]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
039363f3 CL |
2 | /* |
3 | * Slab allocator functions that are independent of the allocator strategy | |
4 | * | |
5 | * (C) 2012 Christoph Lameter <[email protected]> | |
6 | */ | |
7 | #include <linux/slab.h> | |
8 | ||
9 | #include <linux/mm.h> | |
10 | #include <linux/poison.h> | |
11 | #include <linux/interrupt.h> | |
12 | #include <linux/memory.h> | |
1c99ba29 | 13 | #include <linux/cache.h> |
039363f3 | 14 | #include <linux/compiler.h> |
d3fb45f3 | 15 | #include <linux/kfence.h> |
039363f3 | 16 | #include <linux/module.h> |
20cea968 CL |
17 | #include <linux/cpu.h> |
18 | #include <linux/uaccess.h> | |
b7454ad3 | 19 | #include <linux/seq_file.h> |
963e84b0 | 20 | #include <linux/dma-mapping.h> |
b035f5a6 | 21 | #include <linux/swiotlb.h> |
b7454ad3 | 22 | #include <linux/proc_fs.h> |
fcf8a1e4 | 23 | #include <linux/debugfs.h> |
6011be59 | 24 | #include <linux/kmemleak.h> |
e86f8b09 | 25 | #include <linux/kasan.h> |
039363f3 CL |
26 | #include <asm/cacheflush.h> |
27 | #include <asm/tlbflush.h> | |
28 | #include <asm/page.h> | |
2633d7a0 | 29 | #include <linux/memcontrol.h> |
5cf909c5 | 30 | #include <linux/stackdepot.h> |
928cec9c | 31 | |
44405099 | 32 | #include "internal.h" |
97d06609 CL |
33 | #include "slab.h" |
34 | ||
b347aa7b VA |
35 | #define CREATE_TRACE_POINTS |
36 | #include <trace/events/kmem.h> | |
37 | ||
97d06609 | 38 | enum slab_state slab_state; |
18004c5d CL |
39 | LIST_HEAD(slab_caches); |
40 | DEFINE_MUTEX(slab_mutex); | |
9b030cb8 | 41 | struct kmem_cache *kmem_cache; |
97d06609 | 42 | |
657dc2f9 TH |
43 | static LIST_HEAD(slab_caches_to_rcu_destroy); |
44 | static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work); | |
45 | static DECLARE_WORK(slab_caches_to_rcu_destroy_work, | |
46 | slab_caches_to_rcu_destroy_workfn); | |
47 | ||
423c929c JK |
48 | /* |
49 | * Set of flags that will prevent slab merging | |
50 | */ | |
51 | #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ | |
5f0d5a3a | 52 | SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \ |
d0bf7d57 | 53 | SLAB_FAILSLAB | SLAB_NO_MERGE | kasan_never_merge()) |
423c929c | 54 | |
230e9fc2 | 55 | #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \ |
6d6ea1e9 | 56 | SLAB_CACHE_DMA32 | SLAB_ACCOUNT) |
423c929c JK |
57 | |
58 | /* | |
59 | * Merge control. If this is set then no merging of slab caches will occur. | |
423c929c | 60 | */ |
7660a6fd | 61 | static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT); |
423c929c JK |
62 | |
63 | static int __init setup_slab_nomerge(char *str) | |
64 | { | |
7660a6fd | 65 | slab_nomerge = true; |
423c929c JK |
66 | return 1; |
67 | } | |
68 | ||
82edd9d5 RA |
69 | static int __init setup_slab_merge(char *str) |
70 | { | |
71 | slab_nomerge = false; | |
72 | return 1; | |
73 | } | |
74 | ||
423c929c | 75 | __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0); |
82edd9d5 | 76 | __setup_param("slub_merge", slub_merge, setup_slab_merge, 0); |
423c929c JK |
77 | |
78 | __setup("slab_nomerge", setup_slab_nomerge); | |
82edd9d5 | 79 | __setup("slab_merge", setup_slab_merge); |
423c929c | 80 | |
07f361b2 JK |
81 | /* |
82 | * Determine the size of a slab object | |
83 | */ | |
84 | unsigned int kmem_cache_size(struct kmem_cache *s) | |
85 | { | |
86 | return s->object_size; | |
87 | } | |
88 | EXPORT_SYMBOL(kmem_cache_size); | |
89 | ||
77be4b13 | 90 | #ifdef CONFIG_DEBUG_VM |
f4957d5b | 91 | static int kmem_cache_sanity_check(const char *name, unsigned int size) |
039363f3 | 92 | { |
74c1d3e0 | 93 | if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) { |
77be4b13 SK |
94 | pr_err("kmem_cache_create(%s) integrity check failed\n", name); |
95 | return -EINVAL; | |
039363f3 | 96 | } |
b920536a | 97 | |
20cea968 | 98 | WARN_ON(strchr(name, ' ')); /* It confuses parsers */ |
77be4b13 SK |
99 | return 0; |
100 | } | |
101 | #else | |
f4957d5b | 102 | static inline int kmem_cache_sanity_check(const char *name, unsigned int size) |
77be4b13 SK |
103 | { |
104 | return 0; | |
105 | } | |
20cea968 CL |
106 | #endif |
107 | ||
692ae74a BL |
108 | /* |
109 | * Figure out what the alignment of the objects will be given a set of | |
110 | * flags, a user specified alignment and the size of the objects. | |
111 | */ | |
f4957d5b AD |
112 | static unsigned int calculate_alignment(slab_flags_t flags, |
113 | unsigned int align, unsigned int size) | |
692ae74a BL |
114 | { |
115 | /* | |
116 | * If the user wants hardware cache aligned objects then follow that | |
117 | * suggestion if the object is sufficiently large. | |
118 | * | |
119 | * The hardware cache alignment cannot override the specified | |
120 | * alignment though. If that is greater then use it. | |
121 | */ | |
122 | if (flags & SLAB_HWCACHE_ALIGN) { | |
f4957d5b | 123 | unsigned int ralign; |
692ae74a BL |
124 | |
125 | ralign = cache_line_size(); | |
126 | while (size <= ralign / 2) | |
127 | ralign /= 2; | |
128 | align = max(align, ralign); | |
129 | } | |
130 | ||
d949a815 | 131 | align = max(align, arch_slab_minalign()); |
692ae74a BL |
132 | |
133 | return ALIGN(align, sizeof(void *)); | |
134 | } | |
135 | ||
423c929c JK |
136 | /* |
137 | * Find a mergeable slab cache | |
138 | */ | |
139 | int slab_unmergeable(struct kmem_cache *s) | |
140 | { | |
141 | if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE)) | |
142 | return 1; | |
143 | ||
423c929c JK |
144 | if (s->ctor) |
145 | return 1; | |
146 | ||
346907ce | 147 | #ifdef CONFIG_HARDENED_USERCOPY |
8eb8284b DW |
148 | if (s->usersize) |
149 | return 1; | |
346907ce | 150 | #endif |
8eb8284b | 151 | |
423c929c JK |
152 | /* |
153 | * We may have set a slab to be unmergeable during bootstrap. | |
154 | */ | |
155 | if (s->refcount < 0) | |
156 | return 1; | |
157 | ||
158 | return 0; | |
159 | } | |
160 | ||
f4957d5b | 161 | struct kmem_cache *find_mergeable(unsigned int size, unsigned int align, |
d50112ed | 162 | slab_flags_t flags, const char *name, void (*ctor)(void *)) |
423c929c JK |
163 | { |
164 | struct kmem_cache *s; | |
165 | ||
c6e28895 | 166 | if (slab_nomerge) |
423c929c JK |
167 | return NULL; |
168 | ||
169 | if (ctor) | |
170 | return NULL; | |
171 | ||
172 | size = ALIGN(size, sizeof(void *)); | |
173 | align = calculate_alignment(flags, align, size); | |
174 | size = ALIGN(size, align); | |
37540008 | 175 | flags = kmem_cache_flags(size, flags, name); |
423c929c | 176 | |
c6e28895 GM |
177 | if (flags & SLAB_NEVER_MERGE) |
178 | return NULL; | |
179 | ||
c7094406 | 180 | list_for_each_entry_reverse(s, &slab_caches, list) { |
423c929c JK |
181 | if (slab_unmergeable(s)) |
182 | continue; | |
183 | ||
184 | if (size > s->size) | |
185 | continue; | |
186 | ||
187 | if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME)) | |
188 | continue; | |
189 | /* | |
190 | * Check if alignment is compatible. | |
191 | * Courtesy of Adrian Drzewiecki | |
192 | */ | |
193 | if ((s->size & ~(align - 1)) != s->size) | |
194 | continue; | |
195 | ||
196 | if (s->size - size >= sizeof(void *)) | |
197 | continue; | |
198 | ||
199 | return s; | |
200 | } | |
201 | return NULL; | |
202 | } | |
203 | ||
c9a77a79 | 204 | static struct kmem_cache *create_cache(const char *name, |
613a5eb5 | 205 | unsigned int object_size, unsigned int align, |
7bbdb81e AD |
206 | slab_flags_t flags, unsigned int useroffset, |
207 | unsigned int usersize, void (*ctor)(void *), | |
9855609b | 208 | struct kmem_cache *root_cache) |
794b1248 VD |
209 | { |
210 | struct kmem_cache *s; | |
211 | int err; | |
212 | ||
8eb8284b DW |
213 | if (WARN_ON(useroffset + usersize > object_size)) |
214 | useroffset = usersize = 0; | |
215 | ||
794b1248 VD |
216 | err = -ENOMEM; |
217 | s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); | |
218 | if (!s) | |
219 | goto out; | |
220 | ||
221 | s->name = name; | |
613a5eb5 | 222 | s->size = s->object_size = object_size; |
794b1248 VD |
223 | s->align = align; |
224 | s->ctor = ctor; | |
346907ce | 225 | #ifdef CONFIG_HARDENED_USERCOPY |
8eb8284b DW |
226 | s->useroffset = useroffset; |
227 | s->usersize = usersize; | |
346907ce | 228 | #endif |
794b1248 | 229 | |
794b1248 VD |
230 | err = __kmem_cache_create(s, flags); |
231 | if (err) | |
232 | goto out_free_cache; | |
233 | ||
234 | s->refcount = 1; | |
235 | list_add(&s->list, &slab_caches); | |
794b1248 VD |
236 | return s; |
237 | ||
238 | out_free_cache: | |
7c4da061 | 239 | kmem_cache_free(kmem_cache, s); |
b9dad156 ZL |
240 | out: |
241 | return ERR_PTR(err); | |
794b1248 | 242 | } |
45906855 | 243 | |
f496990f MR |
244 | /** |
245 | * kmem_cache_create_usercopy - Create a cache with a region suitable | |
246 | * for copying to userspace | |
77be4b13 SK |
247 | * @name: A string which is used in /proc/slabinfo to identify this cache. |
248 | * @size: The size of objects to be created in this cache. | |
249 | * @align: The required alignment for the objects. | |
250 | * @flags: SLAB flags | |
8eb8284b DW |
251 | * @useroffset: Usercopy region offset |
252 | * @usersize: Usercopy region size | |
77be4b13 SK |
253 | * @ctor: A constructor for the objects. |
254 | * | |
77be4b13 SK |
255 | * Cannot be called within a interrupt, but can be interrupted. |
256 | * The @ctor is run when new pages are allocated by the cache. | |
257 | * | |
258 | * The flags are | |
259 | * | |
260 | * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) | |
261 | * to catch references to uninitialised memory. | |
262 | * | |
f496990f | 263 | * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check |
77be4b13 SK |
264 | * for buffer overruns. |
265 | * | |
266 | * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware | |
267 | * cacheline. This can be beneficial if you're counting cycles as closely | |
268 | * as davem. | |
f496990f MR |
269 | * |
270 | * Return: a pointer to the cache on success, NULL on failure. | |
77be4b13 | 271 | */ |
2633d7a0 | 272 | struct kmem_cache * |
f4957d5b AD |
273 | kmem_cache_create_usercopy(const char *name, |
274 | unsigned int size, unsigned int align, | |
7bbdb81e AD |
275 | slab_flags_t flags, |
276 | unsigned int useroffset, unsigned int usersize, | |
8eb8284b | 277 | void (*ctor)(void *)) |
77be4b13 | 278 | { |
40911a79 | 279 | struct kmem_cache *s = NULL; |
3dec16ea | 280 | const char *cache_name; |
3965fc36 | 281 | int err; |
039363f3 | 282 | |
afe0c26d VB |
283 | #ifdef CONFIG_SLUB_DEBUG |
284 | /* | |
285 | * If no slub_debug was enabled globally, the static key is not yet | |
286 | * enabled by setup_slub_debug(). Enable it if the cache is being | |
287 | * created with any of the debugging flags passed explicitly. | |
5cf909c5 OG |
288 | * It's also possible that this is the first cache created with |
289 | * SLAB_STORE_USER and we should init stack_depot for it. | |
afe0c26d VB |
290 | */ |
291 | if (flags & SLAB_DEBUG_FLAGS) | |
292 | static_branch_enable(&slub_debug_enabled); | |
5cf909c5 OG |
293 | if (flags & SLAB_STORE_USER) |
294 | stack_depot_init(); | |
afe0c26d VB |
295 | #endif |
296 | ||
77be4b13 | 297 | mutex_lock(&slab_mutex); |
686d550d | 298 | |
794b1248 | 299 | err = kmem_cache_sanity_check(name, size); |
3aa24f51 | 300 | if (err) { |
3965fc36 | 301 | goto out_unlock; |
3aa24f51 | 302 | } |
686d550d | 303 | |
e70954fd TG |
304 | /* Refuse requests with allocator specific flags */ |
305 | if (flags & ~SLAB_FLAGS_PERMITTED) { | |
306 | err = -EINVAL; | |
307 | goto out_unlock; | |
308 | } | |
309 | ||
d8843922 GC |
310 | /* |
311 | * Some allocators will constraint the set of valid flags to a subset | |
312 | * of all flags. We expect them to define CACHE_CREATE_MASK in this | |
313 | * case, and we'll just provide them with a sanitized version of the | |
314 | * passed flags. | |
315 | */ | |
316 | flags &= CACHE_CREATE_MASK; | |
686d550d | 317 | |
8eb8284b | 318 | /* Fail closed on bad usersize of useroffset values. */ |
346907ce VB |
319 | if (!IS_ENABLED(CONFIG_HARDENED_USERCOPY) || |
320 | WARN_ON(!usersize && useroffset) || | |
8eb8284b DW |
321 | WARN_ON(size < usersize || size - usersize < useroffset)) |
322 | usersize = useroffset = 0; | |
323 | ||
324 | if (!usersize) | |
325 | s = __kmem_cache_alias(name, size, align, flags, ctor); | |
794b1248 | 326 | if (s) |
3965fc36 | 327 | goto out_unlock; |
2633d7a0 | 328 | |
3dec16ea | 329 | cache_name = kstrdup_const(name, GFP_KERNEL); |
794b1248 VD |
330 | if (!cache_name) { |
331 | err = -ENOMEM; | |
332 | goto out_unlock; | |
333 | } | |
7c9adf5a | 334 | |
613a5eb5 | 335 | s = create_cache(cache_name, size, |
c9a77a79 | 336 | calculate_alignment(flags, align, size), |
9855609b | 337 | flags, useroffset, usersize, ctor, NULL); |
794b1248 VD |
338 | if (IS_ERR(s)) { |
339 | err = PTR_ERR(s); | |
3dec16ea | 340 | kfree_const(cache_name); |
794b1248 | 341 | } |
3965fc36 VD |
342 | |
343 | out_unlock: | |
20cea968 | 344 | mutex_unlock(&slab_mutex); |
03afc0e2 | 345 | |
ba3253c7 | 346 | if (err) { |
686d550d | 347 | if (flags & SLAB_PANIC) |
4acaa7d5 | 348 | panic("%s: Failed to create slab '%s'. Error %d\n", |
349 | __func__, name, err); | |
686d550d | 350 | else { |
4acaa7d5 | 351 | pr_warn("%s(%s) failed with error %d\n", |
352 | __func__, name, err); | |
686d550d CL |
353 | dump_stack(); |
354 | } | |
686d550d CL |
355 | return NULL; |
356 | } | |
039363f3 CL |
357 | return s; |
358 | } | |
8eb8284b DW |
359 | EXPORT_SYMBOL(kmem_cache_create_usercopy); |
360 | ||
f496990f MR |
361 | /** |
362 | * kmem_cache_create - Create a cache. | |
363 | * @name: A string which is used in /proc/slabinfo to identify this cache. | |
364 | * @size: The size of objects to be created in this cache. | |
365 | * @align: The required alignment for the objects. | |
366 | * @flags: SLAB flags | |
367 | * @ctor: A constructor for the objects. | |
368 | * | |
369 | * Cannot be called within a interrupt, but can be interrupted. | |
370 | * The @ctor is run when new pages are allocated by the cache. | |
371 | * | |
372 | * The flags are | |
373 | * | |
374 | * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) | |
375 | * to catch references to uninitialised memory. | |
376 | * | |
377 | * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check | |
378 | * for buffer overruns. | |
379 | * | |
380 | * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware | |
381 | * cacheline. This can be beneficial if you're counting cycles as closely | |
382 | * as davem. | |
383 | * | |
384 | * Return: a pointer to the cache on success, NULL on failure. | |
385 | */ | |
8eb8284b | 386 | struct kmem_cache * |
f4957d5b | 387 | kmem_cache_create(const char *name, unsigned int size, unsigned int align, |
8eb8284b DW |
388 | slab_flags_t flags, void (*ctor)(void *)) |
389 | { | |
6d07d1cd | 390 | return kmem_cache_create_usercopy(name, size, align, flags, 0, 0, |
8eb8284b DW |
391 | ctor); |
392 | } | |
794b1248 | 393 | EXPORT_SYMBOL(kmem_cache_create); |
2633d7a0 | 394 | |
0495e337 WL |
395 | #ifdef SLAB_SUPPORTS_SYSFS |
396 | /* | |
397 | * For a given kmem_cache, kmem_cache_destroy() should only be called | |
398 | * once or there will be a use-after-free problem. The actual deletion | |
399 | * and release of the kobject does not need slab_mutex or cpu_hotplug_lock | |
400 | * protection. So they are now done without holding those locks. | |
401 | * | |
402 | * Note that there will be a slight delay in the deletion of sysfs files | |
403 | * if kmem_cache_release() is called indrectly from a work function. | |
404 | */ | |
405 | static void kmem_cache_release(struct kmem_cache *s) | |
406 | { | |
407 | sysfs_slab_unlink(s); | |
408 | sysfs_slab_release(s); | |
409 | } | |
410 | #else | |
411 | static void kmem_cache_release(struct kmem_cache *s) | |
412 | { | |
413 | slab_kmem_cache_release(s); | |
414 | } | |
415 | #endif | |
416 | ||
657dc2f9 | 417 | static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work) |
d5b3cf71 | 418 | { |
657dc2f9 TH |
419 | LIST_HEAD(to_destroy); |
420 | struct kmem_cache *s, *s2; | |
d5b3cf71 | 421 | |
657dc2f9 | 422 | /* |
5f0d5a3a | 423 | * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the |
657dc2f9 | 424 | * @slab_caches_to_rcu_destroy list. The slab pages are freed |
081a06fa | 425 | * through RCU and the associated kmem_cache are dereferenced |
657dc2f9 TH |
426 | * while freeing the pages, so the kmem_caches should be freed only |
427 | * after the pending RCU operations are finished. As rcu_barrier() | |
428 | * is a pretty slow operation, we batch all pending destructions | |
429 | * asynchronously. | |
430 | */ | |
431 | mutex_lock(&slab_mutex); | |
432 | list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy); | |
433 | mutex_unlock(&slab_mutex); | |
d5b3cf71 | 434 | |
657dc2f9 TH |
435 | if (list_empty(&to_destroy)) |
436 | return; | |
437 | ||
438 | rcu_barrier(); | |
439 | ||
440 | list_for_each_entry_safe(s, s2, &to_destroy, list) { | |
64dd6849 | 441 | debugfs_slab_release(s); |
d3fb45f3 | 442 | kfence_shutdown_cache(s); |
0495e337 | 443 | kmem_cache_release(s); |
657dc2f9 | 444 | } |
d5b3cf71 VD |
445 | } |
446 | ||
657dc2f9 | 447 | static int shutdown_cache(struct kmem_cache *s) |
d5b3cf71 | 448 | { |
f9fa1d91 GT |
449 | /* free asan quarantined objects */ |
450 | kasan_cache_shutdown(s); | |
451 | ||
657dc2f9 TH |
452 | if (__kmem_cache_shutdown(s) != 0) |
453 | return -EBUSY; | |
d5b3cf71 | 454 | |
657dc2f9 | 455 | list_del(&s->list); |
d5b3cf71 | 456 | |
5f0d5a3a | 457 | if (s->flags & SLAB_TYPESAFE_BY_RCU) { |
657dc2f9 TH |
458 | list_add_tail(&s->list, &slab_caches_to_rcu_destroy); |
459 | schedule_work(&slab_caches_to_rcu_destroy_work); | |
460 | } else { | |
d3fb45f3 | 461 | kfence_shutdown_cache(s); |
64dd6849 | 462 | debugfs_slab_release(s); |
d5b3cf71 | 463 | } |
657dc2f9 TH |
464 | |
465 | return 0; | |
d5b3cf71 VD |
466 | } |
467 | ||
41a21285 CL |
468 | void slab_kmem_cache_release(struct kmem_cache *s) |
469 | { | |
52b4b950 | 470 | __kmem_cache_release(s); |
3dec16ea | 471 | kfree_const(s->name); |
41a21285 CL |
472 | kmem_cache_free(kmem_cache, s); |
473 | } | |
474 | ||
945cf2b6 CL |
475 | void kmem_cache_destroy(struct kmem_cache *s) |
476 | { | |
46a9ea66 | 477 | int err = -EBUSY; |
d71608a8 | 478 | bool rcu_set; |
0495e337 | 479 | |
bed0a9b5 | 480 | if (unlikely(!s) || !kasan_check_byte(s)) |
3942d299 SS |
481 | return; |
482 | ||
5a836bf6 | 483 | cpus_read_lock(); |
945cf2b6 | 484 | mutex_lock(&slab_mutex); |
b8529907 | 485 | |
d71608a8 FT |
486 | rcu_set = s->flags & SLAB_TYPESAFE_BY_RCU; |
487 | ||
46a9ea66 RA |
488 | s->refcount--; |
489 | if (s->refcount) | |
b8529907 VD |
490 | goto out_unlock; |
491 | ||
46a9ea66 RA |
492 | err = shutdown_cache(s); |
493 | WARN(err, "%s %s: Slab cache still has objects when called from %pS", | |
7302e91f | 494 | __func__, s->name, (void *)_RET_IP_); |
b8529907 VD |
495 | out_unlock: |
496 | mutex_unlock(&slab_mutex); | |
5a836bf6 | 497 | cpus_read_unlock(); |
46a9ea66 | 498 | if (!err && !rcu_set) |
0495e337 | 499 | kmem_cache_release(s); |
945cf2b6 CL |
500 | } |
501 | EXPORT_SYMBOL(kmem_cache_destroy); | |
502 | ||
03afc0e2 VD |
503 | /** |
504 | * kmem_cache_shrink - Shrink a cache. | |
505 | * @cachep: The cache to shrink. | |
506 | * | |
507 | * Releases as many slabs as possible for a cache. | |
508 | * To help debugging, a zero exit status indicates all slabs were released. | |
a862f68a MR |
509 | * |
510 | * Return: %0 if all slabs were released, non-zero otherwise | |
03afc0e2 VD |
511 | */ |
512 | int kmem_cache_shrink(struct kmem_cache *cachep) | |
513 | { | |
55834c59 | 514 | kasan_cache_shrink(cachep); |
7e1fa93d | 515 | |
610f9c00 | 516 | return __kmem_cache_shrink(cachep); |
03afc0e2 VD |
517 | } |
518 | EXPORT_SYMBOL(kmem_cache_shrink); | |
519 | ||
fda90124 | 520 | bool slab_is_available(void) |
97d06609 CL |
521 | { |
522 | return slab_state >= UP; | |
523 | } | |
b7454ad3 | 524 | |
5bb1bb35 | 525 | #ifdef CONFIG_PRINTK |
2dfe63e6 ME |
526 | static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) |
527 | { | |
528 | if (__kfence_obj_info(kpp, object, slab)) | |
529 | return; | |
530 | __kmem_obj_info(kpp, object, slab); | |
531 | } | |
532 | ||
8e7f37f2 PM |
533 | /** |
534 | * kmem_dump_obj - Print available slab provenance information | |
535 | * @object: slab object for which to find provenance information. | |
536 | * | |
537 | * This function uses pr_cont(), so that the caller is expected to have | |
538 | * printed out whatever preamble is appropriate. The provenance information | |
539 | * depends on the type of object and on how much debugging is enabled. | |
540 | * For a slab-cache object, the fact that it is a slab object is printed, | |
541 | * and, if available, the slab name, return address, and stack trace from | |
e548eaa1 | 542 | * the allocation and last free path of that object. |
8e7f37f2 | 543 | * |
6e284c55 ZL |
544 | * Return: %true if the pointer is to a not-yet-freed object from |
545 | * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer | |
546 | * is to an already-freed object, and %false otherwise. | |
8e7f37f2 | 547 | */ |
6e284c55 | 548 | bool kmem_dump_obj(void *object) |
8e7f37f2 PM |
549 | { |
550 | char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc"; | |
551 | int i; | |
7213230a | 552 | struct slab *slab; |
8e7f37f2 PM |
553 | unsigned long ptroffset; |
554 | struct kmem_obj_info kp = { }; | |
555 | ||
6e284c55 ZL |
556 | /* Some arches consider ZERO_SIZE_PTR to be a valid address. */ |
557 | if (object < (void *)PAGE_SIZE || !virt_addr_valid(object)) | |
558 | return false; | |
7213230a | 559 | slab = virt_to_slab(object); |
6e284c55 ZL |
560 | if (!slab) |
561 | return false; | |
562 | ||
7213230a | 563 | kmem_obj_info(&kp, object, slab); |
8e7f37f2 PM |
564 | if (kp.kp_slab_cache) |
565 | pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name); | |
566 | else | |
567 | pr_cont(" slab%s", cp); | |
2dfe63e6 ME |
568 | if (is_kfence_address(object)) |
569 | pr_cont(" (kfence)"); | |
8e7f37f2 PM |
570 | if (kp.kp_objp) |
571 | pr_cont(" start %px", kp.kp_objp); | |
572 | if (kp.kp_data_offset) | |
573 | pr_cont(" data offset %lu", kp.kp_data_offset); | |
574 | if (kp.kp_objp) { | |
575 | ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset; | |
576 | pr_cont(" pointer offset %lu", ptroffset); | |
577 | } | |
346907ce VB |
578 | if (kp.kp_slab_cache && kp.kp_slab_cache->object_size) |
579 | pr_cont(" size %u", kp.kp_slab_cache->object_size); | |
8e7f37f2 PM |
580 | if (kp.kp_ret) |
581 | pr_cont(" allocated at %pS\n", kp.kp_ret); | |
582 | else | |
583 | pr_cont("\n"); | |
584 | for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) { | |
585 | if (!kp.kp_stack[i]) | |
586 | break; | |
587 | pr_info(" %pS\n", kp.kp_stack[i]); | |
588 | } | |
e548eaa1 MS |
589 | |
590 | if (kp.kp_free_stack[0]) | |
591 | pr_cont(" Free path:\n"); | |
592 | ||
593 | for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) { | |
594 | if (!kp.kp_free_stack[i]) | |
595 | break; | |
596 | pr_info(" %pS\n", kp.kp_free_stack[i]); | |
597 | } | |
598 | ||
6e284c55 | 599 | return true; |
8e7f37f2 | 600 | } |
0d3dd2c8 | 601 | EXPORT_SYMBOL_GPL(kmem_dump_obj); |
5bb1bb35 | 602 | #endif |
8e7f37f2 | 603 | |
45530c44 | 604 | /* Create a cache during boot when no slab services are available yet */ |
361d575e AD |
605 | void __init create_boot_cache(struct kmem_cache *s, const char *name, |
606 | unsigned int size, slab_flags_t flags, | |
607 | unsigned int useroffset, unsigned int usersize) | |
45530c44 CL |
608 | { |
609 | int err; | |
59bb4798 | 610 | unsigned int align = ARCH_KMALLOC_MINALIGN; |
45530c44 CL |
611 | |
612 | s->name = name; | |
613 | s->size = s->object_size = size; | |
59bb4798 VB |
614 | |
615 | /* | |
616 | * For power of two sizes, guarantee natural alignment for kmalloc | |
617 | * caches, regardless of SL*B debugging options. | |
618 | */ | |
619 | if (is_power_of_2(size)) | |
620 | align = max(align, size); | |
621 | s->align = calculate_alignment(flags, align, size); | |
622 | ||
346907ce | 623 | #ifdef CONFIG_HARDENED_USERCOPY |
8eb8284b DW |
624 | s->useroffset = useroffset; |
625 | s->usersize = usersize; | |
346907ce | 626 | #endif |
f7ce3190 | 627 | |
45530c44 CL |
628 | err = __kmem_cache_create(s, flags); |
629 | ||
630 | if (err) | |
361d575e | 631 | panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n", |
45530c44 CL |
632 | name, size, err); |
633 | ||
634 | s->refcount = -1; /* Exempt from merging for now */ | |
635 | } | |
636 | ||
0c474d31 CM |
637 | static struct kmem_cache *__init create_kmalloc_cache(const char *name, |
638 | unsigned int size, | |
639 | slab_flags_t flags) | |
45530c44 CL |
640 | { |
641 | struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); | |
642 | ||
643 | if (!s) | |
644 | panic("Out of memory when creating slab %s\n", name); | |
645 | ||
0c474d31 | 646 | create_boot_cache(s, name, size, flags | SLAB_KMALLOC, 0, size); |
45530c44 CL |
647 | list_add(&s->list, &slab_caches); |
648 | s->refcount = 1; | |
649 | return s; | |
650 | } | |
651 | ||
cc252eae | 652 | struct kmem_cache * |
a07057dc AB |
653 | kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init = |
654 | { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ }; | |
9425c58e CL |
655 | EXPORT_SYMBOL(kmalloc_caches); |
656 | ||
3c615294 GR |
657 | #ifdef CONFIG_RANDOM_KMALLOC_CACHES |
658 | unsigned long random_kmalloc_seed __ro_after_init; | |
659 | EXPORT_SYMBOL(random_kmalloc_seed); | |
660 | #endif | |
661 | ||
2c59dd65 CL |
662 | /* |
663 | * Conversion table for small slabs sizes / 8 to the index in the | |
664 | * kmalloc array. This is necessary for slabs < 192 since we have non power | |
665 | * of two cache sizes there. The size of larger slabs can be determined using | |
666 | * fls. | |
667 | */ | |
5a9d31d9 | 668 | u8 kmalloc_size_index[24] __ro_after_init = { |
2c59dd65 CL |
669 | 3, /* 8 */ |
670 | 4, /* 16 */ | |
671 | 5, /* 24 */ | |
672 | 5, /* 32 */ | |
673 | 6, /* 40 */ | |
674 | 6, /* 48 */ | |
675 | 6, /* 56 */ | |
676 | 6, /* 64 */ | |
677 | 1, /* 72 */ | |
678 | 1, /* 80 */ | |
679 | 1, /* 88 */ | |
680 | 1, /* 96 */ | |
681 | 7, /* 104 */ | |
682 | 7, /* 112 */ | |
683 | 7, /* 120 */ | |
684 | 7, /* 128 */ | |
685 | 2, /* 136 */ | |
686 | 2, /* 144 */ | |
687 | 2, /* 152 */ | |
688 | 2, /* 160 */ | |
689 | 2, /* 168 */ | |
690 | 2, /* 176 */ | |
691 | 2, /* 184 */ | |
692 | 2 /* 192 */ | |
693 | }; | |
694 | ||
05a94065 KC |
695 | size_t kmalloc_size_roundup(size_t size) |
696 | { | |
8446a4de DL |
697 | if (size && size <= KMALLOC_MAX_CACHE_SIZE) { |
698 | /* | |
699 | * The flags don't matter since size_index is common to all. | |
700 | * Neither does the caller for just getting ->object_size. | |
701 | */ | |
702 | return kmalloc_slab(size, GFP_KERNEL, 0)->object_size; | |
703 | } | |
704 | ||
05a94065 | 705 | /* Above the smaller buckets, size is a multiple of page size. */ |
8446a4de | 706 | if (size && size <= KMALLOC_MAX_SIZE) |
05a94065 KC |
707 | return PAGE_SIZE << get_order(size); |
708 | ||
3c615294 | 709 | /* |
8446a4de DL |
710 | * Return 'size' for 0 - kmalloc() returns ZERO_SIZE_PTR |
711 | * and very large size - kmalloc() may fail. | |
3c615294 | 712 | */ |
8446a4de DL |
713 | return size; |
714 | ||
05a94065 KC |
715 | } |
716 | EXPORT_SYMBOL(kmalloc_size_roundup); | |
717 | ||
cb5d9fb3 | 718 | #ifdef CONFIG_ZONE_DMA |
494c1dfe WL |
719 | #define KMALLOC_DMA_NAME(sz) .name[KMALLOC_DMA] = "dma-kmalloc-" #sz, |
720 | #else | |
721 | #define KMALLOC_DMA_NAME(sz) | |
722 | #endif | |
723 | ||
724 | #ifdef CONFIG_MEMCG_KMEM | |
725 | #define KMALLOC_CGROUP_NAME(sz) .name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz, | |
cb5d9fb3 | 726 | #else |
494c1dfe WL |
727 | #define KMALLOC_CGROUP_NAME(sz) |
728 | #endif | |
729 | ||
2f7c1c13 VB |
730 | #ifndef CONFIG_SLUB_TINY |
731 | #define KMALLOC_RCL_NAME(sz) .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #sz, | |
732 | #else | |
733 | #define KMALLOC_RCL_NAME(sz) | |
734 | #endif | |
735 | ||
3c615294 GR |
736 | #ifdef CONFIG_RANDOM_KMALLOC_CACHES |
737 | #define __KMALLOC_RANDOM_CONCAT(a, b) a ## b | |
738 | #define KMALLOC_RANDOM_NAME(N, sz) __KMALLOC_RANDOM_CONCAT(KMA_RAND_, N)(sz) | |
739 | #define KMA_RAND_1(sz) .name[KMALLOC_RANDOM_START + 1] = "kmalloc-rnd-01-" #sz, | |
740 | #define KMA_RAND_2(sz) KMA_RAND_1(sz) .name[KMALLOC_RANDOM_START + 2] = "kmalloc-rnd-02-" #sz, | |
741 | #define KMA_RAND_3(sz) KMA_RAND_2(sz) .name[KMALLOC_RANDOM_START + 3] = "kmalloc-rnd-03-" #sz, | |
742 | #define KMA_RAND_4(sz) KMA_RAND_3(sz) .name[KMALLOC_RANDOM_START + 4] = "kmalloc-rnd-04-" #sz, | |
743 | #define KMA_RAND_5(sz) KMA_RAND_4(sz) .name[KMALLOC_RANDOM_START + 5] = "kmalloc-rnd-05-" #sz, | |
744 | #define KMA_RAND_6(sz) KMA_RAND_5(sz) .name[KMALLOC_RANDOM_START + 6] = "kmalloc-rnd-06-" #sz, | |
745 | #define KMA_RAND_7(sz) KMA_RAND_6(sz) .name[KMALLOC_RANDOM_START + 7] = "kmalloc-rnd-07-" #sz, | |
746 | #define KMA_RAND_8(sz) KMA_RAND_7(sz) .name[KMALLOC_RANDOM_START + 8] = "kmalloc-rnd-08-" #sz, | |
747 | #define KMA_RAND_9(sz) KMA_RAND_8(sz) .name[KMALLOC_RANDOM_START + 9] = "kmalloc-rnd-09-" #sz, | |
748 | #define KMA_RAND_10(sz) KMA_RAND_9(sz) .name[KMALLOC_RANDOM_START + 10] = "kmalloc-rnd-10-" #sz, | |
749 | #define KMA_RAND_11(sz) KMA_RAND_10(sz) .name[KMALLOC_RANDOM_START + 11] = "kmalloc-rnd-11-" #sz, | |
750 | #define KMA_RAND_12(sz) KMA_RAND_11(sz) .name[KMALLOC_RANDOM_START + 12] = "kmalloc-rnd-12-" #sz, | |
751 | #define KMA_RAND_13(sz) KMA_RAND_12(sz) .name[KMALLOC_RANDOM_START + 13] = "kmalloc-rnd-13-" #sz, | |
752 | #define KMA_RAND_14(sz) KMA_RAND_13(sz) .name[KMALLOC_RANDOM_START + 14] = "kmalloc-rnd-14-" #sz, | |
753 | #define KMA_RAND_15(sz) KMA_RAND_14(sz) .name[KMALLOC_RANDOM_START + 15] = "kmalloc-rnd-15-" #sz, | |
754 | #else // CONFIG_RANDOM_KMALLOC_CACHES | |
755 | #define KMALLOC_RANDOM_NAME(N, sz) | |
756 | #endif | |
757 | ||
cb5d9fb3 PL |
758 | #define INIT_KMALLOC_INFO(__size, __short_size) \ |
759 | { \ | |
760 | .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \ | |
2f7c1c13 | 761 | KMALLOC_RCL_NAME(__short_size) \ |
494c1dfe WL |
762 | KMALLOC_CGROUP_NAME(__short_size) \ |
763 | KMALLOC_DMA_NAME(__short_size) \ | |
3c615294 | 764 | KMALLOC_RANDOM_NAME(RANDOM_KMALLOC_CACHES_NR, __short_size) \ |
cb5d9fb3 PL |
765 | .size = __size, \ |
766 | } | |
cb5d9fb3 | 767 | |
4066c33d GG |
768 | /* |
769 | * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time. | |
d6a71648 HY |
770 | * kmalloc_index() supports up to 2^21=2MB, so the final entry of the table is |
771 | * kmalloc-2M. | |
4066c33d | 772 | */ |
af3b5f87 | 773 | const struct kmalloc_info_struct kmalloc_info[] __initconst = { |
cb5d9fb3 PL |
774 | INIT_KMALLOC_INFO(0, 0), |
775 | INIT_KMALLOC_INFO(96, 96), | |
776 | INIT_KMALLOC_INFO(192, 192), | |
777 | INIT_KMALLOC_INFO(8, 8), | |
778 | INIT_KMALLOC_INFO(16, 16), | |
779 | INIT_KMALLOC_INFO(32, 32), | |
780 | INIT_KMALLOC_INFO(64, 64), | |
781 | INIT_KMALLOC_INFO(128, 128), | |
782 | INIT_KMALLOC_INFO(256, 256), | |
783 | INIT_KMALLOC_INFO(512, 512), | |
784 | INIT_KMALLOC_INFO(1024, 1k), | |
785 | INIT_KMALLOC_INFO(2048, 2k), | |
786 | INIT_KMALLOC_INFO(4096, 4k), | |
787 | INIT_KMALLOC_INFO(8192, 8k), | |
788 | INIT_KMALLOC_INFO(16384, 16k), | |
789 | INIT_KMALLOC_INFO(32768, 32k), | |
790 | INIT_KMALLOC_INFO(65536, 64k), | |
791 | INIT_KMALLOC_INFO(131072, 128k), | |
792 | INIT_KMALLOC_INFO(262144, 256k), | |
793 | INIT_KMALLOC_INFO(524288, 512k), | |
794 | INIT_KMALLOC_INFO(1048576, 1M), | |
d6a71648 | 795 | INIT_KMALLOC_INFO(2097152, 2M) |
4066c33d GG |
796 | }; |
797 | ||
f97d5f63 | 798 | /* |
34cc6990 DS |
799 | * Patch up the size_index table if we have strange large alignment |
800 | * requirements for the kmalloc array. This is only the case for | |
801 | * MIPS it seems. The standard arches will not generate any code here. | |
802 | * | |
803 | * Largest permitted alignment is 256 bytes due to the way we | |
804 | * handle the index determination for the smaller caches. | |
805 | * | |
806 | * Make sure that nothing crazy happens if someone starts tinkering | |
807 | * around with ARCH_KMALLOC_MINALIGN | |
f97d5f63 | 808 | */ |
34cc6990 | 809 | void __init setup_kmalloc_cache_index_table(void) |
f97d5f63 | 810 | { |
ac914d08 | 811 | unsigned int i; |
f97d5f63 | 812 | |
2c59dd65 | 813 | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || |
7d6b6cc3 | 814 | !is_power_of_2(KMALLOC_MIN_SIZE)); |
2c59dd65 CL |
815 | |
816 | for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { | |
ac914d08 | 817 | unsigned int elem = size_index_elem(i); |
2c59dd65 | 818 | |
5a9d31d9 | 819 | if (elem >= ARRAY_SIZE(kmalloc_size_index)) |
2c59dd65 | 820 | break; |
5a9d31d9 | 821 | kmalloc_size_index[elem] = KMALLOC_SHIFT_LOW; |
2c59dd65 CL |
822 | } |
823 | ||
824 | if (KMALLOC_MIN_SIZE >= 64) { | |
825 | /* | |
0b8f0d87 | 826 | * The 96 byte sized cache is not used if the alignment |
2c59dd65 CL |
827 | * is 64 byte. |
828 | */ | |
829 | for (i = 64 + 8; i <= 96; i += 8) | |
5a9d31d9 | 830 | kmalloc_size_index[size_index_elem(i)] = 7; |
2c59dd65 CL |
831 | |
832 | } | |
833 | ||
834 | if (KMALLOC_MIN_SIZE >= 128) { | |
835 | /* | |
836 | * The 192 byte sized cache is not used if the alignment | |
837 | * is 128 byte. Redirect kmalloc to use the 256 byte cache | |
838 | * instead. | |
839 | */ | |
840 | for (i = 128 + 8; i <= 192; i += 8) | |
5a9d31d9 | 841 | kmalloc_size_index[size_index_elem(i)] = 8; |
2c59dd65 | 842 | } |
34cc6990 DS |
843 | } |
844 | ||
963e84b0 CM |
845 | static unsigned int __kmalloc_minalign(void) |
846 | { | |
c15cdea5 CM |
847 | unsigned int minalign = dma_get_cache_alignment(); |
848 | ||
05ee7741 PT |
849 | if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) && |
850 | is_swiotlb_allocated()) | |
c15cdea5 CM |
851 | minalign = ARCH_KMALLOC_MINALIGN; |
852 | ||
853 | return max(minalign, arch_slab_minalign()); | |
963e84b0 CM |
854 | } |
855 | ||
0c474d31 | 856 | void __init |
13657d0a | 857 | new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags) |
a9730fca | 858 | { |
963e84b0 CM |
859 | unsigned int minalign = __kmalloc_minalign(); |
860 | unsigned int aligned_size = kmalloc_info[idx].size; | |
861 | int aligned_idx = idx; | |
862 | ||
2f7c1c13 | 863 | if ((KMALLOC_RECLAIM != KMALLOC_NORMAL) && (type == KMALLOC_RECLAIM)) { |
1291523f | 864 | flags |= SLAB_RECLAIM_ACCOUNT; |
494c1dfe | 865 | } else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) { |
17c17367 | 866 | if (mem_cgroup_kmem_disabled()) { |
494c1dfe WL |
867 | kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx]; |
868 | return; | |
869 | } | |
870 | flags |= SLAB_ACCOUNT; | |
33647783 OK |
871 | } else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) { |
872 | flags |= SLAB_CACHE_DMA; | |
494c1dfe | 873 | } |
1291523f | 874 | |
3c615294 GR |
875 | #ifdef CONFIG_RANDOM_KMALLOC_CACHES |
876 | if (type >= KMALLOC_RANDOM_START && type <= KMALLOC_RANDOM_END) | |
877 | flags |= SLAB_NO_MERGE; | |
878 | #endif | |
879 | ||
13e680fb WL |
880 | /* |
881 | * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for | |
882 | * KMALLOC_NORMAL caches. | |
883 | */ | |
884 | if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL)) | |
d5bf4857 VB |
885 | flags |= SLAB_NO_MERGE; |
886 | ||
963e84b0 CM |
887 | if (minalign > ARCH_KMALLOC_MINALIGN) { |
888 | aligned_size = ALIGN(aligned_size, minalign); | |
889 | aligned_idx = __kmalloc_index(aligned_size, false); | |
890 | } | |
891 | ||
892 | if (!kmalloc_caches[type][aligned_idx]) | |
893 | kmalloc_caches[type][aligned_idx] = create_kmalloc_cache( | |
894 | kmalloc_info[aligned_idx].name[type], | |
895 | aligned_size, flags); | |
896 | if (idx != aligned_idx) | |
897 | kmalloc_caches[type][idx] = kmalloc_caches[type][aligned_idx]; | |
a9730fca CL |
898 | } |
899 | ||
34cc6990 DS |
900 | /* |
901 | * Create the kmalloc array. Some of the regular kmalloc arrays | |
902 | * may already have been created because they were needed to | |
903 | * enable allocations for slab creation. | |
904 | */ | |
d50112ed | 905 | void __init create_kmalloc_caches(slab_flags_t flags) |
34cc6990 | 906 | { |
13657d0a PL |
907 | int i; |
908 | enum kmalloc_cache_type type; | |
34cc6990 | 909 | |
494c1dfe WL |
910 | /* |
911 | * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined | |
912 | */ | |
33647783 | 913 | for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) { |
1291523f VB |
914 | for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) { |
915 | if (!kmalloc_caches[type][i]) | |
916 | new_kmalloc_cache(i, type, flags); | |
f97d5f63 | 917 | |
1291523f VB |
918 | /* |
919 | * Caches that are not of the two-to-the-power-of size. | |
920 | * These have to be created immediately after the | |
921 | * earlier power of two caches | |
922 | */ | |
923 | if (KMALLOC_MIN_SIZE <= 32 && i == 6 && | |
924 | !kmalloc_caches[type][1]) | |
925 | new_kmalloc_cache(1, type, flags); | |
926 | if (KMALLOC_MIN_SIZE <= 64 && i == 7 && | |
927 | !kmalloc_caches[type][2]) | |
928 | new_kmalloc_cache(2, type, flags); | |
929 | } | |
8a965b3b | 930 | } |
3c615294 GR |
931 | #ifdef CONFIG_RANDOM_KMALLOC_CACHES |
932 | random_kmalloc_seed = get_random_u64(); | |
933 | #endif | |
8a965b3b | 934 | |
f97d5f63 CL |
935 | /* Kmalloc array is now usable */ |
936 | slab_state = UP; | |
f97d5f63 | 937 | } |
d6a71648 | 938 | |
445d41d7 VB |
939 | /** |
940 | * __ksize -- Report full size of underlying allocation | |
a2076201 | 941 | * @object: pointer to the object |
445d41d7 VB |
942 | * |
943 | * This should only be used internally to query the true size of allocations. | |
944 | * It is not meant to be a way to discover the usable size of an allocation | |
945 | * after the fact. Instead, use kmalloc_size_roundup(). Using memory beyond | |
946 | * the originally requested allocation size may trigger KASAN, UBSAN_BOUNDS, | |
947 | * and/or FORTIFY_SOURCE. | |
948 | * | |
a2076201 | 949 | * Return: size of the actual memory used by @object in bytes |
445d41d7 | 950 | */ |
b1405135 HY |
951 | size_t __ksize(const void *object) |
952 | { | |
953 | struct folio *folio; | |
954 | ||
955 | if (unlikely(object == ZERO_SIZE_PTR)) | |
956 | return 0; | |
957 | ||
958 | folio = virt_to_folio(object); | |
959 | ||
d5eff736 HY |
960 | if (unlikely(!folio_test_slab(folio))) { |
961 | if (WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE)) | |
962 | return 0; | |
963 | if (WARN_ON(object != folio_address(folio))) | |
964 | return 0; | |
b1405135 | 965 | return folio_size(folio); |
d5eff736 | 966 | } |
b1405135 | 967 | |
946fa0db FT |
968 | #ifdef CONFIG_SLUB_DEBUG |
969 | skip_orig_size_check(folio_slab(folio)->slab_cache, object); | |
970 | #endif | |
971 | ||
b1405135 HY |
972 | return slab_ksize(folio_slab(folio)->slab_cache); |
973 | } | |
26a40990 | 974 | |
44405099 LL |
975 | gfp_t kmalloc_fix_flags(gfp_t flags) |
976 | { | |
977 | gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; | |
978 | ||
979 | flags &= ~GFP_SLAB_BUG_MASK; | |
980 | pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", | |
981 | invalid_mask, &invalid_mask, flags, &flags); | |
982 | dump_stack(); | |
983 | ||
984 | return flags; | |
985 | } | |
986 | ||
7c00fce9 TG |
987 | #ifdef CONFIG_SLAB_FREELIST_RANDOM |
988 | /* Randomize a generic freelist */ | |
ffe4dfe0 | 989 | static void freelist_randomize(unsigned int *list, |
302d55d5 | 990 | unsigned int count) |
7c00fce9 | 991 | { |
7c00fce9 | 992 | unsigned int rand; |
302d55d5 | 993 | unsigned int i; |
7c00fce9 TG |
994 | |
995 | for (i = 0; i < count; i++) | |
996 | list[i] = i; | |
997 | ||
998 | /* Fisher-Yates shuffle */ | |
999 | for (i = count - 1; i > 0; i--) { | |
ffe4dfe0 | 1000 | rand = get_random_u32_below(i + 1); |
7c00fce9 TG |
1001 | swap(list[i], list[rand]); |
1002 | } | |
1003 | } | |
1004 | ||
1005 | /* Create a random sequence per cache */ | |
1006 | int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, | |
1007 | gfp_t gfp) | |
1008 | { | |
7c00fce9 TG |
1009 | |
1010 | if (count < 2 || cachep->random_seq) | |
1011 | return 0; | |
1012 | ||
1013 | cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp); | |
1014 | if (!cachep->random_seq) | |
1015 | return -ENOMEM; | |
1016 | ||
ffe4dfe0 | 1017 | freelist_randomize(cachep->random_seq, count); |
7c00fce9 TG |
1018 | return 0; |
1019 | } | |
1020 | ||
1021 | /* Destroy the per-cache random freelist sequence */ | |
1022 | void cache_random_seq_destroy(struct kmem_cache *cachep) | |
1023 | { | |
1024 | kfree(cachep->random_seq); | |
1025 | cachep->random_seq = NULL; | |
1026 | } | |
1027 | #endif /* CONFIG_SLAB_FREELIST_RANDOM */ | |
1028 | ||
a9e0b9f2 | 1029 | #ifdef CONFIG_SLUB_DEBUG |
0825a6f9 | 1030 | #define SLABINFO_RIGHTS (0400) |
e9b4db2b | 1031 | |
b047501c | 1032 | static void print_slabinfo_header(struct seq_file *m) |
bcee6e2a GC |
1033 | { |
1034 | /* | |
1035 | * Output format version, so at least we can change it | |
1036 | * without _too_ many complaints. | |
1037 | */ | |
bcee6e2a | 1038 | seq_puts(m, "slabinfo - version: 2.1\n"); |
756a025f | 1039 | seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>"); |
bcee6e2a GC |
1040 | seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); |
1041 | seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); | |
bcee6e2a GC |
1042 | seq_putc(m, '\n'); |
1043 | } | |
1044 | ||
c29b5b3d | 1045 | static void *slab_start(struct seq_file *m, loff_t *pos) |
b7454ad3 | 1046 | { |
b7454ad3 | 1047 | mutex_lock(&slab_mutex); |
c7094406 | 1048 | return seq_list_start(&slab_caches, *pos); |
b7454ad3 GC |
1049 | } |
1050 | ||
c29b5b3d | 1051 | static void *slab_next(struct seq_file *m, void *p, loff_t *pos) |
b7454ad3 | 1052 | { |
c7094406 | 1053 | return seq_list_next(p, &slab_caches, pos); |
b7454ad3 GC |
1054 | } |
1055 | ||
c29b5b3d | 1056 | static void slab_stop(struct seq_file *m, void *p) |
b7454ad3 GC |
1057 | { |
1058 | mutex_unlock(&slab_mutex); | |
1059 | } | |
1060 | ||
b047501c | 1061 | static void cache_show(struct kmem_cache *s, struct seq_file *m) |
b7454ad3 | 1062 | { |
0d7561c6 GC |
1063 | struct slabinfo sinfo; |
1064 | ||
1065 | memset(&sinfo, 0, sizeof(sinfo)); | |
1066 | get_slabinfo(s, &sinfo); | |
1067 | ||
1068 | seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", | |
10befea9 | 1069 | s->name, sinfo.active_objs, sinfo.num_objs, s->size, |
0d7561c6 GC |
1070 | sinfo.objects_per_slab, (1 << sinfo.cache_order)); |
1071 | ||
1072 | seq_printf(m, " : tunables %4u %4u %4u", | |
1073 | sinfo.limit, sinfo.batchcount, sinfo.shared); | |
1074 | seq_printf(m, " : slabdata %6lu %6lu %6lu", | |
1075 | sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail); | |
1076 | slabinfo_show_stats(m, s); | |
1077 | seq_putc(m, '\n'); | |
b7454ad3 GC |
1078 | } |
1079 | ||
1df3b26f | 1080 | static int slab_show(struct seq_file *m, void *p) |
749c5415 | 1081 | { |
c7094406 | 1082 | struct kmem_cache *s = list_entry(p, struct kmem_cache, list); |
749c5415 | 1083 | |
c7094406 | 1084 | if (p == slab_caches.next) |
1df3b26f | 1085 | print_slabinfo_header(m); |
10befea9 | 1086 | cache_show(s, m); |
b047501c VD |
1087 | return 0; |
1088 | } | |
1089 | ||
852d8be0 YS |
1090 | void dump_unreclaimable_slab(void) |
1091 | { | |
7714304f | 1092 | struct kmem_cache *s; |
852d8be0 YS |
1093 | struct slabinfo sinfo; |
1094 | ||
1095 | /* | |
1096 | * Here acquiring slab_mutex is risky since we don't prefer to get | |
1097 | * sleep in oom path. But, without mutex hold, it may introduce a | |
1098 | * risk of crash. | |
1099 | * Use mutex_trylock to protect the list traverse, dump nothing | |
1100 | * without acquiring the mutex. | |
1101 | */ | |
1102 | if (!mutex_trylock(&slab_mutex)) { | |
1103 | pr_warn("excessive unreclaimable slab but cannot dump stats\n"); | |
1104 | return; | |
1105 | } | |
1106 | ||
1107 | pr_info("Unreclaimable slab info:\n"); | |
1108 | pr_info("Name Used Total\n"); | |
1109 | ||
7714304f | 1110 | list_for_each_entry(s, &slab_caches, list) { |
10befea9 | 1111 | if (s->flags & SLAB_RECLAIM_ACCOUNT) |
852d8be0 YS |
1112 | continue; |
1113 | ||
1114 | get_slabinfo(s, &sinfo); | |
1115 | ||
1116 | if (sinfo.num_objs > 0) | |
10befea9 | 1117 | pr_info("%-17s %10luKB %10luKB\n", s->name, |
852d8be0 YS |
1118 | (sinfo.active_objs * s->size) / 1024, |
1119 | (sinfo.num_objs * s->size) / 1024); | |
1120 | } | |
1121 | mutex_unlock(&slab_mutex); | |
1122 | } | |
1123 | ||
b7454ad3 GC |
1124 | /* |
1125 | * slabinfo_op - iterator that generates /proc/slabinfo | |
1126 | * | |
1127 | * Output layout: | |
1128 | * cache-name | |
1129 | * num-active-objs | |
1130 | * total-objs | |
1131 | * object size | |
1132 | * num-active-slabs | |
1133 | * total-slabs | |
1134 | * num-pages-per-slab | |
1135 | * + further values on SMP and with statistics enabled | |
1136 | */ | |
1137 | static const struct seq_operations slabinfo_op = { | |
1df3b26f | 1138 | .start = slab_start, |
276a2439 WL |
1139 | .next = slab_next, |
1140 | .stop = slab_stop, | |
1df3b26f | 1141 | .show = slab_show, |
b7454ad3 GC |
1142 | }; |
1143 | ||
1144 | static int slabinfo_open(struct inode *inode, struct file *file) | |
1145 | { | |
1146 | return seq_open(file, &slabinfo_op); | |
1147 | } | |
1148 | ||
97a32539 | 1149 | static const struct proc_ops slabinfo_proc_ops = { |
d919b33d | 1150 | .proc_flags = PROC_ENTRY_PERMANENT, |
97a32539 AD |
1151 | .proc_open = slabinfo_open, |
1152 | .proc_read = seq_read, | |
1153 | .proc_write = slabinfo_write, | |
1154 | .proc_lseek = seq_lseek, | |
1155 | .proc_release = seq_release, | |
b7454ad3 GC |
1156 | }; |
1157 | ||
1158 | static int __init slab_proc_init(void) | |
1159 | { | |
97a32539 | 1160 | proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops); |
b7454ad3 GC |
1161 | return 0; |
1162 | } | |
1163 | module_init(slab_proc_init); | |
fcf8a1e4 | 1164 | |
a9e0b9f2 | 1165 | #endif /* CONFIG_SLUB_DEBUG */ |
928cec9c | 1166 | |
9ed9cac1 KC |
1167 | static __always_inline __realloc_size(2) void * |
1168 | __do_krealloc(const void *p, size_t new_size, gfp_t flags) | |
928cec9c AR |
1169 | { |
1170 | void *ret; | |
fa9ba3aa | 1171 | size_t ks; |
928cec9c | 1172 | |
38931d89 | 1173 | /* Check for double-free before calling ksize. */ |
d12d9ad8 AK |
1174 | if (likely(!ZERO_OR_NULL_PTR(p))) { |
1175 | if (!kasan_check_byte(p)) | |
1176 | return NULL; | |
38931d89 | 1177 | ks = ksize(p); |
d12d9ad8 AK |
1178 | } else |
1179 | ks = 0; | |
928cec9c | 1180 | |
d12d9ad8 | 1181 | /* If the object still fits, repoison it precisely. */ |
0316bec2 | 1182 | if (ks >= new_size) { |
0116523c | 1183 | p = kasan_krealloc((void *)p, new_size, flags); |
928cec9c | 1184 | return (void *)p; |
0316bec2 | 1185 | } |
928cec9c AR |
1186 | |
1187 | ret = kmalloc_track_caller(new_size, flags); | |
d12d9ad8 AK |
1188 | if (ret && p) { |
1189 | /* Disable KASAN checks as the object's redzone is accessed. */ | |
1190 | kasan_disable_current(); | |
1191 | memcpy(ret, kasan_reset_tag(p), ks); | |
1192 | kasan_enable_current(); | |
1193 | } | |
928cec9c AR |
1194 | |
1195 | return ret; | |
1196 | } | |
1197 | ||
928cec9c AR |
1198 | /** |
1199 | * krealloc - reallocate memory. The contents will remain unchanged. | |
1200 | * @p: object to reallocate memory for. | |
1201 | * @new_size: how many bytes of memory are required. | |
1202 | * @flags: the type of memory to allocate. | |
1203 | * | |
1204 | * The contents of the object pointed to are preserved up to the | |
15d5de49 BG |
1205 | * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored). |
1206 | * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size | |
1207 | * is 0 and @p is not a %NULL pointer, the object pointed to is freed. | |
a862f68a MR |
1208 | * |
1209 | * Return: pointer to the allocated memory or %NULL in case of error | |
928cec9c AR |
1210 | */ |
1211 | void *krealloc(const void *p, size_t new_size, gfp_t flags) | |
1212 | { | |
1213 | void *ret; | |
1214 | ||
1215 | if (unlikely(!new_size)) { | |
1216 | kfree(p); | |
1217 | return ZERO_SIZE_PTR; | |
1218 | } | |
1219 | ||
1220 | ret = __do_krealloc(p, new_size, flags); | |
772a2fa5 | 1221 | if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret)) |
928cec9c AR |
1222 | kfree(p); |
1223 | ||
1224 | return ret; | |
1225 | } | |
1226 | EXPORT_SYMBOL(krealloc); | |
1227 | ||
1228 | /** | |
453431a5 | 1229 | * kfree_sensitive - Clear sensitive information in memory before freeing |
928cec9c AR |
1230 | * @p: object to free memory of |
1231 | * | |
1232 | * The memory of the object @p points to is zeroed before freed. | |
453431a5 | 1233 | * If @p is %NULL, kfree_sensitive() does nothing. |
928cec9c AR |
1234 | * |
1235 | * Note: this function zeroes the whole allocated buffer which can be a good | |
1236 | * deal bigger than the requested buffer size passed to kmalloc(). So be | |
1237 | * careful when using this function in performance sensitive code. | |
1238 | */ | |
453431a5 | 1239 | void kfree_sensitive(const void *p) |
928cec9c AR |
1240 | { |
1241 | size_t ks; | |
1242 | void *mem = (void *)p; | |
1243 | ||
928cec9c | 1244 | ks = ksize(mem); |
38931d89 KC |
1245 | if (ks) { |
1246 | kasan_unpoison_range(mem, ks); | |
fa9ba3aa | 1247 | memzero_explicit(mem, ks); |
38931d89 | 1248 | } |
928cec9c AR |
1249 | kfree(mem); |
1250 | } | |
453431a5 | 1251 | EXPORT_SYMBOL(kfree_sensitive); |
928cec9c | 1252 | |
10d1f8cb ME |
1253 | size_t ksize(const void *objp) |
1254 | { | |
0d4ca4c9 | 1255 | /* |
38931d89 KC |
1256 | * We need to first check that the pointer to the object is valid. |
1257 | * The KASAN report printed from ksize() is more useful, then when | |
1258 | * it's printed later when the behaviour could be undefined due to | |
1259 | * a potential use-after-free or double-free. | |
0d4ca4c9 | 1260 | * |
611806b4 AK |
1261 | * We use kasan_check_byte(), which is supported for the hardware |
1262 | * tag-based KASAN mode, unlike kasan_check_read/write(). | |
1263 | * | |
1264 | * If the pointed to memory is invalid, we return 0 to avoid users of | |
0d4ca4c9 ME |
1265 | * ksize() writing to and potentially corrupting the memory region. |
1266 | * | |
1267 | * We want to perform the check before __ksize(), to avoid potentially | |
1268 | * crashing in __ksize() due to accessing invalid metadata. | |
1269 | */ | |
611806b4 | 1270 | if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp)) |
0d4ca4c9 ME |
1271 | return 0; |
1272 | ||
38931d89 | 1273 | return kfence_ksize(objp) ?: __ksize(objp); |
10d1f8cb ME |
1274 | } |
1275 | EXPORT_SYMBOL(ksize); | |
1276 | ||
928cec9c AR |
1277 | /* Tracepoints definitions. */ |
1278 | EXPORT_TRACEPOINT_SYMBOL(kmalloc); | |
1279 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc); | |
928cec9c AR |
1280 | EXPORT_TRACEPOINT_SYMBOL(kfree); |
1281 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free); | |
4f6923fb | 1282 |