]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * mm/rmap.c - physical to virtual reverse mappings | |
3 | * | |
4 | * Copyright 2001, Rik van Riel <[email protected]> | |
5 | * Released under the General Public License (GPL). | |
6 | * | |
7 | * Simple, low overhead reverse mapping scheme. | |
8 | * Please try to keep this thing as modular as possible. | |
9 | * | |
10 | * Provides methods for unmapping each kind of mapped page: | |
11 | * the anon methods track anonymous pages, and | |
12 | * the file methods track pages belonging to an inode. | |
13 | * | |
14 | * Original design by Rik van Riel <[email protected]> 2001 | |
15 | * File methods by Dave McCracken <[email protected]> 2003, 2004 | |
16 | * Anonymous methods by Andrea Arcangeli <[email protected]> 2004 | |
98f32602 | 17 | * Contributions by Hugh Dickins 2003, 2004 |
1da177e4 LT |
18 | */ |
19 | ||
20 | /* | |
21 | * Lock ordering in mm: | |
22 | * | |
1b1dcc1b | 23 | * inode->i_mutex (while writing or truncating, not reading or faulting) |
82591e6e NP |
24 | * mm->mmap_sem |
25 | * page->flags PG_locked (lock_page) | |
88f306b6 KS |
26 | * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share) |
27 | * mapping->i_mmap_rwsem | |
28 | * anon_vma->rwsem | |
29 | * mm->page_table_lock or pte_lock | |
f4b7e272 | 30 | * pgdat->lru_lock (in mark_page_accessed, isolate_lru_page) |
88f306b6 KS |
31 | * swap_lock (in swap_duplicate, swap_info_get) |
32 | * mmlist_lock (in mmput, drain_mmlist and others) | |
33 | * mapping->private_lock (in __set_page_dirty_buffers) | |
34 | * mem_cgroup_{begin,end}_page_stat (memcg->move_lock) | |
b93b0163 | 35 | * i_pages lock (widely used) |
88f306b6 KS |
36 | * inode->i_lock (in set_page_dirty's __mark_inode_dirty) |
37 | * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) | |
38 | * sb_lock (within inode_lock in fs/fs-writeback.c) | |
b93b0163 | 39 | * i_pages lock (widely used, in set_page_dirty, |
88f306b6 KS |
40 | * in arch-dependent flush_dcache_mmap_lock, |
41 | * within bdi.wb->list_lock in __sync_single_inode) | |
6a46079c | 42 | * |
5a505085 | 43 | * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon) |
9b679320 | 44 | * ->tasklist_lock |
6a46079c | 45 | * pte map lock |
1da177e4 LT |
46 | */ |
47 | ||
48 | #include <linux/mm.h> | |
6e84f315 | 49 | #include <linux/sched/mm.h> |
29930025 | 50 | #include <linux/sched/task.h> |
1da177e4 LT |
51 | #include <linux/pagemap.h> |
52 | #include <linux/swap.h> | |
53 | #include <linux/swapops.h> | |
54 | #include <linux/slab.h> | |
55 | #include <linux/init.h> | |
5ad64688 | 56 | #include <linux/ksm.h> |
1da177e4 LT |
57 | #include <linux/rmap.h> |
58 | #include <linux/rcupdate.h> | |
b95f1b31 | 59 | #include <linux/export.h> |
8a9f3ccd | 60 | #include <linux/memcontrol.h> |
cddb8a5c | 61 | #include <linux/mmu_notifier.h> |
64cdd548 | 62 | #include <linux/migrate.h> |
0fe6e20b | 63 | #include <linux/hugetlb.h> |
ef5d437f | 64 | #include <linux/backing-dev.h> |
33c3fc71 | 65 | #include <linux/page_idle.h> |
a5430dda | 66 | #include <linux/memremap.h> |
bce73e48 | 67 | #include <linux/userfaultfd_k.h> |
1da177e4 LT |
68 | |
69 | #include <asm/tlbflush.h> | |
70 | ||
72b252ae MG |
71 | #include <trace/events/tlb.h> |
72 | ||
b291f000 NP |
73 | #include "internal.h" |
74 | ||
fdd2e5f8 | 75 | static struct kmem_cache *anon_vma_cachep; |
5beb4930 | 76 | static struct kmem_cache *anon_vma_chain_cachep; |
fdd2e5f8 AB |
77 | |
78 | static inline struct anon_vma *anon_vma_alloc(void) | |
79 | { | |
01d8b20d PZ |
80 | struct anon_vma *anon_vma; |
81 | ||
82 | anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); | |
83 | if (anon_vma) { | |
84 | atomic_set(&anon_vma->refcount, 1); | |
7a3ef208 KK |
85 | anon_vma->degree = 1; /* Reference for first vma */ |
86 | anon_vma->parent = anon_vma; | |
01d8b20d PZ |
87 | /* |
88 | * Initialise the anon_vma root to point to itself. If called | |
89 | * from fork, the root will be reset to the parents anon_vma. | |
90 | */ | |
91 | anon_vma->root = anon_vma; | |
92 | } | |
93 | ||
94 | return anon_vma; | |
fdd2e5f8 AB |
95 | } |
96 | ||
01d8b20d | 97 | static inline void anon_vma_free(struct anon_vma *anon_vma) |
fdd2e5f8 | 98 | { |
01d8b20d | 99 | VM_BUG_ON(atomic_read(&anon_vma->refcount)); |
88c22088 PZ |
100 | |
101 | /* | |
4fc3f1d6 | 102 | * Synchronize against page_lock_anon_vma_read() such that |
88c22088 PZ |
103 | * we can safely hold the lock without the anon_vma getting |
104 | * freed. | |
105 | * | |
106 | * Relies on the full mb implied by the atomic_dec_and_test() from | |
107 | * put_anon_vma() against the acquire barrier implied by | |
4fc3f1d6 | 108 | * down_read_trylock() from page_lock_anon_vma_read(). This orders: |
88c22088 | 109 | * |
4fc3f1d6 IM |
110 | * page_lock_anon_vma_read() VS put_anon_vma() |
111 | * down_read_trylock() atomic_dec_and_test() | |
88c22088 | 112 | * LOCK MB |
4fc3f1d6 | 113 | * atomic_read() rwsem_is_locked() |
88c22088 PZ |
114 | * |
115 | * LOCK should suffice since the actual taking of the lock must | |
116 | * happen _before_ what follows. | |
117 | */ | |
7f39dda9 | 118 | might_sleep(); |
5a505085 | 119 | if (rwsem_is_locked(&anon_vma->root->rwsem)) { |
4fc3f1d6 | 120 | anon_vma_lock_write(anon_vma); |
08b52706 | 121 | anon_vma_unlock_write(anon_vma); |
88c22088 PZ |
122 | } |
123 | ||
fdd2e5f8 AB |
124 | kmem_cache_free(anon_vma_cachep, anon_vma); |
125 | } | |
1da177e4 | 126 | |
dd34739c | 127 | static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) |
5beb4930 | 128 | { |
dd34739c | 129 | return kmem_cache_alloc(anon_vma_chain_cachep, gfp); |
5beb4930 RR |
130 | } |
131 | ||
e574b5fd | 132 | static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) |
5beb4930 RR |
133 | { |
134 | kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); | |
135 | } | |
136 | ||
6583a843 KC |
137 | static void anon_vma_chain_link(struct vm_area_struct *vma, |
138 | struct anon_vma_chain *avc, | |
139 | struct anon_vma *anon_vma) | |
140 | { | |
141 | avc->vma = vma; | |
142 | avc->anon_vma = anon_vma; | |
143 | list_add(&avc->same_vma, &vma->anon_vma_chain); | |
bf181b9f | 144 | anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); |
6583a843 KC |
145 | } |
146 | ||
d9d332e0 | 147 | /** |
d5a187da | 148 | * __anon_vma_prepare - attach an anon_vma to a memory region |
d9d332e0 LT |
149 | * @vma: the memory region in question |
150 | * | |
151 | * This makes sure the memory mapping described by 'vma' has | |
152 | * an 'anon_vma' attached to it, so that we can associate the | |
153 | * anonymous pages mapped into it with that anon_vma. | |
154 | * | |
d5a187da VB |
155 | * The common case will be that we already have one, which |
156 | * is handled inline by anon_vma_prepare(). But if | |
23a0790a | 157 | * not we either need to find an adjacent mapping that we |
d9d332e0 LT |
158 | * can re-use the anon_vma from (very common when the only |
159 | * reason for splitting a vma has been mprotect()), or we | |
160 | * allocate a new one. | |
161 | * | |
162 | * Anon-vma allocations are very subtle, because we may have | |
4fc3f1d6 | 163 | * optimistically looked up an anon_vma in page_lock_anon_vma_read() |
d9d332e0 LT |
164 | * and that may actually touch the spinlock even in the newly |
165 | * allocated vma (it depends on RCU to make sure that the | |
166 | * anon_vma isn't actually destroyed). | |
167 | * | |
168 | * As a result, we need to do proper anon_vma locking even | |
169 | * for the new allocation. At the same time, we do not want | |
170 | * to do any locking for the common case of already having | |
171 | * an anon_vma. | |
172 | * | |
173 | * This must be called with the mmap_sem held for reading. | |
174 | */ | |
d5a187da | 175 | int __anon_vma_prepare(struct vm_area_struct *vma) |
1da177e4 | 176 | { |
d5a187da VB |
177 | struct mm_struct *mm = vma->vm_mm; |
178 | struct anon_vma *anon_vma, *allocated; | |
5beb4930 | 179 | struct anon_vma_chain *avc; |
1da177e4 LT |
180 | |
181 | might_sleep(); | |
1da177e4 | 182 | |
d5a187da VB |
183 | avc = anon_vma_chain_alloc(GFP_KERNEL); |
184 | if (!avc) | |
185 | goto out_enomem; | |
186 | ||
187 | anon_vma = find_mergeable_anon_vma(vma); | |
188 | allocated = NULL; | |
189 | if (!anon_vma) { | |
190 | anon_vma = anon_vma_alloc(); | |
191 | if (unlikely(!anon_vma)) | |
192 | goto out_enomem_free_avc; | |
193 | allocated = anon_vma; | |
194 | } | |
5beb4930 | 195 | |
d5a187da VB |
196 | anon_vma_lock_write(anon_vma); |
197 | /* page_table_lock to protect against threads */ | |
198 | spin_lock(&mm->page_table_lock); | |
199 | if (likely(!vma->anon_vma)) { | |
200 | vma->anon_vma = anon_vma; | |
201 | anon_vma_chain_link(vma, avc, anon_vma); | |
202 | /* vma reference or self-parent link for new root */ | |
203 | anon_vma->degree++; | |
d9d332e0 | 204 | allocated = NULL; |
d5a187da VB |
205 | avc = NULL; |
206 | } | |
207 | spin_unlock(&mm->page_table_lock); | |
208 | anon_vma_unlock_write(anon_vma); | |
1da177e4 | 209 | |
d5a187da VB |
210 | if (unlikely(allocated)) |
211 | put_anon_vma(allocated); | |
212 | if (unlikely(avc)) | |
213 | anon_vma_chain_free(avc); | |
31f2b0eb | 214 | |
1da177e4 | 215 | return 0; |
5beb4930 RR |
216 | |
217 | out_enomem_free_avc: | |
218 | anon_vma_chain_free(avc); | |
219 | out_enomem: | |
220 | return -ENOMEM; | |
1da177e4 LT |
221 | } |
222 | ||
bb4aa396 LT |
223 | /* |
224 | * This is a useful helper function for locking the anon_vma root as | |
225 | * we traverse the vma->anon_vma_chain, looping over anon_vma's that | |
226 | * have the same vma. | |
227 | * | |
228 | * Such anon_vma's should have the same root, so you'd expect to see | |
229 | * just a single mutex_lock for the whole traversal. | |
230 | */ | |
231 | static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) | |
232 | { | |
233 | struct anon_vma *new_root = anon_vma->root; | |
234 | if (new_root != root) { | |
235 | if (WARN_ON_ONCE(root)) | |
5a505085 | 236 | up_write(&root->rwsem); |
bb4aa396 | 237 | root = new_root; |
5a505085 | 238 | down_write(&root->rwsem); |
bb4aa396 LT |
239 | } |
240 | return root; | |
241 | } | |
242 | ||
243 | static inline void unlock_anon_vma_root(struct anon_vma *root) | |
244 | { | |
245 | if (root) | |
5a505085 | 246 | up_write(&root->rwsem); |
bb4aa396 LT |
247 | } |
248 | ||
5beb4930 RR |
249 | /* |
250 | * Attach the anon_vmas from src to dst. | |
251 | * Returns 0 on success, -ENOMEM on failure. | |
7a3ef208 KK |
252 | * |
253 | * If dst->anon_vma is NULL this function tries to find and reuse existing | |
254 | * anon_vma which has no vmas and only one child anon_vma. This prevents | |
255 | * degradation of anon_vma hierarchy to endless linear chain in case of | |
256 | * constantly forking task. On the other hand, an anon_vma with more than one | |
257 | * child isn't reused even if there was no alive vma, thus rmap walker has a | |
258 | * good chance of avoiding scanning the whole hierarchy when it searches where | |
259 | * page is mapped. | |
5beb4930 RR |
260 | */ |
261 | int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) | |
1da177e4 | 262 | { |
5beb4930 | 263 | struct anon_vma_chain *avc, *pavc; |
bb4aa396 | 264 | struct anon_vma *root = NULL; |
5beb4930 | 265 | |
646d87b4 | 266 | list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { |
bb4aa396 LT |
267 | struct anon_vma *anon_vma; |
268 | ||
dd34739c LT |
269 | avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); |
270 | if (unlikely(!avc)) { | |
271 | unlock_anon_vma_root(root); | |
272 | root = NULL; | |
273 | avc = anon_vma_chain_alloc(GFP_KERNEL); | |
274 | if (!avc) | |
275 | goto enomem_failure; | |
276 | } | |
bb4aa396 LT |
277 | anon_vma = pavc->anon_vma; |
278 | root = lock_anon_vma_root(root, anon_vma); | |
279 | anon_vma_chain_link(dst, avc, anon_vma); | |
7a3ef208 KK |
280 | |
281 | /* | |
282 | * Reuse existing anon_vma if its degree lower than two, | |
283 | * that means it has no vma and only one anon_vma child. | |
284 | * | |
285 | * Do not chose parent anon_vma, otherwise first child | |
286 | * will always reuse it. Root anon_vma is never reused: | |
287 | * it has self-parent reference and at least one child. | |
288 | */ | |
289 | if (!dst->anon_vma && anon_vma != src->anon_vma && | |
290 | anon_vma->degree < 2) | |
291 | dst->anon_vma = anon_vma; | |
5beb4930 | 292 | } |
7a3ef208 KK |
293 | if (dst->anon_vma) |
294 | dst->anon_vma->degree++; | |
bb4aa396 | 295 | unlock_anon_vma_root(root); |
5beb4930 | 296 | return 0; |
1da177e4 | 297 | |
5beb4930 | 298 | enomem_failure: |
3fe89b3e LY |
299 | /* |
300 | * dst->anon_vma is dropped here otherwise its degree can be incorrectly | |
301 | * decremented in unlink_anon_vmas(). | |
302 | * We can safely do this because callers of anon_vma_clone() don't care | |
303 | * about dst->anon_vma if anon_vma_clone() failed. | |
304 | */ | |
305 | dst->anon_vma = NULL; | |
5beb4930 RR |
306 | unlink_anon_vmas(dst); |
307 | return -ENOMEM; | |
1da177e4 LT |
308 | } |
309 | ||
5beb4930 RR |
310 | /* |
311 | * Attach vma to its own anon_vma, as well as to the anon_vmas that | |
312 | * the corresponding VMA in the parent process is attached to. | |
313 | * Returns 0 on success, non-zero on failure. | |
314 | */ | |
315 | int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) | |
1da177e4 | 316 | { |
5beb4930 RR |
317 | struct anon_vma_chain *avc; |
318 | struct anon_vma *anon_vma; | |
c4ea95d7 | 319 | int error; |
1da177e4 | 320 | |
5beb4930 RR |
321 | /* Don't bother if the parent process has no anon_vma here. */ |
322 | if (!pvma->anon_vma) | |
323 | return 0; | |
324 | ||
7a3ef208 KK |
325 | /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ |
326 | vma->anon_vma = NULL; | |
327 | ||
5beb4930 RR |
328 | /* |
329 | * First, attach the new VMA to the parent VMA's anon_vmas, | |
330 | * so rmap can find non-COWed pages in child processes. | |
331 | */ | |
c4ea95d7 DF |
332 | error = anon_vma_clone(vma, pvma); |
333 | if (error) | |
334 | return error; | |
5beb4930 | 335 | |
7a3ef208 KK |
336 | /* An existing anon_vma has been reused, all done then. */ |
337 | if (vma->anon_vma) | |
338 | return 0; | |
339 | ||
5beb4930 RR |
340 | /* Then add our own anon_vma. */ |
341 | anon_vma = anon_vma_alloc(); | |
342 | if (!anon_vma) | |
343 | goto out_error; | |
dd34739c | 344 | avc = anon_vma_chain_alloc(GFP_KERNEL); |
5beb4930 RR |
345 | if (!avc) |
346 | goto out_error_free_anon_vma; | |
5c341ee1 RR |
347 | |
348 | /* | |
349 | * The root anon_vma's spinlock is the lock actually used when we | |
350 | * lock any of the anon_vmas in this anon_vma tree. | |
351 | */ | |
352 | anon_vma->root = pvma->anon_vma->root; | |
7a3ef208 | 353 | anon_vma->parent = pvma->anon_vma; |
76545066 | 354 | /* |
01d8b20d PZ |
355 | * With refcounts, an anon_vma can stay around longer than the |
356 | * process it belongs to. The root anon_vma needs to be pinned until | |
357 | * this anon_vma is freed, because the lock lives in the root. | |
76545066 RR |
358 | */ |
359 | get_anon_vma(anon_vma->root); | |
5beb4930 RR |
360 | /* Mark this anon_vma as the one where our new (COWed) pages go. */ |
361 | vma->anon_vma = anon_vma; | |
4fc3f1d6 | 362 | anon_vma_lock_write(anon_vma); |
5c341ee1 | 363 | anon_vma_chain_link(vma, avc, anon_vma); |
7a3ef208 | 364 | anon_vma->parent->degree++; |
08b52706 | 365 | anon_vma_unlock_write(anon_vma); |
5beb4930 RR |
366 | |
367 | return 0; | |
368 | ||
369 | out_error_free_anon_vma: | |
01d8b20d | 370 | put_anon_vma(anon_vma); |
5beb4930 | 371 | out_error: |
4946d54c | 372 | unlink_anon_vmas(vma); |
5beb4930 | 373 | return -ENOMEM; |
1da177e4 LT |
374 | } |
375 | ||
5beb4930 RR |
376 | void unlink_anon_vmas(struct vm_area_struct *vma) |
377 | { | |
378 | struct anon_vma_chain *avc, *next; | |
eee2acba | 379 | struct anon_vma *root = NULL; |
5beb4930 | 380 | |
5c341ee1 RR |
381 | /* |
382 | * Unlink each anon_vma chained to the VMA. This list is ordered | |
383 | * from newest to oldest, ensuring the root anon_vma gets freed last. | |
384 | */ | |
5beb4930 | 385 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { |
eee2acba PZ |
386 | struct anon_vma *anon_vma = avc->anon_vma; |
387 | ||
388 | root = lock_anon_vma_root(root, anon_vma); | |
bf181b9f | 389 | anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); |
eee2acba PZ |
390 | |
391 | /* | |
392 | * Leave empty anon_vmas on the list - we'll need | |
393 | * to free them outside the lock. | |
394 | */ | |
f808c13f | 395 | if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { |
7a3ef208 | 396 | anon_vma->parent->degree--; |
eee2acba | 397 | continue; |
7a3ef208 | 398 | } |
eee2acba PZ |
399 | |
400 | list_del(&avc->same_vma); | |
401 | anon_vma_chain_free(avc); | |
402 | } | |
7a3ef208 KK |
403 | if (vma->anon_vma) |
404 | vma->anon_vma->degree--; | |
eee2acba PZ |
405 | unlock_anon_vma_root(root); |
406 | ||
407 | /* | |
408 | * Iterate the list once more, it now only contains empty and unlinked | |
409 | * anon_vmas, destroy them. Could not do before due to __put_anon_vma() | |
5a505085 | 410 | * needing to write-acquire the anon_vma->root->rwsem. |
eee2acba PZ |
411 | */ |
412 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { | |
413 | struct anon_vma *anon_vma = avc->anon_vma; | |
414 | ||
e4c5800a | 415 | VM_WARN_ON(anon_vma->degree); |
eee2acba PZ |
416 | put_anon_vma(anon_vma); |
417 | ||
5beb4930 RR |
418 | list_del(&avc->same_vma); |
419 | anon_vma_chain_free(avc); | |
420 | } | |
421 | } | |
422 | ||
51cc5068 | 423 | static void anon_vma_ctor(void *data) |
1da177e4 | 424 | { |
a35afb83 | 425 | struct anon_vma *anon_vma = data; |
1da177e4 | 426 | |
5a505085 | 427 | init_rwsem(&anon_vma->rwsem); |
83813267 | 428 | atomic_set(&anon_vma->refcount, 0); |
f808c13f | 429 | anon_vma->rb_root = RB_ROOT_CACHED; |
1da177e4 LT |
430 | } |
431 | ||
432 | void __init anon_vma_init(void) | |
433 | { | |
434 | anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), | |
5f0d5a3a | 435 | 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, |
5d097056 VD |
436 | anon_vma_ctor); |
437 | anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, | |
438 | SLAB_PANIC|SLAB_ACCOUNT); | |
1da177e4 LT |
439 | } |
440 | ||
441 | /* | |
6111e4ca PZ |
442 | * Getting a lock on a stable anon_vma from a page off the LRU is tricky! |
443 | * | |
444 | * Since there is no serialization what so ever against page_remove_rmap() | |
445 | * the best this function can do is return a locked anon_vma that might | |
446 | * have been relevant to this page. | |
447 | * | |
448 | * The page might have been remapped to a different anon_vma or the anon_vma | |
449 | * returned may already be freed (and even reused). | |
450 | * | |
bc658c96 PZ |
451 | * In case it was remapped to a different anon_vma, the new anon_vma will be a |
452 | * child of the old anon_vma, and the anon_vma lifetime rules will therefore | |
453 | * ensure that any anon_vma obtained from the page will still be valid for as | |
454 | * long as we observe page_mapped() [ hence all those page_mapped() tests ]. | |
455 | * | |
6111e4ca PZ |
456 | * All users of this function must be very careful when walking the anon_vma |
457 | * chain and verify that the page in question is indeed mapped in it | |
458 | * [ something equivalent to page_mapped_in_vma() ]. | |
459 | * | |
460 | * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap() | |
461 | * that the anon_vma pointer from page->mapping is valid if there is a | |
462 | * mapcount, we can dereference the anon_vma after observing those. | |
1da177e4 | 463 | */ |
746b18d4 | 464 | struct anon_vma *page_get_anon_vma(struct page *page) |
1da177e4 | 465 | { |
746b18d4 | 466 | struct anon_vma *anon_vma = NULL; |
1da177e4 LT |
467 | unsigned long anon_mapping; |
468 | ||
469 | rcu_read_lock(); | |
4db0c3c2 | 470 | anon_mapping = (unsigned long)READ_ONCE(page->mapping); |
3ca7b3c5 | 471 | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) |
1da177e4 LT |
472 | goto out; |
473 | if (!page_mapped(page)) | |
474 | goto out; | |
475 | ||
476 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | |
746b18d4 PZ |
477 | if (!atomic_inc_not_zero(&anon_vma->refcount)) { |
478 | anon_vma = NULL; | |
479 | goto out; | |
480 | } | |
f1819427 HD |
481 | |
482 | /* | |
483 | * If this page is still mapped, then its anon_vma cannot have been | |
746b18d4 PZ |
484 | * freed. But if it has been unmapped, we have no security against the |
485 | * anon_vma structure being freed and reused (for another anon_vma: | |
5f0d5a3a | 486 | * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() |
746b18d4 | 487 | * above cannot corrupt). |
f1819427 | 488 | */ |
746b18d4 | 489 | if (!page_mapped(page)) { |
7f39dda9 | 490 | rcu_read_unlock(); |
746b18d4 | 491 | put_anon_vma(anon_vma); |
7f39dda9 | 492 | return NULL; |
746b18d4 | 493 | } |
1da177e4 LT |
494 | out: |
495 | rcu_read_unlock(); | |
746b18d4 PZ |
496 | |
497 | return anon_vma; | |
498 | } | |
499 | ||
88c22088 PZ |
500 | /* |
501 | * Similar to page_get_anon_vma() except it locks the anon_vma. | |
502 | * | |
503 | * Its a little more complex as it tries to keep the fast path to a single | |
504 | * atomic op -- the trylock. If we fail the trylock, we fall back to getting a | |
505 | * reference like with page_get_anon_vma() and then block on the mutex. | |
506 | */ | |
4fc3f1d6 | 507 | struct anon_vma *page_lock_anon_vma_read(struct page *page) |
746b18d4 | 508 | { |
88c22088 | 509 | struct anon_vma *anon_vma = NULL; |
eee0f252 | 510 | struct anon_vma *root_anon_vma; |
88c22088 | 511 | unsigned long anon_mapping; |
746b18d4 | 512 | |
88c22088 | 513 | rcu_read_lock(); |
4db0c3c2 | 514 | anon_mapping = (unsigned long)READ_ONCE(page->mapping); |
88c22088 PZ |
515 | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) |
516 | goto out; | |
517 | if (!page_mapped(page)) | |
518 | goto out; | |
519 | ||
520 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | |
4db0c3c2 | 521 | root_anon_vma = READ_ONCE(anon_vma->root); |
4fc3f1d6 | 522 | if (down_read_trylock(&root_anon_vma->rwsem)) { |
88c22088 | 523 | /* |
eee0f252 HD |
524 | * If the page is still mapped, then this anon_vma is still |
525 | * its anon_vma, and holding the mutex ensures that it will | |
bc658c96 | 526 | * not go away, see anon_vma_free(). |
88c22088 | 527 | */ |
eee0f252 | 528 | if (!page_mapped(page)) { |
4fc3f1d6 | 529 | up_read(&root_anon_vma->rwsem); |
88c22088 PZ |
530 | anon_vma = NULL; |
531 | } | |
532 | goto out; | |
533 | } | |
746b18d4 | 534 | |
88c22088 PZ |
535 | /* trylock failed, we got to sleep */ |
536 | if (!atomic_inc_not_zero(&anon_vma->refcount)) { | |
537 | anon_vma = NULL; | |
538 | goto out; | |
539 | } | |
540 | ||
541 | if (!page_mapped(page)) { | |
7f39dda9 | 542 | rcu_read_unlock(); |
88c22088 | 543 | put_anon_vma(anon_vma); |
7f39dda9 | 544 | return NULL; |
88c22088 PZ |
545 | } |
546 | ||
547 | /* we pinned the anon_vma, its safe to sleep */ | |
548 | rcu_read_unlock(); | |
4fc3f1d6 | 549 | anon_vma_lock_read(anon_vma); |
88c22088 PZ |
550 | |
551 | if (atomic_dec_and_test(&anon_vma->refcount)) { | |
552 | /* | |
553 | * Oops, we held the last refcount, release the lock | |
554 | * and bail -- can't simply use put_anon_vma() because | |
4fc3f1d6 | 555 | * we'll deadlock on the anon_vma_lock_write() recursion. |
88c22088 | 556 | */ |
4fc3f1d6 | 557 | anon_vma_unlock_read(anon_vma); |
88c22088 PZ |
558 | __put_anon_vma(anon_vma); |
559 | anon_vma = NULL; | |
560 | } | |
561 | ||
562 | return anon_vma; | |
563 | ||
564 | out: | |
565 | rcu_read_unlock(); | |
746b18d4 | 566 | return anon_vma; |
34bbd704 ON |
567 | } |
568 | ||
4fc3f1d6 | 569 | void page_unlock_anon_vma_read(struct anon_vma *anon_vma) |
34bbd704 | 570 | { |
4fc3f1d6 | 571 | anon_vma_unlock_read(anon_vma); |
1da177e4 LT |
572 | } |
573 | ||
72b252ae | 574 | #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH |
72b252ae MG |
575 | /* |
576 | * Flush TLB entries for recently unmapped pages from remote CPUs. It is | |
577 | * important if a PTE was dirty when it was unmapped that it's flushed | |
578 | * before any IO is initiated on the page to prevent lost writes. Similarly, | |
579 | * it must be flushed before freeing to prevent data leakage. | |
580 | */ | |
581 | void try_to_unmap_flush(void) | |
582 | { | |
583 | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | |
72b252ae MG |
584 | |
585 | if (!tlb_ubc->flush_required) | |
586 | return; | |
587 | ||
e73ad5ff | 588 | arch_tlbbatch_flush(&tlb_ubc->arch); |
72b252ae | 589 | tlb_ubc->flush_required = false; |
d950c947 | 590 | tlb_ubc->writable = false; |
72b252ae MG |
591 | } |
592 | ||
d950c947 MG |
593 | /* Flush iff there are potentially writable TLB entries that can race with IO */ |
594 | void try_to_unmap_flush_dirty(void) | |
595 | { | |
596 | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | |
597 | ||
598 | if (tlb_ubc->writable) | |
599 | try_to_unmap_flush(); | |
600 | } | |
601 | ||
c7ab0d2f | 602 | static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) |
72b252ae MG |
603 | { |
604 | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | |
605 | ||
e73ad5ff | 606 | arch_tlbbatch_add_mm(&tlb_ubc->arch, mm); |
72b252ae | 607 | tlb_ubc->flush_required = true; |
d950c947 | 608 | |
3ea27719 MG |
609 | /* |
610 | * Ensure compiler does not re-order the setting of tlb_flush_batched | |
611 | * before the PTE is cleared. | |
612 | */ | |
613 | barrier(); | |
614 | mm->tlb_flush_batched = true; | |
615 | ||
d950c947 MG |
616 | /* |
617 | * If the PTE was dirty then it's best to assume it's writable. The | |
618 | * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() | |
619 | * before the page is queued for IO. | |
620 | */ | |
621 | if (writable) | |
622 | tlb_ubc->writable = true; | |
72b252ae MG |
623 | } |
624 | ||
625 | /* | |
626 | * Returns true if the TLB flush should be deferred to the end of a batch of | |
627 | * unmap operations to reduce IPIs. | |
628 | */ | |
629 | static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) | |
630 | { | |
631 | bool should_defer = false; | |
632 | ||
633 | if (!(flags & TTU_BATCH_FLUSH)) | |
634 | return false; | |
635 | ||
636 | /* If remote CPUs need to be flushed then defer batch the flush */ | |
637 | if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids) | |
638 | should_defer = true; | |
639 | put_cpu(); | |
640 | ||
641 | return should_defer; | |
642 | } | |
3ea27719 MG |
643 | |
644 | /* | |
645 | * Reclaim unmaps pages under the PTL but do not flush the TLB prior to | |
646 | * releasing the PTL if TLB flushes are batched. It's possible for a parallel | |
647 | * operation such as mprotect or munmap to race between reclaim unmapping | |
648 | * the page and flushing the page. If this race occurs, it potentially allows | |
649 | * access to data via a stale TLB entry. Tracking all mm's that have TLB | |
650 | * batching in flight would be expensive during reclaim so instead track | |
651 | * whether TLB batching occurred in the past and if so then do a flush here | |
652 | * if required. This will cost one additional flush per reclaim cycle paid | |
653 | * by the first operation at risk such as mprotect and mumap. | |
654 | * | |
655 | * This must be called under the PTL so that an access to tlb_flush_batched | |
656 | * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise | |
657 | * via the PTL. | |
658 | */ | |
659 | void flush_tlb_batched_pending(struct mm_struct *mm) | |
660 | { | |
661 | if (mm->tlb_flush_batched) { | |
662 | flush_tlb_mm(mm); | |
663 | ||
664 | /* | |
665 | * Do not allow the compiler to re-order the clearing of | |
666 | * tlb_flush_batched before the tlb is flushed. | |
667 | */ | |
668 | barrier(); | |
669 | mm->tlb_flush_batched = false; | |
670 | } | |
671 | } | |
72b252ae | 672 | #else |
c7ab0d2f | 673 | static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) |
72b252ae MG |
674 | { |
675 | } | |
676 | ||
677 | static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) | |
678 | { | |
679 | return false; | |
680 | } | |
681 | #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ | |
682 | ||
1da177e4 | 683 | /* |
bf89c8c8 | 684 | * At what user virtual address is page expected in vma? |
ab941e0f | 685 | * Caller should check the page is actually part of the vma. |
1da177e4 LT |
686 | */ |
687 | unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) | |
688 | { | |
86c2ad19 | 689 | unsigned long address; |
21d0d443 | 690 | if (PageAnon(page)) { |
4829b906 HD |
691 | struct anon_vma *page__anon_vma = page_anon_vma(page); |
692 | /* | |
693 | * Note: swapoff's unuse_vma() is more efficient with this | |
694 | * check, and needs it to match anon_vma when KSM is active. | |
695 | */ | |
696 | if (!vma->anon_vma || !page__anon_vma || | |
697 | vma->anon_vma->root != page__anon_vma->root) | |
21d0d443 | 698 | return -EFAULT; |
27ba0644 KS |
699 | } else if (page->mapping) { |
700 | if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping) | |
1da177e4 LT |
701 | return -EFAULT; |
702 | } else | |
703 | return -EFAULT; | |
86c2ad19 ML |
704 | address = __vma_address(page, vma); |
705 | if (unlikely(address < vma->vm_start || address >= vma->vm_end)) | |
706 | return -EFAULT; | |
707 | return address; | |
1da177e4 LT |
708 | } |
709 | ||
6219049a BL |
710 | pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) |
711 | { | |
712 | pgd_t *pgd; | |
c2febafc | 713 | p4d_t *p4d; |
6219049a BL |
714 | pud_t *pud; |
715 | pmd_t *pmd = NULL; | |
f72e7dcd | 716 | pmd_t pmde; |
6219049a BL |
717 | |
718 | pgd = pgd_offset(mm, address); | |
719 | if (!pgd_present(*pgd)) | |
720 | goto out; | |
721 | ||
c2febafc KS |
722 | p4d = p4d_offset(pgd, address); |
723 | if (!p4d_present(*p4d)) | |
724 | goto out; | |
725 | ||
726 | pud = pud_offset(p4d, address); | |
6219049a BL |
727 | if (!pud_present(*pud)) |
728 | goto out; | |
729 | ||
730 | pmd = pmd_offset(pud, address); | |
f72e7dcd | 731 | /* |
8809aa2d | 732 | * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() |
f72e7dcd HD |
733 | * without holding anon_vma lock for write. So when looking for a |
734 | * genuine pmde (in which to find pte), test present and !THP together. | |
735 | */ | |
e37c6982 CB |
736 | pmde = *pmd; |
737 | barrier(); | |
f72e7dcd | 738 | if (!pmd_present(pmde) || pmd_trans_huge(pmde)) |
6219049a BL |
739 | pmd = NULL; |
740 | out: | |
741 | return pmd; | |
742 | } | |
743 | ||
8749cfea VD |
744 | struct page_referenced_arg { |
745 | int mapcount; | |
746 | int referenced; | |
747 | unsigned long vm_flags; | |
748 | struct mem_cgroup *memcg; | |
749 | }; | |
750 | /* | |
751 | * arg: page_referenced_arg will be passed | |
752 | */ | |
e4b82222 | 753 | static bool page_referenced_one(struct page *page, struct vm_area_struct *vma, |
8749cfea VD |
754 | unsigned long address, void *arg) |
755 | { | |
8749cfea | 756 | struct page_referenced_arg *pra = arg; |
8eaedede KS |
757 | struct page_vma_mapped_walk pvmw = { |
758 | .page = page, | |
759 | .vma = vma, | |
760 | .address = address, | |
761 | }; | |
8749cfea VD |
762 | int referenced = 0; |
763 | ||
8eaedede KS |
764 | while (page_vma_mapped_walk(&pvmw)) { |
765 | address = pvmw.address; | |
b20ce5e0 | 766 | |
8eaedede KS |
767 | if (vma->vm_flags & VM_LOCKED) { |
768 | page_vma_mapped_walk_done(&pvmw); | |
769 | pra->vm_flags |= VM_LOCKED; | |
e4b82222 | 770 | return false; /* To break the loop */ |
8eaedede | 771 | } |
71e3aac0 | 772 | |
8eaedede KS |
773 | if (pvmw.pte) { |
774 | if (ptep_clear_flush_young_notify(vma, address, | |
775 | pvmw.pte)) { | |
776 | /* | |
777 | * Don't treat a reference through | |
778 | * a sequentially read mapping as such. | |
779 | * If the page has been used in another mapping, | |
780 | * we will catch it; if this other mapping is | |
781 | * already gone, the unmap path will have set | |
782 | * PG_referenced or activated the page. | |
783 | */ | |
784 | if (likely(!(vma->vm_flags & VM_SEQ_READ))) | |
785 | referenced++; | |
786 | } | |
787 | } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { | |
788 | if (pmdp_clear_flush_young_notify(vma, address, | |
789 | pvmw.pmd)) | |
8749cfea | 790 | referenced++; |
8eaedede KS |
791 | } else { |
792 | /* unexpected pmd-mapped page? */ | |
793 | WARN_ON_ONCE(1); | |
8749cfea | 794 | } |
8eaedede KS |
795 | |
796 | pra->mapcount--; | |
b20ce5e0 | 797 | } |
b20ce5e0 | 798 | |
33c3fc71 VD |
799 | if (referenced) |
800 | clear_page_idle(page); | |
801 | if (test_and_clear_page_young(page)) | |
802 | referenced++; | |
803 | ||
9f32624b JK |
804 | if (referenced) { |
805 | pra->referenced++; | |
806 | pra->vm_flags |= vma->vm_flags; | |
1da177e4 | 807 | } |
34bbd704 | 808 | |
9f32624b | 809 | if (!pra->mapcount) |
e4b82222 | 810 | return false; /* To break the loop */ |
9f32624b | 811 | |
e4b82222 | 812 | return true; |
1da177e4 LT |
813 | } |
814 | ||
9f32624b | 815 | static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg) |
1da177e4 | 816 | { |
9f32624b JK |
817 | struct page_referenced_arg *pra = arg; |
818 | struct mem_cgroup *memcg = pra->memcg; | |
1da177e4 | 819 | |
9f32624b JK |
820 | if (!mm_match_cgroup(vma->vm_mm, memcg)) |
821 | return true; | |
1da177e4 | 822 | |
9f32624b | 823 | return false; |
1da177e4 LT |
824 | } |
825 | ||
826 | /** | |
827 | * page_referenced - test if the page was referenced | |
828 | * @page: the page to test | |
829 | * @is_locked: caller holds lock on the page | |
72835c86 | 830 | * @memcg: target memory cgroup |
6fe6b7e3 | 831 | * @vm_flags: collect encountered vma->vm_flags who actually referenced the page |
1da177e4 LT |
832 | * |
833 | * Quick test_and_clear_referenced for all mappings to a page, | |
834 | * returns the number of ptes which referenced the page. | |
835 | */ | |
6fe6b7e3 WF |
836 | int page_referenced(struct page *page, |
837 | int is_locked, | |
72835c86 | 838 | struct mem_cgroup *memcg, |
6fe6b7e3 | 839 | unsigned long *vm_flags) |
1da177e4 | 840 | { |
5ad64688 | 841 | int we_locked = 0; |
9f32624b | 842 | struct page_referenced_arg pra = { |
b20ce5e0 | 843 | .mapcount = total_mapcount(page), |
9f32624b JK |
844 | .memcg = memcg, |
845 | }; | |
846 | struct rmap_walk_control rwc = { | |
847 | .rmap_one = page_referenced_one, | |
848 | .arg = (void *)&pra, | |
849 | .anon_lock = page_lock_anon_vma_read, | |
850 | }; | |
1da177e4 | 851 | |
6fe6b7e3 | 852 | *vm_flags = 0; |
9f32624b JK |
853 | if (!page_mapped(page)) |
854 | return 0; | |
855 | ||
856 | if (!page_rmapping(page)) | |
857 | return 0; | |
858 | ||
859 | if (!is_locked && (!PageAnon(page) || PageKsm(page))) { | |
860 | we_locked = trylock_page(page); | |
861 | if (!we_locked) | |
862 | return 1; | |
1da177e4 | 863 | } |
9f32624b JK |
864 | |
865 | /* | |
866 | * If we are reclaiming on behalf of a cgroup, skip | |
867 | * counting on behalf of references from different | |
868 | * cgroups | |
869 | */ | |
870 | if (memcg) { | |
871 | rwc.invalid_vma = invalid_page_referenced_vma; | |
872 | } | |
873 | ||
c24f386c | 874 | rmap_walk(page, &rwc); |
9f32624b JK |
875 | *vm_flags = pra.vm_flags; |
876 | ||
877 | if (we_locked) | |
878 | unlock_page(page); | |
879 | ||
880 | return pra.referenced; | |
1da177e4 LT |
881 | } |
882 | ||
e4b82222 | 883 | static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma, |
9853a407 | 884 | unsigned long address, void *arg) |
d08b3851 | 885 | { |
f27176cf KS |
886 | struct page_vma_mapped_walk pvmw = { |
887 | .page = page, | |
888 | .vma = vma, | |
889 | .address = address, | |
890 | .flags = PVMW_SYNC, | |
891 | }; | |
ac46d4f3 | 892 | struct mmu_notifier_range range; |
9853a407 | 893 | int *cleaned = arg; |
d08b3851 | 894 | |
369ea824 JG |
895 | /* |
896 | * We have to assume the worse case ie pmd for invalidation. Note that | |
897 | * the page can not be free from this function. | |
898 | */ | |
ac46d4f3 JG |
899 | mmu_notifier_range_init(&range, vma->vm_mm, address, |
900 | min(vma->vm_end, address + | |
901 | (PAGE_SIZE << compound_order(page)))); | |
902 | mmu_notifier_invalidate_range_start(&range); | |
369ea824 | 903 | |
f27176cf | 904 | while (page_vma_mapped_walk(&pvmw)) { |
cdb07bde | 905 | unsigned long cstart; |
f27176cf | 906 | int ret = 0; |
369ea824 JG |
907 | |
908 | cstart = address = pvmw.address; | |
f27176cf KS |
909 | if (pvmw.pte) { |
910 | pte_t entry; | |
911 | pte_t *pte = pvmw.pte; | |
912 | ||
913 | if (!pte_dirty(*pte) && !pte_write(*pte)) | |
914 | continue; | |
915 | ||
785373b4 LT |
916 | flush_cache_page(vma, address, pte_pfn(*pte)); |
917 | entry = ptep_clear_flush(vma, address, pte); | |
f27176cf KS |
918 | entry = pte_wrprotect(entry); |
919 | entry = pte_mkclean(entry); | |
785373b4 | 920 | set_pte_at(vma->vm_mm, address, pte, entry); |
f27176cf KS |
921 | ret = 1; |
922 | } else { | |
923 | #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE | |
924 | pmd_t *pmd = pvmw.pmd; | |
925 | pmd_t entry; | |
926 | ||
927 | if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) | |
928 | continue; | |
929 | ||
785373b4 LT |
930 | flush_cache_page(vma, address, page_to_pfn(page)); |
931 | entry = pmdp_huge_clear_flush(vma, address, pmd); | |
f27176cf KS |
932 | entry = pmd_wrprotect(entry); |
933 | entry = pmd_mkclean(entry); | |
785373b4 | 934 | set_pmd_at(vma->vm_mm, address, pmd, entry); |
369ea824 | 935 | cstart &= PMD_MASK; |
f27176cf KS |
936 | ret = 1; |
937 | #else | |
938 | /* unexpected pmd-mapped page? */ | |
939 | WARN_ON_ONCE(1); | |
940 | #endif | |
941 | } | |
d08b3851 | 942 | |
0f10851e JG |
943 | /* |
944 | * No need to call mmu_notifier_invalidate_range() as we are | |
945 | * downgrading page table protection not changing it to point | |
946 | * to a new page. | |
947 | * | |
ad56b738 | 948 | * See Documentation/vm/mmu_notifier.rst |
0f10851e JG |
949 | */ |
950 | if (ret) | |
f27176cf | 951 | (*cleaned)++; |
c2fda5fe | 952 | } |
d08b3851 | 953 | |
ac46d4f3 | 954 | mmu_notifier_invalidate_range_end(&range); |
369ea824 | 955 | |
e4b82222 | 956 | return true; |
d08b3851 PZ |
957 | } |
958 | ||
9853a407 | 959 | static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) |
d08b3851 | 960 | { |
9853a407 | 961 | if (vma->vm_flags & VM_SHARED) |
871beb8c | 962 | return false; |
d08b3851 | 963 | |
871beb8c | 964 | return true; |
d08b3851 PZ |
965 | } |
966 | ||
967 | int page_mkclean(struct page *page) | |
968 | { | |
9853a407 JK |
969 | int cleaned = 0; |
970 | struct address_space *mapping; | |
971 | struct rmap_walk_control rwc = { | |
972 | .arg = (void *)&cleaned, | |
973 | .rmap_one = page_mkclean_one, | |
974 | .invalid_vma = invalid_mkclean_vma, | |
975 | }; | |
d08b3851 PZ |
976 | |
977 | BUG_ON(!PageLocked(page)); | |
978 | ||
9853a407 JK |
979 | if (!page_mapped(page)) |
980 | return 0; | |
981 | ||
982 | mapping = page_mapping(page); | |
983 | if (!mapping) | |
984 | return 0; | |
985 | ||
986 | rmap_walk(page, &rwc); | |
d08b3851 | 987 | |
9853a407 | 988 | return cleaned; |
d08b3851 | 989 | } |
60b59bea | 990 | EXPORT_SYMBOL_GPL(page_mkclean); |
d08b3851 | 991 | |
c44b6743 RR |
992 | /** |
993 | * page_move_anon_rmap - move a page to our anon_vma | |
994 | * @page: the page to move to our anon_vma | |
995 | * @vma: the vma the page belongs to | |
c44b6743 RR |
996 | * |
997 | * When a page belongs exclusively to one process after a COW event, | |
998 | * that page can be moved into the anon_vma that belongs to just that | |
999 | * process, so the rmap code will not search the parent or sibling | |
1000 | * processes. | |
1001 | */ | |
5a49973d | 1002 | void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma) |
c44b6743 RR |
1003 | { |
1004 | struct anon_vma *anon_vma = vma->anon_vma; | |
1005 | ||
5a49973d HD |
1006 | page = compound_head(page); |
1007 | ||
309381fe | 1008 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
81d1b09c | 1009 | VM_BUG_ON_VMA(!anon_vma, vma); |
c44b6743 RR |
1010 | |
1011 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | |
414e2fb8 VD |
1012 | /* |
1013 | * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written | |
1014 | * simultaneously, so a concurrent reader (eg page_referenced()'s | |
1015 | * PageAnon()) will not see one without the other. | |
1016 | */ | |
1017 | WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); | |
c44b6743 RR |
1018 | } |
1019 | ||
9617d95e | 1020 | /** |
4e1c1975 | 1021 | * __page_set_anon_rmap - set up new anonymous rmap |
451b9514 | 1022 | * @page: Page or Hugepage to add to rmap |
4e1c1975 AK |
1023 | * @vma: VM area to add page to. |
1024 | * @address: User virtual address of the mapping | |
e8a03feb | 1025 | * @exclusive: the page is exclusively owned by the current process |
9617d95e NP |
1026 | */ |
1027 | static void __page_set_anon_rmap(struct page *page, | |
e8a03feb | 1028 | struct vm_area_struct *vma, unsigned long address, int exclusive) |
9617d95e | 1029 | { |
e8a03feb | 1030 | struct anon_vma *anon_vma = vma->anon_vma; |
ea90002b | 1031 | |
e8a03feb | 1032 | BUG_ON(!anon_vma); |
ea90002b | 1033 | |
4e1c1975 AK |
1034 | if (PageAnon(page)) |
1035 | return; | |
1036 | ||
ea90002b | 1037 | /* |
e8a03feb RR |
1038 | * If the page isn't exclusively mapped into this vma, |
1039 | * we must use the _oldest_ possible anon_vma for the | |
1040 | * page mapping! | |
ea90002b | 1041 | */ |
4e1c1975 | 1042 | if (!exclusive) |
288468c3 | 1043 | anon_vma = anon_vma->root; |
9617d95e | 1044 | |
9617d95e NP |
1045 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; |
1046 | page->mapping = (struct address_space *) anon_vma; | |
9617d95e | 1047 | page->index = linear_page_index(vma, address); |
9617d95e NP |
1048 | } |
1049 | ||
c97a9e10 | 1050 | /** |
43d8eac4 | 1051 | * __page_check_anon_rmap - sanity check anonymous rmap addition |
c97a9e10 NP |
1052 | * @page: the page to add the mapping to |
1053 | * @vma: the vm area in which the mapping is added | |
1054 | * @address: the user virtual address mapped | |
1055 | */ | |
1056 | static void __page_check_anon_rmap(struct page *page, | |
1057 | struct vm_area_struct *vma, unsigned long address) | |
1058 | { | |
1059 | #ifdef CONFIG_DEBUG_VM | |
1060 | /* | |
1061 | * The page's anon-rmap details (mapping and index) are guaranteed to | |
1062 | * be set up correctly at this point. | |
1063 | * | |
1064 | * We have exclusion against page_add_anon_rmap because the caller | |
1065 | * always holds the page locked, except if called from page_dup_rmap, | |
1066 | * in which case the page is already known to be setup. | |
1067 | * | |
1068 | * We have exclusion against page_add_new_anon_rmap because those pages | |
1069 | * are initially only visible via the pagetables, and the pte is locked | |
1070 | * over the call to page_add_new_anon_rmap. | |
1071 | */ | |
44ab57a0 | 1072 | BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); |
53f9263b | 1073 | BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address)); |
c97a9e10 NP |
1074 | #endif |
1075 | } | |
1076 | ||
1da177e4 LT |
1077 | /** |
1078 | * page_add_anon_rmap - add pte mapping to an anonymous page | |
1079 | * @page: the page to add the mapping to | |
1080 | * @vma: the vm area in which the mapping is added | |
1081 | * @address: the user virtual address mapped | |
d281ee61 | 1082 | * @compound: charge the page as compound or small page |
1da177e4 | 1083 | * |
5ad64688 | 1084 | * The caller needs to hold the pte lock, and the page must be locked in |
80e14822 HD |
1085 | * the anon_vma case: to serialize mapping,index checking after setting, |
1086 | * and to ensure that PageAnon is not being upgraded racily to PageKsm | |
1087 | * (but PageKsm is never downgraded to PageAnon). | |
1da177e4 LT |
1088 | */ |
1089 | void page_add_anon_rmap(struct page *page, | |
d281ee61 | 1090 | struct vm_area_struct *vma, unsigned long address, bool compound) |
ad8c2ee8 | 1091 | { |
d281ee61 | 1092 | do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0); |
ad8c2ee8 RR |
1093 | } |
1094 | ||
1095 | /* | |
1096 | * Special version of the above for do_swap_page, which often runs | |
1097 | * into pages that are exclusively owned by the current process. | |
1098 | * Everybody else should continue to use page_add_anon_rmap above. | |
1099 | */ | |
1100 | void do_page_add_anon_rmap(struct page *page, | |
d281ee61 | 1101 | struct vm_area_struct *vma, unsigned long address, int flags) |
1da177e4 | 1102 | { |
53f9263b KS |
1103 | bool compound = flags & RMAP_COMPOUND; |
1104 | bool first; | |
1105 | ||
e9b61f19 KS |
1106 | if (compound) { |
1107 | atomic_t *mapcount; | |
53f9263b | 1108 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
e9b61f19 KS |
1109 | VM_BUG_ON_PAGE(!PageTransHuge(page), page); |
1110 | mapcount = compound_mapcount_ptr(page); | |
1111 | first = atomic_inc_and_test(mapcount); | |
53f9263b KS |
1112 | } else { |
1113 | first = atomic_inc_and_test(&page->_mapcount); | |
1114 | } | |
1115 | ||
79134171 | 1116 | if (first) { |
d281ee61 | 1117 | int nr = compound ? hpage_nr_pages(page) : 1; |
bea04b07 JZ |
1118 | /* |
1119 | * We use the irq-unsafe __{inc|mod}_zone_page_stat because | |
1120 | * these counters are not modified in interrupt context, and | |
1121 | * pte lock(a spinlock) is held, which implies preemption | |
1122 | * disabled. | |
1123 | */ | |
65c45377 | 1124 | if (compound) |
11fb9989 | 1125 | __inc_node_page_state(page, NR_ANON_THPS); |
4b9d0fab | 1126 | __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr); |
79134171 | 1127 | } |
5ad64688 HD |
1128 | if (unlikely(PageKsm(page))) |
1129 | return; | |
1130 | ||
309381fe | 1131 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
53f9263b | 1132 | |
5dbe0af4 | 1133 | /* address might be in next vma when migration races vma_adjust */ |
5ad64688 | 1134 | if (first) |
d281ee61 KS |
1135 | __page_set_anon_rmap(page, vma, address, |
1136 | flags & RMAP_EXCLUSIVE); | |
69029cd5 | 1137 | else |
c97a9e10 | 1138 | __page_check_anon_rmap(page, vma, address); |
1da177e4 LT |
1139 | } |
1140 | ||
43d8eac4 | 1141 | /** |
9617d95e NP |
1142 | * page_add_new_anon_rmap - add pte mapping to a new anonymous page |
1143 | * @page: the page to add the mapping to | |
1144 | * @vma: the vm area in which the mapping is added | |
1145 | * @address: the user virtual address mapped | |
d281ee61 | 1146 | * @compound: charge the page as compound or small page |
9617d95e NP |
1147 | * |
1148 | * Same as page_add_anon_rmap but must only be called on *new* pages. | |
1149 | * This means the inc-and-test can be bypassed. | |
c97a9e10 | 1150 | * Page does not have to be locked. |
9617d95e NP |
1151 | */ |
1152 | void page_add_new_anon_rmap(struct page *page, | |
d281ee61 | 1153 | struct vm_area_struct *vma, unsigned long address, bool compound) |
9617d95e | 1154 | { |
d281ee61 KS |
1155 | int nr = compound ? hpage_nr_pages(page) : 1; |
1156 | ||
81d1b09c | 1157 | VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); |
fa9949da | 1158 | __SetPageSwapBacked(page); |
d281ee61 KS |
1159 | if (compound) { |
1160 | VM_BUG_ON_PAGE(!PageTransHuge(page), page); | |
53f9263b KS |
1161 | /* increment count (starts at -1) */ |
1162 | atomic_set(compound_mapcount_ptr(page), 0); | |
11fb9989 | 1163 | __inc_node_page_state(page, NR_ANON_THPS); |
53f9263b KS |
1164 | } else { |
1165 | /* Anon THP always mapped first with PMD */ | |
1166 | VM_BUG_ON_PAGE(PageTransCompound(page), page); | |
1167 | /* increment count (starts at -1) */ | |
1168 | atomic_set(&page->_mapcount, 0); | |
d281ee61 | 1169 | } |
4b9d0fab | 1170 | __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr); |
e8a03feb | 1171 | __page_set_anon_rmap(page, vma, address, 1); |
9617d95e NP |
1172 | } |
1173 | ||
1da177e4 LT |
1174 | /** |
1175 | * page_add_file_rmap - add pte mapping to a file page | |
1176 | * @page: the page to add the mapping to | |
e8b098fc | 1177 | * @compound: charge the page as compound or small page |
1da177e4 | 1178 | * |
b8072f09 | 1179 | * The caller needs to hold the pte lock. |
1da177e4 | 1180 | */ |
dd78fedd | 1181 | void page_add_file_rmap(struct page *page, bool compound) |
1da177e4 | 1182 | { |
dd78fedd KS |
1183 | int i, nr = 1; |
1184 | ||
1185 | VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page); | |
62cccb8c | 1186 | lock_page_memcg(page); |
dd78fedd KS |
1187 | if (compound && PageTransHuge(page)) { |
1188 | for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { | |
1189 | if (atomic_inc_and_test(&page[i]._mapcount)) | |
1190 | nr++; | |
1191 | } | |
1192 | if (!atomic_inc_and_test(compound_mapcount_ptr(page))) | |
1193 | goto out; | |
65c45377 | 1194 | VM_BUG_ON_PAGE(!PageSwapBacked(page), page); |
11fb9989 | 1195 | __inc_node_page_state(page, NR_SHMEM_PMDMAPPED); |
dd78fedd | 1196 | } else { |
c8efc390 KS |
1197 | if (PageTransCompound(page) && page_mapping(page)) { |
1198 | VM_WARN_ON_ONCE(!PageLocked(page)); | |
1199 | ||
9a73f61b KS |
1200 | SetPageDoubleMap(compound_head(page)); |
1201 | if (PageMlocked(page)) | |
1202 | clear_page_mlock(compound_head(page)); | |
1203 | } | |
dd78fedd KS |
1204 | if (!atomic_inc_and_test(&page->_mapcount)) |
1205 | goto out; | |
d69b042f | 1206 | } |
00f3ca2c | 1207 | __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr); |
dd78fedd | 1208 | out: |
62cccb8c | 1209 | unlock_page_memcg(page); |
1da177e4 LT |
1210 | } |
1211 | ||
dd78fedd | 1212 | static void page_remove_file_rmap(struct page *page, bool compound) |
8186eb6a | 1213 | { |
dd78fedd KS |
1214 | int i, nr = 1; |
1215 | ||
57dea93a | 1216 | VM_BUG_ON_PAGE(compound && !PageHead(page), page); |
62cccb8c | 1217 | lock_page_memcg(page); |
8186eb6a | 1218 | |
53f9263b KS |
1219 | /* Hugepages are not counted in NR_FILE_MAPPED for now. */ |
1220 | if (unlikely(PageHuge(page))) { | |
1221 | /* hugetlb pages are always mapped with pmds */ | |
1222 | atomic_dec(compound_mapcount_ptr(page)); | |
8186eb6a | 1223 | goto out; |
53f9263b | 1224 | } |
8186eb6a | 1225 | |
53f9263b | 1226 | /* page still mapped by someone else? */ |
dd78fedd KS |
1227 | if (compound && PageTransHuge(page)) { |
1228 | for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { | |
1229 | if (atomic_add_negative(-1, &page[i]._mapcount)) | |
1230 | nr++; | |
1231 | } | |
1232 | if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) | |
1233 | goto out; | |
65c45377 | 1234 | VM_BUG_ON_PAGE(!PageSwapBacked(page), page); |
11fb9989 | 1235 | __dec_node_page_state(page, NR_SHMEM_PMDMAPPED); |
dd78fedd KS |
1236 | } else { |
1237 | if (!atomic_add_negative(-1, &page->_mapcount)) | |
1238 | goto out; | |
1239 | } | |
8186eb6a JW |
1240 | |
1241 | /* | |
00f3ca2c | 1242 | * We use the irq-unsafe __{inc|mod}_lruvec_page_state because |
8186eb6a JW |
1243 | * these counters are not modified in interrupt context, and |
1244 | * pte lock(a spinlock) is held, which implies preemption disabled. | |
1245 | */ | |
00f3ca2c | 1246 | __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr); |
8186eb6a JW |
1247 | |
1248 | if (unlikely(PageMlocked(page))) | |
1249 | clear_page_mlock(page); | |
1250 | out: | |
62cccb8c | 1251 | unlock_page_memcg(page); |
8186eb6a JW |
1252 | } |
1253 | ||
53f9263b KS |
1254 | static void page_remove_anon_compound_rmap(struct page *page) |
1255 | { | |
1256 | int i, nr; | |
1257 | ||
1258 | if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) | |
1259 | return; | |
1260 | ||
1261 | /* Hugepages are not counted in NR_ANON_PAGES for now. */ | |
1262 | if (unlikely(PageHuge(page))) | |
1263 | return; | |
1264 | ||
1265 | if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) | |
1266 | return; | |
1267 | ||
11fb9989 | 1268 | __dec_node_page_state(page, NR_ANON_THPS); |
53f9263b KS |
1269 | |
1270 | if (TestClearPageDoubleMap(page)) { | |
1271 | /* | |
1272 | * Subpages can be mapped with PTEs too. Check how many of | |
1273 | * themi are still mapped. | |
1274 | */ | |
1275 | for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { | |
1276 | if (atomic_add_negative(-1, &page[i]._mapcount)) | |
1277 | nr++; | |
1278 | } | |
1279 | } else { | |
1280 | nr = HPAGE_PMD_NR; | |
1281 | } | |
1282 | ||
e90309c9 KS |
1283 | if (unlikely(PageMlocked(page))) |
1284 | clear_page_mlock(page); | |
1285 | ||
9a982250 | 1286 | if (nr) { |
4b9d0fab | 1287 | __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr); |
9a982250 KS |
1288 | deferred_split_huge_page(page); |
1289 | } | |
53f9263b KS |
1290 | } |
1291 | ||
1da177e4 LT |
1292 | /** |
1293 | * page_remove_rmap - take down pte mapping from a page | |
d281ee61 KS |
1294 | * @page: page to remove mapping from |
1295 | * @compound: uncharge the page as compound or small page | |
1da177e4 | 1296 | * |
b8072f09 | 1297 | * The caller needs to hold the pte lock. |
1da177e4 | 1298 | */ |
d281ee61 | 1299 | void page_remove_rmap(struct page *page, bool compound) |
1da177e4 | 1300 | { |
dd78fedd KS |
1301 | if (!PageAnon(page)) |
1302 | return page_remove_file_rmap(page, compound); | |
89c06bd5 | 1303 | |
53f9263b KS |
1304 | if (compound) |
1305 | return page_remove_anon_compound_rmap(page); | |
1306 | ||
b904dcfe KM |
1307 | /* page still mapped by someone else? */ |
1308 | if (!atomic_add_negative(-1, &page->_mapcount)) | |
8186eb6a JW |
1309 | return; |
1310 | ||
0fe6e20b | 1311 | /* |
bea04b07 JZ |
1312 | * We use the irq-unsafe __{inc|mod}_zone_page_stat because |
1313 | * these counters are not modified in interrupt context, and | |
bea04b07 | 1314 | * pte lock(a spinlock) is held, which implies preemption disabled. |
0fe6e20b | 1315 | */ |
4b9d0fab | 1316 | __dec_node_page_state(page, NR_ANON_MAPPED); |
8186eb6a | 1317 | |
e6c509f8 HD |
1318 | if (unlikely(PageMlocked(page))) |
1319 | clear_page_mlock(page); | |
8186eb6a | 1320 | |
9a982250 KS |
1321 | if (PageTransCompound(page)) |
1322 | deferred_split_huge_page(compound_head(page)); | |
1323 | ||
b904dcfe KM |
1324 | /* |
1325 | * It would be tidy to reset the PageAnon mapping here, | |
1326 | * but that might overwrite a racing page_add_anon_rmap | |
1327 | * which increments mapcount after us but sets mapping | |
2d4894b5 | 1328 | * before us: so leave the reset to free_unref_page, |
b904dcfe KM |
1329 | * and remember that it's only reliable while mapped. |
1330 | * Leaving it set also helps swapoff to reinstate ptes | |
1331 | * faster for those pages still in swapcache. | |
1332 | */ | |
1da177e4 LT |
1333 | } |
1334 | ||
1335 | /* | |
52629506 | 1336 | * @arg: enum ttu_flags will be passed to this argument |
1da177e4 | 1337 | */ |
e4b82222 | 1338 | static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma, |
52629506 | 1339 | unsigned long address, void *arg) |
1da177e4 LT |
1340 | { |
1341 | struct mm_struct *mm = vma->vm_mm; | |
c7ab0d2f KS |
1342 | struct page_vma_mapped_walk pvmw = { |
1343 | .page = page, | |
1344 | .vma = vma, | |
1345 | .address = address, | |
1346 | }; | |
1da177e4 | 1347 | pte_t pteval; |
c7ab0d2f | 1348 | struct page *subpage; |
785373b4 | 1349 | bool ret = true; |
ac46d4f3 | 1350 | struct mmu_notifier_range range; |
802a3a92 | 1351 | enum ttu_flags flags = (enum ttu_flags)arg; |
1da177e4 | 1352 | |
b87537d9 HD |
1353 | /* munlock has nothing to gain from examining un-locked vmas */ |
1354 | if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED)) | |
e4b82222 | 1355 | return true; |
b87537d9 | 1356 | |
a5430dda JG |
1357 | if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) && |
1358 | is_zone_device_page(page) && !is_device_private_page(page)) | |
1359 | return true; | |
1360 | ||
fec89c10 KS |
1361 | if (flags & TTU_SPLIT_HUGE_PMD) { |
1362 | split_huge_pmd_address(vma, address, | |
b5ff8161 | 1363 | flags & TTU_SPLIT_FREEZE, page); |
fec89c10 KS |
1364 | } |
1365 | ||
369ea824 | 1366 | /* |
017b1660 MK |
1367 | * For THP, we have to assume the worse case ie pmd for invalidation. |
1368 | * For hugetlb, it could be much worse if we need to do pud | |
1369 | * invalidation in the case of pmd sharing. | |
1370 | * | |
1371 | * Note that the page can not be free in this function as call of | |
1372 | * try_to_unmap() must hold a reference on the page. | |
369ea824 | 1373 | */ |
ba422731 SC |
1374 | mmu_notifier_range_init(&range, vma->vm_mm, address, |
1375 | min(vma->vm_end, address + | |
ac46d4f3 | 1376 | (PAGE_SIZE << compound_order(page)))); |
017b1660 MK |
1377 | if (PageHuge(page)) { |
1378 | /* | |
1379 | * If sharing is possible, start and end will be adjusted | |
1380 | * accordingly. | |
1381 | */ | |
ac46d4f3 JG |
1382 | adjust_range_if_pmd_sharing_possible(vma, &range.start, |
1383 | &range.end); | |
017b1660 | 1384 | } |
ac46d4f3 | 1385 | mmu_notifier_invalidate_range_start(&range); |
369ea824 | 1386 | |
c7ab0d2f | 1387 | while (page_vma_mapped_walk(&pvmw)) { |
616b8371 ZY |
1388 | #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION |
1389 | /* PMD-mapped THP migration entry */ | |
1390 | if (!pvmw.pte && (flags & TTU_MIGRATION)) { | |
1391 | VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); | |
1392 | ||
616b8371 ZY |
1393 | set_pmd_migration_entry(&pvmw, page); |
1394 | continue; | |
1395 | } | |
1396 | #endif | |
1397 | ||
c7ab0d2f KS |
1398 | /* |
1399 | * If the page is mlock()d, we cannot swap it out. | |
1400 | * If it's recently referenced (perhaps page_referenced | |
1401 | * skipped over this mm) then we should reactivate it. | |
1402 | */ | |
1403 | if (!(flags & TTU_IGNORE_MLOCK)) { | |
1404 | if (vma->vm_flags & VM_LOCKED) { | |
1405 | /* PTE-mapped THP are never mlocked */ | |
1406 | if (!PageTransCompound(page)) { | |
1407 | /* | |
1408 | * Holding pte lock, we do *not* need | |
1409 | * mmap_sem here | |
1410 | */ | |
1411 | mlock_vma_page(page); | |
1412 | } | |
e4b82222 | 1413 | ret = false; |
c7ab0d2f KS |
1414 | page_vma_mapped_walk_done(&pvmw); |
1415 | break; | |
9a73f61b | 1416 | } |
c7ab0d2f KS |
1417 | if (flags & TTU_MUNLOCK) |
1418 | continue; | |
b87537d9 | 1419 | } |
c7ab0d2f | 1420 | |
8346242a KS |
1421 | /* Unexpected PMD-mapped THP? */ |
1422 | VM_BUG_ON_PAGE(!pvmw.pte, page); | |
1423 | ||
1424 | subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte); | |
785373b4 LT |
1425 | address = pvmw.address; |
1426 | ||
017b1660 MK |
1427 | if (PageHuge(page)) { |
1428 | if (huge_pmd_unshare(mm, &address, pvmw.pte)) { | |
1429 | /* | |
1430 | * huge_pmd_unshare unmapped an entire PMD | |
1431 | * page. There is no way of knowing exactly | |
1432 | * which PMDs may be cached for this mm, so | |
1433 | * we must flush them all. start/end were | |
1434 | * already adjusted above to cover this range. | |
1435 | */ | |
ac46d4f3 JG |
1436 | flush_cache_range(vma, range.start, range.end); |
1437 | flush_tlb_range(vma, range.start, range.end); | |
1438 | mmu_notifier_invalidate_range(mm, range.start, | |
1439 | range.end); | |
017b1660 MK |
1440 | |
1441 | /* | |
1442 | * The ref count of the PMD page was dropped | |
1443 | * which is part of the way map counting | |
1444 | * is done for shared PMDs. Return 'true' | |
1445 | * here. When there is no other sharing, | |
1446 | * huge_pmd_unshare returns false and we will | |
1447 | * unmap the actual page and drop map count | |
1448 | * to zero. | |
1449 | */ | |
1450 | page_vma_mapped_walk_done(&pvmw); | |
1451 | break; | |
1452 | } | |
1453 | } | |
8346242a | 1454 | |
a5430dda JG |
1455 | if (IS_ENABLED(CONFIG_MIGRATION) && |
1456 | (flags & TTU_MIGRATION) && | |
1457 | is_zone_device_page(page)) { | |
1458 | swp_entry_t entry; | |
1459 | pte_t swp_pte; | |
1460 | ||
1461 | pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte); | |
1462 | ||
1463 | /* | |
1464 | * Store the pfn of the page in a special migration | |
1465 | * pte. do_swap_page() will wait until the migration | |
1466 | * pte is removed and then restart fault handling. | |
1467 | */ | |
1468 | entry = make_migration_entry(page, 0); | |
1469 | swp_pte = swp_entry_to_pte(entry); | |
1470 | if (pte_soft_dirty(pteval)) | |
1471 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
1472 | set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte); | |
0f10851e JG |
1473 | /* |
1474 | * No need to invalidate here it will synchronize on | |
1475 | * against the special swap migration pte. | |
1476 | */ | |
a5430dda JG |
1477 | goto discard; |
1478 | } | |
1479 | ||
c7ab0d2f | 1480 | if (!(flags & TTU_IGNORE_ACCESS)) { |
785373b4 | 1481 | if (ptep_clear_flush_young_notify(vma, address, |
c7ab0d2f | 1482 | pvmw.pte)) { |
e4b82222 | 1483 | ret = false; |
c7ab0d2f KS |
1484 | page_vma_mapped_walk_done(&pvmw); |
1485 | break; | |
1486 | } | |
b291f000 | 1487 | } |
1da177e4 | 1488 | |
c7ab0d2f | 1489 | /* Nuke the page table entry. */ |
785373b4 | 1490 | flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); |
c7ab0d2f KS |
1491 | if (should_defer_flush(mm, flags)) { |
1492 | /* | |
1493 | * We clear the PTE but do not flush so potentially | |
1494 | * a remote CPU could still be writing to the page. | |
1495 | * If the entry was previously clean then the | |
1496 | * architecture must guarantee that a clear->dirty | |
1497 | * transition on a cached TLB entry is written through | |
1498 | * and traps if the PTE is unmapped. | |
1499 | */ | |
785373b4 | 1500 | pteval = ptep_get_and_clear(mm, address, pvmw.pte); |
c7ab0d2f KS |
1501 | |
1502 | set_tlb_ubc_flush_pending(mm, pte_dirty(pteval)); | |
1503 | } else { | |
785373b4 | 1504 | pteval = ptep_clear_flush(vma, address, pvmw.pte); |
c7ab0d2f | 1505 | } |
72b252ae | 1506 | |
c7ab0d2f KS |
1507 | /* Move the dirty bit to the page. Now the pte is gone. */ |
1508 | if (pte_dirty(pteval)) | |
1509 | set_page_dirty(page); | |
1da177e4 | 1510 | |
c7ab0d2f KS |
1511 | /* Update high watermark before we lower rss */ |
1512 | update_hiwater_rss(mm); | |
1da177e4 | 1513 | |
c7ab0d2f | 1514 | if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { |
5fd27b8e | 1515 | pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); |
c7ab0d2f KS |
1516 | if (PageHuge(page)) { |
1517 | int nr = 1 << compound_order(page); | |
1518 | hugetlb_count_sub(nr, mm); | |
785373b4 | 1519 | set_huge_swap_pte_at(mm, address, |
5fd27b8e PA |
1520 | pvmw.pte, pteval, |
1521 | vma_mmu_pagesize(vma)); | |
c7ab0d2f KS |
1522 | } else { |
1523 | dec_mm_counter(mm, mm_counter(page)); | |
785373b4 | 1524 | set_pte_at(mm, address, pvmw.pte, pteval); |
c7ab0d2f | 1525 | } |
365e9c87 | 1526 | |
bce73e48 | 1527 | } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { |
c7ab0d2f KS |
1528 | /* |
1529 | * The guest indicated that the page content is of no | |
1530 | * interest anymore. Simply discard the pte, vmscan | |
1531 | * will take care of the rest. | |
bce73e48 CB |
1532 | * A future reference will then fault in a new zero |
1533 | * page. When userfaultfd is active, we must not drop | |
1534 | * this page though, as its main user (postcopy | |
1535 | * migration) will not expect userfaults on already | |
1536 | * copied pages. | |
c7ab0d2f | 1537 | */ |
eca56ff9 | 1538 | dec_mm_counter(mm, mm_counter(page)); |
0f10851e JG |
1539 | /* We have to invalidate as we cleared the pte */ |
1540 | mmu_notifier_invalidate_range(mm, address, | |
1541 | address + PAGE_SIZE); | |
c7ab0d2f | 1542 | } else if (IS_ENABLED(CONFIG_MIGRATION) && |
b5ff8161 | 1543 | (flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) { |
c7ab0d2f KS |
1544 | swp_entry_t entry; |
1545 | pte_t swp_pte; | |
ca827d55 KA |
1546 | |
1547 | if (arch_unmap_one(mm, vma, address, pteval) < 0) { | |
1548 | set_pte_at(mm, address, pvmw.pte, pteval); | |
1549 | ret = false; | |
1550 | page_vma_mapped_walk_done(&pvmw); | |
1551 | break; | |
1552 | } | |
1553 | ||
c7ab0d2f KS |
1554 | /* |
1555 | * Store the pfn of the page in a special migration | |
1556 | * pte. do_swap_page() will wait until the migration | |
1557 | * pte is removed and then restart fault handling. | |
1558 | */ | |
1559 | entry = make_migration_entry(subpage, | |
1560 | pte_write(pteval)); | |
1561 | swp_pte = swp_entry_to_pte(entry); | |
1562 | if (pte_soft_dirty(pteval)) | |
1563 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
785373b4 | 1564 | set_pte_at(mm, address, pvmw.pte, swp_pte); |
0f10851e JG |
1565 | /* |
1566 | * No need to invalidate here it will synchronize on | |
1567 | * against the special swap migration pte. | |
1568 | */ | |
c7ab0d2f KS |
1569 | } else if (PageAnon(page)) { |
1570 | swp_entry_t entry = { .val = page_private(subpage) }; | |
1571 | pte_t swp_pte; | |
1572 | /* | |
1573 | * Store the swap location in the pte. | |
1574 | * See handle_pte_fault() ... | |
1575 | */ | |
eb94a878 MK |
1576 | if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) { |
1577 | WARN_ON_ONCE(1); | |
83612a94 | 1578 | ret = false; |
369ea824 | 1579 | /* We have to invalidate as we cleared the pte */ |
0f10851e JG |
1580 | mmu_notifier_invalidate_range(mm, address, |
1581 | address + PAGE_SIZE); | |
eb94a878 MK |
1582 | page_vma_mapped_walk_done(&pvmw); |
1583 | break; | |
1584 | } | |
c7ab0d2f | 1585 | |
802a3a92 SL |
1586 | /* MADV_FREE page check */ |
1587 | if (!PageSwapBacked(page)) { | |
1588 | if (!PageDirty(page)) { | |
0f10851e JG |
1589 | /* Invalidate as we cleared the pte */ |
1590 | mmu_notifier_invalidate_range(mm, | |
1591 | address, address + PAGE_SIZE); | |
802a3a92 SL |
1592 | dec_mm_counter(mm, MM_ANONPAGES); |
1593 | goto discard; | |
1594 | } | |
1595 | ||
1596 | /* | |
1597 | * If the page was redirtied, it cannot be | |
1598 | * discarded. Remap the page to page table. | |
1599 | */ | |
785373b4 | 1600 | set_pte_at(mm, address, pvmw.pte, pteval); |
18863d3a | 1601 | SetPageSwapBacked(page); |
e4b82222 | 1602 | ret = false; |
802a3a92 SL |
1603 | page_vma_mapped_walk_done(&pvmw); |
1604 | break; | |
c7ab0d2f | 1605 | } |
854e9ed0 | 1606 | |
c7ab0d2f | 1607 | if (swap_duplicate(entry) < 0) { |
785373b4 | 1608 | set_pte_at(mm, address, pvmw.pte, pteval); |
e4b82222 | 1609 | ret = false; |
c7ab0d2f KS |
1610 | page_vma_mapped_walk_done(&pvmw); |
1611 | break; | |
1612 | } | |
ca827d55 KA |
1613 | if (arch_unmap_one(mm, vma, address, pteval) < 0) { |
1614 | set_pte_at(mm, address, pvmw.pte, pteval); | |
1615 | ret = false; | |
1616 | page_vma_mapped_walk_done(&pvmw); | |
1617 | break; | |
1618 | } | |
c7ab0d2f KS |
1619 | if (list_empty(&mm->mmlist)) { |
1620 | spin_lock(&mmlist_lock); | |
1621 | if (list_empty(&mm->mmlist)) | |
1622 | list_add(&mm->mmlist, &init_mm.mmlist); | |
1623 | spin_unlock(&mmlist_lock); | |
1624 | } | |
854e9ed0 | 1625 | dec_mm_counter(mm, MM_ANONPAGES); |
c7ab0d2f KS |
1626 | inc_mm_counter(mm, MM_SWAPENTS); |
1627 | swp_pte = swp_entry_to_pte(entry); | |
1628 | if (pte_soft_dirty(pteval)) | |
1629 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
785373b4 | 1630 | set_pte_at(mm, address, pvmw.pte, swp_pte); |
0f10851e JG |
1631 | /* Invalidate as we cleared the pte */ |
1632 | mmu_notifier_invalidate_range(mm, address, | |
1633 | address + PAGE_SIZE); | |
1634 | } else { | |
1635 | /* | |
906f9cdf HD |
1636 | * This is a locked file-backed page, thus it cannot |
1637 | * be removed from the page cache and replaced by a new | |
1638 | * page before mmu_notifier_invalidate_range_end, so no | |
0f10851e JG |
1639 | * concurrent thread might update its page table to |
1640 | * point at new page while a device still is using this | |
1641 | * page. | |
1642 | * | |
ad56b738 | 1643 | * See Documentation/vm/mmu_notifier.rst |
0f10851e | 1644 | */ |
c7ab0d2f | 1645 | dec_mm_counter(mm, mm_counter_file(page)); |
0f10851e | 1646 | } |
854e9ed0 | 1647 | discard: |
0f10851e JG |
1648 | /* |
1649 | * No need to call mmu_notifier_invalidate_range() it has be | |
1650 | * done above for all cases requiring it to happen under page | |
1651 | * table lock before mmu_notifier_invalidate_range_end() | |
1652 | * | |
ad56b738 | 1653 | * See Documentation/vm/mmu_notifier.rst |
0f10851e | 1654 | */ |
c7ab0d2f KS |
1655 | page_remove_rmap(subpage, PageHuge(page)); |
1656 | put_page(page); | |
c7ab0d2f | 1657 | } |
369ea824 | 1658 | |
ac46d4f3 | 1659 | mmu_notifier_invalidate_range_end(&range); |
369ea824 | 1660 | |
caed0f48 | 1661 | return ret; |
1da177e4 LT |
1662 | } |
1663 | ||
71e3aac0 | 1664 | bool is_vma_temporary_stack(struct vm_area_struct *vma) |
a8bef8ff MG |
1665 | { |
1666 | int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); | |
1667 | ||
1668 | if (!maybe_stack) | |
1669 | return false; | |
1670 | ||
1671 | if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == | |
1672 | VM_STACK_INCOMPLETE_SETUP) | |
1673 | return true; | |
1674 | ||
1675 | return false; | |
1676 | } | |
1677 | ||
52629506 JK |
1678 | static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) |
1679 | { | |
1680 | return is_vma_temporary_stack(vma); | |
1681 | } | |
1682 | ||
2a52bcbc | 1683 | static int page_mapcount_is_zero(struct page *page) |
52629506 | 1684 | { |
c7ab0d2f | 1685 | return !total_mapcount(page); |
2a52bcbc | 1686 | } |
52629506 | 1687 | |
1da177e4 LT |
1688 | /** |
1689 | * try_to_unmap - try to remove all page table mappings to a page | |
1690 | * @page: the page to get unmapped | |
14fa31b8 | 1691 | * @flags: action and flags |
1da177e4 LT |
1692 | * |
1693 | * Tries to remove all the page table entries which are mapping this | |
1694 | * page, used in the pageout path. Caller must hold the page lock. | |
1da177e4 | 1695 | * |
666e5a40 | 1696 | * If unmap is successful, return true. Otherwise, false. |
1da177e4 | 1697 | */ |
666e5a40 | 1698 | bool try_to_unmap(struct page *page, enum ttu_flags flags) |
1da177e4 | 1699 | { |
52629506 JK |
1700 | struct rmap_walk_control rwc = { |
1701 | .rmap_one = try_to_unmap_one, | |
802a3a92 | 1702 | .arg = (void *)flags, |
2a52bcbc | 1703 | .done = page_mapcount_is_zero, |
52629506 JK |
1704 | .anon_lock = page_lock_anon_vma_read, |
1705 | }; | |
1da177e4 | 1706 | |
52629506 JK |
1707 | /* |
1708 | * During exec, a temporary VMA is setup and later moved. | |
1709 | * The VMA is moved under the anon_vma lock but not the | |
1710 | * page tables leading to a race where migration cannot | |
1711 | * find the migration ptes. Rather than increasing the | |
1712 | * locking requirements of exec(), migration skips | |
1713 | * temporary VMAs until after exec() completes. | |
1714 | */ | |
b5ff8161 NH |
1715 | if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE)) |
1716 | && !PageKsm(page) && PageAnon(page)) | |
52629506 JK |
1717 | rwc.invalid_vma = invalid_migration_vma; |
1718 | ||
2a52bcbc | 1719 | if (flags & TTU_RMAP_LOCKED) |
33fc80e2 | 1720 | rmap_walk_locked(page, &rwc); |
2a52bcbc | 1721 | else |
33fc80e2 | 1722 | rmap_walk(page, &rwc); |
52629506 | 1723 | |
666e5a40 | 1724 | return !page_mapcount(page) ? true : false; |
1da177e4 | 1725 | } |
81b4082d | 1726 | |
2a52bcbc KS |
1727 | static int page_not_mapped(struct page *page) |
1728 | { | |
1729 | return !page_mapped(page); | |
1730 | }; | |
1731 | ||
b291f000 NP |
1732 | /** |
1733 | * try_to_munlock - try to munlock a page | |
1734 | * @page: the page to be munlocked | |
1735 | * | |
1736 | * Called from munlock code. Checks all of the VMAs mapping the page | |
1737 | * to make sure nobody else has this page mlocked. The page will be | |
1738 | * returned with PG_mlocked cleared if no other vmas have it mlocked. | |
b291f000 | 1739 | */ |
854e9ed0 | 1740 | |
192d7232 MK |
1741 | void try_to_munlock(struct page *page) |
1742 | { | |
e8351ac9 JK |
1743 | struct rmap_walk_control rwc = { |
1744 | .rmap_one = try_to_unmap_one, | |
802a3a92 | 1745 | .arg = (void *)TTU_MUNLOCK, |
e8351ac9 | 1746 | .done = page_not_mapped, |
e8351ac9 JK |
1747 | .anon_lock = page_lock_anon_vma_read, |
1748 | ||
1749 | }; | |
1750 | ||
309381fe | 1751 | VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page); |
192d7232 | 1752 | VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page); |
b291f000 | 1753 | |
192d7232 | 1754 | rmap_walk(page, &rwc); |
b291f000 | 1755 | } |
e9995ef9 | 1756 | |
01d8b20d | 1757 | void __put_anon_vma(struct anon_vma *anon_vma) |
76545066 | 1758 | { |
01d8b20d | 1759 | struct anon_vma *root = anon_vma->root; |
76545066 | 1760 | |
624483f3 | 1761 | anon_vma_free(anon_vma); |
01d8b20d PZ |
1762 | if (root != anon_vma && atomic_dec_and_test(&root->refcount)) |
1763 | anon_vma_free(root); | |
76545066 | 1764 | } |
76545066 | 1765 | |
0dd1c7bb JK |
1766 | static struct anon_vma *rmap_walk_anon_lock(struct page *page, |
1767 | struct rmap_walk_control *rwc) | |
faecd8dd JK |
1768 | { |
1769 | struct anon_vma *anon_vma; | |
1770 | ||
0dd1c7bb JK |
1771 | if (rwc->anon_lock) |
1772 | return rwc->anon_lock(page); | |
1773 | ||
faecd8dd JK |
1774 | /* |
1775 | * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read() | |
1776 | * because that depends on page_mapped(); but not all its usages | |
1777 | * are holding mmap_sem. Users without mmap_sem are required to | |
1778 | * take a reference count to prevent the anon_vma disappearing | |
1779 | */ | |
1780 | anon_vma = page_anon_vma(page); | |
1781 | if (!anon_vma) | |
1782 | return NULL; | |
1783 | ||
1784 | anon_vma_lock_read(anon_vma); | |
1785 | return anon_vma; | |
1786 | } | |
1787 | ||
e9995ef9 | 1788 | /* |
e8351ac9 JK |
1789 | * rmap_walk_anon - do something to anonymous page using the object-based |
1790 | * rmap method | |
1791 | * @page: the page to be handled | |
1792 | * @rwc: control variable according to each walk type | |
1793 | * | |
1794 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
1795 | * contained in the anon_vma struct it points to. | |
1796 | * | |
1797 | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma | |
1798 | * where the page was found will be held for write. So, we won't recheck | |
1799 | * vm_flags for that VMA. That should be OK, because that vma shouldn't be | |
1800 | * LOCKED. | |
e9995ef9 | 1801 | */ |
1df631ae | 1802 | static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc, |
b9773199 | 1803 | bool locked) |
e9995ef9 HD |
1804 | { |
1805 | struct anon_vma *anon_vma; | |
a8fa41ad | 1806 | pgoff_t pgoff_start, pgoff_end; |
5beb4930 | 1807 | struct anon_vma_chain *avc; |
e9995ef9 | 1808 | |
b9773199 KS |
1809 | if (locked) { |
1810 | anon_vma = page_anon_vma(page); | |
1811 | /* anon_vma disappear under us? */ | |
1812 | VM_BUG_ON_PAGE(!anon_vma, page); | |
1813 | } else { | |
1814 | anon_vma = rmap_walk_anon_lock(page, rwc); | |
1815 | } | |
e9995ef9 | 1816 | if (!anon_vma) |
1df631ae | 1817 | return; |
faecd8dd | 1818 | |
a8fa41ad KS |
1819 | pgoff_start = page_to_pgoff(page); |
1820 | pgoff_end = pgoff_start + hpage_nr_pages(page) - 1; | |
1821 | anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, | |
1822 | pgoff_start, pgoff_end) { | |
5beb4930 | 1823 | struct vm_area_struct *vma = avc->vma; |
e9995ef9 | 1824 | unsigned long address = vma_address(page, vma); |
0dd1c7bb | 1825 | |
ad12695f AA |
1826 | cond_resched(); |
1827 | ||
0dd1c7bb JK |
1828 | if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) |
1829 | continue; | |
1830 | ||
e4b82222 | 1831 | if (!rwc->rmap_one(page, vma, address, rwc->arg)) |
e9995ef9 | 1832 | break; |
0dd1c7bb JK |
1833 | if (rwc->done && rwc->done(page)) |
1834 | break; | |
e9995ef9 | 1835 | } |
b9773199 KS |
1836 | |
1837 | if (!locked) | |
1838 | anon_vma_unlock_read(anon_vma); | |
e9995ef9 HD |
1839 | } |
1840 | ||
e8351ac9 JK |
1841 | /* |
1842 | * rmap_walk_file - do something to file page using the object-based rmap method | |
1843 | * @page: the page to be handled | |
1844 | * @rwc: control variable according to each walk type | |
1845 | * | |
1846 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
1847 | * contained in the address_space struct it points to. | |
1848 | * | |
1849 | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma | |
1850 | * where the page was found will be held for write. So, we won't recheck | |
1851 | * vm_flags for that VMA. That should be OK, because that vma shouldn't be | |
1852 | * LOCKED. | |
1853 | */ | |
1df631ae | 1854 | static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc, |
b9773199 | 1855 | bool locked) |
e9995ef9 | 1856 | { |
b9773199 | 1857 | struct address_space *mapping = page_mapping(page); |
a8fa41ad | 1858 | pgoff_t pgoff_start, pgoff_end; |
e9995ef9 | 1859 | struct vm_area_struct *vma; |
e9995ef9 | 1860 | |
9f32624b JK |
1861 | /* |
1862 | * The page lock not only makes sure that page->mapping cannot | |
1863 | * suddenly be NULLified by truncation, it makes sure that the | |
1864 | * structure at mapping cannot be freed and reused yet, | |
c8c06efa | 1865 | * so we can safely take mapping->i_mmap_rwsem. |
9f32624b | 1866 | */ |
81d1b09c | 1867 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
9f32624b | 1868 | |
e9995ef9 | 1869 | if (!mapping) |
1df631ae | 1870 | return; |
3dec0ba0 | 1871 | |
a8fa41ad KS |
1872 | pgoff_start = page_to_pgoff(page); |
1873 | pgoff_end = pgoff_start + hpage_nr_pages(page) - 1; | |
b9773199 KS |
1874 | if (!locked) |
1875 | i_mmap_lock_read(mapping); | |
a8fa41ad KS |
1876 | vma_interval_tree_foreach(vma, &mapping->i_mmap, |
1877 | pgoff_start, pgoff_end) { | |
e9995ef9 | 1878 | unsigned long address = vma_address(page, vma); |
0dd1c7bb | 1879 | |
ad12695f AA |
1880 | cond_resched(); |
1881 | ||
0dd1c7bb JK |
1882 | if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) |
1883 | continue; | |
1884 | ||
e4b82222 | 1885 | if (!rwc->rmap_one(page, vma, address, rwc->arg)) |
0dd1c7bb JK |
1886 | goto done; |
1887 | if (rwc->done && rwc->done(page)) | |
1888 | goto done; | |
e9995ef9 | 1889 | } |
0dd1c7bb | 1890 | |
0dd1c7bb | 1891 | done: |
b9773199 KS |
1892 | if (!locked) |
1893 | i_mmap_unlock_read(mapping); | |
e9995ef9 HD |
1894 | } |
1895 | ||
1df631ae | 1896 | void rmap_walk(struct page *page, struct rmap_walk_control *rwc) |
e9995ef9 | 1897 | { |
e9995ef9 | 1898 | if (unlikely(PageKsm(page))) |
1df631ae | 1899 | rmap_walk_ksm(page, rwc); |
e9995ef9 | 1900 | else if (PageAnon(page)) |
1df631ae | 1901 | rmap_walk_anon(page, rwc, false); |
b9773199 | 1902 | else |
1df631ae | 1903 | rmap_walk_file(page, rwc, false); |
b9773199 KS |
1904 | } |
1905 | ||
1906 | /* Like rmap_walk, but caller holds relevant rmap lock */ | |
1df631ae | 1907 | void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc) |
b9773199 KS |
1908 | { |
1909 | /* no ksm support for now */ | |
1910 | VM_BUG_ON_PAGE(PageKsm(page), page); | |
1911 | if (PageAnon(page)) | |
1df631ae | 1912 | rmap_walk_anon(page, rwc, true); |
e9995ef9 | 1913 | else |
1df631ae | 1914 | rmap_walk_file(page, rwc, true); |
e9995ef9 | 1915 | } |
0fe6e20b | 1916 | |
e3390f67 | 1917 | #ifdef CONFIG_HUGETLB_PAGE |
0fe6e20b | 1918 | /* |
451b9514 | 1919 | * The following two functions are for anonymous (private mapped) hugepages. |
0fe6e20b NH |
1920 | * Unlike common anonymous pages, anonymous hugepages have no accounting code |
1921 | * and no lru code, because we handle hugepages differently from common pages. | |
1922 | */ | |
0fe6e20b NH |
1923 | void hugepage_add_anon_rmap(struct page *page, |
1924 | struct vm_area_struct *vma, unsigned long address) | |
1925 | { | |
1926 | struct anon_vma *anon_vma = vma->anon_vma; | |
1927 | int first; | |
a850ea30 NH |
1928 | |
1929 | BUG_ON(!PageLocked(page)); | |
0fe6e20b | 1930 | BUG_ON(!anon_vma); |
5dbe0af4 | 1931 | /* address might be in next vma when migration races vma_adjust */ |
53f9263b | 1932 | first = atomic_inc_and_test(compound_mapcount_ptr(page)); |
0fe6e20b | 1933 | if (first) |
451b9514 | 1934 | __page_set_anon_rmap(page, vma, address, 0); |
0fe6e20b NH |
1935 | } |
1936 | ||
1937 | void hugepage_add_new_anon_rmap(struct page *page, | |
1938 | struct vm_area_struct *vma, unsigned long address) | |
1939 | { | |
1940 | BUG_ON(address < vma->vm_start || address >= vma->vm_end); | |
53f9263b | 1941 | atomic_set(compound_mapcount_ptr(page), 0); |
451b9514 | 1942 | __page_set_anon_rmap(page, vma, address, 1); |
0fe6e20b | 1943 | } |
e3390f67 | 1944 | #endif /* CONFIG_HUGETLB_PAGE */ |