]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
039363f3 CL |
2 | /* |
3 | * Slab allocator functions that are independent of the allocator strategy | |
4 | * | |
5 | * (C) 2012 Christoph Lameter <[email protected]> | |
6 | */ | |
7 | #include <linux/slab.h> | |
8 | ||
9 | #include <linux/mm.h> | |
10 | #include <linux/poison.h> | |
11 | #include <linux/interrupt.h> | |
12 | #include <linux/memory.h> | |
1c99ba29 | 13 | #include <linux/cache.h> |
039363f3 | 14 | #include <linux/compiler.h> |
d3fb45f3 | 15 | #include <linux/kfence.h> |
039363f3 | 16 | #include <linux/module.h> |
20cea968 CL |
17 | #include <linux/cpu.h> |
18 | #include <linux/uaccess.h> | |
b7454ad3 GC |
19 | #include <linux/seq_file.h> |
20 | #include <linux/proc_fs.h> | |
fcf8a1e4 | 21 | #include <linux/debugfs.h> |
e86f8b09 | 22 | #include <linux/kasan.h> |
039363f3 CL |
23 | #include <asm/cacheflush.h> |
24 | #include <asm/tlbflush.h> | |
25 | #include <asm/page.h> | |
2633d7a0 | 26 | #include <linux/memcontrol.h> |
928cec9c AR |
27 | |
28 | #define CREATE_TRACE_POINTS | |
f1b6eb6e | 29 | #include <trace/events/kmem.h> |
039363f3 | 30 | |
44405099 LL |
31 | #include "internal.h" |
32 | ||
97d06609 CL |
33 | #include "slab.h" |
34 | ||
35 | enum slab_state slab_state; | |
18004c5d CL |
36 | LIST_HEAD(slab_caches); |
37 | DEFINE_MUTEX(slab_mutex); | |
9b030cb8 | 38 | struct kmem_cache *kmem_cache; |
97d06609 | 39 | |
657dc2f9 TH |
40 | static LIST_HEAD(slab_caches_to_rcu_destroy); |
41 | static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work); | |
42 | static DECLARE_WORK(slab_caches_to_rcu_destroy_work, | |
43 | slab_caches_to_rcu_destroy_workfn); | |
44 | ||
423c929c JK |
45 | /* |
46 | * Set of flags that will prevent slab merging | |
47 | */ | |
48 | #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ | |
5f0d5a3a | 49 | SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \ |
e86f8b09 | 50 | SLAB_FAILSLAB | kasan_never_merge()) |
423c929c | 51 | |
230e9fc2 | 52 | #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \ |
6d6ea1e9 | 53 | SLAB_CACHE_DMA32 | SLAB_ACCOUNT) |
423c929c JK |
54 | |
55 | /* | |
56 | * Merge control. If this is set then no merging of slab caches will occur. | |
423c929c | 57 | */ |
7660a6fd | 58 | static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT); |
423c929c JK |
59 | |
60 | static int __init setup_slab_nomerge(char *str) | |
61 | { | |
7660a6fd | 62 | slab_nomerge = true; |
423c929c JK |
63 | return 1; |
64 | } | |
65 | ||
82edd9d5 RA |
66 | static int __init setup_slab_merge(char *str) |
67 | { | |
68 | slab_nomerge = false; | |
69 | return 1; | |
70 | } | |
71 | ||
423c929c JK |
72 | #ifdef CONFIG_SLUB |
73 | __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0); | |
82edd9d5 | 74 | __setup_param("slub_merge", slub_merge, setup_slab_merge, 0); |
423c929c JK |
75 | #endif |
76 | ||
77 | __setup("slab_nomerge", setup_slab_nomerge); | |
82edd9d5 | 78 | __setup("slab_merge", setup_slab_merge); |
423c929c | 79 | |
07f361b2 JK |
80 | /* |
81 | * Determine the size of a slab object | |
82 | */ | |
83 | unsigned int kmem_cache_size(struct kmem_cache *s) | |
84 | { | |
85 | return s->object_size; | |
86 | } | |
87 | EXPORT_SYMBOL(kmem_cache_size); | |
88 | ||
77be4b13 | 89 | #ifdef CONFIG_DEBUG_VM |
f4957d5b | 90 | static int kmem_cache_sanity_check(const char *name, unsigned int size) |
039363f3 | 91 | { |
74c1d3e0 | 92 | if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) { |
77be4b13 SK |
93 | pr_err("kmem_cache_create(%s) integrity check failed\n", name); |
94 | return -EINVAL; | |
039363f3 | 95 | } |
b920536a | 96 | |
20cea968 | 97 | WARN_ON(strchr(name, ' ')); /* It confuses parsers */ |
77be4b13 SK |
98 | return 0; |
99 | } | |
100 | #else | |
f4957d5b | 101 | static inline int kmem_cache_sanity_check(const char *name, unsigned int size) |
77be4b13 SK |
102 | { |
103 | return 0; | |
104 | } | |
20cea968 CL |
105 | #endif |
106 | ||
484748f0 CL |
107 | void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p) |
108 | { | |
109 | size_t i; | |
110 | ||
ca257195 JDB |
111 | for (i = 0; i < nr; i++) { |
112 | if (s) | |
113 | kmem_cache_free(s, p[i]); | |
114 | else | |
115 | kfree(p[i]); | |
116 | } | |
484748f0 CL |
117 | } |
118 | ||
865762a8 | 119 | int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr, |
484748f0 CL |
120 | void **p) |
121 | { | |
122 | size_t i; | |
123 | ||
124 | for (i = 0; i < nr; i++) { | |
125 | void *x = p[i] = kmem_cache_alloc(s, flags); | |
126 | if (!x) { | |
127 | __kmem_cache_free_bulk(s, i, p); | |
865762a8 | 128 | return 0; |
484748f0 CL |
129 | } |
130 | } | |
865762a8 | 131 | return i; |
484748f0 CL |
132 | } |
133 | ||
692ae74a BL |
134 | /* |
135 | * Figure out what the alignment of the objects will be given a set of | |
136 | * flags, a user specified alignment and the size of the objects. | |
137 | */ | |
f4957d5b AD |
138 | static unsigned int calculate_alignment(slab_flags_t flags, |
139 | unsigned int align, unsigned int size) | |
692ae74a BL |
140 | { |
141 | /* | |
142 | * If the user wants hardware cache aligned objects then follow that | |
143 | * suggestion if the object is sufficiently large. | |
144 | * | |
145 | * The hardware cache alignment cannot override the specified | |
146 | * alignment though. If that is greater then use it. | |
147 | */ | |
148 | if (flags & SLAB_HWCACHE_ALIGN) { | |
f4957d5b | 149 | unsigned int ralign; |
692ae74a BL |
150 | |
151 | ralign = cache_line_size(); | |
152 | while (size <= ralign / 2) | |
153 | ralign /= 2; | |
154 | align = max(align, ralign); | |
155 | } | |
156 | ||
157 | if (align < ARCH_SLAB_MINALIGN) | |
158 | align = ARCH_SLAB_MINALIGN; | |
159 | ||
160 | return ALIGN(align, sizeof(void *)); | |
161 | } | |
162 | ||
423c929c JK |
163 | /* |
164 | * Find a mergeable slab cache | |
165 | */ | |
166 | int slab_unmergeable(struct kmem_cache *s) | |
167 | { | |
168 | if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE)) | |
169 | return 1; | |
170 | ||
423c929c JK |
171 | if (s->ctor) |
172 | return 1; | |
173 | ||
8eb8284b DW |
174 | if (s->usersize) |
175 | return 1; | |
176 | ||
423c929c JK |
177 | /* |
178 | * We may have set a slab to be unmergeable during bootstrap. | |
179 | */ | |
180 | if (s->refcount < 0) | |
181 | return 1; | |
182 | ||
183 | return 0; | |
184 | } | |
185 | ||
f4957d5b | 186 | struct kmem_cache *find_mergeable(unsigned int size, unsigned int align, |
d50112ed | 187 | slab_flags_t flags, const char *name, void (*ctor)(void *)) |
423c929c JK |
188 | { |
189 | struct kmem_cache *s; | |
190 | ||
c6e28895 | 191 | if (slab_nomerge) |
423c929c JK |
192 | return NULL; |
193 | ||
194 | if (ctor) | |
195 | return NULL; | |
196 | ||
197 | size = ALIGN(size, sizeof(void *)); | |
198 | align = calculate_alignment(flags, align, size); | |
199 | size = ALIGN(size, align); | |
37540008 | 200 | flags = kmem_cache_flags(size, flags, name); |
423c929c | 201 | |
c6e28895 GM |
202 | if (flags & SLAB_NEVER_MERGE) |
203 | return NULL; | |
204 | ||
c7094406 | 205 | list_for_each_entry_reverse(s, &slab_caches, list) { |
423c929c JK |
206 | if (slab_unmergeable(s)) |
207 | continue; | |
208 | ||
209 | if (size > s->size) | |
210 | continue; | |
211 | ||
212 | if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME)) | |
213 | continue; | |
214 | /* | |
215 | * Check if alignment is compatible. | |
216 | * Courtesy of Adrian Drzewiecki | |
217 | */ | |
218 | if ((s->size & ~(align - 1)) != s->size) | |
219 | continue; | |
220 | ||
221 | if (s->size - size >= sizeof(void *)) | |
222 | continue; | |
223 | ||
95069ac8 JK |
224 | if (IS_ENABLED(CONFIG_SLAB) && align && |
225 | (align > s->align || s->align % align)) | |
226 | continue; | |
227 | ||
423c929c JK |
228 | return s; |
229 | } | |
230 | return NULL; | |
231 | } | |
232 | ||
c9a77a79 | 233 | static struct kmem_cache *create_cache(const char *name, |
613a5eb5 | 234 | unsigned int object_size, unsigned int align, |
7bbdb81e AD |
235 | slab_flags_t flags, unsigned int useroffset, |
236 | unsigned int usersize, void (*ctor)(void *), | |
9855609b | 237 | struct kmem_cache *root_cache) |
794b1248 VD |
238 | { |
239 | struct kmem_cache *s; | |
240 | int err; | |
241 | ||
8eb8284b DW |
242 | if (WARN_ON(useroffset + usersize > object_size)) |
243 | useroffset = usersize = 0; | |
244 | ||
794b1248 VD |
245 | err = -ENOMEM; |
246 | s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); | |
247 | if (!s) | |
248 | goto out; | |
249 | ||
250 | s->name = name; | |
613a5eb5 | 251 | s->size = s->object_size = object_size; |
794b1248 VD |
252 | s->align = align; |
253 | s->ctor = ctor; | |
8eb8284b DW |
254 | s->useroffset = useroffset; |
255 | s->usersize = usersize; | |
794b1248 | 256 | |
794b1248 VD |
257 | err = __kmem_cache_create(s, flags); |
258 | if (err) | |
259 | goto out_free_cache; | |
260 | ||
261 | s->refcount = 1; | |
262 | list_add(&s->list, &slab_caches); | |
794b1248 VD |
263 | out: |
264 | if (err) | |
265 | return ERR_PTR(err); | |
266 | return s; | |
267 | ||
268 | out_free_cache: | |
7c4da061 | 269 | kmem_cache_free(kmem_cache, s); |
794b1248 VD |
270 | goto out; |
271 | } | |
45906855 | 272 | |
f496990f MR |
273 | /** |
274 | * kmem_cache_create_usercopy - Create a cache with a region suitable | |
275 | * for copying to userspace | |
77be4b13 SK |
276 | * @name: A string which is used in /proc/slabinfo to identify this cache. |
277 | * @size: The size of objects to be created in this cache. | |
278 | * @align: The required alignment for the objects. | |
279 | * @flags: SLAB flags | |
8eb8284b DW |
280 | * @useroffset: Usercopy region offset |
281 | * @usersize: Usercopy region size | |
77be4b13 SK |
282 | * @ctor: A constructor for the objects. |
283 | * | |
77be4b13 SK |
284 | * Cannot be called within a interrupt, but can be interrupted. |
285 | * The @ctor is run when new pages are allocated by the cache. | |
286 | * | |
287 | * The flags are | |
288 | * | |
289 | * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) | |
290 | * to catch references to uninitialised memory. | |
291 | * | |
f496990f | 292 | * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check |
77be4b13 SK |
293 | * for buffer overruns. |
294 | * | |
295 | * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware | |
296 | * cacheline. This can be beneficial if you're counting cycles as closely | |
297 | * as davem. | |
f496990f MR |
298 | * |
299 | * Return: a pointer to the cache on success, NULL on failure. | |
77be4b13 | 300 | */ |
2633d7a0 | 301 | struct kmem_cache * |
f4957d5b AD |
302 | kmem_cache_create_usercopy(const char *name, |
303 | unsigned int size, unsigned int align, | |
7bbdb81e AD |
304 | slab_flags_t flags, |
305 | unsigned int useroffset, unsigned int usersize, | |
8eb8284b | 306 | void (*ctor)(void *)) |
77be4b13 | 307 | { |
40911a79 | 308 | struct kmem_cache *s = NULL; |
3dec16ea | 309 | const char *cache_name; |
3965fc36 | 310 | int err; |
039363f3 | 311 | |
afe0c26d VB |
312 | #ifdef CONFIG_SLUB_DEBUG |
313 | /* | |
314 | * If no slub_debug was enabled globally, the static key is not yet | |
315 | * enabled by setup_slub_debug(). Enable it if the cache is being | |
316 | * created with any of the debugging flags passed explicitly. | |
317 | */ | |
318 | if (flags & SLAB_DEBUG_FLAGS) | |
319 | static_branch_enable(&slub_debug_enabled); | |
320 | #endif | |
321 | ||
77be4b13 | 322 | mutex_lock(&slab_mutex); |
686d550d | 323 | |
794b1248 | 324 | err = kmem_cache_sanity_check(name, size); |
3aa24f51 | 325 | if (err) { |
3965fc36 | 326 | goto out_unlock; |
3aa24f51 | 327 | } |
686d550d | 328 | |
e70954fd TG |
329 | /* Refuse requests with allocator specific flags */ |
330 | if (flags & ~SLAB_FLAGS_PERMITTED) { | |
331 | err = -EINVAL; | |
332 | goto out_unlock; | |
333 | } | |
334 | ||
d8843922 GC |
335 | /* |
336 | * Some allocators will constraint the set of valid flags to a subset | |
337 | * of all flags. We expect them to define CACHE_CREATE_MASK in this | |
338 | * case, and we'll just provide them with a sanitized version of the | |
339 | * passed flags. | |
340 | */ | |
341 | flags &= CACHE_CREATE_MASK; | |
686d550d | 342 | |
8eb8284b DW |
343 | /* Fail closed on bad usersize of useroffset values. */ |
344 | if (WARN_ON(!usersize && useroffset) || | |
345 | WARN_ON(size < usersize || size - usersize < useroffset)) | |
346 | usersize = useroffset = 0; | |
347 | ||
348 | if (!usersize) | |
349 | s = __kmem_cache_alias(name, size, align, flags, ctor); | |
794b1248 | 350 | if (s) |
3965fc36 | 351 | goto out_unlock; |
2633d7a0 | 352 | |
3dec16ea | 353 | cache_name = kstrdup_const(name, GFP_KERNEL); |
794b1248 VD |
354 | if (!cache_name) { |
355 | err = -ENOMEM; | |
356 | goto out_unlock; | |
357 | } | |
7c9adf5a | 358 | |
613a5eb5 | 359 | s = create_cache(cache_name, size, |
c9a77a79 | 360 | calculate_alignment(flags, align, size), |
9855609b | 361 | flags, useroffset, usersize, ctor, NULL); |
794b1248 VD |
362 | if (IS_ERR(s)) { |
363 | err = PTR_ERR(s); | |
3dec16ea | 364 | kfree_const(cache_name); |
794b1248 | 365 | } |
3965fc36 VD |
366 | |
367 | out_unlock: | |
20cea968 | 368 | mutex_unlock(&slab_mutex); |
03afc0e2 | 369 | |
ba3253c7 | 370 | if (err) { |
686d550d | 371 | if (flags & SLAB_PANIC) |
4acaa7d5 | 372 | panic("%s: Failed to create slab '%s'. Error %d\n", |
373 | __func__, name, err); | |
686d550d | 374 | else { |
4acaa7d5 | 375 | pr_warn("%s(%s) failed with error %d\n", |
376 | __func__, name, err); | |
686d550d CL |
377 | dump_stack(); |
378 | } | |
686d550d CL |
379 | return NULL; |
380 | } | |
039363f3 CL |
381 | return s; |
382 | } | |
8eb8284b DW |
383 | EXPORT_SYMBOL(kmem_cache_create_usercopy); |
384 | ||
f496990f MR |
385 | /** |
386 | * kmem_cache_create - Create a cache. | |
387 | * @name: A string which is used in /proc/slabinfo to identify this cache. | |
388 | * @size: The size of objects to be created in this cache. | |
389 | * @align: The required alignment for the objects. | |
390 | * @flags: SLAB flags | |
391 | * @ctor: A constructor for the objects. | |
392 | * | |
393 | * Cannot be called within a interrupt, but can be interrupted. | |
394 | * The @ctor is run when new pages are allocated by the cache. | |
395 | * | |
396 | * The flags are | |
397 | * | |
398 | * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) | |
399 | * to catch references to uninitialised memory. | |
400 | * | |
401 | * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check | |
402 | * for buffer overruns. | |
403 | * | |
404 | * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware | |
405 | * cacheline. This can be beneficial if you're counting cycles as closely | |
406 | * as davem. | |
407 | * | |
408 | * Return: a pointer to the cache on success, NULL on failure. | |
409 | */ | |
8eb8284b | 410 | struct kmem_cache * |
f4957d5b | 411 | kmem_cache_create(const char *name, unsigned int size, unsigned int align, |
8eb8284b DW |
412 | slab_flags_t flags, void (*ctor)(void *)) |
413 | { | |
6d07d1cd | 414 | return kmem_cache_create_usercopy(name, size, align, flags, 0, 0, |
8eb8284b DW |
415 | ctor); |
416 | } | |
794b1248 | 417 | EXPORT_SYMBOL(kmem_cache_create); |
2633d7a0 | 418 | |
657dc2f9 | 419 | static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work) |
d5b3cf71 | 420 | { |
657dc2f9 TH |
421 | LIST_HEAD(to_destroy); |
422 | struct kmem_cache *s, *s2; | |
d5b3cf71 | 423 | |
657dc2f9 | 424 | /* |
5f0d5a3a | 425 | * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the |
657dc2f9 | 426 | * @slab_caches_to_rcu_destroy list. The slab pages are freed |
081a06fa | 427 | * through RCU and the associated kmem_cache are dereferenced |
657dc2f9 TH |
428 | * while freeing the pages, so the kmem_caches should be freed only |
429 | * after the pending RCU operations are finished. As rcu_barrier() | |
430 | * is a pretty slow operation, we batch all pending destructions | |
431 | * asynchronously. | |
432 | */ | |
433 | mutex_lock(&slab_mutex); | |
434 | list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy); | |
435 | mutex_unlock(&slab_mutex); | |
d5b3cf71 | 436 | |
657dc2f9 TH |
437 | if (list_empty(&to_destroy)) |
438 | return; | |
439 | ||
440 | rcu_barrier(); | |
441 | ||
442 | list_for_each_entry_safe(s, s2, &to_destroy, list) { | |
64dd6849 | 443 | debugfs_slab_release(s); |
d3fb45f3 | 444 | kfence_shutdown_cache(s); |
657dc2f9 TH |
445 | #ifdef SLAB_SUPPORTS_SYSFS |
446 | sysfs_slab_release(s); | |
447 | #else | |
448 | slab_kmem_cache_release(s); | |
449 | #endif | |
450 | } | |
d5b3cf71 VD |
451 | } |
452 | ||
657dc2f9 | 453 | static int shutdown_cache(struct kmem_cache *s) |
d5b3cf71 | 454 | { |
f9fa1d91 GT |
455 | /* free asan quarantined objects */ |
456 | kasan_cache_shutdown(s); | |
457 | ||
657dc2f9 TH |
458 | if (__kmem_cache_shutdown(s) != 0) |
459 | return -EBUSY; | |
d5b3cf71 | 460 | |
657dc2f9 | 461 | list_del(&s->list); |
d5b3cf71 | 462 | |
5f0d5a3a | 463 | if (s->flags & SLAB_TYPESAFE_BY_RCU) { |
d50d82fa MP |
464 | #ifdef SLAB_SUPPORTS_SYSFS |
465 | sysfs_slab_unlink(s); | |
466 | #endif | |
657dc2f9 TH |
467 | list_add_tail(&s->list, &slab_caches_to_rcu_destroy); |
468 | schedule_work(&slab_caches_to_rcu_destroy_work); | |
469 | } else { | |
d3fb45f3 | 470 | kfence_shutdown_cache(s); |
64dd6849 | 471 | debugfs_slab_release(s); |
d5b3cf71 | 472 | #ifdef SLAB_SUPPORTS_SYSFS |
d50d82fa | 473 | sysfs_slab_unlink(s); |
bf5eb3de | 474 | sysfs_slab_release(s); |
d5b3cf71 VD |
475 | #else |
476 | slab_kmem_cache_release(s); | |
477 | #endif | |
478 | } | |
657dc2f9 TH |
479 | |
480 | return 0; | |
d5b3cf71 VD |
481 | } |
482 | ||
41a21285 CL |
483 | void slab_kmem_cache_release(struct kmem_cache *s) |
484 | { | |
52b4b950 | 485 | __kmem_cache_release(s); |
3dec16ea | 486 | kfree_const(s->name); |
41a21285 CL |
487 | kmem_cache_free(kmem_cache, s); |
488 | } | |
489 | ||
945cf2b6 CL |
490 | void kmem_cache_destroy(struct kmem_cache *s) |
491 | { | |
bed0a9b5 | 492 | if (unlikely(!s) || !kasan_check_byte(s)) |
3942d299 SS |
493 | return; |
494 | ||
5a836bf6 | 495 | cpus_read_lock(); |
945cf2b6 | 496 | mutex_lock(&slab_mutex); |
b8529907 | 497 | |
945cf2b6 | 498 | s->refcount--; |
b8529907 VD |
499 | if (s->refcount) |
500 | goto out_unlock; | |
501 | ||
7302e91f ME |
502 | WARN(shutdown_cache(s), |
503 | "%s %s: Slab cache still has objects when called from %pS", | |
504 | __func__, s->name, (void *)_RET_IP_); | |
b8529907 VD |
505 | out_unlock: |
506 | mutex_unlock(&slab_mutex); | |
5a836bf6 | 507 | cpus_read_unlock(); |
945cf2b6 CL |
508 | } |
509 | EXPORT_SYMBOL(kmem_cache_destroy); | |
510 | ||
03afc0e2 VD |
511 | /** |
512 | * kmem_cache_shrink - Shrink a cache. | |
513 | * @cachep: The cache to shrink. | |
514 | * | |
515 | * Releases as many slabs as possible for a cache. | |
516 | * To help debugging, a zero exit status indicates all slabs were released. | |
a862f68a MR |
517 | * |
518 | * Return: %0 if all slabs were released, non-zero otherwise | |
03afc0e2 VD |
519 | */ |
520 | int kmem_cache_shrink(struct kmem_cache *cachep) | |
521 | { | |
522 | int ret; | |
523 | ||
7e1fa93d | 524 | |
55834c59 | 525 | kasan_cache_shrink(cachep); |
c9fc5864 | 526 | ret = __kmem_cache_shrink(cachep); |
7e1fa93d | 527 | |
03afc0e2 VD |
528 | return ret; |
529 | } | |
530 | EXPORT_SYMBOL(kmem_cache_shrink); | |
531 | ||
fda90124 | 532 | bool slab_is_available(void) |
97d06609 CL |
533 | { |
534 | return slab_state >= UP; | |
535 | } | |
b7454ad3 | 536 | |
5bb1bb35 | 537 | #ifdef CONFIG_PRINTK |
8e7f37f2 PM |
538 | /** |
539 | * kmem_valid_obj - does the pointer reference a valid slab object? | |
540 | * @object: pointer to query. | |
541 | * | |
542 | * Return: %true if the pointer is to a not-yet-freed object from | |
543 | * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer | |
544 | * is to an already-freed object, and %false otherwise. | |
545 | */ | |
546 | bool kmem_valid_obj(void *object) | |
547 | { | |
548 | struct page *page; | |
549 | ||
550 | /* Some arches consider ZERO_SIZE_PTR to be a valid address. */ | |
551 | if (object < (void *)PAGE_SIZE || !virt_addr_valid(object)) | |
552 | return false; | |
553 | page = virt_to_head_page(object); | |
554 | return PageSlab(page); | |
555 | } | |
0d3dd2c8 | 556 | EXPORT_SYMBOL_GPL(kmem_valid_obj); |
8e7f37f2 PM |
557 | |
558 | /** | |
559 | * kmem_dump_obj - Print available slab provenance information | |
560 | * @object: slab object for which to find provenance information. | |
561 | * | |
562 | * This function uses pr_cont(), so that the caller is expected to have | |
563 | * printed out whatever preamble is appropriate. The provenance information | |
564 | * depends on the type of object and on how much debugging is enabled. | |
565 | * For a slab-cache object, the fact that it is a slab object is printed, | |
566 | * and, if available, the slab name, return address, and stack trace from | |
e548eaa1 | 567 | * the allocation and last free path of that object. |
8e7f37f2 PM |
568 | * |
569 | * This function will splat if passed a pointer to a non-slab object. | |
570 | * If you are not sure what type of object you have, you should instead | |
571 | * use mem_dump_obj(). | |
572 | */ | |
573 | void kmem_dump_obj(void *object) | |
574 | { | |
575 | char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc"; | |
576 | int i; | |
577 | struct page *page; | |
578 | unsigned long ptroffset; | |
579 | struct kmem_obj_info kp = { }; | |
580 | ||
581 | if (WARN_ON_ONCE(!virt_addr_valid(object))) | |
582 | return; | |
583 | page = virt_to_head_page(object); | |
584 | if (WARN_ON_ONCE(!PageSlab(page))) { | |
585 | pr_cont(" non-slab memory.\n"); | |
586 | return; | |
587 | } | |
588 | kmem_obj_info(&kp, object, page); | |
589 | if (kp.kp_slab_cache) | |
590 | pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name); | |
591 | else | |
592 | pr_cont(" slab%s", cp); | |
593 | if (kp.kp_objp) | |
594 | pr_cont(" start %px", kp.kp_objp); | |
595 | if (kp.kp_data_offset) | |
596 | pr_cont(" data offset %lu", kp.kp_data_offset); | |
597 | if (kp.kp_objp) { | |
598 | ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset; | |
599 | pr_cont(" pointer offset %lu", ptroffset); | |
600 | } | |
601 | if (kp.kp_slab_cache && kp.kp_slab_cache->usersize) | |
602 | pr_cont(" size %u", kp.kp_slab_cache->usersize); | |
603 | if (kp.kp_ret) | |
604 | pr_cont(" allocated at %pS\n", kp.kp_ret); | |
605 | else | |
606 | pr_cont("\n"); | |
607 | for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) { | |
608 | if (!kp.kp_stack[i]) | |
609 | break; | |
610 | pr_info(" %pS\n", kp.kp_stack[i]); | |
611 | } | |
e548eaa1 MS |
612 | |
613 | if (kp.kp_free_stack[0]) | |
614 | pr_cont(" Free path:\n"); | |
615 | ||
616 | for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) { | |
617 | if (!kp.kp_free_stack[i]) | |
618 | break; | |
619 | pr_info(" %pS\n", kp.kp_free_stack[i]); | |
620 | } | |
621 | ||
8e7f37f2 | 622 | } |
0d3dd2c8 | 623 | EXPORT_SYMBOL_GPL(kmem_dump_obj); |
5bb1bb35 | 624 | #endif |
8e7f37f2 | 625 | |
45530c44 CL |
626 | #ifndef CONFIG_SLOB |
627 | /* Create a cache during boot when no slab services are available yet */ | |
361d575e AD |
628 | void __init create_boot_cache(struct kmem_cache *s, const char *name, |
629 | unsigned int size, slab_flags_t flags, | |
630 | unsigned int useroffset, unsigned int usersize) | |
45530c44 CL |
631 | { |
632 | int err; | |
59bb4798 | 633 | unsigned int align = ARCH_KMALLOC_MINALIGN; |
45530c44 CL |
634 | |
635 | s->name = name; | |
636 | s->size = s->object_size = size; | |
59bb4798 VB |
637 | |
638 | /* | |
639 | * For power of two sizes, guarantee natural alignment for kmalloc | |
640 | * caches, regardless of SL*B debugging options. | |
641 | */ | |
642 | if (is_power_of_2(size)) | |
643 | align = max(align, size); | |
644 | s->align = calculate_alignment(flags, align, size); | |
645 | ||
8eb8284b DW |
646 | s->useroffset = useroffset; |
647 | s->usersize = usersize; | |
f7ce3190 | 648 | |
45530c44 CL |
649 | err = __kmem_cache_create(s, flags); |
650 | ||
651 | if (err) | |
361d575e | 652 | panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n", |
45530c44 CL |
653 | name, size, err); |
654 | ||
655 | s->refcount = -1; /* Exempt from merging for now */ | |
656 | } | |
657 | ||
55de8b9c AD |
658 | struct kmem_cache *__init create_kmalloc_cache(const char *name, |
659 | unsigned int size, slab_flags_t flags, | |
660 | unsigned int useroffset, unsigned int usersize) | |
45530c44 CL |
661 | { |
662 | struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); | |
663 | ||
664 | if (!s) | |
665 | panic("Out of memory when creating slab %s\n", name); | |
666 | ||
6c0c21ad | 667 | create_boot_cache(s, name, size, flags, useroffset, usersize); |
92850134 | 668 | kasan_cache_create_kmalloc(s); |
45530c44 CL |
669 | list_add(&s->list, &slab_caches); |
670 | s->refcount = 1; | |
671 | return s; | |
672 | } | |
673 | ||
cc252eae | 674 | struct kmem_cache * |
a07057dc AB |
675 | kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init = |
676 | { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ }; | |
9425c58e CL |
677 | EXPORT_SYMBOL(kmalloc_caches); |
678 | ||
2c59dd65 CL |
679 | /* |
680 | * Conversion table for small slabs sizes / 8 to the index in the | |
681 | * kmalloc array. This is necessary for slabs < 192 since we have non power | |
682 | * of two cache sizes there. The size of larger slabs can be determined using | |
683 | * fls. | |
684 | */ | |
d5f86655 | 685 | static u8 size_index[24] __ro_after_init = { |
2c59dd65 CL |
686 | 3, /* 8 */ |
687 | 4, /* 16 */ | |
688 | 5, /* 24 */ | |
689 | 5, /* 32 */ | |
690 | 6, /* 40 */ | |
691 | 6, /* 48 */ | |
692 | 6, /* 56 */ | |
693 | 6, /* 64 */ | |
694 | 1, /* 72 */ | |
695 | 1, /* 80 */ | |
696 | 1, /* 88 */ | |
697 | 1, /* 96 */ | |
698 | 7, /* 104 */ | |
699 | 7, /* 112 */ | |
700 | 7, /* 120 */ | |
701 | 7, /* 128 */ | |
702 | 2, /* 136 */ | |
703 | 2, /* 144 */ | |
704 | 2, /* 152 */ | |
705 | 2, /* 160 */ | |
706 | 2, /* 168 */ | |
707 | 2, /* 176 */ | |
708 | 2, /* 184 */ | |
709 | 2 /* 192 */ | |
710 | }; | |
711 | ||
ac914d08 | 712 | static inline unsigned int size_index_elem(unsigned int bytes) |
2c59dd65 CL |
713 | { |
714 | return (bytes - 1) / 8; | |
715 | } | |
716 | ||
717 | /* | |
718 | * Find the kmem_cache structure that serves a given size of | |
719 | * allocation | |
720 | */ | |
721 | struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags) | |
722 | { | |
d5f86655 | 723 | unsigned int index; |
2c59dd65 CL |
724 | |
725 | if (size <= 192) { | |
726 | if (!size) | |
727 | return ZERO_SIZE_PTR; | |
728 | ||
729 | index = size_index[size_index_elem(size)]; | |
61448479 | 730 | } else { |
221d7da6 | 731 | if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE)) |
61448479 | 732 | return NULL; |
2c59dd65 | 733 | index = fls(size - 1); |
61448479 | 734 | } |
2c59dd65 | 735 | |
cc252eae | 736 | return kmalloc_caches[kmalloc_type(flags)][index]; |
2c59dd65 CL |
737 | } |
738 | ||
cb5d9fb3 | 739 | #ifdef CONFIG_ZONE_DMA |
494c1dfe WL |
740 | #define KMALLOC_DMA_NAME(sz) .name[KMALLOC_DMA] = "dma-kmalloc-" #sz, |
741 | #else | |
742 | #define KMALLOC_DMA_NAME(sz) | |
743 | #endif | |
744 | ||
745 | #ifdef CONFIG_MEMCG_KMEM | |
746 | #define KMALLOC_CGROUP_NAME(sz) .name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz, | |
cb5d9fb3 | 747 | #else |
494c1dfe WL |
748 | #define KMALLOC_CGROUP_NAME(sz) |
749 | #endif | |
750 | ||
cb5d9fb3 PL |
751 | #define INIT_KMALLOC_INFO(__size, __short_size) \ |
752 | { \ | |
753 | .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \ | |
754 | .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size, \ | |
494c1dfe WL |
755 | KMALLOC_CGROUP_NAME(__short_size) \ |
756 | KMALLOC_DMA_NAME(__short_size) \ | |
cb5d9fb3 PL |
757 | .size = __size, \ |
758 | } | |
cb5d9fb3 | 759 | |
4066c33d GG |
760 | /* |
761 | * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time. | |
588c7fa0 HY |
762 | * kmalloc_index() supports up to 2^25=32MB, so the final entry of the table is |
763 | * kmalloc-32M. | |
4066c33d | 764 | */ |
af3b5f87 | 765 | const struct kmalloc_info_struct kmalloc_info[] __initconst = { |
cb5d9fb3 PL |
766 | INIT_KMALLOC_INFO(0, 0), |
767 | INIT_KMALLOC_INFO(96, 96), | |
768 | INIT_KMALLOC_INFO(192, 192), | |
769 | INIT_KMALLOC_INFO(8, 8), | |
770 | INIT_KMALLOC_INFO(16, 16), | |
771 | INIT_KMALLOC_INFO(32, 32), | |
772 | INIT_KMALLOC_INFO(64, 64), | |
773 | INIT_KMALLOC_INFO(128, 128), | |
774 | INIT_KMALLOC_INFO(256, 256), | |
775 | INIT_KMALLOC_INFO(512, 512), | |
776 | INIT_KMALLOC_INFO(1024, 1k), | |
777 | INIT_KMALLOC_INFO(2048, 2k), | |
778 | INIT_KMALLOC_INFO(4096, 4k), | |
779 | INIT_KMALLOC_INFO(8192, 8k), | |
780 | INIT_KMALLOC_INFO(16384, 16k), | |
781 | INIT_KMALLOC_INFO(32768, 32k), | |
782 | INIT_KMALLOC_INFO(65536, 64k), | |
783 | INIT_KMALLOC_INFO(131072, 128k), | |
784 | INIT_KMALLOC_INFO(262144, 256k), | |
785 | INIT_KMALLOC_INFO(524288, 512k), | |
786 | INIT_KMALLOC_INFO(1048576, 1M), | |
787 | INIT_KMALLOC_INFO(2097152, 2M), | |
788 | INIT_KMALLOC_INFO(4194304, 4M), | |
789 | INIT_KMALLOC_INFO(8388608, 8M), | |
790 | INIT_KMALLOC_INFO(16777216, 16M), | |
588c7fa0 | 791 | INIT_KMALLOC_INFO(33554432, 32M) |
4066c33d GG |
792 | }; |
793 | ||
f97d5f63 | 794 | /* |
34cc6990 DS |
795 | * Patch up the size_index table if we have strange large alignment |
796 | * requirements for the kmalloc array. This is only the case for | |
797 | * MIPS it seems. The standard arches will not generate any code here. | |
798 | * | |
799 | * Largest permitted alignment is 256 bytes due to the way we | |
800 | * handle the index determination for the smaller caches. | |
801 | * | |
802 | * Make sure that nothing crazy happens if someone starts tinkering | |
803 | * around with ARCH_KMALLOC_MINALIGN | |
f97d5f63 | 804 | */ |
34cc6990 | 805 | void __init setup_kmalloc_cache_index_table(void) |
f97d5f63 | 806 | { |
ac914d08 | 807 | unsigned int i; |
f97d5f63 | 808 | |
2c59dd65 CL |
809 | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || |
810 | (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); | |
811 | ||
812 | for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { | |
ac914d08 | 813 | unsigned int elem = size_index_elem(i); |
2c59dd65 CL |
814 | |
815 | if (elem >= ARRAY_SIZE(size_index)) | |
816 | break; | |
817 | size_index[elem] = KMALLOC_SHIFT_LOW; | |
818 | } | |
819 | ||
820 | if (KMALLOC_MIN_SIZE >= 64) { | |
821 | /* | |
822 | * The 96 byte size cache is not used if the alignment | |
823 | * is 64 byte. | |
824 | */ | |
825 | for (i = 64 + 8; i <= 96; i += 8) | |
826 | size_index[size_index_elem(i)] = 7; | |
827 | ||
828 | } | |
829 | ||
830 | if (KMALLOC_MIN_SIZE >= 128) { | |
831 | /* | |
832 | * The 192 byte sized cache is not used if the alignment | |
833 | * is 128 byte. Redirect kmalloc to use the 256 byte cache | |
834 | * instead. | |
835 | */ | |
836 | for (i = 128 + 8; i <= 192; i += 8) | |
837 | size_index[size_index_elem(i)] = 8; | |
838 | } | |
34cc6990 DS |
839 | } |
840 | ||
1291523f | 841 | static void __init |
13657d0a | 842 | new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags) |
a9730fca | 843 | { |
494c1dfe | 844 | if (type == KMALLOC_RECLAIM) { |
1291523f | 845 | flags |= SLAB_RECLAIM_ACCOUNT; |
494c1dfe | 846 | } else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) { |
17c17367 | 847 | if (mem_cgroup_kmem_disabled()) { |
494c1dfe WL |
848 | kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx]; |
849 | return; | |
850 | } | |
851 | flags |= SLAB_ACCOUNT; | |
852 | } | |
1291523f | 853 | |
cb5d9fb3 PL |
854 | kmalloc_caches[type][idx] = create_kmalloc_cache( |
855 | kmalloc_info[idx].name[type], | |
6c0c21ad DW |
856 | kmalloc_info[idx].size, flags, 0, |
857 | kmalloc_info[idx].size); | |
13e680fb WL |
858 | |
859 | /* | |
860 | * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for | |
861 | * KMALLOC_NORMAL caches. | |
862 | */ | |
863 | if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL)) | |
864 | kmalloc_caches[type][idx]->refcount = -1; | |
a9730fca CL |
865 | } |
866 | ||
34cc6990 DS |
867 | /* |
868 | * Create the kmalloc array. Some of the regular kmalloc arrays | |
869 | * may already have been created because they were needed to | |
870 | * enable allocations for slab creation. | |
871 | */ | |
d50112ed | 872 | void __init create_kmalloc_caches(slab_flags_t flags) |
34cc6990 | 873 | { |
13657d0a PL |
874 | int i; |
875 | enum kmalloc_cache_type type; | |
34cc6990 | 876 | |
494c1dfe WL |
877 | /* |
878 | * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined | |
879 | */ | |
1291523f VB |
880 | for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) { |
881 | for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) { | |
882 | if (!kmalloc_caches[type][i]) | |
883 | new_kmalloc_cache(i, type, flags); | |
f97d5f63 | 884 | |
1291523f VB |
885 | /* |
886 | * Caches that are not of the two-to-the-power-of size. | |
887 | * These have to be created immediately after the | |
888 | * earlier power of two caches | |
889 | */ | |
890 | if (KMALLOC_MIN_SIZE <= 32 && i == 6 && | |
891 | !kmalloc_caches[type][1]) | |
892 | new_kmalloc_cache(1, type, flags); | |
893 | if (KMALLOC_MIN_SIZE <= 64 && i == 7 && | |
894 | !kmalloc_caches[type][2]) | |
895 | new_kmalloc_cache(2, type, flags); | |
896 | } | |
8a965b3b CL |
897 | } |
898 | ||
f97d5f63 CL |
899 | /* Kmalloc array is now usable */ |
900 | slab_state = UP; | |
901 | ||
f97d5f63 CL |
902 | #ifdef CONFIG_ZONE_DMA |
903 | for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { | |
cc252eae | 904 | struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i]; |
f97d5f63 CL |
905 | |
906 | if (s) { | |
cc252eae | 907 | kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache( |
cb5d9fb3 | 908 | kmalloc_info[i].name[KMALLOC_DMA], |
dc0a7f75 | 909 | kmalloc_info[i].size, |
49f2d241 VB |
910 | SLAB_CACHE_DMA | flags, 0, |
911 | kmalloc_info[i].size); | |
f97d5f63 CL |
912 | } |
913 | } | |
914 | #endif | |
915 | } | |
45530c44 CL |
916 | #endif /* !CONFIG_SLOB */ |
917 | ||
44405099 LL |
918 | gfp_t kmalloc_fix_flags(gfp_t flags) |
919 | { | |
920 | gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; | |
921 | ||
922 | flags &= ~GFP_SLAB_BUG_MASK; | |
923 | pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", | |
924 | invalid_mask, &invalid_mask, flags, &flags); | |
925 | dump_stack(); | |
926 | ||
927 | return flags; | |
928 | } | |
929 | ||
cea371f4 VD |
930 | /* |
931 | * To avoid unnecessary overhead, we pass through large allocation requests | |
932 | * directly to the page allocator. We use __GFP_COMP, because we will need to | |
933 | * know the allocation order to free the pages properly in kfree. | |
934 | */ | |
52383431 VD |
935 | void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) |
936 | { | |
6a486c0a | 937 | void *ret = NULL; |
52383431 VD |
938 | struct page *page; |
939 | ||
44405099 LL |
940 | if (unlikely(flags & GFP_SLAB_BUG_MASK)) |
941 | flags = kmalloc_fix_flags(flags); | |
942 | ||
52383431 | 943 | flags |= __GFP_COMP; |
4949148a | 944 | page = alloc_pages(flags, order); |
6a486c0a VB |
945 | if (likely(page)) { |
946 | ret = page_address(page); | |
96403bfe MS |
947 | mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, |
948 | PAGE_SIZE << order); | |
6a486c0a | 949 | } |
0116523c | 950 | ret = kasan_kmalloc_large(ret, size, flags); |
a2f77575 | 951 | /* As ret might get tagged, call kmemleak hook after KASAN. */ |
53128245 | 952 | kmemleak_alloc(ret, size, 1, flags); |
52383431 VD |
953 | return ret; |
954 | } | |
955 | EXPORT_SYMBOL(kmalloc_order); | |
956 | ||
f1b6eb6e CL |
957 | #ifdef CONFIG_TRACING |
958 | void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) | |
959 | { | |
960 | void *ret = kmalloc_order(size, flags, order); | |
961 | trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); | |
962 | return ret; | |
963 | } | |
964 | EXPORT_SYMBOL(kmalloc_order_trace); | |
965 | #endif | |
45530c44 | 966 | |
7c00fce9 TG |
967 | #ifdef CONFIG_SLAB_FREELIST_RANDOM |
968 | /* Randomize a generic freelist */ | |
969 | static void freelist_randomize(struct rnd_state *state, unsigned int *list, | |
302d55d5 | 970 | unsigned int count) |
7c00fce9 | 971 | { |
7c00fce9 | 972 | unsigned int rand; |
302d55d5 | 973 | unsigned int i; |
7c00fce9 TG |
974 | |
975 | for (i = 0; i < count; i++) | |
976 | list[i] = i; | |
977 | ||
978 | /* Fisher-Yates shuffle */ | |
979 | for (i = count - 1; i > 0; i--) { | |
980 | rand = prandom_u32_state(state); | |
981 | rand %= (i + 1); | |
982 | swap(list[i], list[rand]); | |
983 | } | |
984 | } | |
985 | ||
986 | /* Create a random sequence per cache */ | |
987 | int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, | |
988 | gfp_t gfp) | |
989 | { | |
990 | struct rnd_state state; | |
991 | ||
992 | if (count < 2 || cachep->random_seq) | |
993 | return 0; | |
994 | ||
995 | cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp); | |
996 | if (!cachep->random_seq) | |
997 | return -ENOMEM; | |
998 | ||
999 | /* Get best entropy at this stage of boot */ | |
1000 | prandom_seed_state(&state, get_random_long()); | |
1001 | ||
1002 | freelist_randomize(&state, cachep->random_seq, count); | |
1003 | return 0; | |
1004 | } | |
1005 | ||
1006 | /* Destroy the per-cache random freelist sequence */ | |
1007 | void cache_random_seq_destroy(struct kmem_cache *cachep) | |
1008 | { | |
1009 | kfree(cachep->random_seq); | |
1010 | cachep->random_seq = NULL; | |
1011 | } | |
1012 | #endif /* CONFIG_SLAB_FREELIST_RANDOM */ | |
1013 | ||
5b365771 | 1014 | #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) |
e9b4db2b | 1015 | #ifdef CONFIG_SLAB |
0825a6f9 | 1016 | #define SLABINFO_RIGHTS (0600) |
e9b4db2b | 1017 | #else |
0825a6f9 | 1018 | #define SLABINFO_RIGHTS (0400) |
e9b4db2b WL |
1019 | #endif |
1020 | ||
b047501c | 1021 | static void print_slabinfo_header(struct seq_file *m) |
bcee6e2a GC |
1022 | { |
1023 | /* | |
1024 | * Output format version, so at least we can change it | |
1025 | * without _too_ many complaints. | |
1026 | */ | |
1027 | #ifdef CONFIG_DEBUG_SLAB | |
1028 | seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); | |
1029 | #else | |
1030 | seq_puts(m, "slabinfo - version: 2.1\n"); | |
1031 | #endif | |
756a025f | 1032 | seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>"); |
bcee6e2a GC |
1033 | seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); |
1034 | seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); | |
1035 | #ifdef CONFIG_DEBUG_SLAB | |
756a025f | 1036 | seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); |
bcee6e2a GC |
1037 | seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); |
1038 | #endif | |
1039 | seq_putc(m, '\n'); | |
1040 | } | |
1041 | ||
c29b5b3d | 1042 | static void *slab_start(struct seq_file *m, loff_t *pos) |
b7454ad3 | 1043 | { |
b7454ad3 | 1044 | mutex_lock(&slab_mutex); |
c7094406 | 1045 | return seq_list_start(&slab_caches, *pos); |
b7454ad3 GC |
1046 | } |
1047 | ||
c29b5b3d | 1048 | static void *slab_next(struct seq_file *m, void *p, loff_t *pos) |
b7454ad3 | 1049 | { |
c7094406 | 1050 | return seq_list_next(p, &slab_caches, pos); |
b7454ad3 GC |
1051 | } |
1052 | ||
c29b5b3d | 1053 | static void slab_stop(struct seq_file *m, void *p) |
b7454ad3 GC |
1054 | { |
1055 | mutex_unlock(&slab_mutex); | |
1056 | } | |
1057 | ||
b047501c | 1058 | static void cache_show(struct kmem_cache *s, struct seq_file *m) |
b7454ad3 | 1059 | { |
0d7561c6 GC |
1060 | struct slabinfo sinfo; |
1061 | ||
1062 | memset(&sinfo, 0, sizeof(sinfo)); | |
1063 | get_slabinfo(s, &sinfo); | |
1064 | ||
1065 | seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", | |
10befea9 | 1066 | s->name, sinfo.active_objs, sinfo.num_objs, s->size, |
0d7561c6 GC |
1067 | sinfo.objects_per_slab, (1 << sinfo.cache_order)); |
1068 | ||
1069 | seq_printf(m, " : tunables %4u %4u %4u", | |
1070 | sinfo.limit, sinfo.batchcount, sinfo.shared); | |
1071 | seq_printf(m, " : slabdata %6lu %6lu %6lu", | |
1072 | sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail); | |
1073 | slabinfo_show_stats(m, s); | |
1074 | seq_putc(m, '\n'); | |
b7454ad3 GC |
1075 | } |
1076 | ||
1df3b26f | 1077 | static int slab_show(struct seq_file *m, void *p) |
749c5415 | 1078 | { |
c7094406 | 1079 | struct kmem_cache *s = list_entry(p, struct kmem_cache, list); |
749c5415 | 1080 | |
c7094406 | 1081 | if (p == slab_caches.next) |
1df3b26f | 1082 | print_slabinfo_header(m); |
10befea9 | 1083 | cache_show(s, m); |
b047501c VD |
1084 | return 0; |
1085 | } | |
1086 | ||
852d8be0 YS |
1087 | void dump_unreclaimable_slab(void) |
1088 | { | |
7714304f | 1089 | struct kmem_cache *s; |
852d8be0 YS |
1090 | struct slabinfo sinfo; |
1091 | ||
1092 | /* | |
1093 | * Here acquiring slab_mutex is risky since we don't prefer to get | |
1094 | * sleep in oom path. But, without mutex hold, it may introduce a | |
1095 | * risk of crash. | |
1096 | * Use mutex_trylock to protect the list traverse, dump nothing | |
1097 | * without acquiring the mutex. | |
1098 | */ | |
1099 | if (!mutex_trylock(&slab_mutex)) { | |
1100 | pr_warn("excessive unreclaimable slab but cannot dump stats\n"); | |
1101 | return; | |
1102 | } | |
1103 | ||
1104 | pr_info("Unreclaimable slab info:\n"); | |
1105 | pr_info("Name Used Total\n"); | |
1106 | ||
7714304f | 1107 | list_for_each_entry(s, &slab_caches, list) { |
10befea9 | 1108 | if (s->flags & SLAB_RECLAIM_ACCOUNT) |
852d8be0 YS |
1109 | continue; |
1110 | ||
1111 | get_slabinfo(s, &sinfo); | |
1112 | ||
1113 | if (sinfo.num_objs > 0) | |
10befea9 | 1114 | pr_info("%-17s %10luKB %10luKB\n", s->name, |
852d8be0 YS |
1115 | (sinfo.active_objs * s->size) / 1024, |
1116 | (sinfo.num_objs * s->size) / 1024); | |
1117 | } | |
1118 | mutex_unlock(&slab_mutex); | |
1119 | } | |
1120 | ||
b7454ad3 GC |
1121 | /* |
1122 | * slabinfo_op - iterator that generates /proc/slabinfo | |
1123 | * | |
1124 | * Output layout: | |
1125 | * cache-name | |
1126 | * num-active-objs | |
1127 | * total-objs | |
1128 | * object size | |
1129 | * num-active-slabs | |
1130 | * total-slabs | |
1131 | * num-pages-per-slab | |
1132 | * + further values on SMP and with statistics enabled | |
1133 | */ | |
1134 | static const struct seq_operations slabinfo_op = { | |
1df3b26f | 1135 | .start = slab_start, |
276a2439 WL |
1136 | .next = slab_next, |
1137 | .stop = slab_stop, | |
1df3b26f | 1138 | .show = slab_show, |
b7454ad3 GC |
1139 | }; |
1140 | ||
1141 | static int slabinfo_open(struct inode *inode, struct file *file) | |
1142 | { | |
1143 | return seq_open(file, &slabinfo_op); | |
1144 | } | |
1145 | ||
97a32539 | 1146 | static const struct proc_ops slabinfo_proc_ops = { |
d919b33d | 1147 | .proc_flags = PROC_ENTRY_PERMANENT, |
97a32539 AD |
1148 | .proc_open = slabinfo_open, |
1149 | .proc_read = seq_read, | |
1150 | .proc_write = slabinfo_write, | |
1151 | .proc_lseek = seq_lseek, | |
1152 | .proc_release = seq_release, | |
b7454ad3 GC |
1153 | }; |
1154 | ||
1155 | static int __init slab_proc_init(void) | |
1156 | { | |
97a32539 | 1157 | proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops); |
b7454ad3 GC |
1158 | return 0; |
1159 | } | |
1160 | module_init(slab_proc_init); | |
fcf8a1e4 | 1161 | |
5b365771 | 1162 | #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */ |
928cec9c AR |
1163 | |
1164 | static __always_inline void *__do_krealloc(const void *p, size_t new_size, | |
1165 | gfp_t flags) | |
1166 | { | |
1167 | void *ret; | |
fa9ba3aa | 1168 | size_t ks; |
928cec9c | 1169 | |
d12d9ad8 AK |
1170 | /* Don't use instrumented ksize to allow precise KASAN poisoning. */ |
1171 | if (likely(!ZERO_OR_NULL_PTR(p))) { | |
1172 | if (!kasan_check_byte(p)) | |
1173 | return NULL; | |
1174 | ks = kfence_ksize(p) ?: __ksize(p); | |
1175 | } else | |
1176 | ks = 0; | |
928cec9c | 1177 | |
d12d9ad8 | 1178 | /* If the object still fits, repoison it precisely. */ |
0316bec2 | 1179 | if (ks >= new_size) { |
0116523c | 1180 | p = kasan_krealloc((void *)p, new_size, flags); |
928cec9c | 1181 | return (void *)p; |
0316bec2 | 1182 | } |
928cec9c AR |
1183 | |
1184 | ret = kmalloc_track_caller(new_size, flags); | |
d12d9ad8 AK |
1185 | if (ret && p) { |
1186 | /* Disable KASAN checks as the object's redzone is accessed. */ | |
1187 | kasan_disable_current(); | |
1188 | memcpy(ret, kasan_reset_tag(p), ks); | |
1189 | kasan_enable_current(); | |
1190 | } | |
928cec9c AR |
1191 | |
1192 | return ret; | |
1193 | } | |
1194 | ||
928cec9c AR |
1195 | /** |
1196 | * krealloc - reallocate memory. The contents will remain unchanged. | |
1197 | * @p: object to reallocate memory for. | |
1198 | * @new_size: how many bytes of memory are required. | |
1199 | * @flags: the type of memory to allocate. | |
1200 | * | |
1201 | * The contents of the object pointed to are preserved up to the | |
15d5de49 BG |
1202 | * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored). |
1203 | * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size | |
1204 | * is 0 and @p is not a %NULL pointer, the object pointed to is freed. | |
a862f68a MR |
1205 | * |
1206 | * Return: pointer to the allocated memory or %NULL in case of error | |
928cec9c AR |
1207 | */ |
1208 | void *krealloc(const void *p, size_t new_size, gfp_t flags) | |
1209 | { | |
1210 | void *ret; | |
1211 | ||
1212 | if (unlikely(!new_size)) { | |
1213 | kfree(p); | |
1214 | return ZERO_SIZE_PTR; | |
1215 | } | |
1216 | ||
1217 | ret = __do_krealloc(p, new_size, flags); | |
772a2fa5 | 1218 | if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret)) |
928cec9c AR |
1219 | kfree(p); |
1220 | ||
1221 | return ret; | |
1222 | } | |
1223 | EXPORT_SYMBOL(krealloc); | |
1224 | ||
1225 | /** | |
453431a5 | 1226 | * kfree_sensitive - Clear sensitive information in memory before freeing |
928cec9c AR |
1227 | * @p: object to free memory of |
1228 | * | |
1229 | * The memory of the object @p points to is zeroed before freed. | |
453431a5 | 1230 | * If @p is %NULL, kfree_sensitive() does nothing. |
928cec9c AR |
1231 | * |
1232 | * Note: this function zeroes the whole allocated buffer which can be a good | |
1233 | * deal bigger than the requested buffer size passed to kmalloc(). So be | |
1234 | * careful when using this function in performance sensitive code. | |
1235 | */ | |
453431a5 | 1236 | void kfree_sensitive(const void *p) |
928cec9c AR |
1237 | { |
1238 | size_t ks; | |
1239 | void *mem = (void *)p; | |
1240 | ||
928cec9c | 1241 | ks = ksize(mem); |
fa9ba3aa WK |
1242 | if (ks) |
1243 | memzero_explicit(mem, ks); | |
928cec9c AR |
1244 | kfree(mem); |
1245 | } | |
453431a5 | 1246 | EXPORT_SYMBOL(kfree_sensitive); |
928cec9c | 1247 | |
10d1f8cb ME |
1248 | /** |
1249 | * ksize - get the actual amount of memory allocated for a given object | |
1250 | * @objp: Pointer to the object | |
1251 | * | |
1252 | * kmalloc may internally round up allocations and return more memory | |
1253 | * than requested. ksize() can be used to determine the actual amount of | |
1254 | * memory allocated. The caller may use this additional memory, even though | |
1255 | * a smaller amount of memory was initially specified with the kmalloc call. | |
1256 | * The caller must guarantee that objp points to a valid object previously | |
1257 | * allocated with either kmalloc() or kmem_cache_alloc(). The object | |
1258 | * must not be freed during the duration of the call. | |
1259 | * | |
1260 | * Return: size of the actual memory used by @objp in bytes | |
1261 | */ | |
1262 | size_t ksize(const void *objp) | |
1263 | { | |
0d4ca4c9 ME |
1264 | size_t size; |
1265 | ||
0d4ca4c9 | 1266 | /* |
611806b4 AK |
1267 | * We need to first check that the pointer to the object is valid, and |
1268 | * only then unpoison the memory. The report printed from ksize() is | |
1269 | * more useful, then when it's printed later when the behaviour could | |
1270 | * be undefined due to a potential use-after-free or double-free. | |
0d4ca4c9 | 1271 | * |
611806b4 AK |
1272 | * We use kasan_check_byte(), which is supported for the hardware |
1273 | * tag-based KASAN mode, unlike kasan_check_read/write(). | |
1274 | * | |
1275 | * If the pointed to memory is invalid, we return 0 to avoid users of | |
0d4ca4c9 ME |
1276 | * ksize() writing to and potentially corrupting the memory region. |
1277 | * | |
1278 | * We want to perform the check before __ksize(), to avoid potentially | |
1279 | * crashing in __ksize() due to accessing invalid metadata. | |
1280 | */ | |
611806b4 | 1281 | if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp)) |
0d4ca4c9 ME |
1282 | return 0; |
1283 | ||
d3fb45f3 | 1284 | size = kfence_ksize(objp) ?: __ksize(objp); |
10d1f8cb ME |
1285 | /* |
1286 | * We assume that ksize callers could use whole allocated area, | |
1287 | * so we need to unpoison this area. | |
1288 | */ | |
cebd0eb2 | 1289 | kasan_unpoison_range(objp, size); |
10d1f8cb ME |
1290 | return size; |
1291 | } | |
1292 | EXPORT_SYMBOL(ksize); | |
1293 | ||
928cec9c AR |
1294 | /* Tracepoints definitions. */ |
1295 | EXPORT_TRACEPOINT_SYMBOL(kmalloc); | |
1296 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc); | |
1297 | EXPORT_TRACEPOINT_SYMBOL(kmalloc_node); | |
1298 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node); | |
1299 | EXPORT_TRACEPOINT_SYMBOL(kfree); | |
1300 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free); | |
4f6923fb HM |
1301 | |
1302 | int should_failslab(struct kmem_cache *s, gfp_t gfpflags) | |
1303 | { | |
1304 | if (__should_failslab(s, gfpflags)) | |
1305 | return -ENOMEM; | |
1306 | return 0; | |
1307 | } | |
1308 | ALLOW_ERROR_INJECTION(should_failslab, ERRNO); |