]>
Commit | Line | Data |
---|---|---|
039363f3 CL |
1 | /* |
2 | * Slab allocator functions that are independent of the allocator strategy | |
3 | * | |
4 | * (C) 2012 Christoph Lameter <[email protected]> | |
5 | */ | |
6 | #include <linux/slab.h> | |
7 | ||
8 | #include <linux/mm.h> | |
9 | #include <linux/poison.h> | |
10 | #include <linux/interrupt.h> | |
11 | #include <linux/memory.h> | |
12 | #include <linux/compiler.h> | |
13 | #include <linux/module.h> | |
20cea968 CL |
14 | #include <linux/cpu.h> |
15 | #include <linux/uaccess.h> | |
b7454ad3 GC |
16 | #include <linux/seq_file.h> |
17 | #include <linux/proc_fs.h> | |
039363f3 CL |
18 | #include <asm/cacheflush.h> |
19 | #include <asm/tlbflush.h> | |
20 | #include <asm/page.h> | |
2633d7a0 | 21 | #include <linux/memcontrol.h> |
928cec9c AR |
22 | |
23 | #define CREATE_TRACE_POINTS | |
f1b6eb6e | 24 | #include <trace/events/kmem.h> |
039363f3 | 25 | |
97d06609 CL |
26 | #include "slab.h" |
27 | ||
28 | enum slab_state slab_state; | |
18004c5d CL |
29 | LIST_HEAD(slab_caches); |
30 | DEFINE_MUTEX(slab_mutex); | |
9b030cb8 | 31 | struct kmem_cache *kmem_cache; |
97d06609 | 32 | |
657dc2f9 TH |
33 | static LIST_HEAD(slab_caches_to_rcu_destroy); |
34 | static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work); | |
35 | static DECLARE_WORK(slab_caches_to_rcu_destroy_work, | |
36 | slab_caches_to_rcu_destroy_workfn); | |
37 | ||
423c929c JK |
38 | /* |
39 | * Set of flags that will prevent slab merging | |
40 | */ | |
41 | #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ | |
42 | SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \ | |
7ed2f9e6 | 43 | SLAB_FAILSLAB | SLAB_KASAN) |
423c929c | 44 | |
230e9fc2 VD |
45 | #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \ |
46 | SLAB_NOTRACK | SLAB_ACCOUNT) | |
423c929c JK |
47 | |
48 | /* | |
49 | * Merge control. If this is set then no merging of slab caches will occur. | |
50 | * (Could be removed. This was introduced to pacify the merge skeptics.) | |
51 | */ | |
52 | static int slab_nomerge; | |
53 | ||
54 | static int __init setup_slab_nomerge(char *str) | |
55 | { | |
56 | slab_nomerge = 1; | |
57 | return 1; | |
58 | } | |
59 | ||
60 | #ifdef CONFIG_SLUB | |
61 | __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0); | |
62 | #endif | |
63 | ||
64 | __setup("slab_nomerge", setup_slab_nomerge); | |
65 | ||
07f361b2 JK |
66 | /* |
67 | * Determine the size of a slab object | |
68 | */ | |
69 | unsigned int kmem_cache_size(struct kmem_cache *s) | |
70 | { | |
71 | return s->object_size; | |
72 | } | |
73 | EXPORT_SYMBOL(kmem_cache_size); | |
74 | ||
77be4b13 | 75 | #ifdef CONFIG_DEBUG_VM |
794b1248 | 76 | static int kmem_cache_sanity_check(const char *name, size_t size) |
039363f3 CL |
77 | { |
78 | struct kmem_cache *s = NULL; | |
79 | ||
039363f3 CL |
80 | if (!name || in_interrupt() || size < sizeof(void *) || |
81 | size > KMALLOC_MAX_SIZE) { | |
77be4b13 SK |
82 | pr_err("kmem_cache_create(%s) integrity check failed\n", name); |
83 | return -EINVAL; | |
039363f3 | 84 | } |
b920536a | 85 | |
20cea968 CL |
86 | list_for_each_entry(s, &slab_caches, list) { |
87 | char tmp; | |
88 | int res; | |
89 | ||
90 | /* | |
91 | * This happens when the module gets unloaded and doesn't | |
92 | * destroy its slab cache and no-one else reuses the vmalloc | |
93 | * area of the module. Print a warning. | |
94 | */ | |
95 | res = probe_kernel_address(s->name, tmp); | |
96 | if (res) { | |
77be4b13 | 97 | pr_err("Slab cache with size %d has lost its name\n", |
20cea968 CL |
98 | s->object_size); |
99 | continue; | |
100 | } | |
20cea968 CL |
101 | } |
102 | ||
103 | WARN_ON(strchr(name, ' ')); /* It confuses parsers */ | |
77be4b13 SK |
104 | return 0; |
105 | } | |
106 | #else | |
794b1248 | 107 | static inline int kmem_cache_sanity_check(const char *name, size_t size) |
77be4b13 SK |
108 | { |
109 | return 0; | |
110 | } | |
20cea968 CL |
111 | #endif |
112 | ||
484748f0 CL |
113 | void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p) |
114 | { | |
115 | size_t i; | |
116 | ||
ca257195 JDB |
117 | for (i = 0; i < nr; i++) { |
118 | if (s) | |
119 | kmem_cache_free(s, p[i]); | |
120 | else | |
121 | kfree(p[i]); | |
122 | } | |
484748f0 CL |
123 | } |
124 | ||
865762a8 | 125 | int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr, |
484748f0 CL |
126 | void **p) |
127 | { | |
128 | size_t i; | |
129 | ||
130 | for (i = 0; i < nr; i++) { | |
131 | void *x = p[i] = kmem_cache_alloc(s, flags); | |
132 | if (!x) { | |
133 | __kmem_cache_free_bulk(s, i, p); | |
865762a8 | 134 | return 0; |
484748f0 CL |
135 | } |
136 | } | |
865762a8 | 137 | return i; |
484748f0 CL |
138 | } |
139 | ||
127424c8 | 140 | #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB) |
510ded33 TH |
141 | |
142 | LIST_HEAD(slab_root_caches); | |
143 | ||
f7ce3190 | 144 | void slab_init_memcg_params(struct kmem_cache *s) |
33a690c4 | 145 | { |
9eeadc8b | 146 | s->memcg_params.root_cache = NULL; |
f7ce3190 | 147 | RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL); |
9eeadc8b | 148 | INIT_LIST_HEAD(&s->memcg_params.children); |
f7ce3190 VD |
149 | } |
150 | ||
151 | static int init_memcg_params(struct kmem_cache *s, | |
152 | struct mem_cgroup *memcg, struct kmem_cache *root_cache) | |
153 | { | |
154 | struct memcg_cache_array *arr; | |
33a690c4 | 155 | |
9eeadc8b | 156 | if (root_cache) { |
f7ce3190 | 157 | s->memcg_params.root_cache = root_cache; |
9eeadc8b TH |
158 | s->memcg_params.memcg = memcg; |
159 | INIT_LIST_HEAD(&s->memcg_params.children_node); | |
bc2791f8 | 160 | INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node); |
33a690c4 | 161 | return 0; |
f7ce3190 | 162 | } |
33a690c4 | 163 | |
f7ce3190 | 164 | slab_init_memcg_params(s); |
33a690c4 | 165 | |
f7ce3190 VD |
166 | if (!memcg_nr_cache_ids) |
167 | return 0; | |
33a690c4 | 168 | |
f7ce3190 VD |
169 | arr = kzalloc(sizeof(struct memcg_cache_array) + |
170 | memcg_nr_cache_ids * sizeof(void *), | |
171 | GFP_KERNEL); | |
172 | if (!arr) | |
173 | return -ENOMEM; | |
33a690c4 | 174 | |
f7ce3190 | 175 | RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr); |
33a690c4 VD |
176 | return 0; |
177 | } | |
178 | ||
f7ce3190 | 179 | static void destroy_memcg_params(struct kmem_cache *s) |
33a690c4 | 180 | { |
f7ce3190 VD |
181 | if (is_root_cache(s)) |
182 | kfree(rcu_access_pointer(s->memcg_params.memcg_caches)); | |
33a690c4 VD |
183 | } |
184 | ||
f7ce3190 | 185 | static int update_memcg_params(struct kmem_cache *s, int new_array_size) |
6f817f4c | 186 | { |
f7ce3190 | 187 | struct memcg_cache_array *old, *new; |
6f817f4c | 188 | |
f7ce3190 VD |
189 | new = kzalloc(sizeof(struct memcg_cache_array) + |
190 | new_array_size * sizeof(void *), GFP_KERNEL); | |
191 | if (!new) | |
6f817f4c VD |
192 | return -ENOMEM; |
193 | ||
f7ce3190 VD |
194 | old = rcu_dereference_protected(s->memcg_params.memcg_caches, |
195 | lockdep_is_held(&slab_mutex)); | |
196 | if (old) | |
197 | memcpy(new->entries, old->entries, | |
198 | memcg_nr_cache_ids * sizeof(void *)); | |
6f817f4c | 199 | |
f7ce3190 VD |
200 | rcu_assign_pointer(s->memcg_params.memcg_caches, new); |
201 | if (old) | |
202 | kfree_rcu(old, rcu); | |
6f817f4c VD |
203 | return 0; |
204 | } | |
205 | ||
55007d84 GC |
206 | int memcg_update_all_caches(int num_memcgs) |
207 | { | |
208 | struct kmem_cache *s; | |
209 | int ret = 0; | |
55007d84 | 210 | |
05257a1a | 211 | mutex_lock(&slab_mutex); |
510ded33 | 212 | list_for_each_entry(s, &slab_root_caches, root_caches_node) { |
f7ce3190 | 213 | ret = update_memcg_params(s, num_memcgs); |
55007d84 | 214 | /* |
55007d84 GC |
215 | * Instead of freeing the memory, we'll just leave the caches |
216 | * up to this point in an updated state. | |
217 | */ | |
218 | if (ret) | |
05257a1a | 219 | break; |
55007d84 | 220 | } |
55007d84 GC |
221 | mutex_unlock(&slab_mutex); |
222 | return ret; | |
223 | } | |
657dc2f9 | 224 | |
510ded33 | 225 | void memcg_link_cache(struct kmem_cache *s) |
657dc2f9 | 226 | { |
510ded33 TH |
227 | if (is_root_cache(s)) { |
228 | list_add(&s->root_caches_node, &slab_root_caches); | |
229 | } else { | |
230 | list_add(&s->memcg_params.children_node, | |
231 | &s->memcg_params.root_cache->memcg_params.children); | |
232 | list_add(&s->memcg_params.kmem_caches_node, | |
233 | &s->memcg_params.memcg->kmem_caches); | |
234 | } | |
235 | } | |
236 | ||
237 | static void memcg_unlink_cache(struct kmem_cache *s) | |
238 | { | |
239 | if (is_root_cache(s)) { | |
240 | list_del(&s->root_caches_node); | |
241 | } else { | |
242 | list_del(&s->memcg_params.children_node); | |
243 | list_del(&s->memcg_params.kmem_caches_node); | |
244 | } | |
657dc2f9 | 245 | } |
33a690c4 | 246 | #else |
f7ce3190 VD |
247 | static inline int init_memcg_params(struct kmem_cache *s, |
248 | struct mem_cgroup *memcg, struct kmem_cache *root_cache) | |
33a690c4 VD |
249 | { |
250 | return 0; | |
251 | } | |
252 | ||
f7ce3190 | 253 | static inline void destroy_memcg_params(struct kmem_cache *s) |
33a690c4 VD |
254 | { |
255 | } | |
657dc2f9 | 256 | |
510ded33 | 257 | static inline void memcg_unlink_cache(struct kmem_cache *s) |
657dc2f9 TH |
258 | { |
259 | } | |
127424c8 | 260 | #endif /* CONFIG_MEMCG && !CONFIG_SLOB */ |
55007d84 | 261 | |
423c929c JK |
262 | /* |
263 | * Find a mergeable slab cache | |
264 | */ | |
265 | int slab_unmergeable(struct kmem_cache *s) | |
266 | { | |
267 | if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE)) | |
268 | return 1; | |
269 | ||
270 | if (!is_root_cache(s)) | |
271 | return 1; | |
272 | ||
273 | if (s->ctor) | |
274 | return 1; | |
275 | ||
276 | /* | |
277 | * We may have set a slab to be unmergeable during bootstrap. | |
278 | */ | |
279 | if (s->refcount < 0) | |
280 | return 1; | |
281 | ||
282 | return 0; | |
283 | } | |
284 | ||
285 | struct kmem_cache *find_mergeable(size_t size, size_t align, | |
286 | unsigned long flags, const char *name, void (*ctor)(void *)) | |
287 | { | |
288 | struct kmem_cache *s; | |
289 | ||
c6e28895 | 290 | if (slab_nomerge) |
423c929c JK |
291 | return NULL; |
292 | ||
293 | if (ctor) | |
294 | return NULL; | |
295 | ||
296 | size = ALIGN(size, sizeof(void *)); | |
297 | align = calculate_alignment(flags, align, size); | |
298 | size = ALIGN(size, align); | |
299 | flags = kmem_cache_flags(size, flags, name, NULL); | |
300 | ||
c6e28895 GM |
301 | if (flags & SLAB_NEVER_MERGE) |
302 | return NULL; | |
303 | ||
510ded33 | 304 | list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) { |
423c929c JK |
305 | if (slab_unmergeable(s)) |
306 | continue; | |
307 | ||
308 | if (size > s->size) | |
309 | continue; | |
310 | ||
311 | if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME)) | |
312 | continue; | |
313 | /* | |
314 | * Check if alignment is compatible. | |
315 | * Courtesy of Adrian Drzewiecki | |
316 | */ | |
317 | if ((s->size & ~(align - 1)) != s->size) | |
318 | continue; | |
319 | ||
320 | if (s->size - size >= sizeof(void *)) | |
321 | continue; | |
322 | ||
95069ac8 JK |
323 | if (IS_ENABLED(CONFIG_SLAB) && align && |
324 | (align > s->align || s->align % align)) | |
325 | continue; | |
326 | ||
423c929c JK |
327 | return s; |
328 | } | |
329 | return NULL; | |
330 | } | |
331 | ||
45906855 CL |
332 | /* |
333 | * Figure out what the alignment of the objects will be given a set of | |
334 | * flags, a user specified alignment and the size of the objects. | |
335 | */ | |
336 | unsigned long calculate_alignment(unsigned long flags, | |
337 | unsigned long align, unsigned long size) | |
338 | { | |
339 | /* | |
340 | * If the user wants hardware cache aligned objects then follow that | |
341 | * suggestion if the object is sufficiently large. | |
342 | * | |
343 | * The hardware cache alignment cannot override the specified | |
344 | * alignment though. If that is greater then use it. | |
345 | */ | |
346 | if (flags & SLAB_HWCACHE_ALIGN) { | |
347 | unsigned long ralign = cache_line_size(); | |
348 | while (size <= ralign / 2) | |
349 | ralign /= 2; | |
350 | align = max(align, ralign); | |
351 | } | |
352 | ||
353 | if (align < ARCH_SLAB_MINALIGN) | |
354 | align = ARCH_SLAB_MINALIGN; | |
355 | ||
356 | return ALIGN(align, sizeof(void *)); | |
357 | } | |
358 | ||
c9a77a79 VD |
359 | static struct kmem_cache *create_cache(const char *name, |
360 | size_t object_size, size_t size, size_t align, | |
361 | unsigned long flags, void (*ctor)(void *), | |
362 | struct mem_cgroup *memcg, struct kmem_cache *root_cache) | |
794b1248 VD |
363 | { |
364 | struct kmem_cache *s; | |
365 | int err; | |
366 | ||
367 | err = -ENOMEM; | |
368 | s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); | |
369 | if (!s) | |
370 | goto out; | |
371 | ||
372 | s->name = name; | |
373 | s->object_size = object_size; | |
374 | s->size = size; | |
375 | s->align = align; | |
376 | s->ctor = ctor; | |
377 | ||
f7ce3190 | 378 | err = init_memcg_params(s, memcg, root_cache); |
794b1248 VD |
379 | if (err) |
380 | goto out_free_cache; | |
381 | ||
382 | err = __kmem_cache_create(s, flags); | |
383 | if (err) | |
384 | goto out_free_cache; | |
385 | ||
386 | s->refcount = 1; | |
387 | list_add(&s->list, &slab_caches); | |
510ded33 | 388 | memcg_link_cache(s); |
794b1248 VD |
389 | out: |
390 | if (err) | |
391 | return ERR_PTR(err); | |
392 | return s; | |
393 | ||
394 | out_free_cache: | |
f7ce3190 | 395 | destroy_memcg_params(s); |
7c4da061 | 396 | kmem_cache_free(kmem_cache, s); |
794b1248 VD |
397 | goto out; |
398 | } | |
45906855 | 399 | |
77be4b13 SK |
400 | /* |
401 | * kmem_cache_create - Create a cache. | |
402 | * @name: A string which is used in /proc/slabinfo to identify this cache. | |
403 | * @size: The size of objects to be created in this cache. | |
404 | * @align: The required alignment for the objects. | |
405 | * @flags: SLAB flags | |
406 | * @ctor: A constructor for the objects. | |
407 | * | |
408 | * Returns a ptr to the cache on success, NULL on failure. | |
409 | * Cannot be called within a interrupt, but can be interrupted. | |
410 | * The @ctor is run when new pages are allocated by the cache. | |
411 | * | |
412 | * The flags are | |
413 | * | |
414 | * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) | |
415 | * to catch references to uninitialised memory. | |
416 | * | |
417 | * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check | |
418 | * for buffer overruns. | |
419 | * | |
420 | * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware | |
421 | * cacheline. This can be beneficial if you're counting cycles as closely | |
422 | * as davem. | |
423 | */ | |
2633d7a0 | 424 | struct kmem_cache * |
794b1248 VD |
425 | kmem_cache_create(const char *name, size_t size, size_t align, |
426 | unsigned long flags, void (*ctor)(void *)) | |
77be4b13 | 427 | { |
40911a79 | 428 | struct kmem_cache *s = NULL; |
3dec16ea | 429 | const char *cache_name; |
3965fc36 | 430 | int err; |
039363f3 | 431 | |
77be4b13 | 432 | get_online_cpus(); |
03afc0e2 | 433 | get_online_mems(); |
05257a1a | 434 | memcg_get_cache_ids(); |
03afc0e2 | 435 | |
77be4b13 | 436 | mutex_lock(&slab_mutex); |
686d550d | 437 | |
794b1248 | 438 | err = kmem_cache_sanity_check(name, size); |
3aa24f51 | 439 | if (err) { |
3965fc36 | 440 | goto out_unlock; |
3aa24f51 | 441 | } |
686d550d | 442 | |
e70954fd TG |
443 | /* Refuse requests with allocator specific flags */ |
444 | if (flags & ~SLAB_FLAGS_PERMITTED) { | |
445 | err = -EINVAL; | |
446 | goto out_unlock; | |
447 | } | |
448 | ||
d8843922 GC |
449 | /* |
450 | * Some allocators will constraint the set of valid flags to a subset | |
451 | * of all flags. We expect them to define CACHE_CREATE_MASK in this | |
452 | * case, and we'll just provide them with a sanitized version of the | |
453 | * passed flags. | |
454 | */ | |
455 | flags &= CACHE_CREATE_MASK; | |
686d550d | 456 | |
794b1248 VD |
457 | s = __kmem_cache_alias(name, size, align, flags, ctor); |
458 | if (s) | |
3965fc36 | 459 | goto out_unlock; |
2633d7a0 | 460 | |
3dec16ea | 461 | cache_name = kstrdup_const(name, GFP_KERNEL); |
794b1248 VD |
462 | if (!cache_name) { |
463 | err = -ENOMEM; | |
464 | goto out_unlock; | |
465 | } | |
7c9adf5a | 466 | |
c9a77a79 VD |
467 | s = create_cache(cache_name, size, size, |
468 | calculate_alignment(flags, align, size), | |
469 | flags, ctor, NULL, NULL); | |
794b1248 VD |
470 | if (IS_ERR(s)) { |
471 | err = PTR_ERR(s); | |
3dec16ea | 472 | kfree_const(cache_name); |
794b1248 | 473 | } |
3965fc36 VD |
474 | |
475 | out_unlock: | |
20cea968 | 476 | mutex_unlock(&slab_mutex); |
03afc0e2 | 477 | |
05257a1a | 478 | memcg_put_cache_ids(); |
03afc0e2 | 479 | put_online_mems(); |
20cea968 CL |
480 | put_online_cpus(); |
481 | ||
ba3253c7 | 482 | if (err) { |
686d550d CL |
483 | if (flags & SLAB_PANIC) |
484 | panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n", | |
485 | name, err); | |
486 | else { | |
1170532b | 487 | pr_warn("kmem_cache_create(%s) failed with error %d\n", |
686d550d CL |
488 | name, err); |
489 | dump_stack(); | |
490 | } | |
686d550d CL |
491 | return NULL; |
492 | } | |
039363f3 CL |
493 | return s; |
494 | } | |
794b1248 | 495 | EXPORT_SYMBOL(kmem_cache_create); |
2633d7a0 | 496 | |
657dc2f9 | 497 | static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work) |
d5b3cf71 | 498 | { |
657dc2f9 TH |
499 | LIST_HEAD(to_destroy); |
500 | struct kmem_cache *s, *s2; | |
d5b3cf71 | 501 | |
657dc2f9 TH |
502 | /* |
503 | * On destruction, SLAB_DESTROY_BY_RCU kmem_caches are put on the | |
504 | * @slab_caches_to_rcu_destroy list. The slab pages are freed | |
505 | * through RCU and and the associated kmem_cache are dereferenced | |
506 | * while freeing the pages, so the kmem_caches should be freed only | |
507 | * after the pending RCU operations are finished. As rcu_barrier() | |
508 | * is a pretty slow operation, we batch all pending destructions | |
509 | * asynchronously. | |
510 | */ | |
511 | mutex_lock(&slab_mutex); | |
512 | list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy); | |
513 | mutex_unlock(&slab_mutex); | |
d5b3cf71 | 514 | |
657dc2f9 TH |
515 | if (list_empty(&to_destroy)) |
516 | return; | |
517 | ||
518 | rcu_barrier(); | |
519 | ||
520 | list_for_each_entry_safe(s, s2, &to_destroy, list) { | |
521 | #ifdef SLAB_SUPPORTS_SYSFS | |
522 | sysfs_slab_release(s); | |
523 | #else | |
524 | slab_kmem_cache_release(s); | |
525 | #endif | |
526 | } | |
d5b3cf71 VD |
527 | } |
528 | ||
657dc2f9 | 529 | static int shutdown_cache(struct kmem_cache *s) |
d5b3cf71 | 530 | { |
f9fa1d91 GT |
531 | /* free asan quarantined objects */ |
532 | kasan_cache_shutdown(s); | |
533 | ||
657dc2f9 TH |
534 | if (__kmem_cache_shutdown(s) != 0) |
535 | return -EBUSY; | |
d5b3cf71 | 536 | |
510ded33 | 537 | memcg_unlink_cache(s); |
657dc2f9 | 538 | list_del(&s->list); |
d5b3cf71 | 539 | |
657dc2f9 TH |
540 | if (s->flags & SLAB_DESTROY_BY_RCU) { |
541 | list_add_tail(&s->list, &slab_caches_to_rcu_destroy); | |
542 | schedule_work(&slab_caches_to_rcu_destroy_work); | |
543 | } else { | |
d5b3cf71 | 544 | #ifdef SLAB_SUPPORTS_SYSFS |
bf5eb3de | 545 | sysfs_slab_release(s); |
d5b3cf71 VD |
546 | #else |
547 | slab_kmem_cache_release(s); | |
548 | #endif | |
549 | } | |
657dc2f9 TH |
550 | |
551 | return 0; | |
d5b3cf71 VD |
552 | } |
553 | ||
127424c8 | 554 | #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB) |
794b1248 | 555 | /* |
776ed0f0 | 556 | * memcg_create_kmem_cache - Create a cache for a memory cgroup. |
794b1248 VD |
557 | * @memcg: The memory cgroup the new cache is for. |
558 | * @root_cache: The parent of the new cache. | |
559 | * | |
560 | * This function attempts to create a kmem cache that will serve allocation | |
561 | * requests going from @memcg to @root_cache. The new cache inherits properties | |
562 | * from its parent. | |
563 | */ | |
d5b3cf71 VD |
564 | void memcg_create_kmem_cache(struct mem_cgroup *memcg, |
565 | struct kmem_cache *root_cache) | |
2633d7a0 | 566 | { |
3e0350a3 | 567 | static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */ |
33398cf2 | 568 | struct cgroup_subsys_state *css = &memcg->css; |
f7ce3190 | 569 | struct memcg_cache_array *arr; |
bd673145 | 570 | struct kmem_cache *s = NULL; |
794b1248 | 571 | char *cache_name; |
f7ce3190 | 572 | int idx; |
794b1248 VD |
573 | |
574 | get_online_cpus(); | |
03afc0e2 VD |
575 | get_online_mems(); |
576 | ||
794b1248 VD |
577 | mutex_lock(&slab_mutex); |
578 | ||
2a4db7eb | 579 | /* |
567e9ab2 | 580 | * The memory cgroup could have been offlined while the cache |
2a4db7eb VD |
581 | * creation work was pending. |
582 | */ | |
b6ecd2de | 583 | if (memcg->kmem_state != KMEM_ONLINE) |
2a4db7eb VD |
584 | goto out_unlock; |
585 | ||
f7ce3190 VD |
586 | idx = memcg_cache_id(memcg); |
587 | arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches, | |
588 | lockdep_is_held(&slab_mutex)); | |
589 | ||
d5b3cf71 VD |
590 | /* |
591 | * Since per-memcg caches are created asynchronously on first | |
592 | * allocation (see memcg_kmem_get_cache()), several threads can try to | |
593 | * create the same cache, but only one of them may succeed. | |
594 | */ | |
f7ce3190 | 595 | if (arr->entries[idx]) |
d5b3cf71 VD |
596 | goto out_unlock; |
597 | ||
f1008365 | 598 | cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf)); |
73f576c0 JW |
599 | cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name, |
600 | css->serial_nr, memcg_name_buf); | |
794b1248 VD |
601 | if (!cache_name) |
602 | goto out_unlock; | |
603 | ||
c9a77a79 VD |
604 | s = create_cache(cache_name, root_cache->object_size, |
605 | root_cache->size, root_cache->align, | |
f773e36d GT |
606 | root_cache->flags & CACHE_CREATE_MASK, |
607 | root_cache->ctor, memcg, root_cache); | |
d5b3cf71 VD |
608 | /* |
609 | * If we could not create a memcg cache, do not complain, because | |
610 | * that's not critical at all as we can always proceed with the root | |
611 | * cache. | |
612 | */ | |
bd673145 | 613 | if (IS_ERR(s)) { |
794b1248 | 614 | kfree(cache_name); |
d5b3cf71 | 615 | goto out_unlock; |
bd673145 | 616 | } |
794b1248 | 617 | |
d5b3cf71 VD |
618 | /* |
619 | * Since readers won't lock (see cache_from_memcg_idx()), we need a | |
620 | * barrier here to ensure nobody will see the kmem_cache partially | |
621 | * initialized. | |
622 | */ | |
623 | smp_wmb(); | |
f7ce3190 | 624 | arr->entries[idx] = s; |
d5b3cf71 | 625 | |
794b1248 VD |
626 | out_unlock: |
627 | mutex_unlock(&slab_mutex); | |
03afc0e2 VD |
628 | |
629 | put_online_mems(); | |
794b1248 | 630 | put_online_cpus(); |
2633d7a0 | 631 | } |
b8529907 | 632 | |
01fb58bc TH |
633 | static void kmemcg_deactivate_workfn(struct work_struct *work) |
634 | { | |
635 | struct kmem_cache *s = container_of(work, struct kmem_cache, | |
636 | memcg_params.deact_work); | |
637 | ||
638 | get_online_cpus(); | |
639 | get_online_mems(); | |
640 | ||
641 | mutex_lock(&slab_mutex); | |
642 | ||
643 | s->memcg_params.deact_fn(s); | |
644 | ||
645 | mutex_unlock(&slab_mutex); | |
646 | ||
647 | put_online_mems(); | |
648 | put_online_cpus(); | |
649 | ||
650 | /* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */ | |
651 | css_put(&s->memcg_params.memcg->css); | |
652 | } | |
653 | ||
654 | static void kmemcg_deactivate_rcufn(struct rcu_head *head) | |
655 | { | |
656 | struct kmem_cache *s = container_of(head, struct kmem_cache, | |
657 | memcg_params.deact_rcu_head); | |
658 | ||
659 | /* | |
660 | * We need to grab blocking locks. Bounce to ->deact_work. The | |
661 | * work item shares the space with the RCU head and can't be | |
662 | * initialized eariler. | |
663 | */ | |
664 | INIT_WORK(&s->memcg_params.deact_work, kmemcg_deactivate_workfn); | |
17cc4dfe | 665 | queue_work(memcg_kmem_cache_wq, &s->memcg_params.deact_work); |
01fb58bc TH |
666 | } |
667 | ||
668 | /** | |
669 | * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a | |
670 | * sched RCU grace period | |
671 | * @s: target kmem_cache | |
672 | * @deact_fn: deactivation function to call | |
673 | * | |
674 | * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex | |
675 | * held after a sched RCU grace period. The slab is guaranteed to stay | |
676 | * alive until @deact_fn is finished. This is to be used from | |
677 | * __kmemcg_cache_deactivate(). | |
678 | */ | |
679 | void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s, | |
680 | void (*deact_fn)(struct kmem_cache *)) | |
681 | { | |
682 | if (WARN_ON_ONCE(is_root_cache(s)) || | |
683 | WARN_ON_ONCE(s->memcg_params.deact_fn)) | |
684 | return; | |
685 | ||
686 | /* pin memcg so that @s doesn't get destroyed in the middle */ | |
687 | css_get(&s->memcg_params.memcg->css); | |
688 | ||
689 | s->memcg_params.deact_fn = deact_fn; | |
690 | call_rcu_sched(&s->memcg_params.deact_rcu_head, kmemcg_deactivate_rcufn); | |
691 | } | |
692 | ||
2a4db7eb VD |
693 | void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg) |
694 | { | |
695 | int idx; | |
696 | struct memcg_cache_array *arr; | |
d6e0b7fa | 697 | struct kmem_cache *s, *c; |
2a4db7eb VD |
698 | |
699 | idx = memcg_cache_id(memcg); | |
700 | ||
d6e0b7fa VD |
701 | get_online_cpus(); |
702 | get_online_mems(); | |
703 | ||
2a4db7eb | 704 | mutex_lock(&slab_mutex); |
510ded33 | 705 | list_for_each_entry(s, &slab_root_caches, root_caches_node) { |
2a4db7eb VD |
706 | arr = rcu_dereference_protected(s->memcg_params.memcg_caches, |
707 | lockdep_is_held(&slab_mutex)); | |
d6e0b7fa VD |
708 | c = arr->entries[idx]; |
709 | if (!c) | |
710 | continue; | |
711 | ||
c9fc5864 | 712 | __kmemcg_cache_deactivate(c); |
2a4db7eb VD |
713 | arr->entries[idx] = NULL; |
714 | } | |
715 | mutex_unlock(&slab_mutex); | |
d6e0b7fa VD |
716 | |
717 | put_online_mems(); | |
718 | put_online_cpus(); | |
2a4db7eb VD |
719 | } |
720 | ||
d5b3cf71 | 721 | void memcg_destroy_kmem_caches(struct mem_cgroup *memcg) |
b8529907 | 722 | { |
d5b3cf71 | 723 | struct kmem_cache *s, *s2; |
b8529907 | 724 | |
d5b3cf71 VD |
725 | get_online_cpus(); |
726 | get_online_mems(); | |
b8529907 | 727 | |
b8529907 | 728 | mutex_lock(&slab_mutex); |
bc2791f8 TH |
729 | list_for_each_entry_safe(s, s2, &memcg->kmem_caches, |
730 | memcg_params.kmem_caches_node) { | |
d5b3cf71 VD |
731 | /* |
732 | * The cgroup is about to be freed and therefore has no charges | |
733 | * left. Hence, all its caches must be empty by now. | |
734 | */ | |
657dc2f9 | 735 | BUG_ON(shutdown_cache(s)); |
d5b3cf71 VD |
736 | } |
737 | mutex_unlock(&slab_mutex); | |
b8529907 | 738 | |
d5b3cf71 VD |
739 | put_online_mems(); |
740 | put_online_cpus(); | |
b8529907 | 741 | } |
d60fdcc9 | 742 | |
657dc2f9 | 743 | static int shutdown_memcg_caches(struct kmem_cache *s) |
d60fdcc9 VD |
744 | { |
745 | struct memcg_cache_array *arr; | |
746 | struct kmem_cache *c, *c2; | |
747 | LIST_HEAD(busy); | |
748 | int i; | |
749 | ||
750 | BUG_ON(!is_root_cache(s)); | |
751 | ||
752 | /* | |
753 | * First, shutdown active caches, i.e. caches that belong to online | |
754 | * memory cgroups. | |
755 | */ | |
756 | arr = rcu_dereference_protected(s->memcg_params.memcg_caches, | |
757 | lockdep_is_held(&slab_mutex)); | |
758 | for_each_memcg_cache_index(i) { | |
759 | c = arr->entries[i]; | |
760 | if (!c) | |
761 | continue; | |
657dc2f9 | 762 | if (shutdown_cache(c)) |
d60fdcc9 VD |
763 | /* |
764 | * The cache still has objects. Move it to a temporary | |
765 | * list so as not to try to destroy it for a second | |
766 | * time while iterating over inactive caches below. | |
767 | */ | |
9eeadc8b | 768 | list_move(&c->memcg_params.children_node, &busy); |
d60fdcc9 VD |
769 | else |
770 | /* | |
771 | * The cache is empty and will be destroyed soon. Clear | |
772 | * the pointer to it in the memcg_caches array so that | |
773 | * it will never be accessed even if the root cache | |
774 | * stays alive. | |
775 | */ | |
776 | arr->entries[i] = NULL; | |
777 | } | |
778 | ||
779 | /* | |
780 | * Second, shutdown all caches left from memory cgroups that are now | |
781 | * offline. | |
782 | */ | |
9eeadc8b TH |
783 | list_for_each_entry_safe(c, c2, &s->memcg_params.children, |
784 | memcg_params.children_node) | |
657dc2f9 | 785 | shutdown_cache(c); |
d60fdcc9 | 786 | |
9eeadc8b | 787 | list_splice(&busy, &s->memcg_params.children); |
d60fdcc9 VD |
788 | |
789 | /* | |
790 | * A cache being destroyed must be empty. In particular, this means | |
791 | * that all per memcg caches attached to it must be empty too. | |
792 | */ | |
9eeadc8b | 793 | if (!list_empty(&s->memcg_params.children)) |
d60fdcc9 VD |
794 | return -EBUSY; |
795 | return 0; | |
796 | } | |
797 | #else | |
657dc2f9 | 798 | static inline int shutdown_memcg_caches(struct kmem_cache *s) |
d60fdcc9 VD |
799 | { |
800 | return 0; | |
801 | } | |
127424c8 | 802 | #endif /* CONFIG_MEMCG && !CONFIG_SLOB */ |
97d06609 | 803 | |
41a21285 CL |
804 | void slab_kmem_cache_release(struct kmem_cache *s) |
805 | { | |
52b4b950 | 806 | __kmem_cache_release(s); |
f7ce3190 | 807 | destroy_memcg_params(s); |
3dec16ea | 808 | kfree_const(s->name); |
41a21285 CL |
809 | kmem_cache_free(kmem_cache, s); |
810 | } | |
811 | ||
945cf2b6 CL |
812 | void kmem_cache_destroy(struct kmem_cache *s) |
813 | { | |
d60fdcc9 | 814 | int err; |
d5b3cf71 | 815 | |
3942d299 SS |
816 | if (unlikely(!s)) |
817 | return; | |
818 | ||
945cf2b6 | 819 | get_online_cpus(); |
03afc0e2 VD |
820 | get_online_mems(); |
821 | ||
945cf2b6 | 822 | mutex_lock(&slab_mutex); |
b8529907 | 823 | |
945cf2b6 | 824 | s->refcount--; |
b8529907 VD |
825 | if (s->refcount) |
826 | goto out_unlock; | |
827 | ||
657dc2f9 | 828 | err = shutdown_memcg_caches(s); |
d60fdcc9 | 829 | if (!err) |
657dc2f9 | 830 | err = shutdown_cache(s); |
b8529907 | 831 | |
cd918c55 | 832 | if (err) { |
756a025f JP |
833 | pr_err("kmem_cache_destroy %s: Slab cache still has objects\n", |
834 | s->name); | |
cd918c55 VD |
835 | dump_stack(); |
836 | } | |
b8529907 VD |
837 | out_unlock: |
838 | mutex_unlock(&slab_mutex); | |
d5b3cf71 | 839 | |
03afc0e2 | 840 | put_online_mems(); |
945cf2b6 CL |
841 | put_online_cpus(); |
842 | } | |
843 | EXPORT_SYMBOL(kmem_cache_destroy); | |
844 | ||
03afc0e2 VD |
845 | /** |
846 | * kmem_cache_shrink - Shrink a cache. | |
847 | * @cachep: The cache to shrink. | |
848 | * | |
849 | * Releases as many slabs as possible for a cache. | |
850 | * To help debugging, a zero exit status indicates all slabs were released. | |
851 | */ | |
852 | int kmem_cache_shrink(struct kmem_cache *cachep) | |
853 | { | |
854 | int ret; | |
855 | ||
856 | get_online_cpus(); | |
857 | get_online_mems(); | |
55834c59 | 858 | kasan_cache_shrink(cachep); |
c9fc5864 | 859 | ret = __kmem_cache_shrink(cachep); |
03afc0e2 VD |
860 | put_online_mems(); |
861 | put_online_cpus(); | |
862 | return ret; | |
863 | } | |
864 | EXPORT_SYMBOL(kmem_cache_shrink); | |
865 | ||
fda90124 | 866 | bool slab_is_available(void) |
97d06609 CL |
867 | { |
868 | return slab_state >= UP; | |
869 | } | |
b7454ad3 | 870 | |
45530c44 CL |
871 | #ifndef CONFIG_SLOB |
872 | /* Create a cache during boot when no slab services are available yet */ | |
873 | void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size, | |
874 | unsigned long flags) | |
875 | { | |
876 | int err; | |
877 | ||
878 | s->name = name; | |
879 | s->size = s->object_size = size; | |
45906855 | 880 | s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size); |
f7ce3190 VD |
881 | |
882 | slab_init_memcg_params(s); | |
883 | ||
45530c44 CL |
884 | err = __kmem_cache_create(s, flags); |
885 | ||
886 | if (err) | |
31ba7346 | 887 | panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n", |
45530c44 CL |
888 | name, size, err); |
889 | ||
890 | s->refcount = -1; /* Exempt from merging for now */ | |
891 | } | |
892 | ||
893 | struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size, | |
894 | unsigned long flags) | |
895 | { | |
896 | struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); | |
897 | ||
898 | if (!s) | |
899 | panic("Out of memory when creating slab %s\n", name); | |
900 | ||
901 | create_boot_cache(s, name, size, flags); | |
902 | list_add(&s->list, &slab_caches); | |
510ded33 | 903 | memcg_link_cache(s); |
45530c44 CL |
904 | s->refcount = 1; |
905 | return s; | |
906 | } | |
907 | ||
9425c58e CL |
908 | struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1]; |
909 | EXPORT_SYMBOL(kmalloc_caches); | |
910 | ||
911 | #ifdef CONFIG_ZONE_DMA | |
912 | struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1]; | |
913 | EXPORT_SYMBOL(kmalloc_dma_caches); | |
914 | #endif | |
915 | ||
2c59dd65 CL |
916 | /* |
917 | * Conversion table for small slabs sizes / 8 to the index in the | |
918 | * kmalloc array. This is necessary for slabs < 192 since we have non power | |
919 | * of two cache sizes there. The size of larger slabs can be determined using | |
920 | * fls. | |
921 | */ | |
922 | static s8 size_index[24] = { | |
923 | 3, /* 8 */ | |
924 | 4, /* 16 */ | |
925 | 5, /* 24 */ | |
926 | 5, /* 32 */ | |
927 | 6, /* 40 */ | |
928 | 6, /* 48 */ | |
929 | 6, /* 56 */ | |
930 | 6, /* 64 */ | |
931 | 1, /* 72 */ | |
932 | 1, /* 80 */ | |
933 | 1, /* 88 */ | |
934 | 1, /* 96 */ | |
935 | 7, /* 104 */ | |
936 | 7, /* 112 */ | |
937 | 7, /* 120 */ | |
938 | 7, /* 128 */ | |
939 | 2, /* 136 */ | |
940 | 2, /* 144 */ | |
941 | 2, /* 152 */ | |
942 | 2, /* 160 */ | |
943 | 2, /* 168 */ | |
944 | 2, /* 176 */ | |
945 | 2, /* 184 */ | |
946 | 2 /* 192 */ | |
947 | }; | |
948 | ||
949 | static inline int size_index_elem(size_t bytes) | |
950 | { | |
951 | return (bytes - 1) / 8; | |
952 | } | |
953 | ||
954 | /* | |
955 | * Find the kmem_cache structure that serves a given size of | |
956 | * allocation | |
957 | */ | |
958 | struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags) | |
959 | { | |
960 | int index; | |
961 | ||
9de1bc87 | 962 | if (unlikely(size > KMALLOC_MAX_SIZE)) { |
907985f4 | 963 | WARN_ON_ONCE(!(flags & __GFP_NOWARN)); |
6286ae97 | 964 | return NULL; |
907985f4 | 965 | } |
6286ae97 | 966 | |
2c59dd65 CL |
967 | if (size <= 192) { |
968 | if (!size) | |
969 | return ZERO_SIZE_PTR; | |
970 | ||
971 | index = size_index[size_index_elem(size)]; | |
972 | } else | |
973 | index = fls(size - 1); | |
974 | ||
975 | #ifdef CONFIG_ZONE_DMA | |
b1e05416 | 976 | if (unlikely((flags & GFP_DMA))) |
2c59dd65 CL |
977 | return kmalloc_dma_caches[index]; |
978 | ||
979 | #endif | |
980 | return kmalloc_caches[index]; | |
981 | } | |
982 | ||
4066c33d GG |
983 | /* |
984 | * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time. | |
985 | * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is | |
986 | * kmalloc-67108864. | |
987 | */ | |
af3b5f87 | 988 | const struct kmalloc_info_struct kmalloc_info[] __initconst = { |
4066c33d GG |
989 | {NULL, 0}, {"kmalloc-96", 96}, |
990 | {"kmalloc-192", 192}, {"kmalloc-8", 8}, | |
991 | {"kmalloc-16", 16}, {"kmalloc-32", 32}, | |
992 | {"kmalloc-64", 64}, {"kmalloc-128", 128}, | |
993 | {"kmalloc-256", 256}, {"kmalloc-512", 512}, | |
994 | {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048}, | |
995 | {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192}, | |
996 | {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768}, | |
997 | {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072}, | |
998 | {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288}, | |
999 | {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152}, | |
1000 | {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608}, | |
1001 | {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432}, | |
1002 | {"kmalloc-67108864", 67108864} | |
1003 | }; | |
1004 | ||
f97d5f63 | 1005 | /* |
34cc6990 DS |
1006 | * Patch up the size_index table if we have strange large alignment |
1007 | * requirements for the kmalloc array. This is only the case for | |
1008 | * MIPS it seems. The standard arches will not generate any code here. | |
1009 | * | |
1010 | * Largest permitted alignment is 256 bytes due to the way we | |
1011 | * handle the index determination for the smaller caches. | |
1012 | * | |
1013 | * Make sure that nothing crazy happens if someone starts tinkering | |
1014 | * around with ARCH_KMALLOC_MINALIGN | |
f97d5f63 | 1015 | */ |
34cc6990 | 1016 | void __init setup_kmalloc_cache_index_table(void) |
f97d5f63 CL |
1017 | { |
1018 | int i; | |
1019 | ||
2c59dd65 CL |
1020 | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || |
1021 | (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); | |
1022 | ||
1023 | for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { | |
1024 | int elem = size_index_elem(i); | |
1025 | ||
1026 | if (elem >= ARRAY_SIZE(size_index)) | |
1027 | break; | |
1028 | size_index[elem] = KMALLOC_SHIFT_LOW; | |
1029 | } | |
1030 | ||
1031 | if (KMALLOC_MIN_SIZE >= 64) { | |
1032 | /* | |
1033 | * The 96 byte size cache is not used if the alignment | |
1034 | * is 64 byte. | |
1035 | */ | |
1036 | for (i = 64 + 8; i <= 96; i += 8) | |
1037 | size_index[size_index_elem(i)] = 7; | |
1038 | ||
1039 | } | |
1040 | ||
1041 | if (KMALLOC_MIN_SIZE >= 128) { | |
1042 | /* | |
1043 | * The 192 byte sized cache is not used if the alignment | |
1044 | * is 128 byte. Redirect kmalloc to use the 256 byte cache | |
1045 | * instead. | |
1046 | */ | |
1047 | for (i = 128 + 8; i <= 192; i += 8) | |
1048 | size_index[size_index_elem(i)] = 8; | |
1049 | } | |
34cc6990 DS |
1050 | } |
1051 | ||
ae6f2462 | 1052 | static void __init new_kmalloc_cache(int idx, unsigned long flags) |
a9730fca CL |
1053 | { |
1054 | kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name, | |
1055 | kmalloc_info[idx].size, flags); | |
1056 | } | |
1057 | ||
34cc6990 DS |
1058 | /* |
1059 | * Create the kmalloc array. Some of the regular kmalloc arrays | |
1060 | * may already have been created because they were needed to | |
1061 | * enable allocations for slab creation. | |
1062 | */ | |
1063 | void __init create_kmalloc_caches(unsigned long flags) | |
1064 | { | |
1065 | int i; | |
1066 | ||
a9730fca CL |
1067 | for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) { |
1068 | if (!kmalloc_caches[i]) | |
1069 | new_kmalloc_cache(i, flags); | |
f97d5f63 | 1070 | |
956e46ef | 1071 | /* |
a9730fca CL |
1072 | * Caches that are not of the two-to-the-power-of size. |
1073 | * These have to be created immediately after the | |
1074 | * earlier power of two caches | |
956e46ef | 1075 | */ |
a9730fca CL |
1076 | if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6) |
1077 | new_kmalloc_cache(1, flags); | |
1078 | if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7) | |
1079 | new_kmalloc_cache(2, flags); | |
8a965b3b CL |
1080 | } |
1081 | ||
f97d5f63 CL |
1082 | /* Kmalloc array is now usable */ |
1083 | slab_state = UP; | |
1084 | ||
f97d5f63 CL |
1085 | #ifdef CONFIG_ZONE_DMA |
1086 | for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { | |
1087 | struct kmem_cache *s = kmalloc_caches[i]; | |
1088 | ||
1089 | if (s) { | |
1090 | int size = kmalloc_size(i); | |
1091 | char *n = kasprintf(GFP_NOWAIT, | |
1092 | "dma-kmalloc-%d", size); | |
1093 | ||
1094 | BUG_ON(!n); | |
1095 | kmalloc_dma_caches[i] = create_kmalloc_cache(n, | |
1096 | size, SLAB_CACHE_DMA | flags); | |
1097 | } | |
1098 | } | |
1099 | #endif | |
1100 | } | |
45530c44 CL |
1101 | #endif /* !CONFIG_SLOB */ |
1102 | ||
cea371f4 VD |
1103 | /* |
1104 | * To avoid unnecessary overhead, we pass through large allocation requests | |
1105 | * directly to the page allocator. We use __GFP_COMP, because we will need to | |
1106 | * know the allocation order to free the pages properly in kfree. | |
1107 | */ | |
52383431 VD |
1108 | void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) |
1109 | { | |
1110 | void *ret; | |
1111 | struct page *page; | |
1112 | ||
1113 | flags |= __GFP_COMP; | |
4949148a | 1114 | page = alloc_pages(flags, order); |
52383431 VD |
1115 | ret = page ? page_address(page) : NULL; |
1116 | kmemleak_alloc(ret, size, 1, flags); | |
505f5dcb | 1117 | kasan_kmalloc_large(ret, size, flags); |
52383431 VD |
1118 | return ret; |
1119 | } | |
1120 | EXPORT_SYMBOL(kmalloc_order); | |
1121 | ||
f1b6eb6e CL |
1122 | #ifdef CONFIG_TRACING |
1123 | void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) | |
1124 | { | |
1125 | void *ret = kmalloc_order(size, flags, order); | |
1126 | trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); | |
1127 | return ret; | |
1128 | } | |
1129 | EXPORT_SYMBOL(kmalloc_order_trace); | |
1130 | #endif | |
45530c44 | 1131 | |
7c00fce9 TG |
1132 | #ifdef CONFIG_SLAB_FREELIST_RANDOM |
1133 | /* Randomize a generic freelist */ | |
1134 | static void freelist_randomize(struct rnd_state *state, unsigned int *list, | |
1135 | size_t count) | |
1136 | { | |
1137 | size_t i; | |
1138 | unsigned int rand; | |
1139 | ||
1140 | for (i = 0; i < count; i++) | |
1141 | list[i] = i; | |
1142 | ||
1143 | /* Fisher-Yates shuffle */ | |
1144 | for (i = count - 1; i > 0; i--) { | |
1145 | rand = prandom_u32_state(state); | |
1146 | rand %= (i + 1); | |
1147 | swap(list[i], list[rand]); | |
1148 | } | |
1149 | } | |
1150 | ||
1151 | /* Create a random sequence per cache */ | |
1152 | int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, | |
1153 | gfp_t gfp) | |
1154 | { | |
1155 | struct rnd_state state; | |
1156 | ||
1157 | if (count < 2 || cachep->random_seq) | |
1158 | return 0; | |
1159 | ||
1160 | cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp); | |
1161 | if (!cachep->random_seq) | |
1162 | return -ENOMEM; | |
1163 | ||
1164 | /* Get best entropy at this stage of boot */ | |
1165 | prandom_seed_state(&state, get_random_long()); | |
1166 | ||
1167 | freelist_randomize(&state, cachep->random_seq, count); | |
1168 | return 0; | |
1169 | } | |
1170 | ||
1171 | /* Destroy the per-cache random freelist sequence */ | |
1172 | void cache_random_seq_destroy(struct kmem_cache *cachep) | |
1173 | { | |
1174 | kfree(cachep->random_seq); | |
1175 | cachep->random_seq = NULL; | |
1176 | } | |
1177 | #endif /* CONFIG_SLAB_FREELIST_RANDOM */ | |
1178 | ||
b7454ad3 | 1179 | #ifdef CONFIG_SLABINFO |
e9b4db2b WL |
1180 | |
1181 | #ifdef CONFIG_SLAB | |
1182 | #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR) | |
1183 | #else | |
1184 | #define SLABINFO_RIGHTS S_IRUSR | |
1185 | #endif | |
1186 | ||
b047501c | 1187 | static void print_slabinfo_header(struct seq_file *m) |
bcee6e2a GC |
1188 | { |
1189 | /* | |
1190 | * Output format version, so at least we can change it | |
1191 | * without _too_ many complaints. | |
1192 | */ | |
1193 | #ifdef CONFIG_DEBUG_SLAB | |
1194 | seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); | |
1195 | #else | |
1196 | seq_puts(m, "slabinfo - version: 2.1\n"); | |
1197 | #endif | |
756a025f | 1198 | seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>"); |
bcee6e2a GC |
1199 | seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); |
1200 | seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); | |
1201 | #ifdef CONFIG_DEBUG_SLAB | |
756a025f | 1202 | seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); |
bcee6e2a GC |
1203 | seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); |
1204 | #endif | |
1205 | seq_putc(m, '\n'); | |
1206 | } | |
1207 | ||
1df3b26f | 1208 | void *slab_start(struct seq_file *m, loff_t *pos) |
b7454ad3 | 1209 | { |
b7454ad3 | 1210 | mutex_lock(&slab_mutex); |
510ded33 | 1211 | return seq_list_start(&slab_root_caches, *pos); |
b7454ad3 GC |
1212 | } |
1213 | ||
276a2439 | 1214 | void *slab_next(struct seq_file *m, void *p, loff_t *pos) |
b7454ad3 | 1215 | { |
510ded33 | 1216 | return seq_list_next(p, &slab_root_caches, pos); |
b7454ad3 GC |
1217 | } |
1218 | ||
276a2439 | 1219 | void slab_stop(struct seq_file *m, void *p) |
b7454ad3 GC |
1220 | { |
1221 | mutex_unlock(&slab_mutex); | |
1222 | } | |
1223 | ||
749c5415 GC |
1224 | static void |
1225 | memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info) | |
1226 | { | |
1227 | struct kmem_cache *c; | |
1228 | struct slabinfo sinfo; | |
749c5415 GC |
1229 | |
1230 | if (!is_root_cache(s)) | |
1231 | return; | |
1232 | ||
426589f5 | 1233 | for_each_memcg_cache(c, s) { |
749c5415 GC |
1234 | memset(&sinfo, 0, sizeof(sinfo)); |
1235 | get_slabinfo(c, &sinfo); | |
1236 | ||
1237 | info->active_slabs += sinfo.active_slabs; | |
1238 | info->num_slabs += sinfo.num_slabs; | |
1239 | info->shared_avail += sinfo.shared_avail; | |
1240 | info->active_objs += sinfo.active_objs; | |
1241 | info->num_objs += sinfo.num_objs; | |
1242 | } | |
1243 | } | |
1244 | ||
b047501c | 1245 | static void cache_show(struct kmem_cache *s, struct seq_file *m) |
b7454ad3 | 1246 | { |
0d7561c6 GC |
1247 | struct slabinfo sinfo; |
1248 | ||
1249 | memset(&sinfo, 0, sizeof(sinfo)); | |
1250 | get_slabinfo(s, &sinfo); | |
1251 | ||
749c5415 GC |
1252 | memcg_accumulate_slabinfo(s, &sinfo); |
1253 | ||
0d7561c6 | 1254 | seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", |
749c5415 | 1255 | cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size, |
0d7561c6 GC |
1256 | sinfo.objects_per_slab, (1 << sinfo.cache_order)); |
1257 | ||
1258 | seq_printf(m, " : tunables %4u %4u %4u", | |
1259 | sinfo.limit, sinfo.batchcount, sinfo.shared); | |
1260 | seq_printf(m, " : slabdata %6lu %6lu %6lu", | |
1261 | sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail); | |
1262 | slabinfo_show_stats(m, s); | |
1263 | seq_putc(m, '\n'); | |
b7454ad3 GC |
1264 | } |
1265 | ||
1df3b26f | 1266 | static int slab_show(struct seq_file *m, void *p) |
749c5415 | 1267 | { |
510ded33 | 1268 | struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node); |
749c5415 | 1269 | |
510ded33 | 1270 | if (p == slab_root_caches.next) |
1df3b26f | 1271 | print_slabinfo_header(m); |
510ded33 | 1272 | cache_show(s, m); |
b047501c VD |
1273 | return 0; |
1274 | } | |
1275 | ||
127424c8 | 1276 | #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB) |
bc2791f8 TH |
1277 | void *memcg_slab_start(struct seq_file *m, loff_t *pos) |
1278 | { | |
1279 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | |
1280 | ||
1281 | mutex_lock(&slab_mutex); | |
1282 | return seq_list_start(&memcg->kmem_caches, *pos); | |
1283 | } | |
1284 | ||
1285 | void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos) | |
1286 | { | |
1287 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | |
1288 | ||
1289 | return seq_list_next(p, &memcg->kmem_caches, pos); | |
1290 | } | |
1291 | ||
1292 | void memcg_slab_stop(struct seq_file *m, void *p) | |
1293 | { | |
1294 | mutex_unlock(&slab_mutex); | |
1295 | } | |
1296 | ||
b047501c VD |
1297 | int memcg_slab_show(struct seq_file *m, void *p) |
1298 | { | |
bc2791f8 TH |
1299 | struct kmem_cache *s = list_entry(p, struct kmem_cache, |
1300 | memcg_params.kmem_caches_node); | |
b047501c VD |
1301 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); |
1302 | ||
bc2791f8 | 1303 | if (p == memcg->kmem_caches.next) |
b047501c | 1304 | print_slabinfo_header(m); |
bc2791f8 | 1305 | cache_show(s, m); |
b047501c | 1306 | return 0; |
749c5415 | 1307 | } |
b047501c | 1308 | #endif |
749c5415 | 1309 | |
b7454ad3 GC |
1310 | /* |
1311 | * slabinfo_op - iterator that generates /proc/slabinfo | |
1312 | * | |
1313 | * Output layout: | |
1314 | * cache-name | |
1315 | * num-active-objs | |
1316 | * total-objs | |
1317 | * object size | |
1318 | * num-active-slabs | |
1319 | * total-slabs | |
1320 | * num-pages-per-slab | |
1321 | * + further values on SMP and with statistics enabled | |
1322 | */ | |
1323 | static const struct seq_operations slabinfo_op = { | |
1df3b26f | 1324 | .start = slab_start, |
276a2439 WL |
1325 | .next = slab_next, |
1326 | .stop = slab_stop, | |
1df3b26f | 1327 | .show = slab_show, |
b7454ad3 GC |
1328 | }; |
1329 | ||
1330 | static int slabinfo_open(struct inode *inode, struct file *file) | |
1331 | { | |
1332 | return seq_open(file, &slabinfo_op); | |
1333 | } | |
1334 | ||
1335 | static const struct file_operations proc_slabinfo_operations = { | |
1336 | .open = slabinfo_open, | |
1337 | .read = seq_read, | |
1338 | .write = slabinfo_write, | |
1339 | .llseek = seq_lseek, | |
1340 | .release = seq_release, | |
1341 | }; | |
1342 | ||
1343 | static int __init slab_proc_init(void) | |
1344 | { | |
e9b4db2b WL |
1345 | proc_create("slabinfo", SLABINFO_RIGHTS, NULL, |
1346 | &proc_slabinfo_operations); | |
b7454ad3 GC |
1347 | return 0; |
1348 | } | |
1349 | module_init(slab_proc_init); | |
1350 | #endif /* CONFIG_SLABINFO */ | |
928cec9c AR |
1351 | |
1352 | static __always_inline void *__do_krealloc(const void *p, size_t new_size, | |
1353 | gfp_t flags) | |
1354 | { | |
1355 | void *ret; | |
1356 | size_t ks = 0; | |
1357 | ||
1358 | if (p) | |
1359 | ks = ksize(p); | |
1360 | ||
0316bec2 | 1361 | if (ks >= new_size) { |
505f5dcb | 1362 | kasan_krealloc((void *)p, new_size, flags); |
928cec9c | 1363 | return (void *)p; |
0316bec2 | 1364 | } |
928cec9c AR |
1365 | |
1366 | ret = kmalloc_track_caller(new_size, flags); | |
1367 | if (ret && p) | |
1368 | memcpy(ret, p, ks); | |
1369 | ||
1370 | return ret; | |
1371 | } | |
1372 | ||
1373 | /** | |
1374 | * __krealloc - like krealloc() but don't free @p. | |
1375 | * @p: object to reallocate memory for. | |
1376 | * @new_size: how many bytes of memory are required. | |
1377 | * @flags: the type of memory to allocate. | |
1378 | * | |
1379 | * This function is like krealloc() except it never frees the originally | |
1380 | * allocated buffer. Use this if you don't want to free the buffer immediately | |
1381 | * like, for example, with RCU. | |
1382 | */ | |
1383 | void *__krealloc(const void *p, size_t new_size, gfp_t flags) | |
1384 | { | |
1385 | if (unlikely(!new_size)) | |
1386 | return ZERO_SIZE_PTR; | |
1387 | ||
1388 | return __do_krealloc(p, new_size, flags); | |
1389 | ||
1390 | } | |
1391 | EXPORT_SYMBOL(__krealloc); | |
1392 | ||
1393 | /** | |
1394 | * krealloc - reallocate memory. The contents will remain unchanged. | |
1395 | * @p: object to reallocate memory for. | |
1396 | * @new_size: how many bytes of memory are required. | |
1397 | * @flags: the type of memory to allocate. | |
1398 | * | |
1399 | * The contents of the object pointed to are preserved up to the | |
1400 | * lesser of the new and old sizes. If @p is %NULL, krealloc() | |
1401 | * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a | |
1402 | * %NULL pointer, the object pointed to is freed. | |
1403 | */ | |
1404 | void *krealloc(const void *p, size_t new_size, gfp_t flags) | |
1405 | { | |
1406 | void *ret; | |
1407 | ||
1408 | if (unlikely(!new_size)) { | |
1409 | kfree(p); | |
1410 | return ZERO_SIZE_PTR; | |
1411 | } | |
1412 | ||
1413 | ret = __do_krealloc(p, new_size, flags); | |
1414 | if (ret && p != ret) | |
1415 | kfree(p); | |
1416 | ||
1417 | return ret; | |
1418 | } | |
1419 | EXPORT_SYMBOL(krealloc); | |
1420 | ||
1421 | /** | |
1422 | * kzfree - like kfree but zero memory | |
1423 | * @p: object to free memory of | |
1424 | * | |
1425 | * The memory of the object @p points to is zeroed before freed. | |
1426 | * If @p is %NULL, kzfree() does nothing. | |
1427 | * | |
1428 | * Note: this function zeroes the whole allocated buffer which can be a good | |
1429 | * deal bigger than the requested buffer size passed to kmalloc(). So be | |
1430 | * careful when using this function in performance sensitive code. | |
1431 | */ | |
1432 | void kzfree(const void *p) | |
1433 | { | |
1434 | size_t ks; | |
1435 | void *mem = (void *)p; | |
1436 | ||
1437 | if (unlikely(ZERO_OR_NULL_PTR(mem))) | |
1438 | return; | |
1439 | ks = ksize(mem); | |
1440 | memset(mem, 0, ks); | |
1441 | kfree(mem); | |
1442 | } | |
1443 | EXPORT_SYMBOL(kzfree); | |
1444 | ||
1445 | /* Tracepoints definitions. */ | |
1446 | EXPORT_TRACEPOINT_SYMBOL(kmalloc); | |
1447 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc); | |
1448 | EXPORT_TRACEPOINT_SYMBOL(kmalloc_node); | |
1449 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node); | |
1450 | EXPORT_TRACEPOINT_SYMBOL(kfree); | |
1451 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free); |