]>
Commit | Line | Data |
---|---|---|
81819f0f CL |
1 | /* |
2 | * SLUB: A slab allocator that limits cache line use instead of queuing | |
3 | * objects in per cpu and per node lists. | |
4 | * | |
881db7fb CL |
5 | * The allocator synchronizes using per slab locks or atomic operatios |
6 | * and only uses a centralized lock to manage a pool of partial slabs. | |
81819f0f | 7 | * |
cde53535 | 8 | * (C) 2007 SGI, Christoph Lameter |
881db7fb | 9 | * (C) 2011 Linux Foundation, Christoph Lameter |
81819f0f CL |
10 | */ |
11 | ||
12 | #include <linux/mm.h> | |
1eb5ac64 | 13 | #include <linux/swap.h> /* struct reclaim_state */ |
81819f0f CL |
14 | #include <linux/module.h> |
15 | #include <linux/bit_spinlock.h> | |
16 | #include <linux/interrupt.h> | |
17 | #include <linux/bitops.h> | |
18 | #include <linux/slab.h> | |
97d06609 | 19 | #include "slab.h" |
7b3c3a50 | 20 | #include <linux/proc_fs.h> |
3ac38faa | 21 | #include <linux/notifier.h> |
81819f0f | 22 | #include <linux/seq_file.h> |
5a896d9e | 23 | #include <linux/kmemcheck.h> |
81819f0f CL |
24 | #include <linux/cpu.h> |
25 | #include <linux/cpuset.h> | |
26 | #include <linux/mempolicy.h> | |
27 | #include <linux/ctype.h> | |
3ac7fe5a | 28 | #include <linux/debugobjects.h> |
81819f0f | 29 | #include <linux/kallsyms.h> |
b9049e23 | 30 | #include <linux/memory.h> |
f8bd2258 | 31 | #include <linux/math64.h> |
773ff60e | 32 | #include <linux/fault-inject.h> |
bfa71457 | 33 | #include <linux/stacktrace.h> |
4de900b4 | 34 | #include <linux/prefetch.h> |
2633d7a0 | 35 | #include <linux/memcontrol.h> |
81819f0f | 36 | |
4a92379b RK |
37 | #include <trace/events/kmem.h> |
38 | ||
072bb0aa MG |
39 | #include "internal.h" |
40 | ||
81819f0f CL |
41 | /* |
42 | * Lock order: | |
18004c5d | 43 | * 1. slab_mutex (Global Mutex) |
881db7fb CL |
44 | * 2. node->list_lock |
45 | * 3. slab_lock(page) (Only on some arches and for debugging) | |
81819f0f | 46 | * |
18004c5d | 47 | * slab_mutex |
881db7fb | 48 | * |
18004c5d | 49 | * The role of the slab_mutex is to protect the list of all the slabs |
881db7fb CL |
50 | * and to synchronize major metadata changes to slab cache structures. |
51 | * | |
52 | * The slab_lock is only used for debugging and on arches that do not | |
53 | * have the ability to do a cmpxchg_double. It only protects the second | |
54 | * double word in the page struct. Meaning | |
55 | * A. page->freelist -> List of object free in a page | |
56 | * B. page->counters -> Counters of objects | |
57 | * C. page->frozen -> frozen state | |
58 | * | |
59 | * If a slab is frozen then it is exempt from list management. It is not | |
60 | * on any list. The processor that froze the slab is the one who can | |
61 | * perform list operations on the page. Other processors may put objects | |
62 | * onto the freelist but the processor that froze the slab is the only | |
63 | * one that can retrieve the objects from the page's freelist. | |
81819f0f CL |
64 | * |
65 | * The list_lock protects the partial and full list on each node and | |
66 | * the partial slab counter. If taken then no new slabs may be added or | |
67 | * removed from the lists nor make the number of partial slabs be modified. | |
68 | * (Note that the total number of slabs is an atomic value that may be | |
69 | * modified without taking the list lock). | |
70 | * | |
71 | * The list_lock is a centralized lock and thus we avoid taking it as | |
72 | * much as possible. As long as SLUB does not have to handle partial | |
73 | * slabs, operations can continue without any centralized lock. F.e. | |
74 | * allocating a long series of objects that fill up slabs does not require | |
75 | * the list lock. | |
81819f0f CL |
76 | * Interrupts are disabled during allocation and deallocation in order to |
77 | * make the slab allocator safe to use in the context of an irq. In addition | |
78 | * interrupts are disabled to ensure that the processor does not change | |
79 | * while handling per_cpu slabs, due to kernel preemption. | |
80 | * | |
81 | * SLUB assigns one slab for allocation to each processor. | |
82 | * Allocations only occur from these slabs called cpu slabs. | |
83 | * | |
672bba3a CL |
84 | * Slabs with free elements are kept on a partial list and during regular |
85 | * operations no list for full slabs is used. If an object in a full slab is | |
81819f0f | 86 | * freed then the slab will show up again on the partial lists. |
672bba3a CL |
87 | * We track full slabs for debugging purposes though because otherwise we |
88 | * cannot scan all objects. | |
81819f0f CL |
89 | * |
90 | * Slabs are freed when they become empty. Teardown and setup is | |
91 | * minimal so we rely on the page allocators per cpu caches for | |
92 | * fast frees and allocs. | |
93 | * | |
94 | * Overloading of page flags that are otherwise used for LRU management. | |
95 | * | |
4b6f0750 CL |
96 | * PageActive The slab is frozen and exempt from list processing. |
97 | * This means that the slab is dedicated to a purpose | |
98 | * such as satisfying allocations for a specific | |
99 | * processor. Objects may be freed in the slab while | |
100 | * it is frozen but slab_free will then skip the usual | |
101 | * list operations. It is up to the processor holding | |
102 | * the slab to integrate the slab into the slab lists | |
103 | * when the slab is no longer needed. | |
104 | * | |
105 | * One use of this flag is to mark slabs that are | |
106 | * used for allocations. Then such a slab becomes a cpu | |
107 | * slab. The cpu slab may be equipped with an additional | |
dfb4f096 | 108 | * freelist that allows lockless access to |
894b8788 CL |
109 | * free objects in addition to the regular freelist |
110 | * that requires the slab lock. | |
81819f0f CL |
111 | * |
112 | * PageError Slab requires special handling due to debug | |
113 | * options set. This moves slab handling out of | |
894b8788 | 114 | * the fast path and disables lockless freelists. |
81819f0f CL |
115 | */ |
116 | ||
af537b0a CL |
117 | static inline int kmem_cache_debug(struct kmem_cache *s) |
118 | { | |
5577bd8a | 119 | #ifdef CONFIG_SLUB_DEBUG |
af537b0a | 120 | return unlikely(s->flags & SLAB_DEBUG_FLAGS); |
5577bd8a | 121 | #else |
af537b0a | 122 | return 0; |
5577bd8a | 123 | #endif |
af537b0a | 124 | } |
5577bd8a | 125 | |
345c905d JK |
126 | static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) |
127 | { | |
128 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
129 | return !kmem_cache_debug(s); | |
130 | #else | |
131 | return false; | |
132 | #endif | |
133 | } | |
134 | ||
81819f0f CL |
135 | /* |
136 | * Issues still to be resolved: | |
137 | * | |
81819f0f CL |
138 | * - Support PAGE_ALLOC_DEBUG. Should be easy to do. |
139 | * | |
81819f0f CL |
140 | * - Variable sizing of the per node arrays |
141 | */ | |
142 | ||
143 | /* Enable to test recovery from slab corruption on boot */ | |
144 | #undef SLUB_RESILIENCY_TEST | |
145 | ||
b789ef51 CL |
146 | /* Enable to log cmpxchg failures */ |
147 | #undef SLUB_DEBUG_CMPXCHG | |
148 | ||
2086d26a CL |
149 | /* |
150 | * Mininum number of partial slabs. These will be left on the partial | |
151 | * lists even if they are empty. kmem_cache_shrink may reclaim them. | |
152 | */ | |
76be8950 | 153 | #define MIN_PARTIAL 5 |
e95eed57 | 154 | |
2086d26a CL |
155 | /* |
156 | * Maximum number of desirable partial slabs. | |
157 | * The existence of more partial slabs makes kmem_cache_shrink | |
158 | * sort the partial list by the number of objects in the. | |
159 | */ | |
160 | #define MAX_PARTIAL 10 | |
161 | ||
81819f0f CL |
162 | #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ |
163 | SLAB_POISON | SLAB_STORE_USER) | |
672bba3a | 164 | |
fa5ec8a1 | 165 | /* |
3de47213 DR |
166 | * Debugging flags that require metadata to be stored in the slab. These get |
167 | * disabled when slub_debug=O is used and a cache's min order increases with | |
168 | * metadata. | |
fa5ec8a1 | 169 | */ |
3de47213 | 170 | #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) |
fa5ec8a1 | 171 | |
81819f0f CL |
172 | /* |
173 | * Set of flags that will prevent slab merging | |
174 | */ | |
175 | #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ | |
4c13dd3b DM |
176 | SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \ |
177 | SLAB_FAILSLAB) | |
81819f0f CL |
178 | |
179 | #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ | |
5a896d9e | 180 | SLAB_CACHE_DMA | SLAB_NOTRACK) |
81819f0f | 181 | |
210b5c06 CG |
182 | #define OO_SHIFT 16 |
183 | #define OO_MASK ((1 << OO_SHIFT) - 1) | |
50d5c41c | 184 | #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ |
210b5c06 | 185 | |
81819f0f | 186 | /* Internal SLUB flags */ |
f90ec390 | 187 | #define __OBJECT_POISON 0x80000000UL /* Poison object */ |
b789ef51 | 188 | #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */ |
81819f0f | 189 | |
81819f0f CL |
190 | #ifdef CONFIG_SMP |
191 | static struct notifier_block slab_notifier; | |
192 | #endif | |
193 | ||
02cbc874 CL |
194 | /* |
195 | * Tracking user of a slab. | |
196 | */ | |
d6543e39 | 197 | #define TRACK_ADDRS_COUNT 16 |
02cbc874 | 198 | struct track { |
ce71e27c | 199 | unsigned long addr; /* Called from address */ |
d6543e39 BG |
200 | #ifdef CONFIG_STACKTRACE |
201 | unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ | |
202 | #endif | |
02cbc874 CL |
203 | int cpu; /* Was running on cpu */ |
204 | int pid; /* Pid context */ | |
205 | unsigned long when; /* When did the operation occur */ | |
206 | }; | |
207 | ||
208 | enum track_item { TRACK_ALLOC, TRACK_FREE }; | |
209 | ||
ab4d5ed5 | 210 | #ifdef CONFIG_SYSFS |
81819f0f CL |
211 | static int sysfs_slab_add(struct kmem_cache *); |
212 | static int sysfs_slab_alias(struct kmem_cache *, const char *); | |
213 | static void sysfs_slab_remove(struct kmem_cache *); | |
107dab5c | 214 | static void memcg_propagate_slab_attrs(struct kmem_cache *s); |
81819f0f | 215 | #else |
0c710013 CL |
216 | static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } |
217 | static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) | |
218 | { return 0; } | |
db265eca | 219 | static inline void sysfs_slab_remove(struct kmem_cache *s) { } |
8ff12cfc | 220 | |
107dab5c | 221 | static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } |
81819f0f CL |
222 | #endif |
223 | ||
4fdccdfb | 224 | static inline void stat(const struct kmem_cache *s, enum stat_item si) |
8ff12cfc CL |
225 | { |
226 | #ifdef CONFIG_SLUB_STATS | |
84e554e6 | 227 | __this_cpu_inc(s->cpu_slab->stat[si]); |
8ff12cfc CL |
228 | #endif |
229 | } | |
230 | ||
81819f0f CL |
231 | /******************************************************************** |
232 | * Core slab cache functions | |
233 | *******************************************************************/ | |
234 | ||
81819f0f CL |
235 | static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) |
236 | { | |
81819f0f | 237 | return s->node[node]; |
81819f0f CL |
238 | } |
239 | ||
6446faa2 | 240 | /* Verify that a pointer has an address that is valid within a slab page */ |
02cbc874 CL |
241 | static inline int check_valid_pointer(struct kmem_cache *s, |
242 | struct page *page, const void *object) | |
243 | { | |
244 | void *base; | |
245 | ||
a973e9dd | 246 | if (!object) |
02cbc874 CL |
247 | return 1; |
248 | ||
a973e9dd | 249 | base = page_address(page); |
39b26464 | 250 | if (object < base || object >= base + page->objects * s->size || |
02cbc874 CL |
251 | (object - base) % s->size) { |
252 | return 0; | |
253 | } | |
254 | ||
255 | return 1; | |
256 | } | |
257 | ||
7656c72b CL |
258 | static inline void *get_freepointer(struct kmem_cache *s, void *object) |
259 | { | |
260 | return *(void **)(object + s->offset); | |
261 | } | |
262 | ||
0ad9500e ED |
263 | static void prefetch_freepointer(const struct kmem_cache *s, void *object) |
264 | { | |
265 | prefetch(object + s->offset); | |
266 | } | |
267 | ||
1393d9a1 CL |
268 | static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) |
269 | { | |
270 | void *p; | |
271 | ||
272 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
273 | probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p)); | |
274 | #else | |
275 | p = get_freepointer(s, object); | |
276 | #endif | |
277 | return p; | |
278 | } | |
279 | ||
7656c72b CL |
280 | static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) |
281 | { | |
282 | *(void **)(object + s->offset) = fp; | |
283 | } | |
284 | ||
285 | /* Loop over all objects in a slab */ | |
224a88be CL |
286 | #define for_each_object(__p, __s, __addr, __objects) \ |
287 | for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ | |
7656c72b CL |
288 | __p += (__s)->size) |
289 | ||
7656c72b CL |
290 | /* Determine object index from a given position */ |
291 | static inline int slab_index(void *p, struct kmem_cache *s, void *addr) | |
292 | { | |
293 | return (p - addr) / s->size; | |
294 | } | |
295 | ||
d71f606f MK |
296 | static inline size_t slab_ksize(const struct kmem_cache *s) |
297 | { | |
298 | #ifdef CONFIG_SLUB_DEBUG | |
299 | /* | |
300 | * Debugging requires use of the padding between object | |
301 | * and whatever may come after it. | |
302 | */ | |
303 | if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) | |
3b0efdfa | 304 | return s->object_size; |
d71f606f MK |
305 | |
306 | #endif | |
307 | /* | |
308 | * If we have the need to store the freelist pointer | |
309 | * back there or track user information then we can | |
310 | * only use the space before that information. | |
311 | */ | |
312 | if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) | |
313 | return s->inuse; | |
314 | /* | |
315 | * Else we can use all the padding etc for the allocation | |
316 | */ | |
317 | return s->size; | |
318 | } | |
319 | ||
ab9a0f19 LJ |
320 | static inline int order_objects(int order, unsigned long size, int reserved) |
321 | { | |
322 | return ((PAGE_SIZE << order) - reserved) / size; | |
323 | } | |
324 | ||
834f3d11 | 325 | static inline struct kmem_cache_order_objects oo_make(int order, |
ab9a0f19 | 326 | unsigned long size, int reserved) |
834f3d11 CL |
327 | { |
328 | struct kmem_cache_order_objects x = { | |
ab9a0f19 | 329 | (order << OO_SHIFT) + order_objects(order, size, reserved) |
834f3d11 CL |
330 | }; |
331 | ||
332 | return x; | |
333 | } | |
334 | ||
335 | static inline int oo_order(struct kmem_cache_order_objects x) | |
336 | { | |
210b5c06 | 337 | return x.x >> OO_SHIFT; |
834f3d11 CL |
338 | } |
339 | ||
340 | static inline int oo_objects(struct kmem_cache_order_objects x) | |
341 | { | |
210b5c06 | 342 | return x.x & OO_MASK; |
834f3d11 CL |
343 | } |
344 | ||
881db7fb CL |
345 | /* |
346 | * Per slab locking using the pagelock | |
347 | */ | |
348 | static __always_inline void slab_lock(struct page *page) | |
349 | { | |
350 | bit_spin_lock(PG_locked, &page->flags); | |
351 | } | |
352 | ||
353 | static __always_inline void slab_unlock(struct page *page) | |
354 | { | |
355 | __bit_spin_unlock(PG_locked, &page->flags); | |
356 | } | |
357 | ||
1d07171c CL |
358 | /* Interrupts must be disabled (for the fallback code to work right) */ |
359 | static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, | |
360 | void *freelist_old, unsigned long counters_old, | |
361 | void *freelist_new, unsigned long counters_new, | |
362 | const char *n) | |
363 | { | |
364 | VM_BUG_ON(!irqs_disabled()); | |
2565409f HC |
365 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
366 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | |
1d07171c | 367 | if (s->flags & __CMPXCHG_DOUBLE) { |
cdcd6298 | 368 | if (cmpxchg_double(&page->freelist, &page->counters, |
1d07171c CL |
369 | freelist_old, counters_old, |
370 | freelist_new, counters_new)) | |
371 | return 1; | |
372 | } else | |
373 | #endif | |
374 | { | |
375 | slab_lock(page); | |
376 | if (page->freelist == freelist_old && page->counters == counters_old) { | |
377 | page->freelist = freelist_new; | |
378 | page->counters = counters_new; | |
379 | slab_unlock(page); | |
380 | return 1; | |
381 | } | |
382 | slab_unlock(page); | |
383 | } | |
384 | ||
385 | cpu_relax(); | |
386 | stat(s, CMPXCHG_DOUBLE_FAIL); | |
387 | ||
388 | #ifdef SLUB_DEBUG_CMPXCHG | |
389 | printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name); | |
390 | #endif | |
391 | ||
392 | return 0; | |
393 | } | |
394 | ||
b789ef51 CL |
395 | static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, |
396 | void *freelist_old, unsigned long counters_old, | |
397 | void *freelist_new, unsigned long counters_new, | |
398 | const char *n) | |
399 | { | |
2565409f HC |
400 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
401 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | |
b789ef51 | 402 | if (s->flags & __CMPXCHG_DOUBLE) { |
cdcd6298 | 403 | if (cmpxchg_double(&page->freelist, &page->counters, |
b789ef51 CL |
404 | freelist_old, counters_old, |
405 | freelist_new, counters_new)) | |
406 | return 1; | |
407 | } else | |
408 | #endif | |
409 | { | |
1d07171c CL |
410 | unsigned long flags; |
411 | ||
412 | local_irq_save(flags); | |
881db7fb | 413 | slab_lock(page); |
b789ef51 CL |
414 | if (page->freelist == freelist_old && page->counters == counters_old) { |
415 | page->freelist = freelist_new; | |
416 | page->counters = counters_new; | |
881db7fb | 417 | slab_unlock(page); |
1d07171c | 418 | local_irq_restore(flags); |
b789ef51 CL |
419 | return 1; |
420 | } | |
881db7fb | 421 | slab_unlock(page); |
1d07171c | 422 | local_irq_restore(flags); |
b789ef51 CL |
423 | } |
424 | ||
425 | cpu_relax(); | |
426 | stat(s, CMPXCHG_DOUBLE_FAIL); | |
427 | ||
428 | #ifdef SLUB_DEBUG_CMPXCHG | |
429 | printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name); | |
430 | #endif | |
431 | ||
432 | return 0; | |
433 | } | |
434 | ||
41ecc55b | 435 | #ifdef CONFIG_SLUB_DEBUG |
5f80b13a CL |
436 | /* |
437 | * Determine a map of object in use on a page. | |
438 | * | |
881db7fb | 439 | * Node listlock must be held to guarantee that the page does |
5f80b13a CL |
440 | * not vanish from under us. |
441 | */ | |
442 | static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) | |
443 | { | |
444 | void *p; | |
445 | void *addr = page_address(page); | |
446 | ||
447 | for (p = page->freelist; p; p = get_freepointer(s, p)) | |
448 | set_bit(slab_index(p, s, addr), map); | |
449 | } | |
450 | ||
41ecc55b CL |
451 | /* |
452 | * Debug settings: | |
453 | */ | |
f0630fff CL |
454 | #ifdef CONFIG_SLUB_DEBUG_ON |
455 | static int slub_debug = DEBUG_DEFAULT_FLAGS; | |
456 | #else | |
41ecc55b | 457 | static int slub_debug; |
f0630fff | 458 | #endif |
41ecc55b CL |
459 | |
460 | static char *slub_debug_slabs; | |
fa5ec8a1 | 461 | static int disable_higher_order_debug; |
41ecc55b | 462 | |
81819f0f CL |
463 | /* |
464 | * Object debugging | |
465 | */ | |
466 | static void print_section(char *text, u8 *addr, unsigned int length) | |
467 | { | |
ffc79d28 SAS |
468 | print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, |
469 | length, 1); | |
81819f0f CL |
470 | } |
471 | ||
81819f0f CL |
472 | static struct track *get_track(struct kmem_cache *s, void *object, |
473 | enum track_item alloc) | |
474 | { | |
475 | struct track *p; | |
476 | ||
477 | if (s->offset) | |
478 | p = object + s->offset + sizeof(void *); | |
479 | else | |
480 | p = object + s->inuse; | |
481 | ||
482 | return p + alloc; | |
483 | } | |
484 | ||
485 | static void set_track(struct kmem_cache *s, void *object, | |
ce71e27c | 486 | enum track_item alloc, unsigned long addr) |
81819f0f | 487 | { |
1a00df4a | 488 | struct track *p = get_track(s, object, alloc); |
81819f0f | 489 | |
81819f0f | 490 | if (addr) { |
d6543e39 BG |
491 | #ifdef CONFIG_STACKTRACE |
492 | struct stack_trace trace; | |
493 | int i; | |
494 | ||
495 | trace.nr_entries = 0; | |
496 | trace.max_entries = TRACK_ADDRS_COUNT; | |
497 | trace.entries = p->addrs; | |
498 | trace.skip = 3; | |
499 | save_stack_trace(&trace); | |
500 | ||
501 | /* See rant in lockdep.c */ | |
502 | if (trace.nr_entries != 0 && | |
503 | trace.entries[trace.nr_entries - 1] == ULONG_MAX) | |
504 | trace.nr_entries--; | |
505 | ||
506 | for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) | |
507 | p->addrs[i] = 0; | |
508 | #endif | |
81819f0f CL |
509 | p->addr = addr; |
510 | p->cpu = smp_processor_id(); | |
88e4ccf2 | 511 | p->pid = current->pid; |
81819f0f CL |
512 | p->when = jiffies; |
513 | } else | |
514 | memset(p, 0, sizeof(struct track)); | |
515 | } | |
516 | ||
81819f0f CL |
517 | static void init_tracking(struct kmem_cache *s, void *object) |
518 | { | |
24922684 CL |
519 | if (!(s->flags & SLAB_STORE_USER)) |
520 | return; | |
521 | ||
ce71e27c EGM |
522 | set_track(s, object, TRACK_FREE, 0UL); |
523 | set_track(s, object, TRACK_ALLOC, 0UL); | |
81819f0f CL |
524 | } |
525 | ||
526 | static void print_track(const char *s, struct track *t) | |
527 | { | |
528 | if (!t->addr) | |
529 | return; | |
530 | ||
7daf705f | 531 | printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n", |
ce71e27c | 532 | s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); |
d6543e39 BG |
533 | #ifdef CONFIG_STACKTRACE |
534 | { | |
535 | int i; | |
536 | for (i = 0; i < TRACK_ADDRS_COUNT; i++) | |
537 | if (t->addrs[i]) | |
538 | printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]); | |
539 | else | |
540 | break; | |
541 | } | |
542 | #endif | |
24922684 CL |
543 | } |
544 | ||
545 | static void print_tracking(struct kmem_cache *s, void *object) | |
546 | { | |
547 | if (!(s->flags & SLAB_STORE_USER)) | |
548 | return; | |
549 | ||
550 | print_track("Allocated", get_track(s, object, TRACK_ALLOC)); | |
551 | print_track("Freed", get_track(s, object, TRACK_FREE)); | |
552 | } | |
553 | ||
554 | static void print_page_info(struct page *page) | |
555 | { | |
39b26464 CL |
556 | printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", |
557 | page, page->objects, page->inuse, page->freelist, page->flags); | |
24922684 CL |
558 | |
559 | } | |
560 | ||
561 | static void slab_bug(struct kmem_cache *s, char *fmt, ...) | |
562 | { | |
563 | va_list args; | |
564 | char buf[100]; | |
565 | ||
566 | va_start(args, fmt); | |
567 | vsnprintf(buf, sizeof(buf), fmt, args); | |
568 | va_end(args); | |
569 | printk(KERN_ERR "========================================" | |
570 | "=====================================\n"); | |
265d47e7 | 571 | printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf); |
24922684 CL |
572 | printk(KERN_ERR "----------------------------------------" |
573 | "-------------------------------------\n\n"); | |
645df230 | 574 | |
373d4d09 | 575 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
81819f0f CL |
576 | } |
577 | ||
24922684 CL |
578 | static void slab_fix(struct kmem_cache *s, char *fmt, ...) |
579 | { | |
580 | va_list args; | |
581 | char buf[100]; | |
582 | ||
583 | va_start(args, fmt); | |
584 | vsnprintf(buf, sizeof(buf), fmt, args); | |
585 | va_end(args); | |
586 | printk(KERN_ERR "FIX %s: %s\n", s->name, buf); | |
587 | } | |
588 | ||
589 | static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) | |
81819f0f CL |
590 | { |
591 | unsigned int off; /* Offset of last byte */ | |
a973e9dd | 592 | u8 *addr = page_address(page); |
24922684 CL |
593 | |
594 | print_tracking(s, p); | |
595 | ||
596 | print_page_info(page); | |
597 | ||
598 | printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", | |
599 | p, p - addr, get_freepointer(s, p)); | |
600 | ||
601 | if (p > addr + 16) | |
ffc79d28 | 602 | print_section("Bytes b4 ", p - 16, 16); |
81819f0f | 603 | |
3b0efdfa | 604 | print_section("Object ", p, min_t(unsigned long, s->object_size, |
ffc79d28 | 605 | PAGE_SIZE)); |
81819f0f | 606 | if (s->flags & SLAB_RED_ZONE) |
3b0efdfa CL |
607 | print_section("Redzone ", p + s->object_size, |
608 | s->inuse - s->object_size); | |
81819f0f | 609 | |
81819f0f CL |
610 | if (s->offset) |
611 | off = s->offset + sizeof(void *); | |
612 | else | |
613 | off = s->inuse; | |
614 | ||
24922684 | 615 | if (s->flags & SLAB_STORE_USER) |
81819f0f | 616 | off += 2 * sizeof(struct track); |
81819f0f CL |
617 | |
618 | if (off != s->size) | |
619 | /* Beginning of the filler is the free pointer */ | |
ffc79d28 | 620 | print_section("Padding ", p + off, s->size - off); |
24922684 CL |
621 | |
622 | dump_stack(); | |
81819f0f CL |
623 | } |
624 | ||
625 | static void object_err(struct kmem_cache *s, struct page *page, | |
626 | u8 *object, char *reason) | |
627 | { | |
3dc50637 | 628 | slab_bug(s, "%s", reason); |
24922684 | 629 | print_trailer(s, page, object); |
81819f0f CL |
630 | } |
631 | ||
945cf2b6 | 632 | static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...) |
81819f0f CL |
633 | { |
634 | va_list args; | |
635 | char buf[100]; | |
636 | ||
24922684 CL |
637 | va_start(args, fmt); |
638 | vsnprintf(buf, sizeof(buf), fmt, args); | |
81819f0f | 639 | va_end(args); |
3dc50637 | 640 | slab_bug(s, "%s", buf); |
24922684 | 641 | print_page_info(page); |
81819f0f CL |
642 | dump_stack(); |
643 | } | |
644 | ||
f7cb1933 | 645 | static void init_object(struct kmem_cache *s, void *object, u8 val) |
81819f0f CL |
646 | { |
647 | u8 *p = object; | |
648 | ||
649 | if (s->flags & __OBJECT_POISON) { | |
3b0efdfa CL |
650 | memset(p, POISON_FREE, s->object_size - 1); |
651 | p[s->object_size - 1] = POISON_END; | |
81819f0f CL |
652 | } |
653 | ||
654 | if (s->flags & SLAB_RED_ZONE) | |
3b0efdfa | 655 | memset(p + s->object_size, val, s->inuse - s->object_size); |
81819f0f CL |
656 | } |
657 | ||
24922684 CL |
658 | static void restore_bytes(struct kmem_cache *s, char *message, u8 data, |
659 | void *from, void *to) | |
660 | { | |
661 | slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); | |
662 | memset(from, data, to - from); | |
663 | } | |
664 | ||
665 | static int check_bytes_and_report(struct kmem_cache *s, struct page *page, | |
666 | u8 *object, char *what, | |
06428780 | 667 | u8 *start, unsigned int value, unsigned int bytes) |
24922684 CL |
668 | { |
669 | u8 *fault; | |
670 | u8 *end; | |
671 | ||
79824820 | 672 | fault = memchr_inv(start, value, bytes); |
24922684 CL |
673 | if (!fault) |
674 | return 1; | |
675 | ||
676 | end = start + bytes; | |
677 | while (end > fault && end[-1] == value) | |
678 | end--; | |
679 | ||
680 | slab_bug(s, "%s overwritten", what); | |
681 | printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", | |
682 | fault, end - 1, fault[0], value); | |
683 | print_trailer(s, page, object); | |
684 | ||
685 | restore_bytes(s, what, value, fault, end); | |
686 | return 0; | |
81819f0f CL |
687 | } |
688 | ||
81819f0f CL |
689 | /* |
690 | * Object layout: | |
691 | * | |
692 | * object address | |
693 | * Bytes of the object to be managed. | |
694 | * If the freepointer may overlay the object then the free | |
695 | * pointer is the first word of the object. | |
672bba3a | 696 | * |
81819f0f CL |
697 | * Poisoning uses 0x6b (POISON_FREE) and the last byte is |
698 | * 0xa5 (POISON_END) | |
699 | * | |
3b0efdfa | 700 | * object + s->object_size |
81819f0f | 701 | * Padding to reach word boundary. This is also used for Redzoning. |
672bba3a | 702 | * Padding is extended by another word if Redzoning is enabled and |
3b0efdfa | 703 | * object_size == inuse. |
672bba3a | 704 | * |
81819f0f CL |
705 | * We fill with 0xbb (RED_INACTIVE) for inactive objects and with |
706 | * 0xcc (RED_ACTIVE) for objects in use. | |
707 | * | |
708 | * object + s->inuse | |
672bba3a CL |
709 | * Meta data starts here. |
710 | * | |
81819f0f CL |
711 | * A. Free pointer (if we cannot overwrite object on free) |
712 | * B. Tracking data for SLAB_STORE_USER | |
672bba3a | 713 | * C. Padding to reach required alignment boundary or at mininum |
6446faa2 | 714 | * one word if debugging is on to be able to detect writes |
672bba3a CL |
715 | * before the word boundary. |
716 | * | |
717 | * Padding is done using 0x5a (POISON_INUSE) | |
81819f0f CL |
718 | * |
719 | * object + s->size | |
672bba3a | 720 | * Nothing is used beyond s->size. |
81819f0f | 721 | * |
3b0efdfa | 722 | * If slabcaches are merged then the object_size and inuse boundaries are mostly |
672bba3a | 723 | * ignored. And therefore no slab options that rely on these boundaries |
81819f0f CL |
724 | * may be used with merged slabcaches. |
725 | */ | |
726 | ||
81819f0f CL |
727 | static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) |
728 | { | |
729 | unsigned long off = s->inuse; /* The end of info */ | |
730 | ||
731 | if (s->offset) | |
732 | /* Freepointer is placed after the object. */ | |
733 | off += sizeof(void *); | |
734 | ||
735 | if (s->flags & SLAB_STORE_USER) | |
736 | /* We also have user information there */ | |
737 | off += 2 * sizeof(struct track); | |
738 | ||
739 | if (s->size == off) | |
740 | return 1; | |
741 | ||
24922684 CL |
742 | return check_bytes_and_report(s, page, p, "Object padding", |
743 | p + off, POISON_INUSE, s->size - off); | |
81819f0f CL |
744 | } |
745 | ||
39b26464 | 746 | /* Check the pad bytes at the end of a slab page */ |
81819f0f CL |
747 | static int slab_pad_check(struct kmem_cache *s, struct page *page) |
748 | { | |
24922684 CL |
749 | u8 *start; |
750 | u8 *fault; | |
751 | u8 *end; | |
752 | int length; | |
753 | int remainder; | |
81819f0f CL |
754 | |
755 | if (!(s->flags & SLAB_POISON)) | |
756 | return 1; | |
757 | ||
a973e9dd | 758 | start = page_address(page); |
ab9a0f19 | 759 | length = (PAGE_SIZE << compound_order(page)) - s->reserved; |
39b26464 CL |
760 | end = start + length; |
761 | remainder = length % s->size; | |
81819f0f CL |
762 | if (!remainder) |
763 | return 1; | |
764 | ||
79824820 | 765 | fault = memchr_inv(end - remainder, POISON_INUSE, remainder); |
24922684 CL |
766 | if (!fault) |
767 | return 1; | |
768 | while (end > fault && end[-1] == POISON_INUSE) | |
769 | end--; | |
770 | ||
771 | slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); | |
ffc79d28 | 772 | print_section("Padding ", end - remainder, remainder); |
24922684 | 773 | |
8a3d271d | 774 | restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); |
24922684 | 775 | return 0; |
81819f0f CL |
776 | } |
777 | ||
778 | static int check_object(struct kmem_cache *s, struct page *page, | |
f7cb1933 | 779 | void *object, u8 val) |
81819f0f CL |
780 | { |
781 | u8 *p = object; | |
3b0efdfa | 782 | u8 *endobject = object + s->object_size; |
81819f0f CL |
783 | |
784 | if (s->flags & SLAB_RED_ZONE) { | |
24922684 | 785 | if (!check_bytes_and_report(s, page, object, "Redzone", |
3b0efdfa | 786 | endobject, val, s->inuse - s->object_size)) |
81819f0f | 787 | return 0; |
81819f0f | 788 | } else { |
3b0efdfa | 789 | if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { |
3adbefee | 790 | check_bytes_and_report(s, page, p, "Alignment padding", |
3b0efdfa | 791 | endobject, POISON_INUSE, s->inuse - s->object_size); |
3adbefee | 792 | } |
81819f0f CL |
793 | } |
794 | ||
795 | if (s->flags & SLAB_POISON) { | |
f7cb1933 | 796 | if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && |
24922684 | 797 | (!check_bytes_and_report(s, page, p, "Poison", p, |
3b0efdfa | 798 | POISON_FREE, s->object_size - 1) || |
24922684 | 799 | !check_bytes_and_report(s, page, p, "Poison", |
3b0efdfa | 800 | p + s->object_size - 1, POISON_END, 1))) |
81819f0f | 801 | return 0; |
81819f0f CL |
802 | /* |
803 | * check_pad_bytes cleans up on its own. | |
804 | */ | |
805 | check_pad_bytes(s, page, p); | |
806 | } | |
807 | ||
f7cb1933 | 808 | if (!s->offset && val == SLUB_RED_ACTIVE) |
81819f0f CL |
809 | /* |
810 | * Object and freepointer overlap. Cannot check | |
811 | * freepointer while object is allocated. | |
812 | */ | |
813 | return 1; | |
814 | ||
815 | /* Check free pointer validity */ | |
816 | if (!check_valid_pointer(s, page, get_freepointer(s, p))) { | |
817 | object_err(s, page, p, "Freepointer corrupt"); | |
818 | /* | |
9f6c708e | 819 | * No choice but to zap it and thus lose the remainder |
81819f0f | 820 | * of the free objects in this slab. May cause |
672bba3a | 821 | * another error because the object count is now wrong. |
81819f0f | 822 | */ |
a973e9dd | 823 | set_freepointer(s, p, NULL); |
81819f0f CL |
824 | return 0; |
825 | } | |
826 | return 1; | |
827 | } | |
828 | ||
829 | static int check_slab(struct kmem_cache *s, struct page *page) | |
830 | { | |
39b26464 CL |
831 | int maxobj; |
832 | ||
81819f0f CL |
833 | VM_BUG_ON(!irqs_disabled()); |
834 | ||
835 | if (!PageSlab(page)) { | |
24922684 | 836 | slab_err(s, page, "Not a valid slab page"); |
81819f0f CL |
837 | return 0; |
838 | } | |
39b26464 | 839 | |
ab9a0f19 | 840 | maxobj = order_objects(compound_order(page), s->size, s->reserved); |
39b26464 CL |
841 | if (page->objects > maxobj) { |
842 | slab_err(s, page, "objects %u > max %u", | |
843 | s->name, page->objects, maxobj); | |
844 | return 0; | |
845 | } | |
846 | if (page->inuse > page->objects) { | |
24922684 | 847 | slab_err(s, page, "inuse %u > max %u", |
39b26464 | 848 | s->name, page->inuse, page->objects); |
81819f0f CL |
849 | return 0; |
850 | } | |
851 | /* Slab_pad_check fixes things up after itself */ | |
852 | slab_pad_check(s, page); | |
853 | return 1; | |
854 | } | |
855 | ||
856 | /* | |
672bba3a CL |
857 | * Determine if a certain object on a page is on the freelist. Must hold the |
858 | * slab lock to guarantee that the chains are in a consistent state. | |
81819f0f CL |
859 | */ |
860 | static int on_freelist(struct kmem_cache *s, struct page *page, void *search) | |
861 | { | |
862 | int nr = 0; | |
881db7fb | 863 | void *fp; |
81819f0f | 864 | void *object = NULL; |
224a88be | 865 | unsigned long max_objects; |
81819f0f | 866 | |
881db7fb | 867 | fp = page->freelist; |
39b26464 | 868 | while (fp && nr <= page->objects) { |
81819f0f CL |
869 | if (fp == search) |
870 | return 1; | |
871 | if (!check_valid_pointer(s, page, fp)) { | |
872 | if (object) { | |
873 | object_err(s, page, object, | |
874 | "Freechain corrupt"); | |
a973e9dd | 875 | set_freepointer(s, object, NULL); |
81819f0f CL |
876 | break; |
877 | } else { | |
24922684 | 878 | slab_err(s, page, "Freepointer corrupt"); |
a973e9dd | 879 | page->freelist = NULL; |
39b26464 | 880 | page->inuse = page->objects; |
24922684 | 881 | slab_fix(s, "Freelist cleared"); |
81819f0f CL |
882 | return 0; |
883 | } | |
884 | break; | |
885 | } | |
886 | object = fp; | |
887 | fp = get_freepointer(s, object); | |
888 | nr++; | |
889 | } | |
890 | ||
ab9a0f19 | 891 | max_objects = order_objects(compound_order(page), s->size, s->reserved); |
210b5c06 CG |
892 | if (max_objects > MAX_OBJS_PER_PAGE) |
893 | max_objects = MAX_OBJS_PER_PAGE; | |
224a88be CL |
894 | |
895 | if (page->objects != max_objects) { | |
896 | slab_err(s, page, "Wrong number of objects. Found %d but " | |
897 | "should be %d", page->objects, max_objects); | |
898 | page->objects = max_objects; | |
899 | slab_fix(s, "Number of objects adjusted."); | |
900 | } | |
39b26464 | 901 | if (page->inuse != page->objects - nr) { |
70d71228 | 902 | slab_err(s, page, "Wrong object count. Counter is %d but " |
39b26464 CL |
903 | "counted were %d", page->inuse, page->objects - nr); |
904 | page->inuse = page->objects - nr; | |
24922684 | 905 | slab_fix(s, "Object count adjusted."); |
81819f0f CL |
906 | } |
907 | return search == NULL; | |
908 | } | |
909 | ||
0121c619 CL |
910 | static void trace(struct kmem_cache *s, struct page *page, void *object, |
911 | int alloc) | |
3ec09742 CL |
912 | { |
913 | if (s->flags & SLAB_TRACE) { | |
914 | printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", | |
915 | s->name, | |
916 | alloc ? "alloc" : "free", | |
917 | object, page->inuse, | |
918 | page->freelist); | |
919 | ||
920 | if (!alloc) | |
3b0efdfa | 921 | print_section("Object ", (void *)object, s->object_size); |
3ec09742 CL |
922 | |
923 | dump_stack(); | |
924 | } | |
925 | } | |
926 | ||
c016b0bd CL |
927 | /* |
928 | * Hooks for other subsystems that check memory allocations. In a typical | |
929 | * production configuration these hooks all should produce no code at all. | |
930 | */ | |
931 | static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) | |
932 | { | |
c1d50836 | 933 | flags &= gfp_allowed_mask; |
c016b0bd CL |
934 | lockdep_trace_alloc(flags); |
935 | might_sleep_if(flags & __GFP_WAIT); | |
936 | ||
3b0efdfa | 937 | return should_failslab(s->object_size, flags, s->flags); |
c016b0bd CL |
938 | } |
939 | ||
940 | static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object) | |
941 | { | |
c1d50836 | 942 | flags &= gfp_allowed_mask; |
b3d41885 | 943 | kmemcheck_slab_alloc(s, flags, object, slab_ksize(s)); |
3b0efdfa | 944 | kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags); |
c016b0bd CL |
945 | } |
946 | ||
947 | static inline void slab_free_hook(struct kmem_cache *s, void *x) | |
948 | { | |
949 | kmemleak_free_recursive(x, s->flags); | |
c016b0bd | 950 | |
d3f661d6 CL |
951 | /* |
952 | * Trouble is that we may no longer disable interupts in the fast path | |
953 | * So in order to make the debug calls that expect irqs to be | |
954 | * disabled we need to disable interrupts temporarily. | |
955 | */ | |
956 | #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) | |
957 | { | |
958 | unsigned long flags; | |
959 | ||
960 | local_irq_save(flags); | |
3b0efdfa CL |
961 | kmemcheck_slab_free(s, x, s->object_size); |
962 | debug_check_no_locks_freed(x, s->object_size); | |
d3f661d6 CL |
963 | local_irq_restore(flags); |
964 | } | |
965 | #endif | |
f9b615de | 966 | if (!(s->flags & SLAB_DEBUG_OBJECTS)) |
3b0efdfa | 967 | debug_check_no_obj_freed(x, s->object_size); |
c016b0bd CL |
968 | } |
969 | ||
643b1138 | 970 | /* |
672bba3a | 971 | * Tracking of fully allocated slabs for debugging purposes. |
5cc6eee8 CL |
972 | * |
973 | * list_lock must be held. | |
643b1138 | 974 | */ |
5cc6eee8 CL |
975 | static void add_full(struct kmem_cache *s, |
976 | struct kmem_cache_node *n, struct page *page) | |
643b1138 | 977 | { |
5cc6eee8 CL |
978 | if (!(s->flags & SLAB_STORE_USER)) |
979 | return; | |
980 | ||
643b1138 | 981 | list_add(&page->lru, &n->full); |
643b1138 CL |
982 | } |
983 | ||
5cc6eee8 CL |
984 | /* |
985 | * list_lock must be held. | |
986 | */ | |
643b1138 CL |
987 | static void remove_full(struct kmem_cache *s, struct page *page) |
988 | { | |
643b1138 CL |
989 | if (!(s->flags & SLAB_STORE_USER)) |
990 | return; | |
991 | ||
643b1138 | 992 | list_del(&page->lru); |
643b1138 CL |
993 | } |
994 | ||
0f389ec6 CL |
995 | /* Tracking of the number of slabs for debugging purposes */ |
996 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) | |
997 | { | |
998 | struct kmem_cache_node *n = get_node(s, node); | |
999 | ||
1000 | return atomic_long_read(&n->nr_slabs); | |
1001 | } | |
1002 | ||
26c02cf0 AB |
1003 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) |
1004 | { | |
1005 | return atomic_long_read(&n->nr_slabs); | |
1006 | } | |
1007 | ||
205ab99d | 1008 | static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) |
0f389ec6 CL |
1009 | { |
1010 | struct kmem_cache_node *n = get_node(s, node); | |
1011 | ||
1012 | /* | |
1013 | * May be called early in order to allocate a slab for the | |
1014 | * kmem_cache_node structure. Solve the chicken-egg | |
1015 | * dilemma by deferring the increment of the count during | |
1016 | * bootstrap (see early_kmem_cache_node_alloc). | |
1017 | */ | |
338b2642 | 1018 | if (likely(n)) { |
0f389ec6 | 1019 | atomic_long_inc(&n->nr_slabs); |
205ab99d CL |
1020 | atomic_long_add(objects, &n->total_objects); |
1021 | } | |
0f389ec6 | 1022 | } |
205ab99d | 1023 | static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) |
0f389ec6 CL |
1024 | { |
1025 | struct kmem_cache_node *n = get_node(s, node); | |
1026 | ||
1027 | atomic_long_dec(&n->nr_slabs); | |
205ab99d | 1028 | atomic_long_sub(objects, &n->total_objects); |
0f389ec6 CL |
1029 | } |
1030 | ||
1031 | /* Object debug checks for alloc/free paths */ | |
3ec09742 CL |
1032 | static void setup_object_debug(struct kmem_cache *s, struct page *page, |
1033 | void *object) | |
1034 | { | |
1035 | if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) | |
1036 | return; | |
1037 | ||
f7cb1933 | 1038 | init_object(s, object, SLUB_RED_INACTIVE); |
3ec09742 CL |
1039 | init_tracking(s, object); |
1040 | } | |
1041 | ||
1537066c | 1042 | static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page, |
ce71e27c | 1043 | void *object, unsigned long addr) |
81819f0f CL |
1044 | { |
1045 | if (!check_slab(s, page)) | |
1046 | goto bad; | |
1047 | ||
81819f0f CL |
1048 | if (!check_valid_pointer(s, page, object)) { |
1049 | object_err(s, page, object, "Freelist Pointer check fails"); | |
70d71228 | 1050 | goto bad; |
81819f0f CL |
1051 | } |
1052 | ||
f7cb1933 | 1053 | if (!check_object(s, page, object, SLUB_RED_INACTIVE)) |
81819f0f | 1054 | goto bad; |
81819f0f | 1055 | |
3ec09742 CL |
1056 | /* Success perform special debug activities for allocs */ |
1057 | if (s->flags & SLAB_STORE_USER) | |
1058 | set_track(s, object, TRACK_ALLOC, addr); | |
1059 | trace(s, page, object, 1); | |
f7cb1933 | 1060 | init_object(s, object, SLUB_RED_ACTIVE); |
81819f0f | 1061 | return 1; |
3ec09742 | 1062 | |
81819f0f CL |
1063 | bad: |
1064 | if (PageSlab(page)) { | |
1065 | /* | |
1066 | * If this is a slab page then lets do the best we can | |
1067 | * to avoid issues in the future. Marking all objects | |
672bba3a | 1068 | * as used avoids touching the remaining objects. |
81819f0f | 1069 | */ |
24922684 | 1070 | slab_fix(s, "Marking all objects used"); |
39b26464 | 1071 | page->inuse = page->objects; |
a973e9dd | 1072 | page->freelist = NULL; |
81819f0f CL |
1073 | } |
1074 | return 0; | |
1075 | } | |
1076 | ||
19c7ff9e CL |
1077 | static noinline struct kmem_cache_node *free_debug_processing( |
1078 | struct kmem_cache *s, struct page *page, void *object, | |
1079 | unsigned long addr, unsigned long *flags) | |
81819f0f | 1080 | { |
19c7ff9e | 1081 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); |
5c2e4bbb | 1082 | |
19c7ff9e | 1083 | spin_lock_irqsave(&n->list_lock, *flags); |
881db7fb CL |
1084 | slab_lock(page); |
1085 | ||
81819f0f CL |
1086 | if (!check_slab(s, page)) |
1087 | goto fail; | |
1088 | ||
1089 | if (!check_valid_pointer(s, page, object)) { | |
70d71228 | 1090 | slab_err(s, page, "Invalid object pointer 0x%p", object); |
81819f0f CL |
1091 | goto fail; |
1092 | } | |
1093 | ||
1094 | if (on_freelist(s, page, object)) { | |
24922684 | 1095 | object_err(s, page, object, "Object already free"); |
81819f0f CL |
1096 | goto fail; |
1097 | } | |
1098 | ||
f7cb1933 | 1099 | if (!check_object(s, page, object, SLUB_RED_ACTIVE)) |
5c2e4bbb | 1100 | goto out; |
81819f0f | 1101 | |
1b4f59e3 | 1102 | if (unlikely(s != page->slab_cache)) { |
3adbefee | 1103 | if (!PageSlab(page)) { |
70d71228 CL |
1104 | slab_err(s, page, "Attempt to free object(0x%p) " |
1105 | "outside of slab", object); | |
1b4f59e3 | 1106 | } else if (!page->slab_cache) { |
81819f0f | 1107 | printk(KERN_ERR |
70d71228 | 1108 | "SLUB <none>: no slab for object 0x%p.\n", |
81819f0f | 1109 | object); |
70d71228 | 1110 | dump_stack(); |
06428780 | 1111 | } else |
24922684 CL |
1112 | object_err(s, page, object, |
1113 | "page slab pointer corrupt."); | |
81819f0f CL |
1114 | goto fail; |
1115 | } | |
3ec09742 | 1116 | |
3ec09742 CL |
1117 | if (s->flags & SLAB_STORE_USER) |
1118 | set_track(s, object, TRACK_FREE, addr); | |
1119 | trace(s, page, object, 0); | |
f7cb1933 | 1120 | init_object(s, object, SLUB_RED_INACTIVE); |
5c2e4bbb | 1121 | out: |
881db7fb | 1122 | slab_unlock(page); |
19c7ff9e CL |
1123 | /* |
1124 | * Keep node_lock to preserve integrity | |
1125 | * until the object is actually freed | |
1126 | */ | |
1127 | return n; | |
3ec09742 | 1128 | |
81819f0f | 1129 | fail: |
19c7ff9e CL |
1130 | slab_unlock(page); |
1131 | spin_unlock_irqrestore(&n->list_lock, *flags); | |
24922684 | 1132 | slab_fix(s, "Object at 0x%p not freed", object); |
19c7ff9e | 1133 | return NULL; |
81819f0f CL |
1134 | } |
1135 | ||
41ecc55b CL |
1136 | static int __init setup_slub_debug(char *str) |
1137 | { | |
f0630fff CL |
1138 | slub_debug = DEBUG_DEFAULT_FLAGS; |
1139 | if (*str++ != '=' || !*str) | |
1140 | /* | |
1141 | * No options specified. Switch on full debugging. | |
1142 | */ | |
1143 | goto out; | |
1144 | ||
1145 | if (*str == ',') | |
1146 | /* | |
1147 | * No options but restriction on slabs. This means full | |
1148 | * debugging for slabs matching a pattern. | |
1149 | */ | |
1150 | goto check_slabs; | |
1151 | ||
fa5ec8a1 DR |
1152 | if (tolower(*str) == 'o') { |
1153 | /* | |
1154 | * Avoid enabling debugging on caches if its minimum order | |
1155 | * would increase as a result. | |
1156 | */ | |
1157 | disable_higher_order_debug = 1; | |
1158 | goto out; | |
1159 | } | |
1160 | ||
f0630fff CL |
1161 | slub_debug = 0; |
1162 | if (*str == '-') | |
1163 | /* | |
1164 | * Switch off all debugging measures. | |
1165 | */ | |
1166 | goto out; | |
1167 | ||
1168 | /* | |
1169 | * Determine which debug features should be switched on | |
1170 | */ | |
06428780 | 1171 | for (; *str && *str != ','; str++) { |
f0630fff CL |
1172 | switch (tolower(*str)) { |
1173 | case 'f': | |
1174 | slub_debug |= SLAB_DEBUG_FREE; | |
1175 | break; | |
1176 | case 'z': | |
1177 | slub_debug |= SLAB_RED_ZONE; | |
1178 | break; | |
1179 | case 'p': | |
1180 | slub_debug |= SLAB_POISON; | |
1181 | break; | |
1182 | case 'u': | |
1183 | slub_debug |= SLAB_STORE_USER; | |
1184 | break; | |
1185 | case 't': | |
1186 | slub_debug |= SLAB_TRACE; | |
1187 | break; | |
4c13dd3b DM |
1188 | case 'a': |
1189 | slub_debug |= SLAB_FAILSLAB; | |
1190 | break; | |
f0630fff CL |
1191 | default: |
1192 | printk(KERN_ERR "slub_debug option '%c' " | |
06428780 | 1193 | "unknown. skipped\n", *str); |
f0630fff | 1194 | } |
41ecc55b CL |
1195 | } |
1196 | ||
f0630fff | 1197 | check_slabs: |
41ecc55b CL |
1198 | if (*str == ',') |
1199 | slub_debug_slabs = str + 1; | |
f0630fff | 1200 | out: |
41ecc55b CL |
1201 | return 1; |
1202 | } | |
1203 | ||
1204 | __setup("slub_debug", setup_slub_debug); | |
1205 | ||
3b0efdfa | 1206 | static unsigned long kmem_cache_flags(unsigned long object_size, |
ba0268a8 | 1207 | unsigned long flags, const char *name, |
51cc5068 | 1208 | void (*ctor)(void *)) |
41ecc55b CL |
1209 | { |
1210 | /* | |
e153362a | 1211 | * Enable debugging if selected on the kernel commandline. |
41ecc55b | 1212 | */ |
e153362a | 1213 | if (slub_debug && (!slub_debug_slabs || |
3de47213 DR |
1214 | !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))) |
1215 | flags |= slub_debug; | |
ba0268a8 CL |
1216 | |
1217 | return flags; | |
41ecc55b CL |
1218 | } |
1219 | #else | |
3ec09742 CL |
1220 | static inline void setup_object_debug(struct kmem_cache *s, |
1221 | struct page *page, void *object) {} | |
41ecc55b | 1222 | |
3ec09742 | 1223 | static inline int alloc_debug_processing(struct kmem_cache *s, |
ce71e27c | 1224 | struct page *page, void *object, unsigned long addr) { return 0; } |
41ecc55b | 1225 | |
19c7ff9e CL |
1226 | static inline struct kmem_cache_node *free_debug_processing( |
1227 | struct kmem_cache *s, struct page *page, void *object, | |
1228 | unsigned long addr, unsigned long *flags) { return NULL; } | |
41ecc55b | 1229 | |
41ecc55b CL |
1230 | static inline int slab_pad_check(struct kmem_cache *s, struct page *page) |
1231 | { return 1; } | |
1232 | static inline int check_object(struct kmem_cache *s, struct page *page, | |
f7cb1933 | 1233 | void *object, u8 val) { return 1; } |
5cc6eee8 CL |
1234 | static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, |
1235 | struct page *page) {} | |
2cfb7455 | 1236 | static inline void remove_full(struct kmem_cache *s, struct page *page) {} |
3b0efdfa | 1237 | static inline unsigned long kmem_cache_flags(unsigned long object_size, |
ba0268a8 | 1238 | unsigned long flags, const char *name, |
51cc5068 | 1239 | void (*ctor)(void *)) |
ba0268a8 CL |
1240 | { |
1241 | return flags; | |
1242 | } | |
41ecc55b | 1243 | #define slub_debug 0 |
0f389ec6 | 1244 | |
fdaa45e9 IM |
1245 | #define disable_higher_order_debug 0 |
1246 | ||
0f389ec6 CL |
1247 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) |
1248 | { return 0; } | |
26c02cf0 AB |
1249 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) |
1250 | { return 0; } | |
205ab99d CL |
1251 | static inline void inc_slabs_node(struct kmem_cache *s, int node, |
1252 | int objects) {} | |
1253 | static inline void dec_slabs_node(struct kmem_cache *s, int node, | |
1254 | int objects) {} | |
7d550c56 CL |
1255 | |
1256 | static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) | |
1257 | { return 0; } | |
1258 | ||
1259 | static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, | |
1260 | void *object) {} | |
1261 | ||
1262 | static inline void slab_free_hook(struct kmem_cache *s, void *x) {} | |
1263 | ||
ab4d5ed5 | 1264 | #endif /* CONFIG_SLUB_DEBUG */ |
205ab99d | 1265 | |
81819f0f CL |
1266 | /* |
1267 | * Slab allocation and freeing | |
1268 | */ | |
65c3376a CL |
1269 | static inline struct page *alloc_slab_page(gfp_t flags, int node, |
1270 | struct kmem_cache_order_objects oo) | |
1271 | { | |
1272 | int order = oo_order(oo); | |
1273 | ||
b1eeab67 VN |
1274 | flags |= __GFP_NOTRACK; |
1275 | ||
2154a336 | 1276 | if (node == NUMA_NO_NODE) |
65c3376a CL |
1277 | return alloc_pages(flags, order); |
1278 | else | |
6b65aaf3 | 1279 | return alloc_pages_exact_node(node, flags, order); |
65c3376a CL |
1280 | } |
1281 | ||
81819f0f CL |
1282 | static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) |
1283 | { | |
06428780 | 1284 | struct page *page; |
834f3d11 | 1285 | struct kmem_cache_order_objects oo = s->oo; |
ba52270d | 1286 | gfp_t alloc_gfp; |
81819f0f | 1287 | |
7e0528da CL |
1288 | flags &= gfp_allowed_mask; |
1289 | ||
1290 | if (flags & __GFP_WAIT) | |
1291 | local_irq_enable(); | |
1292 | ||
b7a49f0d | 1293 | flags |= s->allocflags; |
e12ba74d | 1294 | |
ba52270d PE |
1295 | /* |
1296 | * Let the initial higher-order allocation fail under memory pressure | |
1297 | * so we fall-back to the minimum order allocation. | |
1298 | */ | |
1299 | alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; | |
1300 | ||
1301 | page = alloc_slab_page(alloc_gfp, node, oo); | |
65c3376a CL |
1302 | if (unlikely(!page)) { |
1303 | oo = s->min; | |
1304 | /* | |
1305 | * Allocation may have failed due to fragmentation. | |
1306 | * Try a lower order alloc if possible | |
1307 | */ | |
1308 | page = alloc_slab_page(flags, node, oo); | |
81819f0f | 1309 | |
7e0528da CL |
1310 | if (page) |
1311 | stat(s, ORDER_FALLBACK); | |
65c3376a | 1312 | } |
5a896d9e | 1313 | |
737b719e | 1314 | if (kmemcheck_enabled && page |
5086c389 | 1315 | && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { |
b1eeab67 VN |
1316 | int pages = 1 << oo_order(oo); |
1317 | ||
1318 | kmemcheck_alloc_shadow(page, oo_order(oo), flags, node); | |
1319 | ||
1320 | /* | |
1321 | * Objects from caches that have a constructor don't get | |
1322 | * cleared when they're allocated, so we need to do it here. | |
1323 | */ | |
1324 | if (s->ctor) | |
1325 | kmemcheck_mark_uninitialized_pages(page, pages); | |
1326 | else | |
1327 | kmemcheck_mark_unallocated_pages(page, pages); | |
5a896d9e VN |
1328 | } |
1329 | ||
737b719e DR |
1330 | if (flags & __GFP_WAIT) |
1331 | local_irq_disable(); | |
1332 | if (!page) | |
1333 | return NULL; | |
1334 | ||
834f3d11 | 1335 | page->objects = oo_objects(oo); |
81819f0f CL |
1336 | mod_zone_page_state(page_zone(page), |
1337 | (s->flags & SLAB_RECLAIM_ACCOUNT) ? | |
1338 | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | |
65c3376a | 1339 | 1 << oo_order(oo)); |
81819f0f CL |
1340 | |
1341 | return page; | |
1342 | } | |
1343 | ||
1344 | static void setup_object(struct kmem_cache *s, struct page *page, | |
1345 | void *object) | |
1346 | { | |
3ec09742 | 1347 | setup_object_debug(s, page, object); |
4f104934 | 1348 | if (unlikely(s->ctor)) |
51cc5068 | 1349 | s->ctor(object); |
81819f0f CL |
1350 | } |
1351 | ||
1352 | static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) | |
1353 | { | |
1354 | struct page *page; | |
81819f0f | 1355 | void *start; |
81819f0f CL |
1356 | void *last; |
1357 | void *p; | |
1f458cbf | 1358 | int order; |
81819f0f | 1359 | |
6cb06229 | 1360 | BUG_ON(flags & GFP_SLAB_BUG_MASK); |
81819f0f | 1361 | |
6cb06229 CL |
1362 | page = allocate_slab(s, |
1363 | flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); | |
81819f0f CL |
1364 | if (!page) |
1365 | goto out; | |
1366 | ||
1f458cbf | 1367 | order = compound_order(page); |
205ab99d | 1368 | inc_slabs_node(s, page_to_nid(page), page->objects); |
1f458cbf | 1369 | memcg_bind_pages(s, order); |
1b4f59e3 | 1370 | page->slab_cache = s; |
c03f94cc | 1371 | __SetPageSlab(page); |
072bb0aa MG |
1372 | if (page->pfmemalloc) |
1373 | SetPageSlabPfmemalloc(page); | |
81819f0f CL |
1374 | |
1375 | start = page_address(page); | |
81819f0f CL |
1376 | |
1377 | if (unlikely(s->flags & SLAB_POISON)) | |
1f458cbf | 1378 | memset(start, POISON_INUSE, PAGE_SIZE << order); |
81819f0f CL |
1379 | |
1380 | last = start; | |
224a88be | 1381 | for_each_object(p, s, start, page->objects) { |
81819f0f CL |
1382 | setup_object(s, page, last); |
1383 | set_freepointer(s, last, p); | |
1384 | last = p; | |
1385 | } | |
1386 | setup_object(s, page, last); | |
a973e9dd | 1387 | set_freepointer(s, last, NULL); |
81819f0f CL |
1388 | |
1389 | page->freelist = start; | |
e6e82ea1 | 1390 | page->inuse = page->objects; |
8cb0a506 | 1391 | page->frozen = 1; |
81819f0f | 1392 | out: |
81819f0f CL |
1393 | return page; |
1394 | } | |
1395 | ||
1396 | static void __free_slab(struct kmem_cache *s, struct page *page) | |
1397 | { | |
834f3d11 CL |
1398 | int order = compound_order(page); |
1399 | int pages = 1 << order; | |
81819f0f | 1400 | |
af537b0a | 1401 | if (kmem_cache_debug(s)) { |
81819f0f CL |
1402 | void *p; |
1403 | ||
1404 | slab_pad_check(s, page); | |
224a88be CL |
1405 | for_each_object(p, s, page_address(page), |
1406 | page->objects) | |
f7cb1933 | 1407 | check_object(s, page, p, SLUB_RED_INACTIVE); |
81819f0f CL |
1408 | } |
1409 | ||
b1eeab67 | 1410 | kmemcheck_free_shadow(page, compound_order(page)); |
5a896d9e | 1411 | |
81819f0f CL |
1412 | mod_zone_page_state(page_zone(page), |
1413 | (s->flags & SLAB_RECLAIM_ACCOUNT) ? | |
1414 | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | |
06428780 | 1415 | -pages); |
81819f0f | 1416 | |
072bb0aa | 1417 | __ClearPageSlabPfmemalloc(page); |
49bd5221 | 1418 | __ClearPageSlab(page); |
1f458cbf GC |
1419 | |
1420 | memcg_release_pages(s, order); | |
22b751c3 | 1421 | page_mapcount_reset(page); |
1eb5ac64 NP |
1422 | if (current->reclaim_state) |
1423 | current->reclaim_state->reclaimed_slab += pages; | |
d79923fa | 1424 | __free_memcg_kmem_pages(page, order); |
81819f0f CL |
1425 | } |
1426 | ||
da9a638c LJ |
1427 | #define need_reserve_slab_rcu \ |
1428 | (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) | |
1429 | ||
81819f0f CL |
1430 | static void rcu_free_slab(struct rcu_head *h) |
1431 | { | |
1432 | struct page *page; | |
1433 | ||
da9a638c LJ |
1434 | if (need_reserve_slab_rcu) |
1435 | page = virt_to_head_page(h); | |
1436 | else | |
1437 | page = container_of((struct list_head *)h, struct page, lru); | |
1438 | ||
1b4f59e3 | 1439 | __free_slab(page->slab_cache, page); |
81819f0f CL |
1440 | } |
1441 | ||
1442 | static void free_slab(struct kmem_cache *s, struct page *page) | |
1443 | { | |
1444 | if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { | |
da9a638c LJ |
1445 | struct rcu_head *head; |
1446 | ||
1447 | if (need_reserve_slab_rcu) { | |
1448 | int order = compound_order(page); | |
1449 | int offset = (PAGE_SIZE << order) - s->reserved; | |
1450 | ||
1451 | VM_BUG_ON(s->reserved != sizeof(*head)); | |
1452 | head = page_address(page) + offset; | |
1453 | } else { | |
1454 | /* | |
1455 | * RCU free overloads the RCU head over the LRU | |
1456 | */ | |
1457 | head = (void *)&page->lru; | |
1458 | } | |
81819f0f CL |
1459 | |
1460 | call_rcu(head, rcu_free_slab); | |
1461 | } else | |
1462 | __free_slab(s, page); | |
1463 | } | |
1464 | ||
1465 | static void discard_slab(struct kmem_cache *s, struct page *page) | |
1466 | { | |
205ab99d | 1467 | dec_slabs_node(s, page_to_nid(page), page->objects); |
81819f0f CL |
1468 | free_slab(s, page); |
1469 | } | |
1470 | ||
1471 | /* | |
5cc6eee8 CL |
1472 | * Management of partially allocated slabs. |
1473 | * | |
1474 | * list_lock must be held. | |
81819f0f | 1475 | */ |
5cc6eee8 | 1476 | static inline void add_partial(struct kmem_cache_node *n, |
7c2e132c | 1477 | struct page *page, int tail) |
81819f0f | 1478 | { |
e95eed57 | 1479 | n->nr_partial++; |
136333d1 | 1480 | if (tail == DEACTIVATE_TO_TAIL) |
7c2e132c CL |
1481 | list_add_tail(&page->lru, &n->partial); |
1482 | else | |
1483 | list_add(&page->lru, &n->partial); | |
81819f0f CL |
1484 | } |
1485 | ||
5cc6eee8 CL |
1486 | /* |
1487 | * list_lock must be held. | |
1488 | */ | |
1489 | static inline void remove_partial(struct kmem_cache_node *n, | |
62e346a8 CL |
1490 | struct page *page) |
1491 | { | |
1492 | list_del(&page->lru); | |
1493 | n->nr_partial--; | |
1494 | } | |
1495 | ||
81819f0f | 1496 | /* |
7ced3719 CL |
1497 | * Remove slab from the partial list, freeze it and |
1498 | * return the pointer to the freelist. | |
81819f0f | 1499 | * |
497b66f2 CL |
1500 | * Returns a list of objects or NULL if it fails. |
1501 | * | |
7ced3719 | 1502 | * Must hold list_lock since we modify the partial list. |
81819f0f | 1503 | */ |
497b66f2 | 1504 | static inline void *acquire_slab(struct kmem_cache *s, |
acd19fd1 | 1505 | struct kmem_cache_node *n, struct page *page, |
633b0764 | 1506 | int mode, int *objects) |
81819f0f | 1507 | { |
2cfb7455 CL |
1508 | void *freelist; |
1509 | unsigned long counters; | |
1510 | struct page new; | |
1511 | ||
2cfb7455 CL |
1512 | /* |
1513 | * Zap the freelist and set the frozen bit. | |
1514 | * The old freelist is the list of objects for the | |
1515 | * per cpu allocation list. | |
1516 | */ | |
7ced3719 CL |
1517 | freelist = page->freelist; |
1518 | counters = page->counters; | |
1519 | new.counters = counters; | |
633b0764 | 1520 | *objects = new.objects - new.inuse; |
23910c50 | 1521 | if (mode) { |
7ced3719 | 1522 | new.inuse = page->objects; |
23910c50 PE |
1523 | new.freelist = NULL; |
1524 | } else { | |
1525 | new.freelist = freelist; | |
1526 | } | |
2cfb7455 | 1527 | |
7ced3719 CL |
1528 | VM_BUG_ON(new.frozen); |
1529 | new.frozen = 1; | |
2cfb7455 | 1530 | |
7ced3719 | 1531 | if (!__cmpxchg_double_slab(s, page, |
2cfb7455 | 1532 | freelist, counters, |
02d7633f | 1533 | new.freelist, new.counters, |
7ced3719 | 1534 | "acquire_slab")) |
7ced3719 | 1535 | return NULL; |
2cfb7455 CL |
1536 | |
1537 | remove_partial(n, page); | |
7ced3719 | 1538 | WARN_ON(!freelist); |
49e22585 | 1539 | return freelist; |
81819f0f CL |
1540 | } |
1541 | ||
633b0764 | 1542 | static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); |
8ba00bb6 | 1543 | static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); |
49e22585 | 1544 | |
81819f0f | 1545 | /* |
672bba3a | 1546 | * Try to allocate a partial slab from a specific node. |
81819f0f | 1547 | */ |
8ba00bb6 JK |
1548 | static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, |
1549 | struct kmem_cache_cpu *c, gfp_t flags) | |
81819f0f | 1550 | { |
49e22585 CL |
1551 | struct page *page, *page2; |
1552 | void *object = NULL; | |
633b0764 JK |
1553 | int available = 0; |
1554 | int objects; | |
81819f0f CL |
1555 | |
1556 | /* | |
1557 | * Racy check. If we mistakenly see no partial slabs then we | |
1558 | * just allocate an empty slab. If we mistakenly try to get a | |
672bba3a CL |
1559 | * partial slab and there is none available then get_partials() |
1560 | * will return NULL. | |
81819f0f CL |
1561 | */ |
1562 | if (!n || !n->nr_partial) | |
1563 | return NULL; | |
1564 | ||
1565 | spin_lock(&n->list_lock); | |
49e22585 | 1566 | list_for_each_entry_safe(page, page2, &n->partial, lru) { |
8ba00bb6 | 1567 | void *t; |
49e22585 | 1568 | |
8ba00bb6 JK |
1569 | if (!pfmemalloc_match(page, flags)) |
1570 | continue; | |
1571 | ||
633b0764 | 1572 | t = acquire_slab(s, n, page, object == NULL, &objects); |
49e22585 CL |
1573 | if (!t) |
1574 | break; | |
1575 | ||
633b0764 | 1576 | available += objects; |
12d79634 | 1577 | if (!object) { |
49e22585 | 1578 | c->page = page; |
49e22585 | 1579 | stat(s, ALLOC_FROM_PARTIAL); |
49e22585 | 1580 | object = t; |
49e22585 | 1581 | } else { |
633b0764 | 1582 | put_cpu_partial(s, page, 0); |
8028dcea | 1583 | stat(s, CPU_PARTIAL_NODE); |
49e22585 | 1584 | } |
345c905d JK |
1585 | if (!kmem_cache_has_cpu_partial(s) |
1586 | || available > s->cpu_partial / 2) | |
49e22585 CL |
1587 | break; |
1588 | ||
497b66f2 | 1589 | } |
81819f0f | 1590 | spin_unlock(&n->list_lock); |
497b66f2 | 1591 | return object; |
81819f0f CL |
1592 | } |
1593 | ||
1594 | /* | |
672bba3a | 1595 | * Get a page from somewhere. Search in increasing NUMA distances. |
81819f0f | 1596 | */ |
de3ec035 | 1597 | static void *get_any_partial(struct kmem_cache *s, gfp_t flags, |
acd19fd1 | 1598 | struct kmem_cache_cpu *c) |
81819f0f CL |
1599 | { |
1600 | #ifdef CONFIG_NUMA | |
1601 | struct zonelist *zonelist; | |
dd1a239f | 1602 | struct zoneref *z; |
54a6eb5c MG |
1603 | struct zone *zone; |
1604 | enum zone_type high_zoneidx = gfp_zone(flags); | |
497b66f2 | 1605 | void *object; |
cc9a6c87 | 1606 | unsigned int cpuset_mems_cookie; |
81819f0f CL |
1607 | |
1608 | /* | |
672bba3a CL |
1609 | * The defrag ratio allows a configuration of the tradeoffs between |
1610 | * inter node defragmentation and node local allocations. A lower | |
1611 | * defrag_ratio increases the tendency to do local allocations | |
1612 | * instead of attempting to obtain partial slabs from other nodes. | |
81819f0f | 1613 | * |
672bba3a CL |
1614 | * If the defrag_ratio is set to 0 then kmalloc() always |
1615 | * returns node local objects. If the ratio is higher then kmalloc() | |
1616 | * may return off node objects because partial slabs are obtained | |
1617 | * from other nodes and filled up. | |
81819f0f | 1618 | * |
6446faa2 | 1619 | * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes |
672bba3a CL |
1620 | * defrag_ratio = 1000) then every (well almost) allocation will |
1621 | * first attempt to defrag slab caches on other nodes. This means | |
1622 | * scanning over all nodes to look for partial slabs which may be | |
1623 | * expensive if we do it every time we are trying to find a slab | |
1624 | * with available objects. | |
81819f0f | 1625 | */ |
9824601e CL |
1626 | if (!s->remote_node_defrag_ratio || |
1627 | get_cycles() % 1024 > s->remote_node_defrag_ratio) | |
81819f0f CL |
1628 | return NULL; |
1629 | ||
cc9a6c87 MG |
1630 | do { |
1631 | cpuset_mems_cookie = get_mems_allowed(); | |
e7b691b0 | 1632 | zonelist = node_zonelist(slab_node(), flags); |
cc9a6c87 MG |
1633 | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { |
1634 | struct kmem_cache_node *n; | |
1635 | ||
1636 | n = get_node(s, zone_to_nid(zone)); | |
1637 | ||
1638 | if (n && cpuset_zone_allowed_hardwall(zone, flags) && | |
1639 | n->nr_partial > s->min_partial) { | |
8ba00bb6 | 1640 | object = get_partial_node(s, n, c, flags); |
cc9a6c87 MG |
1641 | if (object) { |
1642 | /* | |
1643 | * Return the object even if | |
1644 | * put_mems_allowed indicated that | |
1645 | * the cpuset mems_allowed was | |
1646 | * updated in parallel. It's a | |
1647 | * harmless race between the alloc | |
1648 | * and the cpuset update. | |
1649 | */ | |
1650 | put_mems_allowed(cpuset_mems_cookie); | |
1651 | return object; | |
1652 | } | |
c0ff7453 | 1653 | } |
81819f0f | 1654 | } |
cc9a6c87 | 1655 | } while (!put_mems_allowed(cpuset_mems_cookie)); |
81819f0f CL |
1656 | #endif |
1657 | return NULL; | |
1658 | } | |
1659 | ||
1660 | /* | |
1661 | * Get a partial page, lock it and return it. | |
1662 | */ | |
497b66f2 | 1663 | static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, |
acd19fd1 | 1664 | struct kmem_cache_cpu *c) |
81819f0f | 1665 | { |
497b66f2 | 1666 | void *object; |
2154a336 | 1667 | int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node; |
81819f0f | 1668 | |
8ba00bb6 | 1669 | object = get_partial_node(s, get_node(s, searchnode), c, flags); |
497b66f2 CL |
1670 | if (object || node != NUMA_NO_NODE) |
1671 | return object; | |
81819f0f | 1672 | |
acd19fd1 | 1673 | return get_any_partial(s, flags, c); |
81819f0f CL |
1674 | } |
1675 | ||
8a5ec0ba CL |
1676 | #ifdef CONFIG_PREEMPT |
1677 | /* | |
1678 | * Calculate the next globally unique transaction for disambiguiation | |
1679 | * during cmpxchg. The transactions start with the cpu number and are then | |
1680 | * incremented by CONFIG_NR_CPUS. | |
1681 | */ | |
1682 | #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) | |
1683 | #else | |
1684 | /* | |
1685 | * No preemption supported therefore also no need to check for | |
1686 | * different cpus. | |
1687 | */ | |
1688 | #define TID_STEP 1 | |
1689 | #endif | |
1690 | ||
1691 | static inline unsigned long next_tid(unsigned long tid) | |
1692 | { | |
1693 | return tid + TID_STEP; | |
1694 | } | |
1695 | ||
1696 | static inline unsigned int tid_to_cpu(unsigned long tid) | |
1697 | { | |
1698 | return tid % TID_STEP; | |
1699 | } | |
1700 | ||
1701 | static inline unsigned long tid_to_event(unsigned long tid) | |
1702 | { | |
1703 | return tid / TID_STEP; | |
1704 | } | |
1705 | ||
1706 | static inline unsigned int init_tid(int cpu) | |
1707 | { | |
1708 | return cpu; | |
1709 | } | |
1710 | ||
1711 | static inline void note_cmpxchg_failure(const char *n, | |
1712 | const struct kmem_cache *s, unsigned long tid) | |
1713 | { | |
1714 | #ifdef SLUB_DEBUG_CMPXCHG | |
1715 | unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); | |
1716 | ||
1717 | printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name); | |
1718 | ||
1719 | #ifdef CONFIG_PREEMPT | |
1720 | if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) | |
1721 | printk("due to cpu change %d -> %d\n", | |
1722 | tid_to_cpu(tid), tid_to_cpu(actual_tid)); | |
1723 | else | |
1724 | #endif | |
1725 | if (tid_to_event(tid) != tid_to_event(actual_tid)) | |
1726 | printk("due to cpu running other code. Event %ld->%ld\n", | |
1727 | tid_to_event(tid), tid_to_event(actual_tid)); | |
1728 | else | |
1729 | printk("for unknown reason: actual=%lx was=%lx target=%lx\n", | |
1730 | actual_tid, tid, next_tid(tid)); | |
1731 | #endif | |
4fdccdfb | 1732 | stat(s, CMPXCHG_DOUBLE_CPU_FAIL); |
8a5ec0ba CL |
1733 | } |
1734 | ||
788e1aad | 1735 | static void init_kmem_cache_cpus(struct kmem_cache *s) |
8a5ec0ba | 1736 | { |
8a5ec0ba CL |
1737 | int cpu; |
1738 | ||
1739 | for_each_possible_cpu(cpu) | |
1740 | per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); | |
8a5ec0ba | 1741 | } |
2cfb7455 | 1742 | |
81819f0f CL |
1743 | /* |
1744 | * Remove the cpu slab | |
1745 | */ | |
c17dda40 | 1746 | static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist) |
81819f0f | 1747 | { |
2cfb7455 | 1748 | enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; |
2cfb7455 CL |
1749 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); |
1750 | int lock = 0; | |
1751 | enum slab_modes l = M_NONE, m = M_NONE; | |
2cfb7455 | 1752 | void *nextfree; |
136333d1 | 1753 | int tail = DEACTIVATE_TO_HEAD; |
2cfb7455 CL |
1754 | struct page new; |
1755 | struct page old; | |
1756 | ||
1757 | if (page->freelist) { | |
84e554e6 | 1758 | stat(s, DEACTIVATE_REMOTE_FREES); |
136333d1 | 1759 | tail = DEACTIVATE_TO_TAIL; |
2cfb7455 CL |
1760 | } |
1761 | ||
894b8788 | 1762 | /* |
2cfb7455 CL |
1763 | * Stage one: Free all available per cpu objects back |
1764 | * to the page freelist while it is still frozen. Leave the | |
1765 | * last one. | |
1766 | * | |
1767 | * There is no need to take the list->lock because the page | |
1768 | * is still frozen. | |
1769 | */ | |
1770 | while (freelist && (nextfree = get_freepointer(s, freelist))) { | |
1771 | void *prior; | |
1772 | unsigned long counters; | |
1773 | ||
1774 | do { | |
1775 | prior = page->freelist; | |
1776 | counters = page->counters; | |
1777 | set_freepointer(s, freelist, prior); | |
1778 | new.counters = counters; | |
1779 | new.inuse--; | |
1780 | VM_BUG_ON(!new.frozen); | |
1781 | ||
1d07171c | 1782 | } while (!__cmpxchg_double_slab(s, page, |
2cfb7455 CL |
1783 | prior, counters, |
1784 | freelist, new.counters, | |
1785 | "drain percpu freelist")); | |
1786 | ||
1787 | freelist = nextfree; | |
1788 | } | |
1789 | ||
894b8788 | 1790 | /* |
2cfb7455 CL |
1791 | * Stage two: Ensure that the page is unfrozen while the |
1792 | * list presence reflects the actual number of objects | |
1793 | * during unfreeze. | |
1794 | * | |
1795 | * We setup the list membership and then perform a cmpxchg | |
1796 | * with the count. If there is a mismatch then the page | |
1797 | * is not unfrozen but the page is on the wrong list. | |
1798 | * | |
1799 | * Then we restart the process which may have to remove | |
1800 | * the page from the list that we just put it on again | |
1801 | * because the number of objects in the slab may have | |
1802 | * changed. | |
894b8788 | 1803 | */ |
2cfb7455 | 1804 | redo: |
894b8788 | 1805 | |
2cfb7455 CL |
1806 | old.freelist = page->freelist; |
1807 | old.counters = page->counters; | |
1808 | VM_BUG_ON(!old.frozen); | |
7c2e132c | 1809 | |
2cfb7455 CL |
1810 | /* Determine target state of the slab */ |
1811 | new.counters = old.counters; | |
1812 | if (freelist) { | |
1813 | new.inuse--; | |
1814 | set_freepointer(s, freelist, old.freelist); | |
1815 | new.freelist = freelist; | |
1816 | } else | |
1817 | new.freelist = old.freelist; | |
1818 | ||
1819 | new.frozen = 0; | |
1820 | ||
81107188 | 1821 | if (!new.inuse && n->nr_partial > s->min_partial) |
2cfb7455 CL |
1822 | m = M_FREE; |
1823 | else if (new.freelist) { | |
1824 | m = M_PARTIAL; | |
1825 | if (!lock) { | |
1826 | lock = 1; | |
1827 | /* | |
1828 | * Taking the spinlock removes the possiblity | |
1829 | * that acquire_slab() will see a slab page that | |
1830 | * is frozen | |
1831 | */ | |
1832 | spin_lock(&n->list_lock); | |
1833 | } | |
1834 | } else { | |
1835 | m = M_FULL; | |
1836 | if (kmem_cache_debug(s) && !lock) { | |
1837 | lock = 1; | |
1838 | /* | |
1839 | * This also ensures that the scanning of full | |
1840 | * slabs from diagnostic functions will not see | |
1841 | * any frozen slabs. | |
1842 | */ | |
1843 | spin_lock(&n->list_lock); | |
1844 | } | |
1845 | } | |
1846 | ||
1847 | if (l != m) { | |
1848 | ||
1849 | if (l == M_PARTIAL) | |
1850 | ||
1851 | remove_partial(n, page); | |
1852 | ||
1853 | else if (l == M_FULL) | |
894b8788 | 1854 | |
2cfb7455 CL |
1855 | remove_full(s, page); |
1856 | ||
1857 | if (m == M_PARTIAL) { | |
1858 | ||
1859 | add_partial(n, page, tail); | |
136333d1 | 1860 | stat(s, tail); |
2cfb7455 CL |
1861 | |
1862 | } else if (m == M_FULL) { | |
894b8788 | 1863 | |
2cfb7455 CL |
1864 | stat(s, DEACTIVATE_FULL); |
1865 | add_full(s, n, page); | |
1866 | ||
1867 | } | |
1868 | } | |
1869 | ||
1870 | l = m; | |
1d07171c | 1871 | if (!__cmpxchg_double_slab(s, page, |
2cfb7455 CL |
1872 | old.freelist, old.counters, |
1873 | new.freelist, new.counters, | |
1874 | "unfreezing slab")) | |
1875 | goto redo; | |
1876 | ||
2cfb7455 CL |
1877 | if (lock) |
1878 | spin_unlock(&n->list_lock); | |
1879 | ||
1880 | if (m == M_FREE) { | |
1881 | stat(s, DEACTIVATE_EMPTY); | |
1882 | discard_slab(s, page); | |
1883 | stat(s, FREE_SLAB); | |
894b8788 | 1884 | } |
81819f0f CL |
1885 | } |
1886 | ||
d24ac77f JK |
1887 | /* |
1888 | * Unfreeze all the cpu partial slabs. | |
1889 | * | |
59a09917 CL |
1890 | * This function must be called with interrupts disabled |
1891 | * for the cpu using c (or some other guarantee must be there | |
1892 | * to guarantee no concurrent accesses). | |
d24ac77f | 1893 | */ |
59a09917 CL |
1894 | static void unfreeze_partials(struct kmem_cache *s, |
1895 | struct kmem_cache_cpu *c) | |
49e22585 | 1896 | { |
345c905d | 1897 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
43d77867 | 1898 | struct kmem_cache_node *n = NULL, *n2 = NULL; |
9ada1934 | 1899 | struct page *page, *discard_page = NULL; |
49e22585 CL |
1900 | |
1901 | while ((page = c->partial)) { | |
49e22585 CL |
1902 | struct page new; |
1903 | struct page old; | |
1904 | ||
1905 | c->partial = page->next; | |
43d77867 JK |
1906 | |
1907 | n2 = get_node(s, page_to_nid(page)); | |
1908 | if (n != n2) { | |
1909 | if (n) | |
1910 | spin_unlock(&n->list_lock); | |
1911 | ||
1912 | n = n2; | |
1913 | spin_lock(&n->list_lock); | |
1914 | } | |
49e22585 CL |
1915 | |
1916 | do { | |
1917 | ||
1918 | old.freelist = page->freelist; | |
1919 | old.counters = page->counters; | |
1920 | VM_BUG_ON(!old.frozen); | |
1921 | ||
1922 | new.counters = old.counters; | |
1923 | new.freelist = old.freelist; | |
1924 | ||
1925 | new.frozen = 0; | |
1926 | ||
d24ac77f | 1927 | } while (!__cmpxchg_double_slab(s, page, |
49e22585 CL |
1928 | old.freelist, old.counters, |
1929 | new.freelist, new.counters, | |
1930 | "unfreezing slab")); | |
1931 | ||
43d77867 | 1932 | if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) { |
9ada1934 SL |
1933 | page->next = discard_page; |
1934 | discard_page = page; | |
43d77867 JK |
1935 | } else { |
1936 | add_partial(n, page, DEACTIVATE_TO_TAIL); | |
1937 | stat(s, FREE_ADD_PARTIAL); | |
49e22585 CL |
1938 | } |
1939 | } | |
1940 | ||
1941 | if (n) | |
1942 | spin_unlock(&n->list_lock); | |
9ada1934 SL |
1943 | |
1944 | while (discard_page) { | |
1945 | page = discard_page; | |
1946 | discard_page = discard_page->next; | |
1947 | ||
1948 | stat(s, DEACTIVATE_EMPTY); | |
1949 | discard_slab(s, page); | |
1950 | stat(s, FREE_SLAB); | |
1951 | } | |
345c905d | 1952 | #endif |
49e22585 CL |
1953 | } |
1954 | ||
1955 | /* | |
1956 | * Put a page that was just frozen (in __slab_free) into a partial page | |
1957 | * slot if available. This is done without interrupts disabled and without | |
1958 | * preemption disabled. The cmpxchg is racy and may put the partial page | |
1959 | * onto a random cpus partial slot. | |
1960 | * | |
1961 | * If we did not find a slot then simply move all the partials to the | |
1962 | * per node partial list. | |
1963 | */ | |
633b0764 | 1964 | static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) |
49e22585 | 1965 | { |
345c905d | 1966 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
49e22585 CL |
1967 | struct page *oldpage; |
1968 | int pages; | |
1969 | int pobjects; | |
1970 | ||
318df36e JK |
1971 | if (!s->cpu_partial) |
1972 | return; | |
1973 | ||
49e22585 CL |
1974 | do { |
1975 | pages = 0; | |
1976 | pobjects = 0; | |
1977 | oldpage = this_cpu_read(s->cpu_slab->partial); | |
1978 | ||
1979 | if (oldpage) { | |
1980 | pobjects = oldpage->pobjects; | |
1981 | pages = oldpage->pages; | |
1982 | if (drain && pobjects > s->cpu_partial) { | |
1983 | unsigned long flags; | |
1984 | /* | |
1985 | * partial array is full. Move the existing | |
1986 | * set to the per node partial list. | |
1987 | */ | |
1988 | local_irq_save(flags); | |
59a09917 | 1989 | unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); |
49e22585 | 1990 | local_irq_restore(flags); |
e24fc410 | 1991 | oldpage = NULL; |
49e22585 CL |
1992 | pobjects = 0; |
1993 | pages = 0; | |
8028dcea | 1994 | stat(s, CPU_PARTIAL_DRAIN); |
49e22585 CL |
1995 | } |
1996 | } | |
1997 | ||
1998 | pages++; | |
1999 | pobjects += page->objects - page->inuse; | |
2000 | ||
2001 | page->pages = pages; | |
2002 | page->pobjects = pobjects; | |
2003 | page->next = oldpage; | |
2004 | ||
933393f5 | 2005 | } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage); |
345c905d | 2006 | #endif |
49e22585 CL |
2007 | } |
2008 | ||
dfb4f096 | 2009 | static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) |
81819f0f | 2010 | { |
84e554e6 | 2011 | stat(s, CPUSLAB_FLUSH); |
c17dda40 CL |
2012 | deactivate_slab(s, c->page, c->freelist); |
2013 | ||
2014 | c->tid = next_tid(c->tid); | |
2015 | c->page = NULL; | |
2016 | c->freelist = NULL; | |
81819f0f CL |
2017 | } |
2018 | ||
2019 | /* | |
2020 | * Flush cpu slab. | |
6446faa2 | 2021 | * |
81819f0f CL |
2022 | * Called from IPI handler with interrupts disabled. |
2023 | */ | |
0c710013 | 2024 | static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) |
81819f0f | 2025 | { |
9dfc6e68 | 2026 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); |
81819f0f | 2027 | |
49e22585 CL |
2028 | if (likely(c)) { |
2029 | if (c->page) | |
2030 | flush_slab(s, c); | |
2031 | ||
59a09917 | 2032 | unfreeze_partials(s, c); |
49e22585 | 2033 | } |
81819f0f CL |
2034 | } |
2035 | ||
2036 | static void flush_cpu_slab(void *d) | |
2037 | { | |
2038 | struct kmem_cache *s = d; | |
81819f0f | 2039 | |
dfb4f096 | 2040 | __flush_cpu_slab(s, smp_processor_id()); |
81819f0f CL |
2041 | } |
2042 | ||
a8364d55 GBY |
2043 | static bool has_cpu_slab(int cpu, void *info) |
2044 | { | |
2045 | struct kmem_cache *s = info; | |
2046 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); | |
2047 | ||
02e1a9cd | 2048 | return c->page || c->partial; |
a8364d55 GBY |
2049 | } |
2050 | ||
81819f0f CL |
2051 | static void flush_all(struct kmem_cache *s) |
2052 | { | |
a8364d55 | 2053 | on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); |
81819f0f CL |
2054 | } |
2055 | ||
dfb4f096 CL |
2056 | /* |
2057 | * Check if the objects in a per cpu structure fit numa | |
2058 | * locality expectations. | |
2059 | */ | |
57d437d2 | 2060 | static inline int node_match(struct page *page, int node) |
dfb4f096 CL |
2061 | { |
2062 | #ifdef CONFIG_NUMA | |
4d7868e6 | 2063 | if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node)) |
dfb4f096 CL |
2064 | return 0; |
2065 | #endif | |
2066 | return 1; | |
2067 | } | |
2068 | ||
781b2ba6 PE |
2069 | static int count_free(struct page *page) |
2070 | { | |
2071 | return page->objects - page->inuse; | |
2072 | } | |
2073 | ||
2074 | static unsigned long count_partial(struct kmem_cache_node *n, | |
2075 | int (*get_count)(struct page *)) | |
2076 | { | |
2077 | unsigned long flags; | |
2078 | unsigned long x = 0; | |
2079 | struct page *page; | |
2080 | ||
2081 | spin_lock_irqsave(&n->list_lock, flags); | |
2082 | list_for_each_entry(page, &n->partial, lru) | |
2083 | x += get_count(page); | |
2084 | spin_unlock_irqrestore(&n->list_lock, flags); | |
2085 | return x; | |
2086 | } | |
2087 | ||
26c02cf0 AB |
2088 | static inline unsigned long node_nr_objs(struct kmem_cache_node *n) |
2089 | { | |
2090 | #ifdef CONFIG_SLUB_DEBUG | |
2091 | return atomic_long_read(&n->total_objects); | |
2092 | #else | |
2093 | return 0; | |
2094 | #endif | |
2095 | } | |
2096 | ||
781b2ba6 PE |
2097 | static noinline void |
2098 | slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) | |
2099 | { | |
2100 | int node; | |
2101 | ||
2102 | printk(KERN_WARNING | |
2103 | "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n", | |
2104 | nid, gfpflags); | |
2105 | printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, " | |
3b0efdfa | 2106 | "default order: %d, min order: %d\n", s->name, s->object_size, |
781b2ba6 PE |
2107 | s->size, oo_order(s->oo), oo_order(s->min)); |
2108 | ||
3b0efdfa | 2109 | if (oo_order(s->min) > get_order(s->object_size)) |
fa5ec8a1 DR |
2110 | printk(KERN_WARNING " %s debugging increased min order, use " |
2111 | "slub_debug=O to disable.\n", s->name); | |
2112 | ||
781b2ba6 PE |
2113 | for_each_online_node(node) { |
2114 | struct kmem_cache_node *n = get_node(s, node); | |
2115 | unsigned long nr_slabs; | |
2116 | unsigned long nr_objs; | |
2117 | unsigned long nr_free; | |
2118 | ||
2119 | if (!n) | |
2120 | continue; | |
2121 | ||
26c02cf0 AB |
2122 | nr_free = count_partial(n, count_free); |
2123 | nr_slabs = node_nr_slabs(n); | |
2124 | nr_objs = node_nr_objs(n); | |
781b2ba6 PE |
2125 | |
2126 | printk(KERN_WARNING | |
2127 | " node %d: slabs: %ld, objs: %ld, free: %ld\n", | |
2128 | node, nr_slabs, nr_objs, nr_free); | |
2129 | } | |
2130 | } | |
2131 | ||
497b66f2 CL |
2132 | static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, |
2133 | int node, struct kmem_cache_cpu **pc) | |
2134 | { | |
6faa6833 | 2135 | void *freelist; |
188fd063 CL |
2136 | struct kmem_cache_cpu *c = *pc; |
2137 | struct page *page; | |
497b66f2 | 2138 | |
188fd063 | 2139 | freelist = get_partial(s, flags, node, c); |
497b66f2 | 2140 | |
188fd063 CL |
2141 | if (freelist) |
2142 | return freelist; | |
2143 | ||
2144 | page = new_slab(s, flags, node); | |
497b66f2 CL |
2145 | if (page) { |
2146 | c = __this_cpu_ptr(s->cpu_slab); | |
2147 | if (c->page) | |
2148 | flush_slab(s, c); | |
2149 | ||
2150 | /* | |
2151 | * No other reference to the page yet so we can | |
2152 | * muck around with it freely without cmpxchg | |
2153 | */ | |
6faa6833 | 2154 | freelist = page->freelist; |
497b66f2 CL |
2155 | page->freelist = NULL; |
2156 | ||
2157 | stat(s, ALLOC_SLAB); | |
497b66f2 CL |
2158 | c->page = page; |
2159 | *pc = c; | |
2160 | } else | |
6faa6833 | 2161 | freelist = NULL; |
497b66f2 | 2162 | |
6faa6833 | 2163 | return freelist; |
497b66f2 CL |
2164 | } |
2165 | ||
072bb0aa MG |
2166 | static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) |
2167 | { | |
2168 | if (unlikely(PageSlabPfmemalloc(page))) | |
2169 | return gfp_pfmemalloc_allowed(gfpflags); | |
2170 | ||
2171 | return true; | |
2172 | } | |
2173 | ||
213eeb9f CL |
2174 | /* |
2175 | * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist | |
2176 | * or deactivate the page. | |
2177 | * | |
2178 | * The page is still frozen if the return value is not NULL. | |
2179 | * | |
2180 | * If this function returns NULL then the page has been unfrozen. | |
d24ac77f JK |
2181 | * |
2182 | * This function must be called with interrupt disabled. | |
213eeb9f CL |
2183 | */ |
2184 | static inline void *get_freelist(struct kmem_cache *s, struct page *page) | |
2185 | { | |
2186 | struct page new; | |
2187 | unsigned long counters; | |
2188 | void *freelist; | |
2189 | ||
2190 | do { | |
2191 | freelist = page->freelist; | |
2192 | counters = page->counters; | |
6faa6833 | 2193 | |
213eeb9f CL |
2194 | new.counters = counters; |
2195 | VM_BUG_ON(!new.frozen); | |
2196 | ||
2197 | new.inuse = page->objects; | |
2198 | new.frozen = freelist != NULL; | |
2199 | ||
d24ac77f | 2200 | } while (!__cmpxchg_double_slab(s, page, |
213eeb9f CL |
2201 | freelist, counters, |
2202 | NULL, new.counters, | |
2203 | "get_freelist")); | |
2204 | ||
2205 | return freelist; | |
2206 | } | |
2207 | ||
81819f0f | 2208 | /* |
894b8788 CL |
2209 | * Slow path. The lockless freelist is empty or we need to perform |
2210 | * debugging duties. | |
2211 | * | |
894b8788 CL |
2212 | * Processing is still very fast if new objects have been freed to the |
2213 | * regular freelist. In that case we simply take over the regular freelist | |
2214 | * as the lockless freelist and zap the regular freelist. | |
81819f0f | 2215 | * |
894b8788 CL |
2216 | * If that is not working then we fall back to the partial lists. We take the |
2217 | * first element of the freelist as the object to allocate now and move the | |
2218 | * rest of the freelist to the lockless freelist. | |
81819f0f | 2219 | * |
894b8788 | 2220 | * And if we were unable to get a new slab from the partial slab lists then |
6446faa2 CL |
2221 | * we need to allocate a new slab. This is the slowest path since it involves |
2222 | * a call to the page allocator and the setup of a new slab. | |
81819f0f | 2223 | */ |
ce71e27c EGM |
2224 | static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, |
2225 | unsigned long addr, struct kmem_cache_cpu *c) | |
81819f0f | 2226 | { |
6faa6833 | 2227 | void *freelist; |
f6e7def7 | 2228 | struct page *page; |
8a5ec0ba CL |
2229 | unsigned long flags; |
2230 | ||
2231 | local_irq_save(flags); | |
2232 | #ifdef CONFIG_PREEMPT | |
2233 | /* | |
2234 | * We may have been preempted and rescheduled on a different | |
2235 | * cpu before disabling interrupts. Need to reload cpu area | |
2236 | * pointer. | |
2237 | */ | |
2238 | c = this_cpu_ptr(s->cpu_slab); | |
8a5ec0ba | 2239 | #endif |
81819f0f | 2240 | |
f6e7def7 CL |
2241 | page = c->page; |
2242 | if (!page) | |
81819f0f | 2243 | goto new_slab; |
49e22585 | 2244 | redo: |
6faa6833 | 2245 | |
57d437d2 | 2246 | if (unlikely(!node_match(page, node))) { |
e36a2652 | 2247 | stat(s, ALLOC_NODE_MISMATCH); |
f6e7def7 | 2248 | deactivate_slab(s, page, c->freelist); |
c17dda40 CL |
2249 | c->page = NULL; |
2250 | c->freelist = NULL; | |
fc59c053 CL |
2251 | goto new_slab; |
2252 | } | |
6446faa2 | 2253 | |
072bb0aa MG |
2254 | /* |
2255 | * By rights, we should be searching for a slab page that was | |
2256 | * PFMEMALLOC but right now, we are losing the pfmemalloc | |
2257 | * information when the page leaves the per-cpu allocator | |
2258 | */ | |
2259 | if (unlikely(!pfmemalloc_match(page, gfpflags))) { | |
2260 | deactivate_slab(s, page, c->freelist); | |
2261 | c->page = NULL; | |
2262 | c->freelist = NULL; | |
2263 | goto new_slab; | |
2264 | } | |
2265 | ||
73736e03 | 2266 | /* must check again c->freelist in case of cpu migration or IRQ */ |
6faa6833 CL |
2267 | freelist = c->freelist; |
2268 | if (freelist) | |
73736e03 | 2269 | goto load_freelist; |
03e404af | 2270 | |
2cfb7455 | 2271 | stat(s, ALLOC_SLOWPATH); |
03e404af | 2272 | |
f6e7def7 | 2273 | freelist = get_freelist(s, page); |
6446faa2 | 2274 | |
6faa6833 | 2275 | if (!freelist) { |
03e404af CL |
2276 | c->page = NULL; |
2277 | stat(s, DEACTIVATE_BYPASS); | |
fc59c053 | 2278 | goto new_slab; |
03e404af | 2279 | } |
6446faa2 | 2280 | |
84e554e6 | 2281 | stat(s, ALLOC_REFILL); |
6446faa2 | 2282 | |
894b8788 | 2283 | load_freelist: |
507effea CL |
2284 | /* |
2285 | * freelist is pointing to the list of objects to be used. | |
2286 | * page is pointing to the page from which the objects are obtained. | |
2287 | * That page must be frozen for per cpu allocations to work. | |
2288 | */ | |
2289 | VM_BUG_ON(!c->page->frozen); | |
6faa6833 | 2290 | c->freelist = get_freepointer(s, freelist); |
8a5ec0ba CL |
2291 | c->tid = next_tid(c->tid); |
2292 | local_irq_restore(flags); | |
6faa6833 | 2293 | return freelist; |
81819f0f | 2294 | |
81819f0f | 2295 | new_slab: |
2cfb7455 | 2296 | |
49e22585 | 2297 | if (c->partial) { |
f6e7def7 CL |
2298 | page = c->page = c->partial; |
2299 | c->partial = page->next; | |
49e22585 CL |
2300 | stat(s, CPU_PARTIAL_ALLOC); |
2301 | c->freelist = NULL; | |
2302 | goto redo; | |
81819f0f CL |
2303 | } |
2304 | ||
188fd063 | 2305 | freelist = new_slab_objects(s, gfpflags, node, &c); |
01ad8a7b | 2306 | |
f4697436 CL |
2307 | if (unlikely(!freelist)) { |
2308 | if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit()) | |
2309 | slab_out_of_memory(s, gfpflags, node); | |
2cfb7455 | 2310 | |
f4697436 CL |
2311 | local_irq_restore(flags); |
2312 | return NULL; | |
81819f0f | 2313 | } |
2cfb7455 | 2314 | |
f6e7def7 | 2315 | page = c->page; |
5091b74a | 2316 | if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) |
4b6f0750 | 2317 | goto load_freelist; |
2cfb7455 | 2318 | |
497b66f2 | 2319 | /* Only entered in the debug case */ |
5091b74a | 2320 | if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr)) |
497b66f2 | 2321 | goto new_slab; /* Slab failed checks. Next slab needed */ |
894b8788 | 2322 | |
f6e7def7 | 2323 | deactivate_slab(s, page, get_freepointer(s, freelist)); |
c17dda40 CL |
2324 | c->page = NULL; |
2325 | c->freelist = NULL; | |
a71ae47a | 2326 | local_irq_restore(flags); |
6faa6833 | 2327 | return freelist; |
894b8788 CL |
2328 | } |
2329 | ||
2330 | /* | |
2331 | * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) | |
2332 | * have the fastpath folded into their functions. So no function call | |
2333 | * overhead for requests that can be satisfied on the fastpath. | |
2334 | * | |
2335 | * The fastpath works by first checking if the lockless freelist can be used. | |
2336 | * If not then __slab_alloc is called for slow processing. | |
2337 | * | |
2338 | * Otherwise we can simply pick the next object from the lockless free list. | |
2339 | */ | |
2b847c3c | 2340 | static __always_inline void *slab_alloc_node(struct kmem_cache *s, |
ce71e27c | 2341 | gfp_t gfpflags, int node, unsigned long addr) |
894b8788 | 2342 | { |
894b8788 | 2343 | void **object; |
dfb4f096 | 2344 | struct kmem_cache_cpu *c; |
57d437d2 | 2345 | struct page *page; |
8a5ec0ba | 2346 | unsigned long tid; |
1f84260c | 2347 | |
c016b0bd | 2348 | if (slab_pre_alloc_hook(s, gfpflags)) |
773ff60e | 2349 | return NULL; |
1f84260c | 2350 | |
d79923fa | 2351 | s = memcg_kmem_get_cache(s, gfpflags); |
8a5ec0ba | 2352 | redo: |
8a5ec0ba CL |
2353 | /* |
2354 | * Must read kmem_cache cpu data via this cpu ptr. Preemption is | |
2355 | * enabled. We may switch back and forth between cpus while | |
2356 | * reading from one cpu area. That does not matter as long | |
2357 | * as we end up on the original cpu again when doing the cmpxchg. | |
7cccd80b CL |
2358 | * |
2359 | * Preemption is disabled for the retrieval of the tid because that | |
2360 | * must occur from the current processor. We cannot allow rescheduling | |
2361 | * on a different processor between the determination of the pointer | |
2362 | * and the retrieval of the tid. | |
8a5ec0ba | 2363 | */ |
7cccd80b | 2364 | preempt_disable(); |
9dfc6e68 | 2365 | c = __this_cpu_ptr(s->cpu_slab); |
8a5ec0ba | 2366 | |
8a5ec0ba CL |
2367 | /* |
2368 | * The transaction ids are globally unique per cpu and per operation on | |
2369 | * a per cpu queue. Thus they can be guarantee that the cmpxchg_double | |
2370 | * occurs on the right processor and that there was no operation on the | |
2371 | * linked list in between. | |
2372 | */ | |
2373 | tid = c->tid; | |
7cccd80b | 2374 | preempt_enable(); |
8a5ec0ba | 2375 | |
9dfc6e68 | 2376 | object = c->freelist; |
57d437d2 | 2377 | page = c->page; |
c25f195e | 2378 | if (unlikely(!object || !page || !node_match(page, node))) |
dfb4f096 | 2379 | object = __slab_alloc(s, gfpflags, node, addr, c); |
894b8788 CL |
2380 | |
2381 | else { | |
0ad9500e ED |
2382 | void *next_object = get_freepointer_safe(s, object); |
2383 | ||
8a5ec0ba | 2384 | /* |
25985edc | 2385 | * The cmpxchg will only match if there was no additional |
8a5ec0ba CL |
2386 | * operation and if we are on the right processor. |
2387 | * | |
2388 | * The cmpxchg does the following atomically (without lock semantics!) | |
2389 | * 1. Relocate first pointer to the current per cpu area. | |
2390 | * 2. Verify that tid and freelist have not been changed | |
2391 | * 3. If they were not changed replace tid and freelist | |
2392 | * | |
2393 | * Since this is without lock semantics the protection is only against | |
2394 | * code executing on this cpu *not* from access by other cpus. | |
2395 | */ | |
933393f5 | 2396 | if (unlikely(!this_cpu_cmpxchg_double( |
8a5ec0ba CL |
2397 | s->cpu_slab->freelist, s->cpu_slab->tid, |
2398 | object, tid, | |
0ad9500e | 2399 | next_object, next_tid(tid)))) { |
8a5ec0ba CL |
2400 | |
2401 | note_cmpxchg_failure("slab_alloc", s, tid); | |
2402 | goto redo; | |
2403 | } | |
0ad9500e | 2404 | prefetch_freepointer(s, next_object); |
84e554e6 | 2405 | stat(s, ALLOC_FASTPATH); |
894b8788 | 2406 | } |
8a5ec0ba | 2407 | |
74e2134f | 2408 | if (unlikely(gfpflags & __GFP_ZERO) && object) |
3b0efdfa | 2409 | memset(object, 0, s->object_size); |
d07dbea4 | 2410 | |
c016b0bd | 2411 | slab_post_alloc_hook(s, gfpflags, object); |
5a896d9e | 2412 | |
894b8788 | 2413 | return object; |
81819f0f CL |
2414 | } |
2415 | ||
2b847c3c EG |
2416 | static __always_inline void *slab_alloc(struct kmem_cache *s, |
2417 | gfp_t gfpflags, unsigned long addr) | |
2418 | { | |
2419 | return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); | |
2420 | } | |
2421 | ||
81819f0f CL |
2422 | void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) |
2423 | { | |
2b847c3c | 2424 | void *ret = slab_alloc(s, gfpflags, _RET_IP_); |
5b882be4 | 2425 | |
3b0efdfa | 2426 | trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags); |
5b882be4 EGM |
2427 | |
2428 | return ret; | |
81819f0f CL |
2429 | } |
2430 | EXPORT_SYMBOL(kmem_cache_alloc); | |
2431 | ||
0f24f128 | 2432 | #ifdef CONFIG_TRACING |
4a92379b RK |
2433 | void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) |
2434 | { | |
2b847c3c | 2435 | void *ret = slab_alloc(s, gfpflags, _RET_IP_); |
4a92379b RK |
2436 | trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); |
2437 | return ret; | |
2438 | } | |
2439 | EXPORT_SYMBOL(kmem_cache_alloc_trace); | |
2440 | ||
2441 | void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) | |
5b882be4 | 2442 | { |
4a92379b RK |
2443 | void *ret = kmalloc_order(size, flags, order); |
2444 | trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); | |
2445 | return ret; | |
5b882be4 | 2446 | } |
4a92379b | 2447 | EXPORT_SYMBOL(kmalloc_order_trace); |
5b882be4 EGM |
2448 | #endif |
2449 | ||
81819f0f CL |
2450 | #ifdef CONFIG_NUMA |
2451 | void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) | |
2452 | { | |
2b847c3c | 2453 | void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); |
5b882be4 | 2454 | |
ca2b84cb | 2455 | trace_kmem_cache_alloc_node(_RET_IP_, ret, |
3b0efdfa | 2456 | s->object_size, s->size, gfpflags, node); |
5b882be4 EGM |
2457 | |
2458 | return ret; | |
81819f0f CL |
2459 | } |
2460 | EXPORT_SYMBOL(kmem_cache_alloc_node); | |
81819f0f | 2461 | |
0f24f128 | 2462 | #ifdef CONFIG_TRACING |
4a92379b | 2463 | void *kmem_cache_alloc_node_trace(struct kmem_cache *s, |
5b882be4 | 2464 | gfp_t gfpflags, |
4a92379b | 2465 | int node, size_t size) |
5b882be4 | 2466 | { |
2b847c3c | 2467 | void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); |
4a92379b RK |
2468 | |
2469 | trace_kmalloc_node(_RET_IP_, ret, | |
2470 | size, s->size, gfpflags, node); | |
2471 | return ret; | |
5b882be4 | 2472 | } |
4a92379b | 2473 | EXPORT_SYMBOL(kmem_cache_alloc_node_trace); |
5b882be4 | 2474 | #endif |
5d1f57e4 | 2475 | #endif |
5b882be4 | 2476 | |
81819f0f | 2477 | /* |
894b8788 CL |
2478 | * Slow patch handling. This may still be called frequently since objects |
2479 | * have a longer lifetime than the cpu slabs in most processing loads. | |
81819f0f | 2480 | * |
894b8788 CL |
2481 | * So we still attempt to reduce cache line usage. Just take the slab |
2482 | * lock and free the item. If there is no additional partial page | |
2483 | * handling required then we can return immediately. | |
81819f0f | 2484 | */ |
894b8788 | 2485 | static void __slab_free(struct kmem_cache *s, struct page *page, |
ff12059e | 2486 | void *x, unsigned long addr) |
81819f0f CL |
2487 | { |
2488 | void *prior; | |
2489 | void **object = (void *)x; | |
2cfb7455 | 2490 | int was_frozen; |
2cfb7455 CL |
2491 | struct page new; |
2492 | unsigned long counters; | |
2493 | struct kmem_cache_node *n = NULL; | |
61728d1e | 2494 | unsigned long uninitialized_var(flags); |
81819f0f | 2495 | |
8a5ec0ba | 2496 | stat(s, FREE_SLOWPATH); |
81819f0f | 2497 | |
19c7ff9e CL |
2498 | if (kmem_cache_debug(s) && |
2499 | !(n = free_debug_processing(s, page, x, addr, &flags))) | |
80f08c19 | 2500 | return; |
6446faa2 | 2501 | |
2cfb7455 | 2502 | do { |
837d678d JK |
2503 | if (unlikely(n)) { |
2504 | spin_unlock_irqrestore(&n->list_lock, flags); | |
2505 | n = NULL; | |
2506 | } | |
2cfb7455 CL |
2507 | prior = page->freelist; |
2508 | counters = page->counters; | |
2509 | set_freepointer(s, object, prior); | |
2510 | new.counters = counters; | |
2511 | was_frozen = new.frozen; | |
2512 | new.inuse--; | |
837d678d | 2513 | if ((!new.inuse || !prior) && !was_frozen) { |
49e22585 | 2514 | |
345c905d | 2515 | if (kmem_cache_has_cpu_partial(s) && !prior) |
49e22585 CL |
2516 | |
2517 | /* | |
2518 | * Slab was on no list before and will be partially empty | |
2519 | * We can defer the list move and instead freeze it. | |
2520 | */ | |
2521 | new.frozen = 1; | |
2522 | ||
2523 | else { /* Needs to be taken off a list */ | |
2524 | ||
2525 | n = get_node(s, page_to_nid(page)); | |
2526 | /* | |
2527 | * Speculatively acquire the list_lock. | |
2528 | * If the cmpxchg does not succeed then we may | |
2529 | * drop the list_lock without any processing. | |
2530 | * | |
2531 | * Otherwise the list_lock will synchronize with | |
2532 | * other processors updating the list of slabs. | |
2533 | */ | |
2534 | spin_lock_irqsave(&n->list_lock, flags); | |
2535 | ||
2536 | } | |
2cfb7455 | 2537 | } |
81819f0f | 2538 | |
2cfb7455 CL |
2539 | } while (!cmpxchg_double_slab(s, page, |
2540 | prior, counters, | |
2541 | object, new.counters, | |
2542 | "__slab_free")); | |
81819f0f | 2543 | |
2cfb7455 | 2544 | if (likely(!n)) { |
49e22585 CL |
2545 | |
2546 | /* | |
2547 | * If we just froze the page then put it onto the | |
2548 | * per cpu partial list. | |
2549 | */ | |
8028dcea | 2550 | if (new.frozen && !was_frozen) { |
49e22585 | 2551 | put_cpu_partial(s, page, 1); |
8028dcea AS |
2552 | stat(s, CPU_PARTIAL_FREE); |
2553 | } | |
49e22585 | 2554 | /* |
2cfb7455 CL |
2555 | * The list lock was not taken therefore no list |
2556 | * activity can be necessary. | |
2557 | */ | |
2558 | if (was_frozen) | |
2559 | stat(s, FREE_FROZEN); | |
80f08c19 | 2560 | return; |
2cfb7455 | 2561 | } |
81819f0f | 2562 | |
837d678d JK |
2563 | if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) |
2564 | goto slab_empty; | |
2565 | ||
81819f0f | 2566 | /* |
837d678d JK |
2567 | * Objects left in the slab. If it was not on the partial list before |
2568 | * then add it. | |
81819f0f | 2569 | */ |
345c905d JK |
2570 | if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { |
2571 | if (kmem_cache_debug(s)) | |
2572 | remove_full(s, page); | |
837d678d JK |
2573 | add_partial(n, page, DEACTIVATE_TO_TAIL); |
2574 | stat(s, FREE_ADD_PARTIAL); | |
8ff12cfc | 2575 | } |
80f08c19 | 2576 | spin_unlock_irqrestore(&n->list_lock, flags); |
81819f0f CL |
2577 | return; |
2578 | ||
2579 | slab_empty: | |
a973e9dd | 2580 | if (prior) { |
81819f0f | 2581 | /* |
6fbabb20 | 2582 | * Slab on the partial list. |
81819f0f | 2583 | */ |
5cc6eee8 | 2584 | remove_partial(n, page); |
84e554e6 | 2585 | stat(s, FREE_REMOVE_PARTIAL); |
6fbabb20 CL |
2586 | } else |
2587 | /* Slab must be on the full list */ | |
2588 | remove_full(s, page); | |
2cfb7455 | 2589 | |
80f08c19 | 2590 | spin_unlock_irqrestore(&n->list_lock, flags); |
84e554e6 | 2591 | stat(s, FREE_SLAB); |
81819f0f | 2592 | discard_slab(s, page); |
81819f0f CL |
2593 | } |
2594 | ||
894b8788 CL |
2595 | /* |
2596 | * Fastpath with forced inlining to produce a kfree and kmem_cache_free that | |
2597 | * can perform fastpath freeing without additional function calls. | |
2598 | * | |
2599 | * The fastpath is only possible if we are freeing to the current cpu slab | |
2600 | * of this processor. This typically the case if we have just allocated | |
2601 | * the item before. | |
2602 | * | |
2603 | * If fastpath is not possible then fall back to __slab_free where we deal | |
2604 | * with all sorts of special processing. | |
2605 | */ | |
06428780 | 2606 | static __always_inline void slab_free(struct kmem_cache *s, |
ce71e27c | 2607 | struct page *page, void *x, unsigned long addr) |
894b8788 CL |
2608 | { |
2609 | void **object = (void *)x; | |
dfb4f096 | 2610 | struct kmem_cache_cpu *c; |
8a5ec0ba | 2611 | unsigned long tid; |
1f84260c | 2612 | |
c016b0bd CL |
2613 | slab_free_hook(s, x); |
2614 | ||
8a5ec0ba CL |
2615 | redo: |
2616 | /* | |
2617 | * Determine the currently cpus per cpu slab. | |
2618 | * The cpu may change afterward. However that does not matter since | |
2619 | * data is retrieved via this pointer. If we are on the same cpu | |
2620 | * during the cmpxchg then the free will succedd. | |
2621 | */ | |
7cccd80b | 2622 | preempt_disable(); |
9dfc6e68 | 2623 | c = __this_cpu_ptr(s->cpu_slab); |
c016b0bd | 2624 | |
8a5ec0ba | 2625 | tid = c->tid; |
7cccd80b | 2626 | preempt_enable(); |
c016b0bd | 2627 | |
442b06bc | 2628 | if (likely(page == c->page)) { |
ff12059e | 2629 | set_freepointer(s, object, c->freelist); |
8a5ec0ba | 2630 | |
933393f5 | 2631 | if (unlikely(!this_cpu_cmpxchg_double( |
8a5ec0ba CL |
2632 | s->cpu_slab->freelist, s->cpu_slab->tid, |
2633 | c->freelist, tid, | |
2634 | object, next_tid(tid)))) { | |
2635 | ||
2636 | note_cmpxchg_failure("slab_free", s, tid); | |
2637 | goto redo; | |
2638 | } | |
84e554e6 | 2639 | stat(s, FREE_FASTPATH); |
894b8788 | 2640 | } else |
ff12059e | 2641 | __slab_free(s, page, x, addr); |
894b8788 | 2642 | |
894b8788 CL |
2643 | } |
2644 | ||
81819f0f CL |
2645 | void kmem_cache_free(struct kmem_cache *s, void *x) |
2646 | { | |
b9ce5ef4 GC |
2647 | s = cache_from_obj(s, x); |
2648 | if (!s) | |
79576102 | 2649 | return; |
b9ce5ef4 | 2650 | slab_free(s, virt_to_head_page(x), x, _RET_IP_); |
ca2b84cb | 2651 | trace_kmem_cache_free(_RET_IP_, x); |
81819f0f CL |
2652 | } |
2653 | EXPORT_SYMBOL(kmem_cache_free); | |
2654 | ||
81819f0f | 2655 | /* |
672bba3a CL |
2656 | * Object placement in a slab is made very easy because we always start at |
2657 | * offset 0. If we tune the size of the object to the alignment then we can | |
2658 | * get the required alignment by putting one properly sized object after | |
2659 | * another. | |
81819f0f CL |
2660 | * |
2661 | * Notice that the allocation order determines the sizes of the per cpu | |
2662 | * caches. Each processor has always one slab available for allocations. | |
2663 | * Increasing the allocation order reduces the number of times that slabs | |
672bba3a | 2664 | * must be moved on and off the partial lists and is therefore a factor in |
81819f0f | 2665 | * locking overhead. |
81819f0f CL |
2666 | */ |
2667 | ||
2668 | /* | |
2669 | * Mininum / Maximum order of slab pages. This influences locking overhead | |
2670 | * and slab fragmentation. A higher order reduces the number of partial slabs | |
2671 | * and increases the number of allocations possible without having to | |
2672 | * take the list_lock. | |
2673 | */ | |
2674 | static int slub_min_order; | |
114e9e89 | 2675 | static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; |
9b2cd506 | 2676 | static int slub_min_objects; |
81819f0f CL |
2677 | |
2678 | /* | |
2679 | * Merge control. If this is set then no merging of slab caches will occur. | |
672bba3a | 2680 | * (Could be removed. This was introduced to pacify the merge skeptics.) |
81819f0f CL |
2681 | */ |
2682 | static int slub_nomerge; | |
2683 | ||
81819f0f CL |
2684 | /* |
2685 | * Calculate the order of allocation given an slab object size. | |
2686 | * | |
672bba3a CL |
2687 | * The order of allocation has significant impact on performance and other |
2688 | * system components. Generally order 0 allocations should be preferred since | |
2689 | * order 0 does not cause fragmentation in the page allocator. Larger objects | |
2690 | * be problematic to put into order 0 slabs because there may be too much | |
c124f5b5 | 2691 | * unused space left. We go to a higher order if more than 1/16th of the slab |
672bba3a CL |
2692 | * would be wasted. |
2693 | * | |
2694 | * In order to reach satisfactory performance we must ensure that a minimum | |
2695 | * number of objects is in one slab. Otherwise we may generate too much | |
2696 | * activity on the partial lists which requires taking the list_lock. This is | |
2697 | * less a concern for large slabs though which are rarely used. | |
81819f0f | 2698 | * |
672bba3a CL |
2699 | * slub_max_order specifies the order where we begin to stop considering the |
2700 | * number of objects in a slab as critical. If we reach slub_max_order then | |
2701 | * we try to keep the page order as low as possible. So we accept more waste | |
2702 | * of space in favor of a small page order. | |
81819f0f | 2703 | * |
672bba3a CL |
2704 | * Higher order allocations also allow the placement of more objects in a |
2705 | * slab and thereby reduce object handling overhead. If the user has | |
2706 | * requested a higher mininum order then we start with that one instead of | |
2707 | * the smallest order which will fit the object. | |
81819f0f | 2708 | */ |
5e6d444e | 2709 | static inline int slab_order(int size, int min_objects, |
ab9a0f19 | 2710 | int max_order, int fract_leftover, int reserved) |
81819f0f CL |
2711 | { |
2712 | int order; | |
2713 | int rem; | |
6300ea75 | 2714 | int min_order = slub_min_order; |
81819f0f | 2715 | |
ab9a0f19 | 2716 | if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) |
210b5c06 | 2717 | return get_order(size * MAX_OBJS_PER_PAGE) - 1; |
39b26464 | 2718 | |
6300ea75 | 2719 | for (order = max(min_order, |
5e6d444e CL |
2720 | fls(min_objects * size - 1) - PAGE_SHIFT); |
2721 | order <= max_order; order++) { | |
81819f0f | 2722 | |
5e6d444e | 2723 | unsigned long slab_size = PAGE_SIZE << order; |
81819f0f | 2724 | |
ab9a0f19 | 2725 | if (slab_size < min_objects * size + reserved) |
81819f0f CL |
2726 | continue; |
2727 | ||
ab9a0f19 | 2728 | rem = (slab_size - reserved) % size; |
81819f0f | 2729 | |
5e6d444e | 2730 | if (rem <= slab_size / fract_leftover) |
81819f0f CL |
2731 | break; |
2732 | ||
2733 | } | |
672bba3a | 2734 | |
81819f0f CL |
2735 | return order; |
2736 | } | |
2737 | ||
ab9a0f19 | 2738 | static inline int calculate_order(int size, int reserved) |
5e6d444e CL |
2739 | { |
2740 | int order; | |
2741 | int min_objects; | |
2742 | int fraction; | |
e8120ff1 | 2743 | int max_objects; |
5e6d444e CL |
2744 | |
2745 | /* | |
2746 | * Attempt to find best configuration for a slab. This | |
2747 | * works by first attempting to generate a layout with | |
2748 | * the best configuration and backing off gradually. | |
2749 | * | |
2750 | * First we reduce the acceptable waste in a slab. Then | |
2751 | * we reduce the minimum objects required in a slab. | |
2752 | */ | |
2753 | min_objects = slub_min_objects; | |
9b2cd506 CL |
2754 | if (!min_objects) |
2755 | min_objects = 4 * (fls(nr_cpu_ids) + 1); | |
ab9a0f19 | 2756 | max_objects = order_objects(slub_max_order, size, reserved); |
e8120ff1 ZY |
2757 | min_objects = min(min_objects, max_objects); |
2758 | ||
5e6d444e | 2759 | while (min_objects > 1) { |
c124f5b5 | 2760 | fraction = 16; |
5e6d444e CL |
2761 | while (fraction >= 4) { |
2762 | order = slab_order(size, min_objects, | |
ab9a0f19 | 2763 | slub_max_order, fraction, reserved); |
5e6d444e CL |
2764 | if (order <= slub_max_order) |
2765 | return order; | |
2766 | fraction /= 2; | |
2767 | } | |
5086c389 | 2768 | min_objects--; |
5e6d444e CL |
2769 | } |
2770 | ||
2771 | /* | |
2772 | * We were unable to place multiple objects in a slab. Now | |
2773 | * lets see if we can place a single object there. | |
2774 | */ | |
ab9a0f19 | 2775 | order = slab_order(size, 1, slub_max_order, 1, reserved); |
5e6d444e CL |
2776 | if (order <= slub_max_order) |
2777 | return order; | |
2778 | ||
2779 | /* | |
2780 | * Doh this slab cannot be placed using slub_max_order. | |
2781 | */ | |
ab9a0f19 | 2782 | order = slab_order(size, 1, MAX_ORDER, 1, reserved); |
818cf590 | 2783 | if (order < MAX_ORDER) |
5e6d444e CL |
2784 | return order; |
2785 | return -ENOSYS; | |
2786 | } | |
2787 | ||
5595cffc | 2788 | static void |
4053497d | 2789 | init_kmem_cache_node(struct kmem_cache_node *n) |
81819f0f CL |
2790 | { |
2791 | n->nr_partial = 0; | |
81819f0f CL |
2792 | spin_lock_init(&n->list_lock); |
2793 | INIT_LIST_HEAD(&n->partial); | |
8ab1372f | 2794 | #ifdef CONFIG_SLUB_DEBUG |
0f389ec6 | 2795 | atomic_long_set(&n->nr_slabs, 0); |
02b71b70 | 2796 | atomic_long_set(&n->total_objects, 0); |
643b1138 | 2797 | INIT_LIST_HEAD(&n->full); |
8ab1372f | 2798 | #endif |
81819f0f CL |
2799 | } |
2800 | ||
55136592 | 2801 | static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) |
4c93c355 | 2802 | { |
6c182dc0 | 2803 | BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < |
95a05b42 | 2804 | KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); |
4c93c355 | 2805 | |
8a5ec0ba | 2806 | /* |
d4d84fef CM |
2807 | * Must align to double word boundary for the double cmpxchg |
2808 | * instructions to work; see __pcpu_double_call_return_bool(). | |
8a5ec0ba | 2809 | */ |
d4d84fef CM |
2810 | s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), |
2811 | 2 * sizeof(void *)); | |
8a5ec0ba CL |
2812 | |
2813 | if (!s->cpu_slab) | |
2814 | return 0; | |
2815 | ||
2816 | init_kmem_cache_cpus(s); | |
4c93c355 | 2817 | |
8a5ec0ba | 2818 | return 1; |
4c93c355 | 2819 | } |
4c93c355 | 2820 | |
51df1142 CL |
2821 | static struct kmem_cache *kmem_cache_node; |
2822 | ||
81819f0f CL |
2823 | /* |
2824 | * No kmalloc_node yet so do it by hand. We know that this is the first | |
2825 | * slab on the node for this slabcache. There are no concurrent accesses | |
2826 | * possible. | |
2827 | * | |
2828 | * Note that this function only works on the kmalloc_node_cache | |
4c93c355 CL |
2829 | * when allocating for the kmalloc_node_cache. This is used for bootstrapping |
2830 | * memory on a fresh node that has no slab structures yet. | |
81819f0f | 2831 | */ |
55136592 | 2832 | static void early_kmem_cache_node_alloc(int node) |
81819f0f CL |
2833 | { |
2834 | struct page *page; | |
2835 | struct kmem_cache_node *n; | |
2836 | ||
51df1142 | 2837 | BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); |
81819f0f | 2838 | |
51df1142 | 2839 | page = new_slab(kmem_cache_node, GFP_NOWAIT, node); |
81819f0f CL |
2840 | |
2841 | BUG_ON(!page); | |
a2f92ee7 CL |
2842 | if (page_to_nid(page) != node) { |
2843 | printk(KERN_ERR "SLUB: Unable to allocate memory from " | |
2844 | "node %d\n", node); | |
2845 | printk(KERN_ERR "SLUB: Allocating a useless per node structure " | |
2846 | "in order to be able to continue\n"); | |
2847 | } | |
2848 | ||
81819f0f CL |
2849 | n = page->freelist; |
2850 | BUG_ON(!n); | |
51df1142 | 2851 | page->freelist = get_freepointer(kmem_cache_node, n); |
e6e82ea1 | 2852 | page->inuse = 1; |
8cb0a506 | 2853 | page->frozen = 0; |
51df1142 | 2854 | kmem_cache_node->node[node] = n; |
8ab1372f | 2855 | #ifdef CONFIG_SLUB_DEBUG |
f7cb1933 | 2856 | init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); |
51df1142 | 2857 | init_tracking(kmem_cache_node, n); |
8ab1372f | 2858 | #endif |
4053497d | 2859 | init_kmem_cache_node(n); |
51df1142 | 2860 | inc_slabs_node(kmem_cache_node, node, page->objects); |
6446faa2 | 2861 | |
136333d1 | 2862 | add_partial(n, page, DEACTIVATE_TO_HEAD); |
81819f0f CL |
2863 | } |
2864 | ||
2865 | static void free_kmem_cache_nodes(struct kmem_cache *s) | |
2866 | { | |
2867 | int node; | |
2868 | ||
f64dc58c | 2869 | for_each_node_state(node, N_NORMAL_MEMORY) { |
81819f0f | 2870 | struct kmem_cache_node *n = s->node[node]; |
51df1142 | 2871 | |
73367bd8 | 2872 | if (n) |
51df1142 CL |
2873 | kmem_cache_free(kmem_cache_node, n); |
2874 | ||
81819f0f CL |
2875 | s->node[node] = NULL; |
2876 | } | |
2877 | } | |
2878 | ||
55136592 | 2879 | static int init_kmem_cache_nodes(struct kmem_cache *s) |
81819f0f CL |
2880 | { |
2881 | int node; | |
81819f0f | 2882 | |
f64dc58c | 2883 | for_each_node_state(node, N_NORMAL_MEMORY) { |
81819f0f CL |
2884 | struct kmem_cache_node *n; |
2885 | ||
73367bd8 | 2886 | if (slab_state == DOWN) { |
55136592 | 2887 | early_kmem_cache_node_alloc(node); |
73367bd8 AD |
2888 | continue; |
2889 | } | |
51df1142 | 2890 | n = kmem_cache_alloc_node(kmem_cache_node, |
55136592 | 2891 | GFP_KERNEL, node); |
81819f0f | 2892 | |
73367bd8 AD |
2893 | if (!n) { |
2894 | free_kmem_cache_nodes(s); | |
2895 | return 0; | |
81819f0f | 2896 | } |
73367bd8 | 2897 | |
81819f0f | 2898 | s->node[node] = n; |
4053497d | 2899 | init_kmem_cache_node(n); |
81819f0f CL |
2900 | } |
2901 | return 1; | |
2902 | } | |
81819f0f | 2903 | |
c0bdb232 | 2904 | static void set_min_partial(struct kmem_cache *s, unsigned long min) |
3b89d7d8 DR |
2905 | { |
2906 | if (min < MIN_PARTIAL) | |
2907 | min = MIN_PARTIAL; | |
2908 | else if (min > MAX_PARTIAL) | |
2909 | min = MAX_PARTIAL; | |
2910 | s->min_partial = min; | |
2911 | } | |
2912 | ||
81819f0f CL |
2913 | /* |
2914 | * calculate_sizes() determines the order and the distribution of data within | |
2915 | * a slab object. | |
2916 | */ | |
06b285dc | 2917 | static int calculate_sizes(struct kmem_cache *s, int forced_order) |
81819f0f CL |
2918 | { |
2919 | unsigned long flags = s->flags; | |
3b0efdfa | 2920 | unsigned long size = s->object_size; |
834f3d11 | 2921 | int order; |
81819f0f | 2922 | |
d8b42bf5 CL |
2923 | /* |
2924 | * Round up object size to the next word boundary. We can only | |
2925 | * place the free pointer at word boundaries and this determines | |
2926 | * the possible location of the free pointer. | |
2927 | */ | |
2928 | size = ALIGN(size, sizeof(void *)); | |
2929 | ||
2930 | #ifdef CONFIG_SLUB_DEBUG | |
81819f0f CL |
2931 | /* |
2932 | * Determine if we can poison the object itself. If the user of | |
2933 | * the slab may touch the object after free or before allocation | |
2934 | * then we should never poison the object itself. | |
2935 | */ | |
2936 | if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && | |
c59def9f | 2937 | !s->ctor) |
81819f0f CL |
2938 | s->flags |= __OBJECT_POISON; |
2939 | else | |
2940 | s->flags &= ~__OBJECT_POISON; | |
2941 | ||
81819f0f CL |
2942 | |
2943 | /* | |
672bba3a | 2944 | * If we are Redzoning then check if there is some space between the |
81819f0f | 2945 | * end of the object and the free pointer. If not then add an |
672bba3a | 2946 | * additional word to have some bytes to store Redzone information. |
81819f0f | 2947 | */ |
3b0efdfa | 2948 | if ((flags & SLAB_RED_ZONE) && size == s->object_size) |
81819f0f | 2949 | size += sizeof(void *); |
41ecc55b | 2950 | #endif |
81819f0f CL |
2951 | |
2952 | /* | |
672bba3a CL |
2953 | * With that we have determined the number of bytes in actual use |
2954 | * by the object. This is the potential offset to the free pointer. | |
81819f0f CL |
2955 | */ |
2956 | s->inuse = size; | |
2957 | ||
2958 | if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || | |
c59def9f | 2959 | s->ctor)) { |
81819f0f CL |
2960 | /* |
2961 | * Relocate free pointer after the object if it is not | |
2962 | * permitted to overwrite the first word of the object on | |
2963 | * kmem_cache_free. | |
2964 | * | |
2965 | * This is the case if we do RCU, have a constructor or | |
2966 | * destructor or are poisoning the objects. | |
2967 | */ | |
2968 | s->offset = size; | |
2969 | size += sizeof(void *); | |
2970 | } | |
2971 | ||
c12b3c62 | 2972 | #ifdef CONFIG_SLUB_DEBUG |
81819f0f CL |
2973 | if (flags & SLAB_STORE_USER) |
2974 | /* | |
2975 | * Need to store information about allocs and frees after | |
2976 | * the object. | |
2977 | */ | |
2978 | size += 2 * sizeof(struct track); | |
2979 | ||
be7b3fbc | 2980 | if (flags & SLAB_RED_ZONE) |
81819f0f CL |
2981 | /* |
2982 | * Add some empty padding so that we can catch | |
2983 | * overwrites from earlier objects rather than let | |
2984 | * tracking information or the free pointer be | |
0211a9c8 | 2985 | * corrupted if a user writes before the start |
81819f0f CL |
2986 | * of the object. |
2987 | */ | |
2988 | size += sizeof(void *); | |
41ecc55b | 2989 | #endif |
672bba3a | 2990 | |
81819f0f CL |
2991 | /* |
2992 | * SLUB stores one object immediately after another beginning from | |
2993 | * offset 0. In order to align the objects we have to simply size | |
2994 | * each object to conform to the alignment. | |
2995 | */ | |
45906855 | 2996 | size = ALIGN(size, s->align); |
81819f0f | 2997 | s->size = size; |
06b285dc CL |
2998 | if (forced_order >= 0) |
2999 | order = forced_order; | |
3000 | else | |
ab9a0f19 | 3001 | order = calculate_order(size, s->reserved); |
81819f0f | 3002 | |
834f3d11 | 3003 | if (order < 0) |
81819f0f CL |
3004 | return 0; |
3005 | ||
b7a49f0d | 3006 | s->allocflags = 0; |
834f3d11 | 3007 | if (order) |
b7a49f0d CL |
3008 | s->allocflags |= __GFP_COMP; |
3009 | ||
3010 | if (s->flags & SLAB_CACHE_DMA) | |
2c59dd65 | 3011 | s->allocflags |= GFP_DMA; |
b7a49f0d CL |
3012 | |
3013 | if (s->flags & SLAB_RECLAIM_ACCOUNT) | |
3014 | s->allocflags |= __GFP_RECLAIMABLE; | |
3015 | ||
81819f0f CL |
3016 | /* |
3017 | * Determine the number of objects per slab | |
3018 | */ | |
ab9a0f19 LJ |
3019 | s->oo = oo_make(order, size, s->reserved); |
3020 | s->min = oo_make(get_order(size), size, s->reserved); | |
205ab99d CL |
3021 | if (oo_objects(s->oo) > oo_objects(s->max)) |
3022 | s->max = s->oo; | |
81819f0f | 3023 | |
834f3d11 | 3024 | return !!oo_objects(s->oo); |
81819f0f CL |
3025 | } |
3026 | ||
8a13a4cc | 3027 | static int kmem_cache_open(struct kmem_cache *s, unsigned long flags) |
81819f0f | 3028 | { |
8a13a4cc | 3029 | s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); |
ab9a0f19 | 3030 | s->reserved = 0; |
81819f0f | 3031 | |
da9a638c LJ |
3032 | if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU)) |
3033 | s->reserved = sizeof(struct rcu_head); | |
81819f0f | 3034 | |
06b285dc | 3035 | if (!calculate_sizes(s, -1)) |
81819f0f | 3036 | goto error; |
3de47213 DR |
3037 | if (disable_higher_order_debug) { |
3038 | /* | |
3039 | * Disable debugging flags that store metadata if the min slab | |
3040 | * order increased. | |
3041 | */ | |
3b0efdfa | 3042 | if (get_order(s->size) > get_order(s->object_size)) { |
3de47213 DR |
3043 | s->flags &= ~DEBUG_METADATA_FLAGS; |
3044 | s->offset = 0; | |
3045 | if (!calculate_sizes(s, -1)) | |
3046 | goto error; | |
3047 | } | |
3048 | } | |
81819f0f | 3049 | |
2565409f HC |
3050 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
3051 | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | |
b789ef51 CL |
3052 | if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0) |
3053 | /* Enable fast mode */ | |
3054 | s->flags |= __CMPXCHG_DOUBLE; | |
3055 | #endif | |
3056 | ||
3b89d7d8 DR |
3057 | /* |
3058 | * The larger the object size is, the more pages we want on the partial | |
3059 | * list to avoid pounding the page allocator excessively. | |
3060 | */ | |
49e22585 CL |
3061 | set_min_partial(s, ilog2(s->size) / 2); |
3062 | ||
3063 | /* | |
3064 | * cpu_partial determined the maximum number of objects kept in the | |
3065 | * per cpu partial lists of a processor. | |
3066 | * | |
3067 | * Per cpu partial lists mainly contain slabs that just have one | |
3068 | * object freed. If they are used for allocation then they can be | |
3069 | * filled up again with minimal effort. The slab will never hit the | |
3070 | * per node partial lists and therefore no locking will be required. | |
3071 | * | |
3072 | * This setting also determines | |
3073 | * | |
3074 | * A) The number of objects from per cpu partial slabs dumped to the | |
3075 | * per node list when we reach the limit. | |
9f264904 | 3076 | * B) The number of objects in cpu partial slabs to extract from the |
49e22585 CL |
3077 | * per node list when we run out of per cpu objects. We only fetch 50% |
3078 | * to keep some capacity around for frees. | |
3079 | */ | |
345c905d | 3080 | if (!kmem_cache_has_cpu_partial(s)) |
8f1e33da CL |
3081 | s->cpu_partial = 0; |
3082 | else if (s->size >= PAGE_SIZE) | |
49e22585 CL |
3083 | s->cpu_partial = 2; |
3084 | else if (s->size >= 1024) | |
3085 | s->cpu_partial = 6; | |
3086 | else if (s->size >= 256) | |
3087 | s->cpu_partial = 13; | |
3088 | else | |
3089 | s->cpu_partial = 30; | |
3090 | ||
81819f0f | 3091 | #ifdef CONFIG_NUMA |
e2cb96b7 | 3092 | s->remote_node_defrag_ratio = 1000; |
81819f0f | 3093 | #endif |
55136592 | 3094 | if (!init_kmem_cache_nodes(s)) |
dfb4f096 | 3095 | goto error; |
81819f0f | 3096 | |
55136592 | 3097 | if (alloc_kmem_cache_cpus(s)) |
278b1bb1 | 3098 | return 0; |
ff12059e | 3099 | |
4c93c355 | 3100 | free_kmem_cache_nodes(s); |
81819f0f CL |
3101 | error: |
3102 | if (flags & SLAB_PANIC) | |
3103 | panic("Cannot create slab %s size=%lu realsize=%u " | |
3104 | "order=%u offset=%u flags=%lx\n", | |
8a13a4cc | 3105 | s->name, (unsigned long)s->size, s->size, oo_order(s->oo), |
81819f0f | 3106 | s->offset, flags); |
278b1bb1 | 3107 | return -EINVAL; |
81819f0f | 3108 | } |
81819f0f | 3109 | |
33b12c38 CL |
3110 | static void list_slab_objects(struct kmem_cache *s, struct page *page, |
3111 | const char *text) | |
3112 | { | |
3113 | #ifdef CONFIG_SLUB_DEBUG | |
3114 | void *addr = page_address(page); | |
3115 | void *p; | |
a5dd5c11 NK |
3116 | unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * |
3117 | sizeof(long), GFP_ATOMIC); | |
bbd7d57b ED |
3118 | if (!map) |
3119 | return; | |
945cf2b6 | 3120 | slab_err(s, page, text, s->name); |
33b12c38 | 3121 | slab_lock(page); |
33b12c38 | 3122 | |
5f80b13a | 3123 | get_map(s, page, map); |
33b12c38 CL |
3124 | for_each_object(p, s, addr, page->objects) { |
3125 | ||
3126 | if (!test_bit(slab_index(p, s, addr), map)) { | |
3127 | printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n", | |
3128 | p, p - addr); | |
3129 | print_tracking(s, p); | |
3130 | } | |
3131 | } | |
3132 | slab_unlock(page); | |
bbd7d57b | 3133 | kfree(map); |
33b12c38 CL |
3134 | #endif |
3135 | } | |
3136 | ||
81819f0f | 3137 | /* |
599870b1 | 3138 | * Attempt to free all partial slabs on a node. |
69cb8e6b CL |
3139 | * This is called from kmem_cache_close(). We must be the last thread |
3140 | * using the cache and therefore we do not need to lock anymore. | |
81819f0f | 3141 | */ |
599870b1 | 3142 | static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) |
81819f0f | 3143 | { |
81819f0f CL |
3144 | struct page *page, *h; |
3145 | ||
33b12c38 | 3146 | list_for_each_entry_safe(page, h, &n->partial, lru) { |
81819f0f | 3147 | if (!page->inuse) { |
5cc6eee8 | 3148 | remove_partial(n, page); |
81819f0f | 3149 | discard_slab(s, page); |
33b12c38 CL |
3150 | } else { |
3151 | list_slab_objects(s, page, | |
945cf2b6 | 3152 | "Objects remaining in %s on kmem_cache_close()"); |
599870b1 | 3153 | } |
33b12c38 | 3154 | } |
81819f0f CL |
3155 | } |
3156 | ||
3157 | /* | |
672bba3a | 3158 | * Release all resources used by a slab cache. |
81819f0f | 3159 | */ |
0c710013 | 3160 | static inline int kmem_cache_close(struct kmem_cache *s) |
81819f0f CL |
3161 | { |
3162 | int node; | |
3163 | ||
3164 | flush_all(s); | |
81819f0f | 3165 | /* Attempt to free all objects */ |
f64dc58c | 3166 | for_each_node_state(node, N_NORMAL_MEMORY) { |
81819f0f CL |
3167 | struct kmem_cache_node *n = get_node(s, node); |
3168 | ||
599870b1 CL |
3169 | free_partial(s, n); |
3170 | if (n->nr_partial || slabs_node(s, node)) | |
81819f0f CL |
3171 | return 1; |
3172 | } | |
945cf2b6 | 3173 | free_percpu(s->cpu_slab); |
81819f0f CL |
3174 | free_kmem_cache_nodes(s); |
3175 | return 0; | |
3176 | } | |
3177 | ||
945cf2b6 | 3178 | int __kmem_cache_shutdown(struct kmem_cache *s) |
81819f0f | 3179 | { |
12c3667f | 3180 | int rc = kmem_cache_close(s); |
945cf2b6 | 3181 | |
5413dfba GC |
3182 | if (!rc) { |
3183 | /* | |
3184 | * We do the same lock strategy around sysfs_slab_add, see | |
3185 | * __kmem_cache_create. Because this is pretty much the last | |
3186 | * operation we do and the lock will be released shortly after | |
3187 | * that in slab_common.c, we could just move sysfs_slab_remove | |
3188 | * to a later point in common code. We should do that when we | |
3189 | * have a common sysfs framework for all allocators. | |
3190 | */ | |
3191 | mutex_unlock(&slab_mutex); | |
81819f0f | 3192 | sysfs_slab_remove(s); |
5413dfba GC |
3193 | mutex_lock(&slab_mutex); |
3194 | } | |
12c3667f CL |
3195 | |
3196 | return rc; | |
81819f0f | 3197 | } |
81819f0f CL |
3198 | |
3199 | /******************************************************************** | |
3200 | * Kmalloc subsystem | |
3201 | *******************************************************************/ | |
3202 | ||
81819f0f CL |
3203 | static int __init setup_slub_min_order(char *str) |
3204 | { | |
06428780 | 3205 | get_option(&str, &slub_min_order); |
81819f0f CL |
3206 | |
3207 | return 1; | |
3208 | } | |
3209 | ||
3210 | __setup("slub_min_order=", setup_slub_min_order); | |
3211 | ||
3212 | static int __init setup_slub_max_order(char *str) | |
3213 | { | |
06428780 | 3214 | get_option(&str, &slub_max_order); |
818cf590 | 3215 | slub_max_order = min(slub_max_order, MAX_ORDER - 1); |
81819f0f CL |
3216 | |
3217 | return 1; | |
3218 | } | |
3219 | ||
3220 | __setup("slub_max_order=", setup_slub_max_order); | |
3221 | ||
3222 | static int __init setup_slub_min_objects(char *str) | |
3223 | { | |
06428780 | 3224 | get_option(&str, &slub_min_objects); |
81819f0f CL |
3225 | |
3226 | return 1; | |
3227 | } | |
3228 | ||
3229 | __setup("slub_min_objects=", setup_slub_min_objects); | |
3230 | ||
3231 | static int __init setup_slub_nomerge(char *str) | |
3232 | { | |
3233 | slub_nomerge = 1; | |
3234 | return 1; | |
3235 | } | |
3236 | ||
3237 | __setup("slub_nomerge", setup_slub_nomerge); | |
3238 | ||
81819f0f CL |
3239 | void *__kmalloc(size_t size, gfp_t flags) |
3240 | { | |
aadb4bc4 | 3241 | struct kmem_cache *s; |
5b882be4 | 3242 | void *ret; |
81819f0f | 3243 | |
95a05b42 | 3244 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) |
eada35ef | 3245 | return kmalloc_large(size, flags); |
aadb4bc4 | 3246 | |
2c59dd65 | 3247 | s = kmalloc_slab(size, flags); |
aadb4bc4 CL |
3248 | |
3249 | if (unlikely(ZERO_OR_NULL_PTR(s))) | |
6cb8f913 CL |
3250 | return s; |
3251 | ||
2b847c3c | 3252 | ret = slab_alloc(s, flags, _RET_IP_); |
5b882be4 | 3253 | |
ca2b84cb | 3254 | trace_kmalloc(_RET_IP_, ret, size, s->size, flags); |
5b882be4 EGM |
3255 | |
3256 | return ret; | |
81819f0f CL |
3257 | } |
3258 | EXPORT_SYMBOL(__kmalloc); | |
3259 | ||
5d1f57e4 | 3260 | #ifdef CONFIG_NUMA |
f619cfe1 CL |
3261 | static void *kmalloc_large_node(size_t size, gfp_t flags, int node) |
3262 | { | |
b1eeab67 | 3263 | struct page *page; |
e4f7c0b4 | 3264 | void *ptr = NULL; |
f619cfe1 | 3265 | |
d79923fa | 3266 | flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG; |
b1eeab67 | 3267 | page = alloc_pages_node(node, flags, get_order(size)); |
f619cfe1 | 3268 | if (page) |
e4f7c0b4 CM |
3269 | ptr = page_address(page); |
3270 | ||
3271 | kmemleak_alloc(ptr, size, 1, flags); | |
3272 | return ptr; | |
f619cfe1 CL |
3273 | } |
3274 | ||
81819f0f CL |
3275 | void *__kmalloc_node(size_t size, gfp_t flags, int node) |
3276 | { | |
aadb4bc4 | 3277 | struct kmem_cache *s; |
5b882be4 | 3278 | void *ret; |
81819f0f | 3279 | |
95a05b42 | 3280 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { |
5b882be4 EGM |
3281 | ret = kmalloc_large_node(size, flags, node); |
3282 | ||
ca2b84cb EGM |
3283 | trace_kmalloc_node(_RET_IP_, ret, |
3284 | size, PAGE_SIZE << get_order(size), | |
3285 | flags, node); | |
5b882be4 EGM |
3286 | |
3287 | return ret; | |
3288 | } | |
aadb4bc4 | 3289 | |
2c59dd65 | 3290 | s = kmalloc_slab(size, flags); |
aadb4bc4 CL |
3291 | |
3292 | if (unlikely(ZERO_OR_NULL_PTR(s))) | |
6cb8f913 CL |
3293 | return s; |
3294 | ||
2b847c3c | 3295 | ret = slab_alloc_node(s, flags, node, _RET_IP_); |
5b882be4 | 3296 | |
ca2b84cb | 3297 | trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); |
5b882be4 EGM |
3298 | |
3299 | return ret; | |
81819f0f CL |
3300 | } |
3301 | EXPORT_SYMBOL(__kmalloc_node); | |
3302 | #endif | |
3303 | ||
3304 | size_t ksize(const void *object) | |
3305 | { | |
272c1d21 | 3306 | struct page *page; |
81819f0f | 3307 | |
ef8b4520 | 3308 | if (unlikely(object == ZERO_SIZE_PTR)) |
272c1d21 CL |
3309 | return 0; |
3310 | ||
294a80a8 | 3311 | page = virt_to_head_page(object); |
294a80a8 | 3312 | |
76994412 PE |
3313 | if (unlikely(!PageSlab(page))) { |
3314 | WARN_ON(!PageCompound(page)); | |
294a80a8 | 3315 | return PAGE_SIZE << compound_order(page); |
76994412 | 3316 | } |
81819f0f | 3317 | |
1b4f59e3 | 3318 | return slab_ksize(page->slab_cache); |
81819f0f | 3319 | } |
b1aabecd | 3320 | EXPORT_SYMBOL(ksize); |
81819f0f | 3321 | |
d18a90dd BG |
3322 | #ifdef CONFIG_SLUB_DEBUG |
3323 | bool verify_mem_not_deleted(const void *x) | |
3324 | { | |
3325 | struct page *page; | |
3326 | void *object = (void *)x; | |
3327 | unsigned long flags; | |
3328 | bool rv; | |
3329 | ||
3330 | if (unlikely(ZERO_OR_NULL_PTR(x))) | |
3331 | return false; | |
3332 | ||
3333 | local_irq_save(flags); | |
3334 | ||
3335 | page = virt_to_head_page(x); | |
3336 | if (unlikely(!PageSlab(page))) { | |
3337 | /* maybe it was from stack? */ | |
3338 | rv = true; | |
3339 | goto out_unlock; | |
3340 | } | |
3341 | ||
3342 | slab_lock(page); | |
1b4f59e3 GC |
3343 | if (on_freelist(page->slab_cache, page, object)) { |
3344 | object_err(page->slab_cache, page, object, "Object is on free-list"); | |
d18a90dd BG |
3345 | rv = false; |
3346 | } else { | |
3347 | rv = true; | |
3348 | } | |
3349 | slab_unlock(page); | |
3350 | ||
3351 | out_unlock: | |
3352 | local_irq_restore(flags); | |
3353 | return rv; | |
3354 | } | |
3355 | EXPORT_SYMBOL(verify_mem_not_deleted); | |
3356 | #endif | |
3357 | ||
81819f0f CL |
3358 | void kfree(const void *x) |
3359 | { | |
81819f0f | 3360 | struct page *page; |
5bb983b0 | 3361 | void *object = (void *)x; |
81819f0f | 3362 | |
2121db74 PE |
3363 | trace_kfree(_RET_IP_, x); |
3364 | ||
2408c550 | 3365 | if (unlikely(ZERO_OR_NULL_PTR(x))) |
81819f0f CL |
3366 | return; |
3367 | ||
b49af68f | 3368 | page = virt_to_head_page(x); |
aadb4bc4 | 3369 | if (unlikely(!PageSlab(page))) { |
0937502a | 3370 | BUG_ON(!PageCompound(page)); |
e4f7c0b4 | 3371 | kmemleak_free(x); |
d79923fa | 3372 | __free_memcg_kmem_pages(page, compound_order(page)); |
aadb4bc4 CL |
3373 | return; |
3374 | } | |
1b4f59e3 | 3375 | slab_free(page->slab_cache, page, object, _RET_IP_); |
81819f0f CL |
3376 | } |
3377 | EXPORT_SYMBOL(kfree); | |
3378 | ||
2086d26a | 3379 | /* |
672bba3a CL |
3380 | * kmem_cache_shrink removes empty slabs from the partial lists and sorts |
3381 | * the remaining slabs by the number of items in use. The slabs with the | |
3382 | * most items in use come first. New allocations will then fill those up | |
3383 | * and thus they can be removed from the partial lists. | |
3384 | * | |
3385 | * The slabs with the least items are placed last. This results in them | |
3386 | * being allocated from last increasing the chance that the last objects | |
3387 | * are freed in them. | |
2086d26a CL |
3388 | */ |
3389 | int kmem_cache_shrink(struct kmem_cache *s) | |
3390 | { | |
3391 | int node; | |
3392 | int i; | |
3393 | struct kmem_cache_node *n; | |
3394 | struct page *page; | |
3395 | struct page *t; | |
205ab99d | 3396 | int objects = oo_objects(s->max); |
2086d26a | 3397 | struct list_head *slabs_by_inuse = |
834f3d11 | 3398 | kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); |
2086d26a CL |
3399 | unsigned long flags; |
3400 | ||
3401 | if (!slabs_by_inuse) | |
3402 | return -ENOMEM; | |
3403 | ||
3404 | flush_all(s); | |
f64dc58c | 3405 | for_each_node_state(node, N_NORMAL_MEMORY) { |
2086d26a CL |
3406 | n = get_node(s, node); |
3407 | ||
3408 | if (!n->nr_partial) | |
3409 | continue; | |
3410 | ||
834f3d11 | 3411 | for (i = 0; i < objects; i++) |
2086d26a CL |
3412 | INIT_LIST_HEAD(slabs_by_inuse + i); |
3413 | ||
3414 | spin_lock_irqsave(&n->list_lock, flags); | |
3415 | ||
3416 | /* | |
672bba3a | 3417 | * Build lists indexed by the items in use in each slab. |
2086d26a | 3418 | * |
672bba3a CL |
3419 | * Note that concurrent frees may occur while we hold the |
3420 | * list_lock. page->inuse here is the upper limit. | |
2086d26a CL |
3421 | */ |
3422 | list_for_each_entry_safe(page, t, &n->partial, lru) { | |
69cb8e6b CL |
3423 | list_move(&page->lru, slabs_by_inuse + page->inuse); |
3424 | if (!page->inuse) | |
3425 | n->nr_partial--; | |
2086d26a CL |
3426 | } |
3427 | ||
2086d26a | 3428 | /* |
672bba3a CL |
3429 | * Rebuild the partial list with the slabs filled up most |
3430 | * first and the least used slabs at the end. | |
2086d26a | 3431 | */ |
69cb8e6b | 3432 | for (i = objects - 1; i > 0; i--) |
2086d26a CL |
3433 | list_splice(slabs_by_inuse + i, n->partial.prev); |
3434 | ||
2086d26a | 3435 | spin_unlock_irqrestore(&n->list_lock, flags); |
69cb8e6b CL |
3436 | |
3437 | /* Release empty slabs */ | |
3438 | list_for_each_entry_safe(page, t, slabs_by_inuse, lru) | |
3439 | discard_slab(s, page); | |
2086d26a CL |
3440 | } |
3441 | ||
3442 | kfree(slabs_by_inuse); | |
3443 | return 0; | |
3444 | } | |
3445 | EXPORT_SYMBOL(kmem_cache_shrink); | |
3446 | ||
b9049e23 YG |
3447 | static int slab_mem_going_offline_callback(void *arg) |
3448 | { | |
3449 | struct kmem_cache *s; | |
3450 | ||
18004c5d | 3451 | mutex_lock(&slab_mutex); |
b9049e23 YG |
3452 | list_for_each_entry(s, &slab_caches, list) |
3453 | kmem_cache_shrink(s); | |
18004c5d | 3454 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
3455 | |
3456 | return 0; | |
3457 | } | |
3458 | ||
3459 | static void slab_mem_offline_callback(void *arg) | |
3460 | { | |
3461 | struct kmem_cache_node *n; | |
3462 | struct kmem_cache *s; | |
3463 | struct memory_notify *marg = arg; | |
3464 | int offline_node; | |
3465 | ||
b9d5ab25 | 3466 | offline_node = marg->status_change_nid_normal; |
b9049e23 YG |
3467 | |
3468 | /* | |
3469 | * If the node still has available memory. we need kmem_cache_node | |
3470 | * for it yet. | |
3471 | */ | |
3472 | if (offline_node < 0) | |
3473 | return; | |
3474 | ||
18004c5d | 3475 | mutex_lock(&slab_mutex); |
b9049e23 YG |
3476 | list_for_each_entry(s, &slab_caches, list) { |
3477 | n = get_node(s, offline_node); | |
3478 | if (n) { | |
3479 | /* | |
3480 | * if n->nr_slabs > 0, slabs still exist on the node | |
3481 | * that is going down. We were unable to free them, | |
c9404c9c | 3482 | * and offline_pages() function shouldn't call this |
b9049e23 YG |
3483 | * callback. So, we must fail. |
3484 | */ | |
0f389ec6 | 3485 | BUG_ON(slabs_node(s, offline_node)); |
b9049e23 YG |
3486 | |
3487 | s->node[offline_node] = NULL; | |
8de66a0c | 3488 | kmem_cache_free(kmem_cache_node, n); |
b9049e23 YG |
3489 | } |
3490 | } | |
18004c5d | 3491 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
3492 | } |
3493 | ||
3494 | static int slab_mem_going_online_callback(void *arg) | |
3495 | { | |
3496 | struct kmem_cache_node *n; | |
3497 | struct kmem_cache *s; | |
3498 | struct memory_notify *marg = arg; | |
b9d5ab25 | 3499 | int nid = marg->status_change_nid_normal; |
b9049e23 YG |
3500 | int ret = 0; |
3501 | ||
3502 | /* | |
3503 | * If the node's memory is already available, then kmem_cache_node is | |
3504 | * already created. Nothing to do. | |
3505 | */ | |
3506 | if (nid < 0) | |
3507 | return 0; | |
3508 | ||
3509 | /* | |
0121c619 | 3510 | * We are bringing a node online. No memory is available yet. We must |
b9049e23 YG |
3511 | * allocate a kmem_cache_node structure in order to bring the node |
3512 | * online. | |
3513 | */ | |
18004c5d | 3514 | mutex_lock(&slab_mutex); |
b9049e23 YG |
3515 | list_for_each_entry(s, &slab_caches, list) { |
3516 | /* | |
3517 | * XXX: kmem_cache_alloc_node will fallback to other nodes | |
3518 | * since memory is not yet available from the node that | |
3519 | * is brought up. | |
3520 | */ | |
8de66a0c | 3521 | n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); |
b9049e23 YG |
3522 | if (!n) { |
3523 | ret = -ENOMEM; | |
3524 | goto out; | |
3525 | } | |
4053497d | 3526 | init_kmem_cache_node(n); |
b9049e23 YG |
3527 | s->node[nid] = n; |
3528 | } | |
3529 | out: | |
18004c5d | 3530 | mutex_unlock(&slab_mutex); |
b9049e23 YG |
3531 | return ret; |
3532 | } | |
3533 | ||
3534 | static int slab_memory_callback(struct notifier_block *self, | |
3535 | unsigned long action, void *arg) | |
3536 | { | |
3537 | int ret = 0; | |
3538 | ||
3539 | switch (action) { | |
3540 | case MEM_GOING_ONLINE: | |
3541 | ret = slab_mem_going_online_callback(arg); | |
3542 | break; | |
3543 | case MEM_GOING_OFFLINE: | |
3544 | ret = slab_mem_going_offline_callback(arg); | |
3545 | break; | |
3546 | case MEM_OFFLINE: | |
3547 | case MEM_CANCEL_ONLINE: | |
3548 | slab_mem_offline_callback(arg); | |
3549 | break; | |
3550 | case MEM_ONLINE: | |
3551 | case MEM_CANCEL_OFFLINE: | |
3552 | break; | |
3553 | } | |
dc19f9db KH |
3554 | if (ret) |
3555 | ret = notifier_from_errno(ret); | |
3556 | else | |
3557 | ret = NOTIFY_OK; | |
b9049e23 YG |
3558 | return ret; |
3559 | } | |
3560 | ||
3ac38faa AM |
3561 | static struct notifier_block slab_memory_callback_nb = { |
3562 | .notifier_call = slab_memory_callback, | |
3563 | .priority = SLAB_CALLBACK_PRI, | |
3564 | }; | |
b9049e23 | 3565 | |
81819f0f CL |
3566 | /******************************************************************** |
3567 | * Basic setup of slabs | |
3568 | *******************************************************************/ | |
3569 | ||
51df1142 CL |
3570 | /* |
3571 | * Used for early kmem_cache structures that were allocated using | |
dffb4d60 CL |
3572 | * the page allocator. Allocate them properly then fix up the pointers |
3573 | * that may be pointing to the wrong kmem_cache structure. | |
51df1142 CL |
3574 | */ |
3575 | ||
dffb4d60 | 3576 | static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) |
51df1142 CL |
3577 | { |
3578 | int node; | |
dffb4d60 | 3579 | struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); |
51df1142 | 3580 | |
dffb4d60 | 3581 | memcpy(s, static_cache, kmem_cache->object_size); |
51df1142 | 3582 | |
7d557b3c GC |
3583 | /* |
3584 | * This runs very early, and only the boot processor is supposed to be | |
3585 | * up. Even if it weren't true, IRQs are not up so we couldn't fire | |
3586 | * IPIs around. | |
3587 | */ | |
3588 | __flush_cpu_slab(s, smp_processor_id()); | |
51df1142 CL |
3589 | for_each_node_state(node, N_NORMAL_MEMORY) { |
3590 | struct kmem_cache_node *n = get_node(s, node); | |
3591 | struct page *p; | |
3592 | ||
3593 | if (n) { | |
3594 | list_for_each_entry(p, &n->partial, lru) | |
1b4f59e3 | 3595 | p->slab_cache = s; |
51df1142 | 3596 | |
607bf324 | 3597 | #ifdef CONFIG_SLUB_DEBUG |
51df1142 | 3598 | list_for_each_entry(p, &n->full, lru) |
1b4f59e3 | 3599 | p->slab_cache = s; |
51df1142 CL |
3600 | #endif |
3601 | } | |
3602 | } | |
dffb4d60 CL |
3603 | list_add(&s->list, &slab_caches); |
3604 | return s; | |
51df1142 CL |
3605 | } |
3606 | ||
81819f0f CL |
3607 | void __init kmem_cache_init(void) |
3608 | { | |
dffb4d60 CL |
3609 | static __initdata struct kmem_cache boot_kmem_cache, |
3610 | boot_kmem_cache_node; | |
51df1142 | 3611 | |
fc8d8620 SG |
3612 | if (debug_guardpage_minorder()) |
3613 | slub_max_order = 0; | |
3614 | ||
dffb4d60 CL |
3615 | kmem_cache_node = &boot_kmem_cache_node; |
3616 | kmem_cache = &boot_kmem_cache; | |
51df1142 | 3617 | |
dffb4d60 CL |
3618 | create_boot_cache(kmem_cache_node, "kmem_cache_node", |
3619 | sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN); | |
b9049e23 | 3620 | |
3ac38faa | 3621 | register_hotmemory_notifier(&slab_memory_callback_nb); |
81819f0f CL |
3622 | |
3623 | /* Able to allocate the per node structures */ | |
3624 | slab_state = PARTIAL; | |
3625 | ||
dffb4d60 CL |
3626 | create_boot_cache(kmem_cache, "kmem_cache", |
3627 | offsetof(struct kmem_cache, node) + | |
3628 | nr_node_ids * sizeof(struct kmem_cache_node *), | |
3629 | SLAB_HWCACHE_ALIGN); | |
8a13a4cc | 3630 | |
dffb4d60 | 3631 | kmem_cache = bootstrap(&boot_kmem_cache); |
81819f0f | 3632 | |
51df1142 CL |
3633 | /* |
3634 | * Allocate kmem_cache_node properly from the kmem_cache slab. | |
3635 | * kmem_cache_node is separately allocated so no need to | |
3636 | * update any list pointers. | |
3637 | */ | |
dffb4d60 | 3638 | kmem_cache_node = bootstrap(&boot_kmem_cache_node); |
51df1142 CL |
3639 | |
3640 | /* Now we can use the kmem_cache to allocate kmalloc slabs */ | |
f97d5f63 | 3641 | create_kmalloc_caches(0); |
81819f0f CL |
3642 | |
3643 | #ifdef CONFIG_SMP | |
3644 | register_cpu_notifier(&slab_notifier); | |
9dfc6e68 | 3645 | #endif |
81819f0f | 3646 | |
3adbefee | 3647 | printk(KERN_INFO |
f97d5f63 | 3648 | "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d," |
4b356be0 | 3649 | " CPUs=%d, Nodes=%d\n", |
f97d5f63 | 3650 | cache_line_size(), |
81819f0f CL |
3651 | slub_min_order, slub_max_order, slub_min_objects, |
3652 | nr_cpu_ids, nr_node_ids); | |
3653 | } | |
3654 | ||
7e85ee0c PE |
3655 | void __init kmem_cache_init_late(void) |
3656 | { | |
7e85ee0c PE |
3657 | } |
3658 | ||
81819f0f CL |
3659 | /* |
3660 | * Find a mergeable slab cache | |
3661 | */ | |
3662 | static int slab_unmergeable(struct kmem_cache *s) | |
3663 | { | |
3664 | if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) | |
3665 | return 1; | |
3666 | ||
c59def9f | 3667 | if (s->ctor) |
81819f0f CL |
3668 | return 1; |
3669 | ||
8ffa6875 CL |
3670 | /* |
3671 | * We may have set a slab to be unmergeable during bootstrap. | |
3672 | */ | |
3673 | if (s->refcount < 0) | |
3674 | return 1; | |
3675 | ||
81819f0f CL |
3676 | return 0; |
3677 | } | |
3678 | ||
2633d7a0 | 3679 | static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size, |
ba0268a8 | 3680 | size_t align, unsigned long flags, const char *name, |
51cc5068 | 3681 | void (*ctor)(void *)) |
81819f0f | 3682 | { |
5b95a4ac | 3683 | struct kmem_cache *s; |
81819f0f CL |
3684 | |
3685 | if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) | |
3686 | return NULL; | |
3687 | ||
c59def9f | 3688 | if (ctor) |
81819f0f CL |
3689 | return NULL; |
3690 | ||
3691 | size = ALIGN(size, sizeof(void *)); | |
3692 | align = calculate_alignment(flags, align, size); | |
3693 | size = ALIGN(size, align); | |
ba0268a8 | 3694 | flags = kmem_cache_flags(size, flags, name, NULL); |
81819f0f | 3695 | |
5b95a4ac | 3696 | list_for_each_entry(s, &slab_caches, list) { |
81819f0f CL |
3697 | if (slab_unmergeable(s)) |
3698 | continue; | |
3699 | ||
3700 | if (size > s->size) | |
3701 | continue; | |
3702 | ||
ba0268a8 | 3703 | if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) |
81819f0f CL |
3704 | continue; |
3705 | /* | |
3706 | * Check if alignment is compatible. | |
3707 | * Courtesy of Adrian Drzewiecki | |
3708 | */ | |
06428780 | 3709 | if ((s->size & ~(align - 1)) != s->size) |
81819f0f CL |
3710 | continue; |
3711 | ||
3712 | if (s->size - size >= sizeof(void *)) | |
3713 | continue; | |
3714 | ||
2633d7a0 GC |
3715 | if (!cache_match_memcg(s, memcg)) |
3716 | continue; | |
3717 | ||
81819f0f CL |
3718 | return s; |
3719 | } | |
3720 | return NULL; | |
3721 | } | |
3722 | ||
2633d7a0 GC |
3723 | struct kmem_cache * |
3724 | __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size, | |
3725 | size_t align, unsigned long flags, void (*ctor)(void *)) | |
81819f0f CL |
3726 | { |
3727 | struct kmem_cache *s; | |
3728 | ||
2633d7a0 | 3729 | s = find_mergeable(memcg, size, align, flags, name, ctor); |
81819f0f CL |
3730 | if (s) { |
3731 | s->refcount++; | |
3732 | /* | |
3733 | * Adjust the object sizes so that we clear | |
3734 | * the complete object on kzalloc. | |
3735 | */ | |
3b0efdfa | 3736 | s->object_size = max(s->object_size, (int)size); |
81819f0f | 3737 | s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); |
6446faa2 | 3738 | |
7b8f3b66 | 3739 | if (sysfs_slab_alias(s, name)) { |
7b8f3b66 | 3740 | s->refcount--; |
cbb79694 | 3741 | s = NULL; |
7b8f3b66 | 3742 | } |
a0e1d1be | 3743 | } |
6446faa2 | 3744 | |
cbb79694 CL |
3745 | return s; |
3746 | } | |
84c1cf62 | 3747 | |
8a13a4cc | 3748 | int __kmem_cache_create(struct kmem_cache *s, unsigned long flags) |
cbb79694 | 3749 | { |
aac3a166 PE |
3750 | int err; |
3751 | ||
3752 | err = kmem_cache_open(s, flags); | |
3753 | if (err) | |
3754 | return err; | |
20cea968 | 3755 | |
45530c44 CL |
3756 | /* Mutex is not taken during early boot */ |
3757 | if (slab_state <= UP) | |
3758 | return 0; | |
3759 | ||
107dab5c | 3760 | memcg_propagate_slab_attrs(s); |
aac3a166 PE |
3761 | mutex_unlock(&slab_mutex); |
3762 | err = sysfs_slab_add(s); | |
3763 | mutex_lock(&slab_mutex); | |
20cea968 | 3764 | |
aac3a166 PE |
3765 | if (err) |
3766 | kmem_cache_close(s); | |
20cea968 | 3767 | |
aac3a166 | 3768 | return err; |
81819f0f | 3769 | } |
81819f0f | 3770 | |
81819f0f | 3771 | #ifdef CONFIG_SMP |
81819f0f | 3772 | /* |
672bba3a CL |
3773 | * Use the cpu notifier to insure that the cpu slabs are flushed when |
3774 | * necessary. | |
81819f0f | 3775 | */ |
0db0628d | 3776 | static int slab_cpuup_callback(struct notifier_block *nfb, |
81819f0f CL |
3777 | unsigned long action, void *hcpu) |
3778 | { | |
3779 | long cpu = (long)hcpu; | |
5b95a4ac CL |
3780 | struct kmem_cache *s; |
3781 | unsigned long flags; | |
81819f0f CL |
3782 | |
3783 | switch (action) { | |
3784 | case CPU_UP_CANCELED: | |
8bb78442 | 3785 | case CPU_UP_CANCELED_FROZEN: |
81819f0f | 3786 | case CPU_DEAD: |
8bb78442 | 3787 | case CPU_DEAD_FROZEN: |
18004c5d | 3788 | mutex_lock(&slab_mutex); |
5b95a4ac CL |
3789 | list_for_each_entry(s, &slab_caches, list) { |
3790 | local_irq_save(flags); | |
3791 | __flush_cpu_slab(s, cpu); | |
3792 | local_irq_restore(flags); | |
3793 | } | |
18004c5d | 3794 | mutex_unlock(&slab_mutex); |
81819f0f CL |
3795 | break; |
3796 | default: | |
3797 | break; | |
3798 | } | |
3799 | return NOTIFY_OK; | |
3800 | } | |
3801 | ||
0db0628d | 3802 | static struct notifier_block slab_notifier = { |
3adbefee | 3803 | .notifier_call = slab_cpuup_callback |
06428780 | 3804 | }; |
81819f0f CL |
3805 | |
3806 | #endif | |
3807 | ||
ce71e27c | 3808 | void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) |
81819f0f | 3809 | { |
aadb4bc4 | 3810 | struct kmem_cache *s; |
94b528d0 | 3811 | void *ret; |
aadb4bc4 | 3812 | |
95a05b42 | 3813 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) |
eada35ef PE |
3814 | return kmalloc_large(size, gfpflags); |
3815 | ||
2c59dd65 | 3816 | s = kmalloc_slab(size, gfpflags); |
81819f0f | 3817 | |
2408c550 | 3818 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
6cb8f913 | 3819 | return s; |
81819f0f | 3820 | |
2b847c3c | 3821 | ret = slab_alloc(s, gfpflags, caller); |
94b528d0 | 3822 | |
25985edc | 3823 | /* Honor the call site pointer we received. */ |
ca2b84cb | 3824 | trace_kmalloc(caller, ret, size, s->size, gfpflags); |
94b528d0 EGM |
3825 | |
3826 | return ret; | |
81819f0f CL |
3827 | } |
3828 | ||
5d1f57e4 | 3829 | #ifdef CONFIG_NUMA |
81819f0f | 3830 | void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, |
ce71e27c | 3831 | int node, unsigned long caller) |
81819f0f | 3832 | { |
aadb4bc4 | 3833 | struct kmem_cache *s; |
94b528d0 | 3834 | void *ret; |
aadb4bc4 | 3835 | |
95a05b42 | 3836 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { |
d3e14aa3 XF |
3837 | ret = kmalloc_large_node(size, gfpflags, node); |
3838 | ||
3839 | trace_kmalloc_node(caller, ret, | |
3840 | size, PAGE_SIZE << get_order(size), | |
3841 | gfpflags, node); | |
3842 | ||
3843 | return ret; | |
3844 | } | |
eada35ef | 3845 | |
2c59dd65 | 3846 | s = kmalloc_slab(size, gfpflags); |
81819f0f | 3847 | |
2408c550 | 3848 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
6cb8f913 | 3849 | return s; |
81819f0f | 3850 | |
2b847c3c | 3851 | ret = slab_alloc_node(s, gfpflags, node, caller); |
94b528d0 | 3852 | |
25985edc | 3853 | /* Honor the call site pointer we received. */ |
ca2b84cb | 3854 | trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); |
94b528d0 EGM |
3855 | |
3856 | return ret; | |
81819f0f | 3857 | } |
5d1f57e4 | 3858 | #endif |
81819f0f | 3859 | |
ab4d5ed5 | 3860 | #ifdef CONFIG_SYSFS |
205ab99d CL |
3861 | static int count_inuse(struct page *page) |
3862 | { | |
3863 | return page->inuse; | |
3864 | } | |
3865 | ||
3866 | static int count_total(struct page *page) | |
3867 | { | |
3868 | return page->objects; | |
3869 | } | |
ab4d5ed5 | 3870 | #endif |
205ab99d | 3871 | |
ab4d5ed5 | 3872 | #ifdef CONFIG_SLUB_DEBUG |
434e245d CL |
3873 | static int validate_slab(struct kmem_cache *s, struct page *page, |
3874 | unsigned long *map) | |
53e15af0 CL |
3875 | { |
3876 | void *p; | |
a973e9dd | 3877 | void *addr = page_address(page); |
53e15af0 CL |
3878 | |
3879 | if (!check_slab(s, page) || | |
3880 | !on_freelist(s, page, NULL)) | |
3881 | return 0; | |
3882 | ||
3883 | /* Now we know that a valid freelist exists */ | |
39b26464 | 3884 | bitmap_zero(map, page->objects); |
53e15af0 | 3885 | |
5f80b13a CL |
3886 | get_map(s, page, map); |
3887 | for_each_object(p, s, addr, page->objects) { | |
3888 | if (test_bit(slab_index(p, s, addr), map)) | |
3889 | if (!check_object(s, page, p, SLUB_RED_INACTIVE)) | |
3890 | return 0; | |
53e15af0 CL |
3891 | } |
3892 | ||
224a88be | 3893 | for_each_object(p, s, addr, page->objects) |
7656c72b | 3894 | if (!test_bit(slab_index(p, s, addr), map)) |
37d57443 | 3895 | if (!check_object(s, page, p, SLUB_RED_ACTIVE)) |
53e15af0 CL |
3896 | return 0; |
3897 | return 1; | |
3898 | } | |
3899 | ||
434e245d CL |
3900 | static void validate_slab_slab(struct kmem_cache *s, struct page *page, |
3901 | unsigned long *map) | |
53e15af0 | 3902 | { |
881db7fb CL |
3903 | slab_lock(page); |
3904 | validate_slab(s, page, map); | |
3905 | slab_unlock(page); | |
53e15af0 CL |
3906 | } |
3907 | ||
434e245d CL |
3908 | static int validate_slab_node(struct kmem_cache *s, |
3909 | struct kmem_cache_node *n, unsigned long *map) | |
53e15af0 CL |
3910 | { |
3911 | unsigned long count = 0; | |
3912 | struct page *page; | |
3913 | unsigned long flags; | |
3914 | ||
3915 | spin_lock_irqsave(&n->list_lock, flags); | |
3916 | ||
3917 | list_for_each_entry(page, &n->partial, lru) { | |
434e245d | 3918 | validate_slab_slab(s, page, map); |
53e15af0 CL |
3919 | count++; |
3920 | } | |
3921 | if (count != n->nr_partial) | |
3922 | printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " | |
3923 | "counter=%ld\n", s->name, count, n->nr_partial); | |
3924 | ||
3925 | if (!(s->flags & SLAB_STORE_USER)) | |
3926 | goto out; | |
3927 | ||
3928 | list_for_each_entry(page, &n->full, lru) { | |
434e245d | 3929 | validate_slab_slab(s, page, map); |
53e15af0 CL |
3930 | count++; |
3931 | } | |
3932 | if (count != atomic_long_read(&n->nr_slabs)) | |
3933 | printk(KERN_ERR "SLUB: %s %ld slabs counted but " | |
3934 | "counter=%ld\n", s->name, count, | |
3935 | atomic_long_read(&n->nr_slabs)); | |
3936 | ||
3937 | out: | |
3938 | spin_unlock_irqrestore(&n->list_lock, flags); | |
3939 | return count; | |
3940 | } | |
3941 | ||
434e245d | 3942 | static long validate_slab_cache(struct kmem_cache *s) |
53e15af0 CL |
3943 | { |
3944 | int node; | |
3945 | unsigned long count = 0; | |
205ab99d | 3946 | unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * |
434e245d CL |
3947 | sizeof(unsigned long), GFP_KERNEL); |
3948 | ||
3949 | if (!map) | |
3950 | return -ENOMEM; | |
53e15af0 CL |
3951 | |
3952 | flush_all(s); | |
f64dc58c | 3953 | for_each_node_state(node, N_NORMAL_MEMORY) { |
53e15af0 CL |
3954 | struct kmem_cache_node *n = get_node(s, node); |
3955 | ||
434e245d | 3956 | count += validate_slab_node(s, n, map); |
53e15af0 | 3957 | } |
434e245d | 3958 | kfree(map); |
53e15af0 CL |
3959 | return count; |
3960 | } | |
88a420e4 | 3961 | /* |
672bba3a | 3962 | * Generate lists of code addresses where slabcache objects are allocated |
88a420e4 CL |
3963 | * and freed. |
3964 | */ | |
3965 | ||
3966 | struct location { | |
3967 | unsigned long count; | |
ce71e27c | 3968 | unsigned long addr; |
45edfa58 CL |
3969 | long long sum_time; |
3970 | long min_time; | |
3971 | long max_time; | |
3972 | long min_pid; | |
3973 | long max_pid; | |
174596a0 | 3974 | DECLARE_BITMAP(cpus, NR_CPUS); |
45edfa58 | 3975 | nodemask_t nodes; |
88a420e4 CL |
3976 | }; |
3977 | ||
3978 | struct loc_track { | |
3979 | unsigned long max; | |
3980 | unsigned long count; | |
3981 | struct location *loc; | |
3982 | }; | |
3983 | ||
3984 | static void free_loc_track(struct loc_track *t) | |
3985 | { | |
3986 | if (t->max) | |
3987 | free_pages((unsigned long)t->loc, | |
3988 | get_order(sizeof(struct location) * t->max)); | |
3989 | } | |
3990 | ||
68dff6a9 | 3991 | static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) |
88a420e4 CL |
3992 | { |
3993 | struct location *l; | |
3994 | int order; | |
3995 | ||
88a420e4 CL |
3996 | order = get_order(sizeof(struct location) * max); |
3997 | ||
68dff6a9 | 3998 | l = (void *)__get_free_pages(flags, order); |
88a420e4 CL |
3999 | if (!l) |
4000 | return 0; | |
4001 | ||
4002 | if (t->count) { | |
4003 | memcpy(l, t->loc, sizeof(struct location) * t->count); | |
4004 | free_loc_track(t); | |
4005 | } | |
4006 | t->max = max; | |
4007 | t->loc = l; | |
4008 | return 1; | |
4009 | } | |
4010 | ||
4011 | static int add_location(struct loc_track *t, struct kmem_cache *s, | |
45edfa58 | 4012 | const struct track *track) |
88a420e4 CL |
4013 | { |
4014 | long start, end, pos; | |
4015 | struct location *l; | |
ce71e27c | 4016 | unsigned long caddr; |
45edfa58 | 4017 | unsigned long age = jiffies - track->when; |
88a420e4 CL |
4018 | |
4019 | start = -1; | |
4020 | end = t->count; | |
4021 | ||
4022 | for ( ; ; ) { | |
4023 | pos = start + (end - start + 1) / 2; | |
4024 | ||
4025 | /* | |
4026 | * There is nothing at "end". If we end up there | |
4027 | * we need to add something to before end. | |
4028 | */ | |
4029 | if (pos == end) | |
4030 | break; | |
4031 | ||
4032 | caddr = t->loc[pos].addr; | |
45edfa58 CL |
4033 | if (track->addr == caddr) { |
4034 | ||
4035 | l = &t->loc[pos]; | |
4036 | l->count++; | |
4037 | if (track->when) { | |
4038 | l->sum_time += age; | |
4039 | if (age < l->min_time) | |
4040 | l->min_time = age; | |
4041 | if (age > l->max_time) | |
4042 | l->max_time = age; | |
4043 | ||
4044 | if (track->pid < l->min_pid) | |
4045 | l->min_pid = track->pid; | |
4046 | if (track->pid > l->max_pid) | |
4047 | l->max_pid = track->pid; | |
4048 | ||
174596a0 RR |
4049 | cpumask_set_cpu(track->cpu, |
4050 | to_cpumask(l->cpus)); | |
45edfa58 CL |
4051 | } |
4052 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
4053 | return 1; |
4054 | } | |
4055 | ||
45edfa58 | 4056 | if (track->addr < caddr) |
88a420e4 CL |
4057 | end = pos; |
4058 | else | |
4059 | start = pos; | |
4060 | } | |
4061 | ||
4062 | /* | |
672bba3a | 4063 | * Not found. Insert new tracking element. |
88a420e4 | 4064 | */ |
68dff6a9 | 4065 | if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) |
88a420e4 CL |
4066 | return 0; |
4067 | ||
4068 | l = t->loc + pos; | |
4069 | if (pos < t->count) | |
4070 | memmove(l + 1, l, | |
4071 | (t->count - pos) * sizeof(struct location)); | |
4072 | t->count++; | |
4073 | l->count = 1; | |
45edfa58 CL |
4074 | l->addr = track->addr; |
4075 | l->sum_time = age; | |
4076 | l->min_time = age; | |
4077 | l->max_time = age; | |
4078 | l->min_pid = track->pid; | |
4079 | l->max_pid = track->pid; | |
174596a0 RR |
4080 | cpumask_clear(to_cpumask(l->cpus)); |
4081 | cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); | |
45edfa58 CL |
4082 | nodes_clear(l->nodes); |
4083 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
4084 | return 1; |
4085 | } | |
4086 | ||
4087 | static void process_slab(struct loc_track *t, struct kmem_cache *s, | |
bbd7d57b | 4088 | struct page *page, enum track_item alloc, |
a5dd5c11 | 4089 | unsigned long *map) |
88a420e4 | 4090 | { |
a973e9dd | 4091 | void *addr = page_address(page); |
88a420e4 CL |
4092 | void *p; |
4093 | ||
39b26464 | 4094 | bitmap_zero(map, page->objects); |
5f80b13a | 4095 | get_map(s, page, map); |
88a420e4 | 4096 | |
224a88be | 4097 | for_each_object(p, s, addr, page->objects) |
45edfa58 CL |
4098 | if (!test_bit(slab_index(p, s, addr), map)) |
4099 | add_location(t, s, get_track(s, p, alloc)); | |
88a420e4 CL |
4100 | } |
4101 | ||
4102 | static int list_locations(struct kmem_cache *s, char *buf, | |
4103 | enum track_item alloc) | |
4104 | { | |
e374d483 | 4105 | int len = 0; |
88a420e4 | 4106 | unsigned long i; |
68dff6a9 | 4107 | struct loc_track t = { 0, 0, NULL }; |
88a420e4 | 4108 | int node; |
bbd7d57b ED |
4109 | unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * |
4110 | sizeof(unsigned long), GFP_KERNEL); | |
88a420e4 | 4111 | |
bbd7d57b ED |
4112 | if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), |
4113 | GFP_TEMPORARY)) { | |
4114 | kfree(map); | |
68dff6a9 | 4115 | return sprintf(buf, "Out of memory\n"); |
bbd7d57b | 4116 | } |
88a420e4 CL |
4117 | /* Push back cpu slabs */ |
4118 | flush_all(s); | |
4119 | ||
f64dc58c | 4120 | for_each_node_state(node, N_NORMAL_MEMORY) { |
88a420e4 CL |
4121 | struct kmem_cache_node *n = get_node(s, node); |
4122 | unsigned long flags; | |
4123 | struct page *page; | |
4124 | ||
9e86943b | 4125 | if (!atomic_long_read(&n->nr_slabs)) |
88a420e4 CL |
4126 | continue; |
4127 | ||
4128 | spin_lock_irqsave(&n->list_lock, flags); | |
4129 | list_for_each_entry(page, &n->partial, lru) | |
bbd7d57b | 4130 | process_slab(&t, s, page, alloc, map); |
88a420e4 | 4131 | list_for_each_entry(page, &n->full, lru) |
bbd7d57b | 4132 | process_slab(&t, s, page, alloc, map); |
88a420e4 CL |
4133 | spin_unlock_irqrestore(&n->list_lock, flags); |
4134 | } | |
4135 | ||
4136 | for (i = 0; i < t.count; i++) { | |
45edfa58 | 4137 | struct location *l = &t.loc[i]; |
88a420e4 | 4138 | |
9c246247 | 4139 | if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) |
88a420e4 | 4140 | break; |
e374d483 | 4141 | len += sprintf(buf + len, "%7ld ", l->count); |
45edfa58 CL |
4142 | |
4143 | if (l->addr) | |
62c70bce | 4144 | len += sprintf(buf + len, "%pS", (void *)l->addr); |
88a420e4 | 4145 | else |
e374d483 | 4146 | len += sprintf(buf + len, "<not-available>"); |
45edfa58 CL |
4147 | |
4148 | if (l->sum_time != l->min_time) { | |
e374d483 | 4149 | len += sprintf(buf + len, " age=%ld/%ld/%ld", |
f8bd2258 RZ |
4150 | l->min_time, |
4151 | (long)div_u64(l->sum_time, l->count), | |
4152 | l->max_time); | |
45edfa58 | 4153 | } else |
e374d483 | 4154 | len += sprintf(buf + len, " age=%ld", |
45edfa58 CL |
4155 | l->min_time); |
4156 | ||
4157 | if (l->min_pid != l->max_pid) | |
e374d483 | 4158 | len += sprintf(buf + len, " pid=%ld-%ld", |
45edfa58 CL |
4159 | l->min_pid, l->max_pid); |
4160 | else | |
e374d483 | 4161 | len += sprintf(buf + len, " pid=%ld", |
45edfa58 CL |
4162 | l->min_pid); |
4163 | ||
174596a0 RR |
4164 | if (num_online_cpus() > 1 && |
4165 | !cpumask_empty(to_cpumask(l->cpus)) && | |
e374d483 HH |
4166 | len < PAGE_SIZE - 60) { |
4167 | len += sprintf(buf + len, " cpus="); | |
4168 | len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50, | |
174596a0 | 4169 | to_cpumask(l->cpus)); |
45edfa58 CL |
4170 | } |
4171 | ||
62bc62a8 | 4172 | if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && |
e374d483 HH |
4173 | len < PAGE_SIZE - 60) { |
4174 | len += sprintf(buf + len, " nodes="); | |
4175 | len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50, | |
45edfa58 CL |
4176 | l->nodes); |
4177 | } | |
4178 | ||
e374d483 | 4179 | len += sprintf(buf + len, "\n"); |
88a420e4 CL |
4180 | } |
4181 | ||
4182 | free_loc_track(&t); | |
bbd7d57b | 4183 | kfree(map); |
88a420e4 | 4184 | if (!t.count) |
e374d483 HH |
4185 | len += sprintf(buf, "No data\n"); |
4186 | return len; | |
88a420e4 | 4187 | } |
ab4d5ed5 | 4188 | #endif |
88a420e4 | 4189 | |
a5a84755 CL |
4190 | #ifdef SLUB_RESILIENCY_TEST |
4191 | static void resiliency_test(void) | |
4192 | { | |
4193 | u8 *p; | |
4194 | ||
95a05b42 | 4195 | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); |
a5a84755 CL |
4196 | |
4197 | printk(KERN_ERR "SLUB resiliency testing\n"); | |
4198 | printk(KERN_ERR "-----------------------\n"); | |
4199 | printk(KERN_ERR "A. Corruption after allocation\n"); | |
4200 | ||
4201 | p = kzalloc(16, GFP_KERNEL); | |
4202 | p[16] = 0x12; | |
4203 | printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" | |
4204 | " 0x12->0x%p\n\n", p + 16); | |
4205 | ||
4206 | validate_slab_cache(kmalloc_caches[4]); | |
4207 | ||
4208 | /* Hmmm... The next two are dangerous */ | |
4209 | p = kzalloc(32, GFP_KERNEL); | |
4210 | p[32 + sizeof(void *)] = 0x34; | |
4211 | printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" | |
4212 | " 0x34 -> -0x%p\n", p); | |
4213 | printk(KERN_ERR | |
4214 | "If allocated object is overwritten then not detectable\n\n"); | |
4215 | ||
4216 | validate_slab_cache(kmalloc_caches[5]); | |
4217 | p = kzalloc(64, GFP_KERNEL); | |
4218 | p += 64 + (get_cycles() & 0xff) * sizeof(void *); | |
4219 | *p = 0x56; | |
4220 | printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", | |
4221 | p); | |
4222 | printk(KERN_ERR | |
4223 | "If allocated object is overwritten then not detectable\n\n"); | |
4224 | validate_slab_cache(kmalloc_caches[6]); | |
4225 | ||
4226 | printk(KERN_ERR "\nB. Corruption after free\n"); | |
4227 | p = kzalloc(128, GFP_KERNEL); | |
4228 | kfree(p); | |
4229 | *p = 0x78; | |
4230 | printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); | |
4231 | validate_slab_cache(kmalloc_caches[7]); | |
4232 | ||
4233 | p = kzalloc(256, GFP_KERNEL); | |
4234 | kfree(p); | |
4235 | p[50] = 0x9a; | |
4236 | printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", | |
4237 | p); | |
4238 | validate_slab_cache(kmalloc_caches[8]); | |
4239 | ||
4240 | p = kzalloc(512, GFP_KERNEL); | |
4241 | kfree(p); | |
4242 | p[512] = 0xab; | |
4243 | printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); | |
4244 | validate_slab_cache(kmalloc_caches[9]); | |
4245 | } | |
4246 | #else | |
4247 | #ifdef CONFIG_SYSFS | |
4248 | static void resiliency_test(void) {}; | |
4249 | #endif | |
4250 | #endif | |
4251 | ||
ab4d5ed5 | 4252 | #ifdef CONFIG_SYSFS |
81819f0f | 4253 | enum slab_stat_type { |
205ab99d CL |
4254 | SL_ALL, /* All slabs */ |
4255 | SL_PARTIAL, /* Only partially allocated slabs */ | |
4256 | SL_CPU, /* Only slabs used for cpu caches */ | |
4257 | SL_OBJECTS, /* Determine allocated objects not slabs */ | |
4258 | SL_TOTAL /* Determine object capacity not slabs */ | |
81819f0f CL |
4259 | }; |
4260 | ||
205ab99d | 4261 | #define SO_ALL (1 << SL_ALL) |
81819f0f CL |
4262 | #define SO_PARTIAL (1 << SL_PARTIAL) |
4263 | #define SO_CPU (1 << SL_CPU) | |
4264 | #define SO_OBJECTS (1 << SL_OBJECTS) | |
205ab99d | 4265 | #define SO_TOTAL (1 << SL_TOTAL) |
81819f0f | 4266 | |
62e5c4b4 CG |
4267 | static ssize_t show_slab_objects(struct kmem_cache *s, |
4268 | char *buf, unsigned long flags) | |
81819f0f CL |
4269 | { |
4270 | unsigned long total = 0; | |
81819f0f CL |
4271 | int node; |
4272 | int x; | |
4273 | unsigned long *nodes; | |
4274 | unsigned long *per_cpu; | |
4275 | ||
4276 | nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); | |
62e5c4b4 CG |
4277 | if (!nodes) |
4278 | return -ENOMEM; | |
81819f0f CL |
4279 | per_cpu = nodes + nr_node_ids; |
4280 | ||
205ab99d CL |
4281 | if (flags & SO_CPU) { |
4282 | int cpu; | |
81819f0f | 4283 | |
205ab99d | 4284 | for_each_possible_cpu(cpu) { |
9dfc6e68 | 4285 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); |
ec3ab083 | 4286 | int node; |
49e22585 | 4287 | struct page *page; |
dfb4f096 | 4288 | |
bc6697d8 | 4289 | page = ACCESS_ONCE(c->page); |
ec3ab083 CL |
4290 | if (!page) |
4291 | continue; | |
205ab99d | 4292 | |
ec3ab083 CL |
4293 | node = page_to_nid(page); |
4294 | if (flags & SO_TOTAL) | |
4295 | x = page->objects; | |
4296 | else if (flags & SO_OBJECTS) | |
4297 | x = page->inuse; | |
4298 | else | |
4299 | x = 1; | |
49e22585 | 4300 | |
ec3ab083 CL |
4301 | total += x; |
4302 | nodes[node] += x; | |
4303 | ||
4304 | page = ACCESS_ONCE(c->partial); | |
49e22585 CL |
4305 | if (page) { |
4306 | x = page->pobjects; | |
bc6697d8 ED |
4307 | total += x; |
4308 | nodes[node] += x; | |
49e22585 | 4309 | } |
ec3ab083 | 4310 | |
bc6697d8 | 4311 | per_cpu[node]++; |
81819f0f CL |
4312 | } |
4313 | } | |
4314 | ||
04d94879 | 4315 | lock_memory_hotplug(); |
ab4d5ed5 | 4316 | #ifdef CONFIG_SLUB_DEBUG |
205ab99d CL |
4317 | if (flags & SO_ALL) { |
4318 | for_each_node_state(node, N_NORMAL_MEMORY) { | |
4319 | struct kmem_cache_node *n = get_node(s, node); | |
4320 | ||
4321 | if (flags & SO_TOTAL) | |
4322 | x = atomic_long_read(&n->total_objects); | |
4323 | else if (flags & SO_OBJECTS) | |
4324 | x = atomic_long_read(&n->total_objects) - | |
4325 | count_partial(n, count_free); | |
81819f0f | 4326 | |
81819f0f | 4327 | else |
205ab99d | 4328 | x = atomic_long_read(&n->nr_slabs); |
81819f0f CL |
4329 | total += x; |
4330 | nodes[node] += x; | |
4331 | } | |
4332 | ||
ab4d5ed5 CL |
4333 | } else |
4334 | #endif | |
4335 | if (flags & SO_PARTIAL) { | |
205ab99d CL |
4336 | for_each_node_state(node, N_NORMAL_MEMORY) { |
4337 | struct kmem_cache_node *n = get_node(s, node); | |
81819f0f | 4338 | |
205ab99d CL |
4339 | if (flags & SO_TOTAL) |
4340 | x = count_partial(n, count_total); | |
4341 | else if (flags & SO_OBJECTS) | |
4342 | x = count_partial(n, count_inuse); | |
81819f0f | 4343 | else |
205ab99d | 4344 | x = n->nr_partial; |
81819f0f CL |
4345 | total += x; |
4346 | nodes[node] += x; | |
4347 | } | |
4348 | } | |
81819f0f CL |
4349 | x = sprintf(buf, "%lu", total); |
4350 | #ifdef CONFIG_NUMA | |
f64dc58c | 4351 | for_each_node_state(node, N_NORMAL_MEMORY) |
81819f0f CL |
4352 | if (nodes[node]) |
4353 | x += sprintf(buf + x, " N%d=%lu", | |
4354 | node, nodes[node]); | |
4355 | #endif | |
04d94879 | 4356 | unlock_memory_hotplug(); |
81819f0f CL |
4357 | kfree(nodes); |
4358 | return x + sprintf(buf + x, "\n"); | |
4359 | } | |
4360 | ||
ab4d5ed5 | 4361 | #ifdef CONFIG_SLUB_DEBUG |
81819f0f CL |
4362 | static int any_slab_objects(struct kmem_cache *s) |
4363 | { | |
4364 | int node; | |
81819f0f | 4365 | |
dfb4f096 | 4366 | for_each_online_node(node) { |
81819f0f CL |
4367 | struct kmem_cache_node *n = get_node(s, node); |
4368 | ||
dfb4f096 CL |
4369 | if (!n) |
4370 | continue; | |
4371 | ||
4ea33e2d | 4372 | if (atomic_long_read(&n->total_objects)) |
81819f0f CL |
4373 | return 1; |
4374 | } | |
4375 | return 0; | |
4376 | } | |
ab4d5ed5 | 4377 | #endif |
81819f0f CL |
4378 | |
4379 | #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) | |
497888cf | 4380 | #define to_slab(n) container_of(n, struct kmem_cache, kobj) |
81819f0f CL |
4381 | |
4382 | struct slab_attribute { | |
4383 | struct attribute attr; | |
4384 | ssize_t (*show)(struct kmem_cache *s, char *buf); | |
4385 | ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); | |
4386 | }; | |
4387 | ||
4388 | #define SLAB_ATTR_RO(_name) \ | |
ab067e99 VK |
4389 | static struct slab_attribute _name##_attr = \ |
4390 | __ATTR(_name, 0400, _name##_show, NULL) | |
81819f0f CL |
4391 | |
4392 | #define SLAB_ATTR(_name) \ | |
4393 | static struct slab_attribute _name##_attr = \ | |
ab067e99 | 4394 | __ATTR(_name, 0600, _name##_show, _name##_store) |
81819f0f | 4395 | |
81819f0f CL |
4396 | static ssize_t slab_size_show(struct kmem_cache *s, char *buf) |
4397 | { | |
4398 | return sprintf(buf, "%d\n", s->size); | |
4399 | } | |
4400 | SLAB_ATTR_RO(slab_size); | |
4401 | ||
4402 | static ssize_t align_show(struct kmem_cache *s, char *buf) | |
4403 | { | |
4404 | return sprintf(buf, "%d\n", s->align); | |
4405 | } | |
4406 | SLAB_ATTR_RO(align); | |
4407 | ||
4408 | static ssize_t object_size_show(struct kmem_cache *s, char *buf) | |
4409 | { | |
3b0efdfa | 4410 | return sprintf(buf, "%d\n", s->object_size); |
81819f0f CL |
4411 | } |
4412 | SLAB_ATTR_RO(object_size); | |
4413 | ||
4414 | static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) | |
4415 | { | |
834f3d11 | 4416 | return sprintf(buf, "%d\n", oo_objects(s->oo)); |
81819f0f CL |
4417 | } |
4418 | SLAB_ATTR_RO(objs_per_slab); | |
4419 | ||
06b285dc CL |
4420 | static ssize_t order_store(struct kmem_cache *s, |
4421 | const char *buf, size_t length) | |
4422 | { | |
0121c619 CL |
4423 | unsigned long order; |
4424 | int err; | |
4425 | ||
4426 | err = strict_strtoul(buf, 10, &order); | |
4427 | if (err) | |
4428 | return err; | |
06b285dc CL |
4429 | |
4430 | if (order > slub_max_order || order < slub_min_order) | |
4431 | return -EINVAL; | |
4432 | ||
4433 | calculate_sizes(s, order); | |
4434 | return length; | |
4435 | } | |
4436 | ||
81819f0f CL |
4437 | static ssize_t order_show(struct kmem_cache *s, char *buf) |
4438 | { | |
834f3d11 | 4439 | return sprintf(buf, "%d\n", oo_order(s->oo)); |
81819f0f | 4440 | } |
06b285dc | 4441 | SLAB_ATTR(order); |
81819f0f | 4442 | |
73d342b1 DR |
4443 | static ssize_t min_partial_show(struct kmem_cache *s, char *buf) |
4444 | { | |
4445 | return sprintf(buf, "%lu\n", s->min_partial); | |
4446 | } | |
4447 | ||
4448 | static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, | |
4449 | size_t length) | |
4450 | { | |
4451 | unsigned long min; | |
4452 | int err; | |
4453 | ||
4454 | err = strict_strtoul(buf, 10, &min); | |
4455 | if (err) | |
4456 | return err; | |
4457 | ||
c0bdb232 | 4458 | set_min_partial(s, min); |
73d342b1 DR |
4459 | return length; |
4460 | } | |
4461 | SLAB_ATTR(min_partial); | |
4462 | ||
49e22585 CL |
4463 | static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) |
4464 | { | |
4465 | return sprintf(buf, "%u\n", s->cpu_partial); | |
4466 | } | |
4467 | ||
4468 | static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, | |
4469 | size_t length) | |
4470 | { | |
4471 | unsigned long objects; | |
4472 | int err; | |
4473 | ||
4474 | err = strict_strtoul(buf, 10, &objects); | |
4475 | if (err) | |
4476 | return err; | |
345c905d | 4477 | if (objects && !kmem_cache_has_cpu_partial(s)) |
74ee4ef1 | 4478 | return -EINVAL; |
49e22585 CL |
4479 | |
4480 | s->cpu_partial = objects; | |
4481 | flush_all(s); | |
4482 | return length; | |
4483 | } | |
4484 | SLAB_ATTR(cpu_partial); | |
4485 | ||
81819f0f CL |
4486 | static ssize_t ctor_show(struct kmem_cache *s, char *buf) |
4487 | { | |
62c70bce JP |
4488 | if (!s->ctor) |
4489 | return 0; | |
4490 | return sprintf(buf, "%pS\n", s->ctor); | |
81819f0f CL |
4491 | } |
4492 | SLAB_ATTR_RO(ctor); | |
4493 | ||
81819f0f CL |
4494 | static ssize_t aliases_show(struct kmem_cache *s, char *buf) |
4495 | { | |
4496 | return sprintf(buf, "%d\n", s->refcount - 1); | |
4497 | } | |
4498 | SLAB_ATTR_RO(aliases); | |
4499 | ||
81819f0f CL |
4500 | static ssize_t partial_show(struct kmem_cache *s, char *buf) |
4501 | { | |
d9acf4b7 | 4502 | return show_slab_objects(s, buf, SO_PARTIAL); |
81819f0f CL |
4503 | } |
4504 | SLAB_ATTR_RO(partial); | |
4505 | ||
4506 | static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) | |
4507 | { | |
d9acf4b7 | 4508 | return show_slab_objects(s, buf, SO_CPU); |
81819f0f CL |
4509 | } |
4510 | SLAB_ATTR_RO(cpu_slabs); | |
4511 | ||
4512 | static ssize_t objects_show(struct kmem_cache *s, char *buf) | |
4513 | { | |
205ab99d | 4514 | return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); |
81819f0f CL |
4515 | } |
4516 | SLAB_ATTR_RO(objects); | |
4517 | ||
205ab99d CL |
4518 | static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) |
4519 | { | |
4520 | return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); | |
4521 | } | |
4522 | SLAB_ATTR_RO(objects_partial); | |
4523 | ||
49e22585 CL |
4524 | static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) |
4525 | { | |
4526 | int objects = 0; | |
4527 | int pages = 0; | |
4528 | int cpu; | |
4529 | int len; | |
4530 | ||
4531 | for_each_online_cpu(cpu) { | |
4532 | struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial; | |
4533 | ||
4534 | if (page) { | |
4535 | pages += page->pages; | |
4536 | objects += page->pobjects; | |
4537 | } | |
4538 | } | |
4539 | ||
4540 | len = sprintf(buf, "%d(%d)", objects, pages); | |
4541 | ||
4542 | #ifdef CONFIG_SMP | |
4543 | for_each_online_cpu(cpu) { | |
4544 | struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial; | |
4545 | ||
4546 | if (page && len < PAGE_SIZE - 20) | |
4547 | len += sprintf(buf + len, " C%d=%d(%d)", cpu, | |
4548 | page->pobjects, page->pages); | |
4549 | } | |
4550 | #endif | |
4551 | return len + sprintf(buf + len, "\n"); | |
4552 | } | |
4553 | SLAB_ATTR_RO(slabs_cpu_partial); | |
4554 | ||
a5a84755 CL |
4555 | static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) |
4556 | { | |
4557 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); | |
4558 | } | |
4559 | ||
4560 | static ssize_t reclaim_account_store(struct kmem_cache *s, | |
4561 | const char *buf, size_t length) | |
4562 | { | |
4563 | s->flags &= ~SLAB_RECLAIM_ACCOUNT; | |
4564 | if (buf[0] == '1') | |
4565 | s->flags |= SLAB_RECLAIM_ACCOUNT; | |
4566 | return length; | |
4567 | } | |
4568 | SLAB_ATTR(reclaim_account); | |
4569 | ||
4570 | static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) | |
4571 | { | |
4572 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); | |
4573 | } | |
4574 | SLAB_ATTR_RO(hwcache_align); | |
4575 | ||
4576 | #ifdef CONFIG_ZONE_DMA | |
4577 | static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) | |
4578 | { | |
4579 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); | |
4580 | } | |
4581 | SLAB_ATTR_RO(cache_dma); | |
4582 | #endif | |
4583 | ||
4584 | static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) | |
4585 | { | |
4586 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); | |
4587 | } | |
4588 | SLAB_ATTR_RO(destroy_by_rcu); | |
4589 | ||
ab9a0f19 LJ |
4590 | static ssize_t reserved_show(struct kmem_cache *s, char *buf) |
4591 | { | |
4592 | return sprintf(buf, "%d\n", s->reserved); | |
4593 | } | |
4594 | SLAB_ATTR_RO(reserved); | |
4595 | ||
ab4d5ed5 | 4596 | #ifdef CONFIG_SLUB_DEBUG |
a5a84755 CL |
4597 | static ssize_t slabs_show(struct kmem_cache *s, char *buf) |
4598 | { | |
4599 | return show_slab_objects(s, buf, SO_ALL); | |
4600 | } | |
4601 | SLAB_ATTR_RO(slabs); | |
4602 | ||
205ab99d CL |
4603 | static ssize_t total_objects_show(struct kmem_cache *s, char *buf) |
4604 | { | |
4605 | return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); | |
4606 | } | |
4607 | SLAB_ATTR_RO(total_objects); | |
4608 | ||
81819f0f CL |
4609 | static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) |
4610 | { | |
4611 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); | |
4612 | } | |
4613 | ||
4614 | static ssize_t sanity_checks_store(struct kmem_cache *s, | |
4615 | const char *buf, size_t length) | |
4616 | { | |
4617 | s->flags &= ~SLAB_DEBUG_FREE; | |
b789ef51 CL |
4618 | if (buf[0] == '1') { |
4619 | s->flags &= ~__CMPXCHG_DOUBLE; | |
81819f0f | 4620 | s->flags |= SLAB_DEBUG_FREE; |
b789ef51 | 4621 | } |
81819f0f CL |
4622 | return length; |
4623 | } | |
4624 | SLAB_ATTR(sanity_checks); | |
4625 | ||
4626 | static ssize_t trace_show(struct kmem_cache *s, char *buf) | |
4627 | { | |
4628 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); | |
4629 | } | |
4630 | ||
4631 | static ssize_t trace_store(struct kmem_cache *s, const char *buf, | |
4632 | size_t length) | |
4633 | { | |
4634 | s->flags &= ~SLAB_TRACE; | |
b789ef51 CL |
4635 | if (buf[0] == '1') { |
4636 | s->flags &= ~__CMPXCHG_DOUBLE; | |
81819f0f | 4637 | s->flags |= SLAB_TRACE; |
b789ef51 | 4638 | } |
81819f0f CL |
4639 | return length; |
4640 | } | |
4641 | SLAB_ATTR(trace); | |
4642 | ||
81819f0f CL |
4643 | static ssize_t red_zone_show(struct kmem_cache *s, char *buf) |
4644 | { | |
4645 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); | |
4646 | } | |
4647 | ||
4648 | static ssize_t red_zone_store(struct kmem_cache *s, | |
4649 | const char *buf, size_t length) | |
4650 | { | |
4651 | if (any_slab_objects(s)) | |
4652 | return -EBUSY; | |
4653 | ||
4654 | s->flags &= ~SLAB_RED_ZONE; | |
b789ef51 CL |
4655 | if (buf[0] == '1') { |
4656 | s->flags &= ~__CMPXCHG_DOUBLE; | |
81819f0f | 4657 | s->flags |= SLAB_RED_ZONE; |
b789ef51 | 4658 | } |
06b285dc | 4659 | calculate_sizes(s, -1); |
81819f0f CL |
4660 | return length; |
4661 | } | |
4662 | SLAB_ATTR(red_zone); | |
4663 | ||
4664 | static ssize_t poison_show(struct kmem_cache *s, char *buf) | |
4665 | { | |
4666 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); | |
4667 | } | |
4668 | ||
4669 | static ssize_t poison_store(struct kmem_cache *s, | |
4670 | const char *buf, size_t length) | |
4671 | { | |
4672 | if (any_slab_objects(s)) | |
4673 | return -EBUSY; | |
4674 | ||
4675 | s->flags &= ~SLAB_POISON; | |
b789ef51 CL |
4676 | if (buf[0] == '1') { |
4677 | s->flags &= ~__CMPXCHG_DOUBLE; | |
81819f0f | 4678 | s->flags |= SLAB_POISON; |
b789ef51 | 4679 | } |
06b285dc | 4680 | calculate_sizes(s, -1); |
81819f0f CL |
4681 | return length; |
4682 | } | |
4683 | SLAB_ATTR(poison); | |
4684 | ||
4685 | static ssize_t store_user_show(struct kmem_cache *s, char *buf) | |
4686 | { | |
4687 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); | |
4688 | } | |
4689 | ||
4690 | static ssize_t store_user_store(struct kmem_cache *s, | |
4691 | const char *buf, size_t length) | |
4692 | { | |
4693 | if (any_slab_objects(s)) | |
4694 | return -EBUSY; | |
4695 | ||
4696 | s->flags &= ~SLAB_STORE_USER; | |
b789ef51 CL |
4697 | if (buf[0] == '1') { |
4698 | s->flags &= ~__CMPXCHG_DOUBLE; | |
81819f0f | 4699 | s->flags |= SLAB_STORE_USER; |
b789ef51 | 4700 | } |
06b285dc | 4701 | calculate_sizes(s, -1); |
81819f0f CL |
4702 | return length; |
4703 | } | |
4704 | SLAB_ATTR(store_user); | |
4705 | ||
53e15af0 CL |
4706 | static ssize_t validate_show(struct kmem_cache *s, char *buf) |
4707 | { | |
4708 | return 0; | |
4709 | } | |
4710 | ||
4711 | static ssize_t validate_store(struct kmem_cache *s, | |
4712 | const char *buf, size_t length) | |
4713 | { | |
434e245d CL |
4714 | int ret = -EINVAL; |
4715 | ||
4716 | if (buf[0] == '1') { | |
4717 | ret = validate_slab_cache(s); | |
4718 | if (ret >= 0) | |
4719 | ret = length; | |
4720 | } | |
4721 | return ret; | |
53e15af0 CL |
4722 | } |
4723 | SLAB_ATTR(validate); | |
a5a84755 CL |
4724 | |
4725 | static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) | |
4726 | { | |
4727 | if (!(s->flags & SLAB_STORE_USER)) | |
4728 | return -ENOSYS; | |
4729 | return list_locations(s, buf, TRACK_ALLOC); | |
4730 | } | |
4731 | SLAB_ATTR_RO(alloc_calls); | |
4732 | ||
4733 | static ssize_t free_calls_show(struct kmem_cache *s, char *buf) | |
4734 | { | |
4735 | if (!(s->flags & SLAB_STORE_USER)) | |
4736 | return -ENOSYS; | |
4737 | return list_locations(s, buf, TRACK_FREE); | |
4738 | } | |
4739 | SLAB_ATTR_RO(free_calls); | |
4740 | #endif /* CONFIG_SLUB_DEBUG */ | |
4741 | ||
4742 | #ifdef CONFIG_FAILSLAB | |
4743 | static ssize_t failslab_show(struct kmem_cache *s, char *buf) | |
4744 | { | |
4745 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); | |
4746 | } | |
4747 | ||
4748 | static ssize_t failslab_store(struct kmem_cache *s, const char *buf, | |
4749 | size_t length) | |
4750 | { | |
4751 | s->flags &= ~SLAB_FAILSLAB; | |
4752 | if (buf[0] == '1') | |
4753 | s->flags |= SLAB_FAILSLAB; | |
4754 | return length; | |
4755 | } | |
4756 | SLAB_ATTR(failslab); | |
ab4d5ed5 | 4757 | #endif |
53e15af0 | 4758 | |
2086d26a CL |
4759 | static ssize_t shrink_show(struct kmem_cache *s, char *buf) |
4760 | { | |
4761 | return 0; | |
4762 | } | |
4763 | ||
4764 | static ssize_t shrink_store(struct kmem_cache *s, | |
4765 | const char *buf, size_t length) | |
4766 | { | |
4767 | if (buf[0] == '1') { | |
4768 | int rc = kmem_cache_shrink(s); | |
4769 | ||
4770 | if (rc) | |
4771 | return rc; | |
4772 | } else | |
4773 | return -EINVAL; | |
4774 | return length; | |
4775 | } | |
4776 | SLAB_ATTR(shrink); | |
4777 | ||
81819f0f | 4778 | #ifdef CONFIG_NUMA |
9824601e | 4779 | static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) |
81819f0f | 4780 | { |
9824601e | 4781 | return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); |
81819f0f CL |
4782 | } |
4783 | ||
9824601e | 4784 | static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, |
81819f0f CL |
4785 | const char *buf, size_t length) |
4786 | { | |
0121c619 CL |
4787 | unsigned long ratio; |
4788 | int err; | |
4789 | ||
4790 | err = strict_strtoul(buf, 10, &ratio); | |
4791 | if (err) | |
4792 | return err; | |
4793 | ||
e2cb96b7 | 4794 | if (ratio <= 100) |
0121c619 | 4795 | s->remote_node_defrag_ratio = ratio * 10; |
81819f0f | 4796 | |
81819f0f CL |
4797 | return length; |
4798 | } | |
9824601e | 4799 | SLAB_ATTR(remote_node_defrag_ratio); |
81819f0f CL |
4800 | #endif |
4801 | ||
8ff12cfc | 4802 | #ifdef CONFIG_SLUB_STATS |
8ff12cfc CL |
4803 | static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) |
4804 | { | |
4805 | unsigned long sum = 0; | |
4806 | int cpu; | |
4807 | int len; | |
4808 | int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); | |
4809 | ||
4810 | if (!data) | |
4811 | return -ENOMEM; | |
4812 | ||
4813 | for_each_online_cpu(cpu) { | |
9dfc6e68 | 4814 | unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; |
8ff12cfc CL |
4815 | |
4816 | data[cpu] = x; | |
4817 | sum += x; | |
4818 | } | |
4819 | ||
4820 | len = sprintf(buf, "%lu", sum); | |
4821 | ||
50ef37b9 | 4822 | #ifdef CONFIG_SMP |
8ff12cfc CL |
4823 | for_each_online_cpu(cpu) { |
4824 | if (data[cpu] && len < PAGE_SIZE - 20) | |
50ef37b9 | 4825 | len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); |
8ff12cfc | 4826 | } |
50ef37b9 | 4827 | #endif |
8ff12cfc CL |
4828 | kfree(data); |
4829 | return len + sprintf(buf + len, "\n"); | |
4830 | } | |
4831 | ||
78eb00cc DR |
4832 | static void clear_stat(struct kmem_cache *s, enum stat_item si) |
4833 | { | |
4834 | int cpu; | |
4835 | ||
4836 | for_each_online_cpu(cpu) | |
9dfc6e68 | 4837 | per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; |
78eb00cc DR |
4838 | } |
4839 | ||
8ff12cfc CL |
4840 | #define STAT_ATTR(si, text) \ |
4841 | static ssize_t text##_show(struct kmem_cache *s, char *buf) \ | |
4842 | { \ | |
4843 | return show_stat(s, buf, si); \ | |
4844 | } \ | |
78eb00cc DR |
4845 | static ssize_t text##_store(struct kmem_cache *s, \ |
4846 | const char *buf, size_t length) \ | |
4847 | { \ | |
4848 | if (buf[0] != '0') \ | |
4849 | return -EINVAL; \ | |
4850 | clear_stat(s, si); \ | |
4851 | return length; \ | |
4852 | } \ | |
4853 | SLAB_ATTR(text); \ | |
8ff12cfc CL |
4854 | |
4855 | STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); | |
4856 | STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); | |
4857 | STAT_ATTR(FREE_FASTPATH, free_fastpath); | |
4858 | STAT_ATTR(FREE_SLOWPATH, free_slowpath); | |
4859 | STAT_ATTR(FREE_FROZEN, free_frozen); | |
4860 | STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); | |
4861 | STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); | |
4862 | STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); | |
4863 | STAT_ATTR(ALLOC_SLAB, alloc_slab); | |
4864 | STAT_ATTR(ALLOC_REFILL, alloc_refill); | |
e36a2652 | 4865 | STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); |
8ff12cfc CL |
4866 | STAT_ATTR(FREE_SLAB, free_slab); |
4867 | STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); | |
4868 | STAT_ATTR(DEACTIVATE_FULL, deactivate_full); | |
4869 | STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); | |
4870 | STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); | |
4871 | STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); | |
4872 | STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); | |
03e404af | 4873 | STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); |
65c3376a | 4874 | STAT_ATTR(ORDER_FALLBACK, order_fallback); |
b789ef51 CL |
4875 | STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); |
4876 | STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); | |
49e22585 CL |
4877 | STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); |
4878 | STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); | |
8028dcea AS |
4879 | STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); |
4880 | STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); | |
8ff12cfc CL |
4881 | #endif |
4882 | ||
06428780 | 4883 | static struct attribute *slab_attrs[] = { |
81819f0f CL |
4884 | &slab_size_attr.attr, |
4885 | &object_size_attr.attr, | |
4886 | &objs_per_slab_attr.attr, | |
4887 | &order_attr.attr, | |
73d342b1 | 4888 | &min_partial_attr.attr, |
49e22585 | 4889 | &cpu_partial_attr.attr, |
81819f0f | 4890 | &objects_attr.attr, |
205ab99d | 4891 | &objects_partial_attr.attr, |
81819f0f CL |
4892 | &partial_attr.attr, |
4893 | &cpu_slabs_attr.attr, | |
4894 | &ctor_attr.attr, | |
81819f0f CL |
4895 | &aliases_attr.attr, |
4896 | &align_attr.attr, | |
81819f0f CL |
4897 | &hwcache_align_attr.attr, |
4898 | &reclaim_account_attr.attr, | |
4899 | &destroy_by_rcu_attr.attr, | |
a5a84755 | 4900 | &shrink_attr.attr, |
ab9a0f19 | 4901 | &reserved_attr.attr, |
49e22585 | 4902 | &slabs_cpu_partial_attr.attr, |
ab4d5ed5 | 4903 | #ifdef CONFIG_SLUB_DEBUG |
a5a84755 CL |
4904 | &total_objects_attr.attr, |
4905 | &slabs_attr.attr, | |
4906 | &sanity_checks_attr.attr, | |
4907 | &trace_attr.attr, | |
81819f0f CL |
4908 | &red_zone_attr.attr, |
4909 | &poison_attr.attr, | |
4910 | &store_user_attr.attr, | |
53e15af0 | 4911 | &validate_attr.attr, |
88a420e4 CL |
4912 | &alloc_calls_attr.attr, |
4913 | &free_calls_attr.attr, | |
ab4d5ed5 | 4914 | #endif |
81819f0f CL |
4915 | #ifdef CONFIG_ZONE_DMA |
4916 | &cache_dma_attr.attr, | |
4917 | #endif | |
4918 | #ifdef CONFIG_NUMA | |
9824601e | 4919 | &remote_node_defrag_ratio_attr.attr, |
8ff12cfc CL |
4920 | #endif |
4921 | #ifdef CONFIG_SLUB_STATS | |
4922 | &alloc_fastpath_attr.attr, | |
4923 | &alloc_slowpath_attr.attr, | |
4924 | &free_fastpath_attr.attr, | |
4925 | &free_slowpath_attr.attr, | |
4926 | &free_frozen_attr.attr, | |
4927 | &free_add_partial_attr.attr, | |
4928 | &free_remove_partial_attr.attr, | |
4929 | &alloc_from_partial_attr.attr, | |
4930 | &alloc_slab_attr.attr, | |
4931 | &alloc_refill_attr.attr, | |
e36a2652 | 4932 | &alloc_node_mismatch_attr.attr, |
8ff12cfc CL |
4933 | &free_slab_attr.attr, |
4934 | &cpuslab_flush_attr.attr, | |
4935 | &deactivate_full_attr.attr, | |
4936 | &deactivate_empty_attr.attr, | |
4937 | &deactivate_to_head_attr.attr, | |
4938 | &deactivate_to_tail_attr.attr, | |
4939 | &deactivate_remote_frees_attr.attr, | |
03e404af | 4940 | &deactivate_bypass_attr.attr, |
65c3376a | 4941 | &order_fallback_attr.attr, |
b789ef51 CL |
4942 | &cmpxchg_double_fail_attr.attr, |
4943 | &cmpxchg_double_cpu_fail_attr.attr, | |
49e22585 CL |
4944 | &cpu_partial_alloc_attr.attr, |
4945 | &cpu_partial_free_attr.attr, | |
8028dcea AS |
4946 | &cpu_partial_node_attr.attr, |
4947 | &cpu_partial_drain_attr.attr, | |
81819f0f | 4948 | #endif |
4c13dd3b DM |
4949 | #ifdef CONFIG_FAILSLAB |
4950 | &failslab_attr.attr, | |
4951 | #endif | |
4952 | ||
81819f0f CL |
4953 | NULL |
4954 | }; | |
4955 | ||
4956 | static struct attribute_group slab_attr_group = { | |
4957 | .attrs = slab_attrs, | |
4958 | }; | |
4959 | ||
4960 | static ssize_t slab_attr_show(struct kobject *kobj, | |
4961 | struct attribute *attr, | |
4962 | char *buf) | |
4963 | { | |
4964 | struct slab_attribute *attribute; | |
4965 | struct kmem_cache *s; | |
4966 | int err; | |
4967 | ||
4968 | attribute = to_slab_attr(attr); | |
4969 | s = to_slab(kobj); | |
4970 | ||
4971 | if (!attribute->show) | |
4972 | return -EIO; | |
4973 | ||
4974 | err = attribute->show(s, buf); | |
4975 | ||
4976 | return err; | |
4977 | } | |
4978 | ||
4979 | static ssize_t slab_attr_store(struct kobject *kobj, | |
4980 | struct attribute *attr, | |
4981 | const char *buf, size_t len) | |
4982 | { | |
4983 | struct slab_attribute *attribute; | |
4984 | struct kmem_cache *s; | |
4985 | int err; | |
4986 | ||
4987 | attribute = to_slab_attr(attr); | |
4988 | s = to_slab(kobj); | |
4989 | ||
4990 | if (!attribute->store) | |
4991 | return -EIO; | |
4992 | ||
4993 | err = attribute->store(s, buf, len); | |
107dab5c GC |
4994 | #ifdef CONFIG_MEMCG_KMEM |
4995 | if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { | |
4996 | int i; | |
81819f0f | 4997 | |
107dab5c GC |
4998 | mutex_lock(&slab_mutex); |
4999 | if (s->max_attr_size < len) | |
5000 | s->max_attr_size = len; | |
5001 | ||
ebe945c2 GC |
5002 | /* |
5003 | * This is a best effort propagation, so this function's return | |
5004 | * value will be determined by the parent cache only. This is | |
5005 | * basically because not all attributes will have a well | |
5006 | * defined semantics for rollbacks - most of the actions will | |
5007 | * have permanent effects. | |
5008 | * | |
5009 | * Returning the error value of any of the children that fail | |
5010 | * is not 100 % defined, in the sense that users seeing the | |
5011 | * error code won't be able to know anything about the state of | |
5012 | * the cache. | |
5013 | * | |
5014 | * Only returning the error code for the parent cache at least | |
5015 | * has well defined semantics. The cache being written to | |
5016 | * directly either failed or succeeded, in which case we loop | |
5017 | * through the descendants with best-effort propagation. | |
5018 | */ | |
107dab5c GC |
5019 | for_each_memcg_cache_index(i) { |
5020 | struct kmem_cache *c = cache_from_memcg(s, i); | |
107dab5c GC |
5021 | if (c) |
5022 | attribute->store(c, buf, len); | |
5023 | } | |
5024 | mutex_unlock(&slab_mutex); | |
5025 | } | |
5026 | #endif | |
81819f0f CL |
5027 | return err; |
5028 | } | |
5029 | ||
107dab5c GC |
5030 | static void memcg_propagate_slab_attrs(struct kmem_cache *s) |
5031 | { | |
5032 | #ifdef CONFIG_MEMCG_KMEM | |
5033 | int i; | |
5034 | char *buffer = NULL; | |
5035 | ||
5036 | if (!is_root_cache(s)) | |
5037 | return; | |
5038 | ||
5039 | /* | |
5040 | * This mean this cache had no attribute written. Therefore, no point | |
5041 | * in copying default values around | |
5042 | */ | |
5043 | if (!s->max_attr_size) | |
5044 | return; | |
5045 | ||
5046 | for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { | |
5047 | char mbuf[64]; | |
5048 | char *buf; | |
5049 | struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); | |
5050 | ||
5051 | if (!attr || !attr->store || !attr->show) | |
5052 | continue; | |
5053 | ||
5054 | /* | |
5055 | * It is really bad that we have to allocate here, so we will | |
5056 | * do it only as a fallback. If we actually allocate, though, | |
5057 | * we can just use the allocated buffer until the end. | |
5058 | * | |
5059 | * Most of the slub attributes will tend to be very small in | |
5060 | * size, but sysfs allows buffers up to a page, so they can | |
5061 | * theoretically happen. | |
5062 | */ | |
5063 | if (buffer) | |
5064 | buf = buffer; | |
5065 | else if (s->max_attr_size < ARRAY_SIZE(mbuf)) | |
5066 | buf = mbuf; | |
5067 | else { | |
5068 | buffer = (char *) get_zeroed_page(GFP_KERNEL); | |
5069 | if (WARN_ON(!buffer)) | |
5070 | continue; | |
5071 | buf = buffer; | |
5072 | } | |
5073 | ||
5074 | attr->show(s->memcg_params->root_cache, buf); | |
5075 | attr->store(s, buf, strlen(buf)); | |
5076 | } | |
5077 | ||
5078 | if (buffer) | |
5079 | free_page((unsigned long)buffer); | |
5080 | #endif | |
5081 | } | |
5082 | ||
52cf25d0 | 5083 | static const struct sysfs_ops slab_sysfs_ops = { |
81819f0f CL |
5084 | .show = slab_attr_show, |
5085 | .store = slab_attr_store, | |
5086 | }; | |
5087 | ||
5088 | static struct kobj_type slab_ktype = { | |
5089 | .sysfs_ops = &slab_sysfs_ops, | |
5090 | }; | |
5091 | ||
5092 | static int uevent_filter(struct kset *kset, struct kobject *kobj) | |
5093 | { | |
5094 | struct kobj_type *ktype = get_ktype(kobj); | |
5095 | ||
5096 | if (ktype == &slab_ktype) | |
5097 | return 1; | |
5098 | return 0; | |
5099 | } | |
5100 | ||
9cd43611 | 5101 | static const struct kset_uevent_ops slab_uevent_ops = { |
81819f0f CL |
5102 | .filter = uevent_filter, |
5103 | }; | |
5104 | ||
27c3a314 | 5105 | static struct kset *slab_kset; |
81819f0f CL |
5106 | |
5107 | #define ID_STR_LENGTH 64 | |
5108 | ||
5109 | /* Create a unique string id for a slab cache: | |
6446faa2 CL |
5110 | * |
5111 | * Format :[flags-]size | |
81819f0f CL |
5112 | */ |
5113 | static char *create_unique_id(struct kmem_cache *s) | |
5114 | { | |
5115 | char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); | |
5116 | char *p = name; | |
5117 | ||
5118 | BUG_ON(!name); | |
5119 | ||
5120 | *p++ = ':'; | |
5121 | /* | |
5122 | * First flags affecting slabcache operations. We will only | |
5123 | * get here for aliasable slabs so we do not need to support | |
5124 | * too many flags. The flags here must cover all flags that | |
5125 | * are matched during merging to guarantee that the id is | |
5126 | * unique. | |
5127 | */ | |
5128 | if (s->flags & SLAB_CACHE_DMA) | |
5129 | *p++ = 'd'; | |
5130 | if (s->flags & SLAB_RECLAIM_ACCOUNT) | |
5131 | *p++ = 'a'; | |
5132 | if (s->flags & SLAB_DEBUG_FREE) | |
5133 | *p++ = 'F'; | |
5a896d9e VN |
5134 | if (!(s->flags & SLAB_NOTRACK)) |
5135 | *p++ = 't'; | |
81819f0f CL |
5136 | if (p != name + 1) |
5137 | *p++ = '-'; | |
5138 | p += sprintf(p, "%07d", s->size); | |
2633d7a0 GC |
5139 | |
5140 | #ifdef CONFIG_MEMCG_KMEM | |
5141 | if (!is_root_cache(s)) | |
5142 | p += sprintf(p, "-%08d", memcg_cache_id(s->memcg_params->memcg)); | |
5143 | #endif | |
5144 | ||
81819f0f CL |
5145 | BUG_ON(p > name + ID_STR_LENGTH - 1); |
5146 | return name; | |
5147 | } | |
5148 | ||
5149 | static int sysfs_slab_add(struct kmem_cache *s) | |
5150 | { | |
5151 | int err; | |
5152 | const char *name; | |
45530c44 | 5153 | int unmergeable = slab_unmergeable(s); |
81819f0f | 5154 | |
81819f0f CL |
5155 | if (unmergeable) { |
5156 | /* | |
5157 | * Slabcache can never be merged so we can use the name proper. | |
5158 | * This is typically the case for debug situations. In that | |
5159 | * case we can catch duplicate names easily. | |
5160 | */ | |
27c3a314 | 5161 | sysfs_remove_link(&slab_kset->kobj, s->name); |
81819f0f CL |
5162 | name = s->name; |
5163 | } else { | |
5164 | /* | |
5165 | * Create a unique name for the slab as a target | |
5166 | * for the symlinks. | |
5167 | */ | |
5168 | name = create_unique_id(s); | |
5169 | } | |
5170 | ||
27c3a314 | 5171 | s->kobj.kset = slab_kset; |
1eada11c GKH |
5172 | err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name); |
5173 | if (err) { | |
5174 | kobject_put(&s->kobj); | |
81819f0f | 5175 | return err; |
1eada11c | 5176 | } |
81819f0f CL |
5177 | |
5178 | err = sysfs_create_group(&s->kobj, &slab_attr_group); | |
5788d8ad XF |
5179 | if (err) { |
5180 | kobject_del(&s->kobj); | |
5181 | kobject_put(&s->kobj); | |
81819f0f | 5182 | return err; |
5788d8ad | 5183 | } |
81819f0f CL |
5184 | kobject_uevent(&s->kobj, KOBJ_ADD); |
5185 | if (!unmergeable) { | |
5186 | /* Setup first alias */ | |
5187 | sysfs_slab_alias(s, s->name); | |
5188 | kfree(name); | |
5189 | } | |
5190 | return 0; | |
5191 | } | |
5192 | ||
5193 | static void sysfs_slab_remove(struct kmem_cache *s) | |
5194 | { | |
97d06609 | 5195 | if (slab_state < FULL) |
2bce6485 CL |
5196 | /* |
5197 | * Sysfs has not been setup yet so no need to remove the | |
5198 | * cache from sysfs. | |
5199 | */ | |
5200 | return; | |
5201 | ||
81819f0f CL |
5202 | kobject_uevent(&s->kobj, KOBJ_REMOVE); |
5203 | kobject_del(&s->kobj); | |
151c602f | 5204 | kobject_put(&s->kobj); |
81819f0f CL |
5205 | } |
5206 | ||
5207 | /* | |
5208 | * Need to buffer aliases during bootup until sysfs becomes | |
9f6c708e | 5209 | * available lest we lose that information. |
81819f0f CL |
5210 | */ |
5211 | struct saved_alias { | |
5212 | struct kmem_cache *s; | |
5213 | const char *name; | |
5214 | struct saved_alias *next; | |
5215 | }; | |
5216 | ||
5af328a5 | 5217 | static struct saved_alias *alias_list; |
81819f0f CL |
5218 | |
5219 | static int sysfs_slab_alias(struct kmem_cache *s, const char *name) | |
5220 | { | |
5221 | struct saved_alias *al; | |
5222 | ||
97d06609 | 5223 | if (slab_state == FULL) { |
81819f0f CL |
5224 | /* |
5225 | * If we have a leftover link then remove it. | |
5226 | */ | |
27c3a314 GKH |
5227 | sysfs_remove_link(&slab_kset->kobj, name); |
5228 | return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); | |
81819f0f CL |
5229 | } |
5230 | ||
5231 | al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); | |
5232 | if (!al) | |
5233 | return -ENOMEM; | |
5234 | ||
5235 | al->s = s; | |
5236 | al->name = name; | |
5237 | al->next = alias_list; | |
5238 | alias_list = al; | |
5239 | return 0; | |
5240 | } | |
5241 | ||
5242 | static int __init slab_sysfs_init(void) | |
5243 | { | |
5b95a4ac | 5244 | struct kmem_cache *s; |
81819f0f CL |
5245 | int err; |
5246 | ||
18004c5d | 5247 | mutex_lock(&slab_mutex); |
2bce6485 | 5248 | |
0ff21e46 | 5249 | slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); |
27c3a314 | 5250 | if (!slab_kset) { |
18004c5d | 5251 | mutex_unlock(&slab_mutex); |
81819f0f CL |
5252 | printk(KERN_ERR "Cannot register slab subsystem.\n"); |
5253 | return -ENOSYS; | |
5254 | } | |
5255 | ||
97d06609 | 5256 | slab_state = FULL; |
26a7bd03 | 5257 | |
5b95a4ac | 5258 | list_for_each_entry(s, &slab_caches, list) { |
26a7bd03 | 5259 | err = sysfs_slab_add(s); |
5d540fb7 CL |
5260 | if (err) |
5261 | printk(KERN_ERR "SLUB: Unable to add boot slab %s" | |
5262 | " to sysfs\n", s->name); | |
26a7bd03 | 5263 | } |
81819f0f CL |
5264 | |
5265 | while (alias_list) { | |
5266 | struct saved_alias *al = alias_list; | |
5267 | ||
5268 | alias_list = alias_list->next; | |
5269 | err = sysfs_slab_alias(al->s, al->name); | |
5d540fb7 CL |
5270 | if (err) |
5271 | printk(KERN_ERR "SLUB: Unable to add boot slab alias" | |
068ce415 | 5272 | " %s to sysfs\n", al->name); |
81819f0f CL |
5273 | kfree(al); |
5274 | } | |
5275 | ||
18004c5d | 5276 | mutex_unlock(&slab_mutex); |
81819f0f CL |
5277 | resiliency_test(); |
5278 | return 0; | |
5279 | } | |
5280 | ||
5281 | __initcall(slab_sysfs_init); | |
ab4d5ed5 | 5282 | #endif /* CONFIG_SYSFS */ |
57ed3eda PE |
5283 | |
5284 | /* | |
5285 | * The /proc/slabinfo ABI | |
5286 | */ | |
158a9624 | 5287 | #ifdef CONFIG_SLABINFO |
0d7561c6 | 5288 | void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) |
57ed3eda | 5289 | { |
57ed3eda | 5290 | unsigned long nr_slabs = 0; |
205ab99d CL |
5291 | unsigned long nr_objs = 0; |
5292 | unsigned long nr_free = 0; | |
57ed3eda PE |
5293 | int node; |
5294 | ||
57ed3eda PE |
5295 | for_each_online_node(node) { |
5296 | struct kmem_cache_node *n = get_node(s, node); | |
5297 | ||
5298 | if (!n) | |
5299 | continue; | |
5300 | ||
c17fd13e WL |
5301 | nr_slabs += node_nr_slabs(n); |
5302 | nr_objs += node_nr_objs(n); | |
205ab99d | 5303 | nr_free += count_partial(n, count_free); |
57ed3eda PE |
5304 | } |
5305 | ||
0d7561c6 GC |
5306 | sinfo->active_objs = nr_objs - nr_free; |
5307 | sinfo->num_objs = nr_objs; | |
5308 | sinfo->active_slabs = nr_slabs; | |
5309 | sinfo->num_slabs = nr_slabs; | |
5310 | sinfo->objects_per_slab = oo_objects(s->oo); | |
5311 | sinfo->cache_order = oo_order(s->oo); | |
57ed3eda PE |
5312 | } |
5313 | ||
0d7561c6 | 5314 | void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) |
7b3c3a50 | 5315 | { |
7b3c3a50 AD |
5316 | } |
5317 | ||
b7454ad3 GC |
5318 | ssize_t slabinfo_write(struct file *file, const char __user *buffer, |
5319 | size_t count, loff_t *ppos) | |
7b3c3a50 | 5320 | { |
b7454ad3 | 5321 | return -EIO; |
7b3c3a50 | 5322 | } |
158a9624 | 5323 | #endif /* CONFIG_SLABINFO */ |