]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
039363f3 CL |
2 | /* |
3 | * Slab allocator functions that are independent of the allocator strategy | |
4 | * | |
5 | * (C) 2012 Christoph Lameter <[email protected]> | |
6 | */ | |
7 | #include <linux/slab.h> | |
8 | ||
9 | #include <linux/mm.h> | |
10 | #include <linux/poison.h> | |
11 | #include <linux/interrupt.h> | |
12 | #include <linux/memory.h> | |
1c99ba29 | 13 | #include <linux/cache.h> |
039363f3 CL |
14 | #include <linux/compiler.h> |
15 | #include <linux/module.h> | |
20cea968 CL |
16 | #include <linux/cpu.h> |
17 | #include <linux/uaccess.h> | |
b7454ad3 GC |
18 | #include <linux/seq_file.h> |
19 | #include <linux/proc_fs.h> | |
fcf8a1e4 | 20 | #include <linux/debugfs.h> |
039363f3 CL |
21 | #include <asm/cacheflush.h> |
22 | #include <asm/tlbflush.h> | |
23 | #include <asm/page.h> | |
2633d7a0 | 24 | #include <linux/memcontrol.h> |
928cec9c AR |
25 | |
26 | #define CREATE_TRACE_POINTS | |
f1b6eb6e | 27 | #include <trace/events/kmem.h> |
039363f3 | 28 | |
97d06609 CL |
29 | #include "slab.h" |
30 | ||
31 | enum slab_state slab_state; | |
18004c5d CL |
32 | LIST_HEAD(slab_caches); |
33 | DEFINE_MUTEX(slab_mutex); | |
9b030cb8 | 34 | struct kmem_cache *kmem_cache; |
97d06609 | 35 | |
2d891fbc KC |
36 | #ifdef CONFIG_HARDENED_USERCOPY |
37 | bool usercopy_fallback __ro_after_init = | |
38 | IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK); | |
39 | module_param(usercopy_fallback, bool, 0400); | |
40 | MODULE_PARM_DESC(usercopy_fallback, | |
41 | "WARN instead of reject usercopy whitelist violations"); | |
42 | #endif | |
43 | ||
657dc2f9 TH |
44 | static LIST_HEAD(slab_caches_to_rcu_destroy); |
45 | static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work); | |
46 | static DECLARE_WORK(slab_caches_to_rcu_destroy_work, | |
47 | slab_caches_to_rcu_destroy_workfn); | |
48 | ||
423c929c JK |
49 | /* |
50 | * Set of flags that will prevent slab merging | |
51 | */ | |
52 | #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ | |
5f0d5a3a | 53 | SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \ |
7ed2f9e6 | 54 | SLAB_FAILSLAB | SLAB_KASAN) |
423c929c | 55 | |
230e9fc2 | 56 | #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \ |
6d6ea1e9 | 57 | SLAB_CACHE_DMA32 | SLAB_ACCOUNT) |
423c929c JK |
58 | |
59 | /* | |
60 | * Merge control. If this is set then no merging of slab caches will occur. | |
423c929c | 61 | */ |
7660a6fd | 62 | static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT); |
423c929c JK |
63 | |
64 | static int __init setup_slab_nomerge(char *str) | |
65 | { | |
7660a6fd | 66 | slab_nomerge = true; |
423c929c JK |
67 | return 1; |
68 | } | |
69 | ||
70 | #ifdef CONFIG_SLUB | |
71 | __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0); | |
72 | #endif | |
73 | ||
74 | __setup("slab_nomerge", setup_slab_nomerge); | |
75 | ||
07f361b2 JK |
76 | /* |
77 | * Determine the size of a slab object | |
78 | */ | |
79 | unsigned int kmem_cache_size(struct kmem_cache *s) | |
80 | { | |
81 | return s->object_size; | |
82 | } | |
83 | EXPORT_SYMBOL(kmem_cache_size); | |
84 | ||
77be4b13 | 85 | #ifdef CONFIG_DEBUG_VM |
f4957d5b | 86 | static int kmem_cache_sanity_check(const char *name, unsigned int size) |
039363f3 | 87 | { |
039363f3 CL |
88 | if (!name || in_interrupt() || size < sizeof(void *) || |
89 | size > KMALLOC_MAX_SIZE) { | |
77be4b13 SK |
90 | pr_err("kmem_cache_create(%s) integrity check failed\n", name); |
91 | return -EINVAL; | |
039363f3 | 92 | } |
b920536a | 93 | |
20cea968 | 94 | WARN_ON(strchr(name, ' ')); /* It confuses parsers */ |
77be4b13 SK |
95 | return 0; |
96 | } | |
97 | #else | |
f4957d5b | 98 | static inline int kmem_cache_sanity_check(const char *name, unsigned int size) |
77be4b13 SK |
99 | { |
100 | return 0; | |
101 | } | |
20cea968 CL |
102 | #endif |
103 | ||
484748f0 CL |
104 | void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p) |
105 | { | |
106 | size_t i; | |
107 | ||
ca257195 JDB |
108 | for (i = 0; i < nr; i++) { |
109 | if (s) | |
110 | kmem_cache_free(s, p[i]); | |
111 | else | |
112 | kfree(p[i]); | |
113 | } | |
484748f0 CL |
114 | } |
115 | ||
865762a8 | 116 | int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr, |
484748f0 CL |
117 | void **p) |
118 | { | |
119 | size_t i; | |
120 | ||
121 | for (i = 0; i < nr; i++) { | |
122 | void *x = p[i] = kmem_cache_alloc(s, flags); | |
123 | if (!x) { | |
124 | __kmem_cache_free_bulk(s, i, p); | |
865762a8 | 125 | return 0; |
484748f0 CL |
126 | } |
127 | } | |
865762a8 | 128 | return i; |
484748f0 CL |
129 | } |
130 | ||
84c07d11 | 131 | #ifdef CONFIG_MEMCG_KMEM |
510ded33 TH |
132 | |
133 | LIST_HEAD(slab_root_caches); | |
63b02ef7 | 134 | static DEFINE_SPINLOCK(memcg_kmem_wq_lock); |
510ded33 | 135 | |
f0a3a24b RG |
136 | static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref); |
137 | ||
f7ce3190 | 138 | void slab_init_memcg_params(struct kmem_cache *s) |
33a690c4 | 139 | { |
9eeadc8b | 140 | s->memcg_params.root_cache = NULL; |
f7ce3190 | 141 | RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL); |
9eeadc8b | 142 | INIT_LIST_HEAD(&s->memcg_params.children); |
92ee383f | 143 | s->memcg_params.dying = false; |
f7ce3190 VD |
144 | } |
145 | ||
146 | static int init_memcg_params(struct kmem_cache *s, | |
c03914b7 | 147 | struct kmem_cache *root_cache) |
f7ce3190 VD |
148 | { |
149 | struct memcg_cache_array *arr; | |
33a690c4 | 150 | |
9eeadc8b | 151 | if (root_cache) { |
f0a3a24b RG |
152 | int ret = percpu_ref_init(&s->memcg_params.refcnt, |
153 | kmemcg_cache_shutdown, | |
154 | 0, GFP_KERNEL); | |
155 | if (ret) | |
156 | return ret; | |
157 | ||
f7ce3190 | 158 | s->memcg_params.root_cache = root_cache; |
9eeadc8b | 159 | INIT_LIST_HEAD(&s->memcg_params.children_node); |
bc2791f8 | 160 | INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node); |
33a690c4 | 161 | return 0; |
f7ce3190 | 162 | } |
33a690c4 | 163 | |
f7ce3190 | 164 | slab_init_memcg_params(s); |
33a690c4 | 165 | |
f7ce3190 VD |
166 | if (!memcg_nr_cache_ids) |
167 | return 0; | |
33a690c4 | 168 | |
f80c7dab JW |
169 | arr = kvzalloc(sizeof(struct memcg_cache_array) + |
170 | memcg_nr_cache_ids * sizeof(void *), | |
171 | GFP_KERNEL); | |
f7ce3190 VD |
172 | if (!arr) |
173 | return -ENOMEM; | |
33a690c4 | 174 | |
f7ce3190 | 175 | RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr); |
33a690c4 VD |
176 | return 0; |
177 | } | |
178 | ||
f7ce3190 | 179 | static void destroy_memcg_params(struct kmem_cache *s) |
33a690c4 | 180 | { |
f7ce3190 | 181 | if (is_root_cache(s)) |
f80c7dab | 182 | kvfree(rcu_access_pointer(s->memcg_params.memcg_caches)); |
f0a3a24b RG |
183 | else |
184 | percpu_ref_exit(&s->memcg_params.refcnt); | |
f80c7dab JW |
185 | } |
186 | ||
187 | static void free_memcg_params(struct rcu_head *rcu) | |
188 | { | |
189 | struct memcg_cache_array *old; | |
190 | ||
191 | old = container_of(rcu, struct memcg_cache_array, rcu); | |
192 | kvfree(old); | |
33a690c4 VD |
193 | } |
194 | ||
f7ce3190 | 195 | static int update_memcg_params(struct kmem_cache *s, int new_array_size) |
6f817f4c | 196 | { |
f7ce3190 | 197 | struct memcg_cache_array *old, *new; |
6f817f4c | 198 | |
f80c7dab JW |
199 | new = kvzalloc(sizeof(struct memcg_cache_array) + |
200 | new_array_size * sizeof(void *), GFP_KERNEL); | |
f7ce3190 | 201 | if (!new) |
6f817f4c VD |
202 | return -ENOMEM; |
203 | ||
f7ce3190 VD |
204 | old = rcu_dereference_protected(s->memcg_params.memcg_caches, |
205 | lockdep_is_held(&slab_mutex)); | |
206 | if (old) | |
207 | memcpy(new->entries, old->entries, | |
208 | memcg_nr_cache_ids * sizeof(void *)); | |
6f817f4c | 209 | |
f7ce3190 VD |
210 | rcu_assign_pointer(s->memcg_params.memcg_caches, new); |
211 | if (old) | |
f80c7dab | 212 | call_rcu(&old->rcu, free_memcg_params); |
6f817f4c VD |
213 | return 0; |
214 | } | |
215 | ||
55007d84 GC |
216 | int memcg_update_all_caches(int num_memcgs) |
217 | { | |
218 | struct kmem_cache *s; | |
219 | int ret = 0; | |
55007d84 | 220 | |
05257a1a | 221 | mutex_lock(&slab_mutex); |
510ded33 | 222 | list_for_each_entry(s, &slab_root_caches, root_caches_node) { |
f7ce3190 | 223 | ret = update_memcg_params(s, num_memcgs); |
55007d84 | 224 | /* |
55007d84 GC |
225 | * Instead of freeing the memory, we'll just leave the caches |
226 | * up to this point in an updated state. | |
227 | */ | |
228 | if (ret) | |
05257a1a | 229 | break; |
55007d84 | 230 | } |
55007d84 GC |
231 | mutex_unlock(&slab_mutex); |
232 | return ret; | |
233 | } | |
657dc2f9 | 234 | |
c03914b7 | 235 | void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg) |
657dc2f9 | 236 | { |
510ded33 TH |
237 | if (is_root_cache(s)) { |
238 | list_add(&s->root_caches_node, &slab_root_caches); | |
239 | } else { | |
f0a3a24b | 240 | css_get(&memcg->css); |
c03914b7 | 241 | s->memcg_params.memcg = memcg; |
510ded33 TH |
242 | list_add(&s->memcg_params.children_node, |
243 | &s->memcg_params.root_cache->memcg_params.children); | |
244 | list_add(&s->memcg_params.kmem_caches_node, | |
245 | &s->memcg_params.memcg->kmem_caches); | |
246 | } | |
247 | } | |
248 | ||
249 | static void memcg_unlink_cache(struct kmem_cache *s) | |
250 | { | |
251 | if (is_root_cache(s)) { | |
252 | list_del(&s->root_caches_node); | |
253 | } else { | |
254 | list_del(&s->memcg_params.children_node); | |
255 | list_del(&s->memcg_params.kmem_caches_node); | |
fb2f2b0a RG |
256 | mem_cgroup_put(s->memcg_params.memcg); |
257 | WRITE_ONCE(s->memcg_params.memcg, NULL); | |
510ded33 | 258 | } |
657dc2f9 | 259 | } |
33a690c4 | 260 | #else |
f7ce3190 | 261 | static inline int init_memcg_params(struct kmem_cache *s, |
c03914b7 | 262 | struct kmem_cache *root_cache) |
33a690c4 VD |
263 | { |
264 | return 0; | |
265 | } | |
266 | ||
f7ce3190 | 267 | static inline void destroy_memcg_params(struct kmem_cache *s) |
33a690c4 VD |
268 | { |
269 | } | |
657dc2f9 | 270 | |
510ded33 | 271 | static inline void memcg_unlink_cache(struct kmem_cache *s) |
657dc2f9 TH |
272 | { |
273 | } | |
84c07d11 | 274 | #endif /* CONFIG_MEMCG_KMEM */ |
55007d84 | 275 | |
692ae74a BL |
276 | /* |
277 | * Figure out what the alignment of the objects will be given a set of | |
278 | * flags, a user specified alignment and the size of the objects. | |
279 | */ | |
f4957d5b AD |
280 | static unsigned int calculate_alignment(slab_flags_t flags, |
281 | unsigned int align, unsigned int size) | |
692ae74a BL |
282 | { |
283 | /* | |
284 | * If the user wants hardware cache aligned objects then follow that | |
285 | * suggestion if the object is sufficiently large. | |
286 | * | |
287 | * The hardware cache alignment cannot override the specified | |
288 | * alignment though. If that is greater then use it. | |
289 | */ | |
290 | if (flags & SLAB_HWCACHE_ALIGN) { | |
f4957d5b | 291 | unsigned int ralign; |
692ae74a BL |
292 | |
293 | ralign = cache_line_size(); | |
294 | while (size <= ralign / 2) | |
295 | ralign /= 2; | |
296 | align = max(align, ralign); | |
297 | } | |
298 | ||
299 | if (align < ARCH_SLAB_MINALIGN) | |
300 | align = ARCH_SLAB_MINALIGN; | |
301 | ||
302 | return ALIGN(align, sizeof(void *)); | |
303 | } | |
304 | ||
423c929c JK |
305 | /* |
306 | * Find a mergeable slab cache | |
307 | */ | |
308 | int slab_unmergeable(struct kmem_cache *s) | |
309 | { | |
310 | if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE)) | |
311 | return 1; | |
312 | ||
313 | if (!is_root_cache(s)) | |
314 | return 1; | |
315 | ||
316 | if (s->ctor) | |
317 | return 1; | |
318 | ||
8eb8284b DW |
319 | if (s->usersize) |
320 | return 1; | |
321 | ||
423c929c JK |
322 | /* |
323 | * We may have set a slab to be unmergeable during bootstrap. | |
324 | */ | |
325 | if (s->refcount < 0) | |
326 | return 1; | |
327 | ||
328 | return 0; | |
329 | } | |
330 | ||
f4957d5b | 331 | struct kmem_cache *find_mergeable(unsigned int size, unsigned int align, |
d50112ed | 332 | slab_flags_t flags, const char *name, void (*ctor)(void *)) |
423c929c JK |
333 | { |
334 | struct kmem_cache *s; | |
335 | ||
c6e28895 | 336 | if (slab_nomerge) |
423c929c JK |
337 | return NULL; |
338 | ||
339 | if (ctor) | |
340 | return NULL; | |
341 | ||
342 | size = ALIGN(size, sizeof(void *)); | |
343 | align = calculate_alignment(flags, align, size); | |
344 | size = ALIGN(size, align); | |
345 | flags = kmem_cache_flags(size, flags, name, NULL); | |
346 | ||
c6e28895 GM |
347 | if (flags & SLAB_NEVER_MERGE) |
348 | return NULL; | |
349 | ||
510ded33 | 350 | list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) { |
423c929c JK |
351 | if (slab_unmergeable(s)) |
352 | continue; | |
353 | ||
354 | if (size > s->size) | |
355 | continue; | |
356 | ||
357 | if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME)) | |
358 | continue; | |
359 | /* | |
360 | * Check if alignment is compatible. | |
361 | * Courtesy of Adrian Drzewiecki | |
362 | */ | |
363 | if ((s->size & ~(align - 1)) != s->size) | |
364 | continue; | |
365 | ||
366 | if (s->size - size >= sizeof(void *)) | |
367 | continue; | |
368 | ||
95069ac8 JK |
369 | if (IS_ENABLED(CONFIG_SLAB) && align && |
370 | (align > s->align || s->align % align)) | |
371 | continue; | |
372 | ||
423c929c JK |
373 | return s; |
374 | } | |
375 | return NULL; | |
376 | } | |
377 | ||
c9a77a79 | 378 | static struct kmem_cache *create_cache(const char *name, |
613a5eb5 | 379 | unsigned int object_size, unsigned int align, |
7bbdb81e AD |
380 | slab_flags_t flags, unsigned int useroffset, |
381 | unsigned int usersize, void (*ctor)(void *), | |
c9a77a79 | 382 | struct mem_cgroup *memcg, struct kmem_cache *root_cache) |
794b1248 VD |
383 | { |
384 | struct kmem_cache *s; | |
385 | int err; | |
386 | ||
8eb8284b DW |
387 | if (WARN_ON(useroffset + usersize > object_size)) |
388 | useroffset = usersize = 0; | |
389 | ||
794b1248 VD |
390 | err = -ENOMEM; |
391 | s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); | |
392 | if (!s) | |
393 | goto out; | |
394 | ||
395 | s->name = name; | |
613a5eb5 | 396 | s->size = s->object_size = object_size; |
794b1248 VD |
397 | s->align = align; |
398 | s->ctor = ctor; | |
8eb8284b DW |
399 | s->useroffset = useroffset; |
400 | s->usersize = usersize; | |
794b1248 | 401 | |
c03914b7 | 402 | err = init_memcg_params(s, root_cache); |
794b1248 VD |
403 | if (err) |
404 | goto out_free_cache; | |
405 | ||
406 | err = __kmem_cache_create(s, flags); | |
407 | if (err) | |
408 | goto out_free_cache; | |
409 | ||
410 | s->refcount = 1; | |
411 | list_add(&s->list, &slab_caches); | |
c03914b7 | 412 | memcg_link_cache(s, memcg); |
794b1248 VD |
413 | out: |
414 | if (err) | |
415 | return ERR_PTR(err); | |
416 | return s; | |
417 | ||
418 | out_free_cache: | |
f7ce3190 | 419 | destroy_memcg_params(s); |
7c4da061 | 420 | kmem_cache_free(kmem_cache, s); |
794b1248 VD |
421 | goto out; |
422 | } | |
45906855 | 423 | |
f496990f MR |
424 | /** |
425 | * kmem_cache_create_usercopy - Create a cache with a region suitable | |
426 | * for copying to userspace | |
77be4b13 SK |
427 | * @name: A string which is used in /proc/slabinfo to identify this cache. |
428 | * @size: The size of objects to be created in this cache. | |
429 | * @align: The required alignment for the objects. | |
430 | * @flags: SLAB flags | |
8eb8284b DW |
431 | * @useroffset: Usercopy region offset |
432 | * @usersize: Usercopy region size | |
77be4b13 SK |
433 | * @ctor: A constructor for the objects. |
434 | * | |
77be4b13 SK |
435 | * Cannot be called within a interrupt, but can be interrupted. |
436 | * The @ctor is run when new pages are allocated by the cache. | |
437 | * | |
438 | * The flags are | |
439 | * | |
440 | * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) | |
441 | * to catch references to uninitialised memory. | |
442 | * | |
f496990f | 443 | * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check |
77be4b13 SK |
444 | * for buffer overruns. |
445 | * | |
446 | * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware | |
447 | * cacheline. This can be beneficial if you're counting cycles as closely | |
448 | * as davem. | |
f496990f MR |
449 | * |
450 | * Return: a pointer to the cache on success, NULL on failure. | |
77be4b13 | 451 | */ |
2633d7a0 | 452 | struct kmem_cache * |
f4957d5b AD |
453 | kmem_cache_create_usercopy(const char *name, |
454 | unsigned int size, unsigned int align, | |
7bbdb81e AD |
455 | slab_flags_t flags, |
456 | unsigned int useroffset, unsigned int usersize, | |
8eb8284b | 457 | void (*ctor)(void *)) |
77be4b13 | 458 | { |
40911a79 | 459 | struct kmem_cache *s = NULL; |
3dec16ea | 460 | const char *cache_name; |
3965fc36 | 461 | int err; |
039363f3 | 462 | |
77be4b13 | 463 | get_online_cpus(); |
03afc0e2 | 464 | get_online_mems(); |
05257a1a | 465 | memcg_get_cache_ids(); |
03afc0e2 | 466 | |
77be4b13 | 467 | mutex_lock(&slab_mutex); |
686d550d | 468 | |
794b1248 | 469 | err = kmem_cache_sanity_check(name, size); |
3aa24f51 | 470 | if (err) { |
3965fc36 | 471 | goto out_unlock; |
3aa24f51 | 472 | } |
686d550d | 473 | |
e70954fd TG |
474 | /* Refuse requests with allocator specific flags */ |
475 | if (flags & ~SLAB_FLAGS_PERMITTED) { | |
476 | err = -EINVAL; | |
477 | goto out_unlock; | |
478 | } | |
479 | ||
d8843922 GC |
480 | /* |
481 | * Some allocators will constraint the set of valid flags to a subset | |
482 | * of all flags. We expect them to define CACHE_CREATE_MASK in this | |
483 | * case, and we'll just provide them with a sanitized version of the | |
484 | * passed flags. | |
485 | */ | |
486 | flags &= CACHE_CREATE_MASK; | |
686d550d | 487 | |
8eb8284b DW |
488 | /* Fail closed on bad usersize of useroffset values. */ |
489 | if (WARN_ON(!usersize && useroffset) || | |
490 | WARN_ON(size < usersize || size - usersize < useroffset)) | |
491 | usersize = useroffset = 0; | |
492 | ||
493 | if (!usersize) | |
494 | s = __kmem_cache_alias(name, size, align, flags, ctor); | |
794b1248 | 495 | if (s) |
3965fc36 | 496 | goto out_unlock; |
2633d7a0 | 497 | |
3dec16ea | 498 | cache_name = kstrdup_const(name, GFP_KERNEL); |
794b1248 VD |
499 | if (!cache_name) { |
500 | err = -ENOMEM; | |
501 | goto out_unlock; | |
502 | } | |
7c9adf5a | 503 | |
613a5eb5 | 504 | s = create_cache(cache_name, size, |
c9a77a79 | 505 | calculate_alignment(flags, align, size), |
8eb8284b | 506 | flags, useroffset, usersize, ctor, NULL, NULL); |
794b1248 VD |
507 | if (IS_ERR(s)) { |
508 | err = PTR_ERR(s); | |
3dec16ea | 509 | kfree_const(cache_name); |
794b1248 | 510 | } |
3965fc36 VD |
511 | |
512 | out_unlock: | |
20cea968 | 513 | mutex_unlock(&slab_mutex); |
03afc0e2 | 514 | |
05257a1a | 515 | memcg_put_cache_ids(); |
03afc0e2 | 516 | put_online_mems(); |
20cea968 CL |
517 | put_online_cpus(); |
518 | ||
ba3253c7 | 519 | if (err) { |
686d550d CL |
520 | if (flags & SLAB_PANIC) |
521 | panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n", | |
522 | name, err); | |
523 | else { | |
1170532b | 524 | pr_warn("kmem_cache_create(%s) failed with error %d\n", |
686d550d CL |
525 | name, err); |
526 | dump_stack(); | |
527 | } | |
686d550d CL |
528 | return NULL; |
529 | } | |
039363f3 CL |
530 | return s; |
531 | } | |
8eb8284b DW |
532 | EXPORT_SYMBOL(kmem_cache_create_usercopy); |
533 | ||
f496990f MR |
534 | /** |
535 | * kmem_cache_create - Create a cache. | |
536 | * @name: A string which is used in /proc/slabinfo to identify this cache. | |
537 | * @size: The size of objects to be created in this cache. | |
538 | * @align: The required alignment for the objects. | |
539 | * @flags: SLAB flags | |
540 | * @ctor: A constructor for the objects. | |
541 | * | |
542 | * Cannot be called within a interrupt, but can be interrupted. | |
543 | * The @ctor is run when new pages are allocated by the cache. | |
544 | * | |
545 | * The flags are | |
546 | * | |
547 | * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) | |
548 | * to catch references to uninitialised memory. | |
549 | * | |
550 | * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check | |
551 | * for buffer overruns. | |
552 | * | |
553 | * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware | |
554 | * cacheline. This can be beneficial if you're counting cycles as closely | |
555 | * as davem. | |
556 | * | |
557 | * Return: a pointer to the cache on success, NULL on failure. | |
558 | */ | |
8eb8284b | 559 | struct kmem_cache * |
f4957d5b | 560 | kmem_cache_create(const char *name, unsigned int size, unsigned int align, |
8eb8284b DW |
561 | slab_flags_t flags, void (*ctor)(void *)) |
562 | { | |
6d07d1cd | 563 | return kmem_cache_create_usercopy(name, size, align, flags, 0, 0, |
8eb8284b DW |
564 | ctor); |
565 | } | |
794b1248 | 566 | EXPORT_SYMBOL(kmem_cache_create); |
2633d7a0 | 567 | |
657dc2f9 | 568 | static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work) |
d5b3cf71 | 569 | { |
657dc2f9 TH |
570 | LIST_HEAD(to_destroy); |
571 | struct kmem_cache *s, *s2; | |
d5b3cf71 | 572 | |
657dc2f9 | 573 | /* |
5f0d5a3a | 574 | * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the |
657dc2f9 TH |
575 | * @slab_caches_to_rcu_destroy list. The slab pages are freed |
576 | * through RCU and and the associated kmem_cache are dereferenced | |
577 | * while freeing the pages, so the kmem_caches should be freed only | |
578 | * after the pending RCU operations are finished. As rcu_barrier() | |
579 | * is a pretty slow operation, we batch all pending destructions | |
580 | * asynchronously. | |
581 | */ | |
582 | mutex_lock(&slab_mutex); | |
583 | list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy); | |
584 | mutex_unlock(&slab_mutex); | |
d5b3cf71 | 585 | |
657dc2f9 TH |
586 | if (list_empty(&to_destroy)) |
587 | return; | |
588 | ||
589 | rcu_barrier(); | |
590 | ||
591 | list_for_each_entry_safe(s, s2, &to_destroy, list) { | |
592 | #ifdef SLAB_SUPPORTS_SYSFS | |
593 | sysfs_slab_release(s); | |
594 | #else | |
595 | slab_kmem_cache_release(s); | |
596 | #endif | |
597 | } | |
d5b3cf71 VD |
598 | } |
599 | ||
657dc2f9 | 600 | static int shutdown_cache(struct kmem_cache *s) |
d5b3cf71 | 601 | { |
f9fa1d91 GT |
602 | /* free asan quarantined objects */ |
603 | kasan_cache_shutdown(s); | |
604 | ||
657dc2f9 TH |
605 | if (__kmem_cache_shutdown(s) != 0) |
606 | return -EBUSY; | |
d5b3cf71 | 607 | |
510ded33 | 608 | memcg_unlink_cache(s); |
657dc2f9 | 609 | list_del(&s->list); |
d5b3cf71 | 610 | |
5f0d5a3a | 611 | if (s->flags & SLAB_TYPESAFE_BY_RCU) { |
d50d82fa MP |
612 | #ifdef SLAB_SUPPORTS_SYSFS |
613 | sysfs_slab_unlink(s); | |
614 | #endif | |
657dc2f9 TH |
615 | list_add_tail(&s->list, &slab_caches_to_rcu_destroy); |
616 | schedule_work(&slab_caches_to_rcu_destroy_work); | |
617 | } else { | |
d5b3cf71 | 618 | #ifdef SLAB_SUPPORTS_SYSFS |
d50d82fa | 619 | sysfs_slab_unlink(s); |
bf5eb3de | 620 | sysfs_slab_release(s); |
d5b3cf71 VD |
621 | #else |
622 | slab_kmem_cache_release(s); | |
623 | #endif | |
624 | } | |
657dc2f9 TH |
625 | |
626 | return 0; | |
d5b3cf71 VD |
627 | } |
628 | ||
84c07d11 | 629 | #ifdef CONFIG_MEMCG_KMEM |
794b1248 | 630 | /* |
776ed0f0 | 631 | * memcg_create_kmem_cache - Create a cache for a memory cgroup. |
794b1248 VD |
632 | * @memcg: The memory cgroup the new cache is for. |
633 | * @root_cache: The parent of the new cache. | |
634 | * | |
635 | * This function attempts to create a kmem cache that will serve allocation | |
636 | * requests going from @memcg to @root_cache. The new cache inherits properties | |
637 | * from its parent. | |
638 | */ | |
d5b3cf71 VD |
639 | void memcg_create_kmem_cache(struct mem_cgroup *memcg, |
640 | struct kmem_cache *root_cache) | |
2633d7a0 | 641 | { |
3e0350a3 | 642 | static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */ |
33398cf2 | 643 | struct cgroup_subsys_state *css = &memcg->css; |
f7ce3190 | 644 | struct memcg_cache_array *arr; |
bd673145 | 645 | struct kmem_cache *s = NULL; |
794b1248 | 646 | char *cache_name; |
f7ce3190 | 647 | int idx; |
794b1248 VD |
648 | |
649 | get_online_cpus(); | |
03afc0e2 VD |
650 | get_online_mems(); |
651 | ||
794b1248 VD |
652 | mutex_lock(&slab_mutex); |
653 | ||
2a4db7eb | 654 | /* |
567e9ab2 | 655 | * The memory cgroup could have been offlined while the cache |
2a4db7eb VD |
656 | * creation work was pending. |
657 | */ | |
57033297 | 658 | if (memcg->kmem_state != KMEM_ONLINE) |
2a4db7eb VD |
659 | goto out_unlock; |
660 | ||
f7ce3190 VD |
661 | idx = memcg_cache_id(memcg); |
662 | arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches, | |
663 | lockdep_is_held(&slab_mutex)); | |
664 | ||
d5b3cf71 VD |
665 | /* |
666 | * Since per-memcg caches are created asynchronously on first | |
667 | * allocation (see memcg_kmem_get_cache()), several threads can try to | |
668 | * create the same cache, but only one of them may succeed. | |
669 | */ | |
f7ce3190 | 670 | if (arr->entries[idx]) |
d5b3cf71 VD |
671 | goto out_unlock; |
672 | ||
f1008365 | 673 | cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf)); |
73f576c0 JW |
674 | cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name, |
675 | css->serial_nr, memcg_name_buf); | |
794b1248 VD |
676 | if (!cache_name) |
677 | goto out_unlock; | |
678 | ||
c9a77a79 | 679 | s = create_cache(cache_name, root_cache->object_size, |
613a5eb5 | 680 | root_cache->align, |
f773e36d | 681 | root_cache->flags & CACHE_CREATE_MASK, |
8eb8284b | 682 | root_cache->useroffset, root_cache->usersize, |
f773e36d | 683 | root_cache->ctor, memcg, root_cache); |
d5b3cf71 VD |
684 | /* |
685 | * If we could not create a memcg cache, do not complain, because | |
686 | * that's not critical at all as we can always proceed with the root | |
687 | * cache. | |
688 | */ | |
bd673145 | 689 | if (IS_ERR(s)) { |
794b1248 | 690 | kfree(cache_name); |
d5b3cf71 | 691 | goto out_unlock; |
bd673145 | 692 | } |
794b1248 | 693 | |
d5b3cf71 | 694 | /* |
f0a3a24b | 695 | * Since readers won't lock (see memcg_kmem_get_cache()), we need a |
d5b3cf71 VD |
696 | * barrier here to ensure nobody will see the kmem_cache partially |
697 | * initialized. | |
698 | */ | |
699 | smp_wmb(); | |
f7ce3190 | 700 | arr->entries[idx] = s; |
d5b3cf71 | 701 | |
794b1248 VD |
702 | out_unlock: |
703 | mutex_unlock(&slab_mutex); | |
03afc0e2 VD |
704 | |
705 | put_online_mems(); | |
794b1248 | 706 | put_online_cpus(); |
2633d7a0 | 707 | } |
b8529907 | 708 | |
0b14e8aa | 709 | static void kmemcg_workfn(struct work_struct *work) |
01fb58bc TH |
710 | { |
711 | struct kmem_cache *s = container_of(work, struct kmem_cache, | |
0b14e8aa | 712 | memcg_params.work); |
01fb58bc TH |
713 | |
714 | get_online_cpus(); | |
715 | get_online_mems(); | |
716 | ||
717 | mutex_lock(&slab_mutex); | |
0b14e8aa | 718 | s->memcg_params.work_fn(s); |
01fb58bc TH |
719 | mutex_unlock(&slab_mutex); |
720 | ||
721 | put_online_mems(); | |
722 | put_online_cpus(); | |
01fb58bc TH |
723 | } |
724 | ||
0b14e8aa | 725 | static void kmemcg_rcufn(struct rcu_head *head) |
01fb58bc TH |
726 | { |
727 | struct kmem_cache *s = container_of(head, struct kmem_cache, | |
0b14e8aa | 728 | memcg_params.rcu_head); |
01fb58bc TH |
729 | |
730 | /* | |
0b14e8aa | 731 | * We need to grab blocking locks. Bounce to ->work. The |
01fb58bc TH |
732 | * work item shares the space with the RCU head and can't be |
733 | * initialized eariler. | |
734 | */ | |
0b14e8aa RG |
735 | INIT_WORK(&s->memcg_params.work, kmemcg_workfn); |
736 | queue_work(memcg_kmem_cache_wq, &s->memcg_params.work); | |
01fb58bc TH |
737 | } |
738 | ||
f0a3a24b RG |
739 | static void kmemcg_cache_shutdown_fn(struct kmem_cache *s) |
740 | { | |
741 | WARN_ON(shutdown_cache(s)); | |
742 | } | |
743 | ||
744 | static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref) | |
745 | { | |
746 | struct kmem_cache *s = container_of(percpu_ref, struct kmem_cache, | |
747 | memcg_params.refcnt); | |
748 | unsigned long flags; | |
749 | ||
750 | spin_lock_irqsave(&memcg_kmem_wq_lock, flags); | |
751 | if (s->memcg_params.root_cache->memcg_params.dying) | |
752 | goto unlock; | |
753 | ||
754 | s->memcg_params.work_fn = kmemcg_cache_shutdown_fn; | |
755 | INIT_WORK(&s->memcg_params.work, kmemcg_workfn); | |
756 | queue_work(memcg_kmem_cache_wq, &s->memcg_params.work); | |
757 | ||
758 | unlock: | |
759 | spin_unlock_irqrestore(&memcg_kmem_wq_lock, flags); | |
760 | } | |
761 | ||
762 | static void kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s) | |
763 | { | |
764 | __kmemcg_cache_deactivate_after_rcu(s); | |
765 | percpu_ref_kill(&s->memcg_params.refcnt); | |
766 | } | |
767 | ||
43486694 | 768 | static void kmemcg_cache_deactivate(struct kmem_cache *s) |
01fb58bc | 769 | { |
f0a3a24b | 770 | if (WARN_ON_ONCE(is_root_cache(s))) |
01fb58bc TH |
771 | return; |
772 | ||
43486694 | 773 | __kmemcg_cache_deactivate(s); |
fcf8a1e4 | 774 | s->flags |= SLAB_DEACTIVATED; |
43486694 | 775 | |
63b02ef7 RG |
776 | /* |
777 | * memcg_kmem_wq_lock is used to synchronize memcg_params.dying | |
778 | * flag and make sure that no new kmem_cache deactivation tasks | |
779 | * are queued (see flush_memcg_workqueue() ). | |
780 | */ | |
781 | spin_lock_irq(&memcg_kmem_wq_lock); | |
92ee383f | 782 | if (s->memcg_params.root_cache->memcg_params.dying) |
63b02ef7 | 783 | goto unlock; |
92ee383f | 784 | |
f0a3a24b | 785 | s->memcg_params.work_fn = kmemcg_cache_deactivate_after_rcu; |
0b14e8aa | 786 | call_rcu(&s->memcg_params.rcu_head, kmemcg_rcufn); |
63b02ef7 RG |
787 | unlock: |
788 | spin_unlock_irq(&memcg_kmem_wq_lock); | |
01fb58bc TH |
789 | } |
790 | ||
fb2f2b0a RG |
791 | void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg, |
792 | struct mem_cgroup *parent) | |
2a4db7eb VD |
793 | { |
794 | int idx; | |
795 | struct memcg_cache_array *arr; | |
d6e0b7fa | 796 | struct kmem_cache *s, *c; |
fb2f2b0a | 797 | unsigned int nr_reparented; |
2a4db7eb VD |
798 | |
799 | idx = memcg_cache_id(memcg); | |
800 | ||
d6e0b7fa VD |
801 | get_online_cpus(); |
802 | get_online_mems(); | |
803 | ||
2a4db7eb | 804 | mutex_lock(&slab_mutex); |
510ded33 | 805 | list_for_each_entry(s, &slab_root_caches, root_caches_node) { |
2a4db7eb VD |
806 | arr = rcu_dereference_protected(s->memcg_params.memcg_caches, |
807 | lockdep_is_held(&slab_mutex)); | |
d6e0b7fa VD |
808 | c = arr->entries[idx]; |
809 | if (!c) | |
810 | continue; | |
811 | ||
43486694 | 812 | kmemcg_cache_deactivate(c); |
2a4db7eb VD |
813 | arr->entries[idx] = NULL; |
814 | } | |
fb2f2b0a RG |
815 | nr_reparented = 0; |
816 | list_for_each_entry(s, &memcg->kmem_caches, | |
817 | memcg_params.kmem_caches_node) { | |
818 | WRITE_ONCE(s->memcg_params.memcg, parent); | |
819 | css_put(&memcg->css); | |
820 | nr_reparented++; | |
821 | } | |
822 | if (nr_reparented) { | |
823 | list_splice_init(&memcg->kmem_caches, | |
824 | &parent->kmem_caches); | |
825 | css_get_many(&parent->css, nr_reparented); | |
826 | } | |
2a4db7eb | 827 | mutex_unlock(&slab_mutex); |
d6e0b7fa VD |
828 | |
829 | put_online_mems(); | |
830 | put_online_cpus(); | |
2a4db7eb VD |
831 | } |
832 | ||
657dc2f9 | 833 | static int shutdown_memcg_caches(struct kmem_cache *s) |
d60fdcc9 VD |
834 | { |
835 | struct memcg_cache_array *arr; | |
836 | struct kmem_cache *c, *c2; | |
837 | LIST_HEAD(busy); | |
838 | int i; | |
839 | ||
840 | BUG_ON(!is_root_cache(s)); | |
841 | ||
842 | /* | |
843 | * First, shutdown active caches, i.e. caches that belong to online | |
844 | * memory cgroups. | |
845 | */ | |
846 | arr = rcu_dereference_protected(s->memcg_params.memcg_caches, | |
847 | lockdep_is_held(&slab_mutex)); | |
848 | for_each_memcg_cache_index(i) { | |
849 | c = arr->entries[i]; | |
850 | if (!c) | |
851 | continue; | |
657dc2f9 | 852 | if (shutdown_cache(c)) |
d60fdcc9 VD |
853 | /* |
854 | * The cache still has objects. Move it to a temporary | |
855 | * list so as not to try to destroy it for a second | |
856 | * time while iterating over inactive caches below. | |
857 | */ | |
9eeadc8b | 858 | list_move(&c->memcg_params.children_node, &busy); |
d60fdcc9 VD |
859 | else |
860 | /* | |
861 | * The cache is empty and will be destroyed soon. Clear | |
862 | * the pointer to it in the memcg_caches array so that | |
863 | * it will never be accessed even if the root cache | |
864 | * stays alive. | |
865 | */ | |
866 | arr->entries[i] = NULL; | |
867 | } | |
868 | ||
869 | /* | |
870 | * Second, shutdown all caches left from memory cgroups that are now | |
871 | * offline. | |
872 | */ | |
9eeadc8b TH |
873 | list_for_each_entry_safe(c, c2, &s->memcg_params.children, |
874 | memcg_params.children_node) | |
657dc2f9 | 875 | shutdown_cache(c); |
d60fdcc9 | 876 | |
9eeadc8b | 877 | list_splice(&busy, &s->memcg_params.children); |
d60fdcc9 VD |
878 | |
879 | /* | |
880 | * A cache being destroyed must be empty. In particular, this means | |
881 | * that all per memcg caches attached to it must be empty too. | |
882 | */ | |
9eeadc8b | 883 | if (!list_empty(&s->memcg_params.children)) |
d60fdcc9 VD |
884 | return -EBUSY; |
885 | return 0; | |
886 | } | |
92ee383f SB |
887 | |
888 | static void flush_memcg_workqueue(struct kmem_cache *s) | |
889 | { | |
63b02ef7 | 890 | spin_lock_irq(&memcg_kmem_wq_lock); |
92ee383f | 891 | s->memcg_params.dying = true; |
63b02ef7 | 892 | spin_unlock_irq(&memcg_kmem_wq_lock); |
92ee383f SB |
893 | |
894 | /* | |
43486694 | 895 | * SLAB and SLUB deactivate the kmem_caches through call_rcu. Make |
92ee383f SB |
896 | * sure all registered rcu callbacks have been invoked. |
897 | */ | |
43486694 | 898 | rcu_barrier(); |
92ee383f SB |
899 | |
900 | /* | |
901 | * SLAB and SLUB create memcg kmem_caches through workqueue and SLUB | |
902 | * deactivates the memcg kmem_caches through workqueue. Make sure all | |
903 | * previous workitems on workqueue are processed. | |
904 | */ | |
905 | flush_workqueue(memcg_kmem_cache_wq); | |
906 | } | |
d60fdcc9 | 907 | #else |
657dc2f9 | 908 | static inline int shutdown_memcg_caches(struct kmem_cache *s) |
d60fdcc9 VD |
909 | { |
910 | return 0; | |
911 | } | |
92ee383f SB |
912 | |
913 | static inline void flush_memcg_workqueue(struct kmem_cache *s) | |
914 | { | |
915 | } | |
84c07d11 | 916 | #endif /* CONFIG_MEMCG_KMEM */ |
97d06609 | 917 | |
41a21285 CL |
918 | void slab_kmem_cache_release(struct kmem_cache *s) |
919 | { | |
52b4b950 | 920 | __kmem_cache_release(s); |
f7ce3190 | 921 | destroy_memcg_params(s); |
3dec16ea | 922 | kfree_const(s->name); |
41a21285 CL |
923 | kmem_cache_free(kmem_cache, s); |
924 | } | |
925 | ||
945cf2b6 CL |
926 | void kmem_cache_destroy(struct kmem_cache *s) |
927 | { | |
d60fdcc9 | 928 | int err; |
d5b3cf71 | 929 | |
3942d299 SS |
930 | if (unlikely(!s)) |
931 | return; | |
932 | ||
92ee383f SB |
933 | flush_memcg_workqueue(s); |
934 | ||
945cf2b6 | 935 | get_online_cpus(); |
03afc0e2 VD |
936 | get_online_mems(); |
937 | ||
945cf2b6 | 938 | mutex_lock(&slab_mutex); |
b8529907 | 939 | |
945cf2b6 | 940 | s->refcount--; |
b8529907 VD |
941 | if (s->refcount) |
942 | goto out_unlock; | |
943 | ||
657dc2f9 | 944 | err = shutdown_memcg_caches(s); |
d60fdcc9 | 945 | if (!err) |
657dc2f9 | 946 | err = shutdown_cache(s); |
b8529907 | 947 | |
cd918c55 | 948 | if (err) { |
756a025f JP |
949 | pr_err("kmem_cache_destroy %s: Slab cache still has objects\n", |
950 | s->name); | |
cd918c55 VD |
951 | dump_stack(); |
952 | } | |
b8529907 VD |
953 | out_unlock: |
954 | mutex_unlock(&slab_mutex); | |
d5b3cf71 | 955 | |
03afc0e2 | 956 | put_online_mems(); |
945cf2b6 CL |
957 | put_online_cpus(); |
958 | } | |
959 | EXPORT_SYMBOL(kmem_cache_destroy); | |
960 | ||
03afc0e2 VD |
961 | /** |
962 | * kmem_cache_shrink - Shrink a cache. | |
963 | * @cachep: The cache to shrink. | |
964 | * | |
965 | * Releases as many slabs as possible for a cache. | |
966 | * To help debugging, a zero exit status indicates all slabs were released. | |
a862f68a MR |
967 | * |
968 | * Return: %0 if all slabs were released, non-zero otherwise | |
03afc0e2 VD |
969 | */ |
970 | int kmem_cache_shrink(struct kmem_cache *cachep) | |
971 | { | |
972 | int ret; | |
973 | ||
974 | get_online_cpus(); | |
975 | get_online_mems(); | |
55834c59 | 976 | kasan_cache_shrink(cachep); |
c9fc5864 | 977 | ret = __kmem_cache_shrink(cachep); |
03afc0e2 VD |
978 | put_online_mems(); |
979 | put_online_cpus(); | |
980 | return ret; | |
981 | } | |
982 | EXPORT_SYMBOL(kmem_cache_shrink); | |
983 | ||
04f768a3 WL |
984 | /** |
985 | * kmem_cache_shrink_all - shrink a cache and all memcg caches for root cache | |
986 | * @s: The cache pointer | |
987 | */ | |
988 | void kmem_cache_shrink_all(struct kmem_cache *s) | |
989 | { | |
990 | struct kmem_cache *c; | |
991 | ||
992 | if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || !is_root_cache(s)) { | |
993 | kmem_cache_shrink(s); | |
994 | return; | |
995 | } | |
996 | ||
997 | get_online_cpus(); | |
998 | get_online_mems(); | |
999 | kasan_cache_shrink(s); | |
1000 | __kmem_cache_shrink(s); | |
1001 | ||
1002 | /* | |
1003 | * We have to take the slab_mutex to protect from the memcg list | |
1004 | * modification. | |
1005 | */ | |
1006 | mutex_lock(&slab_mutex); | |
1007 | for_each_memcg_cache(c, s) { | |
1008 | /* | |
1009 | * Don't need to shrink deactivated memcg caches. | |
1010 | */ | |
1011 | if (s->flags & SLAB_DEACTIVATED) | |
1012 | continue; | |
1013 | kasan_cache_shrink(c); | |
1014 | __kmem_cache_shrink(c); | |
1015 | } | |
1016 | mutex_unlock(&slab_mutex); | |
1017 | put_online_mems(); | |
1018 | put_online_cpus(); | |
1019 | } | |
1020 | ||
fda90124 | 1021 | bool slab_is_available(void) |
97d06609 CL |
1022 | { |
1023 | return slab_state >= UP; | |
1024 | } | |
b7454ad3 | 1025 | |
45530c44 CL |
1026 | #ifndef CONFIG_SLOB |
1027 | /* Create a cache during boot when no slab services are available yet */ | |
361d575e AD |
1028 | void __init create_boot_cache(struct kmem_cache *s, const char *name, |
1029 | unsigned int size, slab_flags_t flags, | |
1030 | unsigned int useroffset, unsigned int usersize) | |
45530c44 CL |
1031 | { |
1032 | int err; | |
1033 | ||
1034 | s->name = name; | |
1035 | s->size = s->object_size = size; | |
45906855 | 1036 | s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size); |
8eb8284b DW |
1037 | s->useroffset = useroffset; |
1038 | s->usersize = usersize; | |
f7ce3190 VD |
1039 | |
1040 | slab_init_memcg_params(s); | |
1041 | ||
45530c44 CL |
1042 | err = __kmem_cache_create(s, flags); |
1043 | ||
1044 | if (err) | |
361d575e | 1045 | panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n", |
45530c44 CL |
1046 | name, size, err); |
1047 | ||
1048 | s->refcount = -1; /* Exempt from merging for now */ | |
1049 | } | |
1050 | ||
55de8b9c AD |
1051 | struct kmem_cache *__init create_kmalloc_cache(const char *name, |
1052 | unsigned int size, slab_flags_t flags, | |
1053 | unsigned int useroffset, unsigned int usersize) | |
45530c44 CL |
1054 | { |
1055 | struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); | |
1056 | ||
1057 | if (!s) | |
1058 | panic("Out of memory when creating slab %s\n", name); | |
1059 | ||
6c0c21ad | 1060 | create_boot_cache(s, name, size, flags, useroffset, usersize); |
45530c44 | 1061 | list_add(&s->list, &slab_caches); |
c03914b7 | 1062 | memcg_link_cache(s, NULL); |
45530c44 CL |
1063 | s->refcount = 1; |
1064 | return s; | |
1065 | } | |
1066 | ||
cc252eae | 1067 | struct kmem_cache * |
a07057dc AB |
1068 | kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init = |
1069 | { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ }; | |
9425c58e CL |
1070 | EXPORT_SYMBOL(kmalloc_caches); |
1071 | ||
2c59dd65 CL |
1072 | /* |
1073 | * Conversion table for small slabs sizes / 8 to the index in the | |
1074 | * kmalloc array. This is necessary for slabs < 192 since we have non power | |
1075 | * of two cache sizes there. The size of larger slabs can be determined using | |
1076 | * fls. | |
1077 | */ | |
d5f86655 | 1078 | static u8 size_index[24] __ro_after_init = { |
2c59dd65 CL |
1079 | 3, /* 8 */ |
1080 | 4, /* 16 */ | |
1081 | 5, /* 24 */ | |
1082 | 5, /* 32 */ | |
1083 | 6, /* 40 */ | |
1084 | 6, /* 48 */ | |
1085 | 6, /* 56 */ | |
1086 | 6, /* 64 */ | |
1087 | 1, /* 72 */ | |
1088 | 1, /* 80 */ | |
1089 | 1, /* 88 */ | |
1090 | 1, /* 96 */ | |
1091 | 7, /* 104 */ | |
1092 | 7, /* 112 */ | |
1093 | 7, /* 120 */ | |
1094 | 7, /* 128 */ | |
1095 | 2, /* 136 */ | |
1096 | 2, /* 144 */ | |
1097 | 2, /* 152 */ | |
1098 | 2, /* 160 */ | |
1099 | 2, /* 168 */ | |
1100 | 2, /* 176 */ | |
1101 | 2, /* 184 */ | |
1102 | 2 /* 192 */ | |
1103 | }; | |
1104 | ||
ac914d08 | 1105 | static inline unsigned int size_index_elem(unsigned int bytes) |
2c59dd65 CL |
1106 | { |
1107 | return (bytes - 1) / 8; | |
1108 | } | |
1109 | ||
1110 | /* | |
1111 | * Find the kmem_cache structure that serves a given size of | |
1112 | * allocation | |
1113 | */ | |
1114 | struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags) | |
1115 | { | |
d5f86655 | 1116 | unsigned int index; |
2c59dd65 CL |
1117 | |
1118 | if (size <= 192) { | |
1119 | if (!size) | |
1120 | return ZERO_SIZE_PTR; | |
1121 | ||
1122 | index = size_index[size_index_elem(size)]; | |
61448479 | 1123 | } else { |
221d7da6 | 1124 | if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE)) |
61448479 | 1125 | return NULL; |
2c59dd65 | 1126 | index = fls(size - 1); |
61448479 | 1127 | } |
2c59dd65 | 1128 | |
cc252eae | 1129 | return kmalloc_caches[kmalloc_type(flags)][index]; |
2c59dd65 CL |
1130 | } |
1131 | ||
4066c33d GG |
1132 | /* |
1133 | * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time. | |
1134 | * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is | |
1135 | * kmalloc-67108864. | |
1136 | */ | |
af3b5f87 | 1137 | const struct kmalloc_info_struct kmalloc_info[] __initconst = { |
4066c33d GG |
1138 | {NULL, 0}, {"kmalloc-96", 96}, |
1139 | {"kmalloc-192", 192}, {"kmalloc-8", 8}, | |
1140 | {"kmalloc-16", 16}, {"kmalloc-32", 32}, | |
1141 | {"kmalloc-64", 64}, {"kmalloc-128", 128}, | |
1142 | {"kmalloc-256", 256}, {"kmalloc-512", 512}, | |
f0d77874 VB |
1143 | {"kmalloc-1k", 1024}, {"kmalloc-2k", 2048}, |
1144 | {"kmalloc-4k", 4096}, {"kmalloc-8k", 8192}, | |
1145 | {"kmalloc-16k", 16384}, {"kmalloc-32k", 32768}, | |
1146 | {"kmalloc-64k", 65536}, {"kmalloc-128k", 131072}, | |
1147 | {"kmalloc-256k", 262144}, {"kmalloc-512k", 524288}, | |
1148 | {"kmalloc-1M", 1048576}, {"kmalloc-2M", 2097152}, | |
1149 | {"kmalloc-4M", 4194304}, {"kmalloc-8M", 8388608}, | |
1150 | {"kmalloc-16M", 16777216}, {"kmalloc-32M", 33554432}, | |
1151 | {"kmalloc-64M", 67108864} | |
4066c33d GG |
1152 | }; |
1153 | ||
f97d5f63 | 1154 | /* |
34cc6990 DS |
1155 | * Patch up the size_index table if we have strange large alignment |
1156 | * requirements for the kmalloc array. This is only the case for | |
1157 | * MIPS it seems. The standard arches will not generate any code here. | |
1158 | * | |
1159 | * Largest permitted alignment is 256 bytes due to the way we | |
1160 | * handle the index determination for the smaller caches. | |
1161 | * | |
1162 | * Make sure that nothing crazy happens if someone starts tinkering | |
1163 | * around with ARCH_KMALLOC_MINALIGN | |
f97d5f63 | 1164 | */ |
34cc6990 | 1165 | void __init setup_kmalloc_cache_index_table(void) |
f97d5f63 | 1166 | { |
ac914d08 | 1167 | unsigned int i; |
f97d5f63 | 1168 | |
2c59dd65 CL |
1169 | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || |
1170 | (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); | |
1171 | ||
1172 | for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { | |
ac914d08 | 1173 | unsigned int elem = size_index_elem(i); |
2c59dd65 CL |
1174 | |
1175 | if (elem >= ARRAY_SIZE(size_index)) | |
1176 | break; | |
1177 | size_index[elem] = KMALLOC_SHIFT_LOW; | |
1178 | } | |
1179 | ||
1180 | if (KMALLOC_MIN_SIZE >= 64) { | |
1181 | /* | |
1182 | * The 96 byte size cache is not used if the alignment | |
1183 | * is 64 byte. | |
1184 | */ | |
1185 | for (i = 64 + 8; i <= 96; i += 8) | |
1186 | size_index[size_index_elem(i)] = 7; | |
1187 | ||
1188 | } | |
1189 | ||
1190 | if (KMALLOC_MIN_SIZE >= 128) { | |
1191 | /* | |
1192 | * The 192 byte sized cache is not used if the alignment | |
1193 | * is 128 byte. Redirect kmalloc to use the 256 byte cache | |
1194 | * instead. | |
1195 | */ | |
1196 | for (i = 128 + 8; i <= 192; i += 8) | |
1197 | size_index[size_index_elem(i)] = 8; | |
1198 | } | |
34cc6990 DS |
1199 | } |
1200 | ||
f0d77874 VB |
1201 | static const char * |
1202 | kmalloc_cache_name(const char *prefix, unsigned int size) | |
1203 | { | |
1204 | ||
1205 | static const char units[3] = "\0kM"; | |
1206 | int idx = 0; | |
1207 | ||
1208 | while (size >= 1024 && (size % 1024 == 0)) { | |
1209 | size /= 1024; | |
1210 | idx++; | |
1211 | } | |
1212 | ||
1213 | return kasprintf(GFP_NOWAIT, "%s-%u%c", prefix, size, units[idx]); | |
1214 | } | |
1215 | ||
1291523f VB |
1216 | static void __init |
1217 | new_kmalloc_cache(int idx, int type, slab_flags_t flags) | |
a9730fca | 1218 | { |
1291523f VB |
1219 | const char *name; |
1220 | ||
1221 | if (type == KMALLOC_RECLAIM) { | |
1222 | flags |= SLAB_RECLAIM_ACCOUNT; | |
f0d77874 | 1223 | name = kmalloc_cache_name("kmalloc-rcl", |
1291523f VB |
1224 | kmalloc_info[idx].size); |
1225 | BUG_ON(!name); | |
1226 | } else { | |
1227 | name = kmalloc_info[idx].name; | |
1228 | } | |
1229 | ||
1230 | kmalloc_caches[type][idx] = create_kmalloc_cache(name, | |
6c0c21ad DW |
1231 | kmalloc_info[idx].size, flags, 0, |
1232 | kmalloc_info[idx].size); | |
a9730fca CL |
1233 | } |
1234 | ||
34cc6990 DS |
1235 | /* |
1236 | * Create the kmalloc array. Some of the regular kmalloc arrays | |
1237 | * may already have been created because they were needed to | |
1238 | * enable allocations for slab creation. | |
1239 | */ | |
d50112ed | 1240 | void __init create_kmalloc_caches(slab_flags_t flags) |
34cc6990 | 1241 | { |
1291523f | 1242 | int i, type; |
34cc6990 | 1243 | |
1291523f VB |
1244 | for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) { |
1245 | for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) { | |
1246 | if (!kmalloc_caches[type][i]) | |
1247 | new_kmalloc_cache(i, type, flags); | |
f97d5f63 | 1248 | |
1291523f VB |
1249 | /* |
1250 | * Caches that are not of the two-to-the-power-of size. | |
1251 | * These have to be created immediately after the | |
1252 | * earlier power of two caches | |
1253 | */ | |
1254 | if (KMALLOC_MIN_SIZE <= 32 && i == 6 && | |
1255 | !kmalloc_caches[type][1]) | |
1256 | new_kmalloc_cache(1, type, flags); | |
1257 | if (KMALLOC_MIN_SIZE <= 64 && i == 7 && | |
1258 | !kmalloc_caches[type][2]) | |
1259 | new_kmalloc_cache(2, type, flags); | |
1260 | } | |
8a965b3b CL |
1261 | } |
1262 | ||
f97d5f63 CL |
1263 | /* Kmalloc array is now usable */ |
1264 | slab_state = UP; | |
1265 | ||
f97d5f63 CL |
1266 | #ifdef CONFIG_ZONE_DMA |
1267 | for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { | |
cc252eae | 1268 | struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i]; |
f97d5f63 CL |
1269 | |
1270 | if (s) { | |
0be70327 | 1271 | unsigned int size = kmalloc_size(i); |
f0d77874 | 1272 | const char *n = kmalloc_cache_name("dma-kmalloc", size); |
f97d5f63 CL |
1273 | |
1274 | BUG_ON(!n); | |
cc252eae VB |
1275 | kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache( |
1276 | n, size, SLAB_CACHE_DMA | flags, 0, 0); | |
f97d5f63 CL |
1277 | } |
1278 | } | |
1279 | #endif | |
1280 | } | |
45530c44 CL |
1281 | #endif /* !CONFIG_SLOB */ |
1282 | ||
cea371f4 VD |
1283 | /* |
1284 | * To avoid unnecessary overhead, we pass through large allocation requests | |
1285 | * directly to the page allocator. We use __GFP_COMP, because we will need to | |
1286 | * know the allocation order to free the pages properly in kfree. | |
1287 | */ | |
52383431 VD |
1288 | void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) |
1289 | { | |
1290 | void *ret; | |
1291 | struct page *page; | |
1292 | ||
1293 | flags |= __GFP_COMP; | |
4949148a | 1294 | page = alloc_pages(flags, order); |
52383431 | 1295 | ret = page ? page_address(page) : NULL; |
0116523c | 1296 | ret = kasan_kmalloc_large(ret, size, flags); |
a2f77575 | 1297 | /* As ret might get tagged, call kmemleak hook after KASAN. */ |
53128245 | 1298 | kmemleak_alloc(ret, size, 1, flags); |
52383431 VD |
1299 | return ret; |
1300 | } | |
1301 | EXPORT_SYMBOL(kmalloc_order); | |
1302 | ||
f1b6eb6e CL |
1303 | #ifdef CONFIG_TRACING |
1304 | void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) | |
1305 | { | |
1306 | void *ret = kmalloc_order(size, flags, order); | |
1307 | trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); | |
1308 | return ret; | |
1309 | } | |
1310 | EXPORT_SYMBOL(kmalloc_order_trace); | |
1311 | #endif | |
45530c44 | 1312 | |
7c00fce9 TG |
1313 | #ifdef CONFIG_SLAB_FREELIST_RANDOM |
1314 | /* Randomize a generic freelist */ | |
1315 | static void freelist_randomize(struct rnd_state *state, unsigned int *list, | |
302d55d5 | 1316 | unsigned int count) |
7c00fce9 | 1317 | { |
7c00fce9 | 1318 | unsigned int rand; |
302d55d5 | 1319 | unsigned int i; |
7c00fce9 TG |
1320 | |
1321 | for (i = 0; i < count; i++) | |
1322 | list[i] = i; | |
1323 | ||
1324 | /* Fisher-Yates shuffle */ | |
1325 | for (i = count - 1; i > 0; i--) { | |
1326 | rand = prandom_u32_state(state); | |
1327 | rand %= (i + 1); | |
1328 | swap(list[i], list[rand]); | |
1329 | } | |
1330 | } | |
1331 | ||
1332 | /* Create a random sequence per cache */ | |
1333 | int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, | |
1334 | gfp_t gfp) | |
1335 | { | |
1336 | struct rnd_state state; | |
1337 | ||
1338 | if (count < 2 || cachep->random_seq) | |
1339 | return 0; | |
1340 | ||
1341 | cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp); | |
1342 | if (!cachep->random_seq) | |
1343 | return -ENOMEM; | |
1344 | ||
1345 | /* Get best entropy at this stage of boot */ | |
1346 | prandom_seed_state(&state, get_random_long()); | |
1347 | ||
1348 | freelist_randomize(&state, cachep->random_seq, count); | |
1349 | return 0; | |
1350 | } | |
1351 | ||
1352 | /* Destroy the per-cache random freelist sequence */ | |
1353 | void cache_random_seq_destroy(struct kmem_cache *cachep) | |
1354 | { | |
1355 | kfree(cachep->random_seq); | |
1356 | cachep->random_seq = NULL; | |
1357 | } | |
1358 | #endif /* CONFIG_SLAB_FREELIST_RANDOM */ | |
1359 | ||
5b365771 | 1360 | #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) |
e9b4db2b | 1361 | #ifdef CONFIG_SLAB |
0825a6f9 | 1362 | #define SLABINFO_RIGHTS (0600) |
e9b4db2b | 1363 | #else |
0825a6f9 | 1364 | #define SLABINFO_RIGHTS (0400) |
e9b4db2b WL |
1365 | #endif |
1366 | ||
b047501c | 1367 | static void print_slabinfo_header(struct seq_file *m) |
bcee6e2a GC |
1368 | { |
1369 | /* | |
1370 | * Output format version, so at least we can change it | |
1371 | * without _too_ many complaints. | |
1372 | */ | |
1373 | #ifdef CONFIG_DEBUG_SLAB | |
1374 | seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); | |
1375 | #else | |
1376 | seq_puts(m, "slabinfo - version: 2.1\n"); | |
1377 | #endif | |
756a025f | 1378 | seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>"); |
bcee6e2a GC |
1379 | seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); |
1380 | seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); | |
1381 | #ifdef CONFIG_DEBUG_SLAB | |
756a025f | 1382 | seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); |
bcee6e2a GC |
1383 | seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); |
1384 | #endif | |
1385 | seq_putc(m, '\n'); | |
1386 | } | |
1387 | ||
1df3b26f | 1388 | void *slab_start(struct seq_file *m, loff_t *pos) |
b7454ad3 | 1389 | { |
b7454ad3 | 1390 | mutex_lock(&slab_mutex); |
510ded33 | 1391 | return seq_list_start(&slab_root_caches, *pos); |
b7454ad3 GC |
1392 | } |
1393 | ||
276a2439 | 1394 | void *slab_next(struct seq_file *m, void *p, loff_t *pos) |
b7454ad3 | 1395 | { |
510ded33 | 1396 | return seq_list_next(p, &slab_root_caches, pos); |
b7454ad3 GC |
1397 | } |
1398 | ||
276a2439 | 1399 | void slab_stop(struct seq_file *m, void *p) |
b7454ad3 GC |
1400 | { |
1401 | mutex_unlock(&slab_mutex); | |
1402 | } | |
1403 | ||
749c5415 GC |
1404 | static void |
1405 | memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info) | |
1406 | { | |
1407 | struct kmem_cache *c; | |
1408 | struct slabinfo sinfo; | |
749c5415 GC |
1409 | |
1410 | if (!is_root_cache(s)) | |
1411 | return; | |
1412 | ||
426589f5 | 1413 | for_each_memcg_cache(c, s) { |
749c5415 GC |
1414 | memset(&sinfo, 0, sizeof(sinfo)); |
1415 | get_slabinfo(c, &sinfo); | |
1416 | ||
1417 | info->active_slabs += sinfo.active_slabs; | |
1418 | info->num_slabs += sinfo.num_slabs; | |
1419 | info->shared_avail += sinfo.shared_avail; | |
1420 | info->active_objs += sinfo.active_objs; | |
1421 | info->num_objs += sinfo.num_objs; | |
1422 | } | |
1423 | } | |
1424 | ||
b047501c | 1425 | static void cache_show(struct kmem_cache *s, struct seq_file *m) |
b7454ad3 | 1426 | { |
0d7561c6 GC |
1427 | struct slabinfo sinfo; |
1428 | ||
1429 | memset(&sinfo, 0, sizeof(sinfo)); | |
1430 | get_slabinfo(s, &sinfo); | |
1431 | ||
749c5415 GC |
1432 | memcg_accumulate_slabinfo(s, &sinfo); |
1433 | ||
0d7561c6 | 1434 | seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", |
749c5415 | 1435 | cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size, |
0d7561c6 GC |
1436 | sinfo.objects_per_slab, (1 << sinfo.cache_order)); |
1437 | ||
1438 | seq_printf(m, " : tunables %4u %4u %4u", | |
1439 | sinfo.limit, sinfo.batchcount, sinfo.shared); | |
1440 | seq_printf(m, " : slabdata %6lu %6lu %6lu", | |
1441 | sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail); | |
1442 | slabinfo_show_stats(m, s); | |
1443 | seq_putc(m, '\n'); | |
b7454ad3 GC |
1444 | } |
1445 | ||
1df3b26f | 1446 | static int slab_show(struct seq_file *m, void *p) |
749c5415 | 1447 | { |
510ded33 | 1448 | struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node); |
749c5415 | 1449 | |
510ded33 | 1450 | if (p == slab_root_caches.next) |
1df3b26f | 1451 | print_slabinfo_header(m); |
510ded33 | 1452 | cache_show(s, m); |
b047501c VD |
1453 | return 0; |
1454 | } | |
1455 | ||
852d8be0 YS |
1456 | void dump_unreclaimable_slab(void) |
1457 | { | |
1458 | struct kmem_cache *s, *s2; | |
1459 | struct slabinfo sinfo; | |
1460 | ||
1461 | /* | |
1462 | * Here acquiring slab_mutex is risky since we don't prefer to get | |
1463 | * sleep in oom path. But, without mutex hold, it may introduce a | |
1464 | * risk of crash. | |
1465 | * Use mutex_trylock to protect the list traverse, dump nothing | |
1466 | * without acquiring the mutex. | |
1467 | */ | |
1468 | if (!mutex_trylock(&slab_mutex)) { | |
1469 | pr_warn("excessive unreclaimable slab but cannot dump stats\n"); | |
1470 | return; | |
1471 | } | |
1472 | ||
1473 | pr_info("Unreclaimable slab info:\n"); | |
1474 | pr_info("Name Used Total\n"); | |
1475 | ||
1476 | list_for_each_entry_safe(s, s2, &slab_caches, list) { | |
1477 | if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT)) | |
1478 | continue; | |
1479 | ||
1480 | get_slabinfo(s, &sinfo); | |
1481 | ||
1482 | if (sinfo.num_objs > 0) | |
1483 | pr_info("%-17s %10luKB %10luKB\n", cache_name(s), | |
1484 | (sinfo.active_objs * s->size) / 1024, | |
1485 | (sinfo.num_objs * s->size) / 1024); | |
1486 | } | |
1487 | mutex_unlock(&slab_mutex); | |
1488 | } | |
1489 | ||
5b365771 | 1490 | #if defined(CONFIG_MEMCG) |
bc2791f8 TH |
1491 | void *memcg_slab_start(struct seq_file *m, loff_t *pos) |
1492 | { | |
aa9694bb | 1493 | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); |
bc2791f8 TH |
1494 | |
1495 | mutex_lock(&slab_mutex); | |
1496 | return seq_list_start(&memcg->kmem_caches, *pos); | |
1497 | } | |
1498 | ||
1499 | void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos) | |
1500 | { | |
aa9694bb | 1501 | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); |
bc2791f8 TH |
1502 | |
1503 | return seq_list_next(p, &memcg->kmem_caches, pos); | |
1504 | } | |
1505 | ||
1506 | void memcg_slab_stop(struct seq_file *m, void *p) | |
1507 | { | |
1508 | mutex_unlock(&slab_mutex); | |
1509 | } | |
1510 | ||
b047501c VD |
1511 | int memcg_slab_show(struct seq_file *m, void *p) |
1512 | { | |
bc2791f8 TH |
1513 | struct kmem_cache *s = list_entry(p, struct kmem_cache, |
1514 | memcg_params.kmem_caches_node); | |
aa9694bb | 1515 | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); |
b047501c | 1516 | |
bc2791f8 | 1517 | if (p == memcg->kmem_caches.next) |
b047501c | 1518 | print_slabinfo_header(m); |
bc2791f8 | 1519 | cache_show(s, m); |
b047501c | 1520 | return 0; |
749c5415 | 1521 | } |
b047501c | 1522 | #endif |
749c5415 | 1523 | |
b7454ad3 GC |
1524 | /* |
1525 | * slabinfo_op - iterator that generates /proc/slabinfo | |
1526 | * | |
1527 | * Output layout: | |
1528 | * cache-name | |
1529 | * num-active-objs | |
1530 | * total-objs | |
1531 | * object size | |
1532 | * num-active-slabs | |
1533 | * total-slabs | |
1534 | * num-pages-per-slab | |
1535 | * + further values on SMP and with statistics enabled | |
1536 | */ | |
1537 | static const struct seq_operations slabinfo_op = { | |
1df3b26f | 1538 | .start = slab_start, |
276a2439 WL |
1539 | .next = slab_next, |
1540 | .stop = slab_stop, | |
1df3b26f | 1541 | .show = slab_show, |
b7454ad3 GC |
1542 | }; |
1543 | ||
1544 | static int slabinfo_open(struct inode *inode, struct file *file) | |
1545 | { | |
1546 | return seq_open(file, &slabinfo_op); | |
1547 | } | |
1548 | ||
1549 | static const struct file_operations proc_slabinfo_operations = { | |
1550 | .open = slabinfo_open, | |
1551 | .read = seq_read, | |
1552 | .write = slabinfo_write, | |
1553 | .llseek = seq_lseek, | |
1554 | .release = seq_release, | |
1555 | }; | |
1556 | ||
1557 | static int __init slab_proc_init(void) | |
1558 | { | |
e9b4db2b WL |
1559 | proc_create("slabinfo", SLABINFO_RIGHTS, NULL, |
1560 | &proc_slabinfo_operations); | |
b7454ad3 GC |
1561 | return 0; |
1562 | } | |
1563 | module_init(slab_proc_init); | |
fcf8a1e4 WL |
1564 | |
1565 | #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_MEMCG_KMEM) | |
1566 | /* | |
1567 | * Display information about kmem caches that have child memcg caches. | |
1568 | */ | |
1569 | static int memcg_slabinfo_show(struct seq_file *m, void *unused) | |
1570 | { | |
1571 | struct kmem_cache *s, *c; | |
1572 | struct slabinfo sinfo; | |
1573 | ||
1574 | mutex_lock(&slab_mutex); | |
1575 | seq_puts(m, "# <name> <css_id[:dead|deact]> <active_objs> <num_objs>"); | |
1576 | seq_puts(m, " <active_slabs> <num_slabs>\n"); | |
1577 | list_for_each_entry(s, &slab_root_caches, root_caches_node) { | |
1578 | /* | |
1579 | * Skip kmem caches that don't have any memcg children. | |
1580 | */ | |
1581 | if (list_empty(&s->memcg_params.children)) | |
1582 | continue; | |
1583 | ||
1584 | memset(&sinfo, 0, sizeof(sinfo)); | |
1585 | get_slabinfo(s, &sinfo); | |
1586 | seq_printf(m, "%-17s root %6lu %6lu %6lu %6lu\n", | |
1587 | cache_name(s), sinfo.active_objs, sinfo.num_objs, | |
1588 | sinfo.active_slabs, sinfo.num_slabs); | |
1589 | ||
1590 | for_each_memcg_cache(c, s) { | |
1591 | struct cgroup_subsys_state *css; | |
1592 | char *status = ""; | |
1593 | ||
1594 | css = &c->memcg_params.memcg->css; | |
1595 | if (!(css->flags & CSS_ONLINE)) | |
1596 | status = ":dead"; | |
1597 | else if (c->flags & SLAB_DEACTIVATED) | |
1598 | status = ":deact"; | |
1599 | ||
1600 | memset(&sinfo, 0, sizeof(sinfo)); | |
1601 | get_slabinfo(c, &sinfo); | |
1602 | seq_printf(m, "%-17s %4d%-6s %6lu %6lu %6lu %6lu\n", | |
1603 | cache_name(c), css->id, status, | |
1604 | sinfo.active_objs, sinfo.num_objs, | |
1605 | sinfo.active_slabs, sinfo.num_slabs); | |
1606 | } | |
1607 | } | |
1608 | mutex_unlock(&slab_mutex); | |
1609 | return 0; | |
1610 | } | |
1611 | DEFINE_SHOW_ATTRIBUTE(memcg_slabinfo); | |
1612 | ||
1613 | static int __init memcg_slabinfo_init(void) | |
1614 | { | |
1615 | debugfs_create_file("memcg_slabinfo", S_IFREG | S_IRUGO, | |
1616 | NULL, NULL, &memcg_slabinfo_fops); | |
1617 | return 0; | |
1618 | } | |
1619 | ||
1620 | late_initcall(memcg_slabinfo_init); | |
1621 | #endif /* CONFIG_DEBUG_FS && CONFIG_MEMCG_KMEM */ | |
5b365771 | 1622 | #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */ |
928cec9c AR |
1623 | |
1624 | static __always_inline void *__do_krealloc(const void *p, size_t new_size, | |
1625 | gfp_t flags) | |
1626 | { | |
1627 | void *ret; | |
1628 | size_t ks = 0; | |
1629 | ||
1630 | if (p) | |
1631 | ks = ksize(p); | |
1632 | ||
0316bec2 | 1633 | if (ks >= new_size) { |
0116523c | 1634 | p = kasan_krealloc((void *)p, new_size, flags); |
928cec9c | 1635 | return (void *)p; |
0316bec2 | 1636 | } |
928cec9c AR |
1637 | |
1638 | ret = kmalloc_track_caller(new_size, flags); | |
1639 | if (ret && p) | |
1640 | memcpy(ret, p, ks); | |
1641 | ||
1642 | return ret; | |
1643 | } | |
1644 | ||
1645 | /** | |
1646 | * __krealloc - like krealloc() but don't free @p. | |
1647 | * @p: object to reallocate memory for. | |
1648 | * @new_size: how many bytes of memory are required. | |
1649 | * @flags: the type of memory to allocate. | |
1650 | * | |
1651 | * This function is like krealloc() except it never frees the originally | |
1652 | * allocated buffer. Use this if you don't want to free the buffer immediately | |
1653 | * like, for example, with RCU. | |
a862f68a MR |
1654 | * |
1655 | * Return: pointer to the allocated memory or %NULL in case of error | |
928cec9c AR |
1656 | */ |
1657 | void *__krealloc(const void *p, size_t new_size, gfp_t flags) | |
1658 | { | |
1659 | if (unlikely(!new_size)) | |
1660 | return ZERO_SIZE_PTR; | |
1661 | ||
1662 | return __do_krealloc(p, new_size, flags); | |
1663 | ||
1664 | } | |
1665 | EXPORT_SYMBOL(__krealloc); | |
1666 | ||
1667 | /** | |
1668 | * krealloc - reallocate memory. The contents will remain unchanged. | |
1669 | * @p: object to reallocate memory for. | |
1670 | * @new_size: how many bytes of memory are required. | |
1671 | * @flags: the type of memory to allocate. | |
1672 | * | |
1673 | * The contents of the object pointed to are preserved up to the | |
1674 | * lesser of the new and old sizes. If @p is %NULL, krealloc() | |
1675 | * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a | |
1676 | * %NULL pointer, the object pointed to is freed. | |
a862f68a MR |
1677 | * |
1678 | * Return: pointer to the allocated memory or %NULL in case of error | |
928cec9c AR |
1679 | */ |
1680 | void *krealloc(const void *p, size_t new_size, gfp_t flags) | |
1681 | { | |
1682 | void *ret; | |
1683 | ||
1684 | if (unlikely(!new_size)) { | |
1685 | kfree(p); | |
1686 | return ZERO_SIZE_PTR; | |
1687 | } | |
1688 | ||
1689 | ret = __do_krealloc(p, new_size, flags); | |
772a2fa5 | 1690 | if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret)) |
928cec9c AR |
1691 | kfree(p); |
1692 | ||
1693 | return ret; | |
1694 | } | |
1695 | EXPORT_SYMBOL(krealloc); | |
1696 | ||
1697 | /** | |
1698 | * kzfree - like kfree but zero memory | |
1699 | * @p: object to free memory of | |
1700 | * | |
1701 | * The memory of the object @p points to is zeroed before freed. | |
1702 | * If @p is %NULL, kzfree() does nothing. | |
1703 | * | |
1704 | * Note: this function zeroes the whole allocated buffer which can be a good | |
1705 | * deal bigger than the requested buffer size passed to kmalloc(). So be | |
1706 | * careful when using this function in performance sensitive code. | |
1707 | */ | |
1708 | void kzfree(const void *p) | |
1709 | { | |
1710 | size_t ks; | |
1711 | void *mem = (void *)p; | |
1712 | ||
1713 | if (unlikely(ZERO_OR_NULL_PTR(mem))) | |
1714 | return; | |
1715 | ks = ksize(mem); | |
1716 | memset(mem, 0, ks); | |
1717 | kfree(mem); | |
1718 | } | |
1719 | EXPORT_SYMBOL(kzfree); | |
1720 | ||
10d1f8cb ME |
1721 | /** |
1722 | * ksize - get the actual amount of memory allocated for a given object | |
1723 | * @objp: Pointer to the object | |
1724 | * | |
1725 | * kmalloc may internally round up allocations and return more memory | |
1726 | * than requested. ksize() can be used to determine the actual amount of | |
1727 | * memory allocated. The caller may use this additional memory, even though | |
1728 | * a smaller amount of memory was initially specified with the kmalloc call. | |
1729 | * The caller must guarantee that objp points to a valid object previously | |
1730 | * allocated with either kmalloc() or kmem_cache_alloc(). The object | |
1731 | * must not be freed during the duration of the call. | |
1732 | * | |
1733 | * Return: size of the actual memory used by @objp in bytes | |
1734 | */ | |
1735 | size_t ksize(const void *objp) | |
1736 | { | |
0d4ca4c9 ME |
1737 | size_t size; |
1738 | ||
1739 | if (WARN_ON_ONCE(!objp)) | |
1740 | return 0; | |
1741 | /* | |
1742 | * We need to check that the pointed to object is valid, and only then | |
1743 | * unpoison the shadow memory below. We use __kasan_check_read(), to | |
1744 | * generate a more useful report at the time ksize() is called (rather | |
1745 | * than later where behaviour is undefined due to potential | |
1746 | * use-after-free or double-free). | |
1747 | * | |
1748 | * If the pointed to memory is invalid we return 0, to avoid users of | |
1749 | * ksize() writing to and potentially corrupting the memory region. | |
1750 | * | |
1751 | * We want to perform the check before __ksize(), to avoid potentially | |
1752 | * crashing in __ksize() due to accessing invalid metadata. | |
1753 | */ | |
1754 | if (unlikely(objp == ZERO_SIZE_PTR) || !__kasan_check_read(objp, 1)) | |
1755 | return 0; | |
1756 | ||
1757 | size = __ksize(objp); | |
10d1f8cb ME |
1758 | /* |
1759 | * We assume that ksize callers could use whole allocated area, | |
1760 | * so we need to unpoison this area. | |
1761 | */ | |
1762 | kasan_unpoison_shadow(objp, size); | |
1763 | return size; | |
1764 | } | |
1765 | EXPORT_SYMBOL(ksize); | |
1766 | ||
928cec9c AR |
1767 | /* Tracepoints definitions. */ |
1768 | EXPORT_TRACEPOINT_SYMBOL(kmalloc); | |
1769 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc); | |
1770 | EXPORT_TRACEPOINT_SYMBOL(kmalloc_node); | |
1771 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node); | |
1772 | EXPORT_TRACEPOINT_SYMBOL(kfree); | |
1773 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free); | |
4f6923fb HM |
1774 | |
1775 | int should_failslab(struct kmem_cache *s, gfp_t gfpflags) | |
1776 | { | |
1777 | if (__should_failslab(s, gfpflags)) | |
1778 | return -ENOMEM; | |
1779 | return 0; | |
1780 | } | |
1781 | ALLOW_ERROR_INJECTION(should_failslab, ERRNO); |