** |
675 | * runqueue_is_locked | |
676 | * | |
677 | * Returns true if the current cpu runqueue is locked. | |
678 | * This interface allows printk to be called with the runqueue lock | |
679 | * held and know whether or not it is OK to wake up the klogd. | |
680 | */ | |
681 | int runqueue_is_locked(void) | |
682 | { | |
683 | int cpu = get_cpu(); | |
684 | struct rq *rq = cpu_rq(cpu); | |
685 | int ret; | |
686 | ||
687 | ret = spin_is_locked(&rq->lock); | |
688 | put_cpu(); | |
689 | return ret; | |
690 | } | |
691 | ||
bf5c91ba IM |
692 | /* |
693 | * Debugging: various feature bits | |
694 | */ | |
f00b45c1 PZ |
695 | |
696 | #define SCHED_FEAT(name, enabled) \ | |
697 | __SCHED_FEAT_##name , | |
698 | ||
bf5c91ba | 699 | enum { |
f00b45c1 | 700 | #include "sched_features.h" |
bf5c91ba IM |
701 | }; |
702 | ||
f00b45c1 PZ |
703 | #undef SCHED_FEAT |
704 | ||
705 | #define SCHED_FEAT(name, enabled) \ | |
706 | (1UL << __SCHED_FEAT_##name) * enabled | | |
707 | ||
bf5c91ba | 708 | const_debug unsigned int sysctl_sched_features = |
f00b45c1 PZ |
709 | #include "sched_features.h" |
710 | 0; | |
711 | ||
712 | #undef SCHED_FEAT | |
713 | ||
714 | #ifdef CONFIG_SCHED_DEBUG | |
715 | #define SCHED_FEAT(name, enabled) \ | |
716 | #name , | |
717 | ||
983ed7a6 | 718 | static __read_mostly char *sched_feat_names[] = { |
f00b45c1 PZ |
719 | #include "sched_features.h" |
720 | NULL | |
721 | }; | |
722 | ||
723 | #undef SCHED_FEAT | |
724 | ||
34f3a814 | 725 | static int sched_feat_show(struct seq_file *m, void *v) |
f00b45c1 | 726 | { |
f00b45c1 PZ |
727 | int i; |
728 | ||
729 | for (i = 0; sched_feat_names[i]; i++) { | |
34f3a814 LZ |
730 | if (!(sysctl_sched_features & (1UL << i))) |
731 | seq_puts(m, "NO_"); | |
732 | seq_printf(m, "%s ", sched_feat_names[i]); | |
f00b45c1 | 733 | } |
34f3a814 | 734 | seq_puts(m, "\n"); |
f00b45c1 | 735 | |
34f3a814 | 736 | return 0; |
f00b45c1 PZ |
737 | } |
738 | ||
739 | static ssize_t | |
740 | sched_feat_write(struct file *filp, const char __user *ubuf, | |
741 | size_t cnt, loff_t *ppos) | |
742 | { | |
743 | char buf[64]; | |
744 | char *cmp = buf; | |
745 | int neg = 0; | |
746 | int i; | |
747 | ||
748 | if (cnt > 63) | |
749 | cnt = 63; | |
750 | ||
751 | if (copy_from_user(&buf, ubuf, cnt)) | |
752 | return -EFAULT; | |
753 | ||
754 | buf[cnt] = 0; | |
755 | ||
c24b7c52 | 756 | if (strncmp(buf, "NO_", 3) == 0) { |
f00b45c1 PZ |
757 | neg = 1; |
758 | cmp += 3; | |
759 | } | |
760 | ||
761 | for (i = 0; sched_feat_names[i]; i++) { | |
762 | int len = strlen(sched_feat_names[i]); | |
763 | ||
764 | if (strncmp(cmp, sched_feat_names[i], len) == 0) { | |
765 | if (neg) | |
766 | sysctl_sched_features &= ~(1UL << i); | |
767 | else | |
768 | sysctl_sched_features |= (1UL << i); | |
769 | break; | |
770 | } | |
771 | } | |
772 | ||
773 | if (!sched_feat_names[i]) | |
774 | return -EINVAL; | |
775 | ||
776 | filp->f_pos += cnt; | |
777 | ||
778 | return cnt; | |
779 | } | |
780 | ||
34f3a814 LZ |
781 | static int sched_feat_open(struct inode *inode, struct file *filp) |
782 | { | |
783 | return single_open(filp, sched_feat_show, NULL); | |
784 | } | |
785 | ||
f00b45c1 | 786 | static struct file_operations sched_feat_fops = { |
34f3a814 LZ |
787 | .open = sched_feat_open, |
788 | .write = sched_feat_write, | |
789 | .read = seq_read, | |
790 | .llseek = seq_lseek, | |
791 | .release = single_release, | |
f00b45c1 PZ |
792 | }; |
793 | ||
794 | static __init int sched_init_debug(void) | |
795 | { | |
f00b45c1 PZ |
796 | debugfs_create_file("sched_features", 0644, NULL, NULL, |
797 | &sched_feat_fops); | |
798 | ||
799 | return 0; | |
800 | } | |
801 | late_initcall(sched_init_debug); | |
802 | ||
803 | #endif | |
804 | ||
805 | #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) | |
bf5c91ba | 806 | |
b82d9fdd PZ |
807 | /* |
808 | * Number of tasks to iterate in a single balance run. | |
809 | * Limited because this is done with IRQs disabled. | |
810 | */ | |
811 | const_debug unsigned int sysctl_sched_nr_migrate = 32; | |
812 | ||
2398f2c6 PZ |
813 | /* |
814 | * ratelimit for updating the group shares. | |
55cd5340 | 815 | * default: 0.25ms |
2398f2c6 | 816 | */ |
55cd5340 | 817 | unsigned int sysctl_sched_shares_ratelimit = 250000; |
2398f2c6 | 818 | |
ffda12a1 PZ |
819 | /* |
820 | * Inject some fuzzyness into changing the per-cpu group shares | |
821 | * this avoids remote rq-locks at the expense of fairness. | |
822 | * default: 4 | |
823 | */ | |
824 | unsigned int sysctl_sched_shares_thresh = 4; | |
825 | ||
fa85ae24 | 826 | /* |
9f0c1e56 | 827 | * period over which we measure -rt task cpu usage in us. |
fa85ae24 PZ |
828 | * default: 1s |
829 | */ | |
9f0c1e56 | 830 | unsigned int sysctl_sched_rt_period = 1000000; |
fa85ae24 | 831 | |
6892b75e IM |
832 | static __read_mostly int scheduler_running; |
833 | ||
9f0c1e56 PZ |
834 | /* |
835 | * part of the period that we allow rt tasks to run in us. | |
836 | * default: 0.95s | |
837 | */ | |
838 | int sysctl_sched_rt_runtime = 950000; | |
fa85ae24 | 839 | |
d0b27fa7 PZ |
840 | static inline u64 global_rt_period(void) |
841 | { | |
842 | return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; | |
843 | } | |
844 | ||
845 | static inline u64 global_rt_runtime(void) | |
846 | { | |
e26873bb | 847 | if (sysctl_sched_rt_runtime < 0) |
d0b27fa7 PZ |
848 | return RUNTIME_INF; |
849 | ||
850 | return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; | |
851 | } | |
fa85ae24 | 852 | |
1da177e4 | 853 | #ifndef prepare_arch_switch |
4866cde0 NP |
854 | # define prepare_arch_switch(next) do { } while (0) |
855 | #endif | |
856 | #ifndef finish_arch_switch | |
857 | # define finish_arch_switch(prev) do { } while (0) | |
858 | #endif | |
859 | ||
051a1d1a DA |
860 | static inline int task_current(struct rq *rq, struct task_struct *p) |
861 | { | |
862 | return rq->curr == p; | |
863 | } | |
864 | ||
4866cde0 | 865 | #ifndef __ARCH_WANT_UNLOCKED_CTXSW |
70b97a7f | 866 | static inline int task_running(struct rq *rq, struct task_struct *p) |
4866cde0 | 867 | { |
051a1d1a | 868 | return task_current(rq, p); |
4866cde0 NP |
869 | } |
870 | ||
70b97a7f | 871 | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) |
4866cde0 NP |
872 | { |
873 | } | |
874 | ||
70b97a7f | 875 | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) |
4866cde0 | 876 | { |
da04c035 IM |
877 | #ifdef CONFIG_DEBUG_SPINLOCK |
878 | /* this is a valid case when another task releases the spinlock */ | |
879 | rq->lock.owner = current; | |
880 | #endif | |
8a25d5de IM |
881 | /* |
882 | * If we are tracking spinlock dependencies then we have to | |
883 | * fix up the runqueue lock - which gets 'carried over' from | |
884 | * prev into current: | |
885 | */ | |
886 | spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); | |
887 | ||
4866cde0 NP |
888 | spin_unlock_irq(&rq->lock); |
889 | } | |
890 | ||
891 | #else /* __ARCH_WANT_UNLOCKED_CTXSW */ | |
70b97a7f | 892 | static inline int task_running(struct rq *rq, struct task_struct *p) |
4866cde0 NP |
893 | { |
894 | #ifdef CONFIG_SMP | |
895 | return p->oncpu; | |
896 | #else | |
051a1d1a | 897 | return task_current(rq, p); |
4866cde0 NP |
898 | #endif |
899 | } | |
900 | ||
70b97a7f | 901 | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) |
4866cde0 NP |
902 | { |
903 | #ifdef CONFIG_SMP | |
904 | /* | |
905 | * We can optimise this out completely for !SMP, because the | |
906 | * SMP rebalancing from interrupt is the only thing that cares | |
907 | * here. | |
908 | */ | |
909 | next->oncpu = 1; | |
910 | #endif | |
911 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | |
912 | spin_unlock_irq(&rq->lock); | |
913 | #else | |
914 | spin_unlock(&rq->lock); | |
915 | #endif | |
916 | } | |
917 | ||
70b97a7f | 918 | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) |
4866cde0 NP |
919 | { |
920 | #ifdef CONFIG_SMP | |
921 | /* | |
922 | * After ->oncpu is cleared, the task can be moved to a different CPU. | |
923 | * We must ensure this doesn't happen until the switch is completely | |
924 | * finished. | |
925 | */ | |
926 | smp_wmb(); | |
927 | prev->oncpu = 0; | |
928 | #endif | |
929 | #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW | |
930 | local_irq_enable(); | |
1da177e4 | 931 | #endif |
4866cde0 NP |
932 | } |
933 | #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ | |
1da177e4 | 934 | |
b29739f9 IM |
935 | /* |
936 | * __task_rq_lock - lock the runqueue a given task resides on. | |
937 | * Must be called interrupts disabled. | |
938 | */ | |
70b97a7f | 939 | static inline struct rq *__task_rq_lock(struct task_struct *p) |
b29739f9 IM |
940 | __acquires(rq->lock) |
941 | { | |
3a5c359a AK |
942 | for (;;) { |
943 | struct rq *rq = task_rq(p); | |
944 | spin_lock(&rq->lock); | |
945 | if (likely(rq == task_rq(p))) | |
946 | return rq; | |
b29739f9 | 947 | spin_unlock(&rq->lock); |
b29739f9 | 948 | } |
b29739f9 IM |
949 | } |
950 | ||
1da177e4 LT |
951 | /* |
952 | * task_rq_lock - lock the runqueue a given task resides on and disable | |
41a2d6cf | 953 | * interrupts. Note the ordering: we can safely lookup the task_rq without |
1da177e4 LT |
954 | * explicitly disabling preemption. |
955 | */ | |
70b97a7f | 956 | static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) |
1da177e4 LT |
957 | __acquires(rq->lock) |
958 | { | |
70b97a7f | 959 | struct rq *rq; |
1da177e4 | 960 | |
3a5c359a AK |
961 | for (;;) { |
962 | local_irq_save(*flags); | |
963 | rq = task_rq(p); | |
964 | spin_lock(&rq->lock); | |
965 | if (likely(rq == task_rq(p))) | |
966 | return rq; | |
1da177e4 | 967 | spin_unlock_irqrestore(&rq->lock, *flags); |
1da177e4 | 968 | } |
1da177e4 LT |
969 | } |
970 | ||
ad474cac ON |
971 | void task_rq_unlock_wait(struct task_struct *p) |
972 | { | |
973 | struct rq *rq = task_rq(p); | |
974 | ||
975 | smp_mb(); /* spin-unlock-wait is not a full memory barrier */ | |
976 | spin_unlock_wait(&rq->lock); | |
977 | } | |
978 | ||
a9957449 | 979 | static void __task_rq_unlock(struct rq *rq) |
b29739f9 IM |
980 | __releases(rq->lock) |
981 | { | |
982 | spin_unlock(&rq->lock); | |
983 | } | |
984 | ||
70b97a7f | 985 | static inline void task_rq_unlock(struct rq *rq, unsigned long *flags) |
1da177e4 LT |
986 | __releases(rq->lock) |
987 | { | |
988 | spin_unlock_irqrestore(&rq->lock, *flags); | |
989 | } | |
990 | ||
1da177e4 | 991 | /* |
cc2a73b5 | 992 | * this_rq_lock - lock this runqueue and disable interrupts. |
1da177e4 | 993 | */ |
a9957449 | 994 | static struct rq *this_rq_lock(void) |
1da177e4 LT |
995 | __acquires(rq->lock) |
996 | { | |
70b97a7f | 997 | struct rq *rq; |
1da177e4 LT |
998 | |
999 | local_irq_disable(); | |
1000 | rq = this_rq(); | |
1001 | spin_lock(&rq->lock); | |
1002 | ||
1003 | return rq; | |
1004 | } | |
1005 | ||
8f4d37ec PZ |
1006 | #ifdef CONFIG_SCHED_HRTICK |
1007 | /* | |
1008 | * Use HR-timers to deliver accurate preemption points. | |
1009 | * | |
1010 | * Its all a bit involved since we cannot program an hrt while holding the | |
1011 | * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a | |
1012 | * reschedule event. | |
1013 | * | |
1014 | * When we get rescheduled we reprogram the hrtick_timer outside of the | |
1015 | * rq->lock. | |
1016 | */ | |
8f4d37ec PZ |
1017 | |
1018 | /* | |
1019 | * Use hrtick when: | |
1020 | * - enabled by features | |
1021 | * - hrtimer is actually high res | |
1022 | */ | |
1023 | static inline int hrtick_enabled(struct rq *rq) | |
1024 | { | |
1025 | if (!sched_feat(HRTICK)) | |
1026 | return 0; | |
ba42059f | 1027 | if (!cpu_active(cpu_of(rq))) |
b328ca18 | 1028 | return 0; |
8f4d37ec PZ |
1029 | return hrtimer_is_hres_active(&rq->hrtick_timer); |
1030 | } | |
1031 | ||
8f4d37ec PZ |
1032 | static void hrtick_clear(struct rq *rq) |
1033 | { | |
1034 | if (hrtimer_active(&rq->hrtick_timer)) | |
1035 | hrtimer_cancel(&rq->hrtick_timer); | |
1036 | } | |
1037 | ||
8f4d37ec PZ |
1038 | /* |
1039 | * High-resolution timer tick. | |
1040 | * Runs from hardirq context with interrupts disabled. | |
1041 | */ | |
1042 | static enum hrtimer_restart hrtick(struct hrtimer *timer) | |
1043 | { | |
1044 | struct rq *rq = container_of(timer, struct rq, hrtick_timer); | |
1045 | ||
1046 | WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); | |
1047 | ||
1048 | spin_lock(&rq->lock); | |
3e51f33f | 1049 | update_rq_clock(rq); |
8f4d37ec PZ |
1050 | rq->curr->sched_class->task_tick(rq, rq->curr, 1); |
1051 | spin_unlock(&rq->lock); | |
1052 | ||
1053 | return HRTIMER_NORESTART; | |
1054 | } | |
1055 | ||
95e904c7 | 1056 | #ifdef CONFIG_SMP |
31656519 PZ |
1057 | /* |
1058 | * called from hardirq (IPI) context | |
1059 | */ | |
1060 | static void __hrtick_start(void *arg) | |
b328ca18 | 1061 | { |
31656519 | 1062 | struct rq *rq = arg; |
b328ca18 | 1063 | |
31656519 PZ |
1064 | spin_lock(&rq->lock); |
1065 | hrtimer_restart(&rq->hrtick_timer); | |
1066 | rq->hrtick_csd_pending = 0; | |
1067 | spin_unlock(&rq->lock); | |
b328ca18 PZ |
1068 | } |
1069 | ||
31656519 PZ |
1070 | /* |
1071 | * Called to set the hrtick timer state. | |
1072 | * | |
1073 | * called with rq->lock held and irqs disabled | |
1074 | */ | |
1075 | static void hrtick_start(struct rq *rq, u64 delay) | |
b328ca18 | 1076 | { |
31656519 PZ |
1077 | struct hrtimer *timer = &rq->hrtick_timer; |
1078 | ktime_t time = ktime_add_ns(timer->base->get_time(), delay); | |
b328ca18 | 1079 | |
cc584b21 | 1080 | hrtimer_set_expires(timer, time); |
31656519 PZ |
1081 | |
1082 | if (rq == this_rq()) { | |
1083 | hrtimer_restart(timer); | |
1084 | } else if (!rq->hrtick_csd_pending) { | |
1085 | __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd); | |
1086 | rq->hrtick_csd_pending = 1; | |
1087 | } | |
b328ca18 PZ |
1088 | } |
1089 | ||
1090 | static int | |
1091 | hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) | |
1092 | { | |
1093 | int cpu = (int)(long)hcpu; | |
1094 | ||
1095 | switch (action) { | |
1096 | case CPU_UP_CANCELED: | |
1097 | case CPU_UP_CANCELED_FROZEN: | |
1098 | case CPU_DOWN_PREPARE: | |
1099 | case CPU_DOWN_PREPARE_FROZEN: | |
1100 | case CPU_DEAD: | |
1101 | case CPU_DEAD_FROZEN: | |
31656519 | 1102 | hrtick_clear(cpu_rq(cpu)); |
b328ca18 PZ |
1103 | return NOTIFY_OK; |
1104 | } | |
1105 | ||
1106 | return NOTIFY_DONE; | |
1107 | } | |
1108 | ||
fa748203 | 1109 | static __init void init_hrtick(void) |
b328ca18 PZ |
1110 | { |
1111 | hotcpu_notifier(hotplug_hrtick, 0); | |
1112 | } | |
31656519 PZ |
1113 | #else |
1114 | /* | |
1115 | * Called to set the hrtick timer state. | |
1116 | * | |
1117 | * called with rq->lock held and irqs disabled | |
1118 | */ | |
1119 | static void hrtick_start(struct rq *rq, u64 delay) | |
1120 | { | |
1121 | hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL); | |
1122 | } | |
b328ca18 | 1123 | |
006c75f1 | 1124 | static inline void init_hrtick(void) |
8f4d37ec | 1125 | { |
8f4d37ec | 1126 | } |
31656519 | 1127 | #endif /* CONFIG_SMP */ |
8f4d37ec | 1128 | |
31656519 | 1129 | static void init_rq_hrtick(struct rq *rq) |
8f4d37ec | 1130 | { |
31656519 PZ |
1131 | #ifdef CONFIG_SMP |
1132 | rq->hrtick_csd_pending = 0; | |
8f4d37ec | 1133 | |
31656519 PZ |
1134 | rq->hrtick_csd.flags = 0; |
1135 | rq->hrtick_csd.func = __hrtick_start; | |
1136 | rq->hrtick_csd.info = rq; | |
1137 | #endif | |
8f4d37ec | 1138 | |
31656519 PZ |
1139 | hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
1140 | rq->hrtick_timer.function = hrtick; | |
8f4d37ec | 1141 | } |
006c75f1 | 1142 | #else /* CONFIG_SCHED_HRTICK */ |
8f4d37ec PZ |
1143 | static inline void hrtick_clear(struct rq *rq) |
1144 | { | |
1145 | } | |
1146 | ||
8f4d37ec PZ |
1147 | static inline void init_rq_hrtick(struct rq *rq) |
1148 | { | |
1149 | } | |
1150 | ||
b328ca18 PZ |
1151 | static inline void init_hrtick(void) |
1152 | { | |
1153 | } | |
006c75f1 | 1154 | #endif /* CONFIG_SCHED_HRTICK */ |
8f4d37ec | 1155 | |
c24d20db IM |
1156 | /* |
1157 | * resched_task - mark a task 'to be rescheduled now'. | |
1158 | * | |
1159 | * On UP this means the setting of the need_resched flag, on SMP it | |
1160 | * might also involve a cross-CPU call to trigger the scheduler on | |
1161 | * the target CPU. | |
1162 | */ | |
1163 | #ifdef CONFIG_SMP | |
1164 | ||
1165 | #ifndef tsk_is_polling | |
1166 | #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) | |
1167 | #endif | |
1168 | ||
31656519 | 1169 | static void resched_task(struct task_struct *p) |
c24d20db IM |
1170 | { |
1171 | int cpu; | |
1172 | ||
1173 | assert_spin_locked(&task_rq(p)->lock); | |
1174 | ||
31656519 | 1175 | if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED))) |
c24d20db IM |
1176 | return; |
1177 | ||
31656519 | 1178 | set_tsk_thread_flag(p, TIF_NEED_RESCHED); |
c24d20db IM |
1179 | |
1180 | cpu = task_cpu(p); | |
1181 | if (cpu == smp_processor_id()) | |
1182 | return; | |
1183 | ||
1184 | /* NEED_RESCHED must be visible before we test polling */ | |
1185 | smp_mb(); | |
1186 | if (!tsk_is_polling(p)) | |
1187 | smp_send_reschedule(cpu); | |
1188 | } | |
1189 | ||
1190 | static void resched_cpu(int cpu) | |
1191 | { | |
1192 | struct rq *rq = cpu_rq(cpu); | |
1193 | unsigned long flags; | |
1194 | ||
1195 | if (!spin_trylock_irqsave(&rq->lock, flags)) | |
1196 | return; | |
1197 | resched_task(cpu_curr(cpu)); | |
1198 | spin_unlock_irqrestore(&rq->lock, flags); | |
1199 | } | |
06d8308c TG |
1200 | |
1201 | #ifdef CONFIG_NO_HZ | |
1202 | /* | |
1203 | * When add_timer_on() enqueues a timer into the timer wheel of an | |
1204 | * idle CPU then this timer might expire before the next timer event | |
1205 | * which is scheduled to wake up that CPU. In case of a completely | |
1206 | * idle system the next event might even be infinite time into the | |
1207 | * future. wake_up_idle_cpu() ensures that the CPU is woken up and | |
1208 | * leaves the inner idle loop so the newly added timer is taken into | |
1209 | * account when the CPU goes back to idle and evaluates the timer | |
1210 | * wheel for the next timer event. | |
1211 | */ | |
1212 | void wake_up_idle_cpu(int cpu) | |
1213 | { | |
1214 | struct rq *rq = cpu_rq(cpu); | |
1215 | ||
1216 | if (cpu == smp_processor_id()) | |
1217 | return; | |
1218 | ||
1219 | /* | |
1220 | * This is safe, as this function is called with the timer | |
1221 | * wheel base lock of (cpu) held. When the CPU is on the way | |
1222 | * to idle and has not yet set rq->curr to idle then it will | |
1223 | * be serialized on the timer wheel base lock and take the new | |
1224 | * timer into account automatically. | |
1225 | */ | |
1226 | if (rq->curr != rq->idle) | |
1227 | return; | |
1228 | ||
1229 | /* | |
1230 | * We can set TIF_RESCHED on the idle task of the other CPU | |
1231 | * lockless. The worst case is that the other CPU runs the | |
1232 | * idle task through an additional NOOP schedule() | |
1233 | */ | |
1234 | set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED); | |
1235 | ||
1236 | /* NEED_RESCHED must be visible before we test polling */ | |
1237 | smp_mb(); | |
1238 | if (!tsk_is_polling(rq->idle)) | |
1239 | smp_send_reschedule(cpu); | |
1240 | } | |
6d6bc0ad | 1241 | #endif /* CONFIG_NO_HZ */ |
06d8308c | 1242 | |
6d6bc0ad | 1243 | #else /* !CONFIG_SMP */ |
31656519 | 1244 | static void resched_task(struct task_struct *p) |
c24d20db IM |
1245 | { |
1246 | assert_spin_locked(&task_rq(p)->lock); | |
31656519 | 1247 | set_tsk_need_resched(p); |
c24d20db | 1248 | } |
6d6bc0ad | 1249 | #endif /* CONFIG_SMP */ |
c24d20db | 1250 | |
45bf76df IM |
1251 | #if BITS_PER_LONG == 32 |
1252 | # define WMULT_CONST (~0UL) | |
1253 | #else | |
1254 | # define WMULT_CONST (1UL << 32) | |
1255 | #endif | |
1256 | ||
1257 | #define WMULT_SHIFT 32 | |
1258 | ||
194081eb IM |
1259 | /* |
1260 | * Shift right and round: | |
1261 | */ | |
cf2ab469 | 1262 | #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) |
194081eb | 1263 | |
a7be37ac PZ |
1264 | /* |
1265 | * delta *= weight / lw | |
1266 | */ | |
cb1c4fc9 | 1267 | static unsigned long |
45bf76df IM |
1268 | calc_delta_mine(unsigned long delta_exec, unsigned long weight, |
1269 | struct load_weight *lw) | |
1270 | { | |
1271 | u64 tmp; | |
1272 | ||
7a232e03 LJ |
1273 | if (!lw->inv_weight) { |
1274 | if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST)) | |
1275 | lw->inv_weight = 1; | |
1276 | else | |
1277 | lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2) | |
1278 | / (lw->weight+1); | |
1279 | } | |
45bf76df IM |
1280 | |
1281 | tmp = (u64)delta_exec * weight; | |
1282 | /* | |
1283 | * Check whether we'd overflow the 64-bit multiplication: | |
1284 | */ | |
194081eb | 1285 | if (unlikely(tmp > WMULT_CONST)) |
cf2ab469 | 1286 | tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight, |
194081eb IM |
1287 | WMULT_SHIFT/2); |
1288 | else | |
cf2ab469 | 1289 | tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT); |
45bf76df | 1290 | |
ecf691da | 1291 | return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); |
45bf76df IM |
1292 | } |
1293 | ||
1091985b | 1294 | static inline void update_load_add(struct load_weight *lw, unsigned long inc) |
45bf76df IM |
1295 | { |
1296 | lw->weight += inc; | |
e89996ae | 1297 | lw->inv_weight = 0; |
45bf76df IM |
1298 | } |
1299 | ||
1091985b | 1300 | static inline void update_load_sub(struct load_weight *lw, unsigned long dec) |
45bf76df IM |
1301 | { |
1302 | lw->weight -= dec; | |
e89996ae | 1303 | lw->inv_weight = 0; |
45bf76df IM |
1304 | } |
1305 | ||
2dd73a4f PW |
1306 | /* |
1307 | * To aid in avoiding the subversion of "niceness" due to uneven distribution | |
1308 | * of tasks with abnormal "nice" values across CPUs the contribution that | |
1309 | * each task makes to its run queue's load is weighted according to its | |
41a2d6cf | 1310 | * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a |
2dd73a4f PW |
1311 | * scaled version of the new time slice allocation that they receive on time |
1312 | * slice expiry etc. | |
1313 | */ | |
1314 | ||
dd41f596 IM |
1315 | #define WEIGHT_IDLEPRIO 2 |
1316 | #define WMULT_IDLEPRIO (1 << 31) | |
1317 | ||
1318 | /* | |
1319 | * Nice levels are multiplicative, with a gentle 10% change for every | |
1320 | * nice level changed. I.e. when a CPU-bound task goes from nice 0 to | |
1321 | * nice 1, it will get ~10% less CPU time than another CPU-bound task | |
1322 | * that remained on nice 0. | |
1323 | * | |
1324 | * The "10% effect" is relative and cumulative: from _any_ nice level, | |
1325 | * if you go up 1 level, it's -10% CPU usage, if you go down 1 level | |
f9153ee6 IM |
1326 | * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. |
1327 | * If a task goes up by ~10% and another task goes down by ~10% then | |
1328 | * the relative distance between them is ~25%.) | |
dd41f596 IM |
1329 | */ |
1330 | static const int prio_to_weight[40] = { | |
254753dc IM |
1331 | /* -20 */ 88761, 71755, 56483, 46273, 36291, |
1332 | /* -15 */ 29154, 23254, 18705, 14949, 11916, | |
1333 | /* -10 */ 9548, 7620, 6100, 4904, 3906, | |
1334 | /* -5 */ 3121, 2501, 1991, 1586, 1277, | |
1335 | /* 0 */ 1024, 820, 655, 526, 423, | |
1336 | /* 5 */ 335, 272, 215, 172, 137, | |
1337 | /* 10 */ 110, 87, 70, 56, 45, | |
1338 | /* 15 */ 36, 29, 23, 18, 15, | |
dd41f596 IM |
1339 | }; |
1340 | ||
5714d2de IM |
1341 | /* |
1342 | * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. | |
1343 | * | |
1344 | * In cases where the weight does not change often, we can use the | |
1345 | * precalculated inverse to speed up arithmetics by turning divisions | |
1346 | * into multiplications: | |
1347 | */ | |
dd41f596 | 1348 | static const u32 prio_to_wmult[40] = { |
254753dc IM |
1349 | /* -20 */ 48388, 59856, 76040, 92818, 118348, |
1350 | /* -15 */ 147320, 184698, 229616, 287308, 360437, | |
1351 | /* -10 */ 449829, 563644, 704093, 875809, 1099582, | |
1352 | /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, | |
1353 | /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, | |
1354 | /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, | |
1355 | /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, | |
1356 | /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, | |
dd41f596 | 1357 | }; |
2dd73a4f | 1358 | |
dd41f596 IM |
1359 | static void activate_task(struct rq *rq, struct task_struct *p, int wakeup); |
1360 | ||
1361 | /* | |
1362 | * runqueue iterator, to support SMP load-balancing between different | |
1363 | * scheduling classes, without having to expose their internal data | |
1364 | * structures to the load-balancing proper: | |
1365 | */ | |
1366 | struct rq_iterator { | |
1367 | void *arg; | |
1368 | struct task_struct *(*start)(void *); | |
1369 | struct task_struct *(*next)(void *); | |
1370 | }; | |
1371 | ||
e1d1484f PW |
1372 | #ifdef CONFIG_SMP |
1373 | static unsigned long | |
1374 | balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | |
1375 | unsigned long max_load_move, struct sched_domain *sd, | |
1376 | enum cpu_idle_type idle, int *all_pinned, | |
1377 | int *this_best_prio, struct rq_iterator *iterator); | |
1378 | ||
1379 | static int | |
1380 | iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | |
1381 | struct sched_domain *sd, enum cpu_idle_type idle, | |
1382 | struct rq_iterator *iterator); | |
e1d1484f | 1383 | #endif |
dd41f596 | 1384 | |
d842de87 SV |
1385 | #ifdef CONFIG_CGROUP_CPUACCT |
1386 | static void cpuacct_charge(struct task_struct *tsk, u64 cputime); | |
1387 | #else | |
1388 | static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {} | |
1389 | #endif | |
1390 | ||
18d95a28 PZ |
1391 | static inline void inc_cpu_load(struct rq *rq, unsigned long load) |
1392 | { | |
1393 | update_load_add(&rq->load, load); | |
1394 | } | |
1395 | ||
1396 | static inline void dec_cpu_load(struct rq *rq, unsigned long load) | |
1397 | { | |
1398 | update_load_sub(&rq->load, load); | |
1399 | } | |
1400 | ||
7940ca36 | 1401 | #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED) |
eb755805 | 1402 | typedef int (*tg_visitor)(struct task_group *, void *); |
c09595f6 PZ |
1403 | |
1404 | /* | |
1405 | * Iterate the full tree, calling @down when first entering a node and @up when | |
1406 | * leaving it for the final time. | |
1407 | */ | |
eb755805 | 1408 | static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) |
c09595f6 PZ |
1409 | { |
1410 | struct task_group *parent, *child; | |
eb755805 | 1411 | int ret; |
c09595f6 PZ |
1412 | |
1413 | rcu_read_lock(); | |
1414 | parent = &root_task_group; | |
1415 | down: | |
eb755805 PZ |
1416 | ret = (*down)(parent, data); |
1417 | if (ret) | |
1418 | goto out_unlock; | |
c09595f6 PZ |
1419 | list_for_each_entry_rcu(child, &parent->children, siblings) { |
1420 | parent = child; | |
1421 | goto down; | |
1422 | ||
1423 | up: | |
1424 | continue; | |
1425 | } | |
eb755805 PZ |
1426 | ret = (*up)(parent, data); |
1427 | if (ret) | |
1428 | goto out_unlock; | |
c09595f6 PZ |
1429 | |
1430 | child = parent; | |
1431 | parent = parent->parent; | |
1432 | if (parent) | |
1433 | goto up; | |
eb755805 | 1434 | out_unlock: |
c09595f6 | 1435 | rcu_read_unlock(); |
eb755805 PZ |
1436 | |
1437 | return ret; | |
c09595f6 PZ |
1438 | } |
1439 | ||
eb755805 PZ |
1440 | static int tg_nop(struct task_group *tg, void *data) |
1441 | { | |
1442 | return 0; | |
c09595f6 | 1443 | } |
eb755805 PZ |
1444 | #endif |
1445 | ||
1446 | #ifdef CONFIG_SMP | |
1447 | static unsigned long source_load(int cpu, int type); | |
1448 | static unsigned long target_load(int cpu, int type); | |
1449 | static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd); | |
1450 | ||
1451 | static unsigned long cpu_avg_load_per_task(int cpu) | |
1452 | { | |
1453 | struct rq *rq = cpu_rq(cpu); | |
af6d596f | 1454 | unsigned long nr_running = ACCESS_ONCE(rq->nr_running); |
eb755805 | 1455 | |
4cd42620 SR |
1456 | if (nr_running) |
1457 | rq->avg_load_per_task = rq->load.weight / nr_running; | |
a2d47777 BS |
1458 | else |
1459 | rq->avg_load_per_task = 0; | |
eb755805 PZ |
1460 | |
1461 | return rq->avg_load_per_task; | |
1462 | } | |
1463 | ||
1464 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
c09595f6 | 1465 | |
c09595f6 PZ |
1466 | static void __set_se_shares(struct sched_entity *se, unsigned long shares); |
1467 | ||
1468 | /* | |
1469 | * Calculate and set the cpu's group shares. | |
1470 | */ | |
1471 | static void | |
ffda12a1 PZ |
1472 | update_group_shares_cpu(struct task_group *tg, int cpu, |
1473 | unsigned long sd_shares, unsigned long sd_rq_weight) | |
18d95a28 | 1474 | { |
c09595f6 PZ |
1475 | unsigned long shares; |
1476 | unsigned long rq_weight; | |
1477 | ||
c8cba857 | 1478 | if (!tg->se[cpu]) |
c09595f6 PZ |
1479 | return; |
1480 | ||
ec4e0e2f | 1481 | rq_weight = tg->cfs_rq[cpu]->rq_weight; |
c8cba857 | 1482 | |
c09595f6 PZ |
1483 | /* |
1484 | * \Sum shares * rq_weight | |
1485 | * shares = ----------------------- | |
1486 | * \Sum rq_weight | |
1487 | * | |
1488 | */ | |
ec4e0e2f | 1489 | shares = (sd_shares * rq_weight) / sd_rq_weight; |
ffda12a1 | 1490 | shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES); |
c09595f6 | 1491 | |
ffda12a1 PZ |
1492 | if (abs(shares - tg->se[cpu]->load.weight) > |
1493 | sysctl_sched_shares_thresh) { | |
1494 | struct rq *rq = cpu_rq(cpu); | |
1495 | unsigned long flags; | |
c09595f6 | 1496 | |
ffda12a1 | 1497 | spin_lock_irqsave(&rq->lock, flags); |
ec4e0e2f | 1498 | tg->cfs_rq[cpu]->shares = shares; |
c09595f6 | 1499 | |
ffda12a1 PZ |
1500 | __set_se_shares(tg->se[cpu], shares); |
1501 | spin_unlock_irqrestore(&rq->lock, flags); | |
1502 | } | |
18d95a28 | 1503 | } |
c09595f6 PZ |
1504 | |
1505 | /* | |
c8cba857 PZ |
1506 | * Re-compute the task group their per cpu shares over the given domain. |
1507 | * This needs to be done in a bottom-up fashion because the rq weight of a | |
1508 | * parent group depends on the shares of its child groups. | |
c09595f6 | 1509 | */ |
eb755805 | 1510 | static int tg_shares_up(struct task_group *tg, void *data) |
c09595f6 | 1511 | { |
ec4e0e2f | 1512 | unsigned long weight, rq_weight = 0; |
c8cba857 | 1513 | unsigned long shares = 0; |
eb755805 | 1514 | struct sched_domain *sd = data; |
c8cba857 | 1515 | int i; |
c09595f6 | 1516 | |
c8cba857 | 1517 | for_each_cpu_mask(i, sd->span) { |
ec4e0e2f KC |
1518 | /* |
1519 | * If there are currently no tasks on the cpu pretend there | |
1520 | * is one of average load so that when a new task gets to | |
1521 | * run here it will not get delayed by group starvation. | |
1522 | */ | |
1523 | weight = tg->cfs_rq[i]->load.weight; | |
1524 | if (!weight) | |
1525 | weight = NICE_0_LOAD; | |
1526 | ||
1527 | tg->cfs_rq[i]->rq_weight = weight; | |
1528 | rq_weight += weight; | |
c8cba857 | 1529 | shares += tg->cfs_rq[i]->shares; |
c09595f6 | 1530 | } |
c09595f6 | 1531 | |
c8cba857 PZ |
1532 | if ((!shares && rq_weight) || shares > tg->shares) |
1533 | shares = tg->shares; | |
1534 | ||
1535 | if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE)) | |
1536 | shares = tg->shares; | |
c09595f6 | 1537 | |
ffda12a1 PZ |
1538 | for_each_cpu_mask(i, sd->span) |
1539 | update_group_shares_cpu(tg, i, shares, rq_weight); | |
eb755805 PZ |
1540 | |
1541 | return 0; | |
c09595f6 PZ |
1542 | } |
1543 | ||
1544 | /* | |
c8cba857 PZ |
1545 | * Compute the cpu's hierarchical load factor for each task group. |
1546 | * This needs to be done in a top-down fashion because the load of a child | |
1547 | * group is a fraction of its parents load. | |
c09595f6 | 1548 | */ |
eb755805 | 1549 | static int tg_load_down(struct task_group *tg, void *data) |
c09595f6 | 1550 | { |
c8cba857 | 1551 | unsigned long load; |
eb755805 | 1552 | long cpu = (long)data; |
c09595f6 | 1553 | |
c8cba857 PZ |
1554 | if (!tg->parent) { |
1555 | load = cpu_rq(cpu)->load.weight; | |
1556 | } else { | |
1557 | load = tg->parent->cfs_rq[cpu]->h_load; | |
1558 | load *= tg->cfs_rq[cpu]->shares; | |
1559 | load /= tg->parent->cfs_rq[cpu]->load.weight + 1; | |
1560 | } | |
c09595f6 | 1561 | |
c8cba857 | 1562 | tg->cfs_rq[cpu]->h_load = load; |
c09595f6 | 1563 | |
eb755805 | 1564 | return 0; |
c09595f6 PZ |
1565 | } |
1566 | ||
c8cba857 | 1567 | static void update_shares(struct sched_domain *sd) |
4d8d595d | 1568 | { |
2398f2c6 PZ |
1569 | u64 now = cpu_clock(raw_smp_processor_id()); |
1570 | s64 elapsed = now - sd->last_update; | |
1571 | ||
1572 | if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) { | |
1573 | sd->last_update = now; | |
eb755805 | 1574 | walk_tg_tree(tg_nop, tg_shares_up, sd); |
2398f2c6 | 1575 | } |
4d8d595d PZ |
1576 | } |
1577 | ||
3e5459b4 PZ |
1578 | static void update_shares_locked(struct rq *rq, struct sched_domain *sd) |
1579 | { | |
1580 | spin_unlock(&rq->lock); | |
1581 | update_shares(sd); | |
1582 | spin_lock(&rq->lock); | |
1583 | } | |
1584 | ||
eb755805 | 1585 | static void update_h_load(long cpu) |
c09595f6 | 1586 | { |
eb755805 | 1587 | walk_tg_tree(tg_load_down, tg_nop, (void *)cpu); |
c09595f6 PZ |
1588 | } |
1589 | ||
c09595f6 PZ |
1590 | #else |
1591 | ||
c8cba857 | 1592 | static inline void update_shares(struct sched_domain *sd) |
4d8d595d PZ |
1593 | { |
1594 | } | |
1595 | ||
3e5459b4 PZ |
1596 | static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd) |
1597 | { | |
1598 | } | |
1599 | ||
18d95a28 PZ |
1600 | #endif |
1601 | ||
70574a99 AD |
1602 | /* |
1603 | * double_lock_balance - lock the busiest runqueue, this_rq is locked already. | |
1604 | */ | |
1605 | static int double_lock_balance(struct rq *this_rq, struct rq *busiest) | |
1606 | __releases(this_rq->lock) | |
1607 | __acquires(busiest->lock) | |
1608 | __acquires(this_rq->lock) | |
1609 | { | |
1610 | int ret = 0; | |
1611 | ||
1612 | if (unlikely(!irqs_disabled())) { | |
1613 | /* printk() doesn't work good under rq->lock */ | |
1614 | spin_unlock(&this_rq->lock); | |
1615 | BUG_ON(1); | |
1616 | } | |
1617 | if (unlikely(!spin_trylock(&busiest->lock))) { | |
1618 | if (busiest < this_rq) { | |
1619 | spin_unlock(&this_rq->lock); | |
1620 | spin_lock(&busiest->lock); | |
1621 | spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING); | |
1622 | ret = 1; | |
1623 | } else | |
1624 | spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING); | |
1625 | } | |
1626 | return ret; | |
1627 | } | |
1628 | ||
1629 | static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) | |
1630 | __releases(busiest->lock) | |
1631 | { | |
1632 | spin_unlock(&busiest->lock); | |
1633 | lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); | |
1634 | } | |
18d95a28 PZ |
1635 | #endif |
1636 | ||
30432094 | 1637 | #ifdef CONFIG_FAIR_GROUP_SCHED |
34e83e85 IM |
1638 | static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares) |
1639 | { | |
30432094 | 1640 | #ifdef CONFIG_SMP |
34e83e85 IM |
1641 | cfs_rq->shares = shares; |
1642 | #endif | |
1643 | } | |
30432094 | 1644 | #endif |
e7693a36 | 1645 | |
dd41f596 | 1646 | #include "sched_stats.h" |
dd41f596 | 1647 | #include "sched_idletask.c" |
5522d5d5 IM |
1648 | #include "sched_fair.c" |
1649 | #include "sched_rt.c" | |
dd41f596 IM |
1650 | #ifdef CONFIG_SCHED_DEBUG |
1651 | # include "sched_debug.c" | |
1652 | #endif | |
1653 | ||
1654 | #define sched_class_highest (&rt_sched_class) | |
1f11eb6a GH |
1655 | #define for_each_class(class) \ |
1656 | for (class = sched_class_highest; class; class = class->next) | |
dd41f596 | 1657 | |
c09595f6 | 1658 | static void inc_nr_running(struct rq *rq) |
9c217245 IM |
1659 | { |
1660 | rq->nr_running++; | |
9c217245 IM |
1661 | } |
1662 | ||
c09595f6 | 1663 | static void dec_nr_running(struct rq *rq) |
9c217245 IM |
1664 | { |
1665 | rq->nr_running--; | |
9c217245 IM |
1666 | } |
1667 | ||
45bf76df IM |
1668 | static void set_load_weight(struct task_struct *p) |
1669 | { | |
1670 | if (task_has_rt_policy(p)) { | |
dd41f596 IM |
1671 | p->se.load.weight = prio_to_weight[0] * 2; |
1672 | p->se.load.inv_weight = prio_to_wmult[0] >> 1; | |
1673 | return; | |
1674 | } | |
45bf76df | 1675 | |
dd41f596 IM |
1676 | /* |
1677 | * SCHED_IDLE tasks get minimal weight: | |
1678 | */ | |
1679 | if (p->policy == SCHED_IDLE) { | |
1680 | p->se.load.weight = WEIGHT_IDLEPRIO; | |
1681 | p->se.load.inv_weight = WMULT_IDLEPRIO; | |
1682 | return; | |
1683 | } | |
71f8bd46 | 1684 | |
dd41f596 IM |
1685 | p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO]; |
1686 | p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO]; | |
71f8bd46 IM |
1687 | } |
1688 | ||
2087a1ad GH |
1689 | static void update_avg(u64 *avg, u64 sample) |
1690 | { | |
1691 | s64 diff = sample - *avg; | |
1692 | *avg += diff >> 3; | |
1693 | } | |
1694 | ||
8159f87e | 1695 | static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) |
71f8bd46 | 1696 | { |
dd41f596 | 1697 | sched_info_queued(p); |
fd390f6a | 1698 | p->sched_class->enqueue_task(rq, p, wakeup); |
dd41f596 | 1699 | p->se.on_rq = 1; |
71f8bd46 IM |
1700 | } |
1701 | ||
69be72c1 | 1702 | static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) |
71f8bd46 | 1703 | { |
2087a1ad GH |
1704 | if (sleep && p->se.last_wakeup) { |
1705 | update_avg(&p->se.avg_overlap, | |
1706 | p->se.sum_exec_runtime - p->se.last_wakeup); | |
1707 | p->se.last_wakeup = 0; | |
1708 | } | |
1709 | ||
46ac22ba | 1710 | sched_info_dequeued(p); |
f02231e5 | 1711 | p->sched_class->dequeue_task(rq, p, sleep); |
dd41f596 | 1712 | p->se.on_rq = 0; |
71f8bd46 IM |
1713 | } |
1714 | ||
14531189 | 1715 | /* |
dd41f596 | 1716 | * __normal_prio - return the priority that is based on the static prio |
14531189 | 1717 | */ |
14531189 IM |
1718 | static inline int __normal_prio(struct task_struct *p) |
1719 | { | |
dd41f596 | 1720 | return p->static_prio; |
14531189 IM |
1721 | } |
1722 | ||
b29739f9 IM |
1723 | /* |
1724 | * Calculate the expected normal priority: i.e. priority | |
1725 | * without taking RT-inheritance into account. Might be | |
1726 | * boosted by interactivity modifiers. Changes upon fork, | |
1727 | * setprio syscalls, and whenever the interactivity | |
1728 | * estimator recalculates. | |
1729 | */ | |
36c8b586 | 1730 | static inline int normal_prio(struct task_struct *p) |
b29739f9 IM |
1731 | { |
1732 | int prio; | |
1733 | ||
e05606d3 | 1734 | if (task_has_rt_policy(p)) |
b29739f9 IM |
1735 | prio = MAX_RT_PRIO-1 - p->rt_priority; |
1736 | else | |
1737 | prio = __normal_prio(p); | |
1738 | return prio; | |
1739 | } | |
1740 | ||
1741 | /* | |
1742 | * Calculate the current priority, i.e. the priority | |
1743 | * taken into account by the scheduler. This value might | |
1744 | * be boosted by RT tasks, or might be boosted by | |
1745 | * interactivity modifiers. Will be RT if the task got | |
1746 | * RT-boosted. If not then it returns p->normal_prio. | |
1747 | */ | |
36c8b586 | 1748 | static int effective_prio(struct task_struct *p) |
b29739f9 IM |
1749 | { |
1750 | p->normal_prio = normal_prio(p); | |
1751 | /* | |
1752 | * If we are RT tasks or we were boosted to RT priority, | |
1753 | * keep the priority unchanged. Otherwise, update priority | |
1754 | * to the normal priority: | |
1755 | */ | |
1756 | if (!rt_prio(p->prio)) | |
1757 | return p->normal_prio; | |
1758 | return p->prio; | |
1759 | } | |
1760 | ||
1da177e4 | 1761 | /* |
dd41f596 | 1762 | * activate_task - move a task to the runqueue. |
1da177e4 | 1763 | */ |
dd41f596 | 1764 | static void activate_task(struct rq *rq, struct task_struct *p, int wakeup) |
1da177e4 | 1765 | { |
d9514f6c | 1766 | if (task_contributes_to_load(p)) |
dd41f596 | 1767 | rq->nr_uninterruptible--; |
1da177e4 | 1768 | |
8159f87e | 1769 | enqueue_task(rq, p, wakeup); |
c09595f6 | 1770 | inc_nr_running(rq); |
1da177e4 LT |
1771 | } |
1772 | ||
1da177e4 LT |
1773 | /* |
1774 | * deactivate_task - remove a task from the runqueue. | |
1775 | */ | |
2e1cb74a | 1776 | static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep) |
1da177e4 | 1777 | { |
d9514f6c | 1778 | if (task_contributes_to_load(p)) |
dd41f596 IM |
1779 | rq->nr_uninterruptible++; |
1780 | ||
69be72c1 | 1781 | dequeue_task(rq, p, sleep); |
c09595f6 | 1782 | dec_nr_running(rq); |
1da177e4 LT |
1783 | } |
1784 | ||
1da177e4 LT |
1785 | /** |
1786 | * task_curr - is this task currently executing on a CPU? | |
1787 | * @p: the task in question. | |
1788 | */ | |
36c8b586 | 1789 | inline int task_curr(const struct task_struct *p) |
1da177e4 LT |
1790 | { |
1791 | return cpu_curr(task_cpu(p)) == p; | |
1792 | } | |
1793 | ||
dd41f596 IM |
1794 | static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) |
1795 | { | |
6f505b16 | 1796 | set_task_rq(p, cpu); |
dd41f596 | 1797 | #ifdef CONFIG_SMP |
ce96b5ac DA |
1798 | /* |
1799 | * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be | |
1800 | * successfuly executed on another CPU. We must ensure that updates of | |
1801 | * per-task data have been completed by this moment. | |
1802 | */ | |
1803 | smp_wmb(); | |
dd41f596 | 1804 | task_thread_info(p)->cpu = cpu; |
dd41f596 | 1805 | #endif |
2dd73a4f PW |
1806 | } |
1807 | ||
cb469845 SR |
1808 | static inline void check_class_changed(struct rq *rq, struct task_struct *p, |
1809 | const struct sched_class *prev_class, | |
1810 | int oldprio, int running) | |
1811 | { | |
1812 | if (prev_class != p->sched_class) { | |
1813 | if (prev_class->switched_from) | |
1814 | prev_class->switched_from(rq, p, running); | |
1815 | p->sched_class->switched_to(rq, p, running); | |
1816 | } else | |
1817 | p->sched_class->prio_changed(rq, p, oldprio, running); | |
1818 | } | |
1819 | ||
1da177e4 | 1820 | #ifdef CONFIG_SMP |
c65cc870 | 1821 | |
e958b360 TG |
1822 | /* Used instead of source_load when we know the type == 0 */ |
1823 | static unsigned long weighted_cpuload(const int cpu) | |
1824 | { | |
1825 | return cpu_rq(cpu)->load.weight; | |
1826 | } | |
1827 | ||
cc367732 IM |
1828 | /* |
1829 | * Is this task likely cache-hot: | |
1830 | */ | |
e7693a36 | 1831 | static int |
cc367732 IM |
1832 | task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) |
1833 | { | |
1834 | s64 delta; | |
1835 | ||
f540a608 IM |
1836 | /* |
1837 | * Buddy candidates are cache hot: | |
1838 | */ | |
4793241b PZ |
1839 | if (sched_feat(CACHE_HOT_BUDDY) && |
1840 | (&p->se == cfs_rq_of(&p->se)->next || | |
1841 | &p->se == cfs_rq_of(&p->se)->last)) | |
f540a608 IM |
1842 | return 1; |
1843 | ||
cc367732 IM |
1844 | if (p->sched_class != &fair_sched_class) |
1845 | return 0; | |
1846 | ||
6bc1665b IM |
1847 | if (sysctl_sched_migration_cost == -1) |
1848 | return 1; | |
1849 | if (sysctl_sched_migration_cost == 0) | |
1850 | return 0; | |
1851 | ||
cc367732 IM |
1852 | delta = now - p->se.exec_start; |
1853 | ||
1854 | return delta < (s64)sysctl_sched_migration_cost; | |
1855 | } | |
1856 | ||
1857 | ||
dd41f596 | 1858 | void set_task_cpu(struct task_struct *p, unsigned int new_cpu) |
c65cc870 | 1859 | { |
dd41f596 IM |
1860 | int old_cpu = task_cpu(p); |
1861 | struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu); | |
2830cf8c SV |
1862 | struct cfs_rq *old_cfsrq = task_cfs_rq(p), |
1863 | *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu); | |
bbdba7c0 | 1864 | u64 clock_offset; |
dd41f596 IM |
1865 | |
1866 | clock_offset = old_rq->clock - new_rq->clock; | |
6cfb0d5d | 1867 | |
cbc34ed1 PZ |
1868 | trace_sched_migrate_task(p, task_cpu(p), new_cpu); |
1869 | ||
6cfb0d5d IM |
1870 | #ifdef CONFIG_SCHEDSTATS |
1871 | if (p->se.wait_start) | |
1872 | p->se.wait_start -= clock_offset; | |
dd41f596 IM |
1873 | if (p->se.sleep_start) |
1874 | p->se.sleep_start -= clock_offset; | |
1875 | if (p->se.block_start) | |
1876 | p->se.block_start -= clock_offset; | |
cc367732 IM |
1877 | if (old_cpu != new_cpu) { |
1878 | schedstat_inc(p, se.nr_migrations); | |
1879 | if (task_hot(p, old_rq->clock, NULL)) | |
1880 | schedstat_inc(p, se.nr_forced2_migrations); | |
1881 | } | |
6cfb0d5d | 1882 | #endif |
2830cf8c SV |
1883 | p->se.vruntime -= old_cfsrq->min_vruntime - |
1884 | new_cfsrq->min_vruntime; | |
dd41f596 IM |
1885 | |
1886 | __set_task_cpu(p, new_cpu); | |
c65cc870 IM |
1887 | } |
1888 | ||
70b97a7f | 1889 | struct migration_req { |
1da177e4 | 1890 | struct list_head list; |
1da177e4 | 1891 | |
36c8b586 | 1892 | struct task_struct *task; |
1da177e4 LT |
1893 | int dest_cpu; |
1894 | ||
1da177e4 | 1895 | struct completion done; |
70b97a7f | 1896 | }; |
1da177e4 LT |
1897 | |
1898 | /* | |
1899 | * The task's runqueue lock must be held. | |
1900 | * Returns true if you have to wait for migration thread. | |
1901 | */ | |
36c8b586 | 1902 | static int |
70b97a7f | 1903 | migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req) |
1da177e4 | 1904 | { |
70b97a7f | 1905 | struct rq *rq = task_rq(p); |
1da177e4 LT |
1906 | |
1907 | /* | |
1908 | * If the task is not on a runqueue (and not running), then | |
1909 | * it is sufficient to simply update the task's cpu field. | |
1910 | */ | |
dd41f596 | 1911 | if (!p->se.on_rq && !task_running(rq, p)) { |
1da177e4 LT |
1912 | set_task_cpu(p, dest_cpu); |
1913 | return 0; | |
1914 | } | |
1915 | ||
1916 | init_completion(&req->done); | |
1da177e4 LT |
1917 | req->task = p; |
1918 | req->dest_cpu = dest_cpu; | |
1919 | list_add(&req->list, &rq->migration_queue); | |
48f24c4d | 1920 | |
1da177e4 LT |
1921 | return 1; |
1922 | } | |
1923 | ||
1924 | /* | |
1925 | * wait_task_inactive - wait for a thread to unschedule. | |
1926 | * | |
85ba2d86 RM |
1927 | * If @match_state is nonzero, it's the @p->state value just checked and |
1928 | * not expected to change. If it changes, i.e. @p might have woken up, | |
1929 | * then return zero. When we succeed in waiting for @p to be off its CPU, | |
1930 | * we return a positive number (its total switch count). If a second call | |
1931 | * a short while later returns the same number, the caller can be sure that | |
1932 | * @p has remained unscheduled the whole time. | |
1933 | * | |
1da177e4 LT |
1934 | * The caller must ensure that the task *will* unschedule sometime soon, |
1935 | * else this function might spin for a *long* time. This function can't | |
1936 | * be called with interrupts off, or it may introduce deadlock with | |
1937 | * smp_call_function() if an IPI is sent by the same process we are | |
1938 | * waiting to become inactive. | |
1939 | */ | |
85ba2d86 | 1940 | unsigned long wait_task_inactive(struct task_struct *p, long match_state) |
1da177e4 LT |
1941 | { |
1942 | unsigned long flags; | |
dd41f596 | 1943 | int running, on_rq; |
85ba2d86 | 1944 | unsigned long ncsw; |
70b97a7f | 1945 | struct rq *rq; |
1da177e4 | 1946 | |
3a5c359a AK |
1947 | for (;;) { |
1948 | /* | |
1949 | * We do the initial early heuristics without holding | |
1950 | * any task-queue locks at all. We'll only try to get | |
1951 | * the runqueue lock when things look like they will | |
1952 | * work out! | |
1953 | */ | |
1954 | rq = task_rq(p); | |
fa490cfd | 1955 | |
3a5c359a AK |
1956 | /* |
1957 | * If the task is actively running on another CPU | |
1958 | * still, just relax and busy-wait without holding | |
1959 | * any locks. | |
1960 | * | |
1961 | * NOTE! Since we don't hold any locks, it's not | |
1962 | * even sure that "rq" stays as the right runqueue! | |
1963 | * But we don't care, since "task_running()" will | |
1964 | * return false if the runqueue has changed and p | |
1965 | * is actually now running somewhere else! | |
1966 | */ | |
85ba2d86 RM |
1967 | while (task_running(rq, p)) { |
1968 | if (match_state && unlikely(p->state != match_state)) | |
1969 | return 0; | |
3a5c359a | 1970 | cpu_relax(); |
85ba2d86 | 1971 | } |
fa490cfd | 1972 | |
3a5c359a AK |
1973 | /* |
1974 | * Ok, time to look more closely! We need the rq | |
1975 | * lock now, to be *sure*. If we're wrong, we'll | |
1976 | * just go back and repeat. | |
1977 | */ | |
1978 | rq = task_rq_lock(p, &flags); | |
0a16b607 | 1979 | trace_sched_wait_task(rq, p); |
3a5c359a AK |
1980 | running = task_running(rq, p); |
1981 | on_rq = p->se.on_rq; | |
85ba2d86 | 1982 | ncsw = 0; |
f31e11d8 | 1983 | if (!match_state || p->state == match_state) |
93dcf55f | 1984 | ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ |
3a5c359a | 1985 | task_rq_unlock(rq, &flags); |
fa490cfd | 1986 | |
85ba2d86 RM |
1987 | /* |
1988 | * If it changed from the expected state, bail out now. | |
1989 | */ | |
1990 | if (unlikely(!ncsw)) | |
1991 | break; | |
1992 | ||
3a5c359a AK |
1993 | /* |
1994 | * Was it really running after all now that we | |
1995 | * checked with the proper locks actually held? | |
1996 | * | |
1997 | * Oops. Go back and try again.. | |
1998 | */ | |
1999 | if (unlikely(running)) { | |
2000 | cpu_relax(); | |
2001 | continue; | |
2002 | } | |
fa490cfd | 2003 | |
3a5c359a AK |
2004 | /* |
2005 | * It's not enough that it's not actively running, | |
2006 | * it must be off the runqueue _entirely_, and not | |
2007 | * preempted! | |
2008 | * | |
2009 | * So if it wa still runnable (but just not actively | |
2010 | * running right now), it's preempted, and we should | |
2011 | * yield - it could be a while. | |
2012 | */ | |
2013 | if (unlikely(on_rq)) { | |
2014 | schedule_timeout_uninterruptible(1); | |
2015 | continue; | |
2016 | } | |
fa490cfd | 2017 | |
3a5c359a AK |
2018 | /* |
2019 | * Ahh, all good. It wasn't running, and it wasn't | |
2020 | * runnable, which means that it will never become | |
2021 | * running in the future either. We're all done! | |
2022 | */ | |
2023 | break; | |
2024 | } | |
85ba2d86 RM |
2025 | |
2026 | return ncsw; | |
1da177e4 LT |
2027 | } |
2028 | ||
2029 | /*** | |
2030 | * kick_process - kick a running thread to enter/exit the kernel | |
2031 | * @p: the to-be-kicked thread | |
2032 | * | |
2033 | * Cause a process which is running on another CPU to enter | |
2034 | * kernel-mode, without any delay. (to get signals handled.) | |
2035 | * | |
2036 | * NOTE: this function doesnt have to take the runqueue lock, | |
2037 | * because all it wants to ensure is that the remote task enters | |
2038 | * the kernel. If the IPI races and the task has been migrated | |
2039 | * to another CPU then no harm is done and the purpose has been | |
2040 | * achieved as well. | |
2041 | */ | |
36c8b586 | 2042 | void kick_process(struct task_struct *p) |
1da177e4 LT |
2043 | { |
2044 | int cpu; | |
2045 | ||
2046 | preempt_disable(); | |
2047 | cpu = task_cpu(p); | |
2048 | if ((cpu != smp_processor_id()) && task_curr(p)) | |
2049 | smp_send_reschedule(cpu); | |
2050 | preempt_enable(); | |
2051 | } | |
2052 | ||
2053 | /* | |
2dd73a4f PW |
2054 | * Return a low guess at the load of a migration-source cpu weighted |
2055 | * according to the scheduling class and "nice" value. | |
1da177e4 LT |
2056 | * |
2057 | * We want to under-estimate the load of migration sources, to | |
2058 | * balance conservatively. | |
2059 | */ | |
a9957449 | 2060 | static unsigned long source_load(int cpu, int type) |
1da177e4 | 2061 | { |
70b97a7f | 2062 | struct rq *rq = cpu_rq(cpu); |
dd41f596 | 2063 | unsigned long total = weighted_cpuload(cpu); |
2dd73a4f | 2064 | |
93b75217 | 2065 | if (type == 0 || !sched_feat(LB_BIAS)) |
dd41f596 | 2066 | return total; |
b910472d | 2067 | |
dd41f596 | 2068 | return min(rq->cpu_load[type-1], total); |
1da177e4 LT |
2069 | } |
2070 | ||
2071 | /* | |
2dd73a4f PW |
2072 | * Return a high guess at the load of a migration-target cpu weighted |
2073 | * according to the scheduling class and "nice" value. | |
1da177e4 | 2074 | */ |
a9957449 | 2075 | static unsigned long target_load(int cpu, int type) |
1da177e4 | 2076 | { |
70b97a7f | 2077 | struct rq *rq = cpu_rq(cpu); |
dd41f596 | 2078 | unsigned long total = weighted_cpuload(cpu); |
2dd73a4f | 2079 | |
93b75217 | 2080 | if (type == 0 || !sched_feat(LB_BIAS)) |
dd41f596 | 2081 | return total; |
3b0bd9bc | 2082 | |
dd41f596 | 2083 | return max(rq->cpu_load[type-1], total); |
2dd73a4f PW |
2084 | } |
2085 | ||
147cbb4b NP |
2086 | /* |
2087 | * find_idlest_group finds and returns the least busy CPU group within the | |
2088 | * domain. | |
2089 | */ | |
2090 | static struct sched_group * | |
2091 | find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) | |
2092 | { | |
2093 | struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups; | |
2094 | unsigned long min_load = ULONG_MAX, this_load = 0; | |
2095 | int load_idx = sd->forkexec_idx; | |
2096 | int imbalance = 100 + (sd->imbalance_pct-100)/2; | |
2097 | ||
2098 | do { | |
2099 | unsigned long load, avg_load; | |
2100 | int local_group; | |
2101 | int i; | |
2102 | ||
da5a5522 BD |
2103 | /* Skip over this group if it has no CPUs allowed */ |
2104 | if (!cpus_intersects(group->cpumask, p->cpus_allowed)) | |
3a5c359a | 2105 | continue; |
da5a5522 | 2106 | |
147cbb4b | 2107 | local_group = cpu_isset(this_cpu, group->cpumask); |
147cbb4b NP |
2108 | |
2109 | /* Tally up the load of all CPUs in the group */ | |
2110 | avg_load = 0; | |
2111 | ||
363ab6f1 | 2112 | for_each_cpu_mask_nr(i, group->cpumask) { |
147cbb4b NP |
2113 | /* Bias balancing toward cpus of our domain */ |
2114 | if (local_group) | |
2115 | load = source_load(i, load_idx); | |
2116 | else | |
2117 | load = target_load(i, load_idx); | |
2118 | ||
2119 | avg_load += load; | |
2120 | } | |
2121 | ||
2122 | /* Adjust by relative CPU power of the group */ | |
5517d86b ED |
2123 | avg_load = sg_div_cpu_power(group, |
2124 | avg_load * SCHED_LOAD_SCALE); | |
147cbb4b NP |
2125 | |
2126 | if (local_group) { | |
2127 | this_load = avg_load; | |
2128 | this = group; | |
2129 | } else if (avg_load < min_load) { | |
2130 | min_load = avg_load; | |
2131 | idlest = group; | |
2132 | } | |
3a5c359a | 2133 | } while (group = group->next, group != sd->groups); |
147cbb4b NP |
2134 | |
2135 | if (!idlest || 100*this_load < imbalance*min_load) | |
2136 | return NULL; | |
2137 | return idlest; | |
2138 | } | |
2139 | ||
2140 | /* | |
0feaece9 | 2141 | * find_idlest_cpu - find the idlest cpu among the cpus in group. |
147cbb4b | 2142 | */ |
95cdf3b7 | 2143 | static int |
7c16ec58 MT |
2144 | find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu, |
2145 | cpumask_t *tmp) | |
147cbb4b NP |
2146 | { |
2147 | unsigned long load, min_load = ULONG_MAX; | |
2148 | int idlest = -1; | |
2149 | int i; | |
2150 | ||
da5a5522 | 2151 | /* Traverse only the allowed CPUs */ |
7c16ec58 | 2152 | cpus_and(*tmp, group->cpumask, p->cpus_allowed); |
da5a5522 | 2153 | |
363ab6f1 | 2154 | for_each_cpu_mask_nr(i, *tmp) { |
2dd73a4f | 2155 | load = weighted_cpuload(i); |
147cbb4b NP |
2156 | |
2157 | if (load < min_load || (load == min_load && i == this_cpu)) { | |
2158 | min_load = load; | |
2159 | idlest = i; | |
2160 | } | |
2161 | } | |
2162 | ||
2163 | return idlest; | |
2164 | } | |
2165 | ||
476d139c NP |
2166 | /* |
2167 | * sched_balance_self: balance the current task (running on cpu) in domains | |
2168 | * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and | |
2169 | * SD_BALANCE_EXEC. | |
2170 | * | |
2171 | * Balance, ie. select the least loaded group. | |
2172 | * | |
2173 | * Returns the target CPU number, or the same CPU if no balancing is needed. | |
2174 | * | |
2175 | * preempt must be disabled. | |
2176 | */ | |
2177 | static int sched_balance_self(int cpu, int flag) | |
2178 | { | |
2179 | struct task_struct *t = current; | |
2180 | struct sched_domain *tmp, *sd = NULL; | |
147cbb4b | 2181 | |
c96d145e | 2182 | for_each_domain(cpu, tmp) { |
9761eea8 IM |
2183 | /* |
2184 | * If power savings logic is enabled for a domain, stop there. | |
2185 | */ | |
5c45bf27 SS |
2186 | if (tmp->flags & SD_POWERSAVINGS_BALANCE) |
2187 | break; | |
476d139c NP |
2188 | if (tmp->flags & flag) |
2189 | sd = tmp; | |
c96d145e | 2190 | } |
476d139c | 2191 | |
039a1c41 PZ |
2192 | if (sd) |
2193 | update_shares(sd); | |
2194 | ||
476d139c | 2195 | while (sd) { |
7c16ec58 | 2196 | cpumask_t span, tmpmask; |
476d139c | 2197 | struct sched_group *group; |
1a848870 SS |
2198 | int new_cpu, weight; |
2199 | ||
2200 | if (!(sd->flags & flag)) { | |
2201 | sd = sd->child; | |
2202 | continue; | |
2203 | } | |
476d139c NP |
2204 | |
2205 | span = sd->span; | |
2206 | group = find_idlest_group(sd, t, cpu); | |
1a848870 SS |
2207 | if (!group) { |
2208 | sd = sd->child; | |
2209 | continue; | |
2210 | } | |
476d139c | 2211 | |
7c16ec58 | 2212 | new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask); |
1a848870 SS |
2213 | if (new_cpu == -1 || new_cpu == cpu) { |
2214 | /* Now try balancing at a lower domain level of cpu */ | |
2215 | sd = sd->child; | |
2216 | continue; | |
2217 | } | |
476d139c | 2218 | |
1a848870 | 2219 | /* Now try balancing at a lower domain level of new_cpu */ |
476d139c | 2220 | cpu = new_cpu; |
476d139c NP |
2221 | sd = NULL; |
2222 | weight = cpus_weight(span); | |
2223 | for_each_domain(cpu, tmp) { | |
2224 | if (weight <= cpus_weight(tmp->span)) | |
2225 | break; | |
2226 | if (tmp->flags & flag) | |
2227 | sd = tmp; | |
2228 | } | |
2229 | /* while loop will break here if sd == NULL */ | |
2230 | } | |
2231 | ||
2232 | return cpu; | |
2233 | } | |
2234 | ||
2235 | #endif /* CONFIG_SMP */ | |
1da177e4 | 2236 | |
1da177e4 LT |
2237 | /*** |
2238 | * try_to_wake_up - wake up a thread | |
2239 | * @p: the to-be-woken-up thread | |
2240 | * @state: the mask of task states that can be woken | |
2241 | * @sync: do a synchronous wakeup? | |
2242 | * | |
2243 | * Put it on the run-queue if it's not already there. The "current" | |
2244 | * thread is always on the run-queue (except when the actual | |
2245 | * re-schedule is in progress), and as such you're allowed to do | |
2246 | * the simpler "current->state = TASK_RUNNING" to mark yourself | |
2247 | * runnable without the overhead of this. | |
2248 | * | |
2249 | * returns failure only if the task is already active. | |
2250 | */ | |
36c8b586 | 2251 | static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) |
1da177e4 | 2252 | { |
cc367732 | 2253 | int cpu, orig_cpu, this_cpu, success = 0; |
1da177e4 LT |
2254 | unsigned long flags; |
2255 | long old_state; | |
70b97a7f | 2256 | struct rq *rq; |
1da177e4 | 2257 | |
b85d0667 IM |
2258 | if (!sched_feat(SYNC_WAKEUPS)) |
2259 | sync = 0; | |
2260 | ||
2398f2c6 PZ |
2261 | #ifdef CONFIG_SMP |
2262 | if (sched_feat(LB_WAKEUP_UPDATE)) { | |
2263 | struct sched_domain *sd; | |
2264 | ||
2265 | this_cpu = raw_smp_processor_id(); | |
2266 | cpu = task_cpu(p); | |
2267 | ||
2268 | for_each_domain(this_cpu, sd) { | |
2269 | if (cpu_isset(cpu, sd->span)) { | |
2270 | update_shares(sd); | |
2271 | break; | |
2272 | } | |
2273 | } | |
2274 | } | |
2275 | #endif | |
2276 | ||
04e2f174 | 2277 | smp_wmb(); |
1da177e4 | 2278 | rq = task_rq_lock(p, &flags); |
03e89e45 | 2279 | update_rq_clock(rq); |
1da177e4 LT |
2280 | old_state = p->state; |
2281 | if (!(old_state & state)) | |
2282 | goto out; | |
2283 | ||
dd41f596 | 2284 | if (p->se.on_rq) |
1da177e4 LT |
2285 | goto out_running; |
2286 | ||
2287 | cpu = task_cpu(p); | |
cc367732 | 2288 | orig_cpu = cpu; |
1da177e4 LT |
2289 | this_cpu = smp_processor_id(); |
2290 | ||
2291 | #ifdef CONFIG_SMP | |
2292 | if (unlikely(task_running(rq, p))) | |
2293 | goto out_activate; | |
2294 | ||
5d2f5a61 DA |
2295 | cpu = p->sched_class->select_task_rq(p, sync); |
2296 | if (cpu != orig_cpu) { | |
2297 | set_task_cpu(p, cpu); | |
1da177e4 LT |
2298 | task_rq_unlock(rq, &flags); |
2299 | /* might preempt at this point */ | |
2300 | rq = task_rq_lock(p, &flags); | |
2301 | old_state = p->state; | |
2302 | if (!(old_state & state)) | |
2303 | goto out; | |
dd41f596 | 2304 | if (p->se.on_rq) |
1da177e4 LT |
2305 | goto out_running; |
2306 | ||
2307 | this_cpu = smp_processor_id(); | |
2308 | cpu = task_cpu(p); | |
2309 | } | |
2310 | ||
e7693a36 GH |
2311 | #ifdef CONFIG_SCHEDSTATS |
2312 | schedstat_inc(rq, ttwu_count); | |
2313 | if (cpu == this_cpu) | |
2314 | schedstat_inc(rq, ttwu_local); | |
2315 | else { | |
2316 | struct sched_domain *sd; | |
2317 | for_each_domain(this_cpu, sd) { | |
2318 | if (cpu_isset(cpu, sd->span)) { | |
2319 | schedstat_inc(sd, ttwu_wake_remote); | |
2320 | break; | |
2321 | } | |
2322 | } | |
2323 | } | |
6d6bc0ad | 2324 | #endif /* CONFIG_SCHEDSTATS */ |
e7693a36 | 2325 | |
1da177e4 LT |
2326 | out_activate: |
2327 | #endif /* CONFIG_SMP */ | |
cc367732 IM |
2328 | schedstat_inc(p, se.nr_wakeups); |
2329 | if (sync) | |
2330 | schedstat_inc(p, se.nr_wakeups_sync); | |
2331 | if (orig_cpu != cpu) | |
2332 | schedstat_inc(p, se.nr_wakeups_migrate); | |
2333 | if (cpu == this_cpu) | |
2334 | schedstat_inc(p, se.nr_wakeups_local); | |
2335 | else | |
2336 | schedstat_inc(p, se.nr_wakeups_remote); | |
dd41f596 | 2337 | activate_task(rq, p, 1); |
1da177e4 LT |
2338 | success = 1; |
2339 | ||
2340 | out_running: | |
468a15bb | 2341 | trace_sched_wakeup(rq, p, success); |
15afe09b | 2342 | check_preempt_curr(rq, p, sync); |
4ae7d5ce | 2343 | |
1da177e4 | 2344 | p->state = TASK_RUNNING; |
9a897c5a SR |
2345 | #ifdef CONFIG_SMP |
2346 | if (p->sched_class->task_wake_up) | |
2347 | p->sched_class->task_wake_up(rq, p); | |
2348 | #endif | |
1da177e4 | 2349 | out: |
2087a1ad GH |
2350 | current->se.last_wakeup = current->se.sum_exec_runtime; |
2351 | ||
1da177e4 LT |
2352 | task_rq_unlock(rq, &flags); |
2353 | ||
2354 | return success; | |
2355 | } | |
2356 | ||
7ad5b3a5 | 2357 | int wake_up_process(struct task_struct *p) |
1da177e4 | 2358 | { |
d9514f6c | 2359 | return try_to_wake_up(p, TASK_ALL, 0); |
1da177e4 | 2360 | } |
1da177e4 LT |
2361 | EXPORT_SYMBOL(wake_up_process); |
2362 | ||
7ad5b3a5 | 2363 | int wake_up_state(struct task_struct *p, unsigned int state) |
1da177e4 LT |
2364 | { |
2365 | return try_to_wake_up(p, state, 0); | |
2366 | } | |
2367 | ||
1da177e4 LT |
2368 | /* |
2369 | * Perform scheduler related setup for a newly forked process p. | |
2370 | * p is forked by current. | |
dd41f596 IM |
2371 | * |
2372 | * __sched_fork() is basic setup used by init_idle() too: | |
2373 | */ | |
2374 | static void __sched_fork(struct task_struct *p) | |
2375 | { | |
dd41f596 IM |
2376 | p->se.exec_start = 0; |
2377 | p->se.sum_exec_runtime = 0; | |
f6cf891c | 2378 | p->se.prev_sum_exec_runtime = 0; |
4ae7d5ce IM |
2379 | p->se.last_wakeup = 0; |
2380 | p->se.avg_overlap = 0; | |
6cfb0d5d IM |
2381 | |
2382 | #ifdef CONFIG_SCHEDSTATS | |
2383 | p->se.wait_start = 0; | |
dd41f596 IM |
2384 | p->se.sum_sleep_runtime = 0; |
2385 | p->se.sleep_start = 0; | |
dd41f596 IM |
2386 | p->se.block_start = 0; |
2387 | p->se.sleep_max = 0; | |
2388 | p->se.block_max = 0; | |
2389 | p->se.exec_max = 0; | |
eba1ed4b | 2390 | p->se.slice_max = 0; |
dd41f596 | 2391 | p->se.wait_max = 0; |
6cfb0d5d | 2392 | #endif |
476d139c | 2393 | |
fa717060 | 2394 | INIT_LIST_HEAD(&p->rt.run_list); |
dd41f596 | 2395 | p->se.on_rq = 0; |
4a55bd5e | 2396 | INIT_LIST_HEAD(&p->se.group_node); |
476d139c | 2397 | |
e107be36 AK |
2398 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
2399 | INIT_HLIST_HEAD(&p->preempt_notifiers); | |
2400 | #endif | |
2401 | ||
1da177e4 LT |
2402 | /* |
2403 | * We mark the process as running here, but have not actually | |
2404 | * inserted it onto the runqueue yet. This guarantees that | |
2405 | * nobody will actually run it, and a signal or other external | |
2406 | * event cannot wake it up and insert it on the runqueue either. | |
2407 | */ | |
2408 | p->state = TASK_RUNNING; | |
dd41f596 IM |
2409 | } |
2410 | ||
2411 | /* | |
2412 | * fork()/clone()-time setup: | |
2413 | */ | |
2414 | void sched_fork(struct task_struct *p, int clone_flags) | |
2415 | { | |
2416 | int cpu = get_cpu(); | |
2417 | ||
2418 | __sched_fork(p); | |
2419 | ||
2420 | #ifdef CONFIG_SMP | |
2421 | cpu = sched_balance_self(cpu, SD_BALANCE_FORK); | |
2422 | #endif | |
02e4bac2 | 2423 | set_task_cpu(p, cpu); |
b29739f9 IM |
2424 | |
2425 | /* | |
2426 | * Make sure we do not leak PI boosting priority to the child: | |
2427 | */ | |
2428 | p->prio = current->normal_prio; | |
2ddbf952 HS |
2429 | if (!rt_prio(p->prio)) |
2430 | p->sched_class = &fair_sched_class; | |
b29739f9 | 2431 | |
52f17b6c | 2432 | #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) |
dd41f596 | 2433 | if (likely(sched_info_on())) |
52f17b6c | 2434 | memset(&p->sched_info, 0, sizeof(p->sched_info)); |
1da177e4 | 2435 | #endif |
d6077cb8 | 2436 | #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) |
4866cde0 NP |
2437 | p->oncpu = 0; |
2438 | #endif | |
1da177e4 | 2439 | #ifdef CONFIG_PREEMPT |
4866cde0 | 2440 | /* Want to start with kernel preemption disabled. */ |
a1261f54 | 2441 | task_thread_info(p)->preempt_count = 1; |
1da177e4 | 2442 | #endif |
476d139c | 2443 | put_cpu(); |
1da177e4 LT |
2444 | } |
2445 | ||
2446 | /* | |
2447 | * wake_up_new_task - wake up a newly created task for the first time. | |
2448 | * | |
2449 | * This function will do some initial scheduler statistics housekeeping | |
2450 | * that must be done for every newly created context, then puts the task | |
2451 | * on the runqueue and wakes it. | |
2452 | */ | |
7ad5b3a5 | 2453 | void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) |
1da177e4 LT |
2454 | { |
2455 | unsigned long flags; | |
dd41f596 | 2456 | struct rq *rq; |
1da177e4 LT |
2457 | |
2458 | rq = task_rq_lock(p, &flags); | |
147cbb4b | 2459 | BUG_ON(p->state != TASK_RUNNING); |
a8e504d2 | 2460 | update_rq_clock(rq); |
1da177e4 LT |
2461 | |
2462 | p->prio = effective_prio(p); | |
2463 | ||
b9dca1e0 | 2464 | if (!p->sched_class->task_new || !current->se.on_rq) { |
dd41f596 | 2465 | activate_task(rq, p, 0); |
1da177e4 | 2466 | } else { |
1da177e4 | 2467 | /* |
dd41f596 IM |
2468 | * Let the scheduling class do new task startup |
2469 | * management (if any): | |
1da177e4 | 2470 | */ |
ee0827d8 | 2471 | p->sched_class->task_new(rq, p); |
c09595f6 | 2472 | inc_nr_running(rq); |
1da177e4 | 2473 | } |
c71dd42d | 2474 | trace_sched_wakeup_new(rq, p, 1); |
15afe09b | 2475 | check_preempt_curr(rq, p, 0); |
9a897c5a SR |
2476 | #ifdef CONFIG_SMP |
2477 | if (p->sched_class->task_wake_up) | |
2478 | p->sched_class->task_wake_up(rq, p); | |
2479 | #endif | |
dd41f596 | 2480 | task_rq_unlock(rq, &flags); |
1da177e4 LT |
2481 | } |
2482 | ||
e107be36 AK |
2483 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
2484 | ||
2485 | /** | |
421cee29 RD |
2486 | * preempt_notifier_register - tell me when current is being being preempted & rescheduled |
2487 | * @notifier: notifier struct to register | |
e107be36 AK |
2488 | */ |
2489 | void preempt_notifier_register(struct preempt_notifier *notifier) | |
2490 | { | |
2491 | hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); | |
2492 | } | |
2493 | EXPORT_SYMBOL_GPL(preempt_notifier_register); | |
2494 | ||
2495 | /** | |
2496 | * preempt_notifier_unregister - no longer interested in preemption notifications | |
421cee29 | 2497 | * @notifier: notifier struct to unregister |
e107be36 AK |
2498 | * |
2499 | * This is safe to call from within a preemption notifier. | |
2500 | */ | |
2501 | void preempt_notifier_unregister(struct preempt_notifier *notifier) | |
2502 | { | |
2503 | hlist_del(¬ifier->link); | |
2504 | } | |
2505 | EXPORT_SYMBOL_GPL(preempt_notifier_unregister); | |
2506 | ||
2507 | static void fire_sched_in_preempt_notifiers(struct task_struct *curr) | |
2508 | { | |
2509 | struct preempt_notifier *notifier; | |
2510 | struct hlist_node *node; | |
2511 | ||
2512 | hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) | |
2513 | notifier->ops->sched_in(notifier, raw_smp_processor_id()); | |
2514 | } | |
2515 | ||
2516 | static void | |
2517 | fire_sched_out_preempt_notifiers(struct task_struct *curr, | |
2518 | struct task_struct *next) | |
2519 | { | |
2520 | struct preempt_notifier *notifier; | |
2521 | struct hlist_node *node; | |
2522 | ||
2523 | hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) | |
2524 | notifier->ops->sched_out(notifier, next); | |
2525 | } | |
2526 | ||
6d6bc0ad | 2527 | #else /* !CONFIG_PREEMPT_NOTIFIERS */ |
e107be36 AK |
2528 | |
2529 | static void fire_sched_in_preempt_notifiers(struct task_struct *curr) | |
2530 | { | |
2531 | } | |
2532 | ||
2533 | static void | |
2534 | fire_sched_out_preempt_notifiers(struct task_struct *curr, | |
2535 | struct task_struct *next) | |
2536 | { | |
2537 | } | |
2538 | ||
6d6bc0ad | 2539 | #endif /* CONFIG_PREEMPT_NOTIFIERS */ |
e107be36 | 2540 | |
4866cde0 NP |
2541 | /** |
2542 | * prepare_task_switch - prepare to switch tasks | |
2543 | * @rq: the runqueue preparing to switch | |
421cee29 | 2544 | * @prev: the current task that is being switched out |
4866cde0 NP |
2545 | * @next: the task we are going to switch to. |
2546 | * | |
2547 | * This is called with the rq lock held and interrupts off. It must | |
2548 | * be paired with a subsequent finish_task_switch after the context | |
2549 | * switch. | |
2550 | * | |
2551 | * prepare_task_switch sets up locking and calls architecture specific | |
2552 | * hooks. | |
2553 | */ | |
e107be36 AK |
2554 | static inline void |
2555 | prepare_task_switch(struct rq *rq, struct task_struct *prev, | |
2556 | struct task_struct *next) | |
4866cde0 | 2557 | { |
e107be36 | 2558 | fire_sched_out_preempt_notifiers(prev, next); |
4866cde0 NP |
2559 | prepare_lock_switch(rq, next); |
2560 | prepare_arch_switch(next); | |
2561 | } | |
2562 | ||
1da177e4 LT |
2563 | /** |
2564 | * finish_task_switch - clean up after a task-switch | |
344babaa | 2565 | * @rq: runqueue associated with task-switch |
1da177e4 LT |
2566 | * @prev: the thread we just switched away from. |
2567 | * | |
4866cde0 NP |
2568 | * finish_task_switch must be called after the context switch, paired |
2569 | * with a prepare_task_switch call before the context switch. | |
2570 | * finish_task_switch will reconcile locking set up by prepare_task_switch, | |
2571 | * and do any other architecture-specific cleanup actions. | |
1da177e4 LT |
2572 | * |
2573 | * Note that we may have delayed dropping an mm in context_switch(). If | |
41a2d6cf | 2574 | * so, we finish that here outside of the runqueue lock. (Doing it |
1da177e4 LT |
2575 | * with the lock held can cause deadlocks; see schedule() for |
2576 | * details.) | |
2577 | */ | |
a9957449 | 2578 | static void finish_task_switch(struct rq *rq, struct task_struct *prev) |
1da177e4 LT |
2579 | __releases(rq->lock) |
2580 | { | |
1da177e4 | 2581 | struct mm_struct *mm = rq->prev_mm; |
55a101f8 | 2582 | long prev_state; |
1da177e4 LT |
2583 | |
2584 | rq->prev_mm = NULL; | |
2585 | ||
2586 | /* | |
2587 | * A task struct has one reference for the use as "current". | |
c394cc9f | 2588 | * If a task dies, then it sets TASK_DEAD in tsk->state and calls |
55a101f8 ON |
2589 | * schedule one last time. The schedule call will never return, and |
2590 | * the scheduled task must drop that reference. | |
c394cc9f | 2591 | * The test for TASK_DEAD must occur while the runqueue locks are |
1da177e4 LT |
2592 | * still held, otherwise prev could be scheduled on another cpu, die |
2593 | * there before we look at prev->state, and then the reference would | |
2594 | * be dropped twice. | |
2595 | * Manfred Spraul <[email protected]> | |
2596 | */ | |
55a101f8 | 2597 | prev_state = prev->state; |
4866cde0 NP |
2598 | finish_arch_switch(prev); |
2599 | finish_lock_switch(rq, prev); | |
9a897c5a SR |
2600 | #ifdef CONFIG_SMP |
2601 | if (current->sched_class->post_schedule) | |
2602 | current->sched_class->post_schedule(rq); | |
2603 | #endif | |
e8fa1362 | 2604 | |
e107be36 | 2605 | fire_sched_in_preempt_notifiers(current); |
1da177e4 LT |
2606 | if (mm) |
2607 | mmdrop(mm); | |
c394cc9f | 2608 | if (unlikely(prev_state == TASK_DEAD)) { |
c6fd91f0 | 2609 | /* |
2610 | * Remove function-return probe instances associated with this | |
2611 | * task and put them back on the free list. | |
9761eea8 | 2612 | */ |
c6fd91f0 | 2613 | kprobe_flush_task(prev); |
1da177e4 | 2614 | put_task_struct(prev); |
c6fd91f0 | 2615 | } |
1da177e4 LT |
2616 | } |
2617 | ||
2618 | /** | |
2619 | * schedule_tail - first thing a freshly forked thread must call. | |
2620 | * @prev: the thread we just switched away from. | |
2621 | */ | |
36c8b586 | 2622 | asmlinkage void schedule_tail(struct task_struct *prev) |
1da177e4 LT |
2623 | __releases(rq->lock) |
2624 | { | |
70b97a7f IM |
2625 | struct rq *rq = this_rq(); |
2626 | ||
4866cde0 NP |
2627 | finish_task_switch(rq, prev); |
2628 | #ifdef __ARCH_WANT_UNLOCKED_CTXSW | |
2629 | /* In this case, finish_task_switch does not reenable preemption */ | |
2630 | preempt_enable(); | |
2631 | #endif | |
1da177e4 | 2632 | if (current->set_child_tid) |
b488893a | 2633 | put_user(task_pid_vnr(current), current->set_child_tid); |
1da177e4 LT |
2634 | } |
2635 | ||
2636 | /* | |
2637 | * context_switch - switch to the new MM and the new | |
2638 | * thread's register state. | |
2639 | */ | |
dd41f596 | 2640 | static inline void |
70b97a7f | 2641 | context_switch(struct rq *rq, struct task_struct *prev, |
36c8b586 | 2642 | struct task_struct *next) |
1da177e4 | 2643 | { |
dd41f596 | 2644 | struct mm_struct *mm, *oldmm; |
1da177e4 | 2645 | |
e107be36 | 2646 | prepare_task_switch(rq, prev, next); |
0a16b607 | 2647 | trace_sched_switch(rq, prev, next); |
dd41f596 IM |
2648 | mm = next->mm; |
2649 | oldmm = prev->active_mm; | |
9226d125 ZA |
2650 | /* |
2651 | * For paravirt, this is coupled with an exit in switch_to to | |
2652 | * combine the page table reload and the switch backend into | |
2653 | * one hypercall. | |
2654 | */ | |
2655 | arch_enter_lazy_cpu_mode(); | |
2656 | ||
dd41f596 | 2657 | if (unlikely(!mm)) { |
1da177e4 LT |
2658 | next->active_mm = oldmm; |
2659 | atomic_inc(&oldmm->mm_count); | |
2660 | enter_lazy_tlb(oldmm, next); | |
2661 | } else | |
2662 | switch_mm(oldmm, mm, next); | |
2663 | ||
dd41f596 | 2664 | if (unlikely(!prev->mm)) { |
1da177e4 | 2665 | prev->active_mm = NULL; |
1da177e4 LT |
2666 | rq->prev_mm = oldmm; |
2667 | } | |
3a5f5e48 IM |
2668 | /* |
2669 | * Since the runqueue lock will be released by the next | |
2670 | * task (which is an invalid locking op but in the case | |
2671 | * of the scheduler it's an obvious special-case), so we | |
2672 | * do an early lockdep release here: | |
2673 | */ | |
2674 | #ifndef __ARCH_WANT_UNLOCKED_CTXSW | |
8a25d5de | 2675 | spin_release(&rq->lock.dep_map, 1, _THIS_IP_); |
3a5f5e48 | 2676 | #endif |
1da177e4 LT |
2677 | |
2678 | /* Here we just switch the register state and the stack. */ | |
2679 | switch_to(prev, next, prev); | |
2680 | ||
dd41f596 IM |
2681 | barrier(); |
2682 | /* | |
2683 | * this_rq must be evaluated again because prev may have moved | |
2684 | * CPUs since it called schedule(), thus the 'rq' on its stack | |
2685 | * frame will be invalid. | |
2686 | */ | |
2687 | finish_task_switch(this_rq(), prev); | |
1da177e4 LT |
2688 | } |
2689 | ||
2690 | /* | |
2691 | * nr_running, nr_uninterruptible and nr_context_switches: | |
2692 | * | |
2693 | * externally visible scheduler statistics: current number of runnable | |
2694 | * threads, current number of uninterruptible-sleeping threads, total | |
2695 | * number of context switches performed since bootup. | |
2696 | */ | |
2697 | unsigned long nr_running(void) | |
2698 | { | |
2699 | unsigned long i, sum = 0; | |
2700 | ||
2701 | for_each_online_cpu(i) | |
2702 | sum += cpu_rq(i)->nr_running; | |
2703 | ||
2704 | return sum; | |
2705 | } | |
2706 | ||
2707 | unsigned long nr_uninterruptible(void) | |
2708 | { | |
2709 | unsigned long i, sum = 0; | |
2710 | ||
0a945022 | 2711 | for_each_possible_cpu(i) |
1da177e4 LT |
2712 | sum += cpu_rq(i)->nr_uninterruptible; |
2713 | ||
2714 | /* | |
2715 | * Since we read the counters lockless, it might be slightly | |
2716 | * inaccurate. Do not allow it to go below zero though: | |
2717 | */ | |
2718 | if (unlikely((long)sum < 0)) | |
2719 | sum = 0; | |
2720 | ||
2721 | return sum; | |
2722 | } | |
2723 | ||
2724 | unsigned long long nr_context_switches(void) | |
2725 | { | |
cc94abfc SR |
2726 | int i; |
2727 | unsigned long long sum = 0; | |
1da177e4 | 2728 | |
0a945022 | 2729 | for_each_possible_cpu(i) |
1da177e4 LT |
2730 | sum += cpu_rq(i)->nr_switches; |
2731 | ||
2732 | return sum; | |
2733 | } | |
2734 | ||
2735 | unsigned long nr_iowait(void) | |
2736 | { | |
2737 | unsigned long i, sum = 0; | |
2738 | ||
0a945022 | 2739 | for_each_possible_cpu(i) |
1da177e4 LT |
2740 | sum += atomic_read(&cpu_rq(i)->nr_iowait); |
2741 | ||
2742 | return sum; | |
2743 | } | |
2744 | ||
db1b1fef JS |
2745 | unsigned long nr_active(void) |
2746 | { | |
2747 | unsigned long i, running = 0, uninterruptible = 0; | |
2748 | ||
2749 | for_each_online_cpu(i) { | |
2750 | running += cpu_rq(i)->nr_running; | |
2751 | uninterruptible += cpu_rq(i)->nr_uninterruptible; | |
2752 | } | |
2753 | ||
2754 | if (unlikely((long)uninterruptible < 0)) | |
2755 | uninterruptible = 0; | |
2756 | ||
2757 | return running + uninterruptible; | |
2758 | } | |
2759 | ||
48f24c4d | 2760 | /* |
dd41f596 IM |
2761 | * Update rq->cpu_load[] statistics. This function is usually called every |
2762 | * scheduler tick (TICK_NSEC). | |
48f24c4d | 2763 | */ |
dd41f596 | 2764 | static void update_cpu_load(struct rq *this_rq) |
48f24c4d | 2765 | { |
495eca49 | 2766 | unsigned long this_load = this_rq->load.weight; |
dd41f596 IM |
2767 | int i, scale; |
2768 | ||
2769 | this_rq->nr_load_updates++; | |
dd41f596 IM |
2770 | |
2771 | /* Update our load: */ | |
2772 | for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { | |
2773 | unsigned long old_load, new_load; | |
2774 | ||
2775 | /* scale is effectively 1 << i now, and >> i divides by scale */ | |
2776 | ||
2777 | old_load = this_rq->cpu_load[i]; | |
2778 | new_load = this_load; | |
a25707f3 IM |
2779 | /* |
2780 | * Round up the averaging division if load is increasing. This | |
2781 | * prevents us from getting stuck on 9 if the load is 10, for | |
2782 | * example. | |
2783 | */ | |
2784 | if (new_load > old_load) | |
2785 | new_load += scale-1; | |
dd41f596 IM |
2786 | this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i; |
2787 | } | |
48f24c4d IM |
2788 | } |
2789 | ||
dd41f596 IM |
2790 | #ifdef CONFIG_SMP |
2791 | ||
1da177e4 LT |
2792 | /* |
2793 | * double_rq_lock - safely lock two runqueues | |
2794 | * | |
2795 | * Note this does not disable interrupts like task_rq_lock, | |
2796 | * you need to do so manually before calling. | |
2797 | */ | |
70b97a7f | 2798 | static void double_rq_lock(struct rq *rq1, struct rq *rq2) |
1da177e4 LT |
2799 | __acquires(rq1->lock) |
2800 | __acquires(rq2->lock) | |
2801 | { | |
054b9108 | 2802 | BUG_ON(!irqs_disabled()); |
1da177e4 LT |
2803 | if (rq1 == rq2) { |
2804 | spin_lock(&rq1->lock); | |
2805 | __acquire(rq2->lock); /* Fake it out ;) */ | |
2806 | } else { | |
c96d145e | 2807 | if (rq1 < rq2) { |
1da177e4 | 2808 | spin_lock(&rq1->lock); |
5e710e37 | 2809 | spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); |
1da177e4 LT |
2810 | } else { |
2811 | spin_lock(&rq2->lock); | |
5e710e37 | 2812 | spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); |
1da177e4 LT |
2813 | } |
2814 | } | |
6e82a3be IM |
2815 | update_rq_clock(rq1); |
2816 | update_rq_clock(rq2); | |
1da177e4 LT |
2817 | } |
2818 | ||
2819 | /* | |
2820 | * double_rq_unlock - safely unlock two runqueues | |
2821 | * | |
2822 | * Note this does not restore interrupts like task_rq_unlock, | |
2823 | * you need to do so manually after calling. | |
2824 | */ | |
70b97a7f | 2825 | static void double_rq_unlock(struct rq *rq1, struct rq *rq2) |
1da177e4 LT |
2826 | __releases(rq1->lock) |
2827 | __releases(rq2->lock) | |
2828 | { | |
2829 | spin_unlock(&rq1->lock); | |
2830 | if (rq1 != rq2) | |
2831 | spin_unlock(&rq2->lock); | |
2832 | else | |
2833 | __release(rq2->lock); | |
2834 | } | |
2835 | ||
1da177e4 LT |
2836 | /* |
2837 | * If dest_cpu is allowed for this process, migrate the task to it. | |
2838 | * This is accomplished by forcing the cpu_allowed mask to only | |
41a2d6cf | 2839 | * allow dest_cpu, which will force the cpu onto dest_cpu. Then |
1da177e4 LT |
2840 | * the cpu_allowed mask is restored. |
2841 | */ | |
36c8b586 | 2842 | static void sched_migrate_task(struct task_struct *p, int dest_cpu) |
1da177e4 | 2843 | { |
70b97a7f | 2844 | struct migration_req req; |
1da177e4 | 2845 | unsigned long flags; |
70b97a7f | 2846 | struct rq *rq; |
1da177e4 LT |
2847 | |
2848 | rq = task_rq_lock(p, &flags); | |
2849 | if (!cpu_isset(dest_cpu, p->cpus_allowed) | |
e761b772 | 2850 | || unlikely(!cpu_active(dest_cpu))) |
1da177e4 LT |
2851 | goto out; |
2852 | ||
2853 | /* force the process onto the specified CPU */ | |
2854 | if (migrate_task(p, dest_cpu, &req)) { | |
2855 | /* Need to wait for migration thread (might exit: take ref). */ | |
2856 | struct task_struct *mt = rq->migration_thread; | |
36c8b586 | 2857 | |
1da177e4 LT |
2858 | get_task_struct(mt); |
2859 | task_rq_unlock(rq, &flags); | |
2860 | wake_up_process(mt); | |
2861 | put_task_struct(mt); | |
2862 | wait_for_completion(&req.done); | |
36c8b586 | 2863 | |
1da177e4 LT |
2864 | return; |
2865 | } | |
2866 | out: | |
2867 | task_rq_unlock(rq, &flags); | |
2868 | } | |
2869 | ||
2870 | /* | |
476d139c NP |
2871 | * sched_exec - execve() is a valuable balancing opportunity, because at |
2872 | * this point the task has the smallest effective memory and cache footprint. | |
1da177e4 LT |
2873 | */ |
2874 | void sched_exec(void) | |
2875 | { | |
1da177e4 | 2876 | int new_cpu, this_cpu = get_cpu(); |
476d139c | 2877 | new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC); |
1da177e4 | 2878 | put_cpu(); |
476d139c NP |
2879 | if (new_cpu != this_cpu) |
2880 | sched_migrate_task(current, new_cpu); | |
1da177e4 LT |
2881 | } |
2882 | ||
2883 | /* | |
2884 | * pull_task - move a task from a remote runqueue to the local runqueue. | |
2885 | * Both runqueues must be locked. | |
2886 | */ | |
dd41f596 IM |
2887 | static void pull_task(struct rq *src_rq, struct task_struct *p, |
2888 | struct rq *this_rq, int this_cpu) | |
1da177e4 | 2889 | { |
2e1cb74a | 2890 | deactivate_task(src_rq, p, 0); |
1da177e4 | 2891 | set_task_cpu(p, this_cpu); |
dd41f596 | 2892 | activate_task(this_rq, p, 0); |
1da177e4 LT |
2893 | /* |
2894 | * Note that idle threads have a prio of MAX_PRIO, for this test | |
2895 | * to be always true for them. | |
2896 | */ | |
15afe09b | 2897 | check_preempt_curr(this_rq, p, 0); |
1da177e4 LT |
2898 | } |
2899 | ||
2900 | /* | |
2901 | * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? | |
2902 | */ | |
858119e1 | 2903 | static |
70b97a7f | 2904 | int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, |
d15bcfdb | 2905 | struct sched_domain *sd, enum cpu_idle_type idle, |
95cdf3b7 | 2906 | int *all_pinned) |
1da177e4 LT |
2907 | { |
2908 | /* | |
2909 | * We do not migrate tasks that are: | |
2910 | * 1) running (obviously), or | |
2911 | * 2) cannot be migrated to this CPU due to cpus_allowed, or | |
2912 | * 3) are cache-hot on their current CPU. | |
2913 | */ | |
cc367732 IM |
2914 | if (!cpu_isset(this_cpu, p->cpus_allowed)) { |
2915 | schedstat_inc(p, se.nr_failed_migrations_affine); | |
1da177e4 | 2916 | return 0; |
cc367732 | 2917 | } |
81026794 NP |
2918 | *all_pinned = 0; |
2919 | ||
cc367732 IM |
2920 | if (task_running(rq, p)) { |
2921 | schedstat_inc(p, se.nr_failed_migrations_running); | |
81026794 | 2922 | return 0; |
cc367732 | 2923 | } |
1da177e4 | 2924 | |
da84d961 IM |
2925 | /* |
2926 | * Aggressive migration if: | |
2927 | * 1) task is cache cold, or | |
2928 | * 2) too many balance attempts have failed. | |
2929 | */ | |
2930 | ||
6bc1665b IM |
2931 | if (!task_hot(p, rq->clock, sd) || |
2932 | sd->nr_balance_failed > sd->cache_nice_tries) { | |
da84d961 | 2933 | #ifdef CONFIG_SCHEDSTATS |
cc367732 | 2934 | if (task_hot(p, rq->clock, sd)) { |
da84d961 | 2935 | schedstat_inc(sd, lb_hot_gained[idle]); |
cc367732 IM |
2936 | schedstat_inc(p, se.nr_forced_migrations); |
2937 | } | |
da84d961 IM |
2938 | #endif |
2939 | return 1; | |
2940 | } | |
2941 | ||
cc367732 IM |
2942 | if (task_hot(p, rq->clock, sd)) { |
2943 | schedstat_inc(p, se.nr_failed_migrations_hot); | |
da84d961 | 2944 | return 0; |
cc367732 | 2945 | } |
1da177e4 LT |
2946 | return 1; |
2947 | } | |
2948 | ||
e1d1484f PW |
2949 | static unsigned long |
2950 | balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | |
2951 | unsigned long max_load_move, struct sched_domain *sd, | |
2952 | enum cpu_idle_type idle, int *all_pinned, | |
2953 | int *this_best_prio, struct rq_iterator *iterator) | |
1da177e4 | 2954 | { |
051c6764 | 2955 | int loops = 0, pulled = 0, pinned = 0; |
dd41f596 IM |
2956 | struct task_struct *p; |
2957 | long rem_load_move = max_load_move; | |
1da177e4 | 2958 | |
e1d1484f | 2959 | if (max_load_move == 0) |
1da177e4 LT |
2960 | goto out; |
2961 | ||
81026794 NP |
2962 | pinned = 1; |
2963 | ||
1da177e4 | 2964 | /* |
dd41f596 | 2965 | * Start the load-balancing iterator: |
1da177e4 | 2966 | */ |
dd41f596 IM |
2967 | p = iterator->start(iterator->arg); |
2968 | next: | |
b82d9fdd | 2969 | if (!p || loops++ > sysctl_sched_nr_migrate) |
1da177e4 | 2970 | goto out; |
051c6764 PZ |
2971 | |
2972 | if ((p->se.load.weight >> 1) > rem_load_move || | |
dd41f596 | 2973 | !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { |
dd41f596 IM |
2974 | p = iterator->next(iterator->arg); |
2975 | goto next; | |
1da177e4 LT |
2976 | } |
2977 | ||
dd41f596 | 2978 | pull_task(busiest, p, this_rq, this_cpu); |
1da177e4 | 2979 | pulled++; |
dd41f596 | 2980 | rem_load_move -= p->se.load.weight; |
1da177e4 | 2981 | |
2dd73a4f | 2982 | /* |
b82d9fdd | 2983 | * We only want to steal up to the prescribed amount of weighted load. |
2dd73a4f | 2984 | */ |
e1d1484f | 2985 | if (rem_load_move > 0) { |
a4ac01c3 PW |
2986 | if (p->prio < *this_best_prio) |
2987 | *this_best_prio = p->prio; | |
dd41f596 IM |
2988 | p = iterator->next(iterator->arg); |
2989 | goto next; | |
1da177e4 LT |
2990 | } |
2991 | out: | |
2992 | /* | |
e1d1484f | 2993 | * Right now, this is one of only two places pull_task() is called, |
1da177e4 LT |
2994 | * so we can safely collect pull_task() stats here rather than |
2995 | * inside pull_task(). | |
2996 | */ | |
2997 | schedstat_add(sd, lb_gained[idle], pulled); | |
81026794 NP |
2998 | |
2999 | if (all_pinned) | |
3000 | *all_pinned = pinned; | |
e1d1484f PW |
3001 | |
3002 | return max_load_move - rem_load_move; | |
1da177e4 LT |
3003 | } |
3004 | ||
dd41f596 | 3005 | /* |
43010659 PW |
3006 | * move_tasks tries to move up to max_load_move weighted load from busiest to |
3007 | * this_rq, as part of a balancing operation within domain "sd". | |
3008 | * Returns 1 if successful and 0 otherwise. | |
dd41f596 IM |
3009 | * |
3010 | * Called with both runqueues locked. | |
3011 | */ | |
3012 | static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | |
43010659 | 3013 | unsigned long max_load_move, |
dd41f596 IM |
3014 | struct sched_domain *sd, enum cpu_idle_type idle, |
3015 | int *all_pinned) | |
3016 | { | |
5522d5d5 | 3017 | const struct sched_class *class = sched_class_highest; |
43010659 | 3018 | unsigned long total_load_moved = 0; |
a4ac01c3 | 3019 | int this_best_prio = this_rq->curr->prio; |
dd41f596 IM |
3020 | |
3021 | do { | |
43010659 PW |
3022 | total_load_moved += |
3023 | class->load_balance(this_rq, this_cpu, busiest, | |
e1d1484f | 3024 | max_load_move - total_load_moved, |
a4ac01c3 | 3025 | sd, idle, all_pinned, &this_best_prio); |
dd41f596 | 3026 | class = class->next; |
c4acb2c0 GH |
3027 | |
3028 | if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) | |
3029 | break; | |
3030 | ||
43010659 | 3031 | } while (class && max_load_move > total_load_moved); |
dd41f596 | 3032 | |
43010659 PW |
3033 | return total_load_moved > 0; |
3034 | } | |
3035 | ||
e1d1484f PW |
3036 | static int |
3037 | iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | |
3038 | struct sched_domain *sd, enum cpu_idle_type idle, | |
3039 | struct rq_iterator *iterator) | |
3040 | { | |
3041 | struct task_struct *p = iterator->start(iterator->arg); | |
3042 | int pinned = 0; | |
3043 | ||
3044 | while (p) { | |
3045 | if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { | |
3046 | pull_task(busiest, p, this_rq, this_cpu); | |
3047 | /* | |
3048 | * Right now, this is only the second place pull_task() | |
3049 | * is called, so we can safely collect pull_task() | |
3050 | * stats here rather than inside pull_task(). | |
3051 | */ | |
3052 | schedstat_inc(sd, lb_gained[idle]); | |
3053 | ||
3054 | return 1; | |
3055 | } | |
3056 | p = iterator->next(iterator->arg); | |
3057 | } | |
3058 | ||
3059 | return 0; | |
3060 | } | |
3061 | ||
43010659 PW |
3062 | /* |
3063 | * move_one_task tries to move exactly one task from busiest to this_rq, as | |
3064 | * part of active balancing operations within "domain". | |
3065 | * Returns 1 if successful and 0 otherwise. | |
3066 | * | |
3067 | * Called with both runqueues locked. | |
3068 | */ | |
3069 | static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | |
3070 | struct sched_domain *sd, enum cpu_idle_type idle) | |
3071 | { | |
5522d5d5 | 3072 | const struct sched_class *class; |
43010659 PW |
3073 | |
3074 | for (class = sched_class_highest; class; class = class->next) | |
e1d1484f | 3075 | if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle)) |
43010659 PW |
3076 | return 1; |
3077 | ||
3078 | return 0; | |
dd41f596 IM |
3079 | } |
3080 | ||
1da177e4 LT |
3081 | /* |
3082 | * find_busiest_group finds and returns the busiest CPU group within the | |
48f24c4d IM |
3083 | * domain. It calculates and returns the amount of weighted load which |
3084 | * should be moved to restore balance via the imbalance parameter. | |
1da177e4 LT |
3085 | */ |
3086 | static struct sched_group * | |
3087 | find_busiest_group(struct sched_domain *sd, int this_cpu, | |
dd41f596 | 3088 | unsigned long *imbalance, enum cpu_idle_type idle, |
7c16ec58 | 3089 | int *sd_idle, const cpumask_t *cpus, int *balance) |
1da177e4 LT |
3090 | { |
3091 | struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups; | |
3092 | unsigned long max_load, avg_load, total_load, this_load, total_pwr; | |
0c117f1b | 3093 | unsigned long max_pull; |
2dd73a4f PW |
3094 | unsigned long busiest_load_per_task, busiest_nr_running; |
3095 | unsigned long this_load_per_task, this_nr_running; | |
908a7c1b | 3096 | int load_idx, group_imb = 0; |
5c45bf27 SS |
3097 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
3098 | int power_savings_balance = 1; | |
3099 | unsigned long leader_nr_running = 0, min_load_per_task = 0; | |
3100 | unsigned long min_nr_running = ULONG_MAX; | |
3101 | struct sched_group *group_min = NULL, *group_leader = NULL; | |
3102 | #endif | |
1da177e4 LT |
3103 | |
3104 | max_load = this_load = total_load = total_pwr = 0; | |
2dd73a4f PW |
3105 | busiest_load_per_task = busiest_nr_running = 0; |
3106 | this_load_per_task = this_nr_running = 0; | |
408ed066 | 3107 | |
d15bcfdb | 3108 | if (idle == CPU_NOT_IDLE) |
7897986b | 3109 | load_idx = sd->busy_idx; |
d15bcfdb | 3110 | else if (idle == CPU_NEWLY_IDLE) |
7897986b NP |
3111 | load_idx = sd->newidle_idx; |
3112 | else | |
3113 | load_idx = sd->idle_idx; | |
1da177e4 LT |
3114 | |
3115 | do { | |
908a7c1b | 3116 | unsigned long load, group_capacity, max_cpu_load, min_cpu_load; |
1da177e4 LT |
3117 | int local_group; |
3118 | int i; | |
908a7c1b | 3119 | int __group_imb = 0; |
783609c6 | 3120 | unsigned int balance_cpu = -1, first_idle_cpu = 0; |
2dd73a4f | 3121 | unsigned long sum_nr_running, sum_weighted_load; |
408ed066 PZ |
3122 | unsigned long sum_avg_load_per_task; |
3123 | unsigned long avg_load_per_task; | |
1da177e4 LT |
3124 | |
3125 | local_group = cpu_isset(this_cpu, group->cpumask); | |
3126 | ||
783609c6 SS |
3127 | if (local_group) |
3128 | balance_cpu = first_cpu(group->cpumask); | |
3129 | ||
1da177e4 | 3130 | /* Tally up the load of all CPUs in the group */ |
2dd73a4f | 3131 | sum_weighted_load = sum_nr_running = avg_load = 0; |
408ed066 PZ |
3132 | sum_avg_load_per_task = avg_load_per_task = 0; |
3133 | ||
908a7c1b KC |
3134 | max_cpu_load = 0; |
3135 | min_cpu_load = ~0UL; | |
1da177e4 | 3136 | |
363ab6f1 | 3137 | for_each_cpu_mask_nr(i, group->cpumask) { |
0a2966b4 CL |
3138 | struct rq *rq; |
3139 | ||
3140 | if (!cpu_isset(i, *cpus)) | |
3141 | continue; | |
3142 | ||
3143 | rq = cpu_rq(i); | |
2dd73a4f | 3144 | |
9439aab8 | 3145 | if (*sd_idle && rq->nr_running) |
5969fe06 NP |
3146 | *sd_idle = 0; |
3147 | ||
1da177e4 | 3148 | /* Bias balancing toward cpus of our domain */ |
783609c6 SS |
3149 | if (local_group) { |
3150 | if (idle_cpu(i) && !first_idle_cpu) { | |
3151 | first_idle_cpu = 1; | |
3152 | balance_cpu = i; | |
3153 | } | |
3154 | ||
a2000572 | 3155 | load = target_load(i, load_idx); |
908a7c1b | 3156 | } else { |
a2000572 | 3157 | load = source_load(i, load_idx); |
908a7c1b KC |
3158 | if (load > max_cpu_load) |
3159 | max_cpu_load = load; | |
3160 | if (min_cpu_load > load) | |
3161 | min_cpu_load = load; | |
3162 | } | |
1da177e4 LT |
3163 | |
3164 | avg_load += load; | |
2dd73a4f | 3165 | sum_nr_running += rq->nr_running; |
dd41f596 | 3166 | sum_weighted_load += weighted_cpuload(i); |
408ed066 PZ |
3167 | |
3168 | sum_avg_load_per_task += cpu_avg_load_per_task(i); | |
1da177e4 LT |
3169 | } |
3170 | ||
783609c6 SS |
3171 | /* |
3172 | * First idle cpu or the first cpu(busiest) in this sched group | |
3173 | * is eligible for doing load balancing at this and above | |
9439aab8 SS |
3174 | * domains. In the newly idle case, we will allow all the cpu's |
3175 | * to do the newly idle load balance. | |
783609c6 | 3176 | */ |
9439aab8 SS |
3177 | if (idle != CPU_NEWLY_IDLE && local_group && |
3178 | balance_cpu != this_cpu && balance) { | |
783609c6 SS |
3179 | *balance = 0; |
3180 | goto ret; | |
3181 | } | |
3182 | ||
1da177e4 | 3183 | total_load += avg_load; |
5517d86b | 3184 | total_pwr += group->__cpu_power; |
1da177e4 LT |
3185 | |
3186 | /* Adjust by relative CPU power of the group */ | |
5517d86b ED |
3187 | avg_load = sg_div_cpu_power(group, |
3188 | avg_load * SCHED_LOAD_SCALE); | |
1da177e4 | 3189 | |
408ed066 PZ |
3190 | |
3191 | /* | |
3192 | * Consider the group unbalanced when the imbalance is larger | |
3193 | * than the average weight of two tasks. | |
3194 | * | |
3195 | * APZ: with cgroup the avg task weight can vary wildly and | |
3196 | * might not be a suitable number - should we keep a | |
3197 | * normalized nr_running number somewhere that negates | |
3198 | * the hierarchy? | |
3199 | */ | |
3200 | avg_load_per_task = sg_div_cpu_power(group, | |
3201 | sum_avg_load_per_task * SCHED_LOAD_SCALE); | |
3202 | ||
3203 | if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) | |
908a7c1b KC |
3204 | __group_imb = 1; |
3205 | ||
5517d86b | 3206 | group_capacity = group->__cpu_power / SCHED_LOAD_SCALE; |
5c45bf27 | 3207 | |
1da177e4 LT |
3208 | if (local_group) { |
3209 | this_load = avg_load; | |
3210 | this = group; | |
2dd73a4f PW |
3211 | this_nr_running = sum_nr_running; |
3212 | this_load_per_task = sum_weighted_load; | |
3213 | } else if (avg_load > max_load && | |
908a7c1b | 3214 | (sum_nr_running > group_capacity || __group_imb)) { |
1da177e4 LT |
3215 | max_load = avg_load; |
3216 | busiest = group; | |
2dd73a4f PW |
3217 | busiest_nr_running = sum_nr_running; |
3218 | busiest_load_per_task = sum_weighted_load; | |
908a7c1b | 3219 | group_imb = __group_imb; |
1da177e4 | 3220 | } |
5c45bf27 SS |
3221 | |
3222 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | |
3223 | /* | |
3224 | * Busy processors will not participate in power savings | |
3225 | * balance. | |
3226 | */ | |
dd41f596 IM |
3227 | if (idle == CPU_NOT_IDLE || |
3228 | !(sd->flags & SD_POWERSAVINGS_BALANCE)) | |
3229 | goto group_next; | |
5c45bf27 SS |
3230 | |
3231 | /* | |
3232 | * If the local group is idle or completely loaded | |
3233 | * no need to do power savings balance at this domain | |
3234 | */ | |
3235 | if (local_group && (this_nr_running >= group_capacity || | |
3236 | !this_nr_running)) | |
3237 | power_savings_balance = 0; | |
3238 | ||
dd41f596 | 3239 | /* |
5c45bf27 SS |
3240 | * If a group is already running at full capacity or idle, |
3241 | * don't include that group in power savings calculations | |
dd41f596 IM |
3242 | */ |
3243 | if (!power_savings_balance || sum_nr_running >= group_capacity | |
5c45bf27 | 3244 | || !sum_nr_running) |
dd41f596 | 3245 | goto group_next; |
5c45bf27 | 3246 | |
dd41f596 | 3247 | /* |
5c45bf27 | 3248 | * Calculate the group which has the least non-idle load. |
dd41f596 IM |
3249 | * This is the group from where we need to pick up the load |
3250 | * for saving power | |
3251 | */ | |
3252 | if ((sum_nr_running < min_nr_running) || | |
3253 | (sum_nr_running == min_nr_running && | |
5c45bf27 SS |
3254 | first_cpu(group->cpumask) < |
3255 | first_cpu(group_min->cpumask))) { | |
dd41f596 IM |
3256 | group_min = group; |
3257 | min_nr_running = sum_nr_running; | |
5c45bf27 SS |
3258 | min_load_per_task = sum_weighted_load / |
3259 | sum_nr_running; | |
dd41f596 | 3260 | } |
5c45bf27 | 3261 | |
dd41f596 | 3262 | /* |
5c45bf27 | 3263 | * Calculate the group which is almost near its |
dd41f596 IM |
3264 | * capacity but still has some space to pick up some load |
3265 | * from other group and save more power | |
3266 | */ | |
3267 | if (sum_nr_running <= group_capacity - 1) { | |
3268 | if (sum_nr_running > leader_nr_running || | |
3269 | (sum_nr_running == leader_nr_running && | |
3270 | first_cpu(group->cpumask) > | |
3271 | first_cpu(group_leader->cpumask))) { | |
3272 | group_leader = group; | |
3273 | leader_nr_running = sum_nr_running; | |
3274 | } | |
48f24c4d | 3275 | } |
5c45bf27 SS |
3276 | group_next: |
3277 | #endif | |
1da177e4 LT |
3278 | group = group->next; |
3279 | } while (group != sd->groups); | |
3280 | ||
2dd73a4f | 3281 | if (!busiest || this_load >= max_load || busiest_nr_running == 0) |
1da177e4 LT |
3282 | goto out_balanced; |
3283 | ||
3284 | avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr; | |
3285 | ||
3286 | if (this_load >= avg_load || | |
3287 | 100*max_load <= sd->imbalance_pct*this_load) | |
3288 | goto out_balanced; | |
3289 | ||
2dd73a4f | 3290 | busiest_load_per_task /= busiest_nr_running; |
908a7c1b KC |
3291 | if (group_imb) |
3292 | busiest_load_per_task = min(busiest_load_per_task, avg_load); | |
3293 | ||
1da177e4 LT |
3294 | /* |
3295 | * We're trying to get all the cpus to the average_load, so we don't | |
3296 | * want to push ourselves above the average load, nor do we wish to | |
3297 | * reduce the max loaded cpu below the average load, as either of these | |
3298 | * actions would just result in more rebalancing later, and ping-pong | |
3299 | * tasks around. Thus we look for the minimum possible imbalance. | |
3300 | * Negative imbalances (*we* are more loaded than anyone else) will | |
3301 | * be counted as no imbalance for these purposes -- we can't fix that | |
41a2d6cf | 3302 | * by pulling tasks to us. Be careful of negative numbers as they'll |
1da177e4 LT |
3303 | * appear as very large values with unsigned longs. |
3304 | */ | |
2dd73a4f PW |
3305 | if (max_load <= busiest_load_per_task) |
3306 | goto out_balanced; | |
3307 | ||
3308 | /* | |
3309 | * In the presence of smp nice balancing, certain scenarios can have | |
3310 | * max load less than avg load(as we skip the groups at or below | |
3311 | * its cpu_power, while calculating max_load..) | |
3312 | */ | |
3313 | if (max_load < avg_load) { | |
3314 | *imbalance = 0; | |
3315 | goto small_imbalance; | |
3316 | } | |
0c117f1b SS |
3317 | |
3318 | /* Don't want to pull so many tasks that a group would go idle */ | |
2dd73a4f | 3319 | max_pull = min(max_load - avg_load, max_load - busiest_load_per_task); |
0c117f1b | 3320 | |
1da177e4 | 3321 | /* How much load to actually move to equalise the imbalance */ |
5517d86b ED |
3322 | *imbalance = min(max_pull * busiest->__cpu_power, |
3323 | (avg_load - this_load) * this->__cpu_power) | |
1da177e4 LT |
3324 | / SCHED_LOAD_SCALE; |
3325 | ||
2dd73a4f PW |
3326 | /* |
3327 | * if *imbalance is less than the average load per runnable task | |
3328 | * there is no gaurantee that any tasks will be moved so we'll have | |
3329 | * a think about bumping its value to force at least one task to be | |
3330 | * moved | |
3331 | */ | |
7fd0d2dd | 3332 | if (*imbalance < busiest_load_per_task) { |
48f24c4d | 3333 | unsigned long tmp, pwr_now, pwr_move; |
2dd73a4f PW |
3334 | unsigned int imbn; |
3335 | ||
3336 | small_imbalance: | |
3337 | pwr_move = pwr_now = 0; | |
3338 | imbn = 2; | |
3339 | if (this_nr_running) { | |
3340 | this_load_per_task /= this_nr_running; | |
3341 | if (busiest_load_per_task > this_load_per_task) | |
3342 | imbn = 1; | |
3343 | } else | |
408ed066 | 3344 | this_load_per_task = cpu_avg_load_per_task(this_cpu); |
1da177e4 | 3345 | |
01c8c57d | 3346 | if (max_load - this_load + busiest_load_per_task >= |
dd41f596 | 3347 | busiest_load_per_task * imbn) { |
2dd73a4f | 3348 | *imbalance = busiest_load_per_task; |
1da177e4 LT |
3349 | return busiest; |
3350 | } | |
3351 | ||
3352 | /* | |
3353 | * OK, we don't have enough imbalance to justify moving tasks, | |
3354 | * however we may be able to increase total CPU power used by | |
3355 | * moving them. | |
3356 | */ | |
3357 | ||
5517d86b ED |
3358 | pwr_now += busiest->__cpu_power * |
3359 | min(busiest_load_per_task, max_load); | |
3360 | pwr_now += this->__cpu_power * | |
3361 | min(this_load_per_task, this_load); | |
1da177e4 LT |
3362 | pwr_now /= SCHED_LOAD_SCALE; |
3363 | ||
3364 | /* Amount of load we'd subtract */ | |
5517d86b ED |
3365 | tmp = sg_div_cpu_power(busiest, |
3366 | busiest_load_per_task * SCHED_LOAD_SCALE); | |
1da177e4 | 3367 | if (max_load > tmp) |
5517d86b | 3368 | pwr_move += busiest->__cpu_power * |
2dd73a4f | 3369 | min(busiest_load_per_task, max_load - tmp); |
1da177e4 LT |
3370 | |
3371 | /* Amount of load we'd add */ | |
5517d86b | 3372 | if (max_load * busiest->__cpu_power < |
33859f7f | 3373 | busiest_load_per_task * SCHED_LOAD_SCALE) |
5517d86b ED |
3374 | tmp = sg_div_cpu_power(this, |
3375 | max_load * busiest->__cpu_power); | |
1da177e4 | 3376 | else |
5517d86b ED |
3377 | tmp = sg_div_cpu_power(this, |
3378 | busiest_load_per_task * SCHED_LOAD_SCALE); | |
3379 | pwr_move += this->__cpu_power * | |
3380 | min(this_load_per_task, this_load + tmp); | |
1da177e4 LT |
3381 | pwr_move /= SCHED_LOAD_SCALE; |
3382 | ||
3383 | /* Move if we gain throughput */ | |
7fd0d2dd SS |
3384 | if (pwr_move > pwr_now) |
3385 | *imbalance = busiest_load_per_task; | |
1da177e4 LT |
3386 | } |
3387 | ||
1da177e4 LT |
3388 | return busiest; |
3389 | ||
3390 | out_balanced: | |
5c45bf27 | 3391 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
d15bcfdb | 3392 | if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) |
5c45bf27 | 3393 | goto ret; |
1da177e4 | 3394 | |
5c45bf27 SS |
3395 | if (this == group_leader && group_leader != group_min) { |
3396 | *imbalance = min_load_per_task; | |
3397 | return group_min; | |
3398 | } | |
5c45bf27 | 3399 | #endif |
783609c6 | 3400 | ret: |
1da177e4 LT |
3401 | *imbalance = 0; |
3402 | return NULL; | |
3403 | } | |
3404 | ||
3405 | /* | |
3406 | * find_busiest_queue - find the busiest runqueue among the cpus in group. | |
3407 | */ | |
70b97a7f | 3408 | static struct rq * |
d15bcfdb | 3409 | find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle, |
7c16ec58 | 3410 | unsigned long imbalance, const cpumask_t *cpus) |
1da177e4 | 3411 | { |
70b97a7f | 3412 | struct rq *busiest = NULL, *rq; |
2dd73a4f | 3413 | unsigned long max_load = 0; |
1da177e4 LT |
3414 | int i; |
3415 | ||
363ab6f1 | 3416 | for_each_cpu_mask_nr(i, group->cpumask) { |
dd41f596 | 3417 | unsigned long wl; |
0a2966b4 CL |
3418 | |
3419 | if (!cpu_isset(i, *cpus)) | |
3420 | continue; | |
3421 | ||
48f24c4d | 3422 | rq = cpu_rq(i); |
dd41f596 | 3423 | wl = weighted_cpuload(i); |
2dd73a4f | 3424 | |
dd41f596 | 3425 | if (rq->nr_running == 1 && wl > imbalance) |
2dd73a4f | 3426 | continue; |
1da177e4 | 3427 | |
dd41f596 IM |
3428 | if (wl > max_load) { |
3429 | max_load = wl; | |
48f24c4d | 3430 | busiest = rq; |
1da177e4 LT |
3431 | } |
3432 | } | |
3433 | ||
3434 | return busiest; | |
3435 | } | |
3436 | ||
77391d71 NP |
3437 | /* |
3438 | * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but | |
3439 | * so long as it is large enough. | |
3440 | */ | |
3441 | #define MAX_PINNED_INTERVAL 512 | |
3442 | ||
1da177e4 LT |
3443 | /* |
3444 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | |
3445 | * tasks if there is an imbalance. | |
1da177e4 | 3446 | */ |
70b97a7f | 3447 | static int load_balance(int this_cpu, struct rq *this_rq, |
d15bcfdb | 3448 | struct sched_domain *sd, enum cpu_idle_type idle, |
7c16ec58 | 3449 | int *balance, cpumask_t *cpus) |
1da177e4 | 3450 | { |
43010659 | 3451 | int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0; |
1da177e4 | 3452 | struct sched_group *group; |
1da177e4 | 3453 | unsigned long imbalance; |
70b97a7f | 3454 | struct rq *busiest; |
fe2eea3f | 3455 | unsigned long flags; |
5969fe06 | 3456 | |
7c16ec58 MT |
3457 | cpus_setall(*cpus); |
3458 | ||
89c4710e SS |
3459 | /* |
3460 | * When power savings policy is enabled for the parent domain, idle | |
3461 | * sibling can pick up load irrespective of busy siblings. In this case, | |
dd41f596 | 3462 | * let the state of idle sibling percolate up as CPU_IDLE, instead of |
d15bcfdb | 3463 | * portraying it as CPU_NOT_IDLE. |
89c4710e | 3464 | */ |
d15bcfdb | 3465 | if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER && |
89c4710e | 3466 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) |
5969fe06 | 3467 | sd_idle = 1; |
1da177e4 | 3468 | |
2d72376b | 3469 | schedstat_inc(sd, lb_count[idle]); |
1da177e4 | 3470 | |
0a2966b4 | 3471 | redo: |
c8cba857 | 3472 | update_shares(sd); |
0a2966b4 | 3473 | group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle, |
7c16ec58 | 3474 | cpus, balance); |
783609c6 | 3475 | |
06066714 | 3476 | if (*balance == 0) |
783609c6 | 3477 | goto out_balanced; |
783609c6 | 3478 | |
1da177e4 LT |
3479 | if (!group) { |
3480 | schedstat_inc(sd, lb_nobusyg[idle]); | |
3481 | goto out_balanced; | |
3482 | } | |
3483 | ||
7c16ec58 | 3484 | busiest = find_busiest_queue(group, idle, imbalance, cpus); |
1da177e4 LT |
3485 | if (!busiest) { |
3486 | schedstat_inc(sd, lb_nobusyq[idle]); | |
3487 | goto out_balanced; | |
3488 | } | |
3489 | ||
db935dbd | 3490 | BUG_ON(busiest == this_rq); |
1da177e4 LT |
3491 | |
3492 | schedstat_add(sd, lb_imbalance[idle], imbalance); | |
3493 | ||
43010659 | 3494 | ld_moved = 0; |
1da177e4 LT |
3495 | if (busiest->nr_running > 1) { |
3496 | /* | |
3497 | * Attempt to move tasks. If find_busiest_group has found | |
3498 | * an imbalance but busiest->nr_running <= 1, the group is | |
43010659 | 3499 | * still unbalanced. ld_moved simply stays zero, so it is |
1da177e4 LT |
3500 | * correctly treated as an imbalance. |
3501 | */ | |
fe2eea3f | 3502 | local_irq_save(flags); |
e17224bf | 3503 | double_rq_lock(this_rq, busiest); |
43010659 | 3504 | ld_moved = move_tasks(this_rq, this_cpu, busiest, |
48f24c4d | 3505 | imbalance, sd, idle, &all_pinned); |
e17224bf | 3506 | double_rq_unlock(this_rq, busiest); |
fe2eea3f | 3507 | local_irq_restore(flags); |
81026794 | 3508 | |
46cb4b7c SS |
3509 | /* |
3510 | * some other cpu did the load balance for us. | |
3511 | */ | |
43010659 | 3512 | if (ld_moved && this_cpu != smp_processor_id()) |
46cb4b7c SS |
3513 | resched_cpu(this_cpu); |
3514 | ||
81026794 | 3515 | /* All tasks on this runqueue were pinned by CPU affinity */ |
0a2966b4 | 3516 | if (unlikely(all_pinned)) { |
7c16ec58 MT |
3517 | cpu_clear(cpu_of(busiest), *cpus); |
3518 | if (!cpus_empty(*cpus)) | |
0a2966b4 | 3519 | goto redo; |
81026794 | 3520 | goto out_balanced; |
0a2966b4 | 3521 | } |
1da177e4 | 3522 | } |
81026794 | 3523 | |
43010659 | 3524 | if (!ld_moved) { |
1da177e4 LT |
3525 | schedstat_inc(sd, lb_failed[idle]); |
3526 | sd->nr_balance_failed++; | |
3527 | ||
3528 | if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) { | |
1da177e4 | 3529 | |
fe2eea3f | 3530 | spin_lock_irqsave(&busiest->lock, flags); |
fa3b6ddc SS |
3531 | |
3532 | /* don't kick the migration_thread, if the curr | |
3533 | * task on busiest cpu can't be moved to this_cpu | |
3534 | */ | |
3535 | if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) { | |
fe2eea3f | 3536 | spin_unlock_irqrestore(&busiest->lock, flags); |
fa3b6ddc SS |
3537 | all_pinned = 1; |
3538 | goto out_one_pinned; | |
3539 | } | |
3540 | ||
1da177e4 LT |
3541 | if (!busiest->active_balance) { |
3542 | busiest->active_balance = 1; | |
3543 | busiest->push_cpu = this_cpu; | |
81026794 | 3544 | active_balance = 1; |
1da177e4 | 3545 | } |
fe2eea3f | 3546 | spin_unlock_irqrestore(&busiest->lock, flags); |
81026794 | 3547 | if (active_balance) |
1da177e4 LT |
3548 | wake_up_process(busiest->migration_thread); |
3549 | ||
3550 | /* | |
3551 | * We've kicked active balancing, reset the failure | |
3552 | * counter. | |
3553 | */ | |
39507451 | 3554 | sd->nr_balance_failed = sd->cache_nice_tries+1; |
1da177e4 | 3555 | } |
81026794 | 3556 | } else |
1da177e4 LT |
3557 | sd->nr_balance_failed = 0; |
3558 | ||
81026794 | 3559 | if (likely(!active_balance)) { |
1da177e4 LT |
3560 | /* We were unbalanced, so reset the balancing interval */ |
3561 | sd->balance_interval = sd->min_interval; | |
81026794 NP |
3562 | } else { |
3563 | /* | |
3564 | * If we've begun active balancing, start to back off. This | |
3565 | * case may not be covered by the all_pinned logic if there | |
3566 | * is only 1 task on the busy runqueue (because we don't call | |
3567 | * move_tasks). | |
3568 | */ | |
3569 | if (sd->balance_interval < sd->max_interval) | |
3570 | sd->balance_interval *= 2; | |
1da177e4 LT |
3571 | } |
3572 | ||
43010659 | 3573 | if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER && |
89c4710e | 3574 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) |
c09595f6 PZ |
3575 | ld_moved = -1; |
3576 | ||
3577 | goto out; | |
1da177e4 LT |
3578 | |
3579 | out_balanced: | |
1da177e4 LT |
3580 | schedstat_inc(sd, lb_balanced[idle]); |
3581 | ||
16cfb1c0 | 3582 | sd->nr_balance_failed = 0; |
fa3b6ddc SS |
3583 | |
3584 | out_one_pinned: | |
1da177e4 | 3585 | /* tune up the balancing interval */ |
77391d71 NP |
3586 | if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) || |
3587 | (sd->balance_interval < sd->max_interval)) | |
1da177e4 LT |
3588 | sd->balance_interval *= 2; |
3589 | ||
48f24c4d | 3590 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && |
89c4710e | 3591 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) |
c09595f6 PZ |
3592 | ld_moved = -1; |
3593 | else | |
3594 | ld_moved = 0; | |
3595 | out: | |
c8cba857 PZ |
3596 | if (ld_moved) |
3597 | update_shares(sd); | |
c09595f6 | 3598 | return ld_moved; |
1da177e4 LT |
3599 | } |
3600 | ||
3601 | /* | |
3602 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | |
3603 | * tasks if there is an imbalance. | |
3604 | * | |
d15bcfdb | 3605 | * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE). |
1da177e4 LT |
3606 | * this_rq is locked. |
3607 | */ | |
48f24c4d | 3608 | static int |
7c16ec58 MT |
3609 | load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd, |
3610 | cpumask_t *cpus) | |
1da177e4 LT |
3611 | { |
3612 | struct sched_group *group; | |
70b97a7f | 3613 | struct rq *busiest = NULL; |
1da177e4 | 3614 | unsigned long imbalance; |
43010659 | 3615 | int ld_moved = 0; |
5969fe06 | 3616 | int sd_idle = 0; |
969bb4e4 | 3617 | int all_pinned = 0; |
7c16ec58 MT |
3618 | |
3619 | cpus_setall(*cpus); | |
5969fe06 | 3620 | |
89c4710e SS |
3621 | /* |
3622 | * When power savings policy is enabled for the parent domain, idle | |
3623 | * sibling can pick up load irrespective of busy siblings. In this case, | |
3624 | * let the state of idle sibling percolate up as IDLE, instead of | |
d15bcfdb | 3625 | * portraying it as CPU_NOT_IDLE. |
89c4710e SS |
3626 | */ |
3627 | if (sd->flags & SD_SHARE_CPUPOWER && | |
3628 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | |
5969fe06 | 3629 | sd_idle = 1; |
1da177e4 | 3630 | |
2d72376b | 3631 | schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]); |
0a2966b4 | 3632 | redo: |
3e5459b4 | 3633 | update_shares_locked(this_rq, sd); |
d15bcfdb | 3634 | group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE, |
7c16ec58 | 3635 | &sd_idle, cpus, NULL); |
1da177e4 | 3636 | if (!group) { |
d15bcfdb | 3637 | schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]); |
16cfb1c0 | 3638 | goto out_balanced; |
1da177e4 LT |
3639 | } |
3640 | ||
7c16ec58 | 3641 | busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus); |
db935dbd | 3642 | if (!busiest) { |
d15bcfdb | 3643 | schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]); |
16cfb1c0 | 3644 | goto out_balanced; |
1da177e4 LT |
3645 | } |
3646 | ||
db935dbd NP |
3647 | BUG_ON(busiest == this_rq); |
3648 | ||
d15bcfdb | 3649 | schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance); |
d6d5cfaf | 3650 | |
43010659 | 3651 | ld_moved = 0; |
d6d5cfaf NP |
3652 | if (busiest->nr_running > 1) { |
3653 | /* Attempt to move tasks */ | |
3654 | double_lock_balance(this_rq, busiest); | |
6e82a3be IM |
3655 | /* this_rq->clock is already updated */ |
3656 | update_rq_clock(busiest); | |
43010659 | 3657 | ld_moved = move_tasks(this_rq, this_cpu, busiest, |
969bb4e4 SS |
3658 | imbalance, sd, CPU_NEWLY_IDLE, |
3659 | &all_pinned); | |
1b12bbc7 | 3660 | double_unlock_balance(this_rq, busiest); |
0a2966b4 | 3661 | |
969bb4e4 | 3662 | if (unlikely(all_pinned)) { |
7c16ec58 MT |
3663 | cpu_clear(cpu_of(busiest), *cpus); |
3664 | if (!cpus_empty(*cpus)) | |
0a2966b4 CL |
3665 | goto redo; |
3666 | } | |
d6d5cfaf NP |
3667 | } |
3668 | ||
43010659 | 3669 | if (!ld_moved) { |
d15bcfdb | 3670 | schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]); |
89c4710e SS |
3671 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && |
3672 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | |
5969fe06 NP |
3673 | return -1; |
3674 | } else | |
16cfb1c0 | 3675 | sd->nr_balance_failed = 0; |
1da177e4 | 3676 | |
3e5459b4 | 3677 | update_shares_locked(this_rq, sd); |
43010659 | 3678 | return ld_moved; |
16cfb1c0 NP |
3679 | |
3680 | out_balanced: | |
d15bcfdb | 3681 | schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]); |
48f24c4d | 3682 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && |
89c4710e | 3683 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) |
5969fe06 | 3684 | return -1; |
16cfb1c0 | 3685 | sd->nr_balance_failed = 0; |
48f24c4d | 3686 | |
16cfb1c0 | 3687 | return 0; |
1da177e4 LT |
3688 | } |
3689 | ||
3690 | /* | |
3691 | * idle_balance is called by schedule() if this_cpu is about to become | |
3692 | * idle. Attempts to pull tasks from other CPUs. | |
3693 | */ | |
70b97a7f | 3694 | static void idle_balance(int this_cpu, struct rq *this_rq) |
1da177e4 LT |
3695 | { |
3696 | struct sched_domain *sd; | |
efbe027e | 3697 | int pulled_task = 0; |
dd41f596 | 3698 | unsigned long next_balance = jiffies + HZ; |
7c16ec58 | 3699 | cpumask_t tmpmask; |
1da177e4 LT |
3700 | |
3701 | for_each_domain(this_cpu, sd) { | |
92c4ca5c CL |
3702 | unsigned long interval; |
3703 | ||
3704 | if (!(sd->flags & SD_LOAD_BALANCE)) | |
3705 | continue; | |
3706 | ||
3707 | if (sd->flags & SD_BALANCE_NEWIDLE) | |
48f24c4d | 3708 | /* If we've pulled tasks over stop searching: */ |
7c16ec58 MT |
3709 | pulled_task = load_balance_newidle(this_cpu, this_rq, |
3710 | sd, &tmpmask); | |
92c4ca5c CL |
3711 | |
3712 | interval = msecs_to_jiffies(sd->balance_interval); | |
3713 | if (time_after(next_balance, sd->last_balance + interval)) | |
3714 | next_balance = sd->last_balance + interval; | |
3715 | if (pulled_task) | |
3716 | break; | |
1da177e4 | 3717 | } |
dd41f596 | 3718 | if (pulled_task || time_after(jiffies, this_rq->next_balance)) { |
1bd77f2d CL |
3719 | /* |
3720 | * We are going idle. next_balance may be set based on | |
3721 | * a busy processor. So reset next_balance. | |
3722 | */ | |
3723 | this_rq->next_balance = next_balance; | |
dd41f596 | 3724 | } |
1da177e4 LT |
3725 | } |
3726 | ||
3727 | /* | |
3728 | * active_load_balance is run by migration threads. It pushes running tasks | |
3729 | * off the busiest CPU onto idle CPUs. It requires at least 1 task to be | |
3730 | * running on each physical CPU where possible, and avoids physical / | |
3731 | * logical imbalances. | |
3732 | * | |
3733 | * Called with busiest_rq locked. | |
3734 | */ | |
70b97a7f | 3735 | static void active_load_balance(struct rq *busiest_rq, int busiest_cpu) |
1da177e4 | 3736 | { |
39507451 | 3737 | int target_cpu = busiest_rq->push_cpu; |
70b97a7f IM |
3738 | struct sched_domain *sd; |
3739 | struct rq *target_rq; | |
39507451 | 3740 | |
48f24c4d | 3741 | /* Is there any task to move? */ |
39507451 | 3742 | if (busiest_rq->nr_running <= 1) |
39507451 NP |
3743 | return; |
3744 | ||
3745 | target_rq = cpu_rq(target_cpu); | |
1da177e4 LT |
3746 | |
3747 | /* | |
39507451 | 3748 | * This condition is "impossible", if it occurs |
41a2d6cf | 3749 | * we need to fix it. Originally reported by |
39507451 | 3750 | * Bjorn Helgaas on a 128-cpu setup. |
1da177e4 | 3751 | */ |
39507451 | 3752 | BUG_ON(busiest_rq == target_rq); |
1da177e4 | 3753 | |
39507451 NP |
3754 | /* move a task from busiest_rq to target_rq */ |
3755 | double_lock_balance(busiest_rq, target_rq); | |
6e82a3be IM |
3756 | update_rq_clock(busiest_rq); |
3757 | update_rq_clock(target_rq); | |
39507451 NP |
3758 | |
3759 | /* Search for an sd spanning us and the target CPU. */ | |
c96d145e | 3760 | for_each_domain(target_cpu, sd) { |
39507451 | 3761 | if ((sd->flags & SD_LOAD_BALANCE) && |
48f24c4d | 3762 | cpu_isset(busiest_cpu, sd->span)) |
39507451 | 3763 | break; |
c96d145e | 3764 | } |
39507451 | 3765 | |
48f24c4d | 3766 | if (likely(sd)) { |
2d72376b | 3767 | schedstat_inc(sd, alb_count); |
39507451 | 3768 | |
43010659 PW |
3769 | if (move_one_task(target_rq, target_cpu, busiest_rq, |
3770 | sd, CPU_IDLE)) | |
48f24c4d IM |
3771 | schedstat_inc(sd, alb_pushed); |
3772 | else | |
3773 | schedstat_inc(sd, alb_failed); | |
3774 | } | |
1b12bbc7 | 3775 | double_unlock_balance(busiest_rq, target_rq); |
1da177e4 LT |
3776 | } |
3777 | ||
46cb4b7c SS |
3778 | #ifdef CONFIG_NO_HZ |
3779 | static struct { | |
3780 | atomic_t load_balancer; | |
41a2d6cf | 3781 | cpumask_t cpu_mask; |
46cb4b7c SS |
3782 | } nohz ____cacheline_aligned = { |
3783 | .load_balancer = ATOMIC_INIT(-1), | |
3784 | .cpu_mask = CPU_MASK_NONE, | |
3785 | }; | |
3786 | ||
7835b98b | 3787 | /* |
46cb4b7c SS |
3788 | * This routine will try to nominate the ilb (idle load balancing) |
3789 | * owner among the cpus whose ticks are stopped. ilb owner will do the idle | |
3790 | * load balancing on behalf of all those cpus. If all the cpus in the system | |
3791 | * go into this tickless mode, then there will be no ilb owner (as there is | |
3792 | * no need for one) and all the cpus will sleep till the next wakeup event | |
3793 | * arrives... | |
3794 | * | |
3795 | * For the ilb owner, tick is not stopped. And this tick will be used | |
3796 | * for idle load balancing. ilb owner will still be part of | |
3797 | * nohz.cpu_mask.. | |
7835b98b | 3798 | * |
46cb4b7c SS |
3799 | * While stopping the tick, this cpu will become the ilb owner if there |
3800 | * is no other owner. And will be the owner till that cpu becomes busy | |
3801 | * or if all cpus in the system stop their ticks at which point | |
3802 | * there is no need for ilb owner. | |
3803 | * | |
3804 | * When the ilb owner becomes busy, it nominates another owner, during the | |
3805 | * next busy scheduler_tick() | |
3806 | */ | |
3807 | int select_nohz_load_balancer(int stop_tick) | |
3808 | { | |
3809 | int cpu = smp_processor_id(); | |
3810 | ||
3811 | if (stop_tick) { | |
3812 | cpu_set(cpu, nohz.cpu_mask); | |
3813 | cpu_rq(cpu)->in_nohz_recently = 1; | |
3814 | ||
3815 | /* | |
3816 | * If we are going offline and still the leader, give up! | |
3817 | */ | |
e761b772 | 3818 | if (!cpu_active(cpu) && |
46cb4b7c SS |
3819 | atomic_read(&nohz.load_balancer) == cpu) { |
3820 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) | |
3821 | BUG(); | |
3822 | return 0; | |
3823 | } | |
3824 | ||
3825 | /* time for ilb owner also to sleep */ | |
3826 | if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) { | |
3827 | if (atomic_read(&nohz.load_balancer) == cpu) | |
3828 | atomic_set(&nohz.load_balancer, -1); | |
3829 | return 0; | |
3830 | } | |
3831 | ||
3832 | if (atomic_read(&nohz.load_balancer) == -1) { | |
3833 | /* make me the ilb owner */ | |
3834 | if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1) | |
3835 | return 1; | |
3836 | } else if (atomic_read(&nohz.load_balancer) == cpu) | |
3837 | return 1; | |
3838 | } else { | |
3839 | if (!cpu_isset(cpu, nohz.cpu_mask)) | |
3840 | return 0; | |
3841 | ||
3842 | cpu_clear(cpu, nohz.cpu_mask); | |
3843 | ||
3844 | if (atomic_read(&nohz.load_balancer) == cpu) | |
3845 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) | |
3846 | BUG(); | |
3847 | } | |
3848 | return 0; | |
3849 | } | |
3850 | #endif | |
3851 | ||
3852 | static DEFINE_SPINLOCK(balancing); | |
3853 | ||
3854 | /* | |
7835b98b CL |
3855 | * It checks each scheduling domain to see if it is due to be balanced, |
3856 | * and initiates a balancing operation if so. | |
3857 | * | |
3858 | * Balancing parameters are set up in arch_init_sched_domains. | |
3859 | */ | |
a9957449 | 3860 | static void rebalance_domains(int cpu, enum cpu_idle_type idle) |
7835b98b | 3861 | { |
46cb4b7c SS |
3862 | int balance = 1; |
3863 | struct rq *rq = cpu_rq(cpu); | |
7835b98b CL |
3864 | unsigned long interval; |
3865 | struct sched_domain *sd; | |
46cb4b7c | 3866 | /* Earliest time when we have to do rebalance again */ |
c9819f45 | 3867 | unsigned long next_balance = jiffies + 60*HZ; |
f549da84 | 3868 | int update_next_balance = 0; |
d07355f5 | 3869 | int need_serialize; |
7c16ec58 | 3870 | cpumask_t tmp; |
1da177e4 | 3871 | |
46cb4b7c | 3872 | for_each_domain(cpu, sd) { |
1da177e4 LT |
3873 | if (!(sd->flags & SD_LOAD_BALANCE)) |
3874 | continue; | |
3875 | ||
3876 | interval = sd->balance_interval; | |
d15bcfdb | 3877 | if (idle != CPU_IDLE) |
1da177e4 LT |
3878 | interval *= sd->busy_factor; |
3879 | ||
3880 | /* scale ms to jiffies */ | |
3881 | interval = msecs_to_jiffies(interval); | |
3882 | if (unlikely(!interval)) | |
3883 | interval = 1; | |
dd41f596 IM |
3884 | if (interval > HZ*NR_CPUS/10) |
3885 | interval = HZ*NR_CPUS/10; | |
3886 | ||
d07355f5 | 3887 | need_serialize = sd->flags & SD_SERIALIZE; |
1da177e4 | 3888 | |
d07355f5 | 3889 | if (need_serialize) { |
08c183f3 CL |
3890 | if (!spin_trylock(&balancing)) |
3891 | goto out; | |
3892 | } | |
3893 | ||
c9819f45 | 3894 | if (time_after_eq(jiffies, sd->last_balance + interval)) { |
7c16ec58 | 3895 | if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) { |
fa3b6ddc SS |
3896 | /* |
3897 | * We've pulled tasks over so either we're no | |
5969fe06 NP |
3898 | * longer idle, or one of our SMT siblings is |
3899 | * not idle. | |
3900 | */ | |
d15bcfdb | 3901 | idle = CPU_NOT_IDLE; |
1da177e4 | 3902 | } |
1bd77f2d | 3903 | sd->last_balance = jiffies; |
1da177e4 | 3904 | } |
d07355f5 | 3905 | if (need_serialize) |
08c183f3 CL |
3906 | spin_unlock(&balancing); |
3907 | out: | |
f549da84 | 3908 | if (time_after(next_balance, sd->last_balance + interval)) { |
c9819f45 | 3909 | next_balance = sd->last_balance + interval; |
f549da84 SS |
3910 | update_next_balance = 1; |
3911 | } | |
783609c6 SS |
3912 | |
3913 | /* | |
3914 | * Stop the load balance at this level. There is another | |
3915 | * CPU in our sched group which is doing load balancing more | |
3916 | * actively. | |
3917 | */ | |
3918 | if (!balance) | |
3919 | break; | |
1da177e4 | 3920 | } |
f549da84 SS |
3921 | |
3922 | /* | |
3923 | * next_balance will be updated only when there is a need. | |
3924 | * When the cpu is attached to null domain for ex, it will not be | |
3925 | * updated. | |
3926 | */ | |
3927 | if (likely(update_next_balance)) | |
3928 | rq->next_balance = next_balance; | |
46cb4b7c SS |
3929 | } |
3930 | ||
3931 | /* | |
3932 | * run_rebalance_domains is triggered when needed from the scheduler tick. | |
3933 | * In CONFIG_NO_HZ case, the idle load balance owner will do the | |
3934 | * rebalancing for all the cpus for whom scheduler ticks are stopped. | |
3935 | */ | |
3936 | static void run_rebalance_domains(struct softirq_action *h) | |
3937 | { | |
dd41f596 IM |
3938 | int this_cpu = smp_processor_id(); |
3939 | struct rq *this_rq = cpu_rq(this_cpu); | |
3940 | enum cpu_idle_type idle = this_rq->idle_at_tick ? | |
3941 | CPU_IDLE : CPU_NOT_IDLE; | |
46cb4b7c | 3942 | |
dd41f596 | 3943 | rebalance_domains(this_cpu, idle); |
46cb4b7c SS |
3944 | |
3945 | #ifdef CONFIG_NO_HZ | |
3946 | /* | |
3947 | * If this cpu is the owner for idle load balancing, then do the | |
3948 | * balancing on behalf of the other idle cpus whose ticks are | |
3949 | * stopped. | |
3950 | */ | |
dd41f596 IM |
3951 | if (this_rq->idle_at_tick && |
3952 | atomic_read(&nohz.load_balancer) == this_cpu) { | |
46cb4b7c SS |
3953 | cpumask_t cpus = nohz.cpu_mask; |
3954 | struct rq *rq; | |
3955 | int balance_cpu; | |
3956 | ||
dd41f596 | 3957 | cpu_clear(this_cpu, cpus); |
363ab6f1 | 3958 | for_each_cpu_mask_nr(balance_cpu, cpus) { |
46cb4b7c SS |
3959 | /* |
3960 | * If this cpu gets work to do, stop the load balancing | |
3961 | * work being done for other cpus. Next load | |
3962 | * balancing owner will pick it up. | |
3963 | */ | |
3964 | if (need_resched()) | |
3965 | break; | |
3966 | ||
de0cf899 | 3967 | rebalance_domains(balance_cpu, CPU_IDLE); |
46cb4b7c SS |
3968 | |
3969 | rq = cpu_rq(balance_cpu); | |
dd41f596 IM |
3970 | if (time_after(this_rq->next_balance, rq->next_balance)) |
3971 | this_rq->next_balance = rq->next_balance; | |
46cb4b7c SS |
3972 | } |
3973 | } | |
3974 | #endif | |
3975 | } | |
3976 | ||
3977 | /* | |
3978 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. | |
3979 | * | |
3980 | * In case of CONFIG_NO_HZ, this is the place where we nominate a new | |
3981 | * idle load balancing owner or decide to stop the periodic load balancing, | |
3982 | * if the whole system is idle. | |
3983 | */ | |
dd41f596 | 3984 | static inline void trigger_load_balance(struct rq *rq, int cpu) |
46cb4b7c | 3985 | { |
46cb4b7c SS |
3986 | #ifdef CONFIG_NO_HZ |
3987 | /* | |
3988 | * If we were in the nohz mode recently and busy at the current | |
3989 | * scheduler tick, then check if we need to nominate new idle | |
3990 | * load balancer. | |
3991 | */ | |
3992 | if (rq->in_nohz_recently && !rq->idle_at_tick) { | |
3993 | rq->in_nohz_recently = 0; | |
3994 | ||
3995 | if (atomic_read(&nohz.load_balancer) == cpu) { | |
3996 | cpu_clear(cpu, nohz.cpu_mask); | |
3997 | atomic_set(&nohz.load_balancer, -1); | |
3998 | } | |
3999 | ||
4000 | if (atomic_read(&nohz.load_balancer) == -1) { | |
4001 | /* | |
4002 | * simple selection for now: Nominate the | |
4003 | * first cpu in the nohz list to be the next | |
4004 | * ilb owner. | |
4005 | * | |
4006 | * TBD: Traverse the sched domains and nominate | |
4007 | * the nearest cpu in the nohz.cpu_mask. | |
4008 | */ | |
4009 | int ilb = first_cpu(nohz.cpu_mask); | |
4010 | ||
434d53b0 | 4011 | if (ilb < nr_cpu_ids) |
46cb4b7c SS |
4012 | resched_cpu(ilb); |
4013 | } | |
4014 | } | |
4015 | ||
4016 | /* | |
4017 | * If this cpu is idle and doing idle load balancing for all the | |
4018 | * cpus with ticks stopped, is it time for that to stop? | |
4019 | */ | |
4020 | if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu && | |
4021 | cpus_weight(nohz.cpu_mask) == num_online_cpus()) { | |
4022 | resched_cpu(cpu); | |
4023 | return; | |
4024 | } | |
4025 | ||
4026 | /* | |
4027 | * If this cpu is idle and the idle load balancing is done by | |
4028 | * someone else, then no need raise the SCHED_SOFTIRQ | |
4029 | */ | |
4030 | if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu && | |
4031 | cpu_isset(cpu, nohz.cpu_mask)) | |
4032 | return; | |
4033 | #endif | |
4034 | if (time_after_eq(jiffies, rq->next_balance)) | |
4035 | raise_softirq(SCHED_SOFTIRQ); | |
1da177e4 | 4036 | } |
dd41f596 IM |
4037 | |
4038 | #else /* CONFIG_SMP */ | |
4039 | ||
1da177e4 LT |
4040 | /* |
4041 | * on UP we do not need to balance between CPUs: | |
4042 | */ | |
70b97a7f | 4043 | static inline void idle_balance(int cpu, struct rq *rq) |
1da177e4 LT |
4044 | { |
4045 | } | |
dd41f596 | 4046 | |
1da177e4 LT |
4047 | #endif |
4048 | ||
1da177e4 LT |
4049 | DEFINE_PER_CPU(struct kernel_stat, kstat); |
4050 | ||
4051 | EXPORT_PER_CPU_SYMBOL(kstat); | |
4052 | ||
4053 | /* | |
f06febc9 FM |
4054 | * Return any ns on the sched_clock that have not yet been banked in |
4055 | * @p in case that task is currently running. | |
1da177e4 | 4056 | */ |
bb34d92f | 4057 | unsigned long long task_delta_exec(struct task_struct *p) |
1da177e4 | 4058 | { |
1da177e4 | 4059 | unsigned long flags; |
41b86e9c | 4060 | struct rq *rq; |
bb34d92f | 4061 | u64 ns = 0; |
48f24c4d | 4062 | |
41b86e9c | 4063 | rq = task_rq_lock(p, &flags); |
1508487e | 4064 | |
051a1d1a | 4065 | if (task_current(rq, p)) { |
f06febc9 FM |
4066 | u64 delta_exec; |
4067 | ||
a8e504d2 IM |
4068 | update_rq_clock(rq); |
4069 | delta_exec = rq->clock - p->se.exec_start; | |
41b86e9c | 4070 | if ((s64)delta_exec > 0) |
bb34d92f | 4071 | ns = delta_exec; |
41b86e9c | 4072 | } |
48f24c4d | 4073 | |
41b86e9c | 4074 | task_rq_unlock(rq, &flags); |
48f24c4d | 4075 | |
1da177e4 LT |
4076 | return ns; |
4077 | } | |
4078 | ||
1da177e4 LT |
4079 | /* |
4080 | * Account user cpu time to a process. | |
4081 | * @p: the process that the cpu time gets accounted to | |
1da177e4 LT |
4082 | * @cputime: the cpu time spent in user space since the last update |
4083 | */ | |
4084 | void account_user_time(struct task_struct *p, cputime_t cputime) | |
4085 | { | |
4086 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | |
4087 | cputime64_t tmp; | |
4088 | ||
4089 | p->utime = cputime_add(p->utime, cputime); | |
f06febc9 | 4090 | account_group_user_time(p, cputime); |
1da177e4 LT |
4091 | |
4092 | /* Add user time to cpustat. */ | |
4093 | tmp = cputime_to_cputime64(cputime); | |
4094 | if (TASK_NICE(p) > 0) | |
4095 | cpustat->nice = cputime64_add(cpustat->nice, tmp); | |
4096 | else | |
4097 | cpustat->user = cputime64_add(cpustat->user, tmp); | |
49b5cf34 JL |
4098 | /* Account for user time used */ |
4099 | acct_update_integrals(p); | |
1da177e4 LT |
4100 | } |
4101 | ||
94886b84 LV |
4102 | /* |
4103 | * Account guest cpu time to a process. | |
4104 | * @p: the process that the cpu time gets accounted to | |
4105 | * @cputime: the cpu time spent in virtual machine since the last update | |
4106 | */ | |
f7402e03 | 4107 | static void account_guest_time(struct task_struct *p, cputime_t cputime) |
94886b84 LV |
4108 | { |
4109 | cputime64_t tmp; | |
4110 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | |
4111 | ||
4112 | tmp = cputime_to_cputime64(cputime); | |
4113 | ||
4114 | p->utime = cputime_add(p->utime, cputime); | |
f06febc9 | 4115 | account_group_user_time(p, cputime); |
94886b84 LV |
4116 | p->gtime = cputime_add(p->gtime, cputime); |
4117 | ||
4118 | cpustat->user = cputime64_add(cpustat->user, tmp); | |
4119 | cpustat->guest = cputime64_add(cpustat->guest, tmp); | |
4120 | } | |
4121 | ||
c66f08be MN |
4122 | /* |
4123 | * Account scaled user cpu time to a process. | |
4124 | * @p: the process that the cpu time gets accounted to | |
4125 | * @cputime: the cpu time spent in user space since the last update | |
4126 | */ | |
4127 | void account_user_time_scaled(struct task_struct *p, cputime_t cputime) | |
4128 | { | |
4129 | p->utimescaled = cputime_add(p->utimescaled, cputime); | |
4130 | } | |
4131 | ||
1da177e4 LT |
4132 | /* |
4133 | * Account system cpu time to a process. | |
4134 | * @p: the process that the cpu time gets accounted to | |
4135 | * @hardirq_offset: the offset to subtract from hardirq_count() | |
4136 | * @cputime: the cpu time spent in kernel space since the last update | |
4137 | */ | |
4138 | void account_system_time(struct task_struct *p, int hardirq_offset, | |
4139 | cputime_t cputime) | |
4140 | { | |
4141 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | |
70b97a7f | 4142 | struct rq *rq = this_rq(); |
1da177e4 LT |
4143 | cputime64_t tmp; |
4144 | ||
983ed7a6 HH |
4145 | if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { |
4146 | account_guest_time(p, cputime); | |
4147 | return; | |
4148 | } | |
94886b84 | 4149 | |
1da177e4 | 4150 | p->stime = cputime_add(p->stime, cputime); |
f06febc9 | 4151 | account_group_system_time(p, cputime); |
1da177e4 LT |
4152 | |
4153 | /* Add system time to cpustat. */ | |
4154 | tmp = cputime_to_cputime64(cputime); | |
4155 | if (hardirq_count() - hardirq_offset) | |
4156 | cpustat->irq = cputime64_add(cpustat->irq, tmp); | |
4157 | else if (softirq_count()) | |
4158 | cpustat->softirq = cputime64_add(cpustat->softirq, tmp); | |
cfb52856 | 4159 | else if (p != rq->idle) |
1da177e4 | 4160 | cpustat->system = cputime64_add(cpustat->system, tmp); |
cfb52856 | 4161 | else if (atomic_read(&rq->nr_iowait) > 0) |
1da177e4 LT |
4162 | cpustat->iowait = cputime64_add(cpustat->iowait, tmp); |
4163 | else | |
4164 | cpustat->idle = cputime64_add(cpustat->idle, tmp); | |
4165 | /* Account for system time used */ | |
4166 | acct_update_integrals(p); | |
1da177e4 LT |
4167 | } |
4168 | ||
c66f08be MN |
4169 | /* |
4170 | * Account scaled system cpu time to a process. | |
4171 | * @p: the process that the cpu time gets accounted to | |
4172 | * @hardirq_offset: the offset to subtract from hardirq_count() | |
4173 | * @cputime: the cpu time spent in kernel space since the last update | |
4174 | */ | |
4175 | void account_system_time_scaled(struct task_struct *p, cputime_t cputime) | |
4176 | { | |
4177 | p->stimescaled = cputime_add(p->stimescaled, cputime); | |
4178 | } | |
4179 | ||
1da177e4 LT |
4180 | /* |
4181 | * Account for involuntary wait time. | |
4182 | * @p: the process from which the cpu time has been stolen | |
4183 | * @steal: the cpu time spent in involuntary wait | |
4184 | */ | |
4185 | void account_steal_time(struct task_struct *p, cputime_t steal) | |
4186 | { | |
4187 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | |
4188 | cputime64_t tmp = cputime_to_cputime64(steal); | |
70b97a7f | 4189 | struct rq *rq = this_rq(); |
1da177e4 LT |
4190 | |
4191 | if (p == rq->idle) { | |
4192 | p->stime = cputime_add(p->stime, steal); | |
4193 | if (atomic_read(&rq->nr_iowait) > 0) | |
4194 | cpustat->iowait = cputime64_add(cpustat->iowait, tmp); | |
4195 | else | |
4196 | cpustat->idle = cputime64_add(cpustat->idle, tmp); | |
cfb52856 | 4197 | } else |
1da177e4 LT |
4198 | cpustat->steal = cputime64_add(cpustat->steal, tmp); |
4199 | } | |
4200 | ||
49048622 BS |
4201 | /* |
4202 | * Use precise platform statistics if available: | |
4203 | */ | |
4204 | #ifdef CONFIG_VIRT_CPU_ACCOUNTING | |
4205 | cputime_t task_utime(struct task_struct *p) | |
4206 | { | |
4207 | return p->utime; | |
4208 | } | |
4209 | ||
4210 | cputime_t task_stime(struct task_struct *p) | |
4211 | { | |
4212 | return p->stime; | |
4213 | } | |
4214 | #else | |
4215 | cputime_t task_utime(struct task_struct *p) | |
4216 | { | |
4217 | clock_t utime = cputime_to_clock_t(p->utime), | |
4218 | total = utime + cputime_to_clock_t(p->stime); | |
4219 | u64 temp; | |
4220 | ||
4221 | /* | |
4222 | * Use CFS's precise accounting: | |
4223 | */ | |
4224 | temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime); | |
4225 | ||
4226 | if (total) { | |
4227 | temp *= utime; | |
4228 | do_div(temp, total); | |
4229 | } | |
4230 | utime = (clock_t)temp; | |
4231 | ||
4232 | p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime)); | |
4233 | return p->prev_utime; | |
4234 | } | |
4235 | ||
4236 | cputime_t task_stime(struct task_struct *p) | |
4237 | { | |
4238 | clock_t stime; | |
4239 | ||
4240 | /* | |
4241 | * Use CFS's precise accounting. (we subtract utime from | |
4242 | * the total, to make sure the total observed by userspace | |
4243 | * grows monotonically - apps rely on that): | |
4244 | */ | |
4245 | stime = nsec_to_clock_t(p->se.sum_exec_runtime) - | |
4246 | cputime_to_clock_t(task_utime(p)); | |
4247 | ||
4248 | if (stime >= 0) | |
4249 | p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime)); | |
4250 | ||
4251 | return p->prev_stime; | |
4252 | } | |
4253 | #endif | |
4254 | ||
4255 | inline cputime_t task_gtime(struct task_struct *p) | |
4256 | { | |
4257 | return p->gtime; | |
4258 | } | |
4259 | ||
7835b98b CL |
4260 | /* |
4261 | * This function gets called by the timer code, with HZ frequency. | |
4262 | * We call it with interrupts disabled. | |
4263 | * | |
4264 | * It also gets called by the fork code, when changing the parent's | |
4265 | * timeslices. | |
4266 | */ | |
4267 | void scheduler_tick(void) | |
4268 | { | |
7835b98b CL |
4269 | int cpu = smp_processor_id(); |
4270 | struct rq *rq = cpu_rq(cpu); | |
dd41f596 | 4271 | struct task_struct *curr = rq->curr; |
3e51f33f PZ |
4272 | |
4273 | sched_clock_tick(); | |
dd41f596 IM |
4274 | |
4275 | spin_lock(&rq->lock); | |
3e51f33f | 4276 | update_rq_clock(rq); |
f1a438d8 | 4277 | update_cpu_load(rq); |
fa85ae24 | 4278 | curr->sched_class->task_tick(rq, curr, 0); |
dd41f596 | 4279 | spin_unlock(&rq->lock); |
7835b98b | 4280 | |
e418e1c2 | 4281 | #ifdef CONFIG_SMP |
dd41f596 IM |
4282 | rq->idle_at_tick = idle_cpu(cpu); |
4283 | trigger_load_balance(rq, cpu); | |
e418e1c2 | 4284 | #endif |
1da177e4 LT |
4285 | } |
4286 | ||
6cd8a4bb SR |
4287 | #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ |
4288 | defined(CONFIG_PREEMPT_TRACER)) | |
4289 | ||
4290 | static inline unsigned long get_parent_ip(unsigned long addr) | |
4291 | { | |
4292 | if (in_lock_functions(addr)) { | |
4293 | addr = CALLER_ADDR2; | |
4294 | if (in_lock_functions(addr)) | |
4295 | addr = CALLER_ADDR3; | |
4296 | } | |
4297 | return addr; | |
4298 | } | |
1da177e4 | 4299 | |
43627582 | 4300 | void __kprobes add_preempt_count(int val) |
1da177e4 | 4301 | { |
6cd8a4bb | 4302 | #ifdef CONFIG_DEBUG_PREEMPT |
1da177e4 LT |
4303 | /* |
4304 | * Underflow? | |
4305 | */ | |
9a11b49a IM |
4306 | if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) |
4307 | return; | |
6cd8a4bb | 4308 | #endif |
1da177e4 | 4309 | preempt_count() += val; |
6cd8a4bb | 4310 | #ifdef CONFIG_DEBUG_PREEMPT |
1da177e4 LT |
4311 | /* |
4312 | * Spinlock count overflowing soon? | |
4313 | */ | |
33859f7f MOS |
4314 | DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= |
4315 | PREEMPT_MASK - 10); | |
6cd8a4bb SR |
4316 | #endif |
4317 | if (preempt_count() == val) | |
4318 | trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); | |
1da177e4 LT |
4319 | } |
4320 | EXPORT_SYMBOL(add_preempt_count); | |
4321 | ||
43627582 | 4322 | void __kprobes sub_preempt_count(int val) |
1da177e4 | 4323 | { |
6cd8a4bb | 4324 | #ifdef CONFIG_DEBUG_PREEMPT |
1da177e4 LT |
4325 | /* |
4326 | * Underflow? | |
4327 | */ | |
7317d7b8 | 4328 | if (DEBUG_LOCKS_WARN_ON(val > preempt_count() - (!!kernel_locked()))) |
9a11b49a | 4329 | return; |
1da177e4 LT |
4330 | /* |
4331 | * Is the spinlock portion underflowing? | |
4332 | */ | |
9a11b49a IM |
4333 | if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && |
4334 | !(preempt_count() & PREEMPT_MASK))) | |
4335 | return; | |
6cd8a4bb | 4336 | #endif |
9a11b49a | 4337 | |
6cd8a4bb SR |
4338 | if (preempt_count() == val) |
4339 | trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); | |
1da177e4 LT |
4340 | preempt_count() -= val; |
4341 | } | |
4342 | EXPORT_SYMBOL(sub_preempt_count); | |
4343 | ||
4344 | #endif | |
4345 | ||
4346 | /* | |
dd41f596 | 4347 | * Print scheduling while atomic bug: |
1da177e4 | 4348 | */ |
dd41f596 | 4349 | static noinline void __schedule_bug(struct task_struct *prev) |
1da177e4 | 4350 | { |
838225b4 SS |
4351 | struct pt_regs *regs = get_irq_regs(); |
4352 | ||
4353 | printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", | |
4354 | prev->comm, prev->pid, preempt_count()); | |
4355 | ||
dd41f596 | 4356 | debug_show_held_locks(prev); |
e21f5b15 | 4357 | print_modules(); |
dd41f596 IM |
4358 | if (irqs_disabled()) |
4359 | print_irqtrace_events(prev); | |
838225b4 SS |
4360 | |
4361 | if (regs) | |
4362 | show_regs(regs); | |
4363 | else | |
4364 | dump_stack(); | |
dd41f596 | 4365 | } |
1da177e4 | 4366 | |
dd41f596 IM |
4367 | /* |
4368 | * Various schedule()-time debugging checks and statistics: | |
4369 | */ | |
4370 | static inline void schedule_debug(struct task_struct *prev) | |
4371 | { | |
1da177e4 | 4372 | /* |
41a2d6cf | 4373 | * Test if we are atomic. Since do_exit() needs to call into |
1da177e4 LT |
4374 | * schedule() atomically, we ignore that path for now. |
4375 | * Otherwise, whine if we are scheduling when we should not be. | |
4376 | */ | |
3f33a7ce | 4377 | if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) |
dd41f596 IM |
4378 | __schedule_bug(prev); |
4379 | ||
1da177e4 LT |
4380 | profile_hit(SCHED_PROFILING, __builtin_return_address(0)); |
4381 | ||
2d72376b | 4382 | schedstat_inc(this_rq(), sched_count); |
b8efb561 IM |
4383 | #ifdef CONFIG_SCHEDSTATS |
4384 | if (unlikely(prev->lock_depth >= 0)) { | |
2d72376b IM |
4385 | schedstat_inc(this_rq(), bkl_count); |
4386 | schedstat_inc(prev, sched_info.bkl_count); | |
b8efb561 IM |
4387 | } |
4388 | #endif | |
dd41f596 IM |
4389 | } |
4390 | ||
4391 | /* | |
4392 | * Pick up the highest-prio task: | |
4393 | */ | |
4394 | static inline struct task_struct * | |
ff95f3df | 4395 | pick_next_task(struct rq *rq, struct task_struct *prev) |
dd41f596 | 4396 | { |
5522d5d5 | 4397 | const struct sched_class *class; |
dd41f596 | 4398 | struct task_struct *p; |
1da177e4 LT |
4399 | |
4400 | /* | |
dd41f596 IM |
4401 | * Optimization: we know that if all tasks are in |
4402 | * the fair class we can call that function directly: | |
1da177e4 | 4403 | */ |
dd41f596 | 4404 | if (likely(rq->nr_running == rq->cfs.nr_running)) { |
fb8d4724 | 4405 | p = fair_sched_class.pick_next_task(rq); |
dd41f596 IM |
4406 | if (likely(p)) |
4407 | return p; | |
1da177e4 LT |
4408 | } |
4409 | ||
dd41f596 IM |
4410 | class = sched_class_highest; |
4411 | for ( ; ; ) { | |
fb8d4724 | 4412 | p = class->pick_next_task(rq); |
dd41f596 IM |
4413 | if (p) |
4414 | return p; | |
4415 | /* | |
4416 | * Will never be NULL as the idle class always | |
4417 | * returns a non-NULL p: | |
4418 | */ | |
4419 | class = class->next; | |
4420 | } | |
4421 | } | |
1da177e4 | 4422 | |
dd41f596 IM |
4423 | /* |
4424 | * schedule() is the main scheduler function. | |
4425 | */ | |
4426 | asmlinkage void __sched schedule(void) | |
4427 | { | |
4428 | struct task_struct *prev, *next; | |
67ca7bde | 4429 | unsigned long *switch_count; |
dd41f596 | 4430 | struct rq *rq; |
31656519 | 4431 | int cpu; |
dd41f596 IM |
4432 | |
4433 | need_resched: | |
4434 | preempt_disable(); | |
4435 | cpu = smp_processor_id(); | |
4436 | rq = cpu_rq(cpu); | |
4437 | rcu_qsctr_inc(cpu); | |
4438 | prev = rq->curr; | |
4439 | switch_count = &prev->nivcsw; | |
4440 | ||
4441 | release_kernel_lock(prev); | |
4442 | need_resched_nonpreemptible: | |
4443 | ||
4444 | schedule_debug(prev); | |
1da177e4 | 4445 | |
31656519 | 4446 | if (sched_feat(HRTICK)) |
f333fdc9 | 4447 | hrtick_clear(rq); |
8f4d37ec | 4448 | |
8cd162ce | 4449 | spin_lock_irq(&rq->lock); |
3e51f33f | 4450 | update_rq_clock(rq); |
1e819950 | 4451 | clear_tsk_need_resched(prev); |
1da177e4 | 4452 | |
1da177e4 | 4453 | if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { |
16882c1e | 4454 | if (unlikely(signal_pending_state(prev->state, prev))) |
1da177e4 | 4455 | prev->state = TASK_RUNNING; |
16882c1e | 4456 | else |
2e1cb74a | 4457 | deactivate_task(rq, prev, 1); |
dd41f596 | 4458 | switch_count = &prev->nvcsw; |
1da177e4 LT |
4459 | } |
4460 | ||
9a897c5a SR |
4461 | #ifdef CONFIG_SMP |
4462 | if (prev->sched_class->pre_schedule) | |
4463 | prev->sched_class->pre_schedule(rq, prev); | |
4464 | #endif | |
f65eda4f | 4465 | |
dd41f596 | 4466 | if (unlikely(!rq->nr_running)) |
1da177e4 | 4467 | idle_balance(cpu, rq); |
1da177e4 | 4468 | |
31ee529c | 4469 | prev->sched_class->put_prev_task(rq, prev); |
ff95f3df | 4470 | next = pick_next_task(rq, prev); |
1da177e4 | 4471 | |
1da177e4 | 4472 | if (likely(prev != next)) { |
673a90a1 DS |
4473 | sched_info_switch(prev, next); |
4474 | ||
1da177e4 LT |
4475 | rq->nr_switches++; |
4476 | rq->curr = next; | |
4477 | ++*switch_count; | |
4478 | ||
dd41f596 | 4479 | context_switch(rq, prev, next); /* unlocks the rq */ |
8f4d37ec PZ |
4480 | /* |
4481 | * the context switch might have flipped the stack from under | |
4482 | * us, hence refresh the local variables. | |
4483 | */ | |
4484 | cpu = smp_processor_id(); | |
4485 | rq = cpu_rq(cpu); | |
1da177e4 LT |
4486 | } else |
4487 | spin_unlock_irq(&rq->lock); | |
4488 | ||
8f4d37ec | 4489 | if (unlikely(reacquire_kernel_lock(current) < 0)) |
1da177e4 | 4490 | goto need_resched_nonpreemptible; |
8f4d37ec | 4491 | |
1da177e4 LT |
4492 | preempt_enable_no_resched(); |
4493 | if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) | |
4494 | goto need_resched; | |
4495 | } | |
1da177e4 LT |
4496 | EXPORT_SYMBOL(schedule); |
4497 | ||
4498 | #ifdef CONFIG_PREEMPT | |
4499 | /* | |
2ed6e34f | 4500 | * this is the entry point to schedule() from in-kernel preemption |
41a2d6cf | 4501 | * off of preempt_enable. Kernel preemptions off return from interrupt |
1da177e4 LT |
4502 | * occur there and call schedule directly. |
4503 | */ | |
4504 | asmlinkage void __sched preempt_schedule(void) | |
4505 | { | |
4506 | struct thread_info *ti = current_thread_info(); | |
6478d880 | 4507 | |
1da177e4 LT |
4508 | /* |
4509 | * If there is a non-zero preempt_count or interrupts are disabled, | |
41a2d6cf | 4510 | * we do not want to preempt the current task. Just return.. |
1da177e4 | 4511 | */ |
beed33a8 | 4512 | if (likely(ti->preempt_count || irqs_disabled())) |
1da177e4 LT |
4513 | return; |
4514 | ||
3a5c359a AK |
4515 | do { |
4516 | add_preempt_count(PREEMPT_ACTIVE); | |
3a5c359a | 4517 | schedule(); |
3a5c359a | 4518 | sub_preempt_count(PREEMPT_ACTIVE); |
1da177e4 | 4519 | |
3a5c359a AK |
4520 | /* |
4521 | * Check again in case we missed a preemption opportunity | |
4522 | * between schedule and now. | |
4523 | */ | |
4524 | barrier(); | |
4525 | } while (unlikely(test_thread_flag(TIF_NEED_RESCHED))); | |
1da177e4 | 4526 | } |
1da177e4 LT |
4527 | EXPORT_SYMBOL(preempt_schedule); |
4528 | ||
4529 | /* | |
2ed6e34f | 4530 | * this is the entry point to schedule() from kernel preemption |
1da177e4 LT |
4531 | * off of irq context. |
4532 | * Note, that this is called and return with irqs disabled. This will | |
4533 | * protect us against recursive calling from irq. | |
4534 | */ | |
4535 | asmlinkage void __sched preempt_schedule_irq(void) | |
4536 | { | |
4537 | struct thread_info *ti = current_thread_info(); | |
6478d880 | 4538 | |
2ed6e34f | 4539 | /* Catch callers which need to be fixed */ |
1da177e4 LT |
4540 | BUG_ON(ti->preempt_count || !irqs_disabled()); |
4541 | ||
3a5c359a AK |
4542 | do { |
4543 | add_preempt_count(PREEMPT_ACTIVE); | |
3a5c359a AK |
4544 | local_irq_enable(); |
4545 | schedule(); | |
4546 | local_irq_disable(); | |
3a5c359a | 4547 | sub_preempt_count(PREEMPT_ACTIVE); |
1da177e4 | 4548 | |
3a5c359a AK |
4549 | /* |
4550 | * Check again in case we missed a preemption opportunity | |
4551 | * between schedule and now. | |
4552 | */ | |
4553 | barrier(); | |
4554 | } while (unlikely(test_thread_flag(TIF_NEED_RESCHED))); | |
1da177e4 LT |
4555 | } |
4556 | ||
4557 | #endif /* CONFIG_PREEMPT */ | |
4558 | ||
95cdf3b7 IM |
4559 | int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, |
4560 | void *key) | |
1da177e4 | 4561 | { |
48f24c4d | 4562 | return try_to_wake_up(curr->private, mode, sync); |
1da177e4 | 4563 | } |
1da177e4 LT |
4564 | EXPORT_SYMBOL(default_wake_function); |
4565 | ||
4566 | /* | |
41a2d6cf IM |
4567 | * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just |
4568 | * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve | |
1da177e4 LT |
4569 | * number) then we wake all the non-exclusive tasks and one exclusive task. |
4570 | * | |
4571 | * There are circumstances in which we can try to wake a task which has already | |
41a2d6cf | 4572 | * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns |
1da177e4 LT |
4573 | * zero in this (rare) case, and we handle it by continuing to scan the queue. |
4574 | */ | |
4575 | static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, | |
4576 | int nr_exclusive, int sync, void *key) | |
4577 | { | |
2e45874c | 4578 | wait_queue_t *curr, *next; |
1da177e4 | 4579 | |
2e45874c | 4580 | list_for_each_entry_safe(curr, next, &q->task_list, task_list) { |
48f24c4d IM |
4581 | unsigned flags = curr->flags; |
4582 | ||
1da177e4 | 4583 | if (curr->func(curr, mode, sync, key) && |
48f24c4d | 4584 | (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) |
1da177e4 LT |
4585 | break; |
4586 | } | |
4587 | } | |
4588 | ||
4589 | /** | |
4590 | * __wake_up - wake up threads blocked on a waitqueue. | |
4591 | * @q: the waitqueue | |
4592 | * @mode: which threads | |
4593 | * @nr_exclusive: how many wake-one or wake-many threads to wake up | |
67be2dd1 | 4594 | * @key: is directly passed to the wakeup function |
1da177e4 | 4595 | */ |
7ad5b3a5 | 4596 | void __wake_up(wait_queue_head_t *q, unsigned int mode, |
95cdf3b7 | 4597 | int nr_exclusive, void *key) |
1da177e4 LT |
4598 | { |
4599 | unsigned long flags; | |
4600 | ||
4601 | spin_lock_irqsave(&q->lock, flags); | |
4602 | __wake_up_common(q, mode, nr_exclusive, 0, key); | |
4603 | spin_unlock_irqrestore(&q->lock, flags); | |
4604 | } | |
1da177e4 LT |
4605 | EXPORT_SYMBOL(__wake_up); |
4606 | ||
4607 | /* | |
4608 | * Same as __wake_up but called with the spinlock in wait_queue_head_t held. | |
4609 | */ | |
7ad5b3a5 | 4610 | void __wake_up_locked(wait_queue_head_t *q, unsigned int mode) |
1da177e4 LT |
4611 | { |
4612 | __wake_up_common(q, mode, 1, 0, NULL); | |
4613 | } | |
4614 | ||
4615 | /** | |
67be2dd1 | 4616 | * __wake_up_sync - wake up threads blocked on a waitqueue. |
1da177e4 LT |
4617 | * @q: the waitqueue |
4618 | * @mode: which threads | |
4619 | * @nr_exclusive: how many wake-one or wake-many threads to wake up | |
4620 | * | |
4621 | * The sync wakeup differs that the waker knows that it will schedule | |
4622 | * away soon, so while the target thread will be woken up, it will not | |
4623 | * be migrated to another CPU - ie. the two threads are 'synchronized' | |
4624 | * with each other. This can prevent needless bouncing between CPUs. | |
4625 | * | |
4626 | * On UP it can prevent extra preemption. | |
4627 | */ | |
7ad5b3a5 | 4628 | void |
95cdf3b7 | 4629 | __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) |
1da177e4 LT |
4630 | { |
4631 | unsigned long flags; | |
4632 | int sync = 1; | |
4633 | ||
4634 | if (unlikely(!q)) | |
4635 | return; | |
4636 | ||
4637 | if (unlikely(!nr_exclusive)) | |
4638 | sync = 0; | |
4639 | ||
4640 | spin_lock_irqsave(&q->lock, flags); | |
4641 | __wake_up_common(q, mode, nr_exclusive, sync, NULL); | |
4642 | spin_unlock_irqrestore(&q->lock, flags); | |
4643 | } | |
4644 | EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ | |
4645 | ||
65eb3dc6 KD |
4646 | /** |
4647 | * complete: - signals a single thread waiting on this completion | |
4648 | * @x: holds the state of this particular completion | |
4649 | * | |
4650 | * This will wake up a single thread waiting on this completion. Threads will be | |
4651 | * awakened in the same order in which they were queued. | |
4652 | * | |
4653 | * See also complete_all(), wait_for_completion() and related routines. | |
4654 | */ | |
b15136e9 | 4655 | void complete(struct completion *x) |
1da177e4 LT |
4656 | { |
4657 | unsigned long flags; | |
4658 | ||
4659 | spin_lock_irqsave(&x->wait.lock, flags); | |
4660 | x->done++; | |
d9514f6c | 4661 | __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); |
1da177e4 LT |
4662 | spin_unlock_irqrestore(&x->wait.lock, flags); |
4663 | } | |
4664 | EXPORT_SYMBOL(complete); | |
4665 | ||
65eb3dc6 KD |
4666 | /** |
4667 | * complete_all: - signals all threads waiting on this completion | |
4668 | * @x: holds the state of this particular completion | |
4669 | * | |
4670 | * This will wake up all threads waiting on this particular completion event. | |
4671 | */ | |
b15136e9 | 4672 | void complete_all(struct completion *x) |
1da177e4 LT |
4673 | { |
4674 | unsigned long flags; | |
4675 | ||
4676 | spin_lock_irqsave(&x->wait.lock, flags); | |
4677 | x->done += UINT_MAX/2; | |
d9514f6c | 4678 | __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); |
1da177e4 LT |
4679 | spin_unlock_irqrestore(&x->wait.lock, flags); |
4680 | } | |
4681 | EXPORT_SYMBOL(complete_all); | |
4682 | ||
8cbbe86d AK |
4683 | static inline long __sched |
4684 | do_wait_for_common(struct completion *x, long timeout, int state) | |
1da177e4 | 4685 | { |
1da177e4 LT |
4686 | if (!x->done) { |
4687 | DECLARE_WAITQUEUE(wait, current); | |
4688 | ||
4689 | wait.flags |= WQ_FLAG_EXCLUSIVE; | |
4690 | __add_wait_queue_tail(&x->wait, &wait); | |
4691 | do { | |
94d3d824 | 4692 | if (signal_pending_state(state, current)) { |
ea71a546 ON |
4693 | timeout = -ERESTARTSYS; |
4694 | break; | |
8cbbe86d AK |
4695 | } |
4696 | __set_current_state(state); | |
1da177e4 LT |
4697 | spin_unlock_irq(&x->wait.lock); |
4698 | timeout = schedule_timeout(timeout); | |
4699 | spin_lock_irq(&x->wait.lock); | |
ea71a546 | 4700 | } while (!x->done && timeout); |
1da177e4 | 4701 | __remove_wait_queue(&x->wait, &wait); |
ea71a546 ON |
4702 | if (!x->done) |
4703 | return timeout; | |
1da177e4 LT |
4704 | } |
4705 | x->done--; | |
ea71a546 | 4706 | return timeout ?: 1; |
1da177e4 | 4707 | } |
1da177e4 | 4708 | |
8cbbe86d AK |
4709 | static long __sched |
4710 | wait_for_common(struct completion *x, long timeout, int state) | |
1da177e4 | 4711 | { |
1da177e4 LT |
4712 | might_sleep(); |
4713 | ||
4714 | spin_lock_irq(&x->wait.lock); | |
8cbbe86d | 4715 | timeout = do_wait_for_common(x, timeout, state); |
1da177e4 | 4716 | spin_unlock_irq(&x->wait.lock); |
8cbbe86d AK |
4717 | return timeout; |
4718 | } | |
1da177e4 | 4719 | |
65eb3dc6 KD |
4720 | /** |
4721 | * wait_for_completion: - waits for completion of a task | |
4722 | * @x: holds the state of this particular completion | |
4723 | * | |
4724 | * This waits to be signaled for completion of a specific task. It is NOT | |
4725 | * interruptible and there is no timeout. | |
4726 | * | |
4727 | * See also similar routines (i.e. wait_for_completion_timeout()) with timeout | |
4728 | * and interrupt capability. Also see complete(). | |
4729 | */ | |
b15136e9 | 4730 | void __sched wait_for_completion(struct completion *x) |
8cbbe86d AK |
4731 | { |
4732 | wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); | |
1da177e4 | 4733 | } |
8cbbe86d | 4734 | EXPORT_SYMBOL(wait_for_completion); |
1da177e4 | 4735 | |
65eb3dc6 KD |
4736 | /** |
4737 | * wait_for_completion_timeout: - waits for completion of a task (w/timeout) | |
4738 | * @x: holds the state of this particular completion | |
4739 | * @timeout: timeout value in jiffies | |
4740 | * | |
4741 | * This waits for either a completion of a specific task to be signaled or for a | |
4742 | * specified timeout to expire. The timeout is in jiffies. It is not | |
4743 | * interruptible. | |
4744 | */ | |
b15136e9 | 4745 | unsigned long __sched |
8cbbe86d | 4746 | wait_for_completion_timeout(struct completion *x, unsigned long timeout) |
1da177e4 | 4747 | { |
8cbbe86d | 4748 | return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); |
1da177e4 | 4749 | } |
8cbbe86d | 4750 | EXPORT_SYMBOL(wait_for_completion_timeout); |
1da177e4 | 4751 | |
65eb3dc6 KD |
4752 | /** |
4753 | * wait_for_completion_interruptible: - waits for completion of a task (w/intr) | |
4754 | * @x: holds the state of this particular completion | |
4755 | * | |
4756 | * This waits for completion of a specific task to be signaled. It is | |
4757 | * interruptible. | |
4758 | */ | |
8cbbe86d | 4759 | int __sched wait_for_completion_interruptible(struct completion *x) |
0fec171c | 4760 | { |
51e97990 AK |
4761 | long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); |
4762 | if (t == -ERESTARTSYS) | |
4763 | return t; | |
4764 | return 0; | |
0fec171c | 4765 | } |
8cbbe86d | 4766 | EXPORT_SYMBOL(wait_for_completion_interruptible); |
1da177e4 | 4767 | |
65eb3dc6 KD |
4768 | /** |
4769 | * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) | |
4770 | * @x: holds the state of this particular completion | |
4771 | * @timeout: timeout value in jiffies | |
4772 | * | |
4773 | * This waits for either a completion of a specific task to be signaled or for a | |
4774 | * specified timeout to expire. It is interruptible. The timeout is in jiffies. | |
4775 | */ | |
b15136e9 | 4776 | unsigned long __sched |
8cbbe86d AK |
4777 | wait_for_completion_interruptible_timeout(struct completion *x, |
4778 | unsigned long timeout) | |
0fec171c | 4779 | { |
8cbbe86d | 4780 | return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); |
0fec171c | 4781 | } |
8cbbe86d | 4782 | EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); |
1da177e4 | 4783 | |
65eb3dc6 KD |
4784 | /** |
4785 | * wait_for_completion_killable: - waits for completion of a task (killable) | |
4786 | * @x: holds the state of this particular completion | |
4787 | * | |
4788 | * This waits to be signaled for completion of a specific task. It can be | |
4789 | * interrupted by a kill signal. | |
4790 | */ | |
009e577e MW |
4791 | int __sched wait_for_completion_killable(struct completion *x) |
4792 | { | |
4793 | long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); | |
4794 | if (t == -ERESTARTSYS) | |
4795 | return t; | |
4796 | return 0; | |
4797 | } | |
4798 | EXPORT_SYMBOL(wait_for_completion_killable); | |
4799 | ||
be4de352 DC |
4800 | /** |
4801 | * try_wait_for_completion - try to decrement a completion without blocking | |
4802 | * @x: completion structure | |
4803 | * | |
4804 | * Returns: 0 if a decrement cannot be done without blocking | |
4805 | * 1 if a decrement succeeded. | |
4806 | * | |
4807 | * If a completion is being used as a counting completion, | |
4808 | * attempt to decrement the counter without blocking. This | |
4809 | * enables us to avoid waiting if the resource the completion | |
4810 | * is protecting is not available. | |
4811 | */ | |
4812 | bool try_wait_for_completion(struct completion *x) | |
4813 | { | |
4814 | int ret = 1; | |
4815 | ||
4816 | spin_lock_irq(&x->wait.lock); | |
4817 | if (!x->done) | |
4818 | ret = 0; | |
4819 | else | |
4820 | x->done--; | |
4821 | spin_unlock_irq(&x->wait.lock); | |
4822 | return ret; | |
4823 | } | |
4824 | EXPORT_SYMBOL(try_wait_for_completion); | |
4825 | ||
4826 | /** | |
4827 | * completion_done - Test to see if a completion has any waiters | |
4828 | * @x: completion structure | |
4829 | * | |
4830 | * Returns: 0 if there are waiters (wait_for_completion() in progress) | |
4831 | * 1 if there are no waiters. | |
4832 | * | |
4833 | */ | |
4834 | bool completion_done(struct completion *x) | |
4835 | { | |
4836 | int ret = 1; | |
4837 | ||
4838 | spin_lock_irq(&x->wait.lock); | |
4839 | if (!x->done) | |
4840 | ret = 0; | |
4841 | spin_unlock_irq(&x->wait.lock); | |
4842 | return ret; | |
4843 | } | |
4844 | EXPORT_SYMBOL(completion_done); | |
4845 | ||
8cbbe86d AK |
4846 | static long __sched |
4847 | sleep_on_common(wait_queue_head_t *q, int state, long timeout) | |
1da177e4 | 4848 | { |
0fec171c IM |
4849 | unsigned long flags; |
4850 | wait_queue_t wait; | |
4851 | ||
4852 | init_waitqueue_entry(&wait, current); | |
1da177e4 | 4853 | |
8cbbe86d | 4854 | __set_current_state(state); |
1da177e4 | 4855 | |
8cbbe86d AK |
4856 | spin_lock_irqsave(&q->lock, flags); |
4857 | __add_wait_queue(q, &wait); | |
4858 | spin_unlock(&q->lock); | |
4859 | timeout = schedule_timeout(timeout); | |
4860 | spin_lock_irq(&q->lock); | |
4861 | __remove_wait_queue(q, &wait); | |
4862 | spin_unlock_irqrestore(&q->lock, flags); | |
4863 | ||
4864 | return timeout; | |
4865 | } | |
4866 | ||
4867 | void __sched interruptible_sleep_on(wait_queue_head_t *q) | |
4868 | { | |
4869 | sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); | |
1da177e4 | 4870 | } |
1da177e4 LT |
4871 | EXPORT_SYMBOL(interruptible_sleep_on); |
4872 | ||
0fec171c | 4873 | long __sched |
95cdf3b7 | 4874 | interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) |
1da177e4 | 4875 | { |
8cbbe86d | 4876 | return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); |
1da177e4 | 4877 | } |
1da177e4 LT |
4878 | EXPORT_SYMBOL(interruptible_sleep_on_timeout); |
4879 | ||
0fec171c | 4880 | void __sched sleep_on(wait_queue_head_t *q) |
1da177e4 | 4881 | { |
8cbbe86d | 4882 | sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); |
1da177e4 | 4883 | } |
1da177e4 LT |
4884 | EXPORT_SYMBOL(sleep_on); |
4885 | ||
0fec171c | 4886 | long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) |
1da177e4 | 4887 | { |
8cbbe86d | 4888 | return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); |
1da177e4 | 4889 | } |
1da177e4 LT |
4890 | EXPORT_SYMBOL(sleep_on_timeout); |
4891 | ||
b29739f9 IM |
4892 | #ifdef CONFIG_RT_MUTEXES |
4893 | ||
4894 | /* | |
4895 | * rt_mutex_setprio - set the current priority of a task | |
4896 | * @p: task | |
4897 | * @prio: prio value (kernel-internal form) | |
4898 | * | |
4899 | * This function changes the 'effective' priority of a task. It does | |
4900 | * not touch ->normal_prio like __setscheduler(). | |
4901 | * | |
4902 | * Used by the rt_mutex code to implement priority inheritance logic. | |
4903 | */ | |
36c8b586 | 4904 | void rt_mutex_setprio(struct task_struct *p, int prio) |
b29739f9 IM |
4905 | { |
4906 | unsigned long flags; | |
83b699ed | 4907 | int oldprio, on_rq, running; |
70b97a7f | 4908 | struct rq *rq; |
cb469845 | 4909 | const struct sched_class *prev_class = p->sched_class; |
b29739f9 IM |
4910 | |
4911 | BUG_ON(prio < 0 || prio > MAX_PRIO); | |
4912 | ||
4913 | rq = task_rq_lock(p, &flags); | |
a8e504d2 | 4914 | update_rq_clock(rq); |
b29739f9 | 4915 | |
d5f9f942 | 4916 | oldprio = p->prio; |
dd41f596 | 4917 | on_rq = p->se.on_rq; |
051a1d1a | 4918 | running = task_current(rq, p); |
0e1f3483 | 4919 | if (on_rq) |
69be72c1 | 4920 | dequeue_task(rq, p, 0); |
0e1f3483 HS |
4921 | if (running) |
4922 | p->sched_class->put_prev_task(rq, p); | |
dd41f596 IM |
4923 | |
4924 | if (rt_prio(prio)) | |
4925 | p->sched_class = &rt_sched_class; | |
4926 | else | |
4927 | p->sched_class = &fair_sched_class; | |
4928 | ||
b29739f9 IM |
4929 | p->prio = prio; |
4930 | ||
0e1f3483 HS |
4931 | if (running) |
4932 | p->sched_class->set_curr_task(rq); | |
dd41f596 | 4933 | if (on_rq) { |
8159f87e | 4934 | enqueue_task(rq, p, 0); |
cb469845 SR |
4935 | |
4936 | check_class_changed(rq, p, prev_class, oldprio, running); | |
b29739f9 IM |
4937 | } |
4938 | task_rq_unlock(rq, &flags); | |
4939 | } | |
4940 | ||
4941 | #endif | |
4942 | ||
36c8b586 | 4943 | void set_user_nice(struct task_struct *p, long nice) |
1da177e4 | 4944 | { |
dd41f596 | 4945 | int old_prio, delta, on_rq; |
1da177e4 | 4946 | unsigned long flags; |
70b97a7f | 4947 | struct rq *rq; |
1da177e4 LT |
4948 | |
4949 | if (TASK_NICE(p) == nice || nice < -20 || nice > 19) | |
4950 | return; | |
4951 | /* | |
4952 | * We have to be careful, if called from sys_setpriority(), | |
4953 | * the task might be in the middle of scheduling on another CPU. | |
4954 | */ | |
4955 | rq = task_rq_lock(p, &flags); | |
a8e504d2 | 4956 | update_rq_clock(rq); |
1da177e4 LT |
4957 | /* |
4958 | * The RT priorities are set via sched_setscheduler(), but we still | |
4959 | * allow the 'normal' nice value to be set - but as expected | |
4960 | * it wont have any effect on scheduling until the task is | |
dd41f596 | 4961 | * SCHED_FIFO/SCHED_RR: |
1da177e4 | 4962 | */ |
e05606d3 | 4963 | if (task_has_rt_policy(p)) { |
1da177e4 LT |
4964 | p->static_prio = NICE_TO_PRIO(nice); |
4965 | goto out_unlock; | |
4966 | } | |
dd41f596 | 4967 | on_rq = p->se.on_rq; |
c09595f6 | 4968 | if (on_rq) |
69be72c1 | 4969 | dequeue_task(rq, p, 0); |
1da177e4 | 4970 | |
1da177e4 | 4971 | p->static_prio = NICE_TO_PRIO(nice); |
2dd73a4f | 4972 | set_load_weight(p); |
b29739f9 IM |
4973 | old_prio = p->prio; |
4974 | p->prio = effective_prio(p); | |
4975 | delta = p->prio - old_prio; | |
1da177e4 | 4976 | |
dd41f596 | 4977 | if (on_rq) { |
8159f87e | 4978 | enqueue_task(rq, p, 0); |
1da177e4 | 4979 | /* |
d5f9f942 AM |
4980 | * If the task increased its priority or is running and |
4981 | * lowered its priority, then reschedule its CPU: | |
1da177e4 | 4982 | */ |
d5f9f942 | 4983 | if (delta < 0 || (delta > 0 && task_running(rq, p))) |
1da177e4 LT |
4984 | resched_task(rq->curr); |
4985 | } | |
4986 | out_unlock: | |
4987 | task_rq_unlock(rq, &flags); | |
4988 | } | |
1da177e4 LT |
4989 | EXPORT_SYMBOL(set_user_nice); |
4990 | ||
e43379f1 MM |
4991 | /* |
4992 | * can_nice - check if a task can reduce its nice value | |
4993 | * @p: task | |
4994 | * @nice: nice value | |
4995 | */ | |
36c8b586 | 4996 | int can_nice(const struct task_struct *p, const int nice) |
e43379f1 | 4997 | { |
024f4747 MM |
4998 | /* convert nice value [19,-20] to rlimit style value [1,40] */ |
4999 | int nice_rlim = 20 - nice; | |
48f24c4d | 5000 | |
e43379f1 MM |
5001 | return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur || |
5002 | capable(CAP_SYS_NICE)); | |
5003 | } | |
5004 | ||
1da177e4 LT |
5005 | #ifdef __ARCH_WANT_SYS_NICE |
5006 | ||
5007 | /* | |
5008 | * sys_nice - change the priority of the current process. | |
5009 | * @increment: priority increment | |
5010 | * | |
5011 | * sys_setpriority is a more generic, but much slower function that | |
5012 | * does similar things. | |
5013 | */ | |
5014 | asmlinkage long sys_nice(int increment) | |
5015 | { | |
48f24c4d | 5016 | long nice, retval; |
1da177e4 LT |
5017 | |
5018 | /* | |
5019 | * Setpriority might change our priority at the same moment. | |
5020 | * We don't have to worry. Conceptually one call occurs first | |
5021 | * and we have a single winner. | |
5022 | */ | |
e43379f1 MM |
5023 | if (increment < -40) |
5024 | increment = -40; | |
1da177e4 LT |
5025 | if (increment > 40) |
5026 | increment = 40; | |
5027 | ||
5028 | nice = PRIO_TO_NICE(current->static_prio) + increment; | |
5029 | if (nice < -20) | |
5030 | nice = -20; | |
5031 | if (nice > 19) | |
5032 | nice = 19; | |
5033 | ||
e43379f1 MM |
5034 | if (increment < 0 && !can_nice(current, nice)) |
5035 | return -EPERM; | |
5036 | ||
1da177e4 LT |
5037 | retval = security_task_setnice(current, nice); |
5038 | if (retval) | |
5039 | return retval; | |
5040 | ||
5041 | set_user_nice(current, nice); | |
5042 | return 0; | |
5043 | } | |
5044 | ||
5045 | #endif | |
5046 | ||
5047 | /** | |
5048 | * task_prio - return the priority value of a given task. | |
5049 | * @p: the task in question. | |
5050 | * | |
5051 | * This is the priority value as seen by users in /proc. | |
5052 | * RT tasks are offset by -200. Normal tasks are centered | |
5053 | * around 0, value goes from -16 to +15. | |
5054 | */ | |
36c8b586 | 5055 | int task_prio(const struct task_struct *p) |
1da177e4 LT |
5056 | { |
5057 | return p->prio - MAX_RT_PRIO; | |
5058 | } | |
5059 | ||
5060 | /** | |
5061 | * task_nice - return the nice value of a given task. | |
5062 | * @p: the task in question. | |
5063 | */ | |
36c8b586 | 5064 | int task_nice(const struct task_struct *p) |
1da177e4 LT |
5065 | { |
5066 | return TASK_NICE(p); | |
5067 | } | |
150d8bed | 5068 | EXPORT_SYMBOL(task_nice); |
1da177e4 LT |
5069 | |
5070 | /** | |
5071 | * idle_cpu - is a given cpu idle currently? | |
5072 | * @cpu: the processor in question. | |
5073 | */ | |
5074 | int idle_cpu(int cpu) | |
5075 | { | |
5076 | return cpu_curr(cpu) == cpu_rq(cpu)->idle; | |
5077 | } | |
5078 | ||
1da177e4 LT |
5079 | /** |
5080 | * idle_task - return the idle task for a given cpu. | |
5081 | * @cpu: the processor in question. | |
5082 | */ | |
36c8b586 | 5083 | struct task_struct *idle_task(int cpu) |
1da177e4 LT |
5084 | { |
5085 | return cpu_rq(cpu)->idle; | |
5086 | } | |
5087 | ||
5088 | /** | |
5089 | * find_process_by_pid - find a process with a matching PID value. | |
5090 | * @pid: the pid in question. | |
5091 | */ | |
a9957449 | 5092 | static struct task_struct *find_process_by_pid(pid_t pid) |
1da177e4 | 5093 | { |
228ebcbe | 5094 | return pid ? find_task_by_vpid(pid) : current; |
1da177e4 LT |
5095 | } |
5096 | ||
5097 | /* Actually do priority change: must hold rq lock. */ | |
dd41f596 IM |
5098 | static void |
5099 | __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) | |
1da177e4 | 5100 | { |
dd41f596 | 5101 | BUG_ON(p->se.on_rq); |
48f24c4d | 5102 | |
1da177e4 | 5103 | p->policy = policy; |
dd41f596 IM |
5104 | switch (p->policy) { |
5105 | case SCHED_NORMAL: | |
5106 | case SCHED_BATCH: | |
5107 | case SCHED_IDLE: | |
5108 | p->sched_class = &fair_sched_class; | |
5109 | break; | |
5110 | case SCHED_FIFO: | |
5111 | case SCHED_RR: | |
5112 | p->sched_class = &rt_sched_class; | |
5113 | break; | |
5114 | } | |
5115 | ||
1da177e4 | 5116 | p->rt_priority = prio; |
b29739f9 IM |
5117 | p->normal_prio = normal_prio(p); |
5118 | /* we are holding p->pi_lock already */ | |
5119 | p->prio = rt_mutex_getprio(p); | |
2dd73a4f | 5120 | set_load_weight(p); |
1da177e4 LT |
5121 | } |
5122 | ||
c69e8d9c DH |
5123 | /* |
5124 | * check the target process has a UID that matches the current process's | |
5125 | */ | |
5126 | static bool check_same_owner(struct task_struct *p) | |
5127 | { | |
5128 | const struct cred *cred = current_cred(), *pcred; | |
5129 | bool match; | |
5130 | ||
5131 | rcu_read_lock(); | |
5132 | pcred = __task_cred(p); | |
5133 | match = (cred->euid == pcred->euid || | |
5134 | cred->euid == pcred->uid); | |
5135 | rcu_read_unlock(); | |
5136 | return match; | |
5137 | } | |
5138 | ||
961ccddd RR |
5139 | static int __sched_setscheduler(struct task_struct *p, int policy, |
5140 | struct sched_param *param, bool user) | |
1da177e4 | 5141 | { |
83b699ed | 5142 | int retval, oldprio, oldpolicy = -1, on_rq, running; |
1da177e4 | 5143 | unsigned long flags; |
cb469845 | 5144 | const struct sched_class *prev_class = p->sched_class; |
70b97a7f | 5145 | struct rq *rq; |
1da177e4 | 5146 | |
66e5393a SR |
5147 | /* may grab non-irq protected spin_locks */ |
5148 | BUG_ON(in_interrupt()); | |
1da177e4 LT |
5149 | recheck: |
5150 | /* double check policy once rq lock held */ | |
5151 | if (policy < 0) | |
5152 | policy = oldpolicy = p->policy; | |
5153 | else if (policy != SCHED_FIFO && policy != SCHED_RR && | |
dd41f596 IM |
5154 | policy != SCHED_NORMAL && policy != SCHED_BATCH && |
5155 | policy != SCHED_IDLE) | |
b0a9499c | 5156 | return -EINVAL; |
1da177e4 LT |
5157 | /* |
5158 | * Valid priorities for SCHED_FIFO and SCHED_RR are | |
dd41f596 IM |
5159 | * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, |
5160 | * SCHED_BATCH and SCHED_IDLE is 0. | |
1da177e4 LT |
5161 | */ |
5162 | if (param->sched_priority < 0 || | |
95cdf3b7 | 5163 | (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || |
d46523ea | 5164 | (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) |
1da177e4 | 5165 | return -EINVAL; |
e05606d3 | 5166 | if (rt_policy(policy) != (param->sched_priority != 0)) |
1da177e4 LT |
5167 | return -EINVAL; |
5168 | ||
37e4ab3f OC |
5169 | /* |
5170 | * Allow unprivileged RT tasks to decrease priority: | |
5171 | */ | |
961ccddd | 5172 | if (user && !capable(CAP_SYS_NICE)) { |
e05606d3 | 5173 | if (rt_policy(policy)) { |
8dc3e909 | 5174 | unsigned long rlim_rtprio; |
8dc3e909 ON |
5175 | |
5176 | if (!lock_task_sighand(p, &flags)) | |
5177 | return -ESRCH; | |
5178 | rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur; | |
5179 | unlock_task_sighand(p, &flags); | |
5180 | ||
5181 | /* can't set/change the rt policy */ | |
5182 | if (policy != p->policy && !rlim_rtprio) | |
5183 | return -EPERM; | |
5184 | ||
5185 | /* can't increase priority */ | |
5186 | if (param->sched_priority > p->rt_priority && | |
5187 | param->sched_priority > rlim_rtprio) | |
5188 | return -EPERM; | |
5189 | } | |
dd41f596 IM |
5190 | /* |
5191 | * Like positive nice levels, dont allow tasks to | |
5192 | * move out of SCHED_IDLE either: | |
5193 | */ | |
5194 | if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) | |
5195 | return -EPERM; | |
5fe1d75f | 5196 | |
37e4ab3f | 5197 | /* can't change other user's priorities */ |
c69e8d9c | 5198 | if (!check_same_owner(p)) |
37e4ab3f OC |
5199 | return -EPERM; |
5200 | } | |
1da177e4 | 5201 | |
725aad24 | 5202 | if (user) { |
b68aa230 | 5203 | #ifdef CONFIG_RT_GROUP_SCHED |
725aad24 JF |
5204 | /* |
5205 | * Do not allow realtime tasks into groups that have no runtime | |
5206 | * assigned. | |
5207 | */ | |
9a7e0b18 PZ |
5208 | if (rt_bandwidth_enabled() && rt_policy(policy) && |
5209 | task_group(p)->rt_bandwidth.rt_runtime == 0) | |
725aad24 | 5210 | return -EPERM; |
b68aa230 PZ |
5211 | #endif |
5212 | ||
725aad24 JF |
5213 | retval = security_task_setscheduler(p, policy, param); |
5214 | if (retval) | |
5215 | return retval; | |
5216 | } | |
5217 | ||
b29739f9 IM |
5218 | /* |
5219 | * make sure no PI-waiters arrive (or leave) while we are | |
5220 | * changing the priority of the task: | |
5221 | */ | |
5222 | spin_lock_irqsave(&p->pi_lock, flags); | |
1da177e4 LT |
5223 | /* |
5224 | * To be able to change p->policy safely, the apropriate | |
5225 | * runqueue lock must be held. | |
5226 | */ | |
b29739f9 | 5227 | rq = __task_rq_lock(p); |
1da177e4 LT |
5228 | /* recheck policy now with rq lock held */ |
5229 | if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { | |
5230 | policy = oldpolicy = -1; | |
b29739f9 IM |
5231 | __task_rq_unlock(rq); |
5232 | spin_unlock_irqrestore(&p->pi_lock, flags); | |
1da177e4 LT |
5233 | goto recheck; |
5234 | } | |
2daa3577 | 5235 | update_rq_clock(rq); |
dd41f596 | 5236 | on_rq = p->se.on_rq; |
051a1d1a | 5237 | running = task_current(rq, p); |
0e1f3483 | 5238 | if (on_rq) |
2e1cb74a | 5239 | deactivate_task(rq, p, 0); |
0e1f3483 HS |
5240 | if (running) |
5241 | p->sched_class->put_prev_task(rq, p); | |
f6b53205 | 5242 | |
1da177e4 | 5243 | oldprio = p->prio; |
dd41f596 | 5244 | __setscheduler(rq, p, policy, param->sched_priority); |
f6b53205 | 5245 | |
0e1f3483 HS |
5246 | if (running) |
5247 | p->sched_class->set_curr_task(rq); | |
dd41f596 IM |
5248 | if (on_rq) { |
5249 | activate_task(rq, p, 0); | |
cb469845 SR |
5250 | |
5251 | check_class_changed(rq, p, prev_class, oldprio, running); | |
1da177e4 | 5252 | } |
b29739f9 IM |
5253 | __task_rq_unlock(rq); |
5254 | spin_unlock_irqrestore(&p->pi_lock, flags); | |
5255 | ||
95e02ca9 TG |
5256 | rt_mutex_adjust_pi(p); |
5257 | ||
1da177e4 LT |
5258 | return 0; |
5259 | } | |
961ccddd RR |
5260 | |
5261 | /** | |
5262 | * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. | |
5263 | * @p: the task in question. | |
5264 | * @policy: new policy. | |
5265 | * @param: structure containing the new RT priority. | |
5266 | * | |
5267 | * NOTE that the task may be already dead. | |
5268 | */ | |
5269 | int sched_setscheduler(struct task_struct *p, int policy, | |
5270 | struct sched_param *param) | |
5271 | { | |
5272 | return __sched_setscheduler(p, policy, param, true); | |
5273 | } | |
1da177e4 LT |
5274 | EXPORT_SYMBOL_GPL(sched_setscheduler); |
5275 | ||
961ccddd RR |
5276 | /** |
5277 | * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. | |
5278 | * @p: the task in question. | |
5279 | * @policy: new policy. | |
5280 | * @param: structure containing the new RT priority. | |
5281 | * | |
5282 | * Just like sched_setscheduler, only don't bother checking if the | |
5283 | * current context has permission. For example, this is needed in | |
5284 | * stop_machine(): we create temporary high priority worker threads, | |
5285 | * but our caller might not have that capability. | |
5286 | */ | |
5287 | int sched_setscheduler_nocheck(struct task_struct *p, int policy, | |
5288 | struct sched_param *param) | |
5289 | { | |
5290 | return __sched_setscheduler(p, policy, param, false); | |
5291 | } | |
5292 | ||
95cdf3b7 IM |
5293 | static int |
5294 | do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) | |
1da177e4 | 5295 | { |
1da177e4 LT |
5296 | struct sched_param lparam; |
5297 | struct task_struct *p; | |
36c8b586 | 5298 | int retval; |
1da177e4 LT |
5299 | |
5300 | if (!param || pid < 0) | |
5301 | return -EINVAL; | |
5302 | if (copy_from_user(&lparam, param, sizeof(struct sched_param))) | |
5303 | return -EFAULT; | |
5fe1d75f ON |
5304 | |
5305 | rcu_read_lock(); | |
5306 | retval = -ESRCH; | |
1da177e4 | 5307 | p = find_process_by_pid(pid); |
5fe1d75f ON |
5308 | if (p != NULL) |
5309 | retval = sched_setscheduler(p, policy, &lparam); | |
5310 | rcu_read_unlock(); | |
36c8b586 | 5311 | |
1da177e4 LT |
5312 | return retval; |
5313 | } | |
5314 | ||
5315 | /** | |
5316 | * sys_sched_setscheduler - set/change the scheduler policy and RT priority | |
5317 | * @pid: the pid in question. | |
5318 | * @policy: new policy. | |
5319 | * @param: structure containing the new RT priority. | |
5320 | */ | |
41a2d6cf IM |
5321 | asmlinkage long |
5322 | sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) | |
1da177e4 | 5323 | { |
c21761f1 JB |
5324 | /* negative values for policy are not valid */ |
5325 | if (policy < 0) | |
5326 | return -EINVAL; | |
5327 | ||
1da177e4 LT |
5328 | return do_sched_setscheduler(pid, policy, param); |
5329 | } | |
5330 | ||
5331 | /** | |
5332 | * sys_sched_setparam - set/change the RT priority of a thread | |
5333 | * @pid: the pid in question. | |
5334 | * @param: structure containing the new RT priority. | |
5335 | */ | |
5336 | asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param) | |
5337 | { | |
5338 | return do_sched_setscheduler(pid, -1, param); | |
5339 | } | |
5340 | ||
5341 | /** | |
5342 | * sys_sched_getscheduler - get the policy (scheduling class) of a thread | |
5343 | * @pid: the pid in question. | |
5344 | */ | |
5345 | asmlinkage long sys_sched_getscheduler(pid_t pid) | |
5346 | { | |
36c8b586 | 5347 | struct task_struct *p; |
3a5c359a | 5348 | int retval; |
1da177e4 LT |
5349 | |
5350 | if (pid < 0) | |
3a5c359a | 5351 | return -EINVAL; |
1da177e4 LT |
5352 | |
5353 | retval = -ESRCH; | |
5354 | read_lock(&tasklist_lock); | |
5355 | p = find_process_by_pid(pid); | |
5356 | if (p) { | |
5357 | retval = security_task_getscheduler(p); | |
5358 | if (!retval) | |
5359 | retval = p->policy; | |
5360 | } | |
5361 | read_unlock(&tasklist_lock); | |
1da177e4 LT |
5362 | return retval; |
5363 | } | |
5364 | ||
5365 | /** | |
5366 | * sys_sched_getscheduler - get the RT priority of a thread | |
5367 | * @pid: the pid in question. | |
5368 | * @param: structure containing the RT priority. | |
5369 | */ | |
5370 | asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param) | |
5371 | { | |
5372 | struct sched_param lp; | |
36c8b586 | 5373 | struct task_struct *p; |
3a5c359a | 5374 | int retval; |
1da177e4 LT |
5375 | |
5376 | if (!param || pid < 0) | |
3a5c359a | 5377 | return -EINVAL; |
1da177e4 LT |
5378 | |
5379 | read_lock(&tasklist_lock); | |
5380 | p = find_process_by_pid(pid); | |
5381 | retval = -ESRCH; | |
5382 | if (!p) | |
5383 | goto out_unlock; | |
5384 | ||
5385 | retval = security_task_getscheduler(p); | |
5386 | if (retval) | |
5387 | goto out_unlock; | |
5388 | ||
5389 | lp.sched_priority = p->rt_priority; | |
5390 | read_unlock(&tasklist_lock); | |
5391 | ||
5392 | /* | |
5393 | * This one might sleep, we cannot do it with a spinlock held ... | |
5394 | */ | |
5395 | retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; | |
5396 | ||
1da177e4 LT |
5397 | return retval; |
5398 | ||
5399 | out_unlock: | |
5400 | read_unlock(&tasklist_lock); | |
5401 | return retval; | |
5402 | } | |
5403 | ||
b53e921b | 5404 | long sched_setaffinity(pid_t pid, const cpumask_t *in_mask) |
1da177e4 | 5405 | { |
1da177e4 | 5406 | cpumask_t cpus_allowed; |
b53e921b | 5407 | cpumask_t new_mask = *in_mask; |
36c8b586 IM |
5408 | struct task_struct *p; |
5409 | int retval; | |
1da177e4 | 5410 | |
95402b38 | 5411 | get_online_cpus(); |
1da177e4 LT |
5412 | read_lock(&tasklist_lock); |
5413 | ||
5414 | p = find_process_by_pid(pid); | |
5415 | if (!p) { | |
5416 | read_unlock(&tasklist_lock); | |
95402b38 | 5417 | put_online_cpus(); |
1da177e4 LT |
5418 | return -ESRCH; |
5419 | } | |
5420 | ||
5421 | /* | |
5422 | * It is not safe to call set_cpus_allowed with the | |
41a2d6cf | 5423 | * tasklist_lock held. We will bump the task_struct's |
1da177e4 LT |
5424 | * usage count and then drop tasklist_lock. |
5425 | */ | |
5426 | get_task_struct(p); | |
5427 | read_unlock(&tasklist_lock); | |
5428 | ||
5429 | retval = -EPERM; | |
c69e8d9c | 5430 | if (!check_same_owner(p) && !capable(CAP_SYS_NICE)) |
1da177e4 LT |
5431 | goto out_unlock; |
5432 | ||
e7834f8f DQ |
5433 | retval = security_task_setscheduler(p, 0, NULL); |
5434 | if (retval) | |
5435 | goto out_unlock; | |
5436 | ||
f9a86fcb | 5437 | cpuset_cpus_allowed(p, &cpus_allowed); |
1da177e4 | 5438 | cpus_and(new_mask, new_mask, cpus_allowed); |
8707d8b8 | 5439 | again: |
7c16ec58 | 5440 | retval = set_cpus_allowed_ptr(p, &new_mask); |
1da177e4 | 5441 | |
8707d8b8 | 5442 | if (!retval) { |
f9a86fcb | 5443 | cpuset_cpus_allowed(p, &cpus_allowed); |
8707d8b8 PM |
5444 | if (!cpus_subset(new_mask, cpus_allowed)) { |
5445 | /* | |
5446 | * We must have raced with a concurrent cpuset | |
5447 | * update. Just reset the cpus_allowed to the | |
5448 | * cpuset's cpus_allowed | |
5449 | */ | |
5450 | new_mask = cpus_allowed; | |
5451 | goto again; | |
5452 | } | |
5453 | } | |
1da177e4 LT |
5454 | out_unlock: |
5455 | put_task_struct(p); | |
95402b38 | 5456 | put_online_cpus(); |
1da177e4 LT |
5457 | return retval; |
5458 | } | |
5459 | ||
5460 | static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, | |
5461 | cpumask_t *new_mask) | |
5462 | { | |
5463 | if (len < sizeof(cpumask_t)) { | |
5464 | memset(new_mask, 0, sizeof(cpumask_t)); | |
5465 | } else if (len > sizeof(cpumask_t)) { | |
5466 | len = sizeof(cpumask_t); | |
5467 | } | |
5468 | return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; | |
5469 | } | |
5470 | ||
5471 | /** | |
5472 | * sys_sched_setaffinity - set the cpu affinity of a process | |
5473 | * @pid: pid of the process | |
5474 | * @len: length in bytes of the bitmask pointed to by user_mask_ptr | |
5475 | * @user_mask_ptr: user-space pointer to the new cpu mask | |
5476 | */ | |
5477 | asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len, | |
5478 | unsigned long __user *user_mask_ptr) | |
5479 | { | |
5480 | cpumask_t new_mask; | |
5481 | int retval; | |
5482 | ||
5483 | retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask); | |
5484 | if (retval) | |
5485 | return retval; | |
5486 | ||
b53e921b | 5487 | return sched_setaffinity(pid, &new_mask); |
1da177e4 LT |
5488 | } |
5489 | ||
1da177e4 LT |
5490 | long sched_getaffinity(pid_t pid, cpumask_t *mask) |
5491 | { | |
36c8b586 | 5492 | struct task_struct *p; |
1da177e4 | 5493 | int retval; |
1da177e4 | 5494 | |
95402b38 | 5495 | get_online_cpus(); |
1da177e4 LT |
5496 | read_lock(&tasklist_lock); |
5497 | ||
5498 | retval = -ESRCH; | |
5499 | p = find_process_by_pid(pid); | |
5500 | if (!p) | |
5501 | goto out_unlock; | |
5502 | ||
e7834f8f DQ |
5503 | retval = security_task_getscheduler(p); |
5504 | if (retval) | |
5505 | goto out_unlock; | |
5506 | ||
2f7016d9 | 5507 | cpus_and(*mask, p->cpus_allowed, cpu_online_map); |
1da177e4 LT |
5508 | |
5509 | out_unlock: | |
5510 | read_unlock(&tasklist_lock); | |
95402b38 | 5511 | put_online_cpus(); |
1da177e4 | 5512 | |
9531b62f | 5513 | return retval; |
1da177e4 LT |
5514 | } |
5515 | ||
5516 | /** | |
5517 | * sys_sched_getaffinity - get the cpu affinity of a process | |
5518 | * @pid: pid of the process | |
5519 | * @len: length in bytes of the bitmask pointed to by user_mask_ptr | |
5520 | * @user_mask_ptr: user-space pointer to hold the current cpu mask | |
5521 | */ | |
5522 | asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len, | |
5523 | unsigned long __user *user_mask_ptr) | |
5524 | { | |
5525 | int ret; | |
5526 | cpumask_t mask; | |
5527 | ||
5528 | if (len < sizeof(cpumask_t)) | |
5529 | return -EINVAL; | |
5530 | ||
5531 | ret = sched_getaffinity(pid, &mask); | |
5532 | if (ret < 0) | |
5533 | return ret; | |
5534 | ||
5535 | if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t))) | |
5536 | return -EFAULT; | |
5537 | ||
5538 | return sizeof(cpumask_t); | |
5539 | } | |
5540 | ||
5541 | /** | |
5542 | * sys_sched_yield - yield the current processor to other threads. | |
5543 | * | |
dd41f596 IM |
5544 | * This function yields the current CPU to other tasks. If there are no |
5545 | * other threads running on this CPU then this function will return. | |
1da177e4 LT |
5546 | */ |
5547 | asmlinkage long sys_sched_yield(void) | |
5548 | { | |
70b97a7f | 5549 | struct rq *rq = this_rq_lock(); |
1da177e4 | 5550 | |
2d72376b | 5551 | schedstat_inc(rq, yld_count); |
4530d7ab | 5552 | current->sched_class->yield_task(rq); |
1da177e4 LT |
5553 | |
5554 | /* | |
5555 | * Since we are going to call schedule() anyway, there's | |
5556 | * no need to preempt or enable interrupts: | |
5557 | */ | |
5558 | __release(rq->lock); | |
8a25d5de | 5559 | spin_release(&rq->lock.dep_map, 1, _THIS_IP_); |
1da177e4 LT |
5560 | _raw_spin_unlock(&rq->lock); |
5561 | preempt_enable_no_resched(); | |
5562 | ||
5563 | schedule(); | |
5564 | ||
5565 | return 0; | |
5566 | } | |
5567 | ||
e7b38404 | 5568 | static void __cond_resched(void) |
1da177e4 | 5569 | { |
8e0a43d8 IM |
5570 | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP |
5571 | __might_sleep(__FILE__, __LINE__); | |
5572 | #endif | |
5bbcfd90 IM |
5573 | /* |
5574 | * The BKS might be reacquired before we have dropped | |
5575 | * PREEMPT_ACTIVE, which could trigger a second | |
5576 | * cond_resched() call. | |
5577 | */ | |
1da177e4 LT |
5578 | do { |
5579 | add_preempt_count(PREEMPT_ACTIVE); | |
5580 | schedule(); | |
5581 | sub_preempt_count(PREEMPT_ACTIVE); | |
5582 | } while (need_resched()); | |
5583 | } | |
5584 | ||
02b67cc3 | 5585 | int __sched _cond_resched(void) |
1da177e4 | 5586 | { |
9414232f IM |
5587 | if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) && |
5588 | system_state == SYSTEM_RUNNING) { | |
1da177e4 LT |
5589 | __cond_resched(); |
5590 | return 1; | |
5591 | } | |
5592 | return 0; | |
5593 | } | |
02b67cc3 | 5594 | EXPORT_SYMBOL(_cond_resched); |
1da177e4 LT |
5595 | |
5596 | /* | |
5597 | * cond_resched_lock() - if a reschedule is pending, drop the given lock, | |
5598 | * call schedule, and on return reacquire the lock. | |
5599 | * | |
41a2d6cf | 5600 | * This works OK both with and without CONFIG_PREEMPT. We do strange low-level |
1da177e4 LT |
5601 | * operations here to prevent schedule() from being called twice (once via |
5602 | * spin_unlock(), once by hand). | |
5603 | */ | |
95cdf3b7 | 5604 | int cond_resched_lock(spinlock_t *lock) |
1da177e4 | 5605 | { |
95c354fe | 5606 | int resched = need_resched() && system_state == SYSTEM_RUNNING; |
6df3cecb JK |
5607 | int ret = 0; |
5608 | ||
95c354fe | 5609 | if (spin_needbreak(lock) || resched) { |
1da177e4 | 5610 | spin_unlock(lock); |
95c354fe NP |
5611 | if (resched && need_resched()) |
5612 | __cond_resched(); | |
5613 | else | |
5614 | cpu_relax(); | |
6df3cecb | 5615 | ret = 1; |
1da177e4 | 5616 | spin_lock(lock); |
1da177e4 | 5617 | } |
6df3cecb | 5618 | return ret; |
1da177e4 | 5619 | } |
1da177e4 LT |
5620 | EXPORT_SYMBOL(cond_resched_lock); |
5621 | ||
5622 | int __sched cond_resched_softirq(void) | |
5623 | { | |
5624 | BUG_ON(!in_softirq()); | |
5625 | ||
9414232f | 5626 | if (need_resched() && system_state == SYSTEM_RUNNING) { |
98d82567 | 5627 | local_bh_enable(); |
1da177e4 LT |
5628 | __cond_resched(); |
5629 | local_bh_disable(); | |
5630 | return 1; | |
5631 | } | |
5632 | return 0; | |
5633 | } | |
1da177e4 LT |
5634 | EXPORT_SYMBOL(cond_resched_softirq); |
5635 | ||
1da177e4 LT |
5636 | /** |
5637 | * yield - yield the current processor to other threads. | |
5638 | * | |
72fd4a35 | 5639 | * This is a shortcut for kernel-space yielding - it marks the |
1da177e4 LT |
5640 | * thread runnable and calls sys_sched_yield(). |
5641 | */ | |
5642 | void __sched yield(void) | |
5643 | { | |
5644 | set_current_state(TASK_RUNNING); | |
5645 | sys_sched_yield(); | |
5646 | } | |
1da177e4 LT |
5647 | EXPORT_SYMBOL(yield); |
5648 | ||
5649 | /* | |
41a2d6cf | 5650 | * This task is about to go to sleep on IO. Increment rq->nr_iowait so |
1da177e4 LT |
5651 | * that process accounting knows that this is a task in IO wait state. |
5652 | * | |
5653 | * But don't do that if it is a deliberate, throttling IO wait (this task | |
5654 | * has set its backing_dev_info: the queue against which it should throttle) | |
5655 | */ | |
5656 | void __sched io_schedule(void) | |
5657 | { | |
70b97a7f | 5658 | struct rq *rq = &__raw_get_cpu_var(runqueues); |
1da177e4 | 5659 | |
0ff92245 | 5660 | delayacct_blkio_start(); |
1da177e4 LT |
5661 | atomic_inc(&rq->nr_iowait); |
5662 | schedule(); | |
5663 | atomic_dec(&rq->nr_iowait); | |
0ff92245 | 5664 | delayacct_blkio_end(); |
1da177e4 | 5665 | } |
1da177e4 LT |
5666 | EXPORT_SYMBOL(io_schedule); |
5667 | ||
5668 | long __sched io_schedule_timeout(long timeout) | |
5669 | { | |
70b97a7f | 5670 | struct rq *rq = &__raw_get_cpu_var(runqueues); |
1da177e4 LT |
5671 | long ret; |
5672 | ||
0ff92245 | 5673 | delayacct_blkio_start(); |
1da177e4 LT |
5674 | atomic_inc(&rq->nr_iowait); |
5675 | ret = schedule_timeout(timeout); | |
5676 | atomic_dec(&rq->nr_iowait); | |
0ff92245 | 5677 | delayacct_blkio_end(); |
1da177e4 LT |
5678 | return ret; |
5679 | } | |
5680 | ||
5681 | /** | |
5682 | * sys_sched_get_priority_max - return maximum RT priority. | |
5683 | * @policy: scheduling class. | |
5684 | * | |
5685 | * this syscall returns the maximum rt_priority that can be used | |
5686 | * by a given scheduling class. | |
5687 | */ | |
5688 | asmlinkage long sys_sched_get_priority_max(int policy) | |
5689 | { | |
5690 | int ret = -EINVAL; | |
5691 | ||
5692 | switch (policy) { | |
5693 | case SCHED_FIFO: | |
5694 | case SCHED_RR: | |
5695 | ret = MAX_USER_RT_PRIO-1; | |
5696 | break; | |
5697 | case SCHED_NORMAL: | |
b0a9499c | 5698 | case SCHED_BATCH: |
dd41f596 | 5699 | case SCHED_IDLE: |
1da177e4 LT |
5700 | ret = 0; |
5701 | break; | |
5702 | } | |
5703 | return ret; | |
5704 | } | |
5705 | ||
5706 | /** | |
5707 | * sys_sched_get_priority_min - return minimum RT priority. | |
5708 | * @policy: scheduling class. | |
5709 | * | |
5710 | * this syscall returns the minimum rt_priority that can be used | |
5711 | * by a given scheduling class. | |
5712 | */ | |
5713 | asmlinkage long sys_sched_get_priority_min(int policy) | |
5714 | { | |
5715 | int ret = -EINVAL; | |
5716 | ||
5717 | switch (policy) { | |
5718 | case SCHED_FIFO: | |
5719 | case SCHED_RR: | |
5720 | ret = 1; | |
5721 | break; | |
5722 | case SCHED_NORMAL: | |
b0a9499c | 5723 | case SCHED_BATCH: |
dd41f596 | 5724 | case SCHED_IDLE: |
1da177e4 LT |
5725 | ret = 0; |
5726 | } | |
5727 | return ret; | |
5728 | } | |
5729 | ||
5730 | /** | |
5731 | * sys_sched_rr_get_interval - return the default timeslice of a process. | |
5732 | * @pid: pid of the process. | |
5733 | * @interval: userspace pointer to the timeslice value. | |
5734 | * | |
5735 | * this syscall writes the default timeslice value of a given process | |
5736 | * into the user-space timespec buffer. A value of '0' means infinity. | |
5737 | */ | |
5738 | asmlinkage | |
5739 | long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval) | |
5740 | { | |
36c8b586 | 5741 | struct task_struct *p; |
a4ec24b4 | 5742 | unsigned int time_slice; |
3a5c359a | 5743 | int retval; |
1da177e4 | 5744 | struct timespec t; |
1da177e4 LT |
5745 | |
5746 | if (pid < 0) | |
3a5c359a | 5747 | return -EINVAL; |
1da177e4 LT |
5748 | |
5749 | retval = -ESRCH; | |
5750 | read_lock(&tasklist_lock); | |
5751 | p = find_process_by_pid(pid); | |
5752 | if (!p) | |
5753 | goto out_unlock; | |
5754 | ||
5755 | retval = security_task_getscheduler(p); | |
5756 | if (retval) | |
5757 | goto out_unlock; | |
5758 | ||
77034937 IM |
5759 | /* |
5760 | * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER | |
5761 | * tasks that are on an otherwise idle runqueue: | |
5762 | */ | |
5763 | time_slice = 0; | |
5764 | if (p->policy == SCHED_RR) { | |
a4ec24b4 | 5765 | time_slice = DEF_TIMESLICE; |
1868f958 | 5766 | } else if (p->policy != SCHED_FIFO) { |
a4ec24b4 DA |
5767 | struct sched_entity *se = &p->se; |
5768 | unsigned long flags; | |
5769 | struct rq *rq; | |
5770 | ||
5771 | rq = task_rq_lock(p, &flags); | |
77034937 IM |
5772 | if (rq->cfs.load.weight) |
5773 | time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se)); | |
a4ec24b4 DA |
5774 | task_rq_unlock(rq, &flags); |
5775 | } | |
1da177e4 | 5776 | read_unlock(&tasklist_lock); |
a4ec24b4 | 5777 | jiffies_to_timespec(time_slice, &t); |
1da177e4 | 5778 | retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; |
1da177e4 | 5779 | return retval; |
3a5c359a | 5780 | |
1da177e4 LT |
5781 | out_unlock: |
5782 | read_unlock(&tasklist_lock); | |
5783 | return retval; | |
5784 | } | |
5785 | ||
7c731e0a | 5786 | static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; |
36c8b586 | 5787 | |
82a1fcb9 | 5788 | void sched_show_task(struct task_struct *p) |
1da177e4 | 5789 | { |
1da177e4 | 5790 | unsigned long free = 0; |
36c8b586 | 5791 | unsigned state; |
1da177e4 | 5792 | |
1da177e4 | 5793 | state = p->state ? __ffs(p->state) + 1 : 0; |
cc4ea795 | 5794 | printk(KERN_INFO "%-13.13s %c", p->comm, |
2ed6e34f | 5795 | state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); |
4bd77321 | 5796 | #if BITS_PER_LONG == 32 |
1da177e4 | 5797 | if (state == TASK_RUNNING) |
cc4ea795 | 5798 | printk(KERN_CONT " running "); |
1da177e4 | 5799 | else |
cc4ea795 | 5800 | printk(KERN_CONT " %08lx ", thread_saved_pc(p)); |
1da177e4 LT |
5801 | #else |
5802 | if (state == TASK_RUNNING) | |
cc4ea795 | 5803 | printk(KERN_CONT " running task "); |
1da177e4 | 5804 | else |
cc4ea795 | 5805 | printk(KERN_CONT " %016lx ", thread_saved_pc(p)); |
1da177e4 LT |
5806 | #endif |
5807 | #ifdef CONFIG_DEBUG_STACK_USAGE | |
5808 | { | |
10ebffde | 5809 | unsigned long *n = end_of_stack(p); |
1da177e4 LT |
5810 | while (!*n) |
5811 | n++; | |
10ebffde | 5812 | free = (unsigned long)n - (unsigned long)end_of_stack(p); |
1da177e4 LT |
5813 | } |
5814 | #endif | |
ba25f9dc | 5815 | printk(KERN_CONT "%5lu %5d %6d\n", free, |
fcfd50af | 5816 | task_pid_nr(p), task_pid_nr(p->real_parent)); |
1da177e4 | 5817 | |
5fb5e6de | 5818 | show_stack(p, NULL); |
1da177e4 LT |
5819 | } |
5820 | ||
e59e2ae2 | 5821 | void show_state_filter(unsigned long state_filter) |
1da177e4 | 5822 | { |
36c8b586 | 5823 | struct task_struct *g, *p; |
1da177e4 | 5824 | |
4bd77321 IM |
5825 | #if BITS_PER_LONG == 32 |
5826 | printk(KERN_INFO | |
5827 | " task PC stack pid father\n"); | |
1da177e4 | 5828 | #else |
4bd77321 IM |
5829 | printk(KERN_INFO |
5830 | " task PC stack pid father\n"); | |
1da177e4 LT |
5831 | #endif |
5832 | read_lock(&tasklist_lock); | |
5833 | do_each_thread(g, p) { | |
5834 | /* | |
5835 | * reset the NMI-timeout, listing all files on a slow | |
5836 | * console might take alot of time: | |
5837 | */ | |
5838 | touch_nmi_watchdog(); | |
39bc89fd | 5839 | if (!state_filter || (p->state & state_filter)) |
82a1fcb9 | 5840 | sched_show_task(p); |
1da177e4 LT |
5841 | } while_each_thread(g, p); |
5842 | ||
04c9167f JF |
5843 | touch_all_softlockup_watchdogs(); |
5844 | ||
dd41f596 IM |
5845 | #ifdef CONFIG_SCHED_DEBUG |
5846 | sysrq_sched_debug_show(); | |
5847 | #endif | |
1da177e4 | 5848 | read_unlock(&tasklist_lock); |
e59e2ae2 IM |
5849 | /* |
5850 | * Only show locks if all tasks are dumped: | |
5851 | */ | |
5852 | if (state_filter == -1) | |
5853 | debug_show_all_locks(); | |
1da177e4 LT |
5854 | } |
5855 | ||
1df21055 IM |
5856 | void __cpuinit init_idle_bootup_task(struct task_struct *idle) |
5857 | { | |
dd41f596 | 5858 | idle->sched_class = &idle_sched_class; |
1df21055 IM |
5859 | } |
5860 | ||
f340c0d1 IM |
5861 | /** |
5862 | * init_idle - set up an idle thread for a given CPU | |
5863 | * @idle: task in question | |
5864 | * @cpu: cpu the idle task belongs to | |
5865 | * | |
5866 | * NOTE: this function does not set the idle thread's NEED_RESCHED | |
5867 | * flag, to make booting more robust. | |
5868 | */ | |
5c1e1767 | 5869 | void __cpuinit init_idle(struct task_struct *idle, int cpu) |
1da177e4 | 5870 | { |
70b97a7f | 5871 | struct rq *rq = cpu_rq(cpu); |
1da177e4 LT |
5872 | unsigned long flags; |
5873 | ||
5cbd54ef IM |
5874 | spin_lock_irqsave(&rq->lock, flags); |
5875 | ||
dd41f596 IM |
5876 | __sched_fork(idle); |
5877 | idle->se.exec_start = sched_clock(); | |
5878 | ||
b29739f9 | 5879 | idle->prio = idle->normal_prio = MAX_PRIO; |
1da177e4 | 5880 | idle->cpus_allowed = cpumask_of_cpu(cpu); |
dd41f596 | 5881 | __set_task_cpu(idle, cpu); |
1da177e4 | 5882 | |
1da177e4 | 5883 | rq->curr = rq->idle = idle; |
4866cde0 NP |
5884 | #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) |
5885 | idle->oncpu = 1; | |
5886 | #endif | |
1da177e4 LT |
5887 | spin_unlock_irqrestore(&rq->lock, flags); |
5888 | ||
5889 | /* Set the preempt count _outside_ the spinlocks! */ | |
8e3e076c LT |
5890 | #if defined(CONFIG_PREEMPT) |
5891 | task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0); | |
5892 | #else | |
a1261f54 | 5893 | task_thread_info(idle)->preempt_count = 0; |
8e3e076c | 5894 | #endif |
dd41f596 IM |
5895 | /* |
5896 | * The idle tasks have their own, simple scheduling class: | |
5897 | */ | |
5898 | idle->sched_class = &idle_sched_class; | |
fb52607a | 5899 | ftrace_graph_init_task(idle); |
1da177e4 LT |
5900 | } |
5901 | ||
5902 | /* | |
5903 | * In a system that switches off the HZ timer nohz_cpu_mask | |
5904 | * indicates which cpus entered this state. This is used | |
5905 | * in the rcu update to wait only for active cpus. For system | |
5906 | * which do not switch off the HZ timer nohz_cpu_mask should | |
5907 | * always be CPU_MASK_NONE. | |
5908 | */ | |
5909 | cpumask_t nohz_cpu_mask = CPU_MASK_NONE; | |
5910 | ||
19978ca6 IM |
5911 | /* |
5912 | * Increase the granularity value when there are more CPUs, | |
5913 | * because with more CPUs the 'effective latency' as visible | |
5914 | * to users decreases. But the relationship is not linear, | |
5915 | * so pick a second-best guess by going with the log2 of the | |
5916 | * number of CPUs. | |
5917 | * | |
5918 | * This idea comes from the SD scheduler of Con Kolivas: | |
5919 | */ | |
5920 | static inline void sched_init_granularity(void) | |
5921 | { | |
5922 | unsigned int factor = 1 + ilog2(num_online_cpus()); | |
5923 | const unsigned long limit = 200000000; | |
5924 | ||
5925 | sysctl_sched_min_granularity *= factor; | |
5926 | if (sysctl_sched_min_granularity > limit) | |
5927 | sysctl_sched_min_granularity = limit; | |
5928 | ||
5929 | sysctl_sched_latency *= factor; | |
5930 | if (sysctl_sched_latency > limit) | |
5931 | sysctl_sched_latency = limit; | |
5932 | ||
5933 | sysctl_sched_wakeup_granularity *= factor; | |
55cd5340 PZ |
5934 | |
5935 | sysctl_sched_shares_ratelimit *= factor; | |
19978ca6 IM |
5936 | } |
5937 | ||
1da177e4 LT |
5938 | #ifdef CONFIG_SMP |
5939 | /* | |
5940 | * This is how migration works: | |
5941 | * | |
70b97a7f | 5942 | * 1) we queue a struct migration_req structure in the source CPU's |
1da177e4 LT |
5943 | * runqueue and wake up that CPU's migration thread. |
5944 | * 2) we down() the locked semaphore => thread blocks. | |
5945 | * 3) migration thread wakes up (implicitly it forces the migrated | |
5946 | * thread off the CPU) | |
5947 | * 4) it gets the migration request and checks whether the migrated | |
5948 | * task is still in the wrong runqueue. | |
5949 | * 5) if it's in the wrong runqueue then the migration thread removes | |
5950 | * it and puts it into the right queue. | |
5951 | * 6) migration thread up()s the semaphore. | |
5952 | * 7) we wake up and the migration is done. | |
5953 | */ | |
5954 | ||
5955 | /* | |
5956 | * Change a given task's CPU affinity. Migrate the thread to a | |
5957 | * proper CPU and schedule it away if the CPU it's executing on | |
5958 | * is removed from the allowed bitmask. | |
5959 | * | |
5960 | * NOTE: the caller must have a valid reference to the task, the | |
41a2d6cf | 5961 | * task must not exit() & deallocate itself prematurely. The |
1da177e4 LT |
5962 | * call is not atomic; no spinlocks may be held. |
5963 | */ | |
cd8ba7cd | 5964 | int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask) |
1da177e4 | 5965 | { |
70b97a7f | 5966 | struct migration_req req; |
1da177e4 | 5967 | unsigned long flags; |
70b97a7f | 5968 | struct rq *rq; |
48f24c4d | 5969 | int ret = 0; |
1da177e4 LT |
5970 | |
5971 | rq = task_rq_lock(p, &flags); | |
cd8ba7cd | 5972 | if (!cpus_intersects(*new_mask, cpu_online_map)) { |
1da177e4 LT |
5973 | ret = -EINVAL; |
5974 | goto out; | |
5975 | } | |
5976 | ||
9985b0ba DR |
5977 | if (unlikely((p->flags & PF_THREAD_BOUND) && p != current && |
5978 | !cpus_equal(p->cpus_allowed, *new_mask))) { | |
5979 | ret = -EINVAL; | |
5980 | goto out; | |
5981 | } | |
5982 | ||
73fe6aae | 5983 | if (p->sched_class->set_cpus_allowed) |
cd8ba7cd | 5984 | p->sched_class->set_cpus_allowed(p, new_mask); |
73fe6aae | 5985 | else { |
cd8ba7cd MT |
5986 | p->cpus_allowed = *new_mask; |
5987 | p->rt.nr_cpus_allowed = cpus_weight(*new_mask); | |
73fe6aae GH |
5988 | } |
5989 | ||
1da177e4 | 5990 | /* Can the task run on the task's current CPU? If so, we're done */ |
cd8ba7cd | 5991 | if (cpu_isset(task_cpu(p), *new_mask)) |
1da177e4 LT |
5992 | goto out; |
5993 | ||
cd8ba7cd | 5994 | if (migrate_task(p, any_online_cpu(*new_mask), &req)) { |
1da177e4 LT |
5995 | /* Need help from migration thread: drop lock and wait. */ |
5996 | task_rq_unlock(rq, &flags); | |
5997 | wake_up_process(rq->migration_thread); | |
5998 | wait_for_completion(&req.done); | |
5999 | tlb_migrate_finish(p->mm); | |
6000 | return 0; | |
6001 | } | |
6002 | out: | |
6003 | task_rq_unlock(rq, &flags); | |
48f24c4d | 6004 | |
1da177e4 LT |
6005 | return ret; |
6006 | } | |
cd8ba7cd | 6007 | EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); |
1da177e4 LT |
6008 | |
6009 | /* | |
41a2d6cf | 6010 | * Move (not current) task off this cpu, onto dest cpu. We're doing |
1da177e4 LT |
6011 | * this because either it can't run here any more (set_cpus_allowed() |
6012 | * away from this CPU, or CPU going down), or because we're | |
6013 | * attempting to rebalance this task on exec (sched_exec). | |
6014 | * | |
6015 | * So we race with normal scheduler movements, but that's OK, as long | |
6016 | * as the task is no longer on this CPU. | |
efc30814 KK |
6017 | * |
6018 | * Returns non-zero if task was successfully migrated. | |
1da177e4 | 6019 | */ |
efc30814 | 6020 | static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) |
1da177e4 | 6021 | { |
70b97a7f | 6022 | struct rq *rq_dest, *rq_src; |
dd41f596 | 6023 | int ret = 0, on_rq; |
1da177e4 | 6024 | |
e761b772 | 6025 | if (unlikely(!cpu_active(dest_cpu))) |
efc30814 | 6026 | return ret; |
1da177e4 LT |
6027 | |
6028 | rq_src = cpu_rq(src_cpu); | |
6029 | rq_dest = cpu_rq(dest_cpu); | |
6030 | ||
6031 | double_rq_lock(rq_src, rq_dest); | |
6032 | /* Already moved. */ | |
6033 | if (task_cpu(p) != src_cpu) | |
b1e38734 | 6034 | goto done; |
1da177e4 LT |
6035 | /* Affinity changed (again). */ |
6036 | if (!cpu_isset(dest_cpu, p->cpus_allowed)) | |
b1e38734 | 6037 | goto fail; |
1da177e4 | 6038 | |
dd41f596 | 6039 | on_rq = p->se.on_rq; |
6e82a3be | 6040 | if (on_rq) |
2e1cb74a | 6041 | deactivate_task(rq_src, p, 0); |
6e82a3be | 6042 | |
1da177e4 | 6043 | set_task_cpu(p, dest_cpu); |
dd41f596 IM |
6044 | if (on_rq) { |
6045 | activate_task(rq_dest, p, 0); | |
15afe09b | 6046 | check_preempt_curr(rq_dest, p, 0); |
1da177e4 | 6047 | } |
b1e38734 | 6048 | done: |
efc30814 | 6049 | ret = 1; |
b1e38734 | 6050 | fail: |
1da177e4 | 6051 | double_rq_unlock(rq_src, rq_dest); |
efc30814 | 6052 | return ret; |
1da177e4 LT |
6053 | } |
6054 | ||
6055 | /* | |
6056 | * migration_thread - this is a highprio system thread that performs | |
6057 | * thread migration by bumping thread off CPU then 'pushing' onto | |
6058 | * another runqueue. | |
6059 | */ | |
95cdf3b7 | 6060 | static int migration_thread(void *data) |
1da177e4 | 6061 | { |
1da177e4 | 6062 | int cpu = (long)data; |
70b97a7f | 6063 | struct rq *rq; |
1da177e4 LT |
6064 | |
6065 | rq = cpu_rq(cpu); | |
6066 | BUG_ON(rq->migration_thread != current); | |
6067 | ||
6068 | set_current_state(TASK_INTERRUPTIBLE); | |
6069 | while (!kthread_should_stop()) { | |
70b97a7f | 6070 | struct migration_req *req; |
1da177e4 | 6071 | struct list_head *head; |
1da177e4 | 6072 | |
1da177e4 LT |
6073 | spin_lock_irq(&rq->lock); |
6074 | ||
6075 | if (cpu_is_offline(cpu)) { | |
6076 | spin_unlock_irq(&rq->lock); | |
6077 | goto wait_to_die; | |
6078 | } | |
6079 | ||
6080 | if (rq->active_balance) { | |
6081 | active_load_balance(rq, cpu); | |
6082 | rq->active_balance = 0; | |
6083 | } | |
6084 | ||
6085 | head = &rq->migration_queue; | |
6086 | ||
6087 | if (list_empty(head)) { | |
6088 | spin_unlock_irq(&rq->lock); | |
6089 | schedule(); | |
6090 | set_current_state(TASK_INTERRUPTIBLE); | |
6091 | continue; | |
6092 | } | |
70b97a7f | 6093 | req = list_entry(head->next, struct migration_req, list); |
1da177e4 LT |
6094 | list_del_init(head->next); |
6095 | ||
674311d5 NP |
6096 | spin_unlock(&rq->lock); |
6097 | __migrate_task(req->task, cpu, req->dest_cpu); | |
6098 | local_irq_enable(); | |
1da177e4 LT |
6099 | |
6100 | complete(&req->done); | |
6101 | } | |
6102 | __set_current_state(TASK_RUNNING); | |
6103 | return 0; | |
6104 | ||
6105 | wait_to_die: | |
6106 | /* Wait for kthread_stop */ | |
6107 | set_current_state(TASK_INTERRUPTIBLE); | |
6108 | while (!kthread_should_stop()) { | |
6109 | schedule(); | |
6110 | set_current_state(TASK_INTERRUPTIBLE); | |
6111 | } | |
6112 | __set_current_state(TASK_RUNNING); | |
6113 | return 0; | |
6114 | } | |
6115 | ||
6116 | #ifdef CONFIG_HOTPLUG_CPU | |
f7b4cddc ON |
6117 | |
6118 | static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu) | |
6119 | { | |
6120 | int ret; | |
6121 | ||
6122 | local_irq_disable(); | |
6123 | ret = __migrate_task(p, src_cpu, dest_cpu); | |
6124 | local_irq_enable(); | |
6125 | return ret; | |
6126 | } | |
6127 | ||
054b9108 | 6128 | /* |
3a4fa0a2 | 6129 | * Figure out where task on dead CPU should go, use force if necessary. |
054b9108 | 6130 | */ |
48f24c4d | 6131 | static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) |
1da177e4 | 6132 | { |
efc30814 | 6133 | unsigned long flags; |
1da177e4 | 6134 | cpumask_t mask; |
70b97a7f IM |
6135 | struct rq *rq; |
6136 | int dest_cpu; | |
1da177e4 | 6137 | |
3a5c359a AK |
6138 | do { |
6139 | /* On same node? */ | |
6140 | mask = node_to_cpumask(cpu_to_node(dead_cpu)); | |
6141 | cpus_and(mask, mask, p->cpus_allowed); | |
6142 | dest_cpu = any_online_cpu(mask); | |
6143 | ||
6144 | /* On any allowed CPU? */ | |
434d53b0 | 6145 | if (dest_cpu >= nr_cpu_ids) |
3a5c359a AK |
6146 | dest_cpu = any_online_cpu(p->cpus_allowed); |
6147 | ||
6148 | /* No more Mr. Nice Guy. */ | |
434d53b0 | 6149 | if (dest_cpu >= nr_cpu_ids) { |
f9a86fcb MT |
6150 | cpumask_t cpus_allowed; |
6151 | ||
6152 | cpuset_cpus_allowed_locked(p, &cpus_allowed); | |
470fd646 CW |
6153 | /* |
6154 | * Try to stay on the same cpuset, where the | |
6155 | * current cpuset may be a subset of all cpus. | |
6156 | * The cpuset_cpus_allowed_locked() variant of | |
41a2d6cf | 6157 | * cpuset_cpus_allowed() will not block. It must be |
470fd646 CW |
6158 | * called within calls to cpuset_lock/cpuset_unlock. |
6159 | */ | |
3a5c359a | 6160 | rq = task_rq_lock(p, &flags); |
470fd646 | 6161 | p->cpus_allowed = cpus_allowed; |
3a5c359a AK |
6162 | dest_cpu = any_online_cpu(p->cpus_allowed); |
6163 | task_rq_unlock(rq, &flags); | |
1da177e4 | 6164 | |
3a5c359a AK |
6165 | /* |
6166 | * Don't tell them about moving exiting tasks or | |
6167 | * kernel threads (both mm NULL), since they never | |
6168 | * leave kernel. | |
6169 | */ | |
41a2d6cf | 6170 | if (p->mm && printk_ratelimit()) { |
3a5c359a AK |
6171 | printk(KERN_INFO "process %d (%s) no " |
6172 | "longer affine to cpu%d\n", | |
41a2d6cf IM |
6173 | task_pid_nr(p), p->comm, dead_cpu); |
6174 | } | |
3a5c359a | 6175 | } |
f7b4cddc | 6176 | } while (!__migrate_task_irq(p, dead_cpu, dest_cpu)); |
1da177e4 LT |
6177 | } |
6178 | ||
6179 | /* | |
6180 | * While a dead CPU has no uninterruptible tasks queued at this point, | |
6181 | * it might still have a nonzero ->nr_uninterruptible counter, because | |
6182 | * for performance reasons the counter is not stricly tracking tasks to | |
6183 | * their home CPUs. So we just add the counter to another CPU's counter, | |
6184 | * to keep the global sum constant after CPU-down: | |
6185 | */ | |
70b97a7f | 6186 | static void migrate_nr_uninterruptible(struct rq *rq_src) |
1da177e4 | 6187 | { |
7c16ec58 | 6188 | struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR)); |
1da177e4 LT |
6189 | unsigned long flags; |
6190 | ||
6191 | local_irq_save(flags); | |
6192 | double_rq_lock(rq_src, rq_dest); | |
6193 | rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible; | |
6194 | rq_src->nr_uninterruptible = 0; | |
6195 | double_rq_unlock(rq_src, rq_dest); | |
6196 | local_irq_restore(flags); | |
6197 | } | |
6198 | ||
6199 | /* Run through task list and migrate tasks from the dead cpu. */ | |
6200 | static void migrate_live_tasks(int src_cpu) | |
6201 | { | |
48f24c4d | 6202 | struct task_struct *p, *t; |
1da177e4 | 6203 | |
f7b4cddc | 6204 | read_lock(&tasklist_lock); |
1da177e4 | 6205 | |
48f24c4d IM |
6206 | do_each_thread(t, p) { |
6207 | if (p == current) | |
1da177e4 LT |
6208 | continue; |
6209 | ||
48f24c4d IM |
6210 | if (task_cpu(p) == src_cpu) |
6211 | move_task_off_dead_cpu(src_cpu, p); | |
6212 | } while_each_thread(t, p); | |
1da177e4 | 6213 | |
f7b4cddc | 6214 | read_unlock(&tasklist_lock); |
1da177e4 LT |
6215 | } |
6216 | ||
dd41f596 IM |
6217 | /* |
6218 | * Schedules idle task to be the next runnable task on current CPU. | |
94bc9a7b DA |
6219 | * It does so by boosting its priority to highest possible. |
6220 | * Used by CPU offline code. | |
1da177e4 LT |
6221 | */ |
6222 | void sched_idle_next(void) | |
6223 | { | |
48f24c4d | 6224 | int this_cpu = smp_processor_id(); |
70b97a7f | 6225 | struct rq *rq = cpu_rq(this_cpu); |
1da177e4 LT |
6226 | struct task_struct *p = rq->idle; |
6227 | unsigned long flags; | |
6228 | ||
6229 | /* cpu has to be offline */ | |
48f24c4d | 6230 | BUG_ON(cpu_online(this_cpu)); |
1da177e4 | 6231 | |
48f24c4d IM |
6232 | /* |
6233 | * Strictly not necessary since rest of the CPUs are stopped by now | |
6234 | * and interrupts disabled on the current cpu. | |
1da177e4 LT |
6235 | */ |
6236 | spin_lock_irqsave(&rq->lock, flags); | |
6237 | ||
dd41f596 | 6238 | __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); |
48f24c4d | 6239 | |
94bc9a7b DA |
6240 | update_rq_clock(rq); |
6241 | activate_task(rq, p, 0); | |
1da177e4 LT |
6242 | |
6243 | spin_unlock_irqrestore(&rq->lock, flags); | |
6244 | } | |
6245 | ||
48f24c4d IM |
6246 | /* |
6247 | * Ensures that the idle task is using init_mm right before its cpu goes | |
1da177e4 LT |
6248 | * offline. |
6249 | */ | |
6250 | void idle_task_exit(void) | |
6251 | { | |
6252 | struct mm_struct *mm = current->active_mm; | |
6253 | ||
6254 | BUG_ON(cpu_online(smp_processor_id())); | |
6255 | ||
6256 | if (mm != &init_mm) | |
6257 | switch_mm(mm, &init_mm, current); | |
6258 | mmdrop(mm); | |
6259 | } | |
6260 | ||
054b9108 | 6261 | /* called under rq->lock with disabled interrupts */ |
36c8b586 | 6262 | static void migrate_dead(unsigned int dead_cpu, struct task_struct *p) |
1da177e4 | 6263 | { |
70b97a7f | 6264 | struct rq *rq = cpu_rq(dead_cpu); |
1da177e4 LT |
6265 | |
6266 | /* Must be exiting, otherwise would be on tasklist. */ | |
270f722d | 6267 | BUG_ON(!p->exit_state); |
1da177e4 LT |
6268 | |
6269 | /* Cannot have done final schedule yet: would have vanished. */ | |
c394cc9f | 6270 | BUG_ON(p->state == TASK_DEAD); |
1da177e4 | 6271 | |
48f24c4d | 6272 | get_task_struct(p); |
1da177e4 LT |
6273 | |
6274 | /* | |
6275 | * Drop lock around migration; if someone else moves it, | |
41a2d6cf | 6276 | * that's OK. No task can be added to this CPU, so iteration is |
1da177e4 LT |
6277 | * fine. |
6278 | */ | |
f7b4cddc | 6279 | spin_unlock_irq(&rq->lock); |
48f24c4d | 6280 | move_task_off_dead_cpu(dead_cpu, p); |
f7b4cddc | 6281 | spin_lock_irq(&rq->lock); |
1da177e4 | 6282 | |
48f24c4d | 6283 | put_task_struct(p); |
1da177e4 LT |
6284 | } |
6285 | ||
6286 | /* release_task() removes task from tasklist, so we won't find dead tasks. */ | |
6287 | static void migrate_dead_tasks(unsigned int dead_cpu) | |
6288 | { | |
70b97a7f | 6289 | struct rq *rq = cpu_rq(dead_cpu); |
dd41f596 | 6290 | struct task_struct *next; |
48f24c4d | 6291 | |
dd41f596 IM |
6292 | for ( ; ; ) { |
6293 | if (!rq->nr_running) | |
6294 | break; | |
a8e504d2 | 6295 | update_rq_clock(rq); |
ff95f3df | 6296 | next = pick_next_task(rq, rq->curr); |
dd41f596 IM |
6297 | if (!next) |
6298 | break; | |
79c53799 | 6299 | next->sched_class->put_prev_task(rq, next); |
dd41f596 | 6300 | migrate_dead(dead_cpu, next); |
e692ab53 | 6301 | |
1da177e4 LT |
6302 | } |
6303 | } | |
6304 | #endif /* CONFIG_HOTPLUG_CPU */ | |
6305 | ||
e692ab53 NP |
6306 | #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) |
6307 | ||
6308 | static struct ctl_table sd_ctl_dir[] = { | |
e0361851 AD |
6309 | { |
6310 | .procname = "sched_domain", | |
c57baf1e | 6311 | .mode = 0555, |
e0361851 | 6312 | }, |
38605cae | 6313 | {0, }, |
e692ab53 NP |
6314 | }; |
6315 | ||
6316 | static struct ctl_table sd_ctl_root[] = { | |
e0361851 | 6317 | { |
c57baf1e | 6318 | .ctl_name = CTL_KERN, |
e0361851 | 6319 | .procname = "kernel", |
c57baf1e | 6320 | .mode = 0555, |
e0361851 AD |
6321 | .child = sd_ctl_dir, |
6322 | }, | |
38605cae | 6323 | {0, }, |
e692ab53 NP |
6324 | }; |
6325 | ||
6326 | static struct ctl_table *sd_alloc_ctl_entry(int n) | |
6327 | { | |
6328 | struct ctl_table *entry = | |
5cf9f062 | 6329 | kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); |
e692ab53 | 6330 | |
e692ab53 NP |
6331 | return entry; |
6332 | } | |
6333 | ||
6382bc90 MM |
6334 | static void sd_free_ctl_entry(struct ctl_table **tablep) |
6335 | { | |
cd790076 | 6336 | struct ctl_table *entry; |
6382bc90 | 6337 | |
cd790076 MM |
6338 | /* |
6339 | * In the intermediate directories, both the child directory and | |
6340 | * procname are dynamically allocated and could fail but the mode | |
41a2d6cf | 6341 | * will always be set. In the lowest directory the names are |
cd790076 MM |
6342 | * static strings and all have proc handlers. |
6343 | */ | |
6344 | for (entry = *tablep; entry->mode; entry++) { | |
6382bc90 MM |
6345 | if (entry->child) |
6346 | sd_free_ctl_entry(&entry->child); | |
cd790076 MM |
6347 | if (entry->proc_handler == NULL) |
6348 | kfree(entry->procname); | |
6349 | } | |
6382bc90 MM |
6350 | |
6351 | kfree(*tablep); | |
6352 | *tablep = NULL; | |
6353 | } | |
6354 | ||
e692ab53 | 6355 | static void |
e0361851 | 6356 | set_table_entry(struct ctl_table *entry, |
e692ab53 NP |
6357 | const char *procname, void *data, int maxlen, |
6358 | mode_t mode, proc_handler *proc_handler) | |
6359 | { | |
e692ab53 NP |
6360 | entry->procname = procname; |
6361 | entry->data = data; | |
6362 | entry->maxlen = maxlen; | |
6363 | entry->mode = mode; | |
6364 | entry->proc_handler = proc_handler; | |
6365 | } | |
6366 | ||
6367 | static struct ctl_table * | |
6368 | sd_alloc_ctl_domain_table(struct sched_domain *sd) | |
6369 | { | |
a5d8c348 | 6370 | struct ctl_table *table = sd_alloc_ctl_entry(13); |
e692ab53 | 6371 | |
ad1cdc1d MM |
6372 | if (table == NULL) |
6373 | return NULL; | |
6374 | ||
e0361851 | 6375 | set_table_entry(&table[0], "min_interval", &sd->min_interval, |
e692ab53 | 6376 | sizeof(long), 0644, proc_doulongvec_minmax); |
e0361851 | 6377 | set_table_entry(&table[1], "max_interval", &sd->max_interval, |
e692ab53 | 6378 | sizeof(long), 0644, proc_doulongvec_minmax); |
e0361851 | 6379 | set_table_entry(&table[2], "busy_idx", &sd->busy_idx, |
e692ab53 | 6380 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 6381 | set_table_entry(&table[3], "idle_idx", &sd->idle_idx, |
e692ab53 | 6382 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 6383 | set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, |
e692ab53 | 6384 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 6385 | set_table_entry(&table[5], "wake_idx", &sd->wake_idx, |
e692ab53 | 6386 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 6387 | set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, |
e692ab53 | 6388 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 6389 | set_table_entry(&table[7], "busy_factor", &sd->busy_factor, |
e692ab53 | 6390 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 6391 | set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, |
e692ab53 | 6392 | sizeof(int), 0644, proc_dointvec_minmax); |
ace8b3d6 | 6393 | set_table_entry(&table[9], "cache_nice_tries", |
e692ab53 NP |
6394 | &sd->cache_nice_tries, |
6395 | sizeof(int), 0644, proc_dointvec_minmax); | |
ace8b3d6 | 6396 | set_table_entry(&table[10], "flags", &sd->flags, |
e692ab53 | 6397 | sizeof(int), 0644, proc_dointvec_minmax); |
a5d8c348 IM |
6398 | set_table_entry(&table[11], "name", sd->name, |
6399 | CORENAME_MAX_SIZE, 0444, proc_dostring); | |
6400 | /* &table[12] is terminator */ | |
e692ab53 NP |
6401 | |
6402 | return table; | |
6403 | } | |
6404 | ||
9a4e7159 | 6405 | static ctl_table *sd_alloc_ctl_cpu_table(int cpu) |
e692ab53 NP |
6406 | { |
6407 | struct ctl_table *entry, *table; | |
6408 | struct sched_domain *sd; | |
6409 | int domain_num = 0, i; | |
6410 | char buf[32]; | |
6411 | ||
6412 | for_each_domain(cpu, sd) | |
6413 | domain_num++; | |
6414 | entry = table = sd_alloc_ctl_entry(domain_num + 1); | |
ad1cdc1d MM |
6415 | if (table == NULL) |
6416 | return NULL; | |
e692ab53 NP |
6417 | |
6418 | i = 0; | |
6419 | for_each_domain(cpu, sd) { | |
6420 | snprintf(buf, 32, "domain%d", i); | |
e692ab53 | 6421 | entry->procname = kstrdup(buf, GFP_KERNEL); |
c57baf1e | 6422 | entry->mode = 0555; |
e692ab53 NP |
6423 | entry->child = sd_alloc_ctl_domain_table(sd); |
6424 | entry++; | |
6425 | i++; | |
6426 | } | |
6427 | return table; | |
6428 | } | |
6429 | ||
6430 | static struct ctl_table_header *sd_sysctl_header; | |
6382bc90 | 6431 | static void register_sched_domain_sysctl(void) |
e692ab53 NP |
6432 | { |
6433 | int i, cpu_num = num_online_cpus(); | |
6434 | struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); | |
6435 | char buf[32]; | |
6436 | ||
7378547f MM |
6437 | WARN_ON(sd_ctl_dir[0].child); |
6438 | sd_ctl_dir[0].child = entry; | |
6439 | ||
ad1cdc1d MM |
6440 | if (entry == NULL) |
6441 | return; | |
6442 | ||
97b6ea7b | 6443 | for_each_online_cpu(i) { |
e692ab53 | 6444 | snprintf(buf, 32, "cpu%d", i); |
e692ab53 | 6445 | entry->procname = kstrdup(buf, GFP_KERNEL); |
c57baf1e | 6446 | entry->mode = 0555; |
e692ab53 | 6447 | entry->child = sd_alloc_ctl_cpu_table(i); |
97b6ea7b | 6448 | entry++; |
e692ab53 | 6449 | } |
7378547f MM |
6450 | |
6451 | WARN_ON(sd_sysctl_header); | |
e692ab53 NP |
6452 | sd_sysctl_header = register_sysctl_table(sd_ctl_root); |
6453 | } | |
6382bc90 | 6454 | |
7378547f | 6455 | /* may be called multiple times per register */ |
6382bc90 MM |
6456 | static void unregister_sched_domain_sysctl(void) |
6457 | { | |
7378547f MM |
6458 | if (sd_sysctl_header) |
6459 | unregister_sysctl_table(sd_sysctl_header); | |
6382bc90 | 6460 | sd_sysctl_header = NULL; |
7378547f MM |
6461 | if (sd_ctl_dir[0].child) |
6462 | sd_free_ctl_entry(&sd_ctl_dir[0].child); | |
6382bc90 | 6463 | } |
e692ab53 | 6464 | #else |
6382bc90 MM |
6465 | static void register_sched_domain_sysctl(void) |
6466 | { | |
6467 | } | |
6468 | static void unregister_sched_domain_sysctl(void) | |
e692ab53 NP |
6469 | { |
6470 | } | |
6471 | #endif | |
6472 | ||
1f11eb6a GH |
6473 | static void set_rq_online(struct rq *rq) |
6474 | { | |
6475 | if (!rq->online) { | |
6476 | const struct sched_class *class; | |
6477 | ||
6478 | cpu_set(rq->cpu, rq->rd->online); | |
6479 | rq->online = 1; | |
6480 | ||
6481 | for_each_class(class) { | |
6482 | if (class->rq_online) | |
6483 | class->rq_online(rq); | |
6484 | } | |
6485 | } | |
6486 | } | |
6487 | ||
6488 | static void set_rq_offline(struct rq *rq) | |
6489 | { | |
6490 | if (rq->online) { | |
6491 | const struct sched_class *class; | |
6492 | ||
6493 | for_each_class(class) { | |
6494 | if (class->rq_offline) | |
6495 | class->rq_offline(rq); | |
6496 | } | |
6497 | ||
6498 | cpu_clear(rq->cpu, rq->rd->online); | |
6499 | rq->online = 0; | |
6500 | } | |
6501 | } | |
6502 | ||
1da177e4 LT |
6503 | /* |
6504 | * migration_call - callback that gets triggered when a CPU is added. | |
6505 | * Here we can start up the necessary migration thread for the new CPU. | |
6506 | */ | |
48f24c4d IM |
6507 | static int __cpuinit |
6508 | migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) | |
1da177e4 | 6509 | { |
1da177e4 | 6510 | struct task_struct *p; |
48f24c4d | 6511 | int cpu = (long)hcpu; |
1da177e4 | 6512 | unsigned long flags; |
70b97a7f | 6513 | struct rq *rq; |
1da177e4 LT |
6514 | |
6515 | switch (action) { | |
5be9361c | 6516 | |
1da177e4 | 6517 | case CPU_UP_PREPARE: |
8bb78442 | 6518 | case CPU_UP_PREPARE_FROZEN: |
dd41f596 | 6519 | p = kthread_create(migration_thread, hcpu, "migration/%d", cpu); |
1da177e4 LT |
6520 | if (IS_ERR(p)) |
6521 | return NOTIFY_BAD; | |
1da177e4 LT |
6522 | kthread_bind(p, cpu); |
6523 | /* Must be high prio: stop_machine expects to yield to it. */ | |
6524 | rq = task_rq_lock(p, &flags); | |
dd41f596 | 6525 | __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); |
1da177e4 LT |
6526 | task_rq_unlock(rq, &flags); |
6527 | cpu_rq(cpu)->migration_thread = p; | |
6528 | break; | |
48f24c4d | 6529 | |
1da177e4 | 6530 | case CPU_ONLINE: |
8bb78442 | 6531 | case CPU_ONLINE_FROZEN: |
3a4fa0a2 | 6532 | /* Strictly unnecessary, as first user will wake it. */ |
1da177e4 | 6533 | wake_up_process(cpu_rq(cpu)->migration_thread); |
1f94ef59 GH |
6534 | |
6535 | /* Update our root-domain */ | |
6536 | rq = cpu_rq(cpu); | |
6537 | spin_lock_irqsave(&rq->lock, flags); | |
6538 | if (rq->rd) { | |
6539 | BUG_ON(!cpu_isset(cpu, rq->rd->span)); | |
1f11eb6a GH |
6540 | |
6541 | set_rq_online(rq); | |
1f94ef59 GH |
6542 | } |
6543 | spin_unlock_irqrestore(&rq->lock, flags); | |
1da177e4 | 6544 | break; |
48f24c4d | 6545 | |
1da177e4 LT |
6546 | #ifdef CONFIG_HOTPLUG_CPU |
6547 | case CPU_UP_CANCELED: | |
8bb78442 | 6548 | case CPU_UP_CANCELED_FROZEN: |
fc75cdfa HC |
6549 | if (!cpu_rq(cpu)->migration_thread) |
6550 | break; | |
41a2d6cf | 6551 | /* Unbind it from offline cpu so it can run. Fall thru. */ |
a4c4af7c HC |
6552 | kthread_bind(cpu_rq(cpu)->migration_thread, |
6553 | any_online_cpu(cpu_online_map)); | |
1da177e4 LT |
6554 | kthread_stop(cpu_rq(cpu)->migration_thread); |
6555 | cpu_rq(cpu)->migration_thread = NULL; | |
6556 | break; | |
48f24c4d | 6557 | |
1da177e4 | 6558 | case CPU_DEAD: |
8bb78442 | 6559 | case CPU_DEAD_FROZEN: |
470fd646 | 6560 | cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */ |
1da177e4 LT |
6561 | migrate_live_tasks(cpu); |
6562 | rq = cpu_rq(cpu); | |
6563 | kthread_stop(rq->migration_thread); | |
6564 | rq->migration_thread = NULL; | |
6565 | /* Idle task back to normal (off runqueue, low prio) */ | |
d2da272a | 6566 | spin_lock_irq(&rq->lock); |
a8e504d2 | 6567 | update_rq_clock(rq); |
2e1cb74a | 6568 | deactivate_task(rq, rq->idle, 0); |
1da177e4 | 6569 | rq->idle->static_prio = MAX_PRIO; |
dd41f596 IM |
6570 | __setscheduler(rq, rq->idle, SCHED_NORMAL, 0); |
6571 | rq->idle->sched_class = &idle_sched_class; | |
1da177e4 | 6572 | migrate_dead_tasks(cpu); |
d2da272a | 6573 | spin_unlock_irq(&rq->lock); |
470fd646 | 6574 | cpuset_unlock(); |
1da177e4 LT |
6575 | migrate_nr_uninterruptible(rq); |
6576 | BUG_ON(rq->nr_running != 0); | |
6577 | ||
41a2d6cf IM |
6578 | /* |
6579 | * No need to migrate the tasks: it was best-effort if | |
6580 | * they didn't take sched_hotcpu_mutex. Just wake up | |
6581 | * the requestors. | |
6582 | */ | |
1da177e4 LT |
6583 | spin_lock_irq(&rq->lock); |
6584 | while (!list_empty(&rq->migration_queue)) { | |
70b97a7f IM |
6585 | struct migration_req *req; |
6586 | ||
1da177e4 | 6587 | req = list_entry(rq->migration_queue.next, |
70b97a7f | 6588 | struct migration_req, list); |
1da177e4 | 6589 | list_del_init(&req->list); |
9a2bd244 | 6590 | spin_unlock_irq(&rq->lock); |
1da177e4 | 6591 | complete(&req->done); |
9a2bd244 | 6592 | spin_lock_irq(&rq->lock); |
1da177e4 LT |
6593 | } |
6594 | spin_unlock_irq(&rq->lock); | |
6595 | break; | |
57d885fe | 6596 | |
08f503b0 GH |
6597 | case CPU_DYING: |
6598 | case CPU_DYING_FROZEN: | |
57d885fe GH |
6599 | /* Update our root-domain */ |
6600 | rq = cpu_rq(cpu); | |
6601 | spin_lock_irqsave(&rq->lock, flags); | |
6602 | if (rq->rd) { | |
6603 | BUG_ON(!cpu_isset(cpu, rq->rd->span)); | |
1f11eb6a | 6604 | set_rq_offline(rq); |
57d885fe GH |
6605 | } |
6606 | spin_unlock_irqrestore(&rq->lock, flags); | |
6607 | break; | |
1da177e4 LT |
6608 | #endif |
6609 | } | |
6610 | return NOTIFY_OK; | |
6611 | } | |
6612 | ||
6613 | /* Register at highest priority so that task migration (migrate_all_tasks) | |
6614 | * happens before everything else. | |
6615 | */ | |
26c2143b | 6616 | static struct notifier_block __cpuinitdata migration_notifier = { |
1da177e4 LT |
6617 | .notifier_call = migration_call, |
6618 | .priority = 10 | |
6619 | }; | |
6620 | ||
7babe8db | 6621 | static int __init migration_init(void) |
1da177e4 LT |
6622 | { |
6623 | void *cpu = (void *)(long)smp_processor_id(); | |
07dccf33 | 6624 | int err; |
48f24c4d IM |
6625 | |
6626 | /* Start one for the boot CPU: */ | |
07dccf33 AM |
6627 | err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); |
6628 | BUG_ON(err == NOTIFY_BAD); | |
1da177e4 LT |
6629 | migration_call(&migration_notifier, CPU_ONLINE, cpu); |
6630 | register_cpu_notifier(&migration_notifier); | |
7babe8db EGM |
6631 | |
6632 | return err; | |
1da177e4 | 6633 | } |
7babe8db | 6634 | early_initcall(migration_init); |
1da177e4 LT |
6635 | #endif |
6636 | ||
6637 | #ifdef CONFIG_SMP | |
476f3534 | 6638 | |
3e9830dc | 6639 | #ifdef CONFIG_SCHED_DEBUG |
4dcf6aff | 6640 | |
7c16ec58 MT |
6641 | static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, |
6642 | cpumask_t *groupmask) | |
1da177e4 | 6643 | { |
4dcf6aff | 6644 | struct sched_group *group = sd->groups; |
434d53b0 | 6645 | char str[256]; |
1da177e4 | 6646 | |
434d53b0 | 6647 | cpulist_scnprintf(str, sizeof(str), sd->span); |
7c16ec58 | 6648 | cpus_clear(*groupmask); |
4dcf6aff IM |
6649 | |
6650 | printk(KERN_DEBUG "%*s domain %d: ", level, "", level); | |
6651 | ||
6652 | if (!(sd->flags & SD_LOAD_BALANCE)) { | |
6653 | printk("does not load-balance\n"); | |
6654 | if (sd->parent) | |
6655 | printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" | |
6656 | " has parent"); | |
6657 | return -1; | |
41c7ce9a NP |
6658 | } |
6659 | ||
eefd796a | 6660 | printk(KERN_CONT "span %s level %s\n", str, sd->name); |
4dcf6aff IM |
6661 | |
6662 | if (!cpu_isset(cpu, sd->span)) { | |
6663 | printk(KERN_ERR "ERROR: domain->span does not contain " | |
6664 | "CPU%d\n", cpu); | |
6665 | } | |
6666 | if (!cpu_isset(cpu, group->cpumask)) { | |
6667 | printk(KERN_ERR "ERROR: domain->groups does not contain" | |
6668 | " CPU%d\n", cpu); | |
6669 | } | |
1da177e4 | 6670 | |
4dcf6aff | 6671 | printk(KERN_DEBUG "%*s groups:", level + 1, ""); |
1da177e4 | 6672 | do { |
4dcf6aff IM |
6673 | if (!group) { |
6674 | printk("\n"); | |
6675 | printk(KERN_ERR "ERROR: group is NULL\n"); | |
1da177e4 LT |
6676 | break; |
6677 | } | |
6678 | ||
4dcf6aff IM |
6679 | if (!group->__cpu_power) { |
6680 | printk(KERN_CONT "\n"); | |
6681 | printk(KERN_ERR "ERROR: domain->cpu_power not " | |
6682 | "set\n"); | |
6683 | break; | |
6684 | } | |
1da177e4 | 6685 | |
4dcf6aff IM |
6686 | if (!cpus_weight(group->cpumask)) { |
6687 | printk(KERN_CONT "\n"); | |
6688 | printk(KERN_ERR "ERROR: empty group\n"); | |
6689 | break; | |
6690 | } | |
1da177e4 | 6691 | |
7c16ec58 | 6692 | if (cpus_intersects(*groupmask, group->cpumask)) { |
4dcf6aff IM |
6693 | printk(KERN_CONT "\n"); |
6694 | printk(KERN_ERR "ERROR: repeated CPUs\n"); | |
6695 | break; | |
6696 | } | |
1da177e4 | 6697 | |
7c16ec58 | 6698 | cpus_or(*groupmask, *groupmask, group->cpumask); |
1da177e4 | 6699 | |
434d53b0 | 6700 | cpulist_scnprintf(str, sizeof(str), group->cpumask); |
4dcf6aff | 6701 | printk(KERN_CONT " %s", str); |
1da177e4 | 6702 | |
4dcf6aff IM |
6703 | group = group->next; |
6704 | } while (group != sd->groups); | |
6705 | printk(KERN_CONT "\n"); | |
1da177e4 | 6706 | |
7c16ec58 | 6707 | if (!cpus_equal(sd->span, *groupmask)) |
4dcf6aff | 6708 | printk(KERN_ERR "ERROR: groups don't span domain->span\n"); |
1da177e4 | 6709 | |
7c16ec58 | 6710 | if (sd->parent && !cpus_subset(*groupmask, sd->parent->span)) |
4dcf6aff IM |
6711 | printk(KERN_ERR "ERROR: parent span is not a superset " |
6712 | "of domain->span\n"); | |
6713 | return 0; | |
6714 | } | |
1da177e4 | 6715 | |
4dcf6aff IM |
6716 | static void sched_domain_debug(struct sched_domain *sd, int cpu) |
6717 | { | |
7c16ec58 | 6718 | cpumask_t *groupmask; |
4dcf6aff | 6719 | int level = 0; |
1da177e4 | 6720 | |
4dcf6aff IM |
6721 | if (!sd) { |
6722 | printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); | |
6723 | return; | |
6724 | } | |
1da177e4 | 6725 | |
4dcf6aff IM |
6726 | printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); |
6727 | ||
7c16ec58 MT |
6728 | groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL); |
6729 | if (!groupmask) { | |
6730 | printk(KERN_DEBUG "Cannot load-balance (out of memory)\n"); | |
6731 | return; | |
6732 | } | |
6733 | ||
4dcf6aff | 6734 | for (;;) { |
7c16ec58 | 6735 | if (sched_domain_debug_one(sd, cpu, level, groupmask)) |
4dcf6aff | 6736 | break; |
1da177e4 LT |
6737 | level++; |
6738 | sd = sd->parent; | |
33859f7f | 6739 | if (!sd) |
4dcf6aff IM |
6740 | break; |
6741 | } | |
7c16ec58 | 6742 | kfree(groupmask); |
1da177e4 | 6743 | } |
6d6bc0ad | 6744 | #else /* !CONFIG_SCHED_DEBUG */ |
48f24c4d | 6745 | # define sched_domain_debug(sd, cpu) do { } while (0) |
6d6bc0ad | 6746 | #endif /* CONFIG_SCHED_DEBUG */ |
1da177e4 | 6747 | |
1a20ff27 | 6748 | static int sd_degenerate(struct sched_domain *sd) |
245af2c7 SS |
6749 | { |
6750 | if (cpus_weight(sd->span) == 1) | |
6751 | return 1; | |
6752 | ||
6753 | /* Following flags need at least 2 groups */ | |
6754 | if (sd->flags & (SD_LOAD_BALANCE | | |
6755 | SD_BALANCE_NEWIDLE | | |
6756 | SD_BALANCE_FORK | | |
89c4710e SS |
6757 | SD_BALANCE_EXEC | |
6758 | SD_SHARE_CPUPOWER | | |
6759 | SD_SHARE_PKG_RESOURCES)) { | |
245af2c7 SS |
6760 | if (sd->groups != sd->groups->next) |
6761 | return 0; | |
6762 | } | |
6763 | ||
6764 | /* Following flags don't use groups */ | |
6765 | if (sd->flags & (SD_WAKE_IDLE | | |
6766 | SD_WAKE_AFFINE | | |
6767 | SD_WAKE_BALANCE)) | |
6768 | return 0; | |
6769 | ||
6770 | return 1; | |
6771 | } | |
6772 | ||
48f24c4d IM |
6773 | static int |
6774 | sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) | |
245af2c7 SS |
6775 | { |
6776 | unsigned long cflags = sd->flags, pflags = parent->flags; | |
6777 | ||
6778 | if (sd_degenerate(parent)) | |
6779 | return 1; | |
6780 | ||
6781 | if (!cpus_equal(sd->span, parent->span)) | |
6782 | return 0; | |
6783 | ||
6784 | /* Does parent contain flags not in child? */ | |
6785 | /* WAKE_BALANCE is a subset of WAKE_AFFINE */ | |
6786 | if (cflags & SD_WAKE_AFFINE) | |
6787 | pflags &= ~SD_WAKE_BALANCE; | |
6788 | /* Flags needing groups don't count if only 1 group in parent */ | |
6789 | if (parent->groups == parent->groups->next) { | |
6790 | pflags &= ~(SD_LOAD_BALANCE | | |
6791 | SD_BALANCE_NEWIDLE | | |
6792 | SD_BALANCE_FORK | | |
89c4710e SS |
6793 | SD_BALANCE_EXEC | |
6794 | SD_SHARE_CPUPOWER | | |
6795 | SD_SHARE_PKG_RESOURCES); | |
5436499e KC |
6796 | if (nr_node_ids == 1) |
6797 | pflags &= ~SD_SERIALIZE; | |
245af2c7 SS |
6798 | } |
6799 | if (~cflags & pflags) | |
6800 | return 0; | |
6801 | ||
6802 | return 1; | |
6803 | } | |
6804 | ||
57d885fe GH |
6805 | static void rq_attach_root(struct rq *rq, struct root_domain *rd) |
6806 | { | |
6807 | unsigned long flags; | |
57d885fe GH |
6808 | |
6809 | spin_lock_irqsave(&rq->lock, flags); | |
6810 | ||
6811 | if (rq->rd) { | |
6812 | struct root_domain *old_rd = rq->rd; | |
6813 | ||
1f11eb6a GH |
6814 | if (cpu_isset(rq->cpu, old_rd->online)) |
6815 | set_rq_offline(rq); | |
57d885fe | 6816 | |
dc938520 | 6817 | cpu_clear(rq->cpu, old_rd->span); |
dc938520 | 6818 | |
57d885fe GH |
6819 | if (atomic_dec_and_test(&old_rd->refcount)) |
6820 | kfree(old_rd); | |
6821 | } | |
6822 | ||
6823 | atomic_inc(&rd->refcount); | |
6824 | rq->rd = rd; | |
6825 | ||
dc938520 | 6826 | cpu_set(rq->cpu, rd->span); |
1f94ef59 | 6827 | if (cpu_isset(rq->cpu, cpu_online_map)) |
1f11eb6a | 6828 | set_rq_online(rq); |
57d885fe GH |
6829 | |
6830 | spin_unlock_irqrestore(&rq->lock, flags); | |
6831 | } | |
6832 | ||
dc938520 | 6833 | static void init_rootdomain(struct root_domain *rd) |
57d885fe GH |
6834 | { |
6835 | memset(rd, 0, sizeof(*rd)); | |
6836 | ||
dc938520 GH |
6837 | cpus_clear(rd->span); |
6838 | cpus_clear(rd->online); | |
6e0534f2 GH |
6839 | |
6840 | cpupri_init(&rd->cpupri); | |
57d885fe GH |
6841 | } |
6842 | ||
6843 | static void init_defrootdomain(void) | |
6844 | { | |
dc938520 | 6845 | init_rootdomain(&def_root_domain); |
57d885fe GH |
6846 | atomic_set(&def_root_domain.refcount, 1); |
6847 | } | |
6848 | ||
dc938520 | 6849 | static struct root_domain *alloc_rootdomain(void) |
57d885fe GH |
6850 | { |
6851 | struct root_domain *rd; | |
6852 | ||
6853 | rd = kmalloc(sizeof(*rd), GFP_KERNEL); | |
6854 | if (!rd) | |
6855 | return NULL; | |
6856 | ||
dc938520 | 6857 | init_rootdomain(rd); |
57d885fe GH |
6858 | |
6859 | return rd; | |
6860 | } | |
6861 | ||
1da177e4 | 6862 | /* |
0eab9146 | 6863 | * Attach the domain 'sd' to 'cpu' as its base domain. Callers must |
1da177e4 LT |
6864 | * hold the hotplug lock. |
6865 | */ | |
0eab9146 IM |
6866 | static void |
6867 | cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) | |
1da177e4 | 6868 | { |
70b97a7f | 6869 | struct rq *rq = cpu_rq(cpu); |
245af2c7 SS |
6870 | struct sched_domain *tmp; |
6871 | ||
6872 | /* Remove the sched domains which do not contribute to scheduling. */ | |
f29c9b1c | 6873 | for (tmp = sd; tmp; ) { |
245af2c7 SS |
6874 | struct sched_domain *parent = tmp->parent; |
6875 | if (!parent) | |
6876 | break; | |
f29c9b1c | 6877 | |
1a848870 | 6878 | if (sd_parent_degenerate(tmp, parent)) { |
245af2c7 | 6879 | tmp->parent = parent->parent; |
1a848870 SS |
6880 | if (parent->parent) |
6881 | parent->parent->child = tmp; | |
f29c9b1c LZ |
6882 | } else |
6883 | tmp = tmp->parent; | |
245af2c7 SS |
6884 | } |
6885 | ||
1a848870 | 6886 | if (sd && sd_degenerate(sd)) { |
245af2c7 | 6887 | sd = sd->parent; |
1a848870 SS |
6888 | if (sd) |
6889 | sd->child = NULL; | |
6890 | } | |
1da177e4 LT |
6891 | |
6892 | sched_domain_debug(sd, cpu); | |
6893 | ||
57d885fe | 6894 | rq_attach_root(rq, rd); |
674311d5 | 6895 | rcu_assign_pointer(rq->sd, sd); |
1da177e4 LT |
6896 | } |
6897 | ||
6898 | /* cpus with isolated domains */ | |
67af63a6 | 6899 | static cpumask_t cpu_isolated_map = CPU_MASK_NONE; |
1da177e4 LT |
6900 | |
6901 | /* Setup the mask of cpus configured for isolated domains */ | |
6902 | static int __init isolated_cpu_setup(char *str) | |
6903 | { | |
13b40c1e MT |
6904 | static int __initdata ints[NR_CPUS]; |
6905 | int i; | |
1da177e4 LT |
6906 | |
6907 | str = get_options(str, ARRAY_SIZE(ints), ints); | |
6908 | cpus_clear(cpu_isolated_map); | |
6909 | for (i = 1; i <= ints[0]; i++) | |
6910 | if (ints[i] < NR_CPUS) | |
6911 | cpu_set(ints[i], cpu_isolated_map); | |
6912 | return 1; | |
6913 | } | |
6914 | ||
8927f494 | 6915 | __setup("isolcpus=", isolated_cpu_setup); |
1da177e4 LT |
6916 | |
6917 | /* | |
6711cab4 SS |
6918 | * init_sched_build_groups takes the cpumask we wish to span, and a pointer |
6919 | * to a function which identifies what group(along with sched group) a CPU | |
6920 | * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS | |
6921 | * (due to the fact that we keep track of groups covered with a cpumask_t). | |
1da177e4 LT |
6922 | * |
6923 | * init_sched_build_groups will build a circular linked list of the groups | |
6924 | * covered by the given span, and will set each group's ->cpumask correctly, | |
6925 | * and ->cpu_power to 0. | |
6926 | */ | |
a616058b | 6927 | static void |
7c16ec58 | 6928 | init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map, |
6711cab4 | 6929 | int (*group_fn)(int cpu, const cpumask_t *cpu_map, |
7c16ec58 MT |
6930 | struct sched_group **sg, |
6931 | cpumask_t *tmpmask), | |
6932 | cpumask_t *covered, cpumask_t *tmpmask) | |
1da177e4 LT |
6933 | { |
6934 | struct sched_group *first = NULL, *last = NULL; | |
1da177e4 LT |
6935 | int i; |
6936 | ||
7c16ec58 MT |
6937 | cpus_clear(*covered); |
6938 | ||
363ab6f1 | 6939 | for_each_cpu_mask_nr(i, *span) { |
6711cab4 | 6940 | struct sched_group *sg; |
7c16ec58 | 6941 | int group = group_fn(i, cpu_map, &sg, tmpmask); |
1da177e4 LT |
6942 | int j; |
6943 | ||
7c16ec58 | 6944 | if (cpu_isset(i, *covered)) |
1da177e4 LT |
6945 | continue; |
6946 | ||
7c16ec58 | 6947 | cpus_clear(sg->cpumask); |
5517d86b | 6948 | sg->__cpu_power = 0; |
1da177e4 | 6949 | |
363ab6f1 | 6950 | for_each_cpu_mask_nr(j, *span) { |
7c16ec58 | 6951 | if (group_fn(j, cpu_map, NULL, tmpmask) != group) |
1da177e4 LT |
6952 | continue; |
6953 | ||
7c16ec58 | 6954 | cpu_set(j, *covered); |
1da177e4 LT |
6955 | cpu_set(j, sg->cpumask); |
6956 | } | |
6957 | if (!first) | |
6958 | first = sg; | |
6959 | if (last) | |
6960 | last->next = sg; | |
6961 | last = sg; | |
6962 | } | |
6963 | last->next = first; | |
6964 | } | |
6965 | ||
9c1cfda2 | 6966 | #define SD_NODES_PER_DOMAIN 16 |
1da177e4 | 6967 | |
9c1cfda2 | 6968 | #ifdef CONFIG_NUMA |
198e2f18 | 6969 | |
9c1cfda2 JH |
6970 | /** |
6971 | * find_next_best_node - find the next node to include in a sched_domain | |
6972 | * @node: node whose sched_domain we're building | |
6973 | * @used_nodes: nodes already in the sched_domain | |
6974 | * | |
41a2d6cf | 6975 | * Find the next node to include in a given scheduling domain. Simply |
9c1cfda2 JH |
6976 | * finds the closest node not already in the @used_nodes map. |
6977 | * | |
6978 | * Should use nodemask_t. | |
6979 | */ | |
c5f59f08 | 6980 | static int find_next_best_node(int node, nodemask_t *used_nodes) |
9c1cfda2 JH |
6981 | { |
6982 | int i, n, val, min_val, best_node = 0; | |
6983 | ||
6984 | min_val = INT_MAX; | |
6985 | ||
076ac2af | 6986 | for (i = 0; i < nr_node_ids; i++) { |
9c1cfda2 | 6987 | /* Start at @node */ |
076ac2af | 6988 | n = (node + i) % nr_node_ids; |
9c1cfda2 JH |
6989 | |
6990 | if (!nr_cpus_node(n)) | |
6991 | continue; | |
6992 | ||
6993 | /* Skip already used nodes */ | |
c5f59f08 | 6994 | if (node_isset(n, *used_nodes)) |
9c1cfda2 JH |
6995 | continue; |
6996 | ||
6997 | /* Simple min distance search */ | |
6998 | val = node_distance(node, n); | |
6999 | ||
7000 | if (val < min_val) { | |
7001 | min_val = val; | |
7002 | best_node = n; | |
7003 | } | |
7004 | } | |
7005 | ||
c5f59f08 | 7006 | node_set(best_node, *used_nodes); |
9c1cfda2 JH |
7007 | return best_node; |
7008 | } | |
7009 | ||
7010 | /** | |
7011 | * sched_domain_node_span - get a cpumask for a node's sched_domain | |
7012 | * @node: node whose cpumask we're constructing | |
73486722 | 7013 | * @span: resulting cpumask |
9c1cfda2 | 7014 | * |
41a2d6cf | 7015 | * Given a node, construct a good cpumask for its sched_domain to span. It |
9c1cfda2 JH |
7016 | * should be one that prevents unnecessary balancing, but also spreads tasks |
7017 | * out optimally. | |
7018 | */ | |
4bdbaad3 | 7019 | static void sched_domain_node_span(int node, cpumask_t *span) |
9c1cfda2 | 7020 | { |
c5f59f08 | 7021 | nodemask_t used_nodes; |
c5f59f08 | 7022 | node_to_cpumask_ptr(nodemask, node); |
48f24c4d | 7023 | int i; |
9c1cfda2 | 7024 | |
4bdbaad3 | 7025 | cpus_clear(*span); |
c5f59f08 | 7026 | nodes_clear(used_nodes); |
9c1cfda2 | 7027 | |
4bdbaad3 | 7028 | cpus_or(*span, *span, *nodemask); |
c5f59f08 | 7029 | node_set(node, used_nodes); |
9c1cfda2 JH |
7030 | |
7031 | for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { | |
c5f59f08 | 7032 | int next_node = find_next_best_node(node, &used_nodes); |
48f24c4d | 7033 | |
c5f59f08 | 7034 | node_to_cpumask_ptr_next(nodemask, next_node); |
4bdbaad3 | 7035 | cpus_or(*span, *span, *nodemask); |
9c1cfda2 | 7036 | } |
9c1cfda2 | 7037 | } |
6d6bc0ad | 7038 | #endif /* CONFIG_NUMA */ |
9c1cfda2 | 7039 | |
5c45bf27 | 7040 | int sched_smt_power_savings = 0, sched_mc_power_savings = 0; |
48f24c4d | 7041 | |
9c1cfda2 | 7042 | /* |
48f24c4d | 7043 | * SMT sched-domains: |
9c1cfda2 | 7044 | */ |
1da177e4 LT |
7045 | #ifdef CONFIG_SCHED_SMT |
7046 | static DEFINE_PER_CPU(struct sched_domain, cpu_domains); | |
6711cab4 | 7047 | static DEFINE_PER_CPU(struct sched_group, sched_group_cpus); |
48f24c4d | 7048 | |
41a2d6cf | 7049 | static int |
7c16ec58 MT |
7050 | cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, |
7051 | cpumask_t *unused) | |
1da177e4 | 7052 | { |
6711cab4 SS |
7053 | if (sg) |
7054 | *sg = &per_cpu(sched_group_cpus, cpu); | |
1da177e4 LT |
7055 | return cpu; |
7056 | } | |
6d6bc0ad | 7057 | #endif /* CONFIG_SCHED_SMT */ |
1da177e4 | 7058 | |
48f24c4d IM |
7059 | /* |
7060 | * multi-core sched-domains: | |
7061 | */ | |
1e9f28fa SS |
7062 | #ifdef CONFIG_SCHED_MC |
7063 | static DEFINE_PER_CPU(struct sched_domain, core_domains); | |
6711cab4 | 7064 | static DEFINE_PER_CPU(struct sched_group, sched_group_core); |
6d6bc0ad | 7065 | #endif /* CONFIG_SCHED_MC */ |
1e9f28fa SS |
7066 | |
7067 | #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT) | |
41a2d6cf | 7068 | static int |
7c16ec58 MT |
7069 | cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, |
7070 | cpumask_t *mask) | |
1e9f28fa | 7071 | { |
6711cab4 | 7072 | int group; |
7c16ec58 MT |
7073 | |
7074 | *mask = per_cpu(cpu_sibling_map, cpu); | |
7075 | cpus_and(*mask, *mask, *cpu_map); | |
7076 | group = first_cpu(*mask); | |
6711cab4 SS |
7077 | if (sg) |
7078 | *sg = &per_cpu(sched_group_core, group); | |
7079 | return group; | |
1e9f28fa SS |
7080 | } |
7081 | #elif defined(CONFIG_SCHED_MC) | |
41a2d6cf | 7082 | static int |
7c16ec58 MT |
7083 | cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, |
7084 | cpumask_t *unused) | |
1e9f28fa | 7085 | { |
6711cab4 SS |
7086 | if (sg) |
7087 | *sg = &per_cpu(sched_group_core, cpu); | |
1e9f28fa SS |
7088 | return cpu; |
7089 | } | |
7090 | #endif | |
7091 | ||
1da177e4 | 7092 | static DEFINE_PER_CPU(struct sched_domain, phys_domains); |
6711cab4 | 7093 | static DEFINE_PER_CPU(struct sched_group, sched_group_phys); |
48f24c4d | 7094 | |
41a2d6cf | 7095 | static int |
7c16ec58 MT |
7096 | cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, |
7097 | cpumask_t *mask) | |
1da177e4 | 7098 | { |
6711cab4 | 7099 | int group; |
48f24c4d | 7100 | #ifdef CONFIG_SCHED_MC |
7c16ec58 MT |
7101 | *mask = cpu_coregroup_map(cpu); |
7102 | cpus_and(*mask, *mask, *cpu_map); | |
7103 | group = first_cpu(*mask); | |
1e9f28fa | 7104 | #elif defined(CONFIG_SCHED_SMT) |
7c16ec58 MT |
7105 | *mask = per_cpu(cpu_sibling_map, cpu); |
7106 | cpus_and(*mask, *mask, *cpu_map); | |
7107 | group = first_cpu(*mask); | |
1da177e4 | 7108 | #else |
6711cab4 | 7109 | group = cpu; |
1da177e4 | 7110 | #endif |
6711cab4 SS |
7111 | if (sg) |
7112 | *sg = &per_cpu(sched_group_phys, group); | |
7113 | return group; | |
1da177e4 LT |
7114 | } |
7115 | ||
7116 | #ifdef CONFIG_NUMA | |
1da177e4 | 7117 | /* |
9c1cfda2 JH |
7118 | * The init_sched_build_groups can't handle what we want to do with node |
7119 | * groups, so roll our own. Now each node has its own list of groups which | |
7120 | * gets dynamically allocated. | |
1da177e4 | 7121 | */ |
9c1cfda2 | 7122 | static DEFINE_PER_CPU(struct sched_domain, node_domains); |
434d53b0 | 7123 | static struct sched_group ***sched_group_nodes_bycpu; |
1da177e4 | 7124 | |
9c1cfda2 | 7125 | static DEFINE_PER_CPU(struct sched_domain, allnodes_domains); |
6711cab4 | 7126 | static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes); |
9c1cfda2 | 7127 | |
6711cab4 | 7128 | static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map, |
7c16ec58 | 7129 | struct sched_group **sg, cpumask_t *nodemask) |
9c1cfda2 | 7130 | { |
6711cab4 SS |
7131 | int group; |
7132 | ||
7c16ec58 MT |
7133 | *nodemask = node_to_cpumask(cpu_to_node(cpu)); |
7134 | cpus_and(*nodemask, *nodemask, *cpu_map); | |
7135 | group = first_cpu(*nodemask); | |
6711cab4 SS |
7136 | |
7137 | if (sg) | |
7138 | *sg = &per_cpu(sched_group_allnodes, group); | |
7139 | return group; | |
1da177e4 | 7140 | } |
6711cab4 | 7141 | |
08069033 SS |
7142 | static void init_numa_sched_groups_power(struct sched_group *group_head) |
7143 | { | |
7144 | struct sched_group *sg = group_head; | |
7145 | int j; | |
7146 | ||
7147 | if (!sg) | |
7148 | return; | |
3a5c359a | 7149 | do { |
363ab6f1 | 7150 | for_each_cpu_mask_nr(j, sg->cpumask) { |
3a5c359a | 7151 | struct sched_domain *sd; |
08069033 | 7152 | |
3a5c359a AK |
7153 | sd = &per_cpu(phys_domains, j); |
7154 | if (j != first_cpu(sd->groups->cpumask)) { | |
7155 | /* | |
7156 | * Only add "power" once for each | |
7157 | * physical package. | |
7158 | */ | |
7159 | continue; | |
7160 | } | |
08069033 | 7161 | |
3a5c359a AK |
7162 | sg_inc_cpu_power(sg, sd->groups->__cpu_power); |
7163 | } | |
7164 | sg = sg->next; | |
7165 | } while (sg != group_head); | |
08069033 | 7166 | } |
6d6bc0ad | 7167 | #endif /* CONFIG_NUMA */ |
1da177e4 | 7168 | |
a616058b | 7169 | #ifdef CONFIG_NUMA |
51888ca2 | 7170 | /* Free memory allocated for various sched_group structures */ |
7c16ec58 | 7171 | static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask) |
51888ca2 | 7172 | { |
a616058b | 7173 | int cpu, i; |
51888ca2 | 7174 | |
363ab6f1 | 7175 | for_each_cpu_mask_nr(cpu, *cpu_map) { |
51888ca2 SV |
7176 | struct sched_group **sched_group_nodes |
7177 | = sched_group_nodes_bycpu[cpu]; | |
7178 | ||
51888ca2 SV |
7179 | if (!sched_group_nodes) |
7180 | continue; | |
7181 | ||
076ac2af | 7182 | for (i = 0; i < nr_node_ids; i++) { |
51888ca2 SV |
7183 | struct sched_group *oldsg, *sg = sched_group_nodes[i]; |
7184 | ||
7c16ec58 MT |
7185 | *nodemask = node_to_cpumask(i); |
7186 | cpus_and(*nodemask, *nodemask, *cpu_map); | |
7187 | if (cpus_empty(*nodemask)) | |
51888ca2 SV |
7188 | continue; |
7189 | ||
7190 | if (sg == NULL) | |
7191 | continue; | |
7192 | sg = sg->next; | |
7193 | next_sg: | |
7194 | oldsg = sg; | |
7195 | sg = sg->next; | |
7196 | kfree(oldsg); | |
7197 | if (oldsg != sched_group_nodes[i]) | |
7198 | goto next_sg; | |
7199 | } | |
7200 | kfree(sched_group_nodes); | |
7201 | sched_group_nodes_bycpu[cpu] = NULL; | |
7202 | } | |
51888ca2 | 7203 | } |
6d6bc0ad | 7204 | #else /* !CONFIG_NUMA */ |
7c16ec58 | 7205 | static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask) |
a616058b SS |
7206 | { |
7207 | } | |
6d6bc0ad | 7208 | #endif /* CONFIG_NUMA */ |
51888ca2 | 7209 | |
89c4710e SS |
7210 | /* |
7211 | * Initialize sched groups cpu_power. | |
7212 | * | |
7213 | * cpu_power indicates the capacity of sched group, which is used while | |
7214 | * distributing the load between different sched groups in a sched domain. | |
7215 | * Typically cpu_power for all the groups in a sched domain will be same unless | |
7216 | * there are asymmetries in the topology. If there are asymmetries, group | |
7217 | * having more cpu_power will pickup more load compared to the group having | |
7218 | * less cpu_power. | |
7219 | * | |
7220 | * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents | |
7221 | * the maximum number of tasks a group can handle in the presence of other idle | |
7222 | * or lightly loaded groups in the same sched domain. | |
7223 | */ | |
7224 | static void init_sched_groups_power(int cpu, struct sched_domain *sd) | |
7225 | { | |
7226 | struct sched_domain *child; | |
7227 | struct sched_group *group; | |
7228 | ||
7229 | WARN_ON(!sd || !sd->groups); | |
7230 | ||
7231 | if (cpu != first_cpu(sd->groups->cpumask)) | |
7232 | return; | |
7233 | ||
7234 | child = sd->child; | |
7235 | ||
5517d86b ED |
7236 | sd->groups->__cpu_power = 0; |
7237 | ||
89c4710e SS |
7238 | /* |
7239 | * For perf policy, if the groups in child domain share resources | |
7240 | * (for example cores sharing some portions of the cache hierarchy | |
7241 | * or SMT), then set this domain groups cpu_power such that each group | |
7242 | * can handle only one task, when there are other idle groups in the | |
7243 | * same sched domain. | |
7244 | */ | |
7245 | if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) && | |
7246 | (child->flags & | |
7247 | (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) { | |
5517d86b | 7248 | sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE); |
89c4710e SS |
7249 | return; |
7250 | } | |
7251 | ||
89c4710e SS |
7252 | /* |
7253 | * add cpu_power of each child group to this groups cpu_power | |
7254 | */ | |
7255 | group = child->groups; | |
7256 | do { | |
5517d86b | 7257 | sg_inc_cpu_power(sd->groups, group->__cpu_power); |
89c4710e SS |
7258 | group = group->next; |
7259 | } while (group != child->groups); | |
7260 | } | |
7261 | ||
7c16ec58 MT |
7262 | /* |
7263 | * Initializers for schedule domains | |
7264 | * Non-inlined to reduce accumulated stack pressure in build_sched_domains() | |
7265 | */ | |
7266 | ||
a5d8c348 IM |
7267 | #ifdef CONFIG_SCHED_DEBUG |
7268 | # define SD_INIT_NAME(sd, type) sd->name = #type | |
7269 | #else | |
7270 | # define SD_INIT_NAME(sd, type) do { } while (0) | |
7271 | #endif | |
7272 | ||
7c16ec58 | 7273 | #define SD_INIT(sd, type) sd_init_##type(sd) |
a5d8c348 | 7274 | |
7c16ec58 MT |
7275 | #define SD_INIT_FUNC(type) \ |
7276 | static noinline void sd_init_##type(struct sched_domain *sd) \ | |
7277 | { \ | |
7278 | memset(sd, 0, sizeof(*sd)); \ | |
7279 | *sd = SD_##type##_INIT; \ | |
1d3504fc | 7280 | sd->level = SD_LV_##type; \ |
a5d8c348 | 7281 | SD_INIT_NAME(sd, type); \ |
7c16ec58 MT |
7282 | } |
7283 | ||
7284 | SD_INIT_FUNC(CPU) | |
7285 | #ifdef CONFIG_NUMA | |
7286 | SD_INIT_FUNC(ALLNODES) | |
7287 | SD_INIT_FUNC(NODE) | |
7288 | #endif | |
7289 | #ifdef CONFIG_SCHED_SMT | |
7290 | SD_INIT_FUNC(SIBLING) | |
7291 | #endif | |
7292 | #ifdef CONFIG_SCHED_MC | |
7293 | SD_INIT_FUNC(MC) | |
7294 | #endif | |
7295 | ||
7296 | /* | |
7297 | * To minimize stack usage kmalloc room for cpumasks and share the | |
7298 | * space as the usage in build_sched_domains() dictates. Used only | |
7299 | * if the amount of space is significant. | |
7300 | */ | |
7301 | struct allmasks { | |
7302 | cpumask_t tmpmask; /* make this one first */ | |
7303 | union { | |
7304 | cpumask_t nodemask; | |
7305 | cpumask_t this_sibling_map; | |
7306 | cpumask_t this_core_map; | |
7307 | }; | |
7308 | cpumask_t send_covered; | |
7309 | ||
7310 | #ifdef CONFIG_NUMA | |
7311 | cpumask_t domainspan; | |
7312 | cpumask_t covered; | |
7313 | cpumask_t notcovered; | |
7314 | #endif | |
7315 | }; | |
7316 | ||
7317 | #if NR_CPUS > 128 | |
6d21cd62 LZ |
7318 | #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v |
7319 | static inline void sched_cpumask_alloc(struct allmasks **masks) | |
7320 | { | |
7321 | *masks = kmalloc(sizeof(**masks), GFP_KERNEL); | |
7322 | } | |
7323 | static inline void sched_cpumask_free(struct allmasks *masks) | |
7324 | { | |
7325 | kfree(masks); | |
7326 | } | |
7c16ec58 | 7327 | #else |
6d21cd62 LZ |
7328 | #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v |
7329 | static inline void sched_cpumask_alloc(struct allmasks **masks) | |
7330 | { } | |
7331 | static inline void sched_cpumask_free(struct allmasks *masks) | |
7332 | { } | |
7c16ec58 MT |
7333 | #endif |
7334 | ||
7335 | #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \ | |
7336 | ((unsigned long)(a) + offsetof(struct allmasks, v)) | |
7337 | ||
1d3504fc HS |
7338 | static int default_relax_domain_level = -1; |
7339 | ||
7340 | static int __init setup_relax_domain_level(char *str) | |
7341 | { | |
30e0e178 LZ |
7342 | unsigned long val; |
7343 | ||
7344 | val = simple_strtoul(str, NULL, 0); | |
7345 | if (val < SD_LV_MAX) | |
7346 | default_relax_domain_level = val; | |
7347 | ||
1d3504fc HS |
7348 | return 1; |
7349 | } | |
7350 | __setup("relax_domain_level=", setup_relax_domain_level); | |
7351 | ||
7352 | static void set_domain_attribute(struct sched_domain *sd, | |
7353 | struct sched_domain_attr *attr) | |
7354 | { | |
7355 | int request; | |
7356 | ||
7357 | if (!attr || attr->relax_domain_level < 0) { | |
7358 | if (default_relax_domain_level < 0) | |
7359 | return; | |
7360 | else | |
7361 | request = default_relax_domain_level; | |
7362 | } else | |
7363 | request = attr->relax_domain_level; | |
7364 | if (request < sd->level) { | |
7365 | /* turn off idle balance on this domain */ | |
7366 | sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE); | |
7367 | } else { | |
7368 | /* turn on idle balance on this domain */ | |
7369 | sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE); | |
7370 | } | |
7371 | } | |
7372 | ||
1da177e4 | 7373 | /* |
1a20ff27 DG |
7374 | * Build sched domains for a given set of cpus and attach the sched domains |
7375 | * to the individual cpus | |
1da177e4 | 7376 | */ |
1d3504fc HS |
7377 | static int __build_sched_domains(const cpumask_t *cpu_map, |
7378 | struct sched_domain_attr *attr) | |
1da177e4 LT |
7379 | { |
7380 | int i; | |
57d885fe | 7381 | struct root_domain *rd; |
7c16ec58 MT |
7382 | SCHED_CPUMASK_DECLARE(allmasks); |
7383 | cpumask_t *tmpmask; | |
d1b55138 JH |
7384 | #ifdef CONFIG_NUMA |
7385 | struct sched_group **sched_group_nodes = NULL; | |
6711cab4 | 7386 | int sd_allnodes = 0; |
d1b55138 JH |
7387 | |
7388 | /* | |
7389 | * Allocate the per-node list of sched groups | |
7390 | */ | |
076ac2af | 7391 | sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *), |
41a2d6cf | 7392 | GFP_KERNEL); |
d1b55138 JH |
7393 | if (!sched_group_nodes) { |
7394 | printk(KERN_WARNING "Can not alloc sched group node list\n"); | |
51888ca2 | 7395 | return -ENOMEM; |
d1b55138 | 7396 | } |
d1b55138 | 7397 | #endif |
1da177e4 | 7398 | |
dc938520 | 7399 | rd = alloc_rootdomain(); |
57d885fe GH |
7400 | if (!rd) { |
7401 | printk(KERN_WARNING "Cannot alloc root domain\n"); | |
7c16ec58 MT |
7402 | #ifdef CONFIG_NUMA |
7403 | kfree(sched_group_nodes); | |
7404 | #endif | |
57d885fe GH |
7405 | return -ENOMEM; |
7406 | } | |
7407 | ||
7c16ec58 | 7408 | /* get space for all scratch cpumask variables */ |
6d21cd62 | 7409 | sched_cpumask_alloc(&allmasks); |
7c16ec58 MT |
7410 | if (!allmasks) { |
7411 | printk(KERN_WARNING "Cannot alloc cpumask array\n"); | |
7412 | kfree(rd); | |
7413 | #ifdef CONFIG_NUMA | |
7414 | kfree(sched_group_nodes); | |
7415 | #endif | |
7416 | return -ENOMEM; | |
7417 | } | |
6d21cd62 | 7418 | |
7c16ec58 MT |
7419 | tmpmask = (cpumask_t *)allmasks; |
7420 | ||
7421 | ||
7422 | #ifdef CONFIG_NUMA | |
7423 | sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes; | |
7424 | #endif | |
7425 | ||
1da177e4 | 7426 | /* |
1a20ff27 | 7427 | * Set up domains for cpus specified by the cpu_map. |
1da177e4 | 7428 | */ |
363ab6f1 | 7429 | for_each_cpu_mask_nr(i, *cpu_map) { |
1da177e4 | 7430 | struct sched_domain *sd = NULL, *p; |
7c16ec58 | 7431 | SCHED_CPUMASK_VAR(nodemask, allmasks); |
1da177e4 | 7432 | |
7c16ec58 MT |
7433 | *nodemask = node_to_cpumask(cpu_to_node(i)); |
7434 | cpus_and(*nodemask, *nodemask, *cpu_map); | |
1da177e4 LT |
7435 | |
7436 | #ifdef CONFIG_NUMA | |
dd41f596 | 7437 | if (cpus_weight(*cpu_map) > |
7c16ec58 | 7438 | SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) { |
9c1cfda2 | 7439 | sd = &per_cpu(allnodes_domains, i); |
7c16ec58 | 7440 | SD_INIT(sd, ALLNODES); |
1d3504fc | 7441 | set_domain_attribute(sd, attr); |
9c1cfda2 | 7442 | sd->span = *cpu_map; |
7c16ec58 | 7443 | cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask); |
9c1cfda2 | 7444 | p = sd; |
6711cab4 | 7445 | sd_allnodes = 1; |
9c1cfda2 JH |
7446 | } else |
7447 | p = NULL; | |
7448 | ||
1da177e4 | 7449 | sd = &per_cpu(node_domains, i); |
7c16ec58 | 7450 | SD_INIT(sd, NODE); |
1d3504fc | 7451 | set_domain_attribute(sd, attr); |
4bdbaad3 | 7452 | sched_domain_node_span(cpu_to_node(i), &sd->span); |
9c1cfda2 | 7453 | sd->parent = p; |
1a848870 SS |
7454 | if (p) |
7455 | p->child = sd; | |
9c1cfda2 | 7456 | cpus_and(sd->span, sd->span, *cpu_map); |
1da177e4 LT |
7457 | #endif |
7458 | ||
7459 | p = sd; | |
7460 | sd = &per_cpu(phys_domains, i); | |
7c16ec58 | 7461 | SD_INIT(sd, CPU); |
1d3504fc | 7462 | set_domain_attribute(sd, attr); |
7c16ec58 | 7463 | sd->span = *nodemask; |
1da177e4 | 7464 | sd->parent = p; |
1a848870 SS |
7465 | if (p) |
7466 | p->child = sd; | |
7c16ec58 | 7467 | cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask); |
1da177e4 | 7468 | |
1e9f28fa SS |
7469 | #ifdef CONFIG_SCHED_MC |
7470 | p = sd; | |
7471 | sd = &per_cpu(core_domains, i); | |
7c16ec58 | 7472 | SD_INIT(sd, MC); |
1d3504fc | 7473 | set_domain_attribute(sd, attr); |
1e9f28fa SS |
7474 | sd->span = cpu_coregroup_map(i); |
7475 | cpus_and(sd->span, sd->span, *cpu_map); | |
7476 | sd->parent = p; | |
1a848870 | 7477 | p->child = sd; |
7c16ec58 | 7478 | cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask); |
1e9f28fa SS |
7479 | #endif |
7480 | ||
1da177e4 LT |
7481 | #ifdef CONFIG_SCHED_SMT |
7482 | p = sd; | |
7483 | sd = &per_cpu(cpu_domains, i); | |
7c16ec58 | 7484 | SD_INIT(sd, SIBLING); |
1d3504fc | 7485 | set_domain_attribute(sd, attr); |
d5a7430d | 7486 | sd->span = per_cpu(cpu_sibling_map, i); |
1a20ff27 | 7487 | cpus_and(sd->span, sd->span, *cpu_map); |
1da177e4 | 7488 | sd->parent = p; |
1a848870 | 7489 | p->child = sd; |
7c16ec58 | 7490 | cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask); |
1da177e4 LT |
7491 | #endif |
7492 | } | |
7493 | ||
7494 | #ifdef CONFIG_SCHED_SMT | |
7495 | /* Set up CPU (sibling) groups */ | |
363ab6f1 | 7496 | for_each_cpu_mask_nr(i, *cpu_map) { |
7c16ec58 MT |
7497 | SCHED_CPUMASK_VAR(this_sibling_map, allmasks); |
7498 | SCHED_CPUMASK_VAR(send_covered, allmasks); | |
7499 | ||
7500 | *this_sibling_map = per_cpu(cpu_sibling_map, i); | |
7501 | cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map); | |
7502 | if (i != first_cpu(*this_sibling_map)) | |
1da177e4 LT |
7503 | continue; |
7504 | ||
dd41f596 | 7505 | init_sched_build_groups(this_sibling_map, cpu_map, |
7c16ec58 MT |
7506 | &cpu_to_cpu_group, |
7507 | send_covered, tmpmask); | |
1da177e4 LT |
7508 | } |
7509 | #endif | |
7510 | ||
1e9f28fa SS |
7511 | #ifdef CONFIG_SCHED_MC |
7512 | /* Set up multi-core groups */ | |
363ab6f1 | 7513 | for_each_cpu_mask_nr(i, *cpu_map) { |
7c16ec58 MT |
7514 | SCHED_CPUMASK_VAR(this_core_map, allmasks); |
7515 | SCHED_CPUMASK_VAR(send_covered, allmasks); | |
7516 | ||
7517 | *this_core_map = cpu_coregroup_map(i); | |
7518 | cpus_and(*this_core_map, *this_core_map, *cpu_map); | |
7519 | if (i != first_cpu(*this_core_map)) | |
1e9f28fa | 7520 | continue; |
7c16ec58 | 7521 | |
dd41f596 | 7522 | init_sched_build_groups(this_core_map, cpu_map, |
7c16ec58 MT |
7523 | &cpu_to_core_group, |
7524 | send_covered, tmpmask); | |
1e9f28fa SS |
7525 | } |
7526 | #endif | |
7527 | ||
1da177e4 | 7528 | /* Set up physical groups */ |
076ac2af | 7529 | for (i = 0; i < nr_node_ids; i++) { |
7c16ec58 MT |
7530 | SCHED_CPUMASK_VAR(nodemask, allmasks); |
7531 | SCHED_CPUMASK_VAR(send_covered, allmasks); | |
1da177e4 | 7532 | |
7c16ec58 MT |
7533 | *nodemask = node_to_cpumask(i); |
7534 | cpus_and(*nodemask, *nodemask, *cpu_map); | |
7535 | if (cpus_empty(*nodemask)) | |
1da177e4 LT |
7536 | continue; |
7537 | ||
7c16ec58 MT |
7538 | init_sched_build_groups(nodemask, cpu_map, |
7539 | &cpu_to_phys_group, | |
7540 | send_covered, tmpmask); | |
1da177e4 LT |
7541 | } |
7542 | ||
7543 | #ifdef CONFIG_NUMA | |
7544 | /* Set up node groups */ | |
7c16ec58 MT |
7545 | if (sd_allnodes) { |
7546 | SCHED_CPUMASK_VAR(send_covered, allmasks); | |
7547 | ||
7548 | init_sched_build_groups(cpu_map, cpu_map, | |
7549 | &cpu_to_allnodes_group, | |
7550 | send_covered, tmpmask); | |
7551 | } | |
9c1cfda2 | 7552 | |
076ac2af | 7553 | for (i = 0; i < nr_node_ids; i++) { |
9c1cfda2 JH |
7554 | /* Set up node groups */ |
7555 | struct sched_group *sg, *prev; | |
7c16ec58 MT |
7556 | SCHED_CPUMASK_VAR(nodemask, allmasks); |
7557 | SCHED_CPUMASK_VAR(domainspan, allmasks); | |
7558 | SCHED_CPUMASK_VAR(covered, allmasks); | |
9c1cfda2 JH |
7559 | int j; |
7560 | ||
7c16ec58 MT |
7561 | *nodemask = node_to_cpumask(i); |
7562 | cpus_clear(*covered); | |
7563 | ||
7564 | cpus_and(*nodemask, *nodemask, *cpu_map); | |
7565 | if (cpus_empty(*nodemask)) { | |
d1b55138 | 7566 | sched_group_nodes[i] = NULL; |
9c1cfda2 | 7567 | continue; |
d1b55138 | 7568 | } |
9c1cfda2 | 7569 | |
4bdbaad3 | 7570 | sched_domain_node_span(i, domainspan); |
7c16ec58 | 7571 | cpus_and(*domainspan, *domainspan, *cpu_map); |
9c1cfda2 | 7572 | |
15f0b676 | 7573 | sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i); |
51888ca2 SV |
7574 | if (!sg) { |
7575 | printk(KERN_WARNING "Can not alloc domain group for " | |
7576 | "node %d\n", i); | |
7577 | goto error; | |
7578 | } | |
9c1cfda2 | 7579 | sched_group_nodes[i] = sg; |
363ab6f1 | 7580 | for_each_cpu_mask_nr(j, *nodemask) { |
9c1cfda2 | 7581 | struct sched_domain *sd; |
9761eea8 | 7582 | |
9c1cfda2 JH |
7583 | sd = &per_cpu(node_domains, j); |
7584 | sd->groups = sg; | |
9c1cfda2 | 7585 | } |
5517d86b | 7586 | sg->__cpu_power = 0; |
7c16ec58 | 7587 | sg->cpumask = *nodemask; |
51888ca2 | 7588 | sg->next = sg; |
7c16ec58 | 7589 | cpus_or(*covered, *covered, *nodemask); |
9c1cfda2 JH |
7590 | prev = sg; |
7591 | ||
076ac2af | 7592 | for (j = 0; j < nr_node_ids; j++) { |
7c16ec58 | 7593 | SCHED_CPUMASK_VAR(notcovered, allmasks); |
076ac2af | 7594 | int n = (i + j) % nr_node_ids; |
c5f59f08 | 7595 | node_to_cpumask_ptr(pnodemask, n); |
9c1cfda2 | 7596 | |
7c16ec58 MT |
7597 | cpus_complement(*notcovered, *covered); |
7598 | cpus_and(*tmpmask, *notcovered, *cpu_map); | |
7599 | cpus_and(*tmpmask, *tmpmask, *domainspan); | |
7600 | if (cpus_empty(*tmpmask)) | |
9c1cfda2 JH |
7601 | break; |
7602 | ||
7c16ec58 MT |
7603 | cpus_and(*tmpmask, *tmpmask, *pnodemask); |
7604 | if (cpus_empty(*tmpmask)) | |
9c1cfda2 JH |
7605 | continue; |
7606 | ||
15f0b676 SV |
7607 | sg = kmalloc_node(sizeof(struct sched_group), |
7608 | GFP_KERNEL, i); | |
9c1cfda2 JH |
7609 | if (!sg) { |
7610 | printk(KERN_WARNING | |
7611 | "Can not alloc domain group for node %d\n", j); | |
51888ca2 | 7612 | goto error; |
9c1cfda2 | 7613 | } |
5517d86b | 7614 | sg->__cpu_power = 0; |
7c16ec58 | 7615 | sg->cpumask = *tmpmask; |
51888ca2 | 7616 | sg->next = prev->next; |
7c16ec58 | 7617 | cpus_or(*covered, *covered, *tmpmask); |
9c1cfda2 JH |
7618 | prev->next = sg; |
7619 | prev = sg; | |
7620 | } | |
9c1cfda2 | 7621 | } |
1da177e4 LT |
7622 | #endif |
7623 | ||
7624 | /* Calculate CPU power for physical packages and nodes */ | |
5c45bf27 | 7625 | #ifdef CONFIG_SCHED_SMT |
363ab6f1 | 7626 | for_each_cpu_mask_nr(i, *cpu_map) { |
dd41f596 IM |
7627 | struct sched_domain *sd = &per_cpu(cpu_domains, i); |
7628 | ||
89c4710e | 7629 | init_sched_groups_power(i, sd); |
5c45bf27 | 7630 | } |
1da177e4 | 7631 | #endif |
1e9f28fa | 7632 | #ifdef CONFIG_SCHED_MC |
363ab6f1 | 7633 | for_each_cpu_mask_nr(i, *cpu_map) { |
dd41f596 IM |
7634 | struct sched_domain *sd = &per_cpu(core_domains, i); |
7635 | ||
89c4710e | 7636 | init_sched_groups_power(i, sd); |
5c45bf27 SS |
7637 | } |
7638 | #endif | |
1e9f28fa | 7639 | |
363ab6f1 | 7640 | for_each_cpu_mask_nr(i, *cpu_map) { |
dd41f596 IM |
7641 | struct sched_domain *sd = &per_cpu(phys_domains, i); |
7642 | ||
89c4710e | 7643 | init_sched_groups_power(i, sd); |
1da177e4 LT |
7644 | } |
7645 | ||
9c1cfda2 | 7646 | #ifdef CONFIG_NUMA |
076ac2af | 7647 | for (i = 0; i < nr_node_ids; i++) |
08069033 | 7648 | init_numa_sched_groups_power(sched_group_nodes[i]); |
9c1cfda2 | 7649 | |
6711cab4 SS |
7650 | if (sd_allnodes) { |
7651 | struct sched_group *sg; | |
f712c0c7 | 7652 | |
7c16ec58 MT |
7653 | cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg, |
7654 | tmpmask); | |
f712c0c7 SS |
7655 | init_numa_sched_groups_power(sg); |
7656 | } | |
9c1cfda2 JH |
7657 | #endif |
7658 | ||
1da177e4 | 7659 | /* Attach the domains */ |
363ab6f1 | 7660 | for_each_cpu_mask_nr(i, *cpu_map) { |
1da177e4 LT |
7661 | struct sched_domain *sd; |
7662 | #ifdef CONFIG_SCHED_SMT | |
7663 | sd = &per_cpu(cpu_domains, i); | |
1e9f28fa SS |
7664 | #elif defined(CONFIG_SCHED_MC) |
7665 | sd = &per_cpu(core_domains, i); | |
1da177e4 LT |
7666 | #else |
7667 | sd = &per_cpu(phys_domains, i); | |
7668 | #endif | |
57d885fe | 7669 | cpu_attach_domain(sd, rd, i); |
1da177e4 | 7670 | } |
51888ca2 | 7671 | |
6d21cd62 | 7672 | sched_cpumask_free(allmasks); |
51888ca2 SV |
7673 | return 0; |
7674 | ||
a616058b | 7675 | #ifdef CONFIG_NUMA |
51888ca2 | 7676 | error: |
7c16ec58 | 7677 | free_sched_groups(cpu_map, tmpmask); |
6d21cd62 | 7678 | sched_cpumask_free(allmasks); |
ca3273f9 | 7679 | kfree(rd); |
51888ca2 | 7680 | return -ENOMEM; |
a616058b | 7681 | #endif |
1da177e4 | 7682 | } |
029190c5 | 7683 | |
1d3504fc HS |
7684 | static int build_sched_domains(const cpumask_t *cpu_map) |
7685 | { | |
7686 | return __build_sched_domains(cpu_map, NULL); | |
7687 | } | |
7688 | ||
029190c5 PJ |
7689 | static cpumask_t *doms_cur; /* current sched domains */ |
7690 | static int ndoms_cur; /* number of sched domains in 'doms_cur' */ | |
4285f594 IM |
7691 | static struct sched_domain_attr *dattr_cur; |
7692 | /* attribues of custom domains in 'doms_cur' */ | |
029190c5 PJ |
7693 | |
7694 | /* | |
7695 | * Special case: If a kmalloc of a doms_cur partition (array of | |
7696 | * cpumask_t) fails, then fallback to a single sched domain, | |
7697 | * as determined by the single cpumask_t fallback_doms. | |
7698 | */ | |
7699 | static cpumask_t fallback_doms; | |
7700 | ||
ee79d1bd HC |
7701 | /* |
7702 | * arch_update_cpu_topology lets virtualized architectures update the | |
7703 | * cpu core maps. It is supposed to return 1 if the topology changed | |
7704 | * or 0 if it stayed the same. | |
7705 | */ | |
7706 | int __attribute__((weak)) arch_update_cpu_topology(void) | |
22e52b07 | 7707 | { |
ee79d1bd | 7708 | return 0; |
22e52b07 HC |
7709 | } |
7710 | ||
1a20ff27 | 7711 | /* |
41a2d6cf | 7712 | * Set up scheduler domains and groups. Callers must hold the hotplug lock. |
029190c5 PJ |
7713 | * For now this just excludes isolated cpus, but could be used to |
7714 | * exclude other special cases in the future. | |
1a20ff27 | 7715 | */ |
51888ca2 | 7716 | static int arch_init_sched_domains(const cpumask_t *cpu_map) |
1a20ff27 | 7717 | { |
7378547f MM |
7718 | int err; |
7719 | ||
22e52b07 | 7720 | arch_update_cpu_topology(); |
029190c5 PJ |
7721 | ndoms_cur = 1; |
7722 | doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL); | |
7723 | if (!doms_cur) | |
7724 | doms_cur = &fallback_doms; | |
7725 | cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map); | |
1d3504fc | 7726 | dattr_cur = NULL; |
7378547f | 7727 | err = build_sched_domains(doms_cur); |
6382bc90 | 7728 | register_sched_domain_sysctl(); |
7378547f MM |
7729 | |
7730 | return err; | |
1a20ff27 DG |
7731 | } |
7732 | ||
7c16ec58 MT |
7733 | static void arch_destroy_sched_domains(const cpumask_t *cpu_map, |
7734 | cpumask_t *tmpmask) | |
1da177e4 | 7735 | { |
7c16ec58 | 7736 | free_sched_groups(cpu_map, tmpmask); |
9c1cfda2 | 7737 | } |
1da177e4 | 7738 | |
1a20ff27 DG |
7739 | /* |
7740 | * Detach sched domains from a group of cpus specified in cpu_map | |
7741 | * These cpus will now be attached to the NULL domain | |
7742 | */ | |
858119e1 | 7743 | static void detach_destroy_domains(const cpumask_t *cpu_map) |
1a20ff27 | 7744 | { |
7c16ec58 | 7745 | cpumask_t tmpmask; |
1a20ff27 DG |
7746 | int i; |
7747 | ||
363ab6f1 | 7748 | for_each_cpu_mask_nr(i, *cpu_map) |
57d885fe | 7749 | cpu_attach_domain(NULL, &def_root_domain, i); |
1a20ff27 | 7750 | synchronize_sched(); |
7c16ec58 | 7751 | arch_destroy_sched_domains(cpu_map, &tmpmask); |
1a20ff27 DG |
7752 | } |
7753 | ||
1d3504fc HS |
7754 | /* handle null as "default" */ |
7755 | static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, | |
7756 | struct sched_domain_attr *new, int idx_new) | |
7757 | { | |
7758 | struct sched_domain_attr tmp; | |
7759 | ||
7760 | /* fast path */ | |
7761 | if (!new && !cur) | |
7762 | return 1; | |
7763 | ||
7764 | tmp = SD_ATTR_INIT; | |
7765 | return !memcmp(cur ? (cur + idx_cur) : &tmp, | |
7766 | new ? (new + idx_new) : &tmp, | |
7767 | sizeof(struct sched_domain_attr)); | |
7768 | } | |
7769 | ||
029190c5 PJ |
7770 | /* |
7771 | * Partition sched domains as specified by the 'ndoms_new' | |
41a2d6cf | 7772 | * cpumasks in the array doms_new[] of cpumasks. This compares |
029190c5 PJ |
7773 | * doms_new[] to the current sched domain partitioning, doms_cur[]. |
7774 | * It destroys each deleted domain and builds each new domain. | |
7775 | * | |
7776 | * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'. | |
41a2d6cf IM |
7777 | * The masks don't intersect (don't overlap.) We should setup one |
7778 | * sched domain for each mask. CPUs not in any of the cpumasks will | |
7779 | * not be load balanced. If the same cpumask appears both in the | |
029190c5 PJ |
7780 | * current 'doms_cur' domains and in the new 'doms_new', we can leave |
7781 | * it as it is. | |
7782 | * | |
41a2d6cf IM |
7783 | * The passed in 'doms_new' should be kmalloc'd. This routine takes |
7784 | * ownership of it and will kfree it when done with it. If the caller | |
700018e0 LZ |
7785 | * failed the kmalloc call, then it can pass in doms_new == NULL && |
7786 | * ndoms_new == 1, and partition_sched_domains() will fallback to | |
7787 | * the single partition 'fallback_doms', it also forces the domains | |
7788 | * to be rebuilt. | |
029190c5 | 7789 | * |
700018e0 LZ |
7790 | * If doms_new == NULL it will be replaced with cpu_online_map. |
7791 | * ndoms_new == 0 is a special case for destroying existing domains, | |
7792 | * and it will not create the default domain. | |
dfb512ec | 7793 | * |
029190c5 PJ |
7794 | * Call with hotplug lock held |
7795 | */ | |
1d3504fc HS |
7796 | void partition_sched_domains(int ndoms_new, cpumask_t *doms_new, |
7797 | struct sched_domain_attr *dattr_new) | |
029190c5 | 7798 | { |
dfb512ec | 7799 | int i, j, n; |
d65bd5ec | 7800 | int new_topology; |
029190c5 | 7801 | |
712555ee | 7802 | mutex_lock(&sched_domains_mutex); |
a1835615 | 7803 | |
7378547f MM |
7804 | /* always unregister in case we don't destroy any domains */ |
7805 | unregister_sched_domain_sysctl(); | |
7806 | ||
d65bd5ec HC |
7807 | /* Let architecture update cpu core mappings. */ |
7808 | new_topology = arch_update_cpu_topology(); | |
7809 | ||
dfb512ec | 7810 | n = doms_new ? ndoms_new : 0; |
029190c5 PJ |
7811 | |
7812 | /* Destroy deleted domains */ | |
7813 | for (i = 0; i < ndoms_cur; i++) { | |
d65bd5ec | 7814 | for (j = 0; j < n && !new_topology; j++) { |
1d3504fc HS |
7815 | if (cpus_equal(doms_cur[i], doms_new[j]) |
7816 | && dattrs_equal(dattr_cur, i, dattr_new, j)) | |
029190c5 PJ |
7817 | goto match1; |
7818 | } | |
7819 | /* no match - a current sched domain not in new doms_new[] */ | |
7820 | detach_destroy_domains(doms_cur + i); | |
7821 | match1: | |
7822 | ; | |
7823 | } | |
7824 | ||
e761b772 MK |
7825 | if (doms_new == NULL) { |
7826 | ndoms_cur = 0; | |
e761b772 MK |
7827 | doms_new = &fallback_doms; |
7828 | cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map); | |
faa2f98f | 7829 | WARN_ON_ONCE(dattr_new); |
e761b772 MK |
7830 | } |
7831 | ||
029190c5 PJ |
7832 | /* Build new domains */ |
7833 | for (i = 0; i < ndoms_new; i++) { | |
d65bd5ec | 7834 | for (j = 0; j < ndoms_cur && !new_topology; j++) { |
1d3504fc HS |
7835 | if (cpus_equal(doms_new[i], doms_cur[j]) |
7836 | && dattrs_equal(dattr_new, i, dattr_cur, j)) | |
029190c5 PJ |
7837 | goto match2; |
7838 | } | |
7839 | /* no match - add a new doms_new */ | |
1d3504fc HS |
7840 | __build_sched_domains(doms_new + i, |
7841 | dattr_new ? dattr_new + i : NULL); | |
029190c5 PJ |
7842 | match2: |
7843 | ; | |
7844 | } | |
7845 | ||
7846 | /* Remember the new sched domains */ | |
7847 | if (doms_cur != &fallback_doms) | |
7848 | kfree(doms_cur); | |
1d3504fc | 7849 | kfree(dattr_cur); /* kfree(NULL) is safe */ |
029190c5 | 7850 | doms_cur = doms_new; |
1d3504fc | 7851 | dattr_cur = dattr_new; |
029190c5 | 7852 | ndoms_cur = ndoms_new; |
7378547f MM |
7853 | |
7854 | register_sched_domain_sysctl(); | |
a1835615 | 7855 | |
712555ee | 7856 | mutex_unlock(&sched_domains_mutex); |
029190c5 PJ |
7857 | } |
7858 | ||
5c45bf27 | 7859 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
9aefd0ab | 7860 | int arch_reinit_sched_domains(void) |
5c45bf27 | 7861 | { |
95402b38 | 7862 | get_online_cpus(); |
dfb512ec MK |
7863 | |
7864 | /* Destroy domains first to force the rebuild */ | |
7865 | partition_sched_domains(0, NULL, NULL); | |
7866 | ||
e761b772 | 7867 | rebuild_sched_domains(); |
95402b38 | 7868 | put_online_cpus(); |
dfb512ec | 7869 | |
e761b772 | 7870 | return 0; |
5c45bf27 SS |
7871 | } |
7872 | ||
7873 | static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) | |
7874 | { | |
7875 | int ret; | |
7876 | ||
7877 | if (buf[0] != '0' && buf[0] != '1') | |
7878 | return -EINVAL; | |
7879 | ||
7880 | if (smt) | |
7881 | sched_smt_power_savings = (buf[0] == '1'); | |
7882 | else | |
7883 | sched_mc_power_savings = (buf[0] == '1'); | |
7884 | ||
7885 | ret = arch_reinit_sched_domains(); | |
7886 | ||
7887 | return ret ? ret : count; | |
7888 | } | |
7889 | ||
5c45bf27 | 7890 | #ifdef CONFIG_SCHED_MC |
f718cd4a AK |
7891 | static ssize_t sched_mc_power_savings_show(struct sysdev_class *class, |
7892 | char *page) | |
5c45bf27 SS |
7893 | { |
7894 | return sprintf(page, "%u\n", sched_mc_power_savings); | |
7895 | } | |
f718cd4a | 7896 | static ssize_t sched_mc_power_savings_store(struct sysdev_class *class, |
48f24c4d | 7897 | const char *buf, size_t count) |
5c45bf27 SS |
7898 | { |
7899 | return sched_power_savings_store(buf, count, 0); | |
7900 | } | |
f718cd4a AK |
7901 | static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644, |
7902 | sched_mc_power_savings_show, | |
7903 | sched_mc_power_savings_store); | |
5c45bf27 SS |
7904 | #endif |
7905 | ||
7906 | #ifdef CONFIG_SCHED_SMT | |
f718cd4a AK |
7907 | static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev, |
7908 | char *page) | |
5c45bf27 SS |
7909 | { |
7910 | return sprintf(page, "%u\n", sched_smt_power_savings); | |
7911 | } | |
f718cd4a | 7912 | static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev, |
48f24c4d | 7913 | const char *buf, size_t count) |
5c45bf27 SS |
7914 | { |
7915 | return sched_power_savings_store(buf, count, 1); | |
7916 | } | |
f718cd4a AK |
7917 | static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644, |
7918 | sched_smt_power_savings_show, | |
6707de00 AB |
7919 | sched_smt_power_savings_store); |
7920 | #endif | |
7921 | ||
7922 | int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls) | |
7923 | { | |
7924 | int err = 0; | |
7925 | ||
7926 | #ifdef CONFIG_SCHED_SMT | |
7927 | if (smt_capable()) | |
7928 | err = sysfs_create_file(&cls->kset.kobj, | |
7929 | &attr_sched_smt_power_savings.attr); | |
7930 | #endif | |
7931 | #ifdef CONFIG_SCHED_MC | |
7932 | if (!err && mc_capable()) | |
7933 | err = sysfs_create_file(&cls->kset.kobj, | |
7934 | &attr_sched_mc_power_savings.attr); | |
7935 | #endif | |
7936 | return err; | |
7937 | } | |
6d6bc0ad | 7938 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ |
5c45bf27 | 7939 | |
e761b772 | 7940 | #ifndef CONFIG_CPUSETS |
1da177e4 | 7941 | /* |
e761b772 MK |
7942 | * Add online and remove offline CPUs from the scheduler domains. |
7943 | * When cpusets are enabled they take over this function. | |
1da177e4 LT |
7944 | */ |
7945 | static int update_sched_domains(struct notifier_block *nfb, | |
7946 | unsigned long action, void *hcpu) | |
e761b772 MK |
7947 | { |
7948 | switch (action) { | |
7949 | case CPU_ONLINE: | |
7950 | case CPU_ONLINE_FROZEN: | |
7951 | case CPU_DEAD: | |
7952 | case CPU_DEAD_FROZEN: | |
dfb512ec | 7953 | partition_sched_domains(1, NULL, NULL); |
e761b772 MK |
7954 | return NOTIFY_OK; |
7955 | ||
7956 | default: | |
7957 | return NOTIFY_DONE; | |
7958 | } | |
7959 | } | |
7960 | #endif | |
7961 | ||
7962 | static int update_runtime(struct notifier_block *nfb, | |
7963 | unsigned long action, void *hcpu) | |
1da177e4 | 7964 | { |
7def2be1 PZ |
7965 | int cpu = (int)(long)hcpu; |
7966 | ||
1da177e4 | 7967 | switch (action) { |
1da177e4 | 7968 | case CPU_DOWN_PREPARE: |
8bb78442 | 7969 | case CPU_DOWN_PREPARE_FROZEN: |
7def2be1 | 7970 | disable_runtime(cpu_rq(cpu)); |
1da177e4 LT |
7971 | return NOTIFY_OK; |
7972 | ||
1da177e4 | 7973 | case CPU_DOWN_FAILED: |
8bb78442 | 7974 | case CPU_DOWN_FAILED_FROZEN: |
1da177e4 | 7975 | case CPU_ONLINE: |
8bb78442 | 7976 | case CPU_ONLINE_FROZEN: |
7def2be1 | 7977 | enable_runtime(cpu_rq(cpu)); |
e761b772 MK |
7978 | return NOTIFY_OK; |
7979 | ||
1da177e4 LT |
7980 | default: |
7981 | return NOTIFY_DONE; | |
7982 | } | |
1da177e4 | 7983 | } |
1da177e4 LT |
7984 | |
7985 | void __init sched_init_smp(void) | |
7986 | { | |
5c1e1767 NP |
7987 | cpumask_t non_isolated_cpus; |
7988 | ||
434d53b0 MT |
7989 | #if defined(CONFIG_NUMA) |
7990 | sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **), | |
7991 | GFP_KERNEL); | |
7992 | BUG_ON(sched_group_nodes_bycpu == NULL); | |
7993 | #endif | |
95402b38 | 7994 | get_online_cpus(); |
712555ee | 7995 | mutex_lock(&sched_domains_mutex); |
1a20ff27 | 7996 | arch_init_sched_domains(&cpu_online_map); |
e5e5673f | 7997 | cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map); |
5c1e1767 NP |
7998 | if (cpus_empty(non_isolated_cpus)) |
7999 | cpu_set(smp_processor_id(), non_isolated_cpus); | |
712555ee | 8000 | mutex_unlock(&sched_domains_mutex); |
95402b38 | 8001 | put_online_cpus(); |
e761b772 MK |
8002 | |
8003 | #ifndef CONFIG_CPUSETS | |
1da177e4 LT |
8004 | /* XXX: Theoretical race here - CPU may be hotplugged now */ |
8005 | hotcpu_notifier(update_sched_domains, 0); | |
e761b772 MK |
8006 | #endif |
8007 | ||
8008 | /* RT runtime code needs to handle some hotplug events */ | |
8009 | hotcpu_notifier(update_runtime, 0); | |
8010 | ||
b328ca18 | 8011 | init_hrtick(); |
5c1e1767 NP |
8012 | |
8013 | /* Move init over to a non-isolated CPU */ | |
7c16ec58 | 8014 | if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0) |
5c1e1767 | 8015 | BUG(); |
19978ca6 | 8016 | sched_init_granularity(); |
1da177e4 LT |
8017 | } |
8018 | #else | |
8019 | void __init sched_init_smp(void) | |
8020 | { | |
19978ca6 | 8021 | sched_init_granularity(); |
1da177e4 LT |
8022 | } |
8023 | #endif /* CONFIG_SMP */ | |
8024 | ||
8025 | int in_sched_functions(unsigned long addr) | |
8026 | { | |
1da177e4 LT |
8027 | return in_lock_functions(addr) || |
8028 | (addr >= (unsigned long)__sched_text_start | |
8029 | && addr < (unsigned long)__sched_text_end); | |
8030 | } | |
8031 | ||
a9957449 | 8032 | static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq) |
dd41f596 IM |
8033 | { |
8034 | cfs_rq->tasks_timeline = RB_ROOT; | |
4a55bd5e | 8035 | INIT_LIST_HEAD(&cfs_rq->tasks); |
dd41f596 IM |
8036 | #ifdef CONFIG_FAIR_GROUP_SCHED |
8037 | cfs_rq->rq = rq; | |
8038 | #endif | |
67e9fb2a | 8039 | cfs_rq->min_vruntime = (u64)(-(1LL << 20)); |
dd41f596 IM |
8040 | } |
8041 | ||
fa85ae24 PZ |
8042 | static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) |
8043 | { | |
8044 | struct rt_prio_array *array; | |
8045 | int i; | |
8046 | ||
8047 | array = &rt_rq->active; | |
8048 | for (i = 0; i < MAX_RT_PRIO; i++) { | |
8049 | INIT_LIST_HEAD(array->queue + i); | |
8050 | __clear_bit(i, array->bitmap); | |
8051 | } | |
8052 | /* delimiter for bitsearch: */ | |
8053 | __set_bit(MAX_RT_PRIO, array->bitmap); | |
8054 | ||
052f1dc7 | 8055 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
48d5e258 PZ |
8056 | rt_rq->highest_prio = MAX_RT_PRIO; |
8057 | #endif | |
fa85ae24 PZ |
8058 | #ifdef CONFIG_SMP |
8059 | rt_rq->rt_nr_migratory = 0; | |
fa85ae24 PZ |
8060 | rt_rq->overloaded = 0; |
8061 | #endif | |
8062 | ||
8063 | rt_rq->rt_time = 0; | |
8064 | rt_rq->rt_throttled = 0; | |
ac086bc2 PZ |
8065 | rt_rq->rt_runtime = 0; |
8066 | spin_lock_init(&rt_rq->rt_runtime_lock); | |
6f505b16 | 8067 | |
052f1dc7 | 8068 | #ifdef CONFIG_RT_GROUP_SCHED |
23b0fdfc | 8069 | rt_rq->rt_nr_boosted = 0; |
6f505b16 PZ |
8070 | rt_rq->rq = rq; |
8071 | #endif | |
fa85ae24 PZ |
8072 | } |
8073 | ||
6f505b16 | 8074 | #ifdef CONFIG_FAIR_GROUP_SCHED |
ec7dc8ac DG |
8075 | static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, |
8076 | struct sched_entity *se, int cpu, int add, | |
8077 | struct sched_entity *parent) | |
6f505b16 | 8078 | { |
ec7dc8ac | 8079 | struct rq *rq = cpu_rq(cpu); |
6f505b16 PZ |
8080 | tg->cfs_rq[cpu] = cfs_rq; |
8081 | init_cfs_rq(cfs_rq, rq); | |
8082 | cfs_rq->tg = tg; | |
8083 | if (add) | |
8084 | list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list); | |
8085 | ||
8086 | tg->se[cpu] = se; | |
354d60c2 DG |
8087 | /* se could be NULL for init_task_group */ |
8088 | if (!se) | |
8089 | return; | |
8090 | ||
ec7dc8ac DG |
8091 | if (!parent) |
8092 | se->cfs_rq = &rq->cfs; | |
8093 | else | |
8094 | se->cfs_rq = parent->my_q; | |
8095 | ||
6f505b16 PZ |
8096 | se->my_q = cfs_rq; |
8097 | se->load.weight = tg->shares; | |
e05510d0 | 8098 | se->load.inv_weight = 0; |
ec7dc8ac | 8099 | se->parent = parent; |
6f505b16 | 8100 | } |
052f1dc7 | 8101 | #endif |
6f505b16 | 8102 | |
052f1dc7 | 8103 | #ifdef CONFIG_RT_GROUP_SCHED |
ec7dc8ac DG |
8104 | static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, |
8105 | struct sched_rt_entity *rt_se, int cpu, int add, | |
8106 | struct sched_rt_entity *parent) | |
6f505b16 | 8107 | { |
ec7dc8ac DG |
8108 | struct rq *rq = cpu_rq(cpu); |
8109 | ||
6f505b16 PZ |
8110 | tg->rt_rq[cpu] = rt_rq; |
8111 | init_rt_rq(rt_rq, rq); | |
8112 | rt_rq->tg = tg; | |
8113 | rt_rq->rt_se = rt_se; | |
ac086bc2 | 8114 | rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; |
6f505b16 PZ |
8115 | if (add) |
8116 | list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list); | |
8117 | ||
8118 | tg->rt_se[cpu] = rt_se; | |
354d60c2 DG |
8119 | if (!rt_se) |
8120 | return; | |
8121 | ||
ec7dc8ac DG |
8122 | if (!parent) |
8123 | rt_se->rt_rq = &rq->rt; | |
8124 | else | |
8125 | rt_se->rt_rq = parent->my_q; | |
8126 | ||
6f505b16 | 8127 | rt_se->my_q = rt_rq; |
ec7dc8ac | 8128 | rt_se->parent = parent; |
6f505b16 PZ |
8129 | INIT_LIST_HEAD(&rt_se->run_list); |
8130 | } | |
8131 | #endif | |
8132 | ||
1da177e4 LT |
8133 | void __init sched_init(void) |
8134 | { | |
dd41f596 | 8135 | int i, j; |
434d53b0 MT |
8136 | unsigned long alloc_size = 0, ptr; |
8137 | ||
8138 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
8139 | alloc_size += 2 * nr_cpu_ids * sizeof(void **); | |
8140 | #endif | |
8141 | #ifdef CONFIG_RT_GROUP_SCHED | |
8142 | alloc_size += 2 * nr_cpu_ids * sizeof(void **); | |
eff766a6 PZ |
8143 | #endif |
8144 | #ifdef CONFIG_USER_SCHED | |
8145 | alloc_size *= 2; | |
434d53b0 MT |
8146 | #endif |
8147 | /* | |
8148 | * As sched_init() is called before page_alloc is setup, | |
8149 | * we use alloc_bootmem(). | |
8150 | */ | |
8151 | if (alloc_size) { | |
5a9d3225 | 8152 | ptr = (unsigned long)alloc_bootmem(alloc_size); |
434d53b0 MT |
8153 | |
8154 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
8155 | init_task_group.se = (struct sched_entity **)ptr; | |
8156 | ptr += nr_cpu_ids * sizeof(void **); | |
8157 | ||
8158 | init_task_group.cfs_rq = (struct cfs_rq **)ptr; | |
8159 | ptr += nr_cpu_ids * sizeof(void **); | |
eff766a6 PZ |
8160 | |
8161 | #ifdef CONFIG_USER_SCHED | |
8162 | root_task_group.se = (struct sched_entity **)ptr; | |
8163 | ptr += nr_cpu_ids * sizeof(void **); | |
8164 | ||
8165 | root_task_group.cfs_rq = (struct cfs_rq **)ptr; | |
8166 | ptr += nr_cpu_ids * sizeof(void **); | |
6d6bc0ad DG |
8167 | #endif /* CONFIG_USER_SCHED */ |
8168 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | |
434d53b0 MT |
8169 | #ifdef CONFIG_RT_GROUP_SCHED |
8170 | init_task_group.rt_se = (struct sched_rt_entity **)ptr; | |
8171 | ptr += nr_cpu_ids * sizeof(void **); | |
8172 | ||
8173 | init_task_group.rt_rq = (struct rt_rq **)ptr; | |
eff766a6 PZ |
8174 | ptr += nr_cpu_ids * sizeof(void **); |
8175 | ||
8176 | #ifdef CONFIG_USER_SCHED | |
8177 | root_task_group.rt_se = (struct sched_rt_entity **)ptr; | |
8178 | ptr += nr_cpu_ids * sizeof(void **); | |
8179 | ||
8180 | root_task_group.rt_rq = (struct rt_rq **)ptr; | |
8181 | ptr += nr_cpu_ids * sizeof(void **); | |
6d6bc0ad DG |
8182 | #endif /* CONFIG_USER_SCHED */ |
8183 | #endif /* CONFIG_RT_GROUP_SCHED */ | |
434d53b0 | 8184 | } |
dd41f596 | 8185 | |
57d885fe GH |
8186 | #ifdef CONFIG_SMP |
8187 | init_defrootdomain(); | |
8188 | #endif | |
8189 | ||
d0b27fa7 PZ |
8190 | init_rt_bandwidth(&def_rt_bandwidth, |
8191 | global_rt_period(), global_rt_runtime()); | |
8192 | ||
8193 | #ifdef CONFIG_RT_GROUP_SCHED | |
8194 | init_rt_bandwidth(&init_task_group.rt_bandwidth, | |
8195 | global_rt_period(), global_rt_runtime()); | |
eff766a6 PZ |
8196 | #ifdef CONFIG_USER_SCHED |
8197 | init_rt_bandwidth(&root_task_group.rt_bandwidth, | |
8198 | global_rt_period(), RUNTIME_INF); | |
6d6bc0ad DG |
8199 | #endif /* CONFIG_USER_SCHED */ |
8200 | #endif /* CONFIG_RT_GROUP_SCHED */ | |
d0b27fa7 | 8201 | |
052f1dc7 | 8202 | #ifdef CONFIG_GROUP_SCHED |
6f505b16 | 8203 | list_add(&init_task_group.list, &task_groups); |
f473aa5e PZ |
8204 | INIT_LIST_HEAD(&init_task_group.children); |
8205 | ||
8206 | #ifdef CONFIG_USER_SCHED | |
8207 | INIT_LIST_HEAD(&root_task_group.children); | |
8208 | init_task_group.parent = &root_task_group; | |
8209 | list_add(&init_task_group.siblings, &root_task_group.children); | |
6d6bc0ad DG |
8210 | #endif /* CONFIG_USER_SCHED */ |
8211 | #endif /* CONFIG_GROUP_SCHED */ | |
6f505b16 | 8212 | |
0a945022 | 8213 | for_each_possible_cpu(i) { |
70b97a7f | 8214 | struct rq *rq; |
1da177e4 LT |
8215 | |
8216 | rq = cpu_rq(i); | |
8217 | spin_lock_init(&rq->lock); | |
7897986b | 8218 | rq->nr_running = 0; |
dd41f596 | 8219 | init_cfs_rq(&rq->cfs, rq); |
6f505b16 | 8220 | init_rt_rq(&rq->rt, rq); |
dd41f596 | 8221 | #ifdef CONFIG_FAIR_GROUP_SCHED |
4cf86d77 | 8222 | init_task_group.shares = init_task_group_load; |
6f505b16 | 8223 | INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); |
354d60c2 DG |
8224 | #ifdef CONFIG_CGROUP_SCHED |
8225 | /* | |
8226 | * How much cpu bandwidth does init_task_group get? | |
8227 | * | |
8228 | * In case of task-groups formed thr' the cgroup filesystem, it | |
8229 | * gets 100% of the cpu resources in the system. This overall | |
8230 | * system cpu resource is divided among the tasks of | |
8231 | * init_task_group and its child task-groups in a fair manner, | |
8232 | * based on each entity's (task or task-group's) weight | |
8233 | * (se->load.weight). | |
8234 | * | |
8235 | * In other words, if init_task_group has 10 tasks of weight | |
8236 | * 1024) and two child groups A0 and A1 (of weight 1024 each), | |
8237 | * then A0's share of the cpu resource is: | |
8238 | * | |
8239 | * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% | |
8240 | * | |
8241 | * We achieve this by letting init_task_group's tasks sit | |
8242 | * directly in rq->cfs (i.e init_task_group->se[] = NULL). | |
8243 | */ | |
ec7dc8ac | 8244 | init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL); |
354d60c2 | 8245 | #elif defined CONFIG_USER_SCHED |
eff766a6 PZ |
8246 | root_task_group.shares = NICE_0_LOAD; |
8247 | init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL); | |
354d60c2 DG |
8248 | /* |
8249 | * In case of task-groups formed thr' the user id of tasks, | |
8250 | * init_task_group represents tasks belonging to root user. | |
8251 | * Hence it forms a sibling of all subsequent groups formed. | |
8252 | * In this case, init_task_group gets only a fraction of overall | |
8253 | * system cpu resource, based on the weight assigned to root | |
8254 | * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished | |
8255 | * by letting tasks of init_task_group sit in a separate cfs_rq | |
8256 | * (init_cfs_rq) and having one entity represent this group of | |
8257 | * tasks in rq->cfs (i.e init_task_group->se[] != NULL). | |
8258 | */ | |
ec7dc8ac | 8259 | init_tg_cfs_entry(&init_task_group, |
6f505b16 | 8260 | &per_cpu(init_cfs_rq, i), |
eff766a6 PZ |
8261 | &per_cpu(init_sched_entity, i), i, 1, |
8262 | root_task_group.se[i]); | |
6f505b16 | 8263 | |
052f1dc7 | 8264 | #endif |
354d60c2 DG |
8265 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
8266 | ||
8267 | rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; | |
052f1dc7 | 8268 | #ifdef CONFIG_RT_GROUP_SCHED |
6f505b16 | 8269 | INIT_LIST_HEAD(&rq->leaf_rt_rq_list); |
354d60c2 | 8270 | #ifdef CONFIG_CGROUP_SCHED |
ec7dc8ac | 8271 | init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL); |
354d60c2 | 8272 | #elif defined CONFIG_USER_SCHED |
eff766a6 | 8273 | init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL); |
ec7dc8ac | 8274 | init_tg_rt_entry(&init_task_group, |
6f505b16 | 8275 | &per_cpu(init_rt_rq, i), |
eff766a6 PZ |
8276 | &per_cpu(init_sched_rt_entity, i), i, 1, |
8277 | root_task_group.rt_se[i]); | |
354d60c2 | 8278 | #endif |
dd41f596 | 8279 | #endif |
1da177e4 | 8280 | |
dd41f596 IM |
8281 | for (j = 0; j < CPU_LOAD_IDX_MAX; j++) |
8282 | rq->cpu_load[j] = 0; | |
1da177e4 | 8283 | #ifdef CONFIG_SMP |
41c7ce9a | 8284 | rq->sd = NULL; |
57d885fe | 8285 | rq->rd = NULL; |
1da177e4 | 8286 | rq->active_balance = 0; |
dd41f596 | 8287 | rq->next_balance = jiffies; |
1da177e4 | 8288 | rq->push_cpu = 0; |
0a2966b4 | 8289 | rq->cpu = i; |
1f11eb6a | 8290 | rq->online = 0; |
1da177e4 LT |
8291 | rq->migration_thread = NULL; |
8292 | INIT_LIST_HEAD(&rq->migration_queue); | |
dc938520 | 8293 | rq_attach_root(rq, &def_root_domain); |
1da177e4 | 8294 | #endif |
8f4d37ec | 8295 | init_rq_hrtick(rq); |
1da177e4 | 8296 | atomic_set(&rq->nr_iowait, 0); |
1da177e4 LT |
8297 | } |
8298 | ||
2dd73a4f | 8299 | set_load_weight(&init_task); |
b50f60ce | 8300 | |
e107be36 AK |
8301 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
8302 | INIT_HLIST_HEAD(&init_task.preempt_notifiers); | |
8303 | #endif | |
8304 | ||
c9819f45 | 8305 | #ifdef CONFIG_SMP |
962cf36c | 8306 | open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); |
c9819f45 CL |
8307 | #endif |
8308 | ||
b50f60ce HC |
8309 | #ifdef CONFIG_RT_MUTEXES |
8310 | plist_head_init(&init_task.pi_waiters, &init_task.pi_lock); | |
8311 | #endif | |
8312 | ||
1da177e4 LT |
8313 | /* |
8314 | * The boot idle thread does lazy MMU switching as well: | |
8315 | */ | |
8316 | atomic_inc(&init_mm.mm_count); | |
8317 | enter_lazy_tlb(&init_mm, current); | |
8318 | ||
8319 | /* | |
8320 | * Make us the idle thread. Technically, schedule() should not be | |
8321 | * called from this thread, however somewhere below it might be, | |
8322 | * but because we are the idle thread, we just pick up running again | |
8323 | * when this runqueue becomes "idle". | |
8324 | */ | |
8325 | init_idle(current, smp_processor_id()); | |
dd41f596 IM |
8326 | /* |
8327 | * During early bootup we pretend to be a normal task: | |
8328 | */ | |
8329 | current->sched_class = &fair_sched_class; | |
6892b75e IM |
8330 | |
8331 | scheduler_running = 1; | |
1da177e4 LT |
8332 | } |
8333 | ||
8334 | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP | |
8335 | void __might_sleep(char *file, int line) | |
8336 | { | |
48f24c4d | 8337 | #ifdef in_atomic |
1da177e4 LT |
8338 | static unsigned long prev_jiffy; /* ratelimiting */ |
8339 | ||
aef745fc IM |
8340 | if ((!in_atomic() && !irqs_disabled()) || |
8341 | system_state != SYSTEM_RUNNING || oops_in_progress) | |
8342 | return; | |
8343 | if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) | |
8344 | return; | |
8345 | prev_jiffy = jiffies; | |
8346 | ||
8347 | printk(KERN_ERR | |
8348 | "BUG: sleeping function called from invalid context at %s:%d\n", | |
8349 | file, line); | |
8350 | printk(KERN_ERR | |
8351 | "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", | |
8352 | in_atomic(), irqs_disabled(), | |
8353 | current->pid, current->comm); | |
8354 | ||
8355 | debug_show_held_locks(current); | |
8356 | if (irqs_disabled()) | |
8357 | print_irqtrace_events(current); | |
8358 | dump_stack(); | |
1da177e4 LT |
8359 | #endif |
8360 | } | |
8361 | EXPORT_SYMBOL(__might_sleep); | |
8362 | #endif | |
8363 | ||
8364 | #ifdef CONFIG_MAGIC_SYSRQ | |
3a5e4dc1 AK |
8365 | static void normalize_task(struct rq *rq, struct task_struct *p) |
8366 | { | |
8367 | int on_rq; | |
3e51f33f | 8368 | |
3a5e4dc1 AK |
8369 | update_rq_clock(rq); |
8370 | on_rq = p->se.on_rq; | |
8371 | if (on_rq) | |
8372 | deactivate_task(rq, p, 0); | |
8373 | __setscheduler(rq, p, SCHED_NORMAL, 0); | |
8374 | if (on_rq) { | |
8375 | activate_task(rq, p, 0); | |
8376 | resched_task(rq->curr); | |
8377 | } | |
8378 | } | |
8379 | ||
1da177e4 LT |
8380 | void normalize_rt_tasks(void) |
8381 | { | |
a0f98a1c | 8382 | struct task_struct *g, *p; |
1da177e4 | 8383 | unsigned long flags; |
70b97a7f | 8384 | struct rq *rq; |
1da177e4 | 8385 | |
4cf5d77a | 8386 | read_lock_irqsave(&tasklist_lock, flags); |
a0f98a1c | 8387 | do_each_thread(g, p) { |
178be793 IM |
8388 | /* |
8389 | * Only normalize user tasks: | |
8390 | */ | |
8391 | if (!p->mm) | |
8392 | continue; | |
8393 | ||
6cfb0d5d | 8394 | p->se.exec_start = 0; |
6cfb0d5d | 8395 | #ifdef CONFIG_SCHEDSTATS |
dd41f596 | 8396 | p->se.wait_start = 0; |
dd41f596 | 8397 | p->se.sleep_start = 0; |
dd41f596 | 8398 | p->se.block_start = 0; |
6cfb0d5d | 8399 | #endif |
dd41f596 IM |
8400 | |
8401 | if (!rt_task(p)) { | |
8402 | /* | |
8403 | * Renice negative nice level userspace | |
8404 | * tasks back to 0: | |
8405 | */ | |
8406 | if (TASK_NICE(p) < 0 && p->mm) | |
8407 | set_user_nice(p, 0); | |
1da177e4 | 8408 | continue; |
dd41f596 | 8409 | } |
1da177e4 | 8410 | |
4cf5d77a | 8411 | spin_lock(&p->pi_lock); |
b29739f9 | 8412 | rq = __task_rq_lock(p); |
1da177e4 | 8413 | |
178be793 | 8414 | normalize_task(rq, p); |
3a5e4dc1 | 8415 | |
b29739f9 | 8416 | __task_rq_unlock(rq); |
4cf5d77a | 8417 | spin_unlock(&p->pi_lock); |
a0f98a1c IM |
8418 | } while_each_thread(g, p); |
8419 | ||
4cf5d77a | 8420 | read_unlock_irqrestore(&tasklist_lock, flags); |
1da177e4 LT |
8421 | } |
8422 | ||
8423 | #endif /* CONFIG_MAGIC_SYSRQ */ | |
1df5c10a LT |
8424 | |
8425 | #ifdef CONFIG_IA64 | |
8426 | /* | |
8427 | * These functions are only useful for the IA64 MCA handling. | |
8428 | * | |
8429 | * They can only be called when the whole system has been | |
8430 | * stopped - every CPU needs to be quiescent, and no scheduling | |
8431 | * activity can take place. Using them for anything else would | |
8432 | * be a serious bug, and as a result, they aren't even visible | |
8433 | * under any other configuration. | |
8434 | */ | |
8435 | ||
8436 | /** | |
8437 | * curr_task - return the current task for a given cpu. | |
8438 | * @cpu: the processor in question. | |
8439 | * | |
8440 | * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! | |
8441 | */ | |
36c8b586 | 8442 | struct task_struct *curr_task(int cpu) |
1df5c10a LT |
8443 | { |
8444 | return cpu_curr(cpu); | |
8445 | } | |
8446 | ||
8447 | /** | |
8448 | * set_curr_task - set the current task for a given cpu. | |
8449 | * @cpu: the processor in question. | |
8450 | * @p: the task pointer to set. | |
8451 | * | |
8452 | * Description: This function must only be used when non-maskable interrupts | |
41a2d6cf IM |
8453 | * are serviced on a separate stack. It allows the architecture to switch the |
8454 | * notion of the current task on a cpu in a non-blocking manner. This function | |
1df5c10a LT |
8455 | * must be called with all CPU's synchronized, and interrupts disabled, the |
8456 | * and caller must save the original value of the current task (see | |
8457 | * curr_task() above) and restore that value before reenabling interrupts and | |
8458 | * re-starting the system. | |
8459 | * | |
8460 | * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! | |
8461 | */ | |
36c8b586 | 8462 | void set_curr_task(int cpu, struct task_struct *p) |
1df5c10a LT |
8463 | { |
8464 | cpu_curr(cpu) = p; | |
8465 | } | |
8466 | ||
8467 | #endif | |
29f59db3 | 8468 | |
bccbe08a PZ |
8469 | #ifdef CONFIG_FAIR_GROUP_SCHED |
8470 | static void free_fair_sched_group(struct task_group *tg) | |
6f505b16 PZ |
8471 | { |
8472 | int i; | |
8473 | ||
8474 | for_each_possible_cpu(i) { | |
8475 | if (tg->cfs_rq) | |
8476 | kfree(tg->cfs_rq[i]); | |
8477 | if (tg->se) | |
8478 | kfree(tg->se[i]); | |
6f505b16 PZ |
8479 | } |
8480 | ||
8481 | kfree(tg->cfs_rq); | |
8482 | kfree(tg->se); | |
6f505b16 PZ |
8483 | } |
8484 | ||
ec7dc8ac DG |
8485 | static |
8486 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | |
29f59db3 | 8487 | { |
29f59db3 | 8488 | struct cfs_rq *cfs_rq; |
eab17229 | 8489 | struct sched_entity *se; |
9b5b7751 | 8490 | struct rq *rq; |
29f59db3 SV |
8491 | int i; |
8492 | ||
434d53b0 | 8493 | tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); |
29f59db3 SV |
8494 | if (!tg->cfs_rq) |
8495 | goto err; | |
434d53b0 | 8496 | tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); |
29f59db3 SV |
8497 | if (!tg->se) |
8498 | goto err; | |
052f1dc7 PZ |
8499 | |
8500 | tg->shares = NICE_0_LOAD; | |
29f59db3 SV |
8501 | |
8502 | for_each_possible_cpu(i) { | |
9b5b7751 | 8503 | rq = cpu_rq(i); |
29f59db3 | 8504 | |
eab17229 LZ |
8505 | cfs_rq = kzalloc_node(sizeof(struct cfs_rq), |
8506 | GFP_KERNEL, cpu_to_node(i)); | |
29f59db3 SV |
8507 | if (!cfs_rq) |
8508 | goto err; | |
8509 | ||
eab17229 LZ |
8510 | se = kzalloc_node(sizeof(struct sched_entity), |
8511 | GFP_KERNEL, cpu_to_node(i)); | |
29f59db3 SV |
8512 | if (!se) |
8513 | goto err; | |
8514 | ||
eab17229 | 8515 | init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]); |
bccbe08a PZ |
8516 | } |
8517 | ||
8518 | return 1; | |
8519 | ||
8520 | err: | |
8521 | return 0; | |
8522 | } | |
8523 | ||
8524 | static inline void register_fair_sched_group(struct task_group *tg, int cpu) | |
8525 | { | |
8526 | list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list, | |
8527 | &cpu_rq(cpu)->leaf_cfs_rq_list); | |
8528 | } | |
8529 | ||
8530 | static inline void unregister_fair_sched_group(struct task_group *tg, int cpu) | |
8531 | { | |
8532 | list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list); | |
8533 | } | |
6d6bc0ad | 8534 | #else /* !CONFG_FAIR_GROUP_SCHED */ |
bccbe08a PZ |
8535 | static inline void free_fair_sched_group(struct task_group *tg) |
8536 | { | |
8537 | } | |
8538 | ||
ec7dc8ac DG |
8539 | static inline |
8540 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | |
bccbe08a PZ |
8541 | { |
8542 | return 1; | |
8543 | } | |
8544 | ||
8545 | static inline void register_fair_sched_group(struct task_group *tg, int cpu) | |
8546 | { | |
8547 | } | |
8548 | ||
8549 | static inline void unregister_fair_sched_group(struct task_group *tg, int cpu) | |
8550 | { | |
8551 | } | |
6d6bc0ad | 8552 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
052f1dc7 PZ |
8553 | |
8554 | #ifdef CONFIG_RT_GROUP_SCHED | |
bccbe08a PZ |
8555 | static void free_rt_sched_group(struct task_group *tg) |
8556 | { | |
8557 | int i; | |
8558 | ||
d0b27fa7 PZ |
8559 | destroy_rt_bandwidth(&tg->rt_bandwidth); |
8560 | ||
bccbe08a PZ |
8561 | for_each_possible_cpu(i) { |
8562 | if (tg->rt_rq) | |
8563 | kfree(tg->rt_rq[i]); | |
8564 | if (tg->rt_se) | |
8565 | kfree(tg->rt_se[i]); | |
8566 | } | |
8567 | ||
8568 | kfree(tg->rt_rq); | |
8569 | kfree(tg->rt_se); | |
8570 | } | |
8571 | ||
ec7dc8ac DG |
8572 | static |
8573 | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) | |
bccbe08a PZ |
8574 | { |
8575 | struct rt_rq *rt_rq; | |
eab17229 | 8576 | struct sched_rt_entity *rt_se; |
bccbe08a PZ |
8577 | struct rq *rq; |
8578 | int i; | |
8579 | ||
434d53b0 | 8580 | tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); |
bccbe08a PZ |
8581 | if (!tg->rt_rq) |
8582 | goto err; | |
434d53b0 | 8583 | tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); |
bccbe08a PZ |
8584 | if (!tg->rt_se) |
8585 | goto err; | |
8586 | ||
d0b27fa7 PZ |
8587 | init_rt_bandwidth(&tg->rt_bandwidth, |
8588 | ktime_to_ns(def_rt_bandwidth.rt_period), 0); | |
bccbe08a PZ |
8589 | |
8590 | for_each_possible_cpu(i) { | |
8591 | rq = cpu_rq(i); | |
8592 | ||
eab17229 LZ |
8593 | rt_rq = kzalloc_node(sizeof(struct rt_rq), |
8594 | GFP_KERNEL, cpu_to_node(i)); | |
6f505b16 PZ |
8595 | if (!rt_rq) |
8596 | goto err; | |
29f59db3 | 8597 | |
eab17229 LZ |
8598 | rt_se = kzalloc_node(sizeof(struct sched_rt_entity), |
8599 | GFP_KERNEL, cpu_to_node(i)); | |
6f505b16 PZ |
8600 | if (!rt_se) |
8601 | goto err; | |
29f59db3 | 8602 | |
eab17229 | 8603 | init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]); |
29f59db3 SV |
8604 | } |
8605 | ||
bccbe08a PZ |
8606 | return 1; |
8607 | ||
8608 | err: | |
8609 | return 0; | |
8610 | } | |
8611 | ||
8612 | static inline void register_rt_sched_group(struct task_group *tg, int cpu) | |
8613 | { | |
8614 | list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list, | |
8615 | &cpu_rq(cpu)->leaf_rt_rq_list); | |
8616 | } | |
8617 | ||
8618 | static inline void unregister_rt_sched_group(struct task_group *tg, int cpu) | |
8619 | { | |
8620 | list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list); | |
8621 | } | |
6d6bc0ad | 8622 | #else /* !CONFIG_RT_GROUP_SCHED */ |
bccbe08a PZ |
8623 | static inline void free_rt_sched_group(struct task_group *tg) |
8624 | { | |
8625 | } | |
8626 | ||
ec7dc8ac DG |
8627 | static inline |
8628 | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) | |
bccbe08a PZ |
8629 | { |
8630 | return 1; | |
8631 | } | |
8632 | ||
8633 | static inline void register_rt_sched_group(struct task_group *tg, int cpu) | |
8634 | { | |
8635 | } | |
8636 | ||
8637 | static inline void unregister_rt_sched_group(struct task_group *tg, int cpu) | |
8638 | { | |
8639 | } | |
6d6bc0ad | 8640 | #endif /* CONFIG_RT_GROUP_SCHED */ |
bccbe08a | 8641 | |
d0b27fa7 | 8642 | #ifdef CONFIG_GROUP_SCHED |
bccbe08a PZ |
8643 | static void free_sched_group(struct task_group *tg) |
8644 | { | |
8645 | free_fair_sched_group(tg); | |
8646 | free_rt_sched_group(tg); | |
8647 | kfree(tg); | |
8648 | } | |
8649 | ||
8650 | /* allocate runqueue etc for a new task group */ | |
ec7dc8ac | 8651 | struct task_group *sched_create_group(struct task_group *parent) |
bccbe08a PZ |
8652 | { |
8653 | struct task_group *tg; | |
8654 | unsigned long flags; | |
8655 | int i; | |
8656 | ||
8657 | tg = kzalloc(sizeof(*tg), GFP_KERNEL); | |
8658 | if (!tg) | |
8659 | return ERR_PTR(-ENOMEM); | |
8660 | ||
ec7dc8ac | 8661 | if (!alloc_fair_sched_group(tg, parent)) |
bccbe08a PZ |
8662 | goto err; |
8663 | ||
ec7dc8ac | 8664 | if (!alloc_rt_sched_group(tg, parent)) |
bccbe08a PZ |
8665 | goto err; |
8666 | ||
8ed36996 | 8667 | spin_lock_irqsave(&task_group_lock, flags); |
9b5b7751 | 8668 | for_each_possible_cpu(i) { |
bccbe08a PZ |
8669 | register_fair_sched_group(tg, i); |
8670 | register_rt_sched_group(tg, i); | |
9b5b7751 | 8671 | } |
6f505b16 | 8672 | list_add_rcu(&tg->list, &task_groups); |
f473aa5e PZ |
8673 | |
8674 | WARN_ON(!parent); /* root should already exist */ | |
8675 | ||
8676 | tg->parent = parent; | |
f473aa5e | 8677 | INIT_LIST_HEAD(&tg->children); |
09f2724a | 8678 | list_add_rcu(&tg->siblings, &parent->children); |
8ed36996 | 8679 | spin_unlock_irqrestore(&task_group_lock, flags); |
29f59db3 | 8680 | |
9b5b7751 | 8681 | return tg; |
29f59db3 SV |
8682 | |
8683 | err: | |
6f505b16 | 8684 | free_sched_group(tg); |
29f59db3 SV |
8685 | return ERR_PTR(-ENOMEM); |
8686 | } | |
8687 | ||
9b5b7751 | 8688 | /* rcu callback to free various structures associated with a task group */ |
6f505b16 | 8689 | static void free_sched_group_rcu(struct rcu_head *rhp) |
29f59db3 | 8690 | { |
29f59db3 | 8691 | /* now it should be safe to free those cfs_rqs */ |
6f505b16 | 8692 | free_sched_group(container_of(rhp, struct task_group, rcu)); |
29f59db3 SV |
8693 | } |
8694 | ||
9b5b7751 | 8695 | /* Destroy runqueue etc associated with a task group */ |
4cf86d77 | 8696 | void sched_destroy_group(struct task_group *tg) |
29f59db3 | 8697 | { |
8ed36996 | 8698 | unsigned long flags; |
9b5b7751 | 8699 | int i; |
29f59db3 | 8700 | |
8ed36996 | 8701 | spin_lock_irqsave(&task_group_lock, flags); |
9b5b7751 | 8702 | for_each_possible_cpu(i) { |
bccbe08a PZ |
8703 | unregister_fair_sched_group(tg, i); |
8704 | unregister_rt_sched_group(tg, i); | |
9b5b7751 | 8705 | } |
6f505b16 | 8706 | list_del_rcu(&tg->list); |
f473aa5e | 8707 | list_del_rcu(&tg->siblings); |
8ed36996 | 8708 | spin_unlock_irqrestore(&task_group_lock, flags); |
9b5b7751 | 8709 | |
9b5b7751 | 8710 | /* wait for possible concurrent references to cfs_rqs complete */ |
6f505b16 | 8711 | call_rcu(&tg->rcu, free_sched_group_rcu); |
29f59db3 SV |
8712 | } |
8713 | ||
9b5b7751 | 8714 | /* change task's runqueue when it moves between groups. |
3a252015 IM |
8715 | * The caller of this function should have put the task in its new group |
8716 | * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to | |
8717 | * reflect its new group. | |
9b5b7751 SV |
8718 | */ |
8719 | void sched_move_task(struct task_struct *tsk) | |
29f59db3 SV |
8720 | { |
8721 | int on_rq, running; | |
8722 | unsigned long flags; | |
8723 | struct rq *rq; | |
8724 | ||
8725 | rq = task_rq_lock(tsk, &flags); | |
8726 | ||
29f59db3 SV |
8727 | update_rq_clock(rq); |
8728 | ||
051a1d1a | 8729 | running = task_current(rq, tsk); |
29f59db3 SV |
8730 | on_rq = tsk->se.on_rq; |
8731 | ||
0e1f3483 | 8732 | if (on_rq) |
29f59db3 | 8733 | dequeue_task(rq, tsk, 0); |
0e1f3483 HS |
8734 | if (unlikely(running)) |
8735 | tsk->sched_class->put_prev_task(rq, tsk); | |
29f59db3 | 8736 | |
6f505b16 | 8737 | set_task_rq(tsk, task_cpu(tsk)); |
29f59db3 | 8738 | |
810b3817 PZ |
8739 | #ifdef CONFIG_FAIR_GROUP_SCHED |
8740 | if (tsk->sched_class->moved_group) | |
8741 | tsk->sched_class->moved_group(tsk); | |
8742 | #endif | |
8743 | ||
0e1f3483 HS |
8744 | if (unlikely(running)) |
8745 | tsk->sched_class->set_curr_task(rq); | |
8746 | if (on_rq) | |
7074badb | 8747 | enqueue_task(rq, tsk, 0); |
29f59db3 | 8748 | |
29f59db3 SV |
8749 | task_rq_unlock(rq, &flags); |
8750 | } | |
6d6bc0ad | 8751 | #endif /* CONFIG_GROUP_SCHED */ |
29f59db3 | 8752 | |
052f1dc7 | 8753 | #ifdef CONFIG_FAIR_GROUP_SCHED |
c09595f6 | 8754 | static void __set_se_shares(struct sched_entity *se, unsigned long shares) |
29f59db3 SV |
8755 | { |
8756 | struct cfs_rq *cfs_rq = se->cfs_rq; | |
29f59db3 SV |
8757 | int on_rq; |
8758 | ||
29f59db3 | 8759 | on_rq = se->on_rq; |
62fb1851 | 8760 | if (on_rq) |
29f59db3 SV |
8761 | dequeue_entity(cfs_rq, se, 0); |
8762 | ||
8763 | se->load.weight = shares; | |
e05510d0 | 8764 | se->load.inv_weight = 0; |
29f59db3 | 8765 | |
62fb1851 | 8766 | if (on_rq) |
29f59db3 | 8767 | enqueue_entity(cfs_rq, se, 0); |
c09595f6 | 8768 | } |
62fb1851 | 8769 | |
c09595f6 PZ |
8770 | static void set_se_shares(struct sched_entity *se, unsigned long shares) |
8771 | { | |
8772 | struct cfs_rq *cfs_rq = se->cfs_rq; | |
8773 | struct rq *rq = cfs_rq->rq; | |
8774 | unsigned long flags; | |
8775 | ||
8776 | spin_lock_irqsave(&rq->lock, flags); | |
8777 | __set_se_shares(se, shares); | |
8778 | spin_unlock_irqrestore(&rq->lock, flags); | |
29f59db3 SV |
8779 | } |
8780 | ||
8ed36996 PZ |
8781 | static DEFINE_MUTEX(shares_mutex); |
8782 | ||
4cf86d77 | 8783 | int sched_group_set_shares(struct task_group *tg, unsigned long shares) |
29f59db3 SV |
8784 | { |
8785 | int i; | |
8ed36996 | 8786 | unsigned long flags; |
c61935fd | 8787 | |
ec7dc8ac DG |
8788 | /* |
8789 | * We can't change the weight of the root cgroup. | |
8790 | */ | |
8791 | if (!tg->se[0]) | |
8792 | return -EINVAL; | |
8793 | ||
18d95a28 PZ |
8794 | if (shares < MIN_SHARES) |
8795 | shares = MIN_SHARES; | |
cb4ad1ff MX |
8796 | else if (shares > MAX_SHARES) |
8797 | shares = MAX_SHARES; | |
62fb1851 | 8798 | |
8ed36996 | 8799 | mutex_lock(&shares_mutex); |
9b5b7751 | 8800 | if (tg->shares == shares) |
5cb350ba | 8801 | goto done; |
29f59db3 | 8802 | |
8ed36996 | 8803 | spin_lock_irqsave(&task_group_lock, flags); |
bccbe08a PZ |
8804 | for_each_possible_cpu(i) |
8805 | unregister_fair_sched_group(tg, i); | |
f473aa5e | 8806 | list_del_rcu(&tg->siblings); |
8ed36996 | 8807 | spin_unlock_irqrestore(&task_group_lock, flags); |
6b2d7700 SV |
8808 | |
8809 | /* wait for any ongoing reference to this group to finish */ | |
8810 | synchronize_sched(); | |
8811 | ||
8812 | /* | |
8813 | * Now we are free to modify the group's share on each cpu | |
8814 | * w/o tripping rebalance_share or load_balance_fair. | |
8815 | */ | |
9b5b7751 | 8816 | tg->shares = shares; |
c09595f6 PZ |
8817 | for_each_possible_cpu(i) { |
8818 | /* | |
8819 | * force a rebalance | |
8820 | */ | |
8821 | cfs_rq_set_shares(tg->cfs_rq[i], 0); | |
cb4ad1ff | 8822 | set_se_shares(tg->se[i], shares); |
c09595f6 | 8823 | } |
29f59db3 | 8824 | |
6b2d7700 SV |
8825 | /* |
8826 | * Enable load balance activity on this group, by inserting it back on | |
8827 | * each cpu's rq->leaf_cfs_rq_list. | |
8828 | */ | |
8ed36996 | 8829 | spin_lock_irqsave(&task_group_lock, flags); |
bccbe08a PZ |
8830 | for_each_possible_cpu(i) |
8831 | register_fair_sched_group(tg, i); | |
f473aa5e | 8832 | list_add_rcu(&tg->siblings, &tg->parent->children); |
8ed36996 | 8833 | spin_unlock_irqrestore(&task_group_lock, flags); |
5cb350ba | 8834 | done: |
8ed36996 | 8835 | mutex_unlock(&shares_mutex); |
9b5b7751 | 8836 | return 0; |
29f59db3 SV |
8837 | } |
8838 | ||
5cb350ba DG |
8839 | unsigned long sched_group_shares(struct task_group *tg) |
8840 | { | |
8841 | return tg->shares; | |
8842 | } | |
052f1dc7 | 8843 | #endif |
5cb350ba | 8844 | |
052f1dc7 | 8845 | #ifdef CONFIG_RT_GROUP_SCHED |
6f505b16 | 8846 | /* |
9f0c1e56 | 8847 | * Ensure that the real time constraints are schedulable. |
6f505b16 | 8848 | */ |
9f0c1e56 PZ |
8849 | static DEFINE_MUTEX(rt_constraints_mutex); |
8850 | ||
8851 | static unsigned long to_ratio(u64 period, u64 runtime) | |
8852 | { | |
8853 | if (runtime == RUNTIME_INF) | |
9a7e0b18 | 8854 | return 1ULL << 20; |
9f0c1e56 | 8855 | |
9a7e0b18 | 8856 | return div64_u64(runtime << 20, period); |
9f0c1e56 PZ |
8857 | } |
8858 | ||
9a7e0b18 PZ |
8859 | /* Must be called with tasklist_lock held */ |
8860 | static inline int tg_has_rt_tasks(struct task_group *tg) | |
b40b2e8e | 8861 | { |
9a7e0b18 | 8862 | struct task_struct *g, *p; |
b40b2e8e | 8863 | |
9a7e0b18 PZ |
8864 | do_each_thread(g, p) { |
8865 | if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg) | |
8866 | return 1; | |
8867 | } while_each_thread(g, p); | |
b40b2e8e | 8868 | |
9a7e0b18 PZ |
8869 | return 0; |
8870 | } | |
b40b2e8e | 8871 | |
9a7e0b18 PZ |
8872 | struct rt_schedulable_data { |
8873 | struct task_group *tg; | |
8874 | u64 rt_period; | |
8875 | u64 rt_runtime; | |
8876 | }; | |
b40b2e8e | 8877 | |
9a7e0b18 PZ |
8878 | static int tg_schedulable(struct task_group *tg, void *data) |
8879 | { | |
8880 | struct rt_schedulable_data *d = data; | |
8881 | struct task_group *child; | |
8882 | unsigned long total, sum = 0; | |
8883 | u64 period, runtime; | |
b40b2e8e | 8884 | |
9a7e0b18 PZ |
8885 | period = ktime_to_ns(tg->rt_bandwidth.rt_period); |
8886 | runtime = tg->rt_bandwidth.rt_runtime; | |
b40b2e8e | 8887 | |
9a7e0b18 PZ |
8888 | if (tg == d->tg) { |
8889 | period = d->rt_period; | |
8890 | runtime = d->rt_runtime; | |
b40b2e8e | 8891 | } |
b40b2e8e | 8892 | |
4653f803 PZ |
8893 | /* |
8894 | * Cannot have more runtime than the period. | |
8895 | */ | |
8896 | if (runtime > period && runtime != RUNTIME_INF) | |
8897 | return -EINVAL; | |
6f505b16 | 8898 | |
4653f803 PZ |
8899 | /* |
8900 | * Ensure we don't starve existing RT tasks. | |
8901 | */ | |
9a7e0b18 PZ |
8902 | if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) |
8903 | return -EBUSY; | |
6f505b16 | 8904 | |
9a7e0b18 | 8905 | total = to_ratio(period, runtime); |
6f505b16 | 8906 | |
4653f803 PZ |
8907 | /* |
8908 | * Nobody can have more than the global setting allows. | |
8909 | */ | |
8910 | if (total > to_ratio(global_rt_period(), global_rt_runtime())) | |
8911 | return -EINVAL; | |
6f505b16 | 8912 | |
4653f803 PZ |
8913 | /* |
8914 | * The sum of our children's runtime should not exceed our own. | |
8915 | */ | |
9a7e0b18 PZ |
8916 | list_for_each_entry_rcu(child, &tg->children, siblings) { |
8917 | period = ktime_to_ns(child->rt_bandwidth.rt_period); | |
8918 | runtime = child->rt_bandwidth.rt_runtime; | |
6f505b16 | 8919 | |
9a7e0b18 PZ |
8920 | if (child == d->tg) { |
8921 | period = d->rt_period; | |
8922 | runtime = d->rt_runtime; | |
8923 | } | |
6f505b16 | 8924 | |
9a7e0b18 | 8925 | sum += to_ratio(period, runtime); |
9f0c1e56 | 8926 | } |
6f505b16 | 8927 | |
9a7e0b18 PZ |
8928 | if (sum > total) |
8929 | return -EINVAL; | |
8930 | ||
8931 | return 0; | |
6f505b16 PZ |
8932 | } |
8933 | ||
9a7e0b18 | 8934 | static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) |
521f1a24 | 8935 | { |
9a7e0b18 PZ |
8936 | struct rt_schedulable_data data = { |
8937 | .tg = tg, | |
8938 | .rt_period = period, | |
8939 | .rt_runtime = runtime, | |
8940 | }; | |
8941 | ||
8942 | return walk_tg_tree(tg_schedulable, tg_nop, &data); | |
521f1a24 DG |
8943 | } |
8944 | ||
d0b27fa7 PZ |
8945 | static int tg_set_bandwidth(struct task_group *tg, |
8946 | u64 rt_period, u64 rt_runtime) | |
6f505b16 | 8947 | { |
ac086bc2 | 8948 | int i, err = 0; |
9f0c1e56 | 8949 | |
9f0c1e56 | 8950 | mutex_lock(&rt_constraints_mutex); |
521f1a24 | 8951 | read_lock(&tasklist_lock); |
9a7e0b18 PZ |
8952 | err = __rt_schedulable(tg, rt_period, rt_runtime); |
8953 | if (err) | |
9f0c1e56 | 8954 | goto unlock; |
ac086bc2 PZ |
8955 | |
8956 | spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); | |
d0b27fa7 PZ |
8957 | tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); |
8958 | tg->rt_bandwidth.rt_runtime = rt_runtime; | |
ac086bc2 PZ |
8959 | |
8960 | for_each_possible_cpu(i) { | |
8961 | struct rt_rq *rt_rq = tg->rt_rq[i]; | |
8962 | ||
8963 | spin_lock(&rt_rq->rt_runtime_lock); | |
8964 | rt_rq->rt_runtime = rt_runtime; | |
8965 | spin_unlock(&rt_rq->rt_runtime_lock); | |
8966 | } | |
8967 | spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); | |
9f0c1e56 | 8968 | unlock: |
521f1a24 | 8969 | read_unlock(&tasklist_lock); |
9f0c1e56 PZ |
8970 | mutex_unlock(&rt_constraints_mutex); |
8971 | ||
8972 | return err; | |
6f505b16 PZ |
8973 | } |
8974 | ||
d0b27fa7 PZ |
8975 | int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) |
8976 | { | |
8977 | u64 rt_runtime, rt_period; | |
8978 | ||
8979 | rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); | |
8980 | rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; | |
8981 | if (rt_runtime_us < 0) | |
8982 | rt_runtime = RUNTIME_INF; | |
8983 | ||
8984 | return tg_set_bandwidth(tg, rt_period, rt_runtime); | |
8985 | } | |
8986 | ||
9f0c1e56 PZ |
8987 | long sched_group_rt_runtime(struct task_group *tg) |
8988 | { | |
8989 | u64 rt_runtime_us; | |
8990 | ||
d0b27fa7 | 8991 | if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) |
9f0c1e56 PZ |
8992 | return -1; |
8993 | ||
d0b27fa7 | 8994 | rt_runtime_us = tg->rt_bandwidth.rt_runtime; |
9f0c1e56 PZ |
8995 | do_div(rt_runtime_us, NSEC_PER_USEC); |
8996 | return rt_runtime_us; | |
8997 | } | |
d0b27fa7 PZ |
8998 | |
8999 | int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) | |
9000 | { | |
9001 | u64 rt_runtime, rt_period; | |
9002 | ||
9003 | rt_period = (u64)rt_period_us * NSEC_PER_USEC; | |
9004 | rt_runtime = tg->rt_bandwidth.rt_runtime; | |
9005 | ||
619b0488 R |
9006 | if (rt_period == 0) |
9007 | return -EINVAL; | |
9008 | ||
d0b27fa7 PZ |
9009 | return tg_set_bandwidth(tg, rt_period, rt_runtime); |
9010 | } | |
9011 | ||
9012 | long sched_group_rt_period(struct task_group *tg) | |
9013 | { | |
9014 | u64 rt_period_us; | |
9015 | ||
9016 | rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); | |
9017 | do_div(rt_period_us, NSEC_PER_USEC); | |
9018 | return rt_period_us; | |
9019 | } | |
9020 | ||
9021 | static int sched_rt_global_constraints(void) | |
9022 | { | |
4653f803 | 9023 | u64 runtime, period; |
d0b27fa7 PZ |
9024 | int ret = 0; |
9025 | ||
ec5d4989 HS |
9026 | if (sysctl_sched_rt_period <= 0) |
9027 | return -EINVAL; | |
9028 | ||
4653f803 PZ |
9029 | runtime = global_rt_runtime(); |
9030 | period = global_rt_period(); | |
9031 | ||
9032 | /* | |
9033 | * Sanity check on the sysctl variables. | |
9034 | */ | |
9035 | if (runtime > period && runtime != RUNTIME_INF) | |
9036 | return -EINVAL; | |
10b612f4 | 9037 | |
d0b27fa7 | 9038 | mutex_lock(&rt_constraints_mutex); |
9a7e0b18 | 9039 | read_lock(&tasklist_lock); |
4653f803 | 9040 | ret = __rt_schedulable(NULL, 0, 0); |
9a7e0b18 | 9041 | read_unlock(&tasklist_lock); |
d0b27fa7 PZ |
9042 | mutex_unlock(&rt_constraints_mutex); |
9043 | ||
9044 | return ret; | |
9045 | } | |
6d6bc0ad | 9046 | #else /* !CONFIG_RT_GROUP_SCHED */ |
d0b27fa7 PZ |
9047 | static int sched_rt_global_constraints(void) |
9048 | { | |
ac086bc2 PZ |
9049 | unsigned long flags; |
9050 | int i; | |
9051 | ||
ec5d4989 HS |
9052 | if (sysctl_sched_rt_period <= 0) |
9053 | return -EINVAL; | |
9054 | ||
ac086bc2 PZ |
9055 | spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); |
9056 | for_each_possible_cpu(i) { | |
9057 | struct rt_rq *rt_rq = &cpu_rq(i)->rt; | |
9058 | ||
9059 | spin_lock(&rt_rq->rt_runtime_lock); | |
9060 | rt_rq->rt_runtime = global_rt_runtime(); | |
9061 | spin_unlock(&rt_rq->rt_runtime_lock); | |
9062 | } | |
9063 | spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); | |
9064 | ||
d0b27fa7 PZ |
9065 | return 0; |
9066 | } | |
6d6bc0ad | 9067 | #endif /* CONFIG_RT_GROUP_SCHED */ |
d0b27fa7 PZ |
9068 | |
9069 | int sched_rt_handler(struct ctl_table *table, int write, | |
9070 | struct file *filp, void __user *buffer, size_t *lenp, | |
9071 | loff_t *ppos) | |
9072 | { | |
9073 | int ret; | |
9074 | int old_period, old_runtime; | |
9075 | static DEFINE_MUTEX(mutex); | |
9076 | ||
9077 | mutex_lock(&mutex); | |
9078 | old_period = sysctl_sched_rt_period; | |
9079 | old_runtime = sysctl_sched_rt_runtime; | |
9080 | ||
9081 | ret = proc_dointvec(table, write, filp, buffer, lenp, ppos); | |
9082 | ||
9083 | if (!ret && write) { | |
9084 | ret = sched_rt_global_constraints(); | |
9085 | if (ret) { | |
9086 | sysctl_sched_rt_period = old_period; | |
9087 | sysctl_sched_rt_runtime = old_runtime; | |
9088 | } else { | |
9089 | def_rt_bandwidth.rt_runtime = global_rt_runtime(); | |
9090 | def_rt_bandwidth.rt_period = | |
9091 | ns_to_ktime(global_rt_period()); | |
9092 | } | |
9093 | } | |
9094 | mutex_unlock(&mutex); | |
9095 | ||
9096 | return ret; | |
9097 | } | |
68318b8e | 9098 | |
052f1dc7 | 9099 | #ifdef CONFIG_CGROUP_SCHED |
68318b8e SV |
9100 | |
9101 | /* return corresponding task_group object of a cgroup */ | |
2b01dfe3 | 9102 | static inline struct task_group *cgroup_tg(struct cgroup *cgrp) |
68318b8e | 9103 | { |
2b01dfe3 PM |
9104 | return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id), |
9105 | struct task_group, css); | |
68318b8e SV |
9106 | } |
9107 | ||
9108 | static struct cgroup_subsys_state * | |
2b01dfe3 | 9109 | cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp) |
68318b8e | 9110 | { |
ec7dc8ac | 9111 | struct task_group *tg, *parent; |
68318b8e | 9112 | |
2b01dfe3 | 9113 | if (!cgrp->parent) { |
68318b8e | 9114 | /* This is early initialization for the top cgroup */ |
68318b8e SV |
9115 | return &init_task_group.css; |
9116 | } | |
9117 | ||
ec7dc8ac DG |
9118 | parent = cgroup_tg(cgrp->parent); |
9119 | tg = sched_create_group(parent); | |
68318b8e SV |
9120 | if (IS_ERR(tg)) |
9121 | return ERR_PTR(-ENOMEM); | |
9122 | ||
68318b8e SV |
9123 | return &tg->css; |
9124 | } | |
9125 | ||
41a2d6cf IM |
9126 | static void |
9127 | cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) | |
68318b8e | 9128 | { |
2b01dfe3 | 9129 | struct task_group *tg = cgroup_tg(cgrp); |
68318b8e SV |
9130 | |
9131 | sched_destroy_group(tg); | |
9132 | } | |
9133 | ||
41a2d6cf IM |
9134 | static int |
9135 | cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, | |
9136 | struct task_struct *tsk) | |
68318b8e | 9137 | { |
b68aa230 PZ |
9138 | #ifdef CONFIG_RT_GROUP_SCHED |
9139 | /* Don't accept realtime tasks when there is no way for them to run */ | |
d0b27fa7 | 9140 | if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0) |
b68aa230 PZ |
9141 | return -EINVAL; |
9142 | #else | |
68318b8e SV |
9143 | /* We don't support RT-tasks being in separate groups */ |
9144 | if (tsk->sched_class != &fair_sched_class) | |
9145 | return -EINVAL; | |
b68aa230 | 9146 | #endif |
68318b8e SV |
9147 | |
9148 | return 0; | |
9149 | } | |
9150 | ||
9151 | static void | |
2b01dfe3 | 9152 | cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, |
68318b8e SV |
9153 | struct cgroup *old_cont, struct task_struct *tsk) |
9154 | { | |
9155 | sched_move_task(tsk); | |
9156 | } | |
9157 | ||
052f1dc7 | 9158 | #ifdef CONFIG_FAIR_GROUP_SCHED |
f4c753b7 | 9159 | static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype, |
2b01dfe3 | 9160 | u64 shareval) |
68318b8e | 9161 | { |
2b01dfe3 | 9162 | return sched_group_set_shares(cgroup_tg(cgrp), shareval); |
68318b8e SV |
9163 | } |
9164 | ||
f4c753b7 | 9165 | static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft) |
68318b8e | 9166 | { |
2b01dfe3 | 9167 | struct task_group *tg = cgroup_tg(cgrp); |
68318b8e SV |
9168 | |
9169 | return (u64) tg->shares; | |
9170 | } | |
6d6bc0ad | 9171 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
68318b8e | 9172 | |
052f1dc7 | 9173 | #ifdef CONFIG_RT_GROUP_SCHED |
0c70814c | 9174 | static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft, |
06ecb27c | 9175 | s64 val) |
6f505b16 | 9176 | { |
06ecb27c | 9177 | return sched_group_set_rt_runtime(cgroup_tg(cgrp), val); |
6f505b16 PZ |
9178 | } |
9179 | ||
06ecb27c | 9180 | static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft) |
6f505b16 | 9181 | { |
06ecb27c | 9182 | return sched_group_rt_runtime(cgroup_tg(cgrp)); |
6f505b16 | 9183 | } |
d0b27fa7 PZ |
9184 | |
9185 | static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype, | |
9186 | u64 rt_period_us) | |
9187 | { | |
9188 | return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us); | |
9189 | } | |
9190 | ||
9191 | static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft) | |
9192 | { | |
9193 | return sched_group_rt_period(cgroup_tg(cgrp)); | |
9194 | } | |
6d6bc0ad | 9195 | #endif /* CONFIG_RT_GROUP_SCHED */ |
6f505b16 | 9196 | |
fe5c7cc2 | 9197 | static struct cftype cpu_files[] = { |
052f1dc7 | 9198 | #ifdef CONFIG_FAIR_GROUP_SCHED |
fe5c7cc2 PM |
9199 | { |
9200 | .name = "shares", | |
f4c753b7 PM |
9201 | .read_u64 = cpu_shares_read_u64, |
9202 | .write_u64 = cpu_shares_write_u64, | |
fe5c7cc2 | 9203 | }, |
052f1dc7 PZ |
9204 | #endif |
9205 | #ifdef CONFIG_RT_GROUP_SCHED | |
6f505b16 | 9206 | { |
9f0c1e56 | 9207 | .name = "rt_runtime_us", |
06ecb27c PM |
9208 | .read_s64 = cpu_rt_runtime_read, |
9209 | .write_s64 = cpu_rt_runtime_write, | |
6f505b16 | 9210 | }, |
d0b27fa7 PZ |
9211 | { |
9212 | .name = "rt_period_us", | |
f4c753b7 PM |
9213 | .read_u64 = cpu_rt_period_read_uint, |
9214 | .write_u64 = cpu_rt_period_write_uint, | |
d0b27fa7 | 9215 | }, |
052f1dc7 | 9216 | #endif |
68318b8e SV |
9217 | }; |
9218 | ||
9219 | static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont) | |
9220 | { | |
fe5c7cc2 | 9221 | return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files)); |
68318b8e SV |
9222 | } |
9223 | ||
9224 | struct cgroup_subsys cpu_cgroup_subsys = { | |
38605cae IM |
9225 | .name = "cpu", |
9226 | .create = cpu_cgroup_create, | |
9227 | .destroy = cpu_cgroup_destroy, | |
9228 | .can_attach = cpu_cgroup_can_attach, | |
9229 | .attach = cpu_cgroup_attach, | |
9230 | .populate = cpu_cgroup_populate, | |
9231 | .subsys_id = cpu_cgroup_subsys_id, | |
68318b8e SV |
9232 | .early_init = 1, |
9233 | }; | |
9234 | ||
052f1dc7 | 9235 | #endif /* CONFIG_CGROUP_SCHED */ |
d842de87 SV |
9236 | |
9237 | #ifdef CONFIG_CGROUP_CPUACCT | |
9238 | ||
9239 | /* | |
9240 | * CPU accounting code for task groups. | |
9241 | * | |
9242 | * Based on the work by Paul Menage ([email protected]) and Balbir Singh | |
9243 | * ([email protected]). | |
9244 | */ | |
9245 | ||
934352f2 | 9246 | /* track cpu usage of a group of tasks and its child groups */ |
d842de87 SV |
9247 | struct cpuacct { |
9248 | struct cgroup_subsys_state css; | |
9249 | /* cpuusage holds pointer to a u64-type object on every cpu */ | |
9250 | u64 *cpuusage; | |
934352f2 | 9251 | struct cpuacct *parent; |
d842de87 SV |
9252 | }; |
9253 | ||
9254 | struct cgroup_subsys cpuacct_subsys; | |
9255 | ||
9256 | /* return cpu accounting group corresponding to this container */ | |
32cd756a | 9257 | static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp) |
d842de87 | 9258 | { |
32cd756a | 9259 | return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id), |
d842de87 SV |
9260 | struct cpuacct, css); |
9261 | } | |
9262 | ||
9263 | /* return cpu accounting group to which this task belongs */ | |
9264 | static inline struct cpuacct *task_ca(struct task_struct *tsk) | |
9265 | { | |
9266 | return container_of(task_subsys_state(tsk, cpuacct_subsys_id), | |
9267 | struct cpuacct, css); | |
9268 | } | |
9269 | ||
9270 | /* create a new cpu accounting group */ | |
9271 | static struct cgroup_subsys_state *cpuacct_create( | |
32cd756a | 9272 | struct cgroup_subsys *ss, struct cgroup *cgrp) |
d842de87 SV |
9273 | { |
9274 | struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL); | |
9275 | ||
9276 | if (!ca) | |
9277 | return ERR_PTR(-ENOMEM); | |
9278 | ||
9279 | ca->cpuusage = alloc_percpu(u64); | |
9280 | if (!ca->cpuusage) { | |
9281 | kfree(ca); | |
9282 | return ERR_PTR(-ENOMEM); | |
9283 | } | |
9284 | ||
934352f2 BR |
9285 | if (cgrp->parent) |
9286 | ca->parent = cgroup_ca(cgrp->parent); | |
9287 | ||
d842de87 SV |
9288 | return &ca->css; |
9289 | } | |
9290 | ||
9291 | /* destroy an existing cpu accounting group */ | |
41a2d6cf | 9292 | static void |
32cd756a | 9293 | cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) |
d842de87 | 9294 | { |
32cd756a | 9295 | struct cpuacct *ca = cgroup_ca(cgrp); |
d842de87 SV |
9296 | |
9297 | free_percpu(ca->cpuusage); | |
9298 | kfree(ca); | |
9299 | } | |
9300 | ||
720f5498 KC |
9301 | static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) |
9302 | { | |
9303 | u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu); | |
9304 | u64 data; | |
9305 | ||
9306 | #ifndef CONFIG_64BIT | |
9307 | /* | |
9308 | * Take rq->lock to make 64-bit read safe on 32-bit platforms. | |
9309 | */ | |
9310 | spin_lock_irq(&cpu_rq(cpu)->lock); | |
9311 | data = *cpuusage; | |
9312 | spin_unlock_irq(&cpu_rq(cpu)->lock); | |
9313 | #else | |
9314 | data = *cpuusage; | |
9315 | #endif | |
9316 | ||
9317 | return data; | |
9318 | } | |
9319 | ||
9320 | static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val) | |
9321 | { | |
9322 | u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu); | |
9323 | ||
9324 | #ifndef CONFIG_64BIT | |
9325 | /* | |
9326 | * Take rq->lock to make 64-bit write safe on 32-bit platforms. | |
9327 | */ | |
9328 | spin_lock_irq(&cpu_rq(cpu)->lock); | |
9329 | *cpuusage = val; | |
9330 | spin_unlock_irq(&cpu_rq(cpu)->lock); | |
9331 | #else | |
9332 | *cpuusage = val; | |
9333 | #endif | |
9334 | } | |
9335 | ||
d842de87 | 9336 | /* return total cpu usage (in nanoseconds) of a group */ |
32cd756a | 9337 | static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft) |
d842de87 | 9338 | { |
32cd756a | 9339 | struct cpuacct *ca = cgroup_ca(cgrp); |
d842de87 SV |
9340 | u64 totalcpuusage = 0; |
9341 | int i; | |
9342 | ||
720f5498 KC |
9343 | for_each_present_cpu(i) |
9344 | totalcpuusage += cpuacct_cpuusage_read(ca, i); | |
d842de87 SV |
9345 | |
9346 | return totalcpuusage; | |
9347 | } | |
9348 | ||
0297b803 DG |
9349 | static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype, |
9350 | u64 reset) | |
9351 | { | |
9352 | struct cpuacct *ca = cgroup_ca(cgrp); | |
9353 | int err = 0; | |
9354 | int i; | |
9355 | ||
9356 | if (reset) { | |
9357 | err = -EINVAL; | |
9358 | goto out; | |
9359 | } | |
9360 | ||
720f5498 KC |
9361 | for_each_present_cpu(i) |
9362 | cpuacct_cpuusage_write(ca, i, 0); | |
0297b803 | 9363 | |
0297b803 DG |
9364 | out: |
9365 | return err; | |
9366 | } | |
9367 | ||
e9515c3c KC |
9368 | static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft, |
9369 | struct seq_file *m) | |
9370 | { | |
9371 | struct cpuacct *ca = cgroup_ca(cgroup); | |
9372 | u64 percpu; | |
9373 | int i; | |
9374 | ||
9375 | for_each_present_cpu(i) { | |
9376 | percpu = cpuacct_cpuusage_read(ca, i); | |
9377 | seq_printf(m, "%llu ", (unsigned long long) percpu); | |
9378 | } | |
9379 | seq_printf(m, "\n"); | |
9380 | return 0; | |
9381 | } | |
9382 | ||
d842de87 SV |
9383 | static struct cftype files[] = { |
9384 | { | |
9385 | .name = "usage", | |
f4c753b7 PM |
9386 | .read_u64 = cpuusage_read, |
9387 | .write_u64 = cpuusage_write, | |
d842de87 | 9388 | }, |
e9515c3c KC |
9389 | { |
9390 | .name = "usage_percpu", | |
9391 | .read_seq_string = cpuacct_percpu_seq_read, | |
9392 | }, | |
9393 | ||
d842de87 SV |
9394 | }; |
9395 | ||
32cd756a | 9396 | static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp) |
d842de87 | 9397 | { |
32cd756a | 9398 | return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files)); |
d842de87 SV |
9399 | } |
9400 | ||
9401 | /* | |
9402 | * charge this task's execution time to its accounting group. | |
9403 | * | |
9404 | * called with rq->lock held. | |
9405 | */ | |
9406 | static void cpuacct_charge(struct task_struct *tsk, u64 cputime) | |
9407 | { | |
9408 | struct cpuacct *ca; | |
934352f2 | 9409 | int cpu; |
d842de87 SV |
9410 | |
9411 | if (!cpuacct_subsys.active) | |
9412 | return; | |
9413 | ||
934352f2 | 9414 | cpu = task_cpu(tsk); |
d842de87 | 9415 | ca = task_ca(tsk); |
d842de87 | 9416 | |
934352f2 BR |
9417 | for (; ca; ca = ca->parent) { |
9418 | u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu); | |
d842de87 SV |
9419 | *cpuusage += cputime; |
9420 | } | |
9421 | } | |
9422 | ||
9423 | struct cgroup_subsys cpuacct_subsys = { | |
9424 | .name = "cpuacct", | |
9425 | .create = cpuacct_create, | |
9426 | .destroy = cpuacct_destroy, | |
9427 | .populate = cpuacct_populate, | |
9428 | .subsys_id = cpuacct_subsys_id, | |
9429 | }; | |
9430 | #endif /* CONFIG_CGROUP_CPUACCT */ |