]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * mm/rmap.c - physical to virtual reverse mappings | |
3 | * | |
4 | * Copyright 2001, Rik van Riel <[email protected]> | |
5 | * Released under the General Public License (GPL). | |
6 | * | |
7 | * Simple, low overhead reverse mapping scheme. | |
8 | * Please try to keep this thing as modular as possible. | |
9 | * | |
10 | * Provides methods for unmapping each kind of mapped page: | |
11 | * the anon methods track anonymous pages, and | |
12 | * the file methods track pages belonging to an inode. | |
13 | * | |
14 | * Original design by Rik van Riel <[email protected]> 2001 | |
15 | * File methods by Dave McCracken <[email protected]> 2003, 2004 | |
16 | * Anonymous methods by Andrea Arcangeli <[email protected]> 2004 | |
98f32602 | 17 | * Contributions by Hugh Dickins 2003, 2004 |
1da177e4 LT |
18 | */ |
19 | ||
20 | /* | |
21 | * Lock ordering in mm: | |
22 | * | |
9608703e | 23 | * inode->i_rwsem (while writing or truncating, not reading or faulting) |
c1e8d7c6 | 24 | * mm->mmap_lock |
730633f0 | 25 | * mapping->invalidate_lock (in filemap_fault) |
3a47c54f | 26 | * page->flags PG_locked (lock_page) |
8d9bfb26 | 27 | * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below) |
55fd6fcc SB |
28 | * vma_start_write |
29 | * mapping->i_mmap_rwsem | |
30 | * anon_vma->rwsem | |
31 | * mm->page_table_lock or pte_lock | |
32 | * swap_lock (in swap_duplicate, swap_info_get) | |
33 | * mmlist_lock (in mmput, drain_mmlist and others) | |
34 | * mapping->private_lock (in block_dirty_folio) | |
35 | * folio_lock_memcg move_lock (in block_dirty_folio) | |
36 | * i_pages lock (widely used) | |
37 | * lruvec->lru_lock (in folio_lruvec_lock_irq) | |
38 | * inode->i_lock (in set_page_dirty's __mark_inode_dirty) | |
39 | * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) | |
40 | * sb_lock (within inode_lock in fs/fs-writeback.c) | |
41 | * i_pages lock (widely used, in set_page_dirty, | |
42 | * in arch-dependent flush_dcache_mmap_lock, | |
43 | * within bdi.wb->list_lock in __sync_single_inode) | |
6a46079c | 44 | * |
9608703e | 45 | * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon) |
9b679320 | 46 | * ->tasklist_lock |
6a46079c | 47 | * pte map lock |
c0d0381a | 48 | * |
8d9bfb26 MK |
49 | * hugetlbfs PageHuge() take locks in this order: |
50 | * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) | |
51 | * vma_lock (hugetlb specific lock for pmd_sharing) | |
52 | * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing) | |
53 | * page->flags PG_locked (lock_page) | |
1da177e4 LT |
54 | */ |
55 | ||
56 | #include <linux/mm.h> | |
6e84f315 | 57 | #include <linux/sched/mm.h> |
29930025 | 58 | #include <linux/sched/task.h> |
1da177e4 LT |
59 | #include <linux/pagemap.h> |
60 | #include <linux/swap.h> | |
61 | #include <linux/swapops.h> | |
62 | #include <linux/slab.h> | |
63 | #include <linux/init.h> | |
5ad64688 | 64 | #include <linux/ksm.h> |
1da177e4 LT |
65 | #include <linux/rmap.h> |
66 | #include <linux/rcupdate.h> | |
b95f1b31 | 67 | #include <linux/export.h> |
8a9f3ccd | 68 | #include <linux/memcontrol.h> |
cddb8a5c | 69 | #include <linux/mmu_notifier.h> |
64cdd548 | 70 | #include <linux/migrate.h> |
0fe6e20b | 71 | #include <linux/hugetlb.h> |
444f84fd | 72 | #include <linux/huge_mm.h> |
ef5d437f | 73 | #include <linux/backing-dev.h> |
33c3fc71 | 74 | #include <linux/page_idle.h> |
a5430dda | 75 | #include <linux/memremap.h> |
bce73e48 | 76 | #include <linux/userfaultfd_k.h> |
999dad82 | 77 | #include <linux/mm_inline.h> |
1da177e4 LT |
78 | |
79 | #include <asm/tlbflush.h> | |
80 | ||
4cc79b33 | 81 | #define CREATE_TRACE_POINTS |
72b252ae | 82 | #include <trace/events/tlb.h> |
4cc79b33 | 83 | #include <trace/events/migrate.h> |
72b252ae | 84 | |
b291f000 NP |
85 | #include "internal.h" |
86 | ||
fdd2e5f8 | 87 | static struct kmem_cache *anon_vma_cachep; |
5beb4930 | 88 | static struct kmem_cache *anon_vma_chain_cachep; |
fdd2e5f8 AB |
89 | |
90 | static inline struct anon_vma *anon_vma_alloc(void) | |
91 | { | |
01d8b20d PZ |
92 | struct anon_vma *anon_vma; |
93 | ||
94 | anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); | |
95 | if (anon_vma) { | |
96 | atomic_set(&anon_vma->refcount, 1); | |
2555283e JH |
97 | anon_vma->num_children = 0; |
98 | anon_vma->num_active_vmas = 0; | |
7a3ef208 | 99 | anon_vma->parent = anon_vma; |
01d8b20d PZ |
100 | /* |
101 | * Initialise the anon_vma root to point to itself. If called | |
102 | * from fork, the root will be reset to the parents anon_vma. | |
103 | */ | |
104 | anon_vma->root = anon_vma; | |
105 | } | |
106 | ||
107 | return anon_vma; | |
fdd2e5f8 AB |
108 | } |
109 | ||
01d8b20d | 110 | static inline void anon_vma_free(struct anon_vma *anon_vma) |
fdd2e5f8 | 111 | { |
01d8b20d | 112 | VM_BUG_ON(atomic_read(&anon_vma->refcount)); |
88c22088 PZ |
113 | |
114 | /* | |
2f031c6f | 115 | * Synchronize against folio_lock_anon_vma_read() such that |
88c22088 PZ |
116 | * we can safely hold the lock without the anon_vma getting |
117 | * freed. | |
118 | * | |
119 | * Relies on the full mb implied by the atomic_dec_and_test() from | |
120 | * put_anon_vma() against the acquire barrier implied by | |
2f031c6f | 121 | * down_read_trylock() from folio_lock_anon_vma_read(). This orders: |
88c22088 | 122 | * |
2f031c6f | 123 | * folio_lock_anon_vma_read() VS put_anon_vma() |
4fc3f1d6 | 124 | * down_read_trylock() atomic_dec_and_test() |
88c22088 | 125 | * LOCK MB |
4fc3f1d6 | 126 | * atomic_read() rwsem_is_locked() |
88c22088 PZ |
127 | * |
128 | * LOCK should suffice since the actual taking of the lock must | |
129 | * happen _before_ what follows. | |
130 | */ | |
7f39dda9 | 131 | might_sleep(); |
5a505085 | 132 | if (rwsem_is_locked(&anon_vma->root->rwsem)) { |
4fc3f1d6 | 133 | anon_vma_lock_write(anon_vma); |
08b52706 | 134 | anon_vma_unlock_write(anon_vma); |
88c22088 PZ |
135 | } |
136 | ||
fdd2e5f8 AB |
137 | kmem_cache_free(anon_vma_cachep, anon_vma); |
138 | } | |
1da177e4 | 139 | |
dd34739c | 140 | static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) |
5beb4930 | 141 | { |
dd34739c | 142 | return kmem_cache_alloc(anon_vma_chain_cachep, gfp); |
5beb4930 RR |
143 | } |
144 | ||
e574b5fd | 145 | static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) |
5beb4930 RR |
146 | { |
147 | kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); | |
148 | } | |
149 | ||
6583a843 KC |
150 | static void anon_vma_chain_link(struct vm_area_struct *vma, |
151 | struct anon_vma_chain *avc, | |
152 | struct anon_vma *anon_vma) | |
153 | { | |
154 | avc->vma = vma; | |
155 | avc->anon_vma = anon_vma; | |
156 | list_add(&avc->same_vma, &vma->anon_vma_chain); | |
bf181b9f | 157 | anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); |
6583a843 KC |
158 | } |
159 | ||
d9d332e0 | 160 | /** |
d5a187da | 161 | * __anon_vma_prepare - attach an anon_vma to a memory region |
d9d332e0 LT |
162 | * @vma: the memory region in question |
163 | * | |
164 | * This makes sure the memory mapping described by 'vma' has | |
165 | * an 'anon_vma' attached to it, so that we can associate the | |
166 | * anonymous pages mapped into it with that anon_vma. | |
167 | * | |
d5a187da VB |
168 | * The common case will be that we already have one, which |
169 | * is handled inline by anon_vma_prepare(). But if | |
23a0790a | 170 | * not we either need to find an adjacent mapping that we |
d9d332e0 LT |
171 | * can re-use the anon_vma from (very common when the only |
172 | * reason for splitting a vma has been mprotect()), or we | |
173 | * allocate a new one. | |
174 | * | |
175 | * Anon-vma allocations are very subtle, because we may have | |
2f031c6f | 176 | * optimistically looked up an anon_vma in folio_lock_anon_vma_read() |
aaf1f990 | 177 | * and that may actually touch the rwsem even in the newly |
d9d332e0 LT |
178 | * allocated vma (it depends on RCU to make sure that the |
179 | * anon_vma isn't actually destroyed). | |
180 | * | |
181 | * As a result, we need to do proper anon_vma locking even | |
182 | * for the new allocation. At the same time, we do not want | |
183 | * to do any locking for the common case of already having | |
184 | * an anon_vma. | |
185 | * | |
c1e8d7c6 | 186 | * This must be called with the mmap_lock held for reading. |
d9d332e0 | 187 | */ |
d5a187da | 188 | int __anon_vma_prepare(struct vm_area_struct *vma) |
1da177e4 | 189 | { |
d5a187da VB |
190 | struct mm_struct *mm = vma->vm_mm; |
191 | struct anon_vma *anon_vma, *allocated; | |
5beb4930 | 192 | struct anon_vma_chain *avc; |
1da177e4 LT |
193 | |
194 | might_sleep(); | |
1da177e4 | 195 | |
d5a187da VB |
196 | avc = anon_vma_chain_alloc(GFP_KERNEL); |
197 | if (!avc) | |
198 | goto out_enomem; | |
199 | ||
200 | anon_vma = find_mergeable_anon_vma(vma); | |
201 | allocated = NULL; | |
202 | if (!anon_vma) { | |
203 | anon_vma = anon_vma_alloc(); | |
204 | if (unlikely(!anon_vma)) | |
205 | goto out_enomem_free_avc; | |
2555283e | 206 | anon_vma->num_children++; /* self-parent link for new root */ |
d5a187da VB |
207 | allocated = anon_vma; |
208 | } | |
5beb4930 | 209 | |
d5a187da VB |
210 | anon_vma_lock_write(anon_vma); |
211 | /* page_table_lock to protect against threads */ | |
212 | spin_lock(&mm->page_table_lock); | |
213 | if (likely(!vma->anon_vma)) { | |
214 | vma->anon_vma = anon_vma; | |
215 | anon_vma_chain_link(vma, avc, anon_vma); | |
2555283e | 216 | anon_vma->num_active_vmas++; |
d9d332e0 | 217 | allocated = NULL; |
d5a187da VB |
218 | avc = NULL; |
219 | } | |
220 | spin_unlock(&mm->page_table_lock); | |
221 | anon_vma_unlock_write(anon_vma); | |
1da177e4 | 222 | |
d5a187da VB |
223 | if (unlikely(allocated)) |
224 | put_anon_vma(allocated); | |
225 | if (unlikely(avc)) | |
226 | anon_vma_chain_free(avc); | |
31f2b0eb | 227 | |
1da177e4 | 228 | return 0; |
5beb4930 RR |
229 | |
230 | out_enomem_free_avc: | |
231 | anon_vma_chain_free(avc); | |
232 | out_enomem: | |
233 | return -ENOMEM; | |
1da177e4 LT |
234 | } |
235 | ||
bb4aa396 LT |
236 | /* |
237 | * This is a useful helper function for locking the anon_vma root as | |
238 | * we traverse the vma->anon_vma_chain, looping over anon_vma's that | |
239 | * have the same vma. | |
240 | * | |
241 | * Such anon_vma's should have the same root, so you'd expect to see | |
242 | * just a single mutex_lock for the whole traversal. | |
243 | */ | |
244 | static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) | |
245 | { | |
246 | struct anon_vma *new_root = anon_vma->root; | |
247 | if (new_root != root) { | |
248 | if (WARN_ON_ONCE(root)) | |
5a505085 | 249 | up_write(&root->rwsem); |
bb4aa396 | 250 | root = new_root; |
5a505085 | 251 | down_write(&root->rwsem); |
bb4aa396 LT |
252 | } |
253 | return root; | |
254 | } | |
255 | ||
256 | static inline void unlock_anon_vma_root(struct anon_vma *root) | |
257 | { | |
258 | if (root) | |
5a505085 | 259 | up_write(&root->rwsem); |
bb4aa396 LT |
260 | } |
261 | ||
5beb4930 RR |
262 | /* |
263 | * Attach the anon_vmas from src to dst. | |
264 | * Returns 0 on success, -ENOMEM on failure. | |
7a3ef208 | 265 | * |
0503ea8f LH |
266 | * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(), |
267 | * copy_vma() and anon_vma_fork(). The first four want an exact copy of src, | |
268 | * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to | |
269 | * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before | |
270 | * call, we can identify this case by checking (!dst->anon_vma && | |
271 | * src->anon_vma). | |
47b390d2 WY |
272 | * |
273 | * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find | |
274 | * and reuse existing anon_vma which has no vmas and only one child anon_vma. | |
275 | * This prevents degradation of anon_vma hierarchy to endless linear chain in | |
276 | * case of constantly forking task. On the other hand, an anon_vma with more | |
277 | * than one child isn't reused even if there was no alive vma, thus rmap | |
278 | * walker has a good chance of avoiding scanning the whole hierarchy when it | |
279 | * searches where page is mapped. | |
5beb4930 RR |
280 | */ |
281 | int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) | |
1da177e4 | 282 | { |
5beb4930 | 283 | struct anon_vma_chain *avc, *pavc; |
bb4aa396 | 284 | struct anon_vma *root = NULL; |
5beb4930 | 285 | |
646d87b4 | 286 | list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { |
bb4aa396 LT |
287 | struct anon_vma *anon_vma; |
288 | ||
dd34739c LT |
289 | avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); |
290 | if (unlikely(!avc)) { | |
291 | unlock_anon_vma_root(root); | |
292 | root = NULL; | |
293 | avc = anon_vma_chain_alloc(GFP_KERNEL); | |
294 | if (!avc) | |
295 | goto enomem_failure; | |
296 | } | |
bb4aa396 LT |
297 | anon_vma = pavc->anon_vma; |
298 | root = lock_anon_vma_root(root, anon_vma); | |
299 | anon_vma_chain_link(dst, avc, anon_vma); | |
7a3ef208 KK |
300 | |
301 | /* | |
2555283e JH |
302 | * Reuse existing anon_vma if it has no vma and only one |
303 | * anon_vma child. | |
7a3ef208 | 304 | * |
2555283e | 305 | * Root anon_vma is never reused: |
7a3ef208 KK |
306 | * it has self-parent reference and at least one child. |
307 | */ | |
47b390d2 | 308 | if (!dst->anon_vma && src->anon_vma && |
2555283e JH |
309 | anon_vma->num_children < 2 && |
310 | anon_vma->num_active_vmas == 0) | |
7a3ef208 | 311 | dst->anon_vma = anon_vma; |
5beb4930 | 312 | } |
7a3ef208 | 313 | if (dst->anon_vma) |
2555283e | 314 | dst->anon_vma->num_active_vmas++; |
bb4aa396 | 315 | unlock_anon_vma_root(root); |
5beb4930 | 316 | return 0; |
1da177e4 | 317 | |
5beb4930 | 318 | enomem_failure: |
3fe89b3e | 319 | /* |
d8e454eb MW |
320 | * dst->anon_vma is dropped here otherwise its num_active_vmas can |
321 | * be incorrectly decremented in unlink_anon_vmas(). | |
3fe89b3e LY |
322 | * We can safely do this because callers of anon_vma_clone() don't care |
323 | * about dst->anon_vma if anon_vma_clone() failed. | |
324 | */ | |
325 | dst->anon_vma = NULL; | |
5beb4930 RR |
326 | unlink_anon_vmas(dst); |
327 | return -ENOMEM; | |
1da177e4 LT |
328 | } |
329 | ||
5beb4930 RR |
330 | /* |
331 | * Attach vma to its own anon_vma, as well as to the anon_vmas that | |
332 | * the corresponding VMA in the parent process is attached to. | |
333 | * Returns 0 on success, non-zero on failure. | |
334 | */ | |
335 | int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) | |
1da177e4 | 336 | { |
5beb4930 RR |
337 | struct anon_vma_chain *avc; |
338 | struct anon_vma *anon_vma; | |
c4ea95d7 | 339 | int error; |
1da177e4 | 340 | |
5beb4930 RR |
341 | /* Don't bother if the parent process has no anon_vma here. */ |
342 | if (!pvma->anon_vma) | |
343 | return 0; | |
344 | ||
7a3ef208 KK |
345 | /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ |
346 | vma->anon_vma = NULL; | |
347 | ||
5beb4930 RR |
348 | /* |
349 | * First, attach the new VMA to the parent VMA's anon_vmas, | |
350 | * so rmap can find non-COWed pages in child processes. | |
351 | */ | |
c4ea95d7 DF |
352 | error = anon_vma_clone(vma, pvma); |
353 | if (error) | |
354 | return error; | |
5beb4930 | 355 | |
7a3ef208 KK |
356 | /* An existing anon_vma has been reused, all done then. */ |
357 | if (vma->anon_vma) | |
358 | return 0; | |
359 | ||
5beb4930 RR |
360 | /* Then add our own anon_vma. */ |
361 | anon_vma = anon_vma_alloc(); | |
362 | if (!anon_vma) | |
363 | goto out_error; | |
2555283e | 364 | anon_vma->num_active_vmas++; |
dd34739c | 365 | avc = anon_vma_chain_alloc(GFP_KERNEL); |
5beb4930 RR |
366 | if (!avc) |
367 | goto out_error_free_anon_vma; | |
5c341ee1 RR |
368 | |
369 | /* | |
aaf1f990 | 370 | * The root anon_vma's rwsem is the lock actually used when we |
5c341ee1 RR |
371 | * lock any of the anon_vmas in this anon_vma tree. |
372 | */ | |
373 | anon_vma->root = pvma->anon_vma->root; | |
7a3ef208 | 374 | anon_vma->parent = pvma->anon_vma; |
76545066 | 375 | /* |
01d8b20d PZ |
376 | * With refcounts, an anon_vma can stay around longer than the |
377 | * process it belongs to. The root anon_vma needs to be pinned until | |
378 | * this anon_vma is freed, because the lock lives in the root. | |
76545066 RR |
379 | */ |
380 | get_anon_vma(anon_vma->root); | |
5beb4930 RR |
381 | /* Mark this anon_vma as the one where our new (COWed) pages go. */ |
382 | vma->anon_vma = anon_vma; | |
4fc3f1d6 | 383 | anon_vma_lock_write(anon_vma); |
5c341ee1 | 384 | anon_vma_chain_link(vma, avc, anon_vma); |
2555283e | 385 | anon_vma->parent->num_children++; |
08b52706 | 386 | anon_vma_unlock_write(anon_vma); |
5beb4930 RR |
387 | |
388 | return 0; | |
389 | ||
390 | out_error_free_anon_vma: | |
01d8b20d | 391 | put_anon_vma(anon_vma); |
5beb4930 | 392 | out_error: |
4946d54c | 393 | unlink_anon_vmas(vma); |
5beb4930 | 394 | return -ENOMEM; |
1da177e4 LT |
395 | } |
396 | ||
5beb4930 RR |
397 | void unlink_anon_vmas(struct vm_area_struct *vma) |
398 | { | |
399 | struct anon_vma_chain *avc, *next; | |
eee2acba | 400 | struct anon_vma *root = NULL; |
5beb4930 | 401 | |
5c341ee1 RR |
402 | /* |
403 | * Unlink each anon_vma chained to the VMA. This list is ordered | |
404 | * from newest to oldest, ensuring the root anon_vma gets freed last. | |
405 | */ | |
5beb4930 | 406 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { |
eee2acba PZ |
407 | struct anon_vma *anon_vma = avc->anon_vma; |
408 | ||
409 | root = lock_anon_vma_root(root, anon_vma); | |
bf181b9f | 410 | anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); |
eee2acba PZ |
411 | |
412 | /* | |
413 | * Leave empty anon_vmas on the list - we'll need | |
414 | * to free them outside the lock. | |
415 | */ | |
f808c13f | 416 | if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { |
2555283e | 417 | anon_vma->parent->num_children--; |
eee2acba | 418 | continue; |
7a3ef208 | 419 | } |
eee2acba PZ |
420 | |
421 | list_del(&avc->same_vma); | |
422 | anon_vma_chain_free(avc); | |
423 | } | |
ee8ab190 | 424 | if (vma->anon_vma) { |
2555283e | 425 | vma->anon_vma->num_active_vmas--; |
ee8ab190 LX |
426 | |
427 | /* | |
428 | * vma would still be needed after unlink, and anon_vma will be prepared | |
429 | * when handle fault. | |
430 | */ | |
431 | vma->anon_vma = NULL; | |
432 | } | |
eee2acba PZ |
433 | unlock_anon_vma_root(root); |
434 | ||
435 | /* | |
436 | * Iterate the list once more, it now only contains empty and unlinked | |
437 | * anon_vmas, destroy them. Could not do before due to __put_anon_vma() | |
5a505085 | 438 | * needing to write-acquire the anon_vma->root->rwsem. |
eee2acba PZ |
439 | */ |
440 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { | |
441 | struct anon_vma *anon_vma = avc->anon_vma; | |
442 | ||
2555283e JH |
443 | VM_WARN_ON(anon_vma->num_children); |
444 | VM_WARN_ON(anon_vma->num_active_vmas); | |
eee2acba PZ |
445 | put_anon_vma(anon_vma); |
446 | ||
5beb4930 RR |
447 | list_del(&avc->same_vma); |
448 | anon_vma_chain_free(avc); | |
449 | } | |
450 | } | |
451 | ||
51cc5068 | 452 | static void anon_vma_ctor(void *data) |
1da177e4 | 453 | { |
a35afb83 | 454 | struct anon_vma *anon_vma = data; |
1da177e4 | 455 | |
5a505085 | 456 | init_rwsem(&anon_vma->rwsem); |
83813267 | 457 | atomic_set(&anon_vma->refcount, 0); |
f808c13f | 458 | anon_vma->rb_root = RB_ROOT_CACHED; |
1da177e4 LT |
459 | } |
460 | ||
461 | void __init anon_vma_init(void) | |
462 | { | |
463 | anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), | |
5f0d5a3a | 464 | 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, |
5d097056 VD |
465 | anon_vma_ctor); |
466 | anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, | |
467 | SLAB_PANIC|SLAB_ACCOUNT); | |
1da177e4 LT |
468 | } |
469 | ||
470 | /* | |
6111e4ca PZ |
471 | * Getting a lock on a stable anon_vma from a page off the LRU is tricky! |
472 | * | |
473 | * Since there is no serialization what so ever against page_remove_rmap() | |
ad8a20cf ML |
474 | * the best this function can do is return a refcount increased anon_vma |
475 | * that might have been relevant to this page. | |
6111e4ca PZ |
476 | * |
477 | * The page might have been remapped to a different anon_vma or the anon_vma | |
478 | * returned may already be freed (and even reused). | |
479 | * | |
bc658c96 PZ |
480 | * In case it was remapped to a different anon_vma, the new anon_vma will be a |
481 | * child of the old anon_vma, and the anon_vma lifetime rules will therefore | |
482 | * ensure that any anon_vma obtained from the page will still be valid for as | |
483 | * long as we observe page_mapped() [ hence all those page_mapped() tests ]. | |
484 | * | |
6111e4ca PZ |
485 | * All users of this function must be very careful when walking the anon_vma |
486 | * chain and verify that the page in question is indeed mapped in it | |
487 | * [ something equivalent to page_mapped_in_vma() ]. | |
488 | * | |
091e4299 MC |
489 | * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from |
490 | * page_remove_rmap() that the anon_vma pointer from page->mapping is valid | |
491 | * if there is a mapcount, we can dereference the anon_vma after observing | |
492 | * those. | |
1da177e4 | 493 | */ |
29eea9b5 | 494 | struct anon_vma *folio_get_anon_vma(struct folio *folio) |
1da177e4 | 495 | { |
746b18d4 | 496 | struct anon_vma *anon_vma = NULL; |
1da177e4 LT |
497 | unsigned long anon_mapping; |
498 | ||
499 | rcu_read_lock(); | |
29eea9b5 | 500 | anon_mapping = (unsigned long)READ_ONCE(folio->mapping); |
3ca7b3c5 | 501 | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) |
1da177e4 | 502 | goto out; |
29eea9b5 | 503 | if (!folio_mapped(folio)) |
1da177e4 LT |
504 | goto out; |
505 | ||
506 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | |
746b18d4 PZ |
507 | if (!atomic_inc_not_zero(&anon_vma->refcount)) { |
508 | anon_vma = NULL; | |
509 | goto out; | |
510 | } | |
f1819427 HD |
511 | |
512 | /* | |
29eea9b5 | 513 | * If this folio is still mapped, then its anon_vma cannot have been |
746b18d4 PZ |
514 | * freed. But if it has been unmapped, we have no security against the |
515 | * anon_vma structure being freed and reused (for another anon_vma: | |
5f0d5a3a | 516 | * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() |
746b18d4 | 517 | * above cannot corrupt). |
f1819427 | 518 | */ |
29eea9b5 | 519 | if (!folio_mapped(folio)) { |
7f39dda9 | 520 | rcu_read_unlock(); |
746b18d4 | 521 | put_anon_vma(anon_vma); |
7f39dda9 | 522 | return NULL; |
746b18d4 | 523 | } |
1da177e4 LT |
524 | out: |
525 | rcu_read_unlock(); | |
746b18d4 PZ |
526 | |
527 | return anon_vma; | |
528 | } | |
529 | ||
88c22088 | 530 | /* |
29eea9b5 | 531 | * Similar to folio_get_anon_vma() except it locks the anon_vma. |
88c22088 PZ |
532 | * |
533 | * Its a little more complex as it tries to keep the fast path to a single | |
534 | * atomic op -- the trylock. If we fail the trylock, we fall back to getting a | |
29eea9b5 | 535 | * reference like with folio_get_anon_vma() and then block on the mutex |
6d4675e6 | 536 | * on !rwc->try_lock case. |
88c22088 | 537 | */ |
6d4675e6 MK |
538 | struct anon_vma *folio_lock_anon_vma_read(struct folio *folio, |
539 | struct rmap_walk_control *rwc) | |
746b18d4 | 540 | { |
88c22088 | 541 | struct anon_vma *anon_vma = NULL; |
eee0f252 | 542 | struct anon_vma *root_anon_vma; |
88c22088 | 543 | unsigned long anon_mapping; |
746b18d4 | 544 | |
88c22088 | 545 | rcu_read_lock(); |
9595d769 | 546 | anon_mapping = (unsigned long)READ_ONCE(folio->mapping); |
88c22088 PZ |
547 | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) |
548 | goto out; | |
9595d769 | 549 | if (!folio_mapped(folio)) |
88c22088 PZ |
550 | goto out; |
551 | ||
552 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | |
4db0c3c2 | 553 | root_anon_vma = READ_ONCE(anon_vma->root); |
4fc3f1d6 | 554 | if (down_read_trylock(&root_anon_vma->rwsem)) { |
88c22088 | 555 | /* |
9595d769 | 556 | * If the folio is still mapped, then this anon_vma is still |
eee0f252 | 557 | * its anon_vma, and holding the mutex ensures that it will |
bc658c96 | 558 | * not go away, see anon_vma_free(). |
88c22088 | 559 | */ |
9595d769 | 560 | if (!folio_mapped(folio)) { |
4fc3f1d6 | 561 | up_read(&root_anon_vma->rwsem); |
88c22088 PZ |
562 | anon_vma = NULL; |
563 | } | |
564 | goto out; | |
565 | } | |
746b18d4 | 566 | |
6d4675e6 MK |
567 | if (rwc && rwc->try_lock) { |
568 | anon_vma = NULL; | |
569 | rwc->contended = true; | |
570 | goto out; | |
571 | } | |
572 | ||
88c22088 PZ |
573 | /* trylock failed, we got to sleep */ |
574 | if (!atomic_inc_not_zero(&anon_vma->refcount)) { | |
575 | anon_vma = NULL; | |
576 | goto out; | |
577 | } | |
578 | ||
9595d769 | 579 | if (!folio_mapped(folio)) { |
7f39dda9 | 580 | rcu_read_unlock(); |
88c22088 | 581 | put_anon_vma(anon_vma); |
7f39dda9 | 582 | return NULL; |
88c22088 PZ |
583 | } |
584 | ||
585 | /* we pinned the anon_vma, its safe to sleep */ | |
586 | rcu_read_unlock(); | |
4fc3f1d6 | 587 | anon_vma_lock_read(anon_vma); |
88c22088 PZ |
588 | |
589 | if (atomic_dec_and_test(&anon_vma->refcount)) { | |
590 | /* | |
591 | * Oops, we held the last refcount, release the lock | |
592 | * and bail -- can't simply use put_anon_vma() because | |
4fc3f1d6 | 593 | * we'll deadlock on the anon_vma_lock_write() recursion. |
88c22088 | 594 | */ |
4fc3f1d6 | 595 | anon_vma_unlock_read(anon_vma); |
88c22088 PZ |
596 | __put_anon_vma(anon_vma); |
597 | anon_vma = NULL; | |
598 | } | |
599 | ||
600 | return anon_vma; | |
601 | ||
602 | out: | |
603 | rcu_read_unlock(); | |
746b18d4 | 604 | return anon_vma; |
34bbd704 ON |
605 | } |
606 | ||
72b252ae | 607 | #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH |
72b252ae MG |
608 | /* |
609 | * Flush TLB entries for recently unmapped pages from remote CPUs. It is | |
610 | * important if a PTE was dirty when it was unmapped that it's flushed | |
611 | * before any IO is initiated on the page to prevent lost writes. Similarly, | |
612 | * it must be flushed before freeing to prevent data leakage. | |
613 | */ | |
614 | void try_to_unmap_flush(void) | |
615 | { | |
616 | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | |
72b252ae MG |
617 | |
618 | if (!tlb_ubc->flush_required) | |
619 | return; | |
620 | ||
e73ad5ff | 621 | arch_tlbbatch_flush(&tlb_ubc->arch); |
72b252ae | 622 | tlb_ubc->flush_required = false; |
d950c947 | 623 | tlb_ubc->writable = false; |
72b252ae MG |
624 | } |
625 | ||
d950c947 MG |
626 | /* Flush iff there are potentially writable TLB entries that can race with IO */ |
627 | void try_to_unmap_flush_dirty(void) | |
628 | { | |
629 | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | |
630 | ||
631 | if (tlb_ubc->writable) | |
632 | try_to_unmap_flush(); | |
633 | } | |
634 | ||
5ee2fa2f YH |
635 | /* |
636 | * Bits 0-14 of mm->tlb_flush_batched record pending generations. | |
637 | * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations. | |
638 | */ | |
639 | #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16 | |
640 | #define TLB_FLUSH_BATCH_PENDING_MASK \ | |
641 | ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1) | |
642 | #define TLB_FLUSH_BATCH_PENDING_LARGE \ | |
643 | (TLB_FLUSH_BATCH_PENDING_MASK / 2) | |
644 | ||
4d4b6d66 | 645 | static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval) |
72b252ae MG |
646 | { |
647 | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | |
bdeb9188 | 648 | int batch; |
4d4b6d66 YH |
649 | bool writable = pte_dirty(pteval); |
650 | ||
651 | if (!pte_accessible(mm, pteval)) | |
652 | return; | |
72b252ae | 653 | |
e73ad5ff | 654 | arch_tlbbatch_add_mm(&tlb_ubc->arch, mm); |
72b252ae | 655 | tlb_ubc->flush_required = true; |
d950c947 | 656 | |
3ea27719 MG |
657 | /* |
658 | * Ensure compiler does not re-order the setting of tlb_flush_batched | |
659 | * before the PTE is cleared. | |
660 | */ | |
661 | barrier(); | |
5ee2fa2f YH |
662 | batch = atomic_read(&mm->tlb_flush_batched); |
663 | retry: | |
664 | if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) { | |
665 | /* | |
666 | * Prevent `pending' from catching up with `flushed' because of | |
667 | * overflow. Reset `pending' and `flushed' to be 1 and 0 if | |
668 | * `pending' becomes large. | |
669 | */ | |
bdeb9188 | 670 | if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1)) |
5ee2fa2f | 671 | goto retry; |
5ee2fa2f YH |
672 | } else { |
673 | atomic_inc(&mm->tlb_flush_batched); | |
674 | } | |
3ea27719 | 675 | |
d950c947 MG |
676 | /* |
677 | * If the PTE was dirty then it's best to assume it's writable. The | |
678 | * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() | |
679 | * before the page is queued for IO. | |
680 | */ | |
681 | if (writable) | |
682 | tlb_ubc->writable = true; | |
72b252ae MG |
683 | } |
684 | ||
685 | /* | |
686 | * Returns true if the TLB flush should be deferred to the end of a batch of | |
687 | * unmap operations to reduce IPIs. | |
688 | */ | |
689 | static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) | |
690 | { | |
691 | bool should_defer = false; | |
692 | ||
693 | if (!(flags & TTU_BATCH_FLUSH)) | |
694 | return false; | |
695 | ||
696 | /* If remote CPUs need to be flushed then defer batch the flush */ | |
697 | if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids) | |
698 | should_defer = true; | |
699 | put_cpu(); | |
700 | ||
701 | return should_defer; | |
702 | } | |
3ea27719 MG |
703 | |
704 | /* | |
705 | * Reclaim unmaps pages under the PTL but do not flush the TLB prior to | |
706 | * releasing the PTL if TLB flushes are batched. It's possible for a parallel | |
707 | * operation such as mprotect or munmap to race between reclaim unmapping | |
708 | * the page and flushing the page. If this race occurs, it potentially allows | |
709 | * access to data via a stale TLB entry. Tracking all mm's that have TLB | |
710 | * batching in flight would be expensive during reclaim so instead track | |
711 | * whether TLB batching occurred in the past and if so then do a flush here | |
712 | * if required. This will cost one additional flush per reclaim cycle paid | |
713 | * by the first operation at risk such as mprotect and mumap. | |
714 | * | |
715 | * This must be called under the PTL so that an access to tlb_flush_batched | |
716 | * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise | |
717 | * via the PTL. | |
718 | */ | |
719 | void flush_tlb_batched_pending(struct mm_struct *mm) | |
720 | { | |
5ee2fa2f YH |
721 | int batch = atomic_read(&mm->tlb_flush_batched); |
722 | int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK; | |
723 | int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT; | |
3ea27719 | 724 | |
5ee2fa2f YH |
725 | if (pending != flushed) { |
726 | flush_tlb_mm(mm); | |
3ea27719 | 727 | /* |
5ee2fa2f YH |
728 | * If the new TLB flushing is pending during flushing, leave |
729 | * mm->tlb_flush_batched as is, to avoid losing flushing. | |
3ea27719 | 730 | */ |
5ee2fa2f YH |
731 | atomic_cmpxchg(&mm->tlb_flush_batched, batch, |
732 | pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT)); | |
3ea27719 MG |
733 | } |
734 | } | |
72b252ae | 735 | #else |
4d4b6d66 | 736 | static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval) |
72b252ae MG |
737 | { |
738 | } | |
739 | ||
740 | static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) | |
741 | { | |
742 | return false; | |
743 | } | |
744 | #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ | |
745 | ||
1da177e4 | 746 | /* |
bf89c8c8 | 747 | * At what user virtual address is page expected in vma? |
ab941e0f | 748 | * Caller should check the page is actually part of the vma. |
1da177e4 LT |
749 | */ |
750 | unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) | |
751 | { | |
e05b3453 MWO |
752 | struct folio *folio = page_folio(page); |
753 | if (folio_test_anon(folio)) { | |
754 | struct anon_vma *page__anon_vma = folio_anon_vma(folio); | |
4829b906 HD |
755 | /* |
756 | * Note: swapoff's unuse_vma() is more efficient with this | |
757 | * check, and needs it to match anon_vma when KSM is active. | |
758 | */ | |
759 | if (!vma->anon_vma || !page__anon_vma || | |
760 | vma->anon_vma->root != page__anon_vma->root) | |
21d0d443 | 761 | return -EFAULT; |
31657170 JW |
762 | } else if (!vma->vm_file) { |
763 | return -EFAULT; | |
e05b3453 | 764 | } else if (vma->vm_file->f_mapping != folio->mapping) { |
1da177e4 | 765 | return -EFAULT; |
31657170 | 766 | } |
494334e4 HD |
767 | |
768 | return vma_address(page, vma); | |
1da177e4 LT |
769 | } |
770 | ||
50722804 ZK |
771 | /* |
772 | * Returns the actual pmd_t* where we expect 'address' to be mapped from, or | |
773 | * NULL if it doesn't exist. No guarantees / checks on what the pmd_t* | |
774 | * represents. | |
775 | */ | |
6219049a BL |
776 | pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) |
777 | { | |
778 | pgd_t *pgd; | |
c2febafc | 779 | p4d_t *p4d; |
6219049a BL |
780 | pud_t *pud; |
781 | pmd_t *pmd = NULL; | |
782 | ||
783 | pgd = pgd_offset(mm, address); | |
784 | if (!pgd_present(*pgd)) | |
785 | goto out; | |
786 | ||
c2febafc KS |
787 | p4d = p4d_offset(pgd, address); |
788 | if (!p4d_present(*p4d)) | |
789 | goto out; | |
790 | ||
791 | pud = pud_offset(p4d, address); | |
6219049a BL |
792 | if (!pud_present(*pud)) |
793 | goto out; | |
794 | ||
795 | pmd = pmd_offset(pud, address); | |
6219049a BL |
796 | out: |
797 | return pmd; | |
798 | } | |
799 | ||
b3ac0413 | 800 | struct folio_referenced_arg { |
8749cfea VD |
801 | int mapcount; |
802 | int referenced; | |
803 | unsigned long vm_flags; | |
804 | struct mem_cgroup *memcg; | |
805 | }; | |
806 | /* | |
b3ac0413 | 807 | * arg: folio_referenced_arg will be passed |
8749cfea | 808 | */ |
2f031c6f MWO |
809 | static bool folio_referenced_one(struct folio *folio, |
810 | struct vm_area_struct *vma, unsigned long address, void *arg) | |
8749cfea | 811 | { |
b3ac0413 MWO |
812 | struct folio_referenced_arg *pra = arg; |
813 | DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); | |
8749cfea VD |
814 | int referenced = 0; |
815 | ||
8eaedede KS |
816 | while (page_vma_mapped_walk(&pvmw)) { |
817 | address = pvmw.address; | |
b20ce5e0 | 818 | |
47d4f3ee | 819 | if ((vma->vm_flags & VM_LOCKED) && |
b3ac0413 | 820 | (!folio_test_large(folio) || !pvmw.pte)) { |
47d4f3ee | 821 | /* Restore the mlock which got missed */ |
b3ac0413 | 822 | mlock_vma_folio(folio, vma, !pvmw.pte); |
8eaedede KS |
823 | page_vma_mapped_walk_done(&pvmw); |
824 | pra->vm_flags |= VM_LOCKED; | |
e4b82222 | 825 | return false; /* To break the loop */ |
8eaedede | 826 | } |
71e3aac0 | 827 | |
8eaedede | 828 | if (pvmw.pte) { |
c33c7948 RR |
829 | if (lru_gen_enabled() && |
830 | pte_young(ptep_get(pvmw.pte))) { | |
018ee47f YZ |
831 | lru_gen_look_around(&pvmw); |
832 | referenced++; | |
833 | } | |
834 | ||
8eaedede | 835 | if (ptep_clear_flush_young_notify(vma, address, |
8788f678 YZ |
836 | pvmw.pte)) |
837 | referenced++; | |
8eaedede KS |
838 | } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { |
839 | if (pmdp_clear_flush_young_notify(vma, address, | |
840 | pvmw.pmd)) | |
8749cfea | 841 | referenced++; |
8eaedede | 842 | } else { |
b3ac0413 | 843 | /* unexpected pmd-mapped folio? */ |
8eaedede | 844 | WARN_ON_ONCE(1); |
8749cfea | 845 | } |
8eaedede KS |
846 | |
847 | pra->mapcount--; | |
b20ce5e0 | 848 | } |
b20ce5e0 | 849 | |
33c3fc71 | 850 | if (referenced) |
b3ac0413 MWO |
851 | folio_clear_idle(folio); |
852 | if (folio_test_clear_young(folio)) | |
33c3fc71 VD |
853 | referenced++; |
854 | ||
9f32624b JK |
855 | if (referenced) { |
856 | pra->referenced++; | |
47d4f3ee | 857 | pra->vm_flags |= vma->vm_flags & ~VM_LOCKED; |
1da177e4 | 858 | } |
34bbd704 | 859 | |
9f32624b | 860 | if (!pra->mapcount) |
e4b82222 | 861 | return false; /* To break the loop */ |
9f32624b | 862 | |
e4b82222 | 863 | return true; |
1da177e4 LT |
864 | } |
865 | ||
b3ac0413 | 866 | static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg) |
1da177e4 | 867 | { |
b3ac0413 | 868 | struct folio_referenced_arg *pra = arg; |
9f32624b | 869 | struct mem_cgroup *memcg = pra->memcg; |
1da177e4 | 870 | |
8788f678 YZ |
871 | /* |
872 | * Ignore references from this mapping if it has no recency. If the | |
873 | * folio has been used in another mapping, we will catch it; if this | |
874 | * other mapping is already gone, the unmap path will have set the | |
875 | * referenced flag or activated the folio in zap_pte_range(). | |
876 | */ | |
877 | if (!vma_has_recency(vma)) | |
878 | return true; | |
879 | ||
880 | /* | |
881 | * If we are reclaiming on behalf of a cgroup, skip counting on behalf | |
882 | * of references from different cgroups. | |
883 | */ | |
884 | if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) | |
9f32624b | 885 | return true; |
1da177e4 | 886 | |
9f32624b | 887 | return false; |
1da177e4 LT |
888 | } |
889 | ||
890 | /** | |
b3ac0413 MWO |
891 | * folio_referenced() - Test if the folio was referenced. |
892 | * @folio: The folio to test. | |
893 | * @is_locked: Caller holds lock on the folio. | |
72835c86 | 894 | * @memcg: target memory cgroup |
b3ac0413 | 895 | * @vm_flags: A combination of all the vma->vm_flags which referenced the folio. |
1da177e4 | 896 | * |
b3ac0413 MWO |
897 | * Quick test_and_clear_referenced for all mappings of a folio, |
898 | * | |
6d4675e6 MK |
899 | * Return: The number of mappings which referenced the folio. Return -1 if |
900 | * the function bailed out due to rmap lock contention. | |
1da177e4 | 901 | */ |
b3ac0413 MWO |
902 | int folio_referenced(struct folio *folio, int is_locked, |
903 | struct mem_cgroup *memcg, unsigned long *vm_flags) | |
1da177e4 | 904 | { |
5ad64688 | 905 | int we_locked = 0; |
b3ac0413 MWO |
906 | struct folio_referenced_arg pra = { |
907 | .mapcount = folio_mapcount(folio), | |
9f32624b JK |
908 | .memcg = memcg, |
909 | }; | |
910 | struct rmap_walk_control rwc = { | |
b3ac0413 | 911 | .rmap_one = folio_referenced_one, |
9f32624b | 912 | .arg = (void *)&pra, |
2f031c6f | 913 | .anon_lock = folio_lock_anon_vma_read, |
6d4675e6 | 914 | .try_lock = true, |
8788f678 | 915 | .invalid_vma = invalid_folio_referenced_vma, |
9f32624b | 916 | }; |
1da177e4 | 917 | |
6fe6b7e3 | 918 | *vm_flags = 0; |
059d8442 | 919 | if (!pra.mapcount) |
9f32624b JK |
920 | return 0; |
921 | ||
b3ac0413 | 922 | if (!folio_raw_mapping(folio)) |
9f32624b JK |
923 | return 0; |
924 | ||
b3ac0413 MWO |
925 | if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) { |
926 | we_locked = folio_trylock(folio); | |
9f32624b JK |
927 | if (!we_locked) |
928 | return 1; | |
1da177e4 | 929 | } |
9f32624b | 930 | |
2f031c6f | 931 | rmap_walk(folio, &rwc); |
9f32624b JK |
932 | *vm_flags = pra.vm_flags; |
933 | ||
934 | if (we_locked) | |
b3ac0413 | 935 | folio_unlock(folio); |
9f32624b | 936 | |
6d4675e6 | 937 | return rwc.contended ? -1 : pra.referenced; |
1da177e4 LT |
938 | } |
939 | ||
6a8e0596 | 940 | static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw) |
d08b3851 | 941 | { |
6a8e0596 MS |
942 | int cleaned = 0; |
943 | struct vm_area_struct *vma = pvmw->vma; | |
ac46d4f3 | 944 | struct mmu_notifier_range range; |
6a8e0596 | 945 | unsigned long address = pvmw->address; |
d08b3851 | 946 | |
369ea824 JG |
947 | /* |
948 | * We have to assume the worse case ie pmd for invalidation. Note that | |
e83c09a2 | 949 | * the folio can not be freed from this function. |
369ea824 | 950 | */ |
7d4a8be0 AP |
951 | mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0, |
952 | vma->vm_mm, address, vma_address_end(pvmw)); | |
ac46d4f3 | 953 | mmu_notifier_invalidate_range_start(&range); |
369ea824 | 954 | |
6a8e0596 | 955 | while (page_vma_mapped_walk(pvmw)) { |
f27176cf | 956 | int ret = 0; |
369ea824 | 957 | |
6a8e0596 MS |
958 | address = pvmw->address; |
959 | if (pvmw->pte) { | |
6a8e0596 | 960 | pte_t *pte = pvmw->pte; |
c33c7948 | 961 | pte_t entry = ptep_get(pte); |
f27176cf | 962 | |
c33c7948 | 963 | if (!pte_dirty(entry) && !pte_write(entry)) |
f27176cf KS |
964 | continue; |
965 | ||
c33c7948 | 966 | flush_cache_page(vma, address, pte_pfn(entry)); |
785373b4 | 967 | entry = ptep_clear_flush(vma, address, pte); |
f27176cf KS |
968 | entry = pte_wrprotect(entry); |
969 | entry = pte_mkclean(entry); | |
785373b4 | 970 | set_pte_at(vma->vm_mm, address, pte, entry); |
f27176cf KS |
971 | ret = 1; |
972 | } else { | |
396bcc52 | 973 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
6a8e0596 | 974 | pmd_t *pmd = pvmw->pmd; |
f27176cf KS |
975 | pmd_t entry; |
976 | ||
977 | if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) | |
978 | continue; | |
979 | ||
7f9c9b60 MS |
980 | flush_cache_range(vma, address, |
981 | address + HPAGE_PMD_SIZE); | |
024eee0e | 982 | entry = pmdp_invalidate(vma, address, pmd); |
f27176cf KS |
983 | entry = pmd_wrprotect(entry); |
984 | entry = pmd_mkclean(entry); | |
785373b4 | 985 | set_pmd_at(vma->vm_mm, address, pmd, entry); |
f27176cf KS |
986 | ret = 1; |
987 | #else | |
e83c09a2 | 988 | /* unexpected pmd-mapped folio? */ |
f27176cf KS |
989 | WARN_ON_ONCE(1); |
990 | #endif | |
991 | } | |
d08b3851 | 992 | |
0f10851e JG |
993 | /* |
994 | * No need to call mmu_notifier_invalidate_range() as we are | |
995 | * downgrading page table protection not changing it to point | |
996 | * to a new page. | |
997 | * | |
ee65728e | 998 | * See Documentation/mm/mmu_notifier.rst |
0f10851e JG |
999 | */ |
1000 | if (ret) | |
6a8e0596 | 1001 | cleaned++; |
c2fda5fe | 1002 | } |
d08b3851 | 1003 | |
ac46d4f3 | 1004 | mmu_notifier_invalidate_range_end(&range); |
369ea824 | 1005 | |
6a8e0596 MS |
1006 | return cleaned; |
1007 | } | |
1008 | ||
1009 | static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma, | |
1010 | unsigned long address, void *arg) | |
1011 | { | |
1012 | DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC); | |
1013 | int *cleaned = arg; | |
1014 | ||
1015 | *cleaned += page_vma_mkclean_one(&pvmw); | |
1016 | ||
e4b82222 | 1017 | return true; |
d08b3851 PZ |
1018 | } |
1019 | ||
9853a407 | 1020 | static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) |
d08b3851 | 1021 | { |
9853a407 | 1022 | if (vma->vm_flags & VM_SHARED) |
871beb8c | 1023 | return false; |
d08b3851 | 1024 | |
871beb8c | 1025 | return true; |
d08b3851 PZ |
1026 | } |
1027 | ||
d9c08e22 | 1028 | int folio_mkclean(struct folio *folio) |
d08b3851 | 1029 | { |
9853a407 JK |
1030 | int cleaned = 0; |
1031 | struct address_space *mapping; | |
1032 | struct rmap_walk_control rwc = { | |
1033 | .arg = (void *)&cleaned, | |
1034 | .rmap_one = page_mkclean_one, | |
1035 | .invalid_vma = invalid_mkclean_vma, | |
1036 | }; | |
d08b3851 | 1037 | |
d9c08e22 | 1038 | BUG_ON(!folio_test_locked(folio)); |
d08b3851 | 1039 | |
d9c08e22 | 1040 | if (!folio_mapped(folio)) |
9853a407 JK |
1041 | return 0; |
1042 | ||
d9c08e22 | 1043 | mapping = folio_mapping(folio); |
9853a407 JK |
1044 | if (!mapping) |
1045 | return 0; | |
1046 | ||
2f031c6f | 1047 | rmap_walk(folio, &rwc); |
d08b3851 | 1048 | |
9853a407 | 1049 | return cleaned; |
d08b3851 | 1050 | } |
d9c08e22 | 1051 | EXPORT_SYMBOL_GPL(folio_mkclean); |
d08b3851 | 1052 | |
6a8e0596 MS |
1053 | /** |
1054 | * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of | |
1055 | * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff) | |
1056 | * within the @vma of shared mappings. And since clean PTEs | |
1057 | * should also be readonly, write protects them too. | |
1058 | * @pfn: start pfn. | |
1059 | * @nr_pages: number of physically contiguous pages srarting with @pfn. | |
1060 | * @pgoff: page offset that the @pfn mapped with. | |
1061 | * @vma: vma that @pfn mapped within. | |
1062 | * | |
1063 | * Returns the number of cleaned PTEs (including PMDs). | |
1064 | */ | |
1065 | int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, | |
1066 | struct vm_area_struct *vma) | |
1067 | { | |
1068 | struct page_vma_mapped_walk pvmw = { | |
1069 | .pfn = pfn, | |
1070 | .nr_pages = nr_pages, | |
1071 | .pgoff = pgoff, | |
1072 | .vma = vma, | |
1073 | .flags = PVMW_SYNC, | |
1074 | }; | |
1075 | ||
1076 | if (invalid_mkclean_vma(vma, NULL)) | |
1077 | return 0; | |
1078 | ||
1079 | pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma); | |
1080 | VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma); | |
1081 | ||
1082 | return page_vma_mkclean_one(&pvmw); | |
1083 | } | |
1084 | ||
b14224fb | 1085 | int folio_total_mapcount(struct folio *folio) |
cb67f428 | 1086 | { |
b14224fb MWO |
1087 | int mapcount = folio_entire_mapcount(folio); |
1088 | int nr_pages; | |
cb67f428 HD |
1089 | int i; |
1090 | ||
b14224fb | 1091 | /* In the common case, avoid the loop when no pages mapped by PTE */ |
eec20426 | 1092 | if (folio_nr_pages_mapped(folio) == 0) |
be5ef2d9 HD |
1093 | return mapcount; |
1094 | /* | |
b14224fb MWO |
1095 | * Add all the PTE mappings of those pages mapped by PTE. |
1096 | * Limit the loop to folio_nr_pages_mapped()? | |
be5ef2d9 HD |
1097 | * Perhaps: given all the raciness, that may be a good or a bad idea. |
1098 | */ | |
b14224fb MWO |
1099 | nr_pages = folio_nr_pages(folio); |
1100 | for (i = 0; i < nr_pages; i++) | |
1101 | mapcount += atomic_read(&folio_page(folio, i)->_mapcount); | |
be5ef2d9 HD |
1102 | |
1103 | /* But each of those _mapcounts was based on -1 */ | |
b14224fb | 1104 | mapcount += nr_pages; |
be5ef2d9 | 1105 | return mapcount; |
cb67f428 HD |
1106 | } |
1107 | ||
c44b6743 RR |
1108 | /** |
1109 | * page_move_anon_rmap - move a page to our anon_vma | |
1110 | * @page: the page to move to our anon_vma | |
1111 | * @vma: the vma the page belongs to | |
c44b6743 RR |
1112 | * |
1113 | * When a page belongs exclusively to one process after a COW event, | |
1114 | * that page can be moved into the anon_vma that belongs to just that | |
1115 | * process, so the rmap code will not search the parent or sibling | |
1116 | * processes. | |
1117 | */ | |
5a49973d | 1118 | void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma) |
c44b6743 | 1119 | { |
595af4c9 MWO |
1120 | void *anon_vma = vma->anon_vma; |
1121 | struct folio *folio = page_folio(page); | |
5a49973d | 1122 | |
595af4c9 | 1123 | VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); |
81d1b09c | 1124 | VM_BUG_ON_VMA(!anon_vma, vma); |
c44b6743 | 1125 | |
595af4c9 | 1126 | anon_vma += PAGE_MAPPING_ANON; |
414e2fb8 VD |
1127 | /* |
1128 | * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written | |
b3ac0413 MWO |
1129 | * simultaneously, so a concurrent reader (eg folio_referenced()'s |
1130 | * folio_test_anon()) will not see one without the other. | |
414e2fb8 | 1131 | */ |
595af4c9 MWO |
1132 | WRITE_ONCE(folio->mapping, anon_vma); |
1133 | SetPageAnonExclusive(page); | |
c44b6743 RR |
1134 | } |
1135 | ||
9617d95e | 1136 | /** |
4e1c1975 | 1137 | * __page_set_anon_rmap - set up new anonymous rmap |
5b4bd90f MWO |
1138 | * @folio: Folio which contains page. |
1139 | * @page: Page to add to rmap. | |
4e1c1975 | 1140 | * @vma: VM area to add page to. |
c33c7948 | 1141 | * @address: User virtual address of the mapping |
e8a03feb | 1142 | * @exclusive: the page is exclusively owned by the current process |
9617d95e | 1143 | */ |
5b4bd90f | 1144 | static void __page_set_anon_rmap(struct folio *folio, struct page *page, |
e8a03feb | 1145 | struct vm_area_struct *vma, unsigned long address, int exclusive) |
9617d95e | 1146 | { |
e8a03feb | 1147 | struct anon_vma *anon_vma = vma->anon_vma; |
ea90002b | 1148 | |
e8a03feb | 1149 | BUG_ON(!anon_vma); |
ea90002b | 1150 | |
5b4bd90f | 1151 | if (folio_test_anon(folio)) |
6c287605 | 1152 | goto out; |
4e1c1975 | 1153 | |
ea90002b | 1154 | /* |
e8a03feb RR |
1155 | * If the page isn't exclusively mapped into this vma, |
1156 | * we must use the _oldest_ possible anon_vma for the | |
1157 | * page mapping! | |
ea90002b | 1158 | */ |
4e1c1975 | 1159 | if (!exclusive) |
288468c3 | 1160 | anon_vma = anon_vma->root; |
9617d95e | 1161 | |
16f5e707 | 1162 | /* |
5b4bd90f | 1163 | * page_idle does a lockless/optimistic rmap scan on folio->mapping. |
16f5e707 AS |
1164 | * Make sure the compiler doesn't split the stores of anon_vma and |
1165 | * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code | |
1166 | * could mistake the mapping for a struct address_space and crash. | |
1167 | */ | |
9617d95e | 1168 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; |
5b4bd90f MWO |
1169 | WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma); |
1170 | folio->index = linear_page_index(vma, address); | |
6c287605 DH |
1171 | out: |
1172 | if (exclusive) | |
1173 | SetPageAnonExclusive(page); | |
9617d95e NP |
1174 | } |
1175 | ||
c97a9e10 | 1176 | /** |
43d8eac4 | 1177 | * __page_check_anon_rmap - sanity check anonymous rmap addition |
c97a9e10 NP |
1178 | * @page: the page to add the mapping to |
1179 | * @vma: the vm area in which the mapping is added | |
1180 | * @address: the user virtual address mapped | |
1181 | */ | |
1182 | static void __page_check_anon_rmap(struct page *page, | |
1183 | struct vm_area_struct *vma, unsigned long address) | |
1184 | { | |
e05b3453 | 1185 | struct folio *folio = page_folio(page); |
c97a9e10 NP |
1186 | /* |
1187 | * The page's anon-rmap details (mapping and index) are guaranteed to | |
1188 | * be set up correctly at this point. | |
1189 | * | |
1190 | * We have exclusion against page_add_anon_rmap because the caller | |
90aaca85 | 1191 | * always holds the page locked. |
c97a9e10 NP |
1192 | * |
1193 | * We have exclusion against page_add_new_anon_rmap because those pages | |
1194 | * are initially only visible via the pagetables, and the pte is locked | |
1195 | * over the call to page_add_new_anon_rmap. | |
1196 | */ | |
e05b3453 MWO |
1197 | VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root, |
1198 | folio); | |
30c46382 YS |
1199 | VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address), |
1200 | page); | |
c97a9e10 NP |
1201 | } |
1202 | ||
1da177e4 LT |
1203 | /** |
1204 | * page_add_anon_rmap - add pte mapping to an anonymous page | |
1205 | * @page: the page to add the mapping to | |
1206 | * @vma: the vm area in which the mapping is added | |
1207 | * @address: the user virtual address mapped | |
f1e2db12 | 1208 | * @flags: the rmap flags |
1da177e4 | 1209 | * |
5ad64688 | 1210 | * The caller needs to hold the pte lock, and the page must be locked in |
80e14822 HD |
1211 | * the anon_vma case: to serialize mapping,index checking after setting, |
1212 | * and to ensure that PageAnon is not being upgraded racily to PageKsm | |
1213 | * (but PageKsm is never downgraded to PageAnon). | |
1da177e4 | 1214 | */ |
ee0800c2 MWO |
1215 | void page_add_anon_rmap(struct page *page, struct vm_area_struct *vma, |
1216 | unsigned long address, rmap_t flags) | |
1da177e4 | 1217 | { |
ee0800c2 MWO |
1218 | struct folio *folio = page_folio(page); |
1219 | atomic_t *mapped = &folio->_nr_pages_mapped; | |
9bd3155e | 1220 | int nr = 0, nr_pmdmapped = 0; |
53f9263b | 1221 | bool compound = flags & RMAP_COMPOUND; |
be5ef2d9 | 1222 | bool first = true; |
53f9263b | 1223 | |
be5ef2d9 HD |
1224 | /* Is page being mapped by PTE? Is this its first map to be added? */ |
1225 | if (likely(!compound)) { | |
d8dd5e97 HD |
1226 | first = atomic_inc_and_test(&page->_mapcount); |
1227 | nr = first; | |
ee0800c2 | 1228 | if (first && folio_test_large(folio)) { |
4b51634c | 1229 | nr = atomic_inc_return_relaxed(mapped); |
6287b7da | 1230 | nr = (nr < COMPOUND_MAPPED); |
be5ef2d9 | 1231 | } |
ee0800c2 | 1232 | } else if (folio_test_pmd_mappable(folio)) { |
be5ef2d9 | 1233 | /* That test is redundant: it's for safety or to optimize out */ |
d8dd5e97 | 1234 | |
ee0800c2 | 1235 | first = atomic_inc_and_test(&folio->_entire_mapcount); |
9bd3155e | 1236 | if (first) { |
4b51634c | 1237 | nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped); |
6287b7da | 1238 | if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) { |
ee0800c2 | 1239 | nr_pmdmapped = folio_nr_pages(folio); |
eec20426 | 1240 | nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); |
6287b7da HD |
1241 | /* Raced ahead of a remove and another add? */ |
1242 | if (unlikely(nr < 0)) | |
1243 | nr = 0; | |
1244 | } else { | |
1245 | /* Raced ahead of a remove of COMPOUND_MAPPED */ | |
1246 | nr = 0; | |
1247 | } | |
9bd3155e | 1248 | } |
53f9263b | 1249 | } |
cb67f428 | 1250 | |
6c287605 DH |
1251 | VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page); |
1252 | VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page); | |
53f9263b | 1253 | |
9bd3155e | 1254 | if (nr_pmdmapped) |
ee0800c2 | 1255 | __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr_pmdmapped); |
9bd3155e | 1256 | if (nr) |
ee0800c2 | 1257 | __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr); |
5ad64688 | 1258 | |
ee0800c2 | 1259 | if (likely(!folio_test_ksm(folio))) { |
0503ea8f | 1260 | /* address might be in next vma when migration races vma_merge */ |
c7c3dec1 | 1261 | if (first) |
5b4bd90f | 1262 | __page_set_anon_rmap(folio, page, vma, address, |
c7c3dec1 JW |
1263 | !!(flags & RMAP_EXCLUSIVE)); |
1264 | else | |
1265 | __page_check_anon_rmap(page, vma, address); | |
1266 | } | |
cea86fe2 | 1267 | |
7efecffb | 1268 | mlock_vma_folio(folio, vma, compound); |
1da177e4 LT |
1269 | } |
1270 | ||
43d8eac4 | 1271 | /** |
4d510f3d MWO |
1272 | * folio_add_new_anon_rmap - Add mapping to a new anonymous folio. |
1273 | * @folio: The folio to add the mapping to. | |
9617d95e NP |
1274 | * @vma: the vm area in which the mapping is added |
1275 | * @address: the user virtual address mapped | |
40f2bbf7 | 1276 | * |
4d510f3d | 1277 | * Like page_add_anon_rmap() but must only be called on *new* folios. |
9617d95e | 1278 | * This means the inc-and-test can be bypassed. |
4d510f3d MWO |
1279 | * The folio does not have to be locked. |
1280 | * | |
1281 | * If the folio is large, it is accounted as a THP. As the folio | |
1282 | * is new, it's assumed to be mapped exclusively by a single process. | |
9617d95e | 1283 | */ |
4d510f3d MWO |
1284 | void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma, |
1285 | unsigned long address) | |
9617d95e | 1286 | { |
d8dd5e97 | 1287 | int nr; |
d281ee61 | 1288 | |
81d1b09c | 1289 | VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); |
4d510f3d | 1290 | __folio_set_swapbacked(folio); |
d8dd5e97 | 1291 | |
4d510f3d | 1292 | if (likely(!folio_test_pmd_mappable(folio))) { |
d8dd5e97 | 1293 | /* increment count (starts at -1) */ |
4d510f3d | 1294 | atomic_set(&folio->_mapcount, 0); |
d8dd5e97 HD |
1295 | nr = 1; |
1296 | } else { | |
53f9263b | 1297 | /* increment count (starts at -1) */ |
4d510f3d MWO |
1298 | atomic_set(&folio->_entire_mapcount, 0); |
1299 | atomic_set(&folio->_nr_pages_mapped, COMPOUND_MAPPED); | |
1300 | nr = folio_nr_pages(folio); | |
1301 | __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr); | |
d281ee61 | 1302 | } |
d8dd5e97 | 1303 | |
4d510f3d | 1304 | __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr); |
5b4bd90f | 1305 | __page_set_anon_rmap(folio, &folio->page, vma, address, 1); |
9617d95e NP |
1306 | } |
1307 | ||
1da177e4 LT |
1308 | /** |
1309 | * page_add_file_rmap - add pte mapping to a file page | |
cea86fe2 HD |
1310 | * @page: the page to add the mapping to |
1311 | * @vma: the vm area in which the mapping is added | |
1312 | * @compound: charge the page as compound or small page | |
1da177e4 | 1313 | * |
b8072f09 | 1314 | * The caller needs to hold the pte lock. |
1da177e4 | 1315 | */ |
eb01a2ad MWO |
1316 | void page_add_file_rmap(struct page *page, struct vm_area_struct *vma, |
1317 | bool compound) | |
1da177e4 | 1318 | { |
eb01a2ad MWO |
1319 | struct folio *folio = page_folio(page); |
1320 | atomic_t *mapped = &folio->_nr_pages_mapped; | |
9bd3155e HD |
1321 | int nr = 0, nr_pmdmapped = 0; |
1322 | bool first; | |
dd78fedd KS |
1323 | |
1324 | VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page); | |
9bd3155e | 1325 | |
be5ef2d9 HD |
1326 | /* Is page being mapped by PTE? Is this its first map to be added? */ |
1327 | if (likely(!compound)) { | |
d8dd5e97 HD |
1328 | first = atomic_inc_and_test(&page->_mapcount); |
1329 | nr = first; | |
eb01a2ad | 1330 | if (first && folio_test_large(folio)) { |
4b51634c | 1331 | nr = atomic_inc_return_relaxed(mapped); |
6287b7da | 1332 | nr = (nr < COMPOUND_MAPPED); |
be5ef2d9 | 1333 | } |
eb01a2ad | 1334 | } else if (folio_test_pmd_mappable(folio)) { |
be5ef2d9 | 1335 | /* That test is redundant: it's for safety or to optimize out */ |
d8dd5e97 | 1336 | |
eb01a2ad | 1337 | first = atomic_inc_and_test(&folio->_entire_mapcount); |
9bd3155e | 1338 | if (first) { |
4b51634c | 1339 | nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped); |
6287b7da | 1340 | if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) { |
eb01a2ad | 1341 | nr_pmdmapped = folio_nr_pages(folio); |
eec20426 | 1342 | nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); |
6287b7da HD |
1343 | /* Raced ahead of a remove and another add? */ |
1344 | if (unlikely(nr < 0)) | |
1345 | nr = 0; | |
1346 | } else { | |
1347 | /* Raced ahead of a remove of COMPOUND_MAPPED */ | |
1348 | nr = 0; | |
1349 | } | |
9bd3155e | 1350 | } |
d69b042f | 1351 | } |
9bd3155e HD |
1352 | |
1353 | if (nr_pmdmapped) | |
eb01a2ad | 1354 | __lruvec_stat_mod_folio(folio, folio_test_swapbacked(folio) ? |
9bd3155e | 1355 | NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED, nr_pmdmapped); |
5d543f13 | 1356 | if (nr) |
eb01a2ad | 1357 | __lruvec_stat_mod_folio(folio, NR_FILE_MAPPED, nr); |
cea86fe2 | 1358 | |
7efecffb | 1359 | mlock_vma_folio(folio, vma, compound); |
1da177e4 LT |
1360 | } |
1361 | ||
9bd3155e HD |
1362 | /** |
1363 | * page_remove_rmap - take down pte mapping from a page | |
1364 | * @page: page to remove mapping from | |
1365 | * @vma: the vm area from which the mapping is removed | |
1366 | * @compound: uncharge the page as compound or small page | |
1367 | * | |
1368 | * The caller needs to hold the pte lock. | |
1369 | */ | |
62beb906 MWO |
1370 | void page_remove_rmap(struct page *page, struct vm_area_struct *vma, |
1371 | bool compound) | |
8186eb6a | 1372 | { |
62beb906 MWO |
1373 | struct folio *folio = page_folio(page); |
1374 | atomic_t *mapped = &folio->_nr_pages_mapped; | |
9bd3155e HD |
1375 | int nr = 0, nr_pmdmapped = 0; |
1376 | bool last; | |
62beb906 | 1377 | enum node_stat_item idx; |
dd78fedd | 1378 | |
57dea93a | 1379 | VM_BUG_ON_PAGE(compound && !PageHead(page), page); |
8186eb6a | 1380 | |
9bd3155e | 1381 | /* Hugetlb pages are not counted in NR_*MAPPED */ |
62beb906 | 1382 | if (unlikely(folio_test_hugetlb(folio))) { |
53f9263b | 1383 | /* hugetlb pages are always mapped with pmds */ |
62beb906 | 1384 | atomic_dec(&folio->_entire_mapcount); |
be5d0a74 | 1385 | return; |
53f9263b | 1386 | } |
8186eb6a | 1387 | |
be5ef2d9 HD |
1388 | /* Is page being unmapped by PTE? Is this its last map to be removed? */ |
1389 | if (likely(!compound)) { | |
d8dd5e97 HD |
1390 | last = atomic_add_negative(-1, &page->_mapcount); |
1391 | nr = last; | |
62beb906 | 1392 | if (last && folio_test_large(folio)) { |
4b51634c | 1393 | nr = atomic_dec_return_relaxed(mapped); |
6287b7da | 1394 | nr = (nr < COMPOUND_MAPPED); |
be5ef2d9 | 1395 | } |
62beb906 | 1396 | } else if (folio_test_pmd_mappable(folio)) { |
be5ef2d9 | 1397 | /* That test is redundant: it's for safety or to optimize out */ |
d8dd5e97 | 1398 | |
62beb906 | 1399 | last = atomic_add_negative(-1, &folio->_entire_mapcount); |
9bd3155e | 1400 | if (last) { |
4b51634c | 1401 | nr = atomic_sub_return_relaxed(COMPOUND_MAPPED, mapped); |
6287b7da | 1402 | if (likely(nr < COMPOUND_MAPPED)) { |
62beb906 | 1403 | nr_pmdmapped = folio_nr_pages(folio); |
eec20426 | 1404 | nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); |
6287b7da HD |
1405 | /* Raced ahead of another remove and an add? */ |
1406 | if (unlikely(nr < 0)) | |
1407 | nr = 0; | |
1408 | } else { | |
1409 | /* An add of COMPOUND_MAPPED raced ahead */ | |
1410 | nr = 0; | |
1411 | } | |
9bd3155e | 1412 | } |
dd78fedd | 1413 | } |
cb67f428 | 1414 | |
9bd3155e | 1415 | if (nr_pmdmapped) { |
62beb906 MWO |
1416 | if (folio_test_anon(folio)) |
1417 | idx = NR_ANON_THPS; | |
1418 | else if (folio_test_swapbacked(folio)) | |
1419 | idx = NR_SHMEM_PMDMAPPED; | |
1420 | else | |
1421 | idx = NR_FILE_PMDMAPPED; | |
1422 | __lruvec_stat_mod_folio(folio, idx, -nr_pmdmapped); | |
9bd3155e HD |
1423 | } |
1424 | if (nr) { | |
62beb906 MWO |
1425 | idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED; |
1426 | __lruvec_stat_mod_folio(folio, idx, -nr); | |
1427 | ||
f1fe80d4 | 1428 | /* |
62beb906 MWO |
1429 | * Queue anon THP for deferred split if at least one |
1430 | * page of the folio is unmapped and at least one page | |
1431 | * is still mapped. | |
f1fe80d4 | 1432 | */ |
62beb906 | 1433 | if (folio_test_pmd_mappable(folio) && folio_test_anon(folio)) |
9bd3155e | 1434 | if (!compound || nr < nr_pmdmapped) |
f158ed61 | 1435 | deferred_split_folio(folio); |
53f9263b KS |
1436 | } |
1437 | ||
b904dcfe | 1438 | /* |
672aa27d MWO |
1439 | * It would be tidy to reset folio_test_anon mapping when fully |
1440 | * unmapped, but that might overwrite a racing page_add_anon_rmap | |
1441 | * which increments mapcount after us but sets mapping before us: | |
1442 | * so leave the reset to free_pages_prepare, and remember that | |
1443 | * it's only reliable while mapped. | |
b904dcfe | 1444 | */ |
9bd3155e | 1445 | |
672aa27d | 1446 | munlock_vma_folio(folio, vma, compound); |
1da177e4 LT |
1447 | } |
1448 | ||
1449 | /* | |
52629506 | 1450 | * @arg: enum ttu_flags will be passed to this argument |
1da177e4 | 1451 | */ |
2f031c6f | 1452 | static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma, |
52629506 | 1453 | unsigned long address, void *arg) |
1da177e4 LT |
1454 | { |
1455 | struct mm_struct *mm = vma->vm_mm; | |
869f7ee6 | 1456 | DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); |
1da177e4 | 1457 | pte_t pteval; |
c7ab0d2f | 1458 | struct page *subpage; |
6c287605 | 1459 | bool anon_exclusive, ret = true; |
ac46d4f3 | 1460 | struct mmu_notifier_range range; |
4708f318 | 1461 | enum ttu_flags flags = (enum ttu_flags)(long)arg; |
c33c7948 | 1462 | unsigned long pfn; |
1da177e4 | 1463 | |
732ed558 HD |
1464 | /* |
1465 | * When racing against e.g. zap_pte_range() on another cpu, | |
1466 | * in between its ptep_get_and_clear_full() and page_remove_rmap(), | |
1fb08ac6 | 1467 | * try_to_unmap() may return before page_mapped() has become false, |
732ed558 HD |
1468 | * if page table locking is skipped: use TTU_SYNC to wait for that. |
1469 | */ | |
1470 | if (flags & TTU_SYNC) | |
1471 | pvmw.flags = PVMW_SYNC; | |
1472 | ||
a98a2f0c | 1473 | if (flags & TTU_SPLIT_HUGE_PMD) |
af28a988 | 1474 | split_huge_pmd_address(vma, address, false, folio); |
fec89c10 | 1475 | |
369ea824 | 1476 | /* |
017b1660 MK |
1477 | * For THP, we have to assume the worse case ie pmd for invalidation. |
1478 | * For hugetlb, it could be much worse if we need to do pud | |
1479 | * invalidation in the case of pmd sharing. | |
1480 | * | |
869f7ee6 MWO |
1481 | * Note that the folio can not be freed in this function as call of |
1482 | * try_to_unmap() must hold a reference on the folio. | |
369ea824 | 1483 | */ |
2aff7a47 | 1484 | range.end = vma_address_end(&pvmw); |
7d4a8be0 | 1485 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, |
494334e4 | 1486 | address, range.end); |
869f7ee6 | 1487 | if (folio_test_hugetlb(folio)) { |
017b1660 MK |
1488 | /* |
1489 | * If sharing is possible, start and end will be adjusted | |
1490 | * accordingly. | |
1491 | */ | |
ac46d4f3 JG |
1492 | adjust_range_if_pmd_sharing_possible(vma, &range.start, |
1493 | &range.end); | |
017b1660 | 1494 | } |
ac46d4f3 | 1495 | mmu_notifier_invalidate_range_start(&range); |
369ea824 | 1496 | |
c7ab0d2f | 1497 | while (page_vma_mapped_walk(&pvmw)) { |
cea86fe2 | 1498 | /* Unexpected PMD-mapped THP? */ |
869f7ee6 | 1499 | VM_BUG_ON_FOLIO(!pvmw.pte, folio); |
cea86fe2 | 1500 | |
c7ab0d2f | 1501 | /* |
869f7ee6 | 1502 | * If the folio is in an mlock()d vma, we must not swap it out. |
c7ab0d2f | 1503 | */ |
efdb6720 HD |
1504 | if (!(flags & TTU_IGNORE_MLOCK) && |
1505 | (vma->vm_flags & VM_LOCKED)) { | |
cea86fe2 | 1506 | /* Restore the mlock which got missed */ |
869f7ee6 | 1507 | mlock_vma_folio(folio, vma, false); |
efdb6720 HD |
1508 | page_vma_mapped_walk_done(&pvmw); |
1509 | ret = false; | |
1510 | break; | |
b87537d9 | 1511 | } |
c7ab0d2f | 1512 | |
c33c7948 RR |
1513 | pfn = pte_pfn(ptep_get(pvmw.pte)); |
1514 | subpage = folio_page(folio, pfn - folio_pfn(folio)); | |
785373b4 | 1515 | address = pvmw.address; |
6c287605 DH |
1516 | anon_exclusive = folio_test_anon(folio) && |
1517 | PageAnonExclusive(subpage); | |
785373b4 | 1518 | |
dfc7ab57 | 1519 | if (folio_test_hugetlb(folio)) { |
0506c31d BW |
1520 | bool anon = folio_test_anon(folio); |
1521 | ||
a00a8759 BW |
1522 | /* |
1523 | * The try_to_unmap() is only passed a hugetlb page | |
1524 | * in the case where the hugetlb page is poisoned. | |
1525 | */ | |
1526 | VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage); | |
54205e9c BW |
1527 | /* |
1528 | * huge_pmd_unshare may unmap an entire PMD page. | |
1529 | * There is no way of knowing exactly which PMDs may | |
1530 | * be cached for this mm, so we must flush them all. | |
1531 | * start/end were already adjusted above to cover this | |
1532 | * range. | |
1533 | */ | |
1534 | flush_cache_range(vma, range.start, range.end); | |
1535 | ||
0506c31d BW |
1536 | /* |
1537 | * To call huge_pmd_unshare, i_mmap_rwsem must be | |
1538 | * held in write mode. Caller needs to explicitly | |
1539 | * do this outside rmap routines. | |
40549ba8 MK |
1540 | * |
1541 | * We also must hold hugetlb vma_lock in write mode. | |
1542 | * Lock order dictates acquiring vma_lock BEFORE | |
1543 | * i_mmap_rwsem. We can only try lock here and fail | |
1544 | * if unsuccessful. | |
0506c31d | 1545 | */ |
40549ba8 MK |
1546 | if (!anon) { |
1547 | VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); | |
1548 | if (!hugetlb_vma_trylock_write(vma)) { | |
1549 | page_vma_mapped_walk_done(&pvmw); | |
1550 | ret = false; | |
1551 | break; | |
1552 | } | |
1553 | if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { | |
1554 | hugetlb_vma_unlock_write(vma); | |
1555 | flush_tlb_range(vma, | |
1556 | range.start, range.end); | |
1557 | mmu_notifier_invalidate_range(mm, | |
1558 | range.start, range.end); | |
1559 | /* | |
1560 | * The ref count of the PMD page was | |
1561 | * dropped which is part of the way map | |
1562 | * counting is done for shared PMDs. | |
1563 | * Return 'true' here. When there is | |
1564 | * no other sharing, huge_pmd_unshare | |
1565 | * returns false and we will unmap the | |
1566 | * actual page and drop map count | |
1567 | * to zero. | |
1568 | */ | |
1569 | page_vma_mapped_walk_done(&pvmw); | |
1570 | break; | |
1571 | } | |
1572 | hugetlb_vma_unlock_write(vma); | |
017b1660 | 1573 | } |
a00a8759 | 1574 | pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); |
54205e9c | 1575 | } else { |
c33c7948 | 1576 | flush_cache_page(vma, address, pfn); |
088b8aa5 DH |
1577 | /* Nuke the page table entry. */ |
1578 | if (should_defer_flush(mm, flags)) { | |
a00a8759 BW |
1579 | /* |
1580 | * We clear the PTE but do not flush so potentially | |
1581 | * a remote CPU could still be writing to the folio. | |
1582 | * If the entry was previously clean then the | |
1583 | * architecture must guarantee that a clear->dirty | |
1584 | * transition on a cached TLB entry is written through | |
1585 | * and traps if the PTE is unmapped. | |
1586 | */ | |
1587 | pteval = ptep_get_and_clear(mm, address, pvmw.pte); | |
c7ab0d2f | 1588 | |
4d4b6d66 | 1589 | set_tlb_ubc_flush_pending(mm, pteval); |
a00a8759 BW |
1590 | } else { |
1591 | pteval = ptep_clear_flush(vma, address, pvmw.pte); | |
1592 | } | |
c7ab0d2f | 1593 | } |
72b252ae | 1594 | |
999dad82 PX |
1595 | /* |
1596 | * Now the pte is cleared. If this pte was uffd-wp armed, | |
1597 | * we may want to replace a none pte with a marker pte if | |
1598 | * it's file-backed, so we don't lose the tracking info. | |
1599 | */ | |
1600 | pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval); | |
1601 | ||
869f7ee6 | 1602 | /* Set the dirty flag on the folio now the pte is gone. */ |
c7ab0d2f | 1603 | if (pte_dirty(pteval)) |
869f7ee6 | 1604 | folio_mark_dirty(folio); |
1da177e4 | 1605 | |
c7ab0d2f KS |
1606 | /* Update high watermark before we lower rss */ |
1607 | update_hiwater_rss(mm); | |
1da177e4 | 1608 | |
6da6b1d4 | 1609 | if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) { |
5fd27b8e | 1610 | pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); |
869f7ee6 MWO |
1611 | if (folio_test_hugetlb(folio)) { |
1612 | hugetlb_count_sub(folio_nr_pages(folio), mm); | |
18f39629 | 1613 | set_huge_pte_at(mm, address, pvmw.pte, pteval); |
c7ab0d2f | 1614 | } else { |
869f7ee6 | 1615 | dec_mm_counter(mm, mm_counter(&folio->page)); |
785373b4 | 1616 | set_pte_at(mm, address, pvmw.pte, pteval); |
c7ab0d2f | 1617 | } |
365e9c87 | 1618 | |
bce73e48 | 1619 | } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { |
c7ab0d2f KS |
1620 | /* |
1621 | * The guest indicated that the page content is of no | |
1622 | * interest anymore. Simply discard the pte, vmscan | |
1623 | * will take care of the rest. | |
bce73e48 CB |
1624 | * A future reference will then fault in a new zero |
1625 | * page. When userfaultfd is active, we must not drop | |
1626 | * this page though, as its main user (postcopy | |
1627 | * migration) will not expect userfaults on already | |
1628 | * copied pages. | |
c7ab0d2f | 1629 | */ |
869f7ee6 | 1630 | dec_mm_counter(mm, mm_counter(&folio->page)); |
0f10851e JG |
1631 | /* We have to invalidate as we cleared the pte */ |
1632 | mmu_notifier_invalidate_range(mm, address, | |
1633 | address + PAGE_SIZE); | |
869f7ee6 | 1634 | } else if (folio_test_anon(folio)) { |
c7ab0d2f KS |
1635 | swp_entry_t entry = { .val = page_private(subpage) }; |
1636 | pte_t swp_pte; | |
1637 | /* | |
1638 | * Store the swap location in the pte. | |
1639 | * See handle_pte_fault() ... | |
1640 | */ | |
869f7ee6 MWO |
1641 | if (unlikely(folio_test_swapbacked(folio) != |
1642 | folio_test_swapcache(folio))) { | |
eb94a878 | 1643 | WARN_ON_ONCE(1); |
83612a94 | 1644 | ret = false; |
369ea824 | 1645 | /* We have to invalidate as we cleared the pte */ |
0f10851e JG |
1646 | mmu_notifier_invalidate_range(mm, address, |
1647 | address + PAGE_SIZE); | |
eb94a878 MK |
1648 | page_vma_mapped_walk_done(&pvmw); |
1649 | break; | |
1650 | } | |
c7ab0d2f | 1651 | |
802a3a92 | 1652 | /* MADV_FREE page check */ |
869f7ee6 | 1653 | if (!folio_test_swapbacked(folio)) { |
6c8e2a25 MFO |
1654 | int ref_count, map_count; |
1655 | ||
1656 | /* | |
1657 | * Synchronize with gup_pte_range(): | |
1658 | * - clear PTE; barrier; read refcount | |
1659 | * - inc refcount; barrier; read PTE | |
1660 | */ | |
1661 | smp_mb(); | |
1662 | ||
1663 | ref_count = folio_ref_count(folio); | |
1664 | map_count = folio_mapcount(folio); | |
1665 | ||
1666 | /* | |
1667 | * Order reads for page refcount and dirty flag | |
1668 | * (see comments in __remove_mapping()). | |
1669 | */ | |
1670 | smp_rmb(); | |
1671 | ||
1672 | /* | |
1673 | * The only page refs must be one from isolation | |
1674 | * plus the rmap(s) (dropped by discard:). | |
1675 | */ | |
1676 | if (ref_count == 1 + map_count && | |
1677 | !folio_test_dirty(folio)) { | |
0f10851e JG |
1678 | /* Invalidate as we cleared the pte */ |
1679 | mmu_notifier_invalidate_range(mm, | |
1680 | address, address + PAGE_SIZE); | |
802a3a92 SL |
1681 | dec_mm_counter(mm, MM_ANONPAGES); |
1682 | goto discard; | |
1683 | } | |
1684 | ||
1685 | /* | |
869f7ee6 | 1686 | * If the folio was redirtied, it cannot be |
802a3a92 SL |
1687 | * discarded. Remap the page to page table. |
1688 | */ | |
785373b4 | 1689 | set_pte_at(mm, address, pvmw.pte, pteval); |
869f7ee6 | 1690 | folio_set_swapbacked(folio); |
e4b82222 | 1691 | ret = false; |
802a3a92 SL |
1692 | page_vma_mapped_walk_done(&pvmw); |
1693 | break; | |
c7ab0d2f | 1694 | } |
854e9ed0 | 1695 | |
c7ab0d2f | 1696 | if (swap_duplicate(entry) < 0) { |
785373b4 | 1697 | set_pte_at(mm, address, pvmw.pte, pteval); |
e4b82222 | 1698 | ret = false; |
c7ab0d2f KS |
1699 | page_vma_mapped_walk_done(&pvmw); |
1700 | break; | |
1701 | } | |
ca827d55 | 1702 | if (arch_unmap_one(mm, vma, address, pteval) < 0) { |
322842ea | 1703 | swap_free(entry); |
ca827d55 KA |
1704 | set_pte_at(mm, address, pvmw.pte, pteval); |
1705 | ret = false; | |
1706 | page_vma_mapped_walk_done(&pvmw); | |
1707 | break; | |
1708 | } | |
088b8aa5 DH |
1709 | |
1710 | /* See page_try_share_anon_rmap(): clear PTE first. */ | |
6c287605 DH |
1711 | if (anon_exclusive && |
1712 | page_try_share_anon_rmap(subpage)) { | |
1713 | swap_free(entry); | |
1714 | set_pte_at(mm, address, pvmw.pte, pteval); | |
1715 | ret = false; | |
1716 | page_vma_mapped_walk_done(&pvmw); | |
1717 | break; | |
1718 | } | |
c7ab0d2f KS |
1719 | if (list_empty(&mm->mmlist)) { |
1720 | spin_lock(&mmlist_lock); | |
1721 | if (list_empty(&mm->mmlist)) | |
1722 | list_add(&mm->mmlist, &init_mm.mmlist); | |
1723 | spin_unlock(&mmlist_lock); | |
1724 | } | |
854e9ed0 | 1725 | dec_mm_counter(mm, MM_ANONPAGES); |
c7ab0d2f KS |
1726 | inc_mm_counter(mm, MM_SWAPENTS); |
1727 | swp_pte = swp_entry_to_pte(entry); | |
1493a191 DH |
1728 | if (anon_exclusive) |
1729 | swp_pte = pte_swp_mkexclusive(swp_pte); | |
c7ab0d2f KS |
1730 | if (pte_soft_dirty(pteval)) |
1731 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
f45ec5ff PX |
1732 | if (pte_uffd_wp(pteval)) |
1733 | swp_pte = pte_swp_mkuffd_wp(swp_pte); | |
785373b4 | 1734 | set_pte_at(mm, address, pvmw.pte, swp_pte); |
0f10851e JG |
1735 | /* Invalidate as we cleared the pte */ |
1736 | mmu_notifier_invalidate_range(mm, address, | |
1737 | address + PAGE_SIZE); | |
1738 | } else { | |
1739 | /* | |
869f7ee6 MWO |
1740 | * This is a locked file-backed folio, |
1741 | * so it cannot be removed from the page | |
1742 | * cache and replaced by a new folio before | |
1743 | * mmu_notifier_invalidate_range_end, so no | |
1744 | * concurrent thread might update its page table | |
1745 | * to point at a new folio while a device is | |
1746 | * still using this folio. | |
0f10851e | 1747 | * |
ee65728e | 1748 | * See Documentation/mm/mmu_notifier.rst |
0f10851e | 1749 | */ |
869f7ee6 | 1750 | dec_mm_counter(mm, mm_counter_file(&folio->page)); |
0f10851e | 1751 | } |
854e9ed0 | 1752 | discard: |
0f10851e JG |
1753 | /* |
1754 | * No need to call mmu_notifier_invalidate_range() it has be | |
1755 | * done above for all cases requiring it to happen under page | |
1756 | * table lock before mmu_notifier_invalidate_range_end() | |
1757 | * | |
ee65728e | 1758 | * See Documentation/mm/mmu_notifier.rst |
0f10851e | 1759 | */ |
869f7ee6 | 1760 | page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); |
b7435507 | 1761 | if (vma->vm_flags & VM_LOCKED) |
96f97c43 | 1762 | mlock_drain_local(); |
869f7ee6 | 1763 | folio_put(folio); |
c7ab0d2f | 1764 | } |
369ea824 | 1765 | |
ac46d4f3 | 1766 | mmu_notifier_invalidate_range_end(&range); |
369ea824 | 1767 | |
caed0f48 | 1768 | return ret; |
1da177e4 LT |
1769 | } |
1770 | ||
52629506 JK |
1771 | static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) |
1772 | { | |
222100ee | 1773 | return vma_is_temporary_stack(vma); |
52629506 JK |
1774 | } |
1775 | ||
f3ad032c | 1776 | static int folio_not_mapped(struct folio *folio) |
52629506 | 1777 | { |
2f031c6f | 1778 | return !folio_mapped(folio); |
2a52bcbc | 1779 | } |
52629506 | 1780 | |
1da177e4 | 1781 | /** |
869f7ee6 MWO |
1782 | * try_to_unmap - Try to remove all page table mappings to a folio. |
1783 | * @folio: The folio to unmap. | |
14fa31b8 | 1784 | * @flags: action and flags |
1da177e4 LT |
1785 | * |
1786 | * Tries to remove all the page table entries which are mapping this | |
869f7ee6 MWO |
1787 | * folio. It is the caller's responsibility to check if the folio is |
1788 | * still mapped if needed (use TTU_SYNC to prevent accounting races). | |
1da177e4 | 1789 | * |
869f7ee6 | 1790 | * Context: Caller must hold the folio lock. |
1da177e4 | 1791 | */ |
869f7ee6 | 1792 | void try_to_unmap(struct folio *folio, enum ttu_flags flags) |
1da177e4 | 1793 | { |
52629506 JK |
1794 | struct rmap_walk_control rwc = { |
1795 | .rmap_one = try_to_unmap_one, | |
802a3a92 | 1796 | .arg = (void *)flags, |
f3ad032c | 1797 | .done = folio_not_mapped, |
2f031c6f | 1798 | .anon_lock = folio_lock_anon_vma_read, |
52629506 | 1799 | }; |
1da177e4 | 1800 | |
a98a2f0c | 1801 | if (flags & TTU_RMAP_LOCKED) |
2f031c6f | 1802 | rmap_walk_locked(folio, &rwc); |
a98a2f0c | 1803 | else |
2f031c6f | 1804 | rmap_walk(folio, &rwc); |
a98a2f0c AP |
1805 | } |
1806 | ||
1807 | /* | |
1808 | * @arg: enum ttu_flags will be passed to this argument. | |
1809 | * | |
1810 | * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs | |
64b586d1 | 1811 | * containing migration entries. |
a98a2f0c | 1812 | */ |
2f031c6f | 1813 | static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma, |
a98a2f0c AP |
1814 | unsigned long address, void *arg) |
1815 | { | |
1816 | struct mm_struct *mm = vma->vm_mm; | |
4b8554c5 | 1817 | DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); |
a98a2f0c AP |
1818 | pte_t pteval; |
1819 | struct page *subpage; | |
6c287605 | 1820 | bool anon_exclusive, ret = true; |
a98a2f0c AP |
1821 | struct mmu_notifier_range range; |
1822 | enum ttu_flags flags = (enum ttu_flags)(long)arg; | |
c33c7948 | 1823 | unsigned long pfn; |
a98a2f0c | 1824 | |
a98a2f0c AP |
1825 | /* |
1826 | * When racing against e.g. zap_pte_range() on another cpu, | |
1827 | * in between its ptep_get_and_clear_full() and page_remove_rmap(), | |
1828 | * try_to_migrate() may return before page_mapped() has become false, | |
1829 | * if page table locking is skipped: use TTU_SYNC to wait for that. | |
1830 | */ | |
1831 | if (flags & TTU_SYNC) | |
1832 | pvmw.flags = PVMW_SYNC; | |
1833 | ||
1834 | /* | |
1835 | * unmap_page() in mm/huge_memory.c is the only user of migration with | |
1836 | * TTU_SPLIT_HUGE_PMD and it wants to freeze. | |
1837 | */ | |
1838 | if (flags & TTU_SPLIT_HUGE_PMD) | |
af28a988 | 1839 | split_huge_pmd_address(vma, address, true, folio); |
a98a2f0c AP |
1840 | |
1841 | /* | |
1842 | * For THP, we have to assume the worse case ie pmd for invalidation. | |
1843 | * For hugetlb, it could be much worse if we need to do pud | |
1844 | * invalidation in the case of pmd sharing. | |
1845 | * | |
1846 | * Note that the page can not be free in this function as call of | |
1847 | * try_to_unmap() must hold a reference on the page. | |
1848 | */ | |
2aff7a47 | 1849 | range.end = vma_address_end(&pvmw); |
7d4a8be0 | 1850 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, |
a98a2f0c | 1851 | address, range.end); |
4b8554c5 | 1852 | if (folio_test_hugetlb(folio)) { |
a98a2f0c AP |
1853 | /* |
1854 | * If sharing is possible, start and end will be adjusted | |
1855 | * accordingly. | |
1856 | */ | |
1857 | adjust_range_if_pmd_sharing_possible(vma, &range.start, | |
1858 | &range.end); | |
1859 | } | |
1860 | mmu_notifier_invalidate_range_start(&range); | |
1861 | ||
1862 | while (page_vma_mapped_walk(&pvmw)) { | |
1863 | #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION | |
1864 | /* PMD-mapped THP migration entry */ | |
1865 | if (!pvmw.pte) { | |
4b8554c5 MWO |
1866 | subpage = folio_page(folio, |
1867 | pmd_pfn(*pvmw.pmd) - folio_pfn(folio)); | |
1868 | VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || | |
1869 | !folio_test_pmd_mappable(folio), folio); | |
a98a2f0c | 1870 | |
7f5abe60 DH |
1871 | if (set_pmd_migration_entry(&pvmw, subpage)) { |
1872 | ret = false; | |
1873 | page_vma_mapped_walk_done(&pvmw); | |
1874 | break; | |
1875 | } | |
a98a2f0c AP |
1876 | continue; |
1877 | } | |
1878 | #endif | |
1879 | ||
1880 | /* Unexpected PMD-mapped THP? */ | |
4b8554c5 | 1881 | VM_BUG_ON_FOLIO(!pvmw.pte, folio); |
a98a2f0c | 1882 | |
c33c7948 RR |
1883 | pfn = pte_pfn(ptep_get(pvmw.pte)); |
1884 | ||
1118234e DH |
1885 | if (folio_is_zone_device(folio)) { |
1886 | /* | |
1887 | * Our PTE is a non-present device exclusive entry and | |
1888 | * calculating the subpage as for the common case would | |
1889 | * result in an invalid pointer. | |
1890 | * | |
1891 | * Since only PAGE_SIZE pages can currently be | |
1892 | * migrated, just set it to page. This will need to be | |
1893 | * changed when hugepage migrations to device private | |
1894 | * memory are supported. | |
1895 | */ | |
1896 | VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio); | |
1897 | subpage = &folio->page; | |
1898 | } else { | |
c33c7948 | 1899 | subpage = folio_page(folio, pfn - folio_pfn(folio)); |
1118234e | 1900 | } |
a98a2f0c | 1901 | address = pvmw.address; |
6c287605 DH |
1902 | anon_exclusive = folio_test_anon(folio) && |
1903 | PageAnonExclusive(subpage); | |
a98a2f0c | 1904 | |
dfc7ab57 | 1905 | if (folio_test_hugetlb(folio)) { |
0506c31d BW |
1906 | bool anon = folio_test_anon(folio); |
1907 | ||
54205e9c BW |
1908 | /* |
1909 | * huge_pmd_unshare may unmap an entire PMD page. | |
1910 | * There is no way of knowing exactly which PMDs may | |
1911 | * be cached for this mm, so we must flush them all. | |
1912 | * start/end were already adjusted above to cover this | |
1913 | * range. | |
1914 | */ | |
1915 | flush_cache_range(vma, range.start, range.end); | |
1916 | ||
0506c31d BW |
1917 | /* |
1918 | * To call huge_pmd_unshare, i_mmap_rwsem must be | |
1919 | * held in write mode. Caller needs to explicitly | |
1920 | * do this outside rmap routines. | |
40549ba8 MK |
1921 | * |
1922 | * We also must hold hugetlb vma_lock in write mode. | |
1923 | * Lock order dictates acquiring vma_lock BEFORE | |
1924 | * i_mmap_rwsem. We can only try lock here and | |
1925 | * fail if unsuccessful. | |
0506c31d | 1926 | */ |
40549ba8 MK |
1927 | if (!anon) { |
1928 | VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); | |
1929 | if (!hugetlb_vma_trylock_write(vma)) { | |
1930 | page_vma_mapped_walk_done(&pvmw); | |
1931 | ret = false; | |
1932 | break; | |
1933 | } | |
1934 | if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { | |
1935 | hugetlb_vma_unlock_write(vma); | |
1936 | flush_tlb_range(vma, | |
1937 | range.start, range.end); | |
1938 | mmu_notifier_invalidate_range(mm, | |
1939 | range.start, range.end); | |
1940 | ||
1941 | /* | |
1942 | * The ref count of the PMD page was | |
1943 | * dropped which is part of the way map | |
1944 | * counting is done for shared PMDs. | |
1945 | * Return 'true' here. When there is | |
1946 | * no other sharing, huge_pmd_unshare | |
1947 | * returns false and we will unmap the | |
1948 | * actual page and drop map count | |
1949 | * to zero. | |
1950 | */ | |
1951 | page_vma_mapped_walk_done(&pvmw); | |
1952 | break; | |
1953 | } | |
1954 | hugetlb_vma_unlock_write(vma); | |
a98a2f0c | 1955 | } |
5d4af619 BW |
1956 | /* Nuke the hugetlb page table entry */ |
1957 | pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); | |
54205e9c | 1958 | } else { |
c33c7948 | 1959 | flush_cache_page(vma, address, pfn); |
5d4af619 | 1960 | /* Nuke the page table entry. */ |
7e12beb8 YH |
1961 | if (should_defer_flush(mm, flags)) { |
1962 | /* | |
1963 | * We clear the PTE but do not flush so potentially | |
1964 | * a remote CPU could still be writing to the folio. | |
1965 | * If the entry was previously clean then the | |
1966 | * architecture must guarantee that a clear->dirty | |
1967 | * transition on a cached TLB entry is written through | |
1968 | * and traps if the PTE is unmapped. | |
1969 | */ | |
1970 | pteval = ptep_get_and_clear(mm, address, pvmw.pte); | |
1971 | ||
4d4b6d66 | 1972 | set_tlb_ubc_flush_pending(mm, pteval); |
7e12beb8 YH |
1973 | } else { |
1974 | pteval = ptep_clear_flush(vma, address, pvmw.pte); | |
1975 | } | |
a98a2f0c AP |
1976 | } |
1977 | ||
4b8554c5 | 1978 | /* Set the dirty flag on the folio now the pte is gone. */ |
a98a2f0c | 1979 | if (pte_dirty(pteval)) |
4b8554c5 | 1980 | folio_mark_dirty(folio); |
a98a2f0c AP |
1981 | |
1982 | /* Update high watermark before we lower rss */ | |
1983 | update_hiwater_rss(mm); | |
1984 | ||
f25cbb7a | 1985 | if (folio_is_device_private(folio)) { |
4b8554c5 | 1986 | unsigned long pfn = folio_pfn(folio); |
a98a2f0c AP |
1987 | swp_entry_t entry; |
1988 | pte_t swp_pte; | |
1989 | ||
6c287605 DH |
1990 | if (anon_exclusive) |
1991 | BUG_ON(page_try_share_anon_rmap(subpage)); | |
1992 | ||
a98a2f0c AP |
1993 | /* |
1994 | * Store the pfn of the page in a special migration | |
1995 | * pte. do_swap_page() will wait until the migration | |
1996 | * pte is removed and then restart fault handling. | |
1997 | */ | |
3d88705c AP |
1998 | entry = pte_to_swp_entry(pteval); |
1999 | if (is_writable_device_private_entry(entry)) | |
2000 | entry = make_writable_migration_entry(pfn); | |
6c287605 DH |
2001 | else if (anon_exclusive) |
2002 | entry = make_readable_exclusive_migration_entry(pfn); | |
3d88705c AP |
2003 | else |
2004 | entry = make_readable_migration_entry(pfn); | |
a98a2f0c AP |
2005 | swp_pte = swp_entry_to_pte(entry); |
2006 | ||
2007 | /* | |
2008 | * pteval maps a zone device page and is therefore | |
2009 | * a swap pte. | |
2010 | */ | |
2011 | if (pte_swp_soft_dirty(pteval)) | |
2012 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
2013 | if (pte_swp_uffd_wp(pteval)) | |
2014 | swp_pte = pte_swp_mkuffd_wp(swp_pte); | |
2015 | set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte); | |
4cc79b33 AK |
2016 | trace_set_migration_pte(pvmw.address, pte_val(swp_pte), |
2017 | compound_order(&folio->page)); | |
a98a2f0c AP |
2018 | /* |
2019 | * No need to invalidate here it will synchronize on | |
2020 | * against the special swap migration pte. | |
a98a2f0c | 2021 | */ |
da358d5c | 2022 | } else if (PageHWPoison(subpage)) { |
a98a2f0c | 2023 | pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); |
4b8554c5 MWO |
2024 | if (folio_test_hugetlb(folio)) { |
2025 | hugetlb_count_sub(folio_nr_pages(folio), mm); | |
18f39629 | 2026 | set_huge_pte_at(mm, address, pvmw.pte, pteval); |
a98a2f0c | 2027 | } else { |
4b8554c5 | 2028 | dec_mm_counter(mm, mm_counter(&folio->page)); |
a98a2f0c AP |
2029 | set_pte_at(mm, address, pvmw.pte, pteval); |
2030 | } | |
2031 | ||
2032 | } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { | |
2033 | /* | |
2034 | * The guest indicated that the page content is of no | |
2035 | * interest anymore. Simply discard the pte, vmscan | |
2036 | * will take care of the rest. | |
2037 | * A future reference will then fault in a new zero | |
2038 | * page. When userfaultfd is active, we must not drop | |
2039 | * this page though, as its main user (postcopy | |
2040 | * migration) will not expect userfaults on already | |
2041 | * copied pages. | |
2042 | */ | |
4b8554c5 | 2043 | dec_mm_counter(mm, mm_counter(&folio->page)); |
a98a2f0c AP |
2044 | /* We have to invalidate as we cleared the pte */ |
2045 | mmu_notifier_invalidate_range(mm, address, | |
2046 | address + PAGE_SIZE); | |
2047 | } else { | |
2048 | swp_entry_t entry; | |
2049 | pte_t swp_pte; | |
2050 | ||
2051 | if (arch_unmap_one(mm, vma, address, pteval) < 0) { | |
5d4af619 BW |
2052 | if (folio_test_hugetlb(folio)) |
2053 | set_huge_pte_at(mm, address, pvmw.pte, pteval); | |
2054 | else | |
2055 | set_pte_at(mm, address, pvmw.pte, pteval); | |
a98a2f0c AP |
2056 | ret = false; |
2057 | page_vma_mapped_walk_done(&pvmw); | |
2058 | break; | |
2059 | } | |
6c287605 DH |
2060 | VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) && |
2061 | !anon_exclusive, subpage); | |
088b8aa5 DH |
2062 | |
2063 | /* See page_try_share_anon_rmap(): clear PTE first. */ | |
6c287605 DH |
2064 | if (anon_exclusive && |
2065 | page_try_share_anon_rmap(subpage)) { | |
5d4af619 BW |
2066 | if (folio_test_hugetlb(folio)) |
2067 | set_huge_pte_at(mm, address, pvmw.pte, pteval); | |
2068 | else | |
2069 | set_pte_at(mm, address, pvmw.pte, pteval); | |
6c287605 DH |
2070 | ret = false; |
2071 | page_vma_mapped_walk_done(&pvmw); | |
2072 | break; | |
2073 | } | |
a98a2f0c AP |
2074 | |
2075 | /* | |
2076 | * Store the pfn of the page in a special migration | |
2077 | * pte. do_swap_page() will wait until the migration | |
2078 | * pte is removed and then restart fault handling. | |
2079 | */ | |
2080 | if (pte_write(pteval)) | |
2081 | entry = make_writable_migration_entry( | |
2082 | page_to_pfn(subpage)); | |
6c287605 DH |
2083 | else if (anon_exclusive) |
2084 | entry = make_readable_exclusive_migration_entry( | |
2085 | page_to_pfn(subpage)); | |
a98a2f0c AP |
2086 | else |
2087 | entry = make_readable_migration_entry( | |
2088 | page_to_pfn(subpage)); | |
2e346877 PX |
2089 | if (pte_young(pteval)) |
2090 | entry = make_migration_entry_young(entry); | |
2091 | if (pte_dirty(pteval)) | |
2092 | entry = make_migration_entry_dirty(entry); | |
a98a2f0c AP |
2093 | swp_pte = swp_entry_to_pte(entry); |
2094 | if (pte_soft_dirty(pteval)) | |
2095 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
2096 | if (pte_uffd_wp(pteval)) | |
2097 | swp_pte = pte_swp_mkuffd_wp(swp_pte); | |
5d4af619 | 2098 | if (folio_test_hugetlb(folio)) |
18f39629 | 2099 | set_huge_pte_at(mm, address, pvmw.pte, swp_pte); |
5d4af619 BW |
2100 | else |
2101 | set_pte_at(mm, address, pvmw.pte, swp_pte); | |
4cc79b33 AK |
2102 | trace_set_migration_pte(address, pte_val(swp_pte), |
2103 | compound_order(&folio->page)); | |
a98a2f0c AP |
2104 | /* |
2105 | * No need to invalidate here it will synchronize on | |
2106 | * against the special swap migration pte. | |
2107 | */ | |
2108 | } | |
2109 | ||
2110 | /* | |
2111 | * No need to call mmu_notifier_invalidate_range() it has be | |
2112 | * done above for all cases requiring it to happen under page | |
2113 | * table lock before mmu_notifier_invalidate_range_end() | |
2114 | * | |
ee65728e | 2115 | * See Documentation/mm/mmu_notifier.rst |
a98a2f0c | 2116 | */ |
4b8554c5 | 2117 | page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); |
b7435507 | 2118 | if (vma->vm_flags & VM_LOCKED) |
96f97c43 | 2119 | mlock_drain_local(); |
4b8554c5 | 2120 | folio_put(folio); |
a98a2f0c AP |
2121 | } |
2122 | ||
2123 | mmu_notifier_invalidate_range_end(&range); | |
2124 | ||
2125 | return ret; | |
2126 | } | |
2127 | ||
2128 | /** | |
2129 | * try_to_migrate - try to replace all page table mappings with swap entries | |
4b8554c5 | 2130 | * @folio: the folio to replace page table entries for |
a98a2f0c AP |
2131 | * @flags: action and flags |
2132 | * | |
4b8554c5 MWO |
2133 | * Tries to remove all the page table entries which are mapping this folio and |
2134 | * replace them with special swap entries. Caller must hold the folio lock. | |
a98a2f0c | 2135 | */ |
4b8554c5 | 2136 | void try_to_migrate(struct folio *folio, enum ttu_flags flags) |
a98a2f0c AP |
2137 | { |
2138 | struct rmap_walk_control rwc = { | |
2139 | .rmap_one = try_to_migrate_one, | |
2140 | .arg = (void *)flags, | |
f3ad032c | 2141 | .done = folio_not_mapped, |
2f031c6f | 2142 | .anon_lock = folio_lock_anon_vma_read, |
a98a2f0c AP |
2143 | }; |
2144 | ||
2145 | /* | |
2146 | * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and | |
7e12beb8 | 2147 | * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags. |
a98a2f0c AP |
2148 | */ |
2149 | if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | | |
7e12beb8 | 2150 | TTU_SYNC | TTU_BATCH_FLUSH))) |
a98a2f0c AP |
2151 | return; |
2152 | ||
f25cbb7a AS |
2153 | if (folio_is_zone_device(folio) && |
2154 | (!folio_is_device_private(folio) && !folio_is_device_coherent(folio))) | |
6c855fce HD |
2155 | return; |
2156 | ||
52629506 JK |
2157 | /* |
2158 | * During exec, a temporary VMA is setup and later moved. | |
2159 | * The VMA is moved under the anon_vma lock but not the | |
2160 | * page tables leading to a race where migration cannot | |
2161 | * find the migration ptes. Rather than increasing the | |
2162 | * locking requirements of exec(), migration skips | |
2163 | * temporary VMAs until after exec() completes. | |
2164 | */ | |
4b8554c5 | 2165 | if (!folio_test_ksm(folio) && folio_test_anon(folio)) |
52629506 JK |
2166 | rwc.invalid_vma = invalid_migration_vma; |
2167 | ||
2a52bcbc | 2168 | if (flags & TTU_RMAP_LOCKED) |
2f031c6f | 2169 | rmap_walk_locked(folio, &rwc); |
2a52bcbc | 2170 | else |
2f031c6f | 2171 | rmap_walk(folio, &rwc); |
b291f000 | 2172 | } |
e9995ef9 | 2173 | |
b756a3b5 AP |
2174 | #ifdef CONFIG_DEVICE_PRIVATE |
2175 | struct make_exclusive_args { | |
2176 | struct mm_struct *mm; | |
2177 | unsigned long address; | |
2178 | void *owner; | |
2179 | bool valid; | |
2180 | }; | |
2181 | ||
2f031c6f | 2182 | static bool page_make_device_exclusive_one(struct folio *folio, |
b756a3b5 AP |
2183 | struct vm_area_struct *vma, unsigned long address, void *priv) |
2184 | { | |
2185 | struct mm_struct *mm = vma->vm_mm; | |
0d251485 | 2186 | DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); |
b756a3b5 AP |
2187 | struct make_exclusive_args *args = priv; |
2188 | pte_t pteval; | |
2189 | struct page *subpage; | |
2190 | bool ret = true; | |
2191 | struct mmu_notifier_range range; | |
2192 | swp_entry_t entry; | |
2193 | pte_t swp_pte; | |
c33c7948 | 2194 | pte_t ptent; |
b756a3b5 | 2195 | |
7d4a8be0 | 2196 | mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, |
b756a3b5 | 2197 | vma->vm_mm, address, min(vma->vm_end, |
0d251485 MWO |
2198 | address + folio_size(folio)), |
2199 | args->owner); | |
b756a3b5 AP |
2200 | mmu_notifier_invalidate_range_start(&range); |
2201 | ||
2202 | while (page_vma_mapped_walk(&pvmw)) { | |
2203 | /* Unexpected PMD-mapped THP? */ | |
0d251485 | 2204 | VM_BUG_ON_FOLIO(!pvmw.pte, folio); |
b756a3b5 | 2205 | |
c33c7948 RR |
2206 | ptent = ptep_get(pvmw.pte); |
2207 | if (!pte_present(ptent)) { | |
b756a3b5 AP |
2208 | ret = false; |
2209 | page_vma_mapped_walk_done(&pvmw); | |
2210 | break; | |
2211 | } | |
2212 | ||
0d251485 | 2213 | subpage = folio_page(folio, |
c33c7948 | 2214 | pte_pfn(ptent) - folio_pfn(folio)); |
b756a3b5 AP |
2215 | address = pvmw.address; |
2216 | ||
2217 | /* Nuke the page table entry. */ | |
c33c7948 | 2218 | flush_cache_page(vma, address, pte_pfn(ptent)); |
b756a3b5 AP |
2219 | pteval = ptep_clear_flush(vma, address, pvmw.pte); |
2220 | ||
0d251485 | 2221 | /* Set the dirty flag on the folio now the pte is gone. */ |
b756a3b5 | 2222 | if (pte_dirty(pteval)) |
0d251485 | 2223 | folio_mark_dirty(folio); |
b756a3b5 AP |
2224 | |
2225 | /* | |
2226 | * Check that our target page is still mapped at the expected | |
2227 | * address. | |
2228 | */ | |
2229 | if (args->mm == mm && args->address == address && | |
2230 | pte_write(pteval)) | |
2231 | args->valid = true; | |
2232 | ||
2233 | /* | |
2234 | * Store the pfn of the page in a special migration | |
2235 | * pte. do_swap_page() will wait until the migration | |
2236 | * pte is removed and then restart fault handling. | |
2237 | */ | |
2238 | if (pte_write(pteval)) | |
2239 | entry = make_writable_device_exclusive_entry( | |
2240 | page_to_pfn(subpage)); | |
2241 | else | |
2242 | entry = make_readable_device_exclusive_entry( | |
2243 | page_to_pfn(subpage)); | |
2244 | swp_pte = swp_entry_to_pte(entry); | |
2245 | if (pte_soft_dirty(pteval)) | |
2246 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
2247 | if (pte_uffd_wp(pteval)) | |
2248 | swp_pte = pte_swp_mkuffd_wp(swp_pte); | |
2249 | ||
2250 | set_pte_at(mm, address, pvmw.pte, swp_pte); | |
2251 | ||
2252 | /* | |
2253 | * There is a reference on the page for the swap entry which has | |
2254 | * been removed, so shouldn't take another. | |
2255 | */ | |
cea86fe2 | 2256 | page_remove_rmap(subpage, vma, false); |
b756a3b5 AP |
2257 | } |
2258 | ||
2259 | mmu_notifier_invalidate_range_end(&range); | |
2260 | ||
2261 | return ret; | |
2262 | } | |
2263 | ||
2264 | /** | |
0d251485 MWO |
2265 | * folio_make_device_exclusive - Mark the folio exclusively owned by a device. |
2266 | * @folio: The folio to replace page table entries for. | |
2267 | * @mm: The mm_struct where the folio is expected to be mapped. | |
2268 | * @address: Address where the folio is expected to be mapped. | |
b756a3b5 AP |
2269 | * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks |
2270 | * | |
0d251485 MWO |
2271 | * Tries to remove all the page table entries which are mapping this |
2272 | * folio and replace them with special device exclusive swap entries to | |
2273 | * grant a device exclusive access to the folio. | |
b756a3b5 | 2274 | * |
0d251485 MWO |
2275 | * Context: Caller must hold the folio lock. |
2276 | * Return: false if the page is still mapped, or if it could not be unmapped | |
b756a3b5 AP |
2277 | * from the expected address. Otherwise returns true (success). |
2278 | */ | |
0d251485 MWO |
2279 | static bool folio_make_device_exclusive(struct folio *folio, |
2280 | struct mm_struct *mm, unsigned long address, void *owner) | |
b756a3b5 AP |
2281 | { |
2282 | struct make_exclusive_args args = { | |
2283 | .mm = mm, | |
2284 | .address = address, | |
2285 | .owner = owner, | |
2286 | .valid = false, | |
2287 | }; | |
2288 | struct rmap_walk_control rwc = { | |
2289 | .rmap_one = page_make_device_exclusive_one, | |
f3ad032c | 2290 | .done = folio_not_mapped, |
2f031c6f | 2291 | .anon_lock = folio_lock_anon_vma_read, |
b756a3b5 AP |
2292 | .arg = &args, |
2293 | }; | |
2294 | ||
2295 | /* | |
0d251485 MWO |
2296 | * Restrict to anonymous folios for now to avoid potential writeback |
2297 | * issues. | |
b756a3b5 | 2298 | */ |
0d251485 | 2299 | if (!folio_test_anon(folio)) |
b756a3b5 AP |
2300 | return false; |
2301 | ||
2f031c6f | 2302 | rmap_walk(folio, &rwc); |
b756a3b5 | 2303 | |
0d251485 | 2304 | return args.valid && !folio_mapcount(folio); |
b756a3b5 AP |
2305 | } |
2306 | ||
2307 | /** | |
2308 | * make_device_exclusive_range() - Mark a range for exclusive use by a device | |
dd062302 | 2309 | * @mm: mm_struct of associated target process |
b756a3b5 AP |
2310 | * @start: start of the region to mark for exclusive device access |
2311 | * @end: end address of region | |
2312 | * @pages: returns the pages which were successfully marked for exclusive access | |
2313 | * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering | |
2314 | * | |
2315 | * Returns: number of pages found in the range by GUP. A page is marked for | |
2316 | * exclusive access only if the page pointer is non-NULL. | |
2317 | * | |
2318 | * This function finds ptes mapping page(s) to the given address range, locks | |
2319 | * them and replaces mappings with special swap entries preventing userspace CPU | |
2320 | * access. On fault these entries are replaced with the original mapping after | |
2321 | * calling MMU notifiers. | |
2322 | * | |
2323 | * A driver using this to program access from a device must use a mmu notifier | |
2324 | * critical section to hold a device specific lock during programming. Once | |
2325 | * programming is complete it should drop the page lock and reference after | |
2326 | * which point CPU access to the page will revoke the exclusive access. | |
2327 | */ | |
2328 | int make_device_exclusive_range(struct mm_struct *mm, unsigned long start, | |
2329 | unsigned long end, struct page **pages, | |
2330 | void *owner) | |
2331 | { | |
2332 | long npages = (end - start) >> PAGE_SHIFT; | |
2333 | long i; | |
2334 | ||
2335 | npages = get_user_pages_remote(mm, start, npages, | |
2336 | FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD, | |
ca5e8632 | 2337 | pages, NULL); |
b756a3b5 AP |
2338 | if (npages < 0) |
2339 | return npages; | |
2340 | ||
2341 | for (i = 0; i < npages; i++, start += PAGE_SIZE) { | |
0d251485 MWO |
2342 | struct folio *folio = page_folio(pages[i]); |
2343 | if (PageTail(pages[i]) || !folio_trylock(folio)) { | |
2344 | folio_put(folio); | |
b756a3b5 AP |
2345 | pages[i] = NULL; |
2346 | continue; | |
2347 | } | |
2348 | ||
0d251485 MWO |
2349 | if (!folio_make_device_exclusive(folio, mm, start, owner)) { |
2350 | folio_unlock(folio); | |
2351 | folio_put(folio); | |
b756a3b5 AP |
2352 | pages[i] = NULL; |
2353 | } | |
2354 | } | |
2355 | ||
2356 | return npages; | |
2357 | } | |
2358 | EXPORT_SYMBOL_GPL(make_device_exclusive_range); | |
2359 | #endif | |
2360 | ||
01d8b20d | 2361 | void __put_anon_vma(struct anon_vma *anon_vma) |
76545066 | 2362 | { |
01d8b20d | 2363 | struct anon_vma *root = anon_vma->root; |
76545066 | 2364 | |
624483f3 | 2365 | anon_vma_free(anon_vma); |
01d8b20d PZ |
2366 | if (root != anon_vma && atomic_dec_and_test(&root->refcount)) |
2367 | anon_vma_free(root); | |
76545066 | 2368 | } |
76545066 | 2369 | |
2f031c6f | 2370 | static struct anon_vma *rmap_walk_anon_lock(struct folio *folio, |
6d4675e6 | 2371 | struct rmap_walk_control *rwc) |
faecd8dd JK |
2372 | { |
2373 | struct anon_vma *anon_vma; | |
2374 | ||
0dd1c7bb | 2375 | if (rwc->anon_lock) |
6d4675e6 | 2376 | return rwc->anon_lock(folio, rwc); |
0dd1c7bb | 2377 | |
faecd8dd | 2378 | /* |
2f031c6f | 2379 | * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read() |
faecd8dd | 2380 | * because that depends on page_mapped(); but not all its usages |
c1e8d7c6 | 2381 | * are holding mmap_lock. Users without mmap_lock are required to |
faecd8dd JK |
2382 | * take a reference count to prevent the anon_vma disappearing |
2383 | */ | |
e05b3453 | 2384 | anon_vma = folio_anon_vma(folio); |
faecd8dd JK |
2385 | if (!anon_vma) |
2386 | return NULL; | |
2387 | ||
6d4675e6 MK |
2388 | if (anon_vma_trylock_read(anon_vma)) |
2389 | goto out; | |
2390 | ||
2391 | if (rwc->try_lock) { | |
2392 | anon_vma = NULL; | |
2393 | rwc->contended = true; | |
2394 | goto out; | |
2395 | } | |
2396 | ||
faecd8dd | 2397 | anon_vma_lock_read(anon_vma); |
6d4675e6 | 2398 | out: |
faecd8dd JK |
2399 | return anon_vma; |
2400 | } | |
2401 | ||
e9995ef9 | 2402 | /* |
e8351ac9 JK |
2403 | * rmap_walk_anon - do something to anonymous page using the object-based |
2404 | * rmap method | |
2405 | * @page: the page to be handled | |
2406 | * @rwc: control variable according to each walk type | |
2407 | * | |
2408 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
2409 | * contained in the anon_vma struct it points to. | |
e9995ef9 | 2410 | */ |
84fbbe21 | 2411 | static void rmap_walk_anon(struct folio *folio, |
6d4675e6 | 2412 | struct rmap_walk_control *rwc, bool locked) |
e9995ef9 HD |
2413 | { |
2414 | struct anon_vma *anon_vma; | |
a8fa41ad | 2415 | pgoff_t pgoff_start, pgoff_end; |
5beb4930 | 2416 | struct anon_vma_chain *avc; |
e9995ef9 | 2417 | |
b9773199 | 2418 | if (locked) { |
e05b3453 | 2419 | anon_vma = folio_anon_vma(folio); |
b9773199 | 2420 | /* anon_vma disappear under us? */ |
e05b3453 | 2421 | VM_BUG_ON_FOLIO(!anon_vma, folio); |
b9773199 | 2422 | } else { |
2f031c6f | 2423 | anon_vma = rmap_walk_anon_lock(folio, rwc); |
b9773199 | 2424 | } |
e9995ef9 | 2425 | if (!anon_vma) |
1df631ae | 2426 | return; |
faecd8dd | 2427 | |
2f031c6f MWO |
2428 | pgoff_start = folio_pgoff(folio); |
2429 | pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; | |
a8fa41ad KS |
2430 | anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, |
2431 | pgoff_start, pgoff_end) { | |
5beb4930 | 2432 | struct vm_area_struct *vma = avc->vma; |
2f031c6f | 2433 | unsigned long address = vma_address(&folio->page, vma); |
0dd1c7bb | 2434 | |
494334e4 | 2435 | VM_BUG_ON_VMA(address == -EFAULT, vma); |
ad12695f AA |
2436 | cond_resched(); |
2437 | ||
0dd1c7bb JK |
2438 | if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) |
2439 | continue; | |
2440 | ||
2f031c6f | 2441 | if (!rwc->rmap_one(folio, vma, address, rwc->arg)) |
e9995ef9 | 2442 | break; |
2f031c6f | 2443 | if (rwc->done && rwc->done(folio)) |
0dd1c7bb | 2444 | break; |
e9995ef9 | 2445 | } |
b9773199 KS |
2446 | |
2447 | if (!locked) | |
2448 | anon_vma_unlock_read(anon_vma); | |
e9995ef9 HD |
2449 | } |
2450 | ||
e8351ac9 JK |
2451 | /* |
2452 | * rmap_walk_file - do something to file page using the object-based rmap method | |
2453 | * @page: the page to be handled | |
2454 | * @rwc: control variable according to each walk type | |
2455 | * | |
2456 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
2457 | * contained in the address_space struct it points to. | |
e8351ac9 | 2458 | */ |
84fbbe21 | 2459 | static void rmap_walk_file(struct folio *folio, |
6d4675e6 | 2460 | struct rmap_walk_control *rwc, bool locked) |
e9995ef9 | 2461 | { |
2f031c6f | 2462 | struct address_space *mapping = folio_mapping(folio); |
a8fa41ad | 2463 | pgoff_t pgoff_start, pgoff_end; |
e9995ef9 | 2464 | struct vm_area_struct *vma; |
e9995ef9 | 2465 | |
9f32624b JK |
2466 | /* |
2467 | * The page lock not only makes sure that page->mapping cannot | |
2468 | * suddenly be NULLified by truncation, it makes sure that the | |
2469 | * structure at mapping cannot be freed and reused yet, | |
c8c06efa | 2470 | * so we can safely take mapping->i_mmap_rwsem. |
9f32624b | 2471 | */ |
2f031c6f | 2472 | VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); |
9f32624b | 2473 | |
e9995ef9 | 2474 | if (!mapping) |
1df631ae | 2475 | return; |
3dec0ba0 | 2476 | |
2f031c6f MWO |
2477 | pgoff_start = folio_pgoff(folio); |
2478 | pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; | |
6d4675e6 MK |
2479 | if (!locked) { |
2480 | if (i_mmap_trylock_read(mapping)) | |
2481 | goto lookup; | |
2482 | ||
2483 | if (rwc->try_lock) { | |
2484 | rwc->contended = true; | |
2485 | return; | |
2486 | } | |
2487 | ||
b9773199 | 2488 | i_mmap_lock_read(mapping); |
6d4675e6 MK |
2489 | } |
2490 | lookup: | |
a8fa41ad KS |
2491 | vma_interval_tree_foreach(vma, &mapping->i_mmap, |
2492 | pgoff_start, pgoff_end) { | |
2f031c6f | 2493 | unsigned long address = vma_address(&folio->page, vma); |
0dd1c7bb | 2494 | |
494334e4 | 2495 | VM_BUG_ON_VMA(address == -EFAULT, vma); |
ad12695f AA |
2496 | cond_resched(); |
2497 | ||
0dd1c7bb JK |
2498 | if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) |
2499 | continue; | |
2500 | ||
2f031c6f | 2501 | if (!rwc->rmap_one(folio, vma, address, rwc->arg)) |
0dd1c7bb | 2502 | goto done; |
2f031c6f | 2503 | if (rwc->done && rwc->done(folio)) |
0dd1c7bb | 2504 | goto done; |
e9995ef9 | 2505 | } |
0dd1c7bb | 2506 | |
0dd1c7bb | 2507 | done: |
b9773199 KS |
2508 | if (!locked) |
2509 | i_mmap_unlock_read(mapping); | |
e9995ef9 HD |
2510 | } |
2511 | ||
6d4675e6 | 2512 | void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc) |
e9995ef9 | 2513 | { |
2f031c6f MWO |
2514 | if (unlikely(folio_test_ksm(folio))) |
2515 | rmap_walk_ksm(folio, rwc); | |
2516 | else if (folio_test_anon(folio)) | |
2517 | rmap_walk_anon(folio, rwc, false); | |
b9773199 | 2518 | else |
2f031c6f | 2519 | rmap_walk_file(folio, rwc, false); |
b9773199 KS |
2520 | } |
2521 | ||
2522 | /* Like rmap_walk, but caller holds relevant rmap lock */ | |
6d4675e6 | 2523 | void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc) |
b9773199 KS |
2524 | { |
2525 | /* no ksm support for now */ | |
2f031c6f MWO |
2526 | VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio); |
2527 | if (folio_test_anon(folio)) | |
2528 | rmap_walk_anon(folio, rwc, true); | |
e9995ef9 | 2529 | else |
2f031c6f | 2530 | rmap_walk_file(folio, rwc, true); |
e9995ef9 | 2531 | } |
0fe6e20b | 2532 | |
e3390f67 | 2533 | #ifdef CONFIG_HUGETLB_PAGE |
0fe6e20b | 2534 | /* |
451b9514 | 2535 | * The following two functions are for anonymous (private mapped) hugepages. |
0fe6e20b NH |
2536 | * Unlike common anonymous pages, anonymous hugepages have no accounting code |
2537 | * and no lru code, because we handle hugepages differently from common pages. | |
28c5209d DH |
2538 | * |
2539 | * RMAP_COMPOUND is ignored. | |
0fe6e20b | 2540 | */ |
28c5209d DH |
2541 | void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma, |
2542 | unsigned long address, rmap_t flags) | |
0fe6e20b | 2543 | { |
db4e5dbd | 2544 | struct folio *folio = page_folio(page); |
0fe6e20b NH |
2545 | struct anon_vma *anon_vma = vma->anon_vma; |
2546 | int first; | |
a850ea30 | 2547 | |
db4e5dbd | 2548 | BUG_ON(!folio_test_locked(folio)); |
0fe6e20b | 2549 | BUG_ON(!anon_vma); |
0503ea8f | 2550 | /* address might be in next vma when migration races vma_merge */ |
db4e5dbd | 2551 | first = atomic_inc_and_test(&folio->_entire_mapcount); |
6c287605 DH |
2552 | VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page); |
2553 | VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page); | |
0fe6e20b | 2554 | if (first) |
5b4bd90f | 2555 | __page_set_anon_rmap(folio, page, vma, address, |
28c5209d | 2556 | !!(flags & RMAP_EXCLUSIVE)); |
0fe6e20b NH |
2557 | } |
2558 | ||
d0ce0e47 | 2559 | void hugepage_add_new_anon_rmap(struct folio *folio, |
0fe6e20b NH |
2560 | struct vm_area_struct *vma, unsigned long address) |
2561 | { | |
2562 | BUG_ON(address < vma->vm_start || address >= vma->vm_end); | |
cb67f428 | 2563 | /* increment count (starts at -1) */ |
db4e5dbd MWO |
2564 | atomic_set(&folio->_entire_mapcount, 0); |
2565 | folio_clear_hugetlb_restore_reserve(folio); | |
d0ce0e47 | 2566 | __page_set_anon_rmap(folio, &folio->page, vma, address, 1); |
0fe6e20b | 2567 | } |
e3390f67 | 2568 | #endif /* CONFIG_HUGETLB_PAGE */ |