]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * mm/rmap.c - physical to virtual reverse mappings | |
3 | * | |
4 | * Copyright 2001, Rik van Riel <[email protected]> | |
5 | * Released under the General Public License (GPL). | |
6 | * | |
7 | * Simple, low overhead reverse mapping scheme. | |
8 | * Please try to keep this thing as modular as possible. | |
9 | * | |
10 | * Provides methods for unmapping each kind of mapped page: | |
11 | * the anon methods track anonymous pages, and | |
12 | * the file methods track pages belonging to an inode. | |
13 | * | |
14 | * Original design by Rik van Riel <[email protected]> 2001 | |
15 | * File methods by Dave McCracken <[email protected]> 2003, 2004 | |
16 | * Anonymous methods by Andrea Arcangeli <[email protected]> 2004 | |
98f32602 | 17 | * Contributions by Hugh Dickins 2003, 2004 |
1da177e4 LT |
18 | */ |
19 | ||
20 | /* | |
21 | * Lock ordering in mm: | |
22 | * | |
1b1dcc1b | 23 | * inode->i_mutex (while writing or truncating, not reading or faulting) |
82591e6e NP |
24 | * inode->i_alloc_sem (vmtruncate_range) |
25 | * mm->mmap_sem | |
26 | * page->flags PG_locked (lock_page) | |
27 | * mapping->i_mmap_lock | |
28 | * anon_vma->lock | |
29 | * mm->page_table_lock or pte_lock | |
30 | * zone->lru_lock (in mark_page_accessed, isolate_lru_page) | |
31 | * swap_lock (in swap_duplicate, swap_info_get) | |
32 | * mmlist_lock (in mmput, drain_mmlist and others) | |
33 | * mapping->private_lock (in __set_page_dirty_buffers) | |
34 | * inode_lock (in set_page_dirty's __mark_inode_dirty) | |
35 | * sb_lock (within inode_lock in fs/fs-writeback.c) | |
36 | * mapping->tree_lock (widely used, in set_page_dirty, | |
37 | * in arch-dependent flush_dcache_mmap_lock, | |
38 | * within inode_lock in __sync_single_inode) | |
6a46079c AK |
39 | * |
40 | * (code doesn't rely on that order so it could be switched around) | |
41 | * ->tasklist_lock | |
42 | * anon_vma->lock (memory_failure, collect_procs_anon) | |
43 | * pte map lock | |
1da177e4 LT |
44 | */ |
45 | ||
46 | #include <linux/mm.h> | |
47 | #include <linux/pagemap.h> | |
48 | #include <linux/swap.h> | |
49 | #include <linux/swapops.h> | |
50 | #include <linux/slab.h> | |
51 | #include <linux/init.h> | |
5ad64688 | 52 | #include <linux/ksm.h> |
1da177e4 LT |
53 | #include <linux/rmap.h> |
54 | #include <linux/rcupdate.h> | |
a48d07af | 55 | #include <linux/module.h> |
8a9f3ccd | 56 | #include <linux/memcontrol.h> |
cddb8a5c | 57 | #include <linux/mmu_notifier.h> |
64cdd548 | 58 | #include <linux/migrate.h> |
0fe6e20b | 59 | #include <linux/hugetlb.h> |
1da177e4 LT |
60 | |
61 | #include <asm/tlbflush.h> | |
62 | ||
b291f000 NP |
63 | #include "internal.h" |
64 | ||
fdd2e5f8 | 65 | static struct kmem_cache *anon_vma_cachep; |
5beb4930 | 66 | static struct kmem_cache *anon_vma_chain_cachep; |
fdd2e5f8 AB |
67 | |
68 | static inline struct anon_vma *anon_vma_alloc(void) | |
69 | { | |
70 | return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); | |
71 | } | |
72 | ||
db114b83 | 73 | void anon_vma_free(struct anon_vma *anon_vma) |
fdd2e5f8 AB |
74 | { |
75 | kmem_cache_free(anon_vma_cachep, anon_vma); | |
76 | } | |
1da177e4 | 77 | |
5beb4930 RR |
78 | static inline struct anon_vma_chain *anon_vma_chain_alloc(void) |
79 | { | |
80 | return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL); | |
81 | } | |
82 | ||
e574b5fd | 83 | static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) |
5beb4930 RR |
84 | { |
85 | kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); | |
86 | } | |
87 | ||
d9d332e0 LT |
88 | /** |
89 | * anon_vma_prepare - attach an anon_vma to a memory region | |
90 | * @vma: the memory region in question | |
91 | * | |
92 | * This makes sure the memory mapping described by 'vma' has | |
93 | * an 'anon_vma' attached to it, so that we can associate the | |
94 | * anonymous pages mapped into it with that anon_vma. | |
95 | * | |
96 | * The common case will be that we already have one, but if | |
23a0790a | 97 | * not we either need to find an adjacent mapping that we |
d9d332e0 LT |
98 | * can re-use the anon_vma from (very common when the only |
99 | * reason for splitting a vma has been mprotect()), or we | |
100 | * allocate a new one. | |
101 | * | |
102 | * Anon-vma allocations are very subtle, because we may have | |
103 | * optimistically looked up an anon_vma in page_lock_anon_vma() | |
104 | * and that may actually touch the spinlock even in the newly | |
105 | * allocated vma (it depends on RCU to make sure that the | |
106 | * anon_vma isn't actually destroyed). | |
107 | * | |
108 | * As a result, we need to do proper anon_vma locking even | |
109 | * for the new allocation. At the same time, we do not want | |
110 | * to do any locking for the common case of already having | |
111 | * an anon_vma. | |
112 | * | |
113 | * This must be called with the mmap_sem held for reading. | |
114 | */ | |
1da177e4 LT |
115 | int anon_vma_prepare(struct vm_area_struct *vma) |
116 | { | |
117 | struct anon_vma *anon_vma = vma->anon_vma; | |
5beb4930 | 118 | struct anon_vma_chain *avc; |
1da177e4 LT |
119 | |
120 | might_sleep(); | |
121 | if (unlikely(!anon_vma)) { | |
122 | struct mm_struct *mm = vma->vm_mm; | |
d9d332e0 | 123 | struct anon_vma *allocated; |
1da177e4 | 124 | |
5beb4930 RR |
125 | avc = anon_vma_chain_alloc(); |
126 | if (!avc) | |
127 | goto out_enomem; | |
128 | ||
1da177e4 | 129 | anon_vma = find_mergeable_anon_vma(vma); |
d9d332e0 LT |
130 | allocated = NULL; |
131 | if (!anon_vma) { | |
1da177e4 LT |
132 | anon_vma = anon_vma_alloc(); |
133 | if (unlikely(!anon_vma)) | |
5beb4930 | 134 | goto out_enomem_free_avc; |
1da177e4 | 135 | allocated = anon_vma; |
5c341ee1 RR |
136 | /* |
137 | * This VMA had no anon_vma yet. This anon_vma is | |
138 | * the root of any anon_vma tree that might form. | |
139 | */ | |
140 | anon_vma->root = anon_vma; | |
1da177e4 LT |
141 | } |
142 | ||
cba48b98 | 143 | anon_vma_lock(anon_vma); |
1da177e4 LT |
144 | /* page_table_lock to protect against threads */ |
145 | spin_lock(&mm->page_table_lock); | |
146 | if (likely(!vma->anon_vma)) { | |
147 | vma->anon_vma = anon_vma; | |
5beb4930 RR |
148 | avc->anon_vma = anon_vma; |
149 | avc->vma = vma; | |
150 | list_add(&avc->same_vma, &vma->anon_vma_chain); | |
26ba0cb6 | 151 | list_add_tail(&avc->same_anon_vma, &anon_vma->head); |
1da177e4 | 152 | allocated = NULL; |
31f2b0eb | 153 | avc = NULL; |
1da177e4 LT |
154 | } |
155 | spin_unlock(&mm->page_table_lock); | |
cba48b98 | 156 | anon_vma_unlock(anon_vma); |
31f2b0eb ON |
157 | |
158 | if (unlikely(allocated)) | |
1da177e4 | 159 | anon_vma_free(allocated); |
31f2b0eb | 160 | if (unlikely(avc)) |
5beb4930 | 161 | anon_vma_chain_free(avc); |
1da177e4 LT |
162 | } |
163 | return 0; | |
5beb4930 RR |
164 | |
165 | out_enomem_free_avc: | |
166 | anon_vma_chain_free(avc); | |
167 | out_enomem: | |
168 | return -ENOMEM; | |
1da177e4 LT |
169 | } |
170 | ||
5beb4930 RR |
171 | static void anon_vma_chain_link(struct vm_area_struct *vma, |
172 | struct anon_vma_chain *avc, | |
173 | struct anon_vma *anon_vma) | |
1da177e4 | 174 | { |
5beb4930 RR |
175 | avc->vma = vma; |
176 | avc->anon_vma = anon_vma; | |
177 | list_add(&avc->same_vma, &vma->anon_vma_chain); | |
178 | ||
cba48b98 | 179 | anon_vma_lock(anon_vma); |
05759d38 AA |
180 | /* |
181 | * It's critical to add new vmas to the tail of the anon_vma, | |
182 | * see comment in huge_memory.c:__split_huge_page(). | |
183 | */ | |
5beb4930 | 184 | list_add_tail(&avc->same_anon_vma, &anon_vma->head); |
cba48b98 | 185 | anon_vma_unlock(anon_vma); |
1da177e4 LT |
186 | } |
187 | ||
5beb4930 RR |
188 | /* |
189 | * Attach the anon_vmas from src to dst. | |
190 | * Returns 0 on success, -ENOMEM on failure. | |
191 | */ | |
192 | int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) | |
1da177e4 | 193 | { |
5beb4930 RR |
194 | struct anon_vma_chain *avc, *pavc; |
195 | ||
646d87b4 | 196 | list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { |
5beb4930 RR |
197 | avc = anon_vma_chain_alloc(); |
198 | if (!avc) | |
199 | goto enomem_failure; | |
200 | anon_vma_chain_link(dst, avc, pavc->anon_vma); | |
201 | } | |
202 | return 0; | |
1da177e4 | 203 | |
5beb4930 RR |
204 | enomem_failure: |
205 | unlink_anon_vmas(dst); | |
206 | return -ENOMEM; | |
1da177e4 LT |
207 | } |
208 | ||
5beb4930 RR |
209 | /* |
210 | * Attach vma to its own anon_vma, as well as to the anon_vmas that | |
211 | * the corresponding VMA in the parent process is attached to. | |
212 | * Returns 0 on success, non-zero on failure. | |
213 | */ | |
214 | int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) | |
1da177e4 | 215 | { |
5beb4930 RR |
216 | struct anon_vma_chain *avc; |
217 | struct anon_vma *anon_vma; | |
1da177e4 | 218 | |
5beb4930 RR |
219 | /* Don't bother if the parent process has no anon_vma here. */ |
220 | if (!pvma->anon_vma) | |
221 | return 0; | |
222 | ||
223 | /* | |
224 | * First, attach the new VMA to the parent VMA's anon_vmas, | |
225 | * so rmap can find non-COWed pages in child processes. | |
226 | */ | |
227 | if (anon_vma_clone(vma, pvma)) | |
228 | return -ENOMEM; | |
229 | ||
230 | /* Then add our own anon_vma. */ | |
231 | anon_vma = anon_vma_alloc(); | |
232 | if (!anon_vma) | |
233 | goto out_error; | |
234 | avc = anon_vma_chain_alloc(); | |
235 | if (!avc) | |
236 | goto out_error_free_anon_vma; | |
5c341ee1 RR |
237 | |
238 | /* | |
239 | * The root anon_vma's spinlock is the lock actually used when we | |
240 | * lock any of the anon_vmas in this anon_vma tree. | |
241 | */ | |
242 | anon_vma->root = pvma->anon_vma->root; | |
76545066 RR |
243 | /* |
244 | * With KSM refcounts, an anon_vma can stay around longer than the | |
245 | * process it belongs to. The root anon_vma needs to be pinned | |
246 | * until this anon_vma is freed, because the lock lives in the root. | |
247 | */ | |
248 | get_anon_vma(anon_vma->root); | |
5beb4930 RR |
249 | /* Mark this anon_vma as the one where our new (COWed) pages go. */ |
250 | vma->anon_vma = anon_vma; | |
5c341ee1 | 251 | anon_vma_chain_link(vma, avc, anon_vma); |
5beb4930 RR |
252 | |
253 | return 0; | |
254 | ||
255 | out_error_free_anon_vma: | |
256 | anon_vma_free(anon_vma); | |
257 | out_error: | |
4946d54c | 258 | unlink_anon_vmas(vma); |
5beb4930 | 259 | return -ENOMEM; |
1da177e4 LT |
260 | } |
261 | ||
5beb4930 | 262 | static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain) |
1da177e4 | 263 | { |
5beb4930 | 264 | struct anon_vma *anon_vma = anon_vma_chain->anon_vma; |
1da177e4 LT |
265 | int empty; |
266 | ||
5beb4930 | 267 | /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */ |
1da177e4 LT |
268 | if (!anon_vma) |
269 | return; | |
270 | ||
cba48b98 | 271 | anon_vma_lock(anon_vma); |
5beb4930 | 272 | list_del(&anon_vma_chain->same_anon_vma); |
1da177e4 LT |
273 | |
274 | /* We must garbage collect the anon_vma if it's empty */ | |
83813267 | 275 | empty = list_empty(&anon_vma->head) && !atomic_read(&anon_vma->refcount); |
cba48b98 | 276 | anon_vma_unlock(anon_vma); |
1da177e4 | 277 | |
76545066 RR |
278 | if (empty) { |
279 | /* We no longer need the root anon_vma */ | |
280 | if (anon_vma->root != anon_vma) | |
9e60109f | 281 | put_anon_vma(anon_vma->root); |
1da177e4 | 282 | anon_vma_free(anon_vma); |
76545066 | 283 | } |
1da177e4 LT |
284 | } |
285 | ||
5beb4930 RR |
286 | void unlink_anon_vmas(struct vm_area_struct *vma) |
287 | { | |
288 | struct anon_vma_chain *avc, *next; | |
289 | ||
5c341ee1 RR |
290 | /* |
291 | * Unlink each anon_vma chained to the VMA. This list is ordered | |
292 | * from newest to oldest, ensuring the root anon_vma gets freed last. | |
293 | */ | |
5beb4930 RR |
294 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { |
295 | anon_vma_unlink(avc); | |
296 | list_del(&avc->same_vma); | |
297 | anon_vma_chain_free(avc); | |
298 | } | |
299 | } | |
300 | ||
51cc5068 | 301 | static void anon_vma_ctor(void *data) |
1da177e4 | 302 | { |
a35afb83 | 303 | struct anon_vma *anon_vma = data; |
1da177e4 | 304 | |
a35afb83 | 305 | spin_lock_init(&anon_vma->lock); |
83813267 | 306 | atomic_set(&anon_vma->refcount, 0); |
a35afb83 | 307 | INIT_LIST_HEAD(&anon_vma->head); |
1da177e4 LT |
308 | } |
309 | ||
310 | void __init anon_vma_init(void) | |
311 | { | |
312 | anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), | |
20c2df83 | 313 | 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); |
5beb4930 | 314 | anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC); |
1da177e4 LT |
315 | } |
316 | ||
317 | /* | |
318 | * Getting a lock on a stable anon_vma from a page off the LRU is | |
319 | * tricky: page_lock_anon_vma rely on RCU to guard against the races. | |
320 | */ | |
ea4525b6 | 321 | struct anon_vma *__page_lock_anon_vma(struct page *page) |
1da177e4 | 322 | { |
f1819427 | 323 | struct anon_vma *anon_vma, *root_anon_vma; |
1da177e4 LT |
324 | unsigned long anon_mapping; |
325 | ||
326 | rcu_read_lock(); | |
80e14822 | 327 | anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); |
3ca7b3c5 | 328 | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) |
1da177e4 LT |
329 | goto out; |
330 | if (!page_mapped(page)) | |
331 | goto out; | |
332 | ||
333 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | |
f1819427 HD |
334 | root_anon_vma = ACCESS_ONCE(anon_vma->root); |
335 | spin_lock(&root_anon_vma->lock); | |
336 | ||
337 | /* | |
338 | * If this page is still mapped, then its anon_vma cannot have been | |
339 | * freed. But if it has been unmapped, we have no security against | |
340 | * the anon_vma structure being freed and reused (for another anon_vma: | |
341 | * SLAB_DESTROY_BY_RCU guarantees that - so the spin_lock above cannot | |
342 | * corrupt): with anon_vma_prepare() or anon_vma_fork() redirecting | |
343 | * anon_vma->root before page_unlock_anon_vma() is called to unlock. | |
344 | */ | |
345 | if (page_mapped(page)) | |
346 | return anon_vma; | |
347 | ||
348 | spin_unlock(&root_anon_vma->lock); | |
1da177e4 LT |
349 | out: |
350 | rcu_read_unlock(); | |
34bbd704 ON |
351 | return NULL; |
352 | } | |
353 | ||
10be22df | 354 | void page_unlock_anon_vma(struct anon_vma *anon_vma) |
ea4525b6 NK |
355 | __releases(&anon_vma->root->lock) |
356 | __releases(RCU) | |
34bbd704 | 357 | { |
cba48b98 | 358 | anon_vma_unlock(anon_vma); |
34bbd704 | 359 | rcu_read_unlock(); |
1da177e4 LT |
360 | } |
361 | ||
362 | /* | |
3ad33b24 LS |
363 | * At what user virtual address is page expected in @vma? |
364 | * Returns virtual address or -EFAULT if page's index/offset is not | |
365 | * within the range mapped the @vma. | |
1da177e4 | 366 | */ |
71e3aac0 | 367 | inline unsigned long |
1da177e4 LT |
368 | vma_address(struct page *page, struct vm_area_struct *vma) |
369 | { | |
370 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
371 | unsigned long address; | |
372 | ||
0fe6e20b NH |
373 | if (unlikely(is_vm_hugetlb_page(vma))) |
374 | pgoff = page->index << huge_page_order(page_hstate(page)); | |
1da177e4 LT |
375 | address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); |
376 | if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { | |
3ad33b24 | 377 | /* page should be within @vma mapping range */ |
1da177e4 LT |
378 | return -EFAULT; |
379 | } | |
380 | return address; | |
381 | } | |
382 | ||
383 | /* | |
bf89c8c8 | 384 | * At what user virtual address is page expected in vma? |
ab941e0f | 385 | * Caller should check the page is actually part of the vma. |
1da177e4 LT |
386 | */ |
387 | unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) | |
388 | { | |
21d0d443 | 389 | if (PageAnon(page)) { |
4829b906 HD |
390 | struct anon_vma *page__anon_vma = page_anon_vma(page); |
391 | /* | |
392 | * Note: swapoff's unuse_vma() is more efficient with this | |
393 | * check, and needs it to match anon_vma when KSM is active. | |
394 | */ | |
395 | if (!vma->anon_vma || !page__anon_vma || | |
396 | vma->anon_vma->root != page__anon_vma->root) | |
21d0d443 AA |
397 | return -EFAULT; |
398 | } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { | |
ee498ed7 HD |
399 | if (!vma->vm_file || |
400 | vma->vm_file->f_mapping != page->mapping) | |
1da177e4 LT |
401 | return -EFAULT; |
402 | } else | |
403 | return -EFAULT; | |
404 | return vma_address(page, vma); | |
405 | } | |
406 | ||
81b4082d ND |
407 | /* |
408 | * Check that @page is mapped at @address into @mm. | |
409 | * | |
479db0bf NP |
410 | * If @sync is false, page_check_address may perform a racy check to avoid |
411 | * the page table lock when the pte is not present (helpful when reclaiming | |
412 | * highly shared pages). | |
413 | * | |
b8072f09 | 414 | * On success returns with pte mapped and locked. |
81b4082d | 415 | */ |
e9a81a82 | 416 | pte_t *__page_check_address(struct page *page, struct mm_struct *mm, |
479db0bf | 417 | unsigned long address, spinlock_t **ptlp, int sync) |
81b4082d ND |
418 | { |
419 | pgd_t *pgd; | |
420 | pud_t *pud; | |
421 | pmd_t *pmd; | |
422 | pte_t *pte; | |
c0718806 | 423 | spinlock_t *ptl; |
81b4082d | 424 | |
0fe6e20b NH |
425 | if (unlikely(PageHuge(page))) { |
426 | pte = huge_pte_offset(mm, address); | |
427 | ptl = &mm->page_table_lock; | |
428 | goto check; | |
429 | } | |
430 | ||
81b4082d | 431 | pgd = pgd_offset(mm, address); |
c0718806 HD |
432 | if (!pgd_present(*pgd)) |
433 | return NULL; | |
434 | ||
435 | pud = pud_offset(pgd, address); | |
436 | if (!pud_present(*pud)) | |
437 | return NULL; | |
438 | ||
439 | pmd = pmd_offset(pud, address); | |
440 | if (!pmd_present(*pmd)) | |
441 | return NULL; | |
71e3aac0 AA |
442 | if (pmd_trans_huge(*pmd)) |
443 | return NULL; | |
c0718806 HD |
444 | |
445 | pte = pte_offset_map(pmd, address); | |
446 | /* Make a quick check before getting the lock */ | |
479db0bf | 447 | if (!sync && !pte_present(*pte)) { |
c0718806 HD |
448 | pte_unmap(pte); |
449 | return NULL; | |
450 | } | |
451 | ||
4c21e2f2 | 452 | ptl = pte_lockptr(mm, pmd); |
0fe6e20b | 453 | check: |
c0718806 HD |
454 | spin_lock(ptl); |
455 | if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { | |
456 | *ptlp = ptl; | |
457 | return pte; | |
81b4082d | 458 | } |
c0718806 HD |
459 | pte_unmap_unlock(pte, ptl); |
460 | return NULL; | |
81b4082d ND |
461 | } |
462 | ||
b291f000 NP |
463 | /** |
464 | * page_mapped_in_vma - check whether a page is really mapped in a VMA | |
465 | * @page: the page to test | |
466 | * @vma: the VMA to test | |
467 | * | |
468 | * Returns 1 if the page is mapped into the page tables of the VMA, 0 | |
469 | * if the page is not mapped into the page tables of this VMA. Only | |
470 | * valid for normal file or anonymous VMAs. | |
471 | */ | |
6a46079c | 472 | int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) |
b291f000 NP |
473 | { |
474 | unsigned long address; | |
475 | pte_t *pte; | |
476 | spinlock_t *ptl; | |
477 | ||
478 | address = vma_address(page, vma); | |
479 | if (address == -EFAULT) /* out of vma range */ | |
480 | return 0; | |
481 | pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); | |
482 | if (!pte) /* the page is not in this mm */ | |
483 | return 0; | |
484 | pte_unmap_unlock(pte, ptl); | |
485 | ||
486 | return 1; | |
487 | } | |
488 | ||
1da177e4 LT |
489 | /* |
490 | * Subfunctions of page_referenced: page_referenced_one called | |
491 | * repeatedly from either page_referenced_anon or page_referenced_file. | |
492 | */ | |
5ad64688 HD |
493 | int page_referenced_one(struct page *page, struct vm_area_struct *vma, |
494 | unsigned long address, unsigned int *mapcount, | |
495 | unsigned long *vm_flags) | |
1da177e4 LT |
496 | { |
497 | struct mm_struct *mm = vma->vm_mm; | |
1da177e4 LT |
498 | int referenced = 0; |
499 | ||
71e3aac0 AA |
500 | if (unlikely(PageTransHuge(page))) { |
501 | pmd_t *pmd; | |
502 | ||
503 | spin_lock(&mm->page_table_lock); | |
2da28bfd AA |
504 | /* |
505 | * rmap might return false positives; we must filter | |
506 | * these out using page_check_address_pmd(). | |
507 | */ | |
71e3aac0 AA |
508 | pmd = page_check_address_pmd(page, mm, address, |
509 | PAGE_CHECK_ADDRESS_PMD_FLAG); | |
2da28bfd AA |
510 | if (!pmd) { |
511 | spin_unlock(&mm->page_table_lock); | |
512 | goto out; | |
513 | } | |
514 | ||
515 | if (vma->vm_flags & VM_LOCKED) { | |
516 | spin_unlock(&mm->page_table_lock); | |
517 | *mapcount = 0; /* break early from loop */ | |
518 | *vm_flags |= VM_LOCKED; | |
519 | goto out; | |
520 | } | |
521 | ||
522 | /* go ahead even if the pmd is pmd_trans_splitting() */ | |
523 | if (pmdp_clear_flush_young_notify(vma, address, pmd)) | |
71e3aac0 AA |
524 | referenced++; |
525 | spin_unlock(&mm->page_table_lock); | |
526 | } else { | |
527 | pte_t *pte; | |
528 | spinlock_t *ptl; | |
529 | ||
2da28bfd AA |
530 | /* |
531 | * rmap might return false positives; we must filter | |
532 | * these out using page_check_address(). | |
533 | */ | |
71e3aac0 AA |
534 | pte = page_check_address(page, mm, address, &ptl, 0); |
535 | if (!pte) | |
536 | goto out; | |
537 | ||
2da28bfd AA |
538 | if (vma->vm_flags & VM_LOCKED) { |
539 | pte_unmap_unlock(pte, ptl); | |
540 | *mapcount = 0; /* break early from loop */ | |
541 | *vm_flags |= VM_LOCKED; | |
542 | goto out; | |
543 | } | |
544 | ||
71e3aac0 AA |
545 | if (ptep_clear_flush_young_notify(vma, address, pte)) { |
546 | /* | |
547 | * Don't treat a reference through a sequentially read | |
548 | * mapping as such. If the page has been used in | |
549 | * another mapping, we will catch it; if this other | |
550 | * mapping is already gone, the unmap path will have | |
551 | * set PG_referenced or activated the page. | |
552 | */ | |
553 | if (likely(!VM_SequentialReadHint(vma))) | |
554 | referenced++; | |
555 | } | |
556 | pte_unmap_unlock(pte, ptl); | |
557 | } | |
558 | ||
2da28bfd AA |
559 | /* Pretend the page is referenced if the task has the |
560 | swap token and is in the middle of a page fault. */ | |
561 | if (mm != current->mm && has_swap_token(mm) && | |
562 | rwsem_is_locked(&mm->mmap_sem)) | |
563 | referenced++; | |
564 | ||
c0718806 | 565 | (*mapcount)--; |
273f047e | 566 | |
6fe6b7e3 WF |
567 | if (referenced) |
568 | *vm_flags |= vma->vm_flags; | |
273f047e | 569 | out: |
1da177e4 LT |
570 | return referenced; |
571 | } | |
572 | ||
bed7161a | 573 | static int page_referenced_anon(struct page *page, |
6fe6b7e3 WF |
574 | struct mem_cgroup *mem_cont, |
575 | unsigned long *vm_flags) | |
1da177e4 LT |
576 | { |
577 | unsigned int mapcount; | |
578 | struct anon_vma *anon_vma; | |
5beb4930 | 579 | struct anon_vma_chain *avc; |
1da177e4 LT |
580 | int referenced = 0; |
581 | ||
582 | anon_vma = page_lock_anon_vma(page); | |
583 | if (!anon_vma) | |
584 | return referenced; | |
585 | ||
586 | mapcount = page_mapcount(page); | |
5beb4930 RR |
587 | list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { |
588 | struct vm_area_struct *vma = avc->vma; | |
1cb1729b HD |
589 | unsigned long address = vma_address(page, vma); |
590 | if (address == -EFAULT) | |
591 | continue; | |
bed7161a BS |
592 | /* |
593 | * If we are reclaiming on behalf of a cgroup, skip | |
594 | * counting on behalf of references from different | |
595 | * cgroups | |
596 | */ | |
bd845e38 | 597 | if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) |
bed7161a | 598 | continue; |
1cb1729b | 599 | referenced += page_referenced_one(page, vma, address, |
6fe6b7e3 | 600 | &mapcount, vm_flags); |
1da177e4 LT |
601 | if (!mapcount) |
602 | break; | |
603 | } | |
34bbd704 ON |
604 | |
605 | page_unlock_anon_vma(anon_vma); | |
1da177e4 LT |
606 | return referenced; |
607 | } | |
608 | ||
609 | /** | |
610 | * page_referenced_file - referenced check for object-based rmap | |
611 | * @page: the page we're checking references on. | |
43d8eac4 | 612 | * @mem_cont: target memory controller |
6fe6b7e3 | 613 | * @vm_flags: collect encountered vma->vm_flags who actually referenced the page |
1da177e4 LT |
614 | * |
615 | * For an object-based mapped page, find all the places it is mapped and | |
616 | * check/clear the referenced flag. This is done by following the page->mapping | |
617 | * pointer, then walking the chain of vmas it holds. It returns the number | |
618 | * of references it found. | |
619 | * | |
620 | * This function is only called from page_referenced for object-based pages. | |
621 | */ | |
bed7161a | 622 | static int page_referenced_file(struct page *page, |
6fe6b7e3 WF |
623 | struct mem_cgroup *mem_cont, |
624 | unsigned long *vm_flags) | |
1da177e4 LT |
625 | { |
626 | unsigned int mapcount; | |
627 | struct address_space *mapping = page->mapping; | |
628 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
629 | struct vm_area_struct *vma; | |
630 | struct prio_tree_iter iter; | |
631 | int referenced = 0; | |
632 | ||
633 | /* | |
634 | * The caller's checks on page->mapping and !PageAnon have made | |
635 | * sure that this is a file page: the check for page->mapping | |
636 | * excludes the case just before it gets set on an anon page. | |
637 | */ | |
638 | BUG_ON(PageAnon(page)); | |
639 | ||
640 | /* | |
641 | * The page lock not only makes sure that page->mapping cannot | |
642 | * suddenly be NULLified by truncation, it makes sure that the | |
643 | * structure at mapping cannot be freed and reused yet, | |
644 | * so we can safely take mapping->i_mmap_lock. | |
645 | */ | |
646 | BUG_ON(!PageLocked(page)); | |
647 | ||
648 | spin_lock(&mapping->i_mmap_lock); | |
649 | ||
650 | /* | |
651 | * i_mmap_lock does not stabilize mapcount at all, but mapcount | |
652 | * is more likely to be accurate if we note it after spinning. | |
653 | */ | |
654 | mapcount = page_mapcount(page); | |
655 | ||
656 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | |
1cb1729b HD |
657 | unsigned long address = vma_address(page, vma); |
658 | if (address == -EFAULT) | |
659 | continue; | |
bed7161a BS |
660 | /* |
661 | * If we are reclaiming on behalf of a cgroup, skip | |
662 | * counting on behalf of references from different | |
663 | * cgroups | |
664 | */ | |
bd845e38 | 665 | if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) |
bed7161a | 666 | continue; |
1cb1729b | 667 | referenced += page_referenced_one(page, vma, address, |
6fe6b7e3 | 668 | &mapcount, vm_flags); |
1da177e4 LT |
669 | if (!mapcount) |
670 | break; | |
671 | } | |
672 | ||
673 | spin_unlock(&mapping->i_mmap_lock); | |
674 | return referenced; | |
675 | } | |
676 | ||
677 | /** | |
678 | * page_referenced - test if the page was referenced | |
679 | * @page: the page to test | |
680 | * @is_locked: caller holds lock on the page | |
43d8eac4 | 681 | * @mem_cont: target memory controller |
6fe6b7e3 | 682 | * @vm_flags: collect encountered vma->vm_flags who actually referenced the page |
1da177e4 LT |
683 | * |
684 | * Quick test_and_clear_referenced for all mappings to a page, | |
685 | * returns the number of ptes which referenced the page. | |
686 | */ | |
6fe6b7e3 WF |
687 | int page_referenced(struct page *page, |
688 | int is_locked, | |
689 | struct mem_cgroup *mem_cont, | |
690 | unsigned long *vm_flags) | |
1da177e4 LT |
691 | { |
692 | int referenced = 0; | |
5ad64688 | 693 | int we_locked = 0; |
1da177e4 | 694 | |
6fe6b7e3 | 695 | *vm_flags = 0; |
3ca7b3c5 | 696 | if (page_mapped(page) && page_rmapping(page)) { |
5ad64688 HD |
697 | if (!is_locked && (!PageAnon(page) || PageKsm(page))) { |
698 | we_locked = trylock_page(page); | |
699 | if (!we_locked) { | |
700 | referenced++; | |
701 | goto out; | |
702 | } | |
703 | } | |
704 | if (unlikely(PageKsm(page))) | |
705 | referenced += page_referenced_ksm(page, mem_cont, | |
706 | vm_flags); | |
707 | else if (PageAnon(page)) | |
6fe6b7e3 WF |
708 | referenced += page_referenced_anon(page, mem_cont, |
709 | vm_flags); | |
5ad64688 | 710 | else if (page->mapping) |
6fe6b7e3 WF |
711 | referenced += page_referenced_file(page, mem_cont, |
712 | vm_flags); | |
5ad64688 | 713 | if (we_locked) |
1da177e4 | 714 | unlock_page(page); |
1da177e4 | 715 | } |
5ad64688 | 716 | out: |
5b7baf05 CB |
717 | if (page_test_and_clear_young(page)) |
718 | referenced++; | |
719 | ||
1da177e4 LT |
720 | return referenced; |
721 | } | |
722 | ||
1cb1729b HD |
723 | static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, |
724 | unsigned long address) | |
d08b3851 PZ |
725 | { |
726 | struct mm_struct *mm = vma->vm_mm; | |
c2fda5fe | 727 | pte_t *pte; |
d08b3851 PZ |
728 | spinlock_t *ptl; |
729 | int ret = 0; | |
730 | ||
479db0bf | 731 | pte = page_check_address(page, mm, address, &ptl, 1); |
d08b3851 PZ |
732 | if (!pte) |
733 | goto out; | |
734 | ||
c2fda5fe PZ |
735 | if (pte_dirty(*pte) || pte_write(*pte)) { |
736 | pte_t entry; | |
d08b3851 | 737 | |
c2fda5fe | 738 | flush_cache_page(vma, address, pte_pfn(*pte)); |
cddb8a5c | 739 | entry = ptep_clear_flush_notify(vma, address, pte); |
c2fda5fe PZ |
740 | entry = pte_wrprotect(entry); |
741 | entry = pte_mkclean(entry); | |
d6e88e67 | 742 | set_pte_at(mm, address, pte, entry); |
c2fda5fe PZ |
743 | ret = 1; |
744 | } | |
d08b3851 | 745 | |
d08b3851 PZ |
746 | pte_unmap_unlock(pte, ptl); |
747 | out: | |
748 | return ret; | |
749 | } | |
750 | ||
751 | static int page_mkclean_file(struct address_space *mapping, struct page *page) | |
752 | { | |
753 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
754 | struct vm_area_struct *vma; | |
755 | struct prio_tree_iter iter; | |
756 | int ret = 0; | |
757 | ||
758 | BUG_ON(PageAnon(page)); | |
759 | ||
760 | spin_lock(&mapping->i_mmap_lock); | |
761 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | |
1cb1729b HD |
762 | if (vma->vm_flags & VM_SHARED) { |
763 | unsigned long address = vma_address(page, vma); | |
764 | if (address == -EFAULT) | |
765 | continue; | |
766 | ret += page_mkclean_one(page, vma, address); | |
767 | } | |
d08b3851 PZ |
768 | } |
769 | spin_unlock(&mapping->i_mmap_lock); | |
770 | return ret; | |
771 | } | |
772 | ||
773 | int page_mkclean(struct page *page) | |
774 | { | |
775 | int ret = 0; | |
776 | ||
777 | BUG_ON(!PageLocked(page)); | |
778 | ||
779 | if (page_mapped(page)) { | |
780 | struct address_space *mapping = page_mapping(page); | |
ce7e9fae | 781 | if (mapping) { |
d08b3851 | 782 | ret = page_mkclean_file(mapping, page); |
ce7e9fae | 783 | if (page_test_dirty(page)) { |
e2b8d7af | 784 | page_clear_dirty(page, 1); |
ce7e9fae CB |
785 | ret = 1; |
786 | } | |
6c210482 | 787 | } |
d08b3851 PZ |
788 | } |
789 | ||
790 | return ret; | |
791 | } | |
60b59bea | 792 | EXPORT_SYMBOL_GPL(page_mkclean); |
d08b3851 | 793 | |
c44b6743 RR |
794 | /** |
795 | * page_move_anon_rmap - move a page to our anon_vma | |
796 | * @page: the page to move to our anon_vma | |
797 | * @vma: the vma the page belongs to | |
798 | * @address: the user virtual address mapped | |
799 | * | |
800 | * When a page belongs exclusively to one process after a COW event, | |
801 | * that page can be moved into the anon_vma that belongs to just that | |
802 | * process, so the rmap code will not search the parent or sibling | |
803 | * processes. | |
804 | */ | |
805 | void page_move_anon_rmap(struct page *page, | |
806 | struct vm_area_struct *vma, unsigned long address) | |
807 | { | |
808 | struct anon_vma *anon_vma = vma->anon_vma; | |
809 | ||
810 | VM_BUG_ON(!PageLocked(page)); | |
811 | VM_BUG_ON(!anon_vma); | |
812 | VM_BUG_ON(page->index != linear_page_index(vma, address)); | |
813 | ||
814 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | |
815 | page->mapping = (struct address_space *) anon_vma; | |
816 | } | |
817 | ||
9617d95e | 818 | /** |
4e1c1975 AK |
819 | * __page_set_anon_rmap - set up new anonymous rmap |
820 | * @page: Page to add to rmap | |
821 | * @vma: VM area to add page to. | |
822 | * @address: User virtual address of the mapping | |
e8a03feb | 823 | * @exclusive: the page is exclusively owned by the current process |
9617d95e NP |
824 | */ |
825 | static void __page_set_anon_rmap(struct page *page, | |
e8a03feb | 826 | struct vm_area_struct *vma, unsigned long address, int exclusive) |
9617d95e | 827 | { |
e8a03feb | 828 | struct anon_vma *anon_vma = vma->anon_vma; |
ea90002b | 829 | |
e8a03feb | 830 | BUG_ON(!anon_vma); |
ea90002b | 831 | |
4e1c1975 AK |
832 | if (PageAnon(page)) |
833 | return; | |
834 | ||
ea90002b | 835 | /* |
e8a03feb RR |
836 | * If the page isn't exclusively mapped into this vma, |
837 | * we must use the _oldest_ possible anon_vma for the | |
838 | * page mapping! | |
ea90002b | 839 | */ |
4e1c1975 | 840 | if (!exclusive) |
288468c3 | 841 | anon_vma = anon_vma->root; |
9617d95e | 842 | |
9617d95e NP |
843 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; |
844 | page->mapping = (struct address_space *) anon_vma; | |
9617d95e | 845 | page->index = linear_page_index(vma, address); |
9617d95e NP |
846 | } |
847 | ||
c97a9e10 | 848 | /** |
43d8eac4 | 849 | * __page_check_anon_rmap - sanity check anonymous rmap addition |
c97a9e10 NP |
850 | * @page: the page to add the mapping to |
851 | * @vma: the vm area in which the mapping is added | |
852 | * @address: the user virtual address mapped | |
853 | */ | |
854 | static void __page_check_anon_rmap(struct page *page, | |
855 | struct vm_area_struct *vma, unsigned long address) | |
856 | { | |
857 | #ifdef CONFIG_DEBUG_VM | |
858 | /* | |
859 | * The page's anon-rmap details (mapping and index) are guaranteed to | |
860 | * be set up correctly at this point. | |
861 | * | |
862 | * We have exclusion against page_add_anon_rmap because the caller | |
863 | * always holds the page locked, except if called from page_dup_rmap, | |
864 | * in which case the page is already known to be setup. | |
865 | * | |
866 | * We have exclusion against page_add_new_anon_rmap because those pages | |
867 | * are initially only visible via the pagetables, and the pte is locked | |
868 | * over the call to page_add_new_anon_rmap. | |
869 | */ | |
44ab57a0 | 870 | BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); |
c97a9e10 NP |
871 | BUG_ON(page->index != linear_page_index(vma, address)); |
872 | #endif | |
873 | } | |
874 | ||
1da177e4 LT |
875 | /** |
876 | * page_add_anon_rmap - add pte mapping to an anonymous page | |
877 | * @page: the page to add the mapping to | |
878 | * @vma: the vm area in which the mapping is added | |
879 | * @address: the user virtual address mapped | |
880 | * | |
5ad64688 | 881 | * The caller needs to hold the pte lock, and the page must be locked in |
80e14822 HD |
882 | * the anon_vma case: to serialize mapping,index checking after setting, |
883 | * and to ensure that PageAnon is not being upgraded racily to PageKsm | |
884 | * (but PageKsm is never downgraded to PageAnon). | |
1da177e4 LT |
885 | */ |
886 | void page_add_anon_rmap(struct page *page, | |
887 | struct vm_area_struct *vma, unsigned long address) | |
ad8c2ee8 RR |
888 | { |
889 | do_page_add_anon_rmap(page, vma, address, 0); | |
890 | } | |
891 | ||
892 | /* | |
893 | * Special version of the above for do_swap_page, which often runs | |
894 | * into pages that are exclusively owned by the current process. | |
895 | * Everybody else should continue to use page_add_anon_rmap above. | |
896 | */ | |
897 | void do_page_add_anon_rmap(struct page *page, | |
898 | struct vm_area_struct *vma, unsigned long address, int exclusive) | |
1da177e4 | 899 | { |
5ad64688 | 900 | int first = atomic_inc_and_test(&page->_mapcount); |
79134171 AA |
901 | if (first) { |
902 | if (!PageTransHuge(page)) | |
903 | __inc_zone_page_state(page, NR_ANON_PAGES); | |
904 | else | |
905 | __inc_zone_page_state(page, | |
906 | NR_ANON_TRANSPARENT_HUGEPAGES); | |
907 | } | |
5ad64688 HD |
908 | if (unlikely(PageKsm(page))) |
909 | return; | |
910 | ||
c97a9e10 NP |
911 | VM_BUG_ON(!PageLocked(page)); |
912 | VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); | |
5ad64688 | 913 | if (first) |
ad8c2ee8 | 914 | __page_set_anon_rmap(page, vma, address, exclusive); |
69029cd5 | 915 | else |
c97a9e10 | 916 | __page_check_anon_rmap(page, vma, address); |
1da177e4 LT |
917 | } |
918 | ||
43d8eac4 | 919 | /** |
9617d95e NP |
920 | * page_add_new_anon_rmap - add pte mapping to a new anonymous page |
921 | * @page: the page to add the mapping to | |
922 | * @vma: the vm area in which the mapping is added | |
923 | * @address: the user virtual address mapped | |
924 | * | |
925 | * Same as page_add_anon_rmap but must only be called on *new* pages. | |
926 | * This means the inc-and-test can be bypassed. | |
c97a9e10 | 927 | * Page does not have to be locked. |
9617d95e NP |
928 | */ |
929 | void page_add_new_anon_rmap(struct page *page, | |
930 | struct vm_area_struct *vma, unsigned long address) | |
931 | { | |
b5934c53 | 932 | VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); |
cbf84b7a HD |
933 | SetPageSwapBacked(page); |
934 | atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */ | |
79134171 AA |
935 | if (!PageTransHuge(page)) |
936 | __inc_zone_page_state(page, NR_ANON_PAGES); | |
937 | else | |
938 | __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); | |
e8a03feb | 939 | __page_set_anon_rmap(page, vma, address, 1); |
b5934c53 | 940 | if (page_evictable(page, vma)) |
cbf84b7a | 941 | lru_cache_add_lru(page, LRU_ACTIVE_ANON); |
b5934c53 HD |
942 | else |
943 | add_page_to_unevictable_list(page); | |
9617d95e NP |
944 | } |
945 | ||
1da177e4 LT |
946 | /** |
947 | * page_add_file_rmap - add pte mapping to a file page | |
948 | * @page: the page to add the mapping to | |
949 | * | |
b8072f09 | 950 | * The caller needs to hold the pte lock. |
1da177e4 LT |
951 | */ |
952 | void page_add_file_rmap(struct page *page) | |
953 | { | |
d69b042f | 954 | if (atomic_inc_and_test(&page->_mapcount)) { |
65ba55f5 | 955 | __inc_zone_page_state(page, NR_FILE_MAPPED); |
2a7106f2 | 956 | mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED); |
d69b042f | 957 | } |
1da177e4 LT |
958 | } |
959 | ||
960 | /** | |
961 | * page_remove_rmap - take down pte mapping from a page | |
962 | * @page: page to remove mapping from | |
963 | * | |
b8072f09 | 964 | * The caller needs to hold the pte lock. |
1da177e4 | 965 | */ |
edc315fd | 966 | void page_remove_rmap(struct page *page) |
1da177e4 | 967 | { |
b904dcfe KM |
968 | /* page still mapped by someone else? */ |
969 | if (!atomic_add_negative(-1, &page->_mapcount)) | |
970 | return; | |
971 | ||
972 | /* | |
973 | * Now that the last pte has gone, s390 must transfer dirty | |
974 | * flag from storage key to struct page. We can usually skip | |
975 | * this if the page is anon, so about to be freed; but perhaps | |
976 | * not if it's in swapcache - there might be another pte slot | |
977 | * containing the swap entry, but page not yet written to swap. | |
978 | */ | |
979 | if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) { | |
e2b8d7af | 980 | page_clear_dirty(page, 1); |
b904dcfe | 981 | set_page_dirty(page); |
1da177e4 | 982 | } |
0fe6e20b NH |
983 | /* |
984 | * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED | |
985 | * and not charged by memcg for now. | |
986 | */ | |
987 | if (unlikely(PageHuge(page))) | |
988 | return; | |
b904dcfe KM |
989 | if (PageAnon(page)) { |
990 | mem_cgroup_uncharge_page(page); | |
79134171 AA |
991 | if (!PageTransHuge(page)) |
992 | __dec_zone_page_state(page, NR_ANON_PAGES); | |
993 | else | |
994 | __dec_zone_page_state(page, | |
995 | NR_ANON_TRANSPARENT_HUGEPAGES); | |
b904dcfe KM |
996 | } else { |
997 | __dec_zone_page_state(page, NR_FILE_MAPPED); | |
2a7106f2 | 998 | mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED); |
b904dcfe | 999 | } |
b904dcfe KM |
1000 | /* |
1001 | * It would be tidy to reset the PageAnon mapping here, | |
1002 | * but that might overwrite a racing page_add_anon_rmap | |
1003 | * which increments mapcount after us but sets mapping | |
1004 | * before us: so leave the reset to free_hot_cold_page, | |
1005 | * and remember that it's only reliable while mapped. | |
1006 | * Leaving it set also helps swapoff to reinstate ptes | |
1007 | * faster for those pages still in swapcache. | |
1008 | */ | |
1da177e4 LT |
1009 | } |
1010 | ||
1011 | /* | |
1012 | * Subfunctions of try_to_unmap: try_to_unmap_one called | |
1013 | * repeatedly from either try_to_unmap_anon or try_to_unmap_file. | |
1014 | */ | |
5ad64688 HD |
1015 | int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, |
1016 | unsigned long address, enum ttu_flags flags) | |
1da177e4 LT |
1017 | { |
1018 | struct mm_struct *mm = vma->vm_mm; | |
1da177e4 LT |
1019 | pte_t *pte; |
1020 | pte_t pteval; | |
c0718806 | 1021 | spinlock_t *ptl; |
1da177e4 LT |
1022 | int ret = SWAP_AGAIN; |
1023 | ||
479db0bf | 1024 | pte = page_check_address(page, mm, address, &ptl, 0); |
c0718806 | 1025 | if (!pte) |
81b4082d | 1026 | goto out; |
1da177e4 LT |
1027 | |
1028 | /* | |
1029 | * If the page is mlock()d, we cannot swap it out. | |
1030 | * If it's recently referenced (perhaps page_referenced | |
1031 | * skipped over this mm) then we should reactivate it. | |
1032 | */ | |
14fa31b8 | 1033 | if (!(flags & TTU_IGNORE_MLOCK)) { |
caed0f48 KM |
1034 | if (vma->vm_flags & VM_LOCKED) |
1035 | goto out_mlock; | |
1036 | ||
af8e3354 | 1037 | if (TTU_ACTION(flags) == TTU_MUNLOCK) |
53f79acb | 1038 | goto out_unmap; |
14fa31b8 AK |
1039 | } |
1040 | if (!(flags & TTU_IGNORE_ACCESS)) { | |
b291f000 NP |
1041 | if (ptep_clear_flush_young_notify(vma, address, pte)) { |
1042 | ret = SWAP_FAIL; | |
1043 | goto out_unmap; | |
1044 | } | |
1045 | } | |
1da177e4 | 1046 | |
1da177e4 LT |
1047 | /* Nuke the page table entry. */ |
1048 | flush_cache_page(vma, address, page_to_pfn(page)); | |
cddb8a5c | 1049 | pteval = ptep_clear_flush_notify(vma, address, pte); |
1da177e4 LT |
1050 | |
1051 | /* Move the dirty bit to the physical page now the pte is gone. */ | |
1052 | if (pte_dirty(pteval)) | |
1053 | set_page_dirty(page); | |
1054 | ||
365e9c87 HD |
1055 | /* Update high watermark before we lower rss */ |
1056 | update_hiwater_rss(mm); | |
1057 | ||
888b9f7c AK |
1058 | if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { |
1059 | if (PageAnon(page)) | |
d559db08 | 1060 | dec_mm_counter(mm, MM_ANONPAGES); |
888b9f7c | 1061 | else |
d559db08 | 1062 | dec_mm_counter(mm, MM_FILEPAGES); |
888b9f7c AK |
1063 | set_pte_at(mm, address, pte, |
1064 | swp_entry_to_pte(make_hwpoison_entry(page))); | |
1065 | } else if (PageAnon(page)) { | |
4c21e2f2 | 1066 | swp_entry_t entry = { .val = page_private(page) }; |
0697212a CL |
1067 | |
1068 | if (PageSwapCache(page)) { | |
1069 | /* | |
1070 | * Store the swap location in the pte. | |
1071 | * See handle_pte_fault() ... | |
1072 | */ | |
570a335b HD |
1073 | if (swap_duplicate(entry) < 0) { |
1074 | set_pte_at(mm, address, pte, pteval); | |
1075 | ret = SWAP_FAIL; | |
1076 | goto out_unmap; | |
1077 | } | |
0697212a CL |
1078 | if (list_empty(&mm->mmlist)) { |
1079 | spin_lock(&mmlist_lock); | |
1080 | if (list_empty(&mm->mmlist)) | |
1081 | list_add(&mm->mmlist, &init_mm.mmlist); | |
1082 | spin_unlock(&mmlist_lock); | |
1083 | } | |
d559db08 | 1084 | dec_mm_counter(mm, MM_ANONPAGES); |
b084d435 | 1085 | inc_mm_counter(mm, MM_SWAPENTS); |
64cdd548 | 1086 | } else if (PAGE_MIGRATION) { |
0697212a CL |
1087 | /* |
1088 | * Store the pfn of the page in a special migration | |
1089 | * pte. do_swap_page() will wait until the migration | |
1090 | * pte is removed and then restart fault handling. | |
1091 | */ | |
14fa31b8 | 1092 | BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION); |
0697212a | 1093 | entry = make_migration_entry(page, pte_write(pteval)); |
1da177e4 LT |
1094 | } |
1095 | set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); | |
1096 | BUG_ON(pte_file(*pte)); | |
14fa31b8 | 1097 | } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) { |
04e62a29 CL |
1098 | /* Establish migration entry for a file page */ |
1099 | swp_entry_t entry; | |
1100 | entry = make_migration_entry(page, pte_write(pteval)); | |
1101 | set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); | |
1102 | } else | |
d559db08 | 1103 | dec_mm_counter(mm, MM_FILEPAGES); |
1da177e4 | 1104 | |
edc315fd | 1105 | page_remove_rmap(page); |
1da177e4 LT |
1106 | page_cache_release(page); |
1107 | ||
1108 | out_unmap: | |
c0718806 | 1109 | pte_unmap_unlock(pte, ptl); |
caed0f48 KM |
1110 | out: |
1111 | return ret; | |
53f79acb | 1112 | |
caed0f48 KM |
1113 | out_mlock: |
1114 | pte_unmap_unlock(pte, ptl); | |
1115 | ||
1116 | ||
1117 | /* | |
1118 | * We need mmap_sem locking, Otherwise VM_LOCKED check makes | |
1119 | * unstable result and race. Plus, We can't wait here because | |
1120 | * we now hold anon_vma->lock or mapping->i_mmap_lock. | |
1121 | * if trylock failed, the page remain in evictable lru and later | |
1122 | * vmscan could retry to move the page to unevictable lru if the | |
1123 | * page is actually mlocked. | |
1124 | */ | |
1125 | if (down_read_trylock(&vma->vm_mm->mmap_sem)) { | |
1126 | if (vma->vm_flags & VM_LOCKED) { | |
1127 | mlock_vma_page(page); | |
1128 | ret = SWAP_MLOCK; | |
53f79acb | 1129 | } |
caed0f48 | 1130 | up_read(&vma->vm_mm->mmap_sem); |
53f79acb | 1131 | } |
1da177e4 LT |
1132 | return ret; |
1133 | } | |
1134 | ||
1135 | /* | |
1136 | * objrmap doesn't work for nonlinear VMAs because the assumption that | |
1137 | * offset-into-file correlates with offset-into-virtual-addresses does not hold. | |
1138 | * Consequently, given a particular page and its ->index, we cannot locate the | |
1139 | * ptes which are mapping that page without an exhaustive linear search. | |
1140 | * | |
1141 | * So what this code does is a mini "virtual scan" of each nonlinear VMA which | |
1142 | * maps the file to which the target page belongs. The ->vm_private_data field | |
1143 | * holds the current cursor into that scan. Successive searches will circulate | |
1144 | * around the vma's virtual address space. | |
1145 | * | |
1146 | * So as more replacement pressure is applied to the pages in a nonlinear VMA, | |
1147 | * more scanning pressure is placed against them as well. Eventually pages | |
1148 | * will become fully unmapped and are eligible for eviction. | |
1149 | * | |
1150 | * For very sparsely populated VMAs this is a little inefficient - chances are | |
1151 | * there there won't be many ptes located within the scan cluster. In this case | |
1152 | * maybe we could scan further - to the end of the pte page, perhaps. | |
b291f000 NP |
1153 | * |
1154 | * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can | |
1155 | * acquire it without blocking. If vma locked, mlock the pages in the cluster, | |
1156 | * rather than unmapping them. If we encounter the "check_page" that vmscan is | |
1157 | * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN. | |
1da177e4 LT |
1158 | */ |
1159 | #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) | |
1160 | #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) | |
1161 | ||
b291f000 NP |
1162 | static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount, |
1163 | struct vm_area_struct *vma, struct page *check_page) | |
1da177e4 LT |
1164 | { |
1165 | struct mm_struct *mm = vma->vm_mm; | |
1166 | pgd_t *pgd; | |
1167 | pud_t *pud; | |
1168 | pmd_t *pmd; | |
c0718806 | 1169 | pte_t *pte; |
1da177e4 | 1170 | pte_t pteval; |
c0718806 | 1171 | spinlock_t *ptl; |
1da177e4 LT |
1172 | struct page *page; |
1173 | unsigned long address; | |
1174 | unsigned long end; | |
b291f000 NP |
1175 | int ret = SWAP_AGAIN; |
1176 | int locked_vma = 0; | |
1da177e4 | 1177 | |
1da177e4 LT |
1178 | address = (vma->vm_start + cursor) & CLUSTER_MASK; |
1179 | end = address + CLUSTER_SIZE; | |
1180 | if (address < vma->vm_start) | |
1181 | address = vma->vm_start; | |
1182 | if (end > vma->vm_end) | |
1183 | end = vma->vm_end; | |
1184 | ||
1185 | pgd = pgd_offset(mm, address); | |
1186 | if (!pgd_present(*pgd)) | |
b291f000 | 1187 | return ret; |
1da177e4 LT |
1188 | |
1189 | pud = pud_offset(pgd, address); | |
1190 | if (!pud_present(*pud)) | |
b291f000 | 1191 | return ret; |
1da177e4 LT |
1192 | |
1193 | pmd = pmd_offset(pud, address); | |
1194 | if (!pmd_present(*pmd)) | |
b291f000 NP |
1195 | return ret; |
1196 | ||
1197 | /* | |
af8e3354 | 1198 | * If we can acquire the mmap_sem for read, and vma is VM_LOCKED, |
b291f000 NP |
1199 | * keep the sem while scanning the cluster for mlocking pages. |
1200 | */ | |
af8e3354 | 1201 | if (down_read_trylock(&vma->vm_mm->mmap_sem)) { |
b291f000 NP |
1202 | locked_vma = (vma->vm_flags & VM_LOCKED); |
1203 | if (!locked_vma) | |
1204 | up_read(&vma->vm_mm->mmap_sem); /* don't need it */ | |
1205 | } | |
c0718806 HD |
1206 | |
1207 | pte = pte_offset_map_lock(mm, pmd, address, &ptl); | |
1da177e4 | 1208 | |
365e9c87 HD |
1209 | /* Update high watermark before we lower rss */ |
1210 | update_hiwater_rss(mm); | |
1211 | ||
c0718806 | 1212 | for (; address < end; pte++, address += PAGE_SIZE) { |
1da177e4 LT |
1213 | if (!pte_present(*pte)) |
1214 | continue; | |
6aab341e LT |
1215 | page = vm_normal_page(vma, address, *pte); |
1216 | BUG_ON(!page || PageAnon(page)); | |
1da177e4 | 1217 | |
b291f000 NP |
1218 | if (locked_vma) { |
1219 | mlock_vma_page(page); /* no-op if already mlocked */ | |
1220 | if (page == check_page) | |
1221 | ret = SWAP_MLOCK; | |
1222 | continue; /* don't unmap */ | |
1223 | } | |
1224 | ||
cddb8a5c | 1225 | if (ptep_clear_flush_young_notify(vma, address, pte)) |
1da177e4 LT |
1226 | continue; |
1227 | ||
1228 | /* Nuke the page table entry. */ | |
eca35133 | 1229 | flush_cache_page(vma, address, pte_pfn(*pte)); |
cddb8a5c | 1230 | pteval = ptep_clear_flush_notify(vma, address, pte); |
1da177e4 LT |
1231 | |
1232 | /* If nonlinear, store the file page offset in the pte. */ | |
1233 | if (page->index != linear_page_index(vma, address)) | |
1234 | set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); | |
1235 | ||
1236 | /* Move the dirty bit to the physical page now the pte is gone. */ | |
1237 | if (pte_dirty(pteval)) | |
1238 | set_page_dirty(page); | |
1239 | ||
edc315fd | 1240 | page_remove_rmap(page); |
1da177e4 | 1241 | page_cache_release(page); |
d559db08 | 1242 | dec_mm_counter(mm, MM_FILEPAGES); |
1da177e4 LT |
1243 | (*mapcount)--; |
1244 | } | |
c0718806 | 1245 | pte_unmap_unlock(pte - 1, ptl); |
b291f000 NP |
1246 | if (locked_vma) |
1247 | up_read(&vma->vm_mm->mmap_sem); | |
1248 | return ret; | |
1da177e4 LT |
1249 | } |
1250 | ||
71e3aac0 | 1251 | bool is_vma_temporary_stack(struct vm_area_struct *vma) |
a8bef8ff MG |
1252 | { |
1253 | int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); | |
1254 | ||
1255 | if (!maybe_stack) | |
1256 | return false; | |
1257 | ||
1258 | if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == | |
1259 | VM_STACK_INCOMPLETE_SETUP) | |
1260 | return true; | |
1261 | ||
1262 | return false; | |
1263 | } | |
1264 | ||
b291f000 NP |
1265 | /** |
1266 | * try_to_unmap_anon - unmap or unlock anonymous page using the object-based | |
1267 | * rmap method | |
1268 | * @page: the page to unmap/unlock | |
8051be5e | 1269 | * @flags: action and flags |
b291f000 NP |
1270 | * |
1271 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
1272 | * contained in the anon_vma struct it points to. | |
1273 | * | |
1274 | * This function is only called from try_to_unmap/try_to_munlock for | |
1275 | * anonymous pages. | |
1276 | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma | |
1277 | * where the page was found will be held for write. So, we won't recheck | |
1278 | * vm_flags for that VMA. That should be OK, because that vma shouldn't be | |
1279 | * 'LOCKED. | |
1280 | */ | |
14fa31b8 | 1281 | static int try_to_unmap_anon(struct page *page, enum ttu_flags flags) |
1da177e4 LT |
1282 | { |
1283 | struct anon_vma *anon_vma; | |
5beb4930 | 1284 | struct anon_vma_chain *avc; |
1da177e4 | 1285 | int ret = SWAP_AGAIN; |
b291f000 | 1286 | |
1da177e4 LT |
1287 | anon_vma = page_lock_anon_vma(page); |
1288 | if (!anon_vma) | |
1289 | return ret; | |
1290 | ||
5beb4930 RR |
1291 | list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { |
1292 | struct vm_area_struct *vma = avc->vma; | |
a8bef8ff MG |
1293 | unsigned long address; |
1294 | ||
1295 | /* | |
1296 | * During exec, a temporary VMA is setup and later moved. | |
1297 | * The VMA is moved under the anon_vma lock but not the | |
1298 | * page tables leading to a race where migration cannot | |
1299 | * find the migration ptes. Rather than increasing the | |
1300 | * locking requirements of exec(), migration skips | |
1301 | * temporary VMAs until after exec() completes. | |
1302 | */ | |
1303 | if (PAGE_MIGRATION && (flags & TTU_MIGRATION) && | |
1304 | is_vma_temporary_stack(vma)) | |
1305 | continue; | |
1306 | ||
1307 | address = vma_address(page, vma); | |
1cb1729b HD |
1308 | if (address == -EFAULT) |
1309 | continue; | |
1310 | ret = try_to_unmap_one(page, vma, address, flags); | |
53f79acb HD |
1311 | if (ret != SWAP_AGAIN || !page_mapped(page)) |
1312 | break; | |
1da177e4 | 1313 | } |
34bbd704 ON |
1314 | |
1315 | page_unlock_anon_vma(anon_vma); | |
1da177e4 LT |
1316 | return ret; |
1317 | } | |
1318 | ||
1319 | /** | |
b291f000 NP |
1320 | * try_to_unmap_file - unmap/unlock file page using the object-based rmap method |
1321 | * @page: the page to unmap/unlock | |
14fa31b8 | 1322 | * @flags: action and flags |
1da177e4 LT |
1323 | * |
1324 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
1325 | * contained in the address_space struct it points to. | |
1326 | * | |
b291f000 NP |
1327 | * This function is only called from try_to_unmap/try_to_munlock for |
1328 | * object-based pages. | |
1329 | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma | |
1330 | * where the page was found will be held for write. So, we won't recheck | |
1331 | * vm_flags for that VMA. That should be OK, because that vma shouldn't be | |
1332 | * 'LOCKED. | |
1da177e4 | 1333 | */ |
14fa31b8 | 1334 | static int try_to_unmap_file(struct page *page, enum ttu_flags flags) |
1da177e4 LT |
1335 | { |
1336 | struct address_space *mapping = page->mapping; | |
1337 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
1338 | struct vm_area_struct *vma; | |
1339 | struct prio_tree_iter iter; | |
1340 | int ret = SWAP_AGAIN; | |
1341 | unsigned long cursor; | |
1342 | unsigned long max_nl_cursor = 0; | |
1343 | unsigned long max_nl_size = 0; | |
1344 | unsigned int mapcount; | |
1345 | ||
1346 | spin_lock(&mapping->i_mmap_lock); | |
1347 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | |
1cb1729b HD |
1348 | unsigned long address = vma_address(page, vma); |
1349 | if (address == -EFAULT) | |
1350 | continue; | |
1351 | ret = try_to_unmap_one(page, vma, address, flags); | |
53f79acb HD |
1352 | if (ret != SWAP_AGAIN || !page_mapped(page)) |
1353 | goto out; | |
1da177e4 LT |
1354 | } |
1355 | ||
1356 | if (list_empty(&mapping->i_mmap_nonlinear)) | |
1357 | goto out; | |
1358 | ||
53f79acb HD |
1359 | /* |
1360 | * We don't bother to try to find the munlocked page in nonlinears. | |
1361 | * It's costly. Instead, later, page reclaim logic may call | |
1362 | * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily. | |
1363 | */ | |
1364 | if (TTU_ACTION(flags) == TTU_MUNLOCK) | |
1365 | goto out; | |
1366 | ||
1da177e4 LT |
1367 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, |
1368 | shared.vm_set.list) { | |
1da177e4 LT |
1369 | cursor = (unsigned long) vma->vm_private_data; |
1370 | if (cursor > max_nl_cursor) | |
1371 | max_nl_cursor = cursor; | |
1372 | cursor = vma->vm_end - vma->vm_start; | |
1373 | if (cursor > max_nl_size) | |
1374 | max_nl_size = cursor; | |
1375 | } | |
1376 | ||
b291f000 | 1377 | if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */ |
1da177e4 LT |
1378 | ret = SWAP_FAIL; |
1379 | goto out; | |
1380 | } | |
1381 | ||
1382 | /* | |
1383 | * We don't try to search for this page in the nonlinear vmas, | |
1384 | * and page_referenced wouldn't have found it anyway. Instead | |
1385 | * just walk the nonlinear vmas trying to age and unmap some. | |
1386 | * The mapcount of the page we came in with is irrelevant, | |
1387 | * but even so use it as a guide to how hard we should try? | |
1388 | */ | |
1389 | mapcount = page_mapcount(page); | |
1390 | if (!mapcount) | |
1391 | goto out; | |
1392 | cond_resched_lock(&mapping->i_mmap_lock); | |
1393 | ||
1394 | max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; | |
1395 | if (max_nl_cursor == 0) | |
1396 | max_nl_cursor = CLUSTER_SIZE; | |
1397 | ||
1398 | do { | |
1399 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, | |
1400 | shared.vm_set.list) { | |
1da177e4 | 1401 | cursor = (unsigned long) vma->vm_private_data; |
839b9685 | 1402 | while ( cursor < max_nl_cursor && |
1da177e4 | 1403 | cursor < vma->vm_end - vma->vm_start) { |
53f79acb HD |
1404 | if (try_to_unmap_cluster(cursor, &mapcount, |
1405 | vma, page) == SWAP_MLOCK) | |
1406 | ret = SWAP_MLOCK; | |
1da177e4 LT |
1407 | cursor += CLUSTER_SIZE; |
1408 | vma->vm_private_data = (void *) cursor; | |
1409 | if ((int)mapcount <= 0) | |
1410 | goto out; | |
1411 | } | |
1412 | vma->vm_private_data = (void *) max_nl_cursor; | |
1413 | } | |
1414 | cond_resched_lock(&mapping->i_mmap_lock); | |
1415 | max_nl_cursor += CLUSTER_SIZE; | |
1416 | } while (max_nl_cursor <= max_nl_size); | |
1417 | ||
1418 | /* | |
1419 | * Don't loop forever (perhaps all the remaining pages are | |
1420 | * in locked vmas). Reset cursor on all unreserved nonlinear | |
1421 | * vmas, now forgetting on which ones it had fallen behind. | |
1422 | */ | |
101d2be7 HD |
1423 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) |
1424 | vma->vm_private_data = NULL; | |
1da177e4 LT |
1425 | out: |
1426 | spin_unlock(&mapping->i_mmap_lock); | |
1427 | return ret; | |
1428 | } | |
1429 | ||
1430 | /** | |
1431 | * try_to_unmap - try to remove all page table mappings to a page | |
1432 | * @page: the page to get unmapped | |
14fa31b8 | 1433 | * @flags: action and flags |
1da177e4 LT |
1434 | * |
1435 | * Tries to remove all the page table entries which are mapping this | |
1436 | * page, used in the pageout path. Caller must hold the page lock. | |
1437 | * Return values are: | |
1438 | * | |
1439 | * SWAP_SUCCESS - we succeeded in removing all mappings | |
1440 | * SWAP_AGAIN - we missed a mapping, try again later | |
1441 | * SWAP_FAIL - the page is unswappable | |
b291f000 | 1442 | * SWAP_MLOCK - page is mlocked. |
1da177e4 | 1443 | */ |
14fa31b8 | 1444 | int try_to_unmap(struct page *page, enum ttu_flags flags) |
1da177e4 LT |
1445 | { |
1446 | int ret; | |
1447 | ||
1da177e4 | 1448 | BUG_ON(!PageLocked(page)); |
91600e9e | 1449 | VM_BUG_ON(!PageHuge(page) && PageTransHuge(page)); |
1da177e4 | 1450 | |
5ad64688 HD |
1451 | if (unlikely(PageKsm(page))) |
1452 | ret = try_to_unmap_ksm(page, flags); | |
1453 | else if (PageAnon(page)) | |
14fa31b8 | 1454 | ret = try_to_unmap_anon(page, flags); |
1da177e4 | 1455 | else |
14fa31b8 | 1456 | ret = try_to_unmap_file(page, flags); |
b291f000 | 1457 | if (ret != SWAP_MLOCK && !page_mapped(page)) |
1da177e4 LT |
1458 | ret = SWAP_SUCCESS; |
1459 | return ret; | |
1460 | } | |
81b4082d | 1461 | |
b291f000 NP |
1462 | /** |
1463 | * try_to_munlock - try to munlock a page | |
1464 | * @page: the page to be munlocked | |
1465 | * | |
1466 | * Called from munlock code. Checks all of the VMAs mapping the page | |
1467 | * to make sure nobody else has this page mlocked. The page will be | |
1468 | * returned with PG_mlocked cleared if no other vmas have it mlocked. | |
1469 | * | |
1470 | * Return values are: | |
1471 | * | |
53f79acb | 1472 | * SWAP_AGAIN - no vma is holding page mlocked, or, |
b291f000 | 1473 | * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem |
5ad64688 | 1474 | * SWAP_FAIL - page cannot be located at present |
b291f000 NP |
1475 | * SWAP_MLOCK - page is now mlocked. |
1476 | */ | |
1477 | int try_to_munlock(struct page *page) | |
1478 | { | |
1479 | VM_BUG_ON(!PageLocked(page) || PageLRU(page)); | |
1480 | ||
5ad64688 HD |
1481 | if (unlikely(PageKsm(page))) |
1482 | return try_to_unmap_ksm(page, TTU_MUNLOCK); | |
1483 | else if (PageAnon(page)) | |
14fa31b8 | 1484 | return try_to_unmap_anon(page, TTU_MUNLOCK); |
b291f000 | 1485 | else |
14fa31b8 | 1486 | return try_to_unmap_file(page, TTU_MUNLOCK); |
b291f000 | 1487 | } |
e9995ef9 | 1488 | |
76545066 RR |
1489 | /* |
1490 | * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root | |
1491 | * if necessary. Be careful to do all the tests under the lock. Once | |
1492 | * we know we are the last user, nobody else can get a reference and we | |
1493 | * can do the freeing without the lock. | |
1494 | */ | |
9e60109f | 1495 | void put_anon_vma(struct anon_vma *anon_vma) |
76545066 | 1496 | { |
83813267 PZ |
1497 | BUG_ON(atomic_read(&anon_vma->refcount) <= 0); |
1498 | if (atomic_dec_and_lock(&anon_vma->refcount, &anon_vma->root->lock)) { | |
76545066 RR |
1499 | struct anon_vma *root = anon_vma->root; |
1500 | int empty = list_empty(&anon_vma->head); | |
1501 | int last_root_user = 0; | |
1502 | int root_empty = 0; | |
1503 | ||
1504 | /* | |
1505 | * The refcount on a non-root anon_vma got dropped. Drop | |
1506 | * the refcount on the root and check if we need to free it. | |
1507 | */ | |
1508 | if (empty && anon_vma != root) { | |
83813267 PZ |
1509 | BUG_ON(atomic_read(&root->refcount) <= 0); |
1510 | last_root_user = atomic_dec_and_test(&root->refcount); | |
76545066 RR |
1511 | root_empty = list_empty(&root->head); |
1512 | } | |
1513 | anon_vma_unlock(anon_vma); | |
1514 | ||
1515 | if (empty) { | |
1516 | anon_vma_free(anon_vma); | |
1517 | if (root_empty && last_root_user) | |
1518 | anon_vma_free(root); | |
1519 | } | |
1520 | } | |
1521 | } | |
76545066 | 1522 | |
e9995ef9 HD |
1523 | #ifdef CONFIG_MIGRATION |
1524 | /* | |
1525 | * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file(): | |
1526 | * Called by migrate.c to remove migration ptes, but might be used more later. | |
1527 | */ | |
1528 | static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *, | |
1529 | struct vm_area_struct *, unsigned long, void *), void *arg) | |
1530 | { | |
1531 | struct anon_vma *anon_vma; | |
5beb4930 | 1532 | struct anon_vma_chain *avc; |
e9995ef9 HD |
1533 | int ret = SWAP_AGAIN; |
1534 | ||
1535 | /* | |
1536 | * Note: remove_migration_ptes() cannot use page_lock_anon_vma() | |
1537 | * because that depends on page_mapped(); but not all its usages | |
3f6c8272 MG |
1538 | * are holding mmap_sem. Users without mmap_sem are required to |
1539 | * take a reference count to prevent the anon_vma disappearing | |
e9995ef9 HD |
1540 | */ |
1541 | anon_vma = page_anon_vma(page); | |
1542 | if (!anon_vma) | |
1543 | return ret; | |
cba48b98 | 1544 | anon_vma_lock(anon_vma); |
5beb4930 RR |
1545 | list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { |
1546 | struct vm_area_struct *vma = avc->vma; | |
e9995ef9 HD |
1547 | unsigned long address = vma_address(page, vma); |
1548 | if (address == -EFAULT) | |
1549 | continue; | |
1550 | ret = rmap_one(page, vma, address, arg); | |
1551 | if (ret != SWAP_AGAIN) | |
1552 | break; | |
1553 | } | |
cba48b98 | 1554 | anon_vma_unlock(anon_vma); |
e9995ef9 HD |
1555 | return ret; |
1556 | } | |
1557 | ||
1558 | static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *, | |
1559 | struct vm_area_struct *, unsigned long, void *), void *arg) | |
1560 | { | |
1561 | struct address_space *mapping = page->mapping; | |
1562 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
1563 | struct vm_area_struct *vma; | |
1564 | struct prio_tree_iter iter; | |
1565 | int ret = SWAP_AGAIN; | |
1566 | ||
1567 | if (!mapping) | |
1568 | return ret; | |
1569 | spin_lock(&mapping->i_mmap_lock); | |
1570 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | |
1571 | unsigned long address = vma_address(page, vma); | |
1572 | if (address == -EFAULT) | |
1573 | continue; | |
1574 | ret = rmap_one(page, vma, address, arg); | |
1575 | if (ret != SWAP_AGAIN) | |
1576 | break; | |
1577 | } | |
1578 | /* | |
1579 | * No nonlinear handling: being always shared, nonlinear vmas | |
1580 | * never contain migration ptes. Decide what to do about this | |
1581 | * limitation to linear when we need rmap_walk() on nonlinear. | |
1582 | */ | |
1583 | spin_unlock(&mapping->i_mmap_lock); | |
1584 | return ret; | |
1585 | } | |
1586 | ||
1587 | int rmap_walk(struct page *page, int (*rmap_one)(struct page *, | |
1588 | struct vm_area_struct *, unsigned long, void *), void *arg) | |
1589 | { | |
1590 | VM_BUG_ON(!PageLocked(page)); | |
1591 | ||
1592 | if (unlikely(PageKsm(page))) | |
1593 | return rmap_walk_ksm(page, rmap_one, arg); | |
1594 | else if (PageAnon(page)) | |
1595 | return rmap_walk_anon(page, rmap_one, arg); | |
1596 | else | |
1597 | return rmap_walk_file(page, rmap_one, arg); | |
1598 | } | |
1599 | #endif /* CONFIG_MIGRATION */ | |
0fe6e20b | 1600 | |
e3390f67 | 1601 | #ifdef CONFIG_HUGETLB_PAGE |
0fe6e20b NH |
1602 | /* |
1603 | * The following three functions are for anonymous (private mapped) hugepages. | |
1604 | * Unlike common anonymous pages, anonymous hugepages have no accounting code | |
1605 | * and no lru code, because we handle hugepages differently from common pages. | |
1606 | */ | |
1607 | static void __hugepage_set_anon_rmap(struct page *page, | |
1608 | struct vm_area_struct *vma, unsigned long address, int exclusive) | |
1609 | { | |
1610 | struct anon_vma *anon_vma = vma->anon_vma; | |
433abed6 | 1611 | |
0fe6e20b | 1612 | BUG_ON(!anon_vma); |
433abed6 NH |
1613 | |
1614 | if (PageAnon(page)) | |
1615 | return; | |
1616 | if (!exclusive) | |
1617 | anon_vma = anon_vma->root; | |
1618 | ||
0fe6e20b NH |
1619 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; |
1620 | page->mapping = (struct address_space *) anon_vma; | |
1621 | page->index = linear_page_index(vma, address); | |
1622 | } | |
1623 | ||
1624 | void hugepage_add_anon_rmap(struct page *page, | |
1625 | struct vm_area_struct *vma, unsigned long address) | |
1626 | { | |
1627 | struct anon_vma *anon_vma = vma->anon_vma; | |
1628 | int first; | |
a850ea30 NH |
1629 | |
1630 | BUG_ON(!PageLocked(page)); | |
0fe6e20b NH |
1631 | BUG_ON(!anon_vma); |
1632 | BUG_ON(address < vma->vm_start || address >= vma->vm_end); | |
1633 | first = atomic_inc_and_test(&page->_mapcount); | |
1634 | if (first) | |
1635 | __hugepage_set_anon_rmap(page, vma, address, 0); | |
1636 | } | |
1637 | ||
1638 | void hugepage_add_new_anon_rmap(struct page *page, | |
1639 | struct vm_area_struct *vma, unsigned long address) | |
1640 | { | |
1641 | BUG_ON(address < vma->vm_start || address >= vma->vm_end); | |
1642 | atomic_set(&page->_mapcount, 0); | |
1643 | __hugepage_set_anon_rmap(page, vma, address, 1); | |
1644 | } | |
e3390f67 | 1645 | #endif /* CONFIG_HUGETLB_PAGE */ |