]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
039363f3 CL |
2 | /* |
3 | * Slab allocator functions that are independent of the allocator strategy | |
4 | * | |
5 | * (C) 2012 Christoph Lameter <[email protected]> | |
6 | */ | |
7 | #include <linux/slab.h> | |
8 | ||
9 | #include <linux/mm.h> | |
10 | #include <linux/poison.h> | |
11 | #include <linux/interrupt.h> | |
12 | #include <linux/memory.h> | |
1c99ba29 | 13 | #include <linux/cache.h> |
039363f3 CL |
14 | #include <linux/compiler.h> |
15 | #include <linux/module.h> | |
20cea968 CL |
16 | #include <linux/cpu.h> |
17 | #include <linux/uaccess.h> | |
b7454ad3 GC |
18 | #include <linux/seq_file.h> |
19 | #include <linux/proc_fs.h> | |
039363f3 CL |
20 | #include <asm/cacheflush.h> |
21 | #include <asm/tlbflush.h> | |
22 | #include <asm/page.h> | |
2633d7a0 | 23 | #include <linux/memcontrol.h> |
928cec9c AR |
24 | |
25 | #define CREATE_TRACE_POINTS | |
f1b6eb6e | 26 | #include <trace/events/kmem.h> |
039363f3 | 27 | |
97d06609 CL |
28 | #include "slab.h" |
29 | ||
30 | enum slab_state slab_state; | |
18004c5d CL |
31 | LIST_HEAD(slab_caches); |
32 | DEFINE_MUTEX(slab_mutex); | |
9b030cb8 | 33 | struct kmem_cache *kmem_cache; |
97d06609 | 34 | |
2d891fbc KC |
35 | #ifdef CONFIG_HARDENED_USERCOPY |
36 | bool usercopy_fallback __ro_after_init = | |
37 | IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK); | |
38 | module_param(usercopy_fallback, bool, 0400); | |
39 | MODULE_PARM_DESC(usercopy_fallback, | |
40 | "WARN instead of reject usercopy whitelist violations"); | |
41 | #endif | |
42 | ||
657dc2f9 TH |
43 | static LIST_HEAD(slab_caches_to_rcu_destroy); |
44 | static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work); | |
45 | static DECLARE_WORK(slab_caches_to_rcu_destroy_work, | |
46 | slab_caches_to_rcu_destroy_workfn); | |
47 | ||
423c929c JK |
48 | /* |
49 | * Set of flags that will prevent slab merging | |
50 | */ | |
51 | #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ | |
5f0d5a3a | 52 | SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \ |
7ed2f9e6 | 53 | SLAB_FAILSLAB | SLAB_KASAN) |
423c929c | 54 | |
230e9fc2 | 55 | #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \ |
75f296d9 | 56 | SLAB_ACCOUNT) |
423c929c JK |
57 | |
58 | /* | |
59 | * Merge control. If this is set then no merging of slab caches will occur. | |
423c929c | 60 | */ |
7660a6fd | 61 | static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT); |
423c929c JK |
62 | |
63 | static int __init setup_slab_nomerge(char *str) | |
64 | { | |
7660a6fd | 65 | slab_nomerge = true; |
423c929c JK |
66 | return 1; |
67 | } | |
68 | ||
69 | #ifdef CONFIG_SLUB | |
70 | __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0); | |
71 | #endif | |
72 | ||
73 | __setup("slab_nomerge", setup_slab_nomerge); | |
74 | ||
07f361b2 JK |
75 | /* |
76 | * Determine the size of a slab object | |
77 | */ | |
78 | unsigned int kmem_cache_size(struct kmem_cache *s) | |
79 | { | |
80 | return s->object_size; | |
81 | } | |
82 | EXPORT_SYMBOL(kmem_cache_size); | |
83 | ||
77be4b13 | 84 | #ifdef CONFIG_DEBUG_VM |
794b1248 | 85 | static int kmem_cache_sanity_check(const char *name, size_t size) |
039363f3 CL |
86 | { |
87 | struct kmem_cache *s = NULL; | |
88 | ||
039363f3 CL |
89 | if (!name || in_interrupt() || size < sizeof(void *) || |
90 | size > KMALLOC_MAX_SIZE) { | |
77be4b13 SK |
91 | pr_err("kmem_cache_create(%s) integrity check failed\n", name); |
92 | return -EINVAL; | |
039363f3 | 93 | } |
b920536a | 94 | |
20cea968 CL |
95 | list_for_each_entry(s, &slab_caches, list) { |
96 | char tmp; | |
97 | int res; | |
98 | ||
99 | /* | |
100 | * This happens when the module gets unloaded and doesn't | |
101 | * destroy its slab cache and no-one else reuses the vmalloc | |
102 | * area of the module. Print a warning. | |
103 | */ | |
104 | res = probe_kernel_address(s->name, tmp); | |
105 | if (res) { | |
77be4b13 | 106 | pr_err("Slab cache with size %d has lost its name\n", |
20cea968 CL |
107 | s->object_size); |
108 | continue; | |
109 | } | |
20cea968 CL |
110 | } |
111 | ||
112 | WARN_ON(strchr(name, ' ')); /* It confuses parsers */ | |
77be4b13 SK |
113 | return 0; |
114 | } | |
115 | #else | |
794b1248 | 116 | static inline int kmem_cache_sanity_check(const char *name, size_t size) |
77be4b13 SK |
117 | { |
118 | return 0; | |
119 | } | |
20cea968 CL |
120 | #endif |
121 | ||
484748f0 CL |
122 | void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p) |
123 | { | |
124 | size_t i; | |
125 | ||
ca257195 JDB |
126 | for (i = 0; i < nr; i++) { |
127 | if (s) | |
128 | kmem_cache_free(s, p[i]); | |
129 | else | |
130 | kfree(p[i]); | |
131 | } | |
484748f0 CL |
132 | } |
133 | ||
865762a8 | 134 | int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr, |
484748f0 CL |
135 | void **p) |
136 | { | |
137 | size_t i; | |
138 | ||
139 | for (i = 0; i < nr; i++) { | |
140 | void *x = p[i] = kmem_cache_alloc(s, flags); | |
141 | if (!x) { | |
142 | __kmem_cache_free_bulk(s, i, p); | |
865762a8 | 143 | return 0; |
484748f0 CL |
144 | } |
145 | } | |
865762a8 | 146 | return i; |
484748f0 CL |
147 | } |
148 | ||
127424c8 | 149 | #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB) |
510ded33 TH |
150 | |
151 | LIST_HEAD(slab_root_caches); | |
152 | ||
f7ce3190 | 153 | void slab_init_memcg_params(struct kmem_cache *s) |
33a690c4 | 154 | { |
9eeadc8b | 155 | s->memcg_params.root_cache = NULL; |
f7ce3190 | 156 | RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL); |
9eeadc8b | 157 | INIT_LIST_HEAD(&s->memcg_params.children); |
f7ce3190 VD |
158 | } |
159 | ||
160 | static int init_memcg_params(struct kmem_cache *s, | |
161 | struct mem_cgroup *memcg, struct kmem_cache *root_cache) | |
162 | { | |
163 | struct memcg_cache_array *arr; | |
33a690c4 | 164 | |
9eeadc8b | 165 | if (root_cache) { |
f7ce3190 | 166 | s->memcg_params.root_cache = root_cache; |
9eeadc8b TH |
167 | s->memcg_params.memcg = memcg; |
168 | INIT_LIST_HEAD(&s->memcg_params.children_node); | |
bc2791f8 | 169 | INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node); |
33a690c4 | 170 | return 0; |
f7ce3190 | 171 | } |
33a690c4 | 172 | |
f7ce3190 | 173 | slab_init_memcg_params(s); |
33a690c4 | 174 | |
f7ce3190 VD |
175 | if (!memcg_nr_cache_ids) |
176 | return 0; | |
33a690c4 | 177 | |
f80c7dab JW |
178 | arr = kvzalloc(sizeof(struct memcg_cache_array) + |
179 | memcg_nr_cache_ids * sizeof(void *), | |
180 | GFP_KERNEL); | |
f7ce3190 VD |
181 | if (!arr) |
182 | return -ENOMEM; | |
33a690c4 | 183 | |
f7ce3190 | 184 | RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr); |
33a690c4 VD |
185 | return 0; |
186 | } | |
187 | ||
f7ce3190 | 188 | static void destroy_memcg_params(struct kmem_cache *s) |
33a690c4 | 189 | { |
f7ce3190 | 190 | if (is_root_cache(s)) |
f80c7dab JW |
191 | kvfree(rcu_access_pointer(s->memcg_params.memcg_caches)); |
192 | } | |
193 | ||
194 | static void free_memcg_params(struct rcu_head *rcu) | |
195 | { | |
196 | struct memcg_cache_array *old; | |
197 | ||
198 | old = container_of(rcu, struct memcg_cache_array, rcu); | |
199 | kvfree(old); | |
33a690c4 VD |
200 | } |
201 | ||
f7ce3190 | 202 | static int update_memcg_params(struct kmem_cache *s, int new_array_size) |
6f817f4c | 203 | { |
f7ce3190 | 204 | struct memcg_cache_array *old, *new; |
6f817f4c | 205 | |
f80c7dab JW |
206 | new = kvzalloc(sizeof(struct memcg_cache_array) + |
207 | new_array_size * sizeof(void *), GFP_KERNEL); | |
f7ce3190 | 208 | if (!new) |
6f817f4c VD |
209 | return -ENOMEM; |
210 | ||
f7ce3190 VD |
211 | old = rcu_dereference_protected(s->memcg_params.memcg_caches, |
212 | lockdep_is_held(&slab_mutex)); | |
213 | if (old) | |
214 | memcpy(new->entries, old->entries, | |
215 | memcg_nr_cache_ids * sizeof(void *)); | |
6f817f4c | 216 | |
f7ce3190 VD |
217 | rcu_assign_pointer(s->memcg_params.memcg_caches, new); |
218 | if (old) | |
f80c7dab | 219 | call_rcu(&old->rcu, free_memcg_params); |
6f817f4c VD |
220 | return 0; |
221 | } | |
222 | ||
55007d84 GC |
223 | int memcg_update_all_caches(int num_memcgs) |
224 | { | |
225 | struct kmem_cache *s; | |
226 | int ret = 0; | |
55007d84 | 227 | |
05257a1a | 228 | mutex_lock(&slab_mutex); |
510ded33 | 229 | list_for_each_entry(s, &slab_root_caches, root_caches_node) { |
f7ce3190 | 230 | ret = update_memcg_params(s, num_memcgs); |
55007d84 | 231 | /* |
55007d84 GC |
232 | * Instead of freeing the memory, we'll just leave the caches |
233 | * up to this point in an updated state. | |
234 | */ | |
235 | if (ret) | |
05257a1a | 236 | break; |
55007d84 | 237 | } |
55007d84 GC |
238 | mutex_unlock(&slab_mutex); |
239 | return ret; | |
240 | } | |
657dc2f9 | 241 | |
510ded33 | 242 | void memcg_link_cache(struct kmem_cache *s) |
657dc2f9 | 243 | { |
510ded33 TH |
244 | if (is_root_cache(s)) { |
245 | list_add(&s->root_caches_node, &slab_root_caches); | |
246 | } else { | |
247 | list_add(&s->memcg_params.children_node, | |
248 | &s->memcg_params.root_cache->memcg_params.children); | |
249 | list_add(&s->memcg_params.kmem_caches_node, | |
250 | &s->memcg_params.memcg->kmem_caches); | |
251 | } | |
252 | } | |
253 | ||
254 | static void memcg_unlink_cache(struct kmem_cache *s) | |
255 | { | |
256 | if (is_root_cache(s)) { | |
257 | list_del(&s->root_caches_node); | |
258 | } else { | |
259 | list_del(&s->memcg_params.children_node); | |
260 | list_del(&s->memcg_params.kmem_caches_node); | |
261 | } | |
657dc2f9 | 262 | } |
33a690c4 | 263 | #else |
f7ce3190 VD |
264 | static inline int init_memcg_params(struct kmem_cache *s, |
265 | struct mem_cgroup *memcg, struct kmem_cache *root_cache) | |
33a690c4 VD |
266 | { |
267 | return 0; | |
268 | } | |
269 | ||
f7ce3190 | 270 | static inline void destroy_memcg_params(struct kmem_cache *s) |
33a690c4 VD |
271 | { |
272 | } | |
657dc2f9 | 273 | |
510ded33 | 274 | static inline void memcg_unlink_cache(struct kmem_cache *s) |
657dc2f9 TH |
275 | { |
276 | } | |
127424c8 | 277 | #endif /* CONFIG_MEMCG && !CONFIG_SLOB */ |
55007d84 | 278 | |
692ae74a BL |
279 | /* |
280 | * Figure out what the alignment of the objects will be given a set of | |
281 | * flags, a user specified alignment and the size of the objects. | |
282 | */ | |
c8630574 | 283 | static unsigned long calculate_alignment(slab_flags_t flags, |
692ae74a BL |
284 | unsigned long align, unsigned long size) |
285 | { | |
286 | /* | |
287 | * If the user wants hardware cache aligned objects then follow that | |
288 | * suggestion if the object is sufficiently large. | |
289 | * | |
290 | * The hardware cache alignment cannot override the specified | |
291 | * alignment though. If that is greater then use it. | |
292 | */ | |
293 | if (flags & SLAB_HWCACHE_ALIGN) { | |
294 | unsigned long ralign; | |
295 | ||
296 | ralign = cache_line_size(); | |
297 | while (size <= ralign / 2) | |
298 | ralign /= 2; | |
299 | align = max(align, ralign); | |
300 | } | |
301 | ||
302 | if (align < ARCH_SLAB_MINALIGN) | |
303 | align = ARCH_SLAB_MINALIGN; | |
304 | ||
305 | return ALIGN(align, sizeof(void *)); | |
306 | } | |
307 | ||
423c929c JK |
308 | /* |
309 | * Find a mergeable slab cache | |
310 | */ | |
311 | int slab_unmergeable(struct kmem_cache *s) | |
312 | { | |
313 | if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE)) | |
314 | return 1; | |
315 | ||
316 | if (!is_root_cache(s)) | |
317 | return 1; | |
318 | ||
319 | if (s->ctor) | |
320 | return 1; | |
321 | ||
8eb8284b DW |
322 | if (s->usersize) |
323 | return 1; | |
324 | ||
423c929c JK |
325 | /* |
326 | * We may have set a slab to be unmergeable during bootstrap. | |
327 | */ | |
328 | if (s->refcount < 0) | |
329 | return 1; | |
330 | ||
331 | return 0; | |
332 | } | |
333 | ||
334 | struct kmem_cache *find_mergeable(size_t size, size_t align, | |
d50112ed | 335 | slab_flags_t flags, const char *name, void (*ctor)(void *)) |
423c929c JK |
336 | { |
337 | struct kmem_cache *s; | |
338 | ||
c6e28895 | 339 | if (slab_nomerge) |
423c929c JK |
340 | return NULL; |
341 | ||
342 | if (ctor) | |
343 | return NULL; | |
344 | ||
345 | size = ALIGN(size, sizeof(void *)); | |
346 | align = calculate_alignment(flags, align, size); | |
347 | size = ALIGN(size, align); | |
348 | flags = kmem_cache_flags(size, flags, name, NULL); | |
349 | ||
c6e28895 GM |
350 | if (flags & SLAB_NEVER_MERGE) |
351 | return NULL; | |
352 | ||
510ded33 | 353 | list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) { |
423c929c JK |
354 | if (slab_unmergeable(s)) |
355 | continue; | |
356 | ||
357 | if (size > s->size) | |
358 | continue; | |
359 | ||
360 | if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME)) | |
361 | continue; | |
362 | /* | |
363 | * Check if alignment is compatible. | |
364 | * Courtesy of Adrian Drzewiecki | |
365 | */ | |
366 | if ((s->size & ~(align - 1)) != s->size) | |
367 | continue; | |
368 | ||
369 | if (s->size - size >= sizeof(void *)) | |
370 | continue; | |
371 | ||
95069ac8 JK |
372 | if (IS_ENABLED(CONFIG_SLAB) && align && |
373 | (align > s->align || s->align % align)) | |
374 | continue; | |
375 | ||
423c929c JK |
376 | return s; |
377 | } | |
378 | return NULL; | |
379 | } | |
380 | ||
c9a77a79 VD |
381 | static struct kmem_cache *create_cache(const char *name, |
382 | size_t object_size, size_t size, size_t align, | |
8eb8284b DW |
383 | slab_flags_t flags, size_t useroffset, |
384 | size_t usersize, void (*ctor)(void *), | |
c9a77a79 | 385 | struct mem_cgroup *memcg, struct kmem_cache *root_cache) |
794b1248 VD |
386 | { |
387 | struct kmem_cache *s; | |
388 | int err; | |
389 | ||
8eb8284b DW |
390 | if (WARN_ON(useroffset + usersize > object_size)) |
391 | useroffset = usersize = 0; | |
392 | ||
794b1248 VD |
393 | err = -ENOMEM; |
394 | s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); | |
395 | if (!s) | |
396 | goto out; | |
397 | ||
398 | s->name = name; | |
399 | s->object_size = object_size; | |
400 | s->size = size; | |
401 | s->align = align; | |
402 | s->ctor = ctor; | |
8eb8284b DW |
403 | s->useroffset = useroffset; |
404 | s->usersize = usersize; | |
794b1248 | 405 | |
f7ce3190 | 406 | err = init_memcg_params(s, memcg, root_cache); |
794b1248 VD |
407 | if (err) |
408 | goto out_free_cache; | |
409 | ||
410 | err = __kmem_cache_create(s, flags); | |
411 | if (err) | |
412 | goto out_free_cache; | |
413 | ||
414 | s->refcount = 1; | |
415 | list_add(&s->list, &slab_caches); | |
510ded33 | 416 | memcg_link_cache(s); |
794b1248 VD |
417 | out: |
418 | if (err) | |
419 | return ERR_PTR(err); | |
420 | return s; | |
421 | ||
422 | out_free_cache: | |
f7ce3190 | 423 | destroy_memcg_params(s); |
7c4da061 | 424 | kmem_cache_free(kmem_cache, s); |
794b1248 VD |
425 | goto out; |
426 | } | |
45906855 | 427 | |
77be4b13 | 428 | /* |
8eb8284b | 429 | * kmem_cache_create_usercopy - Create a cache. |
77be4b13 SK |
430 | * @name: A string which is used in /proc/slabinfo to identify this cache. |
431 | * @size: The size of objects to be created in this cache. | |
432 | * @align: The required alignment for the objects. | |
433 | * @flags: SLAB flags | |
8eb8284b DW |
434 | * @useroffset: Usercopy region offset |
435 | * @usersize: Usercopy region size | |
77be4b13 SK |
436 | * @ctor: A constructor for the objects. |
437 | * | |
438 | * Returns a ptr to the cache on success, NULL on failure. | |
439 | * Cannot be called within a interrupt, but can be interrupted. | |
440 | * The @ctor is run when new pages are allocated by the cache. | |
441 | * | |
442 | * The flags are | |
443 | * | |
444 | * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) | |
445 | * to catch references to uninitialised memory. | |
446 | * | |
447 | * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check | |
448 | * for buffer overruns. | |
449 | * | |
450 | * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware | |
451 | * cacheline. This can be beneficial if you're counting cycles as closely | |
452 | * as davem. | |
453 | */ | |
2633d7a0 | 454 | struct kmem_cache * |
8eb8284b DW |
455 | kmem_cache_create_usercopy(const char *name, size_t size, size_t align, |
456 | slab_flags_t flags, size_t useroffset, size_t usersize, | |
457 | void (*ctor)(void *)) | |
77be4b13 | 458 | { |
40911a79 | 459 | struct kmem_cache *s = NULL; |
3dec16ea | 460 | const char *cache_name; |
3965fc36 | 461 | int err; |
039363f3 | 462 | |
77be4b13 | 463 | get_online_cpus(); |
03afc0e2 | 464 | get_online_mems(); |
05257a1a | 465 | memcg_get_cache_ids(); |
03afc0e2 | 466 | |
77be4b13 | 467 | mutex_lock(&slab_mutex); |
686d550d | 468 | |
794b1248 | 469 | err = kmem_cache_sanity_check(name, size); |
3aa24f51 | 470 | if (err) { |
3965fc36 | 471 | goto out_unlock; |
3aa24f51 | 472 | } |
686d550d | 473 | |
e70954fd TG |
474 | /* Refuse requests with allocator specific flags */ |
475 | if (flags & ~SLAB_FLAGS_PERMITTED) { | |
476 | err = -EINVAL; | |
477 | goto out_unlock; | |
478 | } | |
479 | ||
d8843922 GC |
480 | /* |
481 | * Some allocators will constraint the set of valid flags to a subset | |
482 | * of all flags. We expect them to define CACHE_CREATE_MASK in this | |
483 | * case, and we'll just provide them with a sanitized version of the | |
484 | * passed flags. | |
485 | */ | |
486 | flags &= CACHE_CREATE_MASK; | |
686d550d | 487 | |
8eb8284b DW |
488 | /* Fail closed on bad usersize of useroffset values. */ |
489 | if (WARN_ON(!usersize && useroffset) || | |
490 | WARN_ON(size < usersize || size - usersize < useroffset)) | |
491 | usersize = useroffset = 0; | |
492 | ||
493 | if (!usersize) | |
494 | s = __kmem_cache_alias(name, size, align, flags, ctor); | |
794b1248 | 495 | if (s) |
3965fc36 | 496 | goto out_unlock; |
2633d7a0 | 497 | |
3dec16ea | 498 | cache_name = kstrdup_const(name, GFP_KERNEL); |
794b1248 VD |
499 | if (!cache_name) { |
500 | err = -ENOMEM; | |
501 | goto out_unlock; | |
502 | } | |
7c9adf5a | 503 | |
c9a77a79 VD |
504 | s = create_cache(cache_name, size, size, |
505 | calculate_alignment(flags, align, size), | |
8eb8284b | 506 | flags, useroffset, usersize, ctor, NULL, NULL); |
794b1248 VD |
507 | if (IS_ERR(s)) { |
508 | err = PTR_ERR(s); | |
3dec16ea | 509 | kfree_const(cache_name); |
794b1248 | 510 | } |
3965fc36 VD |
511 | |
512 | out_unlock: | |
20cea968 | 513 | mutex_unlock(&slab_mutex); |
03afc0e2 | 514 | |
05257a1a | 515 | memcg_put_cache_ids(); |
03afc0e2 | 516 | put_online_mems(); |
20cea968 CL |
517 | put_online_cpus(); |
518 | ||
ba3253c7 | 519 | if (err) { |
686d550d CL |
520 | if (flags & SLAB_PANIC) |
521 | panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n", | |
522 | name, err); | |
523 | else { | |
1170532b | 524 | pr_warn("kmem_cache_create(%s) failed with error %d\n", |
686d550d CL |
525 | name, err); |
526 | dump_stack(); | |
527 | } | |
686d550d CL |
528 | return NULL; |
529 | } | |
039363f3 CL |
530 | return s; |
531 | } | |
8eb8284b DW |
532 | EXPORT_SYMBOL(kmem_cache_create_usercopy); |
533 | ||
534 | struct kmem_cache * | |
535 | kmem_cache_create(const char *name, size_t size, size_t align, | |
536 | slab_flags_t flags, void (*ctor)(void *)) | |
537 | { | |
6d07d1cd | 538 | return kmem_cache_create_usercopy(name, size, align, flags, 0, 0, |
8eb8284b DW |
539 | ctor); |
540 | } | |
794b1248 | 541 | EXPORT_SYMBOL(kmem_cache_create); |
2633d7a0 | 542 | |
657dc2f9 | 543 | static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work) |
d5b3cf71 | 544 | { |
657dc2f9 TH |
545 | LIST_HEAD(to_destroy); |
546 | struct kmem_cache *s, *s2; | |
d5b3cf71 | 547 | |
657dc2f9 | 548 | /* |
5f0d5a3a | 549 | * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the |
657dc2f9 TH |
550 | * @slab_caches_to_rcu_destroy list. The slab pages are freed |
551 | * through RCU and and the associated kmem_cache are dereferenced | |
552 | * while freeing the pages, so the kmem_caches should be freed only | |
553 | * after the pending RCU operations are finished. As rcu_barrier() | |
554 | * is a pretty slow operation, we batch all pending destructions | |
555 | * asynchronously. | |
556 | */ | |
557 | mutex_lock(&slab_mutex); | |
558 | list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy); | |
559 | mutex_unlock(&slab_mutex); | |
d5b3cf71 | 560 | |
657dc2f9 TH |
561 | if (list_empty(&to_destroy)) |
562 | return; | |
563 | ||
564 | rcu_barrier(); | |
565 | ||
566 | list_for_each_entry_safe(s, s2, &to_destroy, list) { | |
567 | #ifdef SLAB_SUPPORTS_SYSFS | |
568 | sysfs_slab_release(s); | |
569 | #else | |
570 | slab_kmem_cache_release(s); | |
571 | #endif | |
572 | } | |
d5b3cf71 VD |
573 | } |
574 | ||
657dc2f9 | 575 | static int shutdown_cache(struct kmem_cache *s) |
d5b3cf71 | 576 | { |
f9fa1d91 GT |
577 | /* free asan quarantined objects */ |
578 | kasan_cache_shutdown(s); | |
579 | ||
657dc2f9 TH |
580 | if (__kmem_cache_shutdown(s) != 0) |
581 | return -EBUSY; | |
d5b3cf71 | 582 | |
510ded33 | 583 | memcg_unlink_cache(s); |
657dc2f9 | 584 | list_del(&s->list); |
d5b3cf71 | 585 | |
5f0d5a3a | 586 | if (s->flags & SLAB_TYPESAFE_BY_RCU) { |
657dc2f9 TH |
587 | list_add_tail(&s->list, &slab_caches_to_rcu_destroy); |
588 | schedule_work(&slab_caches_to_rcu_destroy_work); | |
589 | } else { | |
d5b3cf71 | 590 | #ifdef SLAB_SUPPORTS_SYSFS |
bf5eb3de | 591 | sysfs_slab_release(s); |
d5b3cf71 VD |
592 | #else |
593 | slab_kmem_cache_release(s); | |
594 | #endif | |
595 | } | |
657dc2f9 TH |
596 | |
597 | return 0; | |
d5b3cf71 VD |
598 | } |
599 | ||
127424c8 | 600 | #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB) |
794b1248 | 601 | /* |
776ed0f0 | 602 | * memcg_create_kmem_cache - Create a cache for a memory cgroup. |
794b1248 VD |
603 | * @memcg: The memory cgroup the new cache is for. |
604 | * @root_cache: The parent of the new cache. | |
605 | * | |
606 | * This function attempts to create a kmem cache that will serve allocation | |
607 | * requests going from @memcg to @root_cache. The new cache inherits properties | |
608 | * from its parent. | |
609 | */ | |
d5b3cf71 VD |
610 | void memcg_create_kmem_cache(struct mem_cgroup *memcg, |
611 | struct kmem_cache *root_cache) | |
2633d7a0 | 612 | { |
3e0350a3 | 613 | static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */ |
33398cf2 | 614 | struct cgroup_subsys_state *css = &memcg->css; |
f7ce3190 | 615 | struct memcg_cache_array *arr; |
bd673145 | 616 | struct kmem_cache *s = NULL; |
794b1248 | 617 | char *cache_name; |
f7ce3190 | 618 | int idx; |
794b1248 VD |
619 | |
620 | get_online_cpus(); | |
03afc0e2 VD |
621 | get_online_mems(); |
622 | ||
794b1248 VD |
623 | mutex_lock(&slab_mutex); |
624 | ||
2a4db7eb | 625 | /* |
567e9ab2 | 626 | * The memory cgroup could have been offlined while the cache |
2a4db7eb VD |
627 | * creation work was pending. |
628 | */ | |
b6ecd2de | 629 | if (memcg->kmem_state != KMEM_ONLINE) |
2a4db7eb VD |
630 | goto out_unlock; |
631 | ||
f7ce3190 VD |
632 | idx = memcg_cache_id(memcg); |
633 | arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches, | |
634 | lockdep_is_held(&slab_mutex)); | |
635 | ||
d5b3cf71 VD |
636 | /* |
637 | * Since per-memcg caches are created asynchronously on first | |
638 | * allocation (see memcg_kmem_get_cache()), several threads can try to | |
639 | * create the same cache, but only one of them may succeed. | |
640 | */ | |
f7ce3190 | 641 | if (arr->entries[idx]) |
d5b3cf71 VD |
642 | goto out_unlock; |
643 | ||
f1008365 | 644 | cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf)); |
73f576c0 JW |
645 | cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name, |
646 | css->serial_nr, memcg_name_buf); | |
794b1248 VD |
647 | if (!cache_name) |
648 | goto out_unlock; | |
649 | ||
c9a77a79 VD |
650 | s = create_cache(cache_name, root_cache->object_size, |
651 | root_cache->size, root_cache->align, | |
f773e36d | 652 | root_cache->flags & CACHE_CREATE_MASK, |
8eb8284b | 653 | root_cache->useroffset, root_cache->usersize, |
f773e36d | 654 | root_cache->ctor, memcg, root_cache); |
d5b3cf71 VD |
655 | /* |
656 | * If we could not create a memcg cache, do not complain, because | |
657 | * that's not critical at all as we can always proceed with the root | |
658 | * cache. | |
659 | */ | |
bd673145 | 660 | if (IS_ERR(s)) { |
794b1248 | 661 | kfree(cache_name); |
d5b3cf71 | 662 | goto out_unlock; |
bd673145 | 663 | } |
794b1248 | 664 | |
d5b3cf71 VD |
665 | /* |
666 | * Since readers won't lock (see cache_from_memcg_idx()), we need a | |
667 | * barrier here to ensure nobody will see the kmem_cache partially | |
668 | * initialized. | |
669 | */ | |
670 | smp_wmb(); | |
f7ce3190 | 671 | arr->entries[idx] = s; |
d5b3cf71 | 672 | |
794b1248 VD |
673 | out_unlock: |
674 | mutex_unlock(&slab_mutex); | |
03afc0e2 VD |
675 | |
676 | put_online_mems(); | |
794b1248 | 677 | put_online_cpus(); |
2633d7a0 | 678 | } |
b8529907 | 679 | |
01fb58bc TH |
680 | static void kmemcg_deactivate_workfn(struct work_struct *work) |
681 | { | |
682 | struct kmem_cache *s = container_of(work, struct kmem_cache, | |
683 | memcg_params.deact_work); | |
684 | ||
685 | get_online_cpus(); | |
686 | get_online_mems(); | |
687 | ||
688 | mutex_lock(&slab_mutex); | |
689 | ||
690 | s->memcg_params.deact_fn(s); | |
691 | ||
692 | mutex_unlock(&slab_mutex); | |
693 | ||
694 | put_online_mems(); | |
695 | put_online_cpus(); | |
696 | ||
697 | /* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */ | |
698 | css_put(&s->memcg_params.memcg->css); | |
699 | } | |
700 | ||
701 | static void kmemcg_deactivate_rcufn(struct rcu_head *head) | |
702 | { | |
703 | struct kmem_cache *s = container_of(head, struct kmem_cache, | |
704 | memcg_params.deact_rcu_head); | |
705 | ||
706 | /* | |
707 | * We need to grab blocking locks. Bounce to ->deact_work. The | |
708 | * work item shares the space with the RCU head and can't be | |
709 | * initialized eariler. | |
710 | */ | |
711 | INIT_WORK(&s->memcg_params.deact_work, kmemcg_deactivate_workfn); | |
17cc4dfe | 712 | queue_work(memcg_kmem_cache_wq, &s->memcg_params.deact_work); |
01fb58bc TH |
713 | } |
714 | ||
715 | /** | |
716 | * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a | |
717 | * sched RCU grace period | |
718 | * @s: target kmem_cache | |
719 | * @deact_fn: deactivation function to call | |
720 | * | |
721 | * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex | |
722 | * held after a sched RCU grace period. The slab is guaranteed to stay | |
723 | * alive until @deact_fn is finished. This is to be used from | |
724 | * __kmemcg_cache_deactivate(). | |
725 | */ | |
726 | void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s, | |
727 | void (*deact_fn)(struct kmem_cache *)) | |
728 | { | |
729 | if (WARN_ON_ONCE(is_root_cache(s)) || | |
730 | WARN_ON_ONCE(s->memcg_params.deact_fn)) | |
731 | return; | |
732 | ||
733 | /* pin memcg so that @s doesn't get destroyed in the middle */ | |
734 | css_get(&s->memcg_params.memcg->css); | |
735 | ||
736 | s->memcg_params.deact_fn = deact_fn; | |
737 | call_rcu_sched(&s->memcg_params.deact_rcu_head, kmemcg_deactivate_rcufn); | |
738 | } | |
739 | ||
2a4db7eb VD |
740 | void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg) |
741 | { | |
742 | int idx; | |
743 | struct memcg_cache_array *arr; | |
d6e0b7fa | 744 | struct kmem_cache *s, *c; |
2a4db7eb VD |
745 | |
746 | idx = memcg_cache_id(memcg); | |
747 | ||
d6e0b7fa VD |
748 | get_online_cpus(); |
749 | get_online_mems(); | |
750 | ||
2a4db7eb | 751 | mutex_lock(&slab_mutex); |
510ded33 | 752 | list_for_each_entry(s, &slab_root_caches, root_caches_node) { |
2a4db7eb VD |
753 | arr = rcu_dereference_protected(s->memcg_params.memcg_caches, |
754 | lockdep_is_held(&slab_mutex)); | |
d6e0b7fa VD |
755 | c = arr->entries[idx]; |
756 | if (!c) | |
757 | continue; | |
758 | ||
c9fc5864 | 759 | __kmemcg_cache_deactivate(c); |
2a4db7eb VD |
760 | arr->entries[idx] = NULL; |
761 | } | |
762 | mutex_unlock(&slab_mutex); | |
d6e0b7fa VD |
763 | |
764 | put_online_mems(); | |
765 | put_online_cpus(); | |
2a4db7eb VD |
766 | } |
767 | ||
d5b3cf71 | 768 | void memcg_destroy_kmem_caches(struct mem_cgroup *memcg) |
b8529907 | 769 | { |
d5b3cf71 | 770 | struct kmem_cache *s, *s2; |
b8529907 | 771 | |
d5b3cf71 VD |
772 | get_online_cpus(); |
773 | get_online_mems(); | |
b8529907 | 774 | |
b8529907 | 775 | mutex_lock(&slab_mutex); |
bc2791f8 TH |
776 | list_for_each_entry_safe(s, s2, &memcg->kmem_caches, |
777 | memcg_params.kmem_caches_node) { | |
d5b3cf71 VD |
778 | /* |
779 | * The cgroup is about to be freed and therefore has no charges | |
780 | * left. Hence, all its caches must be empty by now. | |
781 | */ | |
657dc2f9 | 782 | BUG_ON(shutdown_cache(s)); |
d5b3cf71 VD |
783 | } |
784 | mutex_unlock(&slab_mutex); | |
b8529907 | 785 | |
d5b3cf71 VD |
786 | put_online_mems(); |
787 | put_online_cpus(); | |
b8529907 | 788 | } |
d60fdcc9 | 789 | |
657dc2f9 | 790 | static int shutdown_memcg_caches(struct kmem_cache *s) |
d60fdcc9 VD |
791 | { |
792 | struct memcg_cache_array *arr; | |
793 | struct kmem_cache *c, *c2; | |
794 | LIST_HEAD(busy); | |
795 | int i; | |
796 | ||
797 | BUG_ON(!is_root_cache(s)); | |
798 | ||
799 | /* | |
800 | * First, shutdown active caches, i.e. caches that belong to online | |
801 | * memory cgroups. | |
802 | */ | |
803 | arr = rcu_dereference_protected(s->memcg_params.memcg_caches, | |
804 | lockdep_is_held(&slab_mutex)); | |
805 | for_each_memcg_cache_index(i) { | |
806 | c = arr->entries[i]; | |
807 | if (!c) | |
808 | continue; | |
657dc2f9 | 809 | if (shutdown_cache(c)) |
d60fdcc9 VD |
810 | /* |
811 | * The cache still has objects. Move it to a temporary | |
812 | * list so as not to try to destroy it for a second | |
813 | * time while iterating over inactive caches below. | |
814 | */ | |
9eeadc8b | 815 | list_move(&c->memcg_params.children_node, &busy); |
d60fdcc9 VD |
816 | else |
817 | /* | |
818 | * The cache is empty and will be destroyed soon. Clear | |
819 | * the pointer to it in the memcg_caches array so that | |
820 | * it will never be accessed even if the root cache | |
821 | * stays alive. | |
822 | */ | |
823 | arr->entries[i] = NULL; | |
824 | } | |
825 | ||
826 | /* | |
827 | * Second, shutdown all caches left from memory cgroups that are now | |
828 | * offline. | |
829 | */ | |
9eeadc8b TH |
830 | list_for_each_entry_safe(c, c2, &s->memcg_params.children, |
831 | memcg_params.children_node) | |
657dc2f9 | 832 | shutdown_cache(c); |
d60fdcc9 | 833 | |
9eeadc8b | 834 | list_splice(&busy, &s->memcg_params.children); |
d60fdcc9 VD |
835 | |
836 | /* | |
837 | * A cache being destroyed must be empty. In particular, this means | |
838 | * that all per memcg caches attached to it must be empty too. | |
839 | */ | |
9eeadc8b | 840 | if (!list_empty(&s->memcg_params.children)) |
d60fdcc9 VD |
841 | return -EBUSY; |
842 | return 0; | |
843 | } | |
844 | #else | |
657dc2f9 | 845 | static inline int shutdown_memcg_caches(struct kmem_cache *s) |
d60fdcc9 VD |
846 | { |
847 | return 0; | |
848 | } | |
127424c8 | 849 | #endif /* CONFIG_MEMCG && !CONFIG_SLOB */ |
97d06609 | 850 | |
41a21285 CL |
851 | void slab_kmem_cache_release(struct kmem_cache *s) |
852 | { | |
52b4b950 | 853 | __kmem_cache_release(s); |
f7ce3190 | 854 | destroy_memcg_params(s); |
3dec16ea | 855 | kfree_const(s->name); |
41a21285 CL |
856 | kmem_cache_free(kmem_cache, s); |
857 | } | |
858 | ||
945cf2b6 CL |
859 | void kmem_cache_destroy(struct kmem_cache *s) |
860 | { | |
d60fdcc9 | 861 | int err; |
d5b3cf71 | 862 | |
3942d299 SS |
863 | if (unlikely(!s)) |
864 | return; | |
865 | ||
945cf2b6 | 866 | get_online_cpus(); |
03afc0e2 VD |
867 | get_online_mems(); |
868 | ||
945cf2b6 | 869 | mutex_lock(&slab_mutex); |
b8529907 | 870 | |
945cf2b6 | 871 | s->refcount--; |
b8529907 VD |
872 | if (s->refcount) |
873 | goto out_unlock; | |
874 | ||
657dc2f9 | 875 | err = shutdown_memcg_caches(s); |
d60fdcc9 | 876 | if (!err) |
657dc2f9 | 877 | err = shutdown_cache(s); |
b8529907 | 878 | |
cd918c55 | 879 | if (err) { |
756a025f JP |
880 | pr_err("kmem_cache_destroy %s: Slab cache still has objects\n", |
881 | s->name); | |
cd918c55 VD |
882 | dump_stack(); |
883 | } | |
b8529907 VD |
884 | out_unlock: |
885 | mutex_unlock(&slab_mutex); | |
d5b3cf71 | 886 | |
03afc0e2 | 887 | put_online_mems(); |
945cf2b6 CL |
888 | put_online_cpus(); |
889 | } | |
890 | EXPORT_SYMBOL(kmem_cache_destroy); | |
891 | ||
03afc0e2 VD |
892 | /** |
893 | * kmem_cache_shrink - Shrink a cache. | |
894 | * @cachep: The cache to shrink. | |
895 | * | |
896 | * Releases as many slabs as possible for a cache. | |
897 | * To help debugging, a zero exit status indicates all slabs were released. | |
898 | */ | |
899 | int kmem_cache_shrink(struct kmem_cache *cachep) | |
900 | { | |
901 | int ret; | |
902 | ||
903 | get_online_cpus(); | |
904 | get_online_mems(); | |
55834c59 | 905 | kasan_cache_shrink(cachep); |
c9fc5864 | 906 | ret = __kmem_cache_shrink(cachep); |
03afc0e2 VD |
907 | put_online_mems(); |
908 | put_online_cpus(); | |
909 | return ret; | |
910 | } | |
911 | EXPORT_SYMBOL(kmem_cache_shrink); | |
912 | ||
fda90124 | 913 | bool slab_is_available(void) |
97d06609 CL |
914 | { |
915 | return slab_state >= UP; | |
916 | } | |
b7454ad3 | 917 | |
45530c44 CL |
918 | #ifndef CONFIG_SLOB |
919 | /* Create a cache during boot when no slab services are available yet */ | |
361d575e AD |
920 | void __init create_boot_cache(struct kmem_cache *s, const char *name, |
921 | unsigned int size, slab_flags_t flags, | |
922 | unsigned int useroffset, unsigned int usersize) | |
45530c44 CL |
923 | { |
924 | int err; | |
925 | ||
926 | s->name = name; | |
927 | s->size = s->object_size = size; | |
45906855 | 928 | s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size); |
8eb8284b DW |
929 | s->useroffset = useroffset; |
930 | s->usersize = usersize; | |
f7ce3190 VD |
931 | |
932 | slab_init_memcg_params(s); | |
933 | ||
45530c44 CL |
934 | err = __kmem_cache_create(s, flags); |
935 | ||
936 | if (err) | |
361d575e | 937 | panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n", |
45530c44 CL |
938 | name, size, err); |
939 | ||
940 | s->refcount = -1; /* Exempt from merging for now */ | |
941 | } | |
942 | ||
55de8b9c AD |
943 | struct kmem_cache *__init create_kmalloc_cache(const char *name, |
944 | unsigned int size, slab_flags_t flags, | |
945 | unsigned int useroffset, unsigned int usersize) | |
45530c44 CL |
946 | { |
947 | struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); | |
948 | ||
949 | if (!s) | |
950 | panic("Out of memory when creating slab %s\n", name); | |
951 | ||
6c0c21ad | 952 | create_boot_cache(s, name, size, flags, useroffset, usersize); |
45530c44 | 953 | list_add(&s->list, &slab_caches); |
510ded33 | 954 | memcg_link_cache(s); |
45530c44 CL |
955 | s->refcount = 1; |
956 | return s; | |
957 | } | |
958 | ||
1c99ba29 | 959 | struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __ro_after_init; |
9425c58e CL |
960 | EXPORT_SYMBOL(kmalloc_caches); |
961 | ||
962 | #ifdef CONFIG_ZONE_DMA | |
1c99ba29 | 963 | struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1] __ro_after_init; |
9425c58e CL |
964 | EXPORT_SYMBOL(kmalloc_dma_caches); |
965 | #endif | |
966 | ||
2c59dd65 CL |
967 | /* |
968 | * Conversion table for small slabs sizes / 8 to the index in the | |
969 | * kmalloc array. This is necessary for slabs < 192 since we have non power | |
970 | * of two cache sizes there. The size of larger slabs can be determined using | |
971 | * fls. | |
972 | */ | |
1c99ba29 | 973 | static s8 size_index[24] __ro_after_init = { |
2c59dd65 CL |
974 | 3, /* 8 */ |
975 | 4, /* 16 */ | |
976 | 5, /* 24 */ | |
977 | 5, /* 32 */ | |
978 | 6, /* 40 */ | |
979 | 6, /* 48 */ | |
980 | 6, /* 56 */ | |
981 | 6, /* 64 */ | |
982 | 1, /* 72 */ | |
983 | 1, /* 80 */ | |
984 | 1, /* 88 */ | |
985 | 1, /* 96 */ | |
986 | 7, /* 104 */ | |
987 | 7, /* 112 */ | |
988 | 7, /* 120 */ | |
989 | 7, /* 128 */ | |
990 | 2, /* 136 */ | |
991 | 2, /* 144 */ | |
992 | 2, /* 152 */ | |
993 | 2, /* 160 */ | |
994 | 2, /* 168 */ | |
995 | 2, /* 176 */ | |
996 | 2, /* 184 */ | |
997 | 2 /* 192 */ | |
998 | }; | |
999 | ||
1000 | static inline int size_index_elem(size_t bytes) | |
1001 | { | |
1002 | return (bytes - 1) / 8; | |
1003 | } | |
1004 | ||
1005 | /* | |
1006 | * Find the kmem_cache structure that serves a given size of | |
1007 | * allocation | |
1008 | */ | |
1009 | struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags) | |
1010 | { | |
1011 | int index; | |
1012 | ||
9de1bc87 | 1013 | if (unlikely(size > KMALLOC_MAX_SIZE)) { |
907985f4 | 1014 | WARN_ON_ONCE(!(flags & __GFP_NOWARN)); |
6286ae97 | 1015 | return NULL; |
907985f4 | 1016 | } |
6286ae97 | 1017 | |
2c59dd65 CL |
1018 | if (size <= 192) { |
1019 | if (!size) | |
1020 | return ZERO_SIZE_PTR; | |
1021 | ||
1022 | index = size_index[size_index_elem(size)]; | |
1023 | } else | |
1024 | index = fls(size - 1); | |
1025 | ||
1026 | #ifdef CONFIG_ZONE_DMA | |
b1e05416 | 1027 | if (unlikely((flags & GFP_DMA))) |
2c59dd65 CL |
1028 | return kmalloc_dma_caches[index]; |
1029 | ||
1030 | #endif | |
1031 | return kmalloc_caches[index]; | |
1032 | } | |
1033 | ||
4066c33d GG |
1034 | /* |
1035 | * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time. | |
1036 | * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is | |
1037 | * kmalloc-67108864. | |
1038 | */ | |
af3b5f87 | 1039 | const struct kmalloc_info_struct kmalloc_info[] __initconst = { |
4066c33d GG |
1040 | {NULL, 0}, {"kmalloc-96", 96}, |
1041 | {"kmalloc-192", 192}, {"kmalloc-8", 8}, | |
1042 | {"kmalloc-16", 16}, {"kmalloc-32", 32}, | |
1043 | {"kmalloc-64", 64}, {"kmalloc-128", 128}, | |
1044 | {"kmalloc-256", 256}, {"kmalloc-512", 512}, | |
1045 | {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048}, | |
1046 | {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192}, | |
1047 | {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768}, | |
1048 | {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072}, | |
1049 | {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288}, | |
1050 | {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152}, | |
1051 | {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608}, | |
1052 | {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432}, | |
1053 | {"kmalloc-67108864", 67108864} | |
1054 | }; | |
1055 | ||
f97d5f63 | 1056 | /* |
34cc6990 DS |
1057 | * Patch up the size_index table if we have strange large alignment |
1058 | * requirements for the kmalloc array. This is only the case for | |
1059 | * MIPS it seems. The standard arches will not generate any code here. | |
1060 | * | |
1061 | * Largest permitted alignment is 256 bytes due to the way we | |
1062 | * handle the index determination for the smaller caches. | |
1063 | * | |
1064 | * Make sure that nothing crazy happens if someone starts tinkering | |
1065 | * around with ARCH_KMALLOC_MINALIGN | |
f97d5f63 | 1066 | */ |
34cc6990 | 1067 | void __init setup_kmalloc_cache_index_table(void) |
f97d5f63 CL |
1068 | { |
1069 | int i; | |
1070 | ||
2c59dd65 CL |
1071 | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || |
1072 | (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); | |
1073 | ||
1074 | for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { | |
1075 | int elem = size_index_elem(i); | |
1076 | ||
1077 | if (elem >= ARRAY_SIZE(size_index)) | |
1078 | break; | |
1079 | size_index[elem] = KMALLOC_SHIFT_LOW; | |
1080 | } | |
1081 | ||
1082 | if (KMALLOC_MIN_SIZE >= 64) { | |
1083 | /* | |
1084 | * The 96 byte size cache is not used if the alignment | |
1085 | * is 64 byte. | |
1086 | */ | |
1087 | for (i = 64 + 8; i <= 96; i += 8) | |
1088 | size_index[size_index_elem(i)] = 7; | |
1089 | ||
1090 | } | |
1091 | ||
1092 | if (KMALLOC_MIN_SIZE >= 128) { | |
1093 | /* | |
1094 | * The 192 byte sized cache is not used if the alignment | |
1095 | * is 128 byte. Redirect kmalloc to use the 256 byte cache | |
1096 | * instead. | |
1097 | */ | |
1098 | for (i = 128 + 8; i <= 192; i += 8) | |
1099 | size_index[size_index_elem(i)] = 8; | |
1100 | } | |
34cc6990 DS |
1101 | } |
1102 | ||
d50112ed | 1103 | static void __init new_kmalloc_cache(int idx, slab_flags_t flags) |
a9730fca CL |
1104 | { |
1105 | kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name, | |
6c0c21ad DW |
1106 | kmalloc_info[idx].size, flags, 0, |
1107 | kmalloc_info[idx].size); | |
a9730fca CL |
1108 | } |
1109 | ||
34cc6990 DS |
1110 | /* |
1111 | * Create the kmalloc array. Some of the regular kmalloc arrays | |
1112 | * may already have been created because they were needed to | |
1113 | * enable allocations for slab creation. | |
1114 | */ | |
d50112ed | 1115 | void __init create_kmalloc_caches(slab_flags_t flags) |
34cc6990 DS |
1116 | { |
1117 | int i; | |
1118 | ||
a9730fca CL |
1119 | for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) { |
1120 | if (!kmalloc_caches[i]) | |
1121 | new_kmalloc_cache(i, flags); | |
f97d5f63 | 1122 | |
956e46ef | 1123 | /* |
a9730fca CL |
1124 | * Caches that are not of the two-to-the-power-of size. |
1125 | * These have to be created immediately after the | |
1126 | * earlier power of two caches | |
956e46ef | 1127 | */ |
a9730fca CL |
1128 | if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6) |
1129 | new_kmalloc_cache(1, flags); | |
1130 | if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7) | |
1131 | new_kmalloc_cache(2, flags); | |
8a965b3b CL |
1132 | } |
1133 | ||
f97d5f63 CL |
1134 | /* Kmalloc array is now usable */ |
1135 | slab_state = UP; | |
1136 | ||
f97d5f63 CL |
1137 | #ifdef CONFIG_ZONE_DMA |
1138 | for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { | |
1139 | struct kmem_cache *s = kmalloc_caches[i]; | |
1140 | ||
1141 | if (s) { | |
0be70327 | 1142 | unsigned int size = kmalloc_size(i); |
f97d5f63 | 1143 | char *n = kasprintf(GFP_NOWAIT, |
0be70327 | 1144 | "dma-kmalloc-%u", size); |
f97d5f63 CL |
1145 | |
1146 | BUG_ON(!n); | |
1147 | kmalloc_dma_caches[i] = create_kmalloc_cache(n, | |
6c0c21ad | 1148 | size, SLAB_CACHE_DMA | flags, 0, 0); |
f97d5f63 CL |
1149 | } |
1150 | } | |
1151 | #endif | |
1152 | } | |
45530c44 CL |
1153 | #endif /* !CONFIG_SLOB */ |
1154 | ||
cea371f4 VD |
1155 | /* |
1156 | * To avoid unnecessary overhead, we pass through large allocation requests | |
1157 | * directly to the page allocator. We use __GFP_COMP, because we will need to | |
1158 | * know the allocation order to free the pages properly in kfree. | |
1159 | */ | |
52383431 VD |
1160 | void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) |
1161 | { | |
1162 | void *ret; | |
1163 | struct page *page; | |
1164 | ||
1165 | flags |= __GFP_COMP; | |
4949148a | 1166 | page = alloc_pages(flags, order); |
52383431 VD |
1167 | ret = page ? page_address(page) : NULL; |
1168 | kmemleak_alloc(ret, size, 1, flags); | |
505f5dcb | 1169 | kasan_kmalloc_large(ret, size, flags); |
52383431 VD |
1170 | return ret; |
1171 | } | |
1172 | EXPORT_SYMBOL(kmalloc_order); | |
1173 | ||
f1b6eb6e CL |
1174 | #ifdef CONFIG_TRACING |
1175 | void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) | |
1176 | { | |
1177 | void *ret = kmalloc_order(size, flags, order); | |
1178 | trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); | |
1179 | return ret; | |
1180 | } | |
1181 | EXPORT_SYMBOL(kmalloc_order_trace); | |
1182 | #endif | |
45530c44 | 1183 | |
7c00fce9 TG |
1184 | #ifdef CONFIG_SLAB_FREELIST_RANDOM |
1185 | /* Randomize a generic freelist */ | |
1186 | static void freelist_randomize(struct rnd_state *state, unsigned int *list, | |
1187 | size_t count) | |
1188 | { | |
1189 | size_t i; | |
1190 | unsigned int rand; | |
1191 | ||
1192 | for (i = 0; i < count; i++) | |
1193 | list[i] = i; | |
1194 | ||
1195 | /* Fisher-Yates shuffle */ | |
1196 | for (i = count - 1; i > 0; i--) { | |
1197 | rand = prandom_u32_state(state); | |
1198 | rand %= (i + 1); | |
1199 | swap(list[i], list[rand]); | |
1200 | } | |
1201 | } | |
1202 | ||
1203 | /* Create a random sequence per cache */ | |
1204 | int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, | |
1205 | gfp_t gfp) | |
1206 | { | |
1207 | struct rnd_state state; | |
1208 | ||
1209 | if (count < 2 || cachep->random_seq) | |
1210 | return 0; | |
1211 | ||
1212 | cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp); | |
1213 | if (!cachep->random_seq) | |
1214 | return -ENOMEM; | |
1215 | ||
1216 | /* Get best entropy at this stage of boot */ | |
1217 | prandom_seed_state(&state, get_random_long()); | |
1218 | ||
1219 | freelist_randomize(&state, cachep->random_seq, count); | |
1220 | return 0; | |
1221 | } | |
1222 | ||
1223 | /* Destroy the per-cache random freelist sequence */ | |
1224 | void cache_random_seq_destroy(struct kmem_cache *cachep) | |
1225 | { | |
1226 | kfree(cachep->random_seq); | |
1227 | cachep->random_seq = NULL; | |
1228 | } | |
1229 | #endif /* CONFIG_SLAB_FREELIST_RANDOM */ | |
1230 | ||
5b365771 | 1231 | #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) |
e9b4db2b WL |
1232 | #ifdef CONFIG_SLAB |
1233 | #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR) | |
1234 | #else | |
1235 | #define SLABINFO_RIGHTS S_IRUSR | |
1236 | #endif | |
1237 | ||
b047501c | 1238 | static void print_slabinfo_header(struct seq_file *m) |
bcee6e2a GC |
1239 | { |
1240 | /* | |
1241 | * Output format version, so at least we can change it | |
1242 | * without _too_ many complaints. | |
1243 | */ | |
1244 | #ifdef CONFIG_DEBUG_SLAB | |
1245 | seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); | |
1246 | #else | |
1247 | seq_puts(m, "slabinfo - version: 2.1\n"); | |
1248 | #endif | |
756a025f | 1249 | seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>"); |
bcee6e2a GC |
1250 | seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); |
1251 | seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); | |
1252 | #ifdef CONFIG_DEBUG_SLAB | |
756a025f | 1253 | seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); |
bcee6e2a GC |
1254 | seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); |
1255 | #endif | |
1256 | seq_putc(m, '\n'); | |
1257 | } | |
1258 | ||
1df3b26f | 1259 | void *slab_start(struct seq_file *m, loff_t *pos) |
b7454ad3 | 1260 | { |
b7454ad3 | 1261 | mutex_lock(&slab_mutex); |
510ded33 | 1262 | return seq_list_start(&slab_root_caches, *pos); |
b7454ad3 GC |
1263 | } |
1264 | ||
276a2439 | 1265 | void *slab_next(struct seq_file *m, void *p, loff_t *pos) |
b7454ad3 | 1266 | { |
510ded33 | 1267 | return seq_list_next(p, &slab_root_caches, pos); |
b7454ad3 GC |
1268 | } |
1269 | ||
276a2439 | 1270 | void slab_stop(struct seq_file *m, void *p) |
b7454ad3 GC |
1271 | { |
1272 | mutex_unlock(&slab_mutex); | |
1273 | } | |
1274 | ||
749c5415 GC |
1275 | static void |
1276 | memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info) | |
1277 | { | |
1278 | struct kmem_cache *c; | |
1279 | struct slabinfo sinfo; | |
749c5415 GC |
1280 | |
1281 | if (!is_root_cache(s)) | |
1282 | return; | |
1283 | ||
426589f5 | 1284 | for_each_memcg_cache(c, s) { |
749c5415 GC |
1285 | memset(&sinfo, 0, sizeof(sinfo)); |
1286 | get_slabinfo(c, &sinfo); | |
1287 | ||
1288 | info->active_slabs += sinfo.active_slabs; | |
1289 | info->num_slabs += sinfo.num_slabs; | |
1290 | info->shared_avail += sinfo.shared_avail; | |
1291 | info->active_objs += sinfo.active_objs; | |
1292 | info->num_objs += sinfo.num_objs; | |
1293 | } | |
1294 | } | |
1295 | ||
b047501c | 1296 | static void cache_show(struct kmem_cache *s, struct seq_file *m) |
b7454ad3 | 1297 | { |
0d7561c6 GC |
1298 | struct slabinfo sinfo; |
1299 | ||
1300 | memset(&sinfo, 0, sizeof(sinfo)); | |
1301 | get_slabinfo(s, &sinfo); | |
1302 | ||
749c5415 GC |
1303 | memcg_accumulate_slabinfo(s, &sinfo); |
1304 | ||
0d7561c6 | 1305 | seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", |
749c5415 | 1306 | cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size, |
0d7561c6 GC |
1307 | sinfo.objects_per_slab, (1 << sinfo.cache_order)); |
1308 | ||
1309 | seq_printf(m, " : tunables %4u %4u %4u", | |
1310 | sinfo.limit, sinfo.batchcount, sinfo.shared); | |
1311 | seq_printf(m, " : slabdata %6lu %6lu %6lu", | |
1312 | sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail); | |
1313 | slabinfo_show_stats(m, s); | |
1314 | seq_putc(m, '\n'); | |
b7454ad3 GC |
1315 | } |
1316 | ||
1df3b26f | 1317 | static int slab_show(struct seq_file *m, void *p) |
749c5415 | 1318 | { |
510ded33 | 1319 | struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node); |
749c5415 | 1320 | |
510ded33 | 1321 | if (p == slab_root_caches.next) |
1df3b26f | 1322 | print_slabinfo_header(m); |
510ded33 | 1323 | cache_show(s, m); |
b047501c VD |
1324 | return 0; |
1325 | } | |
1326 | ||
852d8be0 YS |
1327 | void dump_unreclaimable_slab(void) |
1328 | { | |
1329 | struct kmem_cache *s, *s2; | |
1330 | struct slabinfo sinfo; | |
1331 | ||
1332 | /* | |
1333 | * Here acquiring slab_mutex is risky since we don't prefer to get | |
1334 | * sleep in oom path. But, without mutex hold, it may introduce a | |
1335 | * risk of crash. | |
1336 | * Use mutex_trylock to protect the list traverse, dump nothing | |
1337 | * without acquiring the mutex. | |
1338 | */ | |
1339 | if (!mutex_trylock(&slab_mutex)) { | |
1340 | pr_warn("excessive unreclaimable slab but cannot dump stats\n"); | |
1341 | return; | |
1342 | } | |
1343 | ||
1344 | pr_info("Unreclaimable slab info:\n"); | |
1345 | pr_info("Name Used Total\n"); | |
1346 | ||
1347 | list_for_each_entry_safe(s, s2, &slab_caches, list) { | |
1348 | if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT)) | |
1349 | continue; | |
1350 | ||
1351 | get_slabinfo(s, &sinfo); | |
1352 | ||
1353 | if (sinfo.num_objs > 0) | |
1354 | pr_info("%-17s %10luKB %10luKB\n", cache_name(s), | |
1355 | (sinfo.active_objs * s->size) / 1024, | |
1356 | (sinfo.num_objs * s->size) / 1024); | |
1357 | } | |
1358 | mutex_unlock(&slab_mutex); | |
1359 | } | |
1360 | ||
5b365771 | 1361 | #if defined(CONFIG_MEMCG) |
bc2791f8 TH |
1362 | void *memcg_slab_start(struct seq_file *m, loff_t *pos) |
1363 | { | |
1364 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | |
1365 | ||
1366 | mutex_lock(&slab_mutex); | |
1367 | return seq_list_start(&memcg->kmem_caches, *pos); | |
1368 | } | |
1369 | ||
1370 | void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos) | |
1371 | { | |
1372 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | |
1373 | ||
1374 | return seq_list_next(p, &memcg->kmem_caches, pos); | |
1375 | } | |
1376 | ||
1377 | void memcg_slab_stop(struct seq_file *m, void *p) | |
1378 | { | |
1379 | mutex_unlock(&slab_mutex); | |
1380 | } | |
1381 | ||
b047501c VD |
1382 | int memcg_slab_show(struct seq_file *m, void *p) |
1383 | { | |
bc2791f8 TH |
1384 | struct kmem_cache *s = list_entry(p, struct kmem_cache, |
1385 | memcg_params.kmem_caches_node); | |
b047501c VD |
1386 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); |
1387 | ||
bc2791f8 | 1388 | if (p == memcg->kmem_caches.next) |
b047501c | 1389 | print_slabinfo_header(m); |
bc2791f8 | 1390 | cache_show(s, m); |
b047501c | 1391 | return 0; |
749c5415 | 1392 | } |
b047501c | 1393 | #endif |
749c5415 | 1394 | |
b7454ad3 GC |
1395 | /* |
1396 | * slabinfo_op - iterator that generates /proc/slabinfo | |
1397 | * | |
1398 | * Output layout: | |
1399 | * cache-name | |
1400 | * num-active-objs | |
1401 | * total-objs | |
1402 | * object size | |
1403 | * num-active-slabs | |
1404 | * total-slabs | |
1405 | * num-pages-per-slab | |
1406 | * + further values on SMP and with statistics enabled | |
1407 | */ | |
1408 | static const struct seq_operations slabinfo_op = { | |
1df3b26f | 1409 | .start = slab_start, |
276a2439 WL |
1410 | .next = slab_next, |
1411 | .stop = slab_stop, | |
1df3b26f | 1412 | .show = slab_show, |
b7454ad3 GC |
1413 | }; |
1414 | ||
1415 | static int slabinfo_open(struct inode *inode, struct file *file) | |
1416 | { | |
1417 | return seq_open(file, &slabinfo_op); | |
1418 | } | |
1419 | ||
1420 | static const struct file_operations proc_slabinfo_operations = { | |
1421 | .open = slabinfo_open, | |
1422 | .read = seq_read, | |
1423 | .write = slabinfo_write, | |
1424 | .llseek = seq_lseek, | |
1425 | .release = seq_release, | |
1426 | }; | |
1427 | ||
1428 | static int __init slab_proc_init(void) | |
1429 | { | |
e9b4db2b WL |
1430 | proc_create("slabinfo", SLABINFO_RIGHTS, NULL, |
1431 | &proc_slabinfo_operations); | |
b7454ad3 GC |
1432 | return 0; |
1433 | } | |
1434 | module_init(slab_proc_init); | |
5b365771 | 1435 | #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */ |
928cec9c AR |
1436 | |
1437 | static __always_inline void *__do_krealloc(const void *p, size_t new_size, | |
1438 | gfp_t flags) | |
1439 | { | |
1440 | void *ret; | |
1441 | size_t ks = 0; | |
1442 | ||
1443 | if (p) | |
1444 | ks = ksize(p); | |
1445 | ||
0316bec2 | 1446 | if (ks >= new_size) { |
505f5dcb | 1447 | kasan_krealloc((void *)p, new_size, flags); |
928cec9c | 1448 | return (void *)p; |
0316bec2 | 1449 | } |
928cec9c AR |
1450 | |
1451 | ret = kmalloc_track_caller(new_size, flags); | |
1452 | if (ret && p) | |
1453 | memcpy(ret, p, ks); | |
1454 | ||
1455 | return ret; | |
1456 | } | |
1457 | ||
1458 | /** | |
1459 | * __krealloc - like krealloc() but don't free @p. | |
1460 | * @p: object to reallocate memory for. | |
1461 | * @new_size: how many bytes of memory are required. | |
1462 | * @flags: the type of memory to allocate. | |
1463 | * | |
1464 | * This function is like krealloc() except it never frees the originally | |
1465 | * allocated buffer. Use this if you don't want to free the buffer immediately | |
1466 | * like, for example, with RCU. | |
1467 | */ | |
1468 | void *__krealloc(const void *p, size_t new_size, gfp_t flags) | |
1469 | { | |
1470 | if (unlikely(!new_size)) | |
1471 | return ZERO_SIZE_PTR; | |
1472 | ||
1473 | return __do_krealloc(p, new_size, flags); | |
1474 | ||
1475 | } | |
1476 | EXPORT_SYMBOL(__krealloc); | |
1477 | ||
1478 | /** | |
1479 | * krealloc - reallocate memory. The contents will remain unchanged. | |
1480 | * @p: object to reallocate memory for. | |
1481 | * @new_size: how many bytes of memory are required. | |
1482 | * @flags: the type of memory to allocate. | |
1483 | * | |
1484 | * The contents of the object pointed to are preserved up to the | |
1485 | * lesser of the new and old sizes. If @p is %NULL, krealloc() | |
1486 | * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a | |
1487 | * %NULL pointer, the object pointed to is freed. | |
1488 | */ | |
1489 | void *krealloc(const void *p, size_t new_size, gfp_t flags) | |
1490 | { | |
1491 | void *ret; | |
1492 | ||
1493 | if (unlikely(!new_size)) { | |
1494 | kfree(p); | |
1495 | return ZERO_SIZE_PTR; | |
1496 | } | |
1497 | ||
1498 | ret = __do_krealloc(p, new_size, flags); | |
1499 | if (ret && p != ret) | |
1500 | kfree(p); | |
1501 | ||
1502 | return ret; | |
1503 | } | |
1504 | EXPORT_SYMBOL(krealloc); | |
1505 | ||
1506 | /** | |
1507 | * kzfree - like kfree but zero memory | |
1508 | * @p: object to free memory of | |
1509 | * | |
1510 | * The memory of the object @p points to is zeroed before freed. | |
1511 | * If @p is %NULL, kzfree() does nothing. | |
1512 | * | |
1513 | * Note: this function zeroes the whole allocated buffer which can be a good | |
1514 | * deal bigger than the requested buffer size passed to kmalloc(). So be | |
1515 | * careful when using this function in performance sensitive code. | |
1516 | */ | |
1517 | void kzfree(const void *p) | |
1518 | { | |
1519 | size_t ks; | |
1520 | void *mem = (void *)p; | |
1521 | ||
1522 | if (unlikely(ZERO_OR_NULL_PTR(mem))) | |
1523 | return; | |
1524 | ks = ksize(mem); | |
1525 | memset(mem, 0, ks); | |
1526 | kfree(mem); | |
1527 | } | |
1528 | EXPORT_SYMBOL(kzfree); | |
1529 | ||
1530 | /* Tracepoints definitions. */ | |
1531 | EXPORT_TRACEPOINT_SYMBOL(kmalloc); | |
1532 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc); | |
1533 | EXPORT_TRACEPOINT_SYMBOL(kmalloc_node); | |
1534 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node); | |
1535 | EXPORT_TRACEPOINT_SYMBOL(kfree); | |
1536 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free); |