]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
039363f3 CL |
2 | /* |
3 | * Slab allocator functions that are independent of the allocator strategy | |
4 | * | |
5 | * (C) 2012 Christoph Lameter <[email protected]> | |
6 | */ | |
7 | #include <linux/slab.h> | |
8 | ||
9 | #include <linux/mm.h> | |
10 | #include <linux/poison.h> | |
11 | #include <linux/interrupt.h> | |
12 | #include <linux/memory.h> | |
1c99ba29 | 13 | #include <linux/cache.h> |
039363f3 CL |
14 | #include <linux/compiler.h> |
15 | #include <linux/module.h> | |
20cea968 CL |
16 | #include <linux/cpu.h> |
17 | #include <linux/uaccess.h> | |
b7454ad3 GC |
18 | #include <linux/seq_file.h> |
19 | #include <linux/proc_fs.h> | |
039363f3 CL |
20 | #include <asm/cacheflush.h> |
21 | #include <asm/tlbflush.h> | |
22 | #include <asm/page.h> | |
2633d7a0 | 23 | #include <linux/memcontrol.h> |
928cec9c AR |
24 | |
25 | #define CREATE_TRACE_POINTS | |
f1b6eb6e | 26 | #include <trace/events/kmem.h> |
039363f3 | 27 | |
97d06609 CL |
28 | #include "slab.h" |
29 | ||
30 | enum slab_state slab_state; | |
18004c5d CL |
31 | LIST_HEAD(slab_caches); |
32 | DEFINE_MUTEX(slab_mutex); | |
9b030cb8 | 33 | struct kmem_cache *kmem_cache; |
97d06609 | 34 | |
2d891fbc KC |
35 | #ifdef CONFIG_HARDENED_USERCOPY |
36 | bool usercopy_fallback __ro_after_init = | |
37 | IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK); | |
38 | module_param(usercopy_fallback, bool, 0400); | |
39 | MODULE_PARM_DESC(usercopy_fallback, | |
40 | "WARN instead of reject usercopy whitelist violations"); | |
41 | #endif | |
42 | ||
657dc2f9 TH |
43 | static LIST_HEAD(slab_caches_to_rcu_destroy); |
44 | static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work); | |
45 | static DECLARE_WORK(slab_caches_to_rcu_destroy_work, | |
46 | slab_caches_to_rcu_destroy_workfn); | |
47 | ||
423c929c JK |
48 | /* |
49 | * Set of flags that will prevent slab merging | |
50 | */ | |
51 | #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ | |
5f0d5a3a | 52 | SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \ |
7ed2f9e6 | 53 | SLAB_FAILSLAB | SLAB_KASAN) |
423c929c | 54 | |
230e9fc2 | 55 | #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \ |
75f296d9 | 56 | SLAB_ACCOUNT) |
423c929c JK |
57 | |
58 | /* | |
59 | * Merge control. If this is set then no merging of slab caches will occur. | |
423c929c | 60 | */ |
7660a6fd | 61 | static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT); |
423c929c JK |
62 | |
63 | static int __init setup_slab_nomerge(char *str) | |
64 | { | |
7660a6fd | 65 | slab_nomerge = true; |
423c929c JK |
66 | return 1; |
67 | } | |
68 | ||
69 | #ifdef CONFIG_SLUB | |
70 | __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0); | |
71 | #endif | |
72 | ||
73 | __setup("slab_nomerge", setup_slab_nomerge); | |
74 | ||
07f361b2 JK |
75 | /* |
76 | * Determine the size of a slab object | |
77 | */ | |
78 | unsigned int kmem_cache_size(struct kmem_cache *s) | |
79 | { | |
80 | return s->object_size; | |
81 | } | |
82 | EXPORT_SYMBOL(kmem_cache_size); | |
83 | ||
77be4b13 | 84 | #ifdef CONFIG_DEBUG_VM |
f4957d5b | 85 | static int kmem_cache_sanity_check(const char *name, unsigned int size) |
039363f3 | 86 | { |
039363f3 CL |
87 | if (!name || in_interrupt() || size < sizeof(void *) || |
88 | size > KMALLOC_MAX_SIZE) { | |
77be4b13 SK |
89 | pr_err("kmem_cache_create(%s) integrity check failed\n", name); |
90 | return -EINVAL; | |
039363f3 | 91 | } |
b920536a | 92 | |
20cea968 | 93 | WARN_ON(strchr(name, ' ')); /* It confuses parsers */ |
77be4b13 SK |
94 | return 0; |
95 | } | |
96 | #else | |
f4957d5b | 97 | static inline int kmem_cache_sanity_check(const char *name, unsigned int size) |
77be4b13 SK |
98 | { |
99 | return 0; | |
100 | } | |
20cea968 CL |
101 | #endif |
102 | ||
484748f0 CL |
103 | void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p) |
104 | { | |
105 | size_t i; | |
106 | ||
ca257195 JDB |
107 | for (i = 0; i < nr; i++) { |
108 | if (s) | |
109 | kmem_cache_free(s, p[i]); | |
110 | else | |
111 | kfree(p[i]); | |
112 | } | |
484748f0 CL |
113 | } |
114 | ||
865762a8 | 115 | int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr, |
484748f0 CL |
116 | void **p) |
117 | { | |
118 | size_t i; | |
119 | ||
120 | for (i = 0; i < nr; i++) { | |
121 | void *x = p[i] = kmem_cache_alloc(s, flags); | |
122 | if (!x) { | |
123 | __kmem_cache_free_bulk(s, i, p); | |
865762a8 | 124 | return 0; |
484748f0 CL |
125 | } |
126 | } | |
865762a8 | 127 | return i; |
484748f0 CL |
128 | } |
129 | ||
84c07d11 | 130 | #ifdef CONFIG_MEMCG_KMEM |
510ded33 TH |
131 | |
132 | LIST_HEAD(slab_root_caches); | |
133 | ||
f7ce3190 | 134 | void slab_init_memcg_params(struct kmem_cache *s) |
33a690c4 | 135 | { |
9eeadc8b | 136 | s->memcg_params.root_cache = NULL; |
f7ce3190 | 137 | RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL); |
9eeadc8b | 138 | INIT_LIST_HEAD(&s->memcg_params.children); |
92ee383f | 139 | s->memcg_params.dying = false; |
f7ce3190 VD |
140 | } |
141 | ||
142 | static int init_memcg_params(struct kmem_cache *s, | |
143 | struct mem_cgroup *memcg, struct kmem_cache *root_cache) | |
144 | { | |
145 | struct memcg_cache_array *arr; | |
33a690c4 | 146 | |
9eeadc8b | 147 | if (root_cache) { |
f7ce3190 | 148 | s->memcg_params.root_cache = root_cache; |
9eeadc8b TH |
149 | s->memcg_params.memcg = memcg; |
150 | INIT_LIST_HEAD(&s->memcg_params.children_node); | |
bc2791f8 | 151 | INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node); |
33a690c4 | 152 | return 0; |
f7ce3190 | 153 | } |
33a690c4 | 154 | |
f7ce3190 | 155 | slab_init_memcg_params(s); |
33a690c4 | 156 | |
f7ce3190 VD |
157 | if (!memcg_nr_cache_ids) |
158 | return 0; | |
33a690c4 | 159 | |
f80c7dab JW |
160 | arr = kvzalloc(sizeof(struct memcg_cache_array) + |
161 | memcg_nr_cache_ids * sizeof(void *), | |
162 | GFP_KERNEL); | |
f7ce3190 VD |
163 | if (!arr) |
164 | return -ENOMEM; | |
33a690c4 | 165 | |
f7ce3190 | 166 | RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr); |
33a690c4 VD |
167 | return 0; |
168 | } | |
169 | ||
f7ce3190 | 170 | static void destroy_memcg_params(struct kmem_cache *s) |
33a690c4 | 171 | { |
f7ce3190 | 172 | if (is_root_cache(s)) |
f80c7dab JW |
173 | kvfree(rcu_access_pointer(s->memcg_params.memcg_caches)); |
174 | } | |
175 | ||
176 | static void free_memcg_params(struct rcu_head *rcu) | |
177 | { | |
178 | struct memcg_cache_array *old; | |
179 | ||
180 | old = container_of(rcu, struct memcg_cache_array, rcu); | |
181 | kvfree(old); | |
33a690c4 VD |
182 | } |
183 | ||
f7ce3190 | 184 | static int update_memcg_params(struct kmem_cache *s, int new_array_size) |
6f817f4c | 185 | { |
f7ce3190 | 186 | struct memcg_cache_array *old, *new; |
6f817f4c | 187 | |
f80c7dab JW |
188 | new = kvzalloc(sizeof(struct memcg_cache_array) + |
189 | new_array_size * sizeof(void *), GFP_KERNEL); | |
f7ce3190 | 190 | if (!new) |
6f817f4c VD |
191 | return -ENOMEM; |
192 | ||
f7ce3190 VD |
193 | old = rcu_dereference_protected(s->memcg_params.memcg_caches, |
194 | lockdep_is_held(&slab_mutex)); | |
195 | if (old) | |
196 | memcpy(new->entries, old->entries, | |
197 | memcg_nr_cache_ids * sizeof(void *)); | |
6f817f4c | 198 | |
f7ce3190 VD |
199 | rcu_assign_pointer(s->memcg_params.memcg_caches, new); |
200 | if (old) | |
f80c7dab | 201 | call_rcu(&old->rcu, free_memcg_params); |
6f817f4c VD |
202 | return 0; |
203 | } | |
204 | ||
55007d84 GC |
205 | int memcg_update_all_caches(int num_memcgs) |
206 | { | |
207 | struct kmem_cache *s; | |
208 | int ret = 0; | |
55007d84 | 209 | |
05257a1a | 210 | mutex_lock(&slab_mutex); |
510ded33 | 211 | list_for_each_entry(s, &slab_root_caches, root_caches_node) { |
f7ce3190 | 212 | ret = update_memcg_params(s, num_memcgs); |
55007d84 | 213 | /* |
55007d84 GC |
214 | * Instead of freeing the memory, we'll just leave the caches |
215 | * up to this point in an updated state. | |
216 | */ | |
217 | if (ret) | |
05257a1a | 218 | break; |
55007d84 | 219 | } |
55007d84 GC |
220 | mutex_unlock(&slab_mutex); |
221 | return ret; | |
222 | } | |
657dc2f9 | 223 | |
510ded33 | 224 | void memcg_link_cache(struct kmem_cache *s) |
657dc2f9 | 225 | { |
510ded33 TH |
226 | if (is_root_cache(s)) { |
227 | list_add(&s->root_caches_node, &slab_root_caches); | |
228 | } else { | |
229 | list_add(&s->memcg_params.children_node, | |
230 | &s->memcg_params.root_cache->memcg_params.children); | |
231 | list_add(&s->memcg_params.kmem_caches_node, | |
232 | &s->memcg_params.memcg->kmem_caches); | |
233 | } | |
234 | } | |
235 | ||
236 | static void memcg_unlink_cache(struct kmem_cache *s) | |
237 | { | |
238 | if (is_root_cache(s)) { | |
239 | list_del(&s->root_caches_node); | |
240 | } else { | |
241 | list_del(&s->memcg_params.children_node); | |
242 | list_del(&s->memcg_params.kmem_caches_node); | |
243 | } | |
657dc2f9 | 244 | } |
33a690c4 | 245 | #else |
f7ce3190 VD |
246 | static inline int init_memcg_params(struct kmem_cache *s, |
247 | struct mem_cgroup *memcg, struct kmem_cache *root_cache) | |
33a690c4 VD |
248 | { |
249 | return 0; | |
250 | } | |
251 | ||
f7ce3190 | 252 | static inline void destroy_memcg_params(struct kmem_cache *s) |
33a690c4 VD |
253 | { |
254 | } | |
657dc2f9 | 255 | |
510ded33 | 256 | static inline void memcg_unlink_cache(struct kmem_cache *s) |
657dc2f9 TH |
257 | { |
258 | } | |
84c07d11 | 259 | #endif /* CONFIG_MEMCG_KMEM */ |
55007d84 | 260 | |
692ae74a BL |
261 | /* |
262 | * Figure out what the alignment of the objects will be given a set of | |
263 | * flags, a user specified alignment and the size of the objects. | |
264 | */ | |
f4957d5b AD |
265 | static unsigned int calculate_alignment(slab_flags_t flags, |
266 | unsigned int align, unsigned int size) | |
692ae74a BL |
267 | { |
268 | /* | |
269 | * If the user wants hardware cache aligned objects then follow that | |
270 | * suggestion if the object is sufficiently large. | |
271 | * | |
272 | * The hardware cache alignment cannot override the specified | |
273 | * alignment though. If that is greater then use it. | |
274 | */ | |
275 | if (flags & SLAB_HWCACHE_ALIGN) { | |
f4957d5b | 276 | unsigned int ralign; |
692ae74a BL |
277 | |
278 | ralign = cache_line_size(); | |
279 | while (size <= ralign / 2) | |
280 | ralign /= 2; | |
281 | align = max(align, ralign); | |
282 | } | |
283 | ||
284 | if (align < ARCH_SLAB_MINALIGN) | |
285 | align = ARCH_SLAB_MINALIGN; | |
286 | ||
287 | return ALIGN(align, sizeof(void *)); | |
288 | } | |
289 | ||
423c929c JK |
290 | /* |
291 | * Find a mergeable slab cache | |
292 | */ | |
293 | int slab_unmergeable(struct kmem_cache *s) | |
294 | { | |
295 | if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE)) | |
296 | return 1; | |
297 | ||
298 | if (!is_root_cache(s)) | |
299 | return 1; | |
300 | ||
301 | if (s->ctor) | |
302 | return 1; | |
303 | ||
8eb8284b DW |
304 | if (s->usersize) |
305 | return 1; | |
306 | ||
423c929c JK |
307 | /* |
308 | * We may have set a slab to be unmergeable during bootstrap. | |
309 | */ | |
310 | if (s->refcount < 0) | |
311 | return 1; | |
312 | ||
313 | return 0; | |
314 | } | |
315 | ||
f4957d5b | 316 | struct kmem_cache *find_mergeable(unsigned int size, unsigned int align, |
d50112ed | 317 | slab_flags_t flags, const char *name, void (*ctor)(void *)) |
423c929c JK |
318 | { |
319 | struct kmem_cache *s; | |
320 | ||
c6e28895 | 321 | if (slab_nomerge) |
423c929c JK |
322 | return NULL; |
323 | ||
324 | if (ctor) | |
325 | return NULL; | |
326 | ||
327 | size = ALIGN(size, sizeof(void *)); | |
328 | align = calculate_alignment(flags, align, size); | |
329 | size = ALIGN(size, align); | |
330 | flags = kmem_cache_flags(size, flags, name, NULL); | |
331 | ||
c6e28895 GM |
332 | if (flags & SLAB_NEVER_MERGE) |
333 | return NULL; | |
334 | ||
510ded33 | 335 | list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) { |
423c929c JK |
336 | if (slab_unmergeable(s)) |
337 | continue; | |
338 | ||
339 | if (size > s->size) | |
340 | continue; | |
341 | ||
342 | if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME)) | |
343 | continue; | |
344 | /* | |
345 | * Check if alignment is compatible. | |
346 | * Courtesy of Adrian Drzewiecki | |
347 | */ | |
348 | if ((s->size & ~(align - 1)) != s->size) | |
349 | continue; | |
350 | ||
351 | if (s->size - size >= sizeof(void *)) | |
352 | continue; | |
353 | ||
95069ac8 JK |
354 | if (IS_ENABLED(CONFIG_SLAB) && align && |
355 | (align > s->align || s->align % align)) | |
356 | continue; | |
357 | ||
423c929c JK |
358 | return s; |
359 | } | |
360 | return NULL; | |
361 | } | |
362 | ||
c9a77a79 | 363 | static struct kmem_cache *create_cache(const char *name, |
613a5eb5 | 364 | unsigned int object_size, unsigned int align, |
7bbdb81e AD |
365 | slab_flags_t flags, unsigned int useroffset, |
366 | unsigned int usersize, void (*ctor)(void *), | |
c9a77a79 | 367 | struct mem_cgroup *memcg, struct kmem_cache *root_cache) |
794b1248 VD |
368 | { |
369 | struct kmem_cache *s; | |
370 | int err; | |
371 | ||
8eb8284b DW |
372 | if (WARN_ON(useroffset + usersize > object_size)) |
373 | useroffset = usersize = 0; | |
374 | ||
794b1248 VD |
375 | err = -ENOMEM; |
376 | s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); | |
377 | if (!s) | |
378 | goto out; | |
379 | ||
380 | s->name = name; | |
613a5eb5 | 381 | s->size = s->object_size = object_size; |
794b1248 VD |
382 | s->align = align; |
383 | s->ctor = ctor; | |
8eb8284b DW |
384 | s->useroffset = useroffset; |
385 | s->usersize = usersize; | |
794b1248 | 386 | |
f7ce3190 | 387 | err = init_memcg_params(s, memcg, root_cache); |
794b1248 VD |
388 | if (err) |
389 | goto out_free_cache; | |
390 | ||
391 | err = __kmem_cache_create(s, flags); | |
392 | if (err) | |
393 | goto out_free_cache; | |
394 | ||
395 | s->refcount = 1; | |
396 | list_add(&s->list, &slab_caches); | |
510ded33 | 397 | memcg_link_cache(s); |
794b1248 VD |
398 | out: |
399 | if (err) | |
400 | return ERR_PTR(err); | |
401 | return s; | |
402 | ||
403 | out_free_cache: | |
f7ce3190 | 404 | destroy_memcg_params(s); |
7c4da061 | 405 | kmem_cache_free(kmem_cache, s); |
794b1248 VD |
406 | goto out; |
407 | } | |
45906855 | 408 | |
77be4b13 | 409 | /* |
8eb8284b | 410 | * kmem_cache_create_usercopy - Create a cache. |
77be4b13 SK |
411 | * @name: A string which is used in /proc/slabinfo to identify this cache. |
412 | * @size: The size of objects to be created in this cache. | |
413 | * @align: The required alignment for the objects. | |
414 | * @flags: SLAB flags | |
8eb8284b DW |
415 | * @useroffset: Usercopy region offset |
416 | * @usersize: Usercopy region size | |
77be4b13 SK |
417 | * @ctor: A constructor for the objects. |
418 | * | |
419 | * Returns a ptr to the cache on success, NULL on failure. | |
420 | * Cannot be called within a interrupt, but can be interrupted. | |
421 | * The @ctor is run when new pages are allocated by the cache. | |
422 | * | |
423 | * The flags are | |
424 | * | |
425 | * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) | |
426 | * to catch references to uninitialised memory. | |
427 | * | |
428 | * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check | |
429 | * for buffer overruns. | |
430 | * | |
431 | * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware | |
432 | * cacheline. This can be beneficial if you're counting cycles as closely | |
433 | * as davem. | |
434 | */ | |
2633d7a0 | 435 | struct kmem_cache * |
f4957d5b AD |
436 | kmem_cache_create_usercopy(const char *name, |
437 | unsigned int size, unsigned int align, | |
7bbdb81e AD |
438 | slab_flags_t flags, |
439 | unsigned int useroffset, unsigned int usersize, | |
8eb8284b | 440 | void (*ctor)(void *)) |
77be4b13 | 441 | { |
40911a79 | 442 | struct kmem_cache *s = NULL; |
3dec16ea | 443 | const char *cache_name; |
3965fc36 | 444 | int err; |
039363f3 | 445 | |
77be4b13 | 446 | get_online_cpus(); |
03afc0e2 | 447 | get_online_mems(); |
05257a1a | 448 | memcg_get_cache_ids(); |
03afc0e2 | 449 | |
77be4b13 | 450 | mutex_lock(&slab_mutex); |
686d550d | 451 | |
794b1248 | 452 | err = kmem_cache_sanity_check(name, size); |
3aa24f51 | 453 | if (err) { |
3965fc36 | 454 | goto out_unlock; |
3aa24f51 | 455 | } |
686d550d | 456 | |
e70954fd TG |
457 | /* Refuse requests with allocator specific flags */ |
458 | if (flags & ~SLAB_FLAGS_PERMITTED) { | |
459 | err = -EINVAL; | |
460 | goto out_unlock; | |
461 | } | |
462 | ||
d8843922 GC |
463 | /* |
464 | * Some allocators will constraint the set of valid flags to a subset | |
465 | * of all flags. We expect them to define CACHE_CREATE_MASK in this | |
466 | * case, and we'll just provide them with a sanitized version of the | |
467 | * passed flags. | |
468 | */ | |
469 | flags &= CACHE_CREATE_MASK; | |
686d550d | 470 | |
8eb8284b DW |
471 | /* Fail closed on bad usersize of useroffset values. */ |
472 | if (WARN_ON(!usersize && useroffset) || | |
473 | WARN_ON(size < usersize || size - usersize < useroffset)) | |
474 | usersize = useroffset = 0; | |
475 | ||
476 | if (!usersize) | |
477 | s = __kmem_cache_alias(name, size, align, flags, ctor); | |
794b1248 | 478 | if (s) |
3965fc36 | 479 | goto out_unlock; |
2633d7a0 | 480 | |
3dec16ea | 481 | cache_name = kstrdup_const(name, GFP_KERNEL); |
794b1248 VD |
482 | if (!cache_name) { |
483 | err = -ENOMEM; | |
484 | goto out_unlock; | |
485 | } | |
7c9adf5a | 486 | |
613a5eb5 | 487 | s = create_cache(cache_name, size, |
c9a77a79 | 488 | calculate_alignment(flags, align, size), |
8eb8284b | 489 | flags, useroffset, usersize, ctor, NULL, NULL); |
794b1248 VD |
490 | if (IS_ERR(s)) { |
491 | err = PTR_ERR(s); | |
3dec16ea | 492 | kfree_const(cache_name); |
794b1248 | 493 | } |
3965fc36 VD |
494 | |
495 | out_unlock: | |
20cea968 | 496 | mutex_unlock(&slab_mutex); |
03afc0e2 | 497 | |
05257a1a | 498 | memcg_put_cache_ids(); |
03afc0e2 | 499 | put_online_mems(); |
20cea968 CL |
500 | put_online_cpus(); |
501 | ||
ba3253c7 | 502 | if (err) { |
686d550d CL |
503 | if (flags & SLAB_PANIC) |
504 | panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n", | |
505 | name, err); | |
506 | else { | |
1170532b | 507 | pr_warn("kmem_cache_create(%s) failed with error %d\n", |
686d550d CL |
508 | name, err); |
509 | dump_stack(); | |
510 | } | |
686d550d CL |
511 | return NULL; |
512 | } | |
039363f3 CL |
513 | return s; |
514 | } | |
8eb8284b DW |
515 | EXPORT_SYMBOL(kmem_cache_create_usercopy); |
516 | ||
517 | struct kmem_cache * | |
f4957d5b | 518 | kmem_cache_create(const char *name, unsigned int size, unsigned int align, |
8eb8284b DW |
519 | slab_flags_t flags, void (*ctor)(void *)) |
520 | { | |
6d07d1cd | 521 | return kmem_cache_create_usercopy(name, size, align, flags, 0, 0, |
8eb8284b DW |
522 | ctor); |
523 | } | |
794b1248 | 524 | EXPORT_SYMBOL(kmem_cache_create); |
2633d7a0 | 525 | |
657dc2f9 | 526 | static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work) |
d5b3cf71 | 527 | { |
657dc2f9 TH |
528 | LIST_HEAD(to_destroy); |
529 | struct kmem_cache *s, *s2; | |
d5b3cf71 | 530 | |
657dc2f9 | 531 | /* |
5f0d5a3a | 532 | * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the |
657dc2f9 TH |
533 | * @slab_caches_to_rcu_destroy list. The slab pages are freed |
534 | * through RCU and and the associated kmem_cache are dereferenced | |
535 | * while freeing the pages, so the kmem_caches should be freed only | |
536 | * after the pending RCU operations are finished. As rcu_barrier() | |
537 | * is a pretty slow operation, we batch all pending destructions | |
538 | * asynchronously. | |
539 | */ | |
540 | mutex_lock(&slab_mutex); | |
541 | list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy); | |
542 | mutex_unlock(&slab_mutex); | |
d5b3cf71 | 543 | |
657dc2f9 TH |
544 | if (list_empty(&to_destroy)) |
545 | return; | |
546 | ||
547 | rcu_barrier(); | |
548 | ||
549 | list_for_each_entry_safe(s, s2, &to_destroy, list) { | |
550 | #ifdef SLAB_SUPPORTS_SYSFS | |
551 | sysfs_slab_release(s); | |
552 | #else | |
553 | slab_kmem_cache_release(s); | |
554 | #endif | |
555 | } | |
d5b3cf71 VD |
556 | } |
557 | ||
657dc2f9 | 558 | static int shutdown_cache(struct kmem_cache *s) |
d5b3cf71 | 559 | { |
f9fa1d91 GT |
560 | /* free asan quarantined objects */ |
561 | kasan_cache_shutdown(s); | |
562 | ||
657dc2f9 TH |
563 | if (__kmem_cache_shutdown(s) != 0) |
564 | return -EBUSY; | |
d5b3cf71 | 565 | |
510ded33 | 566 | memcg_unlink_cache(s); |
657dc2f9 | 567 | list_del(&s->list); |
d5b3cf71 | 568 | |
5f0d5a3a | 569 | if (s->flags & SLAB_TYPESAFE_BY_RCU) { |
d50d82fa MP |
570 | #ifdef SLAB_SUPPORTS_SYSFS |
571 | sysfs_slab_unlink(s); | |
572 | #endif | |
657dc2f9 TH |
573 | list_add_tail(&s->list, &slab_caches_to_rcu_destroy); |
574 | schedule_work(&slab_caches_to_rcu_destroy_work); | |
575 | } else { | |
d5b3cf71 | 576 | #ifdef SLAB_SUPPORTS_SYSFS |
d50d82fa | 577 | sysfs_slab_unlink(s); |
bf5eb3de | 578 | sysfs_slab_release(s); |
d5b3cf71 VD |
579 | #else |
580 | slab_kmem_cache_release(s); | |
581 | #endif | |
582 | } | |
657dc2f9 TH |
583 | |
584 | return 0; | |
d5b3cf71 VD |
585 | } |
586 | ||
84c07d11 | 587 | #ifdef CONFIG_MEMCG_KMEM |
794b1248 | 588 | /* |
776ed0f0 | 589 | * memcg_create_kmem_cache - Create a cache for a memory cgroup. |
794b1248 VD |
590 | * @memcg: The memory cgroup the new cache is for. |
591 | * @root_cache: The parent of the new cache. | |
592 | * | |
593 | * This function attempts to create a kmem cache that will serve allocation | |
594 | * requests going from @memcg to @root_cache. The new cache inherits properties | |
595 | * from its parent. | |
596 | */ | |
d5b3cf71 VD |
597 | void memcg_create_kmem_cache(struct mem_cgroup *memcg, |
598 | struct kmem_cache *root_cache) | |
2633d7a0 | 599 | { |
3e0350a3 | 600 | static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */ |
33398cf2 | 601 | struct cgroup_subsys_state *css = &memcg->css; |
f7ce3190 | 602 | struct memcg_cache_array *arr; |
bd673145 | 603 | struct kmem_cache *s = NULL; |
794b1248 | 604 | char *cache_name; |
f7ce3190 | 605 | int idx; |
794b1248 VD |
606 | |
607 | get_online_cpus(); | |
03afc0e2 VD |
608 | get_online_mems(); |
609 | ||
794b1248 VD |
610 | mutex_lock(&slab_mutex); |
611 | ||
2a4db7eb | 612 | /* |
567e9ab2 | 613 | * The memory cgroup could have been offlined while the cache |
2a4db7eb VD |
614 | * creation work was pending. |
615 | */ | |
92ee383f | 616 | if (memcg->kmem_state != KMEM_ONLINE || root_cache->memcg_params.dying) |
2a4db7eb VD |
617 | goto out_unlock; |
618 | ||
f7ce3190 VD |
619 | idx = memcg_cache_id(memcg); |
620 | arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches, | |
621 | lockdep_is_held(&slab_mutex)); | |
622 | ||
d5b3cf71 VD |
623 | /* |
624 | * Since per-memcg caches are created asynchronously on first | |
625 | * allocation (see memcg_kmem_get_cache()), several threads can try to | |
626 | * create the same cache, but only one of them may succeed. | |
627 | */ | |
f7ce3190 | 628 | if (arr->entries[idx]) |
d5b3cf71 VD |
629 | goto out_unlock; |
630 | ||
f1008365 | 631 | cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf)); |
73f576c0 JW |
632 | cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name, |
633 | css->serial_nr, memcg_name_buf); | |
794b1248 VD |
634 | if (!cache_name) |
635 | goto out_unlock; | |
636 | ||
c9a77a79 | 637 | s = create_cache(cache_name, root_cache->object_size, |
613a5eb5 | 638 | root_cache->align, |
f773e36d | 639 | root_cache->flags & CACHE_CREATE_MASK, |
8eb8284b | 640 | root_cache->useroffset, root_cache->usersize, |
f773e36d | 641 | root_cache->ctor, memcg, root_cache); |
d5b3cf71 VD |
642 | /* |
643 | * If we could not create a memcg cache, do not complain, because | |
644 | * that's not critical at all as we can always proceed with the root | |
645 | * cache. | |
646 | */ | |
bd673145 | 647 | if (IS_ERR(s)) { |
794b1248 | 648 | kfree(cache_name); |
d5b3cf71 | 649 | goto out_unlock; |
bd673145 | 650 | } |
794b1248 | 651 | |
d5b3cf71 VD |
652 | /* |
653 | * Since readers won't lock (see cache_from_memcg_idx()), we need a | |
654 | * barrier here to ensure nobody will see the kmem_cache partially | |
655 | * initialized. | |
656 | */ | |
657 | smp_wmb(); | |
f7ce3190 | 658 | arr->entries[idx] = s; |
d5b3cf71 | 659 | |
794b1248 VD |
660 | out_unlock: |
661 | mutex_unlock(&slab_mutex); | |
03afc0e2 VD |
662 | |
663 | put_online_mems(); | |
794b1248 | 664 | put_online_cpus(); |
2633d7a0 | 665 | } |
b8529907 | 666 | |
01fb58bc TH |
667 | static void kmemcg_deactivate_workfn(struct work_struct *work) |
668 | { | |
669 | struct kmem_cache *s = container_of(work, struct kmem_cache, | |
670 | memcg_params.deact_work); | |
671 | ||
672 | get_online_cpus(); | |
673 | get_online_mems(); | |
674 | ||
675 | mutex_lock(&slab_mutex); | |
676 | ||
677 | s->memcg_params.deact_fn(s); | |
678 | ||
679 | mutex_unlock(&slab_mutex); | |
680 | ||
681 | put_online_mems(); | |
682 | put_online_cpus(); | |
683 | ||
684 | /* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */ | |
685 | css_put(&s->memcg_params.memcg->css); | |
686 | } | |
687 | ||
688 | static void kmemcg_deactivate_rcufn(struct rcu_head *head) | |
689 | { | |
690 | struct kmem_cache *s = container_of(head, struct kmem_cache, | |
691 | memcg_params.deact_rcu_head); | |
692 | ||
693 | /* | |
694 | * We need to grab blocking locks. Bounce to ->deact_work. The | |
695 | * work item shares the space with the RCU head and can't be | |
696 | * initialized eariler. | |
697 | */ | |
698 | INIT_WORK(&s->memcg_params.deact_work, kmemcg_deactivate_workfn); | |
17cc4dfe | 699 | queue_work(memcg_kmem_cache_wq, &s->memcg_params.deact_work); |
01fb58bc TH |
700 | } |
701 | ||
702 | /** | |
703 | * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a | |
704 | * sched RCU grace period | |
705 | * @s: target kmem_cache | |
706 | * @deact_fn: deactivation function to call | |
707 | * | |
708 | * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex | |
709 | * held after a sched RCU grace period. The slab is guaranteed to stay | |
710 | * alive until @deact_fn is finished. This is to be used from | |
711 | * __kmemcg_cache_deactivate(). | |
712 | */ | |
713 | void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s, | |
714 | void (*deact_fn)(struct kmem_cache *)) | |
715 | { | |
716 | if (WARN_ON_ONCE(is_root_cache(s)) || | |
717 | WARN_ON_ONCE(s->memcg_params.deact_fn)) | |
718 | return; | |
719 | ||
92ee383f SB |
720 | if (s->memcg_params.root_cache->memcg_params.dying) |
721 | return; | |
722 | ||
01fb58bc TH |
723 | /* pin memcg so that @s doesn't get destroyed in the middle */ |
724 | css_get(&s->memcg_params.memcg->css); | |
725 | ||
726 | s->memcg_params.deact_fn = deact_fn; | |
727 | call_rcu_sched(&s->memcg_params.deact_rcu_head, kmemcg_deactivate_rcufn); | |
728 | } | |
729 | ||
2a4db7eb VD |
730 | void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg) |
731 | { | |
732 | int idx; | |
733 | struct memcg_cache_array *arr; | |
d6e0b7fa | 734 | struct kmem_cache *s, *c; |
2a4db7eb VD |
735 | |
736 | idx = memcg_cache_id(memcg); | |
737 | ||
d6e0b7fa VD |
738 | get_online_cpus(); |
739 | get_online_mems(); | |
740 | ||
2a4db7eb | 741 | mutex_lock(&slab_mutex); |
510ded33 | 742 | list_for_each_entry(s, &slab_root_caches, root_caches_node) { |
2a4db7eb VD |
743 | arr = rcu_dereference_protected(s->memcg_params.memcg_caches, |
744 | lockdep_is_held(&slab_mutex)); | |
d6e0b7fa VD |
745 | c = arr->entries[idx]; |
746 | if (!c) | |
747 | continue; | |
748 | ||
c9fc5864 | 749 | __kmemcg_cache_deactivate(c); |
2a4db7eb VD |
750 | arr->entries[idx] = NULL; |
751 | } | |
752 | mutex_unlock(&slab_mutex); | |
d6e0b7fa VD |
753 | |
754 | put_online_mems(); | |
755 | put_online_cpus(); | |
2a4db7eb VD |
756 | } |
757 | ||
d5b3cf71 | 758 | void memcg_destroy_kmem_caches(struct mem_cgroup *memcg) |
b8529907 | 759 | { |
d5b3cf71 | 760 | struct kmem_cache *s, *s2; |
b8529907 | 761 | |
d5b3cf71 VD |
762 | get_online_cpus(); |
763 | get_online_mems(); | |
b8529907 | 764 | |
b8529907 | 765 | mutex_lock(&slab_mutex); |
bc2791f8 TH |
766 | list_for_each_entry_safe(s, s2, &memcg->kmem_caches, |
767 | memcg_params.kmem_caches_node) { | |
d5b3cf71 VD |
768 | /* |
769 | * The cgroup is about to be freed and therefore has no charges | |
770 | * left. Hence, all its caches must be empty by now. | |
771 | */ | |
657dc2f9 | 772 | BUG_ON(shutdown_cache(s)); |
d5b3cf71 VD |
773 | } |
774 | mutex_unlock(&slab_mutex); | |
b8529907 | 775 | |
d5b3cf71 VD |
776 | put_online_mems(); |
777 | put_online_cpus(); | |
b8529907 | 778 | } |
d60fdcc9 | 779 | |
657dc2f9 | 780 | static int shutdown_memcg_caches(struct kmem_cache *s) |
d60fdcc9 VD |
781 | { |
782 | struct memcg_cache_array *arr; | |
783 | struct kmem_cache *c, *c2; | |
784 | LIST_HEAD(busy); | |
785 | int i; | |
786 | ||
787 | BUG_ON(!is_root_cache(s)); | |
788 | ||
789 | /* | |
790 | * First, shutdown active caches, i.e. caches that belong to online | |
791 | * memory cgroups. | |
792 | */ | |
793 | arr = rcu_dereference_protected(s->memcg_params.memcg_caches, | |
794 | lockdep_is_held(&slab_mutex)); | |
795 | for_each_memcg_cache_index(i) { | |
796 | c = arr->entries[i]; | |
797 | if (!c) | |
798 | continue; | |
657dc2f9 | 799 | if (shutdown_cache(c)) |
d60fdcc9 VD |
800 | /* |
801 | * The cache still has objects. Move it to a temporary | |
802 | * list so as not to try to destroy it for a second | |
803 | * time while iterating over inactive caches below. | |
804 | */ | |
9eeadc8b | 805 | list_move(&c->memcg_params.children_node, &busy); |
d60fdcc9 VD |
806 | else |
807 | /* | |
808 | * The cache is empty and will be destroyed soon. Clear | |
809 | * the pointer to it in the memcg_caches array so that | |
810 | * it will never be accessed even if the root cache | |
811 | * stays alive. | |
812 | */ | |
813 | arr->entries[i] = NULL; | |
814 | } | |
815 | ||
816 | /* | |
817 | * Second, shutdown all caches left from memory cgroups that are now | |
818 | * offline. | |
819 | */ | |
9eeadc8b TH |
820 | list_for_each_entry_safe(c, c2, &s->memcg_params.children, |
821 | memcg_params.children_node) | |
657dc2f9 | 822 | shutdown_cache(c); |
d60fdcc9 | 823 | |
9eeadc8b | 824 | list_splice(&busy, &s->memcg_params.children); |
d60fdcc9 VD |
825 | |
826 | /* | |
827 | * A cache being destroyed must be empty. In particular, this means | |
828 | * that all per memcg caches attached to it must be empty too. | |
829 | */ | |
9eeadc8b | 830 | if (!list_empty(&s->memcg_params.children)) |
d60fdcc9 VD |
831 | return -EBUSY; |
832 | return 0; | |
833 | } | |
92ee383f SB |
834 | |
835 | static void flush_memcg_workqueue(struct kmem_cache *s) | |
836 | { | |
837 | mutex_lock(&slab_mutex); | |
838 | s->memcg_params.dying = true; | |
839 | mutex_unlock(&slab_mutex); | |
840 | ||
841 | /* | |
842 | * SLUB deactivates the kmem_caches through call_rcu_sched. Make | |
843 | * sure all registered rcu callbacks have been invoked. | |
844 | */ | |
845 | if (IS_ENABLED(CONFIG_SLUB)) | |
846 | rcu_barrier_sched(); | |
847 | ||
848 | /* | |
849 | * SLAB and SLUB create memcg kmem_caches through workqueue and SLUB | |
850 | * deactivates the memcg kmem_caches through workqueue. Make sure all | |
851 | * previous workitems on workqueue are processed. | |
852 | */ | |
853 | flush_workqueue(memcg_kmem_cache_wq); | |
854 | } | |
d60fdcc9 | 855 | #else |
657dc2f9 | 856 | static inline int shutdown_memcg_caches(struct kmem_cache *s) |
d60fdcc9 VD |
857 | { |
858 | return 0; | |
859 | } | |
92ee383f SB |
860 | |
861 | static inline void flush_memcg_workqueue(struct kmem_cache *s) | |
862 | { | |
863 | } | |
84c07d11 | 864 | #endif /* CONFIG_MEMCG_KMEM */ |
97d06609 | 865 | |
41a21285 CL |
866 | void slab_kmem_cache_release(struct kmem_cache *s) |
867 | { | |
52b4b950 | 868 | __kmem_cache_release(s); |
f7ce3190 | 869 | destroy_memcg_params(s); |
3dec16ea | 870 | kfree_const(s->name); |
41a21285 CL |
871 | kmem_cache_free(kmem_cache, s); |
872 | } | |
873 | ||
945cf2b6 CL |
874 | void kmem_cache_destroy(struct kmem_cache *s) |
875 | { | |
d60fdcc9 | 876 | int err; |
d5b3cf71 | 877 | |
3942d299 SS |
878 | if (unlikely(!s)) |
879 | return; | |
880 | ||
92ee383f SB |
881 | flush_memcg_workqueue(s); |
882 | ||
945cf2b6 | 883 | get_online_cpus(); |
03afc0e2 VD |
884 | get_online_mems(); |
885 | ||
945cf2b6 | 886 | mutex_lock(&slab_mutex); |
b8529907 | 887 | |
945cf2b6 | 888 | s->refcount--; |
b8529907 VD |
889 | if (s->refcount) |
890 | goto out_unlock; | |
891 | ||
657dc2f9 | 892 | err = shutdown_memcg_caches(s); |
d60fdcc9 | 893 | if (!err) |
657dc2f9 | 894 | err = shutdown_cache(s); |
b8529907 | 895 | |
cd918c55 | 896 | if (err) { |
756a025f JP |
897 | pr_err("kmem_cache_destroy %s: Slab cache still has objects\n", |
898 | s->name); | |
cd918c55 VD |
899 | dump_stack(); |
900 | } | |
b8529907 VD |
901 | out_unlock: |
902 | mutex_unlock(&slab_mutex); | |
d5b3cf71 | 903 | |
03afc0e2 | 904 | put_online_mems(); |
945cf2b6 CL |
905 | put_online_cpus(); |
906 | } | |
907 | EXPORT_SYMBOL(kmem_cache_destroy); | |
908 | ||
03afc0e2 VD |
909 | /** |
910 | * kmem_cache_shrink - Shrink a cache. | |
911 | * @cachep: The cache to shrink. | |
912 | * | |
913 | * Releases as many slabs as possible for a cache. | |
914 | * To help debugging, a zero exit status indicates all slabs were released. | |
915 | */ | |
916 | int kmem_cache_shrink(struct kmem_cache *cachep) | |
917 | { | |
918 | int ret; | |
919 | ||
920 | get_online_cpus(); | |
921 | get_online_mems(); | |
55834c59 | 922 | kasan_cache_shrink(cachep); |
c9fc5864 | 923 | ret = __kmem_cache_shrink(cachep); |
03afc0e2 VD |
924 | put_online_mems(); |
925 | put_online_cpus(); | |
926 | return ret; | |
927 | } | |
928 | EXPORT_SYMBOL(kmem_cache_shrink); | |
929 | ||
fda90124 | 930 | bool slab_is_available(void) |
97d06609 CL |
931 | { |
932 | return slab_state >= UP; | |
933 | } | |
b7454ad3 | 934 | |
45530c44 CL |
935 | #ifndef CONFIG_SLOB |
936 | /* Create a cache during boot when no slab services are available yet */ | |
361d575e AD |
937 | void __init create_boot_cache(struct kmem_cache *s, const char *name, |
938 | unsigned int size, slab_flags_t flags, | |
939 | unsigned int useroffset, unsigned int usersize) | |
45530c44 CL |
940 | { |
941 | int err; | |
942 | ||
943 | s->name = name; | |
944 | s->size = s->object_size = size; | |
45906855 | 945 | s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size); |
8eb8284b DW |
946 | s->useroffset = useroffset; |
947 | s->usersize = usersize; | |
f7ce3190 VD |
948 | |
949 | slab_init_memcg_params(s); | |
950 | ||
45530c44 CL |
951 | err = __kmem_cache_create(s, flags); |
952 | ||
953 | if (err) | |
361d575e | 954 | panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n", |
45530c44 CL |
955 | name, size, err); |
956 | ||
957 | s->refcount = -1; /* Exempt from merging for now */ | |
958 | } | |
959 | ||
55de8b9c AD |
960 | struct kmem_cache *__init create_kmalloc_cache(const char *name, |
961 | unsigned int size, slab_flags_t flags, | |
962 | unsigned int useroffset, unsigned int usersize) | |
45530c44 CL |
963 | { |
964 | struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); | |
965 | ||
966 | if (!s) | |
967 | panic("Out of memory when creating slab %s\n", name); | |
968 | ||
6c0c21ad | 969 | create_boot_cache(s, name, size, flags, useroffset, usersize); |
45530c44 | 970 | list_add(&s->list, &slab_caches); |
510ded33 | 971 | memcg_link_cache(s); |
45530c44 CL |
972 | s->refcount = 1; |
973 | return s; | |
974 | } | |
975 | ||
1c99ba29 | 976 | struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __ro_after_init; |
9425c58e CL |
977 | EXPORT_SYMBOL(kmalloc_caches); |
978 | ||
979 | #ifdef CONFIG_ZONE_DMA | |
1c99ba29 | 980 | struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1] __ro_after_init; |
9425c58e CL |
981 | EXPORT_SYMBOL(kmalloc_dma_caches); |
982 | #endif | |
983 | ||
2c59dd65 CL |
984 | /* |
985 | * Conversion table for small slabs sizes / 8 to the index in the | |
986 | * kmalloc array. This is necessary for slabs < 192 since we have non power | |
987 | * of two cache sizes there. The size of larger slabs can be determined using | |
988 | * fls. | |
989 | */ | |
d5f86655 | 990 | static u8 size_index[24] __ro_after_init = { |
2c59dd65 CL |
991 | 3, /* 8 */ |
992 | 4, /* 16 */ | |
993 | 5, /* 24 */ | |
994 | 5, /* 32 */ | |
995 | 6, /* 40 */ | |
996 | 6, /* 48 */ | |
997 | 6, /* 56 */ | |
998 | 6, /* 64 */ | |
999 | 1, /* 72 */ | |
1000 | 1, /* 80 */ | |
1001 | 1, /* 88 */ | |
1002 | 1, /* 96 */ | |
1003 | 7, /* 104 */ | |
1004 | 7, /* 112 */ | |
1005 | 7, /* 120 */ | |
1006 | 7, /* 128 */ | |
1007 | 2, /* 136 */ | |
1008 | 2, /* 144 */ | |
1009 | 2, /* 152 */ | |
1010 | 2, /* 160 */ | |
1011 | 2, /* 168 */ | |
1012 | 2, /* 176 */ | |
1013 | 2, /* 184 */ | |
1014 | 2 /* 192 */ | |
1015 | }; | |
1016 | ||
ac914d08 | 1017 | static inline unsigned int size_index_elem(unsigned int bytes) |
2c59dd65 CL |
1018 | { |
1019 | return (bytes - 1) / 8; | |
1020 | } | |
1021 | ||
1022 | /* | |
1023 | * Find the kmem_cache structure that serves a given size of | |
1024 | * allocation | |
1025 | */ | |
1026 | struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags) | |
1027 | { | |
d5f86655 | 1028 | unsigned int index; |
2c59dd65 CL |
1029 | |
1030 | if (size <= 192) { | |
1031 | if (!size) | |
1032 | return ZERO_SIZE_PTR; | |
1033 | ||
1034 | index = size_index[size_index_elem(size)]; | |
61448479 DV |
1035 | } else { |
1036 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { | |
1037 | WARN_ON(1); | |
1038 | return NULL; | |
1039 | } | |
2c59dd65 | 1040 | index = fls(size - 1); |
61448479 | 1041 | } |
2c59dd65 CL |
1042 | |
1043 | #ifdef CONFIG_ZONE_DMA | |
b1e05416 | 1044 | if (unlikely((flags & GFP_DMA))) |
2c59dd65 CL |
1045 | return kmalloc_dma_caches[index]; |
1046 | ||
1047 | #endif | |
1048 | return kmalloc_caches[index]; | |
1049 | } | |
1050 | ||
4066c33d GG |
1051 | /* |
1052 | * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time. | |
1053 | * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is | |
1054 | * kmalloc-67108864. | |
1055 | */ | |
af3b5f87 | 1056 | const struct kmalloc_info_struct kmalloc_info[] __initconst = { |
4066c33d GG |
1057 | {NULL, 0}, {"kmalloc-96", 96}, |
1058 | {"kmalloc-192", 192}, {"kmalloc-8", 8}, | |
1059 | {"kmalloc-16", 16}, {"kmalloc-32", 32}, | |
1060 | {"kmalloc-64", 64}, {"kmalloc-128", 128}, | |
1061 | {"kmalloc-256", 256}, {"kmalloc-512", 512}, | |
1062 | {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048}, | |
1063 | {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192}, | |
1064 | {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768}, | |
1065 | {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072}, | |
1066 | {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288}, | |
1067 | {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152}, | |
1068 | {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608}, | |
1069 | {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432}, | |
1070 | {"kmalloc-67108864", 67108864} | |
1071 | }; | |
1072 | ||
f97d5f63 | 1073 | /* |
34cc6990 DS |
1074 | * Patch up the size_index table if we have strange large alignment |
1075 | * requirements for the kmalloc array. This is only the case for | |
1076 | * MIPS it seems. The standard arches will not generate any code here. | |
1077 | * | |
1078 | * Largest permitted alignment is 256 bytes due to the way we | |
1079 | * handle the index determination for the smaller caches. | |
1080 | * | |
1081 | * Make sure that nothing crazy happens if someone starts tinkering | |
1082 | * around with ARCH_KMALLOC_MINALIGN | |
f97d5f63 | 1083 | */ |
34cc6990 | 1084 | void __init setup_kmalloc_cache_index_table(void) |
f97d5f63 | 1085 | { |
ac914d08 | 1086 | unsigned int i; |
f97d5f63 | 1087 | |
2c59dd65 CL |
1088 | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || |
1089 | (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); | |
1090 | ||
1091 | for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { | |
ac914d08 | 1092 | unsigned int elem = size_index_elem(i); |
2c59dd65 CL |
1093 | |
1094 | if (elem >= ARRAY_SIZE(size_index)) | |
1095 | break; | |
1096 | size_index[elem] = KMALLOC_SHIFT_LOW; | |
1097 | } | |
1098 | ||
1099 | if (KMALLOC_MIN_SIZE >= 64) { | |
1100 | /* | |
1101 | * The 96 byte size cache is not used if the alignment | |
1102 | * is 64 byte. | |
1103 | */ | |
1104 | for (i = 64 + 8; i <= 96; i += 8) | |
1105 | size_index[size_index_elem(i)] = 7; | |
1106 | ||
1107 | } | |
1108 | ||
1109 | if (KMALLOC_MIN_SIZE >= 128) { | |
1110 | /* | |
1111 | * The 192 byte sized cache is not used if the alignment | |
1112 | * is 128 byte. Redirect kmalloc to use the 256 byte cache | |
1113 | * instead. | |
1114 | */ | |
1115 | for (i = 128 + 8; i <= 192; i += 8) | |
1116 | size_index[size_index_elem(i)] = 8; | |
1117 | } | |
34cc6990 DS |
1118 | } |
1119 | ||
d50112ed | 1120 | static void __init new_kmalloc_cache(int idx, slab_flags_t flags) |
a9730fca CL |
1121 | { |
1122 | kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name, | |
6c0c21ad DW |
1123 | kmalloc_info[idx].size, flags, 0, |
1124 | kmalloc_info[idx].size); | |
a9730fca CL |
1125 | } |
1126 | ||
34cc6990 DS |
1127 | /* |
1128 | * Create the kmalloc array. Some of the regular kmalloc arrays | |
1129 | * may already have been created because they were needed to | |
1130 | * enable allocations for slab creation. | |
1131 | */ | |
d50112ed | 1132 | void __init create_kmalloc_caches(slab_flags_t flags) |
34cc6990 DS |
1133 | { |
1134 | int i; | |
1135 | ||
a9730fca CL |
1136 | for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) { |
1137 | if (!kmalloc_caches[i]) | |
1138 | new_kmalloc_cache(i, flags); | |
f97d5f63 | 1139 | |
956e46ef | 1140 | /* |
a9730fca CL |
1141 | * Caches that are not of the two-to-the-power-of size. |
1142 | * These have to be created immediately after the | |
1143 | * earlier power of two caches | |
956e46ef | 1144 | */ |
a9730fca CL |
1145 | if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6) |
1146 | new_kmalloc_cache(1, flags); | |
1147 | if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7) | |
1148 | new_kmalloc_cache(2, flags); | |
8a965b3b CL |
1149 | } |
1150 | ||
f97d5f63 CL |
1151 | /* Kmalloc array is now usable */ |
1152 | slab_state = UP; | |
1153 | ||
f97d5f63 CL |
1154 | #ifdef CONFIG_ZONE_DMA |
1155 | for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { | |
1156 | struct kmem_cache *s = kmalloc_caches[i]; | |
1157 | ||
1158 | if (s) { | |
0be70327 | 1159 | unsigned int size = kmalloc_size(i); |
f97d5f63 | 1160 | char *n = kasprintf(GFP_NOWAIT, |
0be70327 | 1161 | "dma-kmalloc-%u", size); |
f97d5f63 CL |
1162 | |
1163 | BUG_ON(!n); | |
1164 | kmalloc_dma_caches[i] = create_kmalloc_cache(n, | |
6c0c21ad | 1165 | size, SLAB_CACHE_DMA | flags, 0, 0); |
f97d5f63 CL |
1166 | } |
1167 | } | |
1168 | #endif | |
1169 | } | |
45530c44 CL |
1170 | #endif /* !CONFIG_SLOB */ |
1171 | ||
cea371f4 VD |
1172 | /* |
1173 | * To avoid unnecessary overhead, we pass through large allocation requests | |
1174 | * directly to the page allocator. We use __GFP_COMP, because we will need to | |
1175 | * know the allocation order to free the pages properly in kfree. | |
1176 | */ | |
52383431 VD |
1177 | void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) |
1178 | { | |
1179 | void *ret; | |
1180 | struct page *page; | |
1181 | ||
1182 | flags |= __GFP_COMP; | |
4949148a | 1183 | page = alloc_pages(flags, order); |
52383431 VD |
1184 | ret = page ? page_address(page) : NULL; |
1185 | kmemleak_alloc(ret, size, 1, flags); | |
505f5dcb | 1186 | kasan_kmalloc_large(ret, size, flags); |
52383431 VD |
1187 | return ret; |
1188 | } | |
1189 | EXPORT_SYMBOL(kmalloc_order); | |
1190 | ||
f1b6eb6e CL |
1191 | #ifdef CONFIG_TRACING |
1192 | void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) | |
1193 | { | |
1194 | void *ret = kmalloc_order(size, flags, order); | |
1195 | trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); | |
1196 | return ret; | |
1197 | } | |
1198 | EXPORT_SYMBOL(kmalloc_order_trace); | |
1199 | #endif | |
45530c44 | 1200 | |
7c00fce9 TG |
1201 | #ifdef CONFIG_SLAB_FREELIST_RANDOM |
1202 | /* Randomize a generic freelist */ | |
1203 | static void freelist_randomize(struct rnd_state *state, unsigned int *list, | |
302d55d5 | 1204 | unsigned int count) |
7c00fce9 | 1205 | { |
7c00fce9 | 1206 | unsigned int rand; |
302d55d5 | 1207 | unsigned int i; |
7c00fce9 TG |
1208 | |
1209 | for (i = 0; i < count; i++) | |
1210 | list[i] = i; | |
1211 | ||
1212 | /* Fisher-Yates shuffle */ | |
1213 | for (i = count - 1; i > 0; i--) { | |
1214 | rand = prandom_u32_state(state); | |
1215 | rand %= (i + 1); | |
1216 | swap(list[i], list[rand]); | |
1217 | } | |
1218 | } | |
1219 | ||
1220 | /* Create a random sequence per cache */ | |
1221 | int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, | |
1222 | gfp_t gfp) | |
1223 | { | |
1224 | struct rnd_state state; | |
1225 | ||
1226 | if (count < 2 || cachep->random_seq) | |
1227 | return 0; | |
1228 | ||
1229 | cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp); | |
1230 | if (!cachep->random_seq) | |
1231 | return -ENOMEM; | |
1232 | ||
1233 | /* Get best entropy at this stage of boot */ | |
1234 | prandom_seed_state(&state, get_random_long()); | |
1235 | ||
1236 | freelist_randomize(&state, cachep->random_seq, count); | |
1237 | return 0; | |
1238 | } | |
1239 | ||
1240 | /* Destroy the per-cache random freelist sequence */ | |
1241 | void cache_random_seq_destroy(struct kmem_cache *cachep) | |
1242 | { | |
1243 | kfree(cachep->random_seq); | |
1244 | cachep->random_seq = NULL; | |
1245 | } | |
1246 | #endif /* CONFIG_SLAB_FREELIST_RANDOM */ | |
1247 | ||
5b365771 | 1248 | #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) |
e9b4db2b | 1249 | #ifdef CONFIG_SLAB |
0825a6f9 | 1250 | #define SLABINFO_RIGHTS (0600) |
e9b4db2b | 1251 | #else |
0825a6f9 | 1252 | #define SLABINFO_RIGHTS (0400) |
e9b4db2b WL |
1253 | #endif |
1254 | ||
b047501c | 1255 | static void print_slabinfo_header(struct seq_file *m) |
bcee6e2a GC |
1256 | { |
1257 | /* | |
1258 | * Output format version, so at least we can change it | |
1259 | * without _too_ many complaints. | |
1260 | */ | |
1261 | #ifdef CONFIG_DEBUG_SLAB | |
1262 | seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); | |
1263 | #else | |
1264 | seq_puts(m, "slabinfo - version: 2.1\n"); | |
1265 | #endif | |
756a025f | 1266 | seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>"); |
bcee6e2a GC |
1267 | seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); |
1268 | seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); | |
1269 | #ifdef CONFIG_DEBUG_SLAB | |
756a025f | 1270 | seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); |
bcee6e2a GC |
1271 | seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); |
1272 | #endif | |
1273 | seq_putc(m, '\n'); | |
1274 | } | |
1275 | ||
1df3b26f | 1276 | void *slab_start(struct seq_file *m, loff_t *pos) |
b7454ad3 | 1277 | { |
b7454ad3 | 1278 | mutex_lock(&slab_mutex); |
510ded33 | 1279 | return seq_list_start(&slab_root_caches, *pos); |
b7454ad3 GC |
1280 | } |
1281 | ||
276a2439 | 1282 | void *slab_next(struct seq_file *m, void *p, loff_t *pos) |
b7454ad3 | 1283 | { |
510ded33 | 1284 | return seq_list_next(p, &slab_root_caches, pos); |
b7454ad3 GC |
1285 | } |
1286 | ||
276a2439 | 1287 | void slab_stop(struct seq_file *m, void *p) |
b7454ad3 GC |
1288 | { |
1289 | mutex_unlock(&slab_mutex); | |
1290 | } | |
1291 | ||
749c5415 GC |
1292 | static void |
1293 | memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info) | |
1294 | { | |
1295 | struct kmem_cache *c; | |
1296 | struct slabinfo sinfo; | |
749c5415 GC |
1297 | |
1298 | if (!is_root_cache(s)) | |
1299 | return; | |
1300 | ||
426589f5 | 1301 | for_each_memcg_cache(c, s) { |
749c5415 GC |
1302 | memset(&sinfo, 0, sizeof(sinfo)); |
1303 | get_slabinfo(c, &sinfo); | |
1304 | ||
1305 | info->active_slabs += sinfo.active_slabs; | |
1306 | info->num_slabs += sinfo.num_slabs; | |
1307 | info->shared_avail += sinfo.shared_avail; | |
1308 | info->active_objs += sinfo.active_objs; | |
1309 | info->num_objs += sinfo.num_objs; | |
1310 | } | |
1311 | } | |
1312 | ||
b047501c | 1313 | static void cache_show(struct kmem_cache *s, struct seq_file *m) |
b7454ad3 | 1314 | { |
0d7561c6 GC |
1315 | struct slabinfo sinfo; |
1316 | ||
1317 | memset(&sinfo, 0, sizeof(sinfo)); | |
1318 | get_slabinfo(s, &sinfo); | |
1319 | ||
749c5415 GC |
1320 | memcg_accumulate_slabinfo(s, &sinfo); |
1321 | ||
0d7561c6 | 1322 | seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", |
749c5415 | 1323 | cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size, |
0d7561c6 GC |
1324 | sinfo.objects_per_slab, (1 << sinfo.cache_order)); |
1325 | ||
1326 | seq_printf(m, " : tunables %4u %4u %4u", | |
1327 | sinfo.limit, sinfo.batchcount, sinfo.shared); | |
1328 | seq_printf(m, " : slabdata %6lu %6lu %6lu", | |
1329 | sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail); | |
1330 | slabinfo_show_stats(m, s); | |
1331 | seq_putc(m, '\n'); | |
b7454ad3 GC |
1332 | } |
1333 | ||
1df3b26f | 1334 | static int slab_show(struct seq_file *m, void *p) |
749c5415 | 1335 | { |
510ded33 | 1336 | struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node); |
749c5415 | 1337 | |
510ded33 | 1338 | if (p == slab_root_caches.next) |
1df3b26f | 1339 | print_slabinfo_header(m); |
510ded33 | 1340 | cache_show(s, m); |
b047501c VD |
1341 | return 0; |
1342 | } | |
1343 | ||
852d8be0 YS |
1344 | void dump_unreclaimable_slab(void) |
1345 | { | |
1346 | struct kmem_cache *s, *s2; | |
1347 | struct slabinfo sinfo; | |
1348 | ||
1349 | /* | |
1350 | * Here acquiring slab_mutex is risky since we don't prefer to get | |
1351 | * sleep in oom path. But, without mutex hold, it may introduce a | |
1352 | * risk of crash. | |
1353 | * Use mutex_trylock to protect the list traverse, dump nothing | |
1354 | * without acquiring the mutex. | |
1355 | */ | |
1356 | if (!mutex_trylock(&slab_mutex)) { | |
1357 | pr_warn("excessive unreclaimable slab but cannot dump stats\n"); | |
1358 | return; | |
1359 | } | |
1360 | ||
1361 | pr_info("Unreclaimable slab info:\n"); | |
1362 | pr_info("Name Used Total\n"); | |
1363 | ||
1364 | list_for_each_entry_safe(s, s2, &slab_caches, list) { | |
1365 | if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT)) | |
1366 | continue; | |
1367 | ||
1368 | get_slabinfo(s, &sinfo); | |
1369 | ||
1370 | if (sinfo.num_objs > 0) | |
1371 | pr_info("%-17s %10luKB %10luKB\n", cache_name(s), | |
1372 | (sinfo.active_objs * s->size) / 1024, | |
1373 | (sinfo.num_objs * s->size) / 1024); | |
1374 | } | |
1375 | mutex_unlock(&slab_mutex); | |
1376 | } | |
1377 | ||
5b365771 | 1378 | #if defined(CONFIG_MEMCG) |
bc2791f8 TH |
1379 | void *memcg_slab_start(struct seq_file *m, loff_t *pos) |
1380 | { | |
1381 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | |
1382 | ||
1383 | mutex_lock(&slab_mutex); | |
1384 | return seq_list_start(&memcg->kmem_caches, *pos); | |
1385 | } | |
1386 | ||
1387 | void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos) | |
1388 | { | |
1389 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | |
1390 | ||
1391 | return seq_list_next(p, &memcg->kmem_caches, pos); | |
1392 | } | |
1393 | ||
1394 | void memcg_slab_stop(struct seq_file *m, void *p) | |
1395 | { | |
1396 | mutex_unlock(&slab_mutex); | |
1397 | } | |
1398 | ||
b047501c VD |
1399 | int memcg_slab_show(struct seq_file *m, void *p) |
1400 | { | |
bc2791f8 TH |
1401 | struct kmem_cache *s = list_entry(p, struct kmem_cache, |
1402 | memcg_params.kmem_caches_node); | |
b047501c VD |
1403 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); |
1404 | ||
bc2791f8 | 1405 | if (p == memcg->kmem_caches.next) |
b047501c | 1406 | print_slabinfo_header(m); |
bc2791f8 | 1407 | cache_show(s, m); |
b047501c | 1408 | return 0; |
749c5415 | 1409 | } |
b047501c | 1410 | #endif |
749c5415 | 1411 | |
b7454ad3 GC |
1412 | /* |
1413 | * slabinfo_op - iterator that generates /proc/slabinfo | |
1414 | * | |
1415 | * Output layout: | |
1416 | * cache-name | |
1417 | * num-active-objs | |
1418 | * total-objs | |
1419 | * object size | |
1420 | * num-active-slabs | |
1421 | * total-slabs | |
1422 | * num-pages-per-slab | |
1423 | * + further values on SMP and with statistics enabled | |
1424 | */ | |
1425 | static const struct seq_operations slabinfo_op = { | |
1df3b26f | 1426 | .start = slab_start, |
276a2439 WL |
1427 | .next = slab_next, |
1428 | .stop = slab_stop, | |
1df3b26f | 1429 | .show = slab_show, |
b7454ad3 GC |
1430 | }; |
1431 | ||
1432 | static int slabinfo_open(struct inode *inode, struct file *file) | |
1433 | { | |
1434 | return seq_open(file, &slabinfo_op); | |
1435 | } | |
1436 | ||
1437 | static const struct file_operations proc_slabinfo_operations = { | |
1438 | .open = slabinfo_open, | |
1439 | .read = seq_read, | |
1440 | .write = slabinfo_write, | |
1441 | .llseek = seq_lseek, | |
1442 | .release = seq_release, | |
1443 | }; | |
1444 | ||
1445 | static int __init slab_proc_init(void) | |
1446 | { | |
e9b4db2b WL |
1447 | proc_create("slabinfo", SLABINFO_RIGHTS, NULL, |
1448 | &proc_slabinfo_operations); | |
b7454ad3 GC |
1449 | return 0; |
1450 | } | |
1451 | module_init(slab_proc_init); | |
5b365771 | 1452 | #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */ |
928cec9c AR |
1453 | |
1454 | static __always_inline void *__do_krealloc(const void *p, size_t new_size, | |
1455 | gfp_t flags) | |
1456 | { | |
1457 | void *ret; | |
1458 | size_t ks = 0; | |
1459 | ||
1460 | if (p) | |
1461 | ks = ksize(p); | |
1462 | ||
0316bec2 | 1463 | if (ks >= new_size) { |
505f5dcb | 1464 | kasan_krealloc((void *)p, new_size, flags); |
928cec9c | 1465 | return (void *)p; |
0316bec2 | 1466 | } |
928cec9c AR |
1467 | |
1468 | ret = kmalloc_track_caller(new_size, flags); | |
1469 | if (ret && p) | |
1470 | memcpy(ret, p, ks); | |
1471 | ||
1472 | return ret; | |
1473 | } | |
1474 | ||
1475 | /** | |
1476 | * __krealloc - like krealloc() but don't free @p. | |
1477 | * @p: object to reallocate memory for. | |
1478 | * @new_size: how many bytes of memory are required. | |
1479 | * @flags: the type of memory to allocate. | |
1480 | * | |
1481 | * This function is like krealloc() except it never frees the originally | |
1482 | * allocated buffer. Use this if you don't want to free the buffer immediately | |
1483 | * like, for example, with RCU. | |
1484 | */ | |
1485 | void *__krealloc(const void *p, size_t new_size, gfp_t flags) | |
1486 | { | |
1487 | if (unlikely(!new_size)) | |
1488 | return ZERO_SIZE_PTR; | |
1489 | ||
1490 | return __do_krealloc(p, new_size, flags); | |
1491 | ||
1492 | } | |
1493 | EXPORT_SYMBOL(__krealloc); | |
1494 | ||
1495 | /** | |
1496 | * krealloc - reallocate memory. The contents will remain unchanged. | |
1497 | * @p: object to reallocate memory for. | |
1498 | * @new_size: how many bytes of memory are required. | |
1499 | * @flags: the type of memory to allocate. | |
1500 | * | |
1501 | * The contents of the object pointed to are preserved up to the | |
1502 | * lesser of the new and old sizes. If @p is %NULL, krealloc() | |
1503 | * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a | |
1504 | * %NULL pointer, the object pointed to is freed. | |
1505 | */ | |
1506 | void *krealloc(const void *p, size_t new_size, gfp_t flags) | |
1507 | { | |
1508 | void *ret; | |
1509 | ||
1510 | if (unlikely(!new_size)) { | |
1511 | kfree(p); | |
1512 | return ZERO_SIZE_PTR; | |
1513 | } | |
1514 | ||
1515 | ret = __do_krealloc(p, new_size, flags); | |
1516 | if (ret && p != ret) | |
1517 | kfree(p); | |
1518 | ||
1519 | return ret; | |
1520 | } | |
1521 | EXPORT_SYMBOL(krealloc); | |
1522 | ||
1523 | /** | |
1524 | * kzfree - like kfree but zero memory | |
1525 | * @p: object to free memory of | |
1526 | * | |
1527 | * The memory of the object @p points to is zeroed before freed. | |
1528 | * If @p is %NULL, kzfree() does nothing. | |
1529 | * | |
1530 | * Note: this function zeroes the whole allocated buffer which can be a good | |
1531 | * deal bigger than the requested buffer size passed to kmalloc(). So be | |
1532 | * careful when using this function in performance sensitive code. | |
1533 | */ | |
1534 | void kzfree(const void *p) | |
1535 | { | |
1536 | size_t ks; | |
1537 | void *mem = (void *)p; | |
1538 | ||
1539 | if (unlikely(ZERO_OR_NULL_PTR(mem))) | |
1540 | return; | |
1541 | ks = ksize(mem); | |
1542 | memset(mem, 0, ks); | |
1543 | kfree(mem); | |
1544 | } | |
1545 | EXPORT_SYMBOL(kzfree); | |
1546 | ||
1547 | /* Tracepoints definitions. */ | |
1548 | EXPORT_TRACEPOINT_SYMBOL(kmalloc); | |
1549 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc); | |
1550 | EXPORT_TRACEPOINT_SYMBOL(kmalloc_node); | |
1551 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node); | |
1552 | EXPORT_TRACEPOINT_SYMBOL(kfree); | |
1553 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free); | |
4f6923fb HM |
1554 | |
1555 | int should_failslab(struct kmem_cache *s, gfp_t gfpflags) | |
1556 | { | |
1557 | if (__should_failslab(s, gfpflags)) | |
1558 | return -ENOMEM; | |
1559 | return 0; | |
1560 | } | |
1561 | ALLOW_ERROR_INJECTION(should_failslab, ERRNO); |