]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * mm/rmap.c - physical to virtual reverse mappings | |
3 | * | |
4 | * Copyright 2001, Rik van Riel <[email protected]> | |
5 | * Released under the General Public License (GPL). | |
6 | * | |
7 | * Simple, low overhead reverse mapping scheme. | |
8 | * Please try to keep this thing as modular as possible. | |
9 | * | |
10 | * Provides methods for unmapping each kind of mapped page: | |
11 | * the anon methods track anonymous pages, and | |
12 | * the file methods track pages belonging to an inode. | |
13 | * | |
14 | * Original design by Rik van Riel <[email protected]> 2001 | |
15 | * File methods by Dave McCracken <[email protected]> 2003, 2004 | |
16 | * Anonymous methods by Andrea Arcangeli <[email protected]> 2004 | |
98f32602 | 17 | * Contributions by Hugh Dickins 2003, 2004 |
1da177e4 LT |
18 | */ |
19 | ||
20 | /* | |
21 | * Lock ordering in mm: | |
22 | * | |
9608703e | 23 | * inode->i_rwsem (while writing or truncating, not reading or faulting) |
c1e8d7c6 | 24 | * mm->mmap_lock |
730633f0 JK |
25 | * mapping->invalidate_lock (in filemap_fault) |
26 | * page->flags PG_locked (lock_page) * (see hugetlbfs below) | |
27 | * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share) | |
28 | * mapping->i_mmap_rwsem | |
29 | * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) | |
30 | * anon_vma->rwsem | |
31 | * mm->page_table_lock or pte_lock | |
32 | * swap_lock (in swap_duplicate, swap_info_get) | |
33 | * mmlist_lock (in mmput, drain_mmlist and others) | |
e621900a MWO |
34 | * mapping->private_lock (in block_dirty_folio) |
35 | * folio_lock_memcg move_lock (in block_dirty_folio) | |
730633f0 | 36 | * i_pages lock (widely used) |
e809c3fe | 37 | * lruvec->lru_lock (in folio_lruvec_lock_irq) |
730633f0 JK |
38 | * inode->i_lock (in set_page_dirty's __mark_inode_dirty) |
39 | * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) | |
40 | * sb_lock (within inode_lock in fs/fs-writeback.c) | |
41 | * i_pages lock (widely used, in set_page_dirty, | |
42 | * in arch-dependent flush_dcache_mmap_lock, | |
43 | * within bdi.wb->list_lock in __sync_single_inode) | |
6a46079c | 44 | * |
9608703e | 45 | * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon) |
9b679320 | 46 | * ->tasklist_lock |
6a46079c | 47 | * pte map lock |
c0d0381a MK |
48 | * |
49 | * * hugetlbfs PageHuge() pages take locks in this order: | |
50 | * mapping->i_mmap_rwsem | |
51 | * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) | |
52 | * page->flags PG_locked (lock_page) | |
1da177e4 LT |
53 | */ |
54 | ||
55 | #include <linux/mm.h> | |
6e84f315 | 56 | #include <linux/sched/mm.h> |
29930025 | 57 | #include <linux/sched/task.h> |
1da177e4 LT |
58 | #include <linux/pagemap.h> |
59 | #include <linux/swap.h> | |
60 | #include <linux/swapops.h> | |
61 | #include <linux/slab.h> | |
62 | #include <linux/init.h> | |
5ad64688 | 63 | #include <linux/ksm.h> |
1da177e4 LT |
64 | #include <linux/rmap.h> |
65 | #include <linux/rcupdate.h> | |
b95f1b31 | 66 | #include <linux/export.h> |
8a9f3ccd | 67 | #include <linux/memcontrol.h> |
cddb8a5c | 68 | #include <linux/mmu_notifier.h> |
64cdd548 | 69 | #include <linux/migrate.h> |
0fe6e20b | 70 | #include <linux/hugetlb.h> |
444f84fd | 71 | #include <linux/huge_mm.h> |
ef5d437f | 72 | #include <linux/backing-dev.h> |
33c3fc71 | 73 | #include <linux/page_idle.h> |
a5430dda | 74 | #include <linux/memremap.h> |
bce73e48 | 75 | #include <linux/userfaultfd_k.h> |
1da177e4 LT |
76 | |
77 | #include <asm/tlbflush.h> | |
78 | ||
4cc79b33 | 79 | #define CREATE_TRACE_POINTS |
72b252ae | 80 | #include <trace/events/tlb.h> |
4cc79b33 | 81 | #include <trace/events/migrate.h> |
72b252ae | 82 | |
b291f000 NP |
83 | #include "internal.h" |
84 | ||
fdd2e5f8 | 85 | static struct kmem_cache *anon_vma_cachep; |
5beb4930 | 86 | static struct kmem_cache *anon_vma_chain_cachep; |
fdd2e5f8 AB |
87 | |
88 | static inline struct anon_vma *anon_vma_alloc(void) | |
89 | { | |
01d8b20d PZ |
90 | struct anon_vma *anon_vma; |
91 | ||
92 | anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); | |
93 | if (anon_vma) { | |
94 | atomic_set(&anon_vma->refcount, 1); | |
7a3ef208 KK |
95 | anon_vma->degree = 1; /* Reference for first vma */ |
96 | anon_vma->parent = anon_vma; | |
01d8b20d PZ |
97 | /* |
98 | * Initialise the anon_vma root to point to itself. If called | |
99 | * from fork, the root will be reset to the parents anon_vma. | |
100 | */ | |
101 | anon_vma->root = anon_vma; | |
102 | } | |
103 | ||
104 | return anon_vma; | |
fdd2e5f8 AB |
105 | } |
106 | ||
01d8b20d | 107 | static inline void anon_vma_free(struct anon_vma *anon_vma) |
fdd2e5f8 | 108 | { |
01d8b20d | 109 | VM_BUG_ON(atomic_read(&anon_vma->refcount)); |
88c22088 PZ |
110 | |
111 | /* | |
2f031c6f | 112 | * Synchronize against folio_lock_anon_vma_read() such that |
88c22088 PZ |
113 | * we can safely hold the lock without the anon_vma getting |
114 | * freed. | |
115 | * | |
116 | * Relies on the full mb implied by the atomic_dec_and_test() from | |
117 | * put_anon_vma() against the acquire barrier implied by | |
2f031c6f | 118 | * down_read_trylock() from folio_lock_anon_vma_read(). This orders: |
88c22088 | 119 | * |
2f031c6f | 120 | * folio_lock_anon_vma_read() VS put_anon_vma() |
4fc3f1d6 | 121 | * down_read_trylock() atomic_dec_and_test() |
88c22088 | 122 | * LOCK MB |
4fc3f1d6 | 123 | * atomic_read() rwsem_is_locked() |
88c22088 PZ |
124 | * |
125 | * LOCK should suffice since the actual taking of the lock must | |
126 | * happen _before_ what follows. | |
127 | */ | |
7f39dda9 | 128 | might_sleep(); |
5a505085 | 129 | if (rwsem_is_locked(&anon_vma->root->rwsem)) { |
4fc3f1d6 | 130 | anon_vma_lock_write(anon_vma); |
08b52706 | 131 | anon_vma_unlock_write(anon_vma); |
88c22088 PZ |
132 | } |
133 | ||
fdd2e5f8 AB |
134 | kmem_cache_free(anon_vma_cachep, anon_vma); |
135 | } | |
1da177e4 | 136 | |
dd34739c | 137 | static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) |
5beb4930 | 138 | { |
dd34739c | 139 | return kmem_cache_alloc(anon_vma_chain_cachep, gfp); |
5beb4930 RR |
140 | } |
141 | ||
e574b5fd | 142 | static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) |
5beb4930 RR |
143 | { |
144 | kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); | |
145 | } | |
146 | ||
6583a843 KC |
147 | static void anon_vma_chain_link(struct vm_area_struct *vma, |
148 | struct anon_vma_chain *avc, | |
149 | struct anon_vma *anon_vma) | |
150 | { | |
151 | avc->vma = vma; | |
152 | avc->anon_vma = anon_vma; | |
153 | list_add(&avc->same_vma, &vma->anon_vma_chain); | |
bf181b9f | 154 | anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); |
6583a843 KC |
155 | } |
156 | ||
d9d332e0 | 157 | /** |
d5a187da | 158 | * __anon_vma_prepare - attach an anon_vma to a memory region |
d9d332e0 LT |
159 | * @vma: the memory region in question |
160 | * | |
161 | * This makes sure the memory mapping described by 'vma' has | |
162 | * an 'anon_vma' attached to it, so that we can associate the | |
163 | * anonymous pages mapped into it with that anon_vma. | |
164 | * | |
d5a187da VB |
165 | * The common case will be that we already have one, which |
166 | * is handled inline by anon_vma_prepare(). But if | |
23a0790a | 167 | * not we either need to find an adjacent mapping that we |
d9d332e0 LT |
168 | * can re-use the anon_vma from (very common when the only |
169 | * reason for splitting a vma has been mprotect()), or we | |
170 | * allocate a new one. | |
171 | * | |
172 | * Anon-vma allocations are very subtle, because we may have | |
2f031c6f | 173 | * optimistically looked up an anon_vma in folio_lock_anon_vma_read() |
aaf1f990 | 174 | * and that may actually touch the rwsem even in the newly |
d9d332e0 LT |
175 | * allocated vma (it depends on RCU to make sure that the |
176 | * anon_vma isn't actually destroyed). | |
177 | * | |
178 | * As a result, we need to do proper anon_vma locking even | |
179 | * for the new allocation. At the same time, we do not want | |
180 | * to do any locking for the common case of already having | |
181 | * an anon_vma. | |
182 | * | |
c1e8d7c6 | 183 | * This must be called with the mmap_lock held for reading. |
d9d332e0 | 184 | */ |
d5a187da | 185 | int __anon_vma_prepare(struct vm_area_struct *vma) |
1da177e4 | 186 | { |
d5a187da VB |
187 | struct mm_struct *mm = vma->vm_mm; |
188 | struct anon_vma *anon_vma, *allocated; | |
5beb4930 | 189 | struct anon_vma_chain *avc; |
1da177e4 LT |
190 | |
191 | might_sleep(); | |
1da177e4 | 192 | |
d5a187da VB |
193 | avc = anon_vma_chain_alloc(GFP_KERNEL); |
194 | if (!avc) | |
195 | goto out_enomem; | |
196 | ||
197 | anon_vma = find_mergeable_anon_vma(vma); | |
198 | allocated = NULL; | |
199 | if (!anon_vma) { | |
200 | anon_vma = anon_vma_alloc(); | |
201 | if (unlikely(!anon_vma)) | |
202 | goto out_enomem_free_avc; | |
203 | allocated = anon_vma; | |
204 | } | |
5beb4930 | 205 | |
d5a187da VB |
206 | anon_vma_lock_write(anon_vma); |
207 | /* page_table_lock to protect against threads */ | |
208 | spin_lock(&mm->page_table_lock); | |
209 | if (likely(!vma->anon_vma)) { | |
210 | vma->anon_vma = anon_vma; | |
211 | anon_vma_chain_link(vma, avc, anon_vma); | |
212 | /* vma reference or self-parent link for new root */ | |
213 | anon_vma->degree++; | |
d9d332e0 | 214 | allocated = NULL; |
d5a187da VB |
215 | avc = NULL; |
216 | } | |
217 | spin_unlock(&mm->page_table_lock); | |
218 | anon_vma_unlock_write(anon_vma); | |
1da177e4 | 219 | |
d5a187da VB |
220 | if (unlikely(allocated)) |
221 | put_anon_vma(allocated); | |
222 | if (unlikely(avc)) | |
223 | anon_vma_chain_free(avc); | |
31f2b0eb | 224 | |
1da177e4 | 225 | return 0; |
5beb4930 RR |
226 | |
227 | out_enomem_free_avc: | |
228 | anon_vma_chain_free(avc); | |
229 | out_enomem: | |
230 | return -ENOMEM; | |
1da177e4 LT |
231 | } |
232 | ||
bb4aa396 LT |
233 | /* |
234 | * This is a useful helper function for locking the anon_vma root as | |
235 | * we traverse the vma->anon_vma_chain, looping over anon_vma's that | |
236 | * have the same vma. | |
237 | * | |
238 | * Such anon_vma's should have the same root, so you'd expect to see | |
239 | * just a single mutex_lock for the whole traversal. | |
240 | */ | |
241 | static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) | |
242 | { | |
243 | struct anon_vma *new_root = anon_vma->root; | |
244 | if (new_root != root) { | |
245 | if (WARN_ON_ONCE(root)) | |
5a505085 | 246 | up_write(&root->rwsem); |
bb4aa396 | 247 | root = new_root; |
5a505085 | 248 | down_write(&root->rwsem); |
bb4aa396 LT |
249 | } |
250 | return root; | |
251 | } | |
252 | ||
253 | static inline void unlock_anon_vma_root(struct anon_vma *root) | |
254 | { | |
255 | if (root) | |
5a505085 | 256 | up_write(&root->rwsem); |
bb4aa396 LT |
257 | } |
258 | ||
5beb4930 RR |
259 | /* |
260 | * Attach the anon_vmas from src to dst. | |
261 | * Returns 0 on success, -ENOMEM on failure. | |
7a3ef208 | 262 | * |
cb152a1a | 263 | * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and |
47b390d2 WY |
264 | * anon_vma_fork(). The first three want an exact copy of src, while the last |
265 | * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent | |
266 | * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call, | |
267 | * we can identify this case by checking (!dst->anon_vma && src->anon_vma). | |
268 | * | |
269 | * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find | |
270 | * and reuse existing anon_vma which has no vmas and only one child anon_vma. | |
271 | * This prevents degradation of anon_vma hierarchy to endless linear chain in | |
272 | * case of constantly forking task. On the other hand, an anon_vma with more | |
273 | * than one child isn't reused even if there was no alive vma, thus rmap | |
274 | * walker has a good chance of avoiding scanning the whole hierarchy when it | |
275 | * searches where page is mapped. | |
5beb4930 RR |
276 | */ |
277 | int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) | |
1da177e4 | 278 | { |
5beb4930 | 279 | struct anon_vma_chain *avc, *pavc; |
bb4aa396 | 280 | struct anon_vma *root = NULL; |
5beb4930 | 281 | |
646d87b4 | 282 | list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { |
bb4aa396 LT |
283 | struct anon_vma *anon_vma; |
284 | ||
dd34739c LT |
285 | avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); |
286 | if (unlikely(!avc)) { | |
287 | unlock_anon_vma_root(root); | |
288 | root = NULL; | |
289 | avc = anon_vma_chain_alloc(GFP_KERNEL); | |
290 | if (!avc) | |
291 | goto enomem_failure; | |
292 | } | |
bb4aa396 LT |
293 | anon_vma = pavc->anon_vma; |
294 | root = lock_anon_vma_root(root, anon_vma); | |
295 | anon_vma_chain_link(dst, avc, anon_vma); | |
7a3ef208 KK |
296 | |
297 | /* | |
298 | * Reuse existing anon_vma if its degree lower than two, | |
299 | * that means it has no vma and only one anon_vma child. | |
300 | * | |
301 | * Do not chose parent anon_vma, otherwise first child | |
302 | * will always reuse it. Root anon_vma is never reused: | |
303 | * it has self-parent reference and at least one child. | |
304 | */ | |
47b390d2 WY |
305 | if (!dst->anon_vma && src->anon_vma && |
306 | anon_vma != src->anon_vma && anon_vma->degree < 2) | |
7a3ef208 | 307 | dst->anon_vma = anon_vma; |
5beb4930 | 308 | } |
7a3ef208 KK |
309 | if (dst->anon_vma) |
310 | dst->anon_vma->degree++; | |
bb4aa396 | 311 | unlock_anon_vma_root(root); |
5beb4930 | 312 | return 0; |
1da177e4 | 313 | |
5beb4930 | 314 | enomem_failure: |
3fe89b3e LY |
315 | /* |
316 | * dst->anon_vma is dropped here otherwise its degree can be incorrectly | |
317 | * decremented in unlink_anon_vmas(). | |
318 | * We can safely do this because callers of anon_vma_clone() don't care | |
319 | * about dst->anon_vma if anon_vma_clone() failed. | |
320 | */ | |
321 | dst->anon_vma = NULL; | |
5beb4930 RR |
322 | unlink_anon_vmas(dst); |
323 | return -ENOMEM; | |
1da177e4 LT |
324 | } |
325 | ||
5beb4930 RR |
326 | /* |
327 | * Attach vma to its own anon_vma, as well as to the anon_vmas that | |
328 | * the corresponding VMA in the parent process is attached to. | |
329 | * Returns 0 on success, non-zero on failure. | |
330 | */ | |
331 | int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) | |
1da177e4 | 332 | { |
5beb4930 RR |
333 | struct anon_vma_chain *avc; |
334 | struct anon_vma *anon_vma; | |
c4ea95d7 | 335 | int error; |
1da177e4 | 336 | |
5beb4930 RR |
337 | /* Don't bother if the parent process has no anon_vma here. */ |
338 | if (!pvma->anon_vma) | |
339 | return 0; | |
340 | ||
7a3ef208 KK |
341 | /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ |
342 | vma->anon_vma = NULL; | |
343 | ||
5beb4930 RR |
344 | /* |
345 | * First, attach the new VMA to the parent VMA's anon_vmas, | |
346 | * so rmap can find non-COWed pages in child processes. | |
347 | */ | |
c4ea95d7 DF |
348 | error = anon_vma_clone(vma, pvma); |
349 | if (error) | |
350 | return error; | |
5beb4930 | 351 | |
7a3ef208 KK |
352 | /* An existing anon_vma has been reused, all done then. */ |
353 | if (vma->anon_vma) | |
354 | return 0; | |
355 | ||
5beb4930 RR |
356 | /* Then add our own anon_vma. */ |
357 | anon_vma = anon_vma_alloc(); | |
358 | if (!anon_vma) | |
359 | goto out_error; | |
dd34739c | 360 | avc = anon_vma_chain_alloc(GFP_KERNEL); |
5beb4930 RR |
361 | if (!avc) |
362 | goto out_error_free_anon_vma; | |
5c341ee1 RR |
363 | |
364 | /* | |
aaf1f990 | 365 | * The root anon_vma's rwsem is the lock actually used when we |
5c341ee1 RR |
366 | * lock any of the anon_vmas in this anon_vma tree. |
367 | */ | |
368 | anon_vma->root = pvma->anon_vma->root; | |
7a3ef208 | 369 | anon_vma->parent = pvma->anon_vma; |
76545066 | 370 | /* |
01d8b20d PZ |
371 | * With refcounts, an anon_vma can stay around longer than the |
372 | * process it belongs to. The root anon_vma needs to be pinned until | |
373 | * this anon_vma is freed, because the lock lives in the root. | |
76545066 RR |
374 | */ |
375 | get_anon_vma(anon_vma->root); | |
5beb4930 RR |
376 | /* Mark this anon_vma as the one where our new (COWed) pages go. */ |
377 | vma->anon_vma = anon_vma; | |
4fc3f1d6 | 378 | anon_vma_lock_write(anon_vma); |
5c341ee1 | 379 | anon_vma_chain_link(vma, avc, anon_vma); |
7a3ef208 | 380 | anon_vma->parent->degree++; |
08b52706 | 381 | anon_vma_unlock_write(anon_vma); |
5beb4930 RR |
382 | |
383 | return 0; | |
384 | ||
385 | out_error_free_anon_vma: | |
01d8b20d | 386 | put_anon_vma(anon_vma); |
5beb4930 | 387 | out_error: |
4946d54c | 388 | unlink_anon_vmas(vma); |
5beb4930 | 389 | return -ENOMEM; |
1da177e4 LT |
390 | } |
391 | ||
5beb4930 RR |
392 | void unlink_anon_vmas(struct vm_area_struct *vma) |
393 | { | |
394 | struct anon_vma_chain *avc, *next; | |
eee2acba | 395 | struct anon_vma *root = NULL; |
5beb4930 | 396 | |
5c341ee1 RR |
397 | /* |
398 | * Unlink each anon_vma chained to the VMA. This list is ordered | |
399 | * from newest to oldest, ensuring the root anon_vma gets freed last. | |
400 | */ | |
5beb4930 | 401 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { |
eee2acba PZ |
402 | struct anon_vma *anon_vma = avc->anon_vma; |
403 | ||
404 | root = lock_anon_vma_root(root, anon_vma); | |
bf181b9f | 405 | anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); |
eee2acba PZ |
406 | |
407 | /* | |
408 | * Leave empty anon_vmas on the list - we'll need | |
409 | * to free them outside the lock. | |
410 | */ | |
f808c13f | 411 | if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { |
7a3ef208 | 412 | anon_vma->parent->degree--; |
eee2acba | 413 | continue; |
7a3ef208 | 414 | } |
eee2acba PZ |
415 | |
416 | list_del(&avc->same_vma); | |
417 | anon_vma_chain_free(avc); | |
418 | } | |
ee8ab190 | 419 | if (vma->anon_vma) { |
7a3ef208 | 420 | vma->anon_vma->degree--; |
ee8ab190 LX |
421 | |
422 | /* | |
423 | * vma would still be needed after unlink, and anon_vma will be prepared | |
424 | * when handle fault. | |
425 | */ | |
426 | vma->anon_vma = NULL; | |
427 | } | |
eee2acba PZ |
428 | unlock_anon_vma_root(root); |
429 | ||
430 | /* | |
431 | * Iterate the list once more, it now only contains empty and unlinked | |
432 | * anon_vmas, destroy them. Could not do before due to __put_anon_vma() | |
5a505085 | 433 | * needing to write-acquire the anon_vma->root->rwsem. |
eee2acba PZ |
434 | */ |
435 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { | |
436 | struct anon_vma *anon_vma = avc->anon_vma; | |
437 | ||
e4c5800a | 438 | VM_WARN_ON(anon_vma->degree); |
eee2acba PZ |
439 | put_anon_vma(anon_vma); |
440 | ||
5beb4930 RR |
441 | list_del(&avc->same_vma); |
442 | anon_vma_chain_free(avc); | |
443 | } | |
444 | } | |
445 | ||
51cc5068 | 446 | static void anon_vma_ctor(void *data) |
1da177e4 | 447 | { |
a35afb83 | 448 | struct anon_vma *anon_vma = data; |
1da177e4 | 449 | |
5a505085 | 450 | init_rwsem(&anon_vma->rwsem); |
83813267 | 451 | atomic_set(&anon_vma->refcount, 0); |
f808c13f | 452 | anon_vma->rb_root = RB_ROOT_CACHED; |
1da177e4 LT |
453 | } |
454 | ||
455 | void __init anon_vma_init(void) | |
456 | { | |
457 | anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), | |
5f0d5a3a | 458 | 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, |
5d097056 VD |
459 | anon_vma_ctor); |
460 | anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, | |
461 | SLAB_PANIC|SLAB_ACCOUNT); | |
1da177e4 LT |
462 | } |
463 | ||
464 | /* | |
6111e4ca PZ |
465 | * Getting a lock on a stable anon_vma from a page off the LRU is tricky! |
466 | * | |
467 | * Since there is no serialization what so ever against page_remove_rmap() | |
ad8a20cf ML |
468 | * the best this function can do is return a refcount increased anon_vma |
469 | * that might have been relevant to this page. | |
6111e4ca PZ |
470 | * |
471 | * The page might have been remapped to a different anon_vma or the anon_vma | |
472 | * returned may already be freed (and even reused). | |
473 | * | |
bc658c96 PZ |
474 | * In case it was remapped to a different anon_vma, the new anon_vma will be a |
475 | * child of the old anon_vma, and the anon_vma lifetime rules will therefore | |
476 | * ensure that any anon_vma obtained from the page will still be valid for as | |
477 | * long as we observe page_mapped() [ hence all those page_mapped() tests ]. | |
478 | * | |
6111e4ca PZ |
479 | * All users of this function must be very careful when walking the anon_vma |
480 | * chain and verify that the page in question is indeed mapped in it | |
481 | * [ something equivalent to page_mapped_in_vma() ]. | |
482 | * | |
091e4299 MC |
483 | * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from |
484 | * page_remove_rmap() that the anon_vma pointer from page->mapping is valid | |
485 | * if there is a mapcount, we can dereference the anon_vma after observing | |
486 | * those. | |
1da177e4 | 487 | */ |
746b18d4 | 488 | struct anon_vma *page_get_anon_vma(struct page *page) |
1da177e4 | 489 | { |
746b18d4 | 490 | struct anon_vma *anon_vma = NULL; |
1da177e4 LT |
491 | unsigned long anon_mapping; |
492 | ||
493 | rcu_read_lock(); | |
4db0c3c2 | 494 | anon_mapping = (unsigned long)READ_ONCE(page->mapping); |
3ca7b3c5 | 495 | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) |
1da177e4 LT |
496 | goto out; |
497 | if (!page_mapped(page)) | |
498 | goto out; | |
499 | ||
500 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | |
746b18d4 PZ |
501 | if (!atomic_inc_not_zero(&anon_vma->refcount)) { |
502 | anon_vma = NULL; | |
503 | goto out; | |
504 | } | |
f1819427 HD |
505 | |
506 | /* | |
507 | * If this page is still mapped, then its anon_vma cannot have been | |
746b18d4 PZ |
508 | * freed. But if it has been unmapped, we have no security against the |
509 | * anon_vma structure being freed and reused (for another anon_vma: | |
5f0d5a3a | 510 | * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() |
746b18d4 | 511 | * above cannot corrupt). |
f1819427 | 512 | */ |
746b18d4 | 513 | if (!page_mapped(page)) { |
7f39dda9 | 514 | rcu_read_unlock(); |
746b18d4 | 515 | put_anon_vma(anon_vma); |
7f39dda9 | 516 | return NULL; |
746b18d4 | 517 | } |
1da177e4 LT |
518 | out: |
519 | rcu_read_unlock(); | |
746b18d4 PZ |
520 | |
521 | return anon_vma; | |
522 | } | |
523 | ||
88c22088 PZ |
524 | /* |
525 | * Similar to page_get_anon_vma() except it locks the anon_vma. | |
526 | * | |
527 | * Its a little more complex as it tries to keep the fast path to a single | |
528 | * atomic op -- the trylock. If we fail the trylock, we fall back to getting a | |
529 | * reference like with page_get_anon_vma() and then block on the mutex. | |
530 | */ | |
9595d769 | 531 | struct anon_vma *folio_lock_anon_vma_read(struct folio *folio) |
746b18d4 | 532 | { |
88c22088 | 533 | struct anon_vma *anon_vma = NULL; |
eee0f252 | 534 | struct anon_vma *root_anon_vma; |
88c22088 | 535 | unsigned long anon_mapping; |
746b18d4 | 536 | |
88c22088 | 537 | rcu_read_lock(); |
9595d769 | 538 | anon_mapping = (unsigned long)READ_ONCE(folio->mapping); |
88c22088 PZ |
539 | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) |
540 | goto out; | |
9595d769 | 541 | if (!folio_mapped(folio)) |
88c22088 PZ |
542 | goto out; |
543 | ||
544 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | |
4db0c3c2 | 545 | root_anon_vma = READ_ONCE(anon_vma->root); |
4fc3f1d6 | 546 | if (down_read_trylock(&root_anon_vma->rwsem)) { |
88c22088 | 547 | /* |
9595d769 | 548 | * If the folio is still mapped, then this anon_vma is still |
eee0f252 | 549 | * its anon_vma, and holding the mutex ensures that it will |
bc658c96 | 550 | * not go away, see anon_vma_free(). |
88c22088 | 551 | */ |
9595d769 | 552 | if (!folio_mapped(folio)) { |
4fc3f1d6 | 553 | up_read(&root_anon_vma->rwsem); |
88c22088 PZ |
554 | anon_vma = NULL; |
555 | } | |
556 | goto out; | |
557 | } | |
746b18d4 | 558 | |
88c22088 PZ |
559 | /* trylock failed, we got to sleep */ |
560 | if (!atomic_inc_not_zero(&anon_vma->refcount)) { | |
561 | anon_vma = NULL; | |
562 | goto out; | |
563 | } | |
564 | ||
9595d769 | 565 | if (!folio_mapped(folio)) { |
7f39dda9 | 566 | rcu_read_unlock(); |
88c22088 | 567 | put_anon_vma(anon_vma); |
7f39dda9 | 568 | return NULL; |
88c22088 PZ |
569 | } |
570 | ||
571 | /* we pinned the anon_vma, its safe to sleep */ | |
572 | rcu_read_unlock(); | |
4fc3f1d6 | 573 | anon_vma_lock_read(anon_vma); |
88c22088 PZ |
574 | |
575 | if (atomic_dec_and_test(&anon_vma->refcount)) { | |
576 | /* | |
577 | * Oops, we held the last refcount, release the lock | |
578 | * and bail -- can't simply use put_anon_vma() because | |
4fc3f1d6 | 579 | * we'll deadlock on the anon_vma_lock_write() recursion. |
88c22088 | 580 | */ |
4fc3f1d6 | 581 | anon_vma_unlock_read(anon_vma); |
88c22088 PZ |
582 | __put_anon_vma(anon_vma); |
583 | anon_vma = NULL; | |
584 | } | |
585 | ||
586 | return anon_vma; | |
587 | ||
588 | out: | |
589 | rcu_read_unlock(); | |
746b18d4 | 590 | return anon_vma; |
34bbd704 ON |
591 | } |
592 | ||
4fc3f1d6 | 593 | void page_unlock_anon_vma_read(struct anon_vma *anon_vma) |
34bbd704 | 594 | { |
4fc3f1d6 | 595 | anon_vma_unlock_read(anon_vma); |
1da177e4 LT |
596 | } |
597 | ||
72b252ae | 598 | #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH |
72b252ae MG |
599 | /* |
600 | * Flush TLB entries for recently unmapped pages from remote CPUs. It is | |
601 | * important if a PTE was dirty when it was unmapped that it's flushed | |
602 | * before any IO is initiated on the page to prevent lost writes. Similarly, | |
603 | * it must be flushed before freeing to prevent data leakage. | |
604 | */ | |
605 | void try_to_unmap_flush(void) | |
606 | { | |
607 | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | |
72b252ae MG |
608 | |
609 | if (!tlb_ubc->flush_required) | |
610 | return; | |
611 | ||
e73ad5ff | 612 | arch_tlbbatch_flush(&tlb_ubc->arch); |
72b252ae | 613 | tlb_ubc->flush_required = false; |
d950c947 | 614 | tlb_ubc->writable = false; |
72b252ae MG |
615 | } |
616 | ||
d950c947 MG |
617 | /* Flush iff there are potentially writable TLB entries that can race with IO */ |
618 | void try_to_unmap_flush_dirty(void) | |
619 | { | |
620 | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | |
621 | ||
622 | if (tlb_ubc->writable) | |
623 | try_to_unmap_flush(); | |
624 | } | |
625 | ||
5ee2fa2f YH |
626 | /* |
627 | * Bits 0-14 of mm->tlb_flush_batched record pending generations. | |
628 | * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations. | |
629 | */ | |
630 | #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16 | |
631 | #define TLB_FLUSH_BATCH_PENDING_MASK \ | |
632 | ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1) | |
633 | #define TLB_FLUSH_BATCH_PENDING_LARGE \ | |
634 | (TLB_FLUSH_BATCH_PENDING_MASK / 2) | |
635 | ||
c7ab0d2f | 636 | static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) |
72b252ae MG |
637 | { |
638 | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | |
5ee2fa2f | 639 | int batch, nbatch; |
72b252ae | 640 | |
e73ad5ff | 641 | arch_tlbbatch_add_mm(&tlb_ubc->arch, mm); |
72b252ae | 642 | tlb_ubc->flush_required = true; |
d950c947 | 643 | |
3ea27719 MG |
644 | /* |
645 | * Ensure compiler does not re-order the setting of tlb_flush_batched | |
646 | * before the PTE is cleared. | |
647 | */ | |
648 | barrier(); | |
5ee2fa2f YH |
649 | batch = atomic_read(&mm->tlb_flush_batched); |
650 | retry: | |
651 | if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) { | |
652 | /* | |
653 | * Prevent `pending' from catching up with `flushed' because of | |
654 | * overflow. Reset `pending' and `flushed' to be 1 and 0 if | |
655 | * `pending' becomes large. | |
656 | */ | |
657 | nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1); | |
658 | if (nbatch != batch) { | |
659 | batch = nbatch; | |
660 | goto retry; | |
661 | } | |
662 | } else { | |
663 | atomic_inc(&mm->tlb_flush_batched); | |
664 | } | |
3ea27719 | 665 | |
d950c947 MG |
666 | /* |
667 | * If the PTE was dirty then it's best to assume it's writable. The | |
668 | * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() | |
669 | * before the page is queued for IO. | |
670 | */ | |
671 | if (writable) | |
672 | tlb_ubc->writable = true; | |
72b252ae MG |
673 | } |
674 | ||
675 | /* | |
676 | * Returns true if the TLB flush should be deferred to the end of a batch of | |
677 | * unmap operations to reduce IPIs. | |
678 | */ | |
679 | static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) | |
680 | { | |
681 | bool should_defer = false; | |
682 | ||
683 | if (!(flags & TTU_BATCH_FLUSH)) | |
684 | return false; | |
685 | ||
686 | /* If remote CPUs need to be flushed then defer batch the flush */ | |
687 | if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids) | |
688 | should_defer = true; | |
689 | put_cpu(); | |
690 | ||
691 | return should_defer; | |
692 | } | |
3ea27719 MG |
693 | |
694 | /* | |
695 | * Reclaim unmaps pages under the PTL but do not flush the TLB prior to | |
696 | * releasing the PTL if TLB flushes are batched. It's possible for a parallel | |
697 | * operation such as mprotect or munmap to race between reclaim unmapping | |
698 | * the page and flushing the page. If this race occurs, it potentially allows | |
699 | * access to data via a stale TLB entry. Tracking all mm's that have TLB | |
700 | * batching in flight would be expensive during reclaim so instead track | |
701 | * whether TLB batching occurred in the past and if so then do a flush here | |
702 | * if required. This will cost one additional flush per reclaim cycle paid | |
703 | * by the first operation at risk such as mprotect and mumap. | |
704 | * | |
705 | * This must be called under the PTL so that an access to tlb_flush_batched | |
706 | * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise | |
707 | * via the PTL. | |
708 | */ | |
709 | void flush_tlb_batched_pending(struct mm_struct *mm) | |
710 | { | |
5ee2fa2f YH |
711 | int batch = atomic_read(&mm->tlb_flush_batched); |
712 | int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK; | |
713 | int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT; | |
3ea27719 | 714 | |
5ee2fa2f YH |
715 | if (pending != flushed) { |
716 | flush_tlb_mm(mm); | |
3ea27719 | 717 | /* |
5ee2fa2f YH |
718 | * If the new TLB flushing is pending during flushing, leave |
719 | * mm->tlb_flush_batched as is, to avoid losing flushing. | |
3ea27719 | 720 | */ |
5ee2fa2f YH |
721 | atomic_cmpxchg(&mm->tlb_flush_batched, batch, |
722 | pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT)); | |
3ea27719 MG |
723 | } |
724 | } | |
72b252ae | 725 | #else |
c7ab0d2f | 726 | static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) |
72b252ae MG |
727 | { |
728 | } | |
729 | ||
730 | static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) | |
731 | { | |
732 | return false; | |
733 | } | |
734 | #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ | |
735 | ||
1da177e4 | 736 | /* |
bf89c8c8 | 737 | * At what user virtual address is page expected in vma? |
ab941e0f | 738 | * Caller should check the page is actually part of the vma. |
1da177e4 LT |
739 | */ |
740 | unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) | |
741 | { | |
e05b3453 MWO |
742 | struct folio *folio = page_folio(page); |
743 | if (folio_test_anon(folio)) { | |
744 | struct anon_vma *page__anon_vma = folio_anon_vma(folio); | |
4829b906 HD |
745 | /* |
746 | * Note: swapoff's unuse_vma() is more efficient with this | |
747 | * check, and needs it to match anon_vma when KSM is active. | |
748 | */ | |
749 | if (!vma->anon_vma || !page__anon_vma || | |
750 | vma->anon_vma->root != page__anon_vma->root) | |
21d0d443 | 751 | return -EFAULT; |
31657170 JW |
752 | } else if (!vma->vm_file) { |
753 | return -EFAULT; | |
e05b3453 | 754 | } else if (vma->vm_file->f_mapping != folio->mapping) { |
1da177e4 | 755 | return -EFAULT; |
31657170 | 756 | } |
494334e4 HD |
757 | |
758 | return vma_address(page, vma); | |
1da177e4 LT |
759 | } |
760 | ||
6219049a BL |
761 | pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) |
762 | { | |
763 | pgd_t *pgd; | |
c2febafc | 764 | p4d_t *p4d; |
6219049a BL |
765 | pud_t *pud; |
766 | pmd_t *pmd = NULL; | |
f72e7dcd | 767 | pmd_t pmde; |
6219049a BL |
768 | |
769 | pgd = pgd_offset(mm, address); | |
770 | if (!pgd_present(*pgd)) | |
771 | goto out; | |
772 | ||
c2febafc KS |
773 | p4d = p4d_offset(pgd, address); |
774 | if (!p4d_present(*p4d)) | |
775 | goto out; | |
776 | ||
777 | pud = pud_offset(p4d, address); | |
6219049a BL |
778 | if (!pud_present(*pud)) |
779 | goto out; | |
780 | ||
781 | pmd = pmd_offset(pud, address); | |
f72e7dcd | 782 | /* |
8809aa2d | 783 | * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() |
f72e7dcd HD |
784 | * without holding anon_vma lock for write. So when looking for a |
785 | * genuine pmde (in which to find pte), test present and !THP together. | |
786 | */ | |
e37c6982 CB |
787 | pmde = *pmd; |
788 | barrier(); | |
f72e7dcd | 789 | if (!pmd_present(pmde) || pmd_trans_huge(pmde)) |
6219049a BL |
790 | pmd = NULL; |
791 | out: | |
792 | return pmd; | |
793 | } | |
794 | ||
b3ac0413 | 795 | struct folio_referenced_arg { |
8749cfea VD |
796 | int mapcount; |
797 | int referenced; | |
798 | unsigned long vm_flags; | |
799 | struct mem_cgroup *memcg; | |
800 | }; | |
801 | /* | |
b3ac0413 | 802 | * arg: folio_referenced_arg will be passed |
8749cfea | 803 | */ |
2f031c6f MWO |
804 | static bool folio_referenced_one(struct folio *folio, |
805 | struct vm_area_struct *vma, unsigned long address, void *arg) | |
8749cfea | 806 | { |
b3ac0413 MWO |
807 | struct folio_referenced_arg *pra = arg; |
808 | DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); | |
8749cfea VD |
809 | int referenced = 0; |
810 | ||
8eaedede KS |
811 | while (page_vma_mapped_walk(&pvmw)) { |
812 | address = pvmw.address; | |
b20ce5e0 | 813 | |
47d4f3ee | 814 | if ((vma->vm_flags & VM_LOCKED) && |
b3ac0413 | 815 | (!folio_test_large(folio) || !pvmw.pte)) { |
47d4f3ee | 816 | /* Restore the mlock which got missed */ |
b3ac0413 | 817 | mlock_vma_folio(folio, vma, !pvmw.pte); |
8eaedede KS |
818 | page_vma_mapped_walk_done(&pvmw); |
819 | pra->vm_flags |= VM_LOCKED; | |
e4b82222 | 820 | return false; /* To break the loop */ |
8eaedede | 821 | } |
71e3aac0 | 822 | |
8eaedede KS |
823 | if (pvmw.pte) { |
824 | if (ptep_clear_flush_young_notify(vma, address, | |
825 | pvmw.pte)) { | |
826 | /* | |
827 | * Don't treat a reference through | |
828 | * a sequentially read mapping as such. | |
b3ac0413 | 829 | * If the folio has been used in another mapping, |
8eaedede KS |
830 | * we will catch it; if this other mapping is |
831 | * already gone, the unmap path will have set | |
b3ac0413 | 832 | * the referenced flag or activated the folio. |
8eaedede KS |
833 | */ |
834 | if (likely(!(vma->vm_flags & VM_SEQ_READ))) | |
835 | referenced++; | |
836 | } | |
837 | } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { | |
838 | if (pmdp_clear_flush_young_notify(vma, address, | |
839 | pvmw.pmd)) | |
8749cfea | 840 | referenced++; |
8eaedede | 841 | } else { |
b3ac0413 | 842 | /* unexpected pmd-mapped folio? */ |
8eaedede | 843 | WARN_ON_ONCE(1); |
8749cfea | 844 | } |
8eaedede KS |
845 | |
846 | pra->mapcount--; | |
b20ce5e0 | 847 | } |
b20ce5e0 | 848 | |
33c3fc71 | 849 | if (referenced) |
b3ac0413 MWO |
850 | folio_clear_idle(folio); |
851 | if (folio_test_clear_young(folio)) | |
33c3fc71 VD |
852 | referenced++; |
853 | ||
9f32624b JK |
854 | if (referenced) { |
855 | pra->referenced++; | |
47d4f3ee | 856 | pra->vm_flags |= vma->vm_flags & ~VM_LOCKED; |
1da177e4 | 857 | } |
34bbd704 | 858 | |
9f32624b | 859 | if (!pra->mapcount) |
e4b82222 | 860 | return false; /* To break the loop */ |
9f32624b | 861 | |
e4b82222 | 862 | return true; |
1da177e4 LT |
863 | } |
864 | ||
b3ac0413 | 865 | static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg) |
1da177e4 | 866 | { |
b3ac0413 | 867 | struct folio_referenced_arg *pra = arg; |
9f32624b | 868 | struct mem_cgroup *memcg = pra->memcg; |
1da177e4 | 869 | |
9f32624b JK |
870 | if (!mm_match_cgroup(vma->vm_mm, memcg)) |
871 | return true; | |
1da177e4 | 872 | |
9f32624b | 873 | return false; |
1da177e4 LT |
874 | } |
875 | ||
876 | /** | |
b3ac0413 MWO |
877 | * folio_referenced() - Test if the folio was referenced. |
878 | * @folio: The folio to test. | |
879 | * @is_locked: Caller holds lock on the folio. | |
72835c86 | 880 | * @memcg: target memory cgroup |
b3ac0413 | 881 | * @vm_flags: A combination of all the vma->vm_flags which referenced the folio. |
1da177e4 | 882 | * |
b3ac0413 MWO |
883 | * Quick test_and_clear_referenced for all mappings of a folio, |
884 | * | |
885 | * Return: The number of mappings which referenced the folio. | |
1da177e4 | 886 | */ |
b3ac0413 MWO |
887 | int folio_referenced(struct folio *folio, int is_locked, |
888 | struct mem_cgroup *memcg, unsigned long *vm_flags) | |
1da177e4 | 889 | { |
5ad64688 | 890 | int we_locked = 0; |
b3ac0413 MWO |
891 | struct folio_referenced_arg pra = { |
892 | .mapcount = folio_mapcount(folio), | |
9f32624b JK |
893 | .memcg = memcg, |
894 | }; | |
895 | struct rmap_walk_control rwc = { | |
b3ac0413 | 896 | .rmap_one = folio_referenced_one, |
9f32624b | 897 | .arg = (void *)&pra, |
2f031c6f | 898 | .anon_lock = folio_lock_anon_vma_read, |
9f32624b | 899 | }; |
1da177e4 | 900 | |
6fe6b7e3 | 901 | *vm_flags = 0; |
059d8442 | 902 | if (!pra.mapcount) |
9f32624b JK |
903 | return 0; |
904 | ||
b3ac0413 | 905 | if (!folio_raw_mapping(folio)) |
9f32624b JK |
906 | return 0; |
907 | ||
b3ac0413 MWO |
908 | if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) { |
909 | we_locked = folio_trylock(folio); | |
9f32624b JK |
910 | if (!we_locked) |
911 | return 1; | |
1da177e4 | 912 | } |
9f32624b JK |
913 | |
914 | /* | |
915 | * If we are reclaiming on behalf of a cgroup, skip | |
916 | * counting on behalf of references from different | |
917 | * cgroups | |
918 | */ | |
919 | if (memcg) { | |
b3ac0413 | 920 | rwc.invalid_vma = invalid_folio_referenced_vma; |
9f32624b JK |
921 | } |
922 | ||
2f031c6f | 923 | rmap_walk(folio, &rwc); |
9f32624b JK |
924 | *vm_flags = pra.vm_flags; |
925 | ||
926 | if (we_locked) | |
b3ac0413 | 927 | folio_unlock(folio); |
9f32624b JK |
928 | |
929 | return pra.referenced; | |
1da177e4 LT |
930 | } |
931 | ||
6a8e0596 | 932 | static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw) |
d08b3851 | 933 | { |
6a8e0596 MS |
934 | int cleaned = 0; |
935 | struct vm_area_struct *vma = pvmw->vma; | |
ac46d4f3 | 936 | struct mmu_notifier_range range; |
6a8e0596 | 937 | unsigned long address = pvmw->address; |
d08b3851 | 938 | |
369ea824 JG |
939 | /* |
940 | * We have to assume the worse case ie pmd for invalidation. Note that | |
e83c09a2 | 941 | * the folio can not be freed from this function. |
369ea824 | 942 | */ |
7269f999 JG |
943 | mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, |
944 | 0, vma, vma->vm_mm, address, | |
6a8e0596 | 945 | vma_address_end(pvmw)); |
ac46d4f3 | 946 | mmu_notifier_invalidate_range_start(&range); |
369ea824 | 947 | |
6a8e0596 | 948 | while (page_vma_mapped_walk(pvmw)) { |
f27176cf | 949 | int ret = 0; |
369ea824 | 950 | |
6a8e0596 MS |
951 | address = pvmw->address; |
952 | if (pvmw->pte) { | |
f27176cf | 953 | pte_t entry; |
6a8e0596 | 954 | pte_t *pte = pvmw->pte; |
f27176cf KS |
955 | |
956 | if (!pte_dirty(*pte) && !pte_write(*pte)) | |
957 | continue; | |
958 | ||
785373b4 LT |
959 | flush_cache_page(vma, address, pte_pfn(*pte)); |
960 | entry = ptep_clear_flush(vma, address, pte); | |
f27176cf KS |
961 | entry = pte_wrprotect(entry); |
962 | entry = pte_mkclean(entry); | |
785373b4 | 963 | set_pte_at(vma->vm_mm, address, pte, entry); |
f27176cf KS |
964 | ret = 1; |
965 | } else { | |
396bcc52 | 966 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
6a8e0596 | 967 | pmd_t *pmd = pvmw->pmd; |
f27176cf KS |
968 | pmd_t entry; |
969 | ||
970 | if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) | |
971 | continue; | |
972 | ||
7f9c9b60 MS |
973 | flush_cache_range(vma, address, |
974 | address + HPAGE_PMD_SIZE); | |
024eee0e | 975 | entry = pmdp_invalidate(vma, address, pmd); |
f27176cf KS |
976 | entry = pmd_wrprotect(entry); |
977 | entry = pmd_mkclean(entry); | |
785373b4 | 978 | set_pmd_at(vma->vm_mm, address, pmd, entry); |
f27176cf KS |
979 | ret = 1; |
980 | #else | |
e83c09a2 | 981 | /* unexpected pmd-mapped folio? */ |
f27176cf KS |
982 | WARN_ON_ONCE(1); |
983 | #endif | |
984 | } | |
d08b3851 | 985 | |
0f10851e JG |
986 | /* |
987 | * No need to call mmu_notifier_invalidate_range() as we are | |
988 | * downgrading page table protection not changing it to point | |
989 | * to a new page. | |
990 | * | |
ad56b738 | 991 | * See Documentation/vm/mmu_notifier.rst |
0f10851e JG |
992 | */ |
993 | if (ret) | |
6a8e0596 | 994 | cleaned++; |
c2fda5fe | 995 | } |
d08b3851 | 996 | |
ac46d4f3 | 997 | mmu_notifier_invalidate_range_end(&range); |
369ea824 | 998 | |
6a8e0596 MS |
999 | return cleaned; |
1000 | } | |
1001 | ||
1002 | static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma, | |
1003 | unsigned long address, void *arg) | |
1004 | { | |
1005 | DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC); | |
1006 | int *cleaned = arg; | |
1007 | ||
1008 | *cleaned += page_vma_mkclean_one(&pvmw); | |
1009 | ||
e4b82222 | 1010 | return true; |
d08b3851 PZ |
1011 | } |
1012 | ||
9853a407 | 1013 | static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) |
d08b3851 | 1014 | { |
9853a407 | 1015 | if (vma->vm_flags & VM_SHARED) |
871beb8c | 1016 | return false; |
d08b3851 | 1017 | |
871beb8c | 1018 | return true; |
d08b3851 PZ |
1019 | } |
1020 | ||
d9c08e22 | 1021 | int folio_mkclean(struct folio *folio) |
d08b3851 | 1022 | { |
9853a407 JK |
1023 | int cleaned = 0; |
1024 | struct address_space *mapping; | |
1025 | struct rmap_walk_control rwc = { | |
1026 | .arg = (void *)&cleaned, | |
1027 | .rmap_one = page_mkclean_one, | |
1028 | .invalid_vma = invalid_mkclean_vma, | |
1029 | }; | |
d08b3851 | 1030 | |
d9c08e22 | 1031 | BUG_ON(!folio_test_locked(folio)); |
d08b3851 | 1032 | |
d9c08e22 | 1033 | if (!folio_mapped(folio)) |
9853a407 JK |
1034 | return 0; |
1035 | ||
d9c08e22 | 1036 | mapping = folio_mapping(folio); |
9853a407 JK |
1037 | if (!mapping) |
1038 | return 0; | |
1039 | ||
2f031c6f | 1040 | rmap_walk(folio, &rwc); |
d08b3851 | 1041 | |
9853a407 | 1042 | return cleaned; |
d08b3851 | 1043 | } |
d9c08e22 | 1044 | EXPORT_SYMBOL_GPL(folio_mkclean); |
d08b3851 | 1045 | |
6a8e0596 MS |
1046 | /** |
1047 | * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of | |
1048 | * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff) | |
1049 | * within the @vma of shared mappings. And since clean PTEs | |
1050 | * should also be readonly, write protects them too. | |
1051 | * @pfn: start pfn. | |
1052 | * @nr_pages: number of physically contiguous pages srarting with @pfn. | |
1053 | * @pgoff: page offset that the @pfn mapped with. | |
1054 | * @vma: vma that @pfn mapped within. | |
1055 | * | |
1056 | * Returns the number of cleaned PTEs (including PMDs). | |
1057 | */ | |
1058 | int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, | |
1059 | struct vm_area_struct *vma) | |
1060 | { | |
1061 | struct page_vma_mapped_walk pvmw = { | |
1062 | .pfn = pfn, | |
1063 | .nr_pages = nr_pages, | |
1064 | .pgoff = pgoff, | |
1065 | .vma = vma, | |
1066 | .flags = PVMW_SYNC, | |
1067 | }; | |
1068 | ||
1069 | if (invalid_mkclean_vma(vma, NULL)) | |
1070 | return 0; | |
1071 | ||
1072 | pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma); | |
1073 | VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma); | |
1074 | ||
1075 | return page_vma_mkclean_one(&pvmw); | |
1076 | } | |
1077 | ||
c44b6743 RR |
1078 | /** |
1079 | * page_move_anon_rmap - move a page to our anon_vma | |
1080 | * @page: the page to move to our anon_vma | |
1081 | * @vma: the vma the page belongs to | |
c44b6743 RR |
1082 | * |
1083 | * When a page belongs exclusively to one process after a COW event, | |
1084 | * that page can be moved into the anon_vma that belongs to just that | |
1085 | * process, so the rmap code will not search the parent or sibling | |
1086 | * processes. | |
1087 | */ | |
5a49973d | 1088 | void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma) |
c44b6743 RR |
1089 | { |
1090 | struct anon_vma *anon_vma = vma->anon_vma; | |
1091 | ||
5a49973d HD |
1092 | page = compound_head(page); |
1093 | ||
309381fe | 1094 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
81d1b09c | 1095 | VM_BUG_ON_VMA(!anon_vma, vma); |
c44b6743 RR |
1096 | |
1097 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | |
414e2fb8 VD |
1098 | /* |
1099 | * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written | |
b3ac0413 MWO |
1100 | * simultaneously, so a concurrent reader (eg folio_referenced()'s |
1101 | * folio_test_anon()) will not see one without the other. | |
414e2fb8 VD |
1102 | */ |
1103 | WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); | |
c44b6743 RR |
1104 | } |
1105 | ||
9617d95e | 1106 | /** |
4e1c1975 | 1107 | * __page_set_anon_rmap - set up new anonymous rmap |
451b9514 | 1108 | * @page: Page or Hugepage to add to rmap |
4e1c1975 AK |
1109 | * @vma: VM area to add page to. |
1110 | * @address: User virtual address of the mapping | |
e8a03feb | 1111 | * @exclusive: the page is exclusively owned by the current process |
9617d95e NP |
1112 | */ |
1113 | static void __page_set_anon_rmap(struct page *page, | |
e8a03feb | 1114 | struct vm_area_struct *vma, unsigned long address, int exclusive) |
9617d95e | 1115 | { |
e8a03feb | 1116 | struct anon_vma *anon_vma = vma->anon_vma; |
ea90002b | 1117 | |
e8a03feb | 1118 | BUG_ON(!anon_vma); |
ea90002b | 1119 | |
4e1c1975 AK |
1120 | if (PageAnon(page)) |
1121 | return; | |
1122 | ||
ea90002b | 1123 | /* |
e8a03feb RR |
1124 | * If the page isn't exclusively mapped into this vma, |
1125 | * we must use the _oldest_ possible anon_vma for the | |
1126 | * page mapping! | |
ea90002b | 1127 | */ |
4e1c1975 | 1128 | if (!exclusive) |
288468c3 | 1129 | anon_vma = anon_vma->root; |
9617d95e | 1130 | |
16f5e707 AS |
1131 | /* |
1132 | * page_idle does a lockless/optimistic rmap scan on page->mapping. | |
1133 | * Make sure the compiler doesn't split the stores of anon_vma and | |
1134 | * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code | |
1135 | * could mistake the mapping for a struct address_space and crash. | |
1136 | */ | |
9617d95e | 1137 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; |
16f5e707 | 1138 | WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); |
9617d95e | 1139 | page->index = linear_page_index(vma, address); |
9617d95e NP |
1140 | } |
1141 | ||
c97a9e10 | 1142 | /** |
43d8eac4 | 1143 | * __page_check_anon_rmap - sanity check anonymous rmap addition |
c97a9e10 NP |
1144 | * @page: the page to add the mapping to |
1145 | * @vma: the vm area in which the mapping is added | |
1146 | * @address: the user virtual address mapped | |
1147 | */ | |
1148 | static void __page_check_anon_rmap(struct page *page, | |
1149 | struct vm_area_struct *vma, unsigned long address) | |
1150 | { | |
e05b3453 | 1151 | struct folio *folio = page_folio(page); |
c97a9e10 NP |
1152 | /* |
1153 | * The page's anon-rmap details (mapping and index) are guaranteed to | |
1154 | * be set up correctly at this point. | |
1155 | * | |
1156 | * We have exclusion against page_add_anon_rmap because the caller | |
90aaca85 | 1157 | * always holds the page locked. |
c97a9e10 NP |
1158 | * |
1159 | * We have exclusion against page_add_new_anon_rmap because those pages | |
1160 | * are initially only visible via the pagetables, and the pte is locked | |
1161 | * over the call to page_add_new_anon_rmap. | |
1162 | */ | |
e05b3453 MWO |
1163 | VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root, |
1164 | folio); | |
30c46382 YS |
1165 | VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address), |
1166 | page); | |
c97a9e10 NP |
1167 | } |
1168 | ||
1da177e4 LT |
1169 | /** |
1170 | * page_add_anon_rmap - add pte mapping to an anonymous page | |
1171 | * @page: the page to add the mapping to | |
1172 | * @vma: the vm area in which the mapping is added | |
1173 | * @address: the user virtual address mapped | |
f1e2db12 | 1174 | * @flags: the rmap flags |
1da177e4 | 1175 | * |
5ad64688 | 1176 | * The caller needs to hold the pte lock, and the page must be locked in |
80e14822 HD |
1177 | * the anon_vma case: to serialize mapping,index checking after setting, |
1178 | * and to ensure that PageAnon is not being upgraded racily to PageKsm | |
1179 | * (but PageKsm is never downgraded to PageAnon). | |
1da177e4 LT |
1180 | */ |
1181 | void page_add_anon_rmap(struct page *page, | |
14f9135d | 1182 | struct vm_area_struct *vma, unsigned long address, rmap_t flags) |
1da177e4 | 1183 | { |
53f9263b KS |
1184 | bool compound = flags & RMAP_COMPOUND; |
1185 | bool first; | |
1186 | ||
be5d0a74 JW |
1187 | if (unlikely(PageKsm(page))) |
1188 | lock_page_memcg(page); | |
1189 | else | |
1190 | VM_BUG_ON_PAGE(!PageLocked(page), page); | |
1191 | ||
e9b61f19 KS |
1192 | if (compound) { |
1193 | atomic_t *mapcount; | |
53f9263b | 1194 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
e9b61f19 KS |
1195 | VM_BUG_ON_PAGE(!PageTransHuge(page), page); |
1196 | mapcount = compound_mapcount_ptr(page); | |
1197 | first = atomic_inc_and_test(mapcount); | |
53f9263b KS |
1198 | } else { |
1199 | first = atomic_inc_and_test(&page->_mapcount); | |
1200 | } | |
1201 | ||
79134171 | 1202 | if (first) { |
6c357848 | 1203 | int nr = compound ? thp_nr_pages(page) : 1; |
bea04b07 JZ |
1204 | /* |
1205 | * We use the irq-unsafe __{inc|mod}_zone_page_stat because | |
1206 | * these counters are not modified in interrupt context, and | |
1207 | * pte lock(a spinlock) is held, which implies preemption | |
1208 | * disabled. | |
1209 | */ | |
65c45377 | 1210 | if (compound) |
69473e5d | 1211 | __mod_lruvec_page_state(page, NR_ANON_THPS, nr); |
be5d0a74 | 1212 | __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr); |
79134171 | 1213 | } |
5ad64688 | 1214 | |
cea86fe2 | 1215 | if (unlikely(PageKsm(page))) |
be5d0a74 | 1216 | unlock_page_memcg(page); |
53f9263b | 1217 | |
5dbe0af4 | 1218 | /* address might be in next vma when migration races vma_adjust */ |
cea86fe2 | 1219 | else if (first) |
d281ee61 | 1220 | __page_set_anon_rmap(page, vma, address, |
14f9135d | 1221 | !!(flags & RMAP_EXCLUSIVE)); |
69029cd5 | 1222 | else |
c97a9e10 | 1223 | __page_check_anon_rmap(page, vma, address); |
cea86fe2 HD |
1224 | |
1225 | mlock_vma_page(page, vma, compound); | |
1da177e4 LT |
1226 | } |
1227 | ||
43d8eac4 | 1228 | /** |
9617d95e NP |
1229 | * page_add_new_anon_rmap - add pte mapping to a new anonymous page |
1230 | * @page: the page to add the mapping to | |
1231 | * @vma: the vm area in which the mapping is added | |
1232 | * @address: the user virtual address mapped | |
d281ee61 | 1233 | * @compound: charge the page as compound or small page |
9617d95e NP |
1234 | * |
1235 | * Same as page_add_anon_rmap but must only be called on *new* pages. | |
1236 | * This means the inc-and-test can be bypassed. | |
c97a9e10 | 1237 | * Page does not have to be locked. |
9617d95e NP |
1238 | */ |
1239 | void page_add_new_anon_rmap(struct page *page, | |
d281ee61 | 1240 | struct vm_area_struct *vma, unsigned long address, bool compound) |
9617d95e | 1241 | { |
6c357848 | 1242 | int nr = compound ? thp_nr_pages(page) : 1; |
d281ee61 | 1243 | |
81d1b09c | 1244 | VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); |
fa9949da | 1245 | __SetPageSwapBacked(page); |
d281ee61 KS |
1246 | if (compound) { |
1247 | VM_BUG_ON_PAGE(!PageTransHuge(page), page); | |
53f9263b KS |
1248 | /* increment count (starts at -1) */ |
1249 | atomic_set(compound_mapcount_ptr(page), 0); | |
5232c63f | 1250 | atomic_set(compound_pincount_ptr(page), 0); |
47e29d32 | 1251 | |
69473e5d | 1252 | __mod_lruvec_page_state(page, NR_ANON_THPS, nr); |
53f9263b KS |
1253 | } else { |
1254 | /* Anon THP always mapped first with PMD */ | |
1255 | VM_BUG_ON_PAGE(PageTransCompound(page), page); | |
1256 | /* increment count (starts at -1) */ | |
1257 | atomic_set(&page->_mapcount, 0); | |
d281ee61 | 1258 | } |
be5d0a74 | 1259 | __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr); |
e8a03feb | 1260 | __page_set_anon_rmap(page, vma, address, 1); |
9617d95e NP |
1261 | } |
1262 | ||
1da177e4 LT |
1263 | /** |
1264 | * page_add_file_rmap - add pte mapping to a file page | |
cea86fe2 HD |
1265 | * @page: the page to add the mapping to |
1266 | * @vma: the vm area in which the mapping is added | |
1267 | * @compound: charge the page as compound or small page | |
1da177e4 | 1268 | * |
b8072f09 | 1269 | * The caller needs to hold the pte lock. |
1da177e4 | 1270 | */ |
cea86fe2 HD |
1271 | void page_add_file_rmap(struct page *page, |
1272 | struct vm_area_struct *vma, bool compound) | |
1da177e4 | 1273 | { |
5d543f13 | 1274 | int i, nr = 0; |
dd78fedd KS |
1275 | |
1276 | VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page); | |
62cccb8c | 1277 | lock_page_memcg(page); |
dd78fedd | 1278 | if (compound && PageTransHuge(page)) { |
a1528e21 MS |
1279 | int nr_pages = thp_nr_pages(page); |
1280 | ||
5d543f13 | 1281 | for (i = 0; i < nr_pages; i++) { |
dd78fedd KS |
1282 | if (atomic_inc_and_test(&page[i]._mapcount)) |
1283 | nr++; | |
1284 | } | |
1285 | if (!atomic_inc_and_test(compound_mapcount_ptr(page))) | |
1286 | goto out; | |
bd55b0c2 HD |
1287 | |
1288 | /* | |
1289 | * It is racy to ClearPageDoubleMap in page_remove_file_rmap(); | |
1290 | * but page lock is held by all page_add_file_rmap() compound | |
1291 | * callers, and SetPageDoubleMap below warns if !PageLocked: | |
1292 | * so here is a place that DoubleMap can be safely cleared. | |
1293 | */ | |
1294 | VM_WARN_ON_ONCE(!PageLocked(page)); | |
1295 | if (nr == nr_pages && PageDoubleMap(page)) | |
1296 | ClearPageDoubleMap(page); | |
1297 | ||
99cb0dbd | 1298 | if (PageSwapBacked(page)) |
a1528e21 MS |
1299 | __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED, |
1300 | nr_pages); | |
99cb0dbd | 1301 | else |
380780e7 MS |
1302 | __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED, |
1303 | nr_pages); | |
dd78fedd | 1304 | } else { |
c8efc390 KS |
1305 | if (PageTransCompound(page) && page_mapping(page)) { |
1306 | VM_WARN_ON_ONCE(!PageLocked(page)); | |
cea86fe2 | 1307 | SetPageDoubleMap(compound_head(page)); |
9a73f61b | 1308 | } |
5d543f13 HD |
1309 | if (atomic_inc_and_test(&page->_mapcount)) |
1310 | nr++; | |
d69b042f | 1311 | } |
dd78fedd | 1312 | out: |
5d543f13 HD |
1313 | if (nr) |
1314 | __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr); | |
62cccb8c | 1315 | unlock_page_memcg(page); |
cea86fe2 HD |
1316 | |
1317 | mlock_vma_page(page, vma, compound); | |
1da177e4 LT |
1318 | } |
1319 | ||
dd78fedd | 1320 | static void page_remove_file_rmap(struct page *page, bool compound) |
8186eb6a | 1321 | { |
5d543f13 | 1322 | int i, nr = 0; |
dd78fedd | 1323 | |
57dea93a | 1324 | VM_BUG_ON_PAGE(compound && !PageHead(page), page); |
8186eb6a | 1325 | |
53f9263b KS |
1326 | /* Hugepages are not counted in NR_FILE_MAPPED for now. */ |
1327 | if (unlikely(PageHuge(page))) { | |
1328 | /* hugetlb pages are always mapped with pmds */ | |
1329 | atomic_dec(compound_mapcount_ptr(page)); | |
be5d0a74 | 1330 | return; |
53f9263b | 1331 | } |
8186eb6a | 1332 | |
53f9263b | 1333 | /* page still mapped by someone else? */ |
dd78fedd | 1334 | if (compound && PageTransHuge(page)) { |
a1528e21 MS |
1335 | int nr_pages = thp_nr_pages(page); |
1336 | ||
5d543f13 | 1337 | for (i = 0; i < nr_pages; i++) { |
dd78fedd KS |
1338 | if (atomic_add_negative(-1, &page[i]._mapcount)) |
1339 | nr++; | |
1340 | } | |
1341 | if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) | |
5d543f13 | 1342 | goto out; |
99cb0dbd | 1343 | if (PageSwapBacked(page)) |
a1528e21 MS |
1344 | __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED, |
1345 | -nr_pages); | |
99cb0dbd | 1346 | else |
380780e7 MS |
1347 | __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED, |
1348 | -nr_pages); | |
dd78fedd | 1349 | } else { |
5d543f13 HD |
1350 | if (atomic_add_negative(-1, &page->_mapcount)) |
1351 | nr++; | |
dd78fedd | 1352 | } |
5d543f13 HD |
1353 | out: |
1354 | if (nr) | |
1355 | __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr); | |
8186eb6a JW |
1356 | } |
1357 | ||
53f9263b KS |
1358 | static void page_remove_anon_compound_rmap(struct page *page) |
1359 | { | |
1360 | int i, nr; | |
1361 | ||
1362 | if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) | |
1363 | return; | |
1364 | ||
1365 | /* Hugepages are not counted in NR_ANON_PAGES for now. */ | |
1366 | if (unlikely(PageHuge(page))) | |
1367 | return; | |
1368 | ||
1369 | if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) | |
1370 | return; | |
1371 | ||
69473e5d | 1372 | __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page)); |
53f9263b KS |
1373 | |
1374 | if (TestClearPageDoubleMap(page)) { | |
1375 | /* | |
1376 | * Subpages can be mapped with PTEs too. Check how many of | |
f1fe80d4 | 1377 | * them are still mapped. |
53f9263b | 1378 | */ |
5eaf35ab | 1379 | for (i = 0, nr = 0; i < thp_nr_pages(page); i++) { |
53f9263b KS |
1380 | if (atomic_add_negative(-1, &page[i]._mapcount)) |
1381 | nr++; | |
1382 | } | |
f1fe80d4 KS |
1383 | |
1384 | /* | |
1385 | * Queue the page for deferred split if at least one small | |
1386 | * page of the compound page is unmapped, but at least one | |
1387 | * small page is still mapped. | |
1388 | */ | |
5eaf35ab | 1389 | if (nr && nr < thp_nr_pages(page)) |
f1fe80d4 | 1390 | deferred_split_huge_page(page); |
53f9263b | 1391 | } else { |
5eaf35ab | 1392 | nr = thp_nr_pages(page); |
53f9263b KS |
1393 | } |
1394 | ||
f1fe80d4 | 1395 | if (nr) |
be5d0a74 | 1396 | __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr); |
53f9263b KS |
1397 | } |
1398 | ||
1da177e4 LT |
1399 | /** |
1400 | * page_remove_rmap - take down pte mapping from a page | |
d281ee61 | 1401 | * @page: page to remove mapping from |
cea86fe2 | 1402 | * @vma: the vm area from which the mapping is removed |
d281ee61 | 1403 | * @compound: uncharge the page as compound or small page |
1da177e4 | 1404 | * |
b8072f09 | 1405 | * The caller needs to hold the pte lock. |
1da177e4 | 1406 | */ |
cea86fe2 HD |
1407 | void page_remove_rmap(struct page *page, |
1408 | struct vm_area_struct *vma, bool compound) | |
1da177e4 | 1409 | { |
be5d0a74 | 1410 | lock_page_memcg(page); |
89c06bd5 | 1411 | |
be5d0a74 JW |
1412 | if (!PageAnon(page)) { |
1413 | page_remove_file_rmap(page, compound); | |
1414 | goto out; | |
1415 | } | |
1416 | ||
1417 | if (compound) { | |
1418 | page_remove_anon_compound_rmap(page); | |
1419 | goto out; | |
1420 | } | |
53f9263b | 1421 | |
b904dcfe KM |
1422 | /* page still mapped by someone else? */ |
1423 | if (!atomic_add_negative(-1, &page->_mapcount)) | |
be5d0a74 | 1424 | goto out; |
8186eb6a | 1425 | |
0fe6e20b | 1426 | /* |
bea04b07 JZ |
1427 | * We use the irq-unsafe __{inc|mod}_zone_page_stat because |
1428 | * these counters are not modified in interrupt context, and | |
bea04b07 | 1429 | * pte lock(a spinlock) is held, which implies preemption disabled. |
0fe6e20b | 1430 | */ |
be5d0a74 | 1431 | __dec_lruvec_page_state(page, NR_ANON_MAPPED); |
8186eb6a | 1432 | |
9a982250 KS |
1433 | if (PageTransCompound(page)) |
1434 | deferred_split_huge_page(compound_head(page)); | |
1435 | ||
b904dcfe KM |
1436 | /* |
1437 | * It would be tidy to reset the PageAnon mapping here, | |
1438 | * but that might overwrite a racing page_add_anon_rmap | |
1439 | * which increments mapcount after us but sets mapping | |
2d4894b5 | 1440 | * before us: so leave the reset to free_unref_page, |
b904dcfe KM |
1441 | * and remember that it's only reliable while mapped. |
1442 | * Leaving it set also helps swapoff to reinstate ptes | |
1443 | * faster for those pages still in swapcache. | |
1444 | */ | |
be5d0a74 JW |
1445 | out: |
1446 | unlock_page_memcg(page); | |
cea86fe2 HD |
1447 | |
1448 | munlock_vma_page(page, vma, compound); | |
1da177e4 LT |
1449 | } |
1450 | ||
1451 | /* | |
52629506 | 1452 | * @arg: enum ttu_flags will be passed to this argument |
1da177e4 | 1453 | */ |
2f031c6f | 1454 | static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma, |
52629506 | 1455 | unsigned long address, void *arg) |
1da177e4 LT |
1456 | { |
1457 | struct mm_struct *mm = vma->vm_mm; | |
869f7ee6 | 1458 | DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); |
1da177e4 | 1459 | pte_t pteval; |
c7ab0d2f | 1460 | struct page *subpage; |
785373b4 | 1461 | bool ret = true; |
ac46d4f3 | 1462 | struct mmu_notifier_range range; |
4708f318 | 1463 | enum ttu_flags flags = (enum ttu_flags)(long)arg; |
1da177e4 | 1464 | |
732ed558 HD |
1465 | /* |
1466 | * When racing against e.g. zap_pte_range() on another cpu, | |
1467 | * in between its ptep_get_and_clear_full() and page_remove_rmap(), | |
1fb08ac6 | 1468 | * try_to_unmap() may return before page_mapped() has become false, |
732ed558 HD |
1469 | * if page table locking is skipped: use TTU_SYNC to wait for that. |
1470 | */ | |
1471 | if (flags & TTU_SYNC) | |
1472 | pvmw.flags = PVMW_SYNC; | |
1473 | ||
a98a2f0c | 1474 | if (flags & TTU_SPLIT_HUGE_PMD) |
af28a988 | 1475 | split_huge_pmd_address(vma, address, false, folio); |
fec89c10 | 1476 | |
369ea824 | 1477 | /* |
017b1660 MK |
1478 | * For THP, we have to assume the worse case ie pmd for invalidation. |
1479 | * For hugetlb, it could be much worse if we need to do pud | |
1480 | * invalidation in the case of pmd sharing. | |
1481 | * | |
869f7ee6 MWO |
1482 | * Note that the folio can not be freed in this function as call of |
1483 | * try_to_unmap() must hold a reference on the folio. | |
369ea824 | 1484 | */ |
2aff7a47 | 1485 | range.end = vma_address_end(&pvmw); |
7269f999 | 1486 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, |
494334e4 | 1487 | address, range.end); |
869f7ee6 | 1488 | if (folio_test_hugetlb(folio)) { |
017b1660 MK |
1489 | /* |
1490 | * If sharing is possible, start and end will be adjusted | |
1491 | * accordingly. | |
1492 | */ | |
ac46d4f3 JG |
1493 | adjust_range_if_pmd_sharing_possible(vma, &range.start, |
1494 | &range.end); | |
017b1660 | 1495 | } |
ac46d4f3 | 1496 | mmu_notifier_invalidate_range_start(&range); |
369ea824 | 1497 | |
c7ab0d2f | 1498 | while (page_vma_mapped_walk(&pvmw)) { |
cea86fe2 | 1499 | /* Unexpected PMD-mapped THP? */ |
869f7ee6 | 1500 | VM_BUG_ON_FOLIO(!pvmw.pte, folio); |
cea86fe2 | 1501 | |
c7ab0d2f | 1502 | /* |
869f7ee6 | 1503 | * If the folio is in an mlock()d vma, we must not swap it out. |
c7ab0d2f | 1504 | */ |
efdb6720 HD |
1505 | if (!(flags & TTU_IGNORE_MLOCK) && |
1506 | (vma->vm_flags & VM_LOCKED)) { | |
cea86fe2 | 1507 | /* Restore the mlock which got missed */ |
869f7ee6 | 1508 | mlock_vma_folio(folio, vma, false); |
efdb6720 HD |
1509 | page_vma_mapped_walk_done(&pvmw); |
1510 | ret = false; | |
1511 | break; | |
b87537d9 | 1512 | } |
c7ab0d2f | 1513 | |
869f7ee6 MWO |
1514 | subpage = folio_page(folio, |
1515 | pte_pfn(*pvmw.pte) - folio_pfn(folio)); | |
785373b4 LT |
1516 | address = pvmw.address; |
1517 | ||
869f7ee6 | 1518 | if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) { |
c0d0381a MK |
1519 | /* |
1520 | * To call huge_pmd_unshare, i_mmap_rwsem must be | |
1521 | * held in write mode. Caller needs to explicitly | |
1522 | * do this outside rmap routines. | |
1523 | */ | |
1524 | VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); | |
34ae204f | 1525 | if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) { |
017b1660 MK |
1526 | /* |
1527 | * huge_pmd_unshare unmapped an entire PMD | |
1528 | * page. There is no way of knowing exactly | |
1529 | * which PMDs may be cached for this mm, so | |
1530 | * we must flush them all. start/end were | |
1531 | * already adjusted above to cover this range. | |
1532 | */ | |
ac46d4f3 JG |
1533 | flush_cache_range(vma, range.start, range.end); |
1534 | flush_tlb_range(vma, range.start, range.end); | |
1535 | mmu_notifier_invalidate_range(mm, range.start, | |
1536 | range.end); | |
017b1660 MK |
1537 | |
1538 | /* | |
1539 | * The ref count of the PMD page was dropped | |
1540 | * which is part of the way map counting | |
1541 | * is done for shared PMDs. Return 'true' | |
1542 | * here. When there is no other sharing, | |
1543 | * huge_pmd_unshare returns false and we will | |
1544 | * unmap the actual page and drop map count | |
1545 | * to zero. | |
1546 | */ | |
1547 | page_vma_mapped_walk_done(&pvmw); | |
1548 | break; | |
1549 | } | |
1550 | } | |
8346242a | 1551 | |
c7ab0d2f | 1552 | /* Nuke the page table entry. */ |
785373b4 | 1553 | flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); |
c7ab0d2f KS |
1554 | if (should_defer_flush(mm, flags)) { |
1555 | /* | |
1556 | * We clear the PTE but do not flush so potentially | |
869f7ee6 | 1557 | * a remote CPU could still be writing to the folio. |
c7ab0d2f KS |
1558 | * If the entry was previously clean then the |
1559 | * architecture must guarantee that a clear->dirty | |
1560 | * transition on a cached TLB entry is written through | |
1561 | * and traps if the PTE is unmapped. | |
1562 | */ | |
785373b4 | 1563 | pteval = ptep_get_and_clear(mm, address, pvmw.pte); |
c7ab0d2f KS |
1564 | |
1565 | set_tlb_ubc_flush_pending(mm, pte_dirty(pteval)); | |
1566 | } else { | |
785373b4 | 1567 | pteval = ptep_clear_flush(vma, address, pvmw.pte); |
c7ab0d2f | 1568 | } |
72b252ae | 1569 | |
869f7ee6 | 1570 | /* Set the dirty flag on the folio now the pte is gone. */ |
c7ab0d2f | 1571 | if (pte_dirty(pteval)) |
869f7ee6 | 1572 | folio_mark_dirty(folio); |
1da177e4 | 1573 | |
c7ab0d2f KS |
1574 | /* Update high watermark before we lower rss */ |
1575 | update_hiwater_rss(mm); | |
1da177e4 | 1576 | |
da358d5c | 1577 | if (PageHWPoison(subpage) && !(flags & TTU_IGNORE_HWPOISON)) { |
5fd27b8e | 1578 | pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); |
869f7ee6 MWO |
1579 | if (folio_test_hugetlb(folio)) { |
1580 | hugetlb_count_sub(folio_nr_pages(folio), mm); | |
785373b4 | 1581 | set_huge_swap_pte_at(mm, address, |
5fd27b8e PA |
1582 | pvmw.pte, pteval, |
1583 | vma_mmu_pagesize(vma)); | |
c7ab0d2f | 1584 | } else { |
869f7ee6 | 1585 | dec_mm_counter(mm, mm_counter(&folio->page)); |
785373b4 | 1586 | set_pte_at(mm, address, pvmw.pte, pteval); |
c7ab0d2f | 1587 | } |
365e9c87 | 1588 | |
bce73e48 | 1589 | } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { |
c7ab0d2f KS |
1590 | /* |
1591 | * The guest indicated that the page content is of no | |
1592 | * interest anymore. Simply discard the pte, vmscan | |
1593 | * will take care of the rest. | |
bce73e48 CB |
1594 | * A future reference will then fault in a new zero |
1595 | * page. When userfaultfd is active, we must not drop | |
1596 | * this page though, as its main user (postcopy | |
1597 | * migration) will not expect userfaults on already | |
1598 | * copied pages. | |
c7ab0d2f | 1599 | */ |
869f7ee6 | 1600 | dec_mm_counter(mm, mm_counter(&folio->page)); |
0f10851e JG |
1601 | /* We have to invalidate as we cleared the pte */ |
1602 | mmu_notifier_invalidate_range(mm, address, | |
1603 | address + PAGE_SIZE); | |
869f7ee6 | 1604 | } else if (folio_test_anon(folio)) { |
c7ab0d2f KS |
1605 | swp_entry_t entry = { .val = page_private(subpage) }; |
1606 | pte_t swp_pte; | |
1607 | /* | |
1608 | * Store the swap location in the pte. | |
1609 | * See handle_pte_fault() ... | |
1610 | */ | |
869f7ee6 MWO |
1611 | if (unlikely(folio_test_swapbacked(folio) != |
1612 | folio_test_swapcache(folio))) { | |
eb94a878 | 1613 | WARN_ON_ONCE(1); |
83612a94 | 1614 | ret = false; |
369ea824 | 1615 | /* We have to invalidate as we cleared the pte */ |
0f10851e JG |
1616 | mmu_notifier_invalidate_range(mm, address, |
1617 | address + PAGE_SIZE); | |
eb94a878 MK |
1618 | page_vma_mapped_walk_done(&pvmw); |
1619 | break; | |
1620 | } | |
c7ab0d2f | 1621 | |
802a3a92 | 1622 | /* MADV_FREE page check */ |
869f7ee6 | 1623 | if (!folio_test_swapbacked(folio)) { |
6c8e2a25 MFO |
1624 | int ref_count, map_count; |
1625 | ||
1626 | /* | |
1627 | * Synchronize with gup_pte_range(): | |
1628 | * - clear PTE; barrier; read refcount | |
1629 | * - inc refcount; barrier; read PTE | |
1630 | */ | |
1631 | smp_mb(); | |
1632 | ||
1633 | ref_count = folio_ref_count(folio); | |
1634 | map_count = folio_mapcount(folio); | |
1635 | ||
1636 | /* | |
1637 | * Order reads for page refcount and dirty flag | |
1638 | * (see comments in __remove_mapping()). | |
1639 | */ | |
1640 | smp_rmb(); | |
1641 | ||
1642 | /* | |
1643 | * The only page refs must be one from isolation | |
1644 | * plus the rmap(s) (dropped by discard:). | |
1645 | */ | |
1646 | if (ref_count == 1 + map_count && | |
1647 | !folio_test_dirty(folio)) { | |
0f10851e JG |
1648 | /* Invalidate as we cleared the pte */ |
1649 | mmu_notifier_invalidate_range(mm, | |
1650 | address, address + PAGE_SIZE); | |
802a3a92 SL |
1651 | dec_mm_counter(mm, MM_ANONPAGES); |
1652 | goto discard; | |
1653 | } | |
1654 | ||
1655 | /* | |
869f7ee6 | 1656 | * If the folio was redirtied, it cannot be |
802a3a92 SL |
1657 | * discarded. Remap the page to page table. |
1658 | */ | |
785373b4 | 1659 | set_pte_at(mm, address, pvmw.pte, pteval); |
869f7ee6 | 1660 | folio_set_swapbacked(folio); |
e4b82222 | 1661 | ret = false; |
802a3a92 SL |
1662 | page_vma_mapped_walk_done(&pvmw); |
1663 | break; | |
c7ab0d2f | 1664 | } |
854e9ed0 | 1665 | |
c7ab0d2f | 1666 | if (swap_duplicate(entry) < 0) { |
785373b4 | 1667 | set_pte_at(mm, address, pvmw.pte, pteval); |
e4b82222 | 1668 | ret = false; |
c7ab0d2f KS |
1669 | page_vma_mapped_walk_done(&pvmw); |
1670 | break; | |
1671 | } | |
ca827d55 | 1672 | if (arch_unmap_one(mm, vma, address, pteval) < 0) { |
322842ea | 1673 | swap_free(entry); |
ca827d55 KA |
1674 | set_pte_at(mm, address, pvmw.pte, pteval); |
1675 | ret = false; | |
1676 | page_vma_mapped_walk_done(&pvmw); | |
1677 | break; | |
1678 | } | |
c7ab0d2f KS |
1679 | if (list_empty(&mm->mmlist)) { |
1680 | spin_lock(&mmlist_lock); | |
1681 | if (list_empty(&mm->mmlist)) | |
1682 | list_add(&mm->mmlist, &init_mm.mmlist); | |
1683 | spin_unlock(&mmlist_lock); | |
1684 | } | |
854e9ed0 | 1685 | dec_mm_counter(mm, MM_ANONPAGES); |
c7ab0d2f KS |
1686 | inc_mm_counter(mm, MM_SWAPENTS); |
1687 | swp_pte = swp_entry_to_pte(entry); | |
1688 | if (pte_soft_dirty(pteval)) | |
1689 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
f45ec5ff PX |
1690 | if (pte_uffd_wp(pteval)) |
1691 | swp_pte = pte_swp_mkuffd_wp(swp_pte); | |
785373b4 | 1692 | set_pte_at(mm, address, pvmw.pte, swp_pte); |
0f10851e JG |
1693 | /* Invalidate as we cleared the pte */ |
1694 | mmu_notifier_invalidate_range(mm, address, | |
1695 | address + PAGE_SIZE); | |
1696 | } else { | |
1697 | /* | |
869f7ee6 MWO |
1698 | * This is a locked file-backed folio, |
1699 | * so it cannot be removed from the page | |
1700 | * cache and replaced by a new folio before | |
1701 | * mmu_notifier_invalidate_range_end, so no | |
1702 | * concurrent thread might update its page table | |
1703 | * to point at a new folio while a device is | |
1704 | * still using this folio. | |
0f10851e | 1705 | * |
ad56b738 | 1706 | * See Documentation/vm/mmu_notifier.rst |
0f10851e | 1707 | */ |
869f7ee6 | 1708 | dec_mm_counter(mm, mm_counter_file(&folio->page)); |
0f10851e | 1709 | } |
854e9ed0 | 1710 | discard: |
0f10851e JG |
1711 | /* |
1712 | * No need to call mmu_notifier_invalidate_range() it has be | |
1713 | * done above for all cases requiring it to happen under page | |
1714 | * table lock before mmu_notifier_invalidate_range_end() | |
1715 | * | |
ad56b738 | 1716 | * See Documentation/vm/mmu_notifier.rst |
0f10851e | 1717 | */ |
869f7ee6 | 1718 | page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); |
b7435507 | 1719 | if (vma->vm_flags & VM_LOCKED) |
adb11e78 | 1720 | mlock_page_drain_local(); |
869f7ee6 | 1721 | folio_put(folio); |
c7ab0d2f | 1722 | } |
369ea824 | 1723 | |
ac46d4f3 | 1724 | mmu_notifier_invalidate_range_end(&range); |
369ea824 | 1725 | |
caed0f48 | 1726 | return ret; |
1da177e4 LT |
1727 | } |
1728 | ||
52629506 JK |
1729 | static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) |
1730 | { | |
222100ee | 1731 | return vma_is_temporary_stack(vma); |
52629506 JK |
1732 | } |
1733 | ||
2f031c6f | 1734 | static int page_not_mapped(struct folio *folio) |
52629506 | 1735 | { |
2f031c6f | 1736 | return !folio_mapped(folio); |
2a52bcbc | 1737 | } |
52629506 | 1738 | |
1da177e4 | 1739 | /** |
869f7ee6 MWO |
1740 | * try_to_unmap - Try to remove all page table mappings to a folio. |
1741 | * @folio: The folio to unmap. | |
14fa31b8 | 1742 | * @flags: action and flags |
1da177e4 LT |
1743 | * |
1744 | * Tries to remove all the page table entries which are mapping this | |
869f7ee6 MWO |
1745 | * folio. It is the caller's responsibility to check if the folio is |
1746 | * still mapped if needed (use TTU_SYNC to prevent accounting races). | |
1da177e4 | 1747 | * |
869f7ee6 | 1748 | * Context: Caller must hold the folio lock. |
1da177e4 | 1749 | */ |
869f7ee6 | 1750 | void try_to_unmap(struct folio *folio, enum ttu_flags flags) |
1da177e4 | 1751 | { |
52629506 JK |
1752 | struct rmap_walk_control rwc = { |
1753 | .rmap_one = try_to_unmap_one, | |
802a3a92 | 1754 | .arg = (void *)flags, |
b7e188ec | 1755 | .done = page_not_mapped, |
2f031c6f | 1756 | .anon_lock = folio_lock_anon_vma_read, |
52629506 | 1757 | }; |
1da177e4 | 1758 | |
a98a2f0c | 1759 | if (flags & TTU_RMAP_LOCKED) |
2f031c6f | 1760 | rmap_walk_locked(folio, &rwc); |
a98a2f0c | 1761 | else |
2f031c6f | 1762 | rmap_walk(folio, &rwc); |
a98a2f0c AP |
1763 | } |
1764 | ||
1765 | /* | |
1766 | * @arg: enum ttu_flags will be passed to this argument. | |
1767 | * | |
1768 | * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs | |
64b586d1 | 1769 | * containing migration entries. |
a98a2f0c | 1770 | */ |
2f031c6f | 1771 | static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma, |
a98a2f0c AP |
1772 | unsigned long address, void *arg) |
1773 | { | |
1774 | struct mm_struct *mm = vma->vm_mm; | |
4b8554c5 | 1775 | DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); |
a98a2f0c AP |
1776 | pte_t pteval; |
1777 | struct page *subpage; | |
1778 | bool ret = true; | |
1779 | struct mmu_notifier_range range; | |
1780 | enum ttu_flags flags = (enum ttu_flags)(long)arg; | |
1781 | ||
a98a2f0c AP |
1782 | /* |
1783 | * When racing against e.g. zap_pte_range() on another cpu, | |
1784 | * in between its ptep_get_and_clear_full() and page_remove_rmap(), | |
1785 | * try_to_migrate() may return before page_mapped() has become false, | |
1786 | * if page table locking is skipped: use TTU_SYNC to wait for that. | |
1787 | */ | |
1788 | if (flags & TTU_SYNC) | |
1789 | pvmw.flags = PVMW_SYNC; | |
1790 | ||
1791 | /* | |
1792 | * unmap_page() in mm/huge_memory.c is the only user of migration with | |
1793 | * TTU_SPLIT_HUGE_PMD and it wants to freeze. | |
1794 | */ | |
1795 | if (flags & TTU_SPLIT_HUGE_PMD) | |
af28a988 | 1796 | split_huge_pmd_address(vma, address, true, folio); |
a98a2f0c AP |
1797 | |
1798 | /* | |
1799 | * For THP, we have to assume the worse case ie pmd for invalidation. | |
1800 | * For hugetlb, it could be much worse if we need to do pud | |
1801 | * invalidation in the case of pmd sharing. | |
1802 | * | |
1803 | * Note that the page can not be free in this function as call of | |
1804 | * try_to_unmap() must hold a reference on the page. | |
1805 | */ | |
2aff7a47 | 1806 | range.end = vma_address_end(&pvmw); |
a98a2f0c AP |
1807 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, |
1808 | address, range.end); | |
4b8554c5 | 1809 | if (folio_test_hugetlb(folio)) { |
a98a2f0c AP |
1810 | /* |
1811 | * If sharing is possible, start and end will be adjusted | |
1812 | * accordingly. | |
1813 | */ | |
1814 | adjust_range_if_pmd_sharing_possible(vma, &range.start, | |
1815 | &range.end); | |
1816 | } | |
1817 | mmu_notifier_invalidate_range_start(&range); | |
1818 | ||
1819 | while (page_vma_mapped_walk(&pvmw)) { | |
1820 | #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION | |
1821 | /* PMD-mapped THP migration entry */ | |
1822 | if (!pvmw.pte) { | |
4b8554c5 MWO |
1823 | subpage = folio_page(folio, |
1824 | pmd_pfn(*pvmw.pmd) - folio_pfn(folio)); | |
1825 | VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || | |
1826 | !folio_test_pmd_mappable(folio), folio); | |
a98a2f0c | 1827 | |
4b8554c5 | 1828 | set_pmd_migration_entry(&pvmw, subpage); |
a98a2f0c AP |
1829 | continue; |
1830 | } | |
1831 | #endif | |
1832 | ||
1833 | /* Unexpected PMD-mapped THP? */ | |
4b8554c5 | 1834 | VM_BUG_ON_FOLIO(!pvmw.pte, folio); |
a98a2f0c | 1835 | |
4b8554c5 MWO |
1836 | subpage = folio_page(folio, |
1837 | pte_pfn(*pvmw.pte) - folio_pfn(folio)); | |
a98a2f0c AP |
1838 | address = pvmw.address; |
1839 | ||
4b8554c5 | 1840 | if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) { |
a98a2f0c AP |
1841 | /* |
1842 | * To call huge_pmd_unshare, i_mmap_rwsem must be | |
1843 | * held in write mode. Caller needs to explicitly | |
1844 | * do this outside rmap routines. | |
1845 | */ | |
1846 | VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); | |
1847 | if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) { | |
1848 | /* | |
1849 | * huge_pmd_unshare unmapped an entire PMD | |
1850 | * page. There is no way of knowing exactly | |
1851 | * which PMDs may be cached for this mm, so | |
1852 | * we must flush them all. start/end were | |
1853 | * already adjusted above to cover this range. | |
1854 | */ | |
1855 | flush_cache_range(vma, range.start, range.end); | |
1856 | flush_tlb_range(vma, range.start, range.end); | |
1857 | mmu_notifier_invalidate_range(mm, range.start, | |
1858 | range.end); | |
1859 | ||
1860 | /* | |
1861 | * The ref count of the PMD page was dropped | |
1862 | * which is part of the way map counting | |
1863 | * is done for shared PMDs. Return 'true' | |
1864 | * here. When there is no other sharing, | |
1865 | * huge_pmd_unshare returns false and we will | |
1866 | * unmap the actual page and drop map count | |
1867 | * to zero. | |
1868 | */ | |
1869 | page_vma_mapped_walk_done(&pvmw); | |
1870 | break; | |
1871 | } | |
1872 | } | |
1873 | ||
1874 | /* Nuke the page table entry. */ | |
1875 | flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); | |
1876 | pteval = ptep_clear_flush(vma, address, pvmw.pte); | |
1877 | ||
4b8554c5 | 1878 | /* Set the dirty flag on the folio now the pte is gone. */ |
a98a2f0c | 1879 | if (pte_dirty(pteval)) |
4b8554c5 | 1880 | folio_mark_dirty(folio); |
a98a2f0c AP |
1881 | |
1882 | /* Update high watermark before we lower rss */ | |
1883 | update_hiwater_rss(mm); | |
1884 | ||
4b8554c5 MWO |
1885 | if (folio_is_zone_device(folio)) { |
1886 | unsigned long pfn = folio_pfn(folio); | |
a98a2f0c AP |
1887 | swp_entry_t entry; |
1888 | pte_t swp_pte; | |
1889 | ||
1890 | /* | |
1891 | * Store the pfn of the page in a special migration | |
1892 | * pte. do_swap_page() will wait until the migration | |
1893 | * pte is removed and then restart fault handling. | |
1894 | */ | |
3d88705c AP |
1895 | entry = pte_to_swp_entry(pteval); |
1896 | if (is_writable_device_private_entry(entry)) | |
1897 | entry = make_writable_migration_entry(pfn); | |
1898 | else | |
1899 | entry = make_readable_migration_entry(pfn); | |
a98a2f0c AP |
1900 | swp_pte = swp_entry_to_pte(entry); |
1901 | ||
1902 | /* | |
1903 | * pteval maps a zone device page and is therefore | |
1904 | * a swap pte. | |
1905 | */ | |
1906 | if (pte_swp_soft_dirty(pteval)) | |
1907 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
1908 | if (pte_swp_uffd_wp(pteval)) | |
1909 | swp_pte = pte_swp_mkuffd_wp(swp_pte); | |
1910 | set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte); | |
4cc79b33 AK |
1911 | trace_set_migration_pte(pvmw.address, pte_val(swp_pte), |
1912 | compound_order(&folio->page)); | |
a98a2f0c AP |
1913 | /* |
1914 | * No need to invalidate here it will synchronize on | |
1915 | * against the special swap migration pte. | |
1916 | * | |
1917 | * The assignment to subpage above was computed from a | |
1918 | * swap PTE which results in an invalid pointer. | |
1919 | * Since only PAGE_SIZE pages can currently be | |
1920 | * migrated, just set it to page. This will need to be | |
1921 | * changed when hugepage migrations to device private | |
1922 | * memory are supported. | |
1923 | */ | |
4b8554c5 | 1924 | subpage = &folio->page; |
da358d5c | 1925 | } else if (PageHWPoison(subpage)) { |
a98a2f0c | 1926 | pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); |
4b8554c5 MWO |
1927 | if (folio_test_hugetlb(folio)) { |
1928 | hugetlb_count_sub(folio_nr_pages(folio), mm); | |
a98a2f0c AP |
1929 | set_huge_swap_pte_at(mm, address, |
1930 | pvmw.pte, pteval, | |
1931 | vma_mmu_pagesize(vma)); | |
1932 | } else { | |
4b8554c5 | 1933 | dec_mm_counter(mm, mm_counter(&folio->page)); |
a98a2f0c AP |
1934 | set_pte_at(mm, address, pvmw.pte, pteval); |
1935 | } | |
1936 | ||
1937 | } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { | |
1938 | /* | |
1939 | * The guest indicated that the page content is of no | |
1940 | * interest anymore. Simply discard the pte, vmscan | |
1941 | * will take care of the rest. | |
1942 | * A future reference will then fault in a new zero | |
1943 | * page. When userfaultfd is active, we must not drop | |
1944 | * this page though, as its main user (postcopy | |
1945 | * migration) will not expect userfaults on already | |
1946 | * copied pages. | |
1947 | */ | |
4b8554c5 | 1948 | dec_mm_counter(mm, mm_counter(&folio->page)); |
a98a2f0c AP |
1949 | /* We have to invalidate as we cleared the pte */ |
1950 | mmu_notifier_invalidate_range(mm, address, | |
1951 | address + PAGE_SIZE); | |
1952 | } else { | |
1953 | swp_entry_t entry; | |
1954 | pte_t swp_pte; | |
1955 | ||
1956 | if (arch_unmap_one(mm, vma, address, pteval) < 0) { | |
1957 | set_pte_at(mm, address, pvmw.pte, pteval); | |
1958 | ret = false; | |
1959 | page_vma_mapped_walk_done(&pvmw); | |
1960 | break; | |
1961 | } | |
1962 | ||
1963 | /* | |
1964 | * Store the pfn of the page in a special migration | |
1965 | * pte. do_swap_page() will wait until the migration | |
1966 | * pte is removed and then restart fault handling. | |
1967 | */ | |
1968 | if (pte_write(pteval)) | |
1969 | entry = make_writable_migration_entry( | |
1970 | page_to_pfn(subpage)); | |
1971 | else | |
1972 | entry = make_readable_migration_entry( | |
1973 | page_to_pfn(subpage)); | |
1974 | ||
1975 | swp_pte = swp_entry_to_pte(entry); | |
1976 | if (pte_soft_dirty(pteval)) | |
1977 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
1978 | if (pte_uffd_wp(pteval)) | |
1979 | swp_pte = pte_swp_mkuffd_wp(swp_pte); | |
1980 | set_pte_at(mm, address, pvmw.pte, swp_pte); | |
4cc79b33 AK |
1981 | trace_set_migration_pte(address, pte_val(swp_pte), |
1982 | compound_order(&folio->page)); | |
a98a2f0c AP |
1983 | /* |
1984 | * No need to invalidate here it will synchronize on | |
1985 | * against the special swap migration pte. | |
1986 | */ | |
1987 | } | |
1988 | ||
1989 | /* | |
1990 | * No need to call mmu_notifier_invalidate_range() it has be | |
1991 | * done above for all cases requiring it to happen under page | |
1992 | * table lock before mmu_notifier_invalidate_range_end() | |
1993 | * | |
1994 | * See Documentation/vm/mmu_notifier.rst | |
1995 | */ | |
4b8554c5 | 1996 | page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); |
b7435507 | 1997 | if (vma->vm_flags & VM_LOCKED) |
adb11e78 | 1998 | mlock_page_drain_local(); |
4b8554c5 | 1999 | folio_put(folio); |
a98a2f0c AP |
2000 | } |
2001 | ||
2002 | mmu_notifier_invalidate_range_end(&range); | |
2003 | ||
2004 | return ret; | |
2005 | } | |
2006 | ||
2007 | /** | |
2008 | * try_to_migrate - try to replace all page table mappings with swap entries | |
4b8554c5 | 2009 | * @folio: the folio to replace page table entries for |
a98a2f0c AP |
2010 | * @flags: action and flags |
2011 | * | |
4b8554c5 MWO |
2012 | * Tries to remove all the page table entries which are mapping this folio and |
2013 | * replace them with special swap entries. Caller must hold the folio lock. | |
a98a2f0c | 2014 | */ |
4b8554c5 | 2015 | void try_to_migrate(struct folio *folio, enum ttu_flags flags) |
a98a2f0c AP |
2016 | { |
2017 | struct rmap_walk_control rwc = { | |
2018 | .rmap_one = try_to_migrate_one, | |
2019 | .arg = (void *)flags, | |
2020 | .done = page_not_mapped, | |
2f031c6f | 2021 | .anon_lock = folio_lock_anon_vma_read, |
a98a2f0c AP |
2022 | }; |
2023 | ||
2024 | /* | |
2025 | * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and | |
2026 | * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags. | |
2027 | */ | |
2028 | if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | | |
2029 | TTU_SYNC))) | |
2030 | return; | |
2031 | ||
4b8554c5 | 2032 | if (folio_is_zone_device(folio) && !folio_is_device_private(folio)) |
6c855fce HD |
2033 | return; |
2034 | ||
52629506 JK |
2035 | /* |
2036 | * During exec, a temporary VMA is setup and later moved. | |
2037 | * The VMA is moved under the anon_vma lock but not the | |
2038 | * page tables leading to a race where migration cannot | |
2039 | * find the migration ptes. Rather than increasing the | |
2040 | * locking requirements of exec(), migration skips | |
2041 | * temporary VMAs until after exec() completes. | |
2042 | */ | |
4b8554c5 | 2043 | if (!folio_test_ksm(folio) && folio_test_anon(folio)) |
52629506 JK |
2044 | rwc.invalid_vma = invalid_migration_vma; |
2045 | ||
2a52bcbc | 2046 | if (flags & TTU_RMAP_LOCKED) |
2f031c6f | 2047 | rmap_walk_locked(folio, &rwc); |
2a52bcbc | 2048 | else |
2f031c6f | 2049 | rmap_walk(folio, &rwc); |
b291f000 | 2050 | } |
e9995ef9 | 2051 | |
b756a3b5 AP |
2052 | #ifdef CONFIG_DEVICE_PRIVATE |
2053 | struct make_exclusive_args { | |
2054 | struct mm_struct *mm; | |
2055 | unsigned long address; | |
2056 | void *owner; | |
2057 | bool valid; | |
2058 | }; | |
2059 | ||
2f031c6f | 2060 | static bool page_make_device_exclusive_one(struct folio *folio, |
b756a3b5 AP |
2061 | struct vm_area_struct *vma, unsigned long address, void *priv) |
2062 | { | |
2063 | struct mm_struct *mm = vma->vm_mm; | |
0d251485 | 2064 | DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); |
b756a3b5 AP |
2065 | struct make_exclusive_args *args = priv; |
2066 | pte_t pteval; | |
2067 | struct page *subpage; | |
2068 | bool ret = true; | |
2069 | struct mmu_notifier_range range; | |
2070 | swp_entry_t entry; | |
2071 | pte_t swp_pte; | |
2072 | ||
2073 | mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma, | |
2074 | vma->vm_mm, address, min(vma->vm_end, | |
0d251485 MWO |
2075 | address + folio_size(folio)), |
2076 | args->owner); | |
b756a3b5 AP |
2077 | mmu_notifier_invalidate_range_start(&range); |
2078 | ||
2079 | while (page_vma_mapped_walk(&pvmw)) { | |
2080 | /* Unexpected PMD-mapped THP? */ | |
0d251485 | 2081 | VM_BUG_ON_FOLIO(!pvmw.pte, folio); |
b756a3b5 AP |
2082 | |
2083 | if (!pte_present(*pvmw.pte)) { | |
2084 | ret = false; | |
2085 | page_vma_mapped_walk_done(&pvmw); | |
2086 | break; | |
2087 | } | |
2088 | ||
0d251485 MWO |
2089 | subpage = folio_page(folio, |
2090 | pte_pfn(*pvmw.pte) - folio_pfn(folio)); | |
b756a3b5 AP |
2091 | address = pvmw.address; |
2092 | ||
2093 | /* Nuke the page table entry. */ | |
2094 | flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); | |
2095 | pteval = ptep_clear_flush(vma, address, pvmw.pte); | |
2096 | ||
0d251485 | 2097 | /* Set the dirty flag on the folio now the pte is gone. */ |
b756a3b5 | 2098 | if (pte_dirty(pteval)) |
0d251485 | 2099 | folio_mark_dirty(folio); |
b756a3b5 AP |
2100 | |
2101 | /* | |
2102 | * Check that our target page is still mapped at the expected | |
2103 | * address. | |
2104 | */ | |
2105 | if (args->mm == mm && args->address == address && | |
2106 | pte_write(pteval)) | |
2107 | args->valid = true; | |
2108 | ||
2109 | /* | |
2110 | * Store the pfn of the page in a special migration | |
2111 | * pte. do_swap_page() will wait until the migration | |
2112 | * pte is removed and then restart fault handling. | |
2113 | */ | |
2114 | if (pte_write(pteval)) | |
2115 | entry = make_writable_device_exclusive_entry( | |
2116 | page_to_pfn(subpage)); | |
2117 | else | |
2118 | entry = make_readable_device_exclusive_entry( | |
2119 | page_to_pfn(subpage)); | |
2120 | swp_pte = swp_entry_to_pte(entry); | |
2121 | if (pte_soft_dirty(pteval)) | |
2122 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
2123 | if (pte_uffd_wp(pteval)) | |
2124 | swp_pte = pte_swp_mkuffd_wp(swp_pte); | |
2125 | ||
2126 | set_pte_at(mm, address, pvmw.pte, swp_pte); | |
2127 | ||
2128 | /* | |
2129 | * There is a reference on the page for the swap entry which has | |
2130 | * been removed, so shouldn't take another. | |
2131 | */ | |
cea86fe2 | 2132 | page_remove_rmap(subpage, vma, false); |
b756a3b5 AP |
2133 | } |
2134 | ||
2135 | mmu_notifier_invalidate_range_end(&range); | |
2136 | ||
2137 | return ret; | |
2138 | } | |
2139 | ||
2140 | /** | |
0d251485 MWO |
2141 | * folio_make_device_exclusive - Mark the folio exclusively owned by a device. |
2142 | * @folio: The folio to replace page table entries for. | |
2143 | * @mm: The mm_struct where the folio is expected to be mapped. | |
2144 | * @address: Address where the folio is expected to be mapped. | |
b756a3b5 AP |
2145 | * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks |
2146 | * | |
0d251485 MWO |
2147 | * Tries to remove all the page table entries which are mapping this |
2148 | * folio and replace them with special device exclusive swap entries to | |
2149 | * grant a device exclusive access to the folio. | |
b756a3b5 | 2150 | * |
0d251485 MWO |
2151 | * Context: Caller must hold the folio lock. |
2152 | * Return: false if the page is still mapped, or if it could not be unmapped | |
b756a3b5 AP |
2153 | * from the expected address. Otherwise returns true (success). |
2154 | */ | |
0d251485 MWO |
2155 | static bool folio_make_device_exclusive(struct folio *folio, |
2156 | struct mm_struct *mm, unsigned long address, void *owner) | |
b756a3b5 AP |
2157 | { |
2158 | struct make_exclusive_args args = { | |
2159 | .mm = mm, | |
2160 | .address = address, | |
2161 | .owner = owner, | |
2162 | .valid = false, | |
2163 | }; | |
2164 | struct rmap_walk_control rwc = { | |
2165 | .rmap_one = page_make_device_exclusive_one, | |
2166 | .done = page_not_mapped, | |
2f031c6f | 2167 | .anon_lock = folio_lock_anon_vma_read, |
b756a3b5 AP |
2168 | .arg = &args, |
2169 | }; | |
2170 | ||
2171 | /* | |
0d251485 MWO |
2172 | * Restrict to anonymous folios for now to avoid potential writeback |
2173 | * issues. | |
b756a3b5 | 2174 | */ |
0d251485 | 2175 | if (!folio_test_anon(folio)) |
b756a3b5 AP |
2176 | return false; |
2177 | ||
2f031c6f | 2178 | rmap_walk(folio, &rwc); |
b756a3b5 | 2179 | |
0d251485 | 2180 | return args.valid && !folio_mapcount(folio); |
b756a3b5 AP |
2181 | } |
2182 | ||
2183 | /** | |
2184 | * make_device_exclusive_range() - Mark a range for exclusive use by a device | |
2185 | * @mm: mm_struct of assoicated target process | |
2186 | * @start: start of the region to mark for exclusive device access | |
2187 | * @end: end address of region | |
2188 | * @pages: returns the pages which were successfully marked for exclusive access | |
2189 | * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering | |
2190 | * | |
2191 | * Returns: number of pages found in the range by GUP. A page is marked for | |
2192 | * exclusive access only if the page pointer is non-NULL. | |
2193 | * | |
2194 | * This function finds ptes mapping page(s) to the given address range, locks | |
2195 | * them and replaces mappings with special swap entries preventing userspace CPU | |
2196 | * access. On fault these entries are replaced with the original mapping after | |
2197 | * calling MMU notifiers. | |
2198 | * | |
2199 | * A driver using this to program access from a device must use a mmu notifier | |
2200 | * critical section to hold a device specific lock during programming. Once | |
2201 | * programming is complete it should drop the page lock and reference after | |
2202 | * which point CPU access to the page will revoke the exclusive access. | |
2203 | */ | |
2204 | int make_device_exclusive_range(struct mm_struct *mm, unsigned long start, | |
2205 | unsigned long end, struct page **pages, | |
2206 | void *owner) | |
2207 | { | |
2208 | long npages = (end - start) >> PAGE_SHIFT; | |
2209 | long i; | |
2210 | ||
2211 | npages = get_user_pages_remote(mm, start, npages, | |
2212 | FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD, | |
2213 | pages, NULL, NULL); | |
2214 | if (npages < 0) | |
2215 | return npages; | |
2216 | ||
2217 | for (i = 0; i < npages; i++, start += PAGE_SIZE) { | |
0d251485 MWO |
2218 | struct folio *folio = page_folio(pages[i]); |
2219 | if (PageTail(pages[i]) || !folio_trylock(folio)) { | |
2220 | folio_put(folio); | |
b756a3b5 AP |
2221 | pages[i] = NULL; |
2222 | continue; | |
2223 | } | |
2224 | ||
0d251485 MWO |
2225 | if (!folio_make_device_exclusive(folio, mm, start, owner)) { |
2226 | folio_unlock(folio); | |
2227 | folio_put(folio); | |
b756a3b5 AP |
2228 | pages[i] = NULL; |
2229 | } | |
2230 | } | |
2231 | ||
2232 | return npages; | |
2233 | } | |
2234 | EXPORT_SYMBOL_GPL(make_device_exclusive_range); | |
2235 | #endif | |
2236 | ||
01d8b20d | 2237 | void __put_anon_vma(struct anon_vma *anon_vma) |
76545066 | 2238 | { |
01d8b20d | 2239 | struct anon_vma *root = anon_vma->root; |
76545066 | 2240 | |
624483f3 | 2241 | anon_vma_free(anon_vma); |
01d8b20d PZ |
2242 | if (root != anon_vma && atomic_dec_and_test(&root->refcount)) |
2243 | anon_vma_free(root); | |
76545066 | 2244 | } |
76545066 | 2245 | |
2f031c6f | 2246 | static struct anon_vma *rmap_walk_anon_lock(struct folio *folio, |
84fbbe21 | 2247 | const struct rmap_walk_control *rwc) |
faecd8dd JK |
2248 | { |
2249 | struct anon_vma *anon_vma; | |
2250 | ||
0dd1c7bb | 2251 | if (rwc->anon_lock) |
2f031c6f | 2252 | return rwc->anon_lock(folio); |
0dd1c7bb | 2253 | |
faecd8dd | 2254 | /* |
2f031c6f | 2255 | * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read() |
faecd8dd | 2256 | * because that depends on page_mapped(); but not all its usages |
c1e8d7c6 | 2257 | * are holding mmap_lock. Users without mmap_lock are required to |
faecd8dd JK |
2258 | * take a reference count to prevent the anon_vma disappearing |
2259 | */ | |
e05b3453 | 2260 | anon_vma = folio_anon_vma(folio); |
faecd8dd JK |
2261 | if (!anon_vma) |
2262 | return NULL; | |
2263 | ||
2264 | anon_vma_lock_read(anon_vma); | |
2265 | return anon_vma; | |
2266 | } | |
2267 | ||
e9995ef9 | 2268 | /* |
e8351ac9 JK |
2269 | * rmap_walk_anon - do something to anonymous page using the object-based |
2270 | * rmap method | |
2271 | * @page: the page to be handled | |
2272 | * @rwc: control variable according to each walk type | |
2273 | * | |
2274 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
2275 | * contained in the anon_vma struct it points to. | |
e9995ef9 | 2276 | */ |
84fbbe21 MWO |
2277 | static void rmap_walk_anon(struct folio *folio, |
2278 | const struct rmap_walk_control *rwc, bool locked) | |
e9995ef9 HD |
2279 | { |
2280 | struct anon_vma *anon_vma; | |
a8fa41ad | 2281 | pgoff_t pgoff_start, pgoff_end; |
5beb4930 | 2282 | struct anon_vma_chain *avc; |
e9995ef9 | 2283 | |
b9773199 | 2284 | if (locked) { |
e05b3453 | 2285 | anon_vma = folio_anon_vma(folio); |
b9773199 | 2286 | /* anon_vma disappear under us? */ |
e05b3453 | 2287 | VM_BUG_ON_FOLIO(!anon_vma, folio); |
b9773199 | 2288 | } else { |
2f031c6f | 2289 | anon_vma = rmap_walk_anon_lock(folio, rwc); |
b9773199 | 2290 | } |
e9995ef9 | 2291 | if (!anon_vma) |
1df631ae | 2292 | return; |
faecd8dd | 2293 | |
2f031c6f MWO |
2294 | pgoff_start = folio_pgoff(folio); |
2295 | pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; | |
a8fa41ad KS |
2296 | anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, |
2297 | pgoff_start, pgoff_end) { | |
5beb4930 | 2298 | struct vm_area_struct *vma = avc->vma; |
2f031c6f | 2299 | unsigned long address = vma_address(&folio->page, vma); |
0dd1c7bb | 2300 | |
494334e4 | 2301 | VM_BUG_ON_VMA(address == -EFAULT, vma); |
ad12695f AA |
2302 | cond_resched(); |
2303 | ||
0dd1c7bb JK |
2304 | if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) |
2305 | continue; | |
2306 | ||
2f031c6f | 2307 | if (!rwc->rmap_one(folio, vma, address, rwc->arg)) |
e9995ef9 | 2308 | break; |
2f031c6f | 2309 | if (rwc->done && rwc->done(folio)) |
0dd1c7bb | 2310 | break; |
e9995ef9 | 2311 | } |
b9773199 KS |
2312 | |
2313 | if (!locked) | |
2314 | anon_vma_unlock_read(anon_vma); | |
e9995ef9 HD |
2315 | } |
2316 | ||
e8351ac9 JK |
2317 | /* |
2318 | * rmap_walk_file - do something to file page using the object-based rmap method | |
2319 | * @page: the page to be handled | |
2320 | * @rwc: control variable according to each walk type | |
2321 | * | |
2322 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
2323 | * contained in the address_space struct it points to. | |
e8351ac9 | 2324 | */ |
84fbbe21 MWO |
2325 | static void rmap_walk_file(struct folio *folio, |
2326 | const struct rmap_walk_control *rwc, bool locked) | |
e9995ef9 | 2327 | { |
2f031c6f | 2328 | struct address_space *mapping = folio_mapping(folio); |
a8fa41ad | 2329 | pgoff_t pgoff_start, pgoff_end; |
e9995ef9 | 2330 | struct vm_area_struct *vma; |
e9995ef9 | 2331 | |
9f32624b JK |
2332 | /* |
2333 | * The page lock not only makes sure that page->mapping cannot | |
2334 | * suddenly be NULLified by truncation, it makes sure that the | |
2335 | * structure at mapping cannot be freed and reused yet, | |
c8c06efa | 2336 | * so we can safely take mapping->i_mmap_rwsem. |
9f32624b | 2337 | */ |
2f031c6f | 2338 | VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); |
9f32624b | 2339 | |
e9995ef9 | 2340 | if (!mapping) |
1df631ae | 2341 | return; |
3dec0ba0 | 2342 | |
2f031c6f MWO |
2343 | pgoff_start = folio_pgoff(folio); |
2344 | pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; | |
b9773199 KS |
2345 | if (!locked) |
2346 | i_mmap_lock_read(mapping); | |
a8fa41ad KS |
2347 | vma_interval_tree_foreach(vma, &mapping->i_mmap, |
2348 | pgoff_start, pgoff_end) { | |
2f031c6f | 2349 | unsigned long address = vma_address(&folio->page, vma); |
0dd1c7bb | 2350 | |
494334e4 | 2351 | VM_BUG_ON_VMA(address == -EFAULT, vma); |
ad12695f AA |
2352 | cond_resched(); |
2353 | ||
0dd1c7bb JK |
2354 | if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) |
2355 | continue; | |
2356 | ||
2f031c6f | 2357 | if (!rwc->rmap_one(folio, vma, address, rwc->arg)) |
0dd1c7bb | 2358 | goto done; |
2f031c6f | 2359 | if (rwc->done && rwc->done(folio)) |
0dd1c7bb | 2360 | goto done; |
e9995ef9 | 2361 | } |
0dd1c7bb | 2362 | |
0dd1c7bb | 2363 | done: |
b9773199 KS |
2364 | if (!locked) |
2365 | i_mmap_unlock_read(mapping); | |
e9995ef9 HD |
2366 | } |
2367 | ||
84fbbe21 | 2368 | void rmap_walk(struct folio *folio, const struct rmap_walk_control *rwc) |
e9995ef9 | 2369 | { |
2f031c6f MWO |
2370 | if (unlikely(folio_test_ksm(folio))) |
2371 | rmap_walk_ksm(folio, rwc); | |
2372 | else if (folio_test_anon(folio)) | |
2373 | rmap_walk_anon(folio, rwc, false); | |
b9773199 | 2374 | else |
2f031c6f | 2375 | rmap_walk_file(folio, rwc, false); |
b9773199 KS |
2376 | } |
2377 | ||
2378 | /* Like rmap_walk, but caller holds relevant rmap lock */ | |
84fbbe21 | 2379 | void rmap_walk_locked(struct folio *folio, const struct rmap_walk_control *rwc) |
b9773199 KS |
2380 | { |
2381 | /* no ksm support for now */ | |
2f031c6f MWO |
2382 | VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio); |
2383 | if (folio_test_anon(folio)) | |
2384 | rmap_walk_anon(folio, rwc, true); | |
e9995ef9 | 2385 | else |
2f031c6f | 2386 | rmap_walk_file(folio, rwc, true); |
e9995ef9 | 2387 | } |
0fe6e20b | 2388 | |
e3390f67 | 2389 | #ifdef CONFIG_HUGETLB_PAGE |
0fe6e20b | 2390 | /* |
451b9514 | 2391 | * The following two functions are for anonymous (private mapped) hugepages. |
0fe6e20b NH |
2392 | * Unlike common anonymous pages, anonymous hugepages have no accounting code |
2393 | * and no lru code, because we handle hugepages differently from common pages. | |
28c5209d DH |
2394 | * |
2395 | * RMAP_COMPOUND is ignored. | |
0fe6e20b | 2396 | */ |
28c5209d DH |
2397 | void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma, |
2398 | unsigned long address, rmap_t flags) | |
0fe6e20b NH |
2399 | { |
2400 | struct anon_vma *anon_vma = vma->anon_vma; | |
2401 | int first; | |
a850ea30 NH |
2402 | |
2403 | BUG_ON(!PageLocked(page)); | |
0fe6e20b | 2404 | BUG_ON(!anon_vma); |
5dbe0af4 | 2405 | /* address might be in next vma when migration races vma_adjust */ |
53f9263b | 2406 | first = atomic_inc_and_test(compound_mapcount_ptr(page)); |
0fe6e20b | 2407 | if (first) |
28c5209d DH |
2408 | __page_set_anon_rmap(page, vma, address, |
2409 | !!(flags & RMAP_EXCLUSIVE)); | |
0fe6e20b NH |
2410 | } |
2411 | ||
2412 | void hugepage_add_new_anon_rmap(struct page *page, | |
2413 | struct vm_area_struct *vma, unsigned long address) | |
2414 | { | |
2415 | BUG_ON(address < vma->vm_start || address >= vma->vm_end); | |
53f9263b | 2416 | atomic_set(compound_mapcount_ptr(page), 0); |
5232c63f | 2417 | atomic_set(compound_pincount_ptr(page), 0); |
47e29d32 | 2418 | |
451b9514 | 2419 | __page_set_anon_rmap(page, vma, address, 1); |
0fe6e20b | 2420 | } |
e3390f67 | 2421 | #endif /* CONFIG_HUGETLB_PAGE */ |