]>
Commit | Line | Data |
---|---|---|
457c8996 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
1da177e4 LT |
2 | /* |
3 | * linux/mm/memory.c | |
4 | * | |
5 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
6 | */ | |
7 | ||
8 | /* | |
9 | * demand-loading started 01.12.91 - seems it is high on the list of | |
10 | * things wanted, and it should be easy to implement. - Linus | |
11 | */ | |
12 | ||
13 | /* | |
14 | * Ok, demand-loading was easy, shared pages a little bit tricker. Shared | |
15 | * pages started 02.12.91, seems to work. - Linus. | |
16 | * | |
17 | * Tested sharing by executing about 30 /bin/sh: under the old kernel it | |
18 | * would have taken more than the 6M I have free, but it worked well as | |
19 | * far as I could see. | |
20 | * | |
21 | * Also corrected some "invalidate()"s - I wasn't doing enough of them. | |
22 | */ | |
23 | ||
24 | /* | |
25 | * Real VM (paging to/from disk) started 18.12.91. Much more work and | |
26 | * thought has to go into this. Oh, well.. | |
27 | * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. | |
28 | * Found it. Everything seems to work now. | |
29 | * 20.12.91 - Ok, making the swap-device changeable like the root. | |
30 | */ | |
31 | ||
32 | /* | |
33 | * 05.04.94 - Multi-page memory management added for v1.1. | |
166f61b9 | 34 | * Idea by Alex Bligh ([email protected]) |
1da177e4 LT |
35 | * |
36 | * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG | |
37 | * ([email protected]) | |
38 | * | |
39 | * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) | |
40 | */ | |
41 | ||
42 | #include <linux/kernel_stat.h> | |
43 | #include <linux/mm.h> | |
36090def | 44 | #include <linux/mm_inline.h> |
6e84f315 | 45 | #include <linux/sched/mm.h> |
f7ccbae4 | 46 | #include <linux/sched/coredump.h> |
6a3827d7 | 47 | #include <linux/sched/numa_balancing.h> |
29930025 | 48 | #include <linux/sched/task.h> |
1da177e4 LT |
49 | #include <linux/hugetlb.h> |
50 | #include <linux/mman.h> | |
51 | #include <linux/swap.h> | |
52 | #include <linux/highmem.h> | |
53 | #include <linux/pagemap.h> | |
5042db43 | 54 | #include <linux/memremap.h> |
9a840895 | 55 | #include <linux/ksm.h> |
1da177e4 | 56 | #include <linux/rmap.h> |
b95f1b31 | 57 | #include <linux/export.h> |
0ff92245 | 58 | #include <linux/delayacct.h> |
1da177e4 | 59 | #include <linux/init.h> |
01c8f1c4 | 60 | #include <linux/pfn_t.h> |
edc79b2a | 61 | #include <linux/writeback.h> |
8a9f3ccd | 62 | #include <linux/memcontrol.h> |
cddb8a5c | 63 | #include <linux/mmu_notifier.h> |
3dc14741 HD |
64 | #include <linux/swapops.h> |
65 | #include <linux/elf.h> | |
5a0e3ad6 | 66 | #include <linux/gfp.h> |
4daae3b4 | 67 | #include <linux/migrate.h> |
2fbc57c5 | 68 | #include <linux/string.h> |
1592eef0 | 69 | #include <linux/debugfs.h> |
6b251fc9 | 70 | #include <linux/userfaultfd_k.h> |
bc2466e4 | 71 | #include <linux/dax.h> |
6b31d595 | 72 | #include <linux/oom.h> |
98fa15f3 | 73 | #include <linux/numa.h> |
bce617ed PX |
74 | #include <linux/perf_event.h> |
75 | #include <linux/ptrace.h> | |
e80d3909 | 76 | #include <linux/vmalloc.h> |
1da177e4 | 77 | |
b3d1411b JFG |
78 | #include <trace/events/kmem.h> |
79 | ||
6952b61d | 80 | #include <asm/io.h> |
33a709b2 | 81 | #include <asm/mmu_context.h> |
1da177e4 | 82 | #include <asm/pgalloc.h> |
7c0f6ba6 | 83 | #include <linux/uaccess.h> |
1da177e4 LT |
84 | #include <asm/tlb.h> |
85 | #include <asm/tlbflush.h> | |
1da177e4 | 86 | |
e80d3909 | 87 | #include "pgalloc-track.h" |
42b77728 | 88 | #include "internal.h" |
014bb1de | 89 | #include "swap.h" |
42b77728 | 90 | |
af27d940 | 91 | #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) |
90572890 | 92 | #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. |
75980e97 PZ |
93 | #endif |
94 | ||
a9ee6cf5 | 95 | #ifndef CONFIG_NUMA |
1da177e4 | 96 | unsigned long max_mapnr; |
1da177e4 | 97 | EXPORT_SYMBOL(max_mapnr); |
166f61b9 TH |
98 | |
99 | struct page *mem_map; | |
1da177e4 LT |
100 | EXPORT_SYMBOL(mem_map); |
101 | #endif | |
102 | ||
5c041f5d PX |
103 | static vm_fault_t do_fault(struct vm_fault *vmf); |
104 | ||
1da177e4 LT |
105 | /* |
106 | * A number of key systems in x86 including ioremap() rely on the assumption | |
107 | * that high_memory defines the upper bound on direct map memory, then end | |
108 | * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and | |
109 | * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL | |
110 | * and ZONE_HIGHMEM. | |
111 | */ | |
166f61b9 | 112 | void *high_memory; |
1da177e4 | 113 | EXPORT_SYMBOL(high_memory); |
1da177e4 | 114 | |
32a93233 IM |
115 | /* |
116 | * Randomize the address space (stacks, mmaps, brk, etc.). | |
117 | * | |
118 | * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, | |
119 | * as ancient (libc5 based) binaries can segfault. ) | |
120 | */ | |
121 | int randomize_va_space __read_mostly = | |
122 | #ifdef CONFIG_COMPAT_BRK | |
123 | 1; | |
124 | #else | |
125 | 2; | |
126 | #endif | |
a62eaf15 | 127 | |
83d116c5 JH |
128 | #ifndef arch_faults_on_old_pte |
129 | static inline bool arch_faults_on_old_pte(void) | |
130 | { | |
131 | /* | |
132 | * Those arches which don't have hw access flag feature need to | |
133 | * implement their own helper. By default, "true" means pagefault | |
134 | * will be hit on old pte. | |
135 | */ | |
136 | return true; | |
137 | } | |
138 | #endif | |
139 | ||
46bdb427 WD |
140 | #ifndef arch_wants_old_prefaulted_pte |
141 | static inline bool arch_wants_old_prefaulted_pte(void) | |
142 | { | |
143 | /* | |
144 | * Transitioning a PTE from 'old' to 'young' can be expensive on | |
145 | * some architectures, even if it's performed in hardware. By | |
146 | * default, "false" means prefaulted entries will be 'young'. | |
147 | */ | |
148 | return false; | |
149 | } | |
150 | #endif | |
151 | ||
a62eaf15 AK |
152 | static int __init disable_randmaps(char *s) |
153 | { | |
154 | randomize_va_space = 0; | |
9b41046c | 155 | return 1; |
a62eaf15 AK |
156 | } |
157 | __setup("norandmaps", disable_randmaps); | |
158 | ||
62eede62 | 159 | unsigned long zero_pfn __read_mostly; |
0b70068e AB |
160 | EXPORT_SYMBOL(zero_pfn); |
161 | ||
166f61b9 TH |
162 | unsigned long highest_memmap_pfn __read_mostly; |
163 | ||
a13ea5b7 HD |
164 | /* |
165 | * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() | |
166 | */ | |
167 | static int __init init_zero_pfn(void) | |
168 | { | |
169 | zero_pfn = page_to_pfn(ZERO_PAGE(0)); | |
170 | return 0; | |
171 | } | |
e720e7d0 | 172 | early_initcall(init_zero_pfn); |
a62eaf15 | 173 | |
e4dcad20 | 174 | void mm_trace_rss_stat(struct mm_struct *mm, int member, long count) |
b3d1411b | 175 | { |
e4dcad20 | 176 | trace_rss_stat(mm, member, count); |
b3d1411b | 177 | } |
d559db08 | 178 | |
34e55232 KH |
179 | #if defined(SPLIT_RSS_COUNTING) |
180 | ||
ea48cf78 | 181 | void sync_mm_rss(struct mm_struct *mm) |
34e55232 KH |
182 | { |
183 | int i; | |
184 | ||
185 | for (i = 0; i < NR_MM_COUNTERS; i++) { | |
05af2e10 DR |
186 | if (current->rss_stat.count[i]) { |
187 | add_mm_counter(mm, i, current->rss_stat.count[i]); | |
188 | current->rss_stat.count[i] = 0; | |
34e55232 KH |
189 | } |
190 | } | |
05af2e10 | 191 | current->rss_stat.events = 0; |
34e55232 KH |
192 | } |
193 | ||
194 | static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) | |
195 | { | |
196 | struct task_struct *task = current; | |
197 | ||
198 | if (likely(task->mm == mm)) | |
199 | task->rss_stat.count[member] += val; | |
200 | else | |
201 | add_mm_counter(mm, member, val); | |
202 | } | |
203 | #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) | |
204 | #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) | |
205 | ||
206 | /* sync counter once per 64 page faults */ | |
207 | #define TASK_RSS_EVENTS_THRESH (64) | |
208 | static void check_sync_rss_stat(struct task_struct *task) | |
209 | { | |
210 | if (unlikely(task != current)) | |
211 | return; | |
212 | if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) | |
ea48cf78 | 213 | sync_mm_rss(task->mm); |
34e55232 | 214 | } |
9547d01b | 215 | #else /* SPLIT_RSS_COUNTING */ |
34e55232 KH |
216 | |
217 | #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) | |
218 | #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) | |
219 | ||
220 | static void check_sync_rss_stat(struct task_struct *task) | |
221 | { | |
222 | } | |
223 | ||
9547d01b PZ |
224 | #endif /* SPLIT_RSS_COUNTING */ |
225 | ||
1da177e4 LT |
226 | /* |
227 | * Note: this doesn't free the actual pages themselves. That | |
228 | * has been handled earlier when unmapping all the memory regions. | |
229 | */ | |
9e1b32ca BH |
230 | static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, |
231 | unsigned long addr) | |
1da177e4 | 232 | { |
2f569afd | 233 | pgtable_t token = pmd_pgtable(*pmd); |
e0da382c | 234 | pmd_clear(pmd); |
9e1b32ca | 235 | pte_free_tlb(tlb, token, addr); |
c4812909 | 236 | mm_dec_nr_ptes(tlb->mm); |
1da177e4 LT |
237 | } |
238 | ||
e0da382c HD |
239 | static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, |
240 | unsigned long addr, unsigned long end, | |
241 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
242 | { |
243 | pmd_t *pmd; | |
244 | unsigned long next; | |
e0da382c | 245 | unsigned long start; |
1da177e4 | 246 | |
e0da382c | 247 | start = addr; |
1da177e4 | 248 | pmd = pmd_offset(pud, addr); |
1da177e4 LT |
249 | do { |
250 | next = pmd_addr_end(addr, end); | |
251 | if (pmd_none_or_clear_bad(pmd)) | |
252 | continue; | |
9e1b32ca | 253 | free_pte_range(tlb, pmd, addr); |
1da177e4 LT |
254 | } while (pmd++, addr = next, addr != end); |
255 | ||
e0da382c HD |
256 | start &= PUD_MASK; |
257 | if (start < floor) | |
258 | return; | |
259 | if (ceiling) { | |
260 | ceiling &= PUD_MASK; | |
261 | if (!ceiling) | |
262 | return; | |
1da177e4 | 263 | } |
e0da382c HD |
264 | if (end - 1 > ceiling - 1) |
265 | return; | |
266 | ||
267 | pmd = pmd_offset(pud, start); | |
268 | pud_clear(pud); | |
9e1b32ca | 269 | pmd_free_tlb(tlb, pmd, start); |
dc6c9a35 | 270 | mm_dec_nr_pmds(tlb->mm); |
1da177e4 LT |
271 | } |
272 | ||
c2febafc | 273 | static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, |
e0da382c HD |
274 | unsigned long addr, unsigned long end, |
275 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
276 | { |
277 | pud_t *pud; | |
278 | unsigned long next; | |
e0da382c | 279 | unsigned long start; |
1da177e4 | 280 | |
e0da382c | 281 | start = addr; |
c2febafc | 282 | pud = pud_offset(p4d, addr); |
1da177e4 LT |
283 | do { |
284 | next = pud_addr_end(addr, end); | |
285 | if (pud_none_or_clear_bad(pud)) | |
286 | continue; | |
e0da382c | 287 | free_pmd_range(tlb, pud, addr, next, floor, ceiling); |
1da177e4 LT |
288 | } while (pud++, addr = next, addr != end); |
289 | ||
c2febafc KS |
290 | start &= P4D_MASK; |
291 | if (start < floor) | |
292 | return; | |
293 | if (ceiling) { | |
294 | ceiling &= P4D_MASK; | |
295 | if (!ceiling) | |
296 | return; | |
297 | } | |
298 | if (end - 1 > ceiling - 1) | |
299 | return; | |
300 | ||
301 | pud = pud_offset(p4d, start); | |
302 | p4d_clear(p4d); | |
303 | pud_free_tlb(tlb, pud, start); | |
b4e98d9a | 304 | mm_dec_nr_puds(tlb->mm); |
c2febafc KS |
305 | } |
306 | ||
307 | static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, | |
308 | unsigned long addr, unsigned long end, | |
309 | unsigned long floor, unsigned long ceiling) | |
310 | { | |
311 | p4d_t *p4d; | |
312 | unsigned long next; | |
313 | unsigned long start; | |
314 | ||
315 | start = addr; | |
316 | p4d = p4d_offset(pgd, addr); | |
317 | do { | |
318 | next = p4d_addr_end(addr, end); | |
319 | if (p4d_none_or_clear_bad(p4d)) | |
320 | continue; | |
321 | free_pud_range(tlb, p4d, addr, next, floor, ceiling); | |
322 | } while (p4d++, addr = next, addr != end); | |
323 | ||
e0da382c HD |
324 | start &= PGDIR_MASK; |
325 | if (start < floor) | |
326 | return; | |
327 | if (ceiling) { | |
328 | ceiling &= PGDIR_MASK; | |
329 | if (!ceiling) | |
330 | return; | |
1da177e4 | 331 | } |
e0da382c HD |
332 | if (end - 1 > ceiling - 1) |
333 | return; | |
334 | ||
c2febafc | 335 | p4d = p4d_offset(pgd, start); |
e0da382c | 336 | pgd_clear(pgd); |
c2febafc | 337 | p4d_free_tlb(tlb, p4d, start); |
1da177e4 LT |
338 | } |
339 | ||
340 | /* | |
e0da382c | 341 | * This function frees user-level page tables of a process. |
1da177e4 | 342 | */ |
42b77728 | 343 | void free_pgd_range(struct mmu_gather *tlb, |
e0da382c HD |
344 | unsigned long addr, unsigned long end, |
345 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
346 | { |
347 | pgd_t *pgd; | |
348 | unsigned long next; | |
e0da382c HD |
349 | |
350 | /* | |
351 | * The next few lines have given us lots of grief... | |
352 | * | |
353 | * Why are we testing PMD* at this top level? Because often | |
354 | * there will be no work to do at all, and we'd prefer not to | |
355 | * go all the way down to the bottom just to discover that. | |
356 | * | |
357 | * Why all these "- 1"s? Because 0 represents both the bottom | |
358 | * of the address space and the top of it (using -1 for the | |
359 | * top wouldn't help much: the masks would do the wrong thing). | |
360 | * The rule is that addr 0 and floor 0 refer to the bottom of | |
361 | * the address space, but end 0 and ceiling 0 refer to the top | |
362 | * Comparisons need to use "end - 1" and "ceiling - 1" (though | |
363 | * that end 0 case should be mythical). | |
364 | * | |
365 | * Wherever addr is brought up or ceiling brought down, we must | |
366 | * be careful to reject "the opposite 0" before it confuses the | |
367 | * subsequent tests. But what about where end is brought down | |
368 | * by PMD_SIZE below? no, end can't go down to 0 there. | |
369 | * | |
370 | * Whereas we round start (addr) and ceiling down, by different | |
371 | * masks at different levels, in order to test whether a table | |
372 | * now has no other vmas using it, so can be freed, we don't | |
373 | * bother to round floor or end up - the tests don't need that. | |
374 | */ | |
1da177e4 | 375 | |
e0da382c HD |
376 | addr &= PMD_MASK; |
377 | if (addr < floor) { | |
378 | addr += PMD_SIZE; | |
379 | if (!addr) | |
380 | return; | |
381 | } | |
382 | if (ceiling) { | |
383 | ceiling &= PMD_MASK; | |
384 | if (!ceiling) | |
385 | return; | |
386 | } | |
387 | if (end - 1 > ceiling - 1) | |
388 | end -= PMD_SIZE; | |
389 | if (addr > end - 1) | |
390 | return; | |
07e32661 AK |
391 | /* |
392 | * We add page table cache pages with PAGE_SIZE, | |
393 | * (see pte_free_tlb()), flush the tlb if we need | |
394 | */ | |
ed6a7935 | 395 | tlb_change_page_size(tlb, PAGE_SIZE); |
42b77728 | 396 | pgd = pgd_offset(tlb->mm, addr); |
1da177e4 LT |
397 | do { |
398 | next = pgd_addr_end(addr, end); | |
399 | if (pgd_none_or_clear_bad(pgd)) | |
400 | continue; | |
c2febafc | 401 | free_p4d_range(tlb, pgd, addr, next, floor, ceiling); |
1da177e4 | 402 | } while (pgd++, addr = next, addr != end); |
e0da382c HD |
403 | } |
404 | ||
42b77728 | 405 | void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, |
3bf5ee95 | 406 | unsigned long floor, unsigned long ceiling) |
e0da382c HD |
407 | { |
408 | while (vma) { | |
409 | struct vm_area_struct *next = vma->vm_next; | |
410 | unsigned long addr = vma->vm_start; | |
411 | ||
8f4f8c16 | 412 | /* |
25d9e2d1 NP |
413 | * Hide vma from rmap and truncate_pagecache before freeing |
414 | * pgtables | |
8f4f8c16 | 415 | */ |
5beb4930 | 416 | unlink_anon_vmas(vma); |
8f4f8c16 HD |
417 | unlink_file_vma(vma); |
418 | ||
9da61aef | 419 | if (is_vm_hugetlb_page(vma)) { |
3bf5ee95 | 420 | hugetlb_free_pgd_range(tlb, addr, vma->vm_end, |
166f61b9 | 421 | floor, next ? next->vm_start : ceiling); |
3bf5ee95 HD |
422 | } else { |
423 | /* | |
424 | * Optimization: gather nearby vmas into one call down | |
425 | */ | |
426 | while (next && next->vm_start <= vma->vm_end + PMD_SIZE | |
4866920b | 427 | && !is_vm_hugetlb_page(next)) { |
3bf5ee95 HD |
428 | vma = next; |
429 | next = vma->vm_next; | |
5beb4930 | 430 | unlink_anon_vmas(vma); |
8f4f8c16 | 431 | unlink_file_vma(vma); |
3bf5ee95 HD |
432 | } |
433 | free_pgd_range(tlb, addr, vma->vm_end, | |
166f61b9 | 434 | floor, next ? next->vm_start : ceiling); |
3bf5ee95 | 435 | } |
e0da382c HD |
436 | vma = next; |
437 | } | |
1da177e4 LT |
438 | } |
439 | ||
03c4f204 | 440 | void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) |
1da177e4 | 441 | { |
03c4f204 | 442 | spinlock_t *ptl = pmd_lock(mm, pmd); |
1bb3630e | 443 | |
8ac1f832 | 444 | if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ |
c4812909 | 445 | mm_inc_nr_ptes(mm); |
ed33b5a6 QZ |
446 | /* |
447 | * Ensure all pte setup (eg. pte page lock and page clearing) are | |
448 | * visible before the pte is made visible to other CPUs by being | |
449 | * put into page tables. | |
450 | * | |
451 | * The other side of the story is the pointer chasing in the page | |
452 | * table walking code (when walking the page table without locking; | |
453 | * ie. most of the time). Fortunately, these data accesses consist | |
454 | * of a chain of data-dependent loads, meaning most CPUs (alpha | |
455 | * being the notable exception) will already guarantee loads are | |
456 | * seen in-order. See the alpha page table accessors for the | |
457 | * smp_rmb() barriers in page table walking code. | |
458 | */ | |
459 | smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ | |
03c4f204 QZ |
460 | pmd_populate(mm, pmd, *pte); |
461 | *pte = NULL; | |
4b471e88 | 462 | } |
c4088ebd | 463 | spin_unlock(ptl); |
03c4f204 QZ |
464 | } |
465 | ||
4cf58924 | 466 | int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) |
1da177e4 | 467 | { |
4cf58924 | 468 | pgtable_t new = pte_alloc_one(mm); |
1bb3630e HD |
469 | if (!new) |
470 | return -ENOMEM; | |
471 | ||
03c4f204 | 472 | pmd_install(mm, pmd, &new); |
2f569afd MS |
473 | if (new) |
474 | pte_free(mm, new); | |
1bb3630e | 475 | return 0; |
1da177e4 LT |
476 | } |
477 | ||
4cf58924 | 478 | int __pte_alloc_kernel(pmd_t *pmd) |
1da177e4 | 479 | { |
4cf58924 | 480 | pte_t *new = pte_alloc_one_kernel(&init_mm); |
1bb3630e HD |
481 | if (!new) |
482 | return -ENOMEM; | |
483 | ||
484 | spin_lock(&init_mm.page_table_lock); | |
8ac1f832 | 485 | if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ |
ed33b5a6 | 486 | smp_wmb(); /* See comment in pmd_install() */ |
1bb3630e | 487 | pmd_populate_kernel(&init_mm, pmd, new); |
2f569afd | 488 | new = NULL; |
4b471e88 | 489 | } |
1bb3630e | 490 | spin_unlock(&init_mm.page_table_lock); |
2f569afd MS |
491 | if (new) |
492 | pte_free_kernel(&init_mm, new); | |
1bb3630e | 493 | return 0; |
1da177e4 LT |
494 | } |
495 | ||
d559db08 KH |
496 | static inline void init_rss_vec(int *rss) |
497 | { | |
498 | memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); | |
499 | } | |
500 | ||
501 | static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) | |
ae859762 | 502 | { |
d559db08 KH |
503 | int i; |
504 | ||
34e55232 | 505 | if (current->mm == mm) |
05af2e10 | 506 | sync_mm_rss(mm); |
d559db08 KH |
507 | for (i = 0; i < NR_MM_COUNTERS; i++) |
508 | if (rss[i]) | |
509 | add_mm_counter(mm, i, rss[i]); | |
ae859762 HD |
510 | } |
511 | ||
b5810039 | 512 | /* |
6aab341e LT |
513 | * This function is called to print an error when a bad pte |
514 | * is found. For example, we might have a PFN-mapped pte in | |
515 | * a region that doesn't allow it. | |
b5810039 NP |
516 | * |
517 | * The calling function must still handle the error. | |
518 | */ | |
3dc14741 HD |
519 | static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, |
520 | pte_t pte, struct page *page) | |
b5810039 | 521 | { |
3dc14741 | 522 | pgd_t *pgd = pgd_offset(vma->vm_mm, addr); |
c2febafc KS |
523 | p4d_t *p4d = p4d_offset(pgd, addr); |
524 | pud_t *pud = pud_offset(p4d, addr); | |
3dc14741 HD |
525 | pmd_t *pmd = pmd_offset(pud, addr); |
526 | struct address_space *mapping; | |
527 | pgoff_t index; | |
d936cf9b HD |
528 | static unsigned long resume; |
529 | static unsigned long nr_shown; | |
530 | static unsigned long nr_unshown; | |
531 | ||
532 | /* | |
533 | * Allow a burst of 60 reports, then keep quiet for that minute; | |
534 | * or allow a steady drip of one report per second. | |
535 | */ | |
536 | if (nr_shown == 60) { | |
537 | if (time_before(jiffies, resume)) { | |
538 | nr_unshown++; | |
539 | return; | |
540 | } | |
541 | if (nr_unshown) { | |
1170532b JP |
542 | pr_alert("BUG: Bad page map: %lu messages suppressed\n", |
543 | nr_unshown); | |
d936cf9b HD |
544 | nr_unshown = 0; |
545 | } | |
546 | nr_shown = 0; | |
547 | } | |
548 | if (nr_shown++ == 0) | |
549 | resume = jiffies + 60 * HZ; | |
3dc14741 HD |
550 | |
551 | mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; | |
552 | index = linear_page_index(vma, addr); | |
553 | ||
1170532b JP |
554 | pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", |
555 | current->comm, | |
556 | (long long)pte_val(pte), (long long)pmd_val(*pmd)); | |
718a3821 | 557 | if (page) |
f0b791a3 | 558 | dump_page(page, "bad pte"); |
6aa9b8b2 | 559 | pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", |
1170532b | 560 | (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); |
7e0a1265 | 561 | pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n", |
2682582a KK |
562 | vma->vm_file, |
563 | vma->vm_ops ? vma->vm_ops->fault : NULL, | |
564 | vma->vm_file ? vma->vm_file->f_op->mmap : NULL, | |
7e0a1265 | 565 | mapping ? mapping->a_ops->read_folio : NULL); |
b5810039 | 566 | dump_stack(); |
373d4d09 | 567 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
b5810039 NP |
568 | } |
569 | ||
ee498ed7 | 570 | /* |
7e675137 | 571 | * vm_normal_page -- This function gets the "struct page" associated with a pte. |
6aab341e | 572 | * |
7e675137 NP |
573 | * "Special" mappings do not wish to be associated with a "struct page" (either |
574 | * it doesn't exist, or it exists but they don't want to touch it). In this | |
575 | * case, NULL is returned here. "Normal" mappings do have a struct page. | |
b379d790 | 576 | * |
7e675137 NP |
577 | * There are 2 broad cases. Firstly, an architecture may define a pte_special() |
578 | * pte bit, in which case this function is trivial. Secondly, an architecture | |
579 | * may not have a spare pte bit, which requires a more complicated scheme, | |
580 | * described below. | |
581 | * | |
582 | * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a | |
583 | * special mapping (even if there are underlying and valid "struct pages"). | |
584 | * COWed pages of a VM_PFNMAP are always normal. | |
6aab341e | 585 | * |
b379d790 JH |
586 | * The way we recognize COWed pages within VM_PFNMAP mappings is through the |
587 | * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit | |
7e675137 NP |
588 | * set, and the vm_pgoff will point to the first PFN mapped: thus every special |
589 | * mapping will always honor the rule | |
6aab341e LT |
590 | * |
591 | * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) | |
592 | * | |
7e675137 NP |
593 | * And for normal mappings this is false. |
594 | * | |
595 | * This restricts such mappings to be a linear translation from virtual address | |
596 | * to pfn. To get around this restriction, we allow arbitrary mappings so long | |
597 | * as the vma is not a COW mapping; in that case, we know that all ptes are | |
598 | * special (because none can have been COWed). | |
b379d790 | 599 | * |
b379d790 | 600 | * |
7e675137 | 601 | * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. |
b379d790 JH |
602 | * |
603 | * VM_MIXEDMAP mappings can likewise contain memory with or without "struct | |
604 | * page" backing, however the difference is that _all_ pages with a struct | |
605 | * page (that is, those where pfn_valid is true) are refcounted and considered | |
606 | * normal pages by the VM. The disadvantage is that pages are refcounted | |
607 | * (which can be slower and simply not an option for some PFNMAP users). The | |
608 | * advantage is that we don't have to follow the strict linearity rule of | |
609 | * PFNMAP mappings in order to support COWable mappings. | |
610 | * | |
ee498ed7 | 611 | */ |
25b2995a CH |
612 | struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, |
613 | pte_t pte) | |
ee498ed7 | 614 | { |
22b31eec | 615 | unsigned long pfn = pte_pfn(pte); |
7e675137 | 616 | |
00b3a331 | 617 | if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { |
b38af472 | 618 | if (likely(!pte_special(pte))) |
22b31eec | 619 | goto check_pfn; |
667a0a06 DV |
620 | if (vma->vm_ops && vma->vm_ops->find_special_page) |
621 | return vma->vm_ops->find_special_page(vma, addr); | |
a13ea5b7 HD |
622 | if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) |
623 | return NULL; | |
df6ad698 JG |
624 | if (is_zero_pfn(pfn)) |
625 | return NULL; | |
e1fb4a08 | 626 | if (pte_devmap(pte)) |
3218f871 AS |
627 | /* |
628 | * NOTE: New users of ZONE_DEVICE will not set pte_devmap() | |
629 | * and will have refcounts incremented on their struct pages | |
630 | * when they are inserted into PTEs, thus they are safe to | |
631 | * return here. Legacy ZONE_DEVICE pages that set pte_devmap() | |
632 | * do not have refcounts. Example of legacy ZONE_DEVICE is | |
633 | * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. | |
634 | */ | |
e1fb4a08 DJ |
635 | return NULL; |
636 | ||
df6ad698 | 637 | print_bad_pte(vma, addr, pte, NULL); |
7e675137 NP |
638 | return NULL; |
639 | } | |
640 | ||
00b3a331 | 641 | /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ |
7e675137 | 642 | |
b379d790 JH |
643 | if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { |
644 | if (vma->vm_flags & VM_MIXEDMAP) { | |
645 | if (!pfn_valid(pfn)) | |
646 | return NULL; | |
647 | goto out; | |
648 | } else { | |
7e675137 NP |
649 | unsigned long off; |
650 | off = (addr - vma->vm_start) >> PAGE_SHIFT; | |
b379d790 JH |
651 | if (pfn == vma->vm_pgoff + off) |
652 | return NULL; | |
653 | if (!is_cow_mapping(vma->vm_flags)) | |
654 | return NULL; | |
655 | } | |
6aab341e LT |
656 | } |
657 | ||
b38af472 HD |
658 | if (is_zero_pfn(pfn)) |
659 | return NULL; | |
00b3a331 | 660 | |
22b31eec HD |
661 | check_pfn: |
662 | if (unlikely(pfn > highest_memmap_pfn)) { | |
663 | print_bad_pte(vma, addr, pte, NULL); | |
664 | return NULL; | |
665 | } | |
6aab341e LT |
666 | |
667 | /* | |
7e675137 | 668 | * NOTE! We still have PageReserved() pages in the page tables. |
7e675137 | 669 | * eg. VDSO mappings can cause them to exist. |
6aab341e | 670 | */ |
b379d790 | 671 | out: |
6aab341e | 672 | return pfn_to_page(pfn); |
ee498ed7 HD |
673 | } |
674 | ||
28093f9f GS |
675 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
676 | struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, | |
677 | pmd_t pmd) | |
678 | { | |
679 | unsigned long pfn = pmd_pfn(pmd); | |
680 | ||
681 | /* | |
682 | * There is no pmd_special() but there may be special pmds, e.g. | |
683 | * in a direct-access (dax) mapping, so let's just replicate the | |
00b3a331 | 684 | * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. |
28093f9f GS |
685 | */ |
686 | if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { | |
687 | if (vma->vm_flags & VM_MIXEDMAP) { | |
688 | if (!pfn_valid(pfn)) | |
689 | return NULL; | |
690 | goto out; | |
691 | } else { | |
692 | unsigned long off; | |
693 | off = (addr - vma->vm_start) >> PAGE_SHIFT; | |
694 | if (pfn == vma->vm_pgoff + off) | |
695 | return NULL; | |
696 | if (!is_cow_mapping(vma->vm_flags)) | |
697 | return NULL; | |
698 | } | |
699 | } | |
700 | ||
e1fb4a08 DJ |
701 | if (pmd_devmap(pmd)) |
702 | return NULL; | |
3cde287b | 703 | if (is_huge_zero_pmd(pmd)) |
28093f9f GS |
704 | return NULL; |
705 | if (unlikely(pfn > highest_memmap_pfn)) | |
706 | return NULL; | |
707 | ||
708 | /* | |
709 | * NOTE! We still have PageReserved() pages in the page tables. | |
710 | * eg. VDSO mappings can cause them to exist. | |
711 | */ | |
712 | out: | |
713 | return pfn_to_page(pfn); | |
714 | } | |
715 | #endif | |
716 | ||
b756a3b5 AP |
717 | static void restore_exclusive_pte(struct vm_area_struct *vma, |
718 | struct page *page, unsigned long address, | |
719 | pte_t *ptep) | |
720 | { | |
721 | pte_t pte; | |
722 | swp_entry_t entry; | |
723 | ||
724 | pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); | |
725 | if (pte_swp_soft_dirty(*ptep)) | |
726 | pte = pte_mksoft_dirty(pte); | |
727 | ||
728 | entry = pte_to_swp_entry(*ptep); | |
729 | if (pte_swp_uffd_wp(*ptep)) | |
730 | pte = pte_mkuffd_wp(pte); | |
731 | else if (is_writable_device_exclusive_entry(entry)) | |
732 | pte = maybe_mkwrite(pte_mkdirty(pte), vma); | |
733 | ||
6c287605 DH |
734 | VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page))); |
735 | ||
b756a3b5 AP |
736 | /* |
737 | * No need to take a page reference as one was already | |
738 | * created when the swap entry was made. | |
739 | */ | |
740 | if (PageAnon(page)) | |
f1e2db12 | 741 | page_add_anon_rmap(page, vma, address, RMAP_NONE); |
b756a3b5 AP |
742 | else |
743 | /* | |
744 | * Currently device exclusive access only supports anonymous | |
745 | * memory so the entry shouldn't point to a filebacked page. | |
746 | */ | |
4d8ff640 | 747 | WARN_ON_ONCE(1); |
b756a3b5 | 748 | |
1eba86c0 PT |
749 | set_pte_at(vma->vm_mm, address, ptep, pte); |
750 | ||
b756a3b5 AP |
751 | /* |
752 | * No need to invalidate - it was non-present before. However | |
753 | * secondary CPUs may have mappings that need invalidating. | |
754 | */ | |
755 | update_mmu_cache(vma, address, ptep); | |
756 | } | |
757 | ||
758 | /* | |
759 | * Tries to restore an exclusive pte if the page lock can be acquired without | |
760 | * sleeping. | |
761 | */ | |
762 | static int | |
763 | try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, | |
764 | unsigned long addr) | |
765 | { | |
766 | swp_entry_t entry = pte_to_swp_entry(*src_pte); | |
767 | struct page *page = pfn_swap_entry_to_page(entry); | |
768 | ||
769 | if (trylock_page(page)) { | |
770 | restore_exclusive_pte(vma, page, addr, src_pte); | |
771 | unlock_page(page); | |
772 | return 0; | |
773 | } | |
774 | ||
775 | return -EBUSY; | |
776 | } | |
777 | ||
1da177e4 LT |
778 | /* |
779 | * copy one vm_area from one task to the other. Assumes the page tables | |
780 | * already present in the new task to be cleared in the whole range | |
781 | * covered by this vma. | |
1da177e4 LT |
782 | */ |
783 | ||
df3a57d1 LT |
784 | static unsigned long |
785 | copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
8f34f1ea PX |
786 | pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, |
787 | struct vm_area_struct *src_vma, unsigned long addr, int *rss) | |
1da177e4 | 788 | { |
8f34f1ea | 789 | unsigned long vm_flags = dst_vma->vm_flags; |
1da177e4 LT |
790 | pte_t pte = *src_pte; |
791 | struct page *page; | |
df3a57d1 LT |
792 | swp_entry_t entry = pte_to_swp_entry(pte); |
793 | ||
794 | if (likely(!non_swap_entry(entry))) { | |
795 | if (swap_duplicate(entry) < 0) | |
9a5cc85c | 796 | return -EIO; |
df3a57d1 LT |
797 | |
798 | /* make sure dst_mm is on swapoff's mmlist. */ | |
799 | if (unlikely(list_empty(&dst_mm->mmlist))) { | |
800 | spin_lock(&mmlist_lock); | |
801 | if (list_empty(&dst_mm->mmlist)) | |
802 | list_add(&dst_mm->mmlist, | |
803 | &src_mm->mmlist); | |
804 | spin_unlock(&mmlist_lock); | |
805 | } | |
1493a191 DH |
806 | /* Mark the swap entry as shared. */ |
807 | if (pte_swp_exclusive(*src_pte)) { | |
808 | pte = pte_swp_clear_exclusive(*src_pte); | |
809 | set_pte_at(src_mm, addr, src_pte, pte); | |
810 | } | |
df3a57d1 LT |
811 | rss[MM_SWAPENTS]++; |
812 | } else if (is_migration_entry(entry)) { | |
af5cdaf8 | 813 | page = pfn_swap_entry_to_page(entry); |
1da177e4 | 814 | |
df3a57d1 | 815 | rss[mm_counter(page)]++; |
5042db43 | 816 | |
6c287605 | 817 | if (!is_readable_migration_entry(entry) && |
df3a57d1 | 818 | is_cow_mapping(vm_flags)) { |
5042db43 | 819 | /* |
6c287605 DH |
820 | * COW mappings require pages in both parent and child |
821 | * to be set to read. A previously exclusive entry is | |
822 | * now shared. | |
5042db43 | 823 | */ |
4dd845b5 AP |
824 | entry = make_readable_migration_entry( |
825 | swp_offset(entry)); | |
df3a57d1 LT |
826 | pte = swp_entry_to_pte(entry); |
827 | if (pte_swp_soft_dirty(*src_pte)) | |
828 | pte = pte_swp_mksoft_dirty(pte); | |
829 | if (pte_swp_uffd_wp(*src_pte)) | |
830 | pte = pte_swp_mkuffd_wp(pte); | |
831 | set_pte_at(src_mm, addr, src_pte, pte); | |
832 | } | |
833 | } else if (is_device_private_entry(entry)) { | |
af5cdaf8 | 834 | page = pfn_swap_entry_to_page(entry); |
5042db43 | 835 | |
df3a57d1 LT |
836 | /* |
837 | * Update rss count even for unaddressable pages, as | |
838 | * they should treated just like normal pages in this | |
839 | * respect. | |
840 | * | |
841 | * We will likely want to have some new rss counters | |
842 | * for unaddressable pages, at some point. But for now | |
843 | * keep things as they are. | |
844 | */ | |
845 | get_page(page); | |
846 | rss[mm_counter(page)]++; | |
fb3d824d DH |
847 | /* Cannot fail as these pages cannot get pinned. */ |
848 | BUG_ON(page_try_dup_anon_rmap(page, false, src_vma)); | |
df3a57d1 LT |
849 | |
850 | /* | |
851 | * We do not preserve soft-dirty information, because so | |
852 | * far, checkpoint/restore is the only feature that | |
853 | * requires that. And checkpoint/restore does not work | |
854 | * when a device driver is involved (you cannot easily | |
855 | * save and restore device driver state). | |
856 | */ | |
4dd845b5 | 857 | if (is_writable_device_private_entry(entry) && |
df3a57d1 | 858 | is_cow_mapping(vm_flags)) { |
4dd845b5 AP |
859 | entry = make_readable_device_private_entry( |
860 | swp_offset(entry)); | |
df3a57d1 LT |
861 | pte = swp_entry_to_pte(entry); |
862 | if (pte_swp_uffd_wp(*src_pte)) | |
863 | pte = pte_swp_mkuffd_wp(pte); | |
864 | set_pte_at(src_mm, addr, src_pte, pte); | |
1da177e4 | 865 | } |
b756a3b5 AP |
866 | } else if (is_device_exclusive_entry(entry)) { |
867 | /* | |
868 | * Make device exclusive entries present by restoring the | |
869 | * original entry then copying as for a present pte. Device | |
870 | * exclusive entries currently only support private writable | |
871 | * (ie. COW) mappings. | |
872 | */ | |
873 | VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); | |
874 | if (try_restore_exclusive_pte(src_pte, src_vma, addr)) | |
875 | return -EBUSY; | |
876 | return -ENOENT; | |
c56d1b62 PX |
877 | } else if (is_pte_marker_entry(entry)) { |
878 | /* | |
879 | * We're copying the pgtable should only because dst_vma has | |
880 | * uffd-wp enabled, do sanity check. | |
881 | */ | |
882 | WARN_ON_ONCE(!userfaultfd_wp(dst_vma)); | |
883 | set_pte_at(dst_mm, addr, dst_pte, pte); | |
884 | return 0; | |
1da177e4 | 885 | } |
8f34f1ea PX |
886 | if (!userfaultfd_wp(dst_vma)) |
887 | pte = pte_swp_clear_uffd_wp(pte); | |
df3a57d1 LT |
888 | set_pte_at(dst_mm, addr, dst_pte, pte); |
889 | return 0; | |
890 | } | |
891 | ||
70e806e4 | 892 | /* |
b51ad4f8 | 893 | * Copy a present and normal page. |
70e806e4 | 894 | * |
b51ad4f8 DH |
895 | * NOTE! The usual case is that this isn't required; |
896 | * instead, the caller can just increase the page refcount | |
897 | * and re-use the pte the traditional way. | |
70e806e4 PX |
898 | * |
899 | * And if we need a pre-allocated page but don't yet have | |
900 | * one, return a negative error to let the preallocation | |
901 | * code know so that it can do so outside the page table | |
902 | * lock. | |
903 | */ | |
904 | static inline int | |
c78f4636 PX |
905 | copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, |
906 | pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, | |
b51ad4f8 | 907 | struct page **prealloc, struct page *page) |
70e806e4 PX |
908 | { |
909 | struct page *new_page; | |
b51ad4f8 | 910 | pte_t pte; |
70e806e4 | 911 | |
70e806e4 PX |
912 | new_page = *prealloc; |
913 | if (!new_page) | |
914 | return -EAGAIN; | |
915 | ||
916 | /* | |
917 | * We have a prealloc page, all good! Take it | |
918 | * over and copy the page & arm it. | |
919 | */ | |
920 | *prealloc = NULL; | |
c78f4636 | 921 | copy_user_highpage(new_page, page, addr, src_vma); |
70e806e4 | 922 | __SetPageUptodate(new_page); |
40f2bbf7 | 923 | page_add_new_anon_rmap(new_page, dst_vma, addr); |
c78f4636 | 924 | lru_cache_add_inactive_or_unevictable(new_page, dst_vma); |
70e806e4 PX |
925 | rss[mm_counter(new_page)]++; |
926 | ||
927 | /* All done, just insert the new page copy in the child */ | |
c78f4636 PX |
928 | pte = mk_pte(new_page, dst_vma->vm_page_prot); |
929 | pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); | |
8f34f1ea PX |
930 | if (userfaultfd_pte_wp(dst_vma, *src_pte)) |
931 | /* Uffd-wp needs to be delivered to dest pte as well */ | |
932 | pte = pte_wrprotect(pte_mkuffd_wp(pte)); | |
c78f4636 | 933 | set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); |
70e806e4 PX |
934 | return 0; |
935 | } | |
936 | ||
937 | /* | |
938 | * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page | |
939 | * is required to copy this pte. | |
940 | */ | |
941 | static inline int | |
c78f4636 PX |
942 | copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, |
943 | pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, | |
944 | struct page **prealloc) | |
df3a57d1 | 945 | { |
c78f4636 PX |
946 | struct mm_struct *src_mm = src_vma->vm_mm; |
947 | unsigned long vm_flags = src_vma->vm_flags; | |
df3a57d1 LT |
948 | pte_t pte = *src_pte; |
949 | struct page *page; | |
950 | ||
c78f4636 | 951 | page = vm_normal_page(src_vma, addr, pte); |
fb3d824d | 952 | if (page && PageAnon(page)) { |
b51ad4f8 DH |
953 | /* |
954 | * If this page may have been pinned by the parent process, | |
955 | * copy the page immediately for the child so that we'll always | |
956 | * guarantee the pinned page won't be randomly replaced in the | |
957 | * future. | |
958 | */ | |
70e806e4 | 959 | get_page(page); |
fb3d824d DH |
960 | if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) { |
961 | /* Page maybe pinned, we have to copy. */ | |
962 | put_page(page); | |
963 | return copy_present_page(dst_vma, src_vma, dst_pte, src_pte, | |
964 | addr, rss, prealloc, page); | |
965 | } | |
966 | rss[mm_counter(page)]++; | |
b51ad4f8 | 967 | } else if (page) { |
70e806e4 | 968 | get_page(page); |
fb3d824d | 969 | page_dup_file_rmap(page, false); |
70e806e4 PX |
970 | rss[mm_counter(page)]++; |
971 | } | |
972 | ||
1da177e4 LT |
973 | /* |
974 | * If it's a COW mapping, write protect it both | |
975 | * in the parent and the child | |
976 | */ | |
1b2de5d0 | 977 | if (is_cow_mapping(vm_flags) && pte_write(pte)) { |
1da177e4 | 978 | ptep_set_wrprotect(src_mm, addr, src_pte); |
3dc90795 | 979 | pte = pte_wrprotect(pte); |
1da177e4 | 980 | } |
6c287605 | 981 | VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page)); |
1da177e4 LT |
982 | |
983 | /* | |
984 | * If it's a shared mapping, mark it clean in | |
985 | * the child | |
986 | */ | |
987 | if (vm_flags & VM_SHARED) | |
988 | pte = pte_mkclean(pte); | |
989 | pte = pte_mkold(pte); | |
6aab341e | 990 | |
8f34f1ea | 991 | if (!userfaultfd_wp(dst_vma)) |
b569a176 PX |
992 | pte = pte_clear_uffd_wp(pte); |
993 | ||
c78f4636 | 994 | set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); |
70e806e4 PX |
995 | return 0; |
996 | } | |
997 | ||
998 | static inline struct page * | |
999 | page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma, | |
1000 | unsigned long addr) | |
1001 | { | |
1002 | struct page *new_page; | |
1003 | ||
1004 | new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr); | |
1005 | if (!new_page) | |
1006 | return NULL; | |
1007 | ||
8f425e4e | 1008 | if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) { |
70e806e4 PX |
1009 | put_page(new_page); |
1010 | return NULL; | |
6aab341e | 1011 | } |
70e806e4 | 1012 | cgroup_throttle_swaprate(new_page, GFP_KERNEL); |
ae859762 | 1013 | |
70e806e4 | 1014 | return new_page; |
1da177e4 LT |
1015 | } |
1016 | ||
c78f4636 PX |
1017 | static int |
1018 | copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, | |
1019 | pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, | |
1020 | unsigned long end) | |
1da177e4 | 1021 | { |
c78f4636 PX |
1022 | struct mm_struct *dst_mm = dst_vma->vm_mm; |
1023 | struct mm_struct *src_mm = src_vma->vm_mm; | |
c36987e2 | 1024 | pte_t *orig_src_pte, *orig_dst_pte; |
1da177e4 | 1025 | pte_t *src_pte, *dst_pte; |
c74df32c | 1026 | spinlock_t *src_ptl, *dst_ptl; |
70e806e4 | 1027 | int progress, ret = 0; |
d559db08 | 1028 | int rss[NR_MM_COUNTERS]; |
570a335b | 1029 | swp_entry_t entry = (swp_entry_t){0}; |
70e806e4 | 1030 | struct page *prealloc = NULL; |
1da177e4 LT |
1031 | |
1032 | again: | |
70e806e4 | 1033 | progress = 0; |
d559db08 KH |
1034 | init_rss_vec(rss); |
1035 | ||
c74df32c | 1036 | dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); |
70e806e4 PX |
1037 | if (!dst_pte) { |
1038 | ret = -ENOMEM; | |
1039 | goto out; | |
1040 | } | |
ece0e2b6 | 1041 | src_pte = pte_offset_map(src_pmd, addr); |
4c21e2f2 | 1042 | src_ptl = pte_lockptr(src_mm, src_pmd); |
f20dc5f7 | 1043 | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); |
c36987e2 DN |
1044 | orig_src_pte = src_pte; |
1045 | orig_dst_pte = dst_pte; | |
6606c3e0 | 1046 | arch_enter_lazy_mmu_mode(); |
1da177e4 | 1047 | |
1da177e4 LT |
1048 | do { |
1049 | /* | |
1050 | * We are holding two locks at this point - either of them | |
1051 | * could generate latencies in another task on another CPU. | |
1052 | */ | |
e040f218 HD |
1053 | if (progress >= 32) { |
1054 | progress = 0; | |
1055 | if (need_resched() || | |
95c354fe | 1056 | spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) |
e040f218 HD |
1057 | break; |
1058 | } | |
1da177e4 LT |
1059 | if (pte_none(*src_pte)) { |
1060 | progress++; | |
1061 | continue; | |
1062 | } | |
79a1971c | 1063 | if (unlikely(!pte_present(*src_pte))) { |
9a5cc85c AP |
1064 | ret = copy_nonpresent_pte(dst_mm, src_mm, |
1065 | dst_pte, src_pte, | |
1066 | dst_vma, src_vma, | |
1067 | addr, rss); | |
1068 | if (ret == -EIO) { | |
1069 | entry = pte_to_swp_entry(*src_pte); | |
79a1971c | 1070 | break; |
b756a3b5 AP |
1071 | } else if (ret == -EBUSY) { |
1072 | break; | |
1073 | } else if (!ret) { | |
1074 | progress += 8; | |
1075 | continue; | |
9a5cc85c | 1076 | } |
b756a3b5 AP |
1077 | |
1078 | /* | |
1079 | * Device exclusive entry restored, continue by copying | |
1080 | * the now present pte. | |
1081 | */ | |
1082 | WARN_ON_ONCE(ret != -ENOENT); | |
79a1971c | 1083 | } |
70e806e4 | 1084 | /* copy_present_pte() will clear `*prealloc' if consumed */ |
c78f4636 PX |
1085 | ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte, |
1086 | addr, rss, &prealloc); | |
70e806e4 PX |
1087 | /* |
1088 | * If we need a pre-allocated page for this pte, drop the | |
1089 | * locks, allocate, and try again. | |
1090 | */ | |
1091 | if (unlikely(ret == -EAGAIN)) | |
1092 | break; | |
1093 | if (unlikely(prealloc)) { | |
1094 | /* | |
1095 | * pre-alloc page cannot be reused by next time so as | |
1096 | * to strictly follow mempolicy (e.g., alloc_page_vma() | |
1097 | * will allocate page according to address). This | |
1098 | * could only happen if one pinned pte changed. | |
1099 | */ | |
1100 | put_page(prealloc); | |
1101 | prealloc = NULL; | |
1102 | } | |
1da177e4 LT |
1103 | progress += 8; |
1104 | } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); | |
1da177e4 | 1105 | |
6606c3e0 | 1106 | arch_leave_lazy_mmu_mode(); |
c74df32c | 1107 | spin_unlock(src_ptl); |
ece0e2b6 | 1108 | pte_unmap(orig_src_pte); |
d559db08 | 1109 | add_mm_rss_vec(dst_mm, rss); |
c36987e2 | 1110 | pte_unmap_unlock(orig_dst_pte, dst_ptl); |
c74df32c | 1111 | cond_resched(); |
570a335b | 1112 | |
9a5cc85c AP |
1113 | if (ret == -EIO) { |
1114 | VM_WARN_ON_ONCE(!entry.val); | |
70e806e4 PX |
1115 | if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { |
1116 | ret = -ENOMEM; | |
1117 | goto out; | |
1118 | } | |
1119 | entry.val = 0; | |
b756a3b5 AP |
1120 | } else if (ret == -EBUSY) { |
1121 | goto out; | |
9a5cc85c | 1122 | } else if (ret == -EAGAIN) { |
c78f4636 | 1123 | prealloc = page_copy_prealloc(src_mm, src_vma, addr); |
70e806e4 | 1124 | if (!prealloc) |
570a335b | 1125 | return -ENOMEM; |
9a5cc85c AP |
1126 | } else if (ret) { |
1127 | VM_WARN_ON_ONCE(1); | |
570a335b | 1128 | } |
9a5cc85c AP |
1129 | |
1130 | /* We've captured and resolved the error. Reset, try again. */ | |
1131 | ret = 0; | |
1132 | ||
1da177e4 LT |
1133 | if (addr != end) |
1134 | goto again; | |
70e806e4 PX |
1135 | out: |
1136 | if (unlikely(prealloc)) | |
1137 | put_page(prealloc); | |
1138 | return ret; | |
1da177e4 LT |
1139 | } |
1140 | ||
c78f4636 PX |
1141 | static inline int |
1142 | copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, | |
1143 | pud_t *dst_pud, pud_t *src_pud, unsigned long addr, | |
1144 | unsigned long end) | |
1da177e4 | 1145 | { |
c78f4636 PX |
1146 | struct mm_struct *dst_mm = dst_vma->vm_mm; |
1147 | struct mm_struct *src_mm = src_vma->vm_mm; | |
1da177e4 LT |
1148 | pmd_t *src_pmd, *dst_pmd; |
1149 | unsigned long next; | |
1150 | ||
1151 | dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); | |
1152 | if (!dst_pmd) | |
1153 | return -ENOMEM; | |
1154 | src_pmd = pmd_offset(src_pud, addr); | |
1155 | do { | |
1156 | next = pmd_addr_end(addr, end); | |
84c3fc4e ZY |
1157 | if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) |
1158 | || pmd_devmap(*src_pmd)) { | |
71e3aac0 | 1159 | int err; |
c78f4636 | 1160 | VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); |
8f34f1ea PX |
1161 | err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, |
1162 | addr, dst_vma, src_vma); | |
71e3aac0 AA |
1163 | if (err == -ENOMEM) |
1164 | return -ENOMEM; | |
1165 | if (!err) | |
1166 | continue; | |
1167 | /* fall through */ | |
1168 | } | |
1da177e4 LT |
1169 | if (pmd_none_or_clear_bad(src_pmd)) |
1170 | continue; | |
c78f4636 PX |
1171 | if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, |
1172 | addr, next)) | |
1da177e4 LT |
1173 | return -ENOMEM; |
1174 | } while (dst_pmd++, src_pmd++, addr = next, addr != end); | |
1175 | return 0; | |
1176 | } | |
1177 | ||
c78f4636 PX |
1178 | static inline int |
1179 | copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, | |
1180 | p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, | |
1181 | unsigned long end) | |
1da177e4 | 1182 | { |
c78f4636 PX |
1183 | struct mm_struct *dst_mm = dst_vma->vm_mm; |
1184 | struct mm_struct *src_mm = src_vma->vm_mm; | |
1da177e4 LT |
1185 | pud_t *src_pud, *dst_pud; |
1186 | unsigned long next; | |
1187 | ||
c2febafc | 1188 | dst_pud = pud_alloc(dst_mm, dst_p4d, addr); |
1da177e4 LT |
1189 | if (!dst_pud) |
1190 | return -ENOMEM; | |
c2febafc | 1191 | src_pud = pud_offset(src_p4d, addr); |
1da177e4 LT |
1192 | do { |
1193 | next = pud_addr_end(addr, end); | |
a00cc7d9 MW |
1194 | if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { |
1195 | int err; | |
1196 | ||
c78f4636 | 1197 | VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); |
a00cc7d9 | 1198 | err = copy_huge_pud(dst_mm, src_mm, |
c78f4636 | 1199 | dst_pud, src_pud, addr, src_vma); |
a00cc7d9 MW |
1200 | if (err == -ENOMEM) |
1201 | return -ENOMEM; | |
1202 | if (!err) | |
1203 | continue; | |
1204 | /* fall through */ | |
1205 | } | |
1da177e4 LT |
1206 | if (pud_none_or_clear_bad(src_pud)) |
1207 | continue; | |
c78f4636 PX |
1208 | if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, |
1209 | addr, next)) | |
1da177e4 LT |
1210 | return -ENOMEM; |
1211 | } while (dst_pud++, src_pud++, addr = next, addr != end); | |
1212 | return 0; | |
1213 | } | |
1214 | ||
c78f4636 PX |
1215 | static inline int |
1216 | copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, | |
1217 | pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, | |
1218 | unsigned long end) | |
c2febafc | 1219 | { |
c78f4636 | 1220 | struct mm_struct *dst_mm = dst_vma->vm_mm; |
c2febafc KS |
1221 | p4d_t *src_p4d, *dst_p4d; |
1222 | unsigned long next; | |
1223 | ||
1224 | dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); | |
1225 | if (!dst_p4d) | |
1226 | return -ENOMEM; | |
1227 | src_p4d = p4d_offset(src_pgd, addr); | |
1228 | do { | |
1229 | next = p4d_addr_end(addr, end); | |
1230 | if (p4d_none_or_clear_bad(src_p4d)) | |
1231 | continue; | |
c78f4636 PX |
1232 | if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, |
1233 | addr, next)) | |
c2febafc KS |
1234 | return -ENOMEM; |
1235 | } while (dst_p4d++, src_p4d++, addr = next, addr != end); | |
1236 | return 0; | |
1237 | } | |
1238 | ||
c56d1b62 PX |
1239 | /* |
1240 | * Return true if the vma needs to copy the pgtable during this fork(). Return | |
1241 | * false when we can speed up fork() by allowing lazy page faults later until | |
1242 | * when the child accesses the memory range. | |
1243 | */ | |
bc70fbf2 | 1244 | static bool |
c56d1b62 PX |
1245 | vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) |
1246 | { | |
1247 | /* | |
1248 | * Always copy pgtables when dst_vma has uffd-wp enabled even if it's | |
1249 | * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable | |
1250 | * contains uffd-wp protection information, that's something we can't | |
1251 | * retrieve from page cache, and skip copying will lose those info. | |
1252 | */ | |
1253 | if (userfaultfd_wp(dst_vma)) | |
1254 | return true; | |
1255 | ||
bcd51a3c | 1256 | if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) |
c56d1b62 PX |
1257 | return true; |
1258 | ||
1259 | if (src_vma->anon_vma) | |
1260 | return true; | |
1261 | ||
1262 | /* | |
1263 | * Don't copy ptes where a page fault will fill them correctly. Fork | |
1264 | * becomes much lighter when there are big shared or private readonly | |
1265 | * mappings. The tradeoff is that copy_page_range is more efficient | |
1266 | * than faulting. | |
1267 | */ | |
1268 | return false; | |
1269 | } | |
1270 | ||
c78f4636 PX |
1271 | int |
1272 | copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) | |
1da177e4 LT |
1273 | { |
1274 | pgd_t *src_pgd, *dst_pgd; | |
1275 | unsigned long next; | |
c78f4636 PX |
1276 | unsigned long addr = src_vma->vm_start; |
1277 | unsigned long end = src_vma->vm_end; | |
1278 | struct mm_struct *dst_mm = dst_vma->vm_mm; | |
1279 | struct mm_struct *src_mm = src_vma->vm_mm; | |
ac46d4f3 | 1280 | struct mmu_notifier_range range; |
2ec74c3e | 1281 | bool is_cow; |
cddb8a5c | 1282 | int ret; |
1da177e4 | 1283 | |
c56d1b62 | 1284 | if (!vma_needs_copy(dst_vma, src_vma)) |
0661a336 | 1285 | return 0; |
d992895b | 1286 | |
c78f4636 | 1287 | if (is_vm_hugetlb_page(src_vma)) |
bc70fbf2 | 1288 | return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); |
1da177e4 | 1289 | |
c78f4636 | 1290 | if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { |
2ab64037 | 1291 | /* |
1292 | * We do not free on error cases below as remove_vma | |
1293 | * gets called on error from higher level routine | |
1294 | */ | |
c78f4636 | 1295 | ret = track_pfn_copy(src_vma); |
2ab64037 | 1296 | if (ret) |
1297 | return ret; | |
1298 | } | |
1299 | ||
cddb8a5c AA |
1300 | /* |
1301 | * We need to invalidate the secondary MMU mappings only when | |
1302 | * there could be a permission downgrade on the ptes of the | |
1303 | * parent mm. And a permission downgrade will only happen if | |
1304 | * is_cow_mapping() returns true. | |
1305 | */ | |
c78f4636 | 1306 | is_cow = is_cow_mapping(src_vma->vm_flags); |
ac46d4f3 JG |
1307 | |
1308 | if (is_cow) { | |
7269f999 | 1309 | mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, |
c78f4636 | 1310 | 0, src_vma, src_mm, addr, end); |
ac46d4f3 | 1311 | mmu_notifier_invalidate_range_start(&range); |
57efa1fe JG |
1312 | /* |
1313 | * Disabling preemption is not needed for the write side, as | |
1314 | * the read side doesn't spin, but goes to the mmap_lock. | |
1315 | * | |
1316 | * Use the raw variant of the seqcount_t write API to avoid | |
1317 | * lockdep complaining about preemptibility. | |
1318 | */ | |
1319 | mmap_assert_write_locked(src_mm); | |
1320 | raw_write_seqcount_begin(&src_mm->write_protect_seq); | |
ac46d4f3 | 1321 | } |
cddb8a5c AA |
1322 | |
1323 | ret = 0; | |
1da177e4 LT |
1324 | dst_pgd = pgd_offset(dst_mm, addr); |
1325 | src_pgd = pgd_offset(src_mm, addr); | |
1326 | do { | |
1327 | next = pgd_addr_end(addr, end); | |
1328 | if (pgd_none_or_clear_bad(src_pgd)) | |
1329 | continue; | |
c78f4636 PX |
1330 | if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, |
1331 | addr, next))) { | |
cddb8a5c AA |
1332 | ret = -ENOMEM; |
1333 | break; | |
1334 | } | |
1da177e4 | 1335 | } while (dst_pgd++, src_pgd++, addr = next, addr != end); |
cddb8a5c | 1336 | |
57efa1fe JG |
1337 | if (is_cow) { |
1338 | raw_write_seqcount_end(&src_mm->write_protect_seq); | |
ac46d4f3 | 1339 | mmu_notifier_invalidate_range_end(&range); |
57efa1fe | 1340 | } |
cddb8a5c | 1341 | return ret; |
1da177e4 LT |
1342 | } |
1343 | ||
3506659e MWO |
1344 | /* |
1345 | * Parameter block passed down to zap_pte_range in exceptional cases. | |
1346 | */ | |
1347 | struct zap_details { | |
3506659e | 1348 | struct folio *single_folio; /* Locked folio to be unmapped */ |
2e148f1e | 1349 | bool even_cows; /* Zap COWed private pages too? */ |
999dad82 | 1350 | zap_flags_t zap_flags; /* Extra flags for zapping */ |
3506659e MWO |
1351 | }; |
1352 | ||
5abfd71d PX |
1353 | /* Whether we should zap all COWed (private) pages too */ |
1354 | static inline bool should_zap_cows(struct zap_details *details) | |
1355 | { | |
1356 | /* By default, zap all pages */ | |
1357 | if (!details) | |
1358 | return true; | |
1359 | ||
1360 | /* Or, we zap COWed pages only if the caller wants to */ | |
2e148f1e | 1361 | return details->even_cows; |
5abfd71d PX |
1362 | } |
1363 | ||
2e148f1e | 1364 | /* Decides whether we should zap this page with the page pointer specified */ |
254ab940 | 1365 | static inline bool should_zap_page(struct zap_details *details, struct page *page) |
3506659e | 1366 | { |
5abfd71d PX |
1367 | /* If we can make a decision without *page.. */ |
1368 | if (should_zap_cows(details)) | |
254ab940 | 1369 | return true; |
5abfd71d PX |
1370 | |
1371 | /* E.g. the caller passes NULL for the case of a zero page */ | |
1372 | if (!page) | |
254ab940 | 1373 | return true; |
3506659e | 1374 | |
2e148f1e PX |
1375 | /* Otherwise we should only zap non-anon pages */ |
1376 | return !PageAnon(page); | |
3506659e MWO |
1377 | } |
1378 | ||
999dad82 PX |
1379 | static inline bool zap_drop_file_uffd_wp(struct zap_details *details) |
1380 | { | |
1381 | if (!details) | |
1382 | return false; | |
1383 | ||
1384 | return details->zap_flags & ZAP_FLAG_DROP_MARKER; | |
1385 | } | |
1386 | ||
1387 | /* | |
1388 | * This function makes sure that we'll replace the none pte with an uffd-wp | |
1389 | * swap special pte marker when necessary. Must be with the pgtable lock held. | |
1390 | */ | |
1391 | static inline void | |
1392 | zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, | |
1393 | unsigned long addr, pte_t *pte, | |
1394 | struct zap_details *details, pte_t pteval) | |
1395 | { | |
1396 | if (zap_drop_file_uffd_wp(details)) | |
1397 | return; | |
1398 | ||
1399 | pte_install_uffd_wp_if_needed(vma, addr, pte, pteval); | |
1400 | } | |
1401 | ||
51c6f666 | 1402 | static unsigned long zap_pte_range(struct mmu_gather *tlb, |
b5810039 | 1403 | struct vm_area_struct *vma, pmd_t *pmd, |
1da177e4 | 1404 | unsigned long addr, unsigned long end, |
97a89413 | 1405 | struct zap_details *details) |
1da177e4 | 1406 | { |
b5810039 | 1407 | struct mm_struct *mm = tlb->mm; |
d16dfc55 | 1408 | int force_flush = 0; |
d559db08 | 1409 | int rss[NR_MM_COUNTERS]; |
97a89413 | 1410 | spinlock_t *ptl; |
5f1a1907 | 1411 | pte_t *start_pte; |
97a89413 | 1412 | pte_t *pte; |
8a5f14a2 | 1413 | swp_entry_t entry; |
d559db08 | 1414 | |
ed6a7935 | 1415 | tlb_change_page_size(tlb, PAGE_SIZE); |
d16dfc55 | 1416 | again: |
e303297e | 1417 | init_rss_vec(rss); |
5f1a1907 SR |
1418 | start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); |
1419 | pte = start_pte; | |
3ea27719 | 1420 | flush_tlb_batched_pending(mm); |
6606c3e0 | 1421 | arch_enter_lazy_mmu_mode(); |
1da177e4 LT |
1422 | do { |
1423 | pte_t ptent = *pte; | |
8018db85 PX |
1424 | struct page *page; |
1425 | ||
166f61b9 | 1426 | if (pte_none(ptent)) |
1da177e4 | 1427 | continue; |
6f5e6b9e | 1428 | |
7b167b68 MK |
1429 | if (need_resched()) |
1430 | break; | |
1431 | ||
1da177e4 | 1432 | if (pte_present(ptent)) { |
25b2995a | 1433 | page = vm_normal_page(vma, addr, ptent); |
254ab940 | 1434 | if (unlikely(!should_zap_page(details, page))) |
91b61ef3 | 1435 | continue; |
b5810039 | 1436 | ptent = ptep_get_and_clear_full(mm, addr, pte, |
a600388d | 1437 | tlb->fullmm); |
1da177e4 | 1438 | tlb_remove_tlb_entry(tlb, pte, addr); |
999dad82 PX |
1439 | zap_install_uffd_wp_if_needed(vma, addr, pte, details, |
1440 | ptent); | |
1da177e4 LT |
1441 | if (unlikely(!page)) |
1442 | continue; | |
eca56ff9 JM |
1443 | |
1444 | if (!PageAnon(page)) { | |
1cf35d47 LT |
1445 | if (pte_dirty(ptent)) { |
1446 | force_flush = 1; | |
6237bcd9 | 1447 | set_page_dirty(page); |
1cf35d47 | 1448 | } |
4917e5d0 | 1449 | if (pte_young(ptent) && |
64363aad | 1450 | likely(!(vma->vm_flags & VM_SEQ_READ))) |
bf3f3bc5 | 1451 | mark_page_accessed(page); |
6237bcd9 | 1452 | } |
eca56ff9 | 1453 | rss[mm_counter(page)]--; |
cea86fe2 | 1454 | page_remove_rmap(page, vma, false); |
3dc14741 HD |
1455 | if (unlikely(page_mapcount(page) < 0)) |
1456 | print_bad_pte(vma, addr, ptent, page); | |
e9d55e15 | 1457 | if (unlikely(__tlb_remove_page(tlb, page))) { |
1cf35d47 | 1458 | force_flush = 1; |
ce9ec37b | 1459 | addr += PAGE_SIZE; |
d16dfc55 | 1460 | break; |
1cf35d47 | 1461 | } |
1da177e4 LT |
1462 | continue; |
1463 | } | |
5042db43 JG |
1464 | |
1465 | entry = pte_to_swp_entry(ptent); | |
b756a3b5 AP |
1466 | if (is_device_private_entry(entry) || |
1467 | is_device_exclusive_entry(entry)) { | |
8018db85 | 1468 | page = pfn_swap_entry_to_page(entry); |
254ab940 | 1469 | if (unlikely(!should_zap_page(details, page))) |
91b61ef3 | 1470 | continue; |
999dad82 PX |
1471 | /* |
1472 | * Both device private/exclusive mappings should only | |
1473 | * work with anonymous page so far, so we don't need to | |
1474 | * consider uffd-wp bit when zap. For more information, | |
1475 | * see zap_install_uffd_wp_if_needed(). | |
1476 | */ | |
1477 | WARN_ON_ONCE(!vma_is_anonymous(vma)); | |
5042db43 | 1478 | rss[mm_counter(page)]--; |
b756a3b5 | 1479 | if (is_device_private_entry(entry)) |
cea86fe2 | 1480 | page_remove_rmap(page, vma, false); |
5042db43 | 1481 | put_page(page); |
8018db85 | 1482 | } else if (!non_swap_entry(entry)) { |
5abfd71d PX |
1483 | /* Genuine swap entry, hence a private anon page */ |
1484 | if (!should_zap_cows(details)) | |
1485 | continue; | |
8a5f14a2 | 1486 | rss[MM_SWAPENTS]--; |
8018db85 PX |
1487 | if (unlikely(!free_swap_and_cache(entry))) |
1488 | print_bad_pte(vma, addr, ptent, NULL); | |
5abfd71d | 1489 | } else if (is_migration_entry(entry)) { |
af5cdaf8 | 1490 | page = pfn_swap_entry_to_page(entry); |
254ab940 | 1491 | if (!should_zap_page(details, page)) |
5abfd71d | 1492 | continue; |
eca56ff9 | 1493 | rss[mm_counter(page)]--; |
999dad82 PX |
1494 | } else if (pte_marker_entry_uffd_wp(entry)) { |
1495 | /* Only drop the uffd-wp marker if explicitly requested */ | |
1496 | if (!zap_drop_file_uffd_wp(details)) | |
1497 | continue; | |
9f186f9e ML |
1498 | } else if (is_hwpoison_entry(entry) || |
1499 | is_swapin_error_entry(entry)) { | |
5abfd71d PX |
1500 | if (!should_zap_cows(details)) |
1501 | continue; | |
1502 | } else { | |
1503 | /* We should have covered all the swap entry types */ | |
1504 | WARN_ON_ONCE(1); | |
b084d435 | 1505 | } |
9888a1ca | 1506 | pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); |
999dad82 | 1507 | zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent); |
97a89413 | 1508 | } while (pte++, addr += PAGE_SIZE, addr != end); |
ae859762 | 1509 | |
d559db08 | 1510 | add_mm_rss_vec(mm, rss); |
6606c3e0 | 1511 | arch_leave_lazy_mmu_mode(); |
51c6f666 | 1512 | |
1cf35d47 | 1513 | /* Do the actual TLB flush before dropping ptl */ |
fb7332a9 | 1514 | if (force_flush) |
1cf35d47 | 1515 | tlb_flush_mmu_tlbonly(tlb); |
1cf35d47 LT |
1516 | pte_unmap_unlock(start_pte, ptl); |
1517 | ||
1518 | /* | |
1519 | * If we forced a TLB flush (either due to running out of | |
1520 | * batch buffers or because we needed to flush dirty TLB | |
1521 | * entries before releasing the ptl), free the batched | |
1522 | * memory too. Restart if we didn't do everything. | |
1523 | */ | |
1524 | if (force_flush) { | |
1525 | force_flush = 0; | |
fa0aafb8 | 1526 | tlb_flush_mmu(tlb); |
7b167b68 MK |
1527 | } |
1528 | ||
1529 | if (addr != end) { | |
1530 | cond_resched(); | |
1531 | goto again; | |
d16dfc55 PZ |
1532 | } |
1533 | ||
51c6f666 | 1534 | return addr; |
1da177e4 LT |
1535 | } |
1536 | ||
51c6f666 | 1537 | static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, |
b5810039 | 1538 | struct vm_area_struct *vma, pud_t *pud, |
1da177e4 | 1539 | unsigned long addr, unsigned long end, |
97a89413 | 1540 | struct zap_details *details) |
1da177e4 LT |
1541 | { |
1542 | pmd_t *pmd; | |
1543 | unsigned long next; | |
1544 | ||
1545 | pmd = pmd_offset(pud, addr); | |
1546 | do { | |
1547 | next = pmd_addr_end(addr, end); | |
84c3fc4e | 1548 | if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { |
53406ed1 | 1549 | if (next - addr != HPAGE_PMD_SIZE) |
fd60775a | 1550 | __split_huge_pmd(vma, pmd, addr, false, NULL); |
53406ed1 | 1551 | else if (zap_huge_pmd(tlb, vma, pmd, addr)) |
1a5a9906 | 1552 | goto next; |
71e3aac0 | 1553 | /* fall through */ |
3506659e MWO |
1554 | } else if (details && details->single_folio && |
1555 | folio_test_pmd_mappable(details->single_folio) && | |
22061a1f HD |
1556 | next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { |
1557 | spinlock_t *ptl = pmd_lock(tlb->mm, pmd); | |
1558 | /* | |
1559 | * Take and drop THP pmd lock so that we cannot return | |
1560 | * prematurely, while zap_huge_pmd() has cleared *pmd, | |
1561 | * but not yet decremented compound_mapcount(). | |
1562 | */ | |
1563 | spin_unlock(ptl); | |
71e3aac0 | 1564 | } |
22061a1f | 1565 | |
1a5a9906 AA |
1566 | /* |
1567 | * Here there can be other concurrent MADV_DONTNEED or | |
1568 | * trans huge page faults running, and if the pmd is | |
1569 | * none or trans huge it can change under us. This is | |
c1e8d7c6 | 1570 | * because MADV_DONTNEED holds the mmap_lock in read |
1a5a9906 AA |
1571 | * mode. |
1572 | */ | |
1573 | if (pmd_none_or_trans_huge_or_clear_bad(pmd)) | |
1574 | goto next; | |
97a89413 | 1575 | next = zap_pte_range(tlb, vma, pmd, addr, next, details); |
1a5a9906 | 1576 | next: |
97a89413 PZ |
1577 | cond_resched(); |
1578 | } while (pmd++, addr = next, addr != end); | |
51c6f666 RH |
1579 | |
1580 | return addr; | |
1da177e4 LT |
1581 | } |
1582 | ||
51c6f666 | 1583 | static inline unsigned long zap_pud_range(struct mmu_gather *tlb, |
c2febafc | 1584 | struct vm_area_struct *vma, p4d_t *p4d, |
1da177e4 | 1585 | unsigned long addr, unsigned long end, |
97a89413 | 1586 | struct zap_details *details) |
1da177e4 LT |
1587 | { |
1588 | pud_t *pud; | |
1589 | unsigned long next; | |
1590 | ||
c2febafc | 1591 | pud = pud_offset(p4d, addr); |
1da177e4 LT |
1592 | do { |
1593 | next = pud_addr_end(addr, end); | |
a00cc7d9 MW |
1594 | if (pud_trans_huge(*pud) || pud_devmap(*pud)) { |
1595 | if (next - addr != HPAGE_PUD_SIZE) { | |
42fc5414 | 1596 | mmap_assert_locked(tlb->mm); |
a00cc7d9 MW |
1597 | split_huge_pud(vma, pud, addr); |
1598 | } else if (zap_huge_pud(tlb, vma, pud, addr)) | |
1599 | goto next; | |
1600 | /* fall through */ | |
1601 | } | |
97a89413 | 1602 | if (pud_none_or_clear_bad(pud)) |
1da177e4 | 1603 | continue; |
97a89413 | 1604 | next = zap_pmd_range(tlb, vma, pud, addr, next, details); |
a00cc7d9 MW |
1605 | next: |
1606 | cond_resched(); | |
97a89413 | 1607 | } while (pud++, addr = next, addr != end); |
51c6f666 RH |
1608 | |
1609 | return addr; | |
1da177e4 LT |
1610 | } |
1611 | ||
c2febafc KS |
1612 | static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, |
1613 | struct vm_area_struct *vma, pgd_t *pgd, | |
1614 | unsigned long addr, unsigned long end, | |
1615 | struct zap_details *details) | |
1616 | { | |
1617 | p4d_t *p4d; | |
1618 | unsigned long next; | |
1619 | ||
1620 | p4d = p4d_offset(pgd, addr); | |
1621 | do { | |
1622 | next = p4d_addr_end(addr, end); | |
1623 | if (p4d_none_or_clear_bad(p4d)) | |
1624 | continue; | |
1625 | next = zap_pud_range(tlb, vma, p4d, addr, next, details); | |
1626 | } while (p4d++, addr = next, addr != end); | |
1627 | ||
1628 | return addr; | |
1629 | } | |
1630 | ||
aac45363 | 1631 | void unmap_page_range(struct mmu_gather *tlb, |
038c7aa1 AV |
1632 | struct vm_area_struct *vma, |
1633 | unsigned long addr, unsigned long end, | |
1634 | struct zap_details *details) | |
1da177e4 LT |
1635 | { |
1636 | pgd_t *pgd; | |
1637 | unsigned long next; | |
1638 | ||
1da177e4 LT |
1639 | BUG_ON(addr >= end); |
1640 | tlb_start_vma(tlb, vma); | |
1641 | pgd = pgd_offset(vma->vm_mm, addr); | |
1642 | do { | |
1643 | next = pgd_addr_end(addr, end); | |
97a89413 | 1644 | if (pgd_none_or_clear_bad(pgd)) |
1da177e4 | 1645 | continue; |
c2febafc | 1646 | next = zap_p4d_range(tlb, vma, pgd, addr, next, details); |
97a89413 | 1647 | } while (pgd++, addr = next, addr != end); |
1da177e4 LT |
1648 | tlb_end_vma(tlb, vma); |
1649 | } | |
51c6f666 | 1650 | |
f5cc4eef AV |
1651 | |
1652 | static void unmap_single_vma(struct mmu_gather *tlb, | |
1653 | struct vm_area_struct *vma, unsigned long start_addr, | |
4f74d2c8 | 1654 | unsigned long end_addr, |
f5cc4eef AV |
1655 | struct zap_details *details) |
1656 | { | |
1657 | unsigned long start = max(vma->vm_start, start_addr); | |
1658 | unsigned long end; | |
1659 | ||
1660 | if (start >= vma->vm_end) | |
1661 | return; | |
1662 | end = min(vma->vm_end, end_addr); | |
1663 | if (end <= vma->vm_start) | |
1664 | return; | |
1665 | ||
cbc91f71 SD |
1666 | if (vma->vm_file) |
1667 | uprobe_munmap(vma, start, end); | |
1668 | ||
b3b9c293 | 1669 | if (unlikely(vma->vm_flags & VM_PFNMAP)) |
5180da41 | 1670 | untrack_pfn(vma, 0, 0); |
f5cc4eef AV |
1671 | |
1672 | if (start != end) { | |
1673 | if (unlikely(is_vm_hugetlb_page(vma))) { | |
1674 | /* | |
1675 | * It is undesirable to test vma->vm_file as it | |
1676 | * should be non-null for valid hugetlb area. | |
1677 | * However, vm_file will be NULL in the error | |
7aa6b4ad | 1678 | * cleanup path of mmap_region. When |
f5cc4eef | 1679 | * hugetlbfs ->mmap method fails, |
7aa6b4ad | 1680 | * mmap_region() nullifies vma->vm_file |
f5cc4eef AV |
1681 | * before calling this function to clean up. |
1682 | * Since no pte has actually been setup, it is | |
1683 | * safe to do nothing in this case. | |
1684 | */ | |
24669e58 | 1685 | if (vma->vm_file) { |
05e90bd0 PX |
1686 | zap_flags_t zap_flags = details ? |
1687 | details->zap_flags : 0; | |
83cde9e8 | 1688 | i_mmap_lock_write(vma->vm_file->f_mapping); |
05e90bd0 PX |
1689 | __unmap_hugepage_range_final(tlb, vma, start, end, |
1690 | NULL, zap_flags); | |
83cde9e8 | 1691 | i_mmap_unlock_write(vma->vm_file->f_mapping); |
24669e58 | 1692 | } |
f5cc4eef AV |
1693 | } else |
1694 | unmap_page_range(tlb, vma, start, end, details); | |
1695 | } | |
1da177e4 LT |
1696 | } |
1697 | ||
1da177e4 LT |
1698 | /** |
1699 | * unmap_vmas - unmap a range of memory covered by a list of vma's | |
0164f69d | 1700 | * @tlb: address of the caller's struct mmu_gather |
1da177e4 LT |
1701 | * @vma: the starting vma |
1702 | * @start_addr: virtual address at which to start unmapping | |
1703 | * @end_addr: virtual address at which to end unmapping | |
1da177e4 | 1704 | * |
508034a3 | 1705 | * Unmap all pages in the vma list. |
1da177e4 | 1706 | * |
1da177e4 LT |
1707 | * Only addresses between `start' and `end' will be unmapped. |
1708 | * | |
1709 | * The VMA list must be sorted in ascending virtual address order. | |
1710 | * | |
1711 | * unmap_vmas() assumes that the caller will flush the whole unmapped address | |
1712 | * range after unmap_vmas() returns. So the only responsibility here is to | |
1713 | * ensure that any thus-far unmapped pages are flushed before unmap_vmas() | |
1714 | * drops the lock and schedules. | |
1715 | */ | |
6e8bb019 | 1716 | void unmap_vmas(struct mmu_gather *tlb, |
1da177e4 | 1717 | struct vm_area_struct *vma, unsigned long start_addr, |
4f74d2c8 | 1718 | unsigned long end_addr) |
1da177e4 | 1719 | { |
ac46d4f3 | 1720 | struct mmu_notifier_range range; |
999dad82 PX |
1721 | struct zap_details details = { |
1722 | .zap_flags = ZAP_FLAG_DROP_MARKER, | |
1723 | /* Careful - we need to zap private pages too! */ | |
1724 | .even_cows = true, | |
1725 | }; | |
1da177e4 | 1726 | |
6f4f13e8 JG |
1727 | mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, |
1728 | start_addr, end_addr); | |
ac46d4f3 | 1729 | mmu_notifier_invalidate_range_start(&range); |
f5cc4eef | 1730 | for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) |
999dad82 | 1731 | unmap_single_vma(tlb, vma, start_addr, end_addr, &details); |
ac46d4f3 | 1732 | mmu_notifier_invalidate_range_end(&range); |
1da177e4 LT |
1733 | } |
1734 | ||
1735 | /** | |
1736 | * zap_page_range - remove user pages in a given range | |
1737 | * @vma: vm_area_struct holding the applicable pages | |
eb4546bb | 1738 | * @start: starting address of pages to zap |
1da177e4 | 1739 | * @size: number of bytes to zap |
f5cc4eef AV |
1740 | * |
1741 | * Caller must protect the VMA list | |
1da177e4 | 1742 | */ |
7e027b14 | 1743 | void zap_page_range(struct vm_area_struct *vma, unsigned long start, |
ecf1385d | 1744 | unsigned long size) |
1da177e4 | 1745 | { |
ac46d4f3 | 1746 | struct mmu_notifier_range range; |
d16dfc55 | 1747 | struct mmu_gather tlb; |
1da177e4 | 1748 | |
1da177e4 | 1749 | lru_add_drain(); |
7269f999 | 1750 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, |
6f4f13e8 | 1751 | start, start + size); |
a72afd87 | 1752 | tlb_gather_mmu(&tlb, vma->vm_mm); |
ac46d4f3 JG |
1753 | update_hiwater_rss(vma->vm_mm); |
1754 | mmu_notifier_invalidate_range_start(&range); | |
1755 | for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next) | |
1756 | unmap_single_vma(&tlb, vma, start, range.end, NULL); | |
1757 | mmu_notifier_invalidate_range_end(&range); | |
ae8eba8b | 1758 | tlb_finish_mmu(&tlb); |
1da177e4 LT |
1759 | } |
1760 | ||
f5cc4eef AV |
1761 | /** |
1762 | * zap_page_range_single - remove user pages in a given range | |
1763 | * @vma: vm_area_struct holding the applicable pages | |
1764 | * @address: starting address of pages to zap | |
1765 | * @size: number of bytes to zap | |
8a5f14a2 | 1766 | * @details: details of shared cache invalidation |
f5cc4eef AV |
1767 | * |
1768 | * The range must fit into one VMA. | |
1da177e4 | 1769 | */ |
f5cc4eef | 1770 | static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, |
1da177e4 LT |
1771 | unsigned long size, struct zap_details *details) |
1772 | { | |
ac46d4f3 | 1773 | struct mmu_notifier_range range; |
d16dfc55 | 1774 | struct mmu_gather tlb; |
1da177e4 | 1775 | |
1da177e4 | 1776 | lru_add_drain(); |
7269f999 | 1777 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, |
6f4f13e8 | 1778 | address, address + size); |
a72afd87 | 1779 | tlb_gather_mmu(&tlb, vma->vm_mm); |
ac46d4f3 JG |
1780 | update_hiwater_rss(vma->vm_mm); |
1781 | mmu_notifier_invalidate_range_start(&range); | |
1782 | unmap_single_vma(&tlb, vma, address, range.end, details); | |
1783 | mmu_notifier_invalidate_range_end(&range); | |
ae8eba8b | 1784 | tlb_finish_mmu(&tlb); |
1da177e4 LT |
1785 | } |
1786 | ||
c627f9cc JS |
1787 | /** |
1788 | * zap_vma_ptes - remove ptes mapping the vma | |
1789 | * @vma: vm_area_struct holding ptes to be zapped | |
1790 | * @address: starting address of pages to zap | |
1791 | * @size: number of bytes to zap | |
1792 | * | |
1793 | * This function only unmaps ptes assigned to VM_PFNMAP vmas. | |
1794 | * | |
1795 | * The entire address range must be fully contained within the vma. | |
1796 | * | |
c627f9cc | 1797 | */ |
27d036e3 | 1798 | void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, |
c627f9cc JS |
1799 | unsigned long size) |
1800 | { | |
88a35912 | 1801 | if (!range_in_vma(vma, address, address + size) || |
c627f9cc | 1802 | !(vma->vm_flags & VM_PFNMAP)) |
27d036e3 LR |
1803 | return; |
1804 | ||
f5cc4eef | 1805 | zap_page_range_single(vma, address, size, NULL); |
c627f9cc JS |
1806 | } |
1807 | EXPORT_SYMBOL_GPL(zap_vma_ptes); | |
1808 | ||
8cd3984d | 1809 | static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) |
c9cfcddf | 1810 | { |
c2febafc KS |
1811 | pgd_t *pgd; |
1812 | p4d_t *p4d; | |
1813 | pud_t *pud; | |
1814 | pmd_t *pmd; | |
1815 | ||
1816 | pgd = pgd_offset(mm, addr); | |
1817 | p4d = p4d_alloc(mm, pgd, addr); | |
1818 | if (!p4d) | |
1819 | return NULL; | |
1820 | pud = pud_alloc(mm, p4d, addr); | |
1821 | if (!pud) | |
1822 | return NULL; | |
1823 | pmd = pmd_alloc(mm, pud, addr); | |
1824 | if (!pmd) | |
1825 | return NULL; | |
1826 | ||
1827 | VM_BUG_ON(pmd_trans_huge(*pmd)); | |
8cd3984d AR |
1828 | return pmd; |
1829 | } | |
1830 | ||
1831 | pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, | |
1832 | spinlock_t **ptl) | |
1833 | { | |
1834 | pmd_t *pmd = walk_to_pmd(mm, addr); | |
1835 | ||
1836 | if (!pmd) | |
1837 | return NULL; | |
c2febafc | 1838 | return pte_alloc_map_lock(mm, pmd, addr, ptl); |
c9cfcddf LT |
1839 | } |
1840 | ||
8efd6f5b AR |
1841 | static int validate_page_before_insert(struct page *page) |
1842 | { | |
1843 | if (PageAnon(page) || PageSlab(page) || page_has_type(page)) | |
1844 | return -EINVAL; | |
1845 | flush_dcache_page(page); | |
1846 | return 0; | |
1847 | } | |
1848 | ||
cea86fe2 | 1849 | static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, |
8efd6f5b AR |
1850 | unsigned long addr, struct page *page, pgprot_t prot) |
1851 | { | |
1852 | if (!pte_none(*pte)) | |
1853 | return -EBUSY; | |
1854 | /* Ok, finally just insert the thing.. */ | |
1855 | get_page(page); | |
cea86fe2 HD |
1856 | inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); |
1857 | page_add_file_rmap(page, vma, false); | |
1858 | set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot)); | |
8efd6f5b AR |
1859 | return 0; |
1860 | } | |
1861 | ||
238f58d8 LT |
1862 | /* |
1863 | * This is the old fallback for page remapping. | |
1864 | * | |
1865 | * For historical reasons, it only allows reserved pages. Only | |
1866 | * old drivers should use this, and they needed to mark their | |
1867 | * pages reserved for the old functions anyway. | |
1868 | */ | |
423bad60 NP |
1869 | static int insert_page(struct vm_area_struct *vma, unsigned long addr, |
1870 | struct page *page, pgprot_t prot) | |
238f58d8 LT |
1871 | { |
1872 | int retval; | |
c9cfcddf | 1873 | pte_t *pte; |
8a9f3ccd BS |
1874 | spinlock_t *ptl; |
1875 | ||
8efd6f5b AR |
1876 | retval = validate_page_before_insert(page); |
1877 | if (retval) | |
5b4e655e | 1878 | goto out; |
238f58d8 | 1879 | retval = -ENOMEM; |
cea86fe2 | 1880 | pte = get_locked_pte(vma->vm_mm, addr, &ptl); |
238f58d8 | 1881 | if (!pte) |
5b4e655e | 1882 | goto out; |
cea86fe2 | 1883 | retval = insert_page_into_pte_locked(vma, pte, addr, page, prot); |
238f58d8 LT |
1884 | pte_unmap_unlock(pte, ptl); |
1885 | out: | |
1886 | return retval; | |
1887 | } | |
1888 | ||
8cd3984d | 1889 | #ifdef pte_index |
cea86fe2 | 1890 | static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, |
8cd3984d AR |
1891 | unsigned long addr, struct page *page, pgprot_t prot) |
1892 | { | |
1893 | int err; | |
1894 | ||
1895 | if (!page_count(page)) | |
1896 | return -EINVAL; | |
1897 | err = validate_page_before_insert(page); | |
7f70c2a6 AR |
1898 | if (err) |
1899 | return err; | |
cea86fe2 | 1900 | return insert_page_into_pte_locked(vma, pte, addr, page, prot); |
8cd3984d AR |
1901 | } |
1902 | ||
1903 | /* insert_pages() amortizes the cost of spinlock operations | |
1904 | * when inserting pages in a loop. Arch *must* define pte_index. | |
1905 | */ | |
1906 | static int insert_pages(struct vm_area_struct *vma, unsigned long addr, | |
1907 | struct page **pages, unsigned long *num, pgprot_t prot) | |
1908 | { | |
1909 | pmd_t *pmd = NULL; | |
7f70c2a6 AR |
1910 | pte_t *start_pte, *pte; |
1911 | spinlock_t *pte_lock; | |
8cd3984d AR |
1912 | struct mm_struct *const mm = vma->vm_mm; |
1913 | unsigned long curr_page_idx = 0; | |
1914 | unsigned long remaining_pages_total = *num; | |
1915 | unsigned long pages_to_write_in_pmd; | |
1916 | int ret; | |
1917 | more: | |
1918 | ret = -EFAULT; | |
1919 | pmd = walk_to_pmd(mm, addr); | |
1920 | if (!pmd) | |
1921 | goto out; | |
1922 | ||
1923 | pages_to_write_in_pmd = min_t(unsigned long, | |
1924 | remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); | |
1925 | ||
1926 | /* Allocate the PTE if necessary; takes PMD lock once only. */ | |
1927 | ret = -ENOMEM; | |
1928 | if (pte_alloc(mm, pmd)) | |
1929 | goto out; | |
8cd3984d AR |
1930 | |
1931 | while (pages_to_write_in_pmd) { | |
1932 | int pte_idx = 0; | |
1933 | const int batch_size = min_t(int, pages_to_write_in_pmd, 8); | |
1934 | ||
7f70c2a6 AR |
1935 | start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); |
1936 | for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { | |
cea86fe2 | 1937 | int err = insert_page_in_batch_locked(vma, pte, |
8cd3984d AR |
1938 | addr, pages[curr_page_idx], prot); |
1939 | if (unlikely(err)) { | |
7f70c2a6 | 1940 | pte_unmap_unlock(start_pte, pte_lock); |
8cd3984d AR |
1941 | ret = err; |
1942 | remaining_pages_total -= pte_idx; | |
1943 | goto out; | |
1944 | } | |
1945 | addr += PAGE_SIZE; | |
1946 | ++curr_page_idx; | |
1947 | } | |
7f70c2a6 | 1948 | pte_unmap_unlock(start_pte, pte_lock); |
8cd3984d AR |
1949 | pages_to_write_in_pmd -= batch_size; |
1950 | remaining_pages_total -= batch_size; | |
1951 | } | |
1952 | if (remaining_pages_total) | |
1953 | goto more; | |
1954 | ret = 0; | |
1955 | out: | |
1956 | *num = remaining_pages_total; | |
1957 | return ret; | |
1958 | } | |
1959 | #endif /* ifdef pte_index */ | |
1960 | ||
1961 | /** | |
1962 | * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. | |
1963 | * @vma: user vma to map to | |
1964 | * @addr: target start user address of these pages | |
1965 | * @pages: source kernel pages | |
1966 | * @num: in: number of pages to map. out: number of pages that were *not* | |
1967 | * mapped. (0 means all pages were successfully mapped). | |
1968 | * | |
1969 | * Preferred over vm_insert_page() when inserting multiple pages. | |
1970 | * | |
1971 | * In case of error, we may have mapped a subset of the provided | |
1972 | * pages. It is the caller's responsibility to account for this case. | |
1973 | * | |
1974 | * The same restrictions apply as in vm_insert_page(). | |
1975 | */ | |
1976 | int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, | |
1977 | struct page **pages, unsigned long *num) | |
1978 | { | |
1979 | #ifdef pte_index | |
1980 | const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; | |
1981 | ||
1982 | if (addr < vma->vm_start || end_addr >= vma->vm_end) | |
1983 | return -EFAULT; | |
1984 | if (!(vma->vm_flags & VM_MIXEDMAP)) { | |
d8ed45c5 | 1985 | BUG_ON(mmap_read_trylock(vma->vm_mm)); |
8cd3984d AR |
1986 | BUG_ON(vma->vm_flags & VM_PFNMAP); |
1987 | vma->vm_flags |= VM_MIXEDMAP; | |
1988 | } | |
1989 | /* Defer page refcount checking till we're about to map that page. */ | |
1990 | return insert_pages(vma, addr, pages, num, vma->vm_page_prot); | |
1991 | #else | |
1992 | unsigned long idx = 0, pgcount = *num; | |
45779b03 | 1993 | int err = -EINVAL; |
8cd3984d AR |
1994 | |
1995 | for (; idx < pgcount; ++idx) { | |
1996 | err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); | |
1997 | if (err) | |
1998 | break; | |
1999 | } | |
2000 | *num = pgcount - idx; | |
2001 | return err; | |
2002 | #endif /* ifdef pte_index */ | |
2003 | } | |
2004 | EXPORT_SYMBOL(vm_insert_pages); | |
2005 | ||
bfa5bf6d REB |
2006 | /** |
2007 | * vm_insert_page - insert single page into user vma | |
2008 | * @vma: user vma to map to | |
2009 | * @addr: target user address of this page | |
2010 | * @page: source kernel page | |
2011 | * | |
a145dd41 LT |
2012 | * This allows drivers to insert individual pages they've allocated |
2013 | * into a user vma. | |
2014 | * | |
2015 | * The page has to be a nice clean _individual_ kernel allocation. | |
2016 | * If you allocate a compound page, you need to have marked it as | |
2017 | * such (__GFP_COMP), or manually just split the page up yourself | |
8dfcc9ba | 2018 | * (see split_page()). |
a145dd41 LT |
2019 | * |
2020 | * NOTE! Traditionally this was done with "remap_pfn_range()" which | |
2021 | * took an arbitrary page protection parameter. This doesn't allow | |
2022 | * that. Your vma protection will have to be set up correctly, which | |
2023 | * means that if you want a shared writable mapping, you'd better | |
2024 | * ask for a shared writable mapping! | |
2025 | * | |
2026 | * The page does not need to be reserved. | |
4b6e1e37 KK |
2027 | * |
2028 | * Usually this function is called from f_op->mmap() handler | |
c1e8d7c6 | 2029 | * under mm->mmap_lock write-lock, so it can change vma->vm_flags. |
4b6e1e37 KK |
2030 | * Caller must set VM_MIXEDMAP on vma if it wants to call this |
2031 | * function from other places, for example from page-fault handler. | |
a862f68a MR |
2032 | * |
2033 | * Return: %0 on success, negative error code otherwise. | |
a145dd41 | 2034 | */ |
423bad60 NP |
2035 | int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, |
2036 | struct page *page) | |
a145dd41 LT |
2037 | { |
2038 | if (addr < vma->vm_start || addr >= vma->vm_end) | |
2039 | return -EFAULT; | |
2040 | if (!page_count(page)) | |
2041 | return -EINVAL; | |
4b6e1e37 | 2042 | if (!(vma->vm_flags & VM_MIXEDMAP)) { |
d8ed45c5 | 2043 | BUG_ON(mmap_read_trylock(vma->vm_mm)); |
4b6e1e37 KK |
2044 | BUG_ON(vma->vm_flags & VM_PFNMAP); |
2045 | vma->vm_flags |= VM_MIXEDMAP; | |
2046 | } | |
423bad60 | 2047 | return insert_page(vma, addr, page, vma->vm_page_prot); |
a145dd41 | 2048 | } |
e3c3374f | 2049 | EXPORT_SYMBOL(vm_insert_page); |
a145dd41 | 2050 | |
a667d745 SJ |
2051 | /* |
2052 | * __vm_map_pages - maps range of kernel pages into user vma | |
2053 | * @vma: user vma to map to | |
2054 | * @pages: pointer to array of source kernel pages | |
2055 | * @num: number of pages in page array | |
2056 | * @offset: user's requested vm_pgoff | |
2057 | * | |
2058 | * This allows drivers to map range of kernel pages into a user vma. | |
2059 | * | |
2060 | * Return: 0 on success and error code otherwise. | |
2061 | */ | |
2062 | static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, | |
2063 | unsigned long num, unsigned long offset) | |
2064 | { | |
2065 | unsigned long count = vma_pages(vma); | |
2066 | unsigned long uaddr = vma->vm_start; | |
2067 | int ret, i; | |
2068 | ||
2069 | /* Fail if the user requested offset is beyond the end of the object */ | |
96756fcb | 2070 | if (offset >= num) |
a667d745 SJ |
2071 | return -ENXIO; |
2072 | ||
2073 | /* Fail if the user requested size exceeds available object size */ | |
2074 | if (count > num - offset) | |
2075 | return -ENXIO; | |
2076 | ||
2077 | for (i = 0; i < count; i++) { | |
2078 | ret = vm_insert_page(vma, uaddr, pages[offset + i]); | |
2079 | if (ret < 0) | |
2080 | return ret; | |
2081 | uaddr += PAGE_SIZE; | |
2082 | } | |
2083 | ||
2084 | return 0; | |
2085 | } | |
2086 | ||
2087 | /** | |
2088 | * vm_map_pages - maps range of kernel pages starts with non zero offset | |
2089 | * @vma: user vma to map to | |
2090 | * @pages: pointer to array of source kernel pages | |
2091 | * @num: number of pages in page array | |
2092 | * | |
2093 | * Maps an object consisting of @num pages, catering for the user's | |
2094 | * requested vm_pgoff | |
2095 | * | |
2096 | * If we fail to insert any page into the vma, the function will return | |
2097 | * immediately leaving any previously inserted pages present. Callers | |
2098 | * from the mmap handler may immediately return the error as their caller | |
2099 | * will destroy the vma, removing any successfully inserted pages. Other | |
2100 | * callers should make their own arrangements for calling unmap_region(). | |
2101 | * | |
2102 | * Context: Process context. Called by mmap handlers. | |
2103 | * Return: 0 on success and error code otherwise. | |
2104 | */ | |
2105 | int vm_map_pages(struct vm_area_struct *vma, struct page **pages, | |
2106 | unsigned long num) | |
2107 | { | |
2108 | return __vm_map_pages(vma, pages, num, vma->vm_pgoff); | |
2109 | } | |
2110 | EXPORT_SYMBOL(vm_map_pages); | |
2111 | ||
2112 | /** | |
2113 | * vm_map_pages_zero - map range of kernel pages starts with zero offset | |
2114 | * @vma: user vma to map to | |
2115 | * @pages: pointer to array of source kernel pages | |
2116 | * @num: number of pages in page array | |
2117 | * | |
2118 | * Similar to vm_map_pages(), except that it explicitly sets the offset | |
2119 | * to 0. This function is intended for the drivers that did not consider | |
2120 | * vm_pgoff. | |
2121 | * | |
2122 | * Context: Process context. Called by mmap handlers. | |
2123 | * Return: 0 on success and error code otherwise. | |
2124 | */ | |
2125 | int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, | |
2126 | unsigned long num) | |
2127 | { | |
2128 | return __vm_map_pages(vma, pages, num, 0); | |
2129 | } | |
2130 | EXPORT_SYMBOL(vm_map_pages_zero); | |
2131 | ||
9b5a8e00 | 2132 | static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, |
b2770da6 | 2133 | pfn_t pfn, pgprot_t prot, bool mkwrite) |
423bad60 NP |
2134 | { |
2135 | struct mm_struct *mm = vma->vm_mm; | |
423bad60 NP |
2136 | pte_t *pte, entry; |
2137 | spinlock_t *ptl; | |
2138 | ||
423bad60 NP |
2139 | pte = get_locked_pte(mm, addr, &ptl); |
2140 | if (!pte) | |
9b5a8e00 | 2141 | return VM_FAULT_OOM; |
b2770da6 RZ |
2142 | if (!pte_none(*pte)) { |
2143 | if (mkwrite) { | |
2144 | /* | |
2145 | * For read faults on private mappings the PFN passed | |
2146 | * in may not match the PFN we have mapped if the | |
2147 | * mapped PFN is a writeable COW page. In the mkwrite | |
2148 | * case we are creating a writable PTE for a shared | |
f2c57d91 JK |
2149 | * mapping and we expect the PFNs to match. If they |
2150 | * don't match, we are likely racing with block | |
2151 | * allocation and mapping invalidation so just skip the | |
2152 | * update. | |
b2770da6 | 2153 | */ |
f2c57d91 JK |
2154 | if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { |
2155 | WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); | |
b2770da6 | 2156 | goto out_unlock; |
f2c57d91 | 2157 | } |
cae85cb8 JK |
2158 | entry = pte_mkyoung(*pte); |
2159 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
2160 | if (ptep_set_access_flags(vma, addr, pte, entry, 1)) | |
2161 | update_mmu_cache(vma, addr, pte); | |
2162 | } | |
2163 | goto out_unlock; | |
b2770da6 | 2164 | } |
423bad60 NP |
2165 | |
2166 | /* Ok, finally just insert the thing.. */ | |
01c8f1c4 DW |
2167 | if (pfn_t_devmap(pfn)) |
2168 | entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); | |
2169 | else | |
2170 | entry = pte_mkspecial(pfn_t_pte(pfn, prot)); | |
b2770da6 | 2171 | |
b2770da6 RZ |
2172 | if (mkwrite) { |
2173 | entry = pte_mkyoung(entry); | |
2174 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
2175 | } | |
2176 | ||
423bad60 | 2177 | set_pte_at(mm, addr, pte, entry); |
4b3073e1 | 2178 | update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ |
423bad60 | 2179 | |
423bad60 NP |
2180 | out_unlock: |
2181 | pte_unmap_unlock(pte, ptl); | |
9b5a8e00 | 2182 | return VM_FAULT_NOPAGE; |
423bad60 NP |
2183 | } |
2184 | ||
f5e6d1d5 MW |
2185 | /** |
2186 | * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot | |
2187 | * @vma: user vma to map to | |
2188 | * @addr: target user address of this page | |
2189 | * @pfn: source kernel pfn | |
2190 | * @pgprot: pgprot flags for the inserted page | |
2191 | * | |
a1a0aea5 | 2192 | * This is exactly like vmf_insert_pfn(), except that it allows drivers |
f5e6d1d5 MW |
2193 | * to override pgprot on a per-page basis. |
2194 | * | |
2195 | * This only makes sense for IO mappings, and it makes no sense for | |
2196 | * COW mappings. In general, using multiple vmas is preferable; | |
ae2b01f3 | 2197 | * vmf_insert_pfn_prot should only be used if using multiple VMAs is |
f5e6d1d5 MW |
2198 | * impractical. |
2199 | * | |
574c5b3d TH |
2200 | * See vmf_insert_mixed_prot() for a discussion of the implication of using |
2201 | * a value of @pgprot different from that of @vma->vm_page_prot. | |
2202 | * | |
ae2b01f3 | 2203 | * Context: Process context. May allocate using %GFP_KERNEL. |
f5e6d1d5 MW |
2204 | * Return: vm_fault_t value. |
2205 | */ | |
2206 | vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, | |
2207 | unsigned long pfn, pgprot_t pgprot) | |
2208 | { | |
6d958546 MW |
2209 | /* |
2210 | * Technically, architectures with pte_special can avoid all these | |
2211 | * restrictions (same for remap_pfn_range). However we would like | |
2212 | * consistency in testing and feature parity among all, so we should | |
2213 | * try to keep these invariants in place for everybody. | |
2214 | */ | |
2215 | BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); | |
2216 | BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == | |
2217 | (VM_PFNMAP|VM_MIXEDMAP)); | |
2218 | BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); | |
2219 | BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); | |
2220 | ||
2221 | if (addr < vma->vm_start || addr >= vma->vm_end) | |
2222 | return VM_FAULT_SIGBUS; | |
2223 | ||
2224 | if (!pfn_modify_allowed(pfn, pgprot)) | |
2225 | return VM_FAULT_SIGBUS; | |
2226 | ||
2227 | track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); | |
2228 | ||
9b5a8e00 | 2229 | return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, |
6d958546 | 2230 | false); |
f5e6d1d5 MW |
2231 | } |
2232 | EXPORT_SYMBOL(vmf_insert_pfn_prot); | |
e0dc0d8f | 2233 | |
ae2b01f3 MW |
2234 | /** |
2235 | * vmf_insert_pfn - insert single pfn into user vma | |
2236 | * @vma: user vma to map to | |
2237 | * @addr: target user address of this page | |
2238 | * @pfn: source kernel pfn | |
2239 | * | |
2240 | * Similar to vm_insert_page, this allows drivers to insert individual pages | |
2241 | * they've allocated into a user vma. Same comments apply. | |
2242 | * | |
2243 | * This function should only be called from a vm_ops->fault handler, and | |
2244 | * in that case the handler should return the result of this function. | |
2245 | * | |
2246 | * vma cannot be a COW mapping. | |
2247 | * | |
2248 | * As this is called only for pages that do not currently exist, we | |
2249 | * do not need to flush old virtual caches or the TLB. | |
2250 | * | |
2251 | * Context: Process context. May allocate using %GFP_KERNEL. | |
2252 | * Return: vm_fault_t value. | |
2253 | */ | |
2254 | vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, | |
2255 | unsigned long pfn) | |
2256 | { | |
2257 | return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); | |
2258 | } | |
2259 | EXPORT_SYMBOL(vmf_insert_pfn); | |
2260 | ||
785a3fab DW |
2261 | static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) |
2262 | { | |
2263 | /* these checks mirror the abort conditions in vm_normal_page */ | |
2264 | if (vma->vm_flags & VM_MIXEDMAP) | |
2265 | return true; | |
2266 | if (pfn_t_devmap(pfn)) | |
2267 | return true; | |
2268 | if (pfn_t_special(pfn)) | |
2269 | return true; | |
2270 | if (is_zero_pfn(pfn_t_to_pfn(pfn))) | |
2271 | return true; | |
2272 | return false; | |
2273 | } | |
2274 | ||
79f3aa5b | 2275 | static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, |
574c5b3d TH |
2276 | unsigned long addr, pfn_t pfn, pgprot_t pgprot, |
2277 | bool mkwrite) | |
423bad60 | 2278 | { |
79f3aa5b | 2279 | int err; |
87744ab3 | 2280 | |
785a3fab | 2281 | BUG_ON(!vm_mixed_ok(vma, pfn)); |
e0dc0d8f | 2282 | |
423bad60 | 2283 | if (addr < vma->vm_start || addr >= vma->vm_end) |
79f3aa5b | 2284 | return VM_FAULT_SIGBUS; |
308a047c BP |
2285 | |
2286 | track_pfn_insert(vma, &pgprot, pfn); | |
e0dc0d8f | 2287 | |
42e4089c | 2288 | if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) |
79f3aa5b | 2289 | return VM_FAULT_SIGBUS; |
42e4089c | 2290 | |
423bad60 NP |
2291 | /* |
2292 | * If we don't have pte special, then we have to use the pfn_valid() | |
2293 | * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* | |
2294 | * refcount the page if pfn_valid is true (hence insert_page rather | |
62eede62 HD |
2295 | * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP |
2296 | * without pte special, it would there be refcounted as a normal page. | |
423bad60 | 2297 | */ |
00b3a331 LD |
2298 | if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && |
2299 | !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { | |
423bad60 NP |
2300 | struct page *page; |
2301 | ||
03fc2da6 DW |
2302 | /* |
2303 | * At this point we are committed to insert_page() | |
2304 | * regardless of whether the caller specified flags that | |
2305 | * result in pfn_t_has_page() == false. | |
2306 | */ | |
2307 | page = pfn_to_page(pfn_t_to_pfn(pfn)); | |
79f3aa5b MW |
2308 | err = insert_page(vma, addr, page, pgprot); |
2309 | } else { | |
9b5a8e00 | 2310 | return insert_pfn(vma, addr, pfn, pgprot, mkwrite); |
423bad60 | 2311 | } |
b2770da6 | 2312 | |
5d747637 MW |
2313 | if (err == -ENOMEM) |
2314 | return VM_FAULT_OOM; | |
2315 | if (err < 0 && err != -EBUSY) | |
2316 | return VM_FAULT_SIGBUS; | |
2317 | ||
2318 | return VM_FAULT_NOPAGE; | |
e0dc0d8f | 2319 | } |
79f3aa5b | 2320 | |
574c5b3d TH |
2321 | /** |
2322 | * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot | |
2323 | * @vma: user vma to map to | |
2324 | * @addr: target user address of this page | |
2325 | * @pfn: source kernel pfn | |
2326 | * @pgprot: pgprot flags for the inserted page | |
2327 | * | |
a1a0aea5 | 2328 | * This is exactly like vmf_insert_mixed(), except that it allows drivers |
574c5b3d TH |
2329 | * to override pgprot on a per-page basis. |
2330 | * | |
2331 | * Typically this function should be used by drivers to set caching- and | |
2332 | * encryption bits different than those of @vma->vm_page_prot, because | |
2333 | * the caching- or encryption mode may not be known at mmap() time. | |
2334 | * This is ok as long as @vma->vm_page_prot is not used by the core vm | |
2335 | * to set caching and encryption bits for those vmas (except for COW pages). | |
2336 | * This is ensured by core vm only modifying these page table entries using | |
2337 | * functions that don't touch caching- or encryption bits, using pte_modify() | |
2338 | * if needed. (See for example mprotect()). | |
2339 | * Also when new page-table entries are created, this is only done using the | |
2340 | * fault() callback, and never using the value of vma->vm_page_prot, | |
2341 | * except for page-table entries that point to anonymous pages as the result | |
2342 | * of COW. | |
2343 | * | |
2344 | * Context: Process context. May allocate using %GFP_KERNEL. | |
2345 | * Return: vm_fault_t value. | |
2346 | */ | |
2347 | vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, | |
2348 | pfn_t pfn, pgprot_t pgprot) | |
2349 | { | |
2350 | return __vm_insert_mixed(vma, addr, pfn, pgprot, false); | |
2351 | } | |
5379e4dd | 2352 | EXPORT_SYMBOL(vmf_insert_mixed_prot); |
574c5b3d | 2353 | |
79f3aa5b MW |
2354 | vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, |
2355 | pfn_t pfn) | |
2356 | { | |
574c5b3d | 2357 | return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false); |
79f3aa5b | 2358 | } |
5d747637 | 2359 | EXPORT_SYMBOL(vmf_insert_mixed); |
e0dc0d8f | 2360 | |
ab77dab4 SJ |
2361 | /* |
2362 | * If the insertion of PTE failed because someone else already added a | |
2363 | * different entry in the mean time, we treat that as success as we assume | |
2364 | * the same entry was actually inserted. | |
2365 | */ | |
ab77dab4 SJ |
2366 | vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, |
2367 | unsigned long addr, pfn_t pfn) | |
b2770da6 | 2368 | { |
574c5b3d | 2369 | return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true); |
b2770da6 | 2370 | } |
ab77dab4 | 2371 | EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); |
b2770da6 | 2372 | |
1da177e4 LT |
2373 | /* |
2374 | * maps a range of physical memory into the requested pages. the old | |
2375 | * mappings are removed. any references to nonexistent pages results | |
2376 | * in null mappings (currently treated as "copy-on-access") | |
2377 | */ | |
2378 | static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, | |
2379 | unsigned long addr, unsigned long end, | |
2380 | unsigned long pfn, pgprot_t prot) | |
2381 | { | |
90a3e375 | 2382 | pte_t *pte, *mapped_pte; |
c74df32c | 2383 | spinlock_t *ptl; |
42e4089c | 2384 | int err = 0; |
1da177e4 | 2385 | |
90a3e375 | 2386 | mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); |
1da177e4 LT |
2387 | if (!pte) |
2388 | return -ENOMEM; | |
6606c3e0 | 2389 | arch_enter_lazy_mmu_mode(); |
1da177e4 LT |
2390 | do { |
2391 | BUG_ON(!pte_none(*pte)); | |
42e4089c AK |
2392 | if (!pfn_modify_allowed(pfn, prot)) { |
2393 | err = -EACCES; | |
2394 | break; | |
2395 | } | |
7e675137 | 2396 | set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); |
1da177e4 LT |
2397 | pfn++; |
2398 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
6606c3e0 | 2399 | arch_leave_lazy_mmu_mode(); |
90a3e375 | 2400 | pte_unmap_unlock(mapped_pte, ptl); |
42e4089c | 2401 | return err; |
1da177e4 LT |
2402 | } |
2403 | ||
2404 | static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, | |
2405 | unsigned long addr, unsigned long end, | |
2406 | unsigned long pfn, pgprot_t prot) | |
2407 | { | |
2408 | pmd_t *pmd; | |
2409 | unsigned long next; | |
42e4089c | 2410 | int err; |
1da177e4 LT |
2411 | |
2412 | pfn -= addr >> PAGE_SHIFT; | |
2413 | pmd = pmd_alloc(mm, pud, addr); | |
2414 | if (!pmd) | |
2415 | return -ENOMEM; | |
f66055ab | 2416 | VM_BUG_ON(pmd_trans_huge(*pmd)); |
1da177e4 LT |
2417 | do { |
2418 | next = pmd_addr_end(addr, end); | |
42e4089c AK |
2419 | err = remap_pte_range(mm, pmd, addr, next, |
2420 | pfn + (addr >> PAGE_SHIFT), prot); | |
2421 | if (err) | |
2422 | return err; | |
1da177e4 LT |
2423 | } while (pmd++, addr = next, addr != end); |
2424 | return 0; | |
2425 | } | |
2426 | ||
c2febafc | 2427 | static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, |
1da177e4 LT |
2428 | unsigned long addr, unsigned long end, |
2429 | unsigned long pfn, pgprot_t prot) | |
2430 | { | |
2431 | pud_t *pud; | |
2432 | unsigned long next; | |
42e4089c | 2433 | int err; |
1da177e4 LT |
2434 | |
2435 | pfn -= addr >> PAGE_SHIFT; | |
c2febafc | 2436 | pud = pud_alloc(mm, p4d, addr); |
1da177e4 LT |
2437 | if (!pud) |
2438 | return -ENOMEM; | |
2439 | do { | |
2440 | next = pud_addr_end(addr, end); | |
42e4089c AK |
2441 | err = remap_pmd_range(mm, pud, addr, next, |
2442 | pfn + (addr >> PAGE_SHIFT), prot); | |
2443 | if (err) | |
2444 | return err; | |
1da177e4 LT |
2445 | } while (pud++, addr = next, addr != end); |
2446 | return 0; | |
2447 | } | |
2448 | ||
c2febafc KS |
2449 | static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, |
2450 | unsigned long addr, unsigned long end, | |
2451 | unsigned long pfn, pgprot_t prot) | |
2452 | { | |
2453 | p4d_t *p4d; | |
2454 | unsigned long next; | |
42e4089c | 2455 | int err; |
c2febafc KS |
2456 | |
2457 | pfn -= addr >> PAGE_SHIFT; | |
2458 | p4d = p4d_alloc(mm, pgd, addr); | |
2459 | if (!p4d) | |
2460 | return -ENOMEM; | |
2461 | do { | |
2462 | next = p4d_addr_end(addr, end); | |
42e4089c AK |
2463 | err = remap_pud_range(mm, p4d, addr, next, |
2464 | pfn + (addr >> PAGE_SHIFT), prot); | |
2465 | if (err) | |
2466 | return err; | |
c2febafc KS |
2467 | } while (p4d++, addr = next, addr != end); |
2468 | return 0; | |
2469 | } | |
2470 | ||
74ffa5a3 CH |
2471 | /* |
2472 | * Variant of remap_pfn_range that does not call track_pfn_remap. The caller | |
2473 | * must have pre-validated the caching bits of the pgprot_t. | |
bfa5bf6d | 2474 | */ |
74ffa5a3 CH |
2475 | int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, |
2476 | unsigned long pfn, unsigned long size, pgprot_t prot) | |
1da177e4 LT |
2477 | { |
2478 | pgd_t *pgd; | |
2479 | unsigned long next; | |
2d15cab8 | 2480 | unsigned long end = addr + PAGE_ALIGN(size); |
1da177e4 LT |
2481 | struct mm_struct *mm = vma->vm_mm; |
2482 | int err; | |
2483 | ||
0c4123e3 AZ |
2484 | if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) |
2485 | return -EINVAL; | |
2486 | ||
1da177e4 LT |
2487 | /* |
2488 | * Physically remapped pages are special. Tell the | |
2489 | * rest of the world about it: | |
2490 | * VM_IO tells people not to look at these pages | |
2491 | * (accesses can have side effects). | |
6aab341e LT |
2492 | * VM_PFNMAP tells the core MM that the base pages are just |
2493 | * raw PFN mappings, and do not have a "struct page" associated | |
2494 | * with them. | |
314e51b9 KK |
2495 | * VM_DONTEXPAND |
2496 | * Disable vma merging and expanding with mremap(). | |
2497 | * VM_DONTDUMP | |
2498 | * Omit vma from core dump, even when VM_IO turned off. | |
fb155c16 LT |
2499 | * |
2500 | * There's a horrible special case to handle copy-on-write | |
2501 | * behaviour that some programs depend on. We mark the "original" | |
2502 | * un-COW'ed pages by matching them up with "vma->vm_pgoff". | |
b3b9c293 | 2503 | * See vm_normal_page() for details. |
1da177e4 | 2504 | */ |
b3b9c293 KK |
2505 | if (is_cow_mapping(vma->vm_flags)) { |
2506 | if (addr != vma->vm_start || end != vma->vm_end) | |
2507 | return -EINVAL; | |
fb155c16 | 2508 | vma->vm_pgoff = pfn; |
b3b9c293 KK |
2509 | } |
2510 | ||
314e51b9 | 2511 | vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; |
1da177e4 LT |
2512 | |
2513 | BUG_ON(addr >= end); | |
2514 | pfn -= addr >> PAGE_SHIFT; | |
2515 | pgd = pgd_offset(mm, addr); | |
2516 | flush_cache_range(vma, addr, end); | |
1da177e4 LT |
2517 | do { |
2518 | next = pgd_addr_end(addr, end); | |
c2febafc | 2519 | err = remap_p4d_range(mm, pgd, addr, next, |
1da177e4 LT |
2520 | pfn + (addr >> PAGE_SHIFT), prot); |
2521 | if (err) | |
74ffa5a3 | 2522 | return err; |
1da177e4 | 2523 | } while (pgd++, addr = next, addr != end); |
2ab64037 | 2524 | |
74ffa5a3 CH |
2525 | return 0; |
2526 | } | |
2527 | ||
2528 | /** | |
2529 | * remap_pfn_range - remap kernel memory to userspace | |
2530 | * @vma: user vma to map to | |
2531 | * @addr: target page aligned user address to start at | |
2532 | * @pfn: page frame number of kernel physical memory address | |
2533 | * @size: size of mapping area | |
2534 | * @prot: page protection flags for this mapping | |
2535 | * | |
2536 | * Note: this is only safe if the mm semaphore is held when called. | |
2537 | * | |
2538 | * Return: %0 on success, negative error code otherwise. | |
2539 | */ | |
2540 | int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, | |
2541 | unsigned long pfn, unsigned long size, pgprot_t prot) | |
2542 | { | |
2543 | int err; | |
2544 | ||
2545 | err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); | |
2ab64037 | 2546 | if (err) |
74ffa5a3 | 2547 | return -EINVAL; |
2ab64037 | 2548 | |
74ffa5a3 CH |
2549 | err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); |
2550 | if (err) | |
2551 | untrack_pfn(vma, pfn, PAGE_ALIGN(size)); | |
1da177e4 LT |
2552 | return err; |
2553 | } | |
2554 | EXPORT_SYMBOL(remap_pfn_range); | |
2555 | ||
b4cbb197 LT |
2556 | /** |
2557 | * vm_iomap_memory - remap memory to userspace | |
2558 | * @vma: user vma to map to | |
abd69b9e | 2559 | * @start: start of the physical memory to be mapped |
b4cbb197 LT |
2560 | * @len: size of area |
2561 | * | |
2562 | * This is a simplified io_remap_pfn_range() for common driver use. The | |
2563 | * driver just needs to give us the physical memory range to be mapped, | |
2564 | * we'll figure out the rest from the vma information. | |
2565 | * | |
2566 | * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get | |
2567 | * whatever write-combining details or similar. | |
a862f68a MR |
2568 | * |
2569 | * Return: %0 on success, negative error code otherwise. | |
b4cbb197 LT |
2570 | */ |
2571 | int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) | |
2572 | { | |
2573 | unsigned long vm_len, pfn, pages; | |
2574 | ||
2575 | /* Check that the physical memory area passed in looks valid */ | |
2576 | if (start + len < start) | |
2577 | return -EINVAL; | |
2578 | /* | |
2579 | * You *really* shouldn't map things that aren't page-aligned, | |
2580 | * but we've historically allowed it because IO memory might | |
2581 | * just have smaller alignment. | |
2582 | */ | |
2583 | len += start & ~PAGE_MASK; | |
2584 | pfn = start >> PAGE_SHIFT; | |
2585 | pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; | |
2586 | if (pfn + pages < pfn) | |
2587 | return -EINVAL; | |
2588 | ||
2589 | /* We start the mapping 'vm_pgoff' pages into the area */ | |
2590 | if (vma->vm_pgoff > pages) | |
2591 | return -EINVAL; | |
2592 | pfn += vma->vm_pgoff; | |
2593 | pages -= vma->vm_pgoff; | |
2594 | ||
2595 | /* Can we fit all of the mapping? */ | |
2596 | vm_len = vma->vm_end - vma->vm_start; | |
2597 | if (vm_len >> PAGE_SHIFT > pages) | |
2598 | return -EINVAL; | |
2599 | ||
2600 | /* Ok, let it rip */ | |
2601 | return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); | |
2602 | } | |
2603 | EXPORT_SYMBOL(vm_iomap_memory); | |
2604 | ||
aee16b3c JF |
2605 | static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, |
2606 | unsigned long addr, unsigned long end, | |
e80d3909 JR |
2607 | pte_fn_t fn, void *data, bool create, |
2608 | pgtbl_mod_mask *mask) | |
aee16b3c | 2609 | { |
8abb50c7 | 2610 | pte_t *pte, *mapped_pte; |
be1db475 | 2611 | int err = 0; |
3f649ab7 | 2612 | spinlock_t *ptl; |
aee16b3c | 2613 | |
be1db475 | 2614 | if (create) { |
8abb50c7 | 2615 | mapped_pte = pte = (mm == &init_mm) ? |
e80d3909 | 2616 | pte_alloc_kernel_track(pmd, addr, mask) : |
be1db475 DA |
2617 | pte_alloc_map_lock(mm, pmd, addr, &ptl); |
2618 | if (!pte) | |
2619 | return -ENOMEM; | |
2620 | } else { | |
8abb50c7 | 2621 | mapped_pte = pte = (mm == &init_mm) ? |
be1db475 DA |
2622 | pte_offset_kernel(pmd, addr) : |
2623 | pte_offset_map_lock(mm, pmd, addr, &ptl); | |
2624 | } | |
aee16b3c JF |
2625 | |
2626 | BUG_ON(pmd_huge(*pmd)); | |
2627 | ||
38e0edb1 JF |
2628 | arch_enter_lazy_mmu_mode(); |
2629 | ||
eeb4a05f CH |
2630 | if (fn) { |
2631 | do { | |
2632 | if (create || !pte_none(*pte)) { | |
2633 | err = fn(pte++, addr, data); | |
2634 | if (err) | |
2635 | break; | |
2636 | } | |
2637 | } while (addr += PAGE_SIZE, addr != end); | |
2638 | } | |
e80d3909 | 2639 | *mask |= PGTBL_PTE_MODIFIED; |
aee16b3c | 2640 | |
38e0edb1 JF |
2641 | arch_leave_lazy_mmu_mode(); |
2642 | ||
aee16b3c | 2643 | if (mm != &init_mm) |
8abb50c7 | 2644 | pte_unmap_unlock(mapped_pte, ptl); |
aee16b3c JF |
2645 | return err; |
2646 | } | |
2647 | ||
2648 | static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, | |
2649 | unsigned long addr, unsigned long end, | |
e80d3909 JR |
2650 | pte_fn_t fn, void *data, bool create, |
2651 | pgtbl_mod_mask *mask) | |
aee16b3c JF |
2652 | { |
2653 | pmd_t *pmd; | |
2654 | unsigned long next; | |
be1db475 | 2655 | int err = 0; |
aee16b3c | 2656 | |
ceb86879 AK |
2657 | BUG_ON(pud_huge(*pud)); |
2658 | ||
be1db475 | 2659 | if (create) { |
e80d3909 | 2660 | pmd = pmd_alloc_track(mm, pud, addr, mask); |
be1db475 DA |
2661 | if (!pmd) |
2662 | return -ENOMEM; | |
2663 | } else { | |
2664 | pmd = pmd_offset(pud, addr); | |
2665 | } | |
aee16b3c JF |
2666 | do { |
2667 | next = pmd_addr_end(addr, end); | |
0c95cba4 NP |
2668 | if (pmd_none(*pmd) && !create) |
2669 | continue; | |
2670 | if (WARN_ON_ONCE(pmd_leaf(*pmd))) | |
2671 | return -EINVAL; | |
2672 | if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { | |
2673 | if (!create) | |
2674 | continue; | |
2675 | pmd_clear_bad(pmd); | |
be1db475 | 2676 | } |
0c95cba4 NP |
2677 | err = apply_to_pte_range(mm, pmd, addr, next, |
2678 | fn, data, create, mask); | |
2679 | if (err) | |
2680 | break; | |
aee16b3c | 2681 | } while (pmd++, addr = next, addr != end); |
0c95cba4 | 2682 | |
aee16b3c JF |
2683 | return err; |
2684 | } | |
2685 | ||
c2febafc | 2686 | static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, |
aee16b3c | 2687 | unsigned long addr, unsigned long end, |
e80d3909 JR |
2688 | pte_fn_t fn, void *data, bool create, |
2689 | pgtbl_mod_mask *mask) | |
aee16b3c JF |
2690 | { |
2691 | pud_t *pud; | |
2692 | unsigned long next; | |
be1db475 | 2693 | int err = 0; |
aee16b3c | 2694 | |
be1db475 | 2695 | if (create) { |
e80d3909 | 2696 | pud = pud_alloc_track(mm, p4d, addr, mask); |
be1db475 DA |
2697 | if (!pud) |
2698 | return -ENOMEM; | |
2699 | } else { | |
2700 | pud = pud_offset(p4d, addr); | |
2701 | } | |
aee16b3c JF |
2702 | do { |
2703 | next = pud_addr_end(addr, end); | |
0c95cba4 NP |
2704 | if (pud_none(*pud) && !create) |
2705 | continue; | |
2706 | if (WARN_ON_ONCE(pud_leaf(*pud))) | |
2707 | return -EINVAL; | |
2708 | if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { | |
2709 | if (!create) | |
2710 | continue; | |
2711 | pud_clear_bad(pud); | |
be1db475 | 2712 | } |
0c95cba4 NP |
2713 | err = apply_to_pmd_range(mm, pud, addr, next, |
2714 | fn, data, create, mask); | |
2715 | if (err) | |
2716 | break; | |
aee16b3c | 2717 | } while (pud++, addr = next, addr != end); |
0c95cba4 | 2718 | |
aee16b3c JF |
2719 | return err; |
2720 | } | |
2721 | ||
c2febafc KS |
2722 | static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, |
2723 | unsigned long addr, unsigned long end, | |
e80d3909 JR |
2724 | pte_fn_t fn, void *data, bool create, |
2725 | pgtbl_mod_mask *mask) | |
c2febafc KS |
2726 | { |
2727 | p4d_t *p4d; | |
2728 | unsigned long next; | |
be1db475 | 2729 | int err = 0; |
c2febafc | 2730 | |
be1db475 | 2731 | if (create) { |
e80d3909 | 2732 | p4d = p4d_alloc_track(mm, pgd, addr, mask); |
be1db475 DA |
2733 | if (!p4d) |
2734 | return -ENOMEM; | |
2735 | } else { | |
2736 | p4d = p4d_offset(pgd, addr); | |
2737 | } | |
c2febafc KS |
2738 | do { |
2739 | next = p4d_addr_end(addr, end); | |
0c95cba4 NP |
2740 | if (p4d_none(*p4d) && !create) |
2741 | continue; | |
2742 | if (WARN_ON_ONCE(p4d_leaf(*p4d))) | |
2743 | return -EINVAL; | |
2744 | if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { | |
2745 | if (!create) | |
2746 | continue; | |
2747 | p4d_clear_bad(p4d); | |
be1db475 | 2748 | } |
0c95cba4 NP |
2749 | err = apply_to_pud_range(mm, p4d, addr, next, |
2750 | fn, data, create, mask); | |
2751 | if (err) | |
2752 | break; | |
c2febafc | 2753 | } while (p4d++, addr = next, addr != end); |
0c95cba4 | 2754 | |
c2febafc KS |
2755 | return err; |
2756 | } | |
2757 | ||
be1db475 DA |
2758 | static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, |
2759 | unsigned long size, pte_fn_t fn, | |
2760 | void *data, bool create) | |
aee16b3c JF |
2761 | { |
2762 | pgd_t *pgd; | |
e80d3909 | 2763 | unsigned long start = addr, next; |
57250a5b | 2764 | unsigned long end = addr + size; |
e80d3909 | 2765 | pgtbl_mod_mask mask = 0; |
be1db475 | 2766 | int err = 0; |
aee16b3c | 2767 | |
9cb65bc3 MP |
2768 | if (WARN_ON(addr >= end)) |
2769 | return -EINVAL; | |
2770 | ||
aee16b3c JF |
2771 | pgd = pgd_offset(mm, addr); |
2772 | do { | |
2773 | next = pgd_addr_end(addr, end); | |
0c95cba4 | 2774 | if (pgd_none(*pgd) && !create) |
be1db475 | 2775 | continue; |
0c95cba4 NP |
2776 | if (WARN_ON_ONCE(pgd_leaf(*pgd))) |
2777 | return -EINVAL; | |
2778 | if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { | |
2779 | if (!create) | |
2780 | continue; | |
2781 | pgd_clear_bad(pgd); | |
2782 | } | |
2783 | err = apply_to_p4d_range(mm, pgd, addr, next, | |
2784 | fn, data, create, &mask); | |
aee16b3c JF |
2785 | if (err) |
2786 | break; | |
2787 | } while (pgd++, addr = next, addr != end); | |
57250a5b | 2788 | |
e80d3909 JR |
2789 | if (mask & ARCH_PAGE_TABLE_SYNC_MASK) |
2790 | arch_sync_kernel_mappings(start, start + size); | |
2791 | ||
aee16b3c JF |
2792 | return err; |
2793 | } | |
be1db475 DA |
2794 | |
2795 | /* | |
2796 | * Scan a region of virtual memory, filling in page tables as necessary | |
2797 | * and calling a provided function on each leaf page table. | |
2798 | */ | |
2799 | int apply_to_page_range(struct mm_struct *mm, unsigned long addr, | |
2800 | unsigned long size, pte_fn_t fn, void *data) | |
2801 | { | |
2802 | return __apply_to_page_range(mm, addr, size, fn, data, true); | |
2803 | } | |
aee16b3c JF |
2804 | EXPORT_SYMBOL_GPL(apply_to_page_range); |
2805 | ||
be1db475 DA |
2806 | /* |
2807 | * Scan a region of virtual memory, calling a provided function on | |
2808 | * each leaf page table where it exists. | |
2809 | * | |
2810 | * Unlike apply_to_page_range, this does _not_ fill in page tables | |
2811 | * where they are absent. | |
2812 | */ | |
2813 | int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, | |
2814 | unsigned long size, pte_fn_t fn, void *data) | |
2815 | { | |
2816 | return __apply_to_page_range(mm, addr, size, fn, data, false); | |
2817 | } | |
2818 | EXPORT_SYMBOL_GPL(apply_to_existing_page_range); | |
2819 | ||
8f4e2101 | 2820 | /* |
9b4bdd2f KS |
2821 | * handle_pte_fault chooses page fault handler according to an entry which was |
2822 | * read non-atomically. Before making any commitment, on those architectures | |
2823 | * or configurations (e.g. i386 with PAE) which might give a mix of unmatched | |
2824 | * parts, do_swap_page must check under lock before unmapping the pte and | |
2825 | * proceeding (but do_wp_page is only called after already making such a check; | |
a335b2e1 | 2826 | * and do_anonymous_page can safely check later on). |
8f4e2101 | 2827 | */ |
2ca99358 | 2828 | static inline int pte_unmap_same(struct vm_fault *vmf) |
8f4e2101 HD |
2829 | { |
2830 | int same = 1; | |
923717cb | 2831 | #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) |
8f4e2101 | 2832 | if (sizeof(pte_t) > sizeof(unsigned long)) { |
2ca99358 | 2833 | spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); |
4c21e2f2 | 2834 | spin_lock(ptl); |
2ca99358 | 2835 | same = pte_same(*vmf->pte, vmf->orig_pte); |
4c21e2f2 | 2836 | spin_unlock(ptl); |
8f4e2101 HD |
2837 | } |
2838 | #endif | |
2ca99358 PX |
2839 | pte_unmap(vmf->pte); |
2840 | vmf->pte = NULL; | |
8f4e2101 HD |
2841 | return same; |
2842 | } | |
2843 | ||
c89357e2 DH |
2844 | static inline bool __wp_page_copy_user(struct page *dst, struct page *src, |
2845 | struct vm_fault *vmf) | |
6aab341e | 2846 | { |
83d116c5 JH |
2847 | bool ret; |
2848 | void *kaddr; | |
2849 | void __user *uaddr; | |
c3e5ea6e | 2850 | bool locked = false; |
83d116c5 JH |
2851 | struct vm_area_struct *vma = vmf->vma; |
2852 | struct mm_struct *mm = vma->vm_mm; | |
2853 | unsigned long addr = vmf->address; | |
2854 | ||
83d116c5 JH |
2855 | if (likely(src)) { |
2856 | copy_user_highpage(dst, src, addr, vma); | |
2857 | return true; | |
2858 | } | |
2859 | ||
6aab341e LT |
2860 | /* |
2861 | * If the source page was a PFN mapping, we don't have | |
2862 | * a "struct page" for it. We do a best-effort copy by | |
2863 | * just copying from the original user address. If that | |
2864 | * fails, we just zero-fill it. Live with it. | |
2865 | */ | |
83d116c5 JH |
2866 | kaddr = kmap_atomic(dst); |
2867 | uaddr = (void __user *)(addr & PAGE_MASK); | |
2868 | ||
2869 | /* | |
2870 | * On architectures with software "accessed" bits, we would | |
2871 | * take a double page fault, so mark it accessed here. | |
2872 | */ | |
c3e5ea6e | 2873 | if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) { |
83d116c5 | 2874 | pte_t entry; |
5d2a2dbb | 2875 | |
83d116c5 | 2876 | vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); |
c3e5ea6e | 2877 | locked = true; |
83d116c5 JH |
2878 | if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { |
2879 | /* | |
2880 | * Other thread has already handled the fault | |
7df67697 | 2881 | * and update local tlb only |
83d116c5 | 2882 | */ |
7df67697 | 2883 | update_mmu_tlb(vma, addr, vmf->pte); |
83d116c5 JH |
2884 | ret = false; |
2885 | goto pte_unlock; | |
2886 | } | |
2887 | ||
2888 | entry = pte_mkyoung(vmf->orig_pte); | |
2889 | if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) | |
2890 | update_mmu_cache(vma, addr, vmf->pte); | |
2891 | } | |
2892 | ||
2893 | /* | |
2894 | * This really shouldn't fail, because the page is there | |
2895 | * in the page tables. But it might just be unreadable, | |
2896 | * in which case we just give up and fill the result with | |
2897 | * zeroes. | |
2898 | */ | |
2899 | if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { | |
c3e5ea6e KS |
2900 | if (locked) |
2901 | goto warn; | |
2902 | ||
2903 | /* Re-validate under PTL if the page is still mapped */ | |
2904 | vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); | |
2905 | locked = true; | |
2906 | if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { | |
7df67697 BM |
2907 | /* The PTE changed under us, update local tlb */ |
2908 | update_mmu_tlb(vma, addr, vmf->pte); | |
c3e5ea6e KS |
2909 | ret = false; |
2910 | goto pte_unlock; | |
2911 | } | |
2912 | ||
5d2a2dbb | 2913 | /* |
985ba004 | 2914 | * The same page can be mapped back since last copy attempt. |
c3e5ea6e | 2915 | * Try to copy again under PTL. |
5d2a2dbb | 2916 | */ |
c3e5ea6e KS |
2917 | if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { |
2918 | /* | |
2919 | * Give a warn in case there can be some obscure | |
2920 | * use-case | |
2921 | */ | |
2922 | warn: | |
2923 | WARN_ON_ONCE(1); | |
2924 | clear_page(kaddr); | |
2925 | } | |
83d116c5 JH |
2926 | } |
2927 | ||
2928 | ret = true; | |
2929 | ||
2930 | pte_unlock: | |
c3e5ea6e | 2931 | if (locked) |
83d116c5 JH |
2932 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
2933 | kunmap_atomic(kaddr); | |
2934 | flush_dcache_page(dst); | |
2935 | ||
2936 | return ret; | |
6aab341e LT |
2937 | } |
2938 | ||
c20cd45e MH |
2939 | static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) |
2940 | { | |
2941 | struct file *vm_file = vma->vm_file; | |
2942 | ||
2943 | if (vm_file) | |
2944 | return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; | |
2945 | ||
2946 | /* | |
2947 | * Special mappings (e.g. VDSO) do not have any file so fake | |
2948 | * a default GFP_KERNEL for them. | |
2949 | */ | |
2950 | return GFP_KERNEL; | |
2951 | } | |
2952 | ||
fb09a464 KS |
2953 | /* |
2954 | * Notify the address space that the page is about to become writable so that | |
2955 | * it can prohibit this or wait for the page to get into an appropriate state. | |
2956 | * | |
2957 | * We do this without the lock held, so that it can sleep if it needs to. | |
2958 | */ | |
2b740303 | 2959 | static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) |
fb09a464 | 2960 | { |
2b740303 | 2961 | vm_fault_t ret; |
38b8cb7f JK |
2962 | struct page *page = vmf->page; |
2963 | unsigned int old_flags = vmf->flags; | |
fb09a464 | 2964 | |
38b8cb7f | 2965 | vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; |
fb09a464 | 2966 | |
dc617f29 DW |
2967 | if (vmf->vma->vm_file && |
2968 | IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) | |
2969 | return VM_FAULT_SIGBUS; | |
2970 | ||
11bac800 | 2971 | ret = vmf->vma->vm_ops->page_mkwrite(vmf); |
38b8cb7f JK |
2972 | /* Restore original flags so that caller is not surprised */ |
2973 | vmf->flags = old_flags; | |
fb09a464 KS |
2974 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) |
2975 | return ret; | |
2976 | if (unlikely(!(ret & VM_FAULT_LOCKED))) { | |
2977 | lock_page(page); | |
2978 | if (!page->mapping) { | |
2979 | unlock_page(page); | |
2980 | return 0; /* retry */ | |
2981 | } | |
2982 | ret |= VM_FAULT_LOCKED; | |
2983 | } else | |
2984 | VM_BUG_ON_PAGE(!PageLocked(page), page); | |
2985 | return ret; | |
2986 | } | |
2987 | ||
97ba0c2b JK |
2988 | /* |
2989 | * Handle dirtying of a page in shared file mapping on a write fault. | |
2990 | * | |
2991 | * The function expects the page to be locked and unlocks it. | |
2992 | */ | |
89b15332 | 2993 | static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) |
97ba0c2b | 2994 | { |
89b15332 | 2995 | struct vm_area_struct *vma = vmf->vma; |
97ba0c2b | 2996 | struct address_space *mapping; |
89b15332 | 2997 | struct page *page = vmf->page; |
97ba0c2b JK |
2998 | bool dirtied; |
2999 | bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; | |
3000 | ||
3001 | dirtied = set_page_dirty(page); | |
3002 | VM_BUG_ON_PAGE(PageAnon(page), page); | |
3003 | /* | |
3004 | * Take a local copy of the address_space - page.mapping may be zeroed | |
3005 | * by truncate after unlock_page(). The address_space itself remains | |
3006 | * pinned by vma->vm_file's reference. We rely on unlock_page()'s | |
3007 | * release semantics to prevent the compiler from undoing this copying. | |
3008 | */ | |
3009 | mapping = page_rmapping(page); | |
3010 | unlock_page(page); | |
3011 | ||
89b15332 JW |
3012 | if (!page_mkwrite) |
3013 | file_update_time(vma->vm_file); | |
3014 | ||
3015 | /* | |
3016 | * Throttle page dirtying rate down to writeback speed. | |
3017 | * | |
3018 | * mapping may be NULL here because some device drivers do not | |
3019 | * set page.mapping but still dirty their pages | |
3020 | * | |
c1e8d7c6 | 3021 | * Drop the mmap_lock before waiting on IO, if we can. The file |
89b15332 JW |
3022 | * is pinning the mapping, as per above. |
3023 | */ | |
97ba0c2b | 3024 | if ((dirtied || page_mkwrite) && mapping) { |
89b15332 JW |
3025 | struct file *fpin; |
3026 | ||
3027 | fpin = maybe_unlock_mmap_for_io(vmf, NULL); | |
97ba0c2b | 3028 | balance_dirty_pages_ratelimited(mapping); |
89b15332 JW |
3029 | if (fpin) { |
3030 | fput(fpin); | |
d9272525 | 3031 | return VM_FAULT_COMPLETED; |
89b15332 | 3032 | } |
97ba0c2b JK |
3033 | } |
3034 | ||
89b15332 | 3035 | return 0; |
97ba0c2b JK |
3036 | } |
3037 | ||
4e047f89 SR |
3038 | /* |
3039 | * Handle write page faults for pages that can be reused in the current vma | |
3040 | * | |
3041 | * This can happen either due to the mapping being with the VM_SHARED flag, | |
3042 | * or due to us being the last reference standing to the page. In either | |
3043 | * case, all we need to do here is to mark the page as writable and update | |
3044 | * any related book-keeping. | |
3045 | */ | |
997dd98d | 3046 | static inline void wp_page_reuse(struct vm_fault *vmf) |
82b0f8c3 | 3047 | __releases(vmf->ptl) |
4e047f89 | 3048 | { |
82b0f8c3 | 3049 | struct vm_area_struct *vma = vmf->vma; |
a41b70d6 | 3050 | struct page *page = vmf->page; |
4e047f89 | 3051 | pte_t entry; |
6c287605 | 3052 | |
c89357e2 | 3053 | VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); |
cdb281e6 | 3054 | VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page)); |
6c287605 | 3055 | |
4e047f89 SR |
3056 | /* |
3057 | * Clear the pages cpupid information as the existing | |
3058 | * information potentially belongs to a now completely | |
3059 | * unrelated process. | |
3060 | */ | |
3061 | if (page) | |
3062 | page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); | |
3063 | ||
2994302b JK |
3064 | flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); |
3065 | entry = pte_mkyoung(vmf->orig_pte); | |
4e047f89 | 3066 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); |
82b0f8c3 JK |
3067 | if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) |
3068 | update_mmu_cache(vma, vmf->address, vmf->pte); | |
3069 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
798a6b87 | 3070 | count_vm_event(PGREUSE); |
4e047f89 SR |
3071 | } |
3072 | ||
2f38ab2c | 3073 | /* |
c89357e2 DH |
3074 | * Handle the case of a page which we actually need to copy to a new page, |
3075 | * either due to COW or unsharing. | |
2f38ab2c | 3076 | * |
c1e8d7c6 | 3077 | * Called with mmap_lock locked and the old page referenced, but |
2f38ab2c SR |
3078 | * without the ptl held. |
3079 | * | |
3080 | * High level logic flow: | |
3081 | * | |
3082 | * - Allocate a page, copy the content of the old page to the new one. | |
3083 | * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. | |
3084 | * - Take the PTL. If the pte changed, bail out and release the allocated page | |
3085 | * - If the pte is still the way we remember it, update the page table and all | |
3086 | * relevant references. This includes dropping the reference the page-table | |
3087 | * held to the old page, as well as updating the rmap. | |
3088 | * - In any case, unlock the PTL and drop the reference we took to the old page. | |
3089 | */ | |
2b740303 | 3090 | static vm_fault_t wp_page_copy(struct vm_fault *vmf) |
2f38ab2c | 3091 | { |
c89357e2 | 3092 | const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; |
82b0f8c3 | 3093 | struct vm_area_struct *vma = vmf->vma; |
bae473a4 | 3094 | struct mm_struct *mm = vma->vm_mm; |
a41b70d6 | 3095 | struct page *old_page = vmf->page; |
2f38ab2c | 3096 | struct page *new_page = NULL; |
2f38ab2c SR |
3097 | pte_t entry; |
3098 | int page_copied = 0; | |
ac46d4f3 | 3099 | struct mmu_notifier_range range; |
2f38ab2c | 3100 | |
662ce1dc YY |
3101 | delayacct_wpcopy_start(); |
3102 | ||
2f38ab2c SR |
3103 | if (unlikely(anon_vma_prepare(vma))) |
3104 | goto oom; | |
3105 | ||
2994302b | 3106 | if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { |
82b0f8c3 JK |
3107 | new_page = alloc_zeroed_user_highpage_movable(vma, |
3108 | vmf->address); | |
2f38ab2c SR |
3109 | if (!new_page) |
3110 | goto oom; | |
3111 | } else { | |
bae473a4 | 3112 | new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, |
82b0f8c3 | 3113 | vmf->address); |
2f38ab2c SR |
3114 | if (!new_page) |
3115 | goto oom; | |
83d116c5 | 3116 | |
c89357e2 | 3117 | if (!__wp_page_copy_user(new_page, old_page, vmf)) { |
83d116c5 JH |
3118 | /* |
3119 | * COW failed, if the fault was solved by other, | |
3120 | * it's fine. If not, userspace would re-fault on | |
3121 | * the same address and we will handle the fault | |
3122 | * from the second attempt. | |
3123 | */ | |
3124 | put_page(new_page); | |
3125 | if (old_page) | |
3126 | put_page(old_page); | |
662ce1dc YY |
3127 | |
3128 | delayacct_wpcopy_end(); | |
83d116c5 JH |
3129 | return 0; |
3130 | } | |
2f38ab2c | 3131 | } |
2f38ab2c | 3132 | |
8f425e4e | 3133 | if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL)) |
2f38ab2c | 3134 | goto oom_free_new; |
9d82c694 | 3135 | cgroup_throttle_swaprate(new_page, GFP_KERNEL); |
2f38ab2c | 3136 | |
eb3c24f3 MG |
3137 | __SetPageUptodate(new_page); |
3138 | ||
7269f999 | 3139 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, |
6f4f13e8 | 3140 | vmf->address & PAGE_MASK, |
ac46d4f3 JG |
3141 | (vmf->address & PAGE_MASK) + PAGE_SIZE); |
3142 | mmu_notifier_invalidate_range_start(&range); | |
2f38ab2c SR |
3143 | |
3144 | /* | |
3145 | * Re-check the pte - we dropped the lock | |
3146 | */ | |
82b0f8c3 | 3147 | vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); |
2994302b | 3148 | if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { |
2f38ab2c SR |
3149 | if (old_page) { |
3150 | if (!PageAnon(old_page)) { | |
eca56ff9 JM |
3151 | dec_mm_counter_fast(mm, |
3152 | mm_counter_file(old_page)); | |
2f38ab2c SR |
3153 | inc_mm_counter_fast(mm, MM_ANONPAGES); |
3154 | } | |
3155 | } else { | |
3156 | inc_mm_counter_fast(mm, MM_ANONPAGES); | |
3157 | } | |
2994302b | 3158 | flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); |
2f38ab2c | 3159 | entry = mk_pte(new_page, vma->vm_page_prot); |
50c25ee9 | 3160 | entry = pte_sw_mkyoung(entry); |
c89357e2 DH |
3161 | if (unlikely(unshare)) { |
3162 | if (pte_soft_dirty(vmf->orig_pte)) | |
3163 | entry = pte_mksoft_dirty(entry); | |
3164 | if (pte_uffd_wp(vmf->orig_pte)) | |
3165 | entry = pte_mkuffd_wp(entry); | |
3166 | } else { | |
3167 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
3168 | } | |
111fe718 | 3169 | |
2f38ab2c SR |
3170 | /* |
3171 | * Clear the pte entry and flush it first, before updating the | |
111fe718 NP |
3172 | * pte with the new entry, to keep TLBs on different CPUs in |
3173 | * sync. This code used to set the new PTE then flush TLBs, but | |
3174 | * that left a window where the new PTE could be loaded into | |
3175 | * some TLBs while the old PTE remains in others. | |
2f38ab2c | 3176 | */ |
82b0f8c3 | 3177 | ptep_clear_flush_notify(vma, vmf->address, vmf->pte); |
40f2bbf7 | 3178 | page_add_new_anon_rmap(new_page, vma, vmf->address); |
b518154e | 3179 | lru_cache_add_inactive_or_unevictable(new_page, vma); |
2f38ab2c SR |
3180 | /* |
3181 | * We call the notify macro here because, when using secondary | |
3182 | * mmu page tables (such as kvm shadow page tables), we want the | |
3183 | * new page to be mapped directly into the secondary page table. | |
3184 | */ | |
c89357e2 | 3185 | BUG_ON(unshare && pte_write(entry)); |
82b0f8c3 JK |
3186 | set_pte_at_notify(mm, vmf->address, vmf->pte, entry); |
3187 | update_mmu_cache(vma, vmf->address, vmf->pte); | |
2f38ab2c SR |
3188 | if (old_page) { |
3189 | /* | |
3190 | * Only after switching the pte to the new page may | |
3191 | * we remove the mapcount here. Otherwise another | |
3192 | * process may come and find the rmap count decremented | |
3193 | * before the pte is switched to the new page, and | |
3194 | * "reuse" the old page writing into it while our pte | |
3195 | * here still points into it and can be read by other | |
3196 | * threads. | |
3197 | * | |
3198 | * The critical issue is to order this | |
3199 | * page_remove_rmap with the ptp_clear_flush above. | |
3200 | * Those stores are ordered by (if nothing else,) | |
3201 | * the barrier present in the atomic_add_negative | |
3202 | * in page_remove_rmap. | |
3203 | * | |
3204 | * Then the TLB flush in ptep_clear_flush ensures that | |
3205 | * no process can access the old page before the | |
3206 | * decremented mapcount is visible. And the old page | |
3207 | * cannot be reused until after the decremented | |
3208 | * mapcount is visible. So transitively, TLBs to | |
3209 | * old page will be flushed before it can be reused. | |
3210 | */ | |
cea86fe2 | 3211 | page_remove_rmap(old_page, vma, false); |
2f38ab2c SR |
3212 | } |
3213 | ||
3214 | /* Free the old page.. */ | |
3215 | new_page = old_page; | |
3216 | page_copied = 1; | |
3217 | } else { | |
7df67697 | 3218 | update_mmu_tlb(vma, vmf->address, vmf->pte); |
2f38ab2c SR |
3219 | } |
3220 | ||
3221 | if (new_page) | |
09cbfeaf | 3222 | put_page(new_page); |
2f38ab2c | 3223 | |
82b0f8c3 | 3224 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
4645b9fe JG |
3225 | /* |
3226 | * No need to double call mmu_notifier->invalidate_range() callback as | |
3227 | * the above ptep_clear_flush_notify() did already call it. | |
3228 | */ | |
ac46d4f3 | 3229 | mmu_notifier_invalidate_range_only_end(&range); |
2f38ab2c | 3230 | if (old_page) { |
f4c4a3f4 YH |
3231 | if (page_copied) |
3232 | free_swap_cache(old_page); | |
09cbfeaf | 3233 | put_page(old_page); |
2f38ab2c | 3234 | } |
662ce1dc YY |
3235 | |
3236 | delayacct_wpcopy_end(); | |
c89357e2 | 3237 | return (page_copied && !unshare) ? VM_FAULT_WRITE : 0; |
2f38ab2c | 3238 | oom_free_new: |
09cbfeaf | 3239 | put_page(new_page); |
2f38ab2c SR |
3240 | oom: |
3241 | if (old_page) | |
09cbfeaf | 3242 | put_page(old_page); |
662ce1dc YY |
3243 | |
3244 | delayacct_wpcopy_end(); | |
2f38ab2c SR |
3245 | return VM_FAULT_OOM; |
3246 | } | |
3247 | ||
66a6197c JK |
3248 | /** |
3249 | * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE | |
3250 | * writeable once the page is prepared | |
3251 | * | |
3252 | * @vmf: structure describing the fault | |
3253 | * | |
3254 | * This function handles all that is needed to finish a write page fault in a | |
3255 | * shared mapping due to PTE being read-only once the mapped page is prepared. | |
a862f68a | 3256 | * It handles locking of PTE and modifying it. |
66a6197c JK |
3257 | * |
3258 | * The function expects the page to be locked or other protection against | |
3259 | * concurrent faults / writeback (such as DAX radix tree locks). | |
a862f68a | 3260 | * |
2797e79f | 3261 | * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before |
a862f68a | 3262 | * we acquired PTE lock. |
66a6197c | 3263 | */ |
2b740303 | 3264 | vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) |
66a6197c JK |
3265 | { |
3266 | WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); | |
3267 | vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, | |
3268 | &vmf->ptl); | |
3269 | /* | |
3270 | * We might have raced with another page fault while we released the | |
3271 | * pte_offset_map_lock. | |
3272 | */ | |
3273 | if (!pte_same(*vmf->pte, vmf->orig_pte)) { | |
7df67697 | 3274 | update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); |
66a6197c | 3275 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
a19e2553 | 3276 | return VM_FAULT_NOPAGE; |
66a6197c JK |
3277 | } |
3278 | wp_page_reuse(vmf); | |
a19e2553 | 3279 | return 0; |
66a6197c JK |
3280 | } |
3281 | ||
dd906184 BH |
3282 | /* |
3283 | * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED | |
3284 | * mapping | |
3285 | */ | |
2b740303 | 3286 | static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) |
dd906184 | 3287 | { |
82b0f8c3 | 3288 | struct vm_area_struct *vma = vmf->vma; |
bae473a4 | 3289 | |
dd906184 | 3290 | if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { |
2b740303 | 3291 | vm_fault_t ret; |
dd906184 | 3292 | |
82b0f8c3 | 3293 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
fe82221f | 3294 | vmf->flags |= FAULT_FLAG_MKWRITE; |
11bac800 | 3295 | ret = vma->vm_ops->pfn_mkwrite(vmf); |
2f89dc12 | 3296 | if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) |
dd906184 | 3297 | return ret; |
66a6197c | 3298 | return finish_mkwrite_fault(vmf); |
dd906184 | 3299 | } |
997dd98d JK |
3300 | wp_page_reuse(vmf); |
3301 | return VM_FAULT_WRITE; | |
dd906184 BH |
3302 | } |
3303 | ||
2b740303 | 3304 | static vm_fault_t wp_page_shared(struct vm_fault *vmf) |
82b0f8c3 | 3305 | __releases(vmf->ptl) |
93e478d4 | 3306 | { |
82b0f8c3 | 3307 | struct vm_area_struct *vma = vmf->vma; |
89b15332 | 3308 | vm_fault_t ret = VM_FAULT_WRITE; |
93e478d4 | 3309 | |
a41b70d6 | 3310 | get_page(vmf->page); |
93e478d4 | 3311 | |
93e478d4 | 3312 | if (vma->vm_ops && vma->vm_ops->page_mkwrite) { |
2b740303 | 3313 | vm_fault_t tmp; |
93e478d4 | 3314 | |
82b0f8c3 | 3315 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
38b8cb7f | 3316 | tmp = do_page_mkwrite(vmf); |
93e478d4 SR |
3317 | if (unlikely(!tmp || (tmp & |
3318 | (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { | |
a41b70d6 | 3319 | put_page(vmf->page); |
93e478d4 SR |
3320 | return tmp; |
3321 | } | |
66a6197c | 3322 | tmp = finish_mkwrite_fault(vmf); |
a19e2553 | 3323 | if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { |
a41b70d6 | 3324 | unlock_page(vmf->page); |
a41b70d6 | 3325 | put_page(vmf->page); |
66a6197c | 3326 | return tmp; |
93e478d4 | 3327 | } |
66a6197c JK |
3328 | } else { |
3329 | wp_page_reuse(vmf); | |
997dd98d | 3330 | lock_page(vmf->page); |
93e478d4 | 3331 | } |
89b15332 | 3332 | ret |= fault_dirty_shared_page(vmf); |
997dd98d | 3333 | put_page(vmf->page); |
93e478d4 | 3334 | |
89b15332 | 3335 | return ret; |
93e478d4 SR |
3336 | } |
3337 | ||
1da177e4 | 3338 | /* |
c89357e2 DH |
3339 | * This routine handles present pages, when |
3340 | * * users try to write to a shared page (FAULT_FLAG_WRITE) | |
3341 | * * GUP wants to take a R/O pin on a possibly shared anonymous page | |
3342 | * (FAULT_FLAG_UNSHARE) | |
3343 | * | |
3344 | * It is done by copying the page to a new address and decrementing the | |
3345 | * shared-page counter for the old page. | |
1da177e4 | 3346 | * |
1da177e4 LT |
3347 | * Note that this routine assumes that the protection checks have been |
3348 | * done by the caller (the low-level page fault routine in most cases). | |
c89357e2 DH |
3349 | * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've |
3350 | * done any necessary COW. | |
1da177e4 | 3351 | * |
c89357e2 DH |
3352 | * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even |
3353 | * though the page will change only once the write actually happens. This | |
3354 | * avoids a few races, and potentially makes it more efficient. | |
1da177e4 | 3355 | * |
c1e8d7c6 | 3356 | * We enter with non-exclusive mmap_lock (to exclude vma changes, |
8f4e2101 | 3357 | * but allow concurrent faults), with pte both mapped and locked. |
c1e8d7c6 | 3358 | * We return with mmap_lock still held, but pte unmapped and unlocked. |
1da177e4 | 3359 | */ |
2b740303 | 3360 | static vm_fault_t do_wp_page(struct vm_fault *vmf) |
82b0f8c3 | 3361 | __releases(vmf->ptl) |
1da177e4 | 3362 | { |
c89357e2 | 3363 | const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; |
82b0f8c3 | 3364 | struct vm_area_struct *vma = vmf->vma; |
1da177e4 | 3365 | |
c89357e2 DH |
3366 | VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE)); |
3367 | VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE)); | |
529b930b | 3368 | |
c89357e2 DH |
3369 | if (likely(!unshare)) { |
3370 | if (userfaultfd_pte_wp(vma, *vmf->pte)) { | |
3371 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
3372 | return handle_userfault(vmf, VM_UFFD_WP); | |
3373 | } | |
3374 | ||
3375 | /* | |
3376 | * Userfaultfd write-protect can defer flushes. Ensure the TLB | |
3377 | * is flushed in this case before copying. | |
3378 | */ | |
3379 | if (unlikely(userfaultfd_wp(vmf->vma) && | |
3380 | mm_tlb_flush_pending(vmf->vma->vm_mm))) | |
3381 | flush_tlb_page(vmf->vma, vmf->address); | |
3382 | } | |
6ce64428 | 3383 | |
a41b70d6 JK |
3384 | vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); |
3385 | if (!vmf->page) { | |
c89357e2 DH |
3386 | if (unlikely(unshare)) { |
3387 | /* No anonymous page -> nothing to do. */ | |
3388 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
3389 | return 0; | |
3390 | } | |
3391 | ||
251b97f5 | 3392 | /* |
64e45507 PF |
3393 | * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a |
3394 | * VM_PFNMAP VMA. | |
251b97f5 PZ |
3395 | * |
3396 | * We should not cow pages in a shared writeable mapping. | |
dd906184 | 3397 | * Just mark the pages writable and/or call ops->pfn_mkwrite. |
251b97f5 PZ |
3398 | */ |
3399 | if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == | |
3400 | (VM_WRITE|VM_SHARED)) | |
2994302b | 3401 | return wp_pfn_shared(vmf); |
2f38ab2c | 3402 | |
82b0f8c3 | 3403 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
a41b70d6 | 3404 | return wp_page_copy(vmf); |
251b97f5 | 3405 | } |
1da177e4 | 3406 | |
d08b3851 | 3407 | /* |
ee6a6457 PZ |
3408 | * Take out anonymous pages first, anonymous shared vmas are |
3409 | * not dirty accountable. | |
d08b3851 | 3410 | */ |
52d1e606 | 3411 | if (PageAnon(vmf->page)) { |
09854ba9 LT |
3412 | struct page *page = vmf->page; |
3413 | ||
6c287605 DH |
3414 | /* |
3415 | * If the page is exclusive to this process we must reuse the | |
3416 | * page without further checks. | |
3417 | */ | |
3418 | if (PageAnonExclusive(page)) | |
3419 | goto reuse; | |
3420 | ||
53a05ad9 DH |
3421 | /* |
3422 | * We have to verify under page lock: these early checks are | |
3423 | * just an optimization to avoid locking the page and freeing | |
3424 | * the swapcache if there is little hope that we can reuse. | |
3425 | * | |
3426 | * PageKsm() doesn't necessarily raise the page refcount. | |
3427 | */ | |
d4c47097 DH |
3428 | if (PageKsm(page) || page_count(page) > 3) |
3429 | goto copy; | |
3430 | if (!PageLRU(page)) | |
3431 | /* | |
3432 | * Note: We cannot easily detect+handle references from | |
3433 | * remote LRU pagevecs or references to PageLRU() pages. | |
3434 | */ | |
3435 | lru_add_drain(); | |
3436 | if (page_count(page) > 1 + PageSwapCache(page)) | |
09854ba9 LT |
3437 | goto copy; |
3438 | if (!trylock_page(page)) | |
3439 | goto copy; | |
53a05ad9 DH |
3440 | if (PageSwapCache(page)) |
3441 | try_to_free_swap(page); | |
3442 | if (PageKsm(page) || page_count(page) != 1) { | |
09854ba9 | 3443 | unlock_page(page); |
52d1e606 | 3444 | goto copy; |
b009c024 | 3445 | } |
09854ba9 | 3446 | /* |
53a05ad9 DH |
3447 | * Ok, we've got the only page reference from our mapping |
3448 | * and the page is locked, it's dark out, and we're wearing | |
3449 | * sunglasses. Hit it. | |
09854ba9 | 3450 | */ |
6c54dc6c | 3451 | page_move_anon_rmap(page, vma); |
09854ba9 | 3452 | unlock_page(page); |
6c287605 | 3453 | reuse: |
c89357e2 DH |
3454 | if (unlikely(unshare)) { |
3455 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
3456 | return 0; | |
3457 | } | |
be068f29 | 3458 | wp_page_reuse(vmf); |
09854ba9 | 3459 | return VM_FAULT_WRITE; |
c89357e2 DH |
3460 | } else if (unshare) { |
3461 | /* No anonymous page -> nothing to do. */ | |
3462 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
3463 | return 0; | |
ee6a6457 | 3464 | } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == |
d08b3851 | 3465 | (VM_WRITE|VM_SHARED))) { |
a41b70d6 | 3466 | return wp_page_shared(vmf); |
1da177e4 | 3467 | } |
52d1e606 | 3468 | copy: |
1da177e4 LT |
3469 | /* |
3470 | * Ok, we need to copy. Oh, well.. | |
3471 | */ | |
a41b70d6 | 3472 | get_page(vmf->page); |
28766805 | 3473 | |
82b0f8c3 | 3474 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
94bfe85b YY |
3475 | #ifdef CONFIG_KSM |
3476 | if (PageKsm(vmf->page)) | |
3477 | count_vm_event(COW_KSM); | |
3478 | #endif | |
a41b70d6 | 3479 | return wp_page_copy(vmf); |
1da177e4 LT |
3480 | } |
3481 | ||
97a89413 | 3482 | static void unmap_mapping_range_vma(struct vm_area_struct *vma, |
1da177e4 LT |
3483 | unsigned long start_addr, unsigned long end_addr, |
3484 | struct zap_details *details) | |
3485 | { | |
f5cc4eef | 3486 | zap_page_range_single(vma, start_addr, end_addr - start_addr, details); |
1da177e4 LT |
3487 | } |
3488 | ||
f808c13f | 3489 | static inline void unmap_mapping_range_tree(struct rb_root_cached *root, |
232a6a1c PX |
3490 | pgoff_t first_index, |
3491 | pgoff_t last_index, | |
1da177e4 LT |
3492 | struct zap_details *details) |
3493 | { | |
3494 | struct vm_area_struct *vma; | |
1da177e4 LT |
3495 | pgoff_t vba, vea, zba, zea; |
3496 | ||
232a6a1c | 3497 | vma_interval_tree_foreach(vma, root, first_index, last_index) { |
1da177e4 | 3498 | vba = vma->vm_pgoff; |
d6e93217 | 3499 | vea = vba + vma_pages(vma) - 1; |
f9871da9 ML |
3500 | zba = max(first_index, vba); |
3501 | zea = min(last_index, vea); | |
1da177e4 | 3502 | |
97a89413 | 3503 | unmap_mapping_range_vma(vma, |
1da177e4 LT |
3504 | ((zba - vba) << PAGE_SHIFT) + vma->vm_start, |
3505 | ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, | |
97a89413 | 3506 | details); |
1da177e4 LT |
3507 | } |
3508 | } | |
3509 | ||
22061a1f | 3510 | /** |
3506659e MWO |
3511 | * unmap_mapping_folio() - Unmap single folio from processes. |
3512 | * @folio: The locked folio to be unmapped. | |
22061a1f | 3513 | * |
3506659e | 3514 | * Unmap this folio from any userspace process which still has it mmaped. |
22061a1f HD |
3515 | * Typically, for efficiency, the range of nearby pages has already been |
3516 | * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once | |
3506659e MWO |
3517 | * truncation or invalidation holds the lock on a folio, it may find that |
3518 | * the page has been remapped again: and then uses unmap_mapping_folio() | |
22061a1f HD |
3519 | * to unmap it finally. |
3520 | */ | |
3506659e | 3521 | void unmap_mapping_folio(struct folio *folio) |
22061a1f | 3522 | { |
3506659e | 3523 | struct address_space *mapping = folio->mapping; |
22061a1f | 3524 | struct zap_details details = { }; |
232a6a1c PX |
3525 | pgoff_t first_index; |
3526 | pgoff_t last_index; | |
22061a1f | 3527 | |
3506659e | 3528 | VM_BUG_ON(!folio_test_locked(folio)); |
22061a1f | 3529 | |
3506659e MWO |
3530 | first_index = folio->index; |
3531 | last_index = folio->index + folio_nr_pages(folio) - 1; | |
232a6a1c | 3532 | |
2e148f1e | 3533 | details.even_cows = false; |
3506659e | 3534 | details.single_folio = folio; |
999dad82 | 3535 | details.zap_flags = ZAP_FLAG_DROP_MARKER; |
22061a1f | 3536 | |
2c865995 | 3537 | i_mmap_lock_read(mapping); |
22061a1f | 3538 | if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) |
232a6a1c PX |
3539 | unmap_mapping_range_tree(&mapping->i_mmap, first_index, |
3540 | last_index, &details); | |
2c865995 | 3541 | i_mmap_unlock_read(mapping); |
22061a1f HD |
3542 | } |
3543 | ||
977fbdcd MW |
3544 | /** |
3545 | * unmap_mapping_pages() - Unmap pages from processes. | |
3546 | * @mapping: The address space containing pages to be unmapped. | |
3547 | * @start: Index of first page to be unmapped. | |
3548 | * @nr: Number of pages to be unmapped. 0 to unmap to end of file. | |
3549 | * @even_cows: Whether to unmap even private COWed pages. | |
3550 | * | |
3551 | * Unmap the pages in this address space from any userspace process which | |
3552 | * has them mmaped. Generally, you want to remove COWed pages as well when | |
3553 | * a file is being truncated, but not when invalidating pages from the page | |
3554 | * cache. | |
3555 | */ | |
3556 | void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, | |
3557 | pgoff_t nr, bool even_cows) | |
3558 | { | |
3559 | struct zap_details details = { }; | |
232a6a1c PX |
3560 | pgoff_t first_index = start; |
3561 | pgoff_t last_index = start + nr - 1; | |
977fbdcd | 3562 | |
2e148f1e | 3563 | details.even_cows = even_cows; |
232a6a1c PX |
3564 | if (last_index < first_index) |
3565 | last_index = ULONG_MAX; | |
977fbdcd | 3566 | |
2c865995 | 3567 | i_mmap_lock_read(mapping); |
977fbdcd | 3568 | if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) |
232a6a1c PX |
3569 | unmap_mapping_range_tree(&mapping->i_mmap, first_index, |
3570 | last_index, &details); | |
2c865995 | 3571 | i_mmap_unlock_read(mapping); |
977fbdcd | 3572 | } |
6e0e99d5 | 3573 | EXPORT_SYMBOL_GPL(unmap_mapping_pages); |
977fbdcd | 3574 | |
1da177e4 | 3575 | /** |
8a5f14a2 | 3576 | * unmap_mapping_range - unmap the portion of all mmaps in the specified |
977fbdcd | 3577 | * address_space corresponding to the specified byte range in the underlying |
8a5f14a2 KS |
3578 | * file. |
3579 | * | |
3d41088f | 3580 | * @mapping: the address space containing mmaps to be unmapped. |
1da177e4 LT |
3581 | * @holebegin: byte in first page to unmap, relative to the start of |
3582 | * the underlying file. This will be rounded down to a PAGE_SIZE | |
25d9e2d1 | 3583 | * boundary. Note that this is different from truncate_pagecache(), which |
1da177e4 LT |
3584 | * must keep the partial page. In contrast, we must get rid of |
3585 | * partial pages. | |
3586 | * @holelen: size of prospective hole in bytes. This will be rounded | |
3587 | * up to a PAGE_SIZE boundary. A holelen of zero truncates to the | |
3588 | * end of the file. | |
3589 | * @even_cows: 1 when truncating a file, unmap even private COWed pages; | |
3590 | * but 0 when invalidating pagecache, don't throw away private data. | |
3591 | */ | |
3592 | void unmap_mapping_range(struct address_space *mapping, | |
3593 | loff_t const holebegin, loff_t const holelen, int even_cows) | |
3594 | { | |
1da177e4 LT |
3595 | pgoff_t hba = holebegin >> PAGE_SHIFT; |
3596 | pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
3597 | ||
3598 | /* Check for overflow. */ | |
3599 | if (sizeof(holelen) > sizeof(hlen)) { | |
3600 | long long holeend = | |
3601 | (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
3602 | if (holeend & ~(long long)ULONG_MAX) | |
3603 | hlen = ULONG_MAX - hba + 1; | |
3604 | } | |
3605 | ||
977fbdcd | 3606 | unmap_mapping_pages(mapping, hba, hlen, even_cows); |
1da177e4 LT |
3607 | } |
3608 | EXPORT_SYMBOL(unmap_mapping_range); | |
3609 | ||
b756a3b5 AP |
3610 | /* |
3611 | * Restore a potential device exclusive pte to a working pte entry | |
3612 | */ | |
3613 | static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) | |
3614 | { | |
3615 | struct page *page = vmf->page; | |
3616 | struct vm_area_struct *vma = vmf->vma; | |
3617 | struct mmu_notifier_range range; | |
3618 | ||
3619 | if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) | |
3620 | return VM_FAULT_RETRY; | |
3621 | mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma, | |
3622 | vma->vm_mm, vmf->address & PAGE_MASK, | |
3623 | (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); | |
3624 | mmu_notifier_invalidate_range_start(&range); | |
3625 | ||
3626 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, | |
3627 | &vmf->ptl); | |
3628 | if (likely(pte_same(*vmf->pte, vmf->orig_pte))) | |
3629 | restore_exclusive_pte(vma, page, vmf->address, vmf->pte); | |
3630 | ||
3631 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
3632 | unlock_page(page); | |
3633 | ||
3634 | mmu_notifier_invalidate_range_end(&range); | |
3635 | return 0; | |
3636 | } | |
3637 | ||
c145e0b4 DH |
3638 | static inline bool should_try_to_free_swap(struct page *page, |
3639 | struct vm_area_struct *vma, | |
3640 | unsigned int fault_flags) | |
3641 | { | |
3642 | if (!PageSwapCache(page)) | |
3643 | return false; | |
3644 | if (mem_cgroup_swap_full(page) || (vma->vm_flags & VM_LOCKED) || | |
3645 | PageMlocked(page)) | |
3646 | return true; | |
3647 | /* | |
3648 | * If we want to map a page that's in the swapcache writable, we | |
3649 | * have to detect via the refcount if we're really the exclusive | |
3650 | * user. Try freeing the swapcache to get rid of the swapcache | |
3651 | * reference only in case it's likely that we'll be the exlusive user. | |
3652 | */ | |
3653 | return (fault_flags & FAULT_FLAG_WRITE) && !PageKsm(page) && | |
3654 | page_count(page) == 2; | |
3655 | } | |
3656 | ||
9c28a205 PX |
3657 | static vm_fault_t pte_marker_clear(struct vm_fault *vmf) |
3658 | { | |
3659 | vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, | |
3660 | vmf->address, &vmf->ptl); | |
3661 | /* | |
3662 | * Be careful so that we will only recover a special uffd-wp pte into a | |
3663 | * none pte. Otherwise it means the pte could have changed, so retry. | |
3664 | */ | |
3665 | if (is_pte_marker(*vmf->pte)) | |
3666 | pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); | |
3667 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
3668 | return 0; | |
3669 | } | |
3670 | ||
3671 | /* | |
3672 | * This is actually a page-missing access, but with uffd-wp special pte | |
3673 | * installed. It means this pte was wr-protected before being unmapped. | |
3674 | */ | |
3675 | static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) | |
3676 | { | |
3677 | /* | |
3678 | * Just in case there're leftover special ptes even after the region | |
3679 | * got unregistered - we can simply clear them. We can also do that | |
3680 | * proactively when e.g. when we do UFFDIO_UNREGISTER upon some uffd-wp | |
3681 | * ranges, but it should be more efficient to be done lazily here. | |
3682 | */ | |
3683 | if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma))) | |
3684 | return pte_marker_clear(vmf); | |
3685 | ||
3686 | /* do_fault() can handle pte markers too like none pte */ | |
3687 | return do_fault(vmf); | |
3688 | } | |
3689 | ||
5c041f5d PX |
3690 | static vm_fault_t handle_pte_marker(struct vm_fault *vmf) |
3691 | { | |
3692 | swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); | |
3693 | unsigned long marker = pte_marker_get(entry); | |
3694 | ||
3695 | /* | |
3696 | * PTE markers should always be with file-backed memories, and the | |
3697 | * marker should never be empty. If anything weird happened, the best | |
3698 | * thing to do is to kill the process along with its mm. | |
3699 | */ | |
3700 | if (WARN_ON_ONCE(vma_is_anonymous(vmf->vma) || !marker)) | |
3701 | return VM_FAULT_SIGBUS; | |
3702 | ||
9c28a205 PX |
3703 | if (pte_marker_entry_uffd_wp(entry)) |
3704 | return pte_marker_handle_uffd_wp(vmf); | |
3705 | ||
3706 | /* This is an unknown pte marker */ | |
3707 | return VM_FAULT_SIGBUS; | |
5c041f5d PX |
3708 | } |
3709 | ||
1da177e4 | 3710 | /* |
c1e8d7c6 | 3711 | * We enter with non-exclusive mmap_lock (to exclude vma changes, |
8f4e2101 | 3712 | * but allow concurrent faults), and pte mapped but not yet locked. |
9a95f3cf PC |
3713 | * We return with pte unmapped and unlocked. |
3714 | * | |
c1e8d7c6 | 3715 | * We return with the mmap_lock locked or unlocked in the same cases |
9a95f3cf | 3716 | * as does filemap_fault(). |
1da177e4 | 3717 | */ |
2b740303 | 3718 | vm_fault_t do_swap_page(struct vm_fault *vmf) |
1da177e4 | 3719 | { |
82b0f8c3 | 3720 | struct vm_area_struct *vma = vmf->vma; |
eaf649eb | 3721 | struct page *page = NULL, *swapcache; |
2799e775 | 3722 | struct swap_info_struct *si = NULL; |
14f9135d | 3723 | rmap_t rmap_flags = RMAP_NONE; |
1493a191 | 3724 | bool exclusive = false; |
65500d23 | 3725 | swp_entry_t entry; |
1da177e4 | 3726 | pte_t pte; |
d065bd81 | 3727 | int locked; |
2b740303 | 3728 | vm_fault_t ret = 0; |
aae466b0 | 3729 | void *shadow = NULL; |
1da177e4 | 3730 | |
2ca99358 | 3731 | if (!pte_unmap_same(vmf)) |
8f4e2101 | 3732 | goto out; |
65500d23 | 3733 | |
2994302b | 3734 | entry = pte_to_swp_entry(vmf->orig_pte); |
d1737fdb AK |
3735 | if (unlikely(non_swap_entry(entry))) { |
3736 | if (is_migration_entry(entry)) { | |
82b0f8c3 JK |
3737 | migration_entry_wait(vma->vm_mm, vmf->pmd, |
3738 | vmf->address); | |
b756a3b5 AP |
3739 | } else if (is_device_exclusive_entry(entry)) { |
3740 | vmf->page = pfn_swap_entry_to_page(entry); | |
3741 | ret = remove_device_exclusive_entry(vmf); | |
5042db43 | 3742 | } else if (is_device_private_entry(entry)) { |
af5cdaf8 | 3743 | vmf->page = pfn_swap_entry_to_page(entry); |
897e6365 | 3744 | ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); |
d1737fdb AK |
3745 | } else if (is_hwpoison_entry(entry)) { |
3746 | ret = VM_FAULT_HWPOISON; | |
9f186f9e ML |
3747 | } else if (is_swapin_error_entry(entry)) { |
3748 | ret = VM_FAULT_SIGBUS; | |
5c041f5d PX |
3749 | } else if (is_pte_marker_entry(entry)) { |
3750 | ret = handle_pte_marker(vmf); | |
d1737fdb | 3751 | } else { |
2994302b | 3752 | print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); |
d99be1a8 | 3753 | ret = VM_FAULT_SIGBUS; |
d1737fdb | 3754 | } |
0697212a CL |
3755 | goto out; |
3756 | } | |
0bcac06f | 3757 | |
2799e775 ML |
3758 | /* Prevent swapoff from happening to us. */ |
3759 | si = get_swap_device(entry); | |
3760 | if (unlikely(!si)) | |
3761 | goto out; | |
0bcac06f | 3762 | |
eaf649eb MK |
3763 | page = lookup_swap_cache(entry, vma, vmf->address); |
3764 | swapcache = page; | |
f8020772 | 3765 | |
1da177e4 | 3766 | if (!page) { |
a449bf58 QC |
3767 | if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && |
3768 | __swap_count(entry) == 1) { | |
0bcac06f | 3769 | /* skip swapcache */ |
e9e9b7ec MK |
3770 | page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, |
3771 | vmf->address); | |
0bcac06f MK |
3772 | if (page) { |
3773 | __SetPageLocked(page); | |
3774 | __SetPageSwapBacked(page); | |
4c6355b2 | 3775 | |
0add0c77 SB |
3776 | if (mem_cgroup_swapin_charge_page(page, |
3777 | vma->vm_mm, GFP_KERNEL, entry)) { | |
545b1b07 | 3778 | ret = VM_FAULT_OOM; |
4c6355b2 | 3779 | goto out_page; |
545b1b07 | 3780 | } |
0add0c77 | 3781 | mem_cgroup_swapin_uncharge_swap(entry); |
4c6355b2 | 3782 | |
aae466b0 JK |
3783 | shadow = get_shadow_from_swap_cache(entry); |
3784 | if (shadow) | |
0995d7e5 MWO |
3785 | workingset_refault(page_folio(page), |
3786 | shadow); | |
0076f029 | 3787 | |
6058eaec | 3788 | lru_cache_add(page); |
0add0c77 SB |
3789 | |
3790 | /* To provide entry to swap_readpage() */ | |
3791 | set_page_private(page, entry.val); | |
5169b844 | 3792 | swap_readpage(page, true, NULL); |
0add0c77 | 3793 | set_page_private(page, 0); |
0bcac06f | 3794 | } |
aa8d22a1 | 3795 | } else { |
e9e9b7ec MK |
3796 | page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, |
3797 | vmf); | |
aa8d22a1 | 3798 | swapcache = page; |
0bcac06f MK |
3799 | } |
3800 | ||
1da177e4 LT |
3801 | if (!page) { |
3802 | /* | |
8f4e2101 HD |
3803 | * Back out if somebody else faulted in this pte |
3804 | * while we released the pte lock. | |
1da177e4 | 3805 | */ |
82b0f8c3 JK |
3806 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, |
3807 | vmf->address, &vmf->ptl); | |
2994302b | 3808 | if (likely(pte_same(*vmf->pte, vmf->orig_pte))) |
1da177e4 | 3809 | ret = VM_FAULT_OOM; |
65500d23 | 3810 | goto unlock; |
1da177e4 LT |
3811 | } |
3812 | ||
3813 | /* Had to read the page from swap area: Major fault */ | |
3814 | ret = VM_FAULT_MAJOR; | |
f8891e5e | 3815 | count_vm_event(PGMAJFAULT); |
2262185c | 3816 | count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); |
d1737fdb | 3817 | } else if (PageHWPoison(page)) { |
71f72525 WF |
3818 | /* |
3819 | * hwpoisoned dirty swapcache pages are kept for killing | |
3820 | * owner processes (which may be unknown at hwpoison time) | |
3821 | */ | |
d1737fdb | 3822 | ret = VM_FAULT_HWPOISON; |
4779cb31 | 3823 | goto out_release; |
1da177e4 LT |
3824 | } |
3825 | ||
82b0f8c3 | 3826 | locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); |
e709ffd6 | 3827 | |
d065bd81 ML |
3828 | if (!locked) { |
3829 | ret |= VM_FAULT_RETRY; | |
3830 | goto out_release; | |
3831 | } | |
073e587e | 3832 | |
84d60fdd DH |
3833 | if (swapcache) { |
3834 | /* | |
3835 | * Make sure try_to_free_swap or swapoff did not release the | |
3836 | * swapcache from under us. The page pin, and pte_same test | |
3837 | * below, are not enough to exclude that. Even if it is still | |
3838 | * swapcache, we need to check that the page's swap has not | |
3839 | * changed. | |
3840 | */ | |
3841 | if (unlikely(!PageSwapCache(page) || | |
3842 | page_private(page) != entry.val)) | |
3843 | goto out_page; | |
3844 | ||
3845 | /* | |
3846 | * KSM sometimes has to copy on read faults, for example, if | |
3847 | * page->index of !PageKSM() pages would be nonlinear inside the | |
3848 | * anon VMA -- PageKSM() is lost on actual swapout. | |
3849 | */ | |
3850 | page = ksm_might_need_to_copy(page, vma, vmf->address); | |
3851 | if (unlikely(!page)) { | |
3852 | ret = VM_FAULT_OOM; | |
3853 | page = swapcache; | |
3854 | goto out_page; | |
3855 | } | |
c145e0b4 DH |
3856 | |
3857 | /* | |
3858 | * If we want to map a page that's in the swapcache writable, we | |
3859 | * have to detect via the refcount if we're really the exclusive | |
3860 | * owner. Try removing the extra reference from the local LRU | |
3861 | * pagevecs if required. | |
3862 | */ | |
3863 | if ((vmf->flags & FAULT_FLAG_WRITE) && page == swapcache && | |
3864 | !PageKsm(page) && !PageLRU(page)) | |
3865 | lru_add_drain(); | |
5ad64688 HD |
3866 | } |
3867 | ||
9d82c694 | 3868 | cgroup_throttle_swaprate(page, GFP_KERNEL); |
8a9f3ccd | 3869 | |
1da177e4 | 3870 | /* |
8f4e2101 | 3871 | * Back out if somebody else already faulted in this pte. |
1da177e4 | 3872 | */ |
82b0f8c3 JK |
3873 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, |
3874 | &vmf->ptl); | |
2994302b | 3875 | if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) |
b8107480 | 3876 | goto out_nomap; |
b8107480 KK |
3877 | |
3878 | if (unlikely(!PageUptodate(page))) { | |
3879 | ret = VM_FAULT_SIGBUS; | |
3880 | goto out_nomap; | |
1da177e4 LT |
3881 | } |
3882 | ||
78fbe906 DH |
3883 | /* |
3884 | * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte | |
3885 | * must never point at an anonymous page in the swapcache that is | |
3886 | * PG_anon_exclusive. Sanity check that this holds and especially, that | |
3887 | * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity | |
3888 | * check after taking the PT lock and making sure that nobody | |
3889 | * concurrently faulted in this page and set PG_anon_exclusive. | |
3890 | */ | |
3891 | BUG_ON(!PageAnon(page) && PageMappedToDisk(page)); | |
3892 | BUG_ON(PageAnon(page) && PageAnonExclusive(page)); | |
3893 | ||
1493a191 DH |
3894 | /* |
3895 | * Check under PT lock (to protect against concurrent fork() sharing | |
3896 | * the swap entry concurrently) for certainly exclusive pages. | |
3897 | */ | |
3898 | if (!PageKsm(page)) { | |
3899 | /* | |
3900 | * Note that pte_swp_exclusive() == false for architectures | |
3901 | * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE. | |
3902 | */ | |
3903 | exclusive = pte_swp_exclusive(vmf->orig_pte); | |
3904 | if (page != swapcache) { | |
3905 | /* | |
3906 | * We have a fresh page that is not exposed to the | |
3907 | * swapcache -> certainly exclusive. | |
3908 | */ | |
3909 | exclusive = true; | |
3910 | } else if (exclusive && PageWriteback(page) && | |
eacde327 | 3911 | data_race(si->flags & SWP_STABLE_WRITES)) { |
1493a191 DH |
3912 | /* |
3913 | * This is tricky: not all swap backends support | |
3914 | * concurrent page modifications while under writeback. | |
3915 | * | |
3916 | * So if we stumble over such a page in the swapcache | |
3917 | * we must not set the page exclusive, otherwise we can | |
3918 | * map it writable without further checks and modify it | |
3919 | * while still under writeback. | |
3920 | * | |
3921 | * For these problematic swap backends, simply drop the | |
3922 | * exclusive marker: this is perfectly fine as we start | |
3923 | * writeback only if we fully unmapped the page and | |
3924 | * there are no unexpected references on the page after | |
3925 | * unmapping succeeded. After fully unmapped, no | |
3926 | * further GUP references (FOLL_GET and FOLL_PIN) can | |
3927 | * appear, so dropping the exclusive marker and mapping | |
3928 | * it only R/O is fine. | |
3929 | */ | |
3930 | exclusive = false; | |
3931 | } | |
3932 | } | |
3933 | ||
8c7c6e34 | 3934 | /* |
c145e0b4 DH |
3935 | * Remove the swap entry and conditionally try to free up the swapcache. |
3936 | * We're already holding a reference on the page but haven't mapped it | |
3937 | * yet. | |
8c7c6e34 | 3938 | */ |
c145e0b4 DH |
3939 | swap_free(entry); |
3940 | if (should_try_to_free_swap(page, vma, vmf->flags)) | |
3941 | try_to_free_swap(page); | |
1da177e4 | 3942 | |
bae473a4 KS |
3943 | inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); |
3944 | dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); | |
1da177e4 | 3945 | pte = mk_pte(page, vma->vm_page_prot); |
c145e0b4 DH |
3946 | |
3947 | /* | |
1493a191 DH |
3948 | * Same logic as in do_wp_page(); however, optimize for pages that are |
3949 | * certainly not shared either because we just allocated them without | |
3950 | * exposing them to the swapcache or because the swap entry indicates | |
3951 | * exclusivity. | |
c145e0b4 | 3952 | */ |
1493a191 | 3953 | if (!PageKsm(page) && (exclusive || page_count(page) == 1)) { |
6c287605 DH |
3954 | if (vmf->flags & FAULT_FLAG_WRITE) { |
3955 | pte = maybe_mkwrite(pte_mkdirty(pte), vma); | |
3956 | vmf->flags &= ~FAULT_FLAG_WRITE; | |
3957 | ret |= VM_FAULT_WRITE; | |
3958 | } | |
14f9135d | 3959 | rmap_flags |= RMAP_EXCLUSIVE; |
1da177e4 | 3960 | } |
1da177e4 | 3961 | flush_icache_page(vma, page); |
2994302b | 3962 | if (pte_swp_soft_dirty(vmf->orig_pte)) |
179ef71c | 3963 | pte = pte_mksoft_dirty(pte); |
f45ec5ff PX |
3964 | if (pte_swp_uffd_wp(vmf->orig_pte)) { |
3965 | pte = pte_mkuffd_wp(pte); | |
3966 | pte = pte_wrprotect(pte); | |
3967 | } | |
2994302b | 3968 | vmf->orig_pte = pte; |
0bcac06f MK |
3969 | |
3970 | /* ksm created a completely new copy */ | |
3971 | if (unlikely(page != swapcache && swapcache)) { | |
40f2bbf7 | 3972 | page_add_new_anon_rmap(page, vma, vmf->address); |
b518154e | 3973 | lru_cache_add_inactive_or_unevictable(page, vma); |
0bcac06f | 3974 | } else { |
f1e2db12 | 3975 | page_add_anon_rmap(page, vma, vmf->address, rmap_flags); |
00501b53 | 3976 | } |
1da177e4 | 3977 | |
6c287605 | 3978 | VM_BUG_ON(!PageAnon(page) || (pte_write(pte) && !PageAnonExclusive(page))); |
1eba86c0 PT |
3979 | set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); |
3980 | arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); | |
3981 | ||
c475a8ab | 3982 | unlock_page(page); |
0bcac06f | 3983 | if (page != swapcache && swapcache) { |
4969c119 AA |
3984 | /* |
3985 | * Hold the lock to avoid the swap entry to be reused | |
3986 | * until we take the PT lock for the pte_same() check | |
3987 | * (to avoid false positives from pte_same). For | |
3988 | * further safety release the lock after the swap_free | |
3989 | * so that the swap count won't change under a | |
3990 | * parallel locked swapcache. | |
3991 | */ | |
3992 | unlock_page(swapcache); | |
09cbfeaf | 3993 | put_page(swapcache); |
4969c119 | 3994 | } |
c475a8ab | 3995 | |
82b0f8c3 | 3996 | if (vmf->flags & FAULT_FLAG_WRITE) { |
2994302b | 3997 | ret |= do_wp_page(vmf); |
61469f1d HD |
3998 | if (ret & VM_FAULT_ERROR) |
3999 | ret &= VM_FAULT_ERROR; | |
1da177e4 LT |
4000 | goto out; |
4001 | } | |
4002 | ||
4003 | /* No need to invalidate - it was non-present before */ | |
82b0f8c3 | 4004 | update_mmu_cache(vma, vmf->address, vmf->pte); |
65500d23 | 4005 | unlock: |
82b0f8c3 | 4006 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
1da177e4 | 4007 | out: |
2799e775 ML |
4008 | if (si) |
4009 | put_swap_device(si); | |
1da177e4 | 4010 | return ret; |
b8107480 | 4011 | out_nomap: |
82b0f8c3 | 4012 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
bc43f75c | 4013 | out_page: |
b8107480 | 4014 | unlock_page(page); |
4779cb31 | 4015 | out_release: |
09cbfeaf | 4016 | put_page(page); |
0bcac06f | 4017 | if (page != swapcache && swapcache) { |
4969c119 | 4018 | unlock_page(swapcache); |
09cbfeaf | 4019 | put_page(swapcache); |
4969c119 | 4020 | } |
2799e775 ML |
4021 | if (si) |
4022 | put_swap_device(si); | |
65500d23 | 4023 | return ret; |
1da177e4 LT |
4024 | } |
4025 | ||
4026 | /* | |
c1e8d7c6 | 4027 | * We enter with non-exclusive mmap_lock (to exclude vma changes, |
8f4e2101 | 4028 | * but allow concurrent faults), and pte mapped but not yet locked. |
c1e8d7c6 | 4029 | * We return with mmap_lock still held, but pte unmapped and unlocked. |
1da177e4 | 4030 | */ |
2b740303 | 4031 | static vm_fault_t do_anonymous_page(struct vm_fault *vmf) |
1da177e4 | 4032 | { |
82b0f8c3 | 4033 | struct vm_area_struct *vma = vmf->vma; |
8f4e2101 | 4034 | struct page *page; |
2b740303 | 4035 | vm_fault_t ret = 0; |
1da177e4 | 4036 | pte_t entry; |
1da177e4 | 4037 | |
6b7339f4 KS |
4038 | /* File mapping without ->vm_ops ? */ |
4039 | if (vma->vm_flags & VM_SHARED) | |
4040 | return VM_FAULT_SIGBUS; | |
4041 | ||
7267ec00 KS |
4042 | /* |
4043 | * Use pte_alloc() instead of pte_alloc_map(). We can't run | |
4044 | * pte_offset_map() on pmds where a huge pmd might be created | |
4045 | * from a different thread. | |
4046 | * | |
3e4e28c5 | 4047 | * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when |
7267ec00 KS |
4048 | * parallel threads are excluded by other means. |
4049 | * | |
3e4e28c5 | 4050 | * Here we only have mmap_read_lock(mm). |
7267ec00 | 4051 | */ |
4cf58924 | 4052 | if (pte_alloc(vma->vm_mm, vmf->pmd)) |
7267ec00 KS |
4053 | return VM_FAULT_OOM; |
4054 | ||
f9ce0be7 | 4055 | /* See comment in handle_pte_fault() */ |
82b0f8c3 | 4056 | if (unlikely(pmd_trans_unstable(vmf->pmd))) |
7267ec00 KS |
4057 | return 0; |
4058 | ||
11ac5524 | 4059 | /* Use the zero-page for reads */ |
82b0f8c3 | 4060 | if (!(vmf->flags & FAULT_FLAG_WRITE) && |
bae473a4 | 4061 | !mm_forbids_zeropage(vma->vm_mm)) { |
82b0f8c3 | 4062 | entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), |
62eede62 | 4063 | vma->vm_page_prot)); |
82b0f8c3 JK |
4064 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, |
4065 | vmf->address, &vmf->ptl); | |
7df67697 BM |
4066 | if (!pte_none(*vmf->pte)) { |
4067 | update_mmu_tlb(vma, vmf->address, vmf->pte); | |
a13ea5b7 | 4068 | goto unlock; |
7df67697 | 4069 | } |
6b31d595 MH |
4070 | ret = check_stable_address_space(vma->vm_mm); |
4071 | if (ret) | |
4072 | goto unlock; | |
6b251fc9 AA |
4073 | /* Deliver the page fault to userland, check inside PT lock */ |
4074 | if (userfaultfd_missing(vma)) { | |
82b0f8c3 JK |
4075 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
4076 | return handle_userfault(vmf, VM_UFFD_MISSING); | |
6b251fc9 | 4077 | } |
a13ea5b7 HD |
4078 | goto setpte; |
4079 | } | |
4080 | ||
557ed1fa | 4081 | /* Allocate our own private page. */ |
557ed1fa NP |
4082 | if (unlikely(anon_vma_prepare(vma))) |
4083 | goto oom; | |
82b0f8c3 | 4084 | page = alloc_zeroed_user_highpage_movable(vma, vmf->address); |
557ed1fa NP |
4085 | if (!page) |
4086 | goto oom; | |
eb3c24f3 | 4087 | |
8f425e4e | 4088 | if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL)) |
eb3c24f3 | 4089 | goto oom_free_page; |
9d82c694 | 4090 | cgroup_throttle_swaprate(page, GFP_KERNEL); |
eb3c24f3 | 4091 | |
52f37629 MK |
4092 | /* |
4093 | * The memory barrier inside __SetPageUptodate makes sure that | |
f4f5329d | 4094 | * preceding stores to the page contents become visible before |
52f37629 MK |
4095 | * the set_pte_at() write. |
4096 | */ | |
0ed361de | 4097 | __SetPageUptodate(page); |
8f4e2101 | 4098 | |
557ed1fa | 4099 | entry = mk_pte(page, vma->vm_page_prot); |
50c25ee9 | 4100 | entry = pte_sw_mkyoung(entry); |
1ac0cb5d HD |
4101 | if (vma->vm_flags & VM_WRITE) |
4102 | entry = pte_mkwrite(pte_mkdirty(entry)); | |
1da177e4 | 4103 | |
82b0f8c3 JK |
4104 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, |
4105 | &vmf->ptl); | |
7df67697 BM |
4106 | if (!pte_none(*vmf->pte)) { |
4107 | update_mmu_cache(vma, vmf->address, vmf->pte); | |
557ed1fa | 4108 | goto release; |
7df67697 | 4109 | } |
9ba69294 | 4110 | |
6b31d595 MH |
4111 | ret = check_stable_address_space(vma->vm_mm); |
4112 | if (ret) | |
4113 | goto release; | |
4114 | ||
6b251fc9 AA |
4115 | /* Deliver the page fault to userland, check inside PT lock */ |
4116 | if (userfaultfd_missing(vma)) { | |
82b0f8c3 | 4117 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
09cbfeaf | 4118 | put_page(page); |
82b0f8c3 | 4119 | return handle_userfault(vmf, VM_UFFD_MISSING); |
6b251fc9 AA |
4120 | } |
4121 | ||
bae473a4 | 4122 | inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); |
40f2bbf7 | 4123 | page_add_new_anon_rmap(page, vma, vmf->address); |
b518154e | 4124 | lru_cache_add_inactive_or_unevictable(page, vma); |
a13ea5b7 | 4125 | setpte: |
82b0f8c3 | 4126 | set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); |
1da177e4 LT |
4127 | |
4128 | /* No need to invalidate - it was non-present before */ | |
82b0f8c3 | 4129 | update_mmu_cache(vma, vmf->address, vmf->pte); |
65500d23 | 4130 | unlock: |
82b0f8c3 | 4131 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
6b31d595 | 4132 | return ret; |
8f4e2101 | 4133 | release: |
09cbfeaf | 4134 | put_page(page); |
8f4e2101 | 4135 | goto unlock; |
8a9f3ccd | 4136 | oom_free_page: |
09cbfeaf | 4137 | put_page(page); |
65500d23 | 4138 | oom: |
1da177e4 LT |
4139 | return VM_FAULT_OOM; |
4140 | } | |
4141 | ||
9a95f3cf | 4142 | /* |
c1e8d7c6 | 4143 | * The mmap_lock must have been held on entry, and may have been |
9a95f3cf PC |
4144 | * released depending on flags and vma->vm_ops->fault() return value. |
4145 | * See filemap_fault() and __lock_page_retry(). | |
4146 | */ | |
2b740303 | 4147 | static vm_fault_t __do_fault(struct vm_fault *vmf) |
7eae74af | 4148 | { |
82b0f8c3 | 4149 | struct vm_area_struct *vma = vmf->vma; |
2b740303 | 4150 | vm_fault_t ret; |
7eae74af | 4151 | |
63f3655f MH |
4152 | /* |
4153 | * Preallocate pte before we take page_lock because this might lead to | |
4154 | * deadlocks for memcg reclaim which waits for pages under writeback: | |
4155 | * lock_page(A) | |
4156 | * SetPageWriteback(A) | |
4157 | * unlock_page(A) | |
4158 | * lock_page(B) | |
4159 | * lock_page(B) | |
d383807a | 4160 | * pte_alloc_one |
63f3655f MH |
4161 | * shrink_page_list |
4162 | * wait_on_page_writeback(A) | |
4163 | * SetPageWriteback(B) | |
4164 | * unlock_page(B) | |
4165 | * # flush A, B to clear the writeback | |
4166 | */ | |
4167 | if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { | |
a7069ee3 | 4168 | vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); |
63f3655f MH |
4169 | if (!vmf->prealloc_pte) |
4170 | return VM_FAULT_OOM; | |
63f3655f MH |
4171 | } |
4172 | ||
11bac800 | 4173 | ret = vma->vm_ops->fault(vmf); |
3917048d | 4174 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | |
b1aa812b | 4175 | VM_FAULT_DONE_COW))) |
bc2466e4 | 4176 | return ret; |
7eae74af | 4177 | |
667240e0 | 4178 | if (unlikely(PageHWPoison(vmf->page))) { |
3149c79f | 4179 | struct page *page = vmf->page; |
e53ac737 RR |
4180 | vm_fault_t poisonret = VM_FAULT_HWPOISON; |
4181 | if (ret & VM_FAULT_LOCKED) { | |
3149c79f RR |
4182 | if (page_mapped(page)) |
4183 | unmap_mapping_pages(page_mapping(page), | |
4184 | page->index, 1, false); | |
e53ac737 | 4185 | /* Retry if a clean page was removed from the cache. */ |
3149c79f RR |
4186 | if (invalidate_inode_page(page)) |
4187 | poisonret = VM_FAULT_NOPAGE; | |
4188 | unlock_page(page); | |
e53ac737 | 4189 | } |
3149c79f | 4190 | put_page(page); |
936ca80d | 4191 | vmf->page = NULL; |
e53ac737 | 4192 | return poisonret; |
7eae74af KS |
4193 | } |
4194 | ||
4195 | if (unlikely(!(ret & VM_FAULT_LOCKED))) | |
667240e0 | 4196 | lock_page(vmf->page); |
7eae74af | 4197 | else |
667240e0 | 4198 | VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); |
7eae74af | 4199 | |
7eae74af KS |
4200 | return ret; |
4201 | } | |
4202 | ||
396bcc52 | 4203 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
82b0f8c3 | 4204 | static void deposit_prealloc_pte(struct vm_fault *vmf) |
953c66c2 | 4205 | { |
82b0f8c3 | 4206 | struct vm_area_struct *vma = vmf->vma; |
953c66c2 | 4207 | |
82b0f8c3 | 4208 | pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); |
953c66c2 AK |
4209 | /* |
4210 | * We are going to consume the prealloc table, | |
4211 | * count that as nr_ptes. | |
4212 | */ | |
c4812909 | 4213 | mm_inc_nr_ptes(vma->vm_mm); |
7f2b6ce8 | 4214 | vmf->prealloc_pte = NULL; |
953c66c2 AK |
4215 | } |
4216 | ||
f9ce0be7 | 4217 | vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) |
10102459 | 4218 | { |
82b0f8c3 JK |
4219 | struct vm_area_struct *vma = vmf->vma; |
4220 | bool write = vmf->flags & FAULT_FLAG_WRITE; | |
4221 | unsigned long haddr = vmf->address & HPAGE_PMD_MASK; | |
10102459 | 4222 | pmd_t entry; |
2b740303 | 4223 | int i; |
d01ac3c3 | 4224 | vm_fault_t ret = VM_FAULT_FALLBACK; |
10102459 KS |
4225 | |
4226 | if (!transhuge_vma_suitable(vma, haddr)) | |
d01ac3c3 | 4227 | return ret; |
10102459 | 4228 | |
10102459 | 4229 | page = compound_head(page); |
d01ac3c3 MWO |
4230 | if (compound_order(page) != HPAGE_PMD_ORDER) |
4231 | return ret; | |
10102459 | 4232 | |
eac96c3e YS |
4233 | /* |
4234 | * Just backoff if any subpage of a THP is corrupted otherwise | |
4235 | * the corrupted page may mapped by PMD silently to escape the | |
4236 | * check. This kind of THP just can be PTE mapped. Access to | |
4237 | * the corrupted subpage should trigger SIGBUS as expected. | |
4238 | */ | |
4239 | if (unlikely(PageHasHWPoisoned(page))) | |
4240 | return ret; | |
4241 | ||
953c66c2 | 4242 | /* |
f0953a1b | 4243 | * Archs like ppc64 need additional space to store information |
953c66c2 AK |
4244 | * related to pte entry. Use the preallocated table for that. |
4245 | */ | |
82b0f8c3 | 4246 | if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { |
4cf58924 | 4247 | vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); |
82b0f8c3 | 4248 | if (!vmf->prealloc_pte) |
953c66c2 | 4249 | return VM_FAULT_OOM; |
953c66c2 AK |
4250 | } |
4251 | ||
82b0f8c3 JK |
4252 | vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); |
4253 | if (unlikely(!pmd_none(*vmf->pmd))) | |
10102459 KS |
4254 | goto out; |
4255 | ||
4256 | for (i = 0; i < HPAGE_PMD_NR; i++) | |
4257 | flush_icache_page(vma, page + i); | |
4258 | ||
4259 | entry = mk_huge_pmd(page, vma->vm_page_prot); | |
4260 | if (write) | |
f55e1014 | 4261 | entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); |
10102459 | 4262 | |
fadae295 | 4263 | add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); |
cea86fe2 HD |
4264 | page_add_file_rmap(page, vma, true); |
4265 | ||
953c66c2 AK |
4266 | /* |
4267 | * deposit and withdraw with pmd lock held | |
4268 | */ | |
4269 | if (arch_needs_pgtable_deposit()) | |
82b0f8c3 | 4270 | deposit_prealloc_pte(vmf); |
10102459 | 4271 | |
82b0f8c3 | 4272 | set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); |
10102459 | 4273 | |
82b0f8c3 | 4274 | update_mmu_cache_pmd(vma, haddr, vmf->pmd); |
10102459 KS |
4275 | |
4276 | /* fault is handled */ | |
4277 | ret = 0; | |
95ecedcd | 4278 | count_vm_event(THP_FILE_MAPPED); |
10102459 | 4279 | out: |
82b0f8c3 | 4280 | spin_unlock(vmf->ptl); |
10102459 KS |
4281 | return ret; |
4282 | } | |
4283 | #else | |
f9ce0be7 | 4284 | vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) |
10102459 | 4285 | { |
f9ce0be7 | 4286 | return VM_FAULT_FALLBACK; |
10102459 KS |
4287 | } |
4288 | #endif | |
4289 | ||
9d3af4b4 | 4290 | void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr) |
3bb97794 | 4291 | { |
82b0f8c3 | 4292 | struct vm_area_struct *vma = vmf->vma; |
9c28a205 | 4293 | bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte); |
82b0f8c3 | 4294 | bool write = vmf->flags & FAULT_FLAG_WRITE; |
9d3af4b4 | 4295 | bool prefault = vmf->address != addr; |
3bb97794 | 4296 | pte_t entry; |
7267ec00 | 4297 | |
3bb97794 KS |
4298 | flush_icache_page(vma, page); |
4299 | entry = mk_pte(page, vma->vm_page_prot); | |
46bdb427 WD |
4300 | |
4301 | if (prefault && arch_wants_old_prefaulted_pte()) | |
4302 | entry = pte_mkold(entry); | |
50c25ee9 TB |
4303 | else |
4304 | entry = pte_sw_mkyoung(entry); | |
46bdb427 | 4305 | |
3bb97794 KS |
4306 | if (write) |
4307 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
9c28a205 PX |
4308 | if (unlikely(uffd_wp)) |
4309 | entry = pte_mkuffd_wp(pte_wrprotect(entry)); | |
bae473a4 KS |
4310 | /* copy-on-write page */ |
4311 | if (write && !(vma->vm_flags & VM_SHARED)) { | |
3bb97794 | 4312 | inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); |
40f2bbf7 | 4313 | page_add_new_anon_rmap(page, vma, addr); |
b518154e | 4314 | lru_cache_add_inactive_or_unevictable(page, vma); |
3bb97794 | 4315 | } else { |
eca56ff9 | 4316 | inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); |
cea86fe2 | 4317 | page_add_file_rmap(page, vma, false); |
3bb97794 | 4318 | } |
9d3af4b4 | 4319 | set_pte_at(vma->vm_mm, addr, vmf->pte, entry); |
3bb97794 KS |
4320 | } |
4321 | ||
f46f2ade PX |
4322 | static bool vmf_pte_changed(struct vm_fault *vmf) |
4323 | { | |
4324 | if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) | |
4325 | return !pte_same(*vmf->pte, vmf->orig_pte); | |
4326 | ||
4327 | return !pte_none(*vmf->pte); | |
4328 | } | |
4329 | ||
9118c0cb JK |
4330 | /** |
4331 | * finish_fault - finish page fault once we have prepared the page to fault | |
4332 | * | |
4333 | * @vmf: structure describing the fault | |
4334 | * | |
4335 | * This function handles all that is needed to finish a page fault once the | |
4336 | * page to fault in is prepared. It handles locking of PTEs, inserts PTE for | |
4337 | * given page, adds reverse page mapping, handles memcg charges and LRU | |
a862f68a | 4338 | * addition. |
9118c0cb JK |
4339 | * |
4340 | * The function expects the page to be locked and on success it consumes a | |
4341 | * reference of a page being mapped (for the PTE which maps it). | |
a862f68a MR |
4342 | * |
4343 | * Return: %0 on success, %VM_FAULT_ code in case of error. | |
9118c0cb | 4344 | */ |
2b740303 | 4345 | vm_fault_t finish_fault(struct vm_fault *vmf) |
9118c0cb | 4346 | { |
f9ce0be7 | 4347 | struct vm_area_struct *vma = vmf->vma; |
9118c0cb | 4348 | struct page *page; |
f9ce0be7 | 4349 | vm_fault_t ret; |
9118c0cb JK |
4350 | |
4351 | /* Did we COW the page? */ | |
f9ce0be7 | 4352 | if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) |
9118c0cb JK |
4353 | page = vmf->cow_page; |
4354 | else | |
4355 | page = vmf->page; | |
6b31d595 MH |
4356 | |
4357 | /* | |
4358 | * check even for read faults because we might have lost our CoWed | |
4359 | * page | |
4360 | */ | |
f9ce0be7 KS |
4361 | if (!(vma->vm_flags & VM_SHARED)) { |
4362 | ret = check_stable_address_space(vma->vm_mm); | |
4363 | if (ret) | |
4364 | return ret; | |
4365 | } | |
4366 | ||
4367 | if (pmd_none(*vmf->pmd)) { | |
4368 | if (PageTransCompound(page)) { | |
4369 | ret = do_set_pmd(vmf, page); | |
4370 | if (ret != VM_FAULT_FALLBACK) | |
4371 | return ret; | |
4372 | } | |
4373 | ||
03c4f204 QZ |
4374 | if (vmf->prealloc_pte) |
4375 | pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); | |
4376 | else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) | |
f9ce0be7 KS |
4377 | return VM_FAULT_OOM; |
4378 | } | |
4379 | ||
3fe2895c JB |
4380 | /* |
4381 | * See comment in handle_pte_fault() for how this scenario happens, we | |
4382 | * need to return NOPAGE so that we drop this page. | |
4383 | */ | |
f9ce0be7 | 4384 | if (pmd_devmap_trans_unstable(vmf->pmd)) |
3fe2895c | 4385 | return VM_FAULT_NOPAGE; |
f9ce0be7 KS |
4386 | |
4387 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, | |
4388 | vmf->address, &vmf->ptl); | |
4389 | ret = 0; | |
4390 | /* Re-check under ptl */ | |
f46f2ade | 4391 | if (likely(!vmf_pte_changed(vmf))) |
9d3af4b4 | 4392 | do_set_pte(vmf, page, vmf->address); |
f9ce0be7 KS |
4393 | else |
4394 | ret = VM_FAULT_NOPAGE; | |
4395 | ||
4396 | update_mmu_tlb(vma, vmf->address, vmf->pte); | |
4397 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
9118c0cb JK |
4398 | return ret; |
4399 | } | |
4400 | ||
3a91053a KS |
4401 | static unsigned long fault_around_bytes __read_mostly = |
4402 | rounddown_pow_of_two(65536); | |
a9b0f861 | 4403 | |
a9b0f861 KS |
4404 | #ifdef CONFIG_DEBUG_FS |
4405 | static int fault_around_bytes_get(void *data, u64 *val) | |
1592eef0 | 4406 | { |
a9b0f861 | 4407 | *val = fault_around_bytes; |
1592eef0 KS |
4408 | return 0; |
4409 | } | |
4410 | ||
b4903d6e | 4411 | /* |
da391d64 WK |
4412 | * fault_around_bytes must be rounded down to the nearest page order as it's |
4413 | * what do_fault_around() expects to see. | |
b4903d6e | 4414 | */ |
a9b0f861 | 4415 | static int fault_around_bytes_set(void *data, u64 val) |
1592eef0 | 4416 | { |
a9b0f861 | 4417 | if (val / PAGE_SIZE > PTRS_PER_PTE) |
1592eef0 | 4418 | return -EINVAL; |
b4903d6e AR |
4419 | if (val > PAGE_SIZE) |
4420 | fault_around_bytes = rounddown_pow_of_two(val); | |
4421 | else | |
4422 | fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ | |
1592eef0 KS |
4423 | return 0; |
4424 | } | |
0a1345f8 | 4425 | DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, |
a9b0f861 | 4426 | fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); |
1592eef0 KS |
4427 | |
4428 | static int __init fault_around_debugfs(void) | |
4429 | { | |
d9f7979c GKH |
4430 | debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, |
4431 | &fault_around_bytes_fops); | |
1592eef0 KS |
4432 | return 0; |
4433 | } | |
4434 | late_initcall(fault_around_debugfs); | |
1592eef0 | 4435 | #endif |
8c6e50b0 | 4436 | |
1fdb412b KS |
4437 | /* |
4438 | * do_fault_around() tries to map few pages around the fault address. The hope | |
4439 | * is that the pages will be needed soon and this will lower the number of | |
4440 | * faults to handle. | |
4441 | * | |
4442 | * It uses vm_ops->map_pages() to map the pages, which skips the page if it's | |
4443 | * not ready to be mapped: not up-to-date, locked, etc. | |
4444 | * | |
1fdb412b KS |
4445 | * This function doesn't cross the VMA boundaries, in order to call map_pages() |
4446 | * only once. | |
4447 | * | |
da391d64 WK |
4448 | * fault_around_bytes defines how many bytes we'll try to map. |
4449 | * do_fault_around() expects it to be set to a power of two less than or equal | |
4450 | * to PTRS_PER_PTE. | |
1fdb412b | 4451 | * |
da391d64 WK |
4452 | * The virtual address of the area that we map is naturally aligned to |
4453 | * fault_around_bytes rounded down to the machine page size | |
4454 | * (and therefore to page order). This way it's easier to guarantee | |
4455 | * that we don't cross page table boundaries. | |
1fdb412b | 4456 | */ |
2b740303 | 4457 | static vm_fault_t do_fault_around(struct vm_fault *vmf) |
8c6e50b0 | 4458 | { |
82b0f8c3 | 4459 | unsigned long address = vmf->address, nr_pages, mask; |
0721ec8b | 4460 | pgoff_t start_pgoff = vmf->pgoff; |
bae473a4 | 4461 | pgoff_t end_pgoff; |
2b740303 | 4462 | int off; |
8c6e50b0 | 4463 | |
4db0c3c2 | 4464 | nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; |
aecd6f44 KS |
4465 | mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; |
4466 | ||
f9ce0be7 KS |
4467 | address = max(address & mask, vmf->vma->vm_start); |
4468 | off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); | |
bae473a4 | 4469 | start_pgoff -= off; |
8c6e50b0 KS |
4470 | |
4471 | /* | |
da391d64 WK |
4472 | * end_pgoff is either the end of the page table, the end of |
4473 | * the vma or nr_pages from start_pgoff, depending what is nearest. | |
8c6e50b0 | 4474 | */ |
bae473a4 | 4475 | end_pgoff = start_pgoff - |
f9ce0be7 | 4476 | ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + |
8c6e50b0 | 4477 | PTRS_PER_PTE - 1; |
82b0f8c3 | 4478 | end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, |
bae473a4 | 4479 | start_pgoff + nr_pages - 1); |
8c6e50b0 | 4480 | |
82b0f8c3 | 4481 | if (pmd_none(*vmf->pmd)) { |
4cf58924 | 4482 | vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); |
82b0f8c3 | 4483 | if (!vmf->prealloc_pte) |
f9ce0be7 | 4484 | return VM_FAULT_OOM; |
8c6e50b0 KS |
4485 | } |
4486 | ||
f9ce0be7 | 4487 | return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); |
8c6e50b0 KS |
4488 | } |
4489 | ||
9c28a205 PX |
4490 | /* Return true if we should do read fault-around, false otherwise */ |
4491 | static inline bool should_fault_around(struct vm_fault *vmf) | |
4492 | { | |
4493 | /* No ->map_pages? No way to fault around... */ | |
4494 | if (!vmf->vma->vm_ops->map_pages) | |
4495 | return false; | |
4496 | ||
4497 | if (uffd_disable_fault_around(vmf->vma)) | |
4498 | return false; | |
4499 | ||
4500 | return fault_around_bytes >> PAGE_SHIFT > 1; | |
4501 | } | |
4502 | ||
2b740303 | 4503 | static vm_fault_t do_read_fault(struct vm_fault *vmf) |
e655fb29 | 4504 | { |
2b740303 | 4505 | vm_fault_t ret = 0; |
8c6e50b0 KS |
4506 | |
4507 | /* | |
4508 | * Let's call ->map_pages() first and use ->fault() as fallback | |
4509 | * if page by the offset is not ready to be mapped (cold cache or | |
4510 | * something). | |
4511 | */ | |
9c28a205 PX |
4512 | if (should_fault_around(vmf)) { |
4513 | ret = do_fault_around(vmf); | |
4514 | if (ret) | |
4515 | return ret; | |
8c6e50b0 | 4516 | } |
e655fb29 | 4517 | |
936ca80d | 4518 | ret = __do_fault(vmf); |
e655fb29 KS |
4519 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) |
4520 | return ret; | |
4521 | ||
9118c0cb | 4522 | ret |= finish_fault(vmf); |
936ca80d | 4523 | unlock_page(vmf->page); |
7267ec00 | 4524 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) |
936ca80d | 4525 | put_page(vmf->page); |
e655fb29 KS |
4526 | return ret; |
4527 | } | |
4528 | ||
2b740303 | 4529 | static vm_fault_t do_cow_fault(struct vm_fault *vmf) |
ec47c3b9 | 4530 | { |
82b0f8c3 | 4531 | struct vm_area_struct *vma = vmf->vma; |
2b740303 | 4532 | vm_fault_t ret; |
ec47c3b9 KS |
4533 | |
4534 | if (unlikely(anon_vma_prepare(vma))) | |
4535 | return VM_FAULT_OOM; | |
4536 | ||
936ca80d JK |
4537 | vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); |
4538 | if (!vmf->cow_page) | |
ec47c3b9 KS |
4539 | return VM_FAULT_OOM; |
4540 | ||
8f425e4e MWO |
4541 | if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm, |
4542 | GFP_KERNEL)) { | |
936ca80d | 4543 | put_page(vmf->cow_page); |
ec47c3b9 KS |
4544 | return VM_FAULT_OOM; |
4545 | } | |
9d82c694 | 4546 | cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL); |
ec47c3b9 | 4547 | |
936ca80d | 4548 | ret = __do_fault(vmf); |
ec47c3b9 KS |
4549 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) |
4550 | goto uncharge_out; | |
3917048d JK |
4551 | if (ret & VM_FAULT_DONE_COW) |
4552 | return ret; | |
ec47c3b9 | 4553 | |
b1aa812b | 4554 | copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); |
936ca80d | 4555 | __SetPageUptodate(vmf->cow_page); |
ec47c3b9 | 4556 | |
9118c0cb | 4557 | ret |= finish_fault(vmf); |
b1aa812b JK |
4558 | unlock_page(vmf->page); |
4559 | put_page(vmf->page); | |
7267ec00 KS |
4560 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) |
4561 | goto uncharge_out; | |
ec47c3b9 KS |
4562 | return ret; |
4563 | uncharge_out: | |
936ca80d | 4564 | put_page(vmf->cow_page); |
ec47c3b9 KS |
4565 | return ret; |
4566 | } | |
4567 | ||
2b740303 | 4568 | static vm_fault_t do_shared_fault(struct vm_fault *vmf) |
1da177e4 | 4569 | { |
82b0f8c3 | 4570 | struct vm_area_struct *vma = vmf->vma; |
2b740303 | 4571 | vm_fault_t ret, tmp; |
1d65f86d | 4572 | |
936ca80d | 4573 | ret = __do_fault(vmf); |
7eae74af | 4574 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) |
f0c6d4d2 | 4575 | return ret; |
1da177e4 LT |
4576 | |
4577 | /* | |
f0c6d4d2 KS |
4578 | * Check if the backing address space wants to know that the page is |
4579 | * about to become writable | |
1da177e4 | 4580 | */ |
fb09a464 | 4581 | if (vma->vm_ops->page_mkwrite) { |
936ca80d | 4582 | unlock_page(vmf->page); |
38b8cb7f | 4583 | tmp = do_page_mkwrite(vmf); |
fb09a464 KS |
4584 | if (unlikely(!tmp || |
4585 | (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { | |
936ca80d | 4586 | put_page(vmf->page); |
fb09a464 | 4587 | return tmp; |
4294621f | 4588 | } |
fb09a464 KS |
4589 | } |
4590 | ||
9118c0cb | 4591 | ret |= finish_fault(vmf); |
7267ec00 KS |
4592 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | |
4593 | VM_FAULT_RETRY))) { | |
936ca80d JK |
4594 | unlock_page(vmf->page); |
4595 | put_page(vmf->page); | |
f0c6d4d2 | 4596 | return ret; |
1da177e4 | 4597 | } |
b827e496 | 4598 | |
89b15332 | 4599 | ret |= fault_dirty_shared_page(vmf); |
1d65f86d | 4600 | return ret; |
54cb8821 | 4601 | } |
d00806b1 | 4602 | |
9a95f3cf | 4603 | /* |
c1e8d7c6 | 4604 | * We enter with non-exclusive mmap_lock (to exclude vma changes, |
9a95f3cf | 4605 | * but allow concurrent faults). |
c1e8d7c6 | 4606 | * The mmap_lock may have been released depending on flags and our |
9138e47e | 4607 | * return value. See filemap_fault() and __folio_lock_or_retry(). |
c1e8d7c6 | 4608 | * If mmap_lock is released, vma may become invalid (for example |
fc8efd2d | 4609 | * by other thread calling munmap()). |
9a95f3cf | 4610 | */ |
2b740303 | 4611 | static vm_fault_t do_fault(struct vm_fault *vmf) |
54cb8821 | 4612 | { |
82b0f8c3 | 4613 | struct vm_area_struct *vma = vmf->vma; |
fc8efd2d | 4614 | struct mm_struct *vm_mm = vma->vm_mm; |
2b740303 | 4615 | vm_fault_t ret; |
54cb8821 | 4616 | |
ff09d7ec AK |
4617 | /* |
4618 | * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND | |
4619 | */ | |
4620 | if (!vma->vm_ops->fault) { | |
4621 | /* | |
4622 | * If we find a migration pmd entry or a none pmd entry, which | |
4623 | * should never happen, return SIGBUS | |
4624 | */ | |
4625 | if (unlikely(!pmd_present(*vmf->pmd))) | |
4626 | ret = VM_FAULT_SIGBUS; | |
4627 | else { | |
4628 | vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, | |
4629 | vmf->pmd, | |
4630 | vmf->address, | |
4631 | &vmf->ptl); | |
4632 | /* | |
4633 | * Make sure this is not a temporary clearing of pte | |
4634 | * by holding ptl and checking again. A R/M/W update | |
4635 | * of pte involves: take ptl, clearing the pte so that | |
4636 | * we don't have concurrent modification by hardware | |
4637 | * followed by an update. | |
4638 | */ | |
4639 | if (unlikely(pte_none(*vmf->pte))) | |
4640 | ret = VM_FAULT_SIGBUS; | |
4641 | else | |
4642 | ret = VM_FAULT_NOPAGE; | |
4643 | ||
4644 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
4645 | } | |
4646 | } else if (!(vmf->flags & FAULT_FLAG_WRITE)) | |
b0b9b3df HD |
4647 | ret = do_read_fault(vmf); |
4648 | else if (!(vma->vm_flags & VM_SHARED)) | |
4649 | ret = do_cow_fault(vmf); | |
4650 | else | |
4651 | ret = do_shared_fault(vmf); | |
4652 | ||
4653 | /* preallocated pagetable is unused: free it */ | |
4654 | if (vmf->prealloc_pte) { | |
fc8efd2d | 4655 | pte_free(vm_mm, vmf->prealloc_pte); |
7f2b6ce8 | 4656 | vmf->prealloc_pte = NULL; |
b0b9b3df HD |
4657 | } |
4658 | return ret; | |
54cb8821 NP |
4659 | } |
4660 | ||
f4c0d836 YS |
4661 | int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, |
4662 | unsigned long addr, int page_nid, int *flags) | |
9532fec1 MG |
4663 | { |
4664 | get_page(page); | |
4665 | ||
4666 | count_vm_numa_event(NUMA_HINT_FAULTS); | |
04bb2f94 | 4667 | if (page_nid == numa_node_id()) { |
9532fec1 | 4668 | count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); |
04bb2f94 RR |
4669 | *flags |= TNF_FAULT_LOCAL; |
4670 | } | |
9532fec1 MG |
4671 | |
4672 | return mpol_misplaced(page, vma, addr); | |
4673 | } | |
4674 | ||
2b740303 | 4675 | static vm_fault_t do_numa_page(struct vm_fault *vmf) |
d10e63f2 | 4676 | { |
82b0f8c3 | 4677 | struct vm_area_struct *vma = vmf->vma; |
4daae3b4 | 4678 | struct page *page = NULL; |
98fa15f3 | 4679 | int page_nid = NUMA_NO_NODE; |
90572890 | 4680 | int last_cpupid; |
cbee9f88 | 4681 | int target_nid; |
04a86453 | 4682 | pte_t pte, old_pte; |
288bc549 | 4683 | bool was_writable = pte_savedwrite(vmf->orig_pte); |
6688cc05 | 4684 | int flags = 0; |
d10e63f2 MG |
4685 | |
4686 | /* | |
166f61b9 TH |
4687 | * The "pte" at this point cannot be used safely without |
4688 | * validation through pte_unmap_same(). It's of NUMA type but | |
4689 | * the pfn may be screwed if the read is non atomic. | |
166f61b9 | 4690 | */ |
82b0f8c3 JK |
4691 | vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); |
4692 | spin_lock(vmf->ptl); | |
cee216a6 | 4693 | if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { |
82b0f8c3 | 4694 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
4daae3b4 MG |
4695 | goto out; |
4696 | } | |
4697 | ||
b99a342d YH |
4698 | /* Get the normal PTE */ |
4699 | old_pte = ptep_get(vmf->pte); | |
04a86453 | 4700 | pte = pte_modify(old_pte, vma->vm_page_prot); |
d10e63f2 | 4701 | |
82b0f8c3 | 4702 | page = vm_normal_page(vma, vmf->address, pte); |
3218f871 | 4703 | if (!page || is_zone_device_page(page)) |
b99a342d | 4704 | goto out_map; |
d10e63f2 | 4705 | |
e81c4802 | 4706 | /* TODO: handle PTE-mapped THP */ |
b99a342d YH |
4707 | if (PageCompound(page)) |
4708 | goto out_map; | |
e81c4802 | 4709 | |
6688cc05 | 4710 | /* |
bea66fbd MG |
4711 | * Avoid grouping on RO pages in general. RO pages shouldn't hurt as |
4712 | * much anyway since they can be in shared cache state. This misses | |
4713 | * the case where a mapping is writable but the process never writes | |
4714 | * to it but pte_write gets cleared during protection updates and | |
4715 | * pte_dirty has unpredictable behaviour between PTE scan updates, | |
4716 | * background writeback, dirty balancing and application behaviour. | |
6688cc05 | 4717 | */ |
b99a342d | 4718 | if (!was_writable) |
6688cc05 PZ |
4719 | flags |= TNF_NO_GROUP; |
4720 | ||
dabe1d99 RR |
4721 | /* |
4722 | * Flag if the page is shared between multiple address spaces. This | |
4723 | * is later used when determining whether to group tasks together | |
4724 | */ | |
4725 | if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) | |
4726 | flags |= TNF_SHARED; | |
4727 | ||
90572890 | 4728 | last_cpupid = page_cpupid_last(page); |
8191acbd | 4729 | page_nid = page_to_nid(page); |
82b0f8c3 | 4730 | target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, |
bae473a4 | 4731 | &flags); |
98fa15f3 | 4732 | if (target_nid == NUMA_NO_NODE) { |
4daae3b4 | 4733 | put_page(page); |
b99a342d | 4734 | goto out_map; |
4daae3b4 | 4735 | } |
b99a342d | 4736 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
4daae3b4 MG |
4737 | |
4738 | /* Migrate to the requested node */ | |
bf90ac19 | 4739 | if (migrate_misplaced_page(page, vma, target_nid)) { |
8191acbd | 4740 | page_nid = target_nid; |
6688cc05 | 4741 | flags |= TNF_MIGRATED; |
b99a342d | 4742 | } else { |
074c2381 | 4743 | flags |= TNF_MIGRATE_FAIL; |
b99a342d YH |
4744 | vmf->pte = pte_offset_map(vmf->pmd, vmf->address); |
4745 | spin_lock(vmf->ptl); | |
4746 | if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { | |
4747 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
4748 | goto out; | |
4749 | } | |
4750 | goto out_map; | |
4751 | } | |
4daae3b4 MG |
4752 | |
4753 | out: | |
98fa15f3 | 4754 | if (page_nid != NUMA_NO_NODE) |
6688cc05 | 4755 | task_numa_fault(last_cpupid, page_nid, 1, flags); |
d10e63f2 | 4756 | return 0; |
b99a342d YH |
4757 | out_map: |
4758 | /* | |
4759 | * Make it present again, depending on how arch implements | |
4760 | * non-accessible ptes, some can allow access by kernel mode. | |
4761 | */ | |
4762 | old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); | |
4763 | pte = pte_modify(old_pte, vma->vm_page_prot); | |
4764 | pte = pte_mkyoung(pte); | |
4765 | if (was_writable) | |
4766 | pte = pte_mkwrite(pte); | |
4767 | ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); | |
4768 | update_mmu_cache(vma, vmf->address, vmf->pte); | |
4769 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
4770 | goto out; | |
d10e63f2 MG |
4771 | } |
4772 | ||
2b740303 | 4773 | static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) |
b96375f7 | 4774 | { |
f4200391 | 4775 | if (vma_is_anonymous(vmf->vma)) |
82b0f8c3 | 4776 | return do_huge_pmd_anonymous_page(vmf); |
a2d58167 | 4777 | if (vmf->vma->vm_ops->huge_fault) |
c791ace1 | 4778 | return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); |
b96375f7 MW |
4779 | return VM_FAULT_FALLBACK; |
4780 | } | |
4781 | ||
183f24aa | 4782 | /* `inline' is required to avoid gcc 4.1.2 build error */ |
5db4f15c | 4783 | static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) |
b96375f7 | 4784 | { |
c89357e2 DH |
4785 | const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; |
4786 | ||
529b930b | 4787 | if (vma_is_anonymous(vmf->vma)) { |
c89357e2 DH |
4788 | if (likely(!unshare) && |
4789 | userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd)) | |
529b930b | 4790 | return handle_userfault(vmf, VM_UFFD_WP); |
5db4f15c | 4791 | return do_huge_pmd_wp_page(vmf); |
529b930b | 4792 | } |
327e9fd4 THV |
4793 | if (vmf->vma->vm_ops->huge_fault) { |
4794 | vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); | |
4795 | ||
4796 | if (!(ret & VM_FAULT_FALLBACK)) | |
4797 | return ret; | |
4798 | } | |
af9e4d5f | 4799 | |
327e9fd4 | 4800 | /* COW or write-notify handled on pte level: split pmd. */ |
82b0f8c3 | 4801 | __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); |
af9e4d5f | 4802 | |
b96375f7 MW |
4803 | return VM_FAULT_FALLBACK; |
4804 | } | |
4805 | ||
2b740303 | 4806 | static vm_fault_t create_huge_pud(struct vm_fault *vmf) |
a00cc7d9 | 4807 | { |
14c99d65 GJ |
4808 | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ |
4809 | defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) | |
4810 | /* No support for anonymous transparent PUD pages yet */ | |
4811 | if (vma_is_anonymous(vmf->vma)) | |
4812 | return VM_FAULT_FALLBACK; | |
4813 | if (vmf->vma->vm_ops->huge_fault) | |
4814 | return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); | |
4815 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | |
4816 | return VM_FAULT_FALLBACK; | |
4817 | } | |
4818 | ||
4819 | static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) | |
4820 | { | |
327e9fd4 THV |
4821 | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ |
4822 | defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) | |
a00cc7d9 MW |
4823 | /* No support for anonymous transparent PUD pages yet */ |
4824 | if (vma_is_anonymous(vmf->vma)) | |
327e9fd4 THV |
4825 | goto split; |
4826 | if (vmf->vma->vm_ops->huge_fault) { | |
4827 | vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); | |
4828 | ||
4829 | if (!(ret & VM_FAULT_FALLBACK)) | |
4830 | return ret; | |
4831 | } | |
4832 | split: | |
4833 | /* COW or write-notify not handled on PUD level: split pud.*/ | |
4834 | __split_huge_pud(vmf->vma, vmf->pud, vmf->address); | |
14c99d65 | 4835 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ |
a00cc7d9 MW |
4836 | return VM_FAULT_FALLBACK; |
4837 | } | |
4838 | ||
1da177e4 LT |
4839 | /* |
4840 | * These routines also need to handle stuff like marking pages dirty | |
4841 | * and/or accessed for architectures that don't do it in hardware (most | |
4842 | * RISC architectures). The early dirtying is also good on the i386. | |
4843 | * | |
4844 | * There is also a hook called "update_mmu_cache()" that architectures | |
4845 | * with external mmu caches can use to update those (ie the Sparc or | |
4846 | * PowerPC hashed page tables that act as extended TLBs). | |
4847 | * | |
c1e8d7c6 | 4848 | * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow |
7267ec00 | 4849 | * concurrent faults). |
9a95f3cf | 4850 | * |
c1e8d7c6 | 4851 | * The mmap_lock may have been released depending on flags and our return value. |
9138e47e | 4852 | * See filemap_fault() and __folio_lock_or_retry(). |
1da177e4 | 4853 | */ |
2b740303 | 4854 | static vm_fault_t handle_pte_fault(struct vm_fault *vmf) |
1da177e4 LT |
4855 | { |
4856 | pte_t entry; | |
4857 | ||
82b0f8c3 | 4858 | if (unlikely(pmd_none(*vmf->pmd))) { |
7267ec00 KS |
4859 | /* |
4860 | * Leave __pte_alloc() until later: because vm_ops->fault may | |
4861 | * want to allocate huge page, and if we expose page table | |
4862 | * for an instant, it will be difficult to retract from | |
4863 | * concurrent faults and from rmap lookups. | |
4864 | */ | |
82b0f8c3 | 4865 | vmf->pte = NULL; |
f46f2ade | 4866 | vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; |
7267ec00 | 4867 | } else { |
f9ce0be7 KS |
4868 | /* |
4869 | * If a huge pmd materialized under us just retry later. Use | |
4870 | * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead | |
4871 | * of pmd_trans_huge() to ensure the pmd didn't become | |
4872 | * pmd_trans_huge under us and then back to pmd_none, as a | |
4873 | * result of MADV_DONTNEED running immediately after a huge pmd | |
4874 | * fault in a different thread of this mm, in turn leading to a | |
4875 | * misleading pmd_trans_huge() retval. All we have to ensure is | |
4876 | * that it is a regular pmd that we can walk with | |
4877 | * pte_offset_map() and we can do that through an atomic read | |
4878 | * in C, which is what pmd_trans_unstable() provides. | |
4879 | */ | |
d0f0931d | 4880 | if (pmd_devmap_trans_unstable(vmf->pmd)) |
7267ec00 KS |
4881 | return 0; |
4882 | /* | |
4883 | * A regular pmd is established and it can't morph into a huge | |
4884 | * pmd from under us anymore at this point because we hold the | |
c1e8d7c6 | 4885 | * mmap_lock read mode and khugepaged takes it in write mode. |
7267ec00 KS |
4886 | * So now it's safe to run pte_offset_map(). |
4887 | */ | |
82b0f8c3 | 4888 | vmf->pte = pte_offset_map(vmf->pmd, vmf->address); |
2994302b | 4889 | vmf->orig_pte = *vmf->pte; |
f46f2ade | 4890 | vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; |
7267ec00 KS |
4891 | |
4892 | /* | |
4893 | * some architectures can have larger ptes than wordsize, | |
4894 | * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and | |
b03a0fe0 PM |
4895 | * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic |
4896 | * accesses. The code below just needs a consistent view | |
4897 | * for the ifs and we later double check anyway with the | |
7267ec00 KS |
4898 | * ptl lock held. So here a barrier will do. |
4899 | */ | |
4900 | barrier(); | |
2994302b | 4901 | if (pte_none(vmf->orig_pte)) { |
82b0f8c3 JK |
4902 | pte_unmap(vmf->pte); |
4903 | vmf->pte = NULL; | |
65500d23 | 4904 | } |
1da177e4 LT |
4905 | } |
4906 | ||
82b0f8c3 JK |
4907 | if (!vmf->pte) { |
4908 | if (vma_is_anonymous(vmf->vma)) | |
4909 | return do_anonymous_page(vmf); | |
7267ec00 | 4910 | else |
82b0f8c3 | 4911 | return do_fault(vmf); |
7267ec00 KS |
4912 | } |
4913 | ||
2994302b JK |
4914 | if (!pte_present(vmf->orig_pte)) |
4915 | return do_swap_page(vmf); | |
7267ec00 | 4916 | |
2994302b JK |
4917 | if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) |
4918 | return do_numa_page(vmf); | |
d10e63f2 | 4919 | |
82b0f8c3 JK |
4920 | vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); |
4921 | spin_lock(vmf->ptl); | |
2994302b | 4922 | entry = vmf->orig_pte; |
7df67697 BM |
4923 | if (unlikely(!pte_same(*vmf->pte, entry))) { |
4924 | update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); | |
8f4e2101 | 4925 | goto unlock; |
7df67697 | 4926 | } |
c89357e2 | 4927 | if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { |
f6f37321 | 4928 | if (!pte_write(entry)) |
2994302b | 4929 | return do_wp_page(vmf); |
c89357e2 DH |
4930 | else if (likely(vmf->flags & FAULT_FLAG_WRITE)) |
4931 | entry = pte_mkdirty(entry); | |
1da177e4 LT |
4932 | } |
4933 | entry = pte_mkyoung(entry); | |
82b0f8c3 JK |
4934 | if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, |
4935 | vmf->flags & FAULT_FLAG_WRITE)) { | |
4936 | update_mmu_cache(vmf->vma, vmf->address, vmf->pte); | |
1a44e149 | 4937 | } else { |
b7333b58 YS |
4938 | /* Skip spurious TLB flush for retried page fault */ |
4939 | if (vmf->flags & FAULT_FLAG_TRIED) | |
4940 | goto unlock; | |
1a44e149 AA |
4941 | /* |
4942 | * This is needed only for protection faults but the arch code | |
4943 | * is not yet telling us if this is a protection fault or not. | |
4944 | * This still avoids useless tlb flushes for .text page faults | |
4945 | * with threads. | |
4946 | */ | |
82b0f8c3 JK |
4947 | if (vmf->flags & FAULT_FLAG_WRITE) |
4948 | flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); | |
1a44e149 | 4949 | } |
8f4e2101 | 4950 | unlock: |
82b0f8c3 | 4951 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
83c54070 | 4952 | return 0; |
1da177e4 LT |
4953 | } |
4954 | ||
4955 | /* | |
4956 | * By the time we get here, we already hold the mm semaphore | |
9a95f3cf | 4957 | * |
c1e8d7c6 | 4958 | * The mmap_lock may have been released depending on flags and our |
9138e47e | 4959 | * return value. See filemap_fault() and __folio_lock_or_retry(). |
1da177e4 | 4960 | */ |
2b740303 SJ |
4961 | static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, |
4962 | unsigned long address, unsigned int flags) | |
1da177e4 | 4963 | { |
82b0f8c3 | 4964 | struct vm_fault vmf = { |
bae473a4 | 4965 | .vma = vma, |
1a29d85e | 4966 | .address = address & PAGE_MASK, |
824ddc60 | 4967 | .real_address = address, |
bae473a4 | 4968 | .flags = flags, |
0721ec8b | 4969 | .pgoff = linear_page_index(vma, address), |
667240e0 | 4970 | .gfp_mask = __get_fault_gfp_mask(vma), |
bae473a4 | 4971 | }; |
dcddffd4 | 4972 | struct mm_struct *mm = vma->vm_mm; |
7da4e2cb | 4973 | unsigned long vm_flags = vma->vm_flags; |
1da177e4 | 4974 | pgd_t *pgd; |
c2febafc | 4975 | p4d_t *p4d; |
2b740303 | 4976 | vm_fault_t ret; |
1da177e4 | 4977 | |
1da177e4 | 4978 | pgd = pgd_offset(mm, address); |
c2febafc KS |
4979 | p4d = p4d_alloc(mm, pgd, address); |
4980 | if (!p4d) | |
4981 | return VM_FAULT_OOM; | |
a00cc7d9 | 4982 | |
c2febafc | 4983 | vmf.pud = pud_alloc(mm, p4d, address); |
a00cc7d9 | 4984 | if (!vmf.pud) |
c74df32c | 4985 | return VM_FAULT_OOM; |
625110b5 | 4986 | retry_pud: |
7da4e2cb YS |
4987 | if (pud_none(*vmf.pud) && |
4988 | hugepage_vma_check(vma, vm_flags, false, true)) { | |
a00cc7d9 MW |
4989 | ret = create_huge_pud(&vmf); |
4990 | if (!(ret & VM_FAULT_FALLBACK)) | |
4991 | return ret; | |
4992 | } else { | |
4993 | pud_t orig_pud = *vmf.pud; | |
4994 | ||
4995 | barrier(); | |
4996 | if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { | |
a00cc7d9 | 4997 | |
c89357e2 DH |
4998 | /* |
4999 | * TODO once we support anonymous PUDs: NUMA case and | |
5000 | * FAULT_FLAG_UNSHARE handling. | |
5001 | */ | |
5002 | if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { | |
a00cc7d9 MW |
5003 | ret = wp_huge_pud(&vmf, orig_pud); |
5004 | if (!(ret & VM_FAULT_FALLBACK)) | |
5005 | return ret; | |
5006 | } else { | |
5007 | huge_pud_set_accessed(&vmf, orig_pud); | |
5008 | return 0; | |
5009 | } | |
5010 | } | |
5011 | } | |
5012 | ||
5013 | vmf.pmd = pmd_alloc(mm, vmf.pud, address); | |
82b0f8c3 | 5014 | if (!vmf.pmd) |
c74df32c | 5015 | return VM_FAULT_OOM; |
625110b5 TH |
5016 | |
5017 | /* Huge pud page fault raced with pmd_alloc? */ | |
5018 | if (pud_trans_unstable(vmf.pud)) | |
5019 | goto retry_pud; | |
5020 | ||
7da4e2cb YS |
5021 | if (pmd_none(*vmf.pmd) && |
5022 | hugepage_vma_check(vma, vm_flags, false, true)) { | |
a2d58167 | 5023 | ret = create_huge_pmd(&vmf); |
c0292554 KS |
5024 | if (!(ret & VM_FAULT_FALLBACK)) |
5025 | return ret; | |
71e3aac0 | 5026 | } else { |
5db4f15c | 5027 | vmf.orig_pmd = *vmf.pmd; |
1f1d06c3 | 5028 | |
71e3aac0 | 5029 | barrier(); |
5db4f15c | 5030 | if (unlikely(is_swap_pmd(vmf.orig_pmd))) { |
84c3fc4e | 5031 | VM_BUG_ON(thp_migration_supported() && |
5db4f15c YS |
5032 | !is_pmd_migration_entry(vmf.orig_pmd)); |
5033 | if (is_pmd_migration_entry(vmf.orig_pmd)) | |
84c3fc4e ZY |
5034 | pmd_migration_entry_wait(mm, vmf.pmd); |
5035 | return 0; | |
5036 | } | |
5db4f15c YS |
5037 | if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { |
5038 | if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) | |
5039 | return do_huge_pmd_numa_page(&vmf); | |
d10e63f2 | 5040 | |
c89357e2 DH |
5041 | if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && |
5042 | !pmd_write(vmf.orig_pmd)) { | |
5db4f15c | 5043 | ret = wp_huge_pmd(&vmf); |
9845cbbd KS |
5044 | if (!(ret & VM_FAULT_FALLBACK)) |
5045 | return ret; | |
a1dd450b | 5046 | } else { |
5db4f15c | 5047 | huge_pmd_set_accessed(&vmf); |
9845cbbd | 5048 | return 0; |
1f1d06c3 | 5049 | } |
71e3aac0 AA |
5050 | } |
5051 | } | |
5052 | ||
82b0f8c3 | 5053 | return handle_pte_fault(&vmf); |
1da177e4 LT |
5054 | } |
5055 | ||
bce617ed | 5056 | /** |
f0953a1b | 5057 | * mm_account_fault - Do page fault accounting |
bce617ed PX |
5058 | * |
5059 | * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting | |
5060 | * of perf event counters, but we'll still do the per-task accounting to | |
5061 | * the task who triggered this page fault. | |
5062 | * @address: the faulted address. | |
5063 | * @flags: the fault flags. | |
5064 | * @ret: the fault retcode. | |
5065 | * | |
f0953a1b | 5066 | * This will take care of most of the page fault accounting. Meanwhile, it |
bce617ed | 5067 | * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter |
f0953a1b | 5068 | * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should |
bce617ed PX |
5069 | * still be in per-arch page fault handlers at the entry of page fault. |
5070 | */ | |
5071 | static inline void mm_account_fault(struct pt_regs *regs, | |
5072 | unsigned long address, unsigned int flags, | |
5073 | vm_fault_t ret) | |
5074 | { | |
5075 | bool major; | |
5076 | ||
5077 | /* | |
5078 | * We don't do accounting for some specific faults: | |
5079 | * | |
5080 | * - Unsuccessful faults (e.g. when the address wasn't valid). That | |
5081 | * includes arch_vma_access_permitted() failing before reaching here. | |
5082 | * So this is not a "this many hardware page faults" counter. We | |
5083 | * should use the hw profiling for that. | |
5084 | * | |
5085 | * - Incomplete faults (VM_FAULT_RETRY). They will only be counted | |
5086 | * once they're completed. | |
5087 | */ | |
5088 | if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY)) | |
5089 | return; | |
5090 | ||
5091 | /* | |
5092 | * We define the fault as a major fault when the final successful fault | |
5093 | * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't | |
5094 | * handle it immediately previously). | |
5095 | */ | |
5096 | major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); | |
5097 | ||
a2beb5f1 PX |
5098 | if (major) |
5099 | current->maj_flt++; | |
5100 | else | |
5101 | current->min_flt++; | |
5102 | ||
bce617ed | 5103 | /* |
a2beb5f1 PX |
5104 | * If the fault is done for GUP, regs will be NULL. We only do the |
5105 | * accounting for the per thread fault counters who triggered the | |
5106 | * fault, and we skip the perf event updates. | |
bce617ed PX |
5107 | */ |
5108 | if (!regs) | |
5109 | return; | |
5110 | ||
a2beb5f1 | 5111 | if (major) |
bce617ed | 5112 | perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); |
a2beb5f1 | 5113 | else |
bce617ed | 5114 | perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); |
bce617ed PX |
5115 | } |
5116 | ||
9a95f3cf PC |
5117 | /* |
5118 | * By the time we get here, we already hold the mm semaphore | |
5119 | * | |
c1e8d7c6 | 5120 | * The mmap_lock may have been released depending on flags and our |
9138e47e | 5121 | * return value. See filemap_fault() and __folio_lock_or_retry(). |
9a95f3cf | 5122 | */ |
2b740303 | 5123 | vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, |
bce617ed | 5124 | unsigned int flags, struct pt_regs *regs) |
519e5247 | 5125 | { |
2b740303 | 5126 | vm_fault_t ret; |
519e5247 JW |
5127 | |
5128 | __set_current_state(TASK_RUNNING); | |
5129 | ||
5130 | count_vm_event(PGFAULT); | |
2262185c | 5131 | count_memcg_event_mm(vma->vm_mm, PGFAULT); |
519e5247 JW |
5132 | |
5133 | /* do counter updates before entering really critical section. */ | |
5134 | check_sync_rss_stat(current); | |
5135 | ||
de0c799b LD |
5136 | if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, |
5137 | flags & FAULT_FLAG_INSTRUCTION, | |
5138 | flags & FAULT_FLAG_REMOTE)) | |
5139 | return VM_FAULT_SIGSEGV; | |
5140 | ||
519e5247 JW |
5141 | /* |
5142 | * Enable the memcg OOM handling for faults triggered in user | |
5143 | * space. Kernel faults are handled more gracefully. | |
5144 | */ | |
5145 | if (flags & FAULT_FLAG_USER) | |
29ef680a | 5146 | mem_cgroup_enter_user_fault(); |
519e5247 | 5147 | |
bae473a4 KS |
5148 | if (unlikely(is_vm_hugetlb_page(vma))) |
5149 | ret = hugetlb_fault(vma->vm_mm, vma, address, flags); | |
5150 | else | |
5151 | ret = __handle_mm_fault(vma, address, flags); | |
519e5247 | 5152 | |
49426420 | 5153 | if (flags & FAULT_FLAG_USER) { |
29ef680a | 5154 | mem_cgroup_exit_user_fault(); |
166f61b9 TH |
5155 | /* |
5156 | * The task may have entered a memcg OOM situation but | |
5157 | * if the allocation error was handled gracefully (no | |
5158 | * VM_FAULT_OOM), there is no need to kill anything. | |
5159 | * Just clean up the OOM state peacefully. | |
5160 | */ | |
5161 | if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) | |
5162 | mem_cgroup_oom_synchronize(false); | |
49426420 | 5163 | } |
3812c8c8 | 5164 | |
bce617ed PX |
5165 | mm_account_fault(regs, address, flags, ret); |
5166 | ||
519e5247 JW |
5167 | return ret; |
5168 | } | |
e1d6d01a | 5169 | EXPORT_SYMBOL_GPL(handle_mm_fault); |
519e5247 | 5170 | |
90eceff1 KS |
5171 | #ifndef __PAGETABLE_P4D_FOLDED |
5172 | /* | |
5173 | * Allocate p4d page table. | |
5174 | * We've already handled the fast-path in-line. | |
5175 | */ | |
5176 | int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) | |
5177 | { | |
5178 | p4d_t *new = p4d_alloc_one(mm, address); | |
5179 | if (!new) | |
5180 | return -ENOMEM; | |
5181 | ||
90eceff1 | 5182 | spin_lock(&mm->page_table_lock); |
ed33b5a6 | 5183 | if (pgd_present(*pgd)) { /* Another has populated it */ |
90eceff1 | 5184 | p4d_free(mm, new); |
ed33b5a6 QZ |
5185 | } else { |
5186 | smp_wmb(); /* See comment in pmd_install() */ | |
90eceff1 | 5187 | pgd_populate(mm, pgd, new); |
ed33b5a6 | 5188 | } |
90eceff1 KS |
5189 | spin_unlock(&mm->page_table_lock); |
5190 | return 0; | |
5191 | } | |
5192 | #endif /* __PAGETABLE_P4D_FOLDED */ | |
5193 | ||
1da177e4 LT |
5194 | #ifndef __PAGETABLE_PUD_FOLDED |
5195 | /* | |
5196 | * Allocate page upper directory. | |
872fec16 | 5197 | * We've already handled the fast-path in-line. |
1da177e4 | 5198 | */ |
c2febafc | 5199 | int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) |
1da177e4 | 5200 | { |
c74df32c HD |
5201 | pud_t *new = pud_alloc_one(mm, address); |
5202 | if (!new) | |
1bb3630e | 5203 | return -ENOMEM; |
1da177e4 | 5204 | |
872fec16 | 5205 | spin_lock(&mm->page_table_lock); |
b4e98d9a KS |
5206 | if (!p4d_present(*p4d)) { |
5207 | mm_inc_nr_puds(mm); | |
ed33b5a6 | 5208 | smp_wmb(); /* See comment in pmd_install() */ |
c2febafc | 5209 | p4d_populate(mm, p4d, new); |
b4e98d9a | 5210 | } else /* Another has populated it */ |
5e541973 | 5211 | pud_free(mm, new); |
c74df32c | 5212 | spin_unlock(&mm->page_table_lock); |
1bb3630e | 5213 | return 0; |
1da177e4 LT |
5214 | } |
5215 | #endif /* __PAGETABLE_PUD_FOLDED */ | |
5216 | ||
5217 | #ifndef __PAGETABLE_PMD_FOLDED | |
5218 | /* | |
5219 | * Allocate page middle directory. | |
872fec16 | 5220 | * We've already handled the fast-path in-line. |
1da177e4 | 5221 | */ |
1bb3630e | 5222 | int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) |
1da177e4 | 5223 | { |
a00cc7d9 | 5224 | spinlock_t *ptl; |
c74df32c HD |
5225 | pmd_t *new = pmd_alloc_one(mm, address); |
5226 | if (!new) | |
1bb3630e | 5227 | return -ENOMEM; |
1da177e4 | 5228 | |
a00cc7d9 | 5229 | ptl = pud_lock(mm, pud); |
dc6c9a35 KS |
5230 | if (!pud_present(*pud)) { |
5231 | mm_inc_nr_pmds(mm); | |
ed33b5a6 | 5232 | smp_wmb(); /* See comment in pmd_install() */ |
1bb3630e | 5233 | pud_populate(mm, pud, new); |
ed33b5a6 | 5234 | } else { /* Another has populated it */ |
5e541973 | 5235 | pmd_free(mm, new); |
ed33b5a6 | 5236 | } |
a00cc7d9 | 5237 | spin_unlock(ptl); |
1bb3630e | 5238 | return 0; |
e0f39591 | 5239 | } |
1da177e4 LT |
5240 | #endif /* __PAGETABLE_PMD_FOLDED */ |
5241 | ||
0e5e64c0 MS |
5242 | /** |
5243 | * follow_pte - look up PTE at a user virtual address | |
5244 | * @mm: the mm_struct of the target address space | |
5245 | * @address: user virtual address | |
5246 | * @ptepp: location to store found PTE | |
5247 | * @ptlp: location to store the lock for the PTE | |
5248 | * | |
5249 | * On a successful return, the pointer to the PTE is stored in @ptepp; | |
5250 | * the corresponding lock is taken and its location is stored in @ptlp. | |
5251 | * The contents of the PTE are only stable until @ptlp is released; | |
5252 | * any further use, if any, must be protected against invalidation | |
5253 | * with MMU notifiers. | |
5254 | * | |
5255 | * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore | |
5256 | * should be taken for read. | |
5257 | * | |
5258 | * KVM uses this function. While it is arguably less bad than ``follow_pfn``, | |
5259 | * it is not a good general-purpose API. | |
5260 | * | |
5261 | * Return: zero on success, -ve otherwise. | |
5262 | */ | |
5263 | int follow_pte(struct mm_struct *mm, unsigned long address, | |
5264 | pte_t **ptepp, spinlock_t **ptlp) | |
f8ad0f49 JW |
5265 | { |
5266 | pgd_t *pgd; | |
c2febafc | 5267 | p4d_t *p4d; |
f8ad0f49 JW |
5268 | pud_t *pud; |
5269 | pmd_t *pmd; | |
5270 | pte_t *ptep; | |
5271 | ||
5272 | pgd = pgd_offset(mm, address); | |
5273 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | |
5274 | goto out; | |
5275 | ||
c2febafc KS |
5276 | p4d = p4d_offset(pgd, address); |
5277 | if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) | |
5278 | goto out; | |
5279 | ||
5280 | pud = pud_offset(p4d, address); | |
f8ad0f49 JW |
5281 | if (pud_none(*pud) || unlikely(pud_bad(*pud))) |
5282 | goto out; | |
5283 | ||
5284 | pmd = pmd_offset(pud, address); | |
f66055ab | 5285 | VM_BUG_ON(pmd_trans_huge(*pmd)); |
f8ad0f49 | 5286 | |
09796395 | 5287 | if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) |
f8ad0f49 JW |
5288 | goto out; |
5289 | ||
5290 | ptep = pte_offset_map_lock(mm, pmd, address, ptlp); | |
f8ad0f49 JW |
5291 | if (!pte_present(*ptep)) |
5292 | goto unlock; | |
5293 | *ptepp = ptep; | |
5294 | return 0; | |
5295 | unlock: | |
5296 | pte_unmap_unlock(ptep, *ptlp); | |
5297 | out: | |
5298 | return -EINVAL; | |
5299 | } | |
9fd6dad1 PB |
5300 | EXPORT_SYMBOL_GPL(follow_pte); |
5301 | ||
3b6748e2 JW |
5302 | /** |
5303 | * follow_pfn - look up PFN at a user virtual address | |
5304 | * @vma: memory mapping | |
5305 | * @address: user virtual address | |
5306 | * @pfn: location to store found PFN | |
5307 | * | |
5308 | * Only IO mappings and raw PFN mappings are allowed. | |
5309 | * | |
9fd6dad1 PB |
5310 | * This function does not allow the caller to read the permissions |
5311 | * of the PTE. Do not use it. | |
5312 | * | |
a862f68a | 5313 | * Return: zero and the pfn at @pfn on success, -ve otherwise. |
3b6748e2 JW |
5314 | */ |
5315 | int follow_pfn(struct vm_area_struct *vma, unsigned long address, | |
5316 | unsigned long *pfn) | |
5317 | { | |
5318 | int ret = -EINVAL; | |
5319 | spinlock_t *ptl; | |
5320 | pte_t *ptep; | |
5321 | ||
5322 | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) | |
5323 | return ret; | |
5324 | ||
9fd6dad1 | 5325 | ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); |
3b6748e2 JW |
5326 | if (ret) |
5327 | return ret; | |
5328 | *pfn = pte_pfn(*ptep); | |
5329 | pte_unmap_unlock(ptep, ptl); | |
5330 | return 0; | |
5331 | } | |
5332 | EXPORT_SYMBOL(follow_pfn); | |
5333 | ||
28b2ee20 | 5334 | #ifdef CONFIG_HAVE_IOREMAP_PROT |
d87fe660 | 5335 | int follow_phys(struct vm_area_struct *vma, |
5336 | unsigned long address, unsigned int flags, | |
5337 | unsigned long *prot, resource_size_t *phys) | |
28b2ee20 | 5338 | { |
03668a4d | 5339 | int ret = -EINVAL; |
28b2ee20 RR |
5340 | pte_t *ptep, pte; |
5341 | spinlock_t *ptl; | |
28b2ee20 | 5342 | |
d87fe660 | 5343 | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) |
5344 | goto out; | |
28b2ee20 | 5345 | |
9fd6dad1 | 5346 | if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) |
d87fe660 | 5347 | goto out; |
28b2ee20 | 5348 | pte = *ptep; |
03668a4d | 5349 | |
f6f37321 | 5350 | if ((flags & FOLL_WRITE) && !pte_write(pte)) |
28b2ee20 | 5351 | goto unlock; |
28b2ee20 RR |
5352 | |
5353 | *prot = pgprot_val(pte_pgprot(pte)); | |
03668a4d | 5354 | *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; |
28b2ee20 | 5355 | |
03668a4d | 5356 | ret = 0; |
28b2ee20 RR |
5357 | unlock: |
5358 | pte_unmap_unlock(ptep, ptl); | |
5359 | out: | |
d87fe660 | 5360 | return ret; |
28b2ee20 RR |
5361 | } |
5362 | ||
96667f8a SV |
5363 | /** |
5364 | * generic_access_phys - generic implementation for iomem mmap access | |
5365 | * @vma: the vma to access | |
f0953a1b | 5366 | * @addr: userspace address, not relative offset within @vma |
96667f8a SV |
5367 | * @buf: buffer to read/write |
5368 | * @len: length of transfer | |
5369 | * @write: set to FOLL_WRITE when writing, otherwise reading | |
5370 | * | |
5371 | * This is a generic implementation for &vm_operations_struct.access for an | |
5372 | * iomem mapping. This callback is used by access_process_vm() when the @vma is | |
5373 | * not page based. | |
5374 | */ | |
28b2ee20 RR |
5375 | int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, |
5376 | void *buf, int len, int write) | |
5377 | { | |
5378 | resource_size_t phys_addr; | |
5379 | unsigned long prot = 0; | |
2bc7273b | 5380 | void __iomem *maddr; |
96667f8a SV |
5381 | pte_t *ptep, pte; |
5382 | spinlock_t *ptl; | |
5383 | int offset = offset_in_page(addr); | |
5384 | int ret = -EINVAL; | |
5385 | ||
5386 | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) | |
5387 | return -EINVAL; | |
5388 | ||
5389 | retry: | |
e913a8cd | 5390 | if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) |
96667f8a SV |
5391 | return -EINVAL; |
5392 | pte = *ptep; | |
5393 | pte_unmap_unlock(ptep, ptl); | |
28b2ee20 | 5394 | |
96667f8a SV |
5395 | prot = pgprot_val(pte_pgprot(pte)); |
5396 | phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; | |
5397 | ||
5398 | if ((write & FOLL_WRITE) && !pte_write(pte)) | |
28b2ee20 RR |
5399 | return -EINVAL; |
5400 | ||
9cb12d7b | 5401 | maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); |
24eee1e4 | 5402 | if (!maddr) |
5403 | return -ENOMEM; | |
5404 | ||
e913a8cd | 5405 | if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) |
96667f8a SV |
5406 | goto out_unmap; |
5407 | ||
5408 | if (!pte_same(pte, *ptep)) { | |
5409 | pte_unmap_unlock(ptep, ptl); | |
5410 | iounmap(maddr); | |
5411 | ||
5412 | goto retry; | |
5413 | } | |
5414 | ||
28b2ee20 RR |
5415 | if (write) |
5416 | memcpy_toio(maddr + offset, buf, len); | |
5417 | else | |
5418 | memcpy_fromio(buf, maddr + offset, len); | |
96667f8a SV |
5419 | ret = len; |
5420 | pte_unmap_unlock(ptep, ptl); | |
5421 | out_unmap: | |
28b2ee20 RR |
5422 | iounmap(maddr); |
5423 | ||
96667f8a | 5424 | return ret; |
28b2ee20 | 5425 | } |
5a73633e | 5426 | EXPORT_SYMBOL_GPL(generic_access_phys); |
28b2ee20 RR |
5427 | #endif |
5428 | ||
0ec76a11 | 5429 | /* |
d3f5ffca | 5430 | * Access another process' address space as given in mm. |
0ec76a11 | 5431 | */ |
d3f5ffca JH |
5432 | int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, |
5433 | int len, unsigned int gup_flags) | |
0ec76a11 | 5434 | { |
0ec76a11 | 5435 | struct vm_area_struct *vma; |
0ec76a11 | 5436 | void *old_buf = buf; |
442486ec | 5437 | int write = gup_flags & FOLL_WRITE; |
0ec76a11 | 5438 | |
d8ed45c5 | 5439 | if (mmap_read_lock_killable(mm)) |
1e426fe2 KK |
5440 | return 0; |
5441 | ||
183ff22b | 5442 | /* ignore errors, just check how much was successfully transferred */ |
0ec76a11 DH |
5443 | while (len) { |
5444 | int bytes, ret, offset; | |
5445 | void *maddr; | |
28b2ee20 | 5446 | struct page *page = NULL; |
0ec76a11 | 5447 | |
64019a2e | 5448 | ret = get_user_pages_remote(mm, addr, 1, |
5b56d49f | 5449 | gup_flags, &page, &vma, NULL); |
28b2ee20 | 5450 | if (ret <= 0) { |
dbffcd03 RR |
5451 | #ifndef CONFIG_HAVE_IOREMAP_PROT |
5452 | break; | |
5453 | #else | |
28b2ee20 RR |
5454 | /* |
5455 | * Check if this is a VM_IO | VM_PFNMAP VMA, which | |
5456 | * we can access using slightly different code. | |
5457 | */ | |
3e418f98 LH |
5458 | vma = vma_lookup(mm, addr); |
5459 | if (!vma) | |
28b2ee20 RR |
5460 | break; |
5461 | if (vma->vm_ops && vma->vm_ops->access) | |
5462 | ret = vma->vm_ops->access(vma, addr, buf, | |
5463 | len, write); | |
5464 | if (ret <= 0) | |
28b2ee20 RR |
5465 | break; |
5466 | bytes = ret; | |
dbffcd03 | 5467 | #endif |
0ec76a11 | 5468 | } else { |
28b2ee20 RR |
5469 | bytes = len; |
5470 | offset = addr & (PAGE_SIZE-1); | |
5471 | if (bytes > PAGE_SIZE-offset) | |
5472 | bytes = PAGE_SIZE-offset; | |
5473 | ||
5474 | maddr = kmap(page); | |
5475 | if (write) { | |
5476 | copy_to_user_page(vma, page, addr, | |
5477 | maddr + offset, buf, bytes); | |
5478 | set_page_dirty_lock(page); | |
5479 | } else { | |
5480 | copy_from_user_page(vma, page, addr, | |
5481 | buf, maddr + offset, bytes); | |
5482 | } | |
5483 | kunmap(page); | |
09cbfeaf | 5484 | put_page(page); |
0ec76a11 | 5485 | } |
0ec76a11 DH |
5486 | len -= bytes; |
5487 | buf += bytes; | |
5488 | addr += bytes; | |
5489 | } | |
d8ed45c5 | 5490 | mmap_read_unlock(mm); |
0ec76a11 DH |
5491 | |
5492 | return buf - old_buf; | |
5493 | } | |
03252919 | 5494 | |
5ddd36b9 | 5495 | /** |
ae91dbfc | 5496 | * access_remote_vm - access another process' address space |
5ddd36b9 SW |
5497 | * @mm: the mm_struct of the target address space |
5498 | * @addr: start address to access | |
5499 | * @buf: source or destination buffer | |
5500 | * @len: number of bytes to transfer | |
6347e8d5 | 5501 | * @gup_flags: flags modifying lookup behaviour |
5ddd36b9 SW |
5502 | * |
5503 | * The caller must hold a reference on @mm. | |
a862f68a MR |
5504 | * |
5505 | * Return: number of bytes copied from source to destination. | |
5ddd36b9 SW |
5506 | */ |
5507 | int access_remote_vm(struct mm_struct *mm, unsigned long addr, | |
6347e8d5 | 5508 | void *buf, int len, unsigned int gup_flags) |
5ddd36b9 | 5509 | { |
d3f5ffca | 5510 | return __access_remote_vm(mm, addr, buf, len, gup_flags); |
5ddd36b9 SW |
5511 | } |
5512 | ||
206cb636 SW |
5513 | /* |
5514 | * Access another process' address space. | |
5515 | * Source/target buffer must be kernel space, | |
5516 | * Do not walk the page table directly, use get_user_pages | |
5517 | */ | |
5518 | int access_process_vm(struct task_struct *tsk, unsigned long addr, | |
f307ab6d | 5519 | void *buf, int len, unsigned int gup_flags) |
206cb636 SW |
5520 | { |
5521 | struct mm_struct *mm; | |
5522 | int ret; | |
5523 | ||
5524 | mm = get_task_mm(tsk); | |
5525 | if (!mm) | |
5526 | return 0; | |
5527 | ||
d3f5ffca | 5528 | ret = __access_remote_vm(mm, addr, buf, len, gup_flags); |
442486ec | 5529 | |
206cb636 SW |
5530 | mmput(mm); |
5531 | ||
5532 | return ret; | |
5533 | } | |
fcd35857 | 5534 | EXPORT_SYMBOL_GPL(access_process_vm); |
206cb636 | 5535 | |
03252919 AK |
5536 | /* |
5537 | * Print the name of a VMA. | |
5538 | */ | |
5539 | void print_vma_addr(char *prefix, unsigned long ip) | |
5540 | { | |
5541 | struct mm_struct *mm = current->mm; | |
5542 | struct vm_area_struct *vma; | |
5543 | ||
e8bff74a | 5544 | /* |
0a7f682d | 5545 | * we might be running from an atomic context so we cannot sleep |
e8bff74a | 5546 | */ |
d8ed45c5 | 5547 | if (!mmap_read_trylock(mm)) |
e8bff74a IM |
5548 | return; |
5549 | ||
03252919 AK |
5550 | vma = find_vma(mm, ip); |
5551 | if (vma && vma->vm_file) { | |
5552 | struct file *f = vma->vm_file; | |
0a7f682d | 5553 | char *buf = (char *)__get_free_page(GFP_NOWAIT); |
03252919 | 5554 | if (buf) { |
2fbc57c5 | 5555 | char *p; |
03252919 | 5556 | |
9bf39ab2 | 5557 | p = file_path(f, buf, PAGE_SIZE); |
03252919 AK |
5558 | if (IS_ERR(p)) |
5559 | p = "?"; | |
2fbc57c5 | 5560 | printk("%s%s[%lx+%lx]", prefix, kbasename(p), |
03252919 AK |
5561 | vma->vm_start, |
5562 | vma->vm_end - vma->vm_start); | |
5563 | free_page((unsigned long)buf); | |
5564 | } | |
5565 | } | |
d8ed45c5 | 5566 | mmap_read_unlock(mm); |
03252919 | 5567 | } |
3ee1afa3 | 5568 | |
662bbcb2 | 5569 | #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) |
9ec23531 | 5570 | void __might_fault(const char *file, int line) |
3ee1afa3 | 5571 | { |
9ec23531 | 5572 | if (pagefault_disabled()) |
662bbcb2 | 5573 | return; |
42a38756 | 5574 | __might_sleep(file, line); |
9ec23531 | 5575 | #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) |
662bbcb2 | 5576 | if (current->mm) |
da1c55f1 | 5577 | might_lock_read(¤t->mm->mmap_lock); |
9ec23531 | 5578 | #endif |
3ee1afa3 | 5579 | } |
9ec23531 | 5580 | EXPORT_SYMBOL(__might_fault); |
3ee1afa3 | 5581 | #endif |
47ad8475 AA |
5582 | |
5583 | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) | |
c6ddfb6c YH |
5584 | /* |
5585 | * Process all subpages of the specified huge page with the specified | |
5586 | * operation. The target subpage will be processed last to keep its | |
5587 | * cache lines hot. | |
5588 | */ | |
5589 | static inline void process_huge_page( | |
5590 | unsigned long addr_hint, unsigned int pages_per_huge_page, | |
5591 | void (*process_subpage)(unsigned long addr, int idx, void *arg), | |
5592 | void *arg) | |
47ad8475 | 5593 | { |
c79b57e4 YH |
5594 | int i, n, base, l; |
5595 | unsigned long addr = addr_hint & | |
5596 | ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); | |
47ad8475 | 5597 | |
c6ddfb6c | 5598 | /* Process target subpage last to keep its cache lines hot */ |
47ad8475 | 5599 | might_sleep(); |
c79b57e4 YH |
5600 | n = (addr_hint - addr) / PAGE_SIZE; |
5601 | if (2 * n <= pages_per_huge_page) { | |
c6ddfb6c | 5602 | /* If target subpage in first half of huge page */ |
c79b57e4 YH |
5603 | base = 0; |
5604 | l = n; | |
c6ddfb6c | 5605 | /* Process subpages at the end of huge page */ |
c79b57e4 YH |
5606 | for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { |
5607 | cond_resched(); | |
c6ddfb6c | 5608 | process_subpage(addr + i * PAGE_SIZE, i, arg); |
c79b57e4 YH |
5609 | } |
5610 | } else { | |
c6ddfb6c | 5611 | /* If target subpage in second half of huge page */ |
c79b57e4 YH |
5612 | base = pages_per_huge_page - 2 * (pages_per_huge_page - n); |
5613 | l = pages_per_huge_page - n; | |
c6ddfb6c | 5614 | /* Process subpages at the begin of huge page */ |
c79b57e4 YH |
5615 | for (i = 0; i < base; i++) { |
5616 | cond_resched(); | |
c6ddfb6c | 5617 | process_subpage(addr + i * PAGE_SIZE, i, arg); |
c79b57e4 YH |
5618 | } |
5619 | } | |
5620 | /* | |
c6ddfb6c YH |
5621 | * Process remaining subpages in left-right-left-right pattern |
5622 | * towards the target subpage | |
c79b57e4 YH |
5623 | */ |
5624 | for (i = 0; i < l; i++) { | |
5625 | int left_idx = base + i; | |
5626 | int right_idx = base + 2 * l - 1 - i; | |
5627 | ||
5628 | cond_resched(); | |
c6ddfb6c | 5629 | process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); |
47ad8475 | 5630 | cond_resched(); |
c6ddfb6c | 5631 | process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); |
47ad8475 AA |
5632 | } |
5633 | } | |
5634 | ||
c6ddfb6c YH |
5635 | static void clear_gigantic_page(struct page *page, |
5636 | unsigned long addr, | |
5637 | unsigned int pages_per_huge_page) | |
5638 | { | |
5639 | int i; | |
5640 | struct page *p = page; | |
5641 | ||
5642 | might_sleep(); | |
5643 | for (i = 0; i < pages_per_huge_page; | |
5644 | i++, p = mem_map_next(p, page, i)) { | |
5645 | cond_resched(); | |
5646 | clear_user_highpage(p, addr + i * PAGE_SIZE); | |
5647 | } | |
5648 | } | |
5649 | ||
5650 | static void clear_subpage(unsigned long addr, int idx, void *arg) | |
5651 | { | |
5652 | struct page *page = arg; | |
5653 | ||
5654 | clear_user_highpage(page + idx, addr); | |
5655 | } | |
5656 | ||
5657 | void clear_huge_page(struct page *page, | |
5658 | unsigned long addr_hint, unsigned int pages_per_huge_page) | |
5659 | { | |
5660 | unsigned long addr = addr_hint & | |
5661 | ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); | |
5662 | ||
5663 | if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { | |
5664 | clear_gigantic_page(page, addr, pages_per_huge_page); | |
5665 | return; | |
5666 | } | |
5667 | ||
5668 | process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); | |
5669 | } | |
5670 | ||
47ad8475 AA |
5671 | static void copy_user_gigantic_page(struct page *dst, struct page *src, |
5672 | unsigned long addr, | |
5673 | struct vm_area_struct *vma, | |
5674 | unsigned int pages_per_huge_page) | |
5675 | { | |
5676 | int i; | |
5677 | struct page *dst_base = dst; | |
5678 | struct page *src_base = src; | |
5679 | ||
5680 | for (i = 0; i < pages_per_huge_page; ) { | |
5681 | cond_resched(); | |
5682 | copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); | |
5683 | ||
5684 | i++; | |
5685 | dst = mem_map_next(dst, dst_base, i); | |
5686 | src = mem_map_next(src, src_base, i); | |
5687 | } | |
5688 | } | |
5689 | ||
c9f4cd71 YH |
5690 | struct copy_subpage_arg { |
5691 | struct page *dst; | |
5692 | struct page *src; | |
5693 | struct vm_area_struct *vma; | |
5694 | }; | |
5695 | ||
5696 | static void copy_subpage(unsigned long addr, int idx, void *arg) | |
5697 | { | |
5698 | struct copy_subpage_arg *copy_arg = arg; | |
5699 | ||
5700 | copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, | |
5701 | addr, copy_arg->vma); | |
5702 | } | |
5703 | ||
47ad8475 | 5704 | void copy_user_huge_page(struct page *dst, struct page *src, |
c9f4cd71 | 5705 | unsigned long addr_hint, struct vm_area_struct *vma, |
47ad8475 AA |
5706 | unsigned int pages_per_huge_page) |
5707 | { | |
c9f4cd71 YH |
5708 | unsigned long addr = addr_hint & |
5709 | ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); | |
5710 | struct copy_subpage_arg arg = { | |
5711 | .dst = dst, | |
5712 | .src = src, | |
5713 | .vma = vma, | |
5714 | }; | |
47ad8475 AA |
5715 | |
5716 | if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { | |
5717 | copy_user_gigantic_page(dst, src, addr, vma, | |
5718 | pages_per_huge_page); | |
5719 | return; | |
5720 | } | |
5721 | ||
c9f4cd71 | 5722 | process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); |
47ad8475 | 5723 | } |
fa4d75c1 MK |
5724 | |
5725 | long copy_huge_page_from_user(struct page *dst_page, | |
5726 | const void __user *usr_src, | |
810a56b9 MK |
5727 | unsigned int pages_per_huge_page, |
5728 | bool allow_pagefault) | |
fa4d75c1 | 5729 | { |
fa4d75c1 MK |
5730 | void *page_kaddr; |
5731 | unsigned long i, rc = 0; | |
5732 | unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; | |
3272cfc2 | 5733 | struct page *subpage = dst_page; |
fa4d75c1 | 5734 | |
3272cfc2 MK |
5735 | for (i = 0; i < pages_per_huge_page; |
5736 | i++, subpage = mem_map_next(subpage, dst_page, i)) { | |
810a56b9 | 5737 | if (allow_pagefault) |
3272cfc2 | 5738 | page_kaddr = kmap(subpage); |
810a56b9 | 5739 | else |
3272cfc2 | 5740 | page_kaddr = kmap_atomic(subpage); |
fa4d75c1 | 5741 | rc = copy_from_user(page_kaddr, |
b063e374 | 5742 | usr_src + i * PAGE_SIZE, PAGE_SIZE); |
810a56b9 | 5743 | if (allow_pagefault) |
3272cfc2 | 5744 | kunmap(subpage); |
810a56b9 MK |
5745 | else |
5746 | kunmap_atomic(page_kaddr); | |
fa4d75c1 MK |
5747 | |
5748 | ret_val -= (PAGE_SIZE - rc); | |
5749 | if (rc) | |
5750 | break; | |
5751 | ||
e763243c MS |
5752 | flush_dcache_page(subpage); |
5753 | ||
fa4d75c1 MK |
5754 | cond_resched(); |
5755 | } | |
5756 | return ret_val; | |
5757 | } | |
47ad8475 | 5758 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ |
49076ec2 | 5759 | |
40b64acd | 5760 | #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS |
b35f1819 KS |
5761 | |
5762 | static struct kmem_cache *page_ptl_cachep; | |
5763 | ||
5764 | void __init ptlock_cache_init(void) | |
5765 | { | |
5766 | page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, | |
5767 | SLAB_PANIC, NULL); | |
5768 | } | |
5769 | ||
539edb58 | 5770 | bool ptlock_alloc(struct page *page) |
49076ec2 KS |
5771 | { |
5772 | spinlock_t *ptl; | |
5773 | ||
b35f1819 | 5774 | ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); |
49076ec2 KS |
5775 | if (!ptl) |
5776 | return false; | |
539edb58 | 5777 | page->ptl = ptl; |
49076ec2 KS |
5778 | return true; |
5779 | } | |
5780 | ||
539edb58 | 5781 | void ptlock_free(struct page *page) |
49076ec2 | 5782 | { |
b35f1819 | 5783 | kmem_cache_free(page_ptl_cachep, page->ptl); |
49076ec2 KS |
5784 | } |
5785 | #endif |