]> Git Repo - linux.git/blame - mm/slab_common.c
usercopy: WARN() on slab cache usercopy region violations
[linux.git] / mm / slab_common.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
039363f3
CL
2/*
3 * Slab allocator functions that are independent of the allocator strategy
4 *
5 * (C) 2012 Christoph Lameter <[email protected]>
6 */
7#include <linux/slab.h>
8
9#include <linux/mm.h>
10#include <linux/poison.h>
11#include <linux/interrupt.h>
12#include <linux/memory.h>
13#include <linux/compiler.h>
14#include <linux/module.h>
20cea968
CL
15#include <linux/cpu.h>
16#include <linux/uaccess.h>
b7454ad3
GC
17#include <linux/seq_file.h>
18#include <linux/proc_fs.h>
039363f3
CL
19#include <asm/cacheflush.h>
20#include <asm/tlbflush.h>
21#include <asm/page.h>
2633d7a0 22#include <linux/memcontrol.h>
928cec9c
AR
23
24#define CREATE_TRACE_POINTS
f1b6eb6e 25#include <trace/events/kmem.h>
039363f3 26
97d06609
CL
27#include "slab.h"
28
29enum slab_state slab_state;
18004c5d
CL
30LIST_HEAD(slab_caches);
31DEFINE_MUTEX(slab_mutex);
9b030cb8 32struct kmem_cache *kmem_cache;
97d06609 33
657dc2f9
TH
34static LIST_HEAD(slab_caches_to_rcu_destroy);
35static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
36static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
37 slab_caches_to_rcu_destroy_workfn);
38
423c929c
JK
39/*
40 * Set of flags that will prevent slab merging
41 */
42#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
5f0d5a3a 43 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
7ed2f9e6 44 SLAB_FAILSLAB | SLAB_KASAN)
423c929c 45
230e9fc2 46#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
75f296d9 47 SLAB_ACCOUNT)
423c929c
JK
48
49/*
50 * Merge control. If this is set then no merging of slab caches will occur.
423c929c 51 */
7660a6fd 52static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
423c929c
JK
53
54static int __init setup_slab_nomerge(char *str)
55{
7660a6fd 56 slab_nomerge = true;
423c929c
JK
57 return 1;
58}
59
60#ifdef CONFIG_SLUB
61__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
62#endif
63
64__setup("slab_nomerge", setup_slab_nomerge);
65
07f361b2
JK
66/*
67 * Determine the size of a slab object
68 */
69unsigned int kmem_cache_size(struct kmem_cache *s)
70{
71 return s->object_size;
72}
73EXPORT_SYMBOL(kmem_cache_size);
74
77be4b13 75#ifdef CONFIG_DEBUG_VM
794b1248 76static int kmem_cache_sanity_check(const char *name, size_t size)
039363f3
CL
77{
78 struct kmem_cache *s = NULL;
79
039363f3
CL
80 if (!name || in_interrupt() || size < sizeof(void *) ||
81 size > KMALLOC_MAX_SIZE) {
77be4b13
SK
82 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
83 return -EINVAL;
039363f3 84 }
b920536a 85
20cea968
CL
86 list_for_each_entry(s, &slab_caches, list) {
87 char tmp;
88 int res;
89
90 /*
91 * This happens when the module gets unloaded and doesn't
92 * destroy its slab cache and no-one else reuses the vmalloc
93 * area of the module. Print a warning.
94 */
95 res = probe_kernel_address(s->name, tmp);
96 if (res) {
77be4b13 97 pr_err("Slab cache with size %d has lost its name\n",
20cea968
CL
98 s->object_size);
99 continue;
100 }
20cea968
CL
101 }
102
103 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
77be4b13
SK
104 return 0;
105}
106#else
794b1248 107static inline int kmem_cache_sanity_check(const char *name, size_t size)
77be4b13
SK
108{
109 return 0;
110}
20cea968
CL
111#endif
112
484748f0
CL
113void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
114{
115 size_t i;
116
ca257195
JDB
117 for (i = 0; i < nr; i++) {
118 if (s)
119 kmem_cache_free(s, p[i]);
120 else
121 kfree(p[i]);
122 }
484748f0
CL
123}
124
865762a8 125int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
484748f0
CL
126 void **p)
127{
128 size_t i;
129
130 for (i = 0; i < nr; i++) {
131 void *x = p[i] = kmem_cache_alloc(s, flags);
132 if (!x) {
133 __kmem_cache_free_bulk(s, i, p);
865762a8 134 return 0;
484748f0
CL
135 }
136 }
865762a8 137 return i;
484748f0
CL
138}
139
127424c8 140#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
510ded33
TH
141
142LIST_HEAD(slab_root_caches);
143
f7ce3190 144void slab_init_memcg_params(struct kmem_cache *s)
33a690c4 145{
9eeadc8b 146 s->memcg_params.root_cache = NULL;
f7ce3190 147 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
9eeadc8b 148 INIT_LIST_HEAD(&s->memcg_params.children);
f7ce3190
VD
149}
150
151static int init_memcg_params(struct kmem_cache *s,
152 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
153{
154 struct memcg_cache_array *arr;
33a690c4 155
9eeadc8b 156 if (root_cache) {
f7ce3190 157 s->memcg_params.root_cache = root_cache;
9eeadc8b
TH
158 s->memcg_params.memcg = memcg;
159 INIT_LIST_HEAD(&s->memcg_params.children_node);
bc2791f8 160 INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
33a690c4 161 return 0;
f7ce3190 162 }
33a690c4 163
f7ce3190 164 slab_init_memcg_params(s);
33a690c4 165
f7ce3190
VD
166 if (!memcg_nr_cache_ids)
167 return 0;
33a690c4 168
f80c7dab
JW
169 arr = kvzalloc(sizeof(struct memcg_cache_array) +
170 memcg_nr_cache_ids * sizeof(void *),
171 GFP_KERNEL);
f7ce3190
VD
172 if (!arr)
173 return -ENOMEM;
33a690c4 174
f7ce3190 175 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
33a690c4
VD
176 return 0;
177}
178
f7ce3190 179static void destroy_memcg_params(struct kmem_cache *s)
33a690c4 180{
f7ce3190 181 if (is_root_cache(s))
f80c7dab
JW
182 kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
183}
184
185static void free_memcg_params(struct rcu_head *rcu)
186{
187 struct memcg_cache_array *old;
188
189 old = container_of(rcu, struct memcg_cache_array, rcu);
190 kvfree(old);
33a690c4
VD
191}
192
f7ce3190 193static int update_memcg_params(struct kmem_cache *s, int new_array_size)
6f817f4c 194{
f7ce3190 195 struct memcg_cache_array *old, *new;
6f817f4c 196
f80c7dab
JW
197 new = kvzalloc(sizeof(struct memcg_cache_array) +
198 new_array_size * sizeof(void *), GFP_KERNEL);
f7ce3190 199 if (!new)
6f817f4c
VD
200 return -ENOMEM;
201
f7ce3190
VD
202 old = rcu_dereference_protected(s->memcg_params.memcg_caches,
203 lockdep_is_held(&slab_mutex));
204 if (old)
205 memcpy(new->entries, old->entries,
206 memcg_nr_cache_ids * sizeof(void *));
6f817f4c 207
f7ce3190
VD
208 rcu_assign_pointer(s->memcg_params.memcg_caches, new);
209 if (old)
f80c7dab 210 call_rcu(&old->rcu, free_memcg_params);
6f817f4c
VD
211 return 0;
212}
213
55007d84
GC
214int memcg_update_all_caches(int num_memcgs)
215{
216 struct kmem_cache *s;
217 int ret = 0;
55007d84 218
05257a1a 219 mutex_lock(&slab_mutex);
510ded33 220 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
f7ce3190 221 ret = update_memcg_params(s, num_memcgs);
55007d84 222 /*
55007d84
GC
223 * Instead of freeing the memory, we'll just leave the caches
224 * up to this point in an updated state.
225 */
226 if (ret)
05257a1a 227 break;
55007d84 228 }
55007d84
GC
229 mutex_unlock(&slab_mutex);
230 return ret;
231}
657dc2f9 232
510ded33 233void memcg_link_cache(struct kmem_cache *s)
657dc2f9 234{
510ded33
TH
235 if (is_root_cache(s)) {
236 list_add(&s->root_caches_node, &slab_root_caches);
237 } else {
238 list_add(&s->memcg_params.children_node,
239 &s->memcg_params.root_cache->memcg_params.children);
240 list_add(&s->memcg_params.kmem_caches_node,
241 &s->memcg_params.memcg->kmem_caches);
242 }
243}
244
245static void memcg_unlink_cache(struct kmem_cache *s)
246{
247 if (is_root_cache(s)) {
248 list_del(&s->root_caches_node);
249 } else {
250 list_del(&s->memcg_params.children_node);
251 list_del(&s->memcg_params.kmem_caches_node);
252 }
657dc2f9 253}
33a690c4 254#else
f7ce3190
VD
255static inline int init_memcg_params(struct kmem_cache *s,
256 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
33a690c4
VD
257{
258 return 0;
259}
260
f7ce3190 261static inline void destroy_memcg_params(struct kmem_cache *s)
33a690c4
VD
262{
263}
657dc2f9 264
510ded33 265static inline void memcg_unlink_cache(struct kmem_cache *s)
657dc2f9
TH
266{
267}
127424c8 268#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
55007d84 269
423c929c
JK
270/*
271 * Find a mergeable slab cache
272 */
273int slab_unmergeable(struct kmem_cache *s)
274{
275 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
276 return 1;
277
278 if (!is_root_cache(s))
279 return 1;
280
281 if (s->ctor)
282 return 1;
283
8eb8284b
DW
284 if (s->usersize)
285 return 1;
286
423c929c
JK
287 /*
288 * We may have set a slab to be unmergeable during bootstrap.
289 */
290 if (s->refcount < 0)
291 return 1;
292
293 return 0;
294}
295
296struct kmem_cache *find_mergeable(size_t size, size_t align,
d50112ed 297 slab_flags_t flags, const char *name, void (*ctor)(void *))
423c929c
JK
298{
299 struct kmem_cache *s;
300
c6e28895 301 if (slab_nomerge)
423c929c
JK
302 return NULL;
303
304 if (ctor)
305 return NULL;
306
307 size = ALIGN(size, sizeof(void *));
308 align = calculate_alignment(flags, align, size);
309 size = ALIGN(size, align);
310 flags = kmem_cache_flags(size, flags, name, NULL);
311
c6e28895
GM
312 if (flags & SLAB_NEVER_MERGE)
313 return NULL;
314
510ded33 315 list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
423c929c
JK
316 if (slab_unmergeable(s))
317 continue;
318
319 if (size > s->size)
320 continue;
321
322 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
323 continue;
324 /*
325 * Check if alignment is compatible.
326 * Courtesy of Adrian Drzewiecki
327 */
328 if ((s->size & ~(align - 1)) != s->size)
329 continue;
330
331 if (s->size - size >= sizeof(void *))
332 continue;
333
95069ac8
JK
334 if (IS_ENABLED(CONFIG_SLAB) && align &&
335 (align > s->align || s->align % align))
336 continue;
337
423c929c
JK
338 return s;
339 }
340 return NULL;
341}
342
45906855
CL
343/*
344 * Figure out what the alignment of the objects will be given a set of
345 * flags, a user specified alignment and the size of the objects.
346 */
d50112ed 347unsigned long calculate_alignment(slab_flags_t flags,
45906855
CL
348 unsigned long align, unsigned long size)
349{
350 /*
351 * If the user wants hardware cache aligned objects then follow that
352 * suggestion if the object is sufficiently large.
353 *
354 * The hardware cache alignment cannot override the specified
355 * alignment though. If that is greater then use it.
356 */
357 if (flags & SLAB_HWCACHE_ALIGN) {
358 unsigned long ralign = cache_line_size();
359 while (size <= ralign / 2)
360 ralign /= 2;
361 align = max(align, ralign);
362 }
363
364 if (align < ARCH_SLAB_MINALIGN)
365 align = ARCH_SLAB_MINALIGN;
366
367 return ALIGN(align, sizeof(void *));
368}
369
c9a77a79
VD
370static struct kmem_cache *create_cache(const char *name,
371 size_t object_size, size_t size, size_t align,
8eb8284b
DW
372 slab_flags_t flags, size_t useroffset,
373 size_t usersize, void (*ctor)(void *),
c9a77a79 374 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
794b1248
VD
375{
376 struct kmem_cache *s;
377 int err;
378
8eb8284b
DW
379 if (WARN_ON(useroffset + usersize > object_size))
380 useroffset = usersize = 0;
381
794b1248
VD
382 err = -ENOMEM;
383 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
384 if (!s)
385 goto out;
386
387 s->name = name;
388 s->object_size = object_size;
389 s->size = size;
390 s->align = align;
391 s->ctor = ctor;
8eb8284b
DW
392 s->useroffset = useroffset;
393 s->usersize = usersize;
794b1248 394
f7ce3190 395 err = init_memcg_params(s, memcg, root_cache);
794b1248
VD
396 if (err)
397 goto out_free_cache;
398
399 err = __kmem_cache_create(s, flags);
400 if (err)
401 goto out_free_cache;
402
403 s->refcount = 1;
404 list_add(&s->list, &slab_caches);
510ded33 405 memcg_link_cache(s);
794b1248
VD
406out:
407 if (err)
408 return ERR_PTR(err);
409 return s;
410
411out_free_cache:
f7ce3190 412 destroy_memcg_params(s);
7c4da061 413 kmem_cache_free(kmem_cache, s);
794b1248
VD
414 goto out;
415}
45906855 416
77be4b13 417/*
8eb8284b 418 * kmem_cache_create_usercopy - Create a cache.
77be4b13
SK
419 * @name: A string which is used in /proc/slabinfo to identify this cache.
420 * @size: The size of objects to be created in this cache.
421 * @align: The required alignment for the objects.
422 * @flags: SLAB flags
8eb8284b
DW
423 * @useroffset: Usercopy region offset
424 * @usersize: Usercopy region size
77be4b13
SK
425 * @ctor: A constructor for the objects.
426 *
427 * Returns a ptr to the cache on success, NULL on failure.
428 * Cannot be called within a interrupt, but can be interrupted.
429 * The @ctor is run when new pages are allocated by the cache.
430 *
431 * The flags are
432 *
433 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
434 * to catch references to uninitialised memory.
435 *
436 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
437 * for buffer overruns.
438 *
439 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
440 * cacheline. This can be beneficial if you're counting cycles as closely
441 * as davem.
442 */
2633d7a0 443struct kmem_cache *
8eb8284b
DW
444kmem_cache_create_usercopy(const char *name, size_t size, size_t align,
445 slab_flags_t flags, size_t useroffset, size_t usersize,
446 void (*ctor)(void *))
77be4b13 447{
40911a79 448 struct kmem_cache *s = NULL;
3dec16ea 449 const char *cache_name;
3965fc36 450 int err;
039363f3 451
77be4b13 452 get_online_cpus();
03afc0e2 453 get_online_mems();
05257a1a 454 memcg_get_cache_ids();
03afc0e2 455
77be4b13 456 mutex_lock(&slab_mutex);
686d550d 457
794b1248 458 err = kmem_cache_sanity_check(name, size);
3aa24f51 459 if (err) {
3965fc36 460 goto out_unlock;
3aa24f51 461 }
686d550d 462
e70954fd
TG
463 /* Refuse requests with allocator specific flags */
464 if (flags & ~SLAB_FLAGS_PERMITTED) {
465 err = -EINVAL;
466 goto out_unlock;
467 }
468
d8843922
GC
469 /*
470 * Some allocators will constraint the set of valid flags to a subset
471 * of all flags. We expect them to define CACHE_CREATE_MASK in this
472 * case, and we'll just provide them with a sanitized version of the
473 * passed flags.
474 */
475 flags &= CACHE_CREATE_MASK;
686d550d 476
8eb8284b
DW
477 /* Fail closed on bad usersize of useroffset values. */
478 if (WARN_ON(!usersize && useroffset) ||
479 WARN_ON(size < usersize || size - usersize < useroffset))
480 usersize = useroffset = 0;
481
482 if (!usersize)
483 s = __kmem_cache_alias(name, size, align, flags, ctor);
794b1248 484 if (s)
3965fc36 485 goto out_unlock;
2633d7a0 486
3dec16ea 487 cache_name = kstrdup_const(name, GFP_KERNEL);
794b1248
VD
488 if (!cache_name) {
489 err = -ENOMEM;
490 goto out_unlock;
491 }
7c9adf5a 492
c9a77a79
VD
493 s = create_cache(cache_name, size, size,
494 calculate_alignment(flags, align, size),
8eb8284b 495 flags, useroffset, usersize, ctor, NULL, NULL);
794b1248
VD
496 if (IS_ERR(s)) {
497 err = PTR_ERR(s);
3dec16ea 498 kfree_const(cache_name);
794b1248 499 }
3965fc36
VD
500
501out_unlock:
20cea968 502 mutex_unlock(&slab_mutex);
03afc0e2 503
05257a1a 504 memcg_put_cache_ids();
03afc0e2 505 put_online_mems();
20cea968
CL
506 put_online_cpus();
507
ba3253c7 508 if (err) {
686d550d
CL
509 if (flags & SLAB_PANIC)
510 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
511 name, err);
512 else {
1170532b 513 pr_warn("kmem_cache_create(%s) failed with error %d\n",
686d550d
CL
514 name, err);
515 dump_stack();
516 }
686d550d
CL
517 return NULL;
518 }
039363f3
CL
519 return s;
520}
8eb8284b
DW
521EXPORT_SYMBOL(kmem_cache_create_usercopy);
522
523struct kmem_cache *
524kmem_cache_create(const char *name, size_t size, size_t align,
525 slab_flags_t flags, void (*ctor)(void *))
526{
527 return kmem_cache_create_usercopy(name, size, align, flags, 0, size,
528 ctor);
529}
794b1248 530EXPORT_SYMBOL(kmem_cache_create);
2633d7a0 531
657dc2f9 532static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
d5b3cf71 533{
657dc2f9
TH
534 LIST_HEAD(to_destroy);
535 struct kmem_cache *s, *s2;
d5b3cf71 536
657dc2f9 537 /*
5f0d5a3a 538 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
657dc2f9
TH
539 * @slab_caches_to_rcu_destroy list. The slab pages are freed
540 * through RCU and and the associated kmem_cache are dereferenced
541 * while freeing the pages, so the kmem_caches should be freed only
542 * after the pending RCU operations are finished. As rcu_barrier()
543 * is a pretty slow operation, we batch all pending destructions
544 * asynchronously.
545 */
546 mutex_lock(&slab_mutex);
547 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
548 mutex_unlock(&slab_mutex);
d5b3cf71 549
657dc2f9
TH
550 if (list_empty(&to_destroy))
551 return;
552
553 rcu_barrier();
554
555 list_for_each_entry_safe(s, s2, &to_destroy, list) {
556#ifdef SLAB_SUPPORTS_SYSFS
557 sysfs_slab_release(s);
558#else
559 slab_kmem_cache_release(s);
560#endif
561 }
d5b3cf71
VD
562}
563
657dc2f9 564static int shutdown_cache(struct kmem_cache *s)
d5b3cf71 565{
f9fa1d91
GT
566 /* free asan quarantined objects */
567 kasan_cache_shutdown(s);
568
657dc2f9
TH
569 if (__kmem_cache_shutdown(s) != 0)
570 return -EBUSY;
d5b3cf71 571
510ded33 572 memcg_unlink_cache(s);
657dc2f9 573 list_del(&s->list);
d5b3cf71 574
5f0d5a3a 575 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
657dc2f9
TH
576 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
577 schedule_work(&slab_caches_to_rcu_destroy_work);
578 } else {
d5b3cf71 579#ifdef SLAB_SUPPORTS_SYSFS
bf5eb3de 580 sysfs_slab_release(s);
d5b3cf71
VD
581#else
582 slab_kmem_cache_release(s);
583#endif
584 }
657dc2f9
TH
585
586 return 0;
d5b3cf71
VD
587}
588
127424c8 589#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
794b1248 590/*
776ed0f0 591 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
794b1248
VD
592 * @memcg: The memory cgroup the new cache is for.
593 * @root_cache: The parent of the new cache.
594 *
595 * This function attempts to create a kmem cache that will serve allocation
596 * requests going from @memcg to @root_cache. The new cache inherits properties
597 * from its parent.
598 */
d5b3cf71
VD
599void memcg_create_kmem_cache(struct mem_cgroup *memcg,
600 struct kmem_cache *root_cache)
2633d7a0 601{
3e0350a3 602 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
33398cf2 603 struct cgroup_subsys_state *css = &memcg->css;
f7ce3190 604 struct memcg_cache_array *arr;
bd673145 605 struct kmem_cache *s = NULL;
794b1248 606 char *cache_name;
f7ce3190 607 int idx;
794b1248
VD
608
609 get_online_cpus();
03afc0e2
VD
610 get_online_mems();
611
794b1248
VD
612 mutex_lock(&slab_mutex);
613
2a4db7eb 614 /*
567e9ab2 615 * The memory cgroup could have been offlined while the cache
2a4db7eb
VD
616 * creation work was pending.
617 */
b6ecd2de 618 if (memcg->kmem_state != KMEM_ONLINE)
2a4db7eb
VD
619 goto out_unlock;
620
f7ce3190
VD
621 idx = memcg_cache_id(memcg);
622 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
623 lockdep_is_held(&slab_mutex));
624
d5b3cf71
VD
625 /*
626 * Since per-memcg caches are created asynchronously on first
627 * allocation (see memcg_kmem_get_cache()), several threads can try to
628 * create the same cache, but only one of them may succeed.
629 */
f7ce3190 630 if (arr->entries[idx])
d5b3cf71
VD
631 goto out_unlock;
632
f1008365 633 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
73f576c0
JW
634 cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
635 css->serial_nr, memcg_name_buf);
794b1248
VD
636 if (!cache_name)
637 goto out_unlock;
638
c9a77a79
VD
639 s = create_cache(cache_name, root_cache->object_size,
640 root_cache->size, root_cache->align,
f773e36d 641 root_cache->flags & CACHE_CREATE_MASK,
8eb8284b 642 root_cache->useroffset, root_cache->usersize,
f773e36d 643 root_cache->ctor, memcg, root_cache);
d5b3cf71
VD
644 /*
645 * If we could not create a memcg cache, do not complain, because
646 * that's not critical at all as we can always proceed with the root
647 * cache.
648 */
bd673145 649 if (IS_ERR(s)) {
794b1248 650 kfree(cache_name);
d5b3cf71 651 goto out_unlock;
bd673145 652 }
794b1248 653
d5b3cf71
VD
654 /*
655 * Since readers won't lock (see cache_from_memcg_idx()), we need a
656 * barrier here to ensure nobody will see the kmem_cache partially
657 * initialized.
658 */
659 smp_wmb();
f7ce3190 660 arr->entries[idx] = s;
d5b3cf71 661
794b1248
VD
662out_unlock:
663 mutex_unlock(&slab_mutex);
03afc0e2
VD
664
665 put_online_mems();
794b1248 666 put_online_cpus();
2633d7a0 667}
b8529907 668
01fb58bc
TH
669static void kmemcg_deactivate_workfn(struct work_struct *work)
670{
671 struct kmem_cache *s = container_of(work, struct kmem_cache,
672 memcg_params.deact_work);
673
674 get_online_cpus();
675 get_online_mems();
676
677 mutex_lock(&slab_mutex);
678
679 s->memcg_params.deact_fn(s);
680
681 mutex_unlock(&slab_mutex);
682
683 put_online_mems();
684 put_online_cpus();
685
686 /* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */
687 css_put(&s->memcg_params.memcg->css);
688}
689
690static void kmemcg_deactivate_rcufn(struct rcu_head *head)
691{
692 struct kmem_cache *s = container_of(head, struct kmem_cache,
693 memcg_params.deact_rcu_head);
694
695 /*
696 * We need to grab blocking locks. Bounce to ->deact_work. The
697 * work item shares the space with the RCU head and can't be
698 * initialized eariler.
699 */
700 INIT_WORK(&s->memcg_params.deact_work, kmemcg_deactivate_workfn);
17cc4dfe 701 queue_work(memcg_kmem_cache_wq, &s->memcg_params.deact_work);
01fb58bc
TH
702}
703
704/**
705 * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a
706 * sched RCU grace period
707 * @s: target kmem_cache
708 * @deact_fn: deactivation function to call
709 *
710 * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex
711 * held after a sched RCU grace period. The slab is guaranteed to stay
712 * alive until @deact_fn is finished. This is to be used from
713 * __kmemcg_cache_deactivate().
714 */
715void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
716 void (*deact_fn)(struct kmem_cache *))
717{
718 if (WARN_ON_ONCE(is_root_cache(s)) ||
719 WARN_ON_ONCE(s->memcg_params.deact_fn))
720 return;
721
722 /* pin memcg so that @s doesn't get destroyed in the middle */
723 css_get(&s->memcg_params.memcg->css);
724
725 s->memcg_params.deact_fn = deact_fn;
726 call_rcu_sched(&s->memcg_params.deact_rcu_head, kmemcg_deactivate_rcufn);
727}
728
2a4db7eb
VD
729void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
730{
731 int idx;
732 struct memcg_cache_array *arr;
d6e0b7fa 733 struct kmem_cache *s, *c;
2a4db7eb
VD
734
735 idx = memcg_cache_id(memcg);
736
d6e0b7fa
VD
737 get_online_cpus();
738 get_online_mems();
739
2a4db7eb 740 mutex_lock(&slab_mutex);
510ded33 741 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
2a4db7eb
VD
742 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
743 lockdep_is_held(&slab_mutex));
d6e0b7fa
VD
744 c = arr->entries[idx];
745 if (!c)
746 continue;
747
c9fc5864 748 __kmemcg_cache_deactivate(c);
2a4db7eb
VD
749 arr->entries[idx] = NULL;
750 }
751 mutex_unlock(&slab_mutex);
d6e0b7fa
VD
752
753 put_online_mems();
754 put_online_cpus();
2a4db7eb
VD
755}
756
d5b3cf71 757void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
b8529907 758{
d5b3cf71 759 struct kmem_cache *s, *s2;
b8529907 760
d5b3cf71
VD
761 get_online_cpus();
762 get_online_mems();
b8529907 763
b8529907 764 mutex_lock(&slab_mutex);
bc2791f8
TH
765 list_for_each_entry_safe(s, s2, &memcg->kmem_caches,
766 memcg_params.kmem_caches_node) {
d5b3cf71
VD
767 /*
768 * The cgroup is about to be freed and therefore has no charges
769 * left. Hence, all its caches must be empty by now.
770 */
657dc2f9 771 BUG_ON(shutdown_cache(s));
d5b3cf71
VD
772 }
773 mutex_unlock(&slab_mutex);
b8529907 774
d5b3cf71
VD
775 put_online_mems();
776 put_online_cpus();
b8529907 777}
d60fdcc9 778
657dc2f9 779static int shutdown_memcg_caches(struct kmem_cache *s)
d60fdcc9
VD
780{
781 struct memcg_cache_array *arr;
782 struct kmem_cache *c, *c2;
783 LIST_HEAD(busy);
784 int i;
785
786 BUG_ON(!is_root_cache(s));
787
788 /*
789 * First, shutdown active caches, i.e. caches that belong to online
790 * memory cgroups.
791 */
792 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
793 lockdep_is_held(&slab_mutex));
794 for_each_memcg_cache_index(i) {
795 c = arr->entries[i];
796 if (!c)
797 continue;
657dc2f9 798 if (shutdown_cache(c))
d60fdcc9
VD
799 /*
800 * The cache still has objects. Move it to a temporary
801 * list so as not to try to destroy it for a second
802 * time while iterating over inactive caches below.
803 */
9eeadc8b 804 list_move(&c->memcg_params.children_node, &busy);
d60fdcc9
VD
805 else
806 /*
807 * The cache is empty and will be destroyed soon. Clear
808 * the pointer to it in the memcg_caches array so that
809 * it will never be accessed even if the root cache
810 * stays alive.
811 */
812 arr->entries[i] = NULL;
813 }
814
815 /*
816 * Second, shutdown all caches left from memory cgroups that are now
817 * offline.
818 */
9eeadc8b
TH
819 list_for_each_entry_safe(c, c2, &s->memcg_params.children,
820 memcg_params.children_node)
657dc2f9 821 shutdown_cache(c);
d60fdcc9 822
9eeadc8b 823 list_splice(&busy, &s->memcg_params.children);
d60fdcc9
VD
824
825 /*
826 * A cache being destroyed must be empty. In particular, this means
827 * that all per memcg caches attached to it must be empty too.
828 */
9eeadc8b 829 if (!list_empty(&s->memcg_params.children))
d60fdcc9
VD
830 return -EBUSY;
831 return 0;
832}
833#else
657dc2f9 834static inline int shutdown_memcg_caches(struct kmem_cache *s)
d60fdcc9
VD
835{
836 return 0;
837}
127424c8 838#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
97d06609 839
41a21285
CL
840void slab_kmem_cache_release(struct kmem_cache *s)
841{
52b4b950 842 __kmem_cache_release(s);
f7ce3190 843 destroy_memcg_params(s);
3dec16ea 844 kfree_const(s->name);
41a21285
CL
845 kmem_cache_free(kmem_cache, s);
846}
847
945cf2b6
CL
848void kmem_cache_destroy(struct kmem_cache *s)
849{
d60fdcc9 850 int err;
d5b3cf71 851
3942d299
SS
852 if (unlikely(!s))
853 return;
854
945cf2b6 855 get_online_cpus();
03afc0e2
VD
856 get_online_mems();
857
945cf2b6 858 mutex_lock(&slab_mutex);
b8529907 859
945cf2b6 860 s->refcount--;
b8529907
VD
861 if (s->refcount)
862 goto out_unlock;
863
657dc2f9 864 err = shutdown_memcg_caches(s);
d60fdcc9 865 if (!err)
657dc2f9 866 err = shutdown_cache(s);
b8529907 867
cd918c55 868 if (err) {
756a025f
JP
869 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
870 s->name);
cd918c55
VD
871 dump_stack();
872 }
b8529907
VD
873out_unlock:
874 mutex_unlock(&slab_mutex);
d5b3cf71 875
03afc0e2 876 put_online_mems();
945cf2b6
CL
877 put_online_cpus();
878}
879EXPORT_SYMBOL(kmem_cache_destroy);
880
03afc0e2
VD
881/**
882 * kmem_cache_shrink - Shrink a cache.
883 * @cachep: The cache to shrink.
884 *
885 * Releases as many slabs as possible for a cache.
886 * To help debugging, a zero exit status indicates all slabs were released.
887 */
888int kmem_cache_shrink(struct kmem_cache *cachep)
889{
890 int ret;
891
892 get_online_cpus();
893 get_online_mems();
55834c59 894 kasan_cache_shrink(cachep);
c9fc5864 895 ret = __kmem_cache_shrink(cachep);
03afc0e2
VD
896 put_online_mems();
897 put_online_cpus();
898 return ret;
899}
900EXPORT_SYMBOL(kmem_cache_shrink);
901
fda90124 902bool slab_is_available(void)
97d06609
CL
903{
904 return slab_state >= UP;
905}
b7454ad3 906
45530c44
CL
907#ifndef CONFIG_SLOB
908/* Create a cache during boot when no slab services are available yet */
909void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
8eb8284b 910 slab_flags_t flags, size_t useroffset, size_t usersize)
45530c44
CL
911{
912 int err;
913
914 s->name = name;
915 s->size = s->object_size = size;
45906855 916 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
8eb8284b
DW
917 s->useroffset = useroffset;
918 s->usersize = usersize;
f7ce3190
VD
919
920 slab_init_memcg_params(s);
921
45530c44
CL
922 err = __kmem_cache_create(s, flags);
923
924 if (err)
31ba7346 925 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
45530c44
CL
926 name, size, err);
927
928 s->refcount = -1; /* Exempt from merging for now */
929}
930
931struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
d50112ed 932 slab_flags_t flags)
45530c44
CL
933{
934 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
935
936 if (!s)
937 panic("Out of memory when creating slab %s\n", name);
938
8eb8284b 939 create_boot_cache(s, name, size, flags, 0, size);
45530c44 940 list_add(&s->list, &slab_caches);
510ded33 941 memcg_link_cache(s);
45530c44
CL
942 s->refcount = 1;
943 return s;
944}
945
9425c58e
CL
946struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
947EXPORT_SYMBOL(kmalloc_caches);
948
949#ifdef CONFIG_ZONE_DMA
950struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
951EXPORT_SYMBOL(kmalloc_dma_caches);
952#endif
953
2c59dd65
CL
954/*
955 * Conversion table for small slabs sizes / 8 to the index in the
956 * kmalloc array. This is necessary for slabs < 192 since we have non power
957 * of two cache sizes there. The size of larger slabs can be determined using
958 * fls.
959 */
960static s8 size_index[24] = {
961 3, /* 8 */
962 4, /* 16 */
963 5, /* 24 */
964 5, /* 32 */
965 6, /* 40 */
966 6, /* 48 */
967 6, /* 56 */
968 6, /* 64 */
969 1, /* 72 */
970 1, /* 80 */
971 1, /* 88 */
972 1, /* 96 */
973 7, /* 104 */
974 7, /* 112 */
975 7, /* 120 */
976 7, /* 128 */
977 2, /* 136 */
978 2, /* 144 */
979 2, /* 152 */
980 2, /* 160 */
981 2, /* 168 */
982 2, /* 176 */
983 2, /* 184 */
984 2 /* 192 */
985};
986
987static inline int size_index_elem(size_t bytes)
988{
989 return (bytes - 1) / 8;
990}
991
992/*
993 * Find the kmem_cache structure that serves a given size of
994 * allocation
995 */
996struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
997{
998 int index;
999
9de1bc87 1000 if (unlikely(size > KMALLOC_MAX_SIZE)) {
907985f4 1001 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
6286ae97 1002 return NULL;
907985f4 1003 }
6286ae97 1004
2c59dd65
CL
1005 if (size <= 192) {
1006 if (!size)
1007 return ZERO_SIZE_PTR;
1008
1009 index = size_index[size_index_elem(size)];
1010 } else
1011 index = fls(size - 1);
1012
1013#ifdef CONFIG_ZONE_DMA
b1e05416 1014 if (unlikely((flags & GFP_DMA)))
2c59dd65
CL
1015 return kmalloc_dma_caches[index];
1016
1017#endif
1018 return kmalloc_caches[index];
1019}
1020
4066c33d
GG
1021/*
1022 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
1023 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
1024 * kmalloc-67108864.
1025 */
af3b5f87 1026const struct kmalloc_info_struct kmalloc_info[] __initconst = {
4066c33d
GG
1027 {NULL, 0}, {"kmalloc-96", 96},
1028 {"kmalloc-192", 192}, {"kmalloc-8", 8},
1029 {"kmalloc-16", 16}, {"kmalloc-32", 32},
1030 {"kmalloc-64", 64}, {"kmalloc-128", 128},
1031 {"kmalloc-256", 256}, {"kmalloc-512", 512},
1032 {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048},
1033 {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192},
1034 {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768},
1035 {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072},
1036 {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288},
1037 {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152},
1038 {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608},
1039 {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432},
1040 {"kmalloc-67108864", 67108864}
1041};
1042
f97d5f63 1043/*
34cc6990
DS
1044 * Patch up the size_index table if we have strange large alignment
1045 * requirements for the kmalloc array. This is only the case for
1046 * MIPS it seems. The standard arches will not generate any code here.
1047 *
1048 * Largest permitted alignment is 256 bytes due to the way we
1049 * handle the index determination for the smaller caches.
1050 *
1051 * Make sure that nothing crazy happens if someone starts tinkering
1052 * around with ARCH_KMALLOC_MINALIGN
f97d5f63 1053 */
34cc6990 1054void __init setup_kmalloc_cache_index_table(void)
f97d5f63
CL
1055{
1056 int i;
1057
2c59dd65
CL
1058 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
1059 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
1060
1061 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
1062 int elem = size_index_elem(i);
1063
1064 if (elem >= ARRAY_SIZE(size_index))
1065 break;
1066 size_index[elem] = KMALLOC_SHIFT_LOW;
1067 }
1068
1069 if (KMALLOC_MIN_SIZE >= 64) {
1070 /*
1071 * The 96 byte size cache is not used if the alignment
1072 * is 64 byte.
1073 */
1074 for (i = 64 + 8; i <= 96; i += 8)
1075 size_index[size_index_elem(i)] = 7;
1076
1077 }
1078
1079 if (KMALLOC_MIN_SIZE >= 128) {
1080 /*
1081 * The 192 byte sized cache is not used if the alignment
1082 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1083 * instead.
1084 */
1085 for (i = 128 + 8; i <= 192; i += 8)
1086 size_index[size_index_elem(i)] = 8;
1087 }
34cc6990
DS
1088}
1089
d50112ed 1090static void __init new_kmalloc_cache(int idx, slab_flags_t flags)
a9730fca
CL
1091{
1092 kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
1093 kmalloc_info[idx].size, flags);
1094}
1095
34cc6990
DS
1096/*
1097 * Create the kmalloc array. Some of the regular kmalloc arrays
1098 * may already have been created because they were needed to
1099 * enable allocations for slab creation.
1100 */
d50112ed 1101void __init create_kmalloc_caches(slab_flags_t flags)
34cc6990
DS
1102{
1103 int i;
1104
a9730fca
CL
1105 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
1106 if (!kmalloc_caches[i])
1107 new_kmalloc_cache(i, flags);
f97d5f63 1108
956e46ef 1109 /*
a9730fca
CL
1110 * Caches that are not of the two-to-the-power-of size.
1111 * These have to be created immediately after the
1112 * earlier power of two caches
956e46ef 1113 */
a9730fca
CL
1114 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
1115 new_kmalloc_cache(1, flags);
1116 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
1117 new_kmalloc_cache(2, flags);
8a965b3b
CL
1118 }
1119
f97d5f63
CL
1120 /* Kmalloc array is now usable */
1121 slab_state = UP;
1122
f97d5f63
CL
1123#ifdef CONFIG_ZONE_DMA
1124 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1125 struct kmem_cache *s = kmalloc_caches[i];
1126
1127 if (s) {
1128 int size = kmalloc_size(i);
1129 char *n = kasprintf(GFP_NOWAIT,
1130 "dma-kmalloc-%d", size);
1131
1132 BUG_ON(!n);
1133 kmalloc_dma_caches[i] = create_kmalloc_cache(n,
1134 size, SLAB_CACHE_DMA | flags);
1135 }
1136 }
1137#endif
1138}
45530c44
CL
1139#endif /* !CONFIG_SLOB */
1140
cea371f4
VD
1141/*
1142 * To avoid unnecessary overhead, we pass through large allocation requests
1143 * directly to the page allocator. We use __GFP_COMP, because we will need to
1144 * know the allocation order to free the pages properly in kfree.
1145 */
52383431
VD
1146void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1147{
1148 void *ret;
1149 struct page *page;
1150
1151 flags |= __GFP_COMP;
4949148a 1152 page = alloc_pages(flags, order);
52383431
VD
1153 ret = page ? page_address(page) : NULL;
1154 kmemleak_alloc(ret, size, 1, flags);
505f5dcb 1155 kasan_kmalloc_large(ret, size, flags);
52383431
VD
1156 return ret;
1157}
1158EXPORT_SYMBOL(kmalloc_order);
1159
f1b6eb6e
CL
1160#ifdef CONFIG_TRACING
1161void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1162{
1163 void *ret = kmalloc_order(size, flags, order);
1164 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1165 return ret;
1166}
1167EXPORT_SYMBOL(kmalloc_order_trace);
1168#endif
45530c44 1169
7c00fce9
TG
1170#ifdef CONFIG_SLAB_FREELIST_RANDOM
1171/* Randomize a generic freelist */
1172static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1173 size_t count)
1174{
1175 size_t i;
1176 unsigned int rand;
1177
1178 for (i = 0; i < count; i++)
1179 list[i] = i;
1180
1181 /* Fisher-Yates shuffle */
1182 for (i = count - 1; i > 0; i--) {
1183 rand = prandom_u32_state(state);
1184 rand %= (i + 1);
1185 swap(list[i], list[rand]);
1186 }
1187}
1188
1189/* Create a random sequence per cache */
1190int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1191 gfp_t gfp)
1192{
1193 struct rnd_state state;
1194
1195 if (count < 2 || cachep->random_seq)
1196 return 0;
1197
1198 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1199 if (!cachep->random_seq)
1200 return -ENOMEM;
1201
1202 /* Get best entropy at this stage of boot */
1203 prandom_seed_state(&state, get_random_long());
1204
1205 freelist_randomize(&state, cachep->random_seq, count);
1206 return 0;
1207}
1208
1209/* Destroy the per-cache random freelist sequence */
1210void cache_random_seq_destroy(struct kmem_cache *cachep)
1211{
1212 kfree(cachep->random_seq);
1213 cachep->random_seq = NULL;
1214}
1215#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1216
5b365771 1217#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
e9b4db2b
WL
1218#ifdef CONFIG_SLAB
1219#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1220#else
1221#define SLABINFO_RIGHTS S_IRUSR
1222#endif
1223
b047501c 1224static void print_slabinfo_header(struct seq_file *m)
bcee6e2a
GC
1225{
1226 /*
1227 * Output format version, so at least we can change it
1228 * without _too_ many complaints.
1229 */
1230#ifdef CONFIG_DEBUG_SLAB
1231 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1232#else
1233 seq_puts(m, "slabinfo - version: 2.1\n");
1234#endif
756a025f 1235 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
bcee6e2a
GC
1236 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1237 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1238#ifdef CONFIG_DEBUG_SLAB
756a025f 1239 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
bcee6e2a
GC
1240 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1241#endif
1242 seq_putc(m, '\n');
1243}
1244
1df3b26f 1245void *slab_start(struct seq_file *m, loff_t *pos)
b7454ad3 1246{
b7454ad3 1247 mutex_lock(&slab_mutex);
510ded33 1248 return seq_list_start(&slab_root_caches, *pos);
b7454ad3
GC
1249}
1250
276a2439 1251void *slab_next(struct seq_file *m, void *p, loff_t *pos)
b7454ad3 1252{
510ded33 1253 return seq_list_next(p, &slab_root_caches, pos);
b7454ad3
GC
1254}
1255
276a2439 1256void slab_stop(struct seq_file *m, void *p)
b7454ad3
GC
1257{
1258 mutex_unlock(&slab_mutex);
1259}
1260
749c5415
GC
1261static void
1262memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1263{
1264 struct kmem_cache *c;
1265 struct slabinfo sinfo;
749c5415
GC
1266
1267 if (!is_root_cache(s))
1268 return;
1269
426589f5 1270 for_each_memcg_cache(c, s) {
749c5415
GC
1271 memset(&sinfo, 0, sizeof(sinfo));
1272 get_slabinfo(c, &sinfo);
1273
1274 info->active_slabs += sinfo.active_slabs;
1275 info->num_slabs += sinfo.num_slabs;
1276 info->shared_avail += sinfo.shared_avail;
1277 info->active_objs += sinfo.active_objs;
1278 info->num_objs += sinfo.num_objs;
1279 }
1280}
1281
b047501c 1282static void cache_show(struct kmem_cache *s, struct seq_file *m)
b7454ad3 1283{
0d7561c6
GC
1284 struct slabinfo sinfo;
1285
1286 memset(&sinfo, 0, sizeof(sinfo));
1287 get_slabinfo(s, &sinfo);
1288
749c5415
GC
1289 memcg_accumulate_slabinfo(s, &sinfo);
1290
0d7561c6 1291 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
749c5415 1292 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
0d7561c6
GC
1293 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1294
1295 seq_printf(m, " : tunables %4u %4u %4u",
1296 sinfo.limit, sinfo.batchcount, sinfo.shared);
1297 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1298 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1299 slabinfo_show_stats(m, s);
1300 seq_putc(m, '\n');
b7454ad3
GC
1301}
1302
1df3b26f 1303static int slab_show(struct seq_file *m, void *p)
749c5415 1304{
510ded33 1305 struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
749c5415 1306
510ded33 1307 if (p == slab_root_caches.next)
1df3b26f 1308 print_slabinfo_header(m);
510ded33 1309 cache_show(s, m);
b047501c
VD
1310 return 0;
1311}
1312
852d8be0
YS
1313void dump_unreclaimable_slab(void)
1314{
1315 struct kmem_cache *s, *s2;
1316 struct slabinfo sinfo;
1317
1318 /*
1319 * Here acquiring slab_mutex is risky since we don't prefer to get
1320 * sleep in oom path. But, without mutex hold, it may introduce a
1321 * risk of crash.
1322 * Use mutex_trylock to protect the list traverse, dump nothing
1323 * without acquiring the mutex.
1324 */
1325 if (!mutex_trylock(&slab_mutex)) {
1326 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1327 return;
1328 }
1329
1330 pr_info("Unreclaimable slab info:\n");
1331 pr_info("Name Used Total\n");
1332
1333 list_for_each_entry_safe(s, s2, &slab_caches, list) {
1334 if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
1335 continue;
1336
1337 get_slabinfo(s, &sinfo);
1338
1339 if (sinfo.num_objs > 0)
1340 pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
1341 (sinfo.active_objs * s->size) / 1024,
1342 (sinfo.num_objs * s->size) / 1024);
1343 }
1344 mutex_unlock(&slab_mutex);
1345}
1346
5b365771 1347#if defined(CONFIG_MEMCG)
bc2791f8
TH
1348void *memcg_slab_start(struct seq_file *m, loff_t *pos)
1349{
1350 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1351
1352 mutex_lock(&slab_mutex);
1353 return seq_list_start(&memcg->kmem_caches, *pos);
1354}
1355
1356void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
1357{
1358 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1359
1360 return seq_list_next(p, &memcg->kmem_caches, pos);
1361}
1362
1363void memcg_slab_stop(struct seq_file *m, void *p)
1364{
1365 mutex_unlock(&slab_mutex);
1366}
1367
b047501c
VD
1368int memcg_slab_show(struct seq_file *m, void *p)
1369{
bc2791f8
TH
1370 struct kmem_cache *s = list_entry(p, struct kmem_cache,
1371 memcg_params.kmem_caches_node);
b047501c
VD
1372 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1373
bc2791f8 1374 if (p == memcg->kmem_caches.next)
b047501c 1375 print_slabinfo_header(m);
bc2791f8 1376 cache_show(s, m);
b047501c 1377 return 0;
749c5415 1378}
b047501c 1379#endif
749c5415 1380
b7454ad3
GC
1381/*
1382 * slabinfo_op - iterator that generates /proc/slabinfo
1383 *
1384 * Output layout:
1385 * cache-name
1386 * num-active-objs
1387 * total-objs
1388 * object size
1389 * num-active-slabs
1390 * total-slabs
1391 * num-pages-per-slab
1392 * + further values on SMP and with statistics enabled
1393 */
1394static const struct seq_operations slabinfo_op = {
1df3b26f 1395 .start = slab_start,
276a2439
WL
1396 .next = slab_next,
1397 .stop = slab_stop,
1df3b26f 1398 .show = slab_show,
b7454ad3
GC
1399};
1400
1401static int slabinfo_open(struct inode *inode, struct file *file)
1402{
1403 return seq_open(file, &slabinfo_op);
1404}
1405
1406static const struct file_operations proc_slabinfo_operations = {
1407 .open = slabinfo_open,
1408 .read = seq_read,
1409 .write = slabinfo_write,
1410 .llseek = seq_lseek,
1411 .release = seq_release,
1412};
1413
1414static int __init slab_proc_init(void)
1415{
e9b4db2b
WL
1416 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1417 &proc_slabinfo_operations);
b7454ad3
GC
1418 return 0;
1419}
1420module_init(slab_proc_init);
5b365771 1421#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
928cec9c
AR
1422
1423static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1424 gfp_t flags)
1425{
1426 void *ret;
1427 size_t ks = 0;
1428
1429 if (p)
1430 ks = ksize(p);
1431
0316bec2 1432 if (ks >= new_size) {
505f5dcb 1433 kasan_krealloc((void *)p, new_size, flags);
928cec9c 1434 return (void *)p;
0316bec2 1435 }
928cec9c
AR
1436
1437 ret = kmalloc_track_caller(new_size, flags);
1438 if (ret && p)
1439 memcpy(ret, p, ks);
1440
1441 return ret;
1442}
1443
1444/**
1445 * __krealloc - like krealloc() but don't free @p.
1446 * @p: object to reallocate memory for.
1447 * @new_size: how many bytes of memory are required.
1448 * @flags: the type of memory to allocate.
1449 *
1450 * This function is like krealloc() except it never frees the originally
1451 * allocated buffer. Use this if you don't want to free the buffer immediately
1452 * like, for example, with RCU.
1453 */
1454void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1455{
1456 if (unlikely(!new_size))
1457 return ZERO_SIZE_PTR;
1458
1459 return __do_krealloc(p, new_size, flags);
1460
1461}
1462EXPORT_SYMBOL(__krealloc);
1463
1464/**
1465 * krealloc - reallocate memory. The contents will remain unchanged.
1466 * @p: object to reallocate memory for.
1467 * @new_size: how many bytes of memory are required.
1468 * @flags: the type of memory to allocate.
1469 *
1470 * The contents of the object pointed to are preserved up to the
1471 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1472 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1473 * %NULL pointer, the object pointed to is freed.
1474 */
1475void *krealloc(const void *p, size_t new_size, gfp_t flags)
1476{
1477 void *ret;
1478
1479 if (unlikely(!new_size)) {
1480 kfree(p);
1481 return ZERO_SIZE_PTR;
1482 }
1483
1484 ret = __do_krealloc(p, new_size, flags);
1485 if (ret && p != ret)
1486 kfree(p);
1487
1488 return ret;
1489}
1490EXPORT_SYMBOL(krealloc);
1491
1492/**
1493 * kzfree - like kfree but zero memory
1494 * @p: object to free memory of
1495 *
1496 * The memory of the object @p points to is zeroed before freed.
1497 * If @p is %NULL, kzfree() does nothing.
1498 *
1499 * Note: this function zeroes the whole allocated buffer which can be a good
1500 * deal bigger than the requested buffer size passed to kmalloc(). So be
1501 * careful when using this function in performance sensitive code.
1502 */
1503void kzfree(const void *p)
1504{
1505 size_t ks;
1506 void *mem = (void *)p;
1507
1508 if (unlikely(ZERO_OR_NULL_PTR(mem)))
1509 return;
1510 ks = ksize(mem);
1511 memset(mem, 0, ks);
1512 kfree(mem);
1513}
1514EXPORT_SYMBOL(kzfree);
1515
1516/* Tracepoints definitions. */
1517EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1518EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1519EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1520EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1521EXPORT_TRACEPOINT_SYMBOL(kfree);
1522EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
This page took 0.601798 seconds and 4 git commands to generate.