]> Git Repo - linux.git/blame - mm/memory.c
PCI: endpoint: Remove "core_init_notifier" flag
[linux.git] / mm / memory.c
CommitLineData
d61ea1cb 1
457c8996 2// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
3/*
4 * linux/mm/memory.c
5 *
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 */
8
9/*
10 * demand-loading started 01.12.91 - seems it is high on the list of
11 * things wanted, and it should be easy to implement. - Linus
12 */
13
14/*
15 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
16 * pages started 02.12.91, seems to work. - Linus.
17 *
18 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
19 * would have taken more than the 6M I have free, but it worked well as
20 * far as I could see.
21 *
22 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
23 */
24
25/*
26 * Real VM (paging to/from disk) started 18.12.91. Much more work and
27 * thought has to go into this. Oh, well..
28 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
29 * Found it. Everything seems to work now.
30 * 20.12.91 - Ok, making the swap-device changeable like the root.
31 */
32
33/*
34 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 35 * Idea by Alex Bligh ([email protected])
1da177e4
LT
36 *
37 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
38 * ([email protected])
39 *
40 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 */
42
43#include <linux/kernel_stat.h>
44#include <linux/mm.h>
36090def 45#include <linux/mm_inline.h>
6e84f315 46#include <linux/sched/mm.h>
f7ccbae4 47#include <linux/sched/coredump.h>
6a3827d7 48#include <linux/sched/numa_balancing.h>
29930025 49#include <linux/sched/task.h>
1da177e4
LT
50#include <linux/hugetlb.h>
51#include <linux/mman.h>
52#include <linux/swap.h>
53#include <linux/highmem.h>
54#include <linux/pagemap.h>
5042db43 55#include <linux/memremap.h>
b073d7f8 56#include <linux/kmsan.h>
9a840895 57#include <linux/ksm.h>
1da177e4 58#include <linux/rmap.h>
b95f1b31 59#include <linux/export.h>
0ff92245 60#include <linux/delayacct.h>
1da177e4 61#include <linux/init.h>
01c8f1c4 62#include <linux/pfn_t.h>
edc79b2a 63#include <linux/writeback.h>
8a9f3ccd 64#include <linux/memcontrol.h>
cddb8a5c 65#include <linux/mmu_notifier.h>
3dc14741
HD
66#include <linux/swapops.h>
67#include <linux/elf.h>
5a0e3ad6 68#include <linux/gfp.h>
4daae3b4 69#include <linux/migrate.h>
2fbc57c5 70#include <linux/string.h>
467b171a 71#include <linux/memory-tiers.h>
1592eef0 72#include <linux/debugfs.h>
6b251fc9 73#include <linux/userfaultfd_k.h>
bc2466e4 74#include <linux/dax.h>
6b31d595 75#include <linux/oom.h>
98fa15f3 76#include <linux/numa.h>
bce617ed
PX
77#include <linux/perf_event.h>
78#include <linux/ptrace.h>
e80d3909 79#include <linux/vmalloc.h>
33024536 80#include <linux/sched/sysctl.h>
1da177e4 81
b3d1411b
JFG
82#include <trace/events/kmem.h>
83
6952b61d 84#include <asm/io.h>
33a709b2 85#include <asm/mmu_context.h>
1da177e4 86#include <asm/pgalloc.h>
7c0f6ba6 87#include <linux/uaccess.h>
1da177e4
LT
88#include <asm/tlb.h>
89#include <asm/tlbflush.h>
1da177e4 90
e80d3909 91#include "pgalloc-track.h"
42b77728 92#include "internal.h"
014bb1de 93#include "swap.h"
42b77728 94
af27d940 95#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 96#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
97#endif
98
a9ee6cf5 99#ifndef CONFIG_NUMA
1da177e4 100unsigned long max_mapnr;
1da177e4 101EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
102
103struct page *mem_map;
1da177e4
LT
104EXPORT_SYMBOL(mem_map);
105#endif
106
5c041f5d 107static vm_fault_t do_fault(struct vm_fault *vmf);
2bad466c
PX
108static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
109static bool vmf_pte_changed(struct vm_fault *vmf);
110
111/*
112 * Return true if the original pte was a uffd-wp pte marker (so the pte was
113 * wr-protected).
114 */
115static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
116{
117 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
118 return false;
119
120 return pte_marker_uffd_wp(vmf->orig_pte);
121}
5c041f5d 122
1da177e4
LT
123/*
124 * A number of key systems in x86 including ioremap() rely on the assumption
125 * that high_memory defines the upper bound on direct map memory, then end
e99fb98d 126 * of ZONE_NORMAL.
1da177e4 127 */
166f61b9 128void *high_memory;
1da177e4 129EXPORT_SYMBOL(high_memory);
1da177e4 130
32a93233
IM
131/*
132 * Randomize the address space (stacks, mmaps, brk, etc.).
133 *
134 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
135 * as ancient (libc5 based) binaries can segfault. )
136 */
137int randomize_va_space __read_mostly =
138#ifdef CONFIG_COMPAT_BRK
139 1;
140#else
141 2;
142#endif
a62eaf15 143
46bdb427
WD
144#ifndef arch_wants_old_prefaulted_pte
145static inline bool arch_wants_old_prefaulted_pte(void)
146{
147 /*
148 * Transitioning a PTE from 'old' to 'young' can be expensive on
149 * some architectures, even if it's performed in hardware. By
150 * default, "false" means prefaulted entries will be 'young'.
151 */
152 return false;
153}
154#endif
155
a62eaf15
AK
156static int __init disable_randmaps(char *s)
157{
158 randomize_va_space = 0;
9b41046c 159 return 1;
a62eaf15
AK
160}
161__setup("norandmaps", disable_randmaps);
162
62eede62 163unsigned long zero_pfn __read_mostly;
0b70068e
AB
164EXPORT_SYMBOL(zero_pfn);
165
166f61b9
TH
166unsigned long highest_memmap_pfn __read_mostly;
167
a13ea5b7
HD
168/*
169 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
170 */
171static int __init init_zero_pfn(void)
172{
173 zero_pfn = page_to_pfn(ZERO_PAGE(0));
174 return 0;
175}
e720e7d0 176early_initcall(init_zero_pfn);
a62eaf15 177
f1a79412 178void mm_trace_rss_stat(struct mm_struct *mm, int member)
b3d1411b 179{
f1a79412 180 trace_rss_stat(mm, member);
b3d1411b 181}
d559db08 182
1da177e4
LT
183/*
184 * Note: this doesn't free the actual pages themselves. That
185 * has been handled earlier when unmapping all the memory regions.
186 */
9e1b32ca
BH
187static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
188 unsigned long addr)
1da177e4 189{
2f569afd 190 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 191 pmd_clear(pmd);
9e1b32ca 192 pte_free_tlb(tlb, token, addr);
c4812909 193 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
194}
195
e0da382c
HD
196static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
197 unsigned long addr, unsigned long end,
198 unsigned long floor, unsigned long ceiling)
1da177e4
LT
199{
200 pmd_t *pmd;
201 unsigned long next;
e0da382c 202 unsigned long start;
1da177e4 203
e0da382c 204 start = addr;
1da177e4 205 pmd = pmd_offset(pud, addr);
1da177e4
LT
206 do {
207 next = pmd_addr_end(addr, end);
208 if (pmd_none_or_clear_bad(pmd))
209 continue;
9e1b32ca 210 free_pte_range(tlb, pmd, addr);
1da177e4
LT
211 } while (pmd++, addr = next, addr != end);
212
e0da382c
HD
213 start &= PUD_MASK;
214 if (start < floor)
215 return;
216 if (ceiling) {
217 ceiling &= PUD_MASK;
218 if (!ceiling)
219 return;
1da177e4 220 }
e0da382c
HD
221 if (end - 1 > ceiling - 1)
222 return;
223
224 pmd = pmd_offset(pud, start);
225 pud_clear(pud);
9e1b32ca 226 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 227 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
228}
229
c2febafc 230static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
231 unsigned long addr, unsigned long end,
232 unsigned long floor, unsigned long ceiling)
1da177e4
LT
233{
234 pud_t *pud;
235 unsigned long next;
e0da382c 236 unsigned long start;
1da177e4 237
e0da382c 238 start = addr;
c2febafc 239 pud = pud_offset(p4d, addr);
1da177e4
LT
240 do {
241 next = pud_addr_end(addr, end);
242 if (pud_none_or_clear_bad(pud))
243 continue;
e0da382c 244 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
245 } while (pud++, addr = next, addr != end);
246
c2febafc
KS
247 start &= P4D_MASK;
248 if (start < floor)
249 return;
250 if (ceiling) {
251 ceiling &= P4D_MASK;
252 if (!ceiling)
253 return;
254 }
255 if (end - 1 > ceiling - 1)
256 return;
257
258 pud = pud_offset(p4d, start);
259 p4d_clear(p4d);
260 pud_free_tlb(tlb, pud, start);
b4e98d9a 261 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
262}
263
264static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
265 unsigned long addr, unsigned long end,
266 unsigned long floor, unsigned long ceiling)
267{
268 p4d_t *p4d;
269 unsigned long next;
270 unsigned long start;
271
272 start = addr;
273 p4d = p4d_offset(pgd, addr);
274 do {
275 next = p4d_addr_end(addr, end);
276 if (p4d_none_or_clear_bad(p4d))
277 continue;
278 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
279 } while (p4d++, addr = next, addr != end);
280
e0da382c
HD
281 start &= PGDIR_MASK;
282 if (start < floor)
283 return;
284 if (ceiling) {
285 ceiling &= PGDIR_MASK;
286 if (!ceiling)
287 return;
1da177e4 288 }
e0da382c
HD
289 if (end - 1 > ceiling - 1)
290 return;
291
c2febafc 292 p4d = p4d_offset(pgd, start);
e0da382c 293 pgd_clear(pgd);
c2febafc 294 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
295}
296
297/*
e0da382c 298 * This function frees user-level page tables of a process.
1da177e4 299 */
42b77728 300void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
301 unsigned long addr, unsigned long end,
302 unsigned long floor, unsigned long ceiling)
1da177e4
LT
303{
304 pgd_t *pgd;
305 unsigned long next;
e0da382c
HD
306
307 /*
308 * The next few lines have given us lots of grief...
309 *
310 * Why are we testing PMD* at this top level? Because often
311 * there will be no work to do at all, and we'd prefer not to
312 * go all the way down to the bottom just to discover that.
313 *
314 * Why all these "- 1"s? Because 0 represents both the bottom
315 * of the address space and the top of it (using -1 for the
316 * top wouldn't help much: the masks would do the wrong thing).
317 * The rule is that addr 0 and floor 0 refer to the bottom of
318 * the address space, but end 0 and ceiling 0 refer to the top
319 * Comparisons need to use "end - 1" and "ceiling - 1" (though
320 * that end 0 case should be mythical).
321 *
322 * Wherever addr is brought up or ceiling brought down, we must
323 * be careful to reject "the opposite 0" before it confuses the
324 * subsequent tests. But what about where end is brought down
325 * by PMD_SIZE below? no, end can't go down to 0 there.
326 *
327 * Whereas we round start (addr) and ceiling down, by different
328 * masks at different levels, in order to test whether a table
329 * now has no other vmas using it, so can be freed, we don't
330 * bother to round floor or end up - the tests don't need that.
331 */
1da177e4 332
e0da382c
HD
333 addr &= PMD_MASK;
334 if (addr < floor) {
335 addr += PMD_SIZE;
336 if (!addr)
337 return;
338 }
339 if (ceiling) {
340 ceiling &= PMD_MASK;
341 if (!ceiling)
342 return;
343 }
344 if (end - 1 > ceiling - 1)
345 end -= PMD_SIZE;
346 if (addr > end - 1)
347 return;
07e32661
AK
348 /*
349 * We add page table cache pages with PAGE_SIZE,
350 * (see pte_free_tlb()), flush the tlb if we need
351 */
ed6a7935 352 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 353 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
354 do {
355 next = pgd_addr_end(addr, end);
356 if (pgd_none_or_clear_bad(pgd))
357 continue;
c2febafc 358 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 359 } while (pgd++, addr = next, addr != end);
e0da382c
HD
360}
361
fd892593 362void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
763ecb03 363 struct vm_area_struct *vma, unsigned long floor,
98e51a22 364 unsigned long ceiling, bool mm_wr_locked)
e0da382c 365{
763ecb03 366 do {
e0da382c 367 unsigned long addr = vma->vm_start;
763ecb03
LH
368 struct vm_area_struct *next;
369
370 /*
371 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
372 * be 0. This will underflow and is okay.
373 */
fd892593 374 next = mas_find(mas, ceiling - 1);
d2406291
PZ
375 if (unlikely(xa_is_zero(next)))
376 next = NULL;
e0da382c 377
8f4f8c16 378 /*
25d9e2d1
NP
379 * Hide vma from rmap and truncate_pagecache before freeing
380 * pgtables
8f4f8c16 381 */
98e51a22
SB
382 if (mm_wr_locked)
383 vma_start_write(vma);
5beb4930 384 unlink_anon_vmas(vma);
8f4f8c16
HD
385 unlink_file_vma(vma);
386
9da61aef 387 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 388 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 389 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
390 } else {
391 /*
392 * Optimization: gather nearby vmas into one call down
393 */
394 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 395 && !is_vm_hugetlb_page(next)) {
3bf5ee95 396 vma = next;
fd892593 397 next = mas_find(mas, ceiling - 1);
d2406291
PZ
398 if (unlikely(xa_is_zero(next)))
399 next = NULL;
98e51a22
SB
400 if (mm_wr_locked)
401 vma_start_write(vma);
5beb4930 402 unlink_anon_vmas(vma);
8f4f8c16 403 unlink_file_vma(vma);
3bf5ee95
HD
404 }
405 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 406 floor, next ? next->vm_start : ceiling);
3bf5ee95 407 }
e0da382c 408 vma = next;
763ecb03 409 } while (vma);
1da177e4
LT
410}
411
03c4f204 412void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
1da177e4 413{
03c4f204 414 spinlock_t *ptl = pmd_lock(mm, pmd);
1bb3630e 415
8ac1f832 416 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 417 mm_inc_nr_ptes(mm);
ed33b5a6
QZ
418 /*
419 * Ensure all pte setup (eg. pte page lock and page clearing) are
420 * visible before the pte is made visible to other CPUs by being
421 * put into page tables.
422 *
423 * The other side of the story is the pointer chasing in the page
424 * table walking code (when walking the page table without locking;
425 * ie. most of the time). Fortunately, these data accesses consist
426 * of a chain of data-dependent loads, meaning most CPUs (alpha
427 * being the notable exception) will already guarantee loads are
428 * seen in-order. See the alpha page table accessors for the
429 * smp_rmb() barriers in page table walking code.
430 */
431 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
03c4f204
QZ
432 pmd_populate(mm, pmd, *pte);
433 *pte = NULL;
4b471e88 434 }
c4088ebd 435 spin_unlock(ptl);
03c4f204
QZ
436}
437
4cf58924 438int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 439{
4cf58924 440 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
441 if (!new)
442 return -ENOMEM;
443
03c4f204 444 pmd_install(mm, pmd, &new);
2f569afd
MS
445 if (new)
446 pte_free(mm, new);
1bb3630e 447 return 0;
1da177e4
LT
448}
449
4cf58924 450int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 451{
4cf58924 452 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
453 if (!new)
454 return -ENOMEM;
455
456 spin_lock(&init_mm.page_table_lock);
8ac1f832 457 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
ed33b5a6 458 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 459 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 460 new = NULL;
4b471e88 461 }
1bb3630e 462 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
463 if (new)
464 pte_free_kernel(&init_mm, new);
1bb3630e 465 return 0;
1da177e4
LT
466}
467
d559db08
KH
468static inline void init_rss_vec(int *rss)
469{
470 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
471}
472
473static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 474{
d559db08
KH
475 int i;
476
477 for (i = 0; i < NR_MM_COUNTERS; i++)
478 if (rss[i])
479 add_mm_counter(mm, i, rss[i]);
ae859762
HD
480}
481
b5810039 482/*
6aab341e
LT
483 * This function is called to print an error when a bad pte
484 * is found. For example, we might have a PFN-mapped pte in
485 * a region that doesn't allow it.
b5810039
NP
486 *
487 * The calling function must still handle the error.
488 */
3dc14741
HD
489static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
490 pte_t pte, struct page *page)
b5810039 491{
3dc14741 492 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
493 p4d_t *p4d = p4d_offset(pgd, addr);
494 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
495 pmd_t *pmd = pmd_offset(pud, addr);
496 struct address_space *mapping;
497 pgoff_t index;
d936cf9b
HD
498 static unsigned long resume;
499 static unsigned long nr_shown;
500 static unsigned long nr_unshown;
501
502 /*
503 * Allow a burst of 60 reports, then keep quiet for that minute;
504 * or allow a steady drip of one report per second.
505 */
506 if (nr_shown == 60) {
507 if (time_before(jiffies, resume)) {
508 nr_unshown++;
509 return;
510 }
511 if (nr_unshown) {
1170532b
JP
512 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
513 nr_unshown);
d936cf9b
HD
514 nr_unshown = 0;
515 }
516 nr_shown = 0;
517 }
518 if (nr_shown++ == 0)
519 resume = jiffies + 60 * HZ;
3dc14741
HD
520
521 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
522 index = linear_page_index(vma, addr);
523
1170532b
JP
524 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
525 current->comm,
526 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 527 if (page)
f0b791a3 528 dump_page(page, "bad pte");
6aa9b8b2 529 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 530 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
7e0a1265 531 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
2682582a
KK
532 vma->vm_file,
533 vma->vm_ops ? vma->vm_ops->fault : NULL,
534 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
7e0a1265 535 mapping ? mapping->a_ops->read_folio : NULL);
b5810039 536 dump_stack();
373d4d09 537 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
538}
539
ee498ed7 540/*
7e675137 541 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 542 *
7e675137
NP
543 * "Special" mappings do not wish to be associated with a "struct page" (either
544 * it doesn't exist, or it exists but they don't want to touch it). In this
545 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 546 *
7e675137
NP
547 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
548 * pte bit, in which case this function is trivial. Secondly, an architecture
549 * may not have a spare pte bit, which requires a more complicated scheme,
550 * described below.
551 *
552 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
553 * special mapping (even if there are underlying and valid "struct pages").
554 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 555 *
b379d790
JH
556 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
557 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
558 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
559 * mapping will always honor the rule
6aab341e
LT
560 *
561 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
562 *
7e675137
NP
563 * And for normal mappings this is false.
564 *
565 * This restricts such mappings to be a linear translation from virtual address
566 * to pfn. To get around this restriction, we allow arbitrary mappings so long
567 * as the vma is not a COW mapping; in that case, we know that all ptes are
568 * special (because none can have been COWed).
b379d790 569 *
b379d790 570 *
7e675137 571 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
572 *
573 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
574 * page" backing, however the difference is that _all_ pages with a struct
575 * page (that is, those where pfn_valid is true) are refcounted and considered
576 * normal pages by the VM. The disadvantage is that pages are refcounted
577 * (which can be slower and simply not an option for some PFNMAP users). The
578 * advantage is that we don't have to follow the strict linearity rule of
579 * PFNMAP mappings in order to support COWable mappings.
580 *
ee498ed7 581 */
25b2995a
CH
582struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
583 pte_t pte)
ee498ed7 584{
22b31eec 585 unsigned long pfn = pte_pfn(pte);
7e675137 586
00b3a331 587 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 588 if (likely(!pte_special(pte)))
22b31eec 589 goto check_pfn;
667a0a06
DV
590 if (vma->vm_ops && vma->vm_ops->find_special_page)
591 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
592 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
593 return NULL;
df6ad698
JG
594 if (is_zero_pfn(pfn))
595 return NULL;
e1fb4a08 596 if (pte_devmap(pte))
3218f871
AS
597 /*
598 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
599 * and will have refcounts incremented on their struct pages
600 * when they are inserted into PTEs, thus they are safe to
601 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
602 * do not have refcounts. Example of legacy ZONE_DEVICE is
603 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
604 */
e1fb4a08
DJ
605 return NULL;
606
df6ad698 607 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
608 return NULL;
609 }
610
00b3a331 611 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 612
b379d790
JH
613 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
614 if (vma->vm_flags & VM_MIXEDMAP) {
615 if (!pfn_valid(pfn))
616 return NULL;
617 goto out;
618 } else {
7e675137
NP
619 unsigned long off;
620 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
621 if (pfn == vma->vm_pgoff + off)
622 return NULL;
623 if (!is_cow_mapping(vma->vm_flags))
624 return NULL;
625 }
6aab341e
LT
626 }
627
b38af472
HD
628 if (is_zero_pfn(pfn))
629 return NULL;
00b3a331 630
22b31eec
HD
631check_pfn:
632 if (unlikely(pfn > highest_memmap_pfn)) {
633 print_bad_pte(vma, addr, pte, NULL);
634 return NULL;
635 }
6aab341e
LT
636
637 /*
7e675137 638 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 639 * eg. VDSO mappings can cause them to exist.
6aab341e 640 */
b379d790 641out:
6aab341e 642 return pfn_to_page(pfn);
ee498ed7
HD
643}
644
318e9342
VMO
645struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
646 pte_t pte)
647{
648 struct page *page = vm_normal_page(vma, addr, pte);
649
650 if (page)
651 return page_folio(page);
652 return NULL;
653}
654
28093f9f
GS
655#ifdef CONFIG_TRANSPARENT_HUGEPAGE
656struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
657 pmd_t pmd)
658{
659 unsigned long pfn = pmd_pfn(pmd);
660
661 /*
662 * There is no pmd_special() but there may be special pmds, e.g.
663 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 664 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
665 */
666 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
667 if (vma->vm_flags & VM_MIXEDMAP) {
668 if (!pfn_valid(pfn))
669 return NULL;
670 goto out;
671 } else {
672 unsigned long off;
673 off = (addr - vma->vm_start) >> PAGE_SHIFT;
674 if (pfn == vma->vm_pgoff + off)
675 return NULL;
676 if (!is_cow_mapping(vma->vm_flags))
677 return NULL;
678 }
679 }
680
e1fb4a08
DJ
681 if (pmd_devmap(pmd))
682 return NULL;
3cde287b 683 if (is_huge_zero_pmd(pmd))
28093f9f
GS
684 return NULL;
685 if (unlikely(pfn > highest_memmap_pfn))
686 return NULL;
687
688 /*
689 * NOTE! We still have PageReserved() pages in the page tables.
690 * eg. VDSO mappings can cause them to exist.
691 */
692out:
693 return pfn_to_page(pfn);
694}
65610453
KW
695
696struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
697 unsigned long addr, pmd_t pmd)
698{
699 struct page *page = vm_normal_page_pmd(vma, addr, pmd);
700
701 if (page)
702 return page_folio(page);
703 return NULL;
704}
28093f9f
GS
705#endif
706
b756a3b5
AP
707static void restore_exclusive_pte(struct vm_area_struct *vma,
708 struct page *page, unsigned long address,
709 pte_t *ptep)
710{
b832a354 711 struct folio *folio = page_folio(page);
c33c7948 712 pte_t orig_pte;
b756a3b5
AP
713 pte_t pte;
714 swp_entry_t entry;
715
c33c7948 716 orig_pte = ptep_get(ptep);
b756a3b5 717 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
c33c7948 718 if (pte_swp_soft_dirty(orig_pte))
b756a3b5
AP
719 pte = pte_mksoft_dirty(pte);
720
c33c7948
RR
721 entry = pte_to_swp_entry(orig_pte);
722 if (pte_swp_uffd_wp(orig_pte))
b756a3b5
AP
723 pte = pte_mkuffd_wp(pte);
724 else if (is_writable_device_exclusive_entry(entry))
725 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
726
b832a354
DH
727 VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) &&
728 PageAnonExclusive(page)), folio);
6c287605 729
b756a3b5
AP
730 /*
731 * No need to take a page reference as one was already
732 * created when the swap entry was made.
733 */
b832a354
DH
734 if (folio_test_anon(folio))
735 folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE);
b756a3b5
AP
736 else
737 /*
738 * Currently device exclusive access only supports anonymous
739 * memory so the entry shouldn't point to a filebacked page.
740 */
4d8ff640 741 WARN_ON_ONCE(1);
b756a3b5 742
1eba86c0
PT
743 set_pte_at(vma->vm_mm, address, ptep, pte);
744
b756a3b5
AP
745 /*
746 * No need to invalidate - it was non-present before. However
747 * secondary CPUs may have mappings that need invalidating.
748 */
749 update_mmu_cache(vma, address, ptep);
750}
751
752/*
753 * Tries to restore an exclusive pte if the page lock can be acquired without
754 * sleeping.
755 */
756static int
757try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
758 unsigned long addr)
759{
c33c7948 760 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
b756a3b5
AP
761 struct page *page = pfn_swap_entry_to_page(entry);
762
763 if (trylock_page(page)) {
764 restore_exclusive_pte(vma, page, addr, src_pte);
765 unlock_page(page);
766 return 0;
767 }
768
769 return -EBUSY;
770}
771
1da177e4
LT
772/*
773 * copy one vm_area from one task to the other. Assumes the page tables
774 * already present in the new task to be cleared in the whole range
775 * covered by this vma.
1da177e4
LT
776 */
777
df3a57d1
LT
778static unsigned long
779copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
8f34f1ea
PX
780 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
781 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
1da177e4 782{
8f34f1ea 783 unsigned long vm_flags = dst_vma->vm_flags;
c33c7948
RR
784 pte_t orig_pte = ptep_get(src_pte);
785 pte_t pte = orig_pte;
08e7795e 786 struct folio *folio;
1da177e4 787 struct page *page;
c33c7948 788 swp_entry_t entry = pte_to_swp_entry(orig_pte);
df3a57d1
LT
789
790 if (likely(!non_swap_entry(entry))) {
791 if (swap_duplicate(entry) < 0)
9a5cc85c 792 return -EIO;
df3a57d1
LT
793
794 /* make sure dst_mm is on swapoff's mmlist. */
795 if (unlikely(list_empty(&dst_mm->mmlist))) {
796 spin_lock(&mmlist_lock);
797 if (list_empty(&dst_mm->mmlist))
798 list_add(&dst_mm->mmlist,
799 &src_mm->mmlist);
800 spin_unlock(&mmlist_lock);
801 }
1493a191 802 /* Mark the swap entry as shared. */
c33c7948
RR
803 if (pte_swp_exclusive(orig_pte)) {
804 pte = pte_swp_clear_exclusive(orig_pte);
1493a191
DH
805 set_pte_at(src_mm, addr, src_pte, pte);
806 }
df3a57d1
LT
807 rss[MM_SWAPENTS]++;
808 } else if (is_migration_entry(entry)) {
530c2a0d 809 folio = pfn_swap_entry_folio(entry);
1da177e4 810
a23f517b 811 rss[mm_counter(folio)]++;
5042db43 812
6c287605 813 if (!is_readable_migration_entry(entry) &&
df3a57d1 814 is_cow_mapping(vm_flags)) {
5042db43 815 /*
6c287605
DH
816 * COW mappings require pages in both parent and child
817 * to be set to read. A previously exclusive entry is
818 * now shared.
5042db43 819 */
4dd845b5
AP
820 entry = make_readable_migration_entry(
821 swp_offset(entry));
df3a57d1 822 pte = swp_entry_to_pte(entry);
c33c7948 823 if (pte_swp_soft_dirty(orig_pte))
df3a57d1 824 pte = pte_swp_mksoft_dirty(pte);
c33c7948 825 if (pte_swp_uffd_wp(orig_pte))
df3a57d1
LT
826 pte = pte_swp_mkuffd_wp(pte);
827 set_pte_at(src_mm, addr, src_pte, pte);
828 }
829 } else if (is_device_private_entry(entry)) {
af5cdaf8 830 page = pfn_swap_entry_to_page(entry);
08e7795e 831 folio = page_folio(page);
5042db43 832
df3a57d1
LT
833 /*
834 * Update rss count even for unaddressable pages, as
835 * they should treated just like normal pages in this
836 * respect.
837 *
838 * We will likely want to have some new rss counters
839 * for unaddressable pages, at some point. But for now
840 * keep things as they are.
841 */
08e7795e 842 folio_get(folio);
a23f517b 843 rss[mm_counter(folio)]++;
fb3d824d 844 /* Cannot fail as these pages cannot get pinned. */
08e7795e 845 folio_try_dup_anon_rmap_pte(folio, page, src_vma);
df3a57d1
LT
846
847 /*
848 * We do not preserve soft-dirty information, because so
849 * far, checkpoint/restore is the only feature that
850 * requires that. And checkpoint/restore does not work
851 * when a device driver is involved (you cannot easily
852 * save and restore device driver state).
853 */
4dd845b5 854 if (is_writable_device_private_entry(entry) &&
df3a57d1 855 is_cow_mapping(vm_flags)) {
4dd845b5
AP
856 entry = make_readable_device_private_entry(
857 swp_offset(entry));
df3a57d1 858 pte = swp_entry_to_pte(entry);
c33c7948 859 if (pte_swp_uffd_wp(orig_pte))
df3a57d1
LT
860 pte = pte_swp_mkuffd_wp(pte);
861 set_pte_at(src_mm, addr, src_pte, pte);
1da177e4 862 }
b756a3b5
AP
863 } else if (is_device_exclusive_entry(entry)) {
864 /*
865 * Make device exclusive entries present by restoring the
866 * original entry then copying as for a present pte. Device
867 * exclusive entries currently only support private writable
868 * (ie. COW) mappings.
869 */
870 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
871 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
872 return -EBUSY;
873 return -ENOENT;
c56d1b62 874 } else if (is_pte_marker_entry(entry)) {
af19487f
AR
875 pte_marker marker = copy_pte_marker(entry, dst_vma);
876
877 if (marker)
878 set_pte_at(dst_mm, addr, dst_pte,
879 make_pte_marker(marker));
c56d1b62 880 return 0;
1da177e4 881 }
8f34f1ea
PX
882 if (!userfaultfd_wp(dst_vma))
883 pte = pte_swp_clear_uffd_wp(pte);
df3a57d1
LT
884 set_pte_at(dst_mm, addr, dst_pte, pte);
885 return 0;
886}
887
70e806e4 888/*
b51ad4f8 889 * Copy a present and normal page.
70e806e4 890 *
b51ad4f8
DH
891 * NOTE! The usual case is that this isn't required;
892 * instead, the caller can just increase the page refcount
893 * and re-use the pte the traditional way.
70e806e4
PX
894 *
895 * And if we need a pre-allocated page but don't yet have
896 * one, return a negative error to let the preallocation
897 * code know so that it can do so outside the page table
898 * lock.
899 */
900static inline int
c78f4636
PX
901copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
902 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
edf50470 903 struct folio **prealloc, struct page *page)
70e806e4 904{
edf50470 905 struct folio *new_folio;
b51ad4f8 906 pte_t pte;
70e806e4 907
edf50470
MWO
908 new_folio = *prealloc;
909 if (!new_folio)
70e806e4
PX
910 return -EAGAIN;
911
912 /*
913 * We have a prealloc page, all good! Take it
914 * over and copy the page & arm it.
915 */
916 *prealloc = NULL;
edf50470
MWO
917 copy_user_highpage(&new_folio->page, page, addr, src_vma);
918 __folio_mark_uptodate(new_folio);
919 folio_add_new_anon_rmap(new_folio, dst_vma, addr);
920 folio_add_lru_vma(new_folio, dst_vma);
921 rss[MM_ANONPAGES]++;
70e806e4
PX
922
923 /* All done, just insert the new page copy in the child */
edf50470 924 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
c78f4636 925 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
c33c7948 926 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
8f34f1ea 927 /* Uffd-wp needs to be delivered to dest pte as well */
f1eb1bac 928 pte = pte_mkuffd_wp(pte);
c78f4636 929 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
930 return 0;
931}
932
f8d93776 933static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma,
23ed1908 934 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte,
f8d93776 935 pte_t pte, unsigned long addr, int nr)
23ed1908
DH
936{
937 struct mm_struct *src_mm = src_vma->vm_mm;
938
939 /* If it's a COW mapping, write protect it both processes. */
940 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) {
f8d93776 941 wrprotect_ptes(src_mm, addr, src_pte, nr);
23ed1908
DH
942 pte = pte_wrprotect(pte);
943 }
944
945 /* If it's a shared mapping, mark it clean in the child. */
946 if (src_vma->vm_flags & VM_SHARED)
947 pte = pte_mkclean(pte);
948 pte = pte_mkold(pte);
949
950 if (!userfaultfd_wp(dst_vma))
951 pte = pte_clear_uffd_wp(pte);
952
f8d93776
DH
953 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr);
954}
955
70e806e4 956/*
f8d93776
DH
957 * Copy one present PTE, trying to batch-process subsequent PTEs that map
958 * consecutive pages of the same folio by copying them as well.
959 *
960 * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
961 * Otherwise, returns the number of copied PTEs (at least 1).
70e806e4
PX
962 */
963static inline int
f8d93776 964copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
53723298 965 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr,
f8d93776 966 int max_nr, int *rss, struct folio **prealloc)
df3a57d1 967{
df3a57d1 968 struct page *page;
14ddee41 969 struct folio *folio;
d7c0e5f7 970 bool any_writable;
25365e10 971 fpb_t flags = 0;
f8d93776 972 int err, nr;
df3a57d1 973
c78f4636 974 page = vm_normal_page(src_vma, addr, pte);
23ed1908
DH
975 if (unlikely(!page))
976 goto copy_pte;
977
978 folio = page_folio(page);
f8d93776
DH
979
980 /*
981 * If we likely have to copy, just don't bother with batching. Make
982 * sure that the common "small folio" case is as fast as possible
983 * by keeping the batching logic separate.
984 */
985 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) {
25365e10
DH
986 if (src_vma->vm_flags & VM_SHARED)
987 flags |= FPB_IGNORE_DIRTY;
988 if (!vma_soft_dirty_enabled(src_vma))
989 flags |= FPB_IGNORE_SOFT_DIRTY;
990
d7c0e5f7
DH
991 nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags,
992 &any_writable);
f8d93776
DH
993 folio_ref_add(folio, nr);
994 if (folio_test_anon(folio)) {
995 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page,
996 nr, src_vma))) {
997 folio_ref_sub(folio, nr);
998 return -EAGAIN;
999 }
1000 rss[MM_ANONPAGES] += nr;
1001 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1002 } else {
1003 folio_dup_file_rmap_ptes(folio, page, nr);
1004 rss[mm_counter_file(folio)] += nr;
1005 }
d7c0e5f7
DH
1006 if (any_writable)
1007 pte = pte_mkwrite(pte, src_vma);
f8d93776
DH
1008 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte,
1009 addr, nr);
1010 return nr;
1011 }
1012
23ed1908
DH
1013 folio_get(folio);
1014 if (folio_test_anon(folio)) {
b51ad4f8
DH
1015 /*
1016 * If this page may have been pinned by the parent process,
1017 * copy the page immediately for the child so that we'll always
1018 * guarantee the pinned page won't be randomly replaced in the
1019 * future.
1020 */
08e7795e 1021 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) {
14ddee41
MWO
1022 /* Page may be pinned, we have to copy. */
1023 folio_put(folio);
f8d93776
DH
1024 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
1025 addr, rss, prealloc, page);
1026 return err ? err : 1;
fb3d824d 1027 }
edf50470 1028 rss[MM_ANONPAGES]++;
23ed1908
DH
1029 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1030 } else {
d8ef5e31 1031 folio_dup_file_rmap_pte(folio, page);
6b27cc6c 1032 rss[mm_counter_file(folio)]++;
70e806e4
PX
1033 }
1034
23ed1908 1035copy_pte:
f8d93776
DH
1036 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1);
1037 return 1;
70e806e4
PX
1038}
1039
294de6d8
KW
1040static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
1041 struct vm_area_struct *vma, unsigned long addr, bool need_zero)
70e806e4 1042{
edf50470 1043 struct folio *new_folio;
70e806e4 1044
294de6d8
KW
1045 if (need_zero)
1046 new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1047 else
1048 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
1049 addr, false);
1050
edf50470 1051 if (!new_folio)
70e806e4
PX
1052 return NULL;
1053
edf50470
MWO
1054 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1055 folio_put(new_folio);
70e806e4 1056 return NULL;
6aab341e 1057 }
e601ded4 1058 folio_throttle_swaprate(new_folio, GFP_KERNEL);
ae859762 1059
edf50470 1060 return new_folio;
1da177e4
LT
1061}
1062
c78f4636
PX
1063static int
1064copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1065 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1066 unsigned long end)
1da177e4 1067{
c78f4636
PX
1068 struct mm_struct *dst_mm = dst_vma->vm_mm;
1069 struct mm_struct *src_mm = src_vma->vm_mm;
c36987e2 1070 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 1071 pte_t *src_pte, *dst_pte;
c33c7948 1072 pte_t ptent;
c74df32c 1073 spinlock_t *src_ptl, *dst_ptl;
f8d93776 1074 int progress, max_nr, ret = 0;
d559db08 1075 int rss[NR_MM_COUNTERS];
570a335b 1076 swp_entry_t entry = (swp_entry_t){0};
edf50470 1077 struct folio *prealloc = NULL;
f8d93776 1078 int nr;
1da177e4
LT
1079
1080again:
70e806e4 1081 progress = 0;
d559db08
KH
1082 init_rss_vec(rss);
1083
3db82b93
HD
1084 /*
1085 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1086 * error handling here, assume that exclusive mmap_lock on dst and src
1087 * protects anon from unexpected THP transitions; with shmem and file
1088 * protected by mmap_lock-less collapse skipping areas with anon_vma
1089 * (whereas vma_needs_copy() skips areas without anon_vma). A rework
1090 * can remove such assumptions later, but this is good enough for now.
1091 */
c74df32c 1092 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
70e806e4
PX
1093 if (!dst_pte) {
1094 ret = -ENOMEM;
1095 goto out;
1096 }
3db82b93
HD
1097 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1098 if (!src_pte) {
1099 pte_unmap_unlock(dst_pte, dst_ptl);
1100 /* ret == 0 */
1101 goto out;
1102 }
f20dc5f7 1103 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
1104 orig_src_pte = src_pte;
1105 orig_dst_pte = dst_pte;
6606c3e0 1106 arch_enter_lazy_mmu_mode();
1da177e4 1107
1da177e4 1108 do {
f8d93776
DH
1109 nr = 1;
1110
1da177e4
LT
1111 /*
1112 * We are holding two locks at this point - either of them
1113 * could generate latencies in another task on another CPU.
1114 */
e040f218
HD
1115 if (progress >= 32) {
1116 progress = 0;
1117 if (need_resched() ||
95c354fe 1118 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
1119 break;
1120 }
c33c7948
RR
1121 ptent = ptep_get(src_pte);
1122 if (pte_none(ptent)) {
1da177e4
LT
1123 progress++;
1124 continue;
1125 }
c33c7948 1126 if (unlikely(!pte_present(ptent))) {
9a5cc85c
AP
1127 ret = copy_nonpresent_pte(dst_mm, src_mm,
1128 dst_pte, src_pte,
1129 dst_vma, src_vma,
1130 addr, rss);
1131 if (ret == -EIO) {
c33c7948 1132 entry = pte_to_swp_entry(ptep_get(src_pte));
79a1971c 1133 break;
b756a3b5
AP
1134 } else if (ret == -EBUSY) {
1135 break;
1136 } else if (!ret) {
1137 progress += 8;
1138 continue;
9a5cc85c 1139 }
53723298
DH
1140 ptent = ptep_get(src_pte);
1141 VM_WARN_ON_ONCE(!pte_present(ptent));
b756a3b5
AP
1142
1143 /*
1144 * Device exclusive entry restored, continue by copying
1145 * the now present pte.
1146 */
1147 WARN_ON_ONCE(ret != -ENOENT);
79a1971c 1148 }
f8d93776
DH
1149 /* copy_present_ptes() will clear `*prealloc' if consumed */
1150 max_nr = (end - addr) / PAGE_SIZE;
1151 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte,
1152 ptent, addr, max_nr, rss, &prealloc);
70e806e4
PX
1153 /*
1154 * If we need a pre-allocated page for this pte, drop the
1155 * locks, allocate, and try again.
1156 */
1157 if (unlikely(ret == -EAGAIN))
1158 break;
1159 if (unlikely(prealloc)) {
1160 /*
1161 * pre-alloc page cannot be reused by next time so as
1162 * to strictly follow mempolicy (e.g., alloc_page_vma()
1163 * will allocate page according to address). This
1164 * could only happen if one pinned pte changed.
1165 */
edf50470 1166 folio_put(prealloc);
70e806e4
PX
1167 prealloc = NULL;
1168 }
f8d93776
DH
1169 nr = ret;
1170 progress += 8 * nr;
1171 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr,
1172 addr != end);
1da177e4 1173
6606c3e0 1174 arch_leave_lazy_mmu_mode();
3db82b93 1175 pte_unmap_unlock(orig_src_pte, src_ptl);
d559db08 1176 add_mm_rss_vec(dst_mm, rss);
c36987e2 1177 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1178 cond_resched();
570a335b 1179
9a5cc85c
AP
1180 if (ret == -EIO) {
1181 VM_WARN_ON_ONCE(!entry.val);
70e806e4
PX
1182 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1183 ret = -ENOMEM;
1184 goto out;
1185 }
1186 entry.val = 0;
b756a3b5
AP
1187 } else if (ret == -EBUSY) {
1188 goto out;
9a5cc85c 1189 } else if (ret == -EAGAIN) {
294de6d8 1190 prealloc = folio_prealloc(src_mm, src_vma, addr, false);
70e806e4 1191 if (!prealloc)
570a335b 1192 return -ENOMEM;
f8d93776 1193 } else if (ret < 0) {
9a5cc85c 1194 VM_WARN_ON_ONCE(1);
570a335b 1195 }
9a5cc85c
AP
1196
1197 /* We've captured and resolved the error. Reset, try again. */
1198 ret = 0;
1199
1da177e4
LT
1200 if (addr != end)
1201 goto again;
70e806e4
PX
1202out:
1203 if (unlikely(prealloc))
edf50470 1204 folio_put(prealloc);
70e806e4 1205 return ret;
1da177e4
LT
1206}
1207
c78f4636
PX
1208static inline int
1209copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1210 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1211 unsigned long end)
1da177e4 1212{
c78f4636
PX
1213 struct mm_struct *dst_mm = dst_vma->vm_mm;
1214 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1215 pmd_t *src_pmd, *dst_pmd;
1216 unsigned long next;
1217
1218 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1219 if (!dst_pmd)
1220 return -ENOMEM;
1221 src_pmd = pmd_offset(src_pud, addr);
1222 do {
1223 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
1224 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1225 || pmd_devmap(*src_pmd)) {
71e3aac0 1226 int err;
c78f4636 1227 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
8f34f1ea
PX
1228 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1229 addr, dst_vma, src_vma);
71e3aac0
AA
1230 if (err == -ENOMEM)
1231 return -ENOMEM;
1232 if (!err)
1233 continue;
1234 /* fall through */
1235 }
1da177e4
LT
1236 if (pmd_none_or_clear_bad(src_pmd))
1237 continue;
c78f4636
PX
1238 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1239 addr, next))
1da177e4
LT
1240 return -ENOMEM;
1241 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1242 return 0;
1243}
1244
c78f4636
PX
1245static inline int
1246copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1247 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1248 unsigned long end)
1da177e4 1249{
c78f4636
PX
1250 struct mm_struct *dst_mm = dst_vma->vm_mm;
1251 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1252 pud_t *src_pud, *dst_pud;
1253 unsigned long next;
1254
c2febafc 1255 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1256 if (!dst_pud)
1257 return -ENOMEM;
c2febafc 1258 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1259 do {
1260 next = pud_addr_end(addr, end);
a00cc7d9
MW
1261 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1262 int err;
1263
c78f4636 1264 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
a00cc7d9 1265 err = copy_huge_pud(dst_mm, src_mm,
c78f4636 1266 dst_pud, src_pud, addr, src_vma);
a00cc7d9
MW
1267 if (err == -ENOMEM)
1268 return -ENOMEM;
1269 if (!err)
1270 continue;
1271 /* fall through */
1272 }
1da177e4
LT
1273 if (pud_none_or_clear_bad(src_pud))
1274 continue;
c78f4636
PX
1275 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1276 addr, next))
1da177e4
LT
1277 return -ENOMEM;
1278 } while (dst_pud++, src_pud++, addr = next, addr != end);
1279 return 0;
1280}
1281
c78f4636
PX
1282static inline int
1283copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1284 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1285 unsigned long end)
c2febafc 1286{
c78f4636 1287 struct mm_struct *dst_mm = dst_vma->vm_mm;
c2febafc
KS
1288 p4d_t *src_p4d, *dst_p4d;
1289 unsigned long next;
1290
1291 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1292 if (!dst_p4d)
1293 return -ENOMEM;
1294 src_p4d = p4d_offset(src_pgd, addr);
1295 do {
1296 next = p4d_addr_end(addr, end);
1297 if (p4d_none_or_clear_bad(src_p4d))
1298 continue;
c78f4636
PX
1299 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1300 addr, next))
c2febafc
KS
1301 return -ENOMEM;
1302 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1303 return 0;
1304}
1305
c56d1b62
PX
1306/*
1307 * Return true if the vma needs to copy the pgtable during this fork(). Return
1308 * false when we can speed up fork() by allowing lazy page faults later until
1309 * when the child accesses the memory range.
1310 */
bc70fbf2 1311static bool
c56d1b62
PX
1312vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1313{
1314 /*
1315 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1316 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1317 * contains uffd-wp protection information, that's something we can't
1318 * retrieve from page cache, and skip copying will lose those info.
1319 */
1320 if (userfaultfd_wp(dst_vma))
1321 return true;
1322
bcd51a3c 1323 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
c56d1b62
PX
1324 return true;
1325
1326 if (src_vma->anon_vma)
1327 return true;
1328
1329 /*
1330 * Don't copy ptes where a page fault will fill them correctly. Fork
1331 * becomes much lighter when there are big shared or private readonly
1332 * mappings. The tradeoff is that copy_page_range is more efficient
1333 * than faulting.
1334 */
1335 return false;
1336}
1337
c78f4636
PX
1338int
1339copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1da177e4
LT
1340{
1341 pgd_t *src_pgd, *dst_pgd;
1342 unsigned long next;
c78f4636
PX
1343 unsigned long addr = src_vma->vm_start;
1344 unsigned long end = src_vma->vm_end;
1345 struct mm_struct *dst_mm = dst_vma->vm_mm;
1346 struct mm_struct *src_mm = src_vma->vm_mm;
ac46d4f3 1347 struct mmu_notifier_range range;
2ec74c3e 1348 bool is_cow;
cddb8a5c 1349 int ret;
1da177e4 1350
c56d1b62 1351 if (!vma_needs_copy(dst_vma, src_vma))
0661a336 1352 return 0;
d992895b 1353
c78f4636 1354 if (is_vm_hugetlb_page(src_vma))
bc70fbf2 1355 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1da177e4 1356
c78f4636 1357 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
2ab64037 1358 /*
1359 * We do not free on error cases below as remove_vma
1360 * gets called on error from higher level routine
1361 */
c78f4636 1362 ret = track_pfn_copy(src_vma);
2ab64037 1363 if (ret)
1364 return ret;
1365 }
1366
cddb8a5c
AA
1367 /*
1368 * We need to invalidate the secondary MMU mappings only when
1369 * there could be a permission downgrade on the ptes of the
1370 * parent mm. And a permission downgrade will only happen if
1371 * is_cow_mapping() returns true.
1372 */
c78f4636 1373 is_cow = is_cow_mapping(src_vma->vm_flags);
ac46d4f3
JG
1374
1375 if (is_cow) {
7269f999 1376 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
7d4a8be0 1377 0, src_mm, addr, end);
ac46d4f3 1378 mmu_notifier_invalidate_range_start(&range);
57efa1fe
JG
1379 /*
1380 * Disabling preemption is not needed for the write side, as
1381 * the read side doesn't spin, but goes to the mmap_lock.
1382 *
1383 * Use the raw variant of the seqcount_t write API to avoid
1384 * lockdep complaining about preemptibility.
1385 */
e727bfd5 1386 vma_assert_write_locked(src_vma);
57efa1fe 1387 raw_write_seqcount_begin(&src_mm->write_protect_seq);
ac46d4f3 1388 }
cddb8a5c
AA
1389
1390 ret = 0;
1da177e4
LT
1391 dst_pgd = pgd_offset(dst_mm, addr);
1392 src_pgd = pgd_offset(src_mm, addr);
1393 do {
1394 next = pgd_addr_end(addr, end);
1395 if (pgd_none_or_clear_bad(src_pgd))
1396 continue;
c78f4636
PX
1397 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1398 addr, next))) {
d155df53 1399 untrack_pfn_clear(dst_vma);
cddb8a5c
AA
1400 ret = -ENOMEM;
1401 break;
1402 }
1da177e4 1403 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1404
57efa1fe
JG
1405 if (is_cow) {
1406 raw_write_seqcount_end(&src_mm->write_protect_seq);
ac46d4f3 1407 mmu_notifier_invalidate_range_end(&range);
57efa1fe 1408 }
cddb8a5c 1409 return ret;
1da177e4
LT
1410}
1411
5abfd71d
PX
1412/* Whether we should zap all COWed (private) pages too */
1413static inline bool should_zap_cows(struct zap_details *details)
1414{
1415 /* By default, zap all pages */
1416 if (!details)
1417 return true;
1418
1419 /* Or, we zap COWed pages only if the caller wants to */
2e148f1e 1420 return details->even_cows;
5abfd71d
PX
1421}
1422
eabafaaa
KW
1423/* Decides whether we should zap this folio with the folio pointer specified */
1424static inline bool should_zap_folio(struct zap_details *details,
1425 struct folio *folio)
3506659e 1426{
eabafaaa 1427 /* If we can make a decision without *folio.. */
5abfd71d 1428 if (should_zap_cows(details))
254ab940 1429 return true;
5abfd71d 1430
eabafaaa
KW
1431 /* Otherwise we should only zap non-anon folios */
1432 return !folio_test_anon(folio);
3506659e
MWO
1433}
1434
999dad82
PX
1435static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1436{
1437 if (!details)
1438 return false;
1439
1440 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1441}
1442
1443/*
1444 * This function makes sure that we'll replace the none pte with an uffd-wp
1445 * swap special pte marker when necessary. Must be with the pgtable lock held.
1446 */
1447static inline void
1448zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
10ebac4f 1449 unsigned long addr, pte_t *pte, int nr,
999dad82
PX
1450 struct zap_details *details, pte_t pteval)
1451{
2bad466c
PX
1452 /* Zap on anonymous always means dropping everything */
1453 if (vma_is_anonymous(vma))
1454 return;
1455
999dad82
PX
1456 if (zap_drop_file_uffd_wp(details))
1457 return;
1458
10ebac4f
DH
1459 for (;;) {
1460 /* the PFN in the PTE is irrelevant. */
1461 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1462 if (--nr == 0)
1463 break;
1464 pte++;
1465 addr += PAGE_SIZE;
1466 }
999dad82
PX
1467}
1468
10ebac4f 1469static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb,
2b42a7e5 1470 struct vm_area_struct *vma, struct folio *folio,
10ebac4f
DH
1471 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr,
1472 unsigned long addr, struct zap_details *details, int *rss,
1473 bool *force_flush, bool *force_break)
789753e1
DH
1474{
1475 struct mm_struct *mm = tlb->mm;
789753e1 1476 bool delay_rmap = false;
789753e1
DH
1477
1478 if (!folio_test_anon(folio)) {
10ebac4f 1479 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
789753e1
DH
1480 if (pte_dirty(ptent)) {
1481 folio_mark_dirty(folio);
1482 if (tlb_delay_rmap(tlb)) {
1483 delay_rmap = true;
1484 *force_flush = true;
1485 }
1486 }
1487 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1488 folio_mark_accessed(folio);
10ebac4f 1489 rss[mm_counter(folio)] -= nr;
d11838ed
DH
1490 } else {
1491 /* We don't need up-to-date accessed/dirty bits. */
10ebac4f
DH
1492 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1493 rss[MM_ANONPAGES] -= nr;
789753e1 1494 }
10ebac4f 1495 /* Checking a single PTE in a batch is sufficient. */
d11838ed 1496 arch_check_zapped_pte(vma, ptent);
10ebac4f 1497 tlb_remove_tlb_entries(tlb, pte, nr, addr);
d11838ed 1498 if (unlikely(userfaultfd_pte_wp(vma, ptent)))
10ebac4f
DH
1499 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details,
1500 ptent);
d11838ed 1501
789753e1 1502 if (!delay_rmap) {
10ebac4f
DH
1503 folio_remove_rmap_ptes(folio, page, nr, vma);
1504
1505 /* Only sanity-check the first page in a batch. */
789753e1
DH
1506 if (unlikely(page_mapcount(page) < 0))
1507 print_bad_pte(vma, addr, ptent, page);
1508 }
10ebac4f 1509 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) {
789753e1
DH
1510 *force_flush = true;
1511 *force_break = true;
1512 }
1513}
1514
10ebac4f
DH
1515/*
1516 * Zap or skip at least one present PTE, trying to batch-process subsequent
1517 * PTEs that map consecutive pages of the same folio.
1518 *
1519 * Returns the number of processed (skipped or zapped) PTEs (at least 1).
1520 */
1521static inline int zap_present_ptes(struct mmu_gather *tlb,
2b42a7e5 1522 struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
10ebac4f
DH
1523 unsigned int max_nr, unsigned long addr,
1524 struct zap_details *details, int *rss, bool *force_flush,
1525 bool *force_break)
2b42a7e5 1526{
10ebac4f 1527 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
2b42a7e5
DH
1528 struct mm_struct *mm = tlb->mm;
1529 struct folio *folio;
1530 struct page *page;
10ebac4f 1531 int nr;
2b42a7e5
DH
1532
1533 page = vm_normal_page(vma, addr, ptent);
1534 if (!page) {
1535 /* We don't need up-to-date accessed/dirty bits. */
1536 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm);
1537 arch_check_zapped_pte(vma, ptent);
1538 tlb_remove_tlb_entry(tlb, pte, addr);
1539 VM_WARN_ON_ONCE(userfaultfd_wp(vma));
1540 ksm_might_unmap_zero_page(mm, ptent);
10ebac4f 1541 return 1;
2b42a7e5
DH
1542 }
1543
1544 folio = page_folio(page);
1545 if (unlikely(!should_zap_folio(details, folio)))
10ebac4f
DH
1546 return 1;
1547
1548 /*
1549 * Make sure that the common "small folio" case is as fast as possible
1550 * by keeping the batching logic separate.
1551 */
1552 if (unlikely(folio_test_large(folio) && max_nr != 1)) {
1553 nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags,
1554 NULL);
1555
1556 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr,
1557 addr, details, rss, force_flush,
1558 force_break);
1559 return nr;
1560 }
1561 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr,
1562 details, rss, force_flush, force_break);
1563 return 1;
2b42a7e5
DH
1564}
1565
51c6f666 1566static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1567 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1568 unsigned long addr, unsigned long end,
97a89413 1569 struct zap_details *details)
1da177e4 1570{
789753e1 1571 bool force_flush = false, force_break = false;
b5810039 1572 struct mm_struct *mm = tlb->mm;
d559db08 1573 int rss[NR_MM_COUNTERS];
97a89413 1574 spinlock_t *ptl;
5f1a1907 1575 pte_t *start_pte;
97a89413 1576 pte_t *pte;
8a5f14a2 1577 swp_entry_t entry;
10ebac4f 1578 int nr;
d559db08 1579
ed6a7935 1580 tlb_change_page_size(tlb, PAGE_SIZE);
e303297e 1581 init_rss_vec(rss);
3db82b93
HD
1582 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1583 if (!pte)
1584 return addr;
1585
3ea27719 1586 flush_tlb_batched_pending(mm);
6606c3e0 1587 arch_enter_lazy_mmu_mode();
1da177e4 1588 do {
c33c7948 1589 pte_t ptent = ptep_get(pte);
789753e1 1590 struct folio *folio;
8018db85 1591 struct page *page;
10ebac4f 1592 int max_nr;
8018db85 1593
10ebac4f 1594 nr = 1;
166f61b9 1595 if (pte_none(ptent))
1da177e4 1596 continue;
6f5e6b9e 1597
7b167b68
MK
1598 if (need_resched())
1599 break;
1600
1da177e4 1601 if (pte_present(ptent)) {
10ebac4f
DH
1602 max_nr = (end - addr) / PAGE_SIZE;
1603 nr = zap_present_ptes(tlb, vma, pte, ptent, max_nr,
1604 addr, details, rss, &force_flush,
1605 &force_break);
789753e1 1606 if (unlikely(force_break)) {
10ebac4f 1607 addr += nr * PAGE_SIZE;
d16dfc55 1608 break;
1cf35d47 1609 }
1da177e4
LT
1610 continue;
1611 }
5042db43
JG
1612
1613 entry = pte_to_swp_entry(ptent);
b756a3b5
AP
1614 if (is_device_private_entry(entry) ||
1615 is_device_exclusive_entry(entry)) {
8018db85 1616 page = pfn_swap_entry_to_page(entry);
c4626503 1617 folio = page_folio(page);
eabafaaa 1618 if (unlikely(!should_zap_folio(details, folio)))
91b61ef3 1619 continue;
999dad82
PX
1620 /*
1621 * Both device private/exclusive mappings should only
1622 * work with anonymous page so far, so we don't need to
1623 * consider uffd-wp bit when zap. For more information,
1624 * see zap_install_uffd_wp_if_needed().
1625 */
1626 WARN_ON_ONCE(!vma_is_anonymous(vma));
a23f517b 1627 rss[mm_counter(folio)]--;
b756a3b5 1628 if (is_device_private_entry(entry))
c4626503
DH
1629 folio_remove_rmap_pte(folio, page, vma);
1630 folio_put(folio);
8018db85 1631 } else if (!non_swap_entry(entry)) {
5abfd71d
PX
1632 /* Genuine swap entry, hence a private anon page */
1633 if (!should_zap_cows(details))
1634 continue;
8a5f14a2 1635 rss[MM_SWAPENTS]--;
8018db85
PX
1636 if (unlikely(!free_swap_and_cache(entry)))
1637 print_bad_pte(vma, addr, ptent, NULL);
5abfd71d 1638 } else if (is_migration_entry(entry)) {
eabafaaa
KW
1639 folio = pfn_swap_entry_folio(entry);
1640 if (!should_zap_folio(details, folio))
5abfd71d 1641 continue;
a23f517b 1642 rss[mm_counter(folio)]--;
999dad82 1643 } else if (pte_marker_entry_uffd_wp(entry)) {
2bad466c
PX
1644 /*
1645 * For anon: always drop the marker; for file: only
1646 * drop the marker if explicitly requested.
1647 */
1648 if (!vma_is_anonymous(vma) &&
1649 !zap_drop_file_uffd_wp(details))
999dad82 1650 continue;
9f186f9e 1651 } else if (is_hwpoison_entry(entry) ||
af19487f 1652 is_poisoned_swp_entry(entry)) {
5abfd71d
PX
1653 if (!should_zap_cows(details))
1654 continue;
1655 } else {
1656 /* We should have covered all the swap entry types */
727d16f1 1657 pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
5abfd71d 1658 WARN_ON_ONCE(1);
b084d435 1659 }
9888a1ca 1660 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
10ebac4f
DH
1661 zap_install_uffd_wp_if_needed(vma, addr, pte, 1, details, ptent);
1662 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end);
ae859762 1663
d559db08 1664 add_mm_rss_vec(mm, rss);
6606c3e0 1665 arch_leave_lazy_mmu_mode();
51c6f666 1666
1cf35d47 1667 /* Do the actual TLB flush before dropping ptl */
5df397de 1668 if (force_flush) {
1cf35d47 1669 tlb_flush_mmu_tlbonly(tlb);
f036c818 1670 tlb_flush_rmaps(tlb, vma);
5df397de 1671 }
1cf35d47
LT
1672 pte_unmap_unlock(start_pte, ptl);
1673
1674 /*
1675 * If we forced a TLB flush (either due to running out of
1676 * batch buffers or because we needed to flush dirty TLB
1677 * entries before releasing the ptl), free the batched
3db82b93 1678 * memory too. Come back again if we didn't do everything.
1cf35d47 1679 */
3db82b93 1680 if (force_flush)
fa0aafb8 1681 tlb_flush_mmu(tlb);
d16dfc55 1682
51c6f666 1683 return addr;
1da177e4
LT
1684}
1685
51c6f666 1686static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1687 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1688 unsigned long addr, unsigned long end,
97a89413 1689 struct zap_details *details)
1da177e4
LT
1690{
1691 pmd_t *pmd;
1692 unsigned long next;
1693
1694 pmd = pmd_offset(pud, addr);
1695 do {
1696 next = pmd_addr_end(addr, end);
84c3fc4e 1697 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1698 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1699 __split_huge_pmd(vma, pmd, addr, false, NULL);
3db82b93
HD
1700 else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1701 addr = next;
1702 continue;
1703 }
71e3aac0 1704 /* fall through */
3506659e
MWO
1705 } else if (details && details->single_folio &&
1706 folio_test_pmd_mappable(details->single_folio) &&
22061a1f
HD
1707 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1708 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1709 /*
1710 * Take and drop THP pmd lock so that we cannot return
1711 * prematurely, while zap_huge_pmd() has cleared *pmd,
1712 * but not yet decremented compound_mapcount().
1713 */
1714 spin_unlock(ptl);
71e3aac0 1715 }
3db82b93
HD
1716 if (pmd_none(*pmd)) {
1717 addr = next;
1718 continue;
1719 }
1720 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1721 if (addr != next)
1722 pmd--;
1723 } while (pmd++, cond_resched(), addr != end);
51c6f666
RH
1724
1725 return addr;
1da177e4
LT
1726}
1727
51c6f666 1728static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1729 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1730 unsigned long addr, unsigned long end,
97a89413 1731 struct zap_details *details)
1da177e4
LT
1732{
1733 pud_t *pud;
1734 unsigned long next;
1735
c2febafc 1736 pud = pud_offset(p4d, addr);
1da177e4
LT
1737 do {
1738 next = pud_addr_end(addr, end);
a00cc7d9
MW
1739 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1740 if (next - addr != HPAGE_PUD_SIZE) {
42fc5414 1741 mmap_assert_locked(tlb->mm);
a00cc7d9
MW
1742 split_huge_pud(vma, pud, addr);
1743 } else if (zap_huge_pud(tlb, vma, pud, addr))
1744 goto next;
1745 /* fall through */
1746 }
97a89413 1747 if (pud_none_or_clear_bad(pud))
1da177e4 1748 continue;
97a89413 1749 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1750next:
1751 cond_resched();
97a89413 1752 } while (pud++, addr = next, addr != end);
51c6f666
RH
1753
1754 return addr;
1da177e4
LT
1755}
1756
c2febafc
KS
1757static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1758 struct vm_area_struct *vma, pgd_t *pgd,
1759 unsigned long addr, unsigned long end,
1760 struct zap_details *details)
1761{
1762 p4d_t *p4d;
1763 unsigned long next;
1764
1765 p4d = p4d_offset(pgd, addr);
1766 do {
1767 next = p4d_addr_end(addr, end);
1768 if (p4d_none_or_clear_bad(p4d))
1769 continue;
1770 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1771 } while (p4d++, addr = next, addr != end);
1772
1773 return addr;
1774}
1775
aac45363 1776void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1777 struct vm_area_struct *vma,
1778 unsigned long addr, unsigned long end,
1779 struct zap_details *details)
1da177e4
LT
1780{
1781 pgd_t *pgd;
1782 unsigned long next;
1783
1da177e4
LT
1784 BUG_ON(addr >= end);
1785 tlb_start_vma(tlb, vma);
1786 pgd = pgd_offset(vma->vm_mm, addr);
1787 do {
1788 next = pgd_addr_end(addr, end);
97a89413 1789 if (pgd_none_or_clear_bad(pgd))
1da177e4 1790 continue;
c2febafc 1791 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1792 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1793 tlb_end_vma(tlb, vma);
1794}
51c6f666 1795
f5cc4eef
AV
1796
1797static void unmap_single_vma(struct mmu_gather *tlb,
1798 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1799 unsigned long end_addr,
68f48381 1800 struct zap_details *details, bool mm_wr_locked)
f5cc4eef
AV
1801{
1802 unsigned long start = max(vma->vm_start, start_addr);
1803 unsigned long end;
1804
1805 if (start >= vma->vm_end)
1806 return;
1807 end = min(vma->vm_end, end_addr);
1808 if (end <= vma->vm_start)
1809 return;
1810
cbc91f71
SD
1811 if (vma->vm_file)
1812 uprobe_munmap(vma, start, end);
1813
b3b9c293 1814 if (unlikely(vma->vm_flags & VM_PFNMAP))
68f48381 1815 untrack_pfn(vma, 0, 0, mm_wr_locked);
f5cc4eef
AV
1816
1817 if (start != end) {
1818 if (unlikely(is_vm_hugetlb_page(vma))) {
1819 /*
1820 * It is undesirable to test vma->vm_file as it
1821 * should be non-null for valid hugetlb area.
1822 * However, vm_file will be NULL in the error
7aa6b4ad 1823 * cleanup path of mmap_region. When
f5cc4eef 1824 * hugetlbfs ->mmap method fails,
7aa6b4ad 1825 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1826 * before calling this function to clean up.
1827 * Since no pte has actually been setup, it is
1828 * safe to do nothing in this case.
1829 */
24669e58 1830 if (vma->vm_file) {
05e90bd0
PX
1831 zap_flags_t zap_flags = details ?
1832 details->zap_flags : 0;
2820b0f0 1833 __unmap_hugepage_range(tlb, vma, start, end,
05e90bd0 1834 NULL, zap_flags);
24669e58 1835 }
f5cc4eef
AV
1836 } else
1837 unmap_page_range(tlb, vma, start, end, details);
1838 }
1da177e4
LT
1839}
1840
1da177e4
LT
1841/**
1842 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1843 * @tlb: address of the caller's struct mmu_gather
6e412203 1844 * @mas: the maple state
1da177e4
LT
1845 * @vma: the starting vma
1846 * @start_addr: virtual address at which to start unmapping
1847 * @end_addr: virtual address at which to end unmapping
6e412203 1848 * @tree_end: The maximum index to check
809ef83c 1849 * @mm_wr_locked: lock flag
1da177e4 1850 *
508034a3 1851 * Unmap all pages in the vma list.
1da177e4 1852 *
1da177e4
LT
1853 * Only addresses between `start' and `end' will be unmapped.
1854 *
1855 * The VMA list must be sorted in ascending virtual address order.
1856 *
1857 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1858 * range after unmap_vmas() returns. So the only responsibility here is to
1859 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1860 * drops the lock and schedules.
1861 */
fd892593 1862void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1da177e4 1863 struct vm_area_struct *vma, unsigned long start_addr,
fd892593
LH
1864 unsigned long end_addr, unsigned long tree_end,
1865 bool mm_wr_locked)
1da177e4 1866{
ac46d4f3 1867 struct mmu_notifier_range range;
999dad82 1868 struct zap_details details = {
04ada095 1869 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
999dad82
PX
1870 /* Careful - we need to zap private pages too! */
1871 .even_cows = true,
1872 };
1da177e4 1873
7d4a8be0 1874 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
6f4f13e8 1875 start_addr, end_addr);
ac46d4f3 1876 mmu_notifier_invalidate_range_start(&range);
763ecb03 1877 do {
2820b0f0
RR
1878 unsigned long start = start_addr;
1879 unsigned long end = end_addr;
1880 hugetlb_zap_begin(vma, &start, &end);
1881 unmap_single_vma(tlb, vma, start, end, &details,
68f48381 1882 mm_wr_locked);
2820b0f0 1883 hugetlb_zap_end(vma, &details);
d2406291
PZ
1884 vma = mas_find(mas, tree_end - 1);
1885 } while (vma && likely(!xa_is_zero(vma)));
ac46d4f3 1886 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1887}
1888
f5cc4eef
AV
1889/**
1890 * zap_page_range_single - remove user pages in a given range
1891 * @vma: vm_area_struct holding the applicable pages
1892 * @address: starting address of pages to zap
1893 * @size: number of bytes to zap
8a5f14a2 1894 * @details: details of shared cache invalidation
f5cc4eef
AV
1895 *
1896 * The range must fit into one VMA.
1da177e4 1897 */
21b85b09 1898void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1899 unsigned long size, struct zap_details *details)
1900{
21b85b09 1901 const unsigned long end = address + size;
ac46d4f3 1902 struct mmu_notifier_range range;
d16dfc55 1903 struct mmu_gather tlb;
1da177e4 1904
1da177e4 1905 lru_add_drain();
7d4a8be0 1906 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
21b85b09 1907 address, end);
2820b0f0 1908 hugetlb_zap_begin(vma, &range.start, &range.end);
a72afd87 1909 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1910 update_hiwater_rss(vma->vm_mm);
1911 mmu_notifier_invalidate_range_start(&range);
21b85b09
MK
1912 /*
1913 * unmap 'address-end' not 'range.start-range.end' as range
1914 * could have been expanded for hugetlb pmd sharing.
1915 */
68f48381 1916 unmap_single_vma(&tlb, vma, address, end, details, false);
ac46d4f3 1917 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1918 tlb_finish_mmu(&tlb);
2820b0f0 1919 hugetlb_zap_end(vma, details);
1da177e4
LT
1920}
1921
c627f9cc
JS
1922/**
1923 * zap_vma_ptes - remove ptes mapping the vma
1924 * @vma: vm_area_struct holding ptes to be zapped
1925 * @address: starting address of pages to zap
1926 * @size: number of bytes to zap
1927 *
1928 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1929 *
1930 * The entire address range must be fully contained within the vma.
1931 *
c627f9cc 1932 */
27d036e3 1933void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1934 unsigned long size)
1935{
88a35912 1936 if (!range_in_vma(vma, address, address + size) ||
c627f9cc 1937 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1938 return;
1939
f5cc4eef 1940 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1941}
1942EXPORT_SYMBOL_GPL(zap_vma_ptes);
1943
8cd3984d 1944static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
c9cfcddf 1945{
c2febafc
KS
1946 pgd_t *pgd;
1947 p4d_t *p4d;
1948 pud_t *pud;
1949 pmd_t *pmd;
1950
1951 pgd = pgd_offset(mm, addr);
1952 p4d = p4d_alloc(mm, pgd, addr);
1953 if (!p4d)
1954 return NULL;
1955 pud = pud_alloc(mm, p4d, addr);
1956 if (!pud)
1957 return NULL;
1958 pmd = pmd_alloc(mm, pud, addr);
1959 if (!pmd)
1960 return NULL;
1961
1962 VM_BUG_ON(pmd_trans_huge(*pmd));
8cd3984d
AR
1963 return pmd;
1964}
1965
1966pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1967 spinlock_t **ptl)
1968{
1969 pmd_t *pmd = walk_to_pmd(mm, addr);
1970
1971 if (!pmd)
1972 return NULL;
c2febafc 1973 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1974}
1975
8efd6f5b
AR
1976static int validate_page_before_insert(struct page *page)
1977{
f8b6187d
KW
1978 struct folio *folio = page_folio(page);
1979
1980 if (folio_test_anon(folio) || folio_test_slab(folio) ||
1981 page_has_type(page))
8efd6f5b 1982 return -EINVAL;
f8b6187d 1983 flush_dcache_folio(folio);
8efd6f5b
AR
1984 return 0;
1985}
1986
cea86fe2 1987static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
8efd6f5b
AR
1988 unsigned long addr, struct page *page, pgprot_t prot)
1989{
ef37b2ea
DH
1990 struct folio *folio = page_folio(page);
1991
c33c7948 1992 if (!pte_none(ptep_get(pte)))
8efd6f5b
AR
1993 return -EBUSY;
1994 /* Ok, finally just insert the thing.. */
ef37b2ea 1995 folio_get(folio);
6b27cc6c 1996 inc_mm_counter(vma->vm_mm, mm_counter_file(folio));
ef37b2ea 1997 folio_add_file_rmap_pte(folio, page, vma);
cea86fe2 1998 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
8efd6f5b
AR
1999 return 0;
2000}
2001
238f58d8
LT
2002/*
2003 * This is the old fallback for page remapping.
2004 *
2005 * For historical reasons, it only allows reserved pages. Only
2006 * old drivers should use this, and they needed to mark their
2007 * pages reserved for the old functions anyway.
2008 */
423bad60
NP
2009static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2010 struct page *page, pgprot_t prot)
238f58d8
LT
2011{
2012 int retval;
c9cfcddf 2013 pte_t *pte;
8a9f3ccd
BS
2014 spinlock_t *ptl;
2015
8efd6f5b
AR
2016 retval = validate_page_before_insert(page);
2017 if (retval)
5b4e655e 2018 goto out;
238f58d8 2019 retval = -ENOMEM;
cea86fe2 2020 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
238f58d8 2021 if (!pte)
5b4e655e 2022 goto out;
cea86fe2 2023 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
238f58d8
LT
2024 pte_unmap_unlock(pte, ptl);
2025out:
2026 return retval;
2027}
2028
cea86fe2 2029static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
8cd3984d
AR
2030 unsigned long addr, struct page *page, pgprot_t prot)
2031{
2032 int err;
2033
2034 if (!page_count(page))
2035 return -EINVAL;
2036 err = validate_page_before_insert(page);
7f70c2a6
AR
2037 if (err)
2038 return err;
cea86fe2 2039 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
8cd3984d
AR
2040}
2041
2042/* insert_pages() amortizes the cost of spinlock operations
bb7dbaaf 2043 * when inserting pages in a loop.
8cd3984d
AR
2044 */
2045static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
2046 struct page **pages, unsigned long *num, pgprot_t prot)
2047{
2048 pmd_t *pmd = NULL;
7f70c2a6
AR
2049 pte_t *start_pte, *pte;
2050 spinlock_t *pte_lock;
8cd3984d
AR
2051 struct mm_struct *const mm = vma->vm_mm;
2052 unsigned long curr_page_idx = 0;
2053 unsigned long remaining_pages_total = *num;
2054 unsigned long pages_to_write_in_pmd;
2055 int ret;
2056more:
2057 ret = -EFAULT;
2058 pmd = walk_to_pmd(mm, addr);
2059 if (!pmd)
2060 goto out;
2061
2062 pages_to_write_in_pmd = min_t(unsigned long,
2063 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
2064
2065 /* Allocate the PTE if necessary; takes PMD lock once only. */
2066 ret = -ENOMEM;
2067 if (pte_alloc(mm, pmd))
2068 goto out;
8cd3984d
AR
2069
2070 while (pages_to_write_in_pmd) {
2071 int pte_idx = 0;
2072 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
2073
7f70c2a6 2074 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
3db82b93
HD
2075 if (!start_pte) {
2076 ret = -EFAULT;
2077 goto out;
2078 }
7f70c2a6 2079 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
cea86fe2 2080 int err = insert_page_in_batch_locked(vma, pte,
8cd3984d
AR
2081 addr, pages[curr_page_idx], prot);
2082 if (unlikely(err)) {
7f70c2a6 2083 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
2084 ret = err;
2085 remaining_pages_total -= pte_idx;
2086 goto out;
2087 }
2088 addr += PAGE_SIZE;
2089 ++curr_page_idx;
2090 }
7f70c2a6 2091 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
2092 pages_to_write_in_pmd -= batch_size;
2093 remaining_pages_total -= batch_size;
2094 }
2095 if (remaining_pages_total)
2096 goto more;
2097 ret = 0;
2098out:
2099 *num = remaining_pages_total;
2100 return ret;
2101}
8cd3984d
AR
2102
2103/**
2104 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
2105 * @vma: user vma to map to
2106 * @addr: target start user address of these pages
2107 * @pages: source kernel pages
2108 * @num: in: number of pages to map. out: number of pages that were *not*
2109 * mapped. (0 means all pages were successfully mapped).
2110 *
2111 * Preferred over vm_insert_page() when inserting multiple pages.
2112 *
2113 * In case of error, we may have mapped a subset of the provided
2114 * pages. It is the caller's responsibility to account for this case.
2115 *
2116 * The same restrictions apply as in vm_insert_page().
2117 */
2118int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2119 struct page **pages, unsigned long *num)
2120{
8cd3984d
AR
2121 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
2122
2123 if (addr < vma->vm_start || end_addr >= vma->vm_end)
2124 return -EFAULT;
2125 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 2126 BUG_ON(mmap_read_trylock(vma->vm_mm));
8cd3984d 2127 BUG_ON(vma->vm_flags & VM_PFNMAP);
1c71222e 2128 vm_flags_set(vma, VM_MIXEDMAP);
8cd3984d
AR
2129 }
2130 /* Defer page refcount checking till we're about to map that page. */
2131 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
8cd3984d
AR
2132}
2133EXPORT_SYMBOL(vm_insert_pages);
2134
bfa5bf6d
REB
2135/**
2136 * vm_insert_page - insert single page into user vma
2137 * @vma: user vma to map to
2138 * @addr: target user address of this page
2139 * @page: source kernel page
2140 *
a145dd41
LT
2141 * This allows drivers to insert individual pages they've allocated
2142 * into a user vma.
2143 *
2144 * The page has to be a nice clean _individual_ kernel allocation.
2145 * If you allocate a compound page, you need to have marked it as
2146 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 2147 * (see split_page()).
a145dd41
LT
2148 *
2149 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2150 * took an arbitrary page protection parameter. This doesn't allow
2151 * that. Your vma protection will have to be set up correctly, which
2152 * means that if you want a shared writable mapping, you'd better
2153 * ask for a shared writable mapping!
2154 *
2155 * The page does not need to be reserved.
4b6e1e37
KK
2156 *
2157 * Usually this function is called from f_op->mmap() handler
c1e8d7c6 2158 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
4b6e1e37
KK
2159 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2160 * function from other places, for example from page-fault handler.
a862f68a
MR
2161 *
2162 * Return: %0 on success, negative error code otherwise.
a145dd41 2163 */
423bad60
NP
2164int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2165 struct page *page)
a145dd41
LT
2166{
2167 if (addr < vma->vm_start || addr >= vma->vm_end)
2168 return -EFAULT;
2169 if (!page_count(page))
2170 return -EINVAL;
4b6e1e37 2171 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 2172 BUG_ON(mmap_read_trylock(vma->vm_mm));
4b6e1e37 2173 BUG_ON(vma->vm_flags & VM_PFNMAP);
1c71222e 2174 vm_flags_set(vma, VM_MIXEDMAP);
4b6e1e37 2175 }
423bad60 2176 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 2177}
e3c3374f 2178EXPORT_SYMBOL(vm_insert_page);
a145dd41 2179
a667d745
SJ
2180/*
2181 * __vm_map_pages - maps range of kernel pages into user vma
2182 * @vma: user vma to map to
2183 * @pages: pointer to array of source kernel pages
2184 * @num: number of pages in page array
2185 * @offset: user's requested vm_pgoff
2186 *
2187 * This allows drivers to map range of kernel pages into a user vma.
2188 *
2189 * Return: 0 on success and error code otherwise.
2190 */
2191static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2192 unsigned long num, unsigned long offset)
2193{
2194 unsigned long count = vma_pages(vma);
2195 unsigned long uaddr = vma->vm_start;
2196 int ret, i;
2197
2198 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 2199 if (offset >= num)
a667d745
SJ
2200 return -ENXIO;
2201
2202 /* Fail if the user requested size exceeds available object size */
2203 if (count > num - offset)
2204 return -ENXIO;
2205
2206 for (i = 0; i < count; i++) {
2207 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2208 if (ret < 0)
2209 return ret;
2210 uaddr += PAGE_SIZE;
2211 }
2212
2213 return 0;
2214}
2215
2216/**
2217 * vm_map_pages - maps range of kernel pages starts with non zero offset
2218 * @vma: user vma to map to
2219 * @pages: pointer to array of source kernel pages
2220 * @num: number of pages in page array
2221 *
2222 * Maps an object consisting of @num pages, catering for the user's
2223 * requested vm_pgoff
2224 *
2225 * If we fail to insert any page into the vma, the function will return
2226 * immediately leaving any previously inserted pages present. Callers
2227 * from the mmap handler may immediately return the error as their caller
2228 * will destroy the vma, removing any successfully inserted pages. Other
2229 * callers should make their own arrangements for calling unmap_region().
2230 *
2231 * Context: Process context. Called by mmap handlers.
2232 * Return: 0 on success and error code otherwise.
2233 */
2234int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2235 unsigned long num)
2236{
2237 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2238}
2239EXPORT_SYMBOL(vm_map_pages);
2240
2241/**
2242 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2243 * @vma: user vma to map to
2244 * @pages: pointer to array of source kernel pages
2245 * @num: number of pages in page array
2246 *
2247 * Similar to vm_map_pages(), except that it explicitly sets the offset
2248 * to 0. This function is intended for the drivers that did not consider
2249 * vm_pgoff.
2250 *
2251 * Context: Process context. Called by mmap handlers.
2252 * Return: 0 on success and error code otherwise.
2253 */
2254int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2255 unsigned long num)
2256{
2257 return __vm_map_pages(vma, pages, num, 0);
2258}
2259EXPORT_SYMBOL(vm_map_pages_zero);
2260
9b5a8e00 2261static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 2262 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
2263{
2264 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
2265 pte_t *pte, entry;
2266 spinlock_t *ptl;
2267
423bad60
NP
2268 pte = get_locked_pte(mm, addr, &ptl);
2269 if (!pte)
9b5a8e00 2270 return VM_FAULT_OOM;
c33c7948
RR
2271 entry = ptep_get(pte);
2272 if (!pte_none(entry)) {
b2770da6
RZ
2273 if (mkwrite) {
2274 /*
2275 * For read faults on private mappings the PFN passed
2276 * in may not match the PFN we have mapped if the
2277 * mapped PFN is a writeable COW page. In the mkwrite
2278 * case we are creating a writable PTE for a shared
f2c57d91
JK
2279 * mapping and we expect the PFNs to match. If they
2280 * don't match, we are likely racing with block
2281 * allocation and mapping invalidation so just skip the
2282 * update.
b2770da6 2283 */
c33c7948
RR
2284 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2285 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
b2770da6 2286 goto out_unlock;
f2c57d91 2287 }
c33c7948 2288 entry = pte_mkyoung(entry);
cae85cb8
JK
2289 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2290 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2291 update_mmu_cache(vma, addr, pte);
2292 }
2293 goto out_unlock;
b2770da6 2294 }
423bad60
NP
2295
2296 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
2297 if (pfn_t_devmap(pfn))
2298 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2299 else
2300 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 2301
b2770da6
RZ
2302 if (mkwrite) {
2303 entry = pte_mkyoung(entry);
2304 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2305 }
2306
423bad60 2307 set_pte_at(mm, addr, pte, entry);
4b3073e1 2308 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 2309
423bad60
NP
2310out_unlock:
2311 pte_unmap_unlock(pte, ptl);
9b5a8e00 2312 return VM_FAULT_NOPAGE;
423bad60
NP
2313}
2314
f5e6d1d5
MW
2315/**
2316 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2317 * @vma: user vma to map to
2318 * @addr: target user address of this page
2319 * @pfn: source kernel pfn
2320 * @pgprot: pgprot flags for the inserted page
2321 *
a1a0aea5 2322 * This is exactly like vmf_insert_pfn(), except that it allows drivers
f5e6d1d5
MW
2323 * to override pgprot on a per-page basis.
2324 *
2325 * This only makes sense for IO mappings, and it makes no sense for
2326 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 2327 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
2328 * impractical.
2329 *
28d8b812
LS
2330 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2331 * caching- and encryption bits different than those of @vma->vm_page_prot,
2332 * because the caching- or encryption mode may not be known at mmap() time.
2333 *
2334 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2335 * to set caching and encryption bits for those vmas (except for COW pages).
2336 * This is ensured by core vm only modifying these page table entries using
2337 * functions that don't touch caching- or encryption bits, using pte_modify()
2338 * if needed. (See for example mprotect()).
2339 *
2340 * Also when new page-table entries are created, this is only done using the
2341 * fault() callback, and never using the value of vma->vm_page_prot,
2342 * except for page-table entries that point to anonymous pages as the result
2343 * of COW.
574c5b3d 2344 *
ae2b01f3 2345 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
2346 * Return: vm_fault_t value.
2347 */
2348vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2349 unsigned long pfn, pgprot_t pgprot)
2350{
6d958546
MW
2351 /*
2352 * Technically, architectures with pte_special can avoid all these
2353 * restrictions (same for remap_pfn_range). However we would like
2354 * consistency in testing and feature parity among all, so we should
2355 * try to keep these invariants in place for everybody.
2356 */
2357 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2358 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2359 (VM_PFNMAP|VM_MIXEDMAP));
2360 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2361 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2362
2363 if (addr < vma->vm_start || addr >= vma->vm_end)
2364 return VM_FAULT_SIGBUS;
2365
2366 if (!pfn_modify_allowed(pfn, pgprot))
2367 return VM_FAULT_SIGBUS;
2368
2369 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2370
9b5a8e00 2371 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 2372 false);
f5e6d1d5
MW
2373}
2374EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 2375
ae2b01f3
MW
2376/**
2377 * vmf_insert_pfn - insert single pfn into user vma
2378 * @vma: user vma to map to
2379 * @addr: target user address of this page
2380 * @pfn: source kernel pfn
2381 *
2382 * Similar to vm_insert_page, this allows drivers to insert individual pages
2383 * they've allocated into a user vma. Same comments apply.
2384 *
2385 * This function should only be called from a vm_ops->fault handler, and
2386 * in that case the handler should return the result of this function.
2387 *
2388 * vma cannot be a COW mapping.
2389 *
2390 * As this is called only for pages that do not currently exist, we
2391 * do not need to flush old virtual caches or the TLB.
2392 *
2393 * Context: Process context. May allocate using %GFP_KERNEL.
2394 * Return: vm_fault_t value.
2395 */
2396vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2397 unsigned long pfn)
2398{
2399 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2400}
2401EXPORT_SYMBOL(vmf_insert_pfn);
2402
785a3fab
DW
2403static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2404{
2405 /* these checks mirror the abort conditions in vm_normal_page */
2406 if (vma->vm_flags & VM_MIXEDMAP)
2407 return true;
2408 if (pfn_t_devmap(pfn))
2409 return true;
2410 if (pfn_t_special(pfn))
2411 return true;
2412 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2413 return true;
2414 return false;
2415}
2416
79f3aa5b 2417static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
28d8b812 2418 unsigned long addr, pfn_t pfn, bool mkwrite)
423bad60 2419{
28d8b812 2420 pgprot_t pgprot = vma->vm_page_prot;
79f3aa5b 2421 int err;
87744ab3 2422
785a3fab 2423 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 2424
423bad60 2425 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 2426 return VM_FAULT_SIGBUS;
308a047c
BP
2427
2428 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 2429
42e4089c 2430 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 2431 return VM_FAULT_SIGBUS;
42e4089c 2432
423bad60
NP
2433 /*
2434 * If we don't have pte special, then we have to use the pfn_valid()
2435 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2436 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2437 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2438 * without pte special, it would there be refcounted as a normal page.
423bad60 2439 */
00b3a331
LD
2440 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2441 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
2442 struct page *page;
2443
03fc2da6
DW
2444 /*
2445 * At this point we are committed to insert_page()
2446 * regardless of whether the caller specified flags that
2447 * result in pfn_t_has_page() == false.
2448 */
2449 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
2450 err = insert_page(vma, addr, page, pgprot);
2451 } else {
9b5a8e00 2452 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 2453 }
b2770da6 2454
5d747637
MW
2455 if (err == -ENOMEM)
2456 return VM_FAULT_OOM;
2457 if (err < 0 && err != -EBUSY)
2458 return VM_FAULT_SIGBUS;
2459
2460 return VM_FAULT_NOPAGE;
e0dc0d8f 2461}
79f3aa5b
MW
2462
2463vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2464 pfn_t pfn)
2465{
28d8b812 2466 return __vm_insert_mixed(vma, addr, pfn, false);
79f3aa5b 2467}
5d747637 2468EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 2469
ab77dab4
SJ
2470/*
2471 * If the insertion of PTE failed because someone else already added a
2472 * different entry in the mean time, we treat that as success as we assume
2473 * the same entry was actually inserted.
2474 */
ab77dab4
SJ
2475vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2476 unsigned long addr, pfn_t pfn)
b2770da6 2477{
28d8b812 2478 return __vm_insert_mixed(vma, addr, pfn, true);
b2770da6 2479}
ab77dab4 2480EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 2481
1da177e4
LT
2482/*
2483 * maps a range of physical memory into the requested pages. the old
2484 * mappings are removed. any references to nonexistent pages results
2485 * in null mappings (currently treated as "copy-on-access")
2486 */
2487static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2488 unsigned long addr, unsigned long end,
2489 unsigned long pfn, pgprot_t prot)
2490{
90a3e375 2491 pte_t *pte, *mapped_pte;
c74df32c 2492 spinlock_t *ptl;
42e4089c 2493 int err = 0;
1da177e4 2494
90a3e375 2495 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2496 if (!pte)
2497 return -ENOMEM;
6606c3e0 2498 arch_enter_lazy_mmu_mode();
1da177e4 2499 do {
c33c7948 2500 BUG_ON(!pte_none(ptep_get(pte)));
42e4089c
AK
2501 if (!pfn_modify_allowed(pfn, prot)) {
2502 err = -EACCES;
2503 break;
2504 }
7e675137 2505 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2506 pfn++;
2507 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2508 arch_leave_lazy_mmu_mode();
90a3e375 2509 pte_unmap_unlock(mapped_pte, ptl);
42e4089c 2510 return err;
1da177e4
LT
2511}
2512
2513static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2514 unsigned long addr, unsigned long end,
2515 unsigned long pfn, pgprot_t prot)
2516{
2517 pmd_t *pmd;
2518 unsigned long next;
42e4089c 2519 int err;
1da177e4
LT
2520
2521 pfn -= addr >> PAGE_SHIFT;
2522 pmd = pmd_alloc(mm, pud, addr);
2523 if (!pmd)
2524 return -ENOMEM;
f66055ab 2525 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2526 do {
2527 next = pmd_addr_end(addr, end);
42e4089c
AK
2528 err = remap_pte_range(mm, pmd, addr, next,
2529 pfn + (addr >> PAGE_SHIFT), prot);
2530 if (err)
2531 return err;
1da177e4
LT
2532 } while (pmd++, addr = next, addr != end);
2533 return 0;
2534}
2535
c2febafc 2536static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2537 unsigned long addr, unsigned long end,
2538 unsigned long pfn, pgprot_t prot)
2539{
2540 pud_t *pud;
2541 unsigned long next;
42e4089c 2542 int err;
1da177e4
LT
2543
2544 pfn -= addr >> PAGE_SHIFT;
c2febafc 2545 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2546 if (!pud)
2547 return -ENOMEM;
2548 do {
2549 next = pud_addr_end(addr, end);
42e4089c
AK
2550 err = remap_pmd_range(mm, pud, addr, next,
2551 pfn + (addr >> PAGE_SHIFT), prot);
2552 if (err)
2553 return err;
1da177e4
LT
2554 } while (pud++, addr = next, addr != end);
2555 return 0;
2556}
2557
c2febafc
KS
2558static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2559 unsigned long addr, unsigned long end,
2560 unsigned long pfn, pgprot_t prot)
2561{
2562 p4d_t *p4d;
2563 unsigned long next;
42e4089c 2564 int err;
c2febafc
KS
2565
2566 pfn -= addr >> PAGE_SHIFT;
2567 p4d = p4d_alloc(mm, pgd, addr);
2568 if (!p4d)
2569 return -ENOMEM;
2570 do {
2571 next = p4d_addr_end(addr, end);
42e4089c
AK
2572 err = remap_pud_range(mm, p4d, addr, next,
2573 pfn + (addr >> PAGE_SHIFT), prot);
2574 if (err)
2575 return err;
c2febafc
KS
2576 } while (p4d++, addr = next, addr != end);
2577 return 0;
2578}
2579
74ffa5a3
CH
2580/*
2581 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2582 * must have pre-validated the caching bits of the pgprot_t.
bfa5bf6d 2583 */
74ffa5a3
CH
2584int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2585 unsigned long pfn, unsigned long size, pgprot_t prot)
1da177e4
LT
2586{
2587 pgd_t *pgd;
2588 unsigned long next;
2d15cab8 2589 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2590 struct mm_struct *mm = vma->vm_mm;
2591 int err;
2592
0c4123e3
AZ
2593 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2594 return -EINVAL;
2595
1da177e4
LT
2596 /*
2597 * Physically remapped pages are special. Tell the
2598 * rest of the world about it:
2599 * VM_IO tells people not to look at these pages
2600 * (accesses can have side effects).
6aab341e
LT
2601 * VM_PFNMAP tells the core MM that the base pages are just
2602 * raw PFN mappings, and do not have a "struct page" associated
2603 * with them.
314e51b9
KK
2604 * VM_DONTEXPAND
2605 * Disable vma merging and expanding with mremap().
2606 * VM_DONTDUMP
2607 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2608 *
2609 * There's a horrible special case to handle copy-on-write
2610 * behaviour that some programs depend on. We mark the "original"
2611 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2612 * See vm_normal_page() for details.
1da177e4 2613 */
b3b9c293
KK
2614 if (is_cow_mapping(vma->vm_flags)) {
2615 if (addr != vma->vm_start || end != vma->vm_end)
2616 return -EINVAL;
fb155c16 2617 vma->vm_pgoff = pfn;
b3b9c293
KK
2618 }
2619
1c71222e 2620 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
1da177e4
LT
2621
2622 BUG_ON(addr >= end);
2623 pfn -= addr >> PAGE_SHIFT;
2624 pgd = pgd_offset(mm, addr);
2625 flush_cache_range(vma, addr, end);
1da177e4
LT
2626 do {
2627 next = pgd_addr_end(addr, end);
c2febafc 2628 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2629 pfn + (addr >> PAGE_SHIFT), prot);
2630 if (err)
74ffa5a3 2631 return err;
1da177e4 2632 } while (pgd++, addr = next, addr != end);
2ab64037 2633
74ffa5a3
CH
2634 return 0;
2635}
2636
2637/**
2638 * remap_pfn_range - remap kernel memory to userspace
2639 * @vma: user vma to map to
2640 * @addr: target page aligned user address to start at
2641 * @pfn: page frame number of kernel physical memory address
2642 * @size: size of mapping area
2643 * @prot: page protection flags for this mapping
2644 *
2645 * Note: this is only safe if the mm semaphore is held when called.
2646 *
2647 * Return: %0 on success, negative error code otherwise.
2648 */
2649int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2650 unsigned long pfn, unsigned long size, pgprot_t prot)
2651{
2652 int err;
2653
2654 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2ab64037 2655 if (err)
74ffa5a3 2656 return -EINVAL;
2ab64037 2657
74ffa5a3
CH
2658 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2659 if (err)
68f48381 2660 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
1da177e4
LT
2661 return err;
2662}
2663EXPORT_SYMBOL(remap_pfn_range);
2664
b4cbb197
LT
2665/**
2666 * vm_iomap_memory - remap memory to userspace
2667 * @vma: user vma to map to
abd69b9e 2668 * @start: start of the physical memory to be mapped
b4cbb197
LT
2669 * @len: size of area
2670 *
2671 * This is a simplified io_remap_pfn_range() for common driver use. The
2672 * driver just needs to give us the physical memory range to be mapped,
2673 * we'll figure out the rest from the vma information.
2674 *
2675 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2676 * whatever write-combining details or similar.
a862f68a
MR
2677 *
2678 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2679 */
2680int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2681{
2682 unsigned long vm_len, pfn, pages;
2683
2684 /* Check that the physical memory area passed in looks valid */
2685 if (start + len < start)
2686 return -EINVAL;
2687 /*
2688 * You *really* shouldn't map things that aren't page-aligned,
2689 * but we've historically allowed it because IO memory might
2690 * just have smaller alignment.
2691 */
2692 len += start & ~PAGE_MASK;
2693 pfn = start >> PAGE_SHIFT;
2694 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2695 if (pfn + pages < pfn)
2696 return -EINVAL;
2697
2698 /* We start the mapping 'vm_pgoff' pages into the area */
2699 if (vma->vm_pgoff > pages)
2700 return -EINVAL;
2701 pfn += vma->vm_pgoff;
2702 pages -= vma->vm_pgoff;
2703
2704 /* Can we fit all of the mapping? */
2705 vm_len = vma->vm_end - vma->vm_start;
2706 if (vm_len >> PAGE_SHIFT > pages)
2707 return -EINVAL;
2708
2709 /* Ok, let it rip */
2710 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2711}
2712EXPORT_SYMBOL(vm_iomap_memory);
2713
aee16b3c
JF
2714static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2715 unsigned long addr, unsigned long end,
e80d3909
JR
2716 pte_fn_t fn, void *data, bool create,
2717 pgtbl_mod_mask *mask)
aee16b3c 2718{
8abb50c7 2719 pte_t *pte, *mapped_pte;
be1db475 2720 int err = 0;
3f649ab7 2721 spinlock_t *ptl;
aee16b3c 2722
be1db475 2723 if (create) {
8abb50c7 2724 mapped_pte = pte = (mm == &init_mm) ?
e80d3909 2725 pte_alloc_kernel_track(pmd, addr, mask) :
be1db475
DA
2726 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2727 if (!pte)
2728 return -ENOMEM;
2729 } else {
8abb50c7 2730 mapped_pte = pte = (mm == &init_mm) ?
be1db475
DA
2731 pte_offset_kernel(pmd, addr) :
2732 pte_offset_map_lock(mm, pmd, addr, &ptl);
3db82b93
HD
2733 if (!pte)
2734 return -EINVAL;
be1db475 2735 }
aee16b3c 2736
38e0edb1
JF
2737 arch_enter_lazy_mmu_mode();
2738
eeb4a05f
CH
2739 if (fn) {
2740 do {
c33c7948 2741 if (create || !pte_none(ptep_get(pte))) {
eeb4a05f
CH
2742 err = fn(pte++, addr, data);
2743 if (err)
2744 break;
2745 }
2746 } while (addr += PAGE_SIZE, addr != end);
2747 }
e80d3909 2748 *mask |= PGTBL_PTE_MODIFIED;
aee16b3c 2749
38e0edb1
JF
2750 arch_leave_lazy_mmu_mode();
2751
aee16b3c 2752 if (mm != &init_mm)
8abb50c7 2753 pte_unmap_unlock(mapped_pte, ptl);
aee16b3c
JF
2754 return err;
2755}
2756
2757static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2758 unsigned long addr, unsigned long end,
e80d3909
JR
2759 pte_fn_t fn, void *data, bool create,
2760 pgtbl_mod_mask *mask)
aee16b3c
JF
2761{
2762 pmd_t *pmd;
2763 unsigned long next;
be1db475 2764 int err = 0;
aee16b3c 2765
ceb86879
AK
2766 BUG_ON(pud_huge(*pud));
2767
be1db475 2768 if (create) {
e80d3909 2769 pmd = pmd_alloc_track(mm, pud, addr, mask);
be1db475
DA
2770 if (!pmd)
2771 return -ENOMEM;
2772 } else {
2773 pmd = pmd_offset(pud, addr);
2774 }
aee16b3c
JF
2775 do {
2776 next = pmd_addr_end(addr, end);
0c95cba4
NP
2777 if (pmd_none(*pmd) && !create)
2778 continue;
2779 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2780 return -EINVAL;
2781 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2782 if (!create)
2783 continue;
2784 pmd_clear_bad(pmd);
be1db475 2785 }
0c95cba4
NP
2786 err = apply_to_pte_range(mm, pmd, addr, next,
2787 fn, data, create, mask);
2788 if (err)
2789 break;
aee16b3c 2790 } while (pmd++, addr = next, addr != end);
0c95cba4 2791
aee16b3c
JF
2792 return err;
2793}
2794
c2febafc 2795static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2796 unsigned long addr, unsigned long end,
e80d3909
JR
2797 pte_fn_t fn, void *data, bool create,
2798 pgtbl_mod_mask *mask)
aee16b3c
JF
2799{
2800 pud_t *pud;
2801 unsigned long next;
be1db475 2802 int err = 0;
aee16b3c 2803
be1db475 2804 if (create) {
e80d3909 2805 pud = pud_alloc_track(mm, p4d, addr, mask);
be1db475
DA
2806 if (!pud)
2807 return -ENOMEM;
2808 } else {
2809 pud = pud_offset(p4d, addr);
2810 }
aee16b3c
JF
2811 do {
2812 next = pud_addr_end(addr, end);
0c95cba4
NP
2813 if (pud_none(*pud) && !create)
2814 continue;
2815 if (WARN_ON_ONCE(pud_leaf(*pud)))
2816 return -EINVAL;
2817 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2818 if (!create)
2819 continue;
2820 pud_clear_bad(pud);
be1db475 2821 }
0c95cba4
NP
2822 err = apply_to_pmd_range(mm, pud, addr, next,
2823 fn, data, create, mask);
2824 if (err)
2825 break;
aee16b3c 2826 } while (pud++, addr = next, addr != end);
0c95cba4 2827
aee16b3c
JF
2828 return err;
2829}
2830
c2febafc
KS
2831static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2832 unsigned long addr, unsigned long end,
e80d3909
JR
2833 pte_fn_t fn, void *data, bool create,
2834 pgtbl_mod_mask *mask)
c2febafc
KS
2835{
2836 p4d_t *p4d;
2837 unsigned long next;
be1db475 2838 int err = 0;
c2febafc 2839
be1db475 2840 if (create) {
e80d3909 2841 p4d = p4d_alloc_track(mm, pgd, addr, mask);
be1db475
DA
2842 if (!p4d)
2843 return -ENOMEM;
2844 } else {
2845 p4d = p4d_offset(pgd, addr);
2846 }
c2febafc
KS
2847 do {
2848 next = p4d_addr_end(addr, end);
0c95cba4
NP
2849 if (p4d_none(*p4d) && !create)
2850 continue;
2851 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2852 return -EINVAL;
2853 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2854 if (!create)
2855 continue;
2856 p4d_clear_bad(p4d);
be1db475 2857 }
0c95cba4
NP
2858 err = apply_to_pud_range(mm, p4d, addr, next,
2859 fn, data, create, mask);
2860 if (err)
2861 break;
c2febafc 2862 } while (p4d++, addr = next, addr != end);
0c95cba4 2863
c2febafc
KS
2864 return err;
2865}
2866
be1db475
DA
2867static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2868 unsigned long size, pte_fn_t fn,
2869 void *data, bool create)
aee16b3c
JF
2870{
2871 pgd_t *pgd;
e80d3909 2872 unsigned long start = addr, next;
57250a5b 2873 unsigned long end = addr + size;
e80d3909 2874 pgtbl_mod_mask mask = 0;
be1db475 2875 int err = 0;
aee16b3c 2876
9cb65bc3
MP
2877 if (WARN_ON(addr >= end))
2878 return -EINVAL;
2879
aee16b3c
JF
2880 pgd = pgd_offset(mm, addr);
2881 do {
2882 next = pgd_addr_end(addr, end);
0c95cba4 2883 if (pgd_none(*pgd) && !create)
be1db475 2884 continue;
0c95cba4
NP
2885 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2886 return -EINVAL;
2887 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2888 if (!create)
2889 continue;
2890 pgd_clear_bad(pgd);
2891 }
2892 err = apply_to_p4d_range(mm, pgd, addr, next,
2893 fn, data, create, &mask);
aee16b3c
JF
2894 if (err)
2895 break;
2896 } while (pgd++, addr = next, addr != end);
57250a5b 2897
e80d3909
JR
2898 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2899 arch_sync_kernel_mappings(start, start + size);
2900
aee16b3c
JF
2901 return err;
2902}
be1db475
DA
2903
2904/*
2905 * Scan a region of virtual memory, filling in page tables as necessary
2906 * and calling a provided function on each leaf page table.
2907 */
2908int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2909 unsigned long size, pte_fn_t fn, void *data)
2910{
2911 return __apply_to_page_range(mm, addr, size, fn, data, true);
2912}
aee16b3c
JF
2913EXPORT_SYMBOL_GPL(apply_to_page_range);
2914
be1db475
DA
2915/*
2916 * Scan a region of virtual memory, calling a provided function on
2917 * each leaf page table where it exists.
2918 *
2919 * Unlike apply_to_page_range, this does _not_ fill in page tables
2920 * where they are absent.
2921 */
2922int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2923 unsigned long size, pte_fn_t fn, void *data)
2924{
2925 return __apply_to_page_range(mm, addr, size, fn, data, false);
2926}
2927EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2928
8f4e2101 2929/*
9b4bdd2f
KS
2930 * handle_pte_fault chooses page fault handler according to an entry which was
2931 * read non-atomically. Before making any commitment, on those architectures
2932 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2933 * parts, do_swap_page must check under lock before unmapping the pte and
2934 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2935 * and do_anonymous_page can safely check later on).
8f4e2101 2936 */
2ca99358 2937static inline int pte_unmap_same(struct vm_fault *vmf)
8f4e2101
HD
2938{
2939 int same = 1;
923717cb 2940#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2941 if (sizeof(pte_t) > sizeof(unsigned long)) {
c7ad0880 2942 spin_lock(vmf->ptl);
c33c7948 2943 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
c7ad0880 2944 spin_unlock(vmf->ptl);
8f4e2101
HD
2945 }
2946#endif
2ca99358
PX
2947 pte_unmap(vmf->pte);
2948 vmf->pte = NULL;
8f4e2101
HD
2949 return same;
2950}
2951
a873dfe1
TL
2952/*
2953 * Return:
2954 * 0: copied succeeded
2955 * -EHWPOISON: copy failed due to hwpoison in source page
2956 * -EAGAIN: copied failed (some other reason)
2957 */
2958static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2959 struct vm_fault *vmf)
6aab341e 2960{
a873dfe1 2961 int ret;
83d116c5
JH
2962 void *kaddr;
2963 void __user *uaddr;
83d116c5
JH
2964 struct vm_area_struct *vma = vmf->vma;
2965 struct mm_struct *mm = vma->vm_mm;
2966 unsigned long addr = vmf->address;
2967
83d116c5 2968 if (likely(src)) {
d302c239
TL
2969 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2970 memory_failure_queue(page_to_pfn(src), 0);
a873dfe1 2971 return -EHWPOISON;
d302c239 2972 }
a873dfe1 2973 return 0;
83d116c5
JH
2974 }
2975
6aab341e
LT
2976 /*
2977 * If the source page was a PFN mapping, we don't have
2978 * a "struct page" for it. We do a best-effort copy by
2979 * just copying from the original user address. If that
2980 * fails, we just zero-fill it. Live with it.
2981 */
24d2613a
FDF
2982 kaddr = kmap_local_page(dst);
2983 pagefault_disable();
83d116c5
JH
2984 uaddr = (void __user *)(addr & PAGE_MASK);
2985
2986 /*
2987 * On architectures with software "accessed" bits, we would
2988 * take a double page fault, so mark it accessed here.
2989 */
3db82b93 2990 vmf->pte = NULL;
e1fd09e3 2991 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
83d116c5 2992 pte_t entry;
5d2a2dbb 2993
83d116c5 2994 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c33c7948 2995 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
83d116c5
JH
2996 /*
2997 * Other thread has already handled the fault
7df67697 2998 * and update local tlb only
83d116c5 2999 */
a92cbb82
HD
3000 if (vmf->pte)
3001 update_mmu_tlb(vma, addr, vmf->pte);
a873dfe1 3002 ret = -EAGAIN;
83d116c5
JH
3003 goto pte_unlock;
3004 }
3005
3006 entry = pte_mkyoung(vmf->orig_pte);
3007 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
5003a2bd 3008 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
83d116c5
JH
3009 }
3010
3011 /*
3012 * This really shouldn't fail, because the page is there
3013 * in the page tables. But it might just be unreadable,
3014 * in which case we just give up and fill the result with
3015 * zeroes.
3016 */
3017 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3db82b93 3018 if (vmf->pte)
c3e5ea6e
KS
3019 goto warn;
3020
3021 /* Re-validate under PTL if the page is still mapped */
3022 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c33c7948 3023 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
7df67697 3024 /* The PTE changed under us, update local tlb */
a92cbb82
HD
3025 if (vmf->pte)
3026 update_mmu_tlb(vma, addr, vmf->pte);
a873dfe1 3027 ret = -EAGAIN;
c3e5ea6e
KS
3028 goto pte_unlock;
3029 }
3030
5d2a2dbb 3031 /*
985ba004 3032 * The same page can be mapped back since last copy attempt.
c3e5ea6e 3033 * Try to copy again under PTL.
5d2a2dbb 3034 */
c3e5ea6e
KS
3035 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3036 /*
3037 * Give a warn in case there can be some obscure
3038 * use-case
3039 */
3040warn:
3041 WARN_ON_ONCE(1);
3042 clear_page(kaddr);
3043 }
83d116c5
JH
3044 }
3045
a873dfe1 3046 ret = 0;
83d116c5
JH
3047
3048pte_unlock:
3db82b93 3049 if (vmf->pte)
83d116c5 3050 pte_unmap_unlock(vmf->pte, vmf->ptl);
24d2613a
FDF
3051 pagefault_enable();
3052 kunmap_local(kaddr);
83d116c5
JH
3053 flush_dcache_page(dst);
3054
3055 return ret;
6aab341e
LT
3056}
3057
c20cd45e
MH
3058static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
3059{
3060 struct file *vm_file = vma->vm_file;
3061
3062 if (vm_file)
3063 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
3064
3065 /*
3066 * Special mappings (e.g. VDSO) do not have any file so fake
3067 * a default GFP_KERNEL for them.
3068 */
3069 return GFP_KERNEL;
3070}
3071
fb09a464
KS
3072/*
3073 * Notify the address space that the page is about to become writable so that
3074 * it can prohibit this or wait for the page to get into an appropriate state.
3075 *
3076 * We do this without the lock held, so that it can sleep if it needs to.
3077 */
86aa6998 3078static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
fb09a464 3079{
2b740303 3080 vm_fault_t ret;
38b8cb7f 3081 unsigned int old_flags = vmf->flags;
fb09a464 3082
38b8cb7f 3083 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 3084
dc617f29
DW
3085 if (vmf->vma->vm_file &&
3086 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
3087 return VM_FAULT_SIGBUS;
3088
11bac800 3089 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
3090 /* Restore original flags so that caller is not surprised */
3091 vmf->flags = old_flags;
fb09a464
KS
3092 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
3093 return ret;
3094 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3d243659
SK
3095 folio_lock(folio);
3096 if (!folio->mapping) {
3097 folio_unlock(folio);
fb09a464
KS
3098 return 0; /* retry */
3099 }
3100 ret |= VM_FAULT_LOCKED;
3101 } else
3d243659 3102 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
fb09a464
KS
3103 return ret;
3104}
3105
97ba0c2b
JK
3106/*
3107 * Handle dirtying of a page in shared file mapping on a write fault.
3108 *
3109 * The function expects the page to be locked and unlocks it.
3110 */
89b15332 3111static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 3112{
89b15332 3113 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 3114 struct address_space *mapping;
15b4919a 3115 struct folio *folio = page_folio(vmf->page);
97ba0c2b
JK
3116 bool dirtied;
3117 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3118
15b4919a
Z
3119 dirtied = folio_mark_dirty(folio);
3120 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
97ba0c2b 3121 /*
15b4919a
Z
3122 * Take a local copy of the address_space - folio.mapping may be zeroed
3123 * by truncate after folio_unlock(). The address_space itself remains
3124 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s
97ba0c2b
JK
3125 * release semantics to prevent the compiler from undoing this copying.
3126 */
15b4919a
Z
3127 mapping = folio_raw_mapping(folio);
3128 folio_unlock(folio);
97ba0c2b 3129
89b15332
JW
3130 if (!page_mkwrite)
3131 file_update_time(vma->vm_file);
3132
3133 /*
3134 * Throttle page dirtying rate down to writeback speed.
3135 *
3136 * mapping may be NULL here because some device drivers do not
3137 * set page.mapping but still dirty their pages
3138 *
c1e8d7c6 3139 * Drop the mmap_lock before waiting on IO, if we can. The file
89b15332
JW
3140 * is pinning the mapping, as per above.
3141 */
97ba0c2b 3142 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
3143 struct file *fpin;
3144
3145 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 3146 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
3147 if (fpin) {
3148 fput(fpin);
d9272525 3149 return VM_FAULT_COMPLETED;
89b15332 3150 }
97ba0c2b
JK
3151 }
3152
89b15332 3153 return 0;
97ba0c2b
JK
3154}
3155
4e047f89
SR
3156/*
3157 * Handle write page faults for pages that can be reused in the current vma
3158 *
3159 * This can happen either due to the mapping being with the VM_SHARED flag,
3160 * or due to us being the last reference standing to the page. In either
3161 * case, all we need to do here is to mark the page as writable and update
3162 * any related book-keeping.
3163 */
a86bc96b 3164static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
82b0f8c3 3165 __releases(vmf->ptl)
4e047f89 3166{
82b0f8c3 3167 struct vm_area_struct *vma = vmf->vma;
4e047f89 3168 pte_t entry;
6c287605 3169
c89357e2 3170 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
6c287605 3171
c2c3b514
KW
3172 if (folio) {
3173 VM_BUG_ON(folio_test_anon(folio) &&
3174 !PageAnonExclusive(vmf->page));
3175 /*
3176 * Clear the folio's cpupid information as the existing
3177 * information potentially belongs to a now completely
3178 * unrelated process.
3179 */
3180 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3181 }
4e047f89 3182
2994302b
JK
3183 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3184 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 3185 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3 3186 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
5003a2bd 3187 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
82b0f8c3 3188 pte_unmap_unlock(vmf->pte, vmf->ptl);
798a6b87 3189 count_vm_event(PGREUSE);
4e047f89
SR
3190}
3191
4ed43798
MWO
3192/*
3193 * We could add a bitflag somewhere, but for now, we know that all
3194 * vm_ops that have a ->map_pages have been audited and don't need
3195 * the mmap_lock to be held.
3196 */
3197static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3198{
3199 struct vm_area_struct *vma = vmf->vma;
3200
3201 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3202 return 0;
3203 vma_end_read(vma);
3204 return VM_FAULT_RETRY;
3205}
3206
997f0ecb 3207vm_fault_t vmf_anon_prepare(struct vm_fault *vmf)
164b06f2
MWO
3208{
3209 struct vm_area_struct *vma = vmf->vma;
3210
3211 if (likely(vma->anon_vma))
3212 return 0;
3213 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3214 vma_end_read(vma);
3215 return VM_FAULT_RETRY;
3216 }
3217 if (__anon_vma_prepare(vma))
3218 return VM_FAULT_OOM;
3219 return 0;
3220}
3221
2f38ab2c 3222/*
c89357e2
DH
3223 * Handle the case of a page which we actually need to copy to a new page,
3224 * either due to COW or unsharing.
2f38ab2c 3225 *
c1e8d7c6 3226 * Called with mmap_lock locked and the old page referenced, but
2f38ab2c
SR
3227 * without the ptl held.
3228 *
3229 * High level logic flow:
3230 *
3231 * - Allocate a page, copy the content of the old page to the new one.
3232 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3233 * - Take the PTL. If the pte changed, bail out and release the allocated page
3234 * - If the pte is still the way we remember it, update the page table and all
3235 * relevant references. This includes dropping the reference the page-table
3236 * held to the old page, as well as updating the rmap.
3237 * - In any case, unlock the PTL and drop the reference we took to the old page.
3238 */
2b740303 3239static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 3240{
c89357e2 3241 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
82b0f8c3 3242 struct vm_area_struct *vma = vmf->vma;
bae473a4 3243 struct mm_struct *mm = vma->vm_mm;
28d41a48
MWO
3244 struct folio *old_folio = NULL;
3245 struct folio *new_folio = NULL;
2f38ab2c
SR
3246 pte_t entry;
3247 int page_copied = 0;
ac46d4f3 3248 struct mmu_notifier_range range;
164b06f2 3249 vm_fault_t ret;
cf503cc6 3250 bool pfn_is_zero;
2f38ab2c 3251
662ce1dc
YY
3252 delayacct_wpcopy_start();
3253
28d41a48
MWO
3254 if (vmf->page)
3255 old_folio = page_folio(vmf->page);
164b06f2
MWO
3256 ret = vmf_anon_prepare(vmf);
3257 if (unlikely(ret))
3258 goto out;
2f38ab2c 3259
cf503cc6
KW
3260 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3261 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3262 if (!new_folio)
3263 goto oom;
3264
3265 if (!pfn_is_zero) {
164b06f2 3266 int err;
83d116c5 3267
164b06f2
MWO
3268 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3269 if (err) {
83d116c5
JH
3270 /*
3271 * COW failed, if the fault was solved by other,
3272 * it's fine. If not, userspace would re-fault on
3273 * the same address and we will handle the fault
3274 * from the second attempt.
a873dfe1 3275 * The -EHWPOISON case will not be retried.
83d116c5 3276 */
28d41a48
MWO
3277 folio_put(new_folio);
3278 if (old_folio)
3279 folio_put(old_folio);
662ce1dc
YY
3280
3281 delayacct_wpcopy_end();
164b06f2 3282 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
83d116c5 3283 }
28d41a48 3284 kmsan_copy_page_meta(&new_folio->page, vmf->page);
2f38ab2c 3285 }
2f38ab2c 3286
28d41a48 3287 __folio_mark_uptodate(new_folio);
eb3c24f3 3288
7d4a8be0 3289 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
6f4f13e8 3290 vmf->address & PAGE_MASK,
ac46d4f3
JG
3291 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3292 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
3293
3294 /*
3295 * Re-check the pte - we dropped the lock
3296 */
82b0f8c3 3297 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
c33c7948 3298 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
28d41a48
MWO
3299 if (old_folio) {
3300 if (!folio_test_anon(old_folio)) {
6b27cc6c 3301 dec_mm_counter(mm, mm_counter_file(old_folio));
f1a79412 3302 inc_mm_counter(mm, MM_ANONPAGES);
2f38ab2c
SR
3303 }
3304 } else {
6080d19f 3305 ksm_might_unmap_zero_page(mm, vmf->orig_pte);
f1a79412 3306 inc_mm_counter(mm, MM_ANONPAGES);
2f38ab2c 3307 }
2994302b 3308 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
28d41a48 3309 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
50c25ee9 3310 entry = pte_sw_mkyoung(entry);
c89357e2
DH
3311 if (unlikely(unshare)) {
3312 if (pte_soft_dirty(vmf->orig_pte))
3313 entry = pte_mksoft_dirty(entry);
3314 if (pte_uffd_wp(vmf->orig_pte))
3315 entry = pte_mkuffd_wp(entry);
3316 } else {
3317 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3318 }
111fe718 3319
2f38ab2c
SR
3320 /*
3321 * Clear the pte entry and flush it first, before updating the
111fe718
NP
3322 * pte with the new entry, to keep TLBs on different CPUs in
3323 * sync. This code used to set the new PTE then flush TLBs, but
3324 * that left a window where the new PTE could be loaded into
3325 * some TLBs while the old PTE remains in others.
2f38ab2c 3326 */
ec8832d0 3327 ptep_clear_flush(vma, vmf->address, vmf->pte);
28d41a48
MWO
3328 folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3329 folio_add_lru_vma(new_folio, vma);
2f38ab2c
SR
3330 /*
3331 * We call the notify macro here because, when using secondary
3332 * mmu page tables (such as kvm shadow page tables), we want the
3333 * new page to be mapped directly into the secondary page table.
3334 */
c89357e2 3335 BUG_ON(unshare && pte_write(entry));
82b0f8c3 3336 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
5003a2bd 3337 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
28d41a48 3338 if (old_folio) {
2f38ab2c
SR
3339 /*
3340 * Only after switching the pte to the new page may
3341 * we remove the mapcount here. Otherwise another
3342 * process may come and find the rmap count decremented
3343 * before the pte is switched to the new page, and
3344 * "reuse" the old page writing into it while our pte
3345 * here still points into it and can be read by other
3346 * threads.
3347 *
3348 * The critical issue is to order this
c4626503
DH
3349 * folio_remove_rmap_pte() with the ptp_clear_flush
3350 * above. Those stores are ordered by (if nothing else,)
2f38ab2c 3351 * the barrier present in the atomic_add_negative
c4626503 3352 * in folio_remove_rmap_pte();
2f38ab2c
SR
3353 *
3354 * Then the TLB flush in ptep_clear_flush ensures that
3355 * no process can access the old page before the
3356 * decremented mapcount is visible. And the old page
3357 * cannot be reused until after the decremented
3358 * mapcount is visible. So transitively, TLBs to
3359 * old page will be flushed before it can be reused.
3360 */
c4626503 3361 folio_remove_rmap_pte(old_folio, vmf->page, vma);
2f38ab2c
SR
3362 }
3363
3364 /* Free the old page.. */
28d41a48 3365 new_folio = old_folio;
2f38ab2c 3366 page_copied = 1;
3db82b93
HD
3367 pte_unmap_unlock(vmf->pte, vmf->ptl);
3368 } else if (vmf->pte) {
7df67697 3369 update_mmu_tlb(vma, vmf->address, vmf->pte);
3db82b93 3370 pte_unmap_unlock(vmf->pte, vmf->ptl);
2f38ab2c
SR
3371 }
3372
ec8832d0 3373 mmu_notifier_invalidate_range_end(&range);
3db82b93
HD
3374
3375 if (new_folio)
3376 folio_put(new_folio);
28d41a48 3377 if (old_folio) {
f4c4a3f4 3378 if (page_copied)
63b77499 3379 free_swap_cache(old_folio);
28d41a48 3380 folio_put(old_folio);
2f38ab2c 3381 }
662ce1dc
YY
3382
3383 delayacct_wpcopy_end();
cb8d8633 3384 return 0;
2f38ab2c 3385oom:
164b06f2
MWO
3386 ret = VM_FAULT_OOM;
3387out:
28d41a48
MWO
3388 if (old_folio)
3389 folio_put(old_folio);
662ce1dc
YY
3390
3391 delayacct_wpcopy_end();
164b06f2 3392 return ret;
2f38ab2c
SR
3393}
3394
66a6197c
JK
3395/**
3396 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3397 * writeable once the page is prepared
3398 *
3399 * @vmf: structure describing the fault
a86bc96b 3400 * @folio: the folio of vmf->page
66a6197c
JK
3401 *
3402 * This function handles all that is needed to finish a write page fault in a
3403 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 3404 * It handles locking of PTE and modifying it.
66a6197c
JK
3405 *
3406 * The function expects the page to be locked or other protection against
3407 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a 3408 *
2797e79f 3409 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
a862f68a 3410 * we acquired PTE lock.
66a6197c 3411 */
a86bc96b 3412static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
66a6197c
JK
3413{
3414 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3415 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3416 &vmf->ptl);
3db82b93
HD
3417 if (!vmf->pte)
3418 return VM_FAULT_NOPAGE;
66a6197c
JK
3419 /*
3420 * We might have raced with another page fault while we released the
3421 * pte_offset_map_lock.
3422 */
c33c7948 3423 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
7df67697 3424 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
66a6197c 3425 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 3426 return VM_FAULT_NOPAGE;
66a6197c 3427 }
a86bc96b 3428 wp_page_reuse(vmf, folio);
a19e2553 3429 return 0;
66a6197c
JK
3430}
3431
dd906184
BH
3432/*
3433 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3434 * mapping
3435 */
2b740303 3436static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 3437{
82b0f8c3 3438 struct vm_area_struct *vma = vmf->vma;
bae473a4 3439
dd906184 3440 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 3441 vm_fault_t ret;
dd906184 3442
82b0f8c3 3443 pte_unmap_unlock(vmf->pte, vmf->ptl);
4a68fef1
MWO
3444 ret = vmf_can_call_fault(vmf);
3445 if (ret)
3446 return ret;
063e60d8 3447
fe82221f 3448 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 3449 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 3450 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 3451 return ret;
a86bc96b 3452 return finish_mkwrite_fault(vmf, NULL);
dd906184 3453 }
a86bc96b 3454 wp_page_reuse(vmf, NULL);
cb8d8633 3455 return 0;
dd906184
BH
3456}
3457
5a97858b 3458static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
82b0f8c3 3459 __releases(vmf->ptl)
93e478d4 3460{
82b0f8c3 3461 struct vm_area_struct *vma = vmf->vma;
cb8d8633 3462 vm_fault_t ret = 0;
93e478d4 3463
5a97858b 3464 folio_get(folio);
93e478d4 3465
93e478d4 3466 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 3467 vm_fault_t tmp;
93e478d4 3468
82b0f8c3 3469 pte_unmap_unlock(vmf->pte, vmf->ptl);
4a68fef1
MWO
3470 tmp = vmf_can_call_fault(vmf);
3471 if (tmp) {
063e60d8 3472 folio_put(folio);
4a68fef1 3473 return tmp;
063e60d8
MWO
3474 }
3475
86aa6998 3476 tmp = do_page_mkwrite(vmf, folio);
93e478d4
SR
3477 if (unlikely(!tmp || (tmp &
3478 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
5a97858b 3479 folio_put(folio);
93e478d4
SR
3480 return tmp;
3481 }
a86bc96b 3482 tmp = finish_mkwrite_fault(vmf, folio);
a19e2553 3483 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
5a97858b
SK
3484 folio_unlock(folio);
3485 folio_put(folio);
66a6197c 3486 return tmp;
93e478d4 3487 }
66a6197c 3488 } else {
a86bc96b 3489 wp_page_reuse(vmf, folio);
5a97858b 3490 folio_lock(folio);
93e478d4 3491 }
89b15332 3492 ret |= fault_dirty_shared_page(vmf);
5a97858b 3493 folio_put(folio);
93e478d4 3494
89b15332 3495 return ret;
93e478d4
SR
3496}
3497
dec078cc
DH
3498static bool wp_can_reuse_anon_folio(struct folio *folio,
3499 struct vm_area_struct *vma)
3500{
cd197c3a
BS
3501 /*
3502 * We could currently only reuse a subpage of a large folio if no
3503 * other subpages of the large folios are still mapped. However,
3504 * let's just consistently not reuse subpages even if we could
3505 * reuse in that scenario, and give back a large folio a bit
3506 * sooner.
3507 */
3508 if (folio_test_large(folio))
3509 return false;
3510
dec078cc
DH
3511 /*
3512 * We have to verify under folio lock: these early checks are
3513 * just an optimization to avoid locking the folio and freeing
3514 * the swapcache if there is little hope that we can reuse.
3515 *
3516 * KSM doesn't necessarily raise the folio refcount.
3517 */
3518 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3519 return false;
3520 if (!folio_test_lru(folio))
3521 /*
3522 * We cannot easily detect+handle references from
3523 * remote LRU caches or references to LRU folios.
3524 */
3525 lru_add_drain();
3526 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3527 return false;
3528 if (!folio_trylock(folio))
3529 return false;
3530 if (folio_test_swapcache(folio))
3531 folio_free_swap(folio);
3532 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3533 folio_unlock(folio);
3534 return false;
3535 }
3536 /*
3537 * Ok, we've got the only folio reference from our mapping
3538 * and the folio is locked, it's dark out, and we're wearing
3539 * sunglasses. Hit it.
3540 */
3541 folio_move_anon_rmap(folio, vma);
3542 folio_unlock(folio);
3543 return true;
3544}
3545
1da177e4 3546/*
c89357e2
DH
3547 * This routine handles present pages, when
3548 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3549 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3550 * (FAULT_FLAG_UNSHARE)
3551 *
3552 * It is done by copying the page to a new address and decrementing the
3553 * shared-page counter for the old page.
1da177e4 3554 *
1da177e4
LT
3555 * Note that this routine assumes that the protection checks have been
3556 * done by the caller (the low-level page fault routine in most cases).
c89357e2
DH
3557 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3558 * done any necessary COW.
1da177e4 3559 *
c89357e2
DH
3560 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3561 * though the page will change only once the write actually happens. This
3562 * avoids a few races, and potentially makes it more efficient.
1da177e4 3563 *
c1e8d7c6 3564 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3565 * but allow concurrent faults), with pte both mapped and locked.
c1e8d7c6 3566 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3567 */
2b740303 3568static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 3569 __releases(vmf->ptl)
1da177e4 3570{
c89357e2 3571 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
82b0f8c3 3572 struct vm_area_struct *vma = vmf->vma;
b9086fde 3573 struct folio *folio = NULL;
d61ea1cb 3574 pte_t pte;
1da177e4 3575
c89357e2 3576 if (likely(!unshare)) {
c33c7948 3577 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
d61ea1cb
PX
3578 if (!userfaultfd_wp_async(vma)) {
3579 pte_unmap_unlock(vmf->pte, vmf->ptl);
3580 return handle_userfault(vmf, VM_UFFD_WP);
3581 }
3582
3583 /*
3584 * Nothing needed (cache flush, TLB invalidations,
3585 * etc.) because we're only removing the uffd-wp bit,
3586 * which is completely invisible to the user.
3587 */
3588 pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3589
3590 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3591 /*
3592 * Update this to be prepared for following up CoW
3593 * handling
3594 */
3595 vmf->orig_pte = pte;
c89357e2
DH
3596 }
3597
3598 /*
3599 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3600 * is flushed in this case before copying.
3601 */
3602 if (unlikely(userfaultfd_wp(vmf->vma) &&
3603 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3604 flush_tlb_page(vmf->vma, vmf->address);
3605 }
6ce64428 3606
a41b70d6 3607 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
c89357e2 3608
5a97858b
SK
3609 if (vmf->page)
3610 folio = page_folio(vmf->page);
3611
b9086fde
DH
3612 /*
3613 * Shared mapping: we are guaranteed to have VM_WRITE and
3614 * FAULT_FLAG_WRITE set at this point.
3615 */
3616 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
251b97f5 3617 /*
64e45507
PF
3618 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3619 * VM_PFNMAP VMA.
251b97f5
PZ
3620 *
3621 * We should not cow pages in a shared writeable mapping.
dd906184 3622 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5 3623 */
b9086fde 3624 if (!vmf->page)
2994302b 3625 return wp_pfn_shared(vmf);
5a97858b 3626 return wp_page_shared(vmf, folio);
251b97f5 3627 }
1da177e4 3628
d08b3851 3629 /*
b9086fde
DH
3630 * Private mapping: create an exclusive anonymous page copy if reuse
3631 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
dec078cc
DH
3632 *
3633 * If we encounter a page that is marked exclusive, we must reuse
3634 * the page without further checks.
d08b3851 3635 */
dec078cc
DH
3636 if (folio && folio_test_anon(folio) &&
3637 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
3638 if (!PageAnonExclusive(vmf->page))
3639 SetPageAnonExclusive(vmf->page);
c89357e2
DH
3640 if (unlikely(unshare)) {
3641 pte_unmap_unlock(vmf->pte, vmf->ptl);
3642 return 0;
3643 }
a86bc96b 3644 wp_page_reuse(vmf, folio);
cb8d8633 3645 return 0;
1da177e4 3646 }
1da177e4
LT
3647 /*
3648 * Ok, we need to copy. Oh, well..
3649 */
b9086fde
DH
3650 if (folio)
3651 folio_get(folio);
28766805 3652
82b0f8c3 3653 pte_unmap_unlock(vmf->pte, vmf->ptl);
94bfe85b 3654#ifdef CONFIG_KSM
b9086fde 3655 if (folio && folio_test_ksm(folio))
94bfe85b
YY
3656 count_vm_event(COW_KSM);
3657#endif
a41b70d6 3658 return wp_page_copy(vmf);
1da177e4
LT
3659}
3660
97a89413 3661static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
3662 unsigned long start_addr, unsigned long end_addr,
3663 struct zap_details *details)
3664{
f5cc4eef 3665 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
3666}
3667
f808c13f 3668static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
232a6a1c
PX
3669 pgoff_t first_index,
3670 pgoff_t last_index,
1da177e4
LT
3671 struct zap_details *details)
3672{
3673 struct vm_area_struct *vma;
1da177e4
LT
3674 pgoff_t vba, vea, zba, zea;
3675
232a6a1c 3676 vma_interval_tree_foreach(vma, root, first_index, last_index) {
1da177e4 3677 vba = vma->vm_pgoff;
d6e93217 3678 vea = vba + vma_pages(vma) - 1;
f9871da9
ML
3679 zba = max(first_index, vba);
3680 zea = min(last_index, vea);
1da177e4 3681
97a89413 3682 unmap_mapping_range_vma(vma,
1da177e4
LT
3683 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3684 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 3685 details);
1da177e4
LT
3686 }
3687}
3688
22061a1f 3689/**
3506659e
MWO
3690 * unmap_mapping_folio() - Unmap single folio from processes.
3691 * @folio: The locked folio to be unmapped.
22061a1f 3692 *
3506659e 3693 * Unmap this folio from any userspace process which still has it mmaped.
22061a1f
HD
3694 * Typically, for efficiency, the range of nearby pages has already been
3695 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3506659e
MWO
3696 * truncation or invalidation holds the lock on a folio, it may find that
3697 * the page has been remapped again: and then uses unmap_mapping_folio()
22061a1f
HD
3698 * to unmap it finally.
3699 */
3506659e 3700void unmap_mapping_folio(struct folio *folio)
22061a1f 3701{
3506659e 3702 struct address_space *mapping = folio->mapping;
22061a1f 3703 struct zap_details details = { };
232a6a1c
PX
3704 pgoff_t first_index;
3705 pgoff_t last_index;
22061a1f 3706
3506659e 3707 VM_BUG_ON(!folio_test_locked(folio));
22061a1f 3708
3506659e 3709 first_index = folio->index;
87b11f86 3710 last_index = folio_next_index(folio) - 1;
232a6a1c 3711
2e148f1e 3712 details.even_cows = false;
3506659e 3713 details.single_folio = folio;
999dad82 3714 details.zap_flags = ZAP_FLAG_DROP_MARKER;
22061a1f 3715
2c865995 3716 i_mmap_lock_read(mapping);
22061a1f 3717 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3718 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3719 last_index, &details);
2c865995 3720 i_mmap_unlock_read(mapping);
22061a1f
HD
3721}
3722
977fbdcd
MW
3723/**
3724 * unmap_mapping_pages() - Unmap pages from processes.
3725 * @mapping: The address space containing pages to be unmapped.
3726 * @start: Index of first page to be unmapped.
3727 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3728 * @even_cows: Whether to unmap even private COWed pages.
3729 *
3730 * Unmap the pages in this address space from any userspace process which
3731 * has them mmaped. Generally, you want to remove COWed pages as well when
3732 * a file is being truncated, but not when invalidating pages from the page
3733 * cache.
3734 */
3735void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3736 pgoff_t nr, bool even_cows)
3737{
3738 struct zap_details details = { };
232a6a1c
PX
3739 pgoff_t first_index = start;
3740 pgoff_t last_index = start + nr - 1;
977fbdcd 3741
2e148f1e 3742 details.even_cows = even_cows;
232a6a1c
PX
3743 if (last_index < first_index)
3744 last_index = ULONG_MAX;
977fbdcd 3745
2c865995 3746 i_mmap_lock_read(mapping);
977fbdcd 3747 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3748 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3749 last_index, &details);
2c865995 3750 i_mmap_unlock_read(mapping);
977fbdcd 3751}
6e0e99d5 3752EXPORT_SYMBOL_GPL(unmap_mapping_pages);
977fbdcd 3753
1da177e4 3754/**
8a5f14a2 3755 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 3756 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
3757 * file.
3758 *
3d41088f 3759 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
3760 * @holebegin: byte in first page to unmap, relative to the start of
3761 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 3762 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
3763 * must keep the partial page. In contrast, we must get rid of
3764 * partial pages.
3765 * @holelen: size of prospective hole in bytes. This will be rounded
3766 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3767 * end of the file.
3768 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3769 * but 0 when invalidating pagecache, don't throw away private data.
3770 */
3771void unmap_mapping_range(struct address_space *mapping,
3772 loff_t const holebegin, loff_t const holelen, int even_cows)
3773{
9eab0421
JX
3774 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3775 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1da177e4
LT
3776
3777 /* Check for overflow. */
3778 if (sizeof(holelen) > sizeof(hlen)) {
3779 long long holeend =
3780 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3781 if (holeend & ~(long long)ULONG_MAX)
3782 hlen = ULONG_MAX - hba + 1;
3783 }
3784
977fbdcd 3785 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
3786}
3787EXPORT_SYMBOL(unmap_mapping_range);
3788
b756a3b5
AP
3789/*
3790 * Restore a potential device exclusive pte to a working pte entry
3791 */
3792static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3793{
19672a9e 3794 struct folio *folio = page_folio(vmf->page);
b756a3b5
AP
3795 struct vm_area_struct *vma = vmf->vma;
3796 struct mmu_notifier_range range;
fdc724d6 3797 vm_fault_t ret;
b756a3b5 3798
7c7b9629
AP
3799 /*
3800 * We need a reference to lock the folio because we don't hold
3801 * the PTL so a racing thread can remove the device-exclusive
3802 * entry and unmap it. If the folio is free the entry must
3803 * have been removed already. If it happens to have already
3804 * been re-allocated after being freed all we do is lock and
3805 * unlock it.
3806 */
3807 if (!folio_try_get(folio))
3808 return 0;
3809
fdc724d6
SB
3810 ret = folio_lock_or_retry(folio, vmf);
3811 if (ret) {
7c7b9629 3812 folio_put(folio);
fdc724d6 3813 return ret;
7c7b9629 3814 }
7d4a8be0 3815 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
b756a3b5
AP
3816 vma->vm_mm, vmf->address & PAGE_MASK,
3817 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3818 mmu_notifier_invalidate_range_start(&range);
3819
3820 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3821 &vmf->ptl);
c33c7948 3822 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
19672a9e 3823 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
b756a3b5 3824
3db82b93
HD
3825 if (vmf->pte)
3826 pte_unmap_unlock(vmf->pte, vmf->ptl);
19672a9e 3827 folio_unlock(folio);
7c7b9629 3828 folio_put(folio);
b756a3b5
AP
3829
3830 mmu_notifier_invalidate_range_end(&range);
3831 return 0;
3832}
3833
a160e537 3834static inline bool should_try_to_free_swap(struct folio *folio,
c145e0b4
DH
3835 struct vm_area_struct *vma,
3836 unsigned int fault_flags)
3837{
a160e537 3838 if (!folio_test_swapcache(folio))
c145e0b4 3839 return false;
9202d527 3840 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
a160e537 3841 folio_test_mlocked(folio))
c145e0b4
DH
3842 return true;
3843 /*
3844 * If we want to map a page that's in the swapcache writable, we
3845 * have to detect via the refcount if we're really the exclusive
3846 * user. Try freeing the swapcache to get rid of the swapcache
3847 * reference only in case it's likely that we'll be the exlusive user.
3848 */
a160e537
MWO
3849 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3850 folio_ref_count(folio) == 2;
c145e0b4
DH
3851}
3852
9c28a205
PX
3853static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3854{
3855 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3856 vmf->address, &vmf->ptl);
3db82b93
HD
3857 if (!vmf->pte)
3858 return 0;
9c28a205
PX
3859 /*
3860 * Be careful so that we will only recover a special uffd-wp pte into a
3861 * none pte. Otherwise it means the pte could have changed, so retry.
7e3ce3f8
PX
3862 *
3863 * This should also cover the case where e.g. the pte changed
af19487f 3864 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
7e3ce3f8 3865 * So is_pte_marker() check is not enough to safely drop the pte.
9c28a205 3866 */
c33c7948 3867 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
9c28a205
PX
3868 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3869 pte_unmap_unlock(vmf->pte, vmf->ptl);
3870 return 0;
3871}
3872
2bad466c
PX
3873static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3874{
3875 if (vma_is_anonymous(vmf->vma))
3876 return do_anonymous_page(vmf);
3877 else
3878 return do_fault(vmf);
3879}
3880
9c28a205
PX
3881/*
3882 * This is actually a page-missing access, but with uffd-wp special pte
3883 * installed. It means this pte was wr-protected before being unmapped.
3884 */
3885static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3886{
3887 /*
3888 * Just in case there're leftover special ptes even after the region
7a079ba2 3889 * got unregistered - we can simply clear them.
9c28a205 3890 */
2bad466c 3891 if (unlikely(!userfaultfd_wp(vmf->vma)))
9c28a205
PX
3892 return pte_marker_clear(vmf);
3893
2bad466c 3894 return do_pte_missing(vmf);
9c28a205
PX
3895}
3896
5c041f5d
PX
3897static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3898{
3899 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3900 unsigned long marker = pte_marker_get(entry);
3901
3902 /*
ca92ea3d
PX
3903 * PTE markers should never be empty. If anything weird happened,
3904 * the best thing to do is to kill the process along with its mm.
5c041f5d 3905 */
ca92ea3d 3906 if (WARN_ON_ONCE(!marker))
5c041f5d
PX
3907 return VM_FAULT_SIGBUS;
3908
15520a3f 3909 /* Higher priority than uffd-wp when data corrupted */
af19487f
AR
3910 if (marker & PTE_MARKER_POISONED)
3911 return VM_FAULT_HWPOISON;
15520a3f 3912
9c28a205
PX
3913 if (pte_marker_entry_uffd_wp(entry))
3914 return pte_marker_handle_uffd_wp(vmf);
3915
3916 /* This is an unknown pte marker */
3917 return VM_FAULT_SIGBUS;
5c041f5d
PX
3918}
3919
1da177e4 3920/*
c1e8d7c6 3921 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3922 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3923 * We return with pte unmapped and unlocked.
3924 *
c1e8d7c6 3925 * We return with the mmap_lock locked or unlocked in the same cases
9a95f3cf 3926 * as does filemap_fault().
1da177e4 3927 */
2b740303 3928vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 3929{
82b0f8c3 3930 struct vm_area_struct *vma = vmf->vma;
d4f9565a
MWO
3931 struct folio *swapcache, *folio = NULL;
3932 struct page *page;
2799e775 3933 struct swap_info_struct *si = NULL;
14f9135d 3934 rmap_t rmap_flags = RMAP_NONE;
13ddaf26 3935 bool need_clear_cache = false;
1493a191 3936 bool exclusive = false;
65500d23 3937 swp_entry_t entry;
1da177e4 3938 pte_t pte;
2b740303 3939 vm_fault_t ret = 0;
aae466b0 3940 void *shadow = NULL;
1da177e4 3941
2ca99358 3942 if (!pte_unmap_same(vmf))
8f4e2101 3943 goto out;
65500d23 3944
2994302b 3945 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
3946 if (unlikely(non_swap_entry(entry))) {
3947 if (is_migration_entry(entry)) {
82b0f8c3
JK
3948 migration_entry_wait(vma->vm_mm, vmf->pmd,
3949 vmf->address);
b756a3b5
AP
3950 } else if (is_device_exclusive_entry(entry)) {
3951 vmf->page = pfn_swap_entry_to_page(entry);
3952 ret = remove_device_exclusive_entry(vmf);
5042db43 3953 } else if (is_device_private_entry(entry)) {
1235ccd0
SB
3954 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3955 /*
3956 * migrate_to_ram is not yet ready to operate
3957 * under VMA lock.
3958 */
3959 vma_end_read(vma);
3960 ret = VM_FAULT_RETRY;
3961 goto out;
3962 }
3963
af5cdaf8 3964 vmf->page = pfn_swap_entry_to_page(entry);
16ce101d
AP
3965 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3966 vmf->address, &vmf->ptl);
3db82b93 3967 if (unlikely(!vmf->pte ||
c33c7948
RR
3968 !pte_same(ptep_get(vmf->pte),
3969 vmf->orig_pte)))
3b65f437 3970 goto unlock;
16ce101d
AP
3971
3972 /*
3973 * Get a page reference while we know the page can't be
3974 * freed.
3975 */
3976 get_page(vmf->page);
3977 pte_unmap_unlock(vmf->pte, vmf->ptl);
4a955bed 3978 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
16ce101d 3979 put_page(vmf->page);
d1737fdb
AK
3980 } else if (is_hwpoison_entry(entry)) {
3981 ret = VM_FAULT_HWPOISON;
5c041f5d
PX
3982 } else if (is_pte_marker_entry(entry)) {
3983 ret = handle_pte_marker(vmf);
d1737fdb 3984 } else {
2994302b 3985 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 3986 ret = VM_FAULT_SIGBUS;
d1737fdb 3987 }
0697212a
CL
3988 goto out;
3989 }
0bcac06f 3990
2799e775
ML
3991 /* Prevent swapoff from happening to us. */
3992 si = get_swap_device(entry);
3993 if (unlikely(!si))
3994 goto out;
0bcac06f 3995
5a423081
MWO
3996 folio = swap_cache_get_folio(entry, vma, vmf->address);
3997 if (folio)
3998 page = folio_file_page(folio, swp_offset(entry));
d4f9565a 3999 swapcache = folio;
f8020772 4000
d4f9565a 4001 if (!folio) {
a449bf58
QC
4002 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
4003 __swap_count(entry) == 1) {
13ddaf26
KS
4004 /*
4005 * Prevent parallel swapin from proceeding with
4006 * the cache flag. Otherwise, another thread may
4007 * finish swapin first, free the entry, and swapout
4008 * reusing the same entry. It's undetectable as
4009 * pte_same() returns true due to entry reuse.
4010 */
4011 if (swapcache_prepare(entry)) {
4012 /* Relax a bit to prevent rapid repeated page faults */
4013 schedule_timeout_uninterruptible(1);
4014 goto out;
4015 }
4016 need_clear_cache = true;
4017
0bcac06f 4018 /* skip swapcache */
63ad4add
MWO
4019 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
4020 vma, vmf->address, false);
4021 page = &folio->page;
4022 if (folio) {
4023 __folio_set_locked(folio);
4024 __folio_set_swapbacked(folio);
4c6355b2 4025
65995918 4026 if (mem_cgroup_swapin_charge_folio(folio,
63ad4add
MWO
4027 vma->vm_mm, GFP_KERNEL,
4028 entry)) {
545b1b07 4029 ret = VM_FAULT_OOM;
4c6355b2 4030 goto out_page;
545b1b07 4031 }
0add0c77 4032 mem_cgroup_swapin_uncharge_swap(entry);
4c6355b2 4033
aae466b0
JK
4034 shadow = get_shadow_from_swap_cache(entry);
4035 if (shadow)
63ad4add 4036 workingset_refault(folio, shadow);
0076f029 4037
63ad4add 4038 folio_add_lru(folio);
0add0c77 4039
c9bdf768 4040 /* To provide entry to swap_read_folio() */
3d2c9087 4041 folio->swap = entry;
c9bdf768 4042 swap_read_folio(folio, true, NULL);
63ad4add 4043 folio->private = NULL;
0bcac06f 4044 }
aa8d22a1 4045 } else {
e9e9b7ec
MK
4046 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
4047 vmf);
63ad4add
MWO
4048 if (page)
4049 folio = page_folio(page);
d4f9565a 4050 swapcache = folio;
0bcac06f
MK
4051 }
4052
d4f9565a 4053 if (!folio) {
1da177e4 4054 /*
8f4e2101
HD
4055 * Back out if somebody else faulted in this pte
4056 * while we released the pte lock.
1da177e4 4057 */
82b0f8c3
JK
4058 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4059 vmf->address, &vmf->ptl);
c33c7948
RR
4060 if (likely(vmf->pte &&
4061 pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
1da177e4 4062 ret = VM_FAULT_OOM;
65500d23 4063 goto unlock;
1da177e4
LT
4064 }
4065
4066 /* Had to read the page from swap area: Major fault */
4067 ret = VM_FAULT_MAJOR;
f8891e5e 4068 count_vm_event(PGMAJFAULT);
2262185c 4069 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 4070 } else if (PageHWPoison(page)) {
71f72525
WF
4071 /*
4072 * hwpoisoned dirty swapcache pages are kept for killing
4073 * owner processes (which may be unknown at hwpoison time)
4074 */
d1737fdb 4075 ret = VM_FAULT_HWPOISON;
4779cb31 4076 goto out_release;
1da177e4
LT
4077 }
4078
fdc724d6
SB
4079 ret |= folio_lock_or_retry(folio, vmf);
4080 if (ret & VM_FAULT_RETRY)
d065bd81 4081 goto out_release;
073e587e 4082
84d60fdd
DH
4083 if (swapcache) {
4084 /*
3b344157 4085 * Make sure folio_free_swap() or swapoff did not release the
84d60fdd
DH
4086 * swapcache from under us. The page pin, and pte_same test
4087 * below, are not enough to exclude that. Even if it is still
4088 * swapcache, we need to check that the page's swap has not
4089 * changed.
4090 */
63ad4add 4091 if (unlikely(!folio_test_swapcache(folio) ||
cfeed8ff 4092 page_swap_entry(page).val != entry.val))
84d60fdd
DH
4093 goto out_page;
4094
4095 /*
4096 * KSM sometimes has to copy on read faults, for example, if
4097 * page->index of !PageKSM() pages would be nonlinear inside the
4098 * anon VMA -- PageKSM() is lost on actual swapout.
4099 */
96db66d9
MWO
4100 folio = ksm_might_need_to_copy(folio, vma, vmf->address);
4101 if (unlikely(!folio)) {
84d60fdd 4102 ret = VM_FAULT_OOM;
96db66d9 4103 folio = swapcache;
84d60fdd 4104 goto out_page;
96db66d9 4105 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
6b970599 4106 ret = VM_FAULT_HWPOISON;
96db66d9 4107 folio = swapcache;
6b970599 4108 goto out_page;
84d60fdd 4109 }
96db66d9
MWO
4110 if (folio != swapcache)
4111 page = folio_page(folio, 0);
c145e0b4
DH
4112
4113 /*
4114 * If we want to map a page that's in the swapcache writable, we
4115 * have to detect via the refcount if we're really the exclusive
4116 * owner. Try removing the extra reference from the local LRU
1fec6890 4117 * caches if required.
c145e0b4 4118 */
d4f9565a 4119 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
63ad4add 4120 !folio_test_ksm(folio) && !folio_test_lru(folio))
c145e0b4 4121 lru_add_drain();
5ad64688
HD
4122 }
4123
4231f842 4124 folio_throttle_swaprate(folio, GFP_KERNEL);
8a9f3ccd 4125
1da177e4 4126 /*
8f4e2101 4127 * Back out if somebody else already faulted in this pte.
1da177e4 4128 */
82b0f8c3
JK
4129 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4130 &vmf->ptl);
c33c7948 4131 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
b8107480 4132 goto out_nomap;
b8107480 4133
63ad4add 4134 if (unlikely(!folio_test_uptodate(folio))) {
b8107480
KK
4135 ret = VM_FAULT_SIGBUS;
4136 goto out_nomap;
1da177e4
LT
4137 }
4138
78fbe906
DH
4139 /*
4140 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4141 * must never point at an anonymous page in the swapcache that is
4142 * PG_anon_exclusive. Sanity check that this holds and especially, that
4143 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4144 * check after taking the PT lock and making sure that nobody
4145 * concurrently faulted in this page and set PG_anon_exclusive.
4146 */
63ad4add
MWO
4147 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
4148 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
78fbe906 4149
1493a191
DH
4150 /*
4151 * Check under PT lock (to protect against concurrent fork() sharing
4152 * the swap entry concurrently) for certainly exclusive pages.
4153 */
63ad4add 4154 if (!folio_test_ksm(folio)) {
1493a191 4155 exclusive = pte_swp_exclusive(vmf->orig_pte);
d4f9565a 4156 if (folio != swapcache) {
1493a191
DH
4157 /*
4158 * We have a fresh page that is not exposed to the
4159 * swapcache -> certainly exclusive.
4160 */
4161 exclusive = true;
63ad4add 4162 } else if (exclusive && folio_test_writeback(folio) &&
eacde327 4163 data_race(si->flags & SWP_STABLE_WRITES)) {
1493a191
DH
4164 /*
4165 * This is tricky: not all swap backends support
4166 * concurrent page modifications while under writeback.
4167 *
4168 * So if we stumble over such a page in the swapcache
4169 * we must not set the page exclusive, otherwise we can
4170 * map it writable without further checks and modify it
4171 * while still under writeback.
4172 *
4173 * For these problematic swap backends, simply drop the
4174 * exclusive marker: this is perfectly fine as we start
4175 * writeback only if we fully unmapped the page and
4176 * there are no unexpected references on the page after
4177 * unmapping succeeded. After fully unmapped, no
4178 * further GUP references (FOLL_GET and FOLL_PIN) can
4179 * appear, so dropping the exclusive marker and mapping
4180 * it only R/O is fine.
4181 */
4182 exclusive = false;
4183 }
4184 }
4185
6dca4ac6
PC
4186 /*
4187 * Some architectures may have to restore extra metadata to the page
4188 * when reading from swap. This metadata may be indexed by swap entry
4189 * so this must be called before swap_free().
4190 */
4191 arch_swap_restore(entry, folio);
4192
8c7c6e34 4193 /*
c145e0b4
DH
4194 * Remove the swap entry and conditionally try to free up the swapcache.
4195 * We're already holding a reference on the page but haven't mapped it
4196 * yet.
8c7c6e34 4197 */
c145e0b4 4198 swap_free(entry);
a160e537
MWO
4199 if (should_try_to_free_swap(folio, vma, vmf->flags))
4200 folio_free_swap(folio);
1da177e4 4201
f1a79412
SB
4202 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4203 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1da177e4 4204 pte = mk_pte(page, vma->vm_page_prot);
c145e0b4
DH
4205
4206 /*
1493a191
DH
4207 * Same logic as in do_wp_page(); however, optimize for pages that are
4208 * certainly not shared either because we just allocated them without
4209 * exposing them to the swapcache or because the swap entry indicates
4210 * exclusivity.
c145e0b4 4211 */
63ad4add
MWO
4212 if (!folio_test_ksm(folio) &&
4213 (exclusive || folio_ref_count(folio) == 1)) {
6c287605
DH
4214 if (vmf->flags & FAULT_FLAG_WRITE) {
4215 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
4216 vmf->flags &= ~FAULT_FLAG_WRITE;
6c287605 4217 }
14f9135d 4218 rmap_flags |= RMAP_EXCLUSIVE;
1da177e4 4219 }
1da177e4 4220 flush_icache_page(vma, page);
2994302b 4221 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 4222 pte = pte_mksoft_dirty(pte);
f1eb1bac 4223 if (pte_swp_uffd_wp(vmf->orig_pte))
f45ec5ff 4224 pte = pte_mkuffd_wp(pte);
2994302b 4225 vmf->orig_pte = pte;
0bcac06f
MK
4226
4227 /* ksm created a completely new copy */
d4f9565a 4228 if (unlikely(folio != swapcache && swapcache)) {
2853b66b 4229 folio_add_new_anon_rmap(folio, vma, vmf->address);
63ad4add 4230 folio_add_lru_vma(folio, vma);
0bcac06f 4231 } else {
b832a354
DH
4232 folio_add_anon_rmap_pte(folio, page, vma, vmf->address,
4233 rmap_flags);
00501b53 4234 }
1da177e4 4235
63ad4add
MWO
4236 VM_BUG_ON(!folio_test_anon(folio) ||
4237 (pte_write(pte) && !PageAnonExclusive(page)));
1eba86c0
PT
4238 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4239 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4240
63ad4add 4241 folio_unlock(folio);
d4f9565a 4242 if (folio != swapcache && swapcache) {
4969c119
AA
4243 /*
4244 * Hold the lock to avoid the swap entry to be reused
4245 * until we take the PT lock for the pte_same() check
4246 * (to avoid false positives from pte_same). For
4247 * further safety release the lock after the swap_free
4248 * so that the swap count won't change under a
4249 * parallel locked swapcache.
4250 */
d4f9565a
MWO
4251 folio_unlock(swapcache);
4252 folio_put(swapcache);
4969c119 4253 }
c475a8ab 4254
82b0f8c3 4255 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 4256 ret |= do_wp_page(vmf);
61469f1d
HD
4257 if (ret & VM_FAULT_ERROR)
4258 ret &= VM_FAULT_ERROR;
1da177e4
LT
4259 goto out;
4260 }
4261
4262 /* No need to invalidate - it was non-present before */
5003a2bd 4263 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
65500d23 4264unlock:
3db82b93
HD
4265 if (vmf->pte)
4266 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4 4267out:
13ddaf26
KS
4268 /* Clear the swap cache pin for direct swapin after PTL unlock */
4269 if (need_clear_cache)
4270 swapcache_clear(si, entry);
2799e775
ML
4271 if (si)
4272 put_swap_device(si);
1da177e4 4273 return ret;
b8107480 4274out_nomap:
3db82b93
HD
4275 if (vmf->pte)
4276 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 4277out_page:
63ad4add 4278 folio_unlock(folio);
4779cb31 4279out_release:
63ad4add 4280 folio_put(folio);
d4f9565a
MWO
4281 if (folio != swapcache && swapcache) {
4282 folio_unlock(swapcache);
4283 folio_put(swapcache);
4969c119 4284 }
13ddaf26
KS
4285 if (need_clear_cache)
4286 swapcache_clear(si, entry);
2799e775
ML
4287 if (si)
4288 put_swap_device(si);
65500d23 4289 return ret;
1da177e4
LT
4290}
4291
19eaf449
RR
4292static bool pte_range_none(pte_t *pte, int nr_pages)
4293{
4294 int i;
4295
4296 for (i = 0; i < nr_pages; i++) {
4297 if (!pte_none(ptep_get_lockless(pte + i)))
4298 return false;
4299 }
4300
4301 return true;
4302}
4303
4304static struct folio *alloc_anon_folio(struct vm_fault *vmf)
4305{
19eaf449 4306 struct vm_area_struct *vma = vmf->vma;
085ff35e 4307#ifdef CONFIG_TRANSPARENT_HUGEPAGE
19eaf449
RR
4308 unsigned long orders;
4309 struct folio *folio;
4310 unsigned long addr;
4311 pte_t *pte;
4312 gfp_t gfp;
4313 int order;
4314
4315 /*
4316 * If uffd is active for the vma we need per-page fault fidelity to
4317 * maintain the uffd semantics.
4318 */
4319 if (unlikely(userfaultfd_armed(vma)))
4320 goto fallback;
4321
4322 /*
4323 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4324 * for this vma. Then filter out the orders that can't be allocated over
4325 * the faulting address and still be fully contained in the vma.
4326 */
4327 orders = thp_vma_allowable_orders(vma, vma->vm_flags, false, true, true,
4328 BIT(PMD_ORDER) - 1);
4329 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4330
4331 if (!orders)
4332 goto fallback;
4333
4334 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
4335 if (!pte)
4336 return ERR_PTR(-EAGAIN);
4337
4338 /*
4339 * Find the highest order where the aligned range is completely
4340 * pte_none(). Note that all remaining orders will be completely
4341 * pte_none().
4342 */
4343 order = highest_order(orders);
4344 while (orders) {
4345 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4346 if (pte_range_none(pte + pte_index(addr), 1 << order))
4347 break;
4348 order = next_order(&orders, order);
4349 }
4350
4351 pte_unmap(pte);
4352
4353 /* Try allocating the highest of the remaining orders. */
4354 gfp = vma_thp_gfp_mask(vma);
4355 while (orders) {
4356 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4357 folio = vma_alloc_folio(gfp, order, vma, addr, true);
4358 if (folio) {
085ff35e
KW
4359 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
4360 folio_put(folio);
4361 goto next;
4362 }
4363 folio_throttle_swaprate(folio, gfp);
19eaf449
RR
4364 clear_huge_page(&folio->page, vmf->address, 1 << order);
4365 return folio;
4366 }
085ff35e 4367next:
19eaf449
RR
4368 order = next_order(&orders, order);
4369 }
4370
4371fallback:
4372#endif
085ff35e 4373 return folio_prealloc(vma->vm_mm, vma, vmf->address, true);
19eaf449
RR
4374}
4375
1da177e4 4376/*
c1e8d7c6 4377 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 4378 * but allow concurrent faults), and pte mapped but not yet locked.
c1e8d7c6 4379 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 4380 */
2b740303 4381static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 4382{
2bad466c 4383 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
82b0f8c3 4384 struct vm_area_struct *vma = vmf->vma;
19eaf449 4385 unsigned long addr = vmf->address;
6bc56a4d 4386 struct folio *folio;
2b740303 4387 vm_fault_t ret = 0;
19eaf449 4388 int nr_pages = 1;
1da177e4 4389 pte_t entry;
19eaf449 4390 int i;
1da177e4 4391
6b7339f4
KS
4392 /* File mapping without ->vm_ops ? */
4393 if (vma->vm_flags & VM_SHARED)
4394 return VM_FAULT_SIGBUS;
4395
7267ec00 4396 /*
3db82b93
HD
4397 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4398 * be distinguished from a transient failure of pte_offset_map().
7267ec00 4399 */
4cf58924 4400 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
4401 return VM_FAULT_OOM;
4402
11ac5524 4403 /* Use the zero-page for reads */
82b0f8c3 4404 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 4405 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 4406 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 4407 vma->vm_page_prot));
82b0f8c3
JK
4408 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4409 vmf->address, &vmf->ptl);
3db82b93
HD
4410 if (!vmf->pte)
4411 goto unlock;
2bad466c 4412 if (vmf_pte_changed(vmf)) {
7df67697 4413 update_mmu_tlb(vma, vmf->address, vmf->pte);
a13ea5b7 4414 goto unlock;
7df67697 4415 }
6b31d595
MH
4416 ret = check_stable_address_space(vma->vm_mm);
4417 if (ret)
4418 goto unlock;
6b251fc9
AA
4419 /* Deliver the page fault to userland, check inside PT lock */
4420 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
4421 pte_unmap_unlock(vmf->pte, vmf->ptl);
4422 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 4423 }
a13ea5b7
HD
4424 goto setpte;
4425 }
4426
557ed1fa 4427 /* Allocate our own private page. */
557ed1fa
NP
4428 if (unlikely(anon_vma_prepare(vma)))
4429 goto oom;
19eaf449
RR
4430 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
4431 folio = alloc_anon_folio(vmf);
4432 if (IS_ERR(folio))
4433 return 0;
6bc56a4d 4434 if (!folio)
557ed1fa 4435 goto oom;
eb3c24f3 4436
19eaf449
RR
4437 nr_pages = folio_nr_pages(folio);
4438 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4439
52f37629 4440 /*
cb3184de 4441 * The memory barrier inside __folio_mark_uptodate makes sure that
f4f5329d 4442 * preceding stores to the page contents become visible before
52f37629
MK
4443 * the set_pte_at() write.
4444 */
cb3184de 4445 __folio_mark_uptodate(folio);
8f4e2101 4446
cb3184de 4447 entry = mk_pte(&folio->page, vma->vm_page_prot);
50c25ee9 4448 entry = pte_sw_mkyoung(entry);
1ac0cb5d 4449 if (vma->vm_flags & VM_WRITE)
161e393c 4450 entry = pte_mkwrite(pte_mkdirty(entry), vma);
1da177e4 4451
19eaf449 4452 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3db82b93
HD
4453 if (!vmf->pte)
4454 goto release;
19eaf449
RR
4455 if (nr_pages == 1 && vmf_pte_changed(vmf)) {
4456 update_mmu_tlb(vma, addr, vmf->pte);
4457 goto release;
4458 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
4459 for (i = 0; i < nr_pages; i++)
4460 update_mmu_tlb(vma, addr + PAGE_SIZE * i, vmf->pte + i);
557ed1fa 4461 goto release;
7df67697 4462 }
9ba69294 4463
6b31d595
MH
4464 ret = check_stable_address_space(vma->vm_mm);
4465 if (ret)
4466 goto release;
4467
6b251fc9
AA
4468 /* Deliver the page fault to userland, check inside PT lock */
4469 if (userfaultfd_missing(vma)) {
82b0f8c3 4470 pte_unmap_unlock(vmf->pte, vmf->ptl);
cb3184de 4471 folio_put(folio);
82b0f8c3 4472 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
4473 }
4474
19eaf449
RR
4475 folio_ref_add(folio, nr_pages - 1);
4476 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4477 folio_add_new_anon_rmap(folio, vma, addr);
cb3184de 4478 folio_add_lru_vma(folio, vma);
a13ea5b7 4479setpte:
2bad466c
PX
4480 if (uffd_wp)
4481 entry = pte_mkuffd_wp(entry);
19eaf449 4482 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
1da177e4
LT
4483
4484 /* No need to invalidate - it was non-present before */
19eaf449 4485 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
65500d23 4486unlock:
3db82b93
HD
4487 if (vmf->pte)
4488 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 4489 return ret;
8f4e2101 4490release:
cb3184de 4491 folio_put(folio);
8f4e2101 4492 goto unlock;
65500d23 4493oom:
1da177e4
LT
4494 return VM_FAULT_OOM;
4495}
4496
9a95f3cf 4497/*
c1e8d7c6 4498 * The mmap_lock must have been held on entry, and may have been
9a95f3cf
PC
4499 * released depending on flags and vma->vm_ops->fault() return value.
4500 * See filemap_fault() and __lock_page_retry().
4501 */
2b740303 4502static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 4503{
82b0f8c3 4504 struct vm_area_struct *vma = vmf->vma;
01d1e0e6 4505 struct folio *folio;
2b740303 4506 vm_fault_t ret;
7eae74af 4507
63f3655f
MH
4508 /*
4509 * Preallocate pte before we take page_lock because this might lead to
4510 * deadlocks for memcg reclaim which waits for pages under writeback:
4511 * lock_page(A)
4512 * SetPageWriteback(A)
4513 * unlock_page(A)
4514 * lock_page(B)
4515 * lock_page(B)
d383807a 4516 * pte_alloc_one
63f3655f
MH
4517 * shrink_page_list
4518 * wait_on_page_writeback(A)
4519 * SetPageWriteback(B)
4520 * unlock_page(B)
4521 * # flush A, B to clear the writeback
4522 */
4523 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
a7069ee3 4524 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
63f3655f
MH
4525 if (!vmf->prealloc_pte)
4526 return VM_FAULT_OOM;
63f3655f
MH
4527 }
4528
11bac800 4529 ret = vma->vm_ops->fault(vmf);
3917048d 4530 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 4531 VM_FAULT_DONE_COW)))
bc2466e4 4532 return ret;
7eae74af 4533
01d1e0e6 4534 folio = page_folio(vmf->page);
667240e0 4535 if (unlikely(PageHWPoison(vmf->page))) {
e53ac737
RR
4536 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4537 if (ret & VM_FAULT_LOCKED) {
01d1e0e6
MWO
4538 if (page_mapped(vmf->page))
4539 unmap_mapping_folio(folio);
4540 /* Retry if a clean folio was removed from the cache. */
4541 if (mapping_evict_folio(folio->mapping, folio))
3149c79f 4542 poisonret = VM_FAULT_NOPAGE;
01d1e0e6 4543 folio_unlock(folio);
e53ac737 4544 }
01d1e0e6 4545 folio_put(folio);
936ca80d 4546 vmf->page = NULL;
e53ac737 4547 return poisonret;
7eae74af
KS
4548 }
4549
4550 if (unlikely(!(ret & VM_FAULT_LOCKED)))
01d1e0e6 4551 folio_lock(folio);
7eae74af 4552 else
01d1e0e6 4553 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
7eae74af 4554
7eae74af
KS
4555 return ret;
4556}
4557
396bcc52 4558#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 4559static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 4560{
82b0f8c3 4561 struct vm_area_struct *vma = vmf->vma;
953c66c2 4562
82b0f8c3 4563 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
4564 /*
4565 * We are going to consume the prealloc table,
4566 * count that as nr_ptes.
4567 */
c4812909 4568 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 4569 vmf->prealloc_pte = NULL;
953c66c2
AK
4570}
4571
f9ce0be7 4572vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 4573{
ef37b2ea 4574 struct folio *folio = page_folio(page);
82b0f8c3
JK
4575 struct vm_area_struct *vma = vmf->vma;
4576 bool write = vmf->flags & FAULT_FLAG_WRITE;
4577 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 4578 pmd_t entry;
d01ac3c3 4579 vm_fault_t ret = VM_FAULT_FALLBACK;
10102459 4580
3485b883 4581 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
d01ac3c3 4582 return ret;
10102459 4583
ef37b2ea 4584 if (page != &folio->page || folio_order(folio) != HPAGE_PMD_ORDER)
d01ac3c3 4585 return ret;
10102459 4586
eac96c3e
YS
4587 /*
4588 * Just backoff if any subpage of a THP is corrupted otherwise
4589 * the corrupted page may mapped by PMD silently to escape the
4590 * check. This kind of THP just can be PTE mapped. Access to
4591 * the corrupted subpage should trigger SIGBUS as expected.
4592 */
ef37b2ea 4593 if (unlikely(folio_test_has_hwpoisoned(folio)))
eac96c3e
YS
4594 return ret;
4595
953c66c2 4596 /*
f0953a1b 4597 * Archs like ppc64 need additional space to store information
953c66c2
AK
4598 * related to pte entry. Use the preallocated table for that.
4599 */
82b0f8c3 4600 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 4601 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 4602 if (!vmf->prealloc_pte)
953c66c2 4603 return VM_FAULT_OOM;
953c66c2
AK
4604 }
4605
82b0f8c3
JK
4606 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4607 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
4608 goto out;
4609
9f1f5b60 4610 flush_icache_pages(vma, page, HPAGE_PMD_NR);
10102459
KS
4611
4612 entry = mk_huge_pmd(page, vma->vm_page_prot);
4613 if (write)
f55e1014 4614 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 4615
6b27cc6c 4616 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR);
ef37b2ea 4617 folio_add_file_rmap_pmd(folio, page, vma);
cea86fe2 4618
953c66c2
AK
4619 /*
4620 * deposit and withdraw with pmd lock held
4621 */
4622 if (arch_needs_pgtable_deposit())
82b0f8c3 4623 deposit_prealloc_pte(vmf);
10102459 4624
82b0f8c3 4625 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 4626
82b0f8c3 4627 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
4628
4629 /* fault is handled */
4630 ret = 0;
95ecedcd 4631 count_vm_event(THP_FILE_MAPPED);
10102459 4632out:
82b0f8c3 4633 spin_unlock(vmf->ptl);
10102459
KS
4634 return ret;
4635}
4636#else
f9ce0be7 4637vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 4638{
f9ce0be7 4639 return VM_FAULT_FALLBACK;
10102459
KS
4640}
4641#endif
4642
3bd786f7
YF
4643/**
4644 * set_pte_range - Set a range of PTEs to point to pages in a folio.
4645 * @vmf: Fault decription.
4646 * @folio: The folio that contains @page.
4647 * @page: The first page to create a PTE for.
4648 * @nr: The number of PTEs to create.
4649 * @addr: The first address to create a PTE for.
4650 */
4651void set_pte_range(struct vm_fault *vmf, struct folio *folio,
4652 struct page *page, unsigned int nr, unsigned long addr)
3bb97794 4653{
82b0f8c3 4654 struct vm_area_struct *vma = vmf->vma;
2bad466c 4655 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
82b0f8c3 4656 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bd786f7 4657 bool prefault = in_range(vmf->address, addr, nr * PAGE_SIZE);
3bb97794 4658 pte_t entry;
7267ec00 4659
3bd786f7 4660 flush_icache_pages(vma, page, nr);
3bb97794 4661 entry = mk_pte(page, vma->vm_page_prot);
46bdb427
WD
4662
4663 if (prefault && arch_wants_old_prefaulted_pte())
4664 entry = pte_mkold(entry);
50c25ee9
TB
4665 else
4666 entry = pte_sw_mkyoung(entry);
46bdb427 4667
3bb97794
KS
4668 if (write)
4669 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
9c28a205 4670 if (unlikely(uffd_wp))
f1eb1bac 4671 entry = pte_mkuffd_wp(entry);
bae473a4
KS
4672 /* copy-on-write page */
4673 if (write && !(vma->vm_flags & VM_SHARED)) {
3bd786f7
YF
4674 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr);
4675 VM_BUG_ON_FOLIO(nr != 1, folio);
4676 folio_add_new_anon_rmap(folio, vma, addr);
4677 folio_add_lru_vma(folio, vma);
3bb97794 4678 } else {
6b27cc6c 4679 add_mm_counter(vma->vm_mm, mm_counter_file(folio), nr);
68f03208 4680 folio_add_file_rmap_ptes(folio, page, nr, vma);
3bb97794 4681 }
3bd786f7
YF
4682 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
4683
4684 /* no need to invalidate: a not-present page won't be cached */
4685 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
3bb97794
KS
4686}
4687
f46f2ade
PX
4688static bool vmf_pte_changed(struct vm_fault *vmf)
4689{
4690 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
c33c7948 4691 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
f46f2ade 4692
c33c7948 4693 return !pte_none(ptep_get(vmf->pte));
f46f2ade
PX
4694}
4695
9118c0cb
JK
4696/**
4697 * finish_fault - finish page fault once we have prepared the page to fault
4698 *
4699 * @vmf: structure describing the fault
4700 *
4701 * This function handles all that is needed to finish a page fault once the
4702 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4703 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 4704 * addition.
9118c0cb
JK
4705 *
4706 * The function expects the page to be locked and on success it consumes a
4707 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
4708 *
4709 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 4710 */
2b740303 4711vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb 4712{
f9ce0be7 4713 struct vm_area_struct *vma = vmf->vma;
9118c0cb 4714 struct page *page;
f9ce0be7 4715 vm_fault_t ret;
9118c0cb
JK
4716
4717 /* Did we COW the page? */
f9ce0be7 4718 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
9118c0cb
JK
4719 page = vmf->cow_page;
4720 else
4721 page = vmf->page;
6b31d595
MH
4722
4723 /*
4724 * check even for read faults because we might have lost our CoWed
4725 * page
4726 */
f9ce0be7
KS
4727 if (!(vma->vm_flags & VM_SHARED)) {
4728 ret = check_stable_address_space(vma->vm_mm);
4729 if (ret)
4730 return ret;
4731 }
4732
4733 if (pmd_none(*vmf->pmd)) {
4734 if (PageTransCompound(page)) {
4735 ret = do_set_pmd(vmf, page);
4736 if (ret != VM_FAULT_FALLBACK)
4737 return ret;
4738 }
4739
03c4f204
QZ
4740 if (vmf->prealloc_pte)
4741 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4742 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
f9ce0be7
KS
4743 return VM_FAULT_OOM;
4744 }
4745
f9ce0be7
KS
4746 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4747 vmf->address, &vmf->ptl);
3db82b93
HD
4748 if (!vmf->pte)
4749 return VM_FAULT_NOPAGE;
70427f6e 4750
f9ce0be7 4751 /* Re-check under ptl */
70427f6e 4752 if (likely(!vmf_pte_changed(vmf))) {
3bd786f7 4753 struct folio *folio = page_folio(page);
70427f6e 4754
3bd786f7 4755 set_pte_range(vmf, folio, page, 1, vmf->address);
70427f6e
SA
4756 ret = 0;
4757 } else {
4758 update_mmu_tlb(vma, vmf->address, vmf->pte);
f9ce0be7 4759 ret = VM_FAULT_NOPAGE;
70427f6e 4760 }
f9ce0be7 4761
f9ce0be7 4762 pte_unmap_unlock(vmf->pte, vmf->ptl);
9118c0cb
JK
4763 return ret;
4764}
4765
53d36a56
LS
4766static unsigned long fault_around_pages __read_mostly =
4767 65536 >> PAGE_SHIFT;
a9b0f861 4768
a9b0f861
KS
4769#ifdef CONFIG_DEBUG_FS
4770static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 4771{
53d36a56 4772 *val = fault_around_pages << PAGE_SHIFT;
1592eef0
KS
4773 return 0;
4774}
4775
b4903d6e 4776/*
da391d64
WK
4777 * fault_around_bytes must be rounded down to the nearest page order as it's
4778 * what do_fault_around() expects to see.
b4903d6e 4779 */
a9b0f861 4780static int fault_around_bytes_set(void *data, u64 val)
1592eef0 4781{
a9b0f861 4782 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 4783 return -EINVAL;
53d36a56
LS
4784
4785 /*
4786 * The minimum value is 1 page, however this results in no fault-around
4787 * at all. See should_fault_around().
4788 */
5aa598a7
KW
4789 val = max(val, PAGE_SIZE);
4790 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT;
53d36a56 4791
1592eef0
KS
4792 return 0;
4793}
0a1345f8 4794DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 4795 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
4796
4797static int __init fault_around_debugfs(void)
4798{
d9f7979c
GKH
4799 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4800 &fault_around_bytes_fops);
1592eef0
KS
4801 return 0;
4802}
4803late_initcall(fault_around_debugfs);
1592eef0 4804#endif
8c6e50b0 4805
1fdb412b
KS
4806/*
4807 * do_fault_around() tries to map few pages around the fault address. The hope
4808 * is that the pages will be needed soon and this will lower the number of
4809 * faults to handle.
4810 *
4811 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4812 * not ready to be mapped: not up-to-date, locked, etc.
4813 *
9042599e
LS
4814 * This function doesn't cross VMA or page table boundaries, in order to call
4815 * map_pages() and acquire a PTE lock only once.
1fdb412b 4816 *
53d36a56 4817 * fault_around_pages defines how many pages we'll try to map.
da391d64
WK
4818 * do_fault_around() expects it to be set to a power of two less than or equal
4819 * to PTRS_PER_PTE.
1fdb412b 4820 *
da391d64 4821 * The virtual address of the area that we map is naturally aligned to
53d36a56 4822 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
da391d64
WK
4823 * (and therefore to page order). This way it's easier to guarantee
4824 * that we don't cross page table boundaries.
1fdb412b 4825 */
2b740303 4826static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 4827{
53d36a56 4828 pgoff_t nr_pages = READ_ONCE(fault_around_pages);
9042599e
LS
4829 pgoff_t pte_off = pte_index(vmf->address);
4830 /* The page offset of vmf->address within the VMA. */
4831 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4832 pgoff_t from_pte, to_pte;
58ef47ef 4833 vm_fault_t ret;
8c6e50b0 4834
9042599e
LS
4835 /* The PTE offset of the start address, clamped to the VMA. */
4836 from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4837 pte_off - min(pte_off, vma_off));
aecd6f44 4838
9042599e
LS
4839 /* The PTE offset of the end address, clamped to the VMA and PTE. */
4840 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4841 pte_off + vma_pages(vmf->vma) - vma_off) - 1;
8c6e50b0 4842
82b0f8c3 4843 if (pmd_none(*vmf->pmd)) {
4cf58924 4844 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 4845 if (!vmf->prealloc_pte)
f9ce0be7 4846 return VM_FAULT_OOM;
8c6e50b0
KS
4847 }
4848
58ef47ef
MWO
4849 rcu_read_lock();
4850 ret = vmf->vma->vm_ops->map_pages(vmf,
4851 vmf->pgoff + from_pte - pte_off,
4852 vmf->pgoff + to_pte - pte_off);
4853 rcu_read_unlock();
4854
4855 return ret;
8c6e50b0
KS
4856}
4857
9c28a205
PX
4858/* Return true if we should do read fault-around, false otherwise */
4859static inline bool should_fault_around(struct vm_fault *vmf)
4860{
4861 /* No ->map_pages? No way to fault around... */
4862 if (!vmf->vma->vm_ops->map_pages)
4863 return false;
4864
4865 if (uffd_disable_fault_around(vmf->vma))
4866 return false;
4867
53d36a56
LS
4868 /* A single page implies no faulting 'around' at all. */
4869 return fault_around_pages > 1;
9c28a205
PX
4870}
4871
2b740303 4872static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 4873{
2b740303 4874 vm_fault_t ret = 0;
22d1e68f 4875 struct folio *folio;
8c6e50b0
KS
4876
4877 /*
4878 * Let's call ->map_pages() first and use ->fault() as fallback
4879 * if page by the offset is not ready to be mapped (cold cache or
4880 * something).
4881 */
9c28a205
PX
4882 if (should_fault_around(vmf)) {
4883 ret = do_fault_around(vmf);
4884 if (ret)
4885 return ret;
8c6e50b0 4886 }
e655fb29 4887
12214eba
MWO
4888 ret = vmf_can_call_fault(vmf);
4889 if (ret)
4890 return ret;
f5617ffe 4891
936ca80d 4892 ret = __do_fault(vmf);
e655fb29
KS
4893 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4894 return ret;
4895
9118c0cb 4896 ret |= finish_fault(vmf);
22d1e68f
SK
4897 folio = page_folio(vmf->page);
4898 folio_unlock(folio);
7267ec00 4899 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
22d1e68f 4900 folio_put(folio);
e655fb29
KS
4901 return ret;
4902}
4903
2b740303 4904static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 4905{
82b0f8c3 4906 struct vm_area_struct *vma = vmf->vma;
e4621e70 4907 struct folio *folio;
2b740303 4908 vm_fault_t ret;
ec47c3b9 4909
4de8c93a
MWO
4910 ret = vmf_can_call_fault(vmf);
4911 if (!ret)
4912 ret = vmf_anon_prepare(vmf);
4913 if (ret)
4914 return ret;
ec47c3b9 4915
e4621e70
KW
4916 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
4917 if (!folio)
ec47c3b9
KS
4918 return VM_FAULT_OOM;
4919
e4621e70 4920 vmf->cow_page = &folio->page;
ec47c3b9 4921
936ca80d 4922 ret = __do_fault(vmf);
ec47c3b9
KS
4923 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4924 goto uncharge_out;
3917048d
JK
4925 if (ret & VM_FAULT_DONE_COW)
4926 return ret;
ec47c3b9 4927
b1aa812b 4928 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
e4621e70 4929 __folio_mark_uptodate(folio);
ec47c3b9 4930
9118c0cb 4931 ret |= finish_fault(vmf);
b1aa812b
JK
4932 unlock_page(vmf->page);
4933 put_page(vmf->page);
7267ec00
KS
4934 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4935 goto uncharge_out;
ec47c3b9
KS
4936 return ret;
4937uncharge_out:
e4621e70 4938 folio_put(folio);
ec47c3b9
KS
4939 return ret;
4940}
4941
2b740303 4942static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 4943{
82b0f8c3 4944 struct vm_area_struct *vma = vmf->vma;
2b740303 4945 vm_fault_t ret, tmp;
6f609b7e 4946 struct folio *folio;
1d65f86d 4947
4ed43798
MWO
4948 ret = vmf_can_call_fault(vmf);
4949 if (ret)
4950 return ret;
1d65f86d 4951
936ca80d 4952 ret = __do_fault(vmf);
7eae74af 4953 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 4954 return ret;
1da177e4 4955
6f609b7e
SK
4956 folio = page_folio(vmf->page);
4957
1da177e4 4958 /*
f0c6d4d2
KS
4959 * Check if the backing address space wants to know that the page is
4960 * about to become writable
1da177e4 4961 */
fb09a464 4962 if (vma->vm_ops->page_mkwrite) {
6f609b7e 4963 folio_unlock(folio);
86aa6998 4964 tmp = do_page_mkwrite(vmf, folio);
fb09a464
KS
4965 if (unlikely(!tmp ||
4966 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
6f609b7e 4967 folio_put(folio);
fb09a464 4968 return tmp;
4294621f 4969 }
fb09a464
KS
4970 }
4971
9118c0cb 4972 ret |= finish_fault(vmf);
7267ec00
KS
4973 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4974 VM_FAULT_RETRY))) {
6f609b7e
SK
4975 folio_unlock(folio);
4976 folio_put(folio);
f0c6d4d2 4977 return ret;
1da177e4 4978 }
b827e496 4979
89b15332 4980 ret |= fault_dirty_shared_page(vmf);
1d65f86d 4981 return ret;
54cb8821 4982}
d00806b1 4983
9a95f3cf 4984/*
c1e8d7c6 4985 * We enter with non-exclusive mmap_lock (to exclude vma changes,
9a95f3cf 4986 * but allow concurrent faults).
c1e8d7c6 4987 * The mmap_lock may have been released depending on flags and our
9138e47e 4988 * return value. See filemap_fault() and __folio_lock_or_retry().
c1e8d7c6 4989 * If mmap_lock is released, vma may become invalid (for example
fc8efd2d 4990 * by other thread calling munmap()).
9a95f3cf 4991 */
2b740303 4992static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 4993{
82b0f8c3 4994 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 4995 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 4996 vm_fault_t ret;
54cb8821 4997
ff09d7ec
AK
4998 /*
4999 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
5000 */
5001 if (!vma->vm_ops->fault) {
3db82b93
HD
5002 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
5003 vmf->address, &vmf->ptl);
5004 if (unlikely(!vmf->pte))
ff09d7ec
AK
5005 ret = VM_FAULT_SIGBUS;
5006 else {
ff09d7ec
AK
5007 /*
5008 * Make sure this is not a temporary clearing of pte
5009 * by holding ptl and checking again. A R/M/W update
5010 * of pte involves: take ptl, clearing the pte so that
5011 * we don't have concurrent modification by hardware
5012 * followed by an update.
5013 */
c33c7948 5014 if (unlikely(pte_none(ptep_get(vmf->pte))))
ff09d7ec
AK
5015 ret = VM_FAULT_SIGBUS;
5016 else
5017 ret = VM_FAULT_NOPAGE;
5018
5019 pte_unmap_unlock(vmf->pte, vmf->ptl);
5020 }
5021 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
5022 ret = do_read_fault(vmf);
5023 else if (!(vma->vm_flags & VM_SHARED))
5024 ret = do_cow_fault(vmf);
5025 else
5026 ret = do_shared_fault(vmf);
5027
5028 /* preallocated pagetable is unused: free it */
5029 if (vmf->prealloc_pte) {
fc8efd2d 5030 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 5031 vmf->prealloc_pte = NULL;
b0b9b3df
HD
5032 }
5033 return ret;
54cb8821
NP
5034}
5035
cda6d936 5036int numa_migrate_prep(struct folio *folio, struct vm_area_struct *vma,
f4c0d836 5037 unsigned long addr, int page_nid, int *flags)
9532fec1 5038{
cda6d936 5039 folio_get(folio);
9532fec1 5040
fc137c0d
R
5041 /* Record the current PID acceesing VMA */
5042 vma_set_access_pid_bit(vma);
5043
9532fec1 5044 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 5045 if (page_nid == numa_node_id()) {
9532fec1 5046 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
5047 *flags |= TNF_FAULT_LOCAL;
5048 }
9532fec1 5049
75c70128 5050 return mpol_misplaced(folio, vma, addr);
9532fec1
MG
5051}
5052
2b740303 5053static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 5054{
82b0f8c3 5055 struct vm_area_struct *vma = vmf->vma;
6695cf68
KW
5056 struct folio *folio = NULL;
5057 int nid = NUMA_NO_NODE;
6a56ccbc 5058 bool writable = false;
90572890 5059 int last_cpupid;
cbee9f88 5060 int target_nid;
04a86453 5061 pte_t pte, old_pte;
6688cc05 5062 int flags = 0;
d10e63f2
MG
5063
5064 /*
6c1b748e
JH
5065 * The pte cannot be used safely until we verify, while holding the page
5066 * table lock, that its contents have not changed during fault handling.
166f61b9 5067 */
82b0f8c3 5068 spin_lock(vmf->ptl);
6c1b748e
JH
5069 /* Read the live PTE from the page tables: */
5070 old_pte = ptep_get(vmf->pte);
5071
5072 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) {
82b0f8c3 5073 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
5074 goto out;
5075 }
5076
04a86453 5077 pte = pte_modify(old_pte, vma->vm_page_prot);
d10e63f2 5078
6a56ccbc
DH
5079 /*
5080 * Detect now whether the PTE could be writable; this information
5081 * is only valid while holding the PT lock.
5082 */
5083 writable = pte_write(pte);
5084 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
5085 can_change_pte_writable(vma, vmf->address, pte))
5086 writable = true;
5087
6695cf68
KW
5088 folio = vm_normal_folio(vma, vmf->address, pte);
5089 if (!folio || folio_is_zone_device(folio))
b99a342d 5090 goto out_map;
d10e63f2 5091
e81c4802 5092 /* TODO: handle PTE-mapped THP */
6695cf68 5093 if (folio_test_large(folio))
b99a342d 5094 goto out_map;
e81c4802 5095
6688cc05 5096 /*
bea66fbd
MG
5097 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
5098 * much anyway since they can be in shared cache state. This misses
5099 * the case where a mapping is writable but the process never writes
5100 * to it but pte_write gets cleared during protection updates and
5101 * pte_dirty has unpredictable behaviour between PTE scan updates,
5102 * background writeback, dirty balancing and application behaviour.
6688cc05 5103 */
6a56ccbc 5104 if (!writable)
6688cc05
PZ
5105 flags |= TNF_NO_GROUP;
5106
dabe1d99 5107 /*
6695cf68 5108 * Flag if the folio is shared between multiple address spaces. This
dabe1d99
RR
5109 * is later used when determining whether to group tasks together
5110 */
6695cf68 5111 if (folio_estimated_sharers(folio) > 1 && (vma->vm_flags & VM_SHARED))
dabe1d99
RR
5112 flags |= TNF_SHARED;
5113
6695cf68 5114 nid = folio_nid(folio);
33024536
YH
5115 /*
5116 * For memory tiering mode, cpupid of slow memory page is used
5117 * to record page access time. So use default value.
5118 */
5119 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
6695cf68 5120 !node_is_toptier(nid))
33024536
YH
5121 last_cpupid = (-1 & LAST_CPUPID_MASK);
5122 else
67b33e3f 5123 last_cpupid = folio_last_cpupid(folio);
cda6d936 5124 target_nid = numa_migrate_prep(folio, vma, vmf->address, nid, &flags);
98fa15f3 5125 if (target_nid == NUMA_NO_NODE) {
6695cf68 5126 folio_put(folio);
b99a342d 5127 goto out_map;
4daae3b4 5128 }
b99a342d 5129 pte_unmap_unlock(vmf->pte, vmf->ptl);
6a56ccbc 5130 writable = false;
4daae3b4
MG
5131
5132 /* Migrate to the requested node */
6695cf68
KW
5133 if (migrate_misplaced_folio(folio, vma, target_nid)) {
5134 nid = target_nid;
6688cc05 5135 flags |= TNF_MIGRATED;
b99a342d 5136 } else {
074c2381 5137 flags |= TNF_MIGRATE_FAIL;
c7ad0880
HD
5138 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5139 vmf->address, &vmf->ptl);
5140 if (unlikely(!vmf->pte))
5141 goto out;
c33c7948 5142 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
b99a342d
YH
5143 pte_unmap_unlock(vmf->pte, vmf->ptl);
5144 goto out;
5145 }
5146 goto out_map;
5147 }
4daae3b4
MG
5148
5149out:
6695cf68
KW
5150 if (nid != NUMA_NO_NODE)
5151 task_numa_fault(last_cpupid, nid, 1, flags);
d10e63f2 5152 return 0;
b99a342d
YH
5153out_map:
5154 /*
5155 * Make it present again, depending on how arch implements
5156 * non-accessible ptes, some can allow access by kernel mode.
5157 */
5158 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
5159 pte = pte_modify(old_pte, vma->vm_page_prot);
5160 pte = pte_mkyoung(pte);
6a56ccbc 5161 if (writable)
161e393c 5162 pte = pte_mkwrite(pte, vma);
b99a342d 5163 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
5003a2bd 5164 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
b99a342d
YH
5165 pte_unmap_unlock(vmf->pte, vmf->ptl);
5166 goto out;
d10e63f2
MG
5167}
5168
2b740303 5169static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 5170{
8f5fd0e1
MWO
5171 struct vm_area_struct *vma = vmf->vma;
5172 if (vma_is_anonymous(vma))
82b0f8c3 5173 return do_huge_pmd_anonymous_page(vmf);
40d49a3c 5174 if (vma->vm_ops->huge_fault)
1d024e7a 5175 return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
b96375f7
MW
5176 return VM_FAULT_FALLBACK;
5177}
5178
183f24aa 5179/* `inline' is required to avoid gcc 4.1.2 build error */
5db4f15c 5180static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
b96375f7 5181{
8f5fd0e1 5182 struct vm_area_struct *vma = vmf->vma;
c89357e2 5183 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
aea06577 5184 vm_fault_t ret;
c89357e2 5185
8f5fd0e1 5186 if (vma_is_anonymous(vma)) {
c89357e2 5187 if (likely(!unshare) &&
d61ea1cb
PX
5188 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
5189 if (userfaultfd_wp_async(vmf->vma))
5190 goto split;
529b930b 5191 return handle_userfault(vmf, VM_UFFD_WP);
d61ea1cb 5192 }
5db4f15c 5193 return do_huge_pmd_wp_page(vmf);
529b930b 5194 }
327e9fd4 5195
8f5fd0e1
MWO
5196 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5197 if (vma->vm_ops->huge_fault) {
1d024e7a 5198 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
aea06577
DH
5199 if (!(ret & VM_FAULT_FALLBACK))
5200 return ret;
5201 }
327e9fd4 5202 }
af9e4d5f 5203
d61ea1cb 5204split:
327e9fd4 5205 /* COW or write-notify handled on pte level: split pmd. */
8f5fd0e1 5206 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 5207
b96375f7
MW
5208 return VM_FAULT_FALLBACK;
5209}
5210
2b740303 5211static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 5212{
14c99d65
GJ
5213#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
5214 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
c4fd825e 5215 struct vm_area_struct *vma = vmf->vma;
14c99d65 5216 /* No support for anonymous transparent PUD pages yet */
c4fd825e 5217 if (vma_is_anonymous(vma))
14c99d65 5218 return VM_FAULT_FALLBACK;
40d49a3c 5219 if (vma->vm_ops->huge_fault)
1d024e7a 5220 return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
14c99d65
GJ
5221#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5222 return VM_FAULT_FALLBACK;
5223}
5224
5225static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
5226{
327e9fd4
THV
5227#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
5228 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
c4fd825e 5229 struct vm_area_struct *vma = vmf->vma;
aea06577
DH
5230 vm_fault_t ret;
5231
a00cc7d9 5232 /* No support for anonymous transparent PUD pages yet */
c4fd825e 5233 if (vma_is_anonymous(vma))
327e9fd4 5234 goto split;
c4fd825e
MWO
5235 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5236 if (vma->vm_ops->huge_fault) {
1d024e7a 5237 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
aea06577
DH
5238 if (!(ret & VM_FAULT_FALLBACK))
5239 return ret;
5240 }
327e9fd4
THV
5241 }
5242split:
5243 /* COW or write-notify not handled on PUD level: split pud.*/
c4fd825e 5244 __split_huge_pud(vma, vmf->pud, vmf->address);
14c99d65 5245#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
a00cc7d9
MW
5246 return VM_FAULT_FALLBACK;
5247}
5248
1da177e4
LT
5249/*
5250 * These routines also need to handle stuff like marking pages dirty
5251 * and/or accessed for architectures that don't do it in hardware (most
5252 * RISC architectures). The early dirtying is also good on the i386.
5253 *
5254 * There is also a hook called "update_mmu_cache()" that architectures
5255 * with external mmu caches can use to update those (ie the Sparc or
5256 * PowerPC hashed page tables that act as extended TLBs).
5257 *
c1e8d7c6 5258 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
7267ec00 5259 * concurrent faults).
9a95f3cf 5260 *
c1e8d7c6 5261 * The mmap_lock may have been released depending on flags and our return value.
9138e47e 5262 * See filemap_fault() and __folio_lock_or_retry().
1da177e4 5263 */
2b740303 5264static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
5265{
5266 pte_t entry;
5267
82b0f8c3 5268 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
5269 /*
5270 * Leave __pte_alloc() until later: because vm_ops->fault may
5271 * want to allocate huge page, and if we expose page table
5272 * for an instant, it will be difficult to retract from
5273 * concurrent faults and from rmap lookups.
5274 */
82b0f8c3 5275 vmf->pte = NULL;
f46f2ade 5276 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
7267ec00 5277 } else {
7267ec00
KS
5278 /*
5279 * A regular pmd is established and it can't morph into a huge
c7ad0880
HD
5280 * pmd by anon khugepaged, since that takes mmap_lock in write
5281 * mode; but shmem or file collapse to THP could still morph
5282 * it into a huge pmd: just retry later if so.
7267ec00 5283 */
c7ad0880
HD
5284 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
5285 vmf->address, &vmf->ptl);
5286 if (unlikely(!vmf->pte))
5287 return 0;
26e1a0c3 5288 vmf->orig_pte = ptep_get_lockless(vmf->pte);
f46f2ade 5289 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
7267ec00 5290
2994302b 5291 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
5292 pte_unmap(vmf->pte);
5293 vmf->pte = NULL;
65500d23 5294 }
1da177e4
LT
5295 }
5296
2bad466c
PX
5297 if (!vmf->pte)
5298 return do_pte_missing(vmf);
7267ec00 5299
2994302b
JK
5300 if (!pte_present(vmf->orig_pte))
5301 return do_swap_page(vmf);
7267ec00 5302
2994302b
JK
5303 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5304 return do_numa_page(vmf);
d10e63f2 5305
82b0f8c3 5306 spin_lock(vmf->ptl);
2994302b 5307 entry = vmf->orig_pte;
c33c7948 5308 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
7df67697 5309 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
8f4e2101 5310 goto unlock;
7df67697 5311 }
c89357e2 5312 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
f6f37321 5313 if (!pte_write(entry))
2994302b 5314 return do_wp_page(vmf);
c89357e2
DH
5315 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5316 entry = pte_mkdirty(entry);
1da177e4
LT
5317 }
5318 entry = pte_mkyoung(entry);
82b0f8c3
JK
5319 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5320 vmf->flags & FAULT_FLAG_WRITE)) {
5003a2bd
MWO
5321 update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5322 vmf->pte, 1);
1a44e149 5323 } else {
b7333b58
YS
5324 /* Skip spurious TLB flush for retried page fault */
5325 if (vmf->flags & FAULT_FLAG_TRIED)
5326 goto unlock;
1a44e149
AA
5327 /*
5328 * This is needed only for protection faults but the arch code
5329 * is not yet telling us if this is a protection fault or not.
5330 * This still avoids useless tlb flushes for .text page faults
5331 * with threads.
5332 */
82b0f8c3 5333 if (vmf->flags & FAULT_FLAG_WRITE)
99c29133
GS
5334 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5335 vmf->pte);
1a44e149 5336 }
8f4e2101 5337unlock:
82b0f8c3 5338 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 5339 return 0;
1da177e4
LT
5340}
5341
5342/*
4ec31152
MWO
5343 * On entry, we hold either the VMA lock or the mmap_lock
5344 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in
5345 * the result, the mmap_lock is not held on exit. See filemap_fault()
5346 * and __folio_lock_or_retry().
1da177e4 5347 */
2b740303
SJ
5348static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5349 unsigned long address, unsigned int flags)
1da177e4 5350{
82b0f8c3 5351 struct vm_fault vmf = {
bae473a4 5352 .vma = vma,
1a29d85e 5353 .address = address & PAGE_MASK,
824ddc60 5354 .real_address = address,
bae473a4 5355 .flags = flags,
0721ec8b 5356 .pgoff = linear_page_index(vma, address),
667240e0 5357 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 5358 };
dcddffd4 5359 struct mm_struct *mm = vma->vm_mm;
7da4e2cb 5360 unsigned long vm_flags = vma->vm_flags;
1da177e4 5361 pgd_t *pgd;
c2febafc 5362 p4d_t *p4d;
2b740303 5363 vm_fault_t ret;
1da177e4 5364
1da177e4 5365 pgd = pgd_offset(mm, address);
c2febafc
KS
5366 p4d = p4d_alloc(mm, pgd, address);
5367 if (!p4d)
5368 return VM_FAULT_OOM;
a00cc7d9 5369
c2febafc 5370 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 5371 if (!vmf.pud)
c74df32c 5372 return VM_FAULT_OOM;
625110b5 5373retry_pud:
7da4e2cb 5374 if (pud_none(*vmf.pud) &&
3485b883 5375 thp_vma_allowable_order(vma, vm_flags, false, true, true, PUD_ORDER)) {
a00cc7d9
MW
5376 ret = create_huge_pud(&vmf);
5377 if (!(ret & VM_FAULT_FALLBACK))
5378 return ret;
5379 } else {
5380 pud_t orig_pud = *vmf.pud;
5381
5382 barrier();
5383 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 5384
c89357e2
DH
5385 /*
5386 * TODO once we support anonymous PUDs: NUMA case and
5387 * FAULT_FLAG_UNSHARE handling.
5388 */
5389 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
a00cc7d9
MW
5390 ret = wp_huge_pud(&vmf, orig_pud);
5391 if (!(ret & VM_FAULT_FALLBACK))
5392 return ret;
5393 } else {
5394 huge_pud_set_accessed(&vmf, orig_pud);
5395 return 0;
5396 }
5397 }
5398 }
5399
5400 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 5401 if (!vmf.pmd)
c74df32c 5402 return VM_FAULT_OOM;
625110b5
TH
5403
5404 /* Huge pud page fault raced with pmd_alloc? */
5405 if (pud_trans_unstable(vmf.pud))
5406 goto retry_pud;
5407
7da4e2cb 5408 if (pmd_none(*vmf.pmd) &&
3485b883 5409 thp_vma_allowable_order(vma, vm_flags, false, true, true, PMD_ORDER)) {
a2d58167 5410 ret = create_huge_pmd(&vmf);
c0292554
KS
5411 if (!(ret & VM_FAULT_FALLBACK))
5412 return ret;
71e3aac0 5413 } else {
26e1a0c3 5414 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
1f1d06c3 5415
5db4f15c 5416 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
84c3fc4e 5417 VM_BUG_ON(thp_migration_supported() &&
5db4f15c
YS
5418 !is_pmd_migration_entry(vmf.orig_pmd));
5419 if (is_pmd_migration_entry(vmf.orig_pmd))
84c3fc4e
ZY
5420 pmd_migration_entry_wait(mm, vmf.pmd);
5421 return 0;
5422 }
5db4f15c
YS
5423 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5424 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5425 return do_huge_pmd_numa_page(&vmf);
d10e63f2 5426
c89357e2
DH
5427 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5428 !pmd_write(vmf.orig_pmd)) {
5db4f15c 5429 ret = wp_huge_pmd(&vmf);
9845cbbd
KS
5430 if (!(ret & VM_FAULT_FALLBACK))
5431 return ret;
a1dd450b 5432 } else {
5db4f15c 5433 huge_pmd_set_accessed(&vmf);
9845cbbd 5434 return 0;
1f1d06c3 5435 }
71e3aac0
AA
5436 }
5437 }
5438
82b0f8c3 5439 return handle_pte_fault(&vmf);
1da177e4
LT
5440}
5441
bce617ed 5442/**
f0953a1b 5443 * mm_account_fault - Do page fault accounting
809ef83c 5444 * @mm: mm from which memcg should be extracted. It can be NULL.
bce617ed
PX
5445 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5446 * of perf event counters, but we'll still do the per-task accounting to
5447 * the task who triggered this page fault.
5448 * @address: the faulted address.
5449 * @flags: the fault flags.
5450 * @ret: the fault retcode.
5451 *
f0953a1b 5452 * This will take care of most of the page fault accounting. Meanwhile, it
bce617ed 5453 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
f0953a1b 5454 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
bce617ed
PX
5455 * still be in per-arch page fault handlers at the entry of page fault.
5456 */
53156443 5457static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
bce617ed
PX
5458 unsigned long address, unsigned int flags,
5459 vm_fault_t ret)
5460{
5461 bool major;
5462
53156443
SB
5463 /* Incomplete faults will be accounted upon completion. */
5464 if (ret & VM_FAULT_RETRY)
5465 return;
5466
bce617ed 5467 /*
53156443
SB
5468 * To preserve the behavior of older kernels, PGFAULT counters record
5469 * both successful and failed faults, as opposed to perf counters,
5470 * which ignore failed cases.
bce617ed 5471 */
53156443
SB
5472 count_vm_event(PGFAULT);
5473 count_memcg_event_mm(mm, PGFAULT);
5474
5475 /*
5476 * Do not account for unsuccessful faults (e.g. when the address wasn't
5477 * valid). That includes arch_vma_access_permitted() failing before
5478 * reaching here. So this is not a "this many hardware page faults"
5479 * counter. We should use the hw profiling for that.
5480 */
5481 if (ret & VM_FAULT_ERROR)
bce617ed
PX
5482 return;
5483
5484 /*
5485 * We define the fault as a major fault when the final successful fault
5486 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5487 * handle it immediately previously).
5488 */
5489 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5490
a2beb5f1
PX
5491 if (major)
5492 current->maj_flt++;
5493 else
5494 current->min_flt++;
5495
bce617ed 5496 /*
a2beb5f1
PX
5497 * If the fault is done for GUP, regs will be NULL. We only do the
5498 * accounting for the per thread fault counters who triggered the
5499 * fault, and we skip the perf event updates.
bce617ed
PX
5500 */
5501 if (!regs)
5502 return;
5503
a2beb5f1 5504 if (major)
bce617ed 5505 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
a2beb5f1 5506 else
bce617ed 5507 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
bce617ed
PX
5508}
5509
ec1c86b2
YZ
5510#ifdef CONFIG_LRU_GEN
5511static void lru_gen_enter_fault(struct vm_area_struct *vma)
5512{
8788f678
YZ
5513 /* the LRU algorithm only applies to accesses with recency */
5514 current->in_lru_fault = vma_has_recency(vma);
ec1c86b2
YZ
5515}
5516
5517static void lru_gen_exit_fault(void)
5518{
5519 current->in_lru_fault = false;
5520}
5521#else
5522static void lru_gen_enter_fault(struct vm_area_struct *vma)
5523{
5524}
5525
5526static void lru_gen_exit_fault(void)
5527{
5528}
5529#endif /* CONFIG_LRU_GEN */
5530
cdc5021c
DH
5531static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5532 unsigned int *flags)
5533{
5534 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5535 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5536 return VM_FAULT_SIGSEGV;
5537 /*
5538 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5539 * just treat it like an ordinary read-fault otherwise.
5540 */
5541 if (!is_cow_mapping(vma->vm_flags))
5542 *flags &= ~FAULT_FLAG_UNSHARE;
79881fed
DH
5543 } else if (*flags & FAULT_FLAG_WRITE) {
5544 /* Write faults on read-only mappings are impossible ... */
5545 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5546 return VM_FAULT_SIGSEGV;
5547 /* ... and FOLL_FORCE only applies to COW mappings. */
5548 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5549 !is_cow_mapping(vma->vm_flags)))
5550 return VM_FAULT_SIGSEGV;
cdc5021c 5551 }
4089eef0
SB
5552#ifdef CONFIG_PER_VMA_LOCK
5553 /*
5554 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
5555 * the assumption that lock is dropped on VM_FAULT_RETRY.
5556 */
5557 if (WARN_ON_ONCE((*flags &
5558 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
5559 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
5560 return VM_FAULT_SIGSEGV;
5561#endif
5562
cdc5021c
DH
5563 return 0;
5564}
5565
9a95f3cf
PC
5566/*
5567 * By the time we get here, we already hold the mm semaphore
5568 *
c1e8d7c6 5569 * The mmap_lock may have been released depending on flags and our
9138e47e 5570 * return value. See filemap_fault() and __folio_lock_or_retry().
9a95f3cf 5571 */
2b740303 5572vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
bce617ed 5573 unsigned int flags, struct pt_regs *regs)
519e5247 5574{
53156443
SB
5575 /* If the fault handler drops the mmap_lock, vma may be freed */
5576 struct mm_struct *mm = vma->vm_mm;
2b740303 5577 vm_fault_t ret;
519e5247
JW
5578
5579 __set_current_state(TASK_RUNNING);
5580
cdc5021c
DH
5581 ret = sanitize_fault_flags(vma, &flags);
5582 if (ret)
53156443 5583 goto out;
cdc5021c 5584
de0c799b
LD
5585 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5586 flags & FAULT_FLAG_INSTRUCTION,
53156443
SB
5587 flags & FAULT_FLAG_REMOTE)) {
5588 ret = VM_FAULT_SIGSEGV;
5589 goto out;
5590 }
de0c799b 5591
519e5247
JW
5592 /*
5593 * Enable the memcg OOM handling for faults triggered in user
5594 * space. Kernel faults are handled more gracefully.
5595 */
5596 if (flags & FAULT_FLAG_USER)
29ef680a 5597 mem_cgroup_enter_user_fault();
519e5247 5598
ec1c86b2
YZ
5599 lru_gen_enter_fault(vma);
5600
bae473a4
KS
5601 if (unlikely(is_vm_hugetlb_page(vma)))
5602 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5603 else
5604 ret = __handle_mm_fault(vma, address, flags);
519e5247 5605
ec1c86b2
YZ
5606 lru_gen_exit_fault();
5607
49426420 5608 if (flags & FAULT_FLAG_USER) {
29ef680a 5609 mem_cgroup_exit_user_fault();
166f61b9
TH
5610 /*
5611 * The task may have entered a memcg OOM situation but
5612 * if the allocation error was handled gracefully (no
5613 * VM_FAULT_OOM), there is no need to kill anything.
5614 * Just clean up the OOM state peacefully.
5615 */
5616 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5617 mem_cgroup_oom_synchronize(false);
49426420 5618 }
53156443
SB
5619out:
5620 mm_account_fault(mm, regs, address, flags, ret);
bce617ed 5621
519e5247
JW
5622 return ret;
5623}
e1d6d01a 5624EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 5625
c2508ec5
LT
5626#ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5627#include <linux/extable.h>
5628
5629static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5630{
4542057e 5631 if (likely(mmap_read_trylock(mm)))
c2508ec5 5632 return true;
c2508ec5
LT
5633
5634 if (regs && !user_mode(regs)) {
8fa50708 5635 unsigned long ip = exception_ip(regs);
c2508ec5
LT
5636 if (!search_exception_tables(ip))
5637 return false;
5638 }
5639
eda00472 5640 return !mmap_read_lock_killable(mm);
c2508ec5
LT
5641}
5642
5643static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5644{
5645 /*
5646 * We don't have this operation yet.
5647 *
5648 * It should be easy enough to do: it's basically a
5649 * atomic_long_try_cmpxchg_acquire()
5650 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5651 * it also needs the proper lockdep magic etc.
5652 */
5653 return false;
5654}
5655
5656static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5657{
5658 mmap_read_unlock(mm);
5659 if (regs && !user_mode(regs)) {
8fa50708 5660 unsigned long ip = exception_ip(regs);
c2508ec5
LT
5661 if (!search_exception_tables(ip))
5662 return false;
5663 }
eda00472 5664 return !mmap_write_lock_killable(mm);
c2508ec5
LT
5665}
5666
5667/*
5668 * Helper for page fault handling.
5669 *
5670 * This is kind of equivalend to "mmap_read_lock()" followed
5671 * by "find_extend_vma()", except it's a lot more careful about
5672 * the locking (and will drop the lock on failure).
5673 *
5674 * For example, if we have a kernel bug that causes a page
5675 * fault, we don't want to just use mmap_read_lock() to get
5676 * the mm lock, because that would deadlock if the bug were
5677 * to happen while we're holding the mm lock for writing.
5678 *
5679 * So this checks the exception tables on kernel faults in
5680 * order to only do this all for instructions that are actually
5681 * expected to fault.
5682 *
5683 * We can also actually take the mm lock for writing if we
5684 * need to extend the vma, which helps the VM layer a lot.
5685 */
5686struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5687 unsigned long addr, struct pt_regs *regs)
5688{
5689 struct vm_area_struct *vma;
5690
5691 if (!get_mmap_lock_carefully(mm, regs))
5692 return NULL;
5693
5694 vma = find_vma(mm, addr);
5695 if (likely(vma && (vma->vm_start <= addr)))
5696 return vma;
5697
5698 /*
5699 * Well, dang. We might still be successful, but only
5700 * if we can extend a vma to do so.
5701 */
5702 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5703 mmap_read_unlock(mm);
5704 return NULL;
5705 }
5706
5707 /*
5708 * We can try to upgrade the mmap lock atomically,
5709 * in which case we can continue to use the vma
5710 * we already looked up.
5711 *
5712 * Otherwise we'll have to drop the mmap lock and
5713 * re-take it, and also look up the vma again,
5714 * re-checking it.
5715 */
5716 if (!mmap_upgrade_trylock(mm)) {
5717 if (!upgrade_mmap_lock_carefully(mm, regs))
5718 return NULL;
5719
5720 vma = find_vma(mm, addr);
5721 if (!vma)
5722 goto fail;
5723 if (vma->vm_start <= addr)
5724 goto success;
5725 if (!(vma->vm_flags & VM_GROWSDOWN))
5726 goto fail;
5727 }
5728
8d7071af 5729 if (expand_stack_locked(vma, addr))
c2508ec5
LT
5730 goto fail;
5731
5732success:
5733 mmap_write_downgrade(mm);
5734 return vma;
5735
5736fail:
5737 mmap_write_unlock(mm);
5738 return NULL;
5739}
5740#endif
5741
50ee3253
SB
5742#ifdef CONFIG_PER_VMA_LOCK
5743/*
5744 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5745 * stable and not isolated. If the VMA is not found or is being modified the
5746 * function returns NULL.
5747 */
5748struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5749 unsigned long address)
5750{
5751 MA_STATE(mas, &mm->mm_mt, address, address);
5752 struct vm_area_struct *vma;
5753
5754 rcu_read_lock();
5755retry:
5756 vma = mas_walk(&mas);
5757 if (!vma)
5758 goto inval;
5759
50ee3253
SB
5760 if (!vma_start_read(vma))
5761 goto inval;
5762
657b5146
JH
5763 /*
5764 * find_mergeable_anon_vma uses adjacent vmas which are not locked.
5765 * This check must happen after vma_start_read(); otherwise, a
5766 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA
5767 * from its anon_vma.
5768 */
29a22b9e 5769 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma))
657b5146 5770 goto inval_end_read;
444eeb17 5771
50ee3253 5772 /* Check since vm_start/vm_end might change before we lock the VMA */
657b5146
JH
5773 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5774 goto inval_end_read;
50ee3253
SB
5775
5776 /* Check if the VMA got isolated after we found it */
5777 if (vma->detached) {
5778 vma_end_read(vma);
52f23865 5779 count_vm_vma_lock_event(VMA_LOCK_MISS);
50ee3253
SB
5780 /* The area was replaced with another one */
5781 goto retry;
5782 }
5783
5784 rcu_read_unlock();
5785 return vma;
657b5146
JH
5786
5787inval_end_read:
5788 vma_end_read(vma);
50ee3253
SB
5789inval:
5790 rcu_read_unlock();
52f23865 5791 count_vm_vma_lock_event(VMA_LOCK_ABORT);
50ee3253
SB
5792 return NULL;
5793}
5794#endif /* CONFIG_PER_VMA_LOCK */
5795
90eceff1
KS
5796#ifndef __PAGETABLE_P4D_FOLDED
5797/*
5798 * Allocate p4d page table.
5799 * We've already handled the fast-path in-line.
5800 */
5801int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5802{
5803 p4d_t *new = p4d_alloc_one(mm, address);
5804 if (!new)
5805 return -ENOMEM;
5806
90eceff1 5807 spin_lock(&mm->page_table_lock);
ed33b5a6 5808 if (pgd_present(*pgd)) { /* Another has populated it */
90eceff1 5809 p4d_free(mm, new);
ed33b5a6
QZ
5810 } else {
5811 smp_wmb(); /* See comment in pmd_install() */
90eceff1 5812 pgd_populate(mm, pgd, new);
ed33b5a6 5813 }
90eceff1
KS
5814 spin_unlock(&mm->page_table_lock);
5815 return 0;
5816}
5817#endif /* __PAGETABLE_P4D_FOLDED */
5818
1da177e4
LT
5819#ifndef __PAGETABLE_PUD_FOLDED
5820/*
5821 * Allocate page upper directory.
872fec16 5822 * We've already handled the fast-path in-line.
1da177e4 5823 */
c2febafc 5824int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 5825{
c74df32c
HD
5826 pud_t *new = pud_alloc_one(mm, address);
5827 if (!new)
1bb3630e 5828 return -ENOMEM;
1da177e4 5829
872fec16 5830 spin_lock(&mm->page_table_lock);
b4e98d9a
KS
5831 if (!p4d_present(*p4d)) {
5832 mm_inc_nr_puds(mm);
ed33b5a6 5833 smp_wmb(); /* See comment in pmd_install() */
c2febafc 5834 p4d_populate(mm, p4d, new);
b4e98d9a 5835 } else /* Another has populated it */
5e541973 5836 pud_free(mm, new);
c74df32c 5837 spin_unlock(&mm->page_table_lock);
1bb3630e 5838 return 0;
1da177e4
LT
5839}
5840#endif /* __PAGETABLE_PUD_FOLDED */
5841
5842#ifndef __PAGETABLE_PMD_FOLDED
5843/*
5844 * Allocate page middle directory.
872fec16 5845 * We've already handled the fast-path in-line.
1da177e4 5846 */
1bb3630e 5847int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 5848{
a00cc7d9 5849 spinlock_t *ptl;
c74df32c
HD
5850 pmd_t *new = pmd_alloc_one(mm, address);
5851 if (!new)
1bb3630e 5852 return -ENOMEM;
1da177e4 5853
a00cc7d9 5854 ptl = pud_lock(mm, pud);
dc6c9a35
KS
5855 if (!pud_present(*pud)) {
5856 mm_inc_nr_pmds(mm);
ed33b5a6 5857 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 5858 pud_populate(mm, pud, new);
ed33b5a6 5859 } else { /* Another has populated it */
5e541973 5860 pmd_free(mm, new);
ed33b5a6 5861 }
a00cc7d9 5862 spin_unlock(ptl);
1bb3630e 5863 return 0;
e0f39591 5864}
1da177e4
LT
5865#endif /* __PAGETABLE_PMD_FOLDED */
5866
0e5e64c0
MS
5867/**
5868 * follow_pte - look up PTE at a user virtual address
5869 * @mm: the mm_struct of the target address space
5870 * @address: user virtual address
5871 * @ptepp: location to store found PTE
5872 * @ptlp: location to store the lock for the PTE
5873 *
5874 * On a successful return, the pointer to the PTE is stored in @ptepp;
5875 * the corresponding lock is taken and its location is stored in @ptlp.
5876 * The contents of the PTE are only stable until @ptlp is released;
5877 * any further use, if any, must be protected against invalidation
5878 * with MMU notifiers.
5879 *
5880 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5881 * should be taken for read.
5882 *
5883 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5884 * it is not a good general-purpose API.
5885 *
5886 * Return: zero on success, -ve otherwise.
5887 */
5888int follow_pte(struct mm_struct *mm, unsigned long address,
5889 pte_t **ptepp, spinlock_t **ptlp)
f8ad0f49
JW
5890{
5891 pgd_t *pgd;
c2febafc 5892 p4d_t *p4d;
f8ad0f49
JW
5893 pud_t *pud;
5894 pmd_t *pmd;
5895 pte_t *ptep;
5896
5897 pgd = pgd_offset(mm, address);
5898 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5899 goto out;
5900
c2febafc
KS
5901 p4d = p4d_offset(pgd, address);
5902 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5903 goto out;
5904
5905 pud = pud_offset(p4d, address);
f8ad0f49
JW
5906 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5907 goto out;
5908
5909 pmd = pmd_offset(pud, address);
f66055ab 5910 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 5911
f8ad0f49 5912 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3db82b93
HD
5913 if (!ptep)
5914 goto out;
c33c7948 5915 if (!pte_present(ptep_get(ptep)))
f8ad0f49
JW
5916 goto unlock;
5917 *ptepp = ptep;
5918 return 0;
5919unlock:
5920 pte_unmap_unlock(ptep, *ptlp);
5921out:
5922 return -EINVAL;
5923}
9fd6dad1
PB
5924EXPORT_SYMBOL_GPL(follow_pte);
5925
3b6748e2
JW
5926/**
5927 * follow_pfn - look up PFN at a user virtual address
5928 * @vma: memory mapping
5929 * @address: user virtual address
5930 * @pfn: location to store found PFN
5931 *
5932 * Only IO mappings and raw PFN mappings are allowed.
5933 *
9fd6dad1
PB
5934 * This function does not allow the caller to read the permissions
5935 * of the PTE. Do not use it.
5936 *
a862f68a 5937 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
5938 */
5939int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5940 unsigned long *pfn)
5941{
5942 int ret = -EINVAL;
5943 spinlock_t *ptl;
5944 pte_t *ptep;
5945
5946 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5947 return ret;
5948
9fd6dad1 5949 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3b6748e2
JW
5950 if (ret)
5951 return ret;
c33c7948 5952 *pfn = pte_pfn(ptep_get(ptep));
3b6748e2
JW
5953 pte_unmap_unlock(ptep, ptl);
5954 return 0;
5955}
5956EXPORT_SYMBOL(follow_pfn);
5957
28b2ee20 5958#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 5959int follow_phys(struct vm_area_struct *vma,
5960 unsigned long address, unsigned int flags,
5961 unsigned long *prot, resource_size_t *phys)
28b2ee20 5962{
03668a4d 5963 int ret = -EINVAL;
28b2ee20
RR
5964 pte_t *ptep, pte;
5965 spinlock_t *ptl;
28b2ee20 5966
d87fe660 5967 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5968 goto out;
28b2ee20 5969
9fd6dad1 5970 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 5971 goto out;
c33c7948 5972 pte = ptep_get(ptep);
03668a4d 5973
f6f37321 5974 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 5975 goto unlock;
28b2ee20
RR
5976
5977 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 5978 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 5979
03668a4d 5980 ret = 0;
28b2ee20
RR
5981unlock:
5982 pte_unmap_unlock(ptep, ptl);
5983out:
d87fe660 5984 return ret;
28b2ee20
RR
5985}
5986
96667f8a
SV
5987/**
5988 * generic_access_phys - generic implementation for iomem mmap access
5989 * @vma: the vma to access
f0953a1b 5990 * @addr: userspace address, not relative offset within @vma
96667f8a
SV
5991 * @buf: buffer to read/write
5992 * @len: length of transfer
5993 * @write: set to FOLL_WRITE when writing, otherwise reading
5994 *
5995 * This is a generic implementation for &vm_operations_struct.access for an
5996 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5997 * not page based.
5998 */
28b2ee20
RR
5999int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
6000 void *buf, int len, int write)
6001{
6002 resource_size_t phys_addr;
6003 unsigned long prot = 0;
2bc7273b 6004 void __iomem *maddr;
96667f8a
SV
6005 pte_t *ptep, pte;
6006 spinlock_t *ptl;
6007 int offset = offset_in_page(addr);
6008 int ret = -EINVAL;
6009
6010 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
6011 return -EINVAL;
6012
6013retry:
e913a8cd 6014 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a 6015 return -EINVAL;
c33c7948 6016 pte = ptep_get(ptep);
96667f8a 6017 pte_unmap_unlock(ptep, ptl);
28b2ee20 6018
96667f8a
SV
6019 prot = pgprot_val(pte_pgprot(pte));
6020 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
6021
6022 if ((write & FOLL_WRITE) && !pte_write(pte))
28b2ee20
RR
6023 return -EINVAL;
6024
9cb12d7b 6025 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 6026 if (!maddr)
6027 return -ENOMEM;
6028
e913a8cd 6029 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
SV
6030 goto out_unmap;
6031
c33c7948 6032 if (!pte_same(pte, ptep_get(ptep))) {
96667f8a
SV
6033 pte_unmap_unlock(ptep, ptl);
6034 iounmap(maddr);
6035
6036 goto retry;
6037 }
6038
28b2ee20
RR
6039 if (write)
6040 memcpy_toio(maddr + offset, buf, len);
6041 else
6042 memcpy_fromio(buf, maddr + offset, len);
96667f8a
SV
6043 ret = len;
6044 pte_unmap_unlock(ptep, ptl);
6045out_unmap:
28b2ee20
RR
6046 iounmap(maddr);
6047
96667f8a 6048 return ret;
28b2ee20 6049}
5a73633e 6050EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
6051#endif
6052
0ec76a11 6053/*
d3f5ffca 6054 * Access another process' address space as given in mm.
0ec76a11 6055 */
c43cfa42
LS
6056static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
6057 void *buf, int len, unsigned int gup_flags)
0ec76a11 6058{
0ec76a11 6059 void *old_buf = buf;
442486ec 6060 int write = gup_flags & FOLL_WRITE;
0ec76a11 6061
d8ed45c5 6062 if (mmap_read_lock_killable(mm))
1e426fe2
KK
6063 return 0;
6064
22883973
KS
6065 /* Untag the address before looking up the VMA */
6066 addr = untagged_addr_remote(mm, addr);
6067
eee9c708
LT
6068 /* Avoid triggering the temporary warning in __get_user_pages */
6069 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
6070 return 0;
6071
183ff22b 6072 /* ignore errors, just check how much was successfully transferred */
0ec76a11 6073 while (len) {
ca5e8632 6074 int bytes, offset;
0ec76a11 6075 void *maddr;
ca5e8632
LS
6076 struct vm_area_struct *vma = NULL;
6077 struct page *page = get_user_page_vma_remote(mm, addr,
6078 gup_flags, &vma);
0ec76a11 6079
6a1960b8 6080 if (IS_ERR(page)) {
9471f1f2
LT
6081 /* We might need to expand the stack to access it */
6082 vma = vma_lookup(mm, addr);
6083 if (!vma) {
6084 vma = expand_stack(mm, addr);
6085
6086 /* mmap_lock was dropped on failure */
6087 if (!vma)
6088 return buf - old_buf;
6089
6090 /* Try again if stack expansion worked */
6091 continue;
6092 }
6093
28b2ee20
RR
6094 /*
6095 * Check if this is a VM_IO | VM_PFNMAP VMA, which
6096 * we can access using slightly different code.
6097 */
9471f1f2
LT
6098 bytes = 0;
6099#ifdef CONFIG_HAVE_IOREMAP_PROT
28b2ee20 6100 if (vma->vm_ops && vma->vm_ops->access)
9471f1f2
LT
6101 bytes = vma->vm_ops->access(vma, addr, buf,
6102 len, write);
dbffcd03 6103#endif
9471f1f2
LT
6104 if (bytes <= 0)
6105 break;
0ec76a11 6106 } else {
28b2ee20
RR
6107 bytes = len;
6108 offset = addr & (PAGE_SIZE-1);
6109 if (bytes > PAGE_SIZE-offset)
6110 bytes = PAGE_SIZE-offset;
6111
f7ef5fe7 6112 maddr = kmap_local_page(page);
28b2ee20
RR
6113 if (write) {
6114 copy_to_user_page(vma, page, addr,
6115 maddr + offset, buf, bytes);
6116 set_page_dirty_lock(page);
6117 } else {
6118 copy_from_user_page(vma, page, addr,
6119 buf, maddr + offset, bytes);
6120 }
f7ef5fe7 6121 unmap_and_put_page(page, maddr);
0ec76a11 6122 }
0ec76a11
DH
6123 len -= bytes;
6124 buf += bytes;
6125 addr += bytes;
6126 }
d8ed45c5 6127 mmap_read_unlock(mm);
0ec76a11
DH
6128
6129 return buf - old_buf;
6130}
03252919 6131
5ddd36b9 6132/**
ae91dbfc 6133 * access_remote_vm - access another process' address space
5ddd36b9
SW
6134 * @mm: the mm_struct of the target address space
6135 * @addr: start address to access
6136 * @buf: source or destination buffer
6137 * @len: number of bytes to transfer
6347e8d5 6138 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
6139 *
6140 * The caller must hold a reference on @mm.
a862f68a
MR
6141 *
6142 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
6143 */
6144int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 6145 void *buf, int len, unsigned int gup_flags)
5ddd36b9 6146{
d3f5ffca 6147 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5ddd36b9
SW
6148}
6149
206cb636
SW
6150/*
6151 * Access another process' address space.
6152 * Source/target buffer must be kernel space,
6153 * Do not walk the page table directly, use get_user_pages
6154 */
6155int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 6156 void *buf, int len, unsigned int gup_flags)
206cb636
SW
6157{
6158 struct mm_struct *mm;
6159 int ret;
6160
6161 mm = get_task_mm(tsk);
6162 if (!mm)
6163 return 0;
6164
d3f5ffca 6165 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
442486ec 6166
206cb636
SW
6167 mmput(mm);
6168
6169 return ret;
6170}
fcd35857 6171EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 6172
03252919
AK
6173/*
6174 * Print the name of a VMA.
6175 */
6176void print_vma_addr(char *prefix, unsigned long ip)
6177{
6178 struct mm_struct *mm = current->mm;
6179 struct vm_area_struct *vma;
6180
e8bff74a 6181 /*
0a7f682d 6182 * we might be running from an atomic context so we cannot sleep
e8bff74a 6183 */
d8ed45c5 6184 if (!mmap_read_trylock(mm))
e8bff74a
IM
6185 return;
6186
03252919
AK
6187 vma = find_vma(mm, ip);
6188 if (vma && vma->vm_file) {
6189 struct file *f = vma->vm_file;
0a7f682d 6190 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 6191 if (buf) {
2fbc57c5 6192 char *p;
03252919 6193
9bf39ab2 6194 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
6195 if (IS_ERR(p))
6196 p = "?";
2fbc57c5 6197 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
6198 vma->vm_start,
6199 vma->vm_end - vma->vm_start);
6200 free_page((unsigned long)buf);
6201 }
6202 }
d8ed45c5 6203 mmap_read_unlock(mm);
03252919 6204}
3ee1afa3 6205
662bbcb2 6206#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 6207void __might_fault(const char *file, int line)
3ee1afa3 6208{
9ec23531 6209 if (pagefault_disabled())
662bbcb2 6210 return;
42a38756 6211 __might_sleep(file, line);
9ec23531 6212#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 6213 if (current->mm)
da1c55f1 6214 might_lock_read(&current->mm->mmap_lock);
9ec23531 6215#endif
3ee1afa3 6216}
9ec23531 6217EXPORT_SYMBOL(__might_fault);
3ee1afa3 6218#endif
47ad8475
AA
6219
6220#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
YH
6221/*
6222 * Process all subpages of the specified huge page with the specified
6223 * operation. The target subpage will be processed last to keep its
6224 * cache lines hot.
6225 */
1cb9dc4b 6226static inline int process_huge_page(
c6ddfb6c 6227 unsigned long addr_hint, unsigned int pages_per_huge_page,
1cb9dc4b 6228 int (*process_subpage)(unsigned long addr, int idx, void *arg),
c6ddfb6c 6229 void *arg)
47ad8475 6230{
1cb9dc4b 6231 int i, n, base, l, ret;
c79b57e4
YH
6232 unsigned long addr = addr_hint &
6233 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 6234
c6ddfb6c 6235 /* Process target subpage last to keep its cache lines hot */
47ad8475 6236 might_sleep();
c79b57e4
YH
6237 n = (addr_hint - addr) / PAGE_SIZE;
6238 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 6239 /* If target subpage in first half of huge page */
c79b57e4
YH
6240 base = 0;
6241 l = n;
c6ddfb6c 6242 /* Process subpages at the end of huge page */
c79b57e4
YH
6243 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
6244 cond_resched();
1cb9dc4b
LS
6245 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6246 if (ret)
6247 return ret;
c79b57e4
YH
6248 }
6249 } else {
c6ddfb6c 6250 /* If target subpage in second half of huge page */
c79b57e4
YH
6251 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
6252 l = pages_per_huge_page - n;
c6ddfb6c 6253 /* Process subpages at the begin of huge page */
c79b57e4
YH
6254 for (i = 0; i < base; i++) {
6255 cond_resched();
1cb9dc4b
LS
6256 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6257 if (ret)
6258 return ret;
c79b57e4
YH
6259 }
6260 }
6261 /*
c6ddfb6c
YH
6262 * Process remaining subpages in left-right-left-right pattern
6263 * towards the target subpage
c79b57e4
YH
6264 */
6265 for (i = 0; i < l; i++) {
6266 int left_idx = base + i;
6267 int right_idx = base + 2 * l - 1 - i;
6268
6269 cond_resched();
1cb9dc4b
LS
6270 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6271 if (ret)
6272 return ret;
47ad8475 6273 cond_resched();
1cb9dc4b
LS
6274 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6275 if (ret)
6276 return ret;
47ad8475 6277 }
1cb9dc4b 6278 return 0;
47ad8475
AA
6279}
6280
c6ddfb6c
YH
6281static void clear_gigantic_page(struct page *page,
6282 unsigned long addr,
6283 unsigned int pages_per_huge_page)
6284{
6285 int i;
14455eab 6286 struct page *p;
c6ddfb6c
YH
6287
6288 might_sleep();
14455eab
CL
6289 for (i = 0; i < pages_per_huge_page; i++) {
6290 p = nth_page(page, i);
c6ddfb6c
YH
6291 cond_resched();
6292 clear_user_highpage(p, addr + i * PAGE_SIZE);
6293 }
6294}
6295
1cb9dc4b 6296static int clear_subpage(unsigned long addr, int idx, void *arg)
c6ddfb6c
YH
6297{
6298 struct page *page = arg;
6299
21fff064 6300 clear_user_highpage(nth_page(page, idx), addr);
1cb9dc4b 6301 return 0;
c6ddfb6c
YH
6302}
6303
6304void clear_huge_page(struct page *page,
6305 unsigned long addr_hint, unsigned int pages_per_huge_page)
6306{
6307 unsigned long addr = addr_hint &
6308 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6309
6310 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
6311 clear_gigantic_page(page, addr, pages_per_huge_page);
6312 return;
6313 }
6314
6315 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
6316}
6317
1cb9dc4b 6318static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
c0e8150e
Z
6319 unsigned long addr,
6320 struct vm_area_struct *vma,
6321 unsigned int pages_per_huge_page)
47ad8475
AA
6322{
6323 int i;
c0e8150e
Z
6324 struct page *dst_page;
6325 struct page *src_page;
47ad8475 6326
14455eab 6327 for (i = 0; i < pages_per_huge_page; i++) {
c0e8150e
Z
6328 dst_page = folio_page(dst, i);
6329 src_page = folio_page(src, i);
14455eab 6330
47ad8475 6331 cond_resched();
1cb9dc4b
LS
6332 if (copy_mc_user_highpage(dst_page, src_page,
6333 addr + i*PAGE_SIZE, vma)) {
6334 memory_failure_queue(page_to_pfn(src_page), 0);
6335 return -EHWPOISON;
6336 }
47ad8475 6337 }
1cb9dc4b 6338 return 0;
47ad8475
AA
6339}
6340
c9f4cd71
YH
6341struct copy_subpage_arg {
6342 struct page *dst;
6343 struct page *src;
6344 struct vm_area_struct *vma;
6345};
6346
1cb9dc4b 6347static int copy_subpage(unsigned long addr, int idx, void *arg)
c9f4cd71
YH
6348{
6349 struct copy_subpage_arg *copy_arg = arg;
21fff064
KW
6350 struct page *dst = nth_page(copy_arg->dst, idx);
6351 struct page *src = nth_page(copy_arg->src, idx);
c9f4cd71 6352
21fff064
KW
6353 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma)) {
6354 memory_failure_queue(page_to_pfn(src), 0);
1cb9dc4b
LS
6355 return -EHWPOISON;
6356 }
6357 return 0;
c9f4cd71
YH
6358}
6359
1cb9dc4b
LS
6360int copy_user_large_folio(struct folio *dst, struct folio *src,
6361 unsigned long addr_hint, struct vm_area_struct *vma)
47ad8475 6362{
c0e8150e 6363 unsigned int pages_per_huge_page = folio_nr_pages(dst);
c9f4cd71
YH
6364 unsigned long addr = addr_hint &
6365 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6366 struct copy_subpage_arg arg = {
c0e8150e
Z
6367 .dst = &dst->page,
6368 .src = &src->page,
c9f4cd71
YH
6369 .vma = vma,
6370 };
47ad8475 6371
1cb9dc4b
LS
6372 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6373 return copy_user_gigantic_page(dst, src, addr, vma,
6374 pages_per_huge_page);
47ad8475 6375
1cb9dc4b 6376 return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 6377}
fa4d75c1 6378
e87340ca
Z
6379long copy_folio_from_user(struct folio *dst_folio,
6380 const void __user *usr_src,
6381 bool allow_pagefault)
fa4d75c1 6382{
e87340ca 6383 void *kaddr;
fa4d75c1 6384 unsigned long i, rc = 0;
e87340ca
Z
6385 unsigned int nr_pages = folio_nr_pages(dst_folio);
6386 unsigned long ret_val = nr_pages * PAGE_SIZE;
14455eab 6387 struct page *subpage;
fa4d75c1 6388
e87340ca
Z
6389 for (i = 0; i < nr_pages; i++) {
6390 subpage = folio_page(dst_folio, i);
6391 kaddr = kmap_local_page(subpage);
0d508c1f
Z
6392 if (!allow_pagefault)
6393 pagefault_disable();
e87340ca 6394 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
0d508c1f
Z
6395 if (!allow_pagefault)
6396 pagefault_enable();
e87340ca 6397 kunmap_local(kaddr);
fa4d75c1
MK
6398
6399 ret_val -= (PAGE_SIZE - rc);
6400 if (rc)
6401 break;
6402
e763243c
MS
6403 flush_dcache_page(subpage);
6404
fa4d75c1
MK
6405 cond_resched();
6406 }
6407 return ret_val;
6408}
47ad8475 6409#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 6410
40b64acd 6411#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
6412
6413static struct kmem_cache *page_ptl_cachep;
6414
6415void __init ptlock_cache_init(void)
6416{
6417 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6418 SLAB_PANIC, NULL);
6419}
6420
f5ecca06 6421bool ptlock_alloc(struct ptdesc *ptdesc)
49076ec2
KS
6422{
6423 spinlock_t *ptl;
6424
b35f1819 6425 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
6426 if (!ptl)
6427 return false;
f5ecca06 6428 ptdesc->ptl = ptl;
49076ec2
KS
6429 return true;
6430}
6431
6ed1b8a0 6432void ptlock_free(struct ptdesc *ptdesc)
49076ec2 6433{
6ed1b8a0 6434 kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
49076ec2
KS
6435}
6436#endif
This page took 3.229101 seconds and 4 git commands to generate.